
Natural Language Processing

Fundamentals

for Developers

NLPFD.Ch00.FM.indd 1NLPFD.Ch00.FM.indd 1 6/7/2021 1:20:49 PM6/7/2021 1:20:49 PM

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY
By purchasing or using this book and its companion files (the “Work”), you agree that
this license grants permission to use the contents contained herein, but does not give
you the right of ownership to any of the textual content in the book or ownership
to any of the information, files, or products contained in it. This license does not
permit uploading of the Work onto the Internet or on a network (of any kind) without
the written consent of the Publisher. Duplication or dissemination of any text, code,
simulations, images, etc. contained herein is limited to and subject to licensing terms
for the respective products, and permission must be obtained from the Publisher or
the owner of the content, etc., in order to reproduce or network any portion of the
textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved
in the creation, writing, production, accompanying algorithms, code, or computer
programs (“the software”), and any accompanying Web site or software of the Work,
cannot and do not warrant the performance or results that might be obtained by
using the contents of the Work. The author, developers, and the Publisher have
used their best efforts to insure the accuracy and functionality of the textual material
and/or programs contained in this package; we, however, make no warranty of any
kind, express or implied, regarding the performance of these contents or programs.
The Work is sold “as is” without warranty (except for defective materials used in
manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement
of the book and only at the discretion of the Publisher. The use of “implied warranty”
and certain “exclusions” vary from state to state, and might not apply to the purchaser
of this product.

Companion files also available for downloading from the publisher by writing to
info@merclearning.com.

NLPFD.Ch00.FM.indd 2NLPFD.Ch00.FM.indd 2 6/7/2021 1:20:49 PM6/7/2021 1:20:49 PM

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Oswald Campesato

Natural Language Processing

Fundamentals

for Developers

NLPFD.Ch00.FM.indd 3NLPFD.Ch00.FM.indd 3 6/7/2021 1:20:49 PM6/7/2021 1:20:49 PM

Copyright ©2021 by Mercury Learning and Information LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way,
stored in a retrieval system of any type, or transmitted by any means, media, electronic display or
mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning,
without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

O. Campesato. Natural Language Processing Fundamentals for Developers.
ISBN: 978-1-68392-657-3

The publisher recognizes and respects all marks used by companies, manufacturers, and developers
as a means to distinguish their products. All brand names and product names mentioned in this book
are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of
service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2021939603

212223321  Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For
additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors.
Companion files for this title are available by writing to the publisher at info@merclearning.com. The
sole obligation of Mercury Learning and Information to the purchaser is to replace the book, based on
defective materials or faulty workmanship, but not based on the operation or functionality of the product.

NLPFD.Ch00.FM.indd 4NLPFD.Ch00.FM.indd 4 6/7/2021 1:20:49 PM6/7/2021 1:20:49 PM

I’d like to dedicate this book to my parents –
may this bring joy and happiness into their lives.

NLPFD.Ch00.FM.indd 5NLPFD.Ch00.FM.indd 5 6/7/2021 1:20:49 PM6/7/2021 1:20:49 PM

NLPFD.Ch00.FM.indd 6NLPFD.Ch00.FM.indd 6 6/7/2021 1:20:49 PM6/7/2021 1:20:49 PM

Contents

Preface� xiii

Chapter 1:	 Working with Data� 1
What are Datasets?� 1
Data Types� 3
Preparing Datasets� 4
Missing Data, Anomalies, and Outliers� 11
What is Imbalanced Classification?� 14
What is SMOTE?� 16
Analyzing Classifiers (Optional)� 16
The Bias-Variance Trade-Off� 18
Summary� 20

Chapter 2:	 NLP Concepts (I)� 21
The Origin of Languages� 22
The Complexity of Natural Languages� 29
Japanese Grammar� 36
Phonetic Languages � 44
Multiple Ways to Pronounce Consonants � 47
English Pronouns and Prepositions � 52
What is NLP? � 53
A Wide-Angle View of NLP � 56
Information Extraction and Retrieval � 59

NLPFD.Ch00.FM.indd 7NLPFD.Ch00.FM.indd 7 6/7/2021 1:20:49 PM6/7/2021 1:20:49 PM

viii • Contents

Word Sense Disambiguation � 60
NLP Techniques in ML � 60
Text Normalization and Tokenization � 62
Handling Stop Words � 65
What is Stemming? � 66
What is Lemmatization? � 68
Working with Text: POS � 69
Working with Text: NER � 71
What is Topic Modeling? � 73
Keyword Extraction, Sentiment Analysis, and
Text Summarization � 74
Summary � 75

Chapter 3:	 NLP Concepts (II)� 77
What is Word Relevance?� 77
What is Text Similarity? � 78
Sentence Similarity � 79
Working with Documents � 80
Techniques for Text Similarity � 81
What is Text Encoding? � 82
Text Encoding Techniques � 83
The BoW Algorithm � 86
What are N-Grams?� 88
Calculating tf, idf, and tf-idf � 91
The Context of Words in a Document � 96
What is Cosine Similarity? � 98
Text Vectorization (A.K.A. Word Embeddings) � 100
Overview of Word Embeddings and Algorithms � 102
What is Word2vec? � 103
The CBoW Architecture� 106
What are Skip-grams? � 107
What is GloVe?� 110
Working with GloVe� 111

NLPFD.Ch00.FM.indd 8NLPFD.Ch00.FM.indd 8 6/7/2021 1:20:50 PM6/7/2021 1:20:50 PM

Contents • ix

What is FastText? � 112
Comparison of Word Embeddings � 112
What is Topic Modeling? � 113
Language Models and NLP � 115
Vector Space Models � 117
NLP and Text Mining � 119
Relation Extraction and Information Extraction � 119
What is a BLEU Score? � 120
Summary � 121

Chapter 4:	 Algorithms and Toolkits (I)� 123
What is NLTK? � 123
NLTK and BoW� 124
NLTK and Stemmers � 125
NLTK and Lemmatization � 129
NLTK and Stop Words � 132
What Is Wordnet? � 133
NLTK, lxml, and XPath� 137
NLTK and N-Grams � 139
NLTK and POS (I) � 141
NLTK and POS (2) � 145
NLTK and Tokenizers � 147
NLTK and Context-Free Grammars (Optional) � 149
What is Gensim?� 151
An Example of Topic Modeling � 154
A Brief Comparison of Popular Python-Based NLP Libraries � 157
Miscellaneous Libraries � 157
Summary � 160

Chapter 5:	 Algorithms and Toolkits (II)� 161
Cleaning Data with Regular Expressions � 161
Handling Contracted Words� 167
Python Code Samples of BoW� 169
One-Hot Encoding Examples� 174

NLPFD.Ch00.FM.indd 9NLPFD.Ch00.FM.indd 9 6/7/2021 1:20:50 PM6/7/2021 1:20:50 PM

x • Contents

Sklearn and Word Embedding Examples� 176
What is BeautifulSoup?� 183
Web Scraping with Pure Regular Expressions � 188
What is Scrapy?� 191
What is SpaCy?� 191
SpaCy and Stop Words � 192
SpaCy and Tokenization� 193
SpaCy and Lemmatization � 195
SpaCy and NER� 197
SpaCy Pipelines� 198
SpaCy and Word Vectors� 199
The ScispaCy Library (Optional)� 202
Summary � 203

Chapter 6:	 NLP Applications� 205
What is Text Summarization?� 205
Text Summarization with Gensim and SpaCy� 207
What are Recommender Systems?� 211
Content-Based Recommendation Systems� 214
Collaborative Filtering Algorithm� 215
Recommender Systems and Reinforcement
Learning (Optional) � 216
What is Sentiment Analysis?� 220
Sentiment Analysis with Naïve Bayes � 223
Sentiment Analysis with VADER and NLTK � 228
Sentiment Analysis with Textblob� 231
Sentiment Analysis with Flair� 235
Detecting Spam � 236
Logistic Regression and Sentiment Analysis� 237
Working with COVID-19� 240
What are Chatbots?� 243
Summary� 246

NLPFD.Ch00.FM.indd 10NLPFD.Ch00.FM.indd 10 6/7/2021 1:20:50 PM6/7/2021 1:20:50 PM

Contents • xi

Chapter 7:	 Transformer, BERT, and GPT� 247
What is Attention?� 248
An Overview of the Transformer Architecture� 250
What is T5? � 254
What is BERT?� 255
The Inner Workings of BERT � 257
Subword Tokenization � 262
Sentence Similarity in BERT� 264
Generating BERT Tokens (1) � 267
Generating BERT Tokens (2) � 268
The BERT Family� 270
Introduction to GPT � 273
Working with GPT-2� 274
What is GPT-3? � 282
The Switch Transformer: One Trillion Parameters� 286
Looking Ahead� 286
Summary � 287

Appendix A: Introduction to Regular Expressions� 289
Appendix B: Introduction to Probability and Statistics� 323
Index� 355

NLPFD.Ch00.FM.indd 11NLPFD.Ch00.FM.indd 11 6/7/2021 1:20:50 PM6/7/2021 1:20:50 PM

NLPFD.Ch00.FM.indd 12NLPFD.Ch00.FM.indd 12 6/7/2021 1:20:50 PM6/7/2021 1:20:50 PM

Preface

WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS
BOOK?

This book contains a fast-paced introduction to as much relevant information
about NLP as possible that can be reasonably included in a book of this size.
Some chapters contain topics that are discussed in great detail (such as the
first half of Chapter 2), and other chapters contain advanced statistical con-
cepts that you can safely omit during your first pass through this book. This
book casts a wide net to help developers who have a wide range of technical
backgrounds, which is the rationale for the inclusion of a plethora of topics.
Regardless of your background, please keep in mind the following point: you
will probably need to read some of the content in this book multiple times.

However, you will be exposed to many NLP topics, and many topics
are presented in a cursory manner for two reasons. First, it’s important that
you be exposed to these concepts. In some cases, you will find topics that
might pique your interest, and hence motivate you to learn more about
them through self-study; in other cases, you will probably be satisfied with a
brief introduction. Hence, you will decide whether or not to delve into more
detail regarding the topics in this book.

Second, a full treatment of all the topics that are covered in this book
would probably quadruple the size of this book, and few people are interested
in reading 1,000-page technical books. Hence, this book provides a broad
view of the NLP landscape, based on the belief that this approach will be
more beneficial for readers who are experienced developers, who want to
learn about NLP.

NLPFD.Ch00.FM.indd 13NLPFD.Ch00.FM.indd 13 6/7/2021 1:20:50 PM6/7/2021 1:20:50 PM

xiv • Preface

However, it’s important for you to decide if this approach is suitable
for your needs and learning style: if not, you can select one or more of the
plethora of NLP books that are available.

THE TARGET AUDIENCE

This book is intended primarily for people who have a solid background as
software developers. Specifically, it is for developers who are accustomed to
searching online for more detailed information about technical topics. If you
are a beginner, there are other books that are more suitable for you, and you
can find them by performing an online search.

This book is also intended to reach an international audience of readers
with highly diverse backgrounds in various age groups. While many readers
know how to read English, their native spoken language is not English. Con-
sequently, this book uses standard English rather than colloquial expressions
that might be confusing to those readers. As you know, many people learn by
different types of imitation, which includes reading, writing, or hearing new
material. This book takes these points into consideration in order to provide
a comfortable and meaningful learning experience for the intended readers.

WHY SUCH A MASSIVE NUMBER OF TOPICS IN THIS BOOK?

As mentioned in the response to the previous question, this book is intended
for developers who want to learn NLP concepts. Because this encompasses
people with vastly different technical backgrounds, there are readers who
“don’t know what they don’t know” regarding NLP. Therefore, this book
exposes people to a plethora of NLP-related concepts, after which they can
decide those topics to select for greater study. Consequently, the book does
not have a “zero-to-hero” approach, nor is it necessary to master all the top-
ics that are discussed in the chapters and the appendices; rather, they are a
go-to source of information to help you decide where you want to invest your
time and effort.

As you might already know, learning often takes place through an iter-
ative and repetitive approach whereby the cumulative exposure leads to a
greater level of comfort and understanding of technical concepts. For some
readers, this will be the first step in their journey toward mastering NLP.

NLPFD.Ch00.FM.indd 14NLPFD.Ch00.FM.indd 14 6/7/2021 1:20:50 PM6/7/2021 1:20:50 PM

Preface • xv

HOW IS THE BOOK ORGANIZED AND WHAT WILL I LEARN?

The first chapter shows you various details of managing data that are relevant
for NLP. The next pair of chapters contain NLP concepts, followed by
another pair of chapters that contain Python code samples which illustrate
the NLP concepts.

Chapter 6 explores sentiment analysis, recommender systems, COVID-19
analysis, spam detection, and a short discussion regarding chatbots. The final
chapter presents the Transformer architecture, BERT-based models, and
the GPT family of models, all of which have been developed during the
past three years and to varying degrees they are considered SOTA (“state of
the art”).

The appendices contain introductory material (including Python code
samples) for various topics, including Regular Expressions and statistical
concepts.

WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?

Most of the code samples are short (usually less than one page and some-
times less than half a page), and if need be, you can easily and quickly copy/
paste the code into a new Jupyter notebook.

If you do decide to use Google Colaboratory, you can easily copy/paste
the Python code into a notebook, and also use the upload feature to upload
existing Jupyter notebooks. Keep in mind the following point: if the Python
code references a CSV file, make sure that you include the appropriate code
snippet (as explained in Chapter 1) to access the CSV file in the correspond-
ing Jupyter notebook in Google Colaboratory.

HOW WERE THE CODE SAMPLES CREATED?

The code samples in this book were created and tested using Python 3 on a
MacBook Pro with OS X 10.15.15 (macOS Catalina). Regarding their con-
tent: the code samples are derived primarily from the author for his Natural
Language Processing graduate course. In some cases, there are code sam-
ples that incorporate short sections of code from discussions in online
forums. The key point to remember is the code samples follow the “Four

NLPFD.Ch00.FM.indd 15NLPFD.Ch00.FM.indd 15 6/7/2021 1:20:50 PM6/7/2021 1:20:50 PM

xvi • Preface

Cs”: they must be Clear, Concise, Complete, and Correct to the extent that
it’s possible to do so, given the size of this book.

GETTING THE MOST FROM THIS BOOK

Some programmers learn well from prose, others learn well from sample
code (and lots of it), which means that there’s no single style that can be used
for everyone.

Moreover, some programmers want to run the code first, see what it
does, and then return to the code to delve into the details (and others use
the opposite approach).

Consequently, there are various types of code samples in this book:
some are short, some are long, and other code samples “build” from earlier
code samples.

WHAT DO I NEED TO KNOW FOR THIS BOOK?

Current knowledge of Python 3.x is the most helpful skill. Knowledge of
other programming languages (such as Java) can also be helpful because of
the exposure to programming concepts and constructs. The less technical
knowledge that you have, the more diligence will be required in order to
understand the various topics that are covered.

If you want to be sure that you can grasp the material in this book, glance
through some of the code samples to get an idea of how much is familiar to
you and how much is new for you.

DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE
SAMPLES?

The primary purpose of the code samples in this book is to show you Python-
based libraries for solving a variety of NLP-related tasks. Clarity has higher
priority than writing more compact code that is more difficult to understand
(and possibly more prone to bugs). If you decide to use any of the code in
this book in a production Website, you ought to subject that code to the
same rigorous analysis as the other parts of your code base.

NLPFD.Ch00.FM.indd 16NLPFD.Ch00.FM.indd 16 6/7/2021 1:20:50 PM6/7/2021 1:20:50 PM

Preface • xvii

WHAT ARE THE NON-TECHNICAL PREREQUISITES FOR THIS
BOOK?

Although the answer to this question is more difficult to quantify, it’s impor-
tant to have a strong desire to learn about NLP, along with the motivation
and discipline to read and understand the code samples.

Even simple APIs can be a challenge to understand them the first time
you encounter them, so be prepared to read the code samples several times.

HOW DO I SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to do so. The first method is to
use Finder to navigate to Applications > Utilities and then double
click on the Utilities application. Next, if you already have a command
shell available, you can launch a new command shell by typing the following
command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a
MacBook from a command shell that is already visible simply by clicking
command+n in that command shell, and your Mac will launch another com-
mand shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.
com/) that simulates bash commands, or use another toolkit such as MKS (a
commercial product). Please read the online documentation that describes
the download and installation process. Note that custom aliases are not auto-
matically set if they are defined in a file other than the main start-up file
(such as .bash_login).

COMPANION FILES

All the code samples and figures in this book may be obtained by writing to
the publisher at info@merclearning.com.

NLPFD.Ch00.FM.indd 17NLPFD.Ch00.FM.indd 17 6/7/2021 1:20:50 PM6/7/2021 1:20:50 PM

xviii • Preface

WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS
BOOK?

The answer to this question varies widely, mainly because the answer
depends heavily on your objectives. If you are interested primarily in NLP,
then you can learn more advanced concepts, such as attention, transformers,
and the BERT-related models.

If you are primarily interested in machine learning, there are some sub-
fields of machine learning, such as deep learning and reinforcement learning
(and deep reinforcement learning) that might appeal to you. Fortunately,
there are many resources available, and you can perform an Internet search
for those resources. One other point: the aspects of machine learning for you
to learn depend on who you are: the needs of a machine learning engineer,
data scientist, manager, student, or software developer are all different.

� O. Campesato
� May 2021

NLPFD.Ch00.FM.indd 18NLPFD.Ch00.FM.indd 18 6/7/2021 1:20:50 PM6/7/2021 1:20:50 PM

C H A P T E R 1
Working with Data

This chapter introduces you to the data types (along with their differences),
how to scale data values, and various techniques for handling missing data
values. If most of the material in this chapter is new to you, be assured that
it’s not necessary to understand everything in this chapter. It’s still a good idea
to read as much material as you can, and perhaps return to this chapter again
after you have completed some of the other chapters in this book.

The first part of this chapter contains an overview of different types of
data and an explanation of how to normalize and standardize a set of numeric
values by calculating the mean and standard deviation of a set of numbers.
You will see how to map categorical data to a set of integers and how to per-
form one-hot encoding.

The second part of this chapter discusses missing data, outliers, and
anomalies, and also some techniques for handling these scenarios. The third
section discusses imbalanced data and the use of SMOTE (Synthetic Minority
Oversampling Technique) to deal with imbalanced classes in a dataset.

The fourth section discusses ways to evaluate classifiers such as LIME
and ANOVA. This section also contains details regarding the bias-variance
trade-off and various types of statistical bias.

WHAT ARE DATASETS?

In simple terms, a dataset is a source of data (such as a text file) that con-
tains rows and columns of data. Each row is typically called a “data point,”
and each column is called a “feature.” A dataset can be in any form: CSV
(comma separated values), TSV (tab separated values), Excel spreadsheet, a
table in an RDMBS (Relational Database Management System), a document

NLPFD.Ch1.2pp.indd 1NLPFD.Ch1.2pp.indd 1 5/27/2021 5:34:33 PM5/27/2021 5:34:33 PM

2 • Natural Language Processing Fundamentals for Developers

in a NoSQL database, or the output from a Web service. Someone needs to
analyze the dataset to determine which features are the most important and
which features can be safely ignored in order to train a model with the given
dataset.

A dataset can vary from very small (a couple of features and 100 rows)
to very large (more than 1,000 features and more than one million rows).
If you are unfamiliar with the problem domain, then you might struggle to
determine the most important features in a large dataset. In this situation, you
might need a domain expert who understands the importance of the features,
their interdependencies (if any), and whether the data values for the features
are valid. In addition, there are algorithms (called dimensionality reduction
algorithms) that can help you determine the most important features. For
example, PCA (Principal Component Analysis) is one such algorithm, which
is discussed in more detail later in this chapter.

Data Preprocessing

Data preprocessing is the initial step that involves validating the contents of
a dataset, which involves making decisions about missing and incorrect data
values such as

●● dealing with missing data values
●● cleaning “noisy” text-based data
●● removing HTML tags
●● removing emoticons
●● dealing with emojis/emoticons
●● filtering data
●● grouping data
●● handling currency and date formats (i18n)

Cleaning data is an important initial task that involves removing
unwanted data as well as handling missing data. In the case of text-based data,
you might need to remove HTML tags, punctuation, and so forth. In the case
of numeric data, it’s less likely (though still possible) that alphabetic charac-
ters are mixed together with numeric data. However, a dataset with numeric
features might have incorrect values or missing values (discussed later). In
addition, calculating the minimum, maximum, mean, median, and standard
deviation of the values of a feature obviously pertain only to numeric values.

After the preprocessing step is completed, data wrangling is performed,
which refers to transforming data into a new format. You might have to com-
bine data from multiple sources into a single dataset. For example, you might

NLPFD.Ch1.2pp.indd 2NLPFD.Ch1.2pp.indd 2 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

Working with Data • 3

need to convert between different units of measurement (such as date for-
mats or currency values) so that the data values can be represented in a con-
sistent manner in a dataset.

Currency and date values are part of i18n (internationalization), whereas
l10n (localization) targets a specific nationality, language, or region. Hard-
coded values (such as text strings) can be stored as resource strings in a file
that’s often called a resource bundle, where each string is referenced via a
code. Each language has its own resource bundle.

DATA TYPES

Explicit data types exist in many programming languages such as C, C++,
Java, and TypeScript. Some programming languages, such as JavaScript and
awk, do not require initializing variables with an explicit type: the type of a
variable is inferred dynamically via an implicit type system (i.e., one that is not
directly exposed to a developer).

In machine learning, datasets can contain features that have different
types of data, such as a combination of one or more of the following:

●● numeric data (integer/floating point and discrete/continuous)
●● character/categorical data (different languages)
●● date-related data (different formats)
●● currency data (different formats)
●● binary data (yes/no, 0/1, and so forth)
●● nominal data (multiple unrelated values)
●● ordinal data (multiple and related values)

Consider a dataset that contains real estate data, which can have as many
as thirty columns (or even more), often with the following features:

●● the number of bedrooms in a house: numeric value and a discrete value
●● the number of square feet: a numeric value and (probably) a continu-

ous value
●● the name of the city: character data
●● the construction date: a date value
●● the selling price: a currency value and probably a continuous value
●● the “for sale” status: binary data (either “yes” or “no”)

An example of nominal data is the seasons in a year: although many coun-
tries have four distinct seasons, some countries have only two distinct seasons.

NLPFD.Ch1.2pp.indd 3NLPFD.Ch1.2pp.indd 3 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

4 • Natural Language Processing Fundamentals for Developers

However, seasons can be associated with different temperature ranges (sum-
mer versus winter). An example of ordinal data is an employee pay grade:
1=entry level, 2=one year of experience, and so forth. Another example of
nominal data is a set of colors, such as {Red, Green, Blue}.

An example of binary data is the pair {Male, Female}, and some datasets
contain a feature with these two values. If such a feature is required for train-
ing a model, first convert {Male, Female} to a numeric counterpart, such as
{0, 1}. Similarly, if you need to include a feature whose values are the previous
set of colors, you can replace {Red, Green, Blue} with the values {0, 1, 2}.

PREPARING DATASETS

If you have the good fortune to inherit a dataset that is in pristine condition,
then data cleaning tasks (discussed later) are vastly simplified: in fact, it might
not be necessary to perform any data cleaning for the dataset. On the other
hand, if you need to create a dataset that combines data from multiple data-
sets that contain different formats for dates and currency, then you need to
perform a conversion to a common format.

If you need to train a model that includes features that have categorical
data, then you need to convert that categorical data to numeric data. For
instance, the Titanic dataset contains a feature called “gender,” which is either
male or female. Later in this chapter, we show how to “map” male to 0 and
female to 1 using Pandas.

Discrete Data Versus Continuous Data

As a simple rule of thumb: discrete data is a set of values that can be counted,
whereas continuous data must be measured. Discrete data can reasonably
fit in a drop-down list of values, but there is no exact value for making such
a determination. One person might think that a list of 500 values is discrete,
whereas another person might think it’s continuous.

For example, the list of provinces of Canada and the list of states of the
United States are discrete data values, but is the same true for the number
of countries in the world (roughly 200) or for the number of languages in the
world (more than 7,000)?

Values for temperature, humidity, and barometric pressure are consid-
ered continuous. Currency is also treated as continuous, even though there
is a measurable difference between two consecutive values. The smallest

NLPFD.Ch1.2pp.indd 4NLPFD.Ch1.2pp.indd 4 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

Working with Data • 5

unit of currency for U.S. currency is one penny, which is 1/100th of a dollar
(accounting-based measurements use the “mil,” which is 1/1,000th of a dollar).

Continuous data types can have subtle differences. For example, someone
who is 200 centimeters tall is twice as tall as someone who is 100 centimeters
tall; the same is true for 100 kilograms versus 50 kilograms. However, tem-
perature is different: 80 degrees Fahrenheit is not twice as hot as 40 degrees
Fahrenheit.

Furthermore, keep in mind that the meaning of the word “continuous” in
mathematics is not necessarily the same as continuous in machine learning.
In the former, a continuous variable (let’s say in the 2D Euclidean plane) can
have an uncountably infinite number of values. A feature in a dataset that
can have more values than can be reasonably displayed in a drop-down list is
treated as though it’s a continuous variable.

For instance, values for stock prices are discrete: they must differ by at
least a penny (or some other minimal unit of currency), which is to say, it’s
meaningless to say that the stock price changes by one-millionth of a penny.
However, since there are so many possible stock values, it’s treated as a con-
tinuous variable. The same comments apply to car mileage, ambient tempera-
ture, and barometric pressure.

“Binning” Continuous Data

Binning refers to subdividing a set of values into multiple intervals, and then
treating all the numbers in the same interval as though they had the same
value.

As a simple example, suppose that a feature in a dataset contains the age
of people in a dataset. The range of values is approximately between 0 and
120, and we could bin them into 12 equal intervals, where each consists of 10
values: 0 through 9, 10 through 19, 20 through 29, and so forth.

However, partitioning the values of people’s ages as described in the pre-
ceding paragraph can be problematic. Suppose that person A, person B, and
person C are 29, 30, and 39, respectively. Then person A and person B are
probably more similar to each other than person B and person C, but because
of the way in which the ages are partitioned, B is classified as closer to C than
to A. In fact, binning can increase Type I errors (false positive) and Type II
errors (false negative), as discussed in this blog post (along with some alterna-
tives to binning):

https://medium.com/@peterflom/why-binning-continuous-data-is-almost-
always-a-mistake-ad0b3a1d141f.

NLPFD.Ch1.2pp.indd 5NLPFD.Ch1.2pp.indd 5 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

6 • Natural Language Processing Fundamentals for Developers

As another example, using quartiles is even more coarse-grained than the
earlier age-related binning example. The issue with binning pertains to the
consequences of classifying people in different bins, even though they are in
close proximity to each other. For instance, some people struggle financially
because they earn a meager wage, and they are disqualified from financial
assistance because their salary is higher than the cutoff point for receiving any
assistance.

Scaling Numeric Data via Normalization

A range of values can vary significantly, and it’s important to note that
they often need to be scaled to a smaller range, such as values in the range
[−1, 1] or [0, 1], which you can do via the tanh function or the sigmoid func-
tion, respectively.

For example, measuring a person’s height in terms of meters involves a
range of values between 0.50 meters and 2.5 meters (in the vast majority of
cases), whereas measuring height in terms of centimeters ranges between 50
centimeters and 250 centimeters: these two units differ by a factor of 100. A
person’s weight in kilograms generally varies between 5 kilograms and 200
kilograms, whereas measuring weight in grams differs by a factor of 1,000.
Distances between objects can be measured in meters or in kilometers, which
also differ by a factor of 1,000.

In general, use units of measure so that the data values in multiple fea-
tures belong to a similar range of values. In fact, some machine learning algo-
rithms require scaled data, often in the range of [0, 1] or [−1, 1]. In addition to
the tanh and sigmoid function, there are other techniques for scaling data,
such as standardizing data (think Gaussian distribution) and normalizing data
(linearly scaled so that the new range of values is in [0, 1]).

The following examples involve a floating point variable X with differ-
ent ranges of values that will be scaled so that the new values are in the
interval [0, 1].

●● Example 1: If the values of X are in the range [0, 2], then X/2 is in the
range [0, 1].

●● Example 2: If the values of X are in the range [3, 6], then X − 3 is in the
range [0, 3], and (X − 3)/3 is in the range [0, 1].

●● Example 3: If the values of X are in the range [−10, 20], then X + 10 is in
the range [0, 30], and (X + 10)/30 is in the range of [0, 1].

In general, suppose that X is a random variable whose values are in the
range [a, b], where a < b. You can scale the data values by performing two
steps:

NLPFD.Ch1.2pp.indd 6NLPFD.Ch1.2pp.indd 6 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

Working with Data • 7

Step 1: X-a is in the range [0,b-a]

Step 2: (X-a)/(b-a) is in the range [0,1]

If X is a random variable that has the values {x1, x2, x3, ..., xn},
then the formula for normalization involves mapping each xi value to
(xi – min)/(max – min), where min is the minimum value of X and max
is the maximum value of X.

As a simple example, suppose that the random variable X has the values
{-1, 0, 1}. Then min and max are 1 and −1, respectively, and the normal-
ization of {-1, 0, 1} is the set of values {(-1-(-1))/2, (0-(-1))/2,
(1-(-1))/2}, which equals {0, 1/2, 1}.

Scaling Numeric Data via Standardization

The standardization technique involves finding the mean mu and the stand-
ard deviation sigma, and then mapping each xi value to (xi – mu)/sigma.
Recall the following formulas:

 mu = [SUM (x)]/n

variance(x) = [SUM (x – xbar)*(x-xbar)]/n

 sigma = sqrt(variance)

As a simple illustration of standardization, suppose that the random vari-
able X has the values {−1, 0, 1}. Then mu and sigma are calculated as follows:

mu = (SUM xi)/n = (-1 + 0 + 1)/3 = 0

variance = [SUM (xi- mu)^2]/n
 = [(-1-0)^2 + (0-0)^2 + (1-0)^2]/3
 = 2/3

sigma = sqrt(2/3) = 0.816 (approximate value)

Hence, the standardization of {-1, 0, 1} is {-1/0.816, 0/0.816,
1/0.816}, which in turn equals the set of values {-1.2254, 0, 1.2254}.

As another example, suppose that the random variable X has the values
{-6, 0, 6}. Then mu and sigma are calculated as follows:

mu = (SUM xi)/n = (-6 + 0 + 6)/3 = 0

variance = [SUM (xi- mu)^2]/n

 = [(-6-0)^2 + (0-0)^2 + (6-0)^2]/3

 = 72/3

 = 24

sigma = sqrt(24) = 4.899 (approximate value)

NLPFD.Ch1.2pp.indd 7NLPFD.Ch1.2pp.indd 7 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

8 • Natural Language Processing Fundamentals for Developers

Hence, the standardization of {-6, 0, 6} is {-6/4.899, 0/4.899,
6/4.899}, which in turn equals the set of values {-1.2247, 0, 1.2247}.

In the preceding two examples, the mean equals 0 in both cases, but the
variance and standard deviation are significantly different. The normalization
of a set of values always produces a set of numbers between 0 and 1.

However, the standardization of a set of values can generate numbers that
are less than −1 and greater than 1; this will occur when sigma is less than
the minimum value of every term |mu – xi|, where the latter is the absolute
value of the difference between mu and each xi value. In the preceding exam-
ple, the minimum difference equals 1, whereas sigma is 0.816, and therefore
the largest standardized value is greater than 1.

What to Look for in Categorical Data

This section contains various suggestions for handling inconsistent data values,
and you can determine which ones to adopt based on any additional factors
that are relevant to your particular task. For example, consider dropping col-
umns that have very low cardinality (equal to or close to 1), as well as numeric
columns with zero or very low variance.

Next, check the contents of categorical columns for inconsistent spellings
or errors. A good example pertains to the gender category, which can consist
of a combination of the following values:

male

Male

female

Female

m

f

M

F

The preceding categorical values for gender can be replaced with two
categorical values (unless you have a valid reason to retain some of the other
values). Moreover, if you are training a model whose analysis involves a single
gender, then you need to determine which rows (if any) of a dataset must be
excluded. Also check categorical data columns for redundant or missing white
spaces.

Check for data values that have multiple data types, such as a numerical
column with numbers as numerals and some numbers as strings or objects.

NLPFD.Ch1.2pp.indd 8NLPFD.Ch1.2pp.indd 8 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

Working with Data • 9

Ensure consistent data formats (numbers as integers or floating numbers),
and ensure that dates have the same format (for example, do not mix mm/dd/
yyyy date formats with another date format, such as dd/mm/yyyy).

Mapping Categorical Data to Numeric Values

Character data is often called categorical data, examples of which include
people’s names, home or work addresses, and email addresses. Many types of
categorical data involve short lists of values. For example, the days of the week
and the months in a year involve seven and twelve distinct values, respectively.
Notice that the days of the week have a relationship: For example, each day
has a previous day and a next day. However, the colors of an automobile are
independent of each other: the color red is not “better” or “worse” than the
color blue.

There are several well-known techniques for mapping categorical values
to a set of numeric values. A simple example where you need to perform this
conversion involves the gender feature in the Titanic dataset. This feature is
one of the relevant features for training a machine learning model. The gen-
der feature has {M, F} as its set of possible values. As you will see later in this
chapter, Pandas makes it very easy to convert the set of values {M, F} to the
set of values {0, 1}.

Another mapping technique involves mapping a set of categorical values
to a set of consecutive integer values. For example, the set {Red, Green, Blue}
can be mapped to the set of integers {0, 1, 2}. The set {Male, Female} can be
mapped to the set of integers {0, 1}. The days of the week can be mapped to
{0, 1, 2, 3, 4, 5, 6}. Note that the first day of the week depends on the country:
In some cases it’s Sunday, and in other cases it’s Monday.

Another technique is called one-hot encoding, which converts each value
to a vector (check Wikipedia if you need a refresher regarding vectors). Thus,
{Male, Female} can be represented by the vectors [1, 0] and [0, 1], and
the colors {Red, Green, Blue} can be represented by the vectors [1, 0, 0],
[0, 1, 0], and [0, 0, 1]. If you vertically “line up” the two vectors for gen-
der, they form a 2 × 2 identity matrix, and doing the same for the colors will
form a 3 × 3 identity matrix.

If you vertically “line up” the two vectors for gender, they form a 2 × 2
identity matrix, and doing the same for the colors will form a 3 × 3 identity
matrix, as shown here:

[1, 0 ,0]

[0, 1, 0]

[0, 0, 1]

NLPFD.Ch1.2pp.indd 9NLPFD.Ch1.2pp.indd 9 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

10 • Natural Language Processing Fundamentals for Developers

If you are familiar with matrices, you probably noticed that the preced-
ing set of vectors looks like the 3 × 3 identity matrix. In fact, this technique
generalizes in a straightforward manner. Specifically, if you have n distinct
categorical values, you can map each of those values to one of the vectors in
an n × n identity matrix.

As another example, the set of titles {"Intern", "Junior", "Mid-
Range", "Senior", "Project Leader", "Dev Manager"} have a hier-
archical relationship in terms of their salaries. Another set of categorical
data involves the season of the year: {"Spring", "Summer", "Autumn",
"Winter"}, and while these values are generally independent of each other,
there are cases in which the season is significant. For example, the values for
the monthly rainfall, average temperature, crime rate, or foreclosure rate can
depend on the season, month, week, or even the day of the year.

If a feature has a large number of categorical values, then one-hot encod-
ing will produce many additional columns for each data point. Since the
majority of the values in the new columns equal 0, this can increase the spar-
sity of the dataset, which in turn can result in more overfitting and hence
adversely affect the accuracy of machine learning algorithms that you adopt
during the training process.

Another solution is to use a sequence-based solution in which N catego-
ries are mapped to the integers 1, 2, . . . , N. Another solution involves exam-
ining the row frequency of each categorical value. For example, suppose that
N equals 20, and there are three categorical values that occur in 95% of the
values for a given feature. You can try the following:

1.	 Assign the values 1, 2, and 3 to those three categorical values.

2.	 Assign numeric values that reflect the relative frequency of those categor-
ical values.

3.	 Assign the category “OTHER” to the remaining categorical values.

4.	 Delete the rows whose categorical values belong to the 5%.

Working with Dates

The format for a calendar date varies among different countries, and this
belongs to something called localization of data (not to be confused with
i18n, which is data internationalization). Some examples of date formats are
shown as follows (and the first four are probably the most common):

NLPFD.Ch1.2pp.indd 10NLPFD.Ch1.2pp.indd 10 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

Working with Data • 11

MM/DD/YY

MM/DD/YYYY

DD/MM/YY

DD/MM/YYYY

YY/MM/DD

M/D/YY

D/M/YY

YY/M/D

MMDDYY

DDMMYY

YYMMDD

If you need to combine data from datasets that contain different date
formats, then converting the disparate date formats to a single common date
format will ensure consistency.

Working with Currency

The format for currency depends on the country, which includes different
interpretations for a “,” and “.” in currency (and decimal values in general).
For example, 1,124.78 equals “one thousand one hundred twenty-four point
seven eight” in the United States, whereas 1.124,78 has the same meaning in
Europe (i.e., the “.” symbol and the “,” symbol are interchanged).

If you need to combine data from datasets that contain different currency
formats, then you probably need to convert all the disparate currency formats
to a single common currency format. There is another detail to consider: cur-
rency exchange rates can fluctuate on a daily basis, which in turn can affect
the calculation of taxes, late fees, and so forth. Although you might be fortu-
nate enough where you won’t have to deal with these issues, it’s still worth
being aware of them.

MISSING DATA, ANOMALIES, AND OUTLIERS

Although missing data is not directly related to checking for anomalies and
outliers, in general you will perform all three of these tasks. Each task involves
a set of techniques to help you perform an analysis of the data in a dataset, and
the following subsections describe some of those techniques.

NLPFD.Ch1.2pp.indd 11NLPFD.Ch1.2pp.indd 11 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

12 • Natural Language Processing Fundamentals for Developers

Missing Data

How you decide to handle missing data depends on the specific dataset. Here
are some ways to handle missing data (the first three techniques are manual
techniques, and the other techniques are algorithms):

1.	 replace missing data with the mean/median/mode value

2.	 infer (“impute”) the value for missing data

3.	 delete rows with missing data

4.	 isolation forest (tree-based algorithm)

5.	 minimum covariance determinant

6.	 local outlier factor

7.	 one-class SVM (Support Vector Machines)

In general, replacing a missing numeric value with zero is a risky choice:
this value is obviously incorrect if the values of a feature are between 1,000
and 5,000. For a feature that has numeric values, replacing a missing value
with the average value is better than the value zero (unless the average equals
zero); also consider using the median value. For categorical data, consider
using the mode to replace a missing value.

If you are not confident that you can impute a “reasonable” value, con-
sider dropping the row with a missing value, and then train a model with the
imputed value and also with the deleted row.

One problem that can arise after removing rows with missing values is
that the resulting dataset is too small. In this case, consider using SMOTE,
which is discussed later in this chapter, in order to generate synthetic data.

Anomalies and Outliers

In simplified terms, an outlier is an abnormal data value that is outside the
range of “normal” values. For example, a person’s height in centimeters is
typically between 30 centimeters and 250 centimeters. Hence, a data point
(e.g., a row of data in a spreadsheet) with a height of 5 centimeters or a height
of 500 centimeters is an outlier. The consequences of these outlier values are
unlikely to involve a significant financial or physical loss (though they could
adversely affect the accuracy of a trained model).

Anomalies are also outside the “normal” range of values (just like out-
liers), and they are typically more problematic than outliers: anomalies can
have more severe consequences than outliers. For example, consider the
scenario in which someone who lives in California suddenly makes a credit

NLPFD.Ch1.2pp.indd 12NLPFD.Ch1.2pp.indd 12 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

Working with Data • 13

card purchase in New York. If the person is on vacation (or a business trip),
then the purchase is an outlier (it’s outside the typical purchasing pattern),
but it’s not an issue. However, if that person was in California when the credit
card purchase was made, then it’s most likely to be credit card fraud, as well
as an anomaly.

Unfortunately, there is no simple way to decide how to deal with anoma-
lies and outliers in a dataset. Although you can drop rows that contain outli-
ers, keep in mind that doing so might deprive the dataset—and therefore the
trained model—of valuable information. You can try modifying the data val-
ues (described as follows), but again, this might lead to erroneous inferences
in the trained model. Another possibility is to train a model with the dataset
that contains anomalies and outliers, and then train a model with a dataset
from which the anomalies and outliers have been removed. Compare the two
results and see if you can infer anything meaningful regarding the anomalies
and outliers.

Outlier Detection

Although the decision to keep or drop outliers is your decision to make,
there are some techniques available that help you detect outliers in a dataset.
This section contains a short list of some techniques, along with a very brief
description and links for additional information.

Perhaps trimming is the simplest technique (apart from dropping outli-
ers), which involves removing rows whose feature value is in the upper 5%
range or the lower 5% range. Winsorizing the data is an improvement over
trimming: set the values in the top 5% range equal to the maximum value in
the 95th percentile, and set the values in the bottom 5% range equal to the
minimum in the 5th percentile.

The Minimum Covariance Determinant is a covariance-based technique,
and a Python-based code sample that uses this technique is available online:

https://scikit-learn.org/stable/modules/outlier_detection.html.

The Local Outlier Factor (LOF) technique is an unsupervised technique
that calculates a local anomaly score via the kNN (k Nearest Neighbor) algo-
rithm. Documentation and short code samples that use LOF are available
online:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
LocalOutlierFactor.html.

Two other techniques involve the Huber and the Ridge classes, both of
which are included as part of Sklearn. The Huber error is less sensitive to

NLPFD.Ch1.2pp.indd 13NLPFD.Ch1.2pp.indd 13 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

14 • Natural Language Processing Fundamentals for Developers

outliers because it’s calculated via the linear loss, similar to the MAE (Mean
Absolute Error). A code sample that compares Huber and Ridge is available
online:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_huber_
vs_ridge.html.

You can also explore the Theil-Sen estimator and RANSAC, which are
“robust” against outliers:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.
html and

https://en.wikipedia.org/wiki/Random_sample_consensus.

Four algorithms for outlier detection are discussed at the following site:

https://www.kdnuggets.com/2018/12/four-techniques-outlier-detection.
html.

One other scenario involves “local” outliers. For example, suppose that
you use kMeans (or some other clustering algorithm) and determine that a
value is an outlier with respect to one of the clusters. While this value is not
necessarily an “absolute” outlier, detecting such a value might be important
for your use case.

What is Data Drift?

The value of data is based on its accuracy, its relevance, and its age. Data drift
refers to data that has become less relevant over time. For example, online
purchasing patterns in 2010 are probably not as relevant as data from 2020
because of various factors (such as the profile of different types of customers).
Keep in mind that there might be multiple factors that can influence data drift
in a specific dataset.

Two techniques are domain classifier and the black-box shift detector,
both of which are discussed online:

https://blog.dataiku.com/towards-reliable-mlops-with-drift-detectors.

WHAT IS IMBALANCED CLASSIFICATION?

Imbalanced classification involves datasets with imbalanced classes. For exam-
ple, suppose that class A has 99% of the data and class B has 1%. Which clas-
sification algorithm would you use? Unfortunately, classification algorithms

NLPFD.Ch1.2pp.indd 14NLPFD.Ch1.2pp.indd 14 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

Working with Data • 15

don’t work well with this type of imbalanced dataset. Here is a list of several
well-known techniques for handling imbalanced datasets:

●● Random resampling rebalances the class distribution.
●● Random oversampling duplicates data in the minority class.
●● Random undersampling deletes examples from the majority class.
●● SMOTE

Random resampling transforms the training dataset into a new dataset,
which is effective for imbalanced classification problems.

The random undersampling technique removes samples from the dataset,
and involves the following:

●● randomly remove samples from majority class
●● can be performed with or without replacement
●● alleviates imbalance in the dataset
●● may increase the variance of the classifier
●● may discard useful or important samples

However, random undersampling does not work well with a dataset that
has a 99%/1% split into two classes. Moreover, undersampling can result in
losing information that is useful for a model.

Instead of random undersampling, another approach involves generating
new samples from a minority class. The first technique involves oversampling
examples in the minority class and duplicate examples from the minority class.

There is another technique that is better than the preceding technique,
which involves the following:

●● synthesize new examples from minority class
●● a type of data augmentation for tabular data
●● this technique can be very effective
●● generate new samples from minority class

Another well-known technique is called SMOTE, which involves data
augmentation (i.e., synthesizing new data samples) well before you use a clas-
sification algorithm. SMOTE was initially developed by means of the kNN
algorithm (other options are available), and it can be an effective technique
for handling imbalanced classes.

Yet another option to consider is the Python package imbalanced-learn
in the scikit-learn-contrib project. This project provides various
re-sampling techniques for datasets that exhibit class imbalance. More details
are available online:

https://github.com/scikit-learn-contrib/imbalanced-learn.

NLPFD.Ch1.2pp.indd 15NLPFD.Ch1.2pp.indd 15 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

16 • Natural Language Processing Fundamentals for Developers

WHAT IS SMOTE?

SMOTE is a technique for synthesizing new samples for a dataset. This tech-
nique is based on linear interpolation:

●● Step 1: Select samples that are close in the feature space.
●● Step 2: Draw a line between the samples in the feature space.
●● Step 3: Draw a new sample at a point along that line.

A more detailed explanation of the SMOTE algorithm is as follows:

●● Select a random sample “a” from the minority class.
●● Find k nearest neighbors for that example.
●● Select a random neighbor “b” from the nearest neighbors.
●● Create a line “L” that connects “a” and “b.”
●● Randomly select one or more points “c” on line L.

If need be, you can repeat this process for the other (k-1) nearest neigh
bors to distribute the synthetic values more evenly among the nearest
neighbors.

SMOTE Extensions

The initial SMOTE algorithm is based on the kNN classification algorithm,
which has been extended in various ways, such as replacing kNN with SVM.
A list of SMOTE extensions is shown as follows:

●● selective synthetic sample generation
●● Borderline-SMOTE (kNN)
●● Borderline-SMOTE (SVM)
●● Adaptive Synthetic Sampling (ADASYN)

ANALYZING CLASSIFIERS (OPTIONAL)

This section is marked “optional” because its contents pertain to machine
learning classifiers, which are not the focus of this book. However, it’s still
worthwhile to glance through the material, or perhaps return to this section
after you have a basic understanding of machine learning classifiers.

Several well-known techniques are available for analyzing the quality of
machine learning classifiers. Two techniques are LIME and ANOVA, both of
which are discussed in the following subsections.

NLPFD.Ch1.2pp.indd 16NLPFD.Ch1.2pp.indd 16 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

Working with Data • 17

What is LIME?

LIME is an acronym for Local Interpretable Model-Agnostic Explanations.
LIME is a model-agnostic technique that can be used with machine learn-
ing models. In LIME, you make small random changes to data samples and
then observe the manner in which predictions change (or not). The approach
involves changing the output (slightly) and then observing what happens to
the output.

By way of analogy, consider food inspectors who test for bacteria in truck-
loads of perishable food. Clearly, it’s infeasible to test every food item in a
truck (or a train car), so inspectors perform “spot checks” that involve test-
ing randomly selected items. In an analogous fashion, LIME makes small
changes to input data in random locations and then analyzes the changes in
the associated output values.

However, there are two caveats to keep in mind when you use LIME with
input data for a given model:

1.	 The actual changes to input values are model-specific.

2.	 This technique works on input that is interpretable.

Examples of interpretable input include machine learning classifiers
(such as trees and random forests) and NLP techniques such as BoW (Bag
of Words). Non-interpretable input involves “dense” data, such as a word
embedding (which is a vector of floating point numbers).

You could also substitute your model with another model that involves
interpretable data, but then you need to evaluate how accurate the approxi-
mation is to the original model.

What is ANOVA?

ANOVA is an acronym for analysis of variance, which attempts to analyze the
differences among the mean values of a sample that’s taken from a population.
ANOVA enables you to test if multiple mean values are equal. More impor-
tantly, ANOVA can assist in reducing Type I (false positive) errors and Type
II errors (false negative) errors. For example, suppose that person A is diag-
nosed with cancer and person B is diagnosed as healthy, and that both diagno-
ses are incorrect. Then the result for person A is a false positive whereas the
result for person B is a false negative. In general, a test result of false positive
is much preferable to a test result of false negative.

ANOVA pertains to the design of experiments and hypothesis testing,
which can produce meaningful results in various situations. For example,

NLPFD.Ch1.2pp.indd 17NLPFD.Ch1.2pp.indd 17 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

18 • Natural Language Processing Fundamentals for Developers

suppose that a dataset contains a feature that can be partitioned into several
“reasonably” homogenous groups. Next, analyze the variance in each group
and perform comparisons with the goal of determining different sources of
variance for the values of a given feature.

THE BIAS-VARIANCE TRADE-OFF

This section is presented from the viewpoint of machine learning, but the
concepts of bias and variance are highly relevant outside of machine learning.

Bias in machine learning can be due to an error from wrong assumptions
in a learning algorithm. High bias might cause an algorithm to miss relevant
relations between features and target outputs (underfitting). Prediction bias
can occur because of “noisy” data, an incomplete feature set, or a biased train-
ing sample.

Error due to bias is the difference between the expected (or average) pre-
diction of your model and the correct value that you want to predict. Repeat
the model building process multiple times, and gather new data each time,
and also perform an analysis to produce a new model. The resulting models
have a range of predictions because the underlying datasets have a degree
of randomness. Bias measures the extent to which the predictions for these
models deviate from the correct value.

Variance in machine learning is the expected value of the squared devi-
ation from the mean. High variance can/might cause an algorithm to model
the random noise in the training data, rather than the intended outputs (aka
overfitting). Moreover, adding parameters to a model increases its complex-
ity, increases the variance, and decreases the bias.

Dealing with bias and variance involves addressing underfitting and
overfitting.

Error due to variance is the variability of a model prediction for a given
data point. As before, repeat the entire model building process, and the vari-
ance is the extent to which predictions for a given point vary among different
“instances” of the model.

If you have worked with datasets and performed data analysis, you already
know that finding well-balanced samples can be difficult or highly impractical.
Moreover, performing an analysis of the data in a dataset is vitally important,
yet there is no guarantee that you can produce a dataset that is 100% “clean.”

A biased statistic is a statistic that is systematically different from the
entity in the population that is being estimated. In more casual terminology,

NLPFD.Ch1.2pp.indd 18NLPFD.Ch1.2pp.indd 18 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

Working with Data • 19

if a data sample “favors” or “leans” toward one aspect of the population, then
the sample has bias. For example, if you prefer movies that are comedies, then
clearly you are more likely to select a comedy instead of a dramatic movie or a
science fiction movie. Thus, a frequency graph of the movie types in a sample
of your movie selections will be more closely clustered around comedies.

However, if you have a wide-ranging set of preferences for movies, then
the corresponding frequency graph will be more varied, and therefore have
a larger spread of values. As a simple example, suppose that you are given an
assignment that involves writing a term paper on a controversial subject that
has many opposing viewpoints. Since you want a bibliography that supports
your well-balanced term paper that takes into account multiple viewpoints,
your bibliography will contain a wide variety of sources. In other words, your
bibliography will have a larger variance and a smaller bias. However, if most
(or all) the references in your bibliography espouse the same point of view,
then you will have a smaller variance and a larger bias (it’s just an analogy, so
it’s not a perfect counterpart to bias vs. variance).

The bias-variance trade-off can be stated in simple terms: in general,
reducing the bias in samples can increase the variance, whereas reducing the
variance tends to increase the bias.

Types of Bias in Data

In addition to the bias-variance trade-off that is discussed in the previous sec-
tion, there are several types of bias, some of which are listed as follows:

●● Availability Bias
●● Confirmation Bias
●● False Causality
●● Sunk Cost Fallacy
●● Survivorship Bias

Availability bias is akin to making a “rule” based on an exception. For
example, there is a known link between smoking cigarettes and cancer, but
there are exceptions. If you find someone who has smoked three packs of cig-
arettes on a daily basis for four decades and is still healthy, can you assert that
smoking does not lead to cancer?

Confirmation bias refers to the tendency to focus on data that confirms
one’s beliefs and simultaneously ignore data that contradicts a belief.

False causality occurs when you incorrectly assert that the occurrence of
a particular event causes another event to occur as well. One of the most well-
known examples involves ice cream consumption and violent crime in New

NLPFD.Ch1.2pp.indd 19NLPFD.Ch1.2pp.indd 19 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

20 • Natural Language Processing Fundamentals for Developers

York during the summer. Since more people eat ice cream in the summer,
that “causes” more violent crime, which is a false causality. Other factors,
such as the increase in temperature, may be linked to the increase in crime.
However, it’s important to distinguish between correlation and causality: the
latter is a much stronger link than the former, and it’s also more difficult to
establish causality instead of correlation.

Sunk cost refers to something (often money) that has been spent or
incurred that cannot be recouped. A common example pertains to gambling
at a casino: People fall into the pattern of spending more money in order to
recoup a substantial amount of money that has already been lost. While there
are situations in which people do recover their money, in many cases, people
simply incur an even greater loss because they continue to spend their money.

Survivorship bias refers to analyzing a particular subset of “positive” data
while ignoring the “negative” data. This bias occurs in various situations, such
as being influenced by individuals who recount their rags-to-riches success
story (“positive” data) while ignoring the fate of the people (which is often a
very high percentage) who did not succeed (the “negative” data) in a similar
quest. So, while it’s certainly possible for an individual to overcome many
difficult obstacles in order to succeed, is the success rate one in one thousand
(or even lower)?

SUMMARY

This chapter started with an explanation of datasets, a description of data
wrangling, and details regarding various types of data. Then you learned about
techniques for scaling numeric data, such as normalization and standardiza-
tion. You saw how to convert categorical data to numeric values, and how to
handle dates and currency.

Then you learned some of the nuances of missing data, anomalies, and
outliers, and techniques for handling these scenarios. You also learned about
imbalanced data and evaluating the use of SMOTE to deal with imbalanced
classes in a dataset. In addition, you learned about classifiers using two tech-
niques, LIME and ANOVA. Finally, you learned about the bias-variance
trade-off and various types of statistical bias.

NLPFD.Ch1.2pp.indd 20NLPFD.Ch1.2pp.indd 20 5/27/2021 5:34:34 PM5/27/2021 5:34:34 PM

C H A P T E R 2
NLP Concepts (I)

This chapter is the first chapter that contains NLP-related material, start-
ing with a high-level introduction to some major language groups and the
substantive grammatical differences among languages. Then we discuss some
basic concepts in NLP, such as text normalization, the concepts of stop words,
stemming, and lemmatization (the dictionary form of words), POS (Parts Of
Speech) tagging, and NER (Named Entity Recognition).

This chapter focuses on NLP concepts, and while some NLP algorithms
are mentioned in this Chapter, the relevant code samples are provided Chap-
ter 5 and Chapter 6. Depending on your NLP background, you might decide
to read the sections in a nonsequential fashion. If your goal is to proceed
quickly to code samples, you can skip some sections in this chapter, and later
you can return to read those omitted sections.

The first part of the chapter provides an abbreviated tour of several lan-
guages that belong to major human language groups, illustrating some of the
facets of human languages that can make NLP a truly challenging endeavor.
However, please keep in mind that this section contains many details that
appeal primarily to language aficionados. This section contains grammatical
details that differentiate various languages from each other that highlight the
complexity of generating native-level syntax as well as native-level pronuncia-
tion. Depending on your level of interest, feel free to read the portions of this
section that interest you and then proceed to the next section of this chapter.

The discussion regarding regional accents and slang contain anecdotal
observations based on the experiences of the author: there is no scientifically
rigorous basis or any studies to support those observations, which means that
they are not necessarily true in a general case. However, you might find some
of the sections somewhat interesting (and in some cases, they might be similar
to your own experiences).

NLPFD.Ch2.2pp.indd 21NLPFD.Ch2.2pp.indd 21 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

22 • Natural Language Processing Fundamentals for Developers

Indeed, various subsections reflect the author’s experiences in multilin-
gual environments while living and working in various countries: in particular,
this includes Italian, Spanish, French, and Japanese, as well as language dia-
lects (the Venetian dialect and Venezuelan Criollo) and the challenges facing
nonnative-English speakers.

The second part of the chapter introduces you to NLP and a brief history
of the major stages of NLP. We include NLP applications, NLP use cases,
NLU, and NLG. We also discuss word sense disambiguation. This section
only provides a brief description of these topics, some of which can fill entire
books and full-length courses.

The third part of this chapter discusses various NLP techniques and the
major steps in an NLP-related process. You also learn about standard NLP-re-
lated tasks, such as text normalization, tokenization, stemming, lemmatiza-
tion, and the removal of stop words. Some of these tasks (e.g., tokenization)
involve implicit assumptions that are not true for all languages.

The final section introduces NER and topic modeling, which involves
named entities and finding the main topic(s) in a text document.

THE ORIGIN OF LANGUAGES

Someone once remarked that “the origin of language is an enigma,” which is
viscerally appealing because it has at least a kernel of truth. Although there
are multiple theories that attempt to explain how and why languages devel-
oped, none of them has attained universal consensus. Nevertheless, there is
no doubt that humans have far surpassed all other species in terms of lan-
guage development.

There is also the question of how the vocabulary of a language is formed,
which can be the confluence of multiple factors, as well as meaning in a lan-
guage. According to Ludwig Wittgenstein (1953), who was an influential phi-
losopher in many other fields, language derives its meaning from use.

One theory about the evolution of language in humans asserts that the
need for communication between humans makes language a necessity.
Another explanation is that language is influenced by the task of creating
complex tools, because the latter requires a precise sequence of steps, which
ultimately spurred the development of languages.

Without delving into their details, the following list contains some theo-
ries that have been proposed regarding language development. Keep in mind
that they vary in terms of their support in the academic community:

NLPFD.Ch2.2pp.indd 22NLPFD.Ch2.2pp.indd 22 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

NLP Concepts (I) • 23

●● Strong Minimalist Thesis
●● The FlintKnapper Theory
●● The Sapir-Whorf Hypothesis
●● Universal Grammar (Noam Chomsky)

The Strong Minimalist Thesis (SRT) asserts that language is based on
something called the hierarchical syntactic structure. The FlintKnapper
Theory asserts that the ability to create complex tools involved an intricate
sequence of steps, which in turn necessitated communication between peo-
ple. In simplified terms, the Sapir–Whorf Hypothesis (also called the lin-
guistic relativity hypothesis, which is a slightly weaker form) posits that the
language we speak influences how we think. Consider how our physical envi-
ronment can influence our spoken language: Eskimos have several words to
describe snow, whereas people in some parts of the Middle East have never
seen a snow storm.

Universal Grammar is a genetic-based theory by Noam Chomsky in which
he asserts that all humans have an innate capacity to learn languages (pro-
vided that they are raised in a reasonably normal environment). This innate
capacity is not bound to a grammar or vocabulary of any human language, and
diverges from earlier “tabula rasa” (blank slate) theories regarding the human
mind at birth. While Chomsky’s theory has appealing aspects, there are critic
of UG, which you can read if you are interested in the details:

https://en.wikipedia.org/wiki/Universal_grammar

Despite the grammatical diversity of human languages and the rich set
of sounds that are possible in human languages, consider the following fact: a
healthy newborn infant from one country can be placed in any other country
and learn to speak the common language of that country, regardless of the
genetic makeup of the infant.

Hence, humans have a universal capacity to learn languages, and seem
to have an innate ability to learn multiple languages. This capacity to learn
languages separates us from animals because the latter are unable to create a
language that is close to the complexity of human languages. Noam Chomsky
explains that this capability exists in humans because of a broader skill:
humans have a recursive-like capacity to mentally combine objects to create
new objects.

Language Fluency

As mentioned in the previous section, human infants are capable of produc-
ing the sounds of any language, given enough opportunity to imitate those

NLPFD.Ch2.2pp.indd 23NLPFD.Ch2.2pp.indd 23 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

24 • Natural Language Processing Fundamentals for Developers

sounds. They tend to lose some of that capacity as they become older, which
might explain why some adults speak another language with an accent (of
course, there are plenty of exceptions).

Interestingly, babies respond favorably to the sound of vowel-rich “Par-
entese,” and a study in 2018 suggested that babies prefer the sound of other
babies instead of their mother:

https://eurekalert.org/pub_releases/2018-05/asoa-ftm042618.php
https://getpocket.com/explore/item/babies-prefer-the-sounds-of-other-

babies-to-the-cooing-of-their-parents

There are two interesting cases in which people can acquire native-level
speech capability. The first case is intuitive: people who have been raised
in a bilingual (or multilingual) environment tend to have a greater capacity
for learning how to speak other languages with native level (or near native
level) speech. Second, people who speak phonetic languages have an advan-
tage when they study another phonetic language, especially one that is in their
language group, because they already know how to pronounce the majority of
vowel sounds.

However, there are consonants that occur in a limited number of
languages whose pronunciation can be a challenge for practically every
non-native speaker. For example, letters that have a guttural sound (such
as those in Dutch, German, and Arabic), the glottal stop (most noticeable
in Arabic), and the letter “ain” in Arabic are generally more challenging
to pronounce for native speakers of romance languages and some Asian
languages.

To some extent, the non-phonetic nature of the English language might
explain why some monolingual native-English speakers might struggle with
learning to speak other languages with native-level speech. Perhaps the clos-
est language to English (in terms of cadence) is Dutch, and people from
Holland can often speak native-level English. This tends to be true of Swedes
and Danes as well, whose languages are Germanic, but not necessarily true
of Germans, who can speak perfect grammatical English but sometimes speak
English with an accent.

Perhaps somewhat ironically, sometimes accents can impart a sort of
cachet, such as speaking with a British or Australian accent in the United
States. Indeed, a French accent can also add a certain je-ne-sais-quoi to a
speaker in various parts of the United States.

NLPFD.Ch2.2pp.indd 24NLPFD.Ch2.2pp.indd 24 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

NLP Concepts (I) • 25

Major Language Groups

There are more than 140 language families, and the six largest language fami-
lies (based on language count) are listed here:

●● Niger-Congo
●● Austronesian
●● Trans-New Guinea
●● Sino-Tibetan
●● Indo-European
●● Afro-Asiatic

English belongs to the Indo-European group, Mandarin belongs to the
Sino-Tibetan, and Arabic belongs to the Afro-Asiatic group. According to
Wikipedia, Indo-European languages comprise almost 600 languages, includ-
ing most of the languages in Europe, the northern Indian subcontinent, and
the Iranian plateau. Almost half the world speaks an Indo-European language
as a native language, which is greater than any of the language groups listed
in the introduction of this section. Indo-European has several major language
subgroups, which are Germanic, Slavic, and Romance languages. The preced-
ing information is from the following Wikipedia link:

https://en.wikipedia.org/wiki/List_of_language_families

As of 2019, the top four languages that are spoken in the world, which
counts the number of people who are native speakers or secondary speakers,
are as follows:

●● English: 1.268 billion
●● Mandarin: 1.120 billion
●● Hindi: 637.3 million
●● Spanish: 537.9 million
●● French: 276.6 million

The preceding information is from the following Wikipedia link:

https://en.wikipedia.org/wiki/List_of_languages_by_total_number_of_
speakers

Many factors can influence the expansion of a given language into multi-
ple countries, such as commerce, economic factors, technological influence,
and warfare, thereby resulting in the absorption of new words by another lan-
guage. Somewhat intuitively, countries with a common border influence each
other’s language, sometimes resulting in new hybrid languages. For example,

NLPFD.Ch2.2pp.indd 25NLPFD.Ch2.2pp.indd 25 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

26 • Natural Language Processing Fundamentals for Developers

Catalan is a hybrid of Spanish and French and Provencal is a hybrid of French
and Italian (both of which have delicious cuisine) that are spoken by peo-
ple who live close to the border of the respective adjacent countries. Other
examples include the influence of Farsi on Urdu (spoken in Pakistan) and
the influence of French on Vietnamese and the presence of French words in
some Arab countries.

Surprisingly, sometimes languages from geographically distant countries
share linguistic features. For example, the Finno-Ugric (or Finno-Ugrian)
language group comprises Hungarian, Finnish, and Estonian because they
are related, despite their geographic distance from each other. Nevertheless,
a plausible explanation may well exist; the other explanation for their com-
monality is due to random events (which seems unlikely).

Peak Usage of Some Languages

As you might have surmised, different languages have been in an influential
position during the past 2,000 years. If you trace the popularity and influ-
ence of Indo-European languages, you will find periods of time with varying
degrees of influence involving multiple languages, including Hebrew, Greek,
Latin, Arabic, French, and English.

Latin is an Indo-European language (apparently derived from the Etrus-
can and Greek alphabets), and during the 1st century AD, Latin became a
mainstream language. In addition, romance languages are derived from Latin.
Today Latin is considered a dead language in the sense that it’s not actively
spoken on a daily basis by large numbers of people. The same is true of San-
skrit, which is a very old language from India.

During the Roman Empire, Latin and Greek were the official languages
for administrative as well as military activities. In addition, Latin was an
important language for diplomacy among countries for many centuries after
the fall of the Roman Empire.

You might be surprised to know that Arabic was the lingua franca through-
out the Mediterranean during the 10th and 11th centuries AD. As another
example, French was spoken in many parts of Europe during the 18th cen-
tury, including the Russian aristocracy.

Today English appears to be in its ascendancy in terms of the number of
native English speakers as well as the number of people who speak English as
a second (or third or fourth) language. Although Mandarin is a widely spoken
Asian language, English is the lingua franca for commerce as well as technol-
ogy: virtually every computer language is based on English.

NLPFD.Ch2.2pp.indd 26NLPFD.Ch2.2pp.indd 26 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

NLP Concepts (I) • 27

Languages and Regional Accents

Accents, slang, and dialects have some common features, but there can be
some significant differences. Accents involve modifying the standard pronun-
ciation of words, which can vary significantly in different parts of the same
country.

One interesting phenomenon pertains to the southern region of some
countries (in the northern hemisphere), which tend to have a more “relaxed”
pronunciation compared to the northern region of that country. For exam-
ple, some people in the southeastern United States speak with a so-called
“drawl,” whereas newscasters will often speak with a midwestern pronuncia-
tion, which is considered a neutral pronunciation. The same is true of people
in Tokyo, who often speak Japanese with a “flat” pronunciation (which is also
true of Japanese newscasters on NHK), versus people from the Kansai region
(Kyoto, Kobe, and Osaka) of Japan, who vary the tone and emphasis of Japa-
nese words.

Regional accents can also involve modifying the meaning of words in ways
that are specific to the region in question. For example, Texans will say “I’m
fixing to graduate this year” whereas people from other parts of the United
States would say “going” instead of “fixing.” In France, Parisians are unlikely
to say Il faut fatiguer la salade (“it’s necessary to toss the salad”), whereas this
sentence is much more commonplace in southern France. (The English word
“fatigue” is derived from the French verb fatiguer)

Languages and Slang

The existence of slang words is interesting and perhaps inevitable, they seem
to flourish in every human language. Sometimes slang words are used for
obfuscation so that only members of an “in group” understand the modified
meaning of those words. Slang words can also be a combination of existing
words, new words (but not officially recognized), and short-hand expressions.
Slang can also “invert” the meaning of words (“bad” instead of “good”), which
can be specific to an age group, minority, or region. In addition, slang can also
assign an entirely unrelated meaning to a standard word (e.g., the slang terms
“that’s dope,” “that’s sick,” and “the bomb”).

Slang words can also be specific to an age group to prevent communica-
tion with members of different age groups. For example, Japanese teens can
communicate with each other by reversing the order of the syllables in a word,
which renders those “words” incomprehensible to adults. The inversion of syl-
lables is far more complex than “pig Latin,” in which the first letter of a word

NLPFD.Ch2.2pp.indd 27NLPFD.Ch2.2pp.indd 27 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

28 • Natural Language Processing Fundamentals for Developers

is shifted to the end of the word, followed by the syllable “ay.” For example,
“East Bay” (an actual location in the Bay Area in Silicon Valley) is humorously
called “beast” in pig Latin.

Teenagers also use acronyms (perhaps as another form of slang) when
sending text messages to each other. For example, the acronym “aos” means
“adult over shoulder.” The acronym “bos” has several different meanings,
including “brother over shoulder” and “boyfriend over shoulder.”

The slang terms that you use with your peers invariably simplifies commu-
nication with others in your in-group, sometimes accompanied by specialized
interpretations to words (such as reversing their meaning). A simple example
is the word zanahoria, which is the Spanish word for carrot. In colloquial
speech in Venezuela, calling someone a zanahoria means that that person is
very conservative and as “straight” as a carrot.

Slang enables people to be creative and also playfully break the rules
of language. Both slang and colloquial speech simplify formal language and
rarely (if ever) introduce greater complexity in alternate speech rules.

Perhaps that’s the reason that slang and colloquial speech cannot be con-
trolled or regulated by anyone (or by any language committee): like water,
they are fluid and adapt to the preferences of their speakers.

One more observation: while slang can be viewed as a creative by-product
of standard speech, there is a reverse effect that can occur in certain situa-
tions. For example, you have probably noticed how influential subgenres are
eventually absorbed (perhaps only partially) into mainstream culture: witness
how commercials eventually incorporated a “softened” form of rap music and
its rhythm in commercials for personal products. There’s a certain irony in
hearing “Stairway to Heaven” as elevator music.

Another interesting concept is a “meme” (which includes Internet memes)
in popular culture, which refers to something with humorous content. While
slang words are often used to exclude people, a meme often attempts to com-
municate a particular sentiment. One such meme is “OK Boomer,” which
some people view as a derogatory remark that’s sometimes expressed in a
snarky manner, and much less often interpreted as a humorous term. Although
language dialects can also involve regional accents and slang, they also have
more distinct characteristics, as discussed in the next section.

Languages and Dialects

Dialects often replace standard words with substantively different words that
have the same meaning as their standard counterpart. In fact, dialects often
include words that do not even exist in the language that they are based on.

NLPFD.Ch2.2pp.indd 28NLPFD.Ch2.2pp.indd 28 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

NLP Concepts (I) • 29

However, dialects also tend to have a consistent set of grammatical rules for
conjugating verbs.

For example, despite having a population of under 60 million people,
Italian has several dozen dialects, some of which are pair-wise incomprehen-
sible to people from different regions of Italy. For instance, here are some
words in the Venetian dialect (word spellings are approximate and some
accent marks have been omitted), along with their counterpart in standard
Italian, followed by their translation into English:

●● bragghe means pantaloni (pants)
●● ciappa means ha preso (he/she got)
●● coppa means ammazza (kills)
●● ghe xe means c’e (there is)
●● schei means soldi (money)
●● toxhi means bambini (children)

As you can see, the spelling of the preceding words in the Venetian dialect
bear no resemblance to their counterparts in standard Italian.

Dialects can also have significant differences, even in cities that are rel-
atively close to each other. For example, Milan and Vicenza are two cities in
northern Italy, with Milan located to the west of Vicenza, and slightly more
than 100 kilometers (60 miles) apart. Maniago is a town in northeastern Italy
(and well known for its production of steel blades that are in knives), located
roughly 50 kilometers (32 miles) northwest of Vicenza. However, Milanese
and the Venetian dialect are much closer to each other than to Friuliano,
which is the dialect spoken in Maniago. In fact, Maniago is close to the border
of Yugoslavia, and the influence of the latter is visible in the names of towns
and highway signs that are near Maniago.

Given the differences in the dialects of Italian, how can people communi-
cate? In large cities such as Milan, which comprise people from many parts of
Italy, the only way that people can communicate with each other is to speak
standard Italian.

THE COMPLEXITY OF NATURAL LANGUAGES

This section contains many subsections, and to give you some context, con-
sider the scenario in which two people are having a conversation in which they
do not speak a common language. In addition to human translators, there are
software applications to perform the translation task. However, in the latter

NLPFD.Ch2.2pp.indd 29NLPFD.Ch2.2pp.indd 29 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

30 • Natural Language Processing Fundamentals for Developers

case, translating a sentence to a different language in such a way that it sounds
like a native speaker involves many details. This section highlights some
aspects of the translation process between different languages, and especially
between languages that are in different language groups.

Natural languages involve a set of grammar rules of varying degrees of
complexity, along with language specific features. For example, English,
romance languages, and some Asian languages have a subject/verb/object pat-
tern for many sentences.

By contrast, Japanese and Korean have a subject/object/verb pattern
(German has a subject/verb/object/verb pattern for compound verbs), along
with declension of adjectives and nouns (in German and Slavic languages)
or postpositions (in Japanese) that serve as “markers” for the grammatical
function of nouns in sentences. As a result, it’s possible to change the order
of the words in sentences in German, Japanese, and Slavic languages and still
maintain exactly the same meaning of those sentences.

Another interesting fact: although most languages are written in a left-to-
right manner, some are written in a right-to-left fashion (including Hebrew
and Arabic) or a top-to-bottom fashion (Japanese does both). If that doesn’t
impress you, consider the fact that some languages (including Hebrew and
Arabic) also treat vowels as optional: native speakers of these languages have
the advantage of having learned their vocabulary since childhood, so they rec-
ognize the meaning of words without vowels.

Word Order in Sentences

As mentioned previously, German and Slavic languages allow for a rearrange-
ment of the words in sentences because those languages support declension,
which involves modifying the endings of articles and adjectives in accordance
with the grammatical function of those words in a sentence (such as the sub-
ject, direct object, and indirect object). Those word endings are loosely com-
parable to prepositions in English, and sometimes they have the same spelling
for different grammatical functions. For example, in German, the article den
precedes a masculine noun that is a direct object and also a plural noun that is
an indirect object: ambiguity can occur if the singular masculine noun has the
same spelling in its plural form.

Alternatively, since English is word order dependent, ambiguity can still
arise in sentences, which we have learned to parse correctly without any con-
scious effort.

NLPFD.Ch2.2pp.indd 30NLPFD.Ch2.2pp.indd 30 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

NLP Concepts (I) • 31

Groucho Marx often incorporated ambiguous sentences in his dialogues,
such as the following paraphrased examples:

“This morning I shot an elephant in my pajamas. How he got into my
pajamas I have no idea.”

“In America, a woman gives birth to a child every fifteen minutes. Some-
body needs to find that woman and stop her.”

Now consider the following pair of sentences involving a boy, a mountain,
and a telescope:

I saw the boy on the mountain with the telescope.
I saw the boy with the telescope on the mountain.

Human speakers interpret both English sentences as having the same
meaning; however, arriving at the same interpretation is less obvious from
the standpoint of a purely NLP task. Why does this ambiguity in the pre-
ceding example not arise in Russian? The reason is simple: the preposition
with is associated with the instrumental case in Russian, whereas on is not
the instrumental case, and therefore the nouns have suffixes that indicate the
distinction.

What about Verbs?

Verbs exist in every written language, and they undergo conjugation that
reflects their tense and mood in a sentence. Such languages have an overlap-
ping set of verb tenses, but there are differences. For instance, Portuguese
has a future perfect subjunctive, as does Spanish (but it’s almost never used in
spoken form), whereas these verb forms do not exist in English. English verb
tenses (in the indicative mood) can include:

●● present
●● present perfect
●● present progressive
●● present perfect progressive
●● preterite (simple past)
●● past perfect
●● past progressive
●● past perfect progressive
●● future tense
●● future perfect
●● future progressive
●● future perfect progressive (does not exist in Italian)

NLPFD.Ch2.2pp.indd 31NLPFD.Ch2.2pp.indd 31 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

32 • Natural Language Processing Fundamentals for Developers

Here are some examples of English sentences that illustrate (most of) the
preceding verb forms:

●● I read a book.
●● I have read a book.
●● I am reading a book.
●● I have been reading a book.
●● I read a book.
●● I have read a book.
●● I had been reading a book.
●● I will read a book.
●● I will have read a book.
●● I will be reading a book.
●● At 6 p.m., I will have been reading a book for 3 hours.

Verb moods can be indicative (as shown in the preceding list), subjunctive
(discussed soon), and conditional (“I would go but I have work to do”). In
English, subjunctive verb forms can include the present subjunctive (“I insist
that he do the task”), the past subjunctive (“If I were you”), and the pluperfect
subjunctive (“Had I but known …”). Interestingly, Portuguese also provides a
future perfect subjunctive verb form; Spanish also has this verb form but it’s
never used in conversation.

Interestingly (from a linguistic perspective, at least), there are modern
languages, such as Mandarin, that have only one verb tense: they rely on
other words in a sentence (such as time adverbs or aspect particles) to convey
the time frame. Such languages would express the present, the past, and the
future in a form that is comparable to the following:

●● “I read a book now.”
●● “I read a book yesterday.”
●● “I read a book tomorrow.”

Auxiliary Verbs

Languages such as Italian and French use the verbs “to be” and “to have” as
auxiliary verbs. In particular, Italian uses the verb essere and French uses the
verb etre (note that an accent mark is missing here) as an auxiliary verb with
intransitive (no direct object) verbs of motion. By contrast, English always
uses the verb “to have” in sentences that contain compound verb forms.

Here are some examples of sentences that contain auxiliary verbs in
English, French, and Italian:

NLPFD.Ch2.2pp.indd 32NLPFD.Ch2.2pp.indd 32 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

NLP Concepts (I) • 33

●● I have gone to school.
●● Je suis allé à l’école.
●● Sono andato a scuola.

Compound verbs involving motion in French and Italian use essere and
essere, respectively, whereas English always uses “have.” Hence, the following
sentences are incorrect because the French sentence has the verb avoir and
the Italian sentence has the verb avere as the auxiliary verb:

●● J’ai allé à l’école.
●● Ho andato a scuola.

French and Italian tend to use the present perfect (which involves an
auxiliary verb) in conversations, whereas English, Portuguese, and Spanish
tend to use the simple past (also called the preterit, which does not involve an
auxiliary verb):

Spanish:

●● Fui a la escuela. (I went to school.)
●● He ido a la escuela. (I have gone to school.)

Portuguese:

●● Eu fui a escola (“I went to school”)
●● Eu he ido para a escola (“I have gone to school”)

Spanish and Portuguese have an additional interesting feature: they have
two verbs, estar and ser, that are related “to be” yet have different connota-
tions. The verb estar refers to a temporary or transient state, such as Estoy
aqui (I am here) or Estoy cansado (I am tired), whereas the verb ser refers
to a (perceived) longer term state, such as Soy rico (I am rich) or Soy viejo
(I am old).

In Portuguese, the corresponding sentences are Estou aqui (I am here),
Estou cansado (I am tired), Sou rico (I am rich), and Sou velho (I am old). The
word rico is singular masculine. Rica and ricos are for singular feminine and
plural (male and female), respectively.

Verbs sometimes undergo changes in pronunciation and sentence
undergo “contractions” in casual conversation. Here are examples of three
sentences that mean “I do not know” in French, and only the first sentence is
grammatically correct:

●● Je ne sais pas.
●● Je sais pas.
●● Sheh pas. (This is similar to saying “I dunno.”)

NLPFD.Ch2.2pp.indd 33NLPFD.Ch2.2pp.indd 33 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

34 • Natural Language Processing Fundamentals for Developers

What are Case Endings?

A case ending is a suffix of a word that indicates the grammatical function of a
word in a sentence. English has no case endings (except in rare cases) and is
also word-order dependent, which means that the following pair of sentences
have the opposite meaning:

●● The man sees the dog.
●● The dog sees the man.

The first sentence can be written in two ways in German (notice the defi-
nite articles den and der), both of which have the same meaning:

●● Der Mann sieht den Hund.
●● Den Hund sieht der Mann.

The German article den indicates a direct object, which means that the
previous pair of sentences have the same meaning in German.

German has case endings for articles and adjectives. For example, ein,
diese, and gut mean “a,” “the,” and “good,” respectively, in German. When
these words are used in the dative (indirect object) case, they become einem,
diesem, and gutem, for a masculine noun. Here’s a summary of case endings
for German:

Table 2.1  Case Endings in German.

Masc Fem Neut Plural

Nom der die das die

Gen des der des der

Dat dem der dem den

Acc den die das die

Interestingly the indirect object pronoun ihm in German has the counter-
part “him” in English, and the word ihr in German is the counterpart to the
word “her” in English. Thus, the syntax and bounces in the following German
sentence is similar to its English counterpart:

Ich gebe ihm das Buch. (I give him the book.)
Ich gebe ihr das Buch. (I give her the book.)

The preceding sentence has a subject/verb/object structure because the
verb is a simple verb. If you use a compound verb involving an auxiliary verb,

NLPFD.Ch2.2pp.indd 34NLPFD.Ch2.2pp.indd 34 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

NLP Concepts (I) • 35

then the structure of the sentence is subject/verb/object/verb. For example,
the following German sentence means “I have given him a book:”

Ich habe ihm das Buch gegeben. (I have given him the book.)

Let’s return to the topic of case endings. The following languages also
have case endings (in increasing order with respect to the number of cases in
each language):

●● Arabic (3)
●● German (4)
●● Greek (5)
●● Russian (6)
●● Lithuanian (7)
●● Latin (15)
●● Finnish (21; but no gender)

By contrast, English, romance languages, and Asian languages (Canton-
ese, Mandarin, Japanese, and Korean) do not have case endings. The meaning
of sentences in English and romance languages is typically word-order depen-
dent. However, Korean and Japanese both have postpositions that indicate
the grammatical function of the nouns in a sentence, so it’s possible to reorder
sentences in both of these languages and still retain the same meaning of the
original sentence. Context is also very useful, especially in Japanese sentences
that are ambiguous in terms of the number of people (or objects) that are
referenced.

Languages and Gender

Romance languages have a masculine and feminine form for nouns and are
preceded by definite articles that reflect the gender and number of nouns.
Although Romanian is a romance language, it has a masculine, feminine, and
neuter form for nouns. When you consider the fact that romance languages
are derived from Latin, which has a masculine, feminine, and neuter form
for nouns, perhaps Romanian is the only romance language that retained the
neuter form for nouns.

Germanic languages and Slavic languages also have three genders, and
the endings of adjectives and definite/indefinite articles that precede them
are modified (see the section regarding case endings). By contrast, English,
Finnish, Japanese, and Korean do not have gender forms for nouns.

NLPFD.Ch2.2pp.indd 35NLPFD.Ch2.2pp.indd 35 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

36 • Natural Language Processing Fundamentals for Developers

Singular and Plural Forms of Nouns

All the languages in the preceding section that have two or more genders also
have singular and plural forms for nouns. Here are examples of sentences in
Italian about buying one or more books:

●● Ho comperato il libro. [I bought the book.]
●● L’ho comperato.  [I bought it (ex: a book).]
●● L’ho comperata.  [I bought it (ex: a car).]
●● Ho comperato i libri. [I bought the books.]
●● Gli ho comperati.  [I bought them (the books).]

Notice the use of il for the singular case and i for the plural case, as well
as L’ho and gli ho for the direct object referring to one versus multiple books,
respectively. In addition, the second sentence changes the verb from com-
perato to comperata to comperati, because its form must agree in gender and
number when there is a preceding direct object. Hence, the English sentence
“I bought them” when referring to a feminine plural noun is written as follows
in Italian:

Le ho comperate.

Once again, Finnish, Japanese, and Korean do not have a plural form for
nouns, which avoids having to learn rules for forming the plural of nouns.
However, most of them involve other grammatical challenges for non-native
speakers.

Changes in Spelling of Words

Another example involves different spellings for the same word, such as
center/centre, favor/favour, and color/colour. These variations in spelling
appear in different English-speaking countries (United States, Canada, UK,
and Australia). Yet another example is a false cognate, in which a word in
one language has an entirely different meaning in another language. A simple
example is the German word gift, which translates as “poison” in English.

JAPANESE GRAMMAR

The Foreign Service Institute (FSI) ranks various languages from the per-
spective of an English speaker, and provides an estimate of the number of

NLPFD.Ch2.2pp.indd 36NLPFD.Ch2.2pp.indd 36 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

NLP Concepts (I) • 37

hours that are required to achieve a general level of proficiency. The FSI does
note that “some language speakers or experts may disagree with the ranking.”

Level 5 is the most difficult, and consists of Arabic, Cantonese, Japanese,
Korean, and Mandarin. Languages that are “usually more difficult” for native
English speakers include Japanese and seven other languages, as shown here:

https://effectivelanguagelearning.com/language-guide/language-
difficulty/

This section contains several subsections that describe grammatical fea-
tures, some of which are unique to Japanese and also pose interesting chal-
lenges for NLP.

Japanese Postpositions (Particles)

Instead of prepositions, Japanese uses postpositions (which can occur multi-
ple times in a sentence). Here are some common Japanese postpositions that
are written in Romanji:

●● Ka (a marker for a question)
●● Wa (the topic of a sentence)
●● Ga (the subject of a sentence)
●● O (direct object)
●● To (can mean “for” and “and”)
●● Ni (physical motion toward something)
●● E (toward something)

The particle ka at the end of a sentence in Japanese indicates a question.
A simple example of ka is the Romanji sentence Nan desu ka, which means
“What is it?”

An example of wa is the following sentence: Watashi wa Nihon jin desu,
which means “As for me, I’m Japanese.” By contrast, the sentence Watashi
ga Nihon jin desu, which means “It is I (not somebody else) who is Japanese.”

As you can see, Japanese makes a distinction between the topic of a sen-
tence (with wa) versus the subject of a sentence (with ga). A Japanese sen-
tence can contain both particles wa and ga, with the following twist: if a neg-
ative fact is expressed about the noun that precedes ga, then ga is replaced
with wa and the main verb is written in the negative form. For example, the
Romanji sentence “I still have not studied Kanji” is translated into Hiragana
as follows:

Watashi wa kanji wa mada benkyou shite imasen.
わたし わ かんじ わ まだ べんきょ して いません

NLPFD.Ch2.2pp.indd 37NLPFD.Ch2.2pp.indd 37 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

38 • Natural Language Processing Fundamentals for Developers

However, Google Translate generates the following humorous translation
for the preceding Romanji sentence:

I’m a toilet I haven’t done it yet.

By contrast, if you enter the sentence “I have studied Kanji,” Google
Translate generates the following:

漢字を勉強しました
Kanji o benkyō shimashita

As you can see, the preceding Romanji sentence omits Watashi wa and
treats the noun Kanji as the direct object of the verb “studied.”

Yet another use of ga is to express “but,” as in the sentence “Today I will
work, but tomorrow I will play tennis,” where the Japanese sentence consists
of Kanji, Hiragana, and Katakana (for the word “tennis”) and does not contain
spaces between words, whereas the Romanji translation includes spaces for
your convenience:

今日は勉強しますが明日はテニスをします
Kyō wa benkyō shimasu ga ashita wa tenisu o shimasu

As you can see from the preceding examples, there are multiple rules
regarding the various combinations of wa and ga in the same sentence.

An example of a direct object is illustrated in the sentence Watashi wa
terebi o miru, which means “I watch television” because o follows terebi (and
the latter is derived from “television”).

The sentence Tomodachi to isshyo ni ikimashita means “I went with my
friend” (and other translations are possible as well).

Japanese sentences can contain a combination of Hiragana, Katakana
(just for foreign words), and Kanji. For example, the following sentence in
Romanji means “He loves drinking beer:”

Kare wa biru o nomu no ga daisuki desu.

Although the Japanese verb nomu means “to drink,” the preceding sen-
tence contains nomu no ga, which is called nominalizing a verb.

The preceding sentence written using a combination of Hiragana, Kata-
kana, and Kanji is here (and it’s obviously much more complex than Romanji):

彼はビールを飲むのが大好きです

If you use Google Translate, the following sentence is generated, which
is almost identical to the preceding sentence (the only difference is the direct
object particle):

彼わビルお飲むのが大好きです

NLPFD.Ch2.2pp.indd 38NLPFD.Ch2.2pp.indd 38 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

NLP Concepts (I) • 39

Consecutive postpositions in Japanese are also possible. For example, the
sentence Nihon e iku toki ni wa, sushi o tabemasu means “when (whenever)
[I] go to Japan, I eat sushi,” and also contains three consecutive postpositions.
The pronoun “I” is in square brackets because the speaker might be one or
more different people.

However, multiple consecutive postpositions adhere to rules (i.e., not
all combinations are possible), which creates more complexity for non-na-
tive Japanese speakers. If a Japanese sentence in Hiragana is written without
spaces, ambiguity can arise regarding whether to interpret a syllable as a post-
position or as part of a word. To illustrate this detail, consider the interesting
Japanese sentence “The artist drew a picture,” whose translation is clear when
it’s written as follows:

Gaka ga e o kaita

As you already know, the particles ga and o are postpositions; the word e is
a postposition as well, but in this case it’s a homonym for the word “picture.”
This is an example whereby two words with different Kanji have the same
pronunciation (which can also happen in Mandarin and Cantonese).

Now consider what happens when the preceding Romanji sentence is
written without any spaces:

Gakagaeokaita

The preceding sentence might appear to have six consecutive postposi-
tions: ga, ka, ga, e, o, and ka. Knowledge of Japanese vocabulary is neces-
sary to parse the preceding sentence correctly. Incidentally, the preceding
Romanji sentence can also be written as shown here, with no change in mean-
ing, because the postpositions are markers for the grammatical function of the
nouns in the sentence:

E o gaka ga kaita

The following link contains an extensive list of Japanese sentences with
postpositions:

https://en.wikipedia.org/wiki/Japanese_particles

Ambiguity in Japanese Sentences

Since Japanese does not pluralize nouns, the same word is used for singular as
well as plural, which requires contextual information to determine the exact
meaning of a Japanese sentence. As a simple illustration, which is discussed

NLPFD.Ch2.2pp.indd 39NLPFD.Ch2.2pp.indd 39 5/28/2021 3:53:39 PM5/28/2021 3:53:39 PM

40 • Natural Language Processing Fundamentals for Developers

in more detail later in this chapter under the topic of tokenization, here is a
Japanese sentence written in Romanji, followed by Hiragana and Kanji (the
second and third sentences are from Google Translate):

Watashi wa tomodachi ni hon o agemashita
わたし わ ともだち に ほん お あげました
友達に本をあげた

The preceding sentence can mean any of the following, and the correct
interpretation depends on the context of a conversation:

●● I gave a book to a friend.
●● I gave a book to friends.
●● I gave books to a friend.
●● I gave books to friends.

Moreover, the context for the words “friend” and “friends” in the Japanese
sentence is also ambiguous: they do not indicate whose friends (mine, yours,
his, or hers). In fact, the following Japanese sentence is also grammatically
correct and ambiguous:

Tomodachi ni hon o agemashita

The preceding sentence does not specify who gave a book (or books) to a
friend (or friends), but its context will be clear during a conversation. Inciden-
tally, Japanese people often omit the subject pronoun (unless the sentence
becomes ambiguous), so it’s more common to see the second sentence (i.e.,
without Watashi wa) instead of the first Romanji sentence.

Contrast the earlier Japanese sentence with its counterpart in the romance
languages Italian, Spanish, French, Portuguese, and German (some accent
marks are missing for some words):

●● Italian: Ho dato un libro a mio amico.
●● Spanish: [Yo] Le di un libro a mi amigo.
●● Portuguese: Eu dei um livro para meu amigo.
●● French: J’ai donne un livre au mon ami.
●● German: Ich habe ein Buch dem Freund gegeben.

Notice that the Italian and French sentences use a compound verb whose
two parts are consecutive (adjacent), whereas German uses a compound verb
in which the second part (the past participle) is at the end of the sentence.
However, the Spanish and Portuguese sentences use the simple past (the
preterit) form of the verb “to give.”

NLPFD.Ch2.2pp.indd 40NLPFD.Ch2.2pp.indd 40 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

NLP Concepts (I) • 41

Japanese Nominalization

Nominalizers convert verbs (or even entire sentences) into a noun.
Nominalizers resemble a “that” clause in English, and they are useful when
speaking about an action as a noun. Japanese has two nominalizers: no and
koto ga.

The nominalizer の (no) is required with verbs of perception, such as
見る (to see) and 聞く (to listen). For example, the following sentence mean
“I love listening to music,” written in Romanji in the first sentence, followed
by a second sentence that contains a mixture of Kanji and Hiragana:

Watashi wa ongaku o kiku no ga daisuki desu
私わ音楽おきくのが大好きです

The next three sentences all mean “He loves reading a newspaper,” writ-
ten in Romanji and then Hiragana and Kanji:

Kare wa shimbun o yomu no ga daisuki desu
かれは新聞を読みのがだいすきです
彼わ　しmぶんお読むのが大好きです

The koto ga nominalizer, which is the other Japanese nominalizer, is used
sentences of the form “have you ever . . .” For example, the following sentence
means “Have you (ever) been in Japan?”

にほんにいたことがですか
日本にいたことがですか

Google Translate and Japanese

Google Translate provides a wonderful service, yet sometimes its translations
from Japanese to English are incorrect. This point is not intended as a criti-
cism of Google Translate; on the contrary, it’s an indication of the complexity
of the translation process, even for simple Japanese sentences.

For example, the following sentence means “I love reading a newspaper,”
but it is incorrectly translated in Google Translate as “I love reading.”

彼わしmぶんお読むのが大好きです

Note that the letter “m” in the preceding sentence is due to a limitation
of the keyboard in translating ASCII letters to Japanese. As another example,
the following (almost identical) sentence is incorrectly translated in Google
Translate as “I love to read him” because of the white space that precedes
yomu (読む):

彼わしmぶんお 読むのが大好きです

NLPFD.Ch2.2pp.indd 41NLPFD.Ch2.2pp.indd 41 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

42 • Natural Language Processing Fundamentals for Developers

If you enter the following sentence in Hiragana in Google Translate, the
correct Romanji is generated:

ゆきがほんお読みました
Yuki ga hon o yomimashita

The preceding sentence means “Yuki read the book.” However, Google
Translate provides this incorrect English translation:

I just read Yuki.

As another example, the following sentence in Hiragana is translated cor-
rectly in Google Translate:

すしが　ゆきに　食べられた
Sushi ga yuki ni taberareta
Sushi was eaten by Yuki.

Notice how the particle (postposition) ni in the preceding sentence is
translated as “by” when it’s used in the context of the passive voice in English.

Japanese and Korean

As you learned earlier in this chapter, both Japanese and Korean have postpo-
sitions, some of which are similar. There appears to be some degree of com-
ingling among Korean and Japanese, both of which have been influenced by
Chinese. The following link contains some interesting details (i.e., a mixture
of speculation, conjectures, and some facts) regarding the common aspects of
Japanese and Korean:

https://linguistics.stackexchange.com/questions/41/are-the-japanese-and-
korean-subject-particles-known-to-be-related-in-any-way-in

Vowel-Optional Languages and Word Direction

Some languages treat vowels as optional in written form, which includes the
right-to-left languages Hebrew and Arabic. Native speakers of these languages
know the correct vowels to insert in written text so that they can read newspa-
pers and articles correctly. Interestingly, Arabic provides a letter called sukun,
which looks like a small circle placed between two consecutive consonants to
indicate that a vowel is not required between the consonants.

As mentioned earlier, most languages are written in a left-to-right fashion.
By contrast, Japanese Kanji is written from top-to-bottom, and then in a right-
to-left fashion. Arabic and Hebrew are written from right-to-left. Moreover,

NLPFD.Ch2.2pp.indd 42NLPFD.Ch2.2pp.indd 42 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

NLP Concepts (I) • 43

letters in Arabic words can be vertically “stacked” as they are written in a
right-to-left manner.

Arabic also has the concept of a cluster of three consonants that pertain
to related concepts. For example, the sequence of three consonants k-t-b can
be filled in with different vowels, and all of those combinations are related to
the verb “read.”

Mutating Consonant Spelling

Most languages with alphabets have a single form for each letter in their
respective alphabet. However, a letter in Arabic can be written in two, three,
or four different ways, depending on its location in a word or sentence.
Specifically, the initial, medial, stand-alone, or terminal positions of a letter
determine the manner in which the letter is written. For example, the stand-
alone Arabic letters k, t, and b are shown here (from left to right):

ك ت ب
However, the Arabic word kitab (book) is written in Arabic as follows

(notice the absence of any vowels):

كتاب

In Farsi, the word kitab is translated in Google Translate as follows (which
includes the short vowel “i”):

 کئتاب

In Urdu the word kitab is translated in Google Translate as follows (which
includes the long vowel “y” that is pronounced “ee” as in “meek”):

کیتاب

As another example, the following letter is the standalone Arabic letter
“s:”

س

However, the Arabic letters that spell “seen” are as follows:

سین

As you can see, only the right-most portion of the letter “s” is displayed
in the preceding text, followed by the long vowel “y,” and then the letter “n.”

Another example is the Arabic word for “lemon:”

لیمون

NLPFD.Ch2.2pp.indd 43NLPFD.Ch2.2pp.indd 43 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

44 • Natural Language Processing Fundamentals for Developers

The preceding Arabic word consists of the letters (from right to left) “l,”
long “y,” “m,” “u,” and “n” (in left-to-right order). However, the letter “m” in
the stand-alone position looks like the following:

م

A complete list of the Arabic alphabet and many additional nuances and
details is available online:

https://en.wikipedia.org/wiki/Arabic_alphabet

Expressing Negative Opinions

In addition to the plethora of grammar rules in Japanese, there is another
aspect in Japanese culture: how to decide which sentence to use when there
is more than one way to express a negative opinion.

For example, the following English sentences are essentially the same in
meaning:

I do not think he will go to Tokyo.
I think he will not go to Tokyo.

However, Japanese people view “I do not think” in the first sentence as
expressing a personal belief that is stronger than “I think” in the second sen-
tence. In general, it’s better to avoid personal opinions when it’s possible to
do so, and therefore Japanese people will favor the second sentence over the
first sentence.

The preceding example illustrates a subtle cultural detail that is not
encoded in grammar rules, which can pose a challenge for NLP to generate
a translation that is 100% correct from the perspective of a native Japanese
speaker.

Now that you have a high-level view of various languages, let’s briefly
look at the other end of the linguistic spectrum, which is the topic of the next
section.

PHONETIC LANGUAGES

Many Indo-European languages and most Asian languages are phonetic,
which facilitates the task of learning to pronounce words in an unrelated
language. For example, Japanese and Italian are both phonetic, and a native
Italian speaker can easily learn to pronounce Japanese words correctly (learn-
ing the vocabulary and grammar are far more complex).

NLPFD.Ch2.2pp.indd 44NLPFD.Ch2.2pp.indd 44 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

NLP Concepts (I) • 45

By way of comparison, a native English speaker knows that every word
in the following list has the same vowel sound, and can also pronounce these
words with ease: {I, eye, sigh, why, guy, fly, buy, tie}. However, try explaining
to a non-English speaker why all the words in the preceding set have the same
vowel sound. By contrast, the following set of Italian words have the same
pronunciation for the vowel “o” because no other vowel has the same sound:
{forno, bocca, giorno, dio, guasto, sporco, andiamo, and vediamo}.

Vowels in phonetic languages have one pronunciation, regardless of their
location in a word. Consonants usually have a single pronunciation, although
there are situations in which an adjacent consonant can change the pronun-
ciation of its preceding consonant. For example, in Italian the letter “h” can
modify the pronunciation of the consonant that appears immediately prior to
the letter “h,” such as c’e and che, ge, and ghe in Italian words.

Thus, the letter “h” can modify the pronunciation of a preceding con-
sonant, whereas in English the combination of “gh” can be silent (which
never happens in Italian), such as the words “bough” or “bought,” which have
entirely different meanings even though they differ by a single consonant.

Many languages have words that contain double consonants, and in pho-
netic languages, double consonants maintain the same pronunciation while
doubling the amount of time to pronounce the two consonants. For example,
the double consonant in the Italian words vacca and nanna merely lengthen
the pronunciation of the letter “c” or the letter “n,” and sometimes change the
meaning of the word (such as nanna versus nana). Note that Spanish has very
few double consonants (the Spanish word for vaca is the same as the Italian
word vacca).

By contrast, English words with double consonants sometimes change the
pronunciation of the second consonant, such as the English words “accent,”
“accident,” and “flaccid” (which has two different acceptable pronunciations).
Yet, the consecutive occurrences of the letter “k” in “bookkeeper” do not
change their pronunciation (and are twice as long as a single “k”).

Although the Romance languages Italian, Spanish, and Portuguese (in
Portugal) are phonetic, the pronunciation of French words is an exception,
even though French is also a Romance language. Some French words have
a distinctly nasal pronunciation, and other French words comprise multi-
ple consecutive vowels. For example, the word oiseau (bird) is pronounced
wa-ZOE, which is far different from the spelling of the word. French is also
unusual because of the number of words that contain three consecutive vow-
els. Romance languages are derived from Latin, which includes French,
despite the fact that the latter is a non-phonetic language. Interestingly, many

NLPFD.Ch2.2pp.indd 45NLPFD.Ch2.2pp.indd 45 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

46 • Natural Language Processing Fundamentals for Developers

words in Brazilian Portuguese can be pronounced in multiple ways (and not
always phonetically).

English is particularly interesting because it’s assuredly not a phonetic
language, even though it’s ranked first in terms of the number of people who
speak English. Although there are many non-native-English speakers who can
speak English fluently (and grammatically correct), it’s sometimes more chal-
lenging for non-native English speaking adults to speak English without an
accent.

However, when Dutch speakers speak their native language, they have a
similar cadence as English. This detail is plausible, because Dutch is a Ger-
manic language, which in turn had a significant influence on old English, just
as Latin and Greek have had a significant influence on English.

Although English pronunciation can be a challenge for some people, it
pales in comparison to Gaelic, whose pronunciation rules are as complex as
they are remarkable. The number of people who speak Gaelic appears to be
slowly decreasing, even in Ireland, and perhaps the language is slowly disap-
pearing (to my Irish friends, I simply say, Éirinn go Brách.)

Phonemes and Morphemes

In linguistics, a phoneme is the smallest unit of speech in a language. Although
standard English contains 26 letters, there are 44 phonemes in English. For
example, the word “bat” consists of the three phonemes “b,” “a,” and “t.”
Phonemes exclude diphthongs and triphthongs that consist of two phonemes
and three phonemes, respectively.

Alternatively, a morpheme is the smallest meaningful unit of a language. A
morpheme carries meaning, whereas a phoneme does not (the latter is a sound
unit). Morphemes (and words) are combinations of phonemes, and they can
be prefixes, syllables, or prefixes of words. For example, “disappeared” con-
sists of the three morphemes “dis.” “appear,” and “ed.”

English Words of Greek and Latin Origin

There are many interesting words in English whose roots are in Greek. Words
with the suffix “ology,” which means “study of,” are of Greek origin. Examples
include biology (“bios” = “life”), anthropology (“anthros” = “man”), anthro-
pomorphism (“morphism” = “to change”) to ascribe human characteristics to
inanimate objects or nonhumans (such as pets).

If you love languages, then you are a linguaphile, and if you love words,
then you are a logophile, which are derived from the Greek words lingua,
philia, and logos that mean language, love, and words, respectively.

NLPFD.Ch2.2pp.indd 46NLPFD.Ch2.2pp.indd 46 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

NLP Concepts (I) • 47

The English word “telephone” is derived from the Greek words telos (far
away) and phonos (to speak), whose combination means “to speak far away”
(which is a suitable combination for the word telephone).

MULTIPLE WAYS TO PRONOUNCE CONSONANTS

The pronunciation of letters such as “c” and “g” in Italian words depends on
the vowel that follows these letters. In German, when the letters “b,” “d,” and
“g” appear at the end of a word, they are pronounced “p,” “t,” and “k,” respec-
tively. The following subsections illustrate the changes in the pronunciation of
the consonants in words in various languages.

The Letter “j” in Various Languages

The letter “j” in English words has two sounds: one sounds like the letter “j”
in “John,” and the other sounds like the letter “j” in je suis, such as the letter
“g” in the English word “mirage” (which is a word borrowed from French).
The latter pronunciation of the letter “j” also occurs in Portuguese, Russian,
and in parts of Argentina that is close to the border with Brazil. However, the
more common pronunciation of “j” in Spanish is similar to “ch” in the German
word achtung. As an added twist, some Spanish speakers pronounce the word
yo that sounds similar to “Joe.”

In addition, the double “l” in calle is pronounced like “KA-yeh” in
Spanish-speaking countries, with the exception of Argentina (perhaps because
it’s near Brazil), where the Spanish word calle sounds like “KA-jeh” (pro-
nounced like the “j” in je suis).

However, the “j” sound (as in “mirage”) does not exist in standard Spanish
that is spoken in other regions, nor does this sound exist in Italian. In fact, the
letter “j” is not part of the original Italian alphabet. In Italian, the correct pro-
nunciation of the combination “ga,” “go,” and “gu” sounds like the letter “g”
in the English word “gap.” whereas “ge,” “gi,” and “gio” sound like the letter
“j” in “John.” Thus, the correct pronunciation of the Italian word parmigiano
sounds like “par-mee-JA-noh,” where “JA” sounds like “jacket.”

“Hard” versus “Soft” Consonant Sounds

For all Italian words containing the letter “c” or “g” that are immediately
followed by the letter “h,” the pronunciation is modified when the vowel that
immediately follows the letter “h” is either “e” or “i.”

NLPFD.Ch2.2pp.indd 47NLPFD.Ch2.2pp.indd 47 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

48 • Natural Language Processing Fundamentals for Developers

Specifically, the combinations ci and c’e are pronounced like “ch” in
“cheek” and “check,” respectively, whereas the combinations “chi” and “che”
are pronounced like “k” in “keep” and “kettle,” respectively. Hence, the
word cecci (chickpeas) is pronounced with two consecutive “ch” sounds as
in “check” or “CHE-chee.” The same pattern applies to “gi” and “ge” versus
“ghi” and “ghe.”

The preceding paragraph brings us to the proper noun Giorgio (George),
which is sometimes pronounced as four distinct syllables (“gee-OR-gee-OH”)
by non-native Italian speakers, in an earnest attempt at making the correct
pronunciation. Despite all of the preceding rules, Italians pronounce Giorgio
as two syllables “JYOR-jo” (which admittedly is not entirely phonetic).

In addition, some German consonants also undergo changes in pronun-
ciation: words that end in the letters “b,” “d,” or “g” are pronounced as “p,”
“t,” and “k,” respectively. Hence, “ab” (a prefix), “todd” (death), and “berg”
(mountain) are pronounced as “ap,” “tot,” and “berk.” Thus, Bergman is trans-
lated as “mountain man.”

Another interesting grammatical scenario involves pairs of voiceless and
voiced consonants, which is discussed in the next section.

“Ess,” “Zee,” and “Sh” Sounds

Some languages have pronunciation rules involving consecutive consonants
that do not exist in English. For example, the letter “s” can be voiceless (as in
“seed”) or a voiced consonant that sounds like “z” (as in “boys”). In Italian, the
letter “s” can also be a voiceless or a voiced consonant. The consonant “n” in
English and Italian is a voiced consonant.

In addition, Italian also has a grammatical rule that a voiceless consonant
that is immediately followed by a voiced consonant must be “converted” to a
voiced consonant as well. Consequently, some Italians pronounce the English
word “snow” as “znow,” and “slice” is pronounced as “zlice.”

However, the letter “z” in the initial position of Italian words (such as “zio”
or “zia”) is pronounced like “ds” in the word “ads.” Moreover, an “s” between
two vowels is pronounced as a voiced “s,” whereas a double “z” is pronounced
as a voiceless “s,” which means that “pizza” is not pronounced “PEET-suh.”
In Spanish, the letter “z” is always pronounced as a voiceless “s,” and a voiced
counterpart of the letter “z” does not exist in Spanish.

The pair of consonants “st” and “sp” are pronounced with a voiced “s,”
as in “street” or “spa.” However, in Naples, the letter “s” in the pair “sp”
sounds like “sh” as in “sheep.” Hence, Neapolitans say “SHpaghetti” instead

NLPFD.Ch2.2pp.indd 48NLPFD.Ch2.2pp.indd 48 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

NLP Concepts (I) • 49

of “spaghetti.” Coincidentally, the pair of consonants “st” and “sp” in Arabic
words rarely (never?) have an intermediate consonant, which is indicated by
the letter sukun.

Spanish also undergoes some changes when the article la precedes a fem-
inine noun with initial letter “a.” For example, agua is feminine, but instead
of la agua, the correct sequence in Spanish is el agua.

In Venezuela, many people speak Criollo, whose pronunciation differs
from spoken Spanish in the other south American countries. One significant
difference in Criollo involves the silent letter “s” at the end of a word. To be
more precise, the letter “s” in the terminal position is pronounced like the
letter “h” in the word “hot.”

For example, the sentence El eta alla en la equina con do uiqui in Criollo
is equivalent to the Spanish sentence El esta alla en la esquina con dos uisquis
(the accent marks have been omitted). Keep in mind that Spanish refers to
someone from Spain, whereas Castellano is the language that is spoken by
people in Hispanic countries.

Three Consecutive Consonants

English has various word that contain three consecutive consonants, such as
“street,” “straight,” and “spray.” However, some languages avoid the occur-
rence of three consecutive consonants in a word, sometimes by changing the
preceding article (“a” or “the”) that precedes such a word.

For example, Italian uses la for feminine (la casa) and il for masculine (il
libro), and lo for masculine words that start with two consecutive consonants.
Thus, lo sport is used instead of il sport, and lo stile instead of il stile, thereby
avoiding the three consecutive consonants “lsp” and “lst.”

In addition, lo zucchero and lo zio are correct, even though the sequence
il zucccero involves a two-consonant sequence “lz.” However, the initial rule
still stands, because an initial “z” in Italian words is pronounced like “ds” in
the English word “ads,” which in turn sounds like “dz” in English. Thus, lo
zucchero is correct because it avoids the three consecutive consonants “ldz”
resulting from il zucchero, and similarly for lo zio and lo zaino.

Arabic also avoids three consecutive consonants. However, since vow-
els are optional and frequently omitted in written Arabic, fluent readers can
silently insert vowels between consecutive consonants. In some cases of con-
secutive consonants, there is no intermediate vowel, which readers will know
due to the presence of the sukun symbol, which is a small open circle that
appears between the pair of consecutive consonants.

NLPFD.Ch2.2pp.indd 49NLPFD.Ch2.2pp.indd 49 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

50 • Natural Language Processing Fundamentals for Developers

Diphthongs and Triphthongs in English

Instead of “pure” vowels, English words typically contain diphthongs (and
also some triphthongs) that are combinations of phonetic vowels. Here are
some examples of English vowels and their phonetic counterparts:

●● “a” is phonetic “e” + “i” (when it sounds like “pay”)
●● “i” is phonetic “a” + “i” (when it sounds like “eye”)
●● “o” is phonetic “o” + “u” (when it sounds like “foe”)
●● “u” is phonetic “i” + “u” (when it sounds like “you”)
●● “y” is phonetic “y” + “a” + “i” (when it sounds like “why”)

Thus, the English vowels “a,” “o,” and “u” are diphthongs, and the English
letter “y” is actually a triphthong. The lone exception is the letter “e,” which is
a phonetic “i” when it rhymes with “pea.”

Semi-Vowels in English

English has consonants that can sometimes function as semi-vowels, such as
the letter “m” in “prism,” the letter “l” in “castle,” and the letter “r” in “center.”
There are other languages with consonants that can function as semi-vowels.
One humorous (and challenging) example is the following Czech sentence
that contains the semi-vowel “r” and no vowels (“Stick finger through throat”):

Strč  prst skrz krk

Challenging English Sounds

Some sounds in English are difficult for non-native English speakers, gener-
ally for people whose native language is phonetic. For example, the combina-
tion “or” and “er” is simple when they are pronounced like “or” in the word
“for” and “er” in “feral.” However, the “er” sound in the following words can
be more challenging for non-native English speakers:

●● world
●● hurt
●● her
●● earnest
●● girth

Notice that every vowel is followed by “r” in the preceding list of words,
and yet all of words have the same “er” sound.

Other difficult combinations are “th” in words such as “three,” which is
approximated as “tree” with a “trilled r” sound, and “third” is pronounced as

NLPFD.Ch2.2pp.indd 50NLPFD.Ch2.2pp.indd 50 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

NLP Concepts (I) • 51

“turd,” and also with a “trilled r” sound. The sound of “th” in the word “then”
can also be difficult, and it’s sometimes approximated as “den.”

As an aside, during a late evening talk show, Charlize Theron once
explained that her last name is pronounced like “tron,” with a strong trilled
“r” sound, instead of “thur-ON,” which makes perfect sense to people who
speak phonetic languages.

Silent letters can be especially challenging for non-native English speak-
ers. People who speak phonetic languages will sometimes say “PLUM-ber”
instead of “plummer.” Sometimes the reverse happens: they pronounce a let-
ter that is actually silent, such as the letter “h:” they will say “HON-est” instead
of “ON-est.” Another fun set of English words and the variations in their pro-
nunciation: “but” versus “put” versus “putrid” versus “purple;” “low” versus
“plow,” and “row” (a boat) versus “row” (an argument). Now try explaining the
logic behind the pronunciation of the following words containing vowels that
sound like “ow,” “oh,” “uh,” “oo,” “er,” and “yoo” to a non-English speaker:

●● plough
●● bough
●● rough
●● through
●● furlough
●● fur
●● eunuch

Another combination that is challenging (and sometimes for native-
English speakers as well) is the combination of “th” and “z” sound in a word
such as “youths.” Sometimes you will hear “youths” pronounced as “yoots,”
depending on the speaker’s location in the United States.

English in Canada, UK, Australia, and the United States

There are some relatively minor differences in the spelling of words in English
spoken in the United States versus other English-speaking countries. One
such difference is replacing “ou” with “o,” as in “color,” “favor,” and “neigh-
bor” instead of “colour,” “favour,” and “neighbor.” Another difference involves
replacing “ll” or “pp” with a single “l” or “p,” such as “traveled” and “wor-
shiped” instead of “travelled” and “worshipped.”

Other simple changes are “tire” instead of “tyre” (UK), “trunk” instead
of “boot” (UK), “aluminum” instead of “aluminium,” and “eraser” instead of
“rubber.” Changes in pronunciation include “PRY-vacy” instead of “PRIV-
acy” and “a-LOO-minum” instead of “a-loo-MIN-ium.”

NLPFD.Ch2.2pp.indd 51NLPFD.Ch2.2pp.indd 51 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

52 • Natural Language Processing Fundamentals for Developers

This concludes the high-level introduction to languages, and by now you
are probably saturated with the bewildering variety of grammatical rules, word
order, gender, plural forms, and pronunciation rules. There are thousands of
human languages, most of which have not been discussed in this introduction.

The main purpose of speech is communication between people, regard-
less of the grammatical errors or accents of the speaker. Now that you have
an understanding of the many nuances of human languages, you now have a
greater understanding of the various challenges and nuances facing NLP.

ENGLISH PRONOUNS AND PREPOSITIONS

If you have struggled with the correct combination of pronouns and preposi-
tions in English, there is a simple rule to remember: a subject pronoun in
English (I, he, she, and so forth) can never follow a preposition (such as to,
for, between, and so forth).

The following table displays subject pronouns, direct object pronouns,
and indirect object pronouns in English:

Table 2.2  Subject, Direct Object, and Indirect Object Pronouns in English.

Subject Direct Indirect
I me me

you you you

he/she/it him/her/it him/her/it

we us us

you you you

they them them

Based on the contents of Table 2.2, which of the following fragments is
correct?

1.	 “you and I disagree”

2.	 “between you and I”

3.	 “between you and me”

4.	 “between you and him”

5.	 “between we and him”

NLPFD.Ch2.2pp.indd 52NLPFD.Ch2.2pp.indd 52 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

NLP Concepts (I) • 53

6.	 “between us and him”

7.	 “between we and they”

8.	 “him and I went to the store”

[Correct answers: 1, 3, 4, and 6]
If you replace the word “between” with the word “for” or “to” (or any

other English preposition) in the preceding list, the list of correct answers is
the same. A list of English prepositions is available online:

https://www.englishclub.com/grammar/prepositions-list.htm

This concludes our discussion of languages.

WHAT IS NLP?

NLP is an important branch of AI that pertains to processing human lan-
guages with machines. In fact, you are surrounded by NLP through voice
assistants, search engines, and machine translation services whose purpose is
to simplify your tasks and aspects of your daily life.

NLP faces a variety of challenges, such as determining the context of
words and their multiple meanings in different sentences in a document or
corpus. Other challenging tasks include identifying emotions (such as irony
and sarcasm), statements with multiple meanings, and sentences with contra-
dictory statements.

With regard to language translation, Facebook has created an impressive
model called the M2M model, which was trained on more than 2,000 lan-
guages and provides a translation between any pair of 100 languages.

In high-level terms, there are three main approaches to solving NLP
tasks: rule-based (oldest), traditional machine learning, and neural networks
(most recent).

Rule-based approaches, which can utilize regular expressions, work well
on various NLP tasks.

Traditional machine learning for NLP tasks (which includes various types
of classifiers) involves training a model on a training set and then making
inferences on a test set of data. This approach is still useful for handling NLP
tasks, such as sequence labeling.

By contrast, neural networks take word embeddings (vector-based repre-
sentations of words) as input and are then trained using backward error prop-
agation. Examples of neural network architectures include CNNs, RNNs, and

NLPFD.Ch2.2pp.indd 53NLPFD.Ch2.2pp.indd 53 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

54 • Natural Language Processing Fundamentals for Developers

LSTMs. Moreover, there has been significant research in combining deep
learning with NLP, which has resulted in state-of-the-art results.

In particular, the transformer architecture (which relies on the concept of
attention) has eclipsed earlier neural network architectures. The transformer
architecture is the basis for BERT, which is a pretrained NLP model with
1.5 billion parameters, along with numerous other pretrained models that
are based (directly or indirectly) on BERT. Chapter 11 introduces the trans-
former architecture and BERT-related models.

Regardless of the methodology, NLP algorithms involve samples in the
form of documents or collections of documents containing text. A corpus can
vary in size, and can be domain specific and/or language specific. In some
cases, such as GPT-3 (discussed in Chapter 11), models are trained on a cor-
pus of 500 gigabytes of text.

As a historical aside, the Brown University Standard Corpus of Present-Day
American English, also called the Brown Corpus, was created during the
1960s for linguistics. This corpus contains 500 samples of English-language
text, with a total of approximately 1,000,000 words. More information about
this corpus is available online:

https://en.wikipedia.org/wiki/Brown_Corpus

As a concrete example of NLP, consider the task of determining the main
topics in a document. While this task is straightforward for a text document
consisting of a few pages, finding the main topics of a hundred documents,
each of which might contain several hundred pages, is impractical to com-
plete via a manual process (and if you gave this work to multiple people you
would have to pay them).

Fortunately, there is an NLP technique called topic modeling that per-
forms the task of analyzing documents and determining the main topics in
those documents. This type of document analysis can be performed in a vari-
ety of situations that involve large amounts of text. NLP can help you analyze
documents that contain structured and unstructured data (or a combination
of both types of data).

The Evolution of NLP

NLP has undergone many changes since the mid-20th century, the earliest
of which might seem primitive when you compare them with modern NLP.
Several major stages of NLP are listed below, starting from 1950 up until
2020, that highlight the techniques that were commonly used in NLP.

NLPFD.Ch2.2pp.indd 54NLPFD.Ch2.2pp.indd 54 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

NLP Concepts (I) • 55

●● 1950s-1980s: rule-based systems
●● 1990s-2000s: corpus-based statistics
●● 2000s-2014: machine learning
●● 2014-2020: deep learning

Early NLP (1950s–1990s) spans several decades and primarily focused
on rule-based systems, which means that they used largely conditional logic.
When you consider the structure of a sentence in English, it’s often of the
form subject-verb-object. However, a sentence can have one or more subor-
dinate clauses, each of which can involve multiple nouns, prepositions, adjec-
tives, and adverbs.

Even more complex is maintaining a reference between two sentences,
such as the following:

“Yesterday was a hot day and many people were uncomfortable. I wonder
what that means for the coming days.”

Although you can infer the meaning of the word “that” in the second sen-
tence, the correct interpretation is difficult using rule-based methods (but
not with modern NLP methods). This era of NLP also performed various
statistical analyses of sentences to predict which words were more likely to
follow a given word.

The next phase of NLP (1990s–2000s) shifted away from a rule-based
analysis toward a primarily statistical analysis of collections of documents.
The third phase involved machine learning for NLP, which embraced algo-
rithms such as decision trees and Markov chains. Once again, an important
task involved predicting the next word in a sequence of words.

The most recent phase of NLP is the past decade and the combination
of neural networks with NLP. In fact, 2012 was a significant turning point
involving convolutional neural networks (CNNs) that achieved a breakthrough
in terms of accuracy classifying images. Researchers then learned how to use
CNNs to analyze audio waves and perform NLP tasks.

The use of CNNs for NLP then evolved into the use of recurrent neu-
ral networks (RNNs) and long short term memory (LSTMs), which are two
architectures that belong to deep learning, for even better accuracy. These
architectures have been superseded by the transformer architecture (also
considered a part of deep learning) that was developed by Google toward the
end of 2017. Transformer-based architectures (there are many of them) have
achieved state-of-the-art performance that surpass all the previous attempts
in the NLP arena.

NLPFD.Ch2.2pp.indd 55NLPFD.Ch2.2pp.indd 55 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

56 • Natural Language Processing Fundamentals for Developers

A WIDE-ANGLE VIEW OF NLP

This section contains aspects of NLP, as well as many NLP applications and
use cases, which are summarized in this list:

●● NLP applications
●● NLP use cases
●● NLU (Natural Language Understanding)
●● NLP (Natural Language Generation)
●● text summarization
●● text classification

The following subsections provide additional information for each topic
in the preceding list.

NLP Applications and Use Cases

There are many useful and well-known applications that rely on NLP, some
of which are listed here:

●● Chatbots
●● Search (text and audio)
●● Advertisement
●● Automated translation
●● Sentiment analysis
●● Document classification
●● Speech recognition
●● Customer support

In particular, chatbots are receiving a great deal of attention because
of their increasing ability to perform tasks that previously required human
interaction.

Sentiment analysis is a subset of text summarization that attempts to
determine the attitude or emotional reaction of a speaker toward a particular
topic (or in general). Possible sentiments are positive, neutral, and negative,
which are typically represented by the numbers 1, 0, and -1, respectively.

Document classification is a generalization of sentiment analysis and typi-
cally involves more than three possible flags per article:

https://towardsdatascience.com/natural-language-processing-pipeline-
decoded-f97a4da5dbb7

In addition to the preceding list of sample applications, there are many
use cases for NLP, some of which are listed here:

NLPFD.Ch2.2pp.indd 56NLPFD.Ch2.2pp.indd 56 5/28/2021 3:53:40 PM5/28/2021 3:53:40 PM

NLP Concepts (I) • 57

●● Question answering
●● Filter email messages
●● Detect fake news
●● Improve clinical documentation
●● Automatic text summarization
●● Sentiment analysis and semantics
●● Machine translation and generation
●● Personalized marketing

Some of the use cases in the preceding list (such as sentiment analysis) are
discussed in later chapters.

NLU and NLG

NLU is an acronym for natural language understanding and although you
might not see numerous books about this topic, it’s a significant subset of NLP.
In high-level terms, NLU attempts to understand human language in deter-
mining the context of a text string or document. NLU addresses various NLP
tasks, such as sentiment analysis and topic classification. Another important
NLU task is called relation extraction, which is the task of extracting semantic
relations that may exist in a text string. Moreover, the sources of input text can
be from chatbots, documents, blog posts, and so forth.

As a simple example, consider this block of text and notice the different
meanings of the pronouns “he” and “them.”

“John lived in France and he attended an International school. Mary
lived in Germany and she also attended an International school. Dave lived in
London and met both of them in Paris. One of these days, when he has some
free time, they will meet up again. Steve met all of them on New Year’s Eve.”

Although the preceding paragraph is easy for humans to understand, it
poses some challenges for NLU, such as determining the correct answers to
the following questions:

1.	 Who does the first occurrence of “he” refer to?

2.	 Who does the second occurrence of “he” refer to? Is it ambiguous?

3.	 Who does the first occurrence of “them” refer to?

4.	 Who does the second occurrence of “them” refer to? Is it ambiguous?

As you undoubtedly know, one of the challenges of human language
involves the correct interpretation of words that are used ambiguously
in a sentence, and such ambiguity can be classified into several types. For

NLPFD.Ch2.2pp.indd 57NLPFD.Ch2.2pp.indd 57 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

58 • Natural Language Processing Fundamentals for Developers

example, lexical ambiguity occurs when a word has multiple meanings, which
can change the meaning of a sentence that contains that word. One approach
to handling this type of ambiguity involves POS (Parts Of Speech) techniques,
which is illustrated in the chapter with NLTK content.

Another type of ambiguity is syntactical ambiguity, also called grammat-
ical ambiguity, which occurs when a sequence of words (instead of a single
word) has multiple meanings.

Yet another type of ambiguity is referential ambiguity, which can occur
when a noun in one location is referenced elsewhere via a pronoun, and the
reference is not completely clear.

Another important subset of NLP is Natural Language Generation (NLG),
which is the process of producing meaningful phrases and sentences in the
form of natural language from some internal representation. One impressive
example of NLG is the ability of GPT-3 (discussed in Chapter 11) to generate
meaningful responses to a wide variety of questions.

NLP can be used to analyze speech (not discussed in this book), words,
and the structure of sentences. As such, we need to become acquainted with
text classification, which is the topic of the next section.

What is Text Classification?

Text classification is a supervised approach for determining the category or
class of a text-based corpus, which can be in the form of a blog post, the con-
tents of a book, or the contents of a Webpage. The possible classes are known
in advance, and they do not change; the classes are often (but not always)
mutually exclusive.

Text classification involves examining text to determine the nature of its
content, such as

●● topic labeling (the major topics of a document)
●● the sentiment of the text (positive or negative)
●● the human language of the text
●● categorizing products on Websites
●● whether it’s spam

However, most text-based data is unstructured, which complicates the
task of analyzing text-based documents. From a business perspective, machine
learning text classification algorithms are valuable when they structure and
analyze text in a cost-effective manner, thereby expediting business processes
and decision-making processes.

NLPFD.Ch2.2pp.indd 58NLPFD.Ch2.2pp.indd 58 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

NLP Concepts (I) • 59

As you can probably surmise, text classification is important for customer
service, which can involve routing customer requests based on the (human)
language of the text, determining if it’s a request for assistance (products or
services), or detecting issues with products.

Note that some older text classification algorithms are based on the Bag of
Words (BoW) algorithm that determines the word frequency in documents.
The BoW algorithm is explained in Chapter 5, along with code samples for the
BoW algorithm in Chapter 6.

Text summarization is related to text classification, and it’s described in
Chapter 9 in the section that discusses the recommender system.

INFORMATION EXTRACTION AND RETRIEVAL

The purpose of information extraction is to automatically extract structured
information from one or more sources, which could contain unstructured data
in documents. For example, an article might provide the details of an IPO of
a successful start-up or the acquisition of a larger company by an even larger
company. Information extraction involves generating a summary sentence
from the contents of the article. In a larger context, information extraction is
related to topic modeling (i.e., finding the main topics in a document) that is
discussed toward the end of this chapter.

Information extraction requires information retrieval, where the latter
involves methods for indexing and classifying large documents. Information
extraction involves various subtasks, such as identifying named entities (i.e.,
nouns for people, places, and companies), automatically populating a template
with information from an article, or extracting data from tables in a document.

As a simple example, suppose that a program regularly scrapes (retrieves)
the contents of HTML pages to summarize their contents. One of the first
tasks that must be performed is data cleaning, which in this case involves
removing HTML tags, removing punctuation, converting text to lowercase,
and then splitting sentences into tokens (words). Fortunately, the Beautiful-
Soup Python library can easily perform each of the preceding tasks.

Another area of great interest in NLP is the proliferation of chatbots,
which interact with users to provide information (such as directions or hours
of operation) or perform specific tasks (make reservations, book hotels, or
rent cars).

NLPFD.Ch2.2pp.indd 59NLPFD.Ch2.2pp.indd 59 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

60 • Natural Language Processing Fundamentals for Developers

WORD SENSE DISAMBIGUATION

Up until several years ago, word sense disambiguation was an elusively dif-
ficult task because words can be overloaded (i.e., possess multiple mean-
ings). A well-known NYT article describes one humorous misinterpretation
in machine learning. The following sentence was translated into Russian and
then translated from Russian into English:

●● The spirit is willing, but the flesh is weak.
●● The result of the second translation is here:
●● The vodka is good, but the meat is rotten.
●● The NYT article is available online:

https://www.nytimes.com/1983/04/28/business/technology-the-computer-
as-translator.html

As another example of an overloaded word, consider the following four
sentences:

●● You can bank on that result.
●● You can take that to the bank.
●● You see that river bank?
●● Bank the car to the left.

In the preceding four sentences, the word “bank” has four meanings. The
task of determining the meaning of a word requires some type of context. The
dismal state of word sense disambiguation resulted in a precipitous drop in
enthusiasm vis-a-vis machine learning. However, the situation has dramati-
cally improved during the past several years. For example, in 2018, Microsoft
developed a system for translating from Chinese to English whose accuracy
was comparable to humans.

NLP TECHNIQUES IN ML

Earlier you briefly learned about NLU (Natural Language Understanding)
and NLG (Natural Language Generation). The purpose of NLU is to “under-
stand” a section of text, and then use NLG to generate a suitable response
(or find a suitable response from a repository). This type of task is related to
question answering and knowledge extraction.

NLPFD.Ch2.2pp.indd 60NLPFD.Ch2.2pp.indd 60 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

NLP Concepts (I) • 61

Since there are many types of NLP tasks, there are also many NLP tech-
niques that have been developed, some of which are listed here:

●● text embeddings
●● text summarization
●● text classification
●● sentence segmentation
●● POS (Part-Of-Speech tagging)
●● NER (Named Entity Recognition)
●● word sense disambiguation
●● text categorization
●● topic modeling
●● text similarity
●● syntax and parsing
●● language modeling
●● dialogs
●● probabilistic parsing
●● clustering

Most of the items in the preceding list are discussed in Chapter 4; in some
cases, there are associated Python code samples in Chapter 5 and Chapter 6.

NLP Steps for Training a Model

Although the specific set of text-related tasks depends on the specific task that
you’re trying to complete, the following set of steps is common:

●● (1) convert words to lowercase
●● (1) noise removal
●● (2) normalization
●● (3) text enrichment
●● (3) stop word removal
●● (3) stemming
●● (3) lemmatization

The number in parentheses in the preceding bullet list indicates the type
of task. Specifically, the values (1), (2), and (3) indicate “must do,” “should
do,” and “task dependent,” respectively.

NLPFD.Ch2.2pp.indd 61NLPFD.Ch2.2pp.indd 61 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

62 • Natural Language Processing Fundamentals for Developers

TEXT NORMALIZATION AND TOKENIZATION

Text normalization involves several tasks, such as the removal of unwanted
hash tags, emojis, URLs, special characters such as “&,” “!,” and “$.” However,
you might need to make decisions regarding some punctuation marks.

First, what about the period (“.”) punctuation mark? If you retain every
period (“.”) in a dataset, consider whether to treat this character as a token
during the tokenization step. However, if you remove every period (“.”) from
a dataset, this will also remove every ellipsis (three consecutive periods), and
also the period from the strings “Mr.,” “U.S.A.,” and “P.O.” If the dataset is
small, perform a visual inspection of the dataset. If the dataset is very large,
try inspecting several smaller and randomly selected subsets of the original
dataset.

Second, although you might think it’s a good idea to remove question
marks (“?”), the opposite is true. In general, question marks enable you to
identify questions (as opposed to statements) in a corpus.

Third, you also need to determine whether to remove numbers, which can
convey quantity when they are separate tokens (“1,000 barrels of oil”) or they
can be data entry errors when they are embedded in alphabetic strings. For
example, it’s acceptable to remove the 99 from the string “large99 oranges,”
but what about the 99 in “99large oranges?”

Another standard normalization task involves converting all words to
lowercase (“case folding”). Chinese characters do not have uppercase text,
so converting text to lowercase is unnecessary. Text normalization is entirely
unrelated to normalizing database tables in an RDBMS or normalizing (scal-
ing) numeric data in machine learning tasks (or the task of converting categor-
ical (character) data into a numeric counterpart).

Although case folding is a straightforward task, this step can be prob-
lematic. For instance, accents are optional for uppercase French words, and
after case folding, some words do require an accent. A simple example is the
French word peche, which means fish or peach with one accent mark, and sin
with a different accent mark. The Italian counterparts are pesce, pesca, and
peccato, respectively, and there is no issue regarding accent marks. Inciden-
tally, the plural of pesce is pesci (so Joe Pesci is Joe Fish or Joe Fishes, depend-
ing on whether you are referring to one type of fish or multiple types of fish).
To a lesser extent, converting English words from uppercase to lowercase can
cause issues. Is the word “stone” from the noun “stone” or from the surname
“Stone?”

NLPFD.Ch2.2pp.indd 62NLPFD.Ch2.2pp.indd 62 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

NLP Concepts (I) • 63

After normalizing a dataset, tokenization involves splitting a sentence,
paragraph, or document into its individual words (tokens). The complexity of
this task can vary significantly between languages, depending on the nature
of the alphabet of a specific language. In particular, tokenization is straight-
forward for Indo-European languages because those languages use a space
character to separate words.

However, although tokenization can be straightforward when working
with regular text, the process can be more challenging when working with
biomedical data that contains acronyms and a higher frequency use of punc-
tuation. One NLP technique for handling acronyms is Named Entity Recog-
nition (NER), which is discussed later in this chapter.

Word Tokenization in Japanese

Unlike most languages, the use of a space character in Japanese text is
optional. Another complicating factor is the existence of multiple alpha-
bets in Japanese, and sentences often contain a mixture of these alphabets.
Specifically, Japanese supports Romanji (essentially the English alphabet),
Hiragana, Katakana (used exclusively for words imported to Japanese from
other languages), and Kanji characters.

As a simple example, navigate to Google translate in your browser and
enter the following sentence, which means “I gave a book to my friend” in
English:

watashiwatomodachinihonoagemashita

The translation (which is almost correct) is the following text in Hiragana:

わたしはこれだけのほげあげました

Now enter the same sentence, but with spaces between each word, as
shown here:

watashi wa tomodachi ni hon o agemashita

Now Google Translate produces the following correct translation in
Hiragana:

私はともだちに本をあげました

The preceding sentence starts with the Kanji character 私 that is the cor-
rect translation for watashi.

Mandarin and Cantonese are two more languages that involve compli-
cated tokenization. Both of these languages are tonal, and they use pictographs

NLPFD.Ch2.2pp.indd 63NLPFD.Ch2.2pp.indd 63 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

64 • Natural Language Processing Fundamentals for Developers

instead of an alphabets. Mandarin can be written in Pinyin, which is the
romanization of the sounds in Mandarin, along with 4 digits to indicate the
specific tone for each syllable (the neutral sound does not have a tone). Man-
darin has 6 tones, of which 4 are commonly used, whereas Cantonese has 9
tones (but does not have a counterpart to Pinyin).

As a simple example, the following sentences are in Mandarin and in Pin-
yin, respectively, and their translation into English is “How many children do
you have?”

你有几个孩子
Nı̌ yǒ u jı̌ gè háizi
Ni3 you3 ji3ge4 hai2zi (digits instead of tone marks)

The second and third sentences in the preceding group are both Pinyin.
The third sentence contains the numbers 2, 3, and 4 that correspond to the
second, third, and fourth tones, respectively, in Mandarin. The third sentence
is used in situations where the tonal characters are not supported (such as
older browsers). Navigate to Google Translate and type the following words
for the source language:

ni you jige haizi

Select Mandarin for the target language to see the following translation:

how many kids do you have

The preceding translation is quite impressive, when you consider that the
tones were omitted, which can significantly change the meaning of words. If
you are skeptical, look at the translation of the string “ma” when it’s written
with the first tone, then the second tone, and again with the third tone and the
fourth tone. The meanings of these four words are entirely unrelated.

Tokenization can be performed via regular expressions (which are dis-
cussed in one of the appendices) and rule-based tokenization. However, rule-
based tokenizers are not well-equipped to handle rare words or compound
words that are very common in German. In Chapter 4, there are code samples
involving the NLTK tokenizer and the SpaCY tokenizer for tokening one or
more English sentences.

Text Tokenization with Unix Commands

Text tokenization can be performed not only in Python but also from the
UNIX command line. For example, consider the text file words.txt, whose
contents are shown here:

NLPFD.Ch2.2pp.indd 64NLPFD.Ch2.2pp.indd 64 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

NLP Concepts (I) • 65

lemmatization: removing word endings edit distance: mea-
sure the distance between two words based on the number of
changes needed based on the inner product of 2 vectors a
metric for determining word similarity

The following command illustrates how to tokenize the preceding para-
graph using several UNIX commands that are connected via the Unix pipe
(“|”) symbol:

tr -sc 'A-Za-z' '\n' < words.txt | sort | uniq

The output from the preceding command is shown below:

1 a

2 based

1 between

1 changes

1 determining

2 distance

1 edit

1 endings

1 for

1 inner

1 lemmatization

. . . .

As you can see, the preceding output is an alphabetical listing of the
tokens of the contents of the text file words.txt, along with the frequency
of each token.

HANDLING STOP WORDS

Stop words are words that are considered unimportant in a sentence. Although
the omission of such words would result in grammatically incorrect sentences,
the meaning of such sentences would most likely still be recognizable.

In English, stop words include the words “a,” “an,” and “the,” along with
common words and prepositions (“inside,” “outside,” and so forth). Stop
words are usually filtered from search queries because they would return a
vast amount of unnecessary information. As you will see later, Python libraries

NLPFD.Ch2.2pp.indd 65NLPFD.Ch2.2pp.indd 65 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

66 • Natural Language Processing Fundamentals for Developers

such as NLTK provide a list of built-in stop words, and you can supplement
that list of words with your own list.

Removing stop words works fine with BoW and tf-idf, both of which are
discussed in the next chapter, but they can adversely models that use word
context to detect semantic meaning. A more detailed explanation (and an
example) is here:

https://towardsdatascience.com/why-you-should-avoid-removing-stop-
words-aa7a353d2a52

A universal list of stop words does not exist, and different toolkits (such
as NLTK and gensim) have different sets of stop words. The Sklearn library
provides a list of stop words that consists of basic words (“and,” “the,” “her,”
and so forth). However, a list of stop words for the text in a marketing-related
Website is probably different from such a list for a technical Website. For-
tunately, Sklearn enables you to specify your own list of stop words via the
hyperparameter stop_words.

The following link contains a list of stop words for an impressive number
of languages:

https://github.com/Alir3z4/stop-words

WHAT IS STEMMING?

Stemming refers to reducing words to their root or base unit. A stemmer oper-
ates on individual words without any context for those words. Stemming trun-
cates the ends of words, which means that “fast” is the stem for the words fast,
faster, and fastest. Stemming algorithms are typically rule-based and involve
conditional logic. In general, stemming is simpler than lemmatization (dis-
cussed later), and it’s a special case of normalization.

Singular versus Plural Word Endings

The manner in which the plural of a word is formed varies among languages.
In many cases, the letter “s” “or es” is the plural form of words in English.
In some cases, English words have a singular form that ends in s/us/x (basis,
abacus, and box), and a plural form with the letter “i” (such as cactus/cacti and
appendix/appendices).

However, German can form the plural of a noun with “er” and “en,” such
as buch/bucher and frau/frauen.

NLPFD.Ch2.2pp.indd 66NLPFD.Ch2.2pp.indd 66 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

NLP Concepts (I) • 67

Common Stemmers

The following list contains several commonly used stemmers in NLP:

●● Porter Stemmer (English)
●● Lancaster Stemmer
●● SnowballStemmer (more than 10 languages)
●● ISRIStemmer (Arabic)
●● RSLPS Stemmer (Portuguese)

The Porter stemmer was developed in the 1980s, and while it’s good in a
research environment, it’s not recommended for production. The Snowball
Stemmer is based on the Porter2 stemming algorithm, and it’s an improved
version of Porter (about 5% better).

The Lancaster Stemmer is a good stemming algorithm, and you can even
add custom rules to the Lancaster Stemmer in NLTK (but the results can be
odd). The other three stemmers support non-English languages.

As a simple example, the following code snippet illustrates how to define
two stemmers using the NLTK library:

import nltk

from nltk.stem import PorterStemmer, SnowballStemmer

porter = PorterStemmer()

porter.stem("Corriendo")

snowball = SnowballStemmer("spanish", ignore_
� stopwords = True)

snowball.stem("Corriendo")

Notice that the second stemmer defined in the preceding code block also
ignores stop words.

Stemmers and Word Prefixes

Word prefixes can pose interesting challenges. For example, the prefix “un”
often means “not” (such as the word “unknown”), but not in the case of “uni-
versity.” One approach for handling this type of situation involves creating
a word list and after removing a prefix, check if the remaining word is in
the list. If not, then the prefix in the original word is not a negative. Among
the few (only?) stemmers that provides prefix stemming in NLTK are Arabic
stemmers:

NLPFD.Ch2.2pp.indd 67NLPFD.Ch2.2pp.indd 67 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

68 • Natural Language Processing Fundamentals for Developers

https://github.com/nltk/nltk/blob/develop/nltk/stem/arlstem.py#L115
https://github.com/nltk/nltk/blob/develop/nltk/stem/snowball.py#L372

However, it’s possible to write custom Python code to remove prefixes. A
list of prefixes in the English language is available online:

https://dictionary.cambridge.org/grammar/british-grammar/word-
formation/prefixes

https://stackoverflow.com/questions/62035756/how-to-find-the-prefix-of-
a-word-for-nlp

A Python code sample that implements a basic prefix finder is also online:

https://stackoverflow.com/questions/52140526/python-nltk-stemmers-
never-remove-prefixes

Over Stemming and Under Stemming

Over stemming occurs when too much of a word is truncated, which can result
in unrelated words having the same stem. For example, consider the following
sequence of words: university, universities, universal, and universe.

The stem for the four preceding words is universe, even though these
words have different meanings.

Under stemming is the opposite of over stemming. This happens when a
word is insufficiently “trimmed.” For example, the words “data” and “datu”
both have the stem “dat,” but what about the word “date?” This simple exam-
ple illustrates that it’s difficult to create good stemming algorithms.

WHAT IS LEMMATIZATION?

Lemmatization determines whether words have the same root, which involves
the removal of inflectional endings of words. Lemmatization involves the
WordNet database during the process of finding the root word of each word
in a corpus.

Lemmatization finds the base form of a word, such as the base word
“good” for the three words “good,” “better,” and “best.” Lemmatization deter-
mines the dictionary form of words and therefore requires knowledge of parts
of speech. In general, creating a lemmatizer is more difficult than a heuristic
stemmer. The NLTK lemmatizer is based on the WordNet database.

Lemmatization is also relevant for verb tenses. For instance, the words
“run,” “runs,” “running,” and “ran” are variants of the verb “run.” Another

NLPFD.Ch2.2pp.indd 68NLPFD.Ch2.2pp.indd 68 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

NLP Concepts (I) • 69

example of lemmatization involves irregular verbs, such as “to be” and “to
have” in romance languages. Thus, the collection of verbs “is,” “was,” “were,”
and “be” are all variants of the verb “be.” There is a trade-off. Lemmatization
can produce better results than stemming at the cost of being more compu-
tationally expensive.

Stemming/Lemmatization Caveats

Both techniques are designed for “recall,” whereas precision tends to suffer.
Results can also differ significantly in non-English languages, even those that
seem related to English, because the implementation details of some con-
cepts are quite different.

Although both techniques generate the root form of inflected words, the
stem might not be an actual word, whereas the lemma is an actual language
word. In general, use stemming if you are primarily interested in higher speed,
and use lemmatization if you are primarily interested in higher accuracy.

Limitations of Stemming and Lemmatization

Although stemming and lemmatization are suitable for Indo-European lan-
guages, these techniques are not as well-suited for Chinese because a Chinese
character can be a combination of two other characters, all three of which can
have different meanings.

For example, the character for “mother” is the combination of the radical
for “female” and the radical for “horse.” Hence, separating the two radicals for
“mother” via stemming and lemmatization change the meaning of the word
from “mother” to “female.” More detailed information regarding Chinese nat-
ural language processing is available online:

https://towardsdatascience.com/chinese-natural-language-pre-process-
ing-an-introduction-995d16c2705f

WORKING WITH TEXT: POS

The acronym POS refers to Parts Of Speech, which involves identifying the
parts of speech for words in a sentence. The following subsections provide
more details regarding POS, some POS techniques, and also NER (Named
Entity Recognition).

NLPFD.Ch2.2pp.indd 69NLPFD.Ch2.2pp.indd 69 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

70 • Natural Language Processing Fundamentals for Developers

POS Tagging

POS refers to the grammatical function of the words in a sentence. Consider
the following simple English sentence:

The sun gives warmth to the Earth.

In the preceding example, “sun” is the subject, “gives” is the verb,
“warmth” is the direct object, and “Earth” is the indirect object. In addition,
the subject, direct object, and direct object are also nouns.

When the meaning of a word is overloaded, its function depends on the
context. Here are three examples of using the word “bank” in three different
contexts:

●● He went to the bank.
●● He sat on the river bank.
●● He can’t bank on that outcome.

POS tagging refers to assigning a grammatical tag to the words in a cor-
pus, and it is useful for developing lemmatizers. POS tags are used during the
creation of parse trees and to define NERs (discussed in the next section).
Chapter 6 contains a Python code sample that uses NLTK to perform POS
tagging on a corpus (which is just a sentence, but you can easily extend it to a
document).

POS Tagging Techniques

The major POS tagging techniques (followed by brief descriptions) are as
follows:

●● Lexical-Based Methods
●● Rule-Based Methods
●● Probabilistic Methods
●● Deep Learning Methods

Lexical-Based Methods assign POS tags based on the most frequently
occurring in a given corpus. By contrast, Rule-Based Methods use gram-
mar-based rules to assign POS tags. For example, words that end in the letter
“s” are the plural form (which is not always true). Note that this rule applies
to English and Spanish words. Alternatively, German words that end in the
letter “e” are often plural forms (but they can be the feminine form of a word,
as well). Italian words ending in “i” or “e” are often the plural form of words.

NLPFD.Ch2.2pp.indd 70NLPFD.Ch2.2pp.indd 70 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

NLP Concepts (I) • 71

Probabilistic methods assign POS tags based on the probability of the
occurrence of a particular tag sequence. Finally, deep learning methods use
deep learning architectures (such as RNNs) for POS tagging.

WORKING WITH TEXT: NER

NER is an acronym for Named Entity Recognition, which is known by vari-
ous names, including named entity identification, entity chunking, and entity
extraction. NER is a subtask of information extraction, and its purpose is to
find named entities in a corpus and then classify those named entities based
on predefined entity categories. As a result, NER can assist in transforming
unstructured data into structured data.

In high level terms, a “named entity” is a real-world object that is assigned
a name, which can be a word or a phrase that distinguishes one “item” from
other items in a corpus. Moreover, there are various predefined named entity
types, such as PERSON (people, including fictional), ORG (companies, agen-
cies, institutions), and GPE (countries, cities, states). A complete list of named
entity types is here:

https://spacy.io/api/annotation

Although NER is very useful, there are situations in which NER can pro-
duce incorrect results, such as

●● an insufficient number of tokens
●● too many tokens
●● incorrectly partitioning adjacent entities
●● assigning an incorrect type

Later in this book, you will see Python code samples from NLP toolkits,
such as NLTK, that provide support for NER.

Abbreviations and Acronyms

As a reminder, an acronym consists of the first letter of several words, such as
NLP (Natural Language Processing), whereas an abbreviation is a shortened
form of a word, such as “prof.” for “professor.” Depending on the domain, a
corpus can contain many acronyms or abbreviations (or both).

Detection of abbreviations is a task of sentence segmentation and toke-
nization processes, which includes disambiguating sentence endings from

NLPFD.Ch2.2pp.indd 71NLPFD.Ch2.2pp.indd 71 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

72 • Natural Language Processing Fundamentals for Developers

punctuation attached to abbreviations. This task is domain-dependent and of
varying complexity (and higher complexity for the medical field).

The following link contains information about CARD (Clinical Abbrevi-
ation Recognition and Disambiguation) that recognizes abbreviations in a
corpus:

https://academic.oup.com/jamia/article/24/e1/e79/2631496

In addition, you can customize the tokenizer in spaCy (discussed later)
by adding extra rules, as described here: https://spacy.io/usage/linguistic-
features.

Furthermore, the PUNKT system was been developed for sentence
boundary detection, and it can also detect abbreviations with high accuracy.

Chunking refers to the process of extracting phrases from unstructured
text. For example, instead of treating “Empire State Building” as three unre-
lated words, they are treated as a single chunk. Chapter 4 contains an example
of performing a chunking operation on some text.

NER Techniques

Currently, NER techniques can be classified into four general categories, as
shown below:

●● rule-based
●● feature-based supervised learning
●● unsupervised learning
●● deep learning

Rule-based techniques rely on manually specified rules, which means that
they do not require annotated data. Unsupervised learning techniques do not
require labeled data, whereas supervised learning techniques involve feature
engineering. Various supervised machine learning algorithms for NER are
available, such as hidden Markov models (HMM), decision trees, maximum
entropy models, support vector machines (SVM), and conditional random
fields (CRF).

Finally, deep learning techniques automatically discover classification
from the input data. However, deep learning techniques require a significant
amount of annotated data, which might not be readily available. In addition,
NER involves some complex tasks, such as detecting nested entities, multi-
type entities, and unknown entities.

NLPFD.Ch2.2pp.indd 72NLPFD.Ch2.2pp.indd 72 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

NLP Concepts (I) • 73

WHAT IS TOPIC MODELING?

Topic modeling refers to a technique for determining topics that exist in a
document or a set of documents, which is useful for providing a synopsis of
articles and documents. Topic modeling involves unsupervised learning (such
as clustering), so the set of possible topics are unknown. The topics are defined
during the process of generating topic models. Topic modeling is generally
not mutually-exclusive because the same document can have its probability
distribution spread across many topics.

In addition, there are hierarchical topic modeling methods for handling
topics that contain multiple topics. Moreover, topics can change over time;
they may emerge, later disappear, and then reemerge as topics.

There are several algorithms available for topic modeling, some of which
are in the following list:

●● LDA (Latent Dirichlet Allocation)
●● LSA (Latent Semantic Analysis)
●● Correlated Topic Modeling

LDA is a well-known unsupervised algorithm for topic modeling. In high-
level terms, LDA determines the word tokens in a document and extracts
topics from those tokens. LDA is a nondeterministic algorithm that produces
different topics each time the algorithm is invoked.

By way of analogy, LDA resembles the kMeans algorithm (discussed later
in this book). LDA requires that you specify a value for the number of topics,
just as kMeans requires a value for the number of clusters. LDA calculates the
probability that each word belongs to its assigned “topic” (cluster), and does
so iteratively until the algorithm converges to a stable solution (i.e., words are
no longer reassigned to different topics).

After the clustering-related task is completed, LDA examines each doc-
ument and determines which topics can be associated with that document.
kMeans and LDA differ in one important respect: kMeans has a one-to-one
relationship between an “item” and a cluster, whereas LDA supports a one-
to-many relationship whereby a document can be associated with multiple
topics. The latter case makes sense. The longer the document, the greater the
possibility that the document contains multiple topics. Moreover, LDA com-
putes an associated probability that a document is associated with multiple
topics. For example, LDA might determine that a document has three dif-
ferent topics, with probabilities of 60%, 30%, and 10% for those three topics.

NLPFD.Ch2.2pp.indd 73NLPFD.Ch2.2pp.indd 73 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

74 • Natural Language Processing Fundamentals for Developers

KEYWORD EXTRACTION, SENTIMENT ANALYSIS, AND TEXT
SUMMARIZATION

Keyword extraction is an NLP process whereby the most significant and
frequent words of a document are extracted. There are various techniques
for performing keyword extraction, such as computing tf-idf (term fre-
quency-inverse document frequency) values of words in a corpus (discussed
in Chapter 4) and BERT models (discussed in Chapter 11). Other algorithms
include TextRank, TopicRank, and KeyBERT, all of which are discussed in
this article:

https://towardsdatascience.com/keyword-extraction-python-tf-idf-tex-
trank-topicrank-yake-bert-7405d51cd839

Incidentally, NER (described in a previous section) relies on key word
extraction as a step toward assigning a name to real-world objects. If you
generalize even further, you can think of NER as a special case of relation
extraction in NLU.

Sentiment analysis determines the sentiment of a document, which can
be positive, neutral, or negative, which are often represented by the num-
bers 1, 0, and -1, respectively. Sentiment analysis is actually a subset of text
summarization. Sentiment analysis can be implemented using supervised or
unsupervised techniques, in a number of algorithms, including Naive Bayes,
gradient boosting, and random forests.

Text summarization is just what the term implies: Given a document, sum-
marize its contents. Text summarization is a two-phase process that involves
various techniques, including keyword extraction and topic modeling.

The first phase creates a summary of the most important parts of a doc-
ument, followed by the creation of a second summary that represents a sum-
mary of the document.

There are various text summarization algorithms, such as LexRank and
TextRank. The LexRank algorithm uses a ranking model (based on similarity
of sentences) in order to categorize the sentences in a document. Sentences
with a higher similarity have a higher ranking.

TextRank is an extractive and unsupervised technique that determines
word embeddings for the sentences in a corpus, calculates and stores sentence
similarities in a similarity matrix, and then converts the matrix to a graph. A
summary is based on the top-ranked sentences in the graph. Chapter 9 con-
tains additional details regarding text summarization and sentiment analysis.

NLPFD.Ch2.2pp.indd 74NLPFD.Ch2.2pp.indd 74 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

NLP Concepts (I) • 75

SUMMARY

This chapter started with a high-level overview of human languages, how they
might have evolved, and the major language groups. Next you learned about
grammatical details that differentiate various languages from each other that
highlight the complexity of generating native-level syntax as well as native-
level pronunciation.

In addition, you obtained a brief introduction to NLP applications, NLP
use cases, NLU, and NLG. Then you learned about concepts such as word
sense disambiguation, text normalization, tokenization, stemming, lemmatiza-
tion, and the removal of stop words. Finally, you learned about POS and NER
and topic modeling in NLP.

NLPFD.Ch2.2pp.indd 75NLPFD.Ch2.2pp.indd 75 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

NLPFD.Ch2.2pp.indd 76NLPFD.Ch2.2pp.indd 76 5/28/2021 3:53:41 PM5/28/2021 3:53:41 PM

C H A P T E R 3
NLP Concepts (II)

This chapter discusses NLP concepts, such as word relevance, vectorization,
basic NLP algorithms, language models, and word embeddings. Please keep
in mind that this chapter focuses on NLP concepts, and Chapters 4 and 5
contain Python-based code samples that illustrate many of the concepts that
are discussed in this chapter as well as the previous chapter.

The first part of this chapter discusses word relevance, text similarity,
and text encoding techniques. The second part of this chapter discusses text
encoding techniques and the notion of word encodings. The third part of
this chapter introduces you to word embeddings, which are highly useful in
NLP. In addition, you will learn about vector space models, n-grams, and
skip-grams.

The final section discusses word relevance and dimensionality reduction
techniques, some of which are based on advanced mathematical concepts. As
such, these algorithms are covered in a high-level fashion. If you are not inter-
ested in the more theoretical underpinnings of machine learning algorithms,
you can skim through this section of the chapter and perhaps return to this
material when you need to learn more about the details of dimensionality
reduction algorithms.

WHAT IS WORD RELEVANCE?

If you are wondering what it means to say that a word is “relevant,” there
is no precise definition. The underlying idea is that the relevance of a word
in a document is related (proportional) to how much information that word
provides in a document (and the latter is also imprecise). Stated differently,

NLPFD.Ch3.indd 77NLPFD.Ch3.indd 77 6/1/2021 11:40:29 AM6/1/2021 11:40:29 AM

78 • Natural Language Processing Fundamentals for Developers

words have a higher relevance if they enable us to gain a better understanding
of the contents of a document without reading the entire document.

If a word rarely occurs in a document, that would suggest that the word
could have higher relevance. Contrastingly, if a word occurs frequently, then
the relevance of the word is generally (but not always) lower. For example, if
the word “unicorn” has a limited number of occurrences in a document, then
it has higher word relevance, whereas stop words such as “a,” “the,” and “or”
have very low word relevance. Another scenario involves word relevance in
multiple documents. Suppose we have 100 documents, and the word “uni-
corn” appears frequently in a single document, but not in the other 99 doc-
uments. Once again, the word “unicorn” probably has significant relevance.

Another factor in the relevance of a word is related to the number of
synonyms that exist for a given word. The words “unicorn” and “death” do
not have direct synonyms (although the latter does have euphemisms), which
means that in some cases the words will appear more frequently in a docu-
ment, and yet they still have higher word relevance than stop words.

In addition to determining the words that are relevant in a document or
a corpus, we might also want to know whether two text strings (such as sen-
tences or documents) are similar, which is the topic of the next section.

WHAT IS TEXT SIMILARITY?

Text similarity calculates the extent to which a pair of text strings (such as
documents) are similar to each other. However, two text strings can be similar
yet have different meanings.

For example, the two sentences “The man sees the dog” and “The dog
sees the man” contain identical words (and also have the same word rele-
vance), yet they differ in their meaning because English is word-order depen-
dent. Replace “sees” with “bites” in the preceding pair of sentences to convey
a more vivid contrast in meaning. We need to consider the context of the
words in the two sentences, and not just the set of words.

Note that German is not word-order dependent, so the words in a sentence
can be rearranged without losing the original meaning. As you learned in the
previous chapter, German supports the declension of articles and adjectives
(discussed in Chapter 3). In the following example of two identical German
sentences, notice that the word order is reversed in the second sentence (see
Chapter 3 for an explanation):

NLPFD.Ch3.indd 78NLPFD.Ch3.indd 78 6/1/2021 11:40:29 AM6/1/2021 11:40:29 AM

NLP Concepts (II) • 79

Der Mann sieht den Hund.
Den Hund sieht der Mann.

One approach to managing the word-order dependency aspect of lan-
guages such as English involves creating floating point vectors for words. Then
we can calculate the cosine similarity of two vectors, and if the value is close
to 1, we infer that the words associated with the vectors are closely related.
This technique is called word vectorization, and it’s the topic of a section later
in this chapter, after the section that discusses the meaning of text encoding.

SENTENCE SIMILARITY

There are various algorithms for calculating sentence similarity, such as the
Jaccard similarity (discussed in Appendix A), word2vec with the cosine simi-
larity (the latter is discussed in this chapter), and the Latent Dirichlet Analysis
(LDA, which is discussed later in this chapter) with the Jenson-Shannon
distance and a universal sentence encoder.

One class of algorithms involves the cosine similarity, and another class
of algorithms involves deep learning architectures, such as the Transformer,
LSTMs (Long Short Term Memory), and VAEs (Variational Auto Encoders),
but the latter two are beyond the scope of this book. You can even use the
kMeans clustering algorithm in machine learning to perform sentence sim-
ilarity analysis. Yet another technique is the universal sentence encoder, as
discussed in the next section.

Sentence Encoders

Pretrained sentence encoders for sentences are the counterparts of word2vec
and GloVe for words. The embeddings are useful for various tasks, including
text classification. Sentence encoders can capture additional semantic infor-
mation when they are trained on supervised and unsupervised data. Models
that encode words in context are also called sentence embedding models.

Google created the Universal Sentence Encoder that encodes text into
high dimensional vectors that can be used for various natural language tasks,
and the pretrained model is available at the TensorFlow Hub (TFH):

https://tfhub.dev/google/collections/universal-sentence-encoder

One variant of this model was trained with the Transformer encoder,
which has a higher accuracy, and another variant was trained with a deep

NLPFD.Ch3.indd 79NLPFD.Ch3.indd 79 6/1/2021 11:40:29 AM6/1/2021 11:40:29 AM

80 • Natural Language Processing Fundamentals for Developers

averaging network (DAN), which has lower accuracy. There are 11 models
available that have been trained to perform different tasks.

WORKING WITH DOCUMENTS

Two tasks pertaining to documents involve document classification (determin-
ing the nature of a document) and document similarity (i.e., comparing docu-
ments), both of which are discussed in the following subsections.

Document Classification

Document classification can be performed with different levels of granularity,
from document-level down to subsentence level of granularity. The specific
level that you choose depends on your task-specific requirements.

Document classification can be performed in several ways in machine
learning. One way to do so involves well-known algorithms, such as support
vector machines (SVMs) and Naive Bayes.

Document Similarity (doc2vec)

There are several algorithms for determining document similarity, including
Jaccard (see Appendix A), doc2vec (discussed in this section), and BERT (dis-
cussed in Chapter 11).

The doc2vec algorithm is an unsupervised algorithm that converts doc
uments into corresponding vectors and then computes their cosine simi-
larity. The doc2vec algorithm learns fixed-length feature embeddings from
variable-length pieces of texts. Despite its name, doc2vec works on sentences
and paragraphs as well as documents. Details about the doc2vec algorithm are
in the original paper available online:

https://arxiv.org/abs/1405.4053

The choice of algorithm for document similarity depends on the criteria
that are used to judge document similarity, such as

●● tag overlap
●● section
●● subsections
●● story style
●● theme

NLPFD.Ch3.indd 80NLPFD.Ch3.indd 80 6/1/2021 11:40:29 AM6/1/2021 11:40:29 AM

NLP Concepts (II) • 81

The following article evaluates several algorithms for document similarity
that takes into account the items in the preceding bullet list:

https://towardsdatascience.com/the-best-document-similarity-algorithm-
in-2020-a-beginners-guide-a01b9ef8cf05

The following link contains an example of using the doc2vec algorithm:

https://medium.com/@japneet121/document- vectorization-301b06a041

TECHNIQUES FOR TEXT SIMILARITY

In general, a set of documents with the same theme typically contain words
that are common throughout those documents. In some cases, a pair of
documents might contain only generic words, and yet the documents share
the same theme. For example, suppose one document only discusses tigers
and another document only discusses lions. Although these two documents
discuss a different animal, both documents pertain to wild animals, which
clearly shows that they belong to the same theme.

There is an indirect connection between the documents that discuss tigers
and lions. They are both “instances” of the higher-level (and more generic)
topic called “wild animals.” However, tf-idf values for these two documents
will not determine that the documents are similar. Doing so involves a distrib-
uted representation (such as doc2vec) for the word embeddings of the words
in the two documents.

However, the use of term frequency or tf-idf to determine semantically
related documents does not work for the two documents that contain the
words tigers and lions. In this case, we need to use word2vec or doc2vec (a
technique that involves word2vec).

The following article performs a comparison of different algorithms for
calculating document similarity:

https://towardsdatascience.com/the-best-document-similarity-algorithm-
in-2020-a-beginners-guide-a01b9ef8cf05

The preceding article compares the accuracy of tf-idf, Jaccard, USE, and
BERT (discussed in Chapter 11) on a set of documents to determine doc-
ument similarity. Interestingly, tf-idf is the fastest algorithm (by far) of the
four algorithms, and in some cases, tf-idf out-performed the other three algo-
rithms in terms of accuracy.

NLPFD.Ch3.indd 81NLPFD.Ch3.indd 81 6/1/2021 11:40:29 AM6/1/2021 11:40:29 AM

82 • Natural Language Processing Fundamentals for Developers

In Chapter 5, we give an example of performing document similarity
using the gensim Python library.

Similarity Queries

Suppose that we have a corpus consisting of a set of text documents. A similar-
ity query determines which of those documents is the most similar to a given
query. Here is a very high-level sequence of steps in the algorithm:

1.	 Index every document in the corpus.

2.	 Find the distance between the query and each document.

3.	 Select the documents with the lowest distance values.

The distance between a query and a document can be computed in sev-
eral ways, and one of the most popular techniques is called the cosine simi-
larity. The cosine similarity of two vectors is the cosine of the angle between
the two vectors; when this number is close to 1, the angle between the vectors
is close to 0, which in turn suggests that the words associated with the two
vectors are probably close in meaning.

WHAT IS TEXT ENCODING?

Many online articles use the terms text encoding and text vectorization inter-
changeably to indicate a vector of numeric values. However, this chapter
distinguishes between vectors whose values are calculated by training a neu-
ral network (word vectorization) versus vectors whose values are calculated
directly (text encoding).

Please keep in mind that the purpose of this distinction is to assist in
understanding the differences (as well as similarities) among various vector-
ization documents (i.e., it’s not to be pedantic). In simple terms, this distinc-
tion is not an industry standard.

Based on the distinction between text encoding and text vectorization, the
following algorithms are text encodings:

●● BoW
●● N-grams
●● tf-idf

The algorithms in the preceding list have a simple approach, but they do
not capture the context of words, nor do they track the grammatical aspects
(such as subject, verb, or object) of the words in a document. Note that BoW

NLPFD.Ch3.indd 82NLPFD.Ch3.indd 82 6/1/2021 11:40:29 AM6/1/2021 11:40:29 AM

NLP Concepts (II) • 83

and n-grams generate word vectors that have integer values, whereas tf-idf
generates floating point numbers. Moreover, these three techniques can
result in sparse vectors when the vocabulary is large.

TEXT ENCODING TECHNIQUES

There are three well-known techniques for text encoding (all of which involve
integer-valued vector), as listed here:

1.	 Document vectorization

2.	 One-hot encoding

3.	 Index-Based encoding

The following subsections provide a summary of each of the preceding
text encoding techniques. In Chapter 5, we give code samples that illustrate
these techniques. Another technique involves word embeddings, but since
this technique involves more complexity than those in the preceding bullet
list, word embeddings are discussed later. (Word embeddings are calculated
by training a shallow neural network or by means of a technique called matrix
factorization.)

Document Vectorization

Document vectorization creates a dictionary of unique words in the document
and each word becomes a column in the vector space. Each text becomes a
vector of 0s and 1s, where 1 = the presence and 0 = the absence of a word.
This is called a one-hot document vectorization. Although this does not pre-
serve word order in the input text, it’s easy to interpret and easy to generate.

As an illustration, the following technique performs document vectoriza-
tion by performing the following steps:

●● Determine the unique words in the corpus (let's call
this M)

●● count the occurrences of each unique word in each
document

●● for i = 1 to N (= number of documents):
●● for document i create a 1xM vector W
●● for j = 1 to M:
●● W[j] = 1 if word j is in document i

NLPFD.Ch3.indd 83NLPFD.Ch3.indd 83 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

84 • Natural Language Processing Fundamentals for Developers

For example, suppose we have the following three documents (N = 3):

Doc1: Steve loves deep dish Chicago pizza.
Doc2: Dave also loves Chicago pizza.
Doc3: Both like Guinness.

The list of unique words (M=11) in the preceding three documents is
shown here:

{also,both,Chicago,Dave,deep,dish,Guinness,
like,loves,pizza,Steve}

A text encoding for Doc1, Doc2, and Doc3 consists of 1x11 vectors con-
taining integer values, as shown here:

Doc1: [0,0,1,0,1,1,0,0,1,1,1]
Doc2: [1,0,1,1,0,0,0,0,1,1,0]
Doc3: [0,1,0,0,0,0,1,1,0,0,0]

While document vectorization works reasonably well for a limited number
of unique words, it’s less efficient for a large number of unique words because
the text encoding of sentences will tend to have many occurrences of 0, which
is called sparse data. In this example, there are 11 unique words, but consider
what happens when there are several hundred unique words contained in
multiple sentences. Each sentence is (generally) much shorter than the list
of unique words, and therefore the corresponding vector contains mostly 0s.

The preceding technique populates vectors with 0 and 1 values. However,
there is a frequency-based vectorization that uses the frequency of each word
in the document instead of just its presence or absence. This is accomplished
by modifying the innermost loop in the preceding code with the following
code snippet:

W[j] = # of occurrences of word j in document i

One-Hot Encoding (OHE)

OHE is a compromise between preserving the word order in the sequence
and the easy interpretability of the result. Each word in a vocabulary is repre-
sented as a vector with a single 1 and the remaining values of the vector are all
0. For example, if you have a vocabulary of 10 words, then each row in a 10x10
identity matrix is an OHE that can be associated with one of the ten words in
the vocabulary. In general, each row of an nxn identity matrix can represent
a categorical variable that has n distinct values. Unfortunately, this technique

NLPFD.Ch3.indd 84NLPFD.Ch3.indd 84 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

NLP Concepts (II) • 85

can result in a very sparse and very large input tensor. Chapter 5 contains a
code sample that illustrates the OHE of a vocabulary.

An OHE relies on a BoW representation of the words in a vocabulary. An
OHE assumes that words are independent, which means that synonyms are
represented by different vectors. The size of each vector equals the number
of words in the vocabulary. Thus, a vocabulary of 100 words is encoded as 100
vectors, each of which has 100 elements (99 of them are 0 and one of them is 1).

As a simple example, the sentence “I love thick pizza” can be tokenized as
[“i,” “love,” “thick,” “pizza”] and one-hot encoded as follows:

[1,0,0,0]
[0,1,0,0]
[0,0,1,0]
[0,0,0,1]

The sentence “We also love thick pizza” can be encoded as follows:

[0,1,1,1] = [0,1,0,0] + [0,0,1,0] + [0,0,0,1] = [0,1,1,1]

The left-side vector [0,1,1,1] is the component-based sum of the three
vectors that represent the one-hot encoding of the words “love,” “thick,” and
“pizza,” respectively.

There are two points to notice about this encoding. First, the first index
of this vector is 0 because this sentence contains “we” instead of “i.” Second,
the words “we” and “also” are not part of the vocabulary. They are called out
of vocabulary (OOV) words.

One algorithm that can handle OOV words is fastText (developed by
Facebook), which is discussed later in this chapter. Another approach involves
a model that is based on bi-LSTMs (bidirectional LSTMs), as described here:

https://medium.com/@shabeelkandi/handling-out-of-vocabulary-words-
in-natural-language-processing-based-on-context-4bbba16214d5

The key idea in the preceding link involves determining the most likely
embedding for OOV words.

Another article regarding OOV words involves the skip-gram model that
is discussed later in this chapter, but it’s included here in case you are already
familiar with this model (alternatively, you can wait until after we discuss the
skip-gram model):

https://towardsdatascience.com/creating-word-embeddings-for-out-of-
vocabulary-oov-words-such-as-singlish-3fe33083d466

NLPFD.Ch3.indd 85NLPFD.Ch3.indd 85 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

86 • Natural Language Processing Fundamentals for Developers

Index-Based Encoding

This technique tries to address input data size reduction as well as the
sequence order preservation. Index-based encoding maps each word to an
integer index and groups the index sequence into a collection type column.
Here is the sequence of steps (in high-level terms):

●● Create a dictionary of words from the corpus.
●● Map words in the dictionary to indexes.
●● Represent a document by replacing its words with indexes.

Although this technique supports variable-length documents, it also cre-
ates an artificial (and misleading) distance between documents.

Additional Encoders

Although the previous sections discussed just three word encoders, there are
many other encoding techniques available, some of which are in the following
list:

●● BaseEncoder
●● BinaryEncoder
●● CatBoostEncoder
●● CountEncoder
●● HashingEncoder
●● LeaveOneOutEncoder
●● MEstimateEncoder
●● OrdinalEncoder
●● SumEncoder
●● TargetEncoder

We do not discuss these word encoders, but information regarding the
text encoders (along with Python code snippets) in the preceding list is avail-
able online:

https://towardsdatascience.com/beyond-one-hot-17-ways-of-transforming-
categorical-features-into-numeric-features-57f54f199ea4

THE BoW ALGORITHM

Based on a dictionary of unique words that appear in a document, the BoW
(Bag of Words) algorithm generates an array with the number of occurrences

NLPFD.Ch3.indd 86NLPFD.Ch3.indd 86 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

NLP Concepts (II) • 87

in the document of each dictionary word. The advantages of the BoW algo-
rithm include simplicity and an easy way to see the frequency of each word
in a document. The BoW algorithm is essentially an n-gram model with n=1
(n-grams are discussed later in this chapter).

However, the BoW algorithm does not maintain any word order and no
form of context, and in the case of multiple documents, the BoW algorithm
does not take into account the length of the documents.

As a simple example, suppose that we have a dictionary consisting of the
words in the sentence “This is a short sentence.” Then the corresponding 1x5
vector for the dictionary is (this, is, a, short, sentence). Hence, the phrase
“This sentence” is encoded as the vector (1, 0, 0, 0, 1). As you can see, this
(and any other) sentence is treated as a “bag of words” in which word order
is lost. In general, a dictionary consists of a list of N distinct words, and any
sentence consisting of words from that vocabulary is mapped to a 1xN vector
of zeroes and positive integers that indicate the number of times that words
appear in a sentence.

The Sklearn library (not discussed in this chapter) provides a
CountVectorizer class that implements the BoW algorithm. The Count-
Vectorizer class that tokenizes the words in a corpus and generates a
numeric vector that contains the word counts (frequency) of each word in
the corpus. Moreover, this class can also remove stop words and examine
the most popular N unigrams, bigrams, and trigrams. However, words inside
CountVectorizer are assigned an index value instead of storing the words
as strings. Here is the set of parameters (and their default values) for the
CountVectorizer class, which are explained in more detail in the Sklearn
documentation page for this class:

class sklearn.feature_extraction.text.CountVectorizer
(*, input = 'content', encoding = 'utf-8', decode_error =
'strict', strip_accents = None, lowercase = True,
preprocessor = None, tokenizer = None, stop_words = None,
token_pattern = '(?u)\b\w\w+\b', ngram_range =(1, 1),
analyzer = 'word', max_df = 1.0, min_df = 1, max_
features = None, vocabulary = None, binary = False,
dtype = <class 'numpy.int64'>)

As another example, with the corresponding code in a later chapter, sup-
pose that we have the following set of sentences:

1.	 I love Chicago deep dish pizza.

2.	 New York style pizza is also good.

3.	 San Francisco pizza can be very good.

NLPFD.Ch3.indd 87NLPFD.Ch3.indd 87 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

88 • Natural Language Processing Fundamentals for Developers

The set of BoW word/index pairs is as follows:

{'love': 9, 'chicago': 3, 'deep': 4, 'dish': 5,
'pizza': 11, 'new': 10, 'york': 15, 'style': 13,
'is': 8, 'also': 0, 'good': 7, 'san': 12,
'francisco': 6, 'can': 2, 'be': 1, 'very': 14}

The BoW encoding for the initial three sentences is as follows:

I love Chicago deep dish pizza:

[[0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0]]

New York style pizza is also good:

[[1 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1]]

San Francisco pizza can be very good:

[[0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0]]

BoW models also lose useful information, such as the semantics, struc-
ture, sequence and context around nearby words in each text document.

WHAT ARE N-GRAMS?

An n-gram is a technique for creating a vocabulary from N adjacent words
together. Hence, it retains some word positions. The value of N specifies the
size of the group. In many cases, n-grams are from a text or speech corpus
when items are words, n-grams may be called shingles. One common use for
n-grams is to supply them to the word2vec algorithm, which in turn calculates
vectors of floating-point numbers that represent words.

In highly simplified terms, the key idea of n-grams involves determining a
context word that is missing from a sequence of words. For example, suppose
we have five consecutive words in which the third word is missing. This is
called a “bigram” because we have two words on the left side and two words
on the right side of the missing word.

There are two types of N-grams: word n-grams and character n-grams.
Word N-grams include all of the following:

●● 1-gram or unigram when N=1
●● a bigram or a word pair when N=2
●● a trigram when N=3

The preceding list also applies to character-based N-grams. In addition,
the items in n-grams can be phonemes, syllables, letters, or words/base pairs
according to the application. Here are examples of 2-grams and 3-grams:

NLPFD.Ch3.indd 88NLPFD.Ch3.indd 88 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

NLP Concepts (II) • 89

Example #1: “This is a sentence” has the following 2-grams (bigrams):
(this, is), (is, a), (a, sentence)

Example #2: “This is a sentence” has the following 3-grams (trigrams):
(this, is, a), (is, a, sentence)

Example #3: “The cat sat on the mat” has the following 3-grams:

●● “The cat sat”
●● “cat sat on”
●● “sat on the”
●● “on the mat”

As yet another example, with the corresponding code deferred until a
later chapter, suppose that we have the following set of sentences:

I love Chicago deep dish pizza

New York style pizza is also good

San Francisco pizza can be very good

The bigram pairs are here:

{'love chicago': 8, 'chicago deep': 3, 'deep dish':
4, 'dish pizza': 5, 'new york': 9, 'york style': 15,
'style pizza': 13, 'pizza is': 11, 'is also': 7, 'also
good': 0, 'san francisco': 12, 'francisco pizza': 6,
'pizza can': 10, 'can be': 2, 'be very': 1, 'very
good': 14}

The n-gram encoding for the initial three sentences is as follows:

I love Chicago deep dish pizza:

[[0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0]]

New York style pizza is also good:

[[1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1]]

San Francisco pizza can be very good:

[[0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0]]

Compare the bigram encoding of the same three sentences using a BoW
encoding in an earlier section.

Calculating Probabilities with N-Grams

As a simple illustration, consider the following collection of sentences, which
we’ll use to calculate some probabilities:

NLPFD.Ch3.indd 89NLPFD.Ch3.indd 89 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

90 • Natural Language Processing Fundamentals for Developers

1.	 'the mouse ate the cheese'

2.	 'the horse ate the hay'

3.	 'the mouse saw the horse'

4.	 'the mouse scared the horse'

The word “mouse” appears in three sentences, and it’s followed by the
word “ate” (once) and the word “scared” (once). We can calculate the associ-
ated probabilities of which of “ate” and “scared” will follow the word “mouse”
as follows:

Number of occurrences of "mouse ate" = 1

Number of occurrences of "mouse" = 3

probability of "ate" following "mouse" = 1/3

In a similar fashion, we have the following values pertaining to the word
“scared:”

Number of occurrences of "mouse scared" = 1

Number of occurrences of "mouse" = 3

probability of "scared" following "mouse" = 1/3

As a result, if we have the sequence of words “mouse ___,” we can predict
that the missing word is ate with a probability of 1/3, and it’s “scared” with a
probability of 1/3.

As another illustration, consider the following modification of the previous
collection of sentences, which we’ll also use to calculate some probabilities:

1.	 'the big mouse ate the cheese'

2.	 'the big mouse ate the hay'

3.	 'the big mouse saw the horse'

4.	 'the mouse scared the horse'

The word “mouse” appears in three sentences, and it’s followed by the
word “ate” (twice), the word “saw” (once), and the word “scared” (once). We
can calculate the associated probabilities of which of “ate,” “saw,” and “scared”
will follow the word “mouse” as follows:

Number of occurrences of "mouse ate" = 2

Number of occurrences of "mouse" = 4

probability of "ate" following "mouse" = 2/4

NLPFD.Ch3.indd 90NLPFD.Ch3.indd 90 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

NLP Concepts (II) • 91

In a similar fashion, we have the following values pertaining to the word
“saw:”

Number of occurrences of "mouse saw" = 1

Number of occurrences of "mouse" = 4

Hence the probability of "saw" following "mouse" = 1/4

Finally, we have the following values pertaining to the word “scared:”

Number of occurrences of "mouse scared" = 1

Number of occurrences of "mouse" = 4

probability of "scared" following "mouse" = ¼

As a result, if we have the sequence of words “mouse ___,” we can predict
that the missing word is “ate” with a probability of 2/4, it’s “saw” with a prob-
ability of 1/4, and it’s “scared” with a probability of 1/4.

You can also calculate the probabilities of the word that follows the pair of
words “big mouse ___.” The probability that the third word is “ate” is 2/3 and
the probability that the third word is “saw” is 1/3.

Although these examples are simple (and hardly practical), they illustrate
the intuition of n-grams. When we look at n-grams for realistic sentences in
a corpus that contains millions of words, the probabilities (and therefore the
predictive accuracy) increase dramatically.

Now let’s explore the details of tf (term frequency) and idf (inverse doc-
ument frequency), after which we can look at the tf-idf algorithm in more
detail.

CALCULATING TF, IDF, AND TF-IDF

The following subsections discuss the numeric quantities tf, idf, and tf-idf
(which equals the arithmetic product of tf and idf). As you will see, tf-idf pro-
vides a more accurate assessment of word relevance in a document than using
just tf or idf.

The tf-idf algorithm is an improvement over the BoW algorithm because
tf-idf takes into account the number of occurrences of a given word in each
document as well as the number of documents that contain that word. As
a result, the tf-idf algorithm indicates the relative importance of a specific
word in a set of documents. In fact, the Sklearn package provides the class
TfidfVectorizer that computes tf-idf values, as you will see later on in a
code sample.

NLPFD.Ch3.indd 91NLPFD.Ch3.indd 91 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

92 • Natural Language Processing Fundamentals for Developers

What is Term Frequency (TF)?

The term frequency of a word equals the number of times that a word appears
in a document. If you have a set of documents, and a word that appears in
several of those documents, then its term frequency can be different in differ-
ent documents. For example, consider the two documents Doc1 and Doc2:

Doc1 = "This is a short sentence" (5 words)

Doc2 = "yet another short sentence" (4 words)

We can easily calculate the term frequencies for the words “is” and “short”
in Doc1 and Doc2, as shown here:

tf(is) = 1/5 for doc1

tf(is) = 0 for doc2

tf(short) = 1/5 for doc1

tf(short) = 1/4 for doc2

The following (albeit contrived) example shows you how to use term fre-
quency to calculate numeric vectors associated with three documents in order
to determine which pair of documents are more closely related.

Let’s suppose that doc1, doc2, and doc3 contain the words “beer,”
“pizza,” “steak,” “shrimp,” and “caviar” with the following frequencies:

 doc1 doc2 doc3

beer | 10 | 50 | 20

pizza | 30 | 50 | 30

steak | 50 | 0 | 50

shrimp | 10 | 0 | 0

caviar | 0 | 0 | 0

Now let’s normalize the column vectors in the preceding table, which
gives us the following table of values:

 doc1 doc2 doc3

beer | .10 |.50 | .20

pizza | .30 |.50 | .30

steak | .50 | 0 | .50

NLPFD.Ch3.indd 92NLPFD.Ch3.indd 92 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

NLP Concepts (II) • 93

shrimp | .10 | 0 | 0

caviar | 0 | 0 | 0

For simplicity, let’s use an asterisk (“*”) to denote inner product of each
pair of columns vectors, which means that we have the following values:

doc1*doc2 = (.10)*(.50)+(.30)*(.50)+0+0+0 = 0.20
doc1*doc3 = (.10)*(.20)+(.30)*(.30)+(.50)*(.50)+0+0 = 0.36
doc2*doc3 = (.50)*(.20)+(.30)*(.30)+0+0+0 = 0.19

Hence, the documents doc1 and doc3 are most closely related, followed
by the pair doc1 and doc2, and then the pair doc2 and doc3.

The next section discusses inverse document frequency, followed by
tf-idf, which we could use instead of the tf values to determine which pair
of documents in the preceding example are most closely related.

What is Inverse Document Frequency (IDF)?

The following example illustrates how to calculate the idf value for the words
in a set of documents. Given a set of N documents (ex: N = 10):

1.	 for each word in each document:

2.	 set dc = # of documents containing that word

3.	 set idf = log(N/dc)

Let’s consider the following example with N = 2 and Doc1 and Doc2
defined as shown here:

Doc1 = "This is a short sentence"

Doc2 = "yet another short sentence"

Then the idf values for “is” and “short” for the documents Doc1 and
Doc2 are shown below:

idf("is") = log(2/1) = log(2)

idf("short") = log(2/2) = 0.

What is tf-idf?

The tf-idf value of a word in a corpus is the product of its tf value and its
idf value. The tf-idf values are a measure of word relevance (not frequency).
Recall that tf (term frequency) is a proportion of the number of times that

NLPFD.Ch3.indd 93NLPFD.Ch3.indd 93 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

94 • Natural Language Processing Fundamentals for Developers

words appear in a given document, so a high-frequency word indicates a topic
in a document, and has a higher tf.

However, the idf (inverse-document frequency) of a word is inversely
proportional to the log of the number of occurrences of a word in multiple
documents. Thus, a word that appears in many documents makes that word
less valuable, and hence lowers its idf value. By contrast, rare words are more
relevant than popular ones, so they help to extract relevance. The tf-idf rele-
vance of each word is a normalized data format also adds up to 1.

Notice that the idf value involves the logarithm of N/dc. This is because
word frequencies are distributed exponentially, and the logarithm provides a
better weighting of a word’s overall popularity. In addition, tf-idf assumes a
document is a “bag of words.”

Note the following idf and tf-idf values:

●● idf = 0 for words that appear in every document
●● tfidf = 0 for words that appear in every document
●● idf = log(N) for words that appear in one document

In addition, a word that appears frequently in a single document will have
a higher tf-idf value. Moreover, a word that appears frequently in a document
is probably part of a topic.

For example, suppose that the word “syzygy” appears in a collection of
documents. The word “syzygy” can be a sort of differentiator because it prob-
ably appears in a low number of documents of that collection.

After the tf-idf values are computed for the words in the corpus, the
words are sorted in decreasing order, based on their tf-idf value, and then the
highest scoring words are selected. The number of selected words depends on
you. It can be as small as 5 or as large as 100 (or even larger).

By way of comparison, the BoW and tf-idf algorithms differ from word
embeddings (discussed later in this chapter) in two important ways:

1.	 The BoW and tf-idf algorithms calculate one number per word, whereas
word embeddings create one vector per word.

2.	 The BoW and tf-idf algorithms work better for classifying entire docu-
ments, whereas word embeddings are useful for determining the context
of words in a document.

Incidentally, you can implement a rudimentary search algorithm based on
tf-idf scores for the words in a corpus, and make a determination based on the
most relevant words (which is based on their tf-idf value) in a corpus.

NLPFD.Ch3.indd 94NLPFD.Ch3.indd 94 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

NLP Concepts (II) • 95

As another example, with the corresponding code in a later chapter, sup-
pose that we have the following set of sentences:

I love Chicago deep dish pizza

New York style pizza is also good

San Francisco pizza can be very good

The tf-idf pairs are as follows:

{'love': 5, 'chicago': 0, 'deep': 1, 'dish': 2,
'pizza': 7, 'new': 6, 'york': 10, 'style': 9, 'good':
4, 'san': 8, 'francisco': 3}

The tf-idf encoding for the initial three sentences is here:

I love Chicago deep dish pizza:

[[0.47952794 0.47952794 0.47952794 0. 0. 0.47952794 0.
0.28321692 0. 0. 0.]]

New York style pizza is also good:

[[0. 0. 0. 0. 0.38376993 0. 0.50461134
0.29803159 0. 0.50461134 0.50461134]]

San Francisco pizza can be very good:

[[0. 0. 0. 0.5844829 0.44451431 0. 0.
0.34520502 0.5844829 0. 0.]]

Compare the tf-idf encoding of the same three sentences using a BoW
encoding and an n-gram encoding in an earlier section.

Limitations of tf-idf

The tf-idf value is useful for calculating the word relevance of individual
words, but can be less effective when trying to match a phrase in one or more
documents. If you allow partial matches, then the set of matching phrases can
contain phrases that are less relevant.

For example, suppose a set of documents pertains to various animals, and
you want to find the documents that contain the phrase “strong beautiful rac-
ing horse.” Would you accept the phrase “strong beautiful racing dog” as a
match? If this phrase has the same tf-idf value as the original search phrase,
then tf-idf cannot distinguish between them, and so tf-idf cannot reject the
latter phrase in the matching set of documents.

NLPFD.Ch3.indd 95NLPFD.Ch3.indd 95 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

96 • Natural Language Processing Fundamentals for Developers

A better solution involves word2vec (or even better, an attention-based
mechanism such as the transformer architecture) because word2vec provides
word vectors that contain contextual information about words (which is not
the case for tf-idf values). The Transformer-based architecture is discussed in
the final chapter of this book.

BoW models also lose useful information, such as the semantics, structure,
sequence, and context around nearby words in each text document. A bet-
ter approach involves statistical language models, as discussed later in this
chapter.

Pointwise Mutual Information (PMI)

PMI is an alternative to the tf-idf algorithm, which works well for both word–
context matrices as well as term–document matrices. However, PMI is biased
toward infrequent events.

A better alternative to PMI is a variant known as positive PMI (PPMI)
that replaces negative PMI values with zero (which is conceptually similar to
ReLU in machine learning). Some empirical results indicate that PPMI has
superior performance when measuring semantic similarity with word-context
matrices.

THE CONTEXT OF WORDS IN A DOCUMENT

There are two types of context for words: semantic context and pragmatic
context. Here, we discuss the distributional hypothesis regarding the context
of words. An important is that the distributional hypothesis is based on some-
thing called a heuristic, which means that it is based on an assumption that
is often true. In fact, the assumption is true to that extent that its accuracy is
reliable enough that it outweighs the frequency of its incorrect estimates.

In a subsequent section, we discuss the cosine similarity metric that is used
to measure the distance between two floating point vectors that represents
two words.

What is Semantic Context?

Semantic context refers to the manner in which words are related to each
other. For example, if you hear a sentence that starts with “Once in a blue
____,” you might infer that the missing word is “moon.” Another example is
“I’m feeling fine and ___,” where the missing word is “dandy.”

NLPFD.Ch3.indd 96NLPFD.Ch3.indd 96 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

NLP Concepts (II) • 97

The distributional hypothesis asserts that words that occur in a similar
context tend to have similar meanings. The context of a word is the words that
commonly occur around that word. For example, in the sentence “the cat sat
on the mat,” here is the context of the word “sat:”

(“the”, “cat”, “on”, “the”, “mat”)

Words with similar contexts share meaning and their reduced vector rep-
resentations will be similar.

Another interesting concept is pragmatics, which is a subfield of linguis-
tics that studies the relationship between context and meaning. As a simple
example, consider the following sentence: “He was in his prison cell talking on
his new cell phone while a nurse extracted some of his blood cell samples.” As
you can see, the word “cell” has three different meanings in the previous sen-
tence. Therefore, any embedding that takes into account both semantic and
pragmatic context must generate three different vectors. More information
about pragmatics is available online:

https://en.wikipedia.org/wiki/Pragmatics

Textual Entailment

Another interesting NLP task is called textual entailment, which analyzes a
pair of sentences to predict whether the facts in the first sentence imply the
facts in the second sentence. This type of analysis is important in various NLP-
based applications, and actual results vary (as you might expect). One of the
techniques for training the BERT model is called NSP, which is an initialism
for Next Sentence Prediction. More details regarding NSP are in Chapter 11.

Discrete, Distributed, and Contextual Word Representations

Discrete text representations refer to techniques in which words are repre-
sented independently of each other. For example, the tf-idf value of each
word in a corpus is based on its term frequency multiplied by the logarithm
of its inverse document frequency. Thus, the tf-idf value of each word is unaf-
fected by the semantics of the other words in the corpus.

Moreover, if a new document is added to a corpus, or an existing docu-
ment is reduced or increased in size, then the initial tf-idf value will change
for some of the words in the original corpus. However, the new value does not
include any of the semantics of the newly added words.

By contrast, distributed text representations create representations that
are based on multiple words: thus, the representations of words are not

NLPFD.Ch3.indd 97NLPFD.Ch3.indd 97 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

98 • Natural Language Processing Fundamentals for Developers

mutually exclusive. For example, distributed text representations include
co-occurrence matrices, word2vec, and GloVe, and fastText. word2vec
involves a neural network to generate word vectors, whereas GloVe uses a
matrix-oriented technique (with SVD), which is discussed in Chapter 6. In
addition, word2vec and GloVe are limited to one word embedding for every
word, which means a word that’s used with two or more different contexts will
have the same embedding for every occurrence of that word.

Finally, contextual word representations are representations that take into
account all the other words in a given sentence. Hence, if a word appears in
two sentences with two different meanings (i.e., context), then the word will
have two different word embeddings for the two sentences. This is the fun-
damental idea that underlies the statement “all you need is attention.” The
attention mechanism is used in transformers, both of which are discussed in
Chapter 11.

WHAT IS COSINE SIMILARITY?

You are probably familiar with the Euclidean distance metric for finding the
distance between a pair of points in the Euclidean plane. Their distance can
be calculated via the Pythagorean theorem. The Euclidean distance met-
ric can be generalized to n-dimensions by generalizing the formula for the
Pythagorean theorem from two dimensions to n-dimensions.

If we represent words as numeric vectors, then it’s reasonable to ask the
following question: If two words have similar meanings, then how do we com-
pare their vector representations? One way involves calculating the difference
between the two vectors. For instance, suppose we are in two-dimensions
(because this will simplify the example), and word U is a vector u with com-
ponents [u1,u2], and word V is a vector v with components [v1,v2]. Then
the difference between these two vectors is [u1-v1, u2-v2].

However, the difference between these vectors increases significantly if
we multiply each of these vectors by a positive integer. In essence, we want to
treat the vectors u and v as having the same property as u and 10*v, which we
cannot accomplish if we use the Euclidean metric.

The solution is to calculate the cosine of the angle between a pair of vec-
tors, which is called the cosine similarity of two vectors. The cosine function is
a trigonometric function of the angle between the two vectors. In brief, sup-
pose that a right-angled triangle has sides of length a and b, a hypotenuse of

NLPFD.Ch3.indd 98NLPFD.Ch3.indd 98 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

NLP Concepts (II) • 99

length c (that’s the “slanted” side), and the angle between the sides of length
a and c is theta. Then the cosine of the angle theta is defined as follows:

cosine(theta) = a/c

The preceding formula applies to values of theta between 0 and 90
degrees (inclusive). Since a and c are positive, then a/c > 0, and since a <
c, then a/c < 1. In addition, the definition can be extended as follows:

if 0 <= theta <= 90: cosine(theta) = a/c (as defined above)

if 90 <= theta <= 180: cosine(theta) = (-1)*cosine(180-theta)

if 180 <= theta <= 270: cosine(theta) = (-1)*cosine(270-theta)

if 270 <= theta <= 360: cosine(theta) = (+1)*cosine(360-theta)

The cosine of theta is negative when theta is between 90 and 180, and
its range of values is between 0 and -1. Since the cosine of theta is between
0 and 1 when theta is between 0 and 90, we arrive at the following result:

-1 <= cosine(theta) <= 1 (for 0<= theta <= 360)

We can generalize further for angles that are less than 0 or greater than
360: simply add (or subtract) multiples of 360 until we get an angle between
0 and 360:

cosine(-100) = cosine(-100+1*360) = cosine(260) =
� (-1)*cosine(10)

cosine(750) = cosine(750-2*360) = cosine(30)

However, two vectors always form an angle that is between 0 and 180
inclusive. Since values of the cosine function are always between -1 and 1
inclusive, the cosine similarity of two vectors is also between -1 and 1 inclu-
sive. As a reminder, the cosine of 0 degrees is 1, the cosine of 90 degrees is 0,
and the cosine of 180 degrees is -1.

The intuition of cosine similarity is that “closer” vectors have a smaller
angle between them, which means that the cosine of the angle is closer to 1,
and so the words have similar meanings. Two vectors whose angle between
them is close to 90 have a cosine similarity that is close to 0, and so the words
are less related to each other. Finally, two vectors that “point” in opposite
directions will have an angle of 180 degrees, and the cosine of 180 is -1, so the
words will be unrelated (antonyms?).

The inner product of two vectors A and B is defined as

A "dot" B = |A|*|B|*cosine(theta)

cosine(theta) = (A "dot" B) /(|A|*|B|)

NLPFD.Ch3.indd 99NLPFD.Ch3.indd 99 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

100 • Natural Language Processing Fundamentals for Developers

Example: suppose that A = [1, 1] B = [2, 0]:

cosine(theta) = (1*2+1*0)/[sqrt(2)*2] = 1/sqrt(2)

In this case, theta is 45 degrees

Note that vectors are often “normalized,” which means that they are
scaled so that their length equals 1. Scaling a vector involves dividing a vector
by its magnitude (also called the “norm”), which is calculated via the Pythag-
orean theorem.

Example #1:

If A = [1,1], then |A| = sqrt(1*1+1*1) = sqrt(2), and:

A/|A| = [1/sqrt(2), 1/sqrt(2)] (about [0.707,0.707])

Example #2:

If A = [2,0], then |A| = sqrt(2*2+0*0) = sqrt(4) = 2, and:

A/|A| = [2/2, 0/2] = [1, 0]

Example #3:

If A = [3,4], then |A| = sqrt(3*3+4*4) = sqrt(25) = 5, and:

A/|A| = [3/5, 4/5]

Example #4:

If A = [-4,3], then |A| = sqrt((-4)*(-4)+3*3) =
� sqrt(25) = 5, and:

A/|A| = [-4/5, 3/5]

Although cosine similarity works well in many cases, it’s not a perfect solu-
tion. For example, it’s possible to have two sparse vectors representing two
sentences with similar meaning, even though they have no words in common,
and yet their cosine similarity could be around 0.6.

In addition to cosine similarity, there are other well-known distance met-
rics, some of which are discussed in Appendix A.

TEXT VECTORIZATION (A.K.A. WORD EMBEDDINGS)

In common parlance, text vectorization involves the creation of word embed-
dings, where each word embedding is a dense one-dimensional vector of

NLPFD.Ch3.indd 100NLPFD.Ch3.indd 100 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

NLP Concepts (II) • 101

floating point numbers. Moreover, the word embeddings are generated by
means of a shallow neural network. There are various publicly available word
embeddings available, so you don’t need to be concerned about generating
those vectors (unless you have a custom dictionary).

Depending on your task, you might be able to work with small vectors,
such as 1 × 16 or 1 × 32 vectors. By comparison, the word embeddings in the
BERT model (discussed in Chapter 7) are 1 × 512 vectors.

Since we can add floating point vectors that have the same number of com-
ponents, we can calculate the average of two or more word vectors. Hence,
it’s possible to represent a document as the average vector of the word vectors
in that document. However, such a vector is not necessarily meaningful with
respect to the document.

You can use word embeddings to find co-occurrences. For example,
“good” and “bad” both appear in a corpus and are near each other in an
embedding space, despite the fact that “good” and “bad” are antonyms.

From a different perspective, it might be helpful to think of a word embed-
ding as a projection of the index-based encoding (or a one-hot encoding) into
a numerical vector to a lower-dimension space. The new space is defined by
the numerical output of an embedding layer in a neural network. This results
in a close mapping of words with similar role, but it does involve a higher
degree of complexity.

Text vectorization is typically performed after various other tasks that
are discussed in this chapter, such as normalization, stop word removal, and
lemmatization.

As you will see later in this chapter, word2vec (developed in 2013) is one
of the first text vectorization algorithms that produces word embeddings by
training a shallow neural network (i.e., a single hidden layer), and every word
is represented by a vector of floating point numbers. These vectors are context
vectors because they contain contextual information for the associated words
(the meaning of context will be explained later).

However, word2vec does have a significant limitation: A word in a docu-
ment can only have a single context vector. Hence, the same context vector is
used for a given word, regardless of whether that word has a different context
in different sentences. The Transformer architecture (discussed in Chapter 7)
achieved a breakthrough by overcoming this limitation of word2vec. Thus,
the context vector for a given word depends on the context of that word in a
sentence, which means that the same word can be represented by different
context vectors.

NLPFD.Ch3.indd 101NLPFD.Ch3.indd 101 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

102 • Natural Language Processing Fundamentals for Developers

OVERVIEW OF WORD EMBEDDINGS AND ALGORITHMS

The section contains several subsections, starting with a description of word
embeddings, followed by brief description of word embedding algorithms.
Some of these algorithms, such as CBoW and skip-grams, are discussed in
more detail later in this chapter. In addition to word embeddings, there is the
concept of entity embedding that generalizes the concept of a word embed-
ding: An entity can be a word, a sentence, or a document.

Word Embeddings

According to Wikipedia, word embeddings are defined as the collective name
for a set of language modeling and feature learning techniques in natural
language processing (NLP) where words or phrases from the vocabulary are
mapped to vectors of real numbers.

The goal is to capture as much semantic information as possible by finding
a reliable word representation with real-number vectors. Techniques such as
term frequencies or one-hot encodings do not provide any context for words
in a sentence or a document. However, word embeddings do provide context
for words, which enables you to create more powerful language models.

A word embedding is a representation of the underlying text corpus
(i.e., a collection of text-based documents). Word embeddings are a context-
independent embedding or representation.

Word embeddings are useful for document classification, which involves
supervised learning (i.e., labeled data). You can also use word embeddings for
document clustering, which involves unsupervised learning (i.e., unlabeled data).

Word embeddings reduce large one-hot word vectors into smaller vec-
tors while simultaneously preserving some of the meaning and context of the
words. One of the most popular methods for performing this reduction is
word2vec.

Fortunately, word embeddings are useful for analyzing text data in many
languages (i.e., not just English text). Moreover, there are pre-trained word
embeddings available, and it’s worthwhile performing an analysis of those
word embeddings to see if they meet your needs. If not, then you can cer-
tainly create custom word embeddings.

Word Embedding Algorithms

There are several well-known word embedding algorithms, as shown in the
following list:

NLPFD.Ch3.indd 102NLPFD.Ch3.indd 102 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

NLP Concepts (II) • 103

●● word2vec
●● GloVe
●● fastText
●● other lesser-known algorithms

The word2vec algorithm consists of two algorithms: CBoW (Continu-
ous Bag of Words) and skip-grams. Both word2vec algorithms create word
embeddings (i.e., vectors of floating point numbers) by training a shallow neu-
ral network that contains a single hidden layer.

The GloVe algorithm was developed at Stanford (more details are in
Chapter 6), whereas the fastText algorithm is from Facebook, with more details
elsewhere in this chapter. One of the most popular Python-based libraries for
word embeddings is word2vec, which is the topic of the next section.

WHAT IS WORD2VEC?

A group of Google researchers developed word2vec in 2013, and it has become
the foundation of NLP that is also incorporated in BERT. Word2vec pro-
vides an efficient method to represent words as vectors in a lower-dimensional
space.

Word2vec takes text-based input and generates a vector consisting of
floating points for each word in a text corpus. This task involves a neural net-
work consisting of an input layer, a hidden layer (with no activation function),
and an output layer that has the same dimension as the input layer. If you have
studied deep learning, then you probably recognize this neural network as an
autoencoder. If need be, you can use a dimensionality reduction technique to
further reduce the dimensionality of the word vectors.

One point to keep in mind is that word2vec is described as an unsuper-
vised algorithm because there is no need to label the training data. However,
the shallow network that is used to generate word embeddings involves back-
ward error propagation, which in turn requires labeled data. More accurately,
word2vec involves self-supervision, which is a subset of supervised learning.

The material presented earlier in this chapter discussed the CBoW model
(which uses n-gram) and the skip-gram model, both of which are part of word-
2vec. Later you will learn about GloVe, which is another word2vec model.

Word2vec uses the cosine similarity to measure the distance between a
pair of vectors (let’s call them u and v). If the cosine similarity is close to 1
(which means the angle is close to 0), then the two words that correspond to
vectors u and v probably have a similar meaning. If the cosine similarity is

NLPFD.Ch3.indd 103NLPFD.Ch3.indd 103 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

104 • Natural Language Processing Fundamentals for Developers

close to 0 (which means the angle is close to 90), then the associated words are
probably unrelated. Finally, if the cosine similarity is close to -1 (the angle is
close to 180), the associated words are good candidates for antonyms.

Word2vec is used for making predictions rather than counting words. In
particular, word2vec is designed to accomplish the following:

●● learn the distributed representations for words
●● focus on the meaning of words
●● attempt to understand meaning and semantic relationships among words
●● handle unlabeled data
●● works similarly to deep learning approaches (such as RNNs)
●● is computationally more efficient
●● learns quickly relative to other models

Recall that the context of a word is the set of words that occur on either
side of a given word. For example, consider the following sentence:

“The quick brown fox jumped over the lazy dog.”

The context of the word “jumped” in the preceding sentence is as follows:

(“The,” “quick,” “brown,” “fox,” “over,” “the,” “lazy,” “dog”)

In word2vec, words with similar contexts have similar reduced vector rep-
resentations. word2vec also has a skip-gram model whose goal is to predict the
context words that surround a given word. For example, suppose we start with
the given word “jumped.” The skip-gram model would attempt to predict the
context that is listed earlier in this section.

The context is derived through an iterative process that produces an
embedding layer where the rows are vector representations of the words in a
vocabulary.

In word2vec, every word in a vocabulary is represented as a vector. As
a result, word2vec groups the vectors of similar words together in a vector
space, and it detect similarities mathematically. Thus, word2vec creates vec-
tors that are distributed numerical representations of word features, such
as the context of individual words. In addition, word2vec does not require
human intervention.

Later in this chapter you will see the neural networks for CBoW and
skip-grams.

The Principle Behind word2vec

An underlying assumption of word2vec is that the meaning of words can be
inferred from their surrounding words. Suppose that two words have similar
neighbors (the context in which it’s used is about the same), then these words

NLPFD.Ch3.indd 104NLPFD.Ch3.indd 104 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

NLP Concepts (II) • 105

are probably quite similar in meaning or are at least related. For example, the
words “shocked,” “appalled,” and “astonished” are usually used in a similar
context. As you saw earlier in this chapter, this means that “The meaning of a
word can be inferred by the company it keeps.”

word2vec is well-suited for sentiment analysis based on a corpus of user-
based reviews (such as movies or books). This type of data is unstructured
because there are almost no restrictions on the content of reviews (beyond a
profanity rule). Other use cases for word2vec include the following:

●● genes, code, likes, playlists, social media graphs
●● other verbal or symbolic series in which patterns may be discerned

Word2vec can also be used for labeled data as well as unlabeled data.
Algorithms that are designed to work with supervised data tend to require a
large set of examples.

The word2vec Architecture

The word2vec architecture options are the skip-gram (default) or Continuous
Bag of Words. The training algorithm is hierarchical softmax (default) or neg-
ative sampling.

 The minimum word count helps limit the size of the vocabulary to mean-
ingful words. Any word that does not occur at least this many times across all
documents is ignored.

Reasonable values could be between 10 and 100. In this case, since each
movie occurs 30 times, we set the minimum word count to 40, to avoid attach-
ing too much importance to individual movie titles. This resulted in an overall
vocabulary size of around 15,000 words. Higher values also help limit run time.

There is more information about backward error propagation in word-
2vec, with details for CBoW and skip-grams, available online:

http://www.claudiobellei.com/2018/01/06/backprop-word2vec/

Limitations of word2vec

Word2vec provides only one word embedding per word. Moreover, a word
embedding can only store one vector for each word. Other limitations of
word2vec are listed below:

●● difficult to train on large datasets
●● fine tuning is not possible
●● training models is a domain-specific task
●● trained on a shallow neural network with one hidden layer

NLPFD.Ch3.indd 105NLPFD.Ch3.indd 105 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

106 • Natural Language Processing Fundamentals for Developers

As you will see in Chapter 7, the attention-based mechanism overcomes
this limitation of word2vec.

THE CBoW ARCHITECTURE

Given a set of words, the CBoW model architecture starts with a set of sur-
rounding words and then attempts to predict the target word (which is the
center word). The CBoW model (which is one type of word2vec model)
involves a feed forward neural network that determines word embeddings.
The neural network consists of the following:

●● an input layer
●● a hidden layer (no activation function)
●● an output layer (softmax activation function)

In addition, the input layer and output layer have the same size. Hence,
this neural network resembles an autoencoder, which “squashes” the input
values into a smaller vector to obtain a more compact representation of the
input data.

Figure 3.1 shows the CBoW architecture and Figure 3.2 in the next sec-
tion displays the skip-grams architecture, both of which are shallow neural
networks.

FIGURE 3.1  The CBoW architecture.

Source: “Efficient Estimation of Word Representations in Vector Space.”
Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. [arXiv:1301.3781v2 [cs.CL] (CC BY 4.0)]

NLPFD.Ch3.indd 106NLPFD.Ch3.indd 106 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

NLP Concepts (II) • 107

WHAT ARE SKIP-GRAMS?

As you learned in the previous section, n-grams infer a missing word from
the words that appear on both sides of the word, whereas skip-grams start
with the “missing” word and attempt to infer the words that are most likely
to appear on both sides of that missing word. In a sense, the key idea of skip-
grams is like an “inversion” of n-grams.

Skip-gram models predict the surrounding context words of a target word,
and they are based on a neural network architecture that is presented in the
next section. In a sense, the skip-gram model works in the opposite manner of
the CBoW model: skip-gram attempts to predict the surrounding words of a
target word (which is the center word).

In slightly more detailed terms, the following sequence of steps provides
a high-level description of the skip-gram algorithm:

●● Treat the target word and a neighboring context word as positive
examples.

●● Randomly sample other words in the lexicon to get negative samples.
●● Use logistic regression to train a classifier to distinguish those two cases.
●● Use the weights as the embeddings.

Skip-gram Example

A skip-gram is a tuple that contains words before and after a given word.
The size of the type is an integer, which can be as small as 1. In particu-
lar, 1-grams, 2-grams, and 3-grams are also called unigrams, bigrams, and
trigrams, respectively.

Let’s consider the following sentence (taken from the previous section):

'the big mouse ate the cheese'

The set of 1-grams for “ate” is here:

[mouse, the]

The set of 2-grams is as follows:

[(ate,the), (ate,big), (ate,mouse), (ate, the),
(ate,cheese)]

The set of 3-grams is

[(ate,the,big), (ate,big,mouse), (ate,the,cheese)]

NLPFD.Ch3.indd 107NLPFD.Ch3.indd 107 6/1/2021 11:40:30 AM6/1/2021 11:40:30 AM

108 • Natural Language Processing Fundamentals for Developers

The Skip-gram Architecture

Figure 3.2 shows the skip-gram architecture that is based on a shallow neural
network.

FIGURE 3.2  The skip-gram architecture.

Source: “Efficient Estimation of Word Representations in Vector Space.”
Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. [arXiv:1301.3781v2 [cs.CL] (CC BY 4.0)]

To fully understand this architecture, you need some familiarity with
basic neural networks, the softmax activation function, and the concept of
backward error propagation. In essence, the skip-gram architecture (along
with the n-gram architecture) is based on machine learning concepts. If need
be, perform an online search for articles that explain neural networks.

Figure 3.2 shows the skip-gram architecture consists of the following
components:

●● the input layer is a single word
●● a hidden layer
●● an output layer (predicted context words)

Each word from the corpus is processed through the neural network, and
after the model has been trained, the hidden layer contains the word embed-
dings. The concept of skip-grams is probably less intuitive than n-grams: How
can we guess at the words that surround a single word?

Although the skip-gram model has a larger memory requirement, its word
embeddings are better than those generated by an n-gram model.

NLPFD.Ch3.indd 108NLPFD.Ch3.indd 108 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

NLP Concepts (II) • 109

Keep in mind the following details regarding the shallow network for the
skip-gram model:

●● There is no bias term.
●● There is no activation function between the input layer and the hidden

layer.
●● There is a softmax activation function from the hidden layer to the output

layer.
●● The input layer and the output layer have the same size.

If you are familiar with convolutional neural networks (CNNs), then you
already know that the softmax activation function is applied between the
right-most hidden layer and the output layer because it generates a set of
positive numbers whose sum equals one. Thus, that set of output numbers is
a probability distribution, and the index position with the highest probability
value is compared with the index of the number 1 in the one-hot encoding of
the input data. If the index values are equal, then it’s a match (otherwise it’s
not a match).

Since the input layer and the output layer have the same size, this shallow
network is very similar to an autoencoder, whose purpose is to compress the
one-hot encoded words of a vocabulary into a smaller representation (similar
to the purpose of PCA in machine learning).

For example, suppose we have a vocabulary of 10,000 words (assume
they’re English words to keep things simple), and we want to find a represen-
tation for each word that consists of a 1 × 300 vector of floating point num-
bers. Then the weight matrix between the input layer and the hidden layer is a
10,000 × 300 matrix (let’s call it W1), and the matrix between the hidden layer
and the output layer is a 300 × 10,000 matrix (let’s call it W2.)

The neural network is “trained,” which means that the weights of the
edges in the neural network are updated by a process called “backward error
propagation.” When the training process is completed, we discard everything
except for the weight matrix W1, which consists of 10,000 rows, each of which
is a word in the initial vocabulary. Each row is 300 columns wide, and this
1x300 vector of floating point numbers is the encoding for the current word.

Neural Network Reduction

There are two techniques to reduce the size of the weight matrices in the
neural network:

●● subsample frequent words (which decreases the number of training
examples)

●● modify the optimization objective via “negative sampling”

NLPFD.Ch3.indd 109NLPFD.Ch3.indd 109 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

110 • Natural Language Processing Fundamentals for Developers

These two techniques reduce the computational complexity and improve
the quality of the results.

The intuition underlying negative sampling is to modify a small portion
of the model weights, which involves finding skip-grams for a given word. An
earlier section showed how to find the bigrams of a simple sentence, and this
information is reproduced here:

[(ate,the), (ate,big), (ate,mouse), (ate, the),
(ate,cheese)]

The previous set of bigrams includes stop words that you can remove
during the cleaning process. Alternatively, there is a formula to calculate the
probability of retaining a word that appears in a vocabulary. If w1 is a word in
a vocabulary and f(w1) is the frequency of the word in a document, then the
probability P(w1) that w1 will be retained is given here:

P(w1) = [1 + sqrt(f(w1)*1000] * 0.001/f(w1)

Another important Python library for generating distributed word embed-
dings is GloVe, which is the topic of the next section.

WHAT IS GloVe?

As you learned earlier in this chapter, word2vec algorithms are based on neu-
ral networks. By contrast, GloVe uses matrix factorization techniques from
linear algebra and word-content matrices. GloVe creates a co-occurrence
matrix for a given (local) context, and then decomposes the global matrix.

GloVe is similar to word2vec, with an important difference: Glove exploits
the global co-occurrences of words instead of relying on the local context.
GloVe proceeds as follows:

1.	 Construct a co-occurrence matrix of dimensionality words × context.

2.	 Factor the matrix into a matrix of dimensionality word × features.

In the initial matrix, the rows are words and the columns are word fre-
quencies in a corpus. The factored matrix has a lower dimensionality, and the
rows are the vector representations of the initial words.

GloVe can provide 100-dimensional dense vectors as word embeddings.
However, there are two important limitations in GloVe. First, GloVe does

NLPFD.Ch3.indd 110NLPFD.Ch3.indd 110 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

NLP Concepts (II) • 111

not support OOV (Out of vocabulary) words. Second, GloVe does not sup-
port polysemy, which refers to words that have multiple meanings, which is
determined by the context of the words in a sentence. Consider using models
that provide support, such as ELMo and USE (Universal Sentence Encoder).

The CoVe (McCann, 2017) is based on the GloVe algorithm. CoVe (Con-
textual Vectors) uses machine translation to generate contextual vectors and
does not use language modeling.

WORKING WITH GloVe

GloVe is a Python-based library (developed at Stanford University) for word
embeddings, and it’s an acronym for Global Vectors [for word representation].

GloVe performs unsupervised learning of word embeddings that is based
on co-occurrence matrices. As such, GloVe combines two techniques:

1.	 Global Matrix Factorization (GMF)

2.	 Local Context Window (LCW)

Global Matrix Factorization uses matrix factorization methods from linear
algebra that perform rank reduction on a large term-frequency matrix. Note
that the matrices can represent term-document frequencies, in which case
matrix rows are words and the matrix columns are documents (or paragraphs).
Alternatively, matrices can represent term-term frequencies, with words on
both axes and measure co-occurrence.

GMF applied to term-document frequency matrices is called latent
semantic analysis (LSA), and the high-dimensional matrix in LSA is reduced
via singular value decomposition (SVD). More details regarding matrix factor-
ization are available online:

https://machinelearningmastery.com/introduction-to-matrix-decompositions-
for-machine-learning/

The Local Context Window is a word embedding model that learns
semantics by passing a window over the corpus line-by-line. This technique
predicts the surroundings of a given word (e.g., skip-gram model) or predicts
a word given its surroundings (e.g., CBoW).

The third important Python library for generating distributed word
embeddings is fastText, which is the topic of the next section.

NLPFD.Ch3.indd 111NLPFD.Ch3.indd 111 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

112 • Natural Language Processing Fundamentals for Developers

WHAT IS FASTTEXT?

Facebook developed the fastText NLP library, and you can install fastText
with the following command:

pip3 install fasttext

The fastText library uses unsupervised learning to perform text clustering
of data, which means that fastText uses a clustering algorithm. The train_
unsupervised() method in fastText uses the skip-gram model in order to
generate 100-dimensional vectors. In addition, fastText computes the sim-
ilarity score between words, along with the get_nearest_neighbors()
method to display the top 10 words that are the most similar to a given word.
Similarity scores between pairs of words that are close to 1 indicate that the
pair of words are more similar in meaning.

The fastText library leverages word2vec by learning vector representa-
tions for each word and the n-grams in each word. Next, a vector is created
whose values are the average values of the representations during each train-
ing step. This step enables word embeddings to encode sub-word informa-
tion. The fastText vectors are more accurate than word2vec vectors based on
various criteria. Moreover, fastText can handle OOV words and the sub-word
n-grams corresponding to “intuition” (shown for multiple languages).

One useful advantage of vector generation techniques such as fastText is
that no labeled data is required.

COMPARISON OF WORD EMBEDDINGS

This section contains a summary of the main features of three types of word
embeddings. The first group consists of the simplest algorithms for producing
word vectors for words. These algorithms were introduced in this chapter and
the previous chapter. The second group consists of the earliest algorithms that
use neural networks (i.e., word2vec, gloVe, and fastText) or matrix factoriza-
tion (such as word2vec) for generating distributional word embeddings. The
third group involves contextual algorithms for creating word embeddings,
which are essentially state of the art algorithms. For your convenience, a bul-
let list for each of the three groups is given below:

●● Group 1—Discrete word embeddings (BoW, tf, and tf-idf)
–– Word vectors consist of integers, decimals, and decimals, respectively.
–– Key point: word embeddings have zero context

NLPFD.Ch3.indd 112NLPFD.Ch3.indd 112 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

NLP Concepts (II) • 113

●● Group 2—Distributional word embeddings (word2vec, GloVe, and
fastText)

–– Based on shallow NN, MF, and NN, respectively
–– Two words on the left and the right (bigrams) for word2vec
–– Key point: only one embedding for each word (regardless of its

context)

●● Group 3—Contextual word representation (such as BERT)
–– transformer architecture (no CNNs/RNNs/LSTMs)
–– Pays “attention” to ALL the words in a sentence.
–– Key point: words can have multiple embeddings (depending on the

context)

The algorithms in Group 1 provide one word embedding per word but
no context is captured in the word embedding. Group 2 algorithms are an
improvement because they provide context for word embeddings. Group
3 algorithms generate multiple word embeddings for the same word that
appears in multiple sentences. This feature is a significant improvement over
Group 2 algorithms, which in turn are a significant improvement over Group
1 algorithms.

WHAT IS TOPIC MODELING?

Topic modeling is a technique for finding topics in one or more documents,
and it’s also a form of dimensionality reduction. There are two underlying
assumptions:

●● Each document consists of a mixture of topics.
●● Each topic consists of a collection of words.

Topic models assume that the semantics of a document are governed by
so-called latent variables that are not immediately observable, which are top-
ics that tend to be more abstract than the actual text. The goal of topic mod-
eling is to uncover these latent variables (topics) that can reveal the primary
content of a document or corpus.

Determining the main topics in documents can be performed in various
ways, which is the topic of the next section.

NLPFD.Ch3.indd 113NLPFD.Ch3.indd 113 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

114 • Natural Language Processing Fundamentals for Developers

Topic Modeling Algorithms

There are several well-known algorithms for topic modeling, some of which
are as follows:

●● Latent Dirichlet Analysis (LDA)
●● Latent Semantic Indexing (LSI)
●● Latent Semantic Analysis (LSA)

Details regarding LDA are in the next section, and you can perform an
Internet search for details regarding the LSI and LSA.

LDA and Topic Modeling

LDA is a dimensionality reduction technique that is well-suited for topic
modeling. LDA is a generative model that assigns topic distributions to docu-
ments. Each document is described by a distribution of topics, and each topic
is described by a distribution of words. The rest of this section contains a
high-level description of LDA, which in turn involves concepts such as KL
Divergence and the JS metric that are discussed in Appendix B.

LDA starts with a fixed set of topics, where each topic represents a set of
words. Next, LDA maps documents to a set of topics, and document words
are mapped to those topics.

LDA is also a clustering method that supports the concept of soft-cluster-
ing, which allows different cluster to overlap (so words can belong to multiple
clusters). Soft clustering is advantageous because it’s simpler to find similar
words; however, it’s more difficult to determine distinct clusters in LDA.

Note that LDA differs from the kMeans algorithm because the latter is
based on hard-clustering, which means that each word belongs to a single
cluster.

An LDA model assumes that documents contain several overlapping top-
ics, along with the following:

●● Topics are based on the words in each document.
●● The actual topics may not be known in advance.
●● The actual topics do not need to be specified.
●● The number of topics must be specified in advance.

Recall that LDA supports soft clustering, and therefore the same word
can appear in multiple topics (i.e., a topic has the role of a cluster). In addi-
tion, the LDA model is called “latent” because LDA generates the following
latent (hidden) variables:

NLPFD.Ch3.indd 114NLPFD.Ch3.indd 114 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

NLP Concepts (II) • 115

●● a distribution over topics for each document
●● a distribution over words for each topic

LDA uses the JS (Jenson-Shannon) metric, which is based on the JS
divergence, and the latter is based on the KL divergence (more information
about these topics in an appendix). Since the JS divergence is a metric, it’s also
symmetric, which means that the similarity of two documents Doc1 and Doc2
is the same as the similarity of Doc2 and Doc1 (which is obviously a desirable
property).

LDA uses the JS metric to determine which documents in a corpus are
the most similar to document D by comparing the topic distribution of doc-
ument D to the topic distributions of the documents in the corpus. As you
might have already surmised, a smaller JS value for a pair of documents indi-
cates greater similarity between the documents.

LDA is related to ANOVA as well as PCA (discussed in an appendix),
but there are some differences. For instance, ANOVA uses categorical inde-
pendent variables and a continuous dependent variable. By contrast, LDA
involves the “reverse” of ANOVA. It uses continuous independent variables
and a categorical dependent variable. LDA also assumes that the independent
variables are normally distributed.

LDA and PCA both involve calculating linear combinations of variables.
However, LDA tries to model the difference between the classes of data,
whereas PCA ignores the difference in class.

Text Classification versus Topic Modeling

Text classification involves supervised learning on documents or articles with
a known set of labels and classifies the text into a single class. By contrast,
topic modeling involves unsupervised learning, and it’s a process of analyzing
documents/articles. Topic modeling finds groups of co-occurring words in text
documents, and co-occurring related words are “topics.” In cases where the
set of possible topics is unknown, topic modeling can be used to solve text
classification problems to identify the topics in a document.

LANGUAGE MODELS AND NLP

In brief, a language model is a probability distribution (which is discussed in
Appendix B) for sequences of words. Statistical language modeling refers to
the creation of probabilistic models that predict the next word in a sequence

NLPFD.Ch3.indd 115NLPFD.Ch3.indd 115 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

116 • Natural Language Processing Fundamentals for Developers

based on the words that precede the predicted word. Calculating the prob-
ability of word occurrences involves examples of text. Models can be based on
individual words, short sequences, sentences, or paragraphs.

Language models are used in machine learning and unsupervised learn-
ing (search/IR and clustering/topic modeling). A language model also tries to
distinguish between similar sounding words. However, language models face
some challenges, such as data sparsity and determining the likelihood of dif-
ferent phrases. One approach involves the use of n-gram models (described
elsewhere in this chapter).

According to some NLP experts, language models learn only from
co-occurrence patterns in the streams of symbols that they are trained on.
Furthermore, there are at least two issues pertaining to language models:

●● Symbol streams lack crucial information.
●● Language models lack communicative intent.

Although pure language models do not have a counterpart to machine
learning models that are trained via labeled datasets, some NLP experts
believe that it’s possible for language models to achieve language
understanding.

How to Create a Language Model

There are three main ways to create a new language model in NLP for a given
task:

●● Create a new model “from scratch.”
●● Transfer learning (use a pretrained model).
●● Transfer learning plus vocabulary enhancement.

Language models can also be classified into different subtypes. For exam-
ple, neural language models (also called continuous space language models)
are based on neural networks. Such models use continuous representations
or embeddings of words to make their predictions. More details regarding
language models are available online:

https://en.wikipedia.org/wiki/Language_model

Language models are the motivating principle behind vector space mod-
els, which is the topic of the next section.

NLPFD.Ch3.indd 116NLPFD.Ch3.indd 116 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

NLP Concepts (II) • 117

VECTOR SPACE MODELS

A vector space model (VSM) is based on a mathematical model called a vector
space, and it represents text documents as vectors of identifiers (for example,
using tf-idf weights). If you are unfamiliar with vector spaces, there is a
brief introduction to vector spaces in one of the appendices.

A VSM consists of a two-dimensional array of (usually) numeric values
that are based on frequencies. The latter restriction on the data values creates
a “link” between a VSM and the distributional hypothesis. A VSM whose val-
ues are based on sophisticated algorithms can overcome the shortcomings of
losing semantics and feature sparsity in BoWs: https://en.wikipedia.org/wiki/
Vector_space_model

As a point of clarification, the following matrices do not represent vector
space models:

●● an arbitrary matrix
●● an adjacency matrix for a tree or graph
●● a feature matrix
●● a covariance matrix
●● a correlation matrix
●● a recommender system

Recommender systems are included in the preceding list because they
populate a user-item matrix whose cells contain a numeric rating of items;
however, the data in such a matrix is not derived from event frequencies,
which explains why recommender systems are not VSMs.

Now that you have seen examples of matrices that are not VSMs, the fol-
lowing list contains some examples of vector space models:

●● a term-document matrix (discussed later)
●● a context-document matrix
●● a matrix based on word2vec
●● the latent semantic analysis (LSA) algorithm
●● a pair-pattern matrix

With the preceding in mind, here is a short list of some models that are
based on (or extend) the VSM model:

●● generalized vector space model
●● latent semantic analysis (LSA)

NLPFD.Ch3.indd 117NLPFD.Ch3.indd 117 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

118 • Natural Language Processing Fundamentals for Developers

●● term discrimination
●● Rocchio classification
●● random indexing

Term-Document Matrix

A term-document matrix M is an mxn matrix where n is the number of docu-
ments and m is the number of unique words in the n documents. The value
in a cell (i,j) in a term-document matrix M equals the number of times that the
term i appears in document j. Moreover, the value in a cell (i,j) can be based
on other calculations, such as tf (term frequency) or tf-idf values. Note that
for a large corpus, the matrix M contains mainly zero values, which means that
M is a sparse matrix (and operations are less efficient). Also keep in mind that
a tf-idf vector is a vector representation of a document whereas a word2vec
vector is a vector representation of a word.

There are two more points of interest regarding a term-document matrix
M. First, if two documents are similar, then the two corresponding columns in
M will tend to have similar patterns of numbers, which in turn means that their
cosine similarity will be closer to 1. Second, instead of focusing on column
vectors, we can examine row vectors to measure word similarity.

We can also generalize the concept of a term-document matrix by expand-
ing the meaning of a document to include phrases, sentences, and paragraphs.
After doing so, the result is a word-context matrix.

Tradeoffs of the VSM

VSMs are not a perfect solution. Some of the advantages and disadvantages of
a VSM are related to the advantages and disadvantages of the algorithms that
are used to compute the values in the cells of a VSM.

The usefulness of a VSM model is due to its basis in linear algebra. In
addition, it’s possible to compute a degree of similarity between queries and
documents in a continuous fashion, which then enables you to rank docu-
ments according to their possible relevance. Furthermore, VSM models sup-
port partial matching.

However, long documents are poorly represented because they have poor
similarity values (a small scalar product and a large dimensionality). Word
substrings can result in a “false positive match,” which means that search
keywords must match document terms. Unfortunately, documents with sim-
ilar context but contain different term vocabulary won’t be associated, which
results in a “false negative match.”

NLPFD.Ch3.indd 118NLPFD.Ch3.indd 118 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

NLP Concepts (II) • 119

In addition, the order in which the terms appear in the document is not
tracked in the vector space representation, along with the assumption that
terms are statistically independent. Even so, some of the disadvantages can
be ameliorated by using techniques such as Singular Value Decomposition
(SVD).

NLP AND TEXT MINING

In high-level terms, text mining performs an analysis of large amounts of
unstructured data in order to find patterns in that data. Text mining tasks
involve finding keywords, topics, and patterns. The general sequence of steps
(tasks) is shown here:

●● preprocessing
●● text transformation
●● attribute selection
●● visualization
●● evaluation

Text mining also involves document classification whereby similar docu-
ments are placed in the same group. Text mining is useful for extracting prod-
uct-related details, such as customer reviews and product issues. Applications
of text mining include spam detection, sentiment analysis, e-commerce, and
customer segmentation. The NLTK (Natural Language Tool Kit) library is
well-suited for text mining tasks, and you will see code samples in Chapter 4.

Text Extraction Preprocessing and N-Grams

As you learned earlier in this chapter, n-grams are one type of language
model that assigns numeric probabilities to word sequences. For example,
the 3-grams of a sentence is a set of tuples of length 3, where a tuple consists
of three consecutive words in that sentence. Note that the terms unigram,
bigram, and trigram are often used when n is 1, 2, or 3, respectively.

RELATION EXTRACTION AND INFORMATION EXTRACTION

In simplified terms, relation extraction (RE), information extraction (IE),
and relation classification involve various aspects of searching a corpus to find

NLPFD.Ch3.indd 119NLPFD.Ch3.indd 119 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

120 • Natural Language Processing Fundamentals for Developers

subsets of text that describe relationships between words in those subsets
of text. Relation extraction is a key component of NLU (Natural Language
Understanding), and in general, relation extraction involves extracting rela-
tional triplets of text, such as (founder, steve_jobs, apple).

Although these three concepts overlap, they have significant differences.
Relation extraction involves finding semantic relationships in a corpus. In
addition, relation extraction is a subfield of information extraction, where the
latter involves extracting structured information from natural language text.
However, relation extraction differs in one important respect from IE: The
latter also performs disambiguation. The sense2vec algorithm is one algo-
rithm for word sense disambiguation that can be used with SpaCy:

https://github.com/explosion/sense2vec

For example, if you have ever summarized a text document, you probably
searched for the most important words (typically nouns) and the relationship
between those words. This task is a form of IE. In fact, IE is relevant for
multiple NLP tasks, including text summarization and question–answering
systems.

However, relation classification is the task of identifying the semantic
relation holding between two nominal entities in text. As you might have sur-
mised, there is no one-size-fits-all solution that works for multiple domains
(e.g., healthcare, biology, and chemistry).

One more point of interest is the Never Ending Language Learning
(NELL) semantic machine learning system from Carnegie Mellon University
that extracts relationships from the open Web:

https://en.wikipedia.org/wiki/Never-Ending_Language_Learning

WHAT IS A BLEU SCORE?

BLEU is an acronym for BiLingual Evaluation Understudy, which is a well-
known NLP metric. A BLEU score involves a straightforward calculation, and
since a BLUE score is typically published alongside NLP models, its inclusion
has become standard practice.

However, BLEU was created to measure machine translation, and it’s
most reliable when it’s calculated on an entire corpus instead of a sentence-
by-sentence calculation. Perhaps the popularity of BLEU scores resulted in
a side effect in which BLEU scores are assigned to NLP tasks where other
measurement tools produce more accurate results.

NLPFD.Ch3.indd 120NLPFD.Ch3.indd 120 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

NLP Concepts (II) • 121

BLEU has some significant limitations. It does not take into account sen-
tence structure, which can vary significantly among different languages (see
the section on “case endings” in Chapter 3), nor does it take into account the
meaning of sentences.

In simplified terms, BLEU scores involve precision, n-grams, and exact
matches with reference sentences. BLEU checks how many n-grams in the
output also appear in the reference translation. However, BLEU does not rec-
ognize synonyms, which means that pairs of sentences that use closely related
yet different verbs are not considered similar in BLEU. For example, three
sentences that use the verbs “drink,” “imbibe,” and “consume” would prob-
ably be considered equivalent, especially in casual conversation, but BLEU
does not recognize them as such.

ROUGE Score: An Alternative to BLEU

In brief, a ROUGE score is a variant of BLEU that involves recall (BLEU
uses precision) and determines the number of n-grams of the reference trans-
lation that appear in the output (BLEU does the opposite). More information
about ROUGE is available online:

https://www.aclweb.org/anthology/N03-1020/

There are also techniques that are unrelated to BLEU, such as perplexity,
WER, and F1 score, all of which are discussed in an appendix. Perform an
online search with the keywords “BLEU score alternatives” and you will find
many articles that discuss other alternatives to BLEU.

SUMMARY

This chapter started with a quick overview of language models, text encod-
ing techniques, and two types of word context. Then you learned about word
embeddings, which are highly useful in NLP. You obtained an introduction
to distance metrics, such as the cosine similarity (for measuring the distance
between two vectors) and document similarity. In addition, you learned about
the concepts of vector space models (VSMs) and topic modeling.

NLPFD.Ch3.indd 121NLPFD.Ch3.indd 121 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

NLPFD.Ch3.indd 122NLPFD.Ch3.indd 122 6/1/2021 11:40:31 AM6/1/2021 11:40:31 AM

C H A P T E R 4
Algorithms and Toolkits (I)

This chapter contains Python code samples that illustrate various NLP con-
cepts in the previous two chapters. Since those chapters contain sufficient
NLP-related theory, this chapter focuses almost exclusively on code samples.
The majority of the code samples in this chapter involve NLTK (Natural
Language Toolkit), along with several code samples that are based on Gensim.

The first section (approximately two-thirds of this chapter) introduces
NLTK and code samples that use NLTK with BoW, stemmers, and lemmati-
zation. You will also see some examples of NLTK with Wordnet, lxml, XPath
(not discussed in this book), n-grams, and skip-grams.

The second section introduces GloVe and Gensim, which are very useful
NLP Python libraries, along with some code samples.

WHAT IS NLTK?

NLTK is an open source Python library specifically for NLP-related tasks.
Although NLTK does not provide state-of-the-art performance, it does pro-
vide a variety of solutions to many NLP tasks. This library was developed in
2002, and its home page is available online:

www.nltk.org

NLTK provides support for many NLP-related tasks, such as stemmers,
tokenization (words, sentences, and documents), lemmatization, chunking,
and grammars. In particular, NLTK supports the SnowballStemmers that
creates non-English stemmers for more than 10 languages: Danish, Dutch,
English, French, German, Hungarian, Italian, Norwegian, Portuguese,
Romanian, Russian, Spanish, and Swedish.

NLPFD.Ch4.indd 123NLPFD.Ch4.indd 123 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

124 • Natural Language Processing Fundamentals for Developers

NLTK also supports n-grams, skip-grams, BoW, word2vec, Parts Of
Speech (POS), and Named Entity Recognition (NER). In fact, NLTK enables
you to define your own custom grammars and then parse sentences to deter-
mine if their structure conforms to a custom grammar.

NLTK is well-suited for various NLP tasks, such as recommendation sys-
tems and sentiment analysis, both of which are discussed in more detail in
Chapter 6. NLTK also supports Wordnet, which enables you to find words
(via Sysnet) and their homonyms and synonyms.

NLTK AND BoW

Listing 4.1 shows the contents of ntk_bow.py that illustrate how to imple-
ment BoW in NLTK. This code sample involves regular expressions, also
known as RegExs. If you are unfamiliar with RegExs, you can either “com-
ment out” the two code snippets that involve regular expressions, or you can
read the appendix that discusses this topic.

LISTING 4.1: nltk_bow.py

import nltk
import numpy as np
import re

text = 'the SF weather is hot and the LA weather is hotter'
ds = nltk.sent_tokenize(text)

clean the words in the dataset:
for i in range(len(ds)):
 ds[i] = ds[i].lower()
 ds[i] = re.sub(r'\W', ' ', ds[i])
 ds[i] = re.sub(r'\s+', ' ', ds[i])

print("cleaned dataset:")
print(ds)
print()

construct BoW model:
word2count = {}

NLPFD.Ch4.indd 124NLPFD.Ch4.indd 124 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

Algorithms and Toolkits (I) • 125

for data in ds:
 words = nltk.word_tokenize(data)
 for word in words:
 if word not in word2count.keys():
 word2count[word] = 1
 else:
 word2count[word] += 1

display word/frequency counts:
for word, freq in word2count.items():
 print(f'word: {word:8} frequency: {freq:3d}')

Listing 4.1 initializes the variable text with a string and then initializes
the variable ds with the tokens of text. Next, a for loop iterates through the
tokens and converts them to lowercase, removes all nonalphabetic characters,
and replaces multiple whitespaces with a single whitespace.

Next, the cleaned data is displayed, followed by a loop that constructs a
BoW model based on the tokens in the variable ds. Note that multiple occur-
rences of a token are taken into account when populating the dictionary word-
2count. The final portion of Listing 4.1 displays each word and its frequency.
Launch the code in Listing 4.1 and you will see the following output:

cleaned dataset:

['the sf weather is hot and the la weather is hotter']

word: the frequency: 2

word: sf frequency: 1

word: weather frequency: 2

word: is frequency: 2

word: hot frequency: 1

word: and frequency: 1

word: la frequency: 1

word: hotter frequency: 1

NLTK AND STEMMERS

Listing 4.2 shows the contents of stem_documents1.py that illustrate how
to perform stemming on a sentence with a PorterStemmer.

NLPFD.Ch4.indd 125NLPFD.Ch4.indd 125 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

126 • Natural Language Processing Fundamentals for Developers

LISTING 4.2: stem_documents1.py

import nltk
from nltk.stem import PorterStemmer
from nltk.tokenize import sent_tokenize, word_tokenize

read file contents:
file = open("data-science-wiki.txt")
my_lines_list = file.readlines()
#print("my_lines_list:")
#print(my_lines_list)

porter = PorterStemmer()

def stemSentence(sentence):
 token_words = word_tokenize(sentence)
 token_words
 stem_sentence = []

 for word in token_words:
 stem_sentence.append(porter.stem(word))
 stem_sentence.append(" ")

 return "".join(stem_sentence)

def saveStemmedLines():
 �stem_file = open("stem-data-science-wiki.txt",mode =

� "a+",encoding = "utf-8")
 for line in my_lines_list:
 stem_sentence = stemSentence(line)
 stem_file.write(stem_sentence)
 stem_file.close()

print(my_lines_list[0])
print("Stemmed sentence:")
x = stemSentence(my_lines_list[0])
print(x)

Listing 4.2 starts by reading the contents of a text file into the variable
my_lines_list. Next, the variable porter is initialized as an instance of the
PorterStemmer class that is available in NLTK. The next portion of Listing
4.2 is the definition of the Python function stemSentence(), which deter-
mines the stem of each word in the sentence that is passed into the function.

NLPFD.Ch4.indd 126NLPFD.Ch4.indd 126 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

Algorithms and Toolkits (I) • 127

The next portion of code defines the Python function saveStemmed–
Lines(), which contains a for loop that iterates through the sentences that
have been processed by the function stemSentence(). The last portion of
Listing 4.2 invokes the Python function stemSentence() with the first sen-
tence in my_lines_list, displays the output, and then saves the stemmed
text. Launch the code in Listing 4.2 to see the following output:

'data scienc is an interdisciplinari field that use
scientif method, process, algorithm and system to extract
knowledg and insight from data in variou form, both
structur and unstructur, [1] [2] similar to data mine.
\n', 'data scienc is a '' concept to unifi statist, data
analysi, machin learn and their relat method '' in order
to '' understand and analyz actual phenomena '' with
data. [3] It employ techniqu and theori drawn from mani
field within the context of mathemat, statist, inform
scienc, and comput scienc. \n',

Listing 4.3 shows the contents of porter_lancaster1.py that illustrate
how to invoke a Porter stemmer and a Lancaster stemmer to perform stem-
ming on a set of words.

LISTING 4.3: porter_lancaster1.py

from nltk.stem import PorterStemmer
from nltk.stem import LancasterStemmer

create two stemmers:
porter = PorterStemmer()
lancaster = LancasterStemmer()

#provide a word to be stemmed
print("Porter Stemmer:")
print(porter.stem("cats"))
print(porter.stem("trouble"))
print(porter.stem("troubling"))
print(porter.stem("troubled"))

print("Lancaster Stemmer:")
print(lancaster.stem("cats"))
print(lancaster.stem("trouble"))
print(lancaster.stem("troubling"))
print(lancaster.stem("troubled"))

NLPFD.Ch4.indd 127NLPFD.Ch4.indd 127 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

128 • Natural Language Processing Fundamentals for Developers

In Listing 4.3, the first portion displays the stemmed values that are deter-
mined by an instance of the PorterStemmer class, followed by another code
block that performs the same calculations based on a LancasterStemmer.
Launch the code in Listing 4.3 to see the following output:

Porter Stemmer:

cat

troubl

troubl

troubl

Lancaster Stemmer:

cat

troubl

troubl

troubl

Listing 4.4 shows the contents of porter_lancaster2.py that illus-
trate how to invoke a PorterStemmer and a LancasterStemmer to perform
stemming on a set of words.

LISTING 4.4: porter_lancaster2.py

from nltk.stem import PorterStemmer
from nltk.stem import LancasterStemmer

create two stemmers:
porter = PorterStemmer()
lancaster = LancasterStemmer()

word_list = ["friend", "friendship", "friends", "friendships",
"stabil","destabilize","misunderstanding","railroad",
� "moonlight","football"]

print("{0:20}{1:20}{2:20}".format("Word","Porter
� Stemmer","lancaster Stemmer"))

for word in word_list: print ("{0:20}{1:20}{2:20}".
format(word,porter.stem(word),lancaster.stem(word)))

NLPFD.Ch4.indd 128NLPFD.Ch4.indd 128 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

Algorithms and Toolkits (I) • 129

Listing 4.4 initializes the variables porter and lancaster as instances
of the classes PorterStemmer and LancasterStemmer, respectively, and
then initializes the array word_list with a set of strings. The next portion of
Listing 4.4 iterates through the words in the variable word_list and displays
the stemmed values produced via the porter stemmer and the lancaster
stemmer. Launch the code in Listing 4.4 to see the following output:

Word Porter Stemmer lancaster Stemmer

friend friend friend

friendship friendship friend

friends friend friend

friendships friendship friend

stabil stabil stabl

destabilize destabil dest

misunderstanding misunderstand misunderstand

railroad railroad railroad

moonlight moonlight moonlight

football footbal footbal

NLTK AND LEMMATIZATION

Listing 4.5 shows the contents of lemmatizer1.py that illustrate how to per-
form lemmatization on a sentence.

LISTING 4.5: lemmatizer1.py

import nltk
from nltk.stem import WordNetLemmatizer

wordnet_lemmatizer = WordNetLemmatizer()

sentence = "He eats Chicago deep dish pizzas, and lots of
� pizzas from Pizzeria Uno!"
punctuations = "?:!.,;"

NLPFD.Ch4.indd 129NLPFD.Ch4.indd 129 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

130 • Natural Language Processing Fundamentals for Developers

sentence_words = nltk.word_tokenize(sentence)

for word in sentence_words:
 if word in punctuations:
 sentence_words.remove(word)

print("{0:20}{1:20}".format("Word","Lemma"))
for word in sentence_words:
 �print
("{0:20}{1:20}".format(word,wordnet_lemmatizer.
� lemmatize(word)))

Listing 4.5 initializes the variable wordnet_lemmatizer as an instance
of the WordNetLemmatizer class that is available in NLTK. The vari-
ables sentence and punctuations are initialized, as well as the variable
sentence_words that consists of the tokens in the variable sentence.
Next is a loop that removes any punctuation symbols from the variable
sentence_words. The final code block contains a loop that displays each
word in sentence_words, along with its lemmatized value. Launch the code
in Listing 4.5 to see the following output:

Word		 Lemma

He			 He

eats		 eats

Chicago		 Chicago

deep		 deep

dish		 dish

pizzas		 pizza

and			 and

lots		 lot

of			 of

pizzas		 pizza

from		 from

Pizzeria		 Pizzeria

Uno			 Uno

Listing 4.6 shows the contents of lemmatizer2.py that illustrate how to
perform lemmatization on a sentence.

NLPFD.Ch4.indd 130NLPFD.Ch4.indd 130 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

Algorithms and Toolkits (I) • 131

LISTING 4.6: lemmatizer2.py

import nltk
from nltk.stem import WordNetLemmatizer

wordnet_lemmatizer = WordNetLemmatizer()

sentence = "He eats Chicago deep dish pizzas, and lots of
� pizzas from Pizzeria Uno!"
punctuations = "?:!.,;"

sentence_words = nltk.word_tokenize(sentence)

for word in sentence_words:
 if word in punctuations:
 sentence_words.remove(word)

display "part-of-speech" via pos = "v"
print("{0:20}{1:20}".format("Word","Lemma"))
for word in sentence_words:
 print ("{0:20}{1:20}".format(word,wordnet_lemmatizer.
lemmatize(word, pos = "v")))

Listing 4.6 is similar to Listing 4.5, with the addition of a for loop (shown
in bold) that displays the words in sentence_words, along with their lem-
matized values. Launch the code in Listing 4.6 to see the following output:

Word		 Lemma

He			 He

eats		 eat

Chicago		 Chicago

deep		 deep

dish		 dish

pizzas		 pizzas

and			 and

lots		 lot

of			 of

pizzas		 pizzas

from		 from

Pizzeria		 Pizzeria

Uno			 Uno

NLPFD.Ch4.indd 131NLPFD.Ch4.indd 131 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

132 • Natural Language Processing Fundamentals for Developers

NLTK AND STOP WORDS

Listing 4.7 shows the contents of nltk_newstop.py that illustrate how to
add new stop words to the default set of stop words.

LISTING 4.7: nltk_newstop.py

from sklearn.feature_extraction.text import
� CountVectorizer
from nltk.corpus import stopwords

newstop = set(stopwords.words('english')+['pasta','bliffet'])

print("new stopwords:")
print(newstop)

Listing 4.7 initializes the variable newstop with a pair of strings, after
which the variable cv is initialized as an instance of the CountVectorizer
class from Sklearn. Note that the latter initialization specifies the variable
newstop as the set of stop words. Launch the code in Listing 4.7 to see the
following output:

new stopwords:

{'couldn', 'hadn', 'theirs', 'shan', 'weren',
'having', 'y', 'between', 'before', 'can', 'other',
'all', 'wouldn', 'once', 'of', 'me', 'but', 'doing',
'because', 'own', 'mightn', 'hers', 'after', 'out',
'd', 'where', 'the', 'her', 'nor', 'him', 'below',
'both', 'do', "you'll", 'won', 'ourselves', "needn't",
'ma', 'now', 'from', 'she', 'down', "you'd", 'an',
"hadn't", 'should', 'were', 'you', 'it', 'such',
'their', 'bliffet', 'isn', 'who', 'had', "didn't",
'mustn', 'our', "you've", 'or', 'again', "aren't",
"won't", 'itself', 'any', 'those', "don't", "isn't",
'am', "she's", 'how', 'than', 'be', 'as', 'has',
'being', 'each', 'doesn', 'wasn', 'ours', 'while',
"hasn't", 'about', 'herself', 'with', 'on', 'them',
'shouldn', 'a', 'if', 'off', 'will', "wouldn't",
'over', 'some', 'these', 'there', 'why', 'yourself',
'too', "doesn't", 'just', 'didn', "shouldn't", 'don',
'which', 'few', "mightn't", "you're", "haven't",
'my', 'i', 'and', 'then', 'only', 'by', 'your',

NLPFD.Ch4.indd 132NLPFD.Ch4.indd 132 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

Algorithms and Toolkits (I) • 133

'what', 'when', 'up', 'here', 'o', 't', 'during',
'are', "couldn't", 'through', 'themselves', 'himself',
'until', 'did', 'against', 's', 'was', 'so', 'this',
'have', 'to', 'll', 'm', 'myself', 'at', 've', 'for',
'we', 'does', 'its', 're', 'needn', "mustn't", 'more',
'pasta', 'he', 'no', "shan't", 'his', 'above', 'that',
'under', "weren't", 'whom', 'further', 'ain', 'is',
'into', "should've", 'been', 'haven', 'yourselves',
'very', "wasn't", 'hasn', 'same', 'most', 'not',
'they', "that'll", "it's", 'yours', 'in', 'aren'}

WHAT IS WORDNET?

Wordnet is a corpus reader that is provided by NLTK, and you can use either
of the following snippets to import Wordnet:

from nltk.corpus import wordnet

from nltk.corpus import wordnet as wn

Wordnet provides the synsets() function that enables you to search for
words and display their POS, as well as synonyms and antonyms of a given
word.

Wordnet (via NLTK) provides the following similarity scorers (authors
are in parentheses):

●● jcn_similarity
●● lch_similarity (Leacock-Chodorow)
●● lin_similarity
●● path_similarity
●● res_similarity
●● wup_similarity (Wu-Palmer)
●● PPMI

Listing 4.8 shows the contents of similarity1.py that illustrate how to
use wup_similarity() to find the similarity between a pair of words.

LISTING 4.8: similarity1.py

from nltk.corpus import wordnet as wn

Wu and Palmer method to compare word similarity
w1 = wn.synset('ship.n.01')

NLPFD.Ch4.indd 133NLPFD.Ch4.indd 133 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

134 • Natural Language Processing Fundamentals for Developers

w2 = wn.synset('boat.n.01')
print("=> similarity of ship and boat:")
print(w1.wup_similarity(w2))
print()

w1 = wn.synset('ship.n.01')
w2 = wn.synset('car.n.01')
print("=> similarity of ship and car:")
print(w1.wup_similarity(w2))
print()

w1 = wn.synset('ship.n.01')
w2 = wn.synset('dog.n.01')
print("=> similarity of ship and dog:")
print(w1.wup_similarity(w2))
print()

Listing 4.8 contains three blocks of code that compare the word “ship”
with “boat,” “car,” and “dog,” using wordnet. Launch the code in Listing 4.8
to see the following output:

=> similarity of ship and boat:

0.9090909090909091

=> similarity of ship and car:

0.6956521739130435

=> similarity of ship and dog:

0.4

Listing 4.9 shows the contents of wordnet1.py that illustrate how to use
path_similarity() to find the similarity between a pair of words.

LISTING 4.9: wordnet1.py

from nltk.corpus import wordnet as wn

Multilingual WordNet (ISO-639 language codes):
print("=> sorted(wn.langs()):")
print(sorted(wn.langs()))
print()

NLPFD.Ch4.indd 134NLPFD.Ch4.indd 134 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

Algorithms and Toolkits (I) • 135

drink = wn.lemma('drink.v.03.drink')
print("=> drink:",drink)
print("=> count:",drink.count())
print()

horse = wn.synset('horse.n.01')
giraffe = wn.synset('giraffe.n.01')
zebra = wn.synset('zebra.n.01')

print("=> horse.path_similarity(giraffe):")
print(horse.path_similarity(giraffe))
print()

print("=> horse.path_similarity(zebra):")
print(horse.path_similarity(zebra))

Listing 4.9 starts by displaying a sorted list of language code for supported
languages, followed by the lemmatized value and frequency of the word
“drink.” The next code snippet compares the word “horse” with the word
“giraffe” and then with the word “zebra,” similar to the code in Listing 4.8.
Launch the code in Listing 4.9 to see the following output:

=> sorted(wn.langs()):

['als', 'arb', 'bul', 'cat', 'cmn', 'dan', 'ell',
'eng', 'eus', 'fas', 'fin', 'fra', 'glg', 'heb', 'hrv',
'ind', 'ita', 'jpn', 'nld', 'nno', 'nob', 'pol', 'por',
'qcn', 'slv', 'spa', 'swe', 'tha', 'zsm']

=> drink: Lemma('toast.v.02.drink')

=> count: 1

=> horse.path_similarity(giraffe):

0.14285714285714285

=> horse.path_similarity(zebra):

0.3333333333333333

NLPFD.Ch4.indd 135NLPFD.Ch4.indd 135 6/7/2021 4:35:53 PM6/7/2021 4:35:53 PM

136 • Natural Language Processing Fundamentals for Developers

Synonyms and Antonyms

Listing 4.10 shows the contents of nltk_syn_ant.py that illustrate how to
find synonyms and antonyms of a word using NLTK.

LISTING 4.10: nltk_syn_ant.py

from nltk.corpus import wordnet

word = "work"

synonyms = []
for syn in wordnet.synsets(word):
 for lemma in syn.lemmas():
 synonyms.append(lemma.name())

print("=> synonyms for",word,":")
print(synonyms)
print("-------------------------")

antonyms = []
for syn in wordnet.synsets(word):
 for lemma in syn.lemmas():
 if lemma.antonyms():
 antonyms.append(lemma.antonyms()[0].name())

print("=> antonyms for",word,":")
print(antonyms)

Listing 4.10 starts with a loop that finds and displays the words that are
synonyms for the word “work.” The next block of code in Listing 4.10 contains
a loop that finds and displays the antonyms for the word “work.” Launch the
code in Listing 4.10 to see the following output:

=> synonyms for work :

['work', 'work', 'piece_of_work', 'employment', 'work',
'study', 'work', 'work', 'workplace', 'work', 'oeuvre',
'work', 'body_of_work', 'work', 'work', 'do_work',
'work', 'act', 'function', 'work', 'operate', 'go',
'run', 'work', 'work_on', 'process', 'exercise',
'work', 'work_out', 'make', 'work', 'work', 'work',
'work', 'bring', 'work', 'play', 'wreak', 'make_for',
'work', 'put_to_work', 'cultivate', 'crop', 'work',
'work', 'influence', 'act_upon', 'work', 'work',

NLPFD.Ch4.indd 136NLPFD.Ch4.indd 136 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

Algorithms and Toolkits (I) • 137

'work', 'work', 'work', 'shape', 'form', 'work',
'mold', 'mould', 'forge', 'work', 'knead', 'work',
'exploit', 'work', 'solve', 'work_out', 'figure_out',
'puzzle_out', 'lick', 'work', 'ferment', 'work',
'sour', 'turn', 'ferment', 'work', 'work']

=> antonyms for work :

['idle', 'malfunction']

NLTK, lxml, AND XPath

This section contains a code sample that combines NLTK, lxml, and XPath
expressions. As a reminder, you can find online tutorials that discuss basic
concepts of XPath if you are unfamiliar with XPath expressions.

Make sure you invoke pip3 install lxml.

Listing 4.11 shows the contents of nltk_xpath.py that illustrate how to
retrieve the contents of the HTML Webpage https://www.github.com.

LISTING 4.11: nltk_xpath.py

import nltk
import lxml
from lxml import html
import requests

page = requests.get('https://www.ibm.com/events/think')
root = lxml.html.fromstring(page.content)
tree = html.fromstring(page.content)
data = tree.xpath('//*[@id = "conference-overview"]/div/
� div[2]/div/p')

print("root:")
print(root)
print("---------------------------\n")

print("data:")
print(data)
print("---------------------------\n")

NOTE

NLPFD.Ch4.indd 137NLPFD.Ch4.indd 137 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

138 • Natural Language Processing Fundamentals for Developers

items = []
for item in data:
 content = item.text_content()
 items.append(content)
 print("=> content:",item.text_content())
print("---------------------------\n")

print("items1:")
print(items)
print("---------------------------\n")

Listing 4.11 contains several import statements, followed by the initial-
ization of several variables. The page variable is initialized with the contents
of the URL in the requests.get() method. The variable root is assigned
the top-level node, and the tree variable is assigned the contents of the
HTML Webpage.

The fourth variable, data, is initialized with the result of an XPath
expression, as shown here:

data = tree.xpath('//*[@id="conference-overview"]/div/
� div[2]/div/p')

The left-most portion of the variable data consists of a tree of ele-
ments (starting from the root element) whose id value equals the string
conference-overview. This tree is further pruned by selecting the leaf
nodes of the preceding tree that have a descendant that matches the partial
path div/div[2]/div. The preceding partial path involves (a) selecting ele-
ments that have a <div> element, then (b) navigating to the second <div>
child element, and (c) further navigating to the <div> child elements of the
elements in (b). The final step involves selecting the <p> elements that are
child elements of the previous step.

The next section in Listing 4.11 displays the root element and the data
element, followed by a for loop that iterates through the data subtree to
append the text content of each element in the data variable. Launch the
code in Listing 4.11 to see 102 lines of output. Only the first portion of the
output is shown.

root:

<Element html at 0x1160ee778>

NLPFD.Ch4.indd 138NLPFD.Ch4.indd 138 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

Algorithms and Toolkits (I) • 139

data:

[<Element p at 0x11613b138>, <Element p at 0x11613b048>,
<Element p at 0x11613b188>, <Element p at 0x11613b1d8>,
<Element p at 0x11613b228>]

=> content: As the evolving impacts of COVID-19 ripple
through our communities, we are all facing unforeseen
challenges.

=> content: Gain new skills needed to adapt and evolve.
Explore new ways of working and learn how to stabilize
and protect your organization. Enhance IT resiliency,
ensure business continuity and most importantly, stay
connected.

=> content: Sessions are on demand. Self-paced labs are
available all day through Sunday, May 10.

=> content: Let’s get thinking.

=> content: Watch now View self-paced labs

items1:

['As the evolving impacts of COVID-19 ripple through
our communities, we are all facing unforeseen
challenges.', 'Gain new skills needed to adapt and
evolve. Explore new ways of working and learn how
to stabilize and protect your organization. Enhance
IT resiliency, ensure business continuity and most
importantly, stay connected.', 'Sessions are on demand.
Self-paced labs are available all day through Sunday,
May 10.', "Let's get thinking.", 'Watch now View
self-paced labs']

NLTK AND N-GRAMS

This section contains a code sample that uses NLTK to generate n-grams
from a document. Listing 4.12 shows the contents of nltk_ngrams.py
that illustrate how to retrieve the contents of the HTML webpage
https://www.github.com.

NLPFD.Ch4.indd 139NLPFD.Ch4.indd 139 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

140 • Natural Language Processing Fundamentals for Developers

LISTING 4.12: nltk_ngrams.py

import re
from nltk.util import ngrams

str = "Natural-language processing (NLP) is an area of
computer science and artificial intelligence concerned with
the interactions between computers and human (natural)
languages."

str = str.lower()
str = re.sub(r'[^a-zA-Z0-9\s]', ' ', str)
tokens = [token for token in str.split(" ") if token != ""]
grams5 = list(ngrams(tokens, 5))

print("Generated 5-grams:")
print(grams5)

Listing 4.12 initializes the variable str with a text string, converts the
text to lowercase, and then replaces every nonalphanumeric character with a
single white space via a regular expression.

Next the tokens variable is initialized with the nonempty tokens in the
str variable, followed by the variable grams5 that is a list of 5 grams that are
constructed from the tokens variable. Launch the code in Listing 4.12 to see
102 lines of output. Only the first portion of the output is given here.

Generated 5-grams:

[('natural', 'language', 'processing', 'nlp',
'is'), ('language', 'processing', 'nlp', 'is',
'an'), ('processing', 'nlp', 'is', 'an', 'area'),
('nlp', 'is', 'an', 'area', 'of'), ('is', 'an',
'area', 'of', 'computer'), ('an', 'area', 'of',
'computer', 'science'), ('area', 'of', 'computer',
'science', 'and'), ('of', 'computer', 'science',
'and', 'artificial'), ('computer', 'science', 'and',
'artificial', 'intelligence'), ('science', 'and',
'artificial', 'intelligence', 'concerned'), ('and',
'artificial', 'intelligence', 'concerned', 'with'),
('artificial', 'intelligence', 'concerned', 'with',
'the'), ('intelligence', 'concerned', 'with',
'the', 'interactions'), ('concerned', 'with',
'the', 'interactions', 'between'), ('with', 'the',
'interactions', 'between', 'computers'), ('the',

NLPFD.Ch4.indd 140NLPFD.Ch4.indd 140 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

Algorithms and Toolkits (I) • 141

'interactions', 'between', 'computers', 'and'),
('interactions', 'between', 'computers', 'and',
'human'), ('between', 'computers', 'and', 'human',
'natural'), ('computers', 'and', 'human', 'natural',
'languages')]

NLTK AND POS (I)

This section contains a code sample that uses NLTK to display the parts of
speech for the words in a sentence.

Listing 4.13 shows the contents of nltk_pos.py that illustrate how to
tokenize a sentence and then determine the parts of speech for each word in
that sentence.

LISTING 4.13: nltk_pos.py

import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import wordnet

sentence = "I love pizza, and also pasta, what about you?"
split_words = sentence.split(" ")
print("sentence:")
print(sentence)
print()
print("split_words:")
print(split_words)
print()

word_tokenize(sentence)

w = word_tokenize(sentence)
pos = nltk.pos_tag(w)

print("tokenized:")
print(w)
print()

print("parts of speech:")
print(pos)
print()

NLPFD.Ch4.indd 141NLPFD.Ch4.indd 141 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

142 • Natural Language Processing Fundamentals for Developers

syn = wordnet.synsets("spaceship")
print(syn)
print(syn[0].name())
print(syn[0].definition())

syn = wordnet.synsets("sleep")
print("examples of sleep:")
print(syn[0].examples())
print()

Listing 4.13 initializes the variable sentence to a text string, and
initializes the variable split_words with the tokens in the variable
sentence. The next block of print() statements displays the contents
of sentence and split_words.

The next code snippet initializes the variable w with the result of passing
sentence to the word_tokenize method from NLTK. The variable pos is
then initialized with the parts of speech of the elements in w, followed by a
block of print() statements that display their values as well as their parts of
speech.

The final portion of Listing 4.13 invokes the wordnet.synsets()
method to find the definitions of the word spaceship and the word sleep.
In both cases, the definitions are displayed. Launch the code in Listing 4.14
to see the following output:

sentence:

I love pizza, and also pasta, what about you?

split_words:

['I', 'love', 'pizza,', 'and', 'also', 'pasta,',
'what', 'about', 'you?']

tokenized:

['I', 'love', 'pizza', ',', 'and', 'also', 'pasta',
',', 'what', 'about', 'you', '?']

parts of speech:

[('I', 'PRP'), ('love', 'VBP'), ('pizza', 'NN'), (',',
','), ('and', 'CC'), ('also', 'RB'), ('pasta', 'NN'),
(',', ','), ('what', 'WP'), ('about', 'IN'), ('you',
'PRP'), ('?', '.')]

NLPFD.Ch4.indd 142NLPFD.Ch4.indd 142 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

Algorithms and Toolkits (I) • 143

[Synset('starship.n.01')]

starship.n.01

a spacecraft designed to carry a crew into interstellar
space (especially in science fiction)

examples of sleep:

["he didn't get enough sleep last night", 'calm as a
child in dreamless slumber']

Listing 4.14 shows the contents of nltk_movie_reviews.py that illus-
trate how to tokenize a sentence and display relevant movie-related words.

LISTING 4.14: nltk_movie_reviews.py

import nltk

from nltk.corpus import movie_reviews

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

print("first 16 English stop words:")

print(stopwords.words('english')[:16])

print()

para = "I started with Deep Learning, then proceeded
to Machine Learning, then NLP, and finally reached
Deep Reinforcement Learning. However, despite the
preparatory classes, the challenge of DRL was very
steep."

words = word_tokenize(para)

print("tokenized words:")

print(words)

print()

useful_words = [word for word in words if word not in
� stopwords.words('english')]

print("useful words:")

print(useful_words)

print()

NLPFD.Ch4.indd 143NLPFD.Ch4.indd 143 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

144 • Natural Language Processing Fundamentals for Developers

print("movie reviews words:")

print(movie_reviews.words())

print()

print("movie reviews categories:")

print(movie_reviews.categories())

print()

print("movie reviews fileids:")

print(movie_reviews.fileids()[:4])

print()

all_words = movie_reviews.words()

freq_dist = nltk.FreqDist(all_words)

print("frequency distribution for 20 most common words:")

print(freq_dist.most_common(20))

print()

Listing 4.14 starts with several import statements, prints some stop
words, and then initializes the variable para as a text string, which is toke-
nized and its tokens are then displayed. Next, the variable useful_words is
initialized with the result of removing the stop words from the variable words.

The next code block in Listing 4.14 prints the nonstop words, followed by
the movie-related words (from the movie_reviews class). The last portion of
Listing 4.14 displays several file IDs and then the distribution for the 20 most
common words. Launch the code in Listing 4.14 to see the following output:

first 16 English stop words:

['i', 'me', 'my', 'myself', 'we', 'our', 'ours',
'ourselves', 'you', "you're", "you've", "you'll",
"you'd", 'your', 'yours', 'yourself']

tokenized words:

['My', 'goal', 'was', 'simple', ':', 'learn',
'as', 'much', 'as', 'possible', 'about', 'Deep',
'Reinforcement', 'Learning', '.', 'Even', 'after',

NLPFD.Ch4.indd 144NLPFD.Ch4.indd 144 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

Algorithms and Toolkits (I) • 145

'studying', 'machine', 'learning', ',', 'deep',
'learning', ',', 'and', 'natural', 'language',
'processing', ',', 'the', 'challenge', 'of', 'DRL',
'was', 'very', 'steep', '.']

useful words:

['My', 'goal', 'simple', ':', 'learn', 'much',
'possible', 'Deep', 'Reinforcement', 'Learning', '.',
'Even', 'studying', 'machine', 'learning', ',', 'deep',
'learning', ',', 'natural', 'language', 'processing',
',', 'challenge', 'DRL', 'steep', '.']

movie reviews words:

['plot', ':', 'two', 'teen', 'couples', 'go', 'to', ...]

movie reviews categories:

['neg', 'pos']

movie reviews fileids:

['neg/cv000_29416.txt', 'neg/cv001_19502.txt', 'neg/
cv002_17424.txt', 'neg/cv003_12683.txt']

frequency distribution for 20 most common words:

[(',', 77717), ('the', 76529), ('.', 65876), ('a',
38106), ('and', 35576), ('of', 34123), ('to', 31937),
("'", 30585), ('is', 25195), ('in', 21822), ('s',
18513), ('"', 17612), ('it', 16107), ('that', 15924),
('-', 15595), (')', 11781), ('(', 11664), ('as',
11378), ('with', 10792), ('for', 9961)]

NLTK AND POS (2)

This section contains a code sample that uses NLTK to display the parts of
speech for the words in a sentence. Listing 4.15 shows the contents of nltk_
entities.py that illustrate how to tokenize a sentence and then determine
the parts of speech for each word in that sentence.

NLPFD.Ch4.indd 145NLPFD.Ch4.indd 145 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

146 • Natural Language Processing Fundamentals for Developers

LISTING 4.15: nltk_entities.py

import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk import ne_chunk, pos_tag

text = 'the SF weather is hot and the LA weather is hotter'
words = word_tokenize(text)
print("words:")
print(words)
print()

print("nltk.pos_tag(words):")
print(nltk.pos_tag(words))

def entities(text):
 return ne_chunk(pos_tag(word_tokenize(text)))

tree = entities(text)
print("tokenized:")
print(tree)
print("----------------")
tree.draw()

Listing 4.15 initializes the variable text with a text string, followed by the
variable words that consists of the tokens of the variable text. Next, several
print() statements display the contents of the variable words as well as the
parts of speech of the tokens in the variable words.

The next portion of Listing 4.15 is a Python function entities() that
returns the parts of speech of the tokens in the text string that is passed in to
the entities() function. The final portion of Listing 4.15 invokes the enti-
ties() function, assigns the result to the variable tree, and then displays the
contents of tree. Launch the code in Listing 4.15 to see the following output:

words:

['the', 'SF', 'weather', 'is', 'hot', 'and', 'the',
'LA', 'weather', 'is', 'hotter']

nltk.pos_tag(words):

[('the', 'DT'), ('SF', 'NNP'), ('weather', 'NN'),
('is', 'VBZ'), ('hot', 'JJ'), ('and', 'CC'), ('the',

NLPFD.Ch4.indd 146NLPFD.Ch4.indd 146 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

Algorithms and Toolkits (I) • 147

'DT'), ('LA', 'NNP'), ('weather', 'NN'), ('is', 'VBZ'),
('hotter', 'RBR')]

tokenized:

(S

 the/DT

 (ORGANIZATION SF/NNP)

 weather/NN

 is/VBZ

 hot/JJ

 and/CC

 the/DT

 (ORGANIZATION LA/NNP)

 weather/NN

 is/VBZ

 hotter/RBR)

FIGURE 4.1.  The tree structure with named entities that is generated when the code in
Listing 4.16 is launched.

NLTK AND TOKENIZERS

This section contains a code sample that contains various tokenizers that are
defined in NLTK. Listing 4.16 shows the contents of nltk_tokenizers.py
that illustrate various ways of tokenizing the words in a sentence.

LISTING 4.16: nltk_tokenizers.py

import nltk

text = "I love deep dish pizza. Mainly from Chicago. Also
� with beer."

NLPFD.Ch4.indd 147NLPFD.Ch4.indd 147 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

148 • Natural Language Processing Fundamentals for Developers

sents = nltk.sent_tokenize(text)
words = nltk.word_tokenize(text)
tokens = nltk.wordpunct_tokenize(text)
tags = nltk.pos_tag(words)

print("text: ",text)
print("sents: ",sents)
print("words: ",words)
print("tokens:",tokens)
print("tags: ",tags)

Listing 4.16 initializes the variable text with a text string, followed by
variables that are instances of various tokenizers that are available in NLTK.
The block of print() statements displays the tokens that are produced by
each of the tokenizers. Launch the code in Listing 4.16 to see the following
output:

text: I love deep dish pizza. Mainly from Chicago. Also
with beer.

sents: ['I love deep dish pizza.', 'Mainly from
Chicago.', 'Also with beer.']

words: ['I', 'love', 'deep', 'dish', 'pizza', '.',
'Mainly', 'from', 'Chicago', '.', 'Also', 'with',
'beer', '.']

tokens: ['I', 'love', 'deep', 'dish', 'pizza', '.',
'Mainly', 'from', 'Chicago', '.', 'Also', 'with',
'beer', '.']

tags: [('I', 'PRP'), ('love', 'VBP'), ('deep', 'JJ'),
('dish', 'JJ'), ('pizza', 'NN'), ('.', '.'), ('Mainly',
'RB'), ('from', 'IN'), ('Chicago', 'NNP'), ('.', '.'),
('Also', 'RB'), ('with', 'IN'), ('beer', 'NN'), ('.', '.')]

The following URL contains a list of the terms in the preceding output,
along with their corresponding parts of speech:

https://cs.nyu.edu/grishman/jet/guide/PennPOS.html

The next section provides another example of finding named entities
using the NLTK library.

NLPFD.Ch4.indd 148NLPFD.Ch4.indd 148 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

Algorithms and Toolkits (I) • 149

NLTK AND CONTEXT-FREE GRAMMARS (OPTIONAL)

In simplified terms, a context-free grammar (CFG) is a set of rules or “pro-
ductions” that are used to generate patterns of strings. Such rules are typically
recursive, and they involve a set of terminal symbols, a set of nonterminal
symbols, and an end symbol. There is also a start symbol that is a nonter-
minal symbol and appears in the initial string that is generated by a CFG.
Depending on the complexity of the CFG, you can also see regular expres-
sions in the productions.

Many popular programming languages, such as C, C++, and Java (but
not Fortran), are context-free grammars. For example, the complete set of
production rules for the C programming language is about five pages long.

As a simple example, here is a grammar that represents arithmetic expres-
sions that contain any combination of the arithmetic operators ∗, /, +, and −
(and numeric values as operands):

<expression> --> number

<expression> --> (<expression>)

<expression> --> <expression> + <expression>

<expression> --> <expression> - <expression>

<expression> --> <expression> * <expression>

<expression> --> <expression> / <expression>

You might be surprised to discover that the NLTK library provides sup-
port for CFGs. Listing 4.17 shows the contents of nltk_grammar.py that
illustrate how to specify a set of production rules for a simple context-free
grammar. Note that it’s more common to see the single letters N, V, and P
used instead of noun, verb, and preposition in CFGs. The latter are just to
show you that you can be more expressive in the productions of a CFG.

LISTING 4.17: nltk_grammar.py

import re
import nltk
from nltk.parse import RecursiveDescentParser

Define a CFG (Context Free Grammar):
mygrammar = nltk.CFG.fromstring("""
S -> NP VP
NP -> Art Noun | Art Noun PP
VP -> Verb | Verb NP | Verb NP PP
PP -> Prep NP

NLPFD.Ch4.indd 149NLPFD.Ch4.indd 149 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

150 • Natural Language Processing Fundamentals for Developers

Art -> 'a' | 'an' | 'the'
Noun -> 'boy' | 'ball' | 'apple' | 'hot' | 'dog'
Verb -> 'ate' | 'ran' | 'studied'
Prep -> 'in' | 'with'
""")

a top-down parser:
rdstr = RecursiveDescentParser(mygrammar)

str1 = "the boy with the ball ate a hot dog"
str2 = "the boy ate an apple with the ball"

#display the grammar trees:
print("grammar trees for str1:")
for tree in rdstr.parse(str1.split()):
 print("tree:",tree)
print("------------------------")

print("grammar trees for str2:")
for tree in rdstr.parse(str2.split()):
 print("tree:",tree)

Listing 4.17 initializes the variable mygrammar with 8 production rules
that are used to determine whether a text string will parse correctly according
to the given grammar. The next code snippet initializes the variable rdstr as
an instance of the class RecursiveDescentParser (from NLTK) with the
argument mygrammar.

The two variables str1 and str2 are initialized with text strings. One of
them parses according to the grammar and one does not parse correctly. The
two strings are very similar, and it’s challenging to parse them visually against
the grammar. However, the code in Listing 4.17 also contains two loops for
displaying the parse tree for str1 and str2. Notice that there is only a parse
tree for str2 because str1 does not belong to the defined grammar. Launch
the code in Listing 4.17 to see trees for the second sentence str2 but not for
str1 (can you see why?).

grammar trees for str1:

grammar trees for str2:

tree: (S

 (NP (Art the) (Noun boy))

 (VP

NLPFD.Ch4.indd 150NLPFD.Ch4.indd 150 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

Algorithms and Toolkits (I) • 151

 (Verb ate)

 (NP

 (Art an)

 (Noun apple)

 (PP (Prep with) (NP (Art the) (Noun ball))))))

tree: (S

 (NP (Art the) (Noun boy))

 (VP

 (Verb ate)

 (NP (Art an) (Noun apple))

 (PP (Prep with) (NP (Art the) (Noun ball)))))

WHAT IS GENSIM?

Gensim is an open source Python-based NLP library for performing NLP-
related tasks, such as text processing, word embeddings, and topic modeling.
Its homepage is at https://gensim.readthedocs.io/en/latest/index.html.

Gensim supports unsupervised topic modeling and uses modern statis-
tical machine learning. Gensim is also implemented in Cython (in addition
to Python). Gensim works with word vector models, such as Word2Vec and
FastText, and also supports LDA and LSI for topic modeling. Moreover,
Gensim is compatible with scipy and NumPy, and provides functions to con-
vert from/to NumPy arrays.

Gensim works with a single text-based document or a corpus (collection)
of text-based documents. Gensim uses vectors to represent the words in a
document, and its model is an algorithm for transforming vectors from one
representation to another.

In addition, Gensim can create a BoW corpus, a tf-idf model, a word2vec
model, and n-grams. Moreover, Gensim computes similarity metrics. Now
let’s look at an example of gensim with tf-idf that is discussed in the next
section.

Gensim and tf-idf Example

Gensim works with a single text-based document or a corpus (collection) of
text-based documents. Listing 4.18 shows the contents of gensim_tfidf.py
that illustrate how to combine gensim with tf-idf.

NLPFD.Ch4.indd 151NLPFD.Ch4.indd 151 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

152 • Natural Language Processing Fundamentals for Developers

LISTING 4.18: gensim_tfidf.py

from gensim import models
from gensim import corpora
from gensim.utils import simple_preprocess
import numpy as np

documents = ["This is the first line",
 "This is the second sentence",
 "This third document"]

Create the Dictionary and Corpus
mydict = corpora.Dictionary([simple_preprocess(line) for
� line in documents])
corpus = [mydict.doc2bow(simple_preprocess(line)) for line
� in documents]

Show the Word Weights in Corpus
for doc in corpus:
 print([[mydict[id], freq] for id, freq in doc])

Create the TF-IDF model
tfidf = models.TfidfModel(corpus, smartirs = 'ntc')

Show the TF-IDF weights
for doc in tfidf[corpus]:
 �print([[mydict[id], np.around(freq, decimals = 2)] for id,

� freq in doc])

Listing 4.18 starts with several import statements and then initializes
the variable documents as an array of sentences. Next, the variable mydict
is initialized as a dictionary that is based on the sentences in the documents
variable. Notice that these sentences are first processed via the simple_pre-
process class that tokenizes each sentence and converts the tokens to lower-
case (and tokens are UTF-8 format).

The next code snippet instantiates the variable tfidf as an instance of
the TfidfModel class. The final portion of Listing 4.18 displays the contents
of tfidf.

Launch the code in Listing 4.19 to see the following output:

[['first', 1], ['is', 1], ['line', 1], ['the', 1],
['this', 1]]

NLPFD.Ch4.indd 152NLPFD.Ch4.indd 152 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

Algorithms and Toolkits (I) • 153

[['is', 1], ['the', 1], ['this', 1], ['second', 1],
['sentence', 1]]

[['this', 1], ['document', 1], ['third', 1]]

[['first', 0.66], ['is', 0.24], ['line', 0.66],
['the', 0.24]]

[['is', 0.24], ['the', 0.24], ['second', 0.66],
['sentence', 0.66]]

[['document', 0.71], ['third', 0.71]]

Saving a Word2vec Model in Genism

Listing 4.19 shows the contents of gensim_word2vec.py that illustrate how
to save a word2vec model in Gensim.

LISTING 4.19: gensim_word2vec.py

from gensim.models import word2vec

corpus = [
 'Text of the first document.',
 'Text of the second document made longer.',
 'Number three.',
 'This is number four.',
]

split sentences:
tokenized_sentences = [sentence.split() for sentence in
� corpus]

model = word2vec.Word2Vec(tokenized_sentences, min_count = 1)
� print("model:",model)

model.save("word2vec.model")

Listing 4.19 starts with an import statement and then initializes the vari-
able corpus as an array of sentences. Next, the variable tokenized_sen-
tences is initialized with the result of splitting corpus into sentences. The
next code snippet instantiates the variable model as an instance of the Word-
2Vec class, along with the contents of the variable tokenized_sentences.

NLPFD.Ch4.indd 153NLPFD.Ch4.indd 153 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

154 • Natural Language Processing Fundamentals for Developers

The final portion of Listing 4.20 displays the contents of model and then saves
the model in the file word2vec.model. Launch the code in Listing 4.19 to
see the following output:

model: Word2Vec(vocab=15, size=100, alpha=0.025)

AN EXAMPLE OF TOPIC MODELING

Chapter 3 contains a high-level description of LDA (Latent Dirichlet
Allocation), and this section contains a code sample for LDA. Listing 4.20
shows the contents of lda_topic_modeling.py that illustrate how to use
LDA to perform topic modeling. The “documents” in this code sample are
very short (and admittedly contrived), but you can replace them with your
own set of documents and launch the code.

LISTING 4.20: lda_topic_modeling.py

define a set of short documents:
doc1 = "Our plan was not without merit is similar in
meaning to Our plan has merit."
doc2 = "I like the pizza toppings but I do not like the
crust."
doc3 = "The only thing worse than being talked about, is
not being talked about according to Oscar Wilde"
doc4 = "Everything is funny, as long as it's happening to
somebody else according to Will Rogers"
doc5 = "When ignorance is bliss, 'tis folly to be wise by
William Shakespeare and my favorite misquoted quote"
doc6 = "Good judgement is the result of experience and
experience the result of bad judgement as Mark Twain
astutely observed."

all_docs = [doc1, doc2, doc3, doc4, doc5, doc6]

from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
import string

stop = set(stopwords.words('english'))
exclude = set(string.punctuation)
lemma = WordNetLemmatizer()

NLPFD.Ch4.indd 154NLPFD.Ch4.indd 154 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

Algorithms and Toolkits (I) • 155

def clean_documents(doc):
 �no_stop = ' '.join([i for i in doc.lower().split() if i

� not in stop])
 �no_punct = ' '.join([ch for ch in no_stop if ch not in

� exclude])
 normalized = ' '.join(lemma.lemmatize(word) for word in
� no_punct.split())
 return normalized

cleaned_docs = [clean_documents(doc).split() for doc in
� all_docs]

import gensim
from gensim import corpora
dictionary = corpora.Dictionary(cleaned_docs)
doc_term_matrix = [dictionary.doc2bow(doc) for doc in
� cleaned_docs]

import and get an instance of the LdaModel:
Lda = gensim.models.ldamodel.LdaModel
ldamodel = Lda(doc_term_matrix, num_topics = 3, id2word =
� dictionary, passes=50)

print(ldamodel.print_topics(num_topics=3, num_words=3))

Listing 4.20 starts by initializing six variables doc1 through doc6 with a
sentence, followed by the variable all_docs, which is an array consisting of
those six variables.

The next portion of 6.20 contains several import statements, after which
the variables stop, exclude, and lemma are initialized appropriately. Then
the Python function clean_documents() is defined, which removes stop
words and punctuation, and returns the sentence normalized that contains
the cleaned words.

Next, the gensim library is imported and the variables dictionary and
doc_term_matrix are initialized as a dictionary from cleaned_docs and a
document/term matrix from cleaned_docs, respectively.

The final code block in Listing 4.20 initializes the variable Lda as an
instance of the class LdaModel. The final code snippet initializes the variable
ldamodel as an instance of Lda with four parameters, as shown here:

ldamodel = Lda(doc_term_matrix, num_topics = 3, id2word =
� dictionary, passes=50)

NLPFD.Ch4.indd 155NLPFD.Ch4.indd 155 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

156 • Natural Language Processing Fundamentals for Developers

Launch the code in Listing 4.21 to see the following output:

model:

[

(0,'0.075*"experience" + 0.075*"result" +
� 0.075*"judgement"'),

(1,'0.060*"plan" + 0.060*"merit" + 0.034*"wise"'),

(2,'0.106*"talked" + 0.061*"according" +
� 0.061*"oscar"')

]

Notice that the final code snippet in Listing 4.20 specifies the value 3 for
num_topics (the number of topics) and also for num_words. Hence, there
are three elements in the preceding output: The first digit (shown in bold) of
each element is the topic number. Each highlighted digit is followed by an
element that is a linear combination of three strings. This is because the value
of num_words is 3. The words in each linear combination are the most mean-
ingful “topic” words, and the numeric coefficients indicate the relative weight
(i.e., importance) of the associated word in the document.

Change the number 3 to a 4 in the final line of code in Listing 4.20 as
follows:

print(ldamodel.print_topics(num_topics = 3, num_words = 4))

Launch the code in Listing 4.21 to see the following output:

model:

[

(0,'0.067*"talked" + 0.067*"according" + 0.067*"like" +
� 0.038*"about"'),

(1,'0.065*"experience" + 0.065*"result" +
� 0.065*"judgement" + 0.037*"good"'),

(2,'0.111*"merit" + 0.111*"plan" + 0.063*"similar" +
� 0.063*"meaning"')

]

Compare the preceding output block with the first output block and
observe the differences.

NLPFD.Ch4.indd 156NLPFD.Ch4.indd 156 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

Algorithms and Toolkits (I) • 157

A BRIEF COMPARISON OF POPULAR PYTHON-BASED NLP
LIBRARIES

This section contains information that you have seen in earlier sections and
chapters, which is provided in a consolidated manner for your convenience.

The natural language toolkit NLTK is used for such tasks as tokenization,
lemmatization, stemming, parsing, and POS tagging. This library has tools for
almost all NLP tasks.

SpaCy is the main competitor of the NLTK. These two libraries can be
used for the same tasks.

Gensim is the package for topic and vector space modeling and document
similarity analysis.

Sklearn provides a large library for machine learning. The tools for text
preprocessing are also presented here.

The general mission of the Pattern library is to serve as the web mining
module. So, it supports NLP only as a side task.

Polyglot is the yet another Python package for NLP. It is not very popular
but can be used for a wide range of the NLP tasks.

MISCELLANEOUS LIBRARIES

This section contains task-specific libraries that can be used in NLP as well as
non-NLP projects.

https://www.kdnuggets.com/2020/04/five-cool-python-libraries-
data-science.html

1.	 Numerizer

https://github.com/jaidevd/numerizer

This library converts text numerics into int and float, and is
installed via

pip3 install numerizer

A simple example is shown here:

from numerizer import numerize

print(numerize('Eight fifty million'))

print(numerize('one two three'))

NLPFD.Ch4.indd 157NLPFD.Ch4.indd 157 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

158 • Natural Language Processing Fundamentals for Developers

print(numerize('Fifteen hundred'))

print(numerize('Three hundred and Forty five'))

print(numerize('Six and one quarter'))

print(numerize('Jack is having fifty million'))

print(numerize('Three hundred billion'))

2.	 Missingo

This library provides a way to visualize missing values from an Excel
spreadsheet, and is installed via

pip3 install missingno

A simple example is shown here:

import pandas as pd

import missingno as mi

reading the dummy dataset

data = pd.read_excel("dummy.xlsx")

checking missing values

data.isnull().sum()

#Visualizing using missingno

print("Visualizing missing value using bar graph")

mi.bar(data, figsize = (10,5))

print("Visualizing missing value using matrix")

mi.matrix(data, figsize = (10,5))

3.	 Faker

This library generates various types of test data, and is installed via

pip3 install faker

A simple example is shown here:

Generating fake email

print (fake.email())

Generating fake country name

print(fake.country())

NLPFD.Ch4.indd 158NLPFD.Ch4.indd 158 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

Algorithms and Toolkits (I) • 159

Generating fake name

print(fake.name())

Generating fake text

print(fake.text())

Generating fake lat and lon

print(fake.latitude(), fake.longitude())

Generating fake url

print(fake.url())

Generating fake profile

print(fake.profile())

Generating random number

print(fake.random_number())

4.	 EMOT

This library can collect emojis (small images) and emoticons (key-
board-based characters), and then perform a sentiment-like analysis. Install
this library via this command:

pip3 install emot

A simple example is shown here:

import re

Function for converting emojis into word

from emot.emo_unicode import UNICODE_EMO, EMOTICONS

def convert_emojis(text):

 for emot in UNICODE_EMO:

 text = text.replace(emot, "_".join(UNICODE_
� EMO[emot].replace(",","").replace(":","").split()))

 return text# Example

text1 = "Awesome üòÇ. The exhilaration from
successfully completing my project üòé, The euphoria
� is wonderfuls üòí"
convert_emojis(text1)

NLPFD.Ch4.indd 159NLPFD.Ch4.indd 159 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

160 • Natural Language Processing Fundamentals for Developers

5.	 Chartify

Chartify is a user-friendly visualization library for charts, and is installed via

pip3 install chartify

A simple example is shown here:

import numpy as np

import pandas as pd

import chartify

#loading example dataset from chartify

data = chartify.examples.example_data()

data.head()

Calculating total quantity for each fruits

quantity_by_fruit = (data.groupby('fruit')['quantity'].
� sum().reset_index())

ch = chartify.Chart(blank_labels = True, x_axis_type =
� 'categorical')

ch.set_title("Vertical bar plot.")

ch.set_subtitle("Automatically sorts by value counts.")

ch.plot.bar(

 data_frame = quantity_by_fruit,

 categorical_columns = 'fruit',

 numeric_column = 'quantity')

ch.show()

SUMMARY

This chapter introduced you to NLTK, along with code samples of using NLTK
with lxml, XPath, stemmers, lemmatization, and stop words. Then you learned
about some of the features of Wordnet, such as finding synonyms and antonyms
of words. You also learned about NLTK with POS, along with various tokenizers.

Next, you learned how define a grammar in NLTK and determine whether
a given sentence can be parsed with that grammar. Finally, you learned about
Gensim and its core concepts, with code samples that illustrate how to calcu-
late tf-idf values in Gensim, and how to save a word2vec model in Gensim.

NLPFD.Ch4.indd 160NLPFD.Ch4.indd 160 6/7/2021 4:35:54 PM6/7/2021 4:35:54 PM

C H A P T E R 5
Algorithms and Toolkits (II)

This chapter contains Python code samples for some of the NLP-related
concepts that were introduced in the previous chapter. We have included an
assortment of code samples involving regular expressions, the Python library
BeautifulSoup, Scrapy, and various NLP-related Python code samples that
use the spaCy library.

In addition, appendix A is entirely devoted to regular expressions,
and you can find online introductory articles regarding the Sklearn Python
library, both of which are relevant for some of the code samples in this
chapter.

The first part of this chapter contains some examples of data cleaning that
involve regular expressions. The second section contains some basic examples
involving BoW, one-hot encoding, and word embeddings in Sklearn.

The third section discusses BeautifulSoup, which is a Python module for
scraping HTML Web pages. This section contains some Python code samples
that retrieve and then manipulate the contents of an HTML Web page from
the GitHub code repository. This section also contains a brief introduction to
Scrapy, which is a Python-based library that provides Web scraping function-
ality and various other APIs.

The fourth section introduces spaCy, which is a Python-based library for
NLP, along with Python code samples that show various features of spaCy.

CLEANING DATA WITH REGULAR EXPRESSIONS

This section contains a simple preview of what you can accomplish with regu-
lar expressions when you need to clean your data. If you are new to regular

NLPFD.Ch5.indd 161NLPFD.Ch5.indd 161 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

162 • Natural Language Processing Fundamentals for Developers

expressions, you can read Appendix A. The main concepts to understand for
the code samples in this section are listed here:

●● the range [A-Z] matches any uppercase letter
●● the range [a-z] matches any lowercase letter
●● the range [a-zA-Z] matches any lowercase or uppercase letter
●● the range [^a-zA-Z] matches anything except lowercase or uppercase

letters

Listing 5.1 shows the contents of text_clean_regex.py that illustrate
how to remove any symbols that are not characters from a text string.

LISTING 5.1: text_clean_regex.py

import re # this is for regular expressions

text = "I have 123 apples for sale. Call me at 650-555-
� 1212 or send me email at apples@acme.com."

print("text:")
print(text)
print()

replace the '@' symbol with the string ' at ':
cleaned1 = re.sub('@', ' at ',text)
print("cleaned1:")
print(cleaned1)

replace non-letters with ' ':
cleaned2 = re.sub('[^a-zA-Z]', ' ',cleaned1)
print("cleaned2:")
print(cleaned2)

replace multiple adjacent spaces with a single ' ':
cleaned3 = re.sub('[]+', ' ',cleaned2)
print("cleaned3:")
print(cleaned3)

Listing 5.1 contains an import statement so that we can use regular
expressions in the subsequent code. After initializing the variable text with
a sentence and displaying its contents, the variable cleaned1 is defined,
which involves replacing the “@” symbol with the text string “at.” (Notice
the white space before and after the text “at”). Next, the variable cleaned2

NLPFD.Ch5.indd 162NLPFD.Ch5.indd 162 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

Algorithms and Toolkits (II) • 163

is defined, which involves replacing anything that is not a letter with a white
space. Finally, the variable cleaned3 is defined, which involves “squeezing”
multiple white spaces into a single white space. Launch the code in Listing 5.1
to see the following output:

text:

I have 123 apples for sale. Call me at 650-555-1212 or
send me email at apples@acme.com.

cleaned1:

I have 123 apples for sale. Call me at 650-555-1212 or
send me email at apples at acme.com.

cleaned2:

I have apples for sale Call me at or
send me email at apples at acme com

cleaned3:

I have apples for sale Call me at or send me email at
apples at acme com

Listing 5.2 shows the contents of text_clean_regex2.py that illustrate
how to remove HTML tags from a text string.

LISTING 5.2: text_clean_regex2.py

import re # this is for regular expressions

[^>]: matches anything except a '>'
<[^>]: matches anything after '>' except a '>'
tagregex = re.compile(r'<[^>]+>')

def remove_html_tags(doc):
 return tagregex.sub(':', doc)

doc1 = "<html><head></head></body><p>paragraph1</p>
� <div>div element</div></html>"

print("doc1:")
print(doc1)
print()

NLPFD.Ch5.indd 163NLPFD.Ch5.indd 163 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

164 • Natural Language Processing Fundamentals for Developers

doc2 = remove_html_tags(doc1)
print("doc2:")
print(doc2)

Listing 5.2 contains an import statement, followed by the variable
tagregex, which is a regular expression that matches a left angle bracket, <,
followed by any character except for a right angle bracket, >. Next, the Python
function remove_html_tags() removes all the HTML tags in a text string.
The next portion of Listing 5.2 initializes the variable doc1 as an HTML
string and displays its contents. The final code block invokes the Python func-
tion remove_html_tags() to remove the HTML tags from doc1, and then
prints the results. Launch the code in Listing 5.2 to see the following output:

doc1:

<html><head></head></body><p>paragraph1</p><div>div
� element</div></html>

doc2:

:::::paragraph1::div element::

The third (and final) code sample for this section also involves regu-
lar expressions, and it’s useful when you need to remove contractions (e.g.,
replacing “that’s” with “that is”).

Listing 5.3 shows the contents of text_clean_regex3.py that illustrate
how to replace contractions with the original words.

LISTING 5.3: text_clean_regex3.py

import re # this is for regular expressions

def clean_text(text):
 text = text.lower()

text = re.sub(r"I'm", "I am", text)
text = re.sub(r"he's", "he is", text)
text = re.sub(r"she's", "she is", text)
text = re.sub(r"that's", "that is", text)
text = re.sub(r"what's", "what is", text)
text = re.sub(r"where's", "where is", text)
text = re.sub(r"how's", "how is", text)
text = re.sub(r"it's", "it is", text)
text = re.sub(r"\'ll", " will", text)

NLPFD.Ch5.indd 164NLPFD.Ch5.indd 164 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

Algorithms and Toolkits (II) • 165

text = re.sub(r"\'ve", " have", text)
text = re.sub(r"\'re", " are", text)
text = re.sub(r"\'d", " would", text)
text = re.sub(r"n't", "not", text)
text = re.sub(r"won't", "will not", text)
text = re.sub(r"can't", "can not", text)

text = re.sub(r"[-()\"#/@;:<>{}`+=~|.!?,]", "", text)
return text

sentences = ["It's a hot day and I'm sweating",
 "How's the zoom class going?",
 "She's smarter than me – that's a fact"]

for sent in sentences:
print("Sentence:",sent)
print("Cleaned: ",clean_text(sent))
print("----------------")

Listing 5.3 contains an import statement, followed by the Python func-
tion clean_text() that performs a brute-force replacement of hyphenated
strings with their unhyphenated counterparts. The final code snippet in this
function also removes any special characters in a text string.

The next portion of Listing 5.3 initializes the variable sentences, which
contains multiple sentences, followed by a for loop that passes individual
sentences to the Python clean_text() function. Launch the code in Listing
5.3 to see the following output:

Sentence: It's a hot day and I'm sweating

Cleaned: it is a hot day and I am sweating

Sentence: How's the zoom class going?

Cleaned: how is the zoom class going

Sentence: She's smarter than me - that's a fact

Cleaned: she is smarter than me that is a fact

The Python package contractions provides an alternative to regular
expressions for expanding contractions, an example of which is shown later in
this chapter.

NLPFD.Ch5.indd 165NLPFD.Ch5.indd 165 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

166 • Natural Language Processing Fundamentals for Developers

Listing 5.4 shows the contents of remove_urls.py that illustrate how to
remove URLs from an array of strings.

LISTING 5.4: remove_urls.py

import re
import pandas as pd

arr1 = ["https://www.yahoo.com",
 "http://www.acme.com"]

data = pd.DataFrame(data = arr1)

print("before:")
print(data)
print()

no_urls = []
for url in arr1:
 clean = re.sub(r"http\S+", "", url)
 no_urls.append(clean)

data["cleaned"] = no_urls

print("after:")
print(data)

Listing 5.4 starts with two import statements, followed by the initializa-
tion of the variable arr1 with two URLs. Next, the variable data is a Pandas
data frame whose contents are based on the contents of arr1. The contents of
data are displayed, followed by a for loop that removes the http prefix from
each element of arr1. The last code section appends a new column called
cleaned to the data data frame and then displays the contents of that data
frame. Launch the code in Listing 5.4 to see the following output:

before:

 0

0 https://www.yahoo.com web page

1 http://www.acme.com web page

NLPFD.Ch5.indd 166NLPFD.Ch5.indd 166 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

Algorithms and Toolkits (II) • 167

after:

 0 cleaned

0 https://www.yahoo.com web page web page

1 http://www.acme.com web page web page

This concludes the brief introduction to cleaning data with regular expres-
sions, which are discussed in more detail (along with code samples) in one of
the appendices.

HANDLING CONTRACTED WORDS

The previous section showed you how to expand English contractions via reg-
ular expressions. This section contains an example of expanding contractions
via the Python package contractions that is available online:

https://github.com/kootenpv/contractions

Install the contractions package with this command:

pip3 install contractions

Listing 5.5 shows the contents of contract.py that illustrate how to
expand English contractions and how to add custom expansion rules.

LISTING 5.5: contract.py

import contractions

sentences = ["what's new?",
 "how's the weather",
 "it's humid today",
 "we've been there before",
 "you should've been there!",
 "the sky's the limit"]

for sent in sentences:
 result = contractions.fix(sent)
 print("sentence:",sent)
 print("expanded:",result)
 print()

print("=> updating contraction rules...")
contractions.add("sky's", "sky is")

NLPFD.Ch5.indd 167NLPFD.Ch5.indd 167 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

168 • Natural Language Processing Fundamentals for Developers

sent = "the sky's the limit"
result = contractions.fix(sent)
print("sentence:",sent)
print("expanded:",result)
print()

Listing 5.5 contains an import statement and then initializes the variable
sentences to an array of text strings. The next portion of Listing 5.5 contains
a loop that iterates through the array of strings in sentences, and then prints
each sentence as well as the expanded version of the sentence.

In the output, the contraction sky's in the last sentence in the array
sentences is not expanded, so let’s add a new expansion rule, as shown here:

contractions.add("sky's", "sky is")

Now when we process this string again, the contraction sky's is expanded
correctly. Launch the code in Listing 5.5 to see the following output:

sentence: what's new?

expanded: what is new?

sentence: how's the weather

expanded: how is the weather

sentence: it's humid today

expanded: it is humid today

sentence: we've been there before

expanded: we have been there before

sentence: you should've been there!

expanded: you should have been there!

sentence: the sky's the limit

expanded: the sky's the limit

=> updating contraction rules...

sentence: the sky's the limit

expanded: the sky is the limit

NLPFD.Ch5.indd 168NLPFD.Ch5.indd 168 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

Algorithms and Toolkits (II) • 169

As an alternative, you can also write Python code to expand contractions,
as shown in the following code block:

CONTRACT = {"how's":"how is", "what's":"what is",
"it's":"it is", "we've":"we have", "should've" :"should
� have", "sky's": "sky is"}

sentences = ["what's new?",

 "how's the weather",

 "it's humid today",

 "we've been there before",

 "you should've been there!",

 "the sky's the limit"]

for sent in sentences:

 words = sent.split()

 expanded = [CONTRACT[w] if w in CONTRACT else w for w
� in words]

 new_sent = " ".join(expanded)

 print("sentence:",sent)

 print("expanded:",new_sent)

 print()

The next section contains some Python-based code samples that involve
the BoW (Bag of Words).

PYTHON CODE SAMPLES OF BoW

BoW is a technique for creating a numeric vector encoding of words. This
section contains some simple Python-based code samples that illustrate how
to perform this technique on a set of words.

The BoW algorithm counts how many times a word appears in a docu-
ment, which generalizes a one-hot encoding of a set of words. Those word
counts allow us to compare documents and gauge their similarities. The BoW
algorithm can be used in applications like search, document classification, and
topic modeling. In addition, BoW can be used to prepare text for input in a
deep learning neural network.

NLPFD.Ch5.indd 169NLPFD.Ch5.indd 169 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

170 • Natural Language Processing Fundamentals for Developers

Listing 5.6 shows the contents of bow_to_vector1.py that illustrate
how to create a one-dimensional numeric vector based on a given vocabulary.

LISTING 5.6: bow_to_vector1.py

VOCAB = ['dog', 'cheese', 'cat', 'mouse']
TEXT1 = 'the mouse ate the cheese'
TEXT2 = 'the horse ate the hay'

def to_bow(text):
 words = text.split(" ")
 return [1 if w in words else 0 for w in VOCAB]
 print("VOCAB: ",VOCAB)
 print("TEXT1:",TEXT1)
 print("BOW1: ",to_bow(TEXT1)) # [0, 1, 0, 1]
 print("")

 print("TEXT2:",TEXT2)
 print("BOW2: ",to_bow(TEXT2)) # [0, 0, 0, 0]

Listing 5.6 initializes the variables VOCAB, TEXT1, and TEXT2, followed
by the Python function to_bow() that constructs a BoW representation for
text strings. Next, this Python function is invoked twice, first with TEXT1 and
then with TEXT2. Launch the code in Listing 5.6 to see the following output:

VOCAB: ['dog', 'cheese', 'cat', 'mouse']

TEXT1: the mouse ate the cheese

BOW1: [0, 1, 0, 1]

TEXT2: the horse ate the hay

BOW2: [0, 0, 0, 0]

Listing 5.7 shows the contents of bow_to_vector2.py that illustrate
how to create a one-dimensional numeric vector based on a given vocabulary.

LISTING 5.7: bow_to_vector2.py

VOCAB = ['dog', 'cheese', 'cat', 'mouse']
MYTEXT = 'the mouse ate the cheese'

NLPFD.Ch5.indd 170NLPFD.Ch5.indd 170 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

Algorithms and Toolkits (II) • 171

def to_bow(text):
 words = text.split(" ")
 found = [w if w in words else "MISS" for w in VOCAB]
 missing = [w if w not in words else "FOUND" for w in
� VOCAB]
 print("Found:",found)
 print("Missing:",missing)

 return [1 if w in words else 0 for w in VOCAB]

print("MYTEXT:",MYTEXT)
print("VOCAB: ",VOCAB)
print("MYTEXT:",to_bow(MYTEXT)) # [0, 1, 0, 1]

Listing 5.7 extends the code in Listing 5.6 by keeping track of the words
in the vocabulary that are not included in a given sentence. Launch the code
in Listing 5.7 to see the following output:

MYTEXT: the mouse ate the cheese

VOCAB: ['dog', 'cheese', 'cat', 'mouse']

Found: ['MISS', 'cheese', 'MISS', 'mouse']

Missing: ['dog', 'FOUND', 'cat', 'FOUND']

MYTEXT: [0, 1, 0, 1]

Listing 5.8 shows the contents of count_vectorize.py that illustrate
how to create a one-dimensional numeric vector based on a given vocabulary.

LISTING 5.8: count_vectorize.py

VOCAB = ['dog', 'cheese', 'cat', 'mouse']
TEXT1 = 'the mouse ate the cheese'
TEXT2 = 'the horse ate the hay'

from sklearn.feature_extraction.text import
� CountVectorizer
vectorizer = CountVectorizer(vocabulary = VOCAB)

result1 = vectorizer.transform([TEXT1]).todense() #
� matrix([[0,1,0,1]])
result2 = vectorizer.transform([TEXT2]).todense() #
� matrix([[0,1,0,1]])

NLPFD.Ch5.indd 171NLPFD.Ch5.indd 171 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

172 • Natural Language Processing Fundamentals for Developers

print("VOCAB: ",VOCAB)
print("TEXT1:",TEXT1)
print("BOW1: ",result1) # [0, 1, 0, 1]
print("")

print("TEXT2:",TEXT2)
print("BOW2: ",result2) # [0, 1, 0, 1]
print()

print("=> contents of countvectorizer:")
print(vectorizer)

Listing 5.8 performs the same functionality as Listing 5.6 by means of the
CountVectorizer class in Sklearn instead of the custom code in Listing 5.6.
Launch the code in Listing 5.8 to see the following output, which is the same
output from bow_to_vector1.py:

VOCAB: ['dog', 'cheese', 'cat', 'mouse']

TEXT1: the mouse ate the cheese

BOW1: [[0 1 0 1]]

TEXT2: the horse ate the hay

BOW2: [[0 0 0 0]]

=> contents of countvectorizer:

CountVectorizer(analyzer = 'word', binary = False,
� decode_error = 'strict',

 dtype = <class 'numpy.int64'>, encoding =
� 'utf-8', input = 'content',

 lowercase = True, max_df = 1.0, max_
� features = None, min_df = 1,

 ngram_range = (1, 1), preprocessor =
� None, stop_words = None,

 strip_accents = None, token_pattern =
� '(?u)\\b\\w\\w+\\b',

 tokenizer = None, vocabulary = ['dog',
� 'cheese', 'cat', 'mouse'])

As you can see from the preceding output, the vocabulary of the variable
vectorizer matches the contents of the variable VOCAB.

Listing 5.9 contains a BoW example that illustrates how to use BoW with
a Pandas data frame for an array of sentences.

NLPFD.Ch5.indd 172NLPFD.Ch5.indd 172 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

Algorithms and Toolkits (II) • 173

LISTING 5.9: bow_pandas.py

import pandas as pd
from sklearn.feature_extraction.text import
� CountVectorizer

sent = ["this is a sentence with text and very simple",
 "a second sentence with text and listed second",
 "a third sentence with text and listed third",
 "a final sentence with text"]

print("=> list of sentences:")
for s in sent:
 print(s)
print()

bow = CountVectorizer()
bow_fit = bow.fit_transform(sent)
bag_words = pd.DataFrame(bow_fit.toarray())
bag_words.columns = bow.get_feature_names()
print("=> bag_words for the sentences:")
print(bag_words)

Listing 5.9 initializes the variable sent as an array of sentences that are
subsequently displayed via a for loop. Next, the variable bow is initialized as
an instance of the CountVectorizer class that is provided by the Sklearn
library. The bow_fit variable is assigned the result of transforming and fit-
ting the data in the sent variable. Next, the bag_words variable is initialized
as a data frame that contains the data in bow_fit.

After specifying the column names for the bag_words data frame, the
contents of bag_words are displayed via a print() statement. Launch the
code in Listing 5.9 to see the following output (unfortunately, the output is
wrapped because it’s too wide for the page):

=> list of sentences:

this is a sentence with text and very simple

a second sentence with text and listed second

a third sentence with text and listed third

a final sentence with text

NLPFD.Ch5.indd 173NLPFD.Ch5.indd 173 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

174 • Natural Language Processing Fundamentals for Developers

=> bag_words for the sentences:

 and final is listed second sentence simple text third this
very with

0 1 0 1 0 0 1 1 1 0 1 1 1

1 1 0 0 1 2 1 0 1 0 0 0 1

2 1 0 0 1 0 1 0 1 2 0 0 1

3 0 1 0 0 0 1 0 1 0 0 0 1

In Chapter 4, we show how to create a BoW model using the NLTK
library, and in Chapter 6 we give an example of BoW using TF2/Keras.

ONE-HOT ENCODING EXAMPLES

Recall from Chapter 4 that a one-hot encoding for a set of words involves one
numeric vector for each word, and each vector contains a single value of 1
and the other values are all 0. As a simple example, the sentence “I love thick
pizza” can be tokenized as ["i", "love", "thick", "pizza"], and one-
hot encoded as follows:

[1,0,0,0]

[0,1,0,0]

[0,0,1,0]

[0,0,0,1]

Based on the preceding one-hot encoding, the sentence “We also love
thick pizza” can be encoded as

[0,1,1,1] = [0,1,0,0] + [0,0,1,0] + [0,0,0,1]

The left-side vector [0,1,1,1] is the sum of the three vectors that
represent the one-hot encoding of the words “love,” “thick,” and “pizza,”
respectively. The first index of this vector is 0 because this sentence contains
“we” instead of “i.”

Listing 5.10 shows the contents of onehot_encode.py that illustrate
how to perform a one-hot encoding on a set of words.

LISTING 5.10: onehot_encode.py

import numpy as np

CLASSES = list(np.array([3, 1, 2]))

NLPFD.Ch5.indd 174NLPFD.Ch5.indd 174 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

Algorithms and Toolkits (II) • 175

The dataset labels
LABELS = np.array([1, 2, 3, 1, 2, 1, 1, 2, 3])
VALUES = [3, 3, 1, 1, 2, 2]
ONEHOT = np.zeros((len(LABELS), len(CLASSES)))

for idx, value in enumerate(LABELS):
 print("idx:",idx,"value:",value)
 ONEHOT[idx, CLASSES.index(value)] = 1

print("One-hot Encoding:")
print(ONEHOT)

Listing 5.10 initializes the variable CLASSES as a list created from a
NumPy array that contains the numbers 3, 1, and 2. The next code block ini-
tializes the variables LABELS, VALUES, and ONEHOT, followed by a for loop
that initializes each row of ONEHOT as a one-hot encoded vector. Launch the
code in Listing 5.10 to see the following output:

idx: 0 value: 1

idx: 1 value: 2

idx: 2 value: 3

idx: 3 value: 1

idx: 4 value: 2

idx: 5 value: 1

idx: 6 value: 1

idx: 7 value: 2

idx: 8 value: 3

One-hot Encoding:

[[0. 1. 0.]

 [0. 0. 1.]

 [1. 0. 0.]

 [0. 1. 0.]

 [0. 0. 1.]

 [0. 1. 0.]

 [0. 1. 0.]

 [0. 0. 1.]

 [1. 0. 0.]]

NLPFD.Ch5.indd 175NLPFD.Ch5.indd 175 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

176 • Natural Language Processing Fundamentals for Developers

SKLEARN AND WORD EMBEDDING EXAMPLES

Word embeddings pertain to algorithms that represent words (as well as doc-
uments) using a dense vector representation, which is a distributed represen-
tation. By contrast, vector representations refer to discrete representations,
such as the use of the tf-idf values of words to generate vector representations
of words.

Earlier in this chapter, you saw an example of word vectorization, and this
section contains a consolidated list of word embedding techniques, along with
code samples that illustrate how to use these techniques:

●● Count Vectorizer
●● TF-IDF Vectorizer
●● Hashing Vectorizer
●● Word2Vec (Gensim)

Listing 5.11 shows the contents of count_vectorize2.py that illustrate
how to vectorize an array of sentences using the CountVectorizer class in
Sklearn.

LISTING 5.11: count_vectorize2.py

from sklearn.feature_extraction.text import
� CountVectorizer

import matplotlib.pyplot as plt

import seaborn as sns

sentences = ['the mouse ate the cheese',

 'the horse ate the hay',

 'the mouse saw the horse',

 'the mouse scared the horse']

vectorizer = CountVectorizer()

sentence_vectors = vectorizer.fit_transform(sentences)

print("vectorized sentences:")

print(sentence_vectors.toarray())

print()

NLPFD.Ch5.indd 176NLPFD.Ch5.indd 176 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

Algorithms and Toolkits (II) • 177

learn vocabulary and store CountVectorizer

sparse matrix in term_frequencies

term_frequencies = vectorizer.fit_transform(sentences)

vocab = vectorizer.get_feature_names()

convert sparse matrix to numpy array

term_frequencies = term_frequencies.toarray()

plot #1: visualize term frequencies

sns.heatmap(term_frequencies,annot = True,cbar = False,
� xticklabels = vocab)

plt.show()

plot #2: visualize "one hot" term frequencies

one_hot_vectorizer = CountVectorizer(binary = True)

one_hot = one_hot_vectorizer.fit_transform
� (sentences).toarray()

vocab = one_hot_vectorizer.get_feature_names()

sns.heatmap(one_hot,annot = True,cbar = False,
� xticklabels = vocab)

plt.show()

Listing 5.11 contains several import statements, followed by the variable
sentences that is initialized as an array of sentences. Next, the variable
vectorizer is an instance of the CountVectorizer class in Sklearn,
followed by assigning the result of fitting and transforming its contents to the
variable sentence_vectors.

The next code snippet initializes the variable term_frequencies with
the term frequencies of the contents of sentences. In addition, the vari-
able vocab is assigned the array of unique words that appear in sentences.
Launch the code in Listing 5.11 to see the following output:

vectorized sentences:

[[1 1 0 0 1 0 0 2]

 [1 0 1 1 0 0 0 2]

 [0 0 0 1 1 1 0 2]

 [0 0 0 1 1 0 1 2]]

NLPFD.Ch5.indd 177NLPFD.Ch5.indd 177 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

178 • Natural Language Processing Fundamentals for Developers

vocabulary:

['ate', 'cheese', 'hay', 'horse', 'mouse', 'saw',
'scared', 'the']

In the preceding output, the word “the” appears twice in every row
because this word occurs in every row of the variable sentences.

Figure 5.1 shows the term frequencies, where the rows are the “docu-
ments” in the variable sentences, and the columns are the distinct words.

FIGURE 5.1  A matrix with term frequencies.

Uncomment the final block of code in Listing 5.11 to see the one hot
encoding of the word frequencies.

Another way to vectorize an array of sentences involves the
CountVectorizer class. Listing 5.12 shows the contents of hashing_
vectorize.py that illustrate how to vectorize an array of sentences using
the CountVectorizer class in Sklearn.

LISTING 5.12: hashing_vectorize.py

from sklearn.feature_extraction.text import
� HashingVectorizer

sentences = ['the mouse ate the cheese',
 'the horse ate the hay',

NLPFD.Ch5.indd 178NLPFD.Ch5.indd 178 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

Algorithms and Toolkits (II) • 179

 'the mouse saw the horse',
 'the mouse scared the horse']

vectorizer = HashingVectorizer(norm = None, n_features = 8)

sentence_vectors = vectorizer.fit_transform(sentences)

print("vectorized sentences:")
print(sentence_vectors.toarray())

Listing 5.12 initializes the variable vectorizer as an instance of the
HashingVector class in Sklearn, after which the variable sentence_
vectors is assigned the result of transforming and fitting the contents of the
sentences variable. Launch the code in Listing 5.12 to see the following
output:

vectorized sentences:

[[0. -1. 0. 1. 1. 0. -2. 0.]

 [-2. 0. 0. 1. 0. 0. -2. 0.]

 [-1. 0. 0. -1. 1. 0. -2. 0.]

 [-1. 0. -1. 0. 1. 0. -2. 0.]]

A third way to vectorize an array of sentences involves the
TfidfVectorizer class. Listing 5.13 shows the contents of tfidf_
vectorize.py that illustrate how to vectorize an array of sentences using
the TfidfVectorizer class in Sklearn.

LISTING 5.13: tfidf_vectorize.py

from sklearn.feature_extraction.text import TfidfVectorizer
import matplotlib.pyplot as plt
import seaborn as sns

sentences = ['the mouse ate the cheese',
 'the horse ate the hay',
 'the mouse saw the horse',
 'the mouse scared the horse']

vectorizer = TfidfVectorizer(norm = False, smooth_idf = False)
sentence_vectors = vectorizer.fit_transform(sentences)

print("vectorized sentences:")
print(sentence_vectors.toarray())

tfidf = vectorizer.fit_transform(sentences).toarray()

NLPFD.Ch5.indd 179NLPFD.Ch5.indd 179 6/1/2021 11:42:03 AM6/1/2021 11:42:03 AM

180 • Natural Language Processing Fundamentals for Developers

display the tfidf frequencies:
sns.heatmap(tfidf,annot = True,cbar = False)
plt.show()

Listing 5.13 is similar to Listing 5.12, with the TfidfVector class in place
of the HashingVector class. The other difference is the Seaborn Python
library for visualization, which illustrates how to create a heat map in Seaborn.
Note that Appendix F contains more information regarding Seaborn.

Launch the code in Listing 5.13 to see the following output (numbers have
been truncated from 8 decimal places to 3 decimal places to avoid “wrapping”
the vectors on multiple lines):

vectorized sentences:

[[1.693 2.386 0. 0. 1.287 0. 0. 2.]

 [1.693 0. 2.386 1.287 0. 0. 0. 2.]

 [0. 0. 0. 1.287 1.287 2.386 0. 2.]

 [0. 0. 0. 1.287 1.287 0. 2.386 2.]]

Figure 5.2 shows the tf-idf frequencies, where the rows are the “doc-
uments” in the variable sentences, and the columns are the distinct words.

FIGURE 5.2  A heatmap with the tf-idf frequencies.

NLPFD.Ch5.indd 180NLPFD.Ch5.indd 180 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

Algorithms and Toolkits (II) • 181

Listing 5.14 shows the contents of gensim_vectorize.py that illustrate
how to vectorize an array of sentences using the word2vec class in Gensim.

LISTING 5.14: gensim_vectorize.py

from gensim.models import word2vec

sentences = ['the mouse ate the cheese',
 'the horse ate the hay',
 'the mouse saw the horse',
 'the mouse scared the horse']

for i, sentence in enumerate(sentences):
 tokenized = []
 for word in sentence.split(' '):
 tokenized.append(word)
 sentences[i] = tokenized

model = word2vec.Word2Vec(sentences,workers = 1,size = 2,
� min_count = 1, window = 3, sg = 0)

word_list = model.wv.most_similar('mouse')
print("list of words:")
for word in word_list:
 print(word)
print()

similar_word = model.wv.most_similar('mouse')[0]
print("Most common word to mouse is: {}".format(similar_
� word[0]))

Listing 5.14 initializes the variable sentences as an array of sentences,
followed by a for loop that tokenizes each sentence in the variable sentences.
Next, the variable model is initialized as an instance of the word2Vec class
that is available in the word2vec module in the Gensim library.

The next code snippet initializes the variable word_list with the words
that are most similar to the word mouse (which is a word that appears in
sentences), followed by a loop that displays those words. Launch the code
in Listing 5.14 to see the following output:

list of words:

('hay', 0.1007559671998024)

('the', -0.37532204389572144)

NLPFD.Ch5.indd 181NLPFD.Ch5.indd 181 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

182 • Natural Language Processing Fundamentals for Developers

('saw', -0.528710126876831)

('horse', -0.7526397109031677)

('scared', -0.7596074342727661)

('ate', -0.9832854270935059)

('cheese', -0.9918226003646851)

Most common word to mouse is: hay

Listing 5.15 shows the contents of tfidf_l1_l2.py that illustrate how
to specify L1 or L2 normalized frequencies when generating word embed-
dings of words in a corpus. If you are unfamiliar with L1 or L2 normalization,
you can treat this code sample as optional with no loss of continuity.

LISTING 5.15: tfidf_l1_l2.py

from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd

text = ['the mouse ate the cheese',
 'the horse ate the hay',
 'the mouse saw the horse',
 'the mouse scared the horse']

use L1 penalty:
tfidf1 = TfidfVectorizer(binary = False,norm = 'l1',
use_idf = False,smooth_idf = False,lowercase = True,
stop_words = 'english',min_df = 1,max_df = 1.0,max_
� features = None,ngram_range = (1,1))

df = pd.DataFrame(tfidf1.fit_transform(text).toarray(),
� columns = tfidf1.get_feature_names())

print("dataframe #1:")
print(df)
print()

use L2 penalty:
tfidf2 = TfidfVectorizer(binary = False,norm = 'l2',use_idf =
False,smooth_idf = False,lowercase = True,stop_words =
'english',min_df = 1,max_df = 1.0,max_features =
� None,ngram_range = (1,1))

df = pd.DataFrame(tfidf2.fit_transform(text).toarray(),
� columns = tfidf2.get_feature_names())

NLPFD.Ch5.indd 182NLPFD.Ch5.indd 182 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

Algorithms and Toolkits (II) • 183

print("dataframe #2:")
print(df)
print()

Listing 5.15 contains a variation of the TfidfVectorizer class (dis-
played in Listing 5.13) that includes the parameter norm whose values can
be either l1 or l2 that correspond to L1 or L2 normalization, respectively.
The variable tfidf1 is initialized as an instance of TfidfVectorizer with
norm set equal to l1, and then the data frame df is initialized with the result
of transforming and fitting the contents of the array text (which is an array
of sentences). The variable tfidf2 is similar to tfidf1, except that norm is
set to the value l2 instead of l1. Launch the code in Listing 5.15 to see the
following output:

dataframe #1:

 ate cheese hay horse mouse saw
scared

0 0.333333 0.333333 0.000000 0.000000 0.333333 0.000000
0.000000

1 0.333333 0.000000 0.333333 0.333333 0.000000 0.000000
0.000000

2 0.000000 0.000000 0.000000 0.333333 0.333333 0.333333
0.000000

3 0.000000 0.000000 0.000000 0.333333 0.333333 0.000000
0.333333

dataframe #2:

 ate cheese hay horse mouse saw
scared

0 0.57735 0.57735 0.00000 0.00000 0.57735 0.00000
0.00000

1 0.57735 0.00000 0.57735 0.57735 0.00000 0.00000
0.00000

2 0.00000 0.00000 0.00000 0.57735 0.57735 0.57735
0.00000

3 0.00000 0.00000 0.00000 0.57735 0.57735 0.00000
0.57735

WHAT IS BEAUTIFULSOUP?

BeautifulSoup is a useful Python module that provides a plethora of APIs
for retrieving the contents of HTML Web pages and extracting subsets of
their content using XPath-based expressions. You need some familiarity with

NLPFD.Ch5.indd 183NLPFD.Ch5.indd 183 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

184 • Natural Language Processing Fundamentals for Developers

regular expressions, which are discussed in Appendix A. If need be, you can
find online tutorials that discuss basic concepts of XPath.

This section contains three code samples: how to retrieve the contents
of an HTML Webpage, how to display the contents of HTML anchor (“a”)
tags, and how to remove non-alphanumeric characters from HTML anchor
(“a”) tags.

Listing 5.16 shows the contents of scrape_text1.py that illustrate how
to retrieve the contents of https://www.github.com.

LISTING 5.16: scrape_text1.py

import requests
import re
from bs4 import BeautifulSoup

src = "https://www.github.com"

retrieve html web page as text
text = requests.get(src).text
#print("text:",text)

parse into BeautifulSoup object
soup = BeautifulSoup(text, "html.parser")
print("soup:",soup)

Listing 5.16 contains import statements, followed by initializing the vari-
able src as the URL for Github. Next, the variable text is initialized with
the contents of the Github page, and then the variable soup is initialized as an
instance of the BeautifulSoup class. Notice that html.parser is specified,
which is why the HTML tags are removed. Launch the code in Listing 5.16 to
see 1,036 lines of output. Only the first portion of the output is shown.

soup:

<!DOCTYPE html>

<html lang = "en">

<head>

<meta charset = "utf-8"/>

<link href = "https://github.githubassets.com" rel =
� "dns-prefetch"/>

<link href = "https://avatars0.githubusercontent.com"
� rel = "dns-prefetch"/>

NLPFD.Ch5.indd 184NLPFD.Ch5.indd 184 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

Algorithms and Toolkits (II) • 185

<link href = "https://avatars1.githubusercontent.com"
� rel = "dns-prefetch"/>

<link href = "https://avatars2.githubusercontent.com"
� rel = "dns-prefetch"/>

<link href = "https://avatars3.githubusercontent.com"
� rel = "dns-prefetch"/>

<link href = "https://github-cloud.s3.amazonaws.com"
� rel = "dns-prefetch"/>

<link href = "https://user-images.githubusercontent.com/"
� rel = "dns-prefetch"/>

<link crossorigin = "anonymous" href = "https://github.
githubassets.com/assets/frameworks-146fab5ea30e8afac08d
d11013bb4ee0.css" integrity = "sha512-FG+rXqMOivrAjdEQE
7tO4BwM1poGmg70hJFTlNSxjX87grtrZ6UnPR8NkzwUHlQEGviu9XuR
YeO8zH9YwvZhdg==" media = "all" rel = "stylesheet">

Listing 5.17 shows the contents of scrape_text2.py that illustrate how
to retrieve the contents of https://www.github.com and display the contents of
the HTML anchor (“a”) tags. The new code is shown in bold.

LISTING 5.17: scrape_text2.py

import requests
import re
from bs4 import BeautifulSoup

src = "https://www.github.com"

retrieve html web page as text
text = requests.get(src).text
#print("text:",text)

parse into BeautifulSoup object
soup = BeautifulSoup(text, "html.parser")
print("soup:",soup)

display contents of anchors ("a"):
for item in soup.find_all("a"):
 if len(item.contents) > 0:
 print("anchor:",item.get('href'))

NLPFD.Ch5.indd 185NLPFD.Ch5.indd 185 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

186 • Natural Language Processing Fundamentals for Developers

Listing 5.17 contains three import statements and then initializes the
variable src with the URL for Github. Next, the variable text is initialized
with the contents of the Github page. The next snippet initializes the variable
soup as an instance of the BeautifulSoup class. The final block of code is
a for loop (shown in bold) that iterates through all the <a> elements in the
variable text, and displays the href value embedded in each <a> element
(after determining that its contents are non-empty).

Launch the code in Listing 5.17 to see 102 lines of output. Only the first
portion of the output is shown.

anchor: #start-of-content

anchor: https://help.github.com/articles/supported-
browsers

anchor: https://github.com/

anchor: /join?ref_cta = Sign+up&ref_loc =
header+logged+out&ref_page = %2F&source = header-home

anchor: /features

anchor: /features/code-review/

anchor: /features/project-management/

anchor: /features/integrations

anchor: /features/actions

anchor: /features/packages

anchor: /features/security

anchor: /features#team-management

anchor: /features#hosting

anchor: /customer-stories

anchor: /security

anchor: /team

Listing 5.18 shows the contents of scrape_text3.py that illustrate how
to remove the nonalphanumeric characters from the HTML anchor (“a”) tags
in the Webpage https://www.github.com. The new code is shown in bold.

LISTING 5.18: scrape_text3.py

import requests
import re
from bs4 import BeautifulSoup

NLPFD.Ch5.indd 186NLPFD.Ch5.indd 186 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

Algorithms and Toolkits (II) • 187

removes non-alphanumeric characters
def remove_non_alpha_chars(text):
 # define the pattern to keep
 regex = r'[^a-zA-Z0-9]'
 return re.sub(regex, '', text)

src = "https://www.github.com"

retrieve html web page as text
text = requests.get(src).text
#print("text:",text)

parse into BeautifulSoup object
soup = BeautifulSoup(text, "html.parser")
print("soup:",soup)
display contents of anchors ("a"):
for item in soup.find_all("a"):
 if len(item.contents) > 0:
 #print("anchor:",item.get('href'))
 cleaned = remove_non_alpha_chars(item.get('href'))
 print("cleaned:",cleaned)

Listing 5.18 is similar to Listing 5.16, but it differs in the for loop (shown
in bold) and it displays the href values after removing non-alphabetic charac-
ters and all the whitespaces. Launch the code in Listing 5.18 to see 102 lines
of output. Only the first portion of the output is shown here.

cleaned: startofcontent

cleaned: httpshelpgithubcomarticlessupportedbrowsers

cleaned: httpsgithubcom

cleaned: joinrefctaSignupreflocheaderloggedout

refpage2Fsourceheaderhome

cleaned: features

cleaned: featurescodereview

cleaned: featuresprojectmanagement

cleaned: featuresintegrations

cleaned: featuresactions

cleaned: featurespackages

cleaned: featuressecurity

cleaned: featuresteammanagement

cleaned: featureshosting

NLPFD.Ch5.indd 187NLPFD.Ch5.indd 187 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

188 • Natural Language Processing Fundamentals for Developers

cleaned: customerstories

cleaned: security

cleaned: team

WEB SCRAPING WITH PURE REGULAR EXPRESSIONS

The previous section contains several examples of using BeautifulSoup to
scrape Webpages, and this section contains an example that involves only reg-
ular expressions. You need some familiarity with regular expressions, which
are discussed in one of the appendices.

Listing 5.19 shows the contents of scrape_pure_regex.py that illus-
trate how to retrieve the contents of https://www.github.com and remove the
HTML tags with a single regular expression.

LISTING 5.19: scrape_pure_regex.py

import requests
import requests
import re
import os

src = "https://www.github.com"

retrieve the web page contents:
r = requests.get(src)
print(r.text)

remove HTML tags (notice the "?"):
pattern = re.compile(r'<.*?>')

cleaned = pattern.sub('', r.text)

#remove leading whitespaces:
cleaned = os.linesep.join([s.lstrip() for s in cleaned.
� splitlines() if s])

#remove embedded blank lines:
cleaned = os.linesep.join([s for s in cleaned.splitlines()
� if s])
print("cleaned text:")
print(cleaned)

NLPFD.Ch5.indd 188NLPFD.Ch5.indd 188 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

Algorithms and Toolkits (II) • 189

#remove ALL whitespaces:
#cleaned = cleaned.replace(" ", "")

#this does not work:
#cleaned = cleaned.trim(" ", "")

Listing 5.19 also removes the HTML elements from the variable text
that contains the contents of the Github Webpage. However, there is a subtle
yet important detail regarding the regular expression <.*> versus the regular
expression <.*?>.

The regular expression <.*> performs a greedy match, which means that
it will continue matching characters until the right-most “>” is encountered.
However, we want the greedy match to stop after finding the first “>” charac-
ter, which matches the previous “<” character. The solution is simple. Specify
the regular expression <.*?>, which contains a question mark (“?”) whose
purpose is to disable the greedy matching nature of the metacharacter “*.”

Launch the code in Listing 5.19 to see the following output (some output
omitted for brevity):

<!DOCTYPE html>

<html lang = "en">

 <head>

 <meta charset = "utf-8">

 <link rel = "dns-prefetch" href = "https://github.
� githubassets.com">

 <link rel = "dns-prefetch" href = "https://avatars0.
� githubusercontent.com">

 <link rel = "dns-prefetch" href = "https://avatars1.
� githubusercontent.com">

 <link rel = "dns-prefetch" href = "https://avatars2.
� githubusercontent.com">

 <link rel = "dns-prefetch" href = "https://avatars3.
� githubusercontent.com">

 <link rel = "dns-prefetch" href = "https://github-
� cloud.s3.amazonaws.com">

 <link rel = "dns-prefetch" href = "https://user-
� images.githubusercontent.com/">

NLPFD.Ch5.indd 189NLPFD.Ch5.indd 189 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

190 • Natural Language Processing Fundamentals for Developers

 <link crossorigin = "anonymous" media = "all" integrity =
"sha512-/uy49LxdzjR0L36uT6CnmV1omP/8ZHxvOg4zq/dczzABHq9atn
tjJDmo5B7sV0J+AwVmv0fR0ZyW3EQawzdLFA==" rel = "stylesheet"
href = "https://github.githubassets.com/assets/frameworks-
� feecb8f4bc5dce34742f7eae4fa0a799.css"/>

 <link crossorigin = "anonymous" media = "all"
integrity = "sha512-37pLQI8klDWPjWVVWFB9ITJLwVTTkp3Rt4b
Vf+yixrViURK9OoGHEJDbTLxBv/rTJhsLm8pb00H2H5AG3hUJfg=="
rel = "stylesheet" href = "https://github.githubassets.
com/assets/site-dfba4b408f2494358f8d655558507d21.css"/>

 <meta name = "viewport" content = "width = device-width">

 <title>The world’s leading software development
platform · GitHub</title>

[details omitted for brevity]

 <div class = "position-relative js-header-wrapper">

 <a href = "#start-of-content" class = "px-2 py-4
bg-blue text-white show-on-focus js-skip-to-content">Skip
� to content

 <span class = "Progress progress-pjax-loader
� position-fixed width-full js-pjax-loader-bar">

 <span class = "progress-pjax-loader-bar top-0
� left-0" style = "width: 0%;">

[details omitted for brevity]

cleaned text:

The world’s leading software development platform ·
GitHub

Skip to content

GitHub no longer supports this web browser.

Learn more about the browsers we support.

<a

href = "/join?ref_cta=Sign+up&ref_loc = header+
logged+out&ref_page = %2F&source = header-home"

[details omitted for brevity]

NLPFD.Ch5.indd 190NLPFD.Ch5.indd 190 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

Algorithms and Toolkits (II) • 191

WHAT IS SCRAPY?

In the previous section, you learned that BeautifulSoup is a Python-based
library for scraping Web pages. BeautifulSoup also supports XPath (which is
an integral component of XSLT), whose APIs enable you to parse the scraped
data and to extract portions of that data.

Scrapy is a Python-based library that provides data extraction and an
assortment of additional APIs for a wide range of operations, including redi-
rections, HTTP caching, filtering duplicated requests, preserving sessions/
cookies across multiple requests, and various other features. Scrapy supports
both CSS selectors and XPath expressions for data extraction. Moreover, you
can also use BeautifulSoup or PyQuery as a data extraction mechanism.

While Scrapy and BeautifulSoup can do some of the same things (i.e.,
Web scraping), they have fundamentally different purposes. As a rule of
thumb, use BeautifulSoup if you need a “one-off” Webpage scraper. How-
ever, if you need to perform Web scraping and perform additional operations
for one or more webpages, then Scrapy is probably a better choice.

Scrapy is more difficult to master than BeautifulSoup, so decide whether
the extra features of Scrapy are necessary for your requirements before you
invest your time learning it. The Scrapy documentation page is available
online:

https://doc.scrapy.org/en/latest/intro/tutorial.html

WHAT IS SpaCy?

The spaCy NLP library is an efficient Python-based library that provides many
useful features, and its homepage is spacy.io.

The spaCy library provides support for many NLP-related tasks, some of
which are listed here:

●● NER (Named Entity Recognition)
●● POS tagging
●● support for more than 60 languages
●● more than 40 statistical models
●● pretrained word vectors

You might encounter the following error message if you do not have the
right components installed:

NLPFD.Ch5.indd 191NLPFD.Ch5.indd 191 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

192 • Natural Language Processing Fundamentals for Developers

OSError: [E050] Can't find model 'en'. It doesn't seem
to be a shortcut link, a Python package or a valid path
to a data directory.

The solution for the preceding error is to open a command shell and
launch the following command:

python3 -m spacy download en

After the preceding command has been successfully completed, you will
see this message:

You can now load the model via spacy.load('en')

SpaCy version 3.0 was released as this book went to print. Information is
available online at

https://explosion.ai/blog/spacy-v3

The latest version contains significant new features, including
transformer-based pipelines. The preceding link contains additional links
that contain more information about the latest release.

SpaCy AND STOP WORDS

Listing 5.20 shows the contents of spacy_stopwords.py that illustrate how
to find the stop words in a sentence.

LISTING 5.20: spacy_stopwords.py

import spacy

import spacy
from spacy import displacy
from spacy.lang.en.stop_words import STOP_WORDS

sentence = "This simple sentence contains a stop word or
� two or more"

nlp = spacy.load('en')
doc = nlp(sentence)

print("sentence: ",sentence)
non_stop = []

NLPFD.Ch5.indd 192NLPFD.Ch5.indd 192 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

Algorithms and Toolkits (II) • 193

for word in doc:
 if word.is_stop == True:
 print("stop word:",word)
 else:
 non_stop.append(word)
print("Non-stop: ",non_stop)

Listing 5.20 contains import statements for spaCy, displaCy (the lat-
ter is for visualization), and for English stop words. The next code snippet
initializes three variables. First, the variable sentence is initialized as a text
string. Second, nlp is initialized as an instance of the English language model.
Next, the variable doc is initialized with the result of processing the text in the
variable sentence.

The last portion of Listing 5.20 contains a loop that displays the stop
words in the variable sentence. Launch the code in Listing 5.20 to see the
following output:

sentence: This simple sentence contains a stop word or
two or more

stop word: This

stop word: a

stop word: or

stop word: two

stop word: or

stop word: more

Non-stop: [simple, sentence, contains, stop, word]

SpaCy AND TOKENIZATION

Listing 5.21 shows the contents of spacy_tokenize.py that illustrate how
to tokenize a sentence.

LISTING 5.21: spacy_tokenize.py

import spacy
nlp = spacy.load('en')

doc = nlp("I love Chicago deep dish pizza and Uno's as well.")

NLPFD.Ch5.indd 193NLPFD.Ch5.indd 193 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

194 • Natural Language Processing Fundamentals for Developers

for token in doc:
 print(token)

print(f"Token \t\tLemma \t\tStopword".format('Token','Lemma',
'Stopword'))
print("-"*40)

for token in doc:
 print(f"{str(token)}\t\t{token.lemma_}\t\t{token.is_stop}")

Listing 5.21 contains an import statement followed by the initialization
of the variable nlp as an instance of the English model in spaCy. Note that
this code snippet will download the data model if it is not already present on
your machine. The next portion of Listing 5.21 displays the tokens (words) in
the initial text string, followed by a tabular display in which each row displays
a token, its lemmatization, and whether it’s a stop word. Launch the code in
Listing 5.21 to see the following output:

I

love

Chicago

deep

dish

pizza

and

Uno

's

as

well

.

Token Lemma Stopword

--

I -PRON- True

love love False

Chicago Chicago False

deep deep False

dish dish False

NLPFD.Ch5.indd 194NLPFD.Ch5.indd 194 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

Algorithms and Toolkits (II) • 195

pizza pizza False

and and True

Uno Uno False

's 's True

as as True

well well True

. . False

SpaCy AND LEMMATIZATION

The code sample in this section shows how to perform lemmatization in
spaCy. Listing 5.22 shows the contents of spacy_lemma.py that illustrate
how to perform lemmatization in spaCy.

LISTING 5.22: spacy_lemma.py

import spacy

nlp = spacy.load("en_core_web_sm")

text = "I love Chicago deep dish pizza and Uno's as well."
 doc = nlp(text)

print("=> text, lemma_, pos_, and is_stop:")
for token in doc:
 print(token.text, token.lemma_, token.pos_, token.is_stop)
print()

import pandas as pd

cols = ("text", "lemma", "POS", "explain", "stopword")
rows = []

for t in doc:
 row = [t.text, t.lemma_, t.pos_, spacy.explain(t.pos_),
� t.is_stop]
 rows.append(row)

NLPFD.Ch5.indd 195NLPFD.Ch5.indd 195 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

196 • Natural Language Processing Fundamentals for Developers

df = pd.DataFrame(rows, columns = cols)
print("=> dataframe:")
print(df)

Listing 5.22 initializes the variable nlp with the spaCy model en_core_
web_sm and the variable text with the same sentence as previous code sam-
ples. Next, the variable doc is instantiated by specifying the variable text,
followed by a loop that displays the part of speech of each token (i.e., word)
in the variable text.

The next portion of Listing 5.22 initializes the variable cols as the head-
ings for the columns of a data frame, and the variable rows as an empty array.
The following loop appends a row of attributes for each token in the variable
text. Finally, the last code block initializes the data frame df with the con-
tents of the variable rows and then displays its contents. Launch the code in
Listing 5.22 to see the following output:

=> text, lemma_, pos_, and is_stop:

I -PRON- PRON True

love love VERB False

Chicago Chicago PROPN False

deep deep ADJ False

dish dish NOUN False

pizza pizza NOUN False

and and CCONJ True

Uno Uno PROPN False

's 's PART True

as as ADV True

well well ADV True

. . PUNCT False

=> dataframe:

 text lemma POS explain stopword

0 I -PRON- PRON pronoun True

1 love love VERB verb False

2 Chicago Chicago PROPN proper noun False

3 deep deep ADJ adjective False

4 dish dish NOUN noun False

NLPFD.Ch5.indd 196NLPFD.Ch5.indd 196 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

Algorithms and Toolkits (II) • 197

5 pizza pizza NOUN noun False

6 and and CCONJ coordinating True
 conjunction

7 Uno Uno PROPN proper noun False

8 's 's PART particle True

9 as as ADV adverb True

10 well well ADV adverb True

11 . . PUNCT punctuation False

SpaCy AND NER

The code sample in this section shows you how to perform NER (Named
Entity Recognition) in spaCy. Listing 5.23 shows the contents of spacy_ner.
py that illustrate how to perform NER in spaCy.

LISTING 5.23: spacy_ner.py

import spacy

nlp = spacy.load('en_core_web_sm')

text = "Chicago style deep dish pizza, Uno's, and Nancy's
� pizza."
print("text:")
print(text)
print()

doc = nlp(text)

Iterate over the entity text and label
for ent in doc.ents:
 print("text/label_:",ent.text, ent.label_)

Listing 5.23 is similar to Listing 5.21, except that this code only displays
the text and label_ values for each token in the string text. Launch the
code in Listing 5.21 to see the following output:

text:

Chicago style deep dish pizza, Uno's, and Nancy's pizza.

NLPFD.Ch5.indd 197NLPFD.Ch5.indd 197 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

198 • Natural Language Processing Fundamentals for Developers

text/label_: Chicago GPE

text/label_: Uno's ORG

text/label_: Nancy PERSON

Notice that Chicago is correctly identified as a location (GPE) and Uno's
is correctly identified as an organization. However, Nancy's is identified as
the person Nancy (which is actually correct), even though in this case the
string Nancy's is the name of a pizza parlor in Chicago.

SpaCy PIPELINES

SpaCy provides a pipeline class that enables you to specify a sequence of tasks
to perform. The default pipeline consists of a tagger, a parser and an entity
recognizer. The output of each task is a document, which becomes the input
for the next task in the pipeline.

Listing 5.24 shows the contents of spacy_pipeline.py that illustrate
how to use a spaCy pipeline.

LISTING 5.24: spacy_pipeline.py

import spacy

sentences = [
 "We got a huge deep dish pizza from Pizzeria Uno.",
 "Supplemented with a couple of pitchers of beer.",
 "Then we went to the top of the Hancock building."
]

nlp = spacy.load("en_core_web_sm")

for doc in nlp.pipe(sentences, disable = ["tagger",
� "parser"]):
 print("=> document:",doc)
 for ent in doc.ents:
 print("=> text:",ent.text,"=> label:",ent.label_)
 print()

Listing 5.24 initializes the variable sentences as an array of sentences,
and then initializes the variable nlp as an instance of a spaCy model. The next

NLPFD.Ch5.indd 198NLPFD.Ch5.indd 198 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

Algorithms and Toolkits (II) • 199

portion of Listing 5.23 is a for loop that is based on nlp.pipe(), which in
this example only processes the entity recognizer (the tagger and parser rec-
ognizers have been excluded).

Launch the code in Listing 5.24 to see the following output:

=> document: We got a huge deep dish pizza from
Pizzeria Uno.

=> text: Pizzeria Uno => label: PERSON

=> document: Supplemented with a couple of pitchers of
beer.

=> document: Then we went to the top of the Hancock
building.

=> text: Hancock => label: GPE

Pipelines are flexible and convenient for processing text-based docu-
ments. More code samples and detailed information regarding spaCy pipe-
lines are available online:

https://spacy.io/usage/processing-pipelines

SpaCy AND WORD VECTORS

Listing 5.25 shows the contents of spacy_word_vectors.py that illustrate
word vectors for words.

LISTING 5.25: spacy_word_vectors.py

import spacy

nlp = spacy.load('en_core_web_lg')

nlp(u'pizza').vector

doc = nlp(u'We ate deep dish pizza with wine and beer.')
print("=> doc.vector:")
print(doc.vector)
print()

NLPFD.Ch5.indd 199NLPFD.Ch5.indd 199 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

200 • Natural Language Processing Fundamentals for Developers

find similar pairs of tokens:
tokens = nlp(u'wine beer soda')
for token1 in tokens:
 for token2 in tokens:
 print("=> token1.text, token2.text, token1.
� similarity(token2):")
 print(token1.text, token2.text, token1.
� similarity(token2))
print()

normalize tokens:
tokens = nlp(u'apple banana orange')
for token in tokens:
 print("=> token.text, token.has_vector, token.vector_
� norm, token.is_oov:")
 print(token.text, token.has_vector, token.vector_norm,
� token.is_oov)
print()

from scipy import spatial
cosine_similarity = lambda x, y: 1 - spatial.distance.
� cosine(x, y)

queen = nlp.vocab['queen'].vector
woman = nlp.vocab['woman'].vector
man = nlp.vocab['man'].vector

find the closest vector to "man" - "woman" + "queen"
new_vector = queen - woman + man
calc_similarities = []

for word in nlp.vocab:
 # Ignore words without vectors and mixed-case words:
 if word.has_vector:
 if word.is_lower:
 if word.is_alpha:
 similarity = cosine_similarity(new_vector, word.
� vector)
 calc_similarities.append((word, similarity))

calc_similarities = sorted(calc_similarities, key=lambda
� item: -item[1])

NLPFD.Ch5.indd 200NLPFD.Ch5.indd 200 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

Algorithms and Toolkits (II) • 201

print("=> [w[0].text for w in calc_similarities[:10]]:")
print([w[0].text for w in calc_similarities[:10]])
print()

doc = nlp(u'The quick brown fox jumped over the lazy
� dogs.')
print("doc:",doc)
print("doc.vector:",doc.vector)

Listing 5.25 initializes the variable doc as an instance of the nlp class, as
well as the given text string, and then displays the contents of the associated
word vector. Next, the variable tokens is initialized with three words, fol-
lowed by a nested loop that displays the pair-wise similarity of the words in
the tokens variable. The next portion of Listing 5.25 initializes the variable
tokens with three different words, followed by a loop that displays various
attributes these words.

The next portion of Listing 5.25 initializes the variable cosine_simi-
larity as a lambda expression that calculates the cosine similarity between
a pair of words. Then the variables queen, woman, and man are initialized,
followed by the variable new_vector that is initialized as follows:

new_vector = queen - woman + man

Then another loop iterates through the words nlp.vocab and for each
lowercase alphabetic word in nlp.vocab, computes the cosine similarity of
that word with the variable new_vector. The resultant list of cosine similar-
ities is sorted and then displayed. Launch the code in Listing 5.25 to see the
following output:

=> doc.vector:

[-1.39887929e-01 -1.95095055e-02 8.34191069e-02 -2.64628291e-01

 2.40830615e-01 2.75315434e-01 2.51161046e-02 7.67326951e-02

 8.21892098e-02 1.90768397e+00 -2.59143114e-01 1.49312809e-01

 -6.83634281e-02    -1.11276604e-01   -1.17691800e-01 -2.02080399e-01

 -7.09474012e-02     1.21521211e+00   -1.57256007e-01 -2.19138991e-02

 // lines omitted for brevity

 3.04495007e-01 -1.26671968e-02 6.86664060e-02 -1.62135810e-01

 -6.57109767e-02 1.62497148e-01 4.26867157e-01 1.21716186e-01

 8.21024999e-02 2.98182011e-01 5.26543036e-02 2.68678162e-02

 -2.37585977e-01 1.15498960e-01 -1.25021964e-01 -1.34173691e-01

   9.52331945e-02    -1.57274202e-01    9.77694020e-02   1.11879949e-02]

NLPFD.Ch5.indd 201NLPFD.Ch5.indd 201 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

202 • Natural Language Processing Fundamentals for Developers

tokens: wine beer soda

=> token1.text, token2.text, token1.similarity(token2):

wine wine 1.0

=> token1.text, token2.text, token1.similarity(token2):

wine beer 0.6600621

=> token1.text, token2.text, token1.similarity(token2):

wine soda 0.4345365

=> token1.text, token2.text, token1.similarity(token2):

beer wine 0.6600621

=> token1.text, token2.text, token1.similarity(token2):

beer beer 1.0

=> token1.text, token2.text, token1.similarity(token2):

beer soda 0.5788868

=> token1.text, token2.text, token1.similarity(token2):

soda wine 0.4345365

=> token1.text, token2.text, token1.similarity(token2):

soda beer 0.5788868

=> token1.text, token2.text, token1.similarity(token2):

soda soda 1.0

=> token.text, token.has_vector, token.vector_norm, token.is_oov:

apple True 7.1346846 False

=> token.text, token.has_vector, token.vector_norm, token.is_oov:

banana True 6.700014 False

=> token.text, token.has_vector, token.vector_norm, token.is_oov:

orange True 6.5420218 False

=> [w[0].text for w in calc_similarities[:10]]:

['queen', 'man', 'he', 'let', 'nothin', 'lovin', 'nuff',
'dare', 'doin', 'all']

THE ScispaCy LIBRARY (OPTIONAL)

The scispaCy Python library for NLP is based on spaCy, and it’s used for pro-
cessing biomedical text. This library performs common NLP tasks, such as
NER, POS tagging, dependency parsing, and sentence segmentation.

NLPFD.Ch5.indd 202NLPFD.Ch5.indd 202 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

Algorithms and Toolkits (II) • 203

The scispaCy library contains two primary packages that contain models:
en_core_sci_sm (a smaller vocabulary without word vectors) and en_
core_sci_md (a larger vocabulary with word vectors).

In particular, NER tasks play a key role in various types of biomedical
data in datasets of differing sizes and number of entities (and their types) for
different domains, such as cancer genetics, disease-drug interactions, path-
way analysis, and trial population extraction. The accuracy of scispaCy NER
models is comparable to some other existing models. If this Python library
interests you, more information regarding scispaCy is available online:

https://arxiv.org/pdf/1902.07669.pdf

SUMMARY

This chapter showed how to perform data cleaning tasks that involve regu-
lar expressions. Then you learned about BoW, along with an explanation of
word embeddings. In addition, you saw how to use BeautifulSoup, which is a
Python module for scraping HTML Web pages.

Then you learned about Scrapy, which is a Python-based library that pro-
vides Web-scraping functionality and other APIs. In addition, you were intro-
duced to spaCy, which is a Python-based library for NLP, along with Python
code samples that show you various features of spaCy.

You also learned about word embeddings and the fact that they provide
context for words, which can yield more powerful models. Then you saw a
Python code sample that involved word2vec, which is a Python-based library
(discussed in Chapter 4) for NLP-related tasks that involve unstructured data
as well as labeled data.

NLPFD.Ch5.indd 203NLPFD.Ch5.indd 203 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

NLPFD.Ch5.indd 204NLPFD.Ch5.indd 204 6/1/2021 11:42:04 AM6/1/2021 11:42:04 AM

C H A P T E R 6
NLP Applications

Chapters 4 and 5 provided a fast-paced introduction to several NLP-related
Python libraries and related code samples. By contrast, this chapter is primar-
ily about text classification, recommendation systems, and sentiment analysis.

The first section describes two main types of text summarization (extractive
and abstractive), as well as text recommendation. This section also contains
Python code samples that illustrate how to use Gensim and spaCy to perform
text classification.

The second section contains a brief overview of the recommender systems
used in the online reviews of books, movies, and restaurants. The optional
portion of this section discusses how to use reinforcement learning in recom-
mender systems.

The third section discusses sentiment analysis, which is actually a sub-
set of text classification. In essence, sentiment analysis attempts to assess the
mood (positive, negative, or neutral) of a document (such as a review). We
included Python code samples that perform sentiment analysis with Naïve
Bayes, NLTK and VADER, and logistic regression.

The final part of this chapter contains a Python code sample involving a
COVID-19 dataset, followed by a brief introduction to chatbots.

WHAT IS TEXT SUMMARIZATION?

Text summarization can be informally described as producing a summary of
the content of a block of text. Text summarization is similar to a synopsis or
an executive summary of a document. In NLP, automatic text summariza-
tion involves generating a summary of text from various sources, such as a
Webpage, blog post, a document, or a set of documents.

NLPFD.Ch6.indd 205NLPFD.Ch6.indd 205 6/7/2021 3:54:50 PM6/7/2021 3:54:50 PM

206 • Natural Language Processing Fundamentals for Developers

There are two main categories of text summarization (the first is more com-
plex than the second): abstractive summarization techniques and extractive
summarization techniques. A high-level description of these summarization
techniques is provided in the following subsections.

Extractive Text Summarization

Extractive text summarization algorithms extract keywords or sentences with-
out modifying any of the words in a document and represent the content of a
document. Examples of extractive text summarization tasks include produc-
ing book reviews, movie reviews, the minutes of a meeting, a document, or a
blog post summary.

Note that the extractive algorithms do not generate any new text from
a document, and they typically involve smaller amounts of training data.
Extractive text summarization has been extensively researched, and has
reached a mature stage.

Extractive summarization algorithms perform three independent tasks:

●● an intermediate representation of the text
●● providing sentence ranks based on the representation
●● creating a summary based on some of the sentences

A representation of the input text can use a frequency-based approach,
such as calculating word frequencies via tf-idf scores. A topic-based approach
involves finding topics in a document and then estimating the importance of
each sentence based on the number of topic-related words that appear in a
given sentence or the centroids from clusters that are formed by grouping
similar data together. A score is assigned to each sentence based on how well
it appears to explain the topics in a document. Finally, a summary is gener-
ated, based on the highest ranked sentences from the previous step.

Abstractive Text Summarization

Abstractive text summarization tasks are difficult because they involve a com-
plex process that requires understanding the language and the context, after
which they generate new sentences. These algorithms often require large
amounts of data during the training step. This type of text summarization
involves generating new vocabulary that describes the content of a document
in a concise and structured manner.

There are two other points that are important. First, text summarization
tends to work better with documents that have a smaller number of distinct

NLPFD.Ch6.indd 206NLPFD.Ch6.indd 206 6/7/2021 3:54:50 PM6/7/2021 3:54:50 PM

NLP Applications • 207

topics. For example, lengthy books and poems can contain a wide range of
topics, which can pose a challenge for accurate text summarization.

Second, human speech tends to be more casual than written language,
which means that errors occur when transcribing speech to text. However,
the transcription accuracy continues to improve, which in turn means that it
will become more feasible to apply extractive methods to text that has been
transcribed from speech.

TEXT SUMMARIZATION WITH GENSIM AND SpaCy

This section contains Python code samples that combine Gensim and spaCy
to perform text summarization.

Listing 6.1 shows the contents of text_summarization.py that illus-
trate how to perform text summarization with gensim on a block of text.

LISTING 6.1: text_summarization.py

from gensim.summarization import summarize

mytext = """
Chapters five and six provide a fast-paced introduction
to several NLP-related Python libraries and related code
samples. By contrast, this chapter is primarily about
text classification, recommendation systems, and sentiment
analysis.
The first section discusses two main types of text
summarization (extractive and abstractive), as well as
text recommendation. This section also contains Python
code samples that illustrate how to use gensim and SpaCy
to perform text classification.
The second section contains a brief overview of
recommender systems, which are used in online reviews of
books, movies, restaurants, and so forth. You will also
learn how to use the Python surprise library that provides
a layer of abstraction above the tasks that are required
for recommender systems. The final (optional) portion of
this section discusses how to use reinforcement learning
in recommender systems.
"""

NLPFD.Ch6.indd 207NLPFD.Ch6.indd 207 6/7/2021 3:54:50 PM6/7/2021 3:54:50 PM

208 • Natural Language Processing Fundamentals for Developers

Summarize the preceding text by passing it as
an input to "summarize" that returns a summary
print("===> text summary:")
print(summarize(mytext))
print()

the "split" option produces a list of strings
print("===> split the text summary:")
print(summarize(mytext, split = True))
print()

1) the "ratio" parameter changes the displayed text
� (default = 20%)
2) the "word_count" parameter: the number of words to
� display
print("===> a 50-word summary:")
print(summarize(mytext, word_count = 50))
print()

from gensim.summarization import keywords
print("===> keywords:")
print(keywords(mytext))
print()

Listing 6.1 initializes the variable mytext with a test string that is passed
in to the summary() method provided by gensim, after which a summary of
the contents of mytext is displayed.

The next portion of Listing 6.1 invokes the summary() method with
split=True to display the preceding output as a list of strings. The next
code snippet invokes the summary() method again, this time with word_
count=50 to display a 50-word summary of the input text. Launch the code
in Listing 6.1 to see the following output:

===> text summary:

You will also learn how to use the Python surprise
library that provides a layer of abstraction above the
tasks that are required for recommender systems.

===> split the text summary:

['You will also learn how to use the Python surprise
library that provides a layer of abstraction above the
tasks that are required for recommender systems.']

NLPFD.Ch6.indd 208NLPFD.Ch6.indd 208 6/7/2021 3:54:50 PM6/7/2021 3:54:50 PM

NLP Applications • 209

===> a 50-word summary:

This section also contains Python code samples that
illustrate how to use gensim and SpaCy to perform text
classification.

You will also learn how to use the Python surprise
library that provides a layer of abstraction above the
tasks that are required for recommender systems.

===> keywords:

python

text

section

movies

optional

recommendation

recommender

Listing 6.2 shows the content of gensim_spacy.py that illustrates how to
perform text summarization with gensim and spaCy on text that is extracted
from Wikipedia.

Make sure that you invoke pip3 install Wikipedia.

LISTING 6.2: gensim_spacy.py

import spacy

from gensim.summarization.summarizer import summarize
from gensim.summarization import keywords
import wikipedia

Get wiki content for Japan:
wikisearch = wikipedia.page("Japan")
wikicontent = wikisearch.content

nlp = spacy.load('en_core_web_sm')
doc = nlp(wikicontent)

Save the wiki content to a file:
f = open("wikicontent.txt", "w")
f.write(wikicontent)
f.close()

NOTE

NLPFD.Ch6.indd 209NLPFD.Ch6.indd 209 6/7/2021 3:54:50 PM6/7/2021 3:54:50 PM

210 • Natural Language Processing Fundamentals for Developers

Summary (0.5% of the original content):
summ_per = summarize(wikicontent, ratio = 0.05)
print("=> Percent summary:")
print(summ_per)

Listing 6.2 initializes the variable wikisearch with the result of invok-
ing the wikipedia.page() method, followed by the variable wikicontent
that contains the text from the variable wikisearch.

Next, the variable nlp is initialized as an instance of the small Web
model from spaCy, and the variable doc is initialized with the result of pass-
ing wikicontent to the nlp variable. The wikicontent variable contains
actual text, which is saved to a text file.

The final code block in Listing 6.2 provides a small (i.e., 0.5%) summary
of the text in wikicontent. Launch the code in Listing 6.2 to see the follow-
ing output:

=> Percent summary:

Japan (Japanese: 日本, Nippon [ɲippoꜜɴ] (listen) or
Nihon [ɲihoꜜɴ] (listen)) is an island country in East
Asia, located in the northwest Pacific Ocean. It is
bordered on the west by the Sea of Japan, and extends
from the Sea of Okhotsk in the north toward the East
China Sea and Taiwan in the south. Part of the Ring
of Fire, Japan spans an archipelago of 6852 islands
covering 377,975 square kilometers (145,937 sq mi);
the five main islands are Hokkaido, Honshu, Shikoku,
Kyushu, and Okinawa. Tokyo is Japan's capital and
largest city; other major cities include Yokohama,
Osaka, Nagoya, Sapporo, Fukuoka, Kobe, and Kyoto.

Japan is the eleventh-most populous country in the
world, as well as one of the most densely populated and
urbanized. About three-fourths of the country's terrain
is mountainous, concentrating its population of 125.71
million on narrow coastal plains. Japan is divided into
47 administrative prefectures and eight traditional
regions. The Greater Tokyo Area is the most populous
metropolitan area in the world, with more than 37.4
million residents.

[some content omitted for brevity]

NLPFD.Ch6.indd 210NLPFD.Ch6.indd 210 6/7/2021 3:54:50 PM6/7/2021 3:54:50 PM

NLP Applications • 211

=> Word count summary:

Although it has renounced its right to declare war, the
country maintains Self-Defense Forces that are ranked
as the world's fourth-most powerful military.

Ranked the second-highest country on the Human
Development Index in Asia after Singapore, Japan has
the world's second-highest life expectancy, though it
is experiencing a decline in population.

Despite early resistance, Buddhism was promoted by the
ruling class, including figures like Prince Shōtoku,
and gained widespread acceptance beginning in the Asuka
period (592–710).The far-reaching Taika Reforms in
645 nationalized all land in Japan, to be distributed
equally among cultivators, and ordered the compilation
of a household registry as the basis for a new system
of taxation.

During the Meiji era (1868–1912), the Empire of Japan
emerged as the most developed nation in Asia and as
an industrialized world power that pursued military
conflict to expand its sphere of influence.

[Some content was omitted for brevity.]

WHAT ARE RECOMMENDER SYSTEMS?

Recommender systems are a subset of information filtering systems that
attempt to predict the rating or preference assigned by users to an item. Such
systems personalize the information supplied to users based on their inter-
ests and the relevance of the information. Recommendation systems are used
widely for many scenarios, such as the following:

●● recommending movies
●● articles
●● restaurants
●● places to visit
●● items to buy

There are three major types of algorithms that are used for recommenda-
tion systems, as shown in the following list:

NLPFD.Ch6.indd 211NLPFD.Ch6.indd 211 6/7/2021 3:54:50 PM6/7/2021 3:54:50 PM

212 • Natural Language Processing Fundamentals for Developers

●● collaborative filtering (similar users)
●● content-based approaches (item features)
●● a hybrid of the first two

In highly simplified terms, collaborative filtering makes recommenda-
tions to a user based on another user who has similar preferences. This tech-
nique obviously requires some users, and the initial absence of users is called
the “cold start” problem. By contrast, a content-based approach recommends
a new item to a user based on the similarity of the features of that item to an
existing (and similar) item. A hybrid approach can start with a content-based
approach (which does not suffer from the cold start problem), and then use a
collaborative filtering approach.

These three approaches are discussed in greater detail in a subsequent
section, after we explore some of the aspects of a movie recommender system,
which is the topic of the next section.

Movie Recommender Systems

A movie recommender system is familiar to most people, and in simple terms,
the goal of such a system is to create an accurate list of recommendations to
its users. A recommendation list takes into account the movies that a user
has seen, the ratings assigned to the movies by each user, and a mix of other
factors.

Suppose that we have a matrix R with m rows (users) and n columns (mov-
ies), and each entry in matrix R is a movie rating, which can be a number
between 1 and 5 inclusive or a floating point number between 0 and 1. Matrix
R can have millions of rows and tens of thousands of movies. In addition,
matrix R probably has some relationships that can provide useful information.
For example, it’s possible to have the following:

●● two equal rows (two users have the same movie ratings)
●● two equal columns (two movies have the same ratings by multiple users)
●● a third row is the sum of two other rows

Here is an example of a matrix R that consists of four users and four mov-
ies, with movie ratings expressed as a floating point number between 0 and 1:

 M1 M2 M2 M4

Alice 1 - 0.2 -

Edward - 0.5 - 0.3

Steve 1 - 1 -

David 1 - - 0.4

NLPFD.Ch6.indd 212NLPFD.Ch6.indd 212 6/7/2021 3:54:50 PM6/7/2021 3:54:50 PM

NLP Applications • 213

There are some missing entries in the preceding matrix. The goal of a
recommender system is to infer values for the missing entries.

Now consider the following rating matrix R in which all numeric ratings
are equal to 2, along with one missing value:

 M1 M2 M2 M4

Alice 2 2 2 2

Edward 2 2 2 2

Steve 2 2 2 ?

David 2 2 2 2

The obvious choice for the missing value in the preceding matrix R is 2.
Now try to infer the missing value in the following matrix R:

 M1 M2 M2 M4

Alice 3 1 1 2

Edward 1 2 4 3

Steve 3 1 1 ?

David 4 3 5 4

What is the missing value in the preceding matrix? If you guessed 2, you
are correct. This value is inferred from the fact that Alice and Steve have three
identical ratings, and since Alice rated M4 with the value 2, we can infer that
Steve would also rate this movie with a value of 2.

Factoring the Rating Matrix R

As you learned in a previous section, the rating matrix R can be massive,
which will degrade performance when processing this matrix for information.
Fortunately, we can avail ourselves of a technique called matrix factorization:

https://en.wikipedia.org/wiki/Matrix_factorization_(recommender_
systems)

Let’s suppose that each row of R is a movie and there are 1,000 movies. In
addition, suppose that each column of R is a user, and there are 2,000 users.
Then the array R has 2,000,000 entries (and is also sparse).

However, we can decompose the matrix R into the product of two matri-
ces M and U. Specifically, M is a 1000 × 100 matrix of consisting of movies
and features for its rows and columns, respectively. In addition, matrix U is a
100 × 2000 matrix consisting of features and users for its rows and columns,
respectively. The matrices M and U are compatible, because their product

NLPFD.Ch6.indd 213NLPFD.Ch6.indd 213 6/7/2021 3:54:50 PM6/7/2021 3:54:50 PM

214 • Natural Language Processing Fundamentals for Developers

is (1000 × 100) × (100 × 2000), which is a matrix of dimensionality 1000 ×
2000: this is also the dimensionality of matrix R. Moreover, the content of
the rows and columns of M*U matches the content of the rows and columns
of matrix R.

The following section describes a new type of recommendation system,
followed by the two main types of recommendation systems that were men-
tioned earlier in this chapter.

CONTENT-BASED RECOMMENDATION SYSTEMS

The premise of content-based recommendation systems is that if you like an
item, you will probably like a similar item. In situations where it’s easy to
determine the context or properties of each item, a recommendation that’s
based on the similarity of the items generally works well (for example, recom-
mending the same kind of item, such as a movie, book, song, or restaurant).

Content-based recommendation systems are classified in two broad
categories: (1) a technique that analyzes only the description of the content
and (2) a technique that involves building user profiles and item profiles. Both
techniques are discussed in the following subsections.

Analyzing Only the Description of the Content

This technique is similar to item-based collaborative filtering. This means that
the system recommends anything similar to previously items that are marked
as “liked.” The advantages of this technique are as follows:

●● avoids the “new item problem” if the descriptions are good
●● semantic information and inferences can be used
●● easier to create more transparent systems

This technique also has the following disadvantages:

●● content-based recommendation systems tend to overspecialize
●● they will recommend items similar to those already consumed
●● the preceding also has a tendency of creating a “filter bubble”

Creating User Profiles and Item Profiles

One technique for creating user profiles utilizes a description or attributes
from items the user has previously interacted with to recommend simi-
lar items. This technique depends only on the user’s previous choices. This

NLPFD.Ch6.indd 214NLPFD.Ch6.indd 214 6/7/2021 3:54:50 PM6/7/2021 3:54:50 PM

NLP Applications • 215

technique is robust and avoids the “cold-start problem.” It’s also simple to use
for textual items (such as articles, news and books).

COLLABORATIVE FILTERING ALGORITHM

The premise of collaborative algorithm can be illustrated with the following
simple example. Suppose that person A likes items 1, 2, and 3, whereas person
B likes items 2, 3, and 4. As you can see, A and B have similar interests, and
so we infer that A would like item 4 (because B likes it) and that B would like
item A (because A likes it).

An example of collaborative filtering occurs when you go to a restaurant and
then you ask the wait staff (or someone in your group) for a recommendation.

The collaborative filtering algorithm is

●● entirely based on past behavior
●● not based on the context
●● is independent of any other information
●● a commonly used algorithm

User–User Collaborative Filtering

User–user collaborative filtering involves searching for “look-alike” custom-
ers (based on a similarity) To offer products to the second customer based
on what the first customer has chosen in the past. This is an effective algo-
rithm that requires a significant amount of time and resources because infor-
mation about every customer pair must be determined. In the case of very
large platforms, this algorithm is difficult to implement without a very strong
parallelizable system.

Item–Item Collaborative Filtering

Item–item collaborative filtering is similar to user–user collaborative filtering,
with the following points:

●● finds the item look-alike instead of the customer look-alike
●● easy to recommend similar items to customers who have purchased items

(when the item look-alike matrix is constructed)

This technique is a far less resource consuming than user–user collabo-
rative filtering. In fact, for new customers, the item-item algorithm takes far
less time than user-user collaborate as we don’t need all the similarity scores

NLPFD.Ch6.indd 215NLPFD.Ch6.indd 215 6/7/2021 3:54:50 PM6/7/2021 3:54:50 PM

216 • Natural Language Processing Fundamentals for Developers

between customers. In the case of a fixed number of products, the product–
product look-alike matrix is fixed over time. If need be, you can read the
section in appendix A that discusses various types of distance metrics.

Recommender System with Surprise

Surprise is a simple Python recommendation system engine that is based on
Sklearn. Surprise is an open source Python library for building and analyzing
recommender systems:

https://surpriselib.com

Surprise provides built-in datasets, prediction algorithms, dimensionality
reduction (PCA and SVD), and various metrics such as MAE, RMSE, and so
forth. Navigate to its home page to learn about its features and code samples:

https://surpriselib.com

RECOMMENDER SYSTEMS AND REINFORCEMENT
LEARNING (OPTIONAL)

As you have already learned, traditional recommender systems typically involve
either collaborative filtering or content-based systems. Another approach to
implementing recommender systems involves reinforcement learning. Before
we proceed with more details, let’s take a short digression to provide a high-
level description of reinforcement learning.

Basic Reinforcement Learning in Five Minutes

Reinforcement learning involves an agent that seeks to maximize its expected
future reward, which involves moving among various states, in a randomly
selected fashion or in a deterministic fashion. Each state has a reward that can
be a positive value, zero, or negative value, and finding the optimal path often
involves many, many iterations. The agent (aka the learner) is not told which
actions must be taken and in which sequence they must be taken. The agent
must discover those actions by itself.

In general, greedy algorithms fail in reinforcement learning tasks, so a
generalization called the “epsilon greedy” algorithm is employed. This involves
the following variables:

NLPFD.Ch6.indd 216NLPFD.Ch6.indd 216 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 217

●● an initial state S
●● a variable epsilon with initial value equal to 1
●● a variable rnd that is a randomly generated number between 0 and 1
●● a Q table whose rows are states and columns are actions

If rnd is less than epsilon, then a random action A (that is defined for the
current state) is selected; otherwise, an action is selected for which Q(S,A)
has the maximum value. In either case, the selected action A is handed to
the environment, which you can think of as an “oracle” that returns a new
state, a reward, and a Boolean “done” flag that equals true when the current
episode (or game) has concluded. Here is a sample of the type of code that
determines the new state based on the current action, where the variable env
is the “oracle:”

import gym

initialize state, action, epsilon, rnd, done, total_reward

state = current state

other details omitted

while(done = False):

 # find an action based on epsilon greedy algorithm:

 # details omitted...

 # get the next state and reward:

 next_state, reward, done, _ = env.step(action)

 # set the current state to the new state:

 state = next_state

 total_reward += reward

Note that the preceding code is inside a loop, which means that many
actions are selected in order to arrive at different states.

Each time that a value is generated for rnd, the value of epsilon is
decremented from 1 to a small number (typically 0.1). Hence, over the
course of multiple iterations, the number of randomly selected actions (called
“exploration”) decreases and the number of greedy-style selections (called
“exploitation”) increases.

If epsilon is the constant 0, then the algorithm is simply a greedy algo-
rithm, so the latter is actually a special case of the epsilon greedy algorithm.

NLPFD.Ch6.indd 217NLPFD.Ch6.indd 217 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

218 • Natural Language Processing Fundamentals for Developers

However, if epsilon is the constant 1, then the algorithm involves only ran-
domly selected choices, which does not provide any meaningful value. The
epsilon greedy algorithm is both clever and elegant in its ability to combine
random choices with deterministic choices.

One well-known technique in reinforcement learning is called q-learning
(“quality” learning) which involves a two-dimensional matrix (aka a “q-table”)
with states as rows and actions as columns. The matrix cells are (state, action)
pairs that are initialized to 0. After each iteration of the loop containing the
epsilon greedy algorithm, the currently selected (state, action) pair is updated
with a new reward value, and the agent makes a transition to the newly
selected state.

However, a q-table works when there is a fixed number of states and
actions, such as tasks involving a maze or navigating around a rectangular
grid. In the case of games such as Super Mario, each time Mario moves on
the screen, the new set of pixels is treated as a new state. Thus, the number of
states is treated as though it’s continuous rather than discrete.

However, instead of appending each new state to a q-table, we use some-
thing called deep Q-learning (DQN), which involves passing the state as the
input to a neural network and the output layer is a set of possible actions. The
neural network is trained via backward error propagation, and the action in
the output layer that has the highest probability is selected.

One other scenario can arise when the number of states and the number
of actions are both continuous. As an example, consider a moving vehicle. The
number of states is continuous and the number of actions (such as turning the
steering wheel) is also continuous. There are some deep reinforcement learn-
ing algorithms, such as soft actor critic (SAC) and twin delayed DDPG (TD3)
that solve this type of task.

Almost every reinforcement learning task can be modeled as an Markov
decision process (MDP), which is based on a Markov chain, and the latter
is a nondeterministic finite automata (NFA) with probabilities for outgoing
edges (whose sum equals one). There are many concepts and algorithms in
reinforcement learning, including

●● agent
●● environment
●● state
●● state transitions
●● actions (and probabilities)
●● discount factor

NLPFD.Ch6.indd 218NLPFD.Ch6.indd 218 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 219

●● discounted future reward
●● Markov chains
●● MDPs
●● on-policy versus off-policy
●● model-based versus model-free
●● Q-learning
●● Bellman’s equation
●● policy gradient algorithms
●● deep reinforcement learning algorithms

There are numerous online articles that discuss the topics in the preceding
list, along with the code samples for deep reinforcement learning algorithms.

What Is RecSim?

RecSim is an open source platform that is based on reinforcement learning
(RL) that creates simulations for collaborative interactive recommenders
(CIRs). Recall from the previous section that RL involves an agent, a set of
states, and a set of actions associated with each state that enables transitions
between states. Moreover, some tasks use the epsilon greedy algorithm to
select a state that is passed to the environment (“oracle”) that returns a new
state, a reward, and a Boolean “done” flag.

By contrast, a RecSim agent interacts with an environment that consists
of a user model, a document model, and a user choice model. In RecSim, we
can represent the state by the content, the action is the next best content, and
the user satisfaction represents the reward. Moreover, we can use a vector
embedding to represent the content. Without delving into many details, RL
enables recommender systems to suggest new recommendations to users that
are independent of earlier recommendations.

In fact, those new recommendations can contain random content that
might be appealing to them. This approach provides users with opportuni-
ties to discover new interests that previously might not have interested them.
After all, people’s interests can (and do) change over time. Indeed, RL-based
models continually learn and evolve as users’ interests change.

This concludes the portion of the chapter pertaining to recommender sys-
tems. If you are interested in learning about recent trends in recommender
systems, navigate to the following link:

https://aws.amazon.com/blogs/media/whats-new-in-recommender-
systems/

NLPFD.Ch6.indd 219NLPFD.Ch6.indd 219 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

220 • Natural Language Processing Fundamentals for Developers

WHAT IS SENTIMENT ANALYSIS?

The purpose of sentiment analysis is to determine the attitude of a person
regarding a topic, the context of a document, or of a corpus of documents.
In each case, sentiment analysis assesses whether the input text expresses a
positive, negative, or neutral sentiment.

In high-level terms, sentiment analysis involves various steps for process-
ing natural language, followed by training a model. The first stage processes
text in a way that, when we are ready to train our model, we already know
what variables the model needs to consider as inputs. The model learns how
to determine the sentiment of a piece of text based on these variables.

Sentiment analysis can also be a binary classification task involving pos-
itive and negative sentiment. Sentiment analysis can be performed in many
situations, some of which are listed here:

●● the online sentiment for a particular product
●● analyzing movie, book, and restaurant reviews
●● issues logged at customer support centers

As you learned in Chapter 3, human languages are very flexible in that
they enable people to express

●● a mix of positive and negative sentiments
●● the use of sarcasm and its nuances
●● the use of slang (a negative can mean a positive)

Moreover, language is fundamentally ambiguous because our emotions
can convey sarcasm, irony, and plays on words, all of which pose challenges
for NLP.

There are two main ways to perform sentiment analysis: a rule-based
approach (older and less powerful) and machine learning techniques.

The rule-based technique counts the number of positive words and
negative words in a document and whichever of these two numbers is larger
determines the sentiment of the document.

However, the rule-based approach for sentiment analysis has a draw-
back. This method focuses on individual words and does not examine any
context. More than likely, token-based algorithms will generate a highly neg-
ative ranking for sentences with slang such as “The concert last night was the
bomb,” which actually means the concert was great (“the bomb”), not terrible
(“a bomb”).

NLPFD.Ch6.indd 220NLPFD.Ch6.indd 220 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 221

The machine learning approach involves a classification model (chosen
from various algorithms) that is trained with a labeled dataset of positive, neg-
ative, and neutral sentiments. Assign the values 1, −1, and 0 to these three
sentiments, or assign a range of values that are in the interval [−1,1]. In the
latter case, −1 is the most negative sentiment value and +1 is the most positive
sentiment value.

As an exercise, see if you can assign a numeric value to the sentiment of
each of the following sentences:

1.	 “Our plan was not without merit” is similar in meaning to “Our plan has
merit.”

2.	 “I like the pizza toppings, but I do not like the crust.”

3.	 “The only thing worse than being talked about, is not being talked about”
(Oscar Wilde).

4.	 “Everything is funny, as long as it’s happening to somebody else” (Will
Rogers).

5.	 “When ignorance is bliss, ‘tis folly to be wise” (William Shakespeare).

6.	 “Good judgment is the result of experience and experience the result of
bad judgement” (Mark Twain).

Here are some observations about the sentences in the preceding list.
Example #1 contains two sentences that have approximately the same inter-
pretation. However, the former sentence is close to a “double negative,” which
is a more difficult NLP sentiment analysis task. Depending on the Python
library that you use, the second sentence is more likely to receive a higher
positive sentiment than the first sentence.

In example #2, there is a positive and a negative sentiment. What numeric
sentiment value would you assign to the entire sentence? If you compute the
average of that +1 (for positive) and −1 (for negative) the result is 0, which
suggests a neutral sentiment. Although the overall sentiment could be deemed
neutral, the two parts of the sentence are not neutral.

Example #3 might be viewed as a pithy and ironic observation about peo-
ple, and some might say that to varying degrees it’s also somewhat rueful. This
sentence expresses a sentiment of the form “B is worse than A,” which implies
that A is bad without explicitly expressing such an opinion.

Example #4 is an observation that tends to be true, but it encompasses
positive as well as negative events without the use of any negative words such
as “not,” “bad,” “worse,” and so forth.

NLPFD.Ch6.indd 221NLPFD.Ch6.indd 221 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

222 • Natural Language Processing Fundamentals for Developers

Example #5 is a famous quote from William Shakespeare that is often
misquoted as “ignorance is bliss,” and the full quote obviously has a much dif-
ferent meaning. The words “ignorance” and “folly” are two words that express
a negative sentiment.

Example #6 sounds paradoxical until you’ve gained enough experience
and wisdom to understand its meaning. The words “good” and “bad” are the
only two words that express any sentiment in this sentence. Later in this chap-
ter, you will see a Python code sample that performs sentiment analysis on the
preceding list of sentences.

Useful Tools for Sentiment Analysis

The following list of sentiment analysis tools provide various features that
might be well-suited for your NLP needs:

●● IBM Watson Tone Analyzer
●● OpenText
●● Talkwalker
●● Rapidminer
●● Social Mention
●● Textblob
●● Vader

Perform an online search for documentation for these sentiment analysis
tools to determine which ones are suitable for your tasks.

Aspect-Based Sentiment Analysis

Aspect-based sentiment analysis is a more advanced technique than sentiment
analysis. The latter only detects the sentiment of an overall corpus, whereas
the former analyzes each text to identify various aspects and the correspond-
ing sentiment for each text.

For example, sentiment analysis might determine that a comment is
negative, whereas aspect-based sentiment analysis might determine that a
customer is unhappy with the battery life of a specific product. Hence, aspect-
based sentiment analysis produces finer-grained analysis of a corpus, which is
obviously important when handling text-based customer feedback regarding
products and services.

Note that aspect-based sentiment analysis can extract sentiments (i.e.,
positive or negative opinions about a particular aspect) as well as aspects (the
item that is the current focus).

NLPFD.Ch6.indd 222NLPFD.Ch6.indd 222 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 223

Several libraries provide the algorithmic building blocks of NLP in real-
world applications. For instance, Algorithmia provides a free API endpoint
for many of these algorithms, without ever having to set up or provision serv-
ers and infrastructure.

Another machine learning toolkit is Apache OpenNLP, which provides
tokenizers, sentence segmentation, part-of-speech tagging, named entity
extraction, chunking, parsing, and coreference resolution.

Deep Learning and Sentiment Analysis

Deep learning models, such as RNNs and LSTMs, can be combined with
NLP-based sentiment analysis, such as gauging sentiment in tweets:

https://ieeexplore.ieee.org/stamp/stamp.jsp? arnumber=8244338

You can also combine RNNs with sentiment analysis:

https://blog.openai.com/unsupervised-sentiment-neuron/
https://github.com/openai/generating-reviews- discovering-sentiment

There are several details to keep in mind. First, distributed word vec-
tor techniques have been shown to outperform BoW models (as you would
probably surmise). Second, the paragraph vector algorithm preserves word
order information and produces state-of-the-art results. This algorithm per-
forms better because vector averaging and clustering lose the word order.
Third, it’s worthwhile to acquaint yourself with the transformer architecture
and BERT-based models that are discussed in Chapter 7 before you decide to
use RNNs or LSTMs for sentiment analysis.

SENTIMENT ANALYSIS WITH NAÏVE BAYES

Listing 6.3 shows the contents of nb_sentiment.py that illustrate how to
perform sentiment analysis with NLTK.

LISTING 6.3: nb_sentiment.py

import pandas as pd
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import RegexpTokenizer

from sklearn import metrics

NLPFD.Ch6.indd 223NLPFD.Ch6.indd 223 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

224 • Natural Language Processing Fundamentals for Developers

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB

data = pd.read_csv('train.tsv', sep = '\t')
print(data.head())

print("=> Data information:")
data.info()
print("------------------------------")
print()

print("=> Sentiment value counts:")
print(data.Sentiment.value_counts())
print("------------------------------")
print()

#find alphanumeric patterns:
token = RegexpTokenizer(r'[a-zA-Z0-9]+')

cv = CountVectorizer(lowercase = True,stop_words = 'english',
� ngram_range = (1,1),tokenizer = token.tokenize)

phrase_counts = cv.fit_transform(data['Phrase'])

X_train, X_test, y_train, y_test = train_test_split(
 phrase_counts, data['Sentiment'], test_size = 0.3,
� random_state = 1)

Multinomial Naive Bayes model:
clf = MultinomialNB().fit(X_train, y_train)
predicted = clf.predict(X_test)
print("=> MultinomialNB Accuracy:",metrics.accuracy_
� score(y_test,predicted))
print("------------------------------")
print()

second part: use tf-idf values
tf = TfidfVectorizer()
text_tf = tf.fit_transform(data['Phrase'])
print("text_tf:")
print(text_tf)

NLPFD.Ch6.indd 224NLPFD.Ch6.indd 224 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 225

print("------------------------------")
print()

X_train, X_test, y_train, y_test = train_test_split(
 text_tf, data['Sentiment'], test_size = 0.3, random_
� state = 123)

Multinomial Naive Bayes model:
clf = MultinomialNB().fit(X_train, y_train)
predicted = clf.predict(X_test)
print("=> MultinomialNB Accuracy:",metrics.accuracy_
� score(y_test,predicted))
print("------------------------------")

Listing 6.3 contains two sections of code. The first section reads the con-
tents of the TSV file train.tsv into the data frame data. It then uses a
combination of the classes RegexpTokenizer (which performs tokenization
based on a regular expression) and CountVectorizer (discussed in Chapter
4) to initialize the variables token and cv, respectively, to find alphabetic
strings and determine the frequency of those strings. In addition, the training
and test datasets are created from the Sentiment column of the data frame
data, as shown here:

X_train, X_test, y_train, y_test = train_test_split(

 phrase_counts, data['Sentiment'], test_size = 0.3,
� random_state = 1)

Next, the variable clf is instantiated as an instance of the NaiveBayes
classification algorithm. Notice that this code is similar to Listing 8.4 in
Chapter 8 after replacing the instance of the DecisionTreeClassifier
class with the following code snippet:

clf = MultinomialNB().fit(X_train, y_train)

The next portion of Listing 6.3 invokes the predict() method to make
the predictions on the test-related data.

The next section of Listing 6.3 instantiates the variable tf as an instance
of the TfidfVectorizer class, followed by the variable text_tf that is the
result of transforming and fitting the data in the Phrase column. Once again,
the training and test datasets are created from the Sentiment column of the
data frame data, as shown here:

NLPFD.Ch6.indd 225NLPFD.Ch6.indd 225 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

226 • Natural Language Processing Fundamentals for Developers

X_train, X_test, y_train, y_test = train_test_split(

 phrase_counts, data['Sentiment'], test_size = 0.3,
� random_state = 1)

The remaining code is a duplicate of the corresponding code in the first
section of this code sample. Launch the code in Listing 6.4 to see the following
output so that you can compare the accuracy of the two sections in Listing 6.3:

=> First five rows:

PhraseId ... Sentiment

0 1 ... 1

1 2 ... 2

2 3 ... 2

3 4 ... 2

4 5 ... 2

[5 rows x 4 columns]

=> Data information:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 156060 entries, 0 to 156059

Data columns (total 4 columns):

PhraseId 156060 non-null int64

SentenceId 156060 non-null int64

Phrase 156060 non-null object

Sentiment 156060 non-null int64

dtypes: int64(3), object(1)

memory usage: 4.8+ MB

=> Sentiment value counts:

2 79582

3 32927

1 27273

4 9206

0 7072

NLPFD.Ch6.indd 226NLPFD.Ch6.indd 226 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 227

Name: Sentiment, dtype: int64

=> MultinomialNB Accuracy: 0.6049169122986885

text_tf:

 (0, 12857)	 0.12785637560254456

 (0, 8807)	 0.1353879543646446

 (0, 13681)	 0.07615285026452821

 (0, 593)	 0.22068902883834374

 (0, 9085)	 0.1898515417082945

 (0, 1879)	 0.11034437734762885

 (0, 602)	 0.26341877863818697

 (0, 9204)	 0.19301332592202286

 (0, 14888)	 0.28701927784529135

 (0, 12424)	 0.1381592967010513

 (0, 5595)	 0.265796263188737

 (0, 529)	 0.1614381914318891

 (0, 5837)	 0.22883807138484064

 (0, 5323)	 0.20344769269023563

 (0, 5821)	 0.2625302862532789

 (0, 7217)	 0.17522921677393963

 (0, 14871)	 0.1354415412970302

 (0, 13503)	 0.08982508036989033

 (0, 288)	 0.251134096800077

 (0, 13505)	 0.17690005957760713

 (0, 3490)	 0.2485059095620638

 (0, 4577)	 0.278538658922562

 (0, 9227)	 0.27061683772839323

 (0, 11837)	 0.1761994204821687

 (1, 5837)	 0.3782714454401254

 :	:

 (156050, 11465)	 0.670263619653983

 (156050, 625)		 0.2115725833396903

NLPFD.Ch6.indd 227NLPFD.Ch6.indd 227 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

228 • Natural Language Processing Fundamentals for Developers

 (156050, 13505)	 0.18632379802617538

 (156051, 9193)	 0.6987248068627274

 (156051, 11465)	 0.6822102168950972

 (156051, 625)		 0.21534359576868978

 (156052, 11465)	 0.953619269081851

 (156052, 625)		 0.3010154308931625

 (156053, 2313)	 0.4917001772764322

 (156053, 1027)	 0.4917001772764322

 (156053, 6245)	 0.45540097827929693

 (156053, 5328)	 0.3853824417825967

 (156053, 1313)	 0.40068964783307426

 (156054, 2313)	 0.5366653003868254

 (156054, 1027)	 0.5366653003868254

 (156054, 6245)	 0.4970466029897592

 (156054, 5328)	 0.4206249935248471

 (156055, 6245)	 1.0

 (156056, 2313)	 0.618474762808639

 (156056, 1027)	 0.618474762808639

 (156056, 5328)	 0.4847452274521073

 (156057, 2313)	 0.7071067811865476

 (156057, 1027)	 0.7071067811865476

 (156058, 1027)	 1.0

 (156059, 2313)	 1.0

=> MultinomialNB Accuracy: 0.5865265496176684

SENTIMENT ANALYSIS WITH VADER AND NLTK

This section contains two Python code samples that perform sentiment analy-
sis. Listing 6.4 shows the contents of vader_sentiment.py that illustrate
how to perform sentiment analysis with Vader.

Make sure that you invoke the following two commands:NOTE

NLPFD.Ch6.indd 228NLPFD.Ch6.indd 228 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 229

pip3 install vader

pip3 install vaderSentiment

LISTING 6.4: vader_sentiment.py

pip3 install vader
pip3 install vaderSentiment

from vaderSentiment.vaderSentiment import
SentimentIntensityAnalyzer

sia = SentimentIntensityAnalyzer()

sent = "I love Chicago deep dish pizza."
print("=> Sentence:",sent)
word_probs = sia.polarity_scores(sent)
print("=> Sentiment:",str(word_probs))
print()

sent = "I love Chicago deep dish pizza!"
print("=> Sentence:",sent)
word_probs = sia.polarity_scores(sent)
print("=> Sentiment:",str(word_probs))
print()

sent = "I love Chicago deep dish pizza!!!"
print("=> Sentence:",sent)
word_probs = sia.polarity_scores(sent)
print("=> Sentiment:",str(word_probs))
print()

Listing 6.4 starts with an import statement and then initializes the vari-
able sia as an instance of the class SentimentIntensityAnalyzer that is
available from vaderSentiment.

The next three code blocks initialize the variable sent as a text string that
contains zero, one, and three exclamation points. In each case, the variable
sent is supplied to the method polarity_scores() to illustrate the effect
of the exclamation points on the generated polarity value. Launch the code in
Listing 6.4 to see the following output:

=> Sentence: I love Chicago deep dish pizza.

=> Sentiment: {'neg': 0.0, 'neu': 0.543, 'pos': 0.457,
� 'compound': 0.6369}

NLPFD.Ch6.indd 229NLPFD.Ch6.indd 229 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

230 • Natural Language Processing Fundamentals for Developers

=> Sentence: I love Chicago deep dish pizza!

=> Sentiment: {'neg': 0.0, 'neu': 0.527, 'pos': 0.473,
'compound': 0.6696}

=> Sentence: I love Chicago deep dish pizza!!!

=> Sentiment: {'neg': 0.0, 'neu': 0.496, 'pos': 0.504,
'compound': 0.7249}

Notice how the positive sentiment in the preceding output increases when
the number of exclamation points is increased; this makes sense because more
exclamation points tends to make a statement or question more emphatic (be
it positive or negative).

By way of comparison, Listing 6.5 shows the contents of the Python script
vader_nltk_sentiment.py that uses the SentimentIntensityAna-
lyzer class from NLTK instead of vaderSentiment to perform sentiment
analysis with NLTK.

The following code sample downloads a 266 MB file (if it is not already avail-
able) sentiment-en-mix-distillbert_3.1.pt when you execute the
code.

LISTING 6.5: vader_nltk_sentiment.py

import nltk
#nltk.download('vader_lexicon')

from nltk.sentiment.vader import
SentimentIntensityAnalyzer

sia = SentimentIntensityAnalyzer()
sent = "I love Chicago deep dish pizza."
print("=> sentence:",sent)
print(sia.polarity_scores(sent))
print()

sent = "I love Chicago deep dish pizza!"
print("=> sentence:",sent)
print(sia.polarity_scores(sent))
print()

sent = "I love Chicago deep dish pizza!!!"
print("=> sentence:",sent)
print(sia.polarity_scores(sent))
print()

NOTE

NLPFD.Ch6.indd 230NLPFD.Ch6.indd 230 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 231

Launch the code in Listing 6.5 to see the following output that you can
compare with the output from launching Listing 6.5 in the previous section.

=> sentence: I love Chicago deep dish pizza.

{'neg': 0.0, 'neu': 0.488, 'pos': 0.512, 'compound':
0.6369}

=> sentence: I love Chicago deep dish pizza!

{'neg': 0.0, 'neu': 0.471, 'pos': 0.529, 'compound':
0.6696}

=> sentence: I love Chicago deep dish pizza!!!

{'neg': 0.0, 'neu': 0.441, 'pos': 0.559, 'compound':
0.7249}

SENTIMENT ANALYSIS WITH TEXTBLOB

TextBlob is an open source Python-based library that performs various NLP-
tasks, including sentiment analysis. Specifically, TextBlob provides a rule-
based sentiment analyzer takes a text string as input and then returns two
properties, both of which are floating point numbers.

1.	 Polarity is a number in the interval [-1,1], where -1 and +1 indicate nega-
tive and positive sentiment, respectively.

2.	 Subjectivity is number in the interval [0,1] that indicates the degree to
which a sentence involves personal emotion, judgement, or opinion.

Listing 6.6 shows the contents of the Python script textblob_
sentiment.py that use the Textblob package to perform sentiment
analysis.

LISTING 6.6: textblob_sentiment.py

pip3 install textblob
from textblob import TextBlob
sent = "I love Chicago deep dish pizza."
tb_sent = TextBlob(sent)
print("sentence:",tb_sent)
print(tb_sent.sentiment)
print()

NLPFD.Ch6.indd 231NLPFD.Ch6.indd 231 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

232 • Natural Language Processing Fundamentals for Developers

sent = "I love Chicago deep dish pizza!"
tb_sent = TextBlob(sent)
print("sentence:",tb_sent)
print(tb_sent.sentiment)
print()

sent = "I love Chicago deep dish pizza!!!"
tb_sent = TextBlob(sent)
print("sentence:",tb_sent)
print(tb_sent.sentiment)
print()

Listing 6.6 contains three code blocks, analogous to the contents of List-
ing 6.5, but with the variable tb_sent that is an instance of TextBlob. Now
launch the code in Listing 6.6 and compare this output with the output from
Listing 6.5 and Listing 6.4.

sentence: I love Chicago deep dish pizza.

Sentiment(polarity = 0.25, subjectivity = 0.5)

sentence: I love Chicago deep dish pizza!

Sentiment(polarity = 0.25, subjectivity = 0.5)

sentence: I love Chicago deep dish pizza!!!

Sentiment(polarity = 0.25, subjectivity = 0.5)

Notice how the sentiment analysis in the preceding output is unaffected
by the number of exclamation points in the input text.

Listing 6.7 shows the contents of nltk_sentiment.py that illustrate yet
another example of performing sentiment analysis with NLTK.

LISTING 6.7: nltk_sentiment.py

import nltk
#nltk.download('vader_lexicon')
from nltk.sentiment.vader import
SentimentIntensityAnalyzer
import pandas as pd

sentiment = SentimentIntensityAnalyzer()
sentence = "I love Chicago deep dish pizza."
print("=> sentence:",sentence)

NLPFD.Ch6.indd 232NLPFD.Ch6.indd 232 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 233

print("=> polarity:",sentiment.polarity_scores(sentence))
print()

sentences = [
 "Our plan was not without merit",
 "I like the pizza toppings but I do not like the
crust.",
 "The only thing worse than being talked about, is not
being talked about",
 "Everything is funny, as long as it's happening to
somebody else.",
 "When ignorance is bliss, 'tis folly to be wise.",
 "Good judgement is the result of experience and
experience the result of bad judgement."
]

scores = []
for sent in sentences:
 score = sentiment.polarity_scores(sent)
 scores.append(score)

df = pd.DataFrame(scores)
df['sentence'] = sentences
print("=> dataframe:",df)
print()

df['positive_sentiment'] = df['compound'] >= 0.5
print("=> dataframe:",df)

Listing 6.7 starts with two import statements and then initializes the vari-
able sentiment as an instance of the class SentimentIntensityAnalyzer
that is available from nltk.sentiment.vader.

The next code block initializes the variable sentence with a familiar
string that you have seen in many code samples, and then displays the polar-
ity of sentence by invoking the variable sentiment with the contents of
sentence.

Next, the variable sentences is initialized as an array of several sen-
tences, after which a for loop calculates the polarity score for each sentence
and populates the array scores with those values.

The next portion of Listing 6.7 creates the data frame df with the contents
of scores, and then appends the column sentence that is initialized with the
contents of the variable sentences.

NLPFD.Ch6.indd 233NLPFD.Ch6.indd 233 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

234 • Natural Language Processing Fundamentals for Developers

After displaying the contents of df, the final code snippet adds a new
column called positive_sentiment consisting of the rows in df that have
a positive sentiment (i.e., their value is at least 0.5) and then prints the new
contents of df. Launch the code in Listing 6.7 to see the following output:

=> sentence: I love Chicago deep dish pizza.

=> polarity: {'neg': 0.0, 'neu': 0.488, 'pos': 0.512,
'compound': 0.6369}

=> dataframe: neg neu ... compound sentence

0 0.000 0.716 ... 0.2466 Our plan was
not without merit

1 0.000 0.615 ... 0.6124 I like the pizza
toppings but I do not like th...

2 0.205 0.795 ... -0.4767 The only thing worse
than being talked about, ...

3 0.000 0.775 ... 0.4404 Everything is funny, as
long as it's happening...

4 0.163 0.392 ... 0.6486 When ignorance is
bliss, 'tis folly to be wise.

5 0.190 0.652 ... -0.1531 Good judgement is the
result of experience and...

[6 rows x 5 columns]

=> dataframe: neg ... positive_sentiment

0 0.000 ... False

1 0.000 ... True

2 0.205 ... False

3 0.000 ... False

4 0.163 ... True

5 0.190 ... False

[6 rows x 6 columns]

NLPFD.Ch6.indd 234NLPFD.Ch6.indd 234 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 235

SENTIMENT ANALYSIS WITH FLAIR

Flair is an open source Python-based library that performs various NLP-tasks,
such as NER and POS tagging:

https://github.com/flairNLP/flair

In addition to sentiment analysis, Flair provides the following functionality:

●● a biomedical NER library
●● a text embedding library
●● a PyTorch NLP framework

The final example of sentiment analysis is Listing 6.8 shows the contents
of the Python script flair_sentiment.py that use the Flair library to per-
form sentiment analysis. Make sure that you invoke pip3 install flair.

You might need to use Python 3.7 to install flair.

LISTING 6.8: flair_sentiment.py

pip3 install flair

from flair.models import TextClassifier
from flair.data import Sentence

classifier = TextClassifier.load('en-sentiment')

sent = "I love Chicago deep dish pizza."
ssent = Sentence(sent)
classifier.predict(ssent)
print('Sentence: ', sent)
print('Sentiment: ', ssent.labels)
print()

sent = "I love Chicago deep dish pizza!"
ssent = Sentence(sent)
classifier.predict(ssent)
print('Sentence: ', sent)
print('Sentiment: ', ssent.labels)
print()

sent = "I love Chicago deep dish pizza!!!"
ssent = Sentence(sent)

NOTE

NLPFD.Ch6.indd 235NLPFD.Ch6.indd 235 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

236 • Natural Language Processing Fundamentals for Developers

classifier.predict(ssent)
print('Sentence: ', sent)
print('Sentiment: ', ssent.labels)

Listing 6.8 starts with two import statements and then initializes several
variables, starting with the variable classifier (which is a model) as an
instance of the TextClassifier class.

The next three code blocks in the same style as the code in Listing 6.4 ini-
tialize the variable sent as three text strings containing zero, one, and three
exclamation points. After this, the sentiment of each sentence is calculated
via the predict() method of the classifier variable and then displayed.
Launch the code in Listing 6.8 to see the following output:

Sentence: I love Chicago deep dish pizza.

Sentiment: [POSITIVE (0.999)]

Sentence: I love Chicago deep dish pizza!

Sentiment: [POSITIVE (0.9996)]

Sentence: I love Chicago deep dish pizza!!!

Sentiment: [POSITIVE (0.9997)]

DETECTING SPAM

Spam classification has been an on-going challenge ever since the introduc-
tion of email (or soon thereafter). Spam filters often use a Naïve Bayes clas-
sifier (discussed earlier in this chapter). However, the nature of spam evolves
over time, which means that spam classifiers must also evolve to handle new
types of spam.

A spam classifier involves the following set of steps that are common to
machine learning tasks:

●● Step 1: labeling a training dataset
●● Step 2: determining a set of features
●● Step 3: splitting the dataset into training/validation/test data
●● Step 4: training the classifier
●● Step 5: making some predictions on new data

NLPFD.Ch6.indd 236NLPFD.Ch6.indd 236 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 237

Step 1 involves a good mixture of legitimate email messages as well as
spam email messages. Step 2 involves the typical tasks that are described in
Chapter 3 (such as removing stop words, stemming, and calculating word fre-
quencies). Step 3 requires a reasonably-sized dataset. If your dataset is small,
you can split its content into training and testing data and omit the validation
part (not the best solution).

Step 4 is a standard step, and you can use k-fold cross validation, which
involves dividing the dataset into subsets (such as ten “folds”) and then repeat-
ing the training on nine of the ten folds, using the omitted fold as the test data.
Calculate the average error after completing the cross-fold validation. This
technique is useful for small datasets.

The final step involves making predictions and determining the accuracy
of those predictions.

LOGISTIC REGRESSION AND SENTIMENT ANALYSIS

Recall that classification problems involve predicting discrete outcomes,
whereas regression problems involve predicting a value of a continuous vari-
able. As you learned in a previous chapter, logistic regression is actually a
classification algorithm (not a regression algorithm). Logistic regression works
well when the features and the target have a relatively simple relationship.

The Sklearn LogisticRegression class has these arguments: penalty,
dual, tol, C, fit_intercept, intercept_scaling, class_weight,
random_state, solver, max_iter, verbose, warm_start, n_jobs,
and l1_ratio.

Listing 6.9 shows the contents of log_reg_spam.py that illustrate how
to perform sentiment analysis with NLTK.

LISTING 6.9: log_reg_spam.py

import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer

#for sklearn version 0.24.0:
from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split,
� cross_val_score

NLPFD.Ch6.indd 237NLPFD.Ch6.indd 237 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

238 • Natural Language Processing Fundamentals for Developers

you can download the SMSSpamCollection dataset here:
https://archive.ics.uci.edu/ml/machine-learning-
databases/00228
NB: header "type\ttext" was manually added to
SMSSpamCollection
df = pd.read_csv('SMSSpamCollection', delimiter = '\t')

print("First five rows (before):")
print(df.head(5))
print("-------------------------")

map ham/spam to 0/1 values:
df['type'] = df['type'].map({'ham':0 , 'spam':1})

print("First five rows (after):")
print(df.head(5))
print("-------------------------")

X contains text and y contains labels:
X = df.iloc[:, 1].values
y = df.iloc[:, 0].values

perform train/test split on the data (75/25):
X_train, X_test, y_train, y_test = train_test_split(X, y,
� test_size = 0.25, random_state = 0)
#print("X_train:",X_train)
#print("-------------------------")

vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(X_train)
X_test = vectorizer.transform(X_test)

train an instance of the LogisticRegression class:
classifier = LogisticRegression()
classifier.fit(X_train, y_train)

make predictions for the X_test data:
y_pred = classifier.predict(X_test)
print("predictions:",y_pred)
print("-------------------------")

NLPFD.Ch6.indd 238NLPFD.Ch6.indd 238 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 239

create the confusion matrix:
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print("confusion matrix:")
print(cm)

true_neg, false_pos = cm[0]
false_neg, true_pos = cm[1]
all_values = true_pos + true_neg + false_pos + false_neg

accuracy = round((true_pos + true_neg) / all_values, 3)
precision = round((true_pos) / (true_pos + false_pos),3)
recall = round((true_pos) / (true_pos + false_neg),3)
f1 = round(2 * (precision*recall) /
� (precision+recall),3)

print("--------------------------\n")
print('Accuracy: {}'.format(accuracy))
print('Precision: {}'.format(precision))
print('Recall: {}'.format(recall))
print('F1 Score: {}'.format(f1))

Listing 6.9 is similar to the logistic regression code sample in Chapter
8, using Sklearn instead of Keras-based code. Specifically, the main differ-
ence involves the following code block instead of a Keras-based model from
TensorFlow:

train an instance of the LogisticRegression class:

classifier = LogisticRegression()

classifier.fit(X_train, y_train)

Launch the code in Listing 6.9 to see the following output:

=> First five rows (before):

 type text

0 ham Go until jurong point, crazy.. Available only ...

1 ham Ok lar... Joking wif u oni...

2 spam Free entry in 2 a wkly comp to win FA Cup fina...

3 ham U dun say so early hor... U c already then say...

4 ham Nah I don't think he goes to usf, he lives aro...

NLPFD.Ch6.indd 239NLPFD.Ch6.indd 239 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

240 • Natural Language Processing Fundamentals for Developers

=> First five rows (after):

 type text

0 0 Go until jurong point, crazy.. Available only ...

1 0 Ok lar... Joking wif u oni...

2 1 Free entry in 2 a wkly comp to win FA Cup fina...

3 0 U dun say so early hor... U c already then say...

4 0 Nah I don't think he goes to usf, he lives aro...

=> predictions: [0 1 0 ... 0 0 0]

=> confusion matrix:

[[1198 2]

 [48 145]]

Accuracy: 0.964

Precision: 0.986

Recall: 0.751
F1 Score: 0.853

WORKING WITH COVID-19

Listing 6.10 shows the contents of covid19.py that illustrate how to train a
model on the covid19 dataset.

LISTING 6.10: covid19.py

import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as plt
import seaborn as sns

NLPFD.Ch6.indd 240NLPFD.Ch6.indd 240 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 241

df = pd.read_csv("clean_covid19.csv", sep = ",")

X = df.iloc[:, [0, 1, 2, 3]].values
y = df.iloc[:, 4].values
y = y.astype('int')

print("Number of rows and columns in dataset:")
print(df.shape)

count the number of 0 and 1 values for y:
print(df.groupby('severity_illness').count())

the count of y values: 8 and 3351
the dataset is highly imbalanced
balance the target data via SMOTE:
from collections import Counter
from imblearn.over_sampling import SMOTE

sm = SMOTE(random_state = 42)
X, y = sm.fit_resample(X, y)

split into training and test sets:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
� test_size = 0.25, random_state = 0)

Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

libraries for performance metrics:
from sklearn.metrics import make_scorer
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.model_selection import cross_validate

NLPFD.Ch6.indd 241NLPFD.Ch6.indd 241 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

242 • Natural Language Processing Fundamentals for Developers

dictionary with performance metrics:
scoring = {'accuracy':make_scorer(accuracy_score),
 'precision':make_scorer(precision_score),
 'recall':make_scorer(recall_score),
 'f1_score':make_scorer(f1_score)}

instantiate classifier:
rfc_model = RandomForestClassifier()

train model via cross-validation:
folds = 10
rfc = cross_validate(rfc_model, X, y, cv = folds, scoring
� = scoring)

print("accuracy: ",rfc['test_accuracy'].mean())
print("precision:",rfc['test_precision'].mean())
print("recall: :",rfc['test_recall'].mean())
print("F1 score: ",rfc['test_f1_score'].mean())

Listing 6.10 is similar to Listing 8.4 in Chapter 8, albeit modified to use
the following code block instead of a DecisionTreeClassifier:

from sklearn.ensemble import RandomForestClassifier

classifier = RandomForestClassifier(n_estimators = 10,
� criterion='entropy', random_state = 0)

In addition, notice that Listing 6.10 uses the SMOTE class to generate
synthetic data because the Covid19 dataset is highly imbalanced. Launch
the code in Listing 6.10 to see the following output (truncated for ease of
reading):

Number of rows and columns in dataset:

(3359, 5)

age ... severity_illness

0 8

1 3351

accuracy: 0.993136552705919

precision: 0.9920161922823759

recall: : 0.9943283582089553

F1 score: 0.9931523221120553

NLPFD.Ch6.indd 242NLPFD.Ch6.indd 242 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 243

WHAT ARE CHATBOTS?

Chatbots affect many parts of our lives. Chatbots have evolved into AI-based
software programs that interact with users and attempt to provide them with
satisfactory answers. Chatbots are available on devices (such as Siri, Alexa,
and Google Assistant) and Websites. Chatbots can provide question-answer
functionality or they provide task-oriented functionality, such as performing
bookings for cars, airplanes, and hotels.

By today’s standards, early chatbots had a rudimentary question–answer
structure that tended to resemble flow charts. The response to a question was
selected from a set of hard-coded answers, and if the answer did not satisfy
the users, then the question was often routed to a human. Since chatbots vary
in terms of quality and features, a metric called the sensibleness and specific-
ity average (SSA) was developed to rate chatbots.

Companies use chatbots to reduce the human-based interactions with
customers with the goal of streamlining customers’ interactions with a com-
pany’s services. Some chatbot-based services include,

●● providing product-related customer support
●● providing flight information
●● connecting customers and their finances

Open Domain Chatbots

There are several interesting open domain chatbots available, some of which
are shown in the following list:

●● Cleverbot
●● DialoGPT
●● Meena
●● Mitsuku
●● XiaoIce

Meena is optimized for multiturn conversations and it scores well on the
new metric (described earlier). Meena is a sequence-to-sequence model with
an evolved transformer architecture that comprises 2.6 billion parameters.
Meena predicts the actual response via perplexity, which is a measure of a
language model’s predictive ability, and it is used as its loss function. Meena
avoids generating repetitive responses. The model builds multiple candidate
responses and uses a classifier to select the best one.

Perform an online search for information pertaining to the other open
domain chatbots in the preceding list.

NLPFD.Ch6.indd 243NLPFD.Ch6.indd 243 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

244 • Natural Language Processing Fundamentals for Developers

Chatbot Types

Chatbots can be classified into two main groups: rule-based chatbots and self-
learning chatbots.

Rule-based chatbots are trained on rules that are also used to provide
answers to questions. However, these chatbots work best for simple questions
and are less accurate for sophisticated questions.

By contrast, self-learning chatbots are trained via machine learning-based
approaches and as you might expect, these chatbots provide better results.
Moreover, self-learning chatbots can be divided into two broad categories:
retrieval-based chatbots (which rely on heuristics to provide answers) and
generative chatbots (which can generate answers beyond just pre-defined
answers).

Logic Flow of Chatbots

Although chatbots can vary significantly in terms of their primary functional-
ity, they generally perform the following sequence of steps:

1.	 Prepare a corpus of text-based responses.

2.	 Clean the data (as described in earlier chapters).

3.	 Select a vectorizer (such as CountVectorizer or TfidfVectorizer).

4.	 Prompt users for a question/query.

5.	 Calculate the cosine similarity of the question with the sentences in the
corpus.

6.	 Determine which sentence has the highest cosine similarity.

7.	 Use the previously selected sentence as a response to users.

In case the highest cosine similarity is close to zero, there is no meaning-
ful response for the query, so you can route the users to a human agent. Of
course, the threshold value for “close to zero” is a number that you decide in
advance, and perhaps it can be determined through experimentation.

Chatbot Abuses

There have been some well-known cases of attempts to crowd-source the
training of chatbots that have gone awry. One such chatbot is Tay from
Microsoft, which some users trained to make various types of highly inappro-
priate remarks about certain groups of people.

NLPFD.Ch6.indd 244NLPFD.Ch6.indd 244 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

NLP Applications • 245

Another (more recent) example is the chatbot Lee Luda from Korea,
which was designed to emulate a Korean university student. However, this
chatbot was removed from Facebook because some users trained the chatbot
to make derogatory slurs and hate speech that were directed toward certain
groups of people.

Unfortunately, chatbots are likely to encounter these sorts of issues
when the enhancement of a chatbot’s capabilities involve crowd-sourced
contributions.

Useful Links

If you are unfamiliar with chatbots, navigate to the following link that has
thousands of registered chatbots:

https://botlist.co

Microsoft developed and open-sourced BlenderBot, which at its peak was
the largest state-of-the-art chatbot, which is available online:

https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/

BlenderBot was benchmarked (and is significantly better) than Google’s
Meena chatbot, which is also available online:

https://github.com/google-research/google-research/tree/master/meena

If you are interested in chatbots in the health care field, here are two
useful links:

https://topflightapps.com/ideas/chatbots-in-healthcare
https://emerj.com/ai-application-comparisons/chatbots-for-healthcare-

comparison

If you plan to create a chatbot that is useful, then it probably needs to
understand (human) natural language and be able to solve a task that might
require multiple steps.

Although there are online tools that enable you to create chatbots that
connect to an AI backend system (such as IBM Watson), the following link
explains how to build a chatbot in Keras:

https://www.kdnuggets.com/2019/08/deep-learning-nlp-creating-chatbot-
keras.html

https://analyticsindiamag.com/how-does-a-simple-chatbot-with-
nltk-work/

NLPFD.Ch6.indd 245NLPFD.Ch6.indd 245 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

246 • Natural Language Processing Fundamentals for Developers

The following link shows you how to create a chatbot based on a pre-
trained transformers (discussed in Chapter 11) with PyTorch:

https://towardsdatascience.com/conversational-ai-chatbot-with-
pretrained-transformers-using-pytorch-55b5e8882fd3

Finally, the following list of the top chatbots of 2021 might provide ideas
and helpful insights: https://www.netomi.com/best-ai-chatbot.

SUMMARY

This chapter started with a description of two types of text recommendation,
along with some code samples using Gensim and spaCy. Then you got a high-
level description of recommendation systems, which are used in the online
reviews of books, movies, and restaurants. Next, you learned about sentiment
analysis, which is actually a subset of text classification. In essence, sentiment
analysis attempts to assess the mood (positive, negative, or neutral) of a docu-
ment (such as a review). Finally, you saw a Python-based code sample that
uses logistic regression to predict spam email messages.

NLPFD.Ch6.indd 246NLPFD.Ch6.indd 246 6/7/2021 3:54:51 PM6/7/2021 3:54:51 PM

C H A P T E R 7
Transformer, BERT, and GPT

This chapter is primarily about the transformer architecture, the pretrained
BERT model and its variants, and features of GPT-2 and GPT-3 from OpenAI.
If you are familiar with some of these topics, skim through the material in this
chapter and peruse the Python-based code samples.

The first part of this chapter contains a brief introduction to the concept
of attention, which is a powerful mechanism for generating word embeddings
that contain context-specific information for words in sentences. The concept
of attention is a key aspect of the transformer architecture. This section also
contains a summary of the distinguishing characteristics of three types of word
embeddings, in which the most powerful technique is the attention-based
approach.

The second part of this chapter provides an overview of the transformer
architecture that was developed by Google and released in late 2017. This
section also discusses the T5 (text-to-text transfer transformer) model that
converts all NLP tasks into a text-to-text format.

The third part of this chapter introduces you to BERT, along with various
code samples that illustrate how to invoke some of the BERT APIs. Note that
this section relies on the installation of the HuggingFace transformer Python
library.

The fourth part of this chapter contains a list of several BERT-based
trained models, along with brief description of their functionality. Some of the
models that are discussed include DistilledBERT, CamemBERT, and Flau-
BERT. The final part of this chapter introduces you to the GPT-based models
from OpenAI, along with some of the amazing features in GPT-3.

NLPFD.Ch7.indd 247NLPFD.Ch7.indd 247 6/7/2021 3:56:31 PM6/7/2021 3:56:31 PM

248 • Natural Language Processing Fundamentals for Developers

WHAT IS ATTENTION?

Attention is a mechanism by which contextual word embeddings are deter-
mined for words in a corpus. Unlike word2vec or GloVe, the attention mecha-
nism takes into account all the words in a sentence during the process of
creating a word embedding for a given word. As a result, the same word that
is used in two or more sentences will have a word embedding that is specific
to each sentence.

Before the attention mechanism was devised, popular architectures used
RNNs, LSTMs, or bi-LSTMs. In fact, the attention mechanism was first used
in conjunction with RNNs or LSTMs. However, the Google team performed
some experiments involving machine translation tasks on models that relied
on the attention mechanism and the transformer architecture, and discovered
that those models achieved higher performance than models that included
CNNs, RNNs, or LSTMs. This result led to the expression “attention is all you
need.” The seminal paper regarding the transformer architecture is available
online:

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a84
5aa-Paper.pdf

As a quick review, and before delving into details of the attention mech-
anism, let’s look at a summary of the main types of word embeddings that we
have encountered in this book, as discussed in the next section.

Types of Word Embeddings

This section contains a summary of the main features of three types of word
embeddings. The first group consists of the simplest algorithms for word
embeddings. The second group consists of the earliest algorithms that use
neural networks (word2vec and fastText) or matrix factorization (GloVe) for
generating word embeddings. The third group involves contextual algorithms
for creating contextual word representations, which are essentially state of the
art algorithms. Here is the summary:

1.	 Discrete word embeddings (BoW, tf, and tf-idf):
Word vectors consist of integers, decimals, and decimals, respectively.
Key point: word embeddings have zero context

2.	 Distributional word embeddings (word2vec, GloVe, and fastText):
Based on the shallow NN, MF, and NN, respectively.

NLPFD.Ch7.indd 248NLPFD.Ch7.indd 248 6/7/2021 3:56:31 PM6/7/2021 3:56:31 PM

Transformer, BERT, and GPT • 249

Two words on the left and the right (bi-grams) for word2vec
Key point: only one embedding for each word (regardless of its context)

3.	 Contextual word representations (BERT et al.):
Transformer architecture (no CNNs/RNNs/LSTMs)
Pays “attention” to ALL words in a sentence
�Key point: words can have multiple embeddings (depending on the
context)

Types of Attention and Algorithms

There are several types of attention mechanisms, three of which are listed
here:

1.	 self-attention

2.	 global/soft

3.	 local/hard

Self-attention tries to determine how words in a sentence are intercon-
nected with each other. Multiheaded attention uses a block of multiple self-
attention instead of just one self-attention. However, each head processes a
different section of the embedding vector.

In addition to the preceding attention mechanisms, there are also several
attention algorithms available:

●● additive
●● content-based
●● dot product
●● general
●● location-based
●● scaled dot product <= transformer uses this algorithm

The formulas for attention mechanisms can be divided into two broad
types: formulas that involve a dot product of vectors (and sometimes with a
scaling factor), and formulas that apply a softmax function or a tanh func-
tion to products of matrices and vectors.

The transformer model uses a scaled dot-product mechanism to calcu-
late the attention. If you want more detailed information regarding attention
types, the following link contains a list of more than 20 attention types:

https://paperswithcode.com/methods/category/attention-mechanisms-1

NLPFD.Ch7.indd 249NLPFD.Ch7.indd 249 6/7/2021 3:56:31 PM6/7/2021 3:56:31 PM

250 • Natural Language Processing Fundamentals for Developers

AN OVERVIEW OF THE TRANSFORMER ARCHITECTURE

The transformer architecture differs from other architectures in the following
important ways:

●● It’s primarily based on an “attention” mechanism.
●● Model training can be parallelized.
●● No CNN/RNN/LSTMs are required.

Due to the last point in the preceding list, the encoder-decoder construc-
tion differs from a seq2seq model that often contain RNNs or LSTMs.

The transformer architecture has two main components: an encoder
and a decoder. The encoder component has six (sometimes more) con-
catenated encoder elements. Each encoder element has two layers,
and the output of the first layer is the input for the second layer (like a
miniature pipeline). The final output of the sixth (or in some cases, the
twelfth) encoder component is then passed to every decoder element in
the decoder component.

Similarly, the decoder component also has six (sometimes more) concate-
nated decoder elements, where the output of one element in the input for the
next element. However, each decoder element consists of three sub-elements,
one of which is the output from the encoder.

The overall transformer architecture consists of an encoder component
that contains six “sub” encoder, as well as a decoder component that also con-
tains six “sub” decoders. Each of these structures, which are loosely analogous
to filter elements in a CNN.

The input for the encoder is a set of word embeddings that encode
the words in a sentence. The word embeddings are constructed via the
so-called “attention” mechanism, which means that every embedding is
based on all the words in a given sentence. Hence, a word that appears in
two different sentences typically has two different word embeddings in the
two sentences. Given a sentence with n tokens, the construction of each
word embedding involves the remaining (n-1) words. Hence, the atten-
tion-based mechanism has order O(N^2), where N is the number of unique
tokens in the corpus.

The actual input vector for an encoder is called a context vector. This is
a crucial detail: by contrast, word2vec constructs a single word embedding
for every word, regardless of whether a given word has a different context in
different sentences.

NLPFD.Ch7.indd 250NLPFD.Ch7.indd 250 6/7/2021 3:56:31 PM6/7/2021 3:56:31 PM

Transformer, BERT, and GPT • 251

The Transformers Library from HuggingFace

HuggingFace created a transformers library and an open-source repository
to develop models based on the transformer architecture that you can access
online:

https://github.com/huggingface/transformers

The library provides pretrained models for NLU and NLG. In fact,
HuggingFace provides more than 30 pretrained models for more than 100
languages, along with operability between TensorFlow 2 and PyTorch. Fur-
thermore, HuggingFace supports not only BERT-related models, but also
GPT-2/GPT-3, and XLNet.

HuggingFace supports more than 30 architectures, some of which are
listed here:

●● BART (from Facebook)
●● BERT (from Google)
●● Blenderbot (from Facebook)
●● CamemBERT (from Inria/Facebook/Sorbonne)
●● CTRL (from Salesforce)
●● DeBERTa (from Microsoft Research)
●● DistilBERT (from HuggingFace)
●● ELECTRA (from Google Research/Stanford University)
●● FlauBERT (from CNRS)
●● GPT-2 (from OpenAI)
●● Longformer (from AllenAI)
●● LXMERT (from UNC Chapel Hill)
●● Pegasus (from Google)
●● Reformer (from Google Research)
●● RoBERTa (from Facebook)
●● SqueezeBert
●● T5 (from Google AI)
●● Transformer-XL (from Google/CMU)
●● XLM-RoBERTa (from Facebook AI)
●● XLNet (from Google/CMU)

Transformers are well-suited for various tasks, such as text generation, text
summarization, and language translation. The next several sections contain
several short code samples that illustrate how to use the HuggingFace trans-
former to perform NLP-related tasks. Specifically, you will see how to perform
NER, QnA, and sentiment analysis using the HuggingFace transformer.

NLPFD.Ch7.indd 251NLPFD.Ch7.indd 251 6/7/2021 3:56:31 PM6/7/2021 3:56:31 PM

252 • Natural Language Processing Fundamentals for Developers

Transformer and NER Tasks

Listing 7.1 shows the contents of hf_transformer_ner.py that illustrate
how to perform an NER task with the HuggingFace transformer.

LISTING 7.1: hf_transformer_ner.py

from transformers import pipeline

nlp = pipeline('ner')
result = nlp("I am a UCSC instructor and my name is Oswald")

print("result:",result)

Listing 7.1 starts with an import statement and then initializes the vari-
able nlp as an instance of the pipeline class, with ner as a parameter. Next,
the variable nlp is invoked with a hard-coded sample sentence. The output is
assigned to the variable result, whose contents are then displayed. Launch
the code in Listing 7.1 to see the following output:

result: [{'word': 'UC', 'score': 0.9993938207626343,
'entity': 'I-ORG', 'index': 4}, {'word': '##SC',
'score': 0.9974051713943481, 'entity': 'I-ORG',
'index': 5}, {'word': 'Oswald', 'score':
0.9988114833831787, 'entity': 'I-PER', 'index': 11}]

Transformer and QnA Tasks

Listing 7.2 shows the contents of hf_transformer_qa.py that illustrate how
to perform a question-and-answer task with the HuggingFace transformer.

LISTING 7.2: hf_transformer_qa.py

from transformers import pipeline

nlp = pipeline('question-answering')

result = nlp({
 'question': "Do you know my name?",
 'context': "My name is Oswald"
})

print("result:",result)

NLPFD.Ch7.indd 252NLPFD.Ch7.indd 252 6/7/2021 3:56:31 PM6/7/2021 3:56:31 PM

Transformer, BERT, and GPT • 253

Listing 7.2 starts with an import statement and then initializes the vari-
able nlp as an instance of the pipeline class, with question-answering
as a parameter. Next, the variable nlp is invoked with a question/context pair.
The output is assigned to the variable result, whose contents are then dis-
played. Launch the code in Listing 7.2 to see the following output:

result: [{'word': 'UC', 'score': 0.9993938207626343,
'entity': 'I-ORG', 'index': 4}, {'word': '##SC',
'score': 0.9974051713943481, 'entity': 'I-ORG',
'index': 5}, {'word': 'Oswald', 'score':
0.9988114833831787, 'entity': 'I-PER', 'index': 11}]

Transformer and Sentiment Analysis Tasks

Listing 7.3 shows the contents of hf_transformer_sentiment.py that
illustrate how to perform a sentiment analysis task with the HuggingFace
transformer.

LISTING 7.3: hf_transformer_sentiment.py

from transformers import pipeline

nlp = pipeline('sentiment-analysis')
comment = "Great news that we have pipelines in
� transformers"

result = nlp(comment)

print("comment:",comment)
print("sentiment:",result)

Listing 7.3 starts with an import statement and then initializes the vari-
able nlp as an instance of the pipeline class, with sentiment-analysis
as a parameter. Next, the variable comment is initialized with a test string,
which is supplied to the variable nlp. The output is assigned to the variable
result, whose contents are displayed. Launch the code in Listing 7.3 to see
the following output:

comment: Great news that we have pipelines in transformers

sentiment: [{'label': 'POSITIVE', 'score':
� 0.9985968470573425}]

NLPFD.Ch7.indd 253NLPFD.Ch7.indd 253 6/7/2021 3:56:31 PM6/7/2021 3:56:31 PM

254 • Natural Language Processing Fundamentals for Developers

Transformer and Mask-Filling Tasks

Listing 7.4 shows the contents of hf_transformer_mask.py that illustrate
how to perform a mask-filling task with the HuggingFace transformer.

LISTING 7.4: hf_transformer_mask.py

from transformers import pipeline

nlp = pipeline('fill-mask')
result = nlp("I hope that you <mask> the movie")

print("result:",result)

Listing 7.4 starts with an import statement and then initializes the vari-
able nlp as an instance of the pipeline class, with fill-mask as a parameter.
Next, the variable nlp is invoked with a hard-coded sample sentence. The
output is assigned to the variable result, whose contents are then displayed.
Launch the code in Listing 7.4 to see the following output:

result: [{'sequence': '<s>I hope that you enjoyed the
movie</s>', 'score': 0.5466918349266052, 'token': 3776,
'token_str': 'Ġenjoyed'}, {'sequence': '<s>I hope that
you enjoy the movie</s>', 'score': 0.36409610509872437,
'token': 2254, 'token_str': 'Ġenjoy'}, {'sequence':
'<s>I hope that you liked the movie</s>', 'score':
0.06604353338479996, 'token': 6640, 'token_str':
'Ġliked'}, {'sequence': '<s>I hope that you like
the movie</s>', 'score': 0.008552208542823792,
'token': 101, 'token_str': 'Ġlike'}, {'sequence':
'<s>I hope that you loved the movie</s>', 'score':
0.003726127091795206, 'token': 2638, 'token_str':
'Ġloved'}]

This concludes the section of the chapter pertaining to the HuggingFace
transformer code samples. The next section briefly discusses T5, which is
another powerful NLP model created by Google.

WHAT IS T5?

Text-to-text transfer transformer (T5) is an encoder-decoder model that con-
verts all NLP tasks into a text-to-text format:

NLPFD.Ch7.indd 254NLPFD.Ch7.indd 254 6/7/2021 3:56:31 PM6/7/2021 3:56:31 PM

Transformer, BERT, and GPT • 255

https://github.com/google-research/text-to-text-transfer-transformer

You can also install T5 by invoking the following command:

pip install t5[gcp]

T5 is pretrained on a multitask mixture of unsupervised and supervised
tasks, and it works well on various tasks, such as translation. T5 is trained using
a technique called “teacher forcing,” which means that an input sequence
and a target sequence are always required for training. The input sequence is
designated with input_ids, whereas the target sequence is designated with
output_ids and then passed to the decoder.

Since all tasks (such as classification, question answering, and translation)
involve this input/output mechanism, the same model can be used for multi-
ple tasks.

T5 provides several useful classes when working with T5 models. For
example, the class transformers.T5Config enables you to specify config-
uration information, and its default values are similar to the T5-small architec-
ture. Another useful class is transformers.T5Tokenizer, which enables
you to construct a T5 tokenizer.

T5 does differ from BERT in two significant ways that will become clearer
after you read the BERT related material later in this chapter:

●● The inclusion of a causal decoder
●● The use of pretraining tasks instead of a fill-in-the-blank task

Although you can download code samples for T5, it might be simpler
to experiment with T5 in this Google Colaboratory notebook (make sure to
select a TPU for execution):

https://tiny.cc/t5-colab

More information about T5 and details regarding the preceding T5 classes
(and other classes) is available online:

https://huggingface.co/transformers/model_doc/t5.html

WHAT IS BERT?

BERT is a pretrained model that is based on the transformer architecture that
was developed in 2017 by Google. There are two versions of BERT called
BERT Base and BERT Large. BERT Base consists of twelve layers (trans-
former blocks), twelve attention heads, and 110 million parameters. BERT

NLPFD.Ch7.indd 255NLPFD.Ch7.indd 255 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

256 • Natural Language Processing Fundamentals for Developers

Large is a larger pretrained model that consists of 24 layers (transformer
blocks), sixteen attention heads, and 340 million parameters.

BERT can be used in conjunction with the transformers library (discussed
earlier in this chapter) that provides classes to perform various tasks, such as
question answering and sequence classification.

BERT Features

BERT has a set of approximately 30,000 learned raw vectors. Moreover, just
under 80% of those raw vectors correspond to “normal” words (i.e., they exist
in an English dictionary). The remaining 20% are sub-words that are created
by WordPiece. These sub-words have the form “##s” or “##ed.” The latter
sub-words are useful for detecting the past tense of a verb in a sentence. In
addition, the BERT vocabulary consists of 45% uppercase and 25% lowercase
terms (approximately).

How is BERT Trained?

BERT is trained by performing a pre-training step, followed by a fine-tuning
step. The pre-training step involves task-specific data. For example, if you
want to perform sentiment analysis using BERT, you need a corpus of labeled
data that specifies whether a sentence has positive or negative sentiment. As
you would expect, the dataset is split into a training portion and a test portion,
just as you have seen in code samples in previous chapters.

The fine-tuning step involves training the model on a large set of sam-
ple tasks. For example, if you want to train BERT to perform a question-
answering task, then start with the pretrained model (that was trained on sen-
timent analysis) and fine-tune that model by training the model on a corpus
of question/answer data.

How BERT Differs from Earlier NLP Techniques

There are several important aspects of BERT that differentiate BERT from
algorithms such as word2vec. First, BERT does not perform a stemming
operation. Instead, BERT performs sub-word tokenization via WordPiece
(discussed later in this chapter).

Second, BERT creates contextual word embeddings whereas word2vec
creates distributional word embeddings. Specifically, BERT uses all the
words in a sentence in order to generate a word embedding for each word in
a given sentence. As a result, the same word that is used in a different context
in two sentences will have different word embeddings. However, word2vec
uses bigrams to calculate word embeddings.

NLPFD.Ch7.indd 256NLPFD.Ch7.indd 256 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 257

Third, BERT does not use cosine similarity to determine the extent to
which two words are similar to each other. However, it’s possible to use BERT
with cosine similarities, provided that you fine-tune BERT on suitable data,
such as the data and code samples in the following repository:

https://github.com/UKPLab/sentence-transformers

THE INNER WORKINGS OF BERT

BERT implements a number of interesting techniques, some of which are
listed here:

●● MLM (masked language model)
●● NSP (next sentence prediction)
●● Special tokens ([CLS] and [SEP])
●● Language mask
●● WordPiece (sub-word tokenization)
●● SentencePiece

Each topic in the preceding list is discussed briefly in the following
subsections.

What is MLM?

MLM is an acronym for Masked Language Model. MLM is a BERT pre-
training task, during which BERT processed the contents of Wikipedia (and
also the BookCorpus). In this task, 15% of the words were replaced with the
[MASK] token, and BERT then predicted the missing words. Note that this
task was performed on “chunks” of data that were submitted to BERT.

Many words in Wikipedia involve dates, names of people, and names of
locations, some of which were replaced by the [MASK] token. During the
training process, BERT ascertained the missing tokens correctly.

What Is NSP?

In addition to MLM, BERT uses NSP, which is an acronym for next sentence
prediction. NSP combines pairs of sentences in the following way:

●● The second sentence is logically related to the first sentence in 50% of
the pairs.

●● The second sentence is not logically related to the first sentence in 50%
of the pairs.

NLPFD.Ch7.indd 257NLPFD.Ch7.indd 257 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

258 • Natural Language Processing Fundamentals for Developers

One of the tasks of BERT is to identify which pairs of sentences are cor-
rect and which pairs of sentences are incorrect.

Special Tokens

BERT uses two special tokens: [CLS] to indicate the start of a text string and
[SEP] to separate sentences. For example, consider the following sentence:

Pizza with four toppings and trimmings.

The BERT tokenization of the preceding sentence is here:

['[CLS]', 'pizza', 'with', 'four', 'topping', '##s',
'and', 'trim', '##ming', '##s', '.', '[SEP]']

Listing 7.5 shows the contents of bert_special_tokens.py that illus-
trate how to display the special tokens in BERT.

LISTING 7.5: bert_special_tokens.py

import transformers
import numpy as np

instantiate a BERT tokenizer and model:
print("creating tokenizer...")
tokenizer = transformers.BertTokenizer.from_pretrained
� ('bert-base-uncased', do_lower_case = True)

print("creating model...")
nlp = transformers.TFBertModel.from_pretrained
� ('bert-base-uncased')

hidden layer with embeddings:
text1 = "cell phone"
input_ids1 = np.array(tokenizer.encode(text1))[None,:]
embedding1 = nlp(input_ids1)

print("input_ids1:")
print(input_ids1)
print()

print("tokenizer.sep_token: ",tokenizer.sep_token)
print("tokenizer.sep_token_id:",tokenizer.sep_token_id)
print("tokenizer.cls_token: ",tokenizer.cls_token)

NLPFD.Ch7.indd 258NLPFD.Ch7.indd 258 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 259

print("tokenizer.cls_token_id:",tokenizer.cls_token_id)
print("tokenizer.pad_token: ",tokenizer.pad_token)
print("tokenizer.pad_token_id:",tokenizer.pad_token_id)
print("tokenizer.unk_token: ",tokenizer.unk_token)
print("tokenizer.unk_token_id:",tokenizer.unk_token_id)
print()

Listing 7.5 starts two import statements and then initializes the variable
tokenizer as an instance from a pretrained model. Next, the variable nlp is
initialized as an instance of a pre-trained model.

The next portion of Listing 7.5 initializes the variable text1 as a two-
word string, followed by the variable input_ids1 that consists of the tokens for
the two words, along with two special tokens.

The final code block consists of a set of print() statements that display
several special tokens and their token_id values. Launch the code in List-
ing 7.5 to see the following output:

creating tokenizer...

creating model…

input_ids1:

[[101 3526 3042 102]]

tokenizer.sep_token: [SEP]

tokenizer.sep_token_id: 102

tokenizer.cls_token: [CLS]

tokenizer.cls_token_id: 101

tokenizer.pad_token: [PAD]

tokenizer.pad_token_id: 0

tokenizer.unk_token: [UNK]

tokenizer.unk_token_id: 100

BERT Encoding: Sequence of Steps

BERT performs the following sequence of steps, all of which have been illus-
trated via code snippets in previous sections:

●● Step 1: Tokenize the text.
●● Step 2: Map the tokens to their IDs.
●● Step 3: Add the special [CLS] and [SEP] tokens.

NLPFD.Ch7.indd 259NLPFD.Ch7.indd 259 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

260 • Natural Language Processing Fundamentals for Developers

As a simple example, the sentence “I got a book” has a total of six tokens
(four word tokens, and the start and end tokens), along with the following
indices:

[CLS] 101

i 1,045

got 2,288

a 1,037

book 2,338

[SEP] 101

Listing 7.6 shows the contents of bert_encoding_plus.py that illus-
trate how to display the special tokens in BERT.

LISTING 7.6: bert_encoding_plus.py

import transformers
import numpy as np

instantiate a BERT tokenizer and model:
print("creating tokenizer...")
tokenizer = transformers.BertTokenizer.from_
pretrained('bert-base-uncased', do_lower_case = True)
print("creating model...")
nlp = transformers.TFBertModel.from_pretrained
� ('bert-base-uncased')

text = "When were you last outside? I have been inside for
� 2 weeks."

encoding = tokenizer.encode_plus(
 text,
 max_length = 32,
 add_special_tokens = True, # Add '[CLS]' and '[SEP]'
 return_token_type_ids = False,
 pad_to_max_length = True,
 return_attention_mask = True,
 return_tensors = 'pt', # Return PyTorch tensors
)

print("encoding.keys():")
print(encoding.keys())

NLPFD.Ch7.indd 260NLPFD.Ch7.indd 260 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 261

print()

print("len(encoding['input_ids'][0]):")
print(len(encoding['input_ids'][0]))
print()

print("encoding['input_ids'][0]:")
print(encoding['input_ids'])
print()

print("len(encoding['attention_mask'][0]):")
print(len(encoding['attention_mask'][0]))
print()

print("encoding['attention_mask']:")
print(encoding['attention_mask'])
print()

print("tokenizer.convert_ids_to_tokens(encoding['input_
� ids'][0]):")
print(tokenizer.convert_ids_to_tokens(encoding['input_
� ids'][0]))
print()

Listing 7.6 starts with two import statements and then initializes the vari-
ables tokenizer and nlp in the same fashion as previous code samples.
Next, the variable text is initialized as a text string, followed by the variable
encoding that acts as a configuration-like “holder” of the parameters and
their values.

The final portion of Listing 7.6 consists of six pairs of print() statements,
each of which displays a parameter/value pair that is defined in the encoding
variable. Launch the code in Listing 7.6 to see the following output:

creating tokenizer...

creating model…

encoding.keys():

dict_keys(['input_ids', 'attention_mask'])

len(encoding['input_ids'][0]):

32

NLPFD.Ch7.indd 261NLPFD.Ch7.indd 261 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

262 • Natural Language Processing Fundamentals for Developers

encoding['input_ids'][0]:

tensor([[101, 2043, 2020, 2017, 2197, 2648, 1029,
� 1045, 2031, 2042, 2503, 2005,

 1016, 3134, 1012, 102, 0, 0, 0,
� 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0]])

len(encoding['attention_mask'][0]):

32

encoding['attention_mask']:

tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
� 1, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0]])

tokenizer.convert_ids_to_tokens(encoding['input_ids'][0]):

['[CLS]', 'when', 'were', 'you', 'last', 'outside', '?',
'i', 'have', 'been', 'inside', 'for', '2', 'weeks', '.',
'[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]',
'[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]',
'[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']

SUBWORD TOKENIZATION

Out Of Vocabulary (OOV) refers to words in a corpus that do not belong to a
vocabulary. When an OOV word is encountered, BERT splits the word into
sub-words, which is known as sub-word tokenization. The same process is
applied to rare words.

Sub-word tokenization algorithms are based on a heuristic (something
that’s intuitive and often produces the correct answer). Specifically, words
that appear more frequently words are assigned unique IDs. However, lower
frequency words are split into sub-words that retain the meaning of the
lower frequency words. The following list contains four important sub-word
tokenization algorithms:

●● byte-pair encoding (BPE)
●● SentencePiece

NLPFD.Ch7.indd 262NLPFD.Ch7.indd 262 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 263

●● unigram language model
●● WordPiece (used in BERT)

Byte-pair encoding for sub-words represents frequent words with fewer
symbols and less frequent words with more symbols. BPE is a bottom-up sub-
word tokenization algorithm that learns a sub-word vocabulary of a certain
size (the vocabulary size is a hyperparameter).

The first step in this technique involves splitting every word into unicode
characters, each of which corresponds to a symbol in the final vocabulary.
Now perform the following sequence of steps repeatedly:

1.	 Find the most frequent symbol bigram (pair of symbols).

2.	 Merge those symbols to create a new symbol and add this to the
vocabulary.

3.	 Repeat the preceding steps until a maximum vocabulary size is reached.

GPT-2 views text input as a sequence of bytes instead of unicode charac-
ters; in addition, an ID is allocated to every byte in the sequence.

WordPiece is a sub-word tokenization algorithm that is very similar to
BPE. The main difference pertains to the specific manner in which bigrams
are selected for the merging step. Interestingly, RoBERTa (which is based on
BERT) also involves the use of WordPiece. Here are some examples of sub-
word tokenizations in BERT:

"toppings" is split into "topping" and "##s"

"trimmings" is split into "trim", "##ming", and "##s"

"misspelled" is split into "mis", "##spel", and "##led"

However, keep in mind that BERT does not provide a mechanism to
reconstruct the original word from its word pieces. Note that ELMo pro-
vides word-level (not sub-word) contextual representations for words, which
is different from BERT. Later in this chapter you will code samples that
create BERT tokens from English sentences (that include toppings and
trimmings).

Since word2vec and GloVe do not compute contextual word embeddings,
the similarity between two embedded vectors may be of limited value.

Byte pair encoding (BPE) is one of the algorithms that is used in the GPT
family of models. BPE (also known as diagram coding) is a data compression
algorithm that uses the following technique: given a text string, the most com-
mon pair of consecutive bytes of data is replaced with a byte that does exist

NLPFD.Ch7.indd 263NLPFD.Ch7.indd 263 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

264 • Natural Language Processing Fundamentals for Developers

in the text string. Each replacement is stored in a look-up table, which means
that the table can be used to create the original text string. The models in the
GPT family utilize a modified version of BPE.

For example, suppose we wanted to encode the data consisting of the
following string:

aaabdaaabac

Since the byte pair aa occurs most often, we replace it with a character
that does not appear in the string, such as the letter Z. Perform the replace-
ment, which results in the following text string:

ZabdZabac (where Z = aa)

Repeat the substitution step, this time with the pair ab, and replace this
pair with the letter Y:

ZYdZYac (where Y = ab Z = aa)

At this point, we can continue the preceding procedure by select-
ing ZY (which appears twice) and replacing this string with the letter X, as
shown here:

XdXac (where X = ZY Y = ab Z = aa)

SentencePiece is another sub-word tokenizer and a detokenizer for NLP
that performs sub-word segmentation. SentencePiece also supporting BPE
and unigram language model. The original arXiv paper that describes Senten-
cePiece in detail is available online:

https://arxiv.org/abs/1808.06226v1

SENTENCE SIMILARITY IN BERT

As you learned in a previous chapter, word2vec and GloVe use word embed-
dings to find the semantic similarity between two words. However, sentences
contain additional information as well as relationships between multiple
words.

A well-known example that illustrates the need for contextual awareness
is illustrated in the following pair of sentences:

●● The dog did not cross the street because it was too narrow.
●● The dog did not cross the street because it was too tired.

NLPFD.Ch7.indd 264NLPFD.Ch7.indd 264 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 265

One technique for sentence similarity involves computing the average
of the word embeddings of the words in each sentence and then computing
the cosine similarity of the resulting pair of word embeddings. Alternatively,
you can use tf-idf instead of word embeddings, and other techniques are also
available. In all of these cases, word order is not taken into account, and the
word embeddings are determined in an unsupervised fashion.

Word Context in BERT

Listing 7.7 shows the contents of bert_context.py that illustrate how
BERT generates a different word vector for the same word that is used in a
different context.

If you do not already have the transformers library installed, launch the
following command in a command shell:

pip3 install transformers

This code downloads a 536 M BERT model.

LISTING 7.7: bert_context.py

import transformers

text1 = "cell phone"

instantiate a BERT tokenizer and model:
tokenizer = transformers.BertTokenizer.from_
� pretrained('bert-base-uncased', do_lower_case = True)

nlp = transformers.TFBertModel.from_pretrained
� ('bert-base-uncased')

hidden layer with embeddings:
input_ids1 = np.array(tokenizer.encode(text1))[None,:]
embedding1 = nlp(input_ids1)

display text1 and its context:
print("text1:",text1)
print("embedding1[0][0]:")
print(embedding1[0][0])
print()

text2 = "cell mate"

NOTE

NLPFD.Ch7.indd 265NLPFD.Ch7.indd 265 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

266 • Natural Language Processing Fundamentals for Developers

hidden layer with embeddings:
input_ids2 = np.array(tokenizer.encode(text2))[None,:]
embedding2 = nlp(input_ids2)

display text2 and its context:
print("text2:",text2)
print("embedding2[0][0]:")
print(embedding2[0][0])

Listing 7.7 starts with import statements and then initializes the variables
tokenizer, nlp, input_ids1, and embedding1 in exactly the same man-
ner that you have seen in previous code samples. The next block of code dis-
plays the values of text1 and embedding1[0][0].

The next portion of Listing 7.7 is virtually the same as the previous code
block, based on the replacement of text1 with text2. The output of Listing
7.7 is here:

input sentence #1:

text1: cell phone

embedding1[0][0]:

tf.Tensor(

[[-0.30501425 0.14509355 �-0.18064171 ... -0.3127299
-0.12173399 -0.09033043]

 [0.80547976 -0.15233847 �0.61319923 ... -0.7498784
0.00167803 -0.11698578]

 [1.0339862 -0.66511637 -�0.17642722 ... -0.24407595
0.03978422 -0.8694502]

 [0.87851435 0.10932285 -0.27658027 ... 0.18180653
 -0.5829581 -0.34113947]], shape = (4, 768), dtype =
� float32)

text2: cell mate

embedding2[0][0]:

tf.Tensor(

[[-0.24141303 0.1146469 �-0.13710016 ... -0.2908613
-0.04577148 0.2965925]

 [0.05608664 -1.0035615 �0.12738925 ... -0.30271983
0.17530476 0.7245784]

 [0.2818157 -0.28047347 -�0.6547173 ... 0.04996978
0.01698243 0.03285426]

NLPFD.Ch7.indd 266NLPFD.Ch7.indd 266 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 267

 [1.039136 0.12364347 -0.2661501 ... 0.09439699
 -0.7794917 -0.24966209]], shape = (4, 768), dtype = float32)

Listing 7.7 also generates the following informative message:

Some weights of the model checkpoint at bert-base-
uncased were not used when initializing TFBertModel:
['nsp___cls', 'mlm___cls']

- This IS expected if you are initializing TFBertModel
from the checkpoint of a model trained on another
task or with another architecture (e.g. initializing
a BertForSequenceClassification model from a
BertForPretraining model).

- This IS NOT expected if you are initializing
TFBertModel from the checkpoint of a model that
you expect to be exactly identical (initializing
a BertForSequenceClassification model from a
BertForSequenceClassification model).

All the weights of TFBertModel were initialized from
the model checkpoint at bert-base-uncased.

If your task is similar to the task the model of
the ckeckpoint was trained on, you can already use
TFBertModel for predictions without further training.

Now that you have seen an example where BERT generates a different
word vector for a word that is used in a different context, let’s look at BERT
tokens, which is the topic of the next section.

GENERATING BERT TOKENS (1)

Listing 7.8 shows the contents of bert_tokens1.py that illustrate how to
convert a text string to a BERT-compatible string and then tokenize the latter
string into BERT tokens.

LISTING 7.8: bert_tokens1.py

from transformers import BertTokenizer, BertModel

tokenizer = BertTokenizer.from_pretrained
� ('bert-base-uncased')

NLPFD.Ch7.indd 267NLPFD.Ch7.indd 267 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

268 • Natural Language Processing Fundamentals for Developers

text1 = "Pizza with four toppings and trimmings."
marked_text1 = "[CLS]" + text1 + "[SEP]"
tokenized_text1 = tokenizer.tokenize(marked_text1)

print("input sentence #1:")
print(text1)
print()

print("Tokens from input sentence #1:")
print(tokenized_text1)
print()

print("Some tokens in BERT:")
print(list(tokenizer.vocab.keys())[1000:1020])
print()

Listing 7.8 imports BertTokenizer and BertModel, and uses the former
to initialize the variable tokenizer. Next, the variable text1 is initialized to
a text string, and marked_text1 prepends [CLS] to text1 and then appends
[SEP] to text1. The last variable that is initialized is tokenized_text1,
which is assigned the result of invoking the tokenizer() method on the vari-
able marked_text1. The next three blocks of print() statements display
the contents of text1, tokenized_text1, and a range of 20 BERT tokens,
respectively. Launch the code in Listing 7.8 to see the following output:

input sentence #1:

Pizza with four toppings and trimmings.

Tokens from input sentence #1:

['[CLS]', 'pizza', 'with', 'four', 'topping', '##s',
'and', 'trim', '##ming', '##s', '.', '[SEP]']

Some tokens in BERT:

['"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',',
'-', '.', '/', '0', '1', '2', '3', '4', '5']

GENERATING BERT TOKENS (2)

Listing 7.9 shows the contents of bert_tokens2.py that illustrate how to
convert a text string to a BERT-compatible string and then tokenize the latter
string into BERT tokens.

NLPFD.Ch7.indd 268NLPFD.Ch7.indd 268 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 269

LISTING 7.9: bert_tokens2.py

from transformers import BertTokenizer, BertModel

tokenizer = BertTokenizer.from_pretrained
� ('bert-base-uncased')

text2 = "I got a book and after I book for an hour, it's
� time to book it."
marked_text2 = "[CLS]" + text2 + "[SEP]"
tokenized_text2 = tokenizer.tokenize(marked_text2)

print("input sentence #2:")
print(text2)
print()

print("Tokens from input sentence #2:")
print(tokenized_text2)
print()

Map token strings to their vocabulary indices:
indexed_tokens2 = tokenizer.convert_tokens_to_
� ids(tokenized_text2)

Display the words with their indices:
for pair in zip(tokenized_text2, indexed_tokens2):
 print('{:<12} {:>6,}'.format(pair[0], pair[1]))

The first half of Listing 7.9 is almost identical to the first half of Listing
7.8, using the variable text2 instead of text1.

The next portion of Listing 7.9 contains two blocks of print() state-
ments that display the contents of text2 and tokenized_text2. The next
code snippet initializes the variable indexed_tokens2 to the result of con-
verting the tokens in tokenized_text2 to id values.

The final portion of Listing 7.9 contains a loop that displays tokens and
their associated id values. The output of Listing 7.9 is here:

input sentence #2:

I got a book and after I book for an hour, it's time to
book it.

Tokens from input sentence #2:

['[CLS]', 'i', 'got', 'a', 'book', 'and', 'after',

NLPFD.Ch7.indd 269NLPFD.Ch7.indd 269 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

270 • Natural Language Processing Fundamentals for Developers

'i', 'book', 'for', 'an', 'hour', ',', 'it', "'", 's',
'time', 'to', 'book', 'it', '.', '[SEP]']

[CLS] 101

i 1,045

got 2,288

a 1,037

book 2,338

and 1,998

after 2,044

i 1,045

book 2,338

for 2,005

an 2,019

hour 3,178

, 1,010

it 2,009

' 1,005

s 1,055

time 2,051

to 2,000

book 2,338

it 2,009

. 1,012

[SEP] 102

THE BERT FAMILY

BERT has spawned a remarkable set of variations of the original BERT model,
each of which provides some interesting features. Some of those variations are
listed here:

●● ALBERT
●● DistilBERT
●● CamemBERT

NLPFD.Ch7.indd 270NLPFD.Ch7.indd 270 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 271

●● FlauBERT
●● RoBERTa
●● BIO BERT
●● DOC BERT
●● Clinical BERT
●● German BERT

A lite BERT for self-supervised learning of language representations
(ALBERT) was created by Google Research and Toyota Technological Insti-
tute. Like RoBERTa, ALBERT is significantly smaller than BERT, and it’s
also more capable than BERT.

ALBERT (unlike BERT) shares its parameters in all layers, which reduces
the number of parameters, but this has no effect on the training and inference
time. In addition, ALBERT uses embedding matrix factorization, which fur-
ther reduces the number of parameters. Furthermore, ALBERT uses sen-
tence-order prediction (SOP), which is an improvement over next sentence
prediction (NSP). Finally, ALBERT does not use a dropout rate, which fur-
ther increases the model capacity.

ALBERT uses both whole-word masking and “n-gram masking,” where
the latter refers to masking multiple sequential words. Here is a code snippet
for ALBERT:

from transformers import AlbertForMaskedLM,
� AlbertTokenizer

model1 = AlbertForMaskedLM.from_pretrained('albert-
� xxlarge-v1')

tokenizer = AlbertTokenizer.from_pretrained('albert-
� xxlarge-v1')

model2 = AlbertForMaskedLM.from_pretrained('albert-
� xxlarge-v2')

tokenizer = AlbertTokenizer.from_pretrained('albert-
� xxlarge-v2')

DistilBERT is a smaller version of BERT that contains 66 million param-
eters, which is 55% of the number of parameters of BERT Base (which has
110 million parameters). Even so, DistilBERT achieves 97% of BERT accu-
racy and is 60% faster than BERT Base, which makes DistilBERT useful for
transfer learning.

NLPFD.Ch7.indd 271NLPFD.Ch7.indd 271 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

272 • Natural Language Processing Fundamentals for Developers

As an aside, knowledge distillation involves a small model (called the
“student”) that is trained to mimic a larger model or an ensemble of models
(called the “teacher”). DistilBERT is an example of a distilled network that is
also used in production.

To give you an idea of the type of code required for DistilBERT, here is
an example of instantiating a DistilBERT tokenizer:

import transformers

tokenizer = transformers.AutoTokenizer.from_
pretrained('distilbert-base-uncased', do_lower_case = True)

Here is another example of instantiating a DistilBERT tokenizer:

from transformers import DistilBertTokenizer

tokenizer = DistilBertTokenizer.from.pretrained
� ('distilbert-base-uncased')

RoBERTa (from Facebook) leverages BERT’s language masking strat-
egy, along with some modifications of BERT’s hyperparameters. Note that
RoBERTa was trained on a corpus that is at least 10 times larger than the
corpus for BERT.

Unlike BERT, RoBERTa does not use an NSP (Next Sentence Predic-
tion) task. Instead, RoBERTa uses dynamic masking, whereby a masked
token is actually modified during the training process.

Perform an online search to find more detailed information about the list
of BERT-related models in the first part of this section.

Surpassing Human Accuracy: deBERTa

The deBERTa model from Microsoft recently surpassed human accuracy, as
described in the following link:

https://www.microsoft.com/en-us/research/blog/microsoft-deberta-
surpasses-human-performance-on-the-superglue-benchmark/

The architecture for this model comprises 48 transformer layers with 1.5
billion parameters. This model has a GLUE score of 90.8, and a SuperGLUE
score of 89.9, which manages to exceed the human performance score of 89.8.

Microsoft intends to integrate DeBERTa with the Turing natural lan-
guage representation model Turing NLRv4 (also from Microsoft).

NLPFD.Ch7.indd 272NLPFD.Ch7.indd 272 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 273

What is Google Smith?

The SMITH model from Google is a model for analyzing documents. The
SMITH model is trained to understand passages within the context of the
entire document. By contrast, BERT is trained to understand words within
the context of sentences. However, the SMITH model (which outperforms
BERT) supplements BERT by performing major operations that are not pos-
sible in BERT.

This concludes the BERT-specific portion of the chapter. The next sec-
tion introduces GPT, followed by sections that contain details regarding
GPT-2 (and code samples) as well as GPT-3.

INTRODUCTION TO GPT

Generative Pre-Training (GPT), or sometimes called generative pretrain-
ing transformers, is a pretrained NLP-based model that was developed by
OpenAI. GPT is trained with unlabeled data via unsupervised pretraining
(also known as self-supervision).

GPT is based on the transformer architecture and takes advantage of the
self-attention mechanism of the transformer. There are several versions of
GPT, which includes GPT-2 (developed in 2019) and GPT-3 (the most recent
version) that was released in June, 2020. Both GPT-2 and GPT-3 are dis-
cussed later in this chapter.

Coincidentally: according to the Lottery Ticket Hypothesis, in every suffi-
ciently deep neural network, there is a smaller sub-network that can perform
just as well as the whole neural network.

Installing the Transformers Package

The installation process involves the following command:

pip3 install transformers

You can perform an upgrade of transformers by invoking the following
command:

pip3 install -U transformers

However, you might encounter the following error message:

ERROR: After October 2020 you may experience errors when
installing or updating packages. This is because pip will
change the way that it resolves dependency conflicts.

NLPFD.Ch7.indd 273NLPFD.Ch7.indd 273 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

274 • Natural Language Processing Fundamentals for Developers

We recommend you use --use-feature = 2020-resolver to
test your packages with the new resolver before it
becomes the default.

sentence-transformers 0.3.7.2 requires
transformers<3.4.0,>=3.1.0, but you'll have
transformers 4.1.1 which is incompatible.

WORKING WITH GPT-2

This section contains Python code samples that use GPT-2 to perform senti-
ment analysis and question-and-answer tasks. There are some tasks that you
can perform in GPT-2 that are comparable in GPT-3.

The Python code samples in this section work with Python 3.7.9 but not with
Python 3.6 or Python 3.8 (it’s possible that other Python 3.7.x versions will
work as well).

If you need to install Python 3.7.9, you will also need to execute the fol-
lowing commands to install transformers, tensorflow, and scipy:

pip3 install transformers

pip3 install tensorflow

pip3 install scipy

Listing 7.10 shows the contents of gpt2_sentiment.py that illustrate
how to perform sentiment analysis in GPT2.

LISTING 7.10: gpt2_sentiment.py

pip3 install transformers
from transformers import pipeline

pipeline for sentiment-analysis:
cls = pipeline('sentiment-analysis')

text1 = "I love deep dish Chicago pizza."
sentiment1 = cls(text1)
print("sentence:",text1)
print("sentiment:",sentiment1)
print()

NOTE

NLPFD.Ch7.indd 274NLPFD.Ch7.indd 274 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 275

text2 = "I dislike anchovies."
sentiment2 = cls(text2)
print("sentence:",text2)
print("sentiment:",sentiment2)
print()

text3 = "I dislike anchovies but I like pickled herring."
sentiment3 = cls(text3)
print("sentence:",text3)
print("sentiment:",sentiment3)

Listing 7.10 contains an import statement and then initializes the vari-
able cls as an instance of the pipeline class by specifying sentiment-analysis
(which is the task for this code sample).

The next three code blocks perform sentiment analysis on the text strings
text1, text2, and text3. Launch the code to see the following output:

sentence: I love deep dish Chicago pizza.

sentiment: [{'label': 'POSITIVE', 'score':
� 0.9985044598579407}]

sentence: I dislike anchovies.

sentiment: [{'label': 'NEGATIVE', 'score':
� 0.9982384443283081}]

sentence: I dislike anchovies but I like pickled herring.

sentiment: [{'label': 'POSITIVE', 'score':
� 0.7346124649047852}]

Listing 7.11 shows the contents of gpt2_qna.py that illustrate how to
perform sentiment analysis in GPT2.

Note that this Python code sample will not work on Python 3.8.x. You
must use Python 3.7.

LISTING 7.11: gpt2_qna.py

from transformers import pipeline

pipeline for question-answering:
qna = pipeline('question-answering')

NLPFD.Ch7.indd 275NLPFD.Ch7.indd 275 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

276 • Natural Language Processing Fundamentals for Developers

qc_pair = {
 'question': 'What is the name of the repository ?',
 'context': 'Pipeline have been included in the
� huggingface/transformers repository'
}

if __name__ == "__main__":
 result = qna (qc_pair)
 print("result:")
 print(result)

Listing 7.11 starts with an import statement and then initializes the
variable qna as an instance of the pipeline class from the transform-
ers library, with question-answering as a parameter. Next, the variable
qc_pair is initialized as a pair of question/answer strings.

Next, the variable result is initialized with the value that is returned by
invoking qna with gc_pair, and then the contents of result are displayed.
Launch the code to see the following output:

result:

{'score': 0.5135953426361084, 'start': 35, 'end': 59,
� 'answer': 'huggingface/transformers'}

If you remove the if statement from Listing 7.11, you might see the
following error message:

#output:

 raise RuntimeError('''

RuntimeError:

 �An attempt has been made to start a new process
before the current process has finished its
bootstrapping phase.

 �This probably means that you are not using fork
to start your child processes and you have
forgotten to use the proper idiom in the main
module:

 if __name__ == '__main__':

 freeze_support()

 ...

NLPFD.Ch7.indd 276NLPFD.Ch7.indd 276 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 277

 �The "freeze_support()" line can be omitted
if the program is not going to be frozen to
produce an executable.

Listing 7.12 shows the contents of gpt2_text_gen.py that illustrate
how to use generated text from an input string in GPT2. Note that the default
model for the text generation pipeline is GPT-2.

LISTING 7.12: gpt2_text_gen.py

from transformers import pipeline

text_gen = pipeline("text-generation")

specify a max_length of 50 tokens and sampling "off":
prefix_text = "What a wonderful"
generated_text = text_gen(prefix_text, max_length = 50, do_
� sample = False)[0]

print("=> #1 generated_text['generated_text']:")
print(generated_text['generated_text'])
print("-------------------------------\n")

prefix_text = "Once in a"
generated_text = text_gen(prefix_text, max_length = 50, do_
� sample = False)[0]

print("=> #2 generated_text['generated_text']:")
print(generated_text['generated_text'])
print("-------------------------------\n")

prefix_text = "Once in a blue"
generated_text = text_gen(prefix_text, max_length = 50, do_
� sample = False)[0]

print("=> #3 generated_text['generated_text']:")
print(generated_text['generated_text'])
print("-------------------------------\n")

Listing 7.12 starts with an import statement and then initializes the vari-
able text_gen as an instance of the pipeline class by specifying text-
generation (which is the task for this code sample). The next three blocks

NLPFD.Ch7.indd 277NLPFD.Ch7.indd 277 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

278 • Natural Language Processing Fundamentals for Developers

of code display the completion of the text in prefix_text, where the latter
is assigned three different text strings. Launch the code in Listing 7.12 to see
the following output:

=> #1 generated_text['generated_text']:

What a wonderful thing about this is that it's a very
simple and simple way to get your hands on a new game.

The game is a simple, simple game. It's a simple game.
It's a simple game. It's

=> #2 generated_text['generated_text']:

Once in a vernacular, the word "carnage" is used to
describe a large, open, and well-lit place.

The word "carnage" is used to describe a large, open,
and well-

=> #3 generated_text['generated_text']:

Once in a blue urn, you can see the "C" in the center
of the "C" and the "A" in the bottom right corner.

The "C" is the "A" and the "A" are

Listing 7.13 shows the contents of gpt2_qna.py that illustrate how to
perform sentiment analysis in GPT2. Note that this Python code sample will
not work on Python 3.8.x. You must use Python 3.7.

LISTING 7.13: gpt2_auto.py

from transformers import AutoTokenizer, TFAutoModel

tokenizer = AutoTokenizer.from_pretrained
� ("bert-base-uncased")

NLPFD.Ch7.indd 278NLPFD.Ch7.indd 278 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 279

mymodel = TFAutoModel.from_pretrained("bert-base-uncased")

inputs = tokenizer("I love deep dish Chicago pizza",
� return_tensors = "tf")
outputs = mymodel(**inputs)

print("inputs: ",inputs)
print("outputs: ",outputs)

Listing 7.13 starts with an import statement and then initializes the vari-
able tokenizer as a generic tokenizer class from bert-base-uncased by
invoking the from_pretrained() method of the AutoTokenizer class that
belongs to the transformers library. Similarly, mymodel is a general model
class from bert-base-uncased by invoking the from_pretrained()
method of the TFAutoModel class that belongs to the transformers library.

Next, the variable inputs is initialized with the result of passing a hard-
coded string to the tokenizer variable. Then the variable outputs is ini-
tialized with the result of passing inputs to the variable mymodel. The last
portion of Listing 7.13 displays the contents of inputs and outputs. Launch the
code to see the following output:

inputs: {'input_ids': <tf.Tensor: shape = (1, 8), �
� dtype = int32,

numpy = array([[101, 1045, 2293, 2784, 9841, 3190,
� 10733, 102]],

 dtype = int32)>, 'token_type_ids': <tf.Tensor:
shape = (1, 8), dtype = int32, numpy = array([[0, 0, 0, 0,
0, 0, 0, 0]], dtype = int32)>, 'attention_mask': <tf.Tensor:
shape = (1, 8), dtype = int32, numpy = array([[1, 1, 1, 1, 1,
� 1, 1, 1]], dtype = int32)>}

outputs: TFBaseModelOutputWithPooling(last_hidden_state =
� <tf.Tensor: shape = (1, 8, 768), dtype = float32, numpy =

array([[[�-0.00286604, 0.22725284, 0.0192489, ...,
-0.16997483, 0.22732456, 0.2084062],

 [0.37293857, 0.18514417, -0.1804212, ...,
 -0.02841423, 0.92029154, 0.08076832],

 [1.0605763, 0.68393016, 0.3488946, ...,
 0.23068337, 0.57474136, -0.2725499],

 ...,

NLPFD.Ch7.indd 279NLPFD.Ch7.indd 279 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

280 • Natural Language Processing Fundamentals for Developers

 [0.36834046, 0.09277615, -0.49751407, ...,
 -0.21702018, -0.15317607, -0.17662546],

 [�0.2218363, -0.1452129, -0.6224062, ...,
0.19659105, 0.0055675, 0.05520308],

 [�0.38959947, 0.1536812, -0.2523777, ...,
0.3461408, -0.5905776, -0.2758692]]],

dtype = float32)>, pooler_output = <tf.Tensor:
� shape = (1, 768), dtype = float32,

...

numpy = array([[-8.23929489e-01, -�2.69686729e-01,
2.79440969e-01,

 5.52639008e-01, -5.11318594e-02, -8.98018852e-02,

 7.92447925e-01, 1.49121523e-01, 4.11069989e-02,

 -9.99752760e-01, 2.84106694e-02, 4.69654143e-01,

 9.74410057e-01, -2.57081628e-01, 9.02504683e-01,

 -4.83381122e-01, 3.19796950e-02, -5.14692605e-01,

...

 3.13184172e-01, 3.45878363e-01, 7.98233569e-01,

 4.64420468e-01, 6.13458335e-01, 4.65085119e-01,

 2.03554392e-01, -5.93035281e-01, 8.85935843e-
01]], dtype = float32)>, hidden_states = None, attentions =
� None)

Listing 7.14 shows the contents of pytorch_gpt_next_word.py that
illustrate how to predict the next word in a sentence.

LISTING 7.14: pytorch_gpt_next_word.py

import torch
from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel

Load pre-trained GPT-2 tokenizer model:
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

encode the words in a sentence:
text = "What is the fastest car in the"
indexed_tokens = tokenizer.encode(text)

NLPFD.Ch7.indd 280NLPFD.Ch7.indd 280 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 281

convert tokens to a PyTorch tensor:
tokens_tensor = torch.tensor([indexed_tokens])

load pre-trained model (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2')

"eval" mode deactivates the DropOut modules:
model.eval()

Predict each token:
with torch.no_grad():
 outputs = model(tokens_tensor)
 predictions = outputs[0]

print("=> list of predictions:")
print(predictions[0, -1, :])
print()

print("=> argmax of predictions:")
print(torch.argmax(predictions[0, -1, :]).item())
print()

Get the predicted next sub-word
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_text = tokenizer.decode(indexed_tokens +
� [predicted_index])

Print the predicted word
print("=> initial text:")
print(text)
print()

print("=> Predicted next word:")
print(predicted_text)

Listing 7.14 starts with two import statements, the second of which is
like the counterpart to the import statement in Listing 7.13:

from transformers import AutoTokenizer, TFAutoModel

Next, the variable tokenizer is created as an instance of a generic gpt2
model. Then the variable text is initialized as a text string and passed as

NLPFD.Ch7.indd 281NLPFD.Ch7.indd 281 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

282 • Natural Language Processing Fundamentals for Developers

a parameter to the encode() method of the variable tokenizer, with the
result assigned to the variable indexed_tokens.

The next portion of Listing 7.14 creates the variable tokens_tensor,
which is a Torch-based tensor that is created from indexed_tokens. Now
we can instantiate the variable model as generic instance of the gpt2 model.

The second half of Listing 7.14 starts by initializing the variables outputs
and predictions, followed by blocks of print() statements that display
the values of predictions and the index position with the maximum value.
Then the initial text is displayed, followed by the initial text concatenated with
the predicted word world (that is shown in bold in the following output).

The output of Listing 7.14 is here (this might take a minute or two when
you launch it the first time due to a file download):

=> list of predictions:

tensor([�-96.1219, -94.2472, -96.9560, ...,
-103.5570, -100.5182, -95.6672])

=> argmax of predictions:

995

=> initial text:

What is the fastest car in the

=> Predicted next word:

 What is the fastest car in the world

WHAT IS GPT-3?

GPT-3 is an extension of the GPT-2 model that involves more layers and data.
For example, the largest model has 96 attention layers, each of which contains
96 × 128 dimension heads. GPT-3 consists of 175 billion parameters and was
trained on hundreds of gigabytes of text to learn how to predict the next word
in a user-supplied text string.

Give GPT-3 an initial sequence of words and GPT-3 will generate various
responses, such as code, news articles, poems, and jokes.

NLPFD.Ch7.indd 282NLPFD.Ch7.indd 282 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 283

GPT-3 generated an interesting poem about Elon Musk (“your tweets are
a blight”), part of which you can read online:

https://www.businessinsider.com/elon-musk-poem-tweets-gpt-3-
openai-2020-8

The GPT-3 model with 175 billion parameters was trained on an unla-
beled dataset consisting of almost 500 billion tokens from a variety of sources.
The key differentiator of GPT-3 is its ability to perform specific tasks without
the need for fine-tuning, whereas other models tend to require task-specific
datasets, and they generally do not perform as well on other tasks.

GPT-2 and GPT-3 have similar architectures, which is to say, they both
have a “vanilla” transformer. GPT-2 has 1.5 billion parameters whereas GPT-3
has 175 billion parameters, which is more than 100 times larger than GPT-2.

One of the distinguishing characteristics of GPT-3 is its ability to solve
unseen NLP tasks. This is due to the fact that GPT-3 was trained on a very
large corpus. GPT-3 also uses “few-shot learning” (discussed later in this
chapter) and can perform the following tasks:

●● translate natural language into code for websites
●● solve complex medical question-and-answer problems
●● create tabular financial reports,
●● write code to train machine learning models

The GPT-3 API involves setting the temperature parameter as well as the
response length parameter. The temperature parameter (whose default value
is 0.7) affects how much randomness the system uses in generating its replies.
The response length parameter yields an approximate number of “words” the
system generates in its response.

GPT-3 has surprised people with its capacity to generate prose as well as
poetry. Elon Musk is one of the founding members of OpenAI (which created
GPT-3). GPT-3 generated the following poem about Elon Musk.1

The SEC said, “Musk,/your tweets are a blight. / They really could cost you
your job, / if you don’t stop / all this tweeting at night.” / … Then Musk cried,
“Why? / The tweets I wrote are not mean, / I don’t use all caps / and I’m sure
that my tweets are clean.” / “But your tweets can move markets / and that’s
why we’re sore. / You may be a genius / and a billionaire, / but that doesn’t give
you the right to be a bore!”

1  https://www.businessinsider.com/elon-musk-poem-tweets-gpt-3-openai-2020-8.

NLPFD.Ch7.indd 283NLPFD.Ch7.indd 283 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

284 • Natural Language Processing Fundamentals for Developers

What is the Goal?

The aim of the GPT-3 pre-trained model is to directly evaluate the model on
the test-related data of new tasks. GPT-3 essentially skips the training-related
data of new tasks and focuses directly on the test-related data, in its capacity
as a few-shot learner (discussed later).

By way of comparison, GPT-3 has 175 billion parameters, whereas
GPT-2 has 1.5 billion parameters, and BERT Large has 340 million param-
eters. GPT-3 was trained entirely on publicly available datasets, on nearly
500,000,000,000 words (some of which might contain offensive content).
GPT-3 achieved state of the art performance on several NLP tasks without
fine-tuning, at the cost of over $10,000,000. Some of the datasets that were
used to train GPT-3 are downloadable from a read-only Github repository:

https://github.com/openai/gpt-3

GPT-3 has caught the attention of many people because of various tasks
that it has performed, including automatic code generation. For example, one
user typed a paragraph of text describing the following Web application:

●● a button that increments a total by USD 3
●● a button that decrements a total by USD 5
●● a button that displays the current total

GPT-3 then created a React application with the preceding functionality,
which prompted a variety of reactions. Some people were amused by such a
simplistic application, whereas others made dire predictions.

GPT-3 Task Strengths and Mistakes

GPT-3 has the ability to perform text generation that is close to human-level
quality. For example, suppose that GPT-3 is given a title and a subtitle, along
with the word “article” that serves as a prompt. GPT-3 can then write brief
articles that often seem to be written by humans.

However, any trained model has limitations, including GPT-3. Bias exists
in the corpus that was used to train GPT-3. According to the following arti-
cle, one way in which GPT-3 can misclassify results is to include bias toward
women and minorities:

https://techcrunch.com/2020/08/07/here-are-a-few-ways-gpt-3-can-go-
wrong/

A more significant example is the use of GPT-3 in a medical chatbot that
told a fake patient (who expressed suicidal thoughts) to kill himself:

NLPFD.Ch7.indd 284NLPFD.Ch7.indd 284 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 285

https://artificialintelligence-news.com/2020/10/28/medical-chatbot-
openai-gpt3-patient-kill-themselves/

GPT-3 Architecture

GPT-3 has eight different model sizes (from 125 M to 175 B parameters), and
the smallest GPT-3 model is about the size of BERT-Base and RoBERTa-
Base, with twelve attention layers that in turn have 12 × 64 dimension heads.
However, the largest GPT-3 model is ten times larger than T5-11B (the previ-
ous record holder), and has 96 attention layers, which in turn have 96 × 128
dimension heads.

GPT versus BERT

There are some important differences between GPT-2 and BERT. Specifically,
GPT-2 is not bidirectional and has no concept of masking. In addition, GPT-2
is based on transformer decoder blocks. Moreover, GPT-2 involves supervised
fine-tuning and outputs only one token at a time.

By contrast, BERT adds the NSP task during training and also has a seg-
ment embedding. BERT uses transformer encoder blocks (not the decoder
blocks) and also requires pretraining. Moreover, the fine-tuning process
necessitates task-specific sample data.

Zero-Shot, One-Shot, and Few-Shot Learners

These three types of learners differ in the number of task examples that they
are given and the number of gradient updates that they perform.

Specifically, a zero-shot learner is a model that predicts an answer based
solely on an NLP description of the task. No gradient updates are performed.

A one-shot learner is a model that (a) sees a description of the task and (b)
one example of the task. No gradient updates are performed.

A few-shot learner is a model that (a) sees a description of the task and (b)
a few examples of the task. No gradient updates are performed, and a “few”
examples can involve between ten and 100 examples of the task.

With the preceding points in mind, GPT-3 is a few-shot learner because
GPT-3 is fine-tuned on a small set of samples. By contrast, most other models
(including BERT) require an elaborate fine-tuning step.

GPT Task Performance

For most models, the task of translating sentences from English to Italian
involves thousands of sentence pairs for those models to learn how to perform

NLPFD.Ch7.indd 285NLPFD.Ch7.indd 285 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

286 • Natural Language Processing Fundamentals for Developers

translation. By comparison, GPT-3 does not require a fine-tuning step. It can
handle custom language tasks without training data.

Thus, GPT-3 has the ability to perform specific tasks without any special
tuning, which is something that other models cannot do well. For example,
GPT-3 can be trained to translate text, generate code, or even write poetry.
Moreover, GPT-3 can do so with no more than ten training examples.

GPT-3 is not only a few-short learner, but it can also perform as a zero-
short learner and a one-shot learner. By way of comparison, GPT-3 as a zero-
shot learner has higher accuracy than a fine-tuned RoBERTa model.

In terms of reading comprehension, GPT-3 performs best on free-form
conversational datasets, and performs its worst on datasets that involve mod-
eling structured dialog. However, as a few-shot learner for this task, GPT-3
outperforms the fine-tuned baseline of BERT. In addition, GPT-3 performs
well on the SQuAD 2.0 dataset from Stanford, but under performs on multi-
ple-choice test questions.

THE SWITCH TRANSFORMER: ONE TRILLION PARAMETERS

As this book goes to print, Google researchers announced an NLP model
with one trillion parameters, which is almost six times as larges at GPT-3 (175
billion parameters). This model was the former largest model ever created,
as much as 4X faster than the previous record holder called T5-XXL, and
recently superseded by a 12 trillion parameter model from Facebook.2

Instead of using complicated algorithms, the researchers combined a
simple architecture in conjunction with large datasets and parameter counts.
Since large-scale training is computationally intensive, they adopted a Switch
Transformer, which is a technique that uses only a subset of the parameters
of a model. In addition to the model’s sparseness, the Switch Transformer
adroitly takes advantage of GPUs and TPUs for intense matrix multiplications
operations.

LOOKING AHEAD

Several important topics are not discussed in this book. For example, the topic
of ethics is much more visible than it was even just a few years ago. Various
questions have become more prominent in AI, such as the ethical concerns

2  https://www.nature.com/articles/d41586-020-03348-4.

NLPFD.Ch7.indd 286NLPFD.Ch7.indd 286 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

Transformer, BERT, and GPT • 287

associated with large-scale deployment of AI systems, how algorithms con-
tribute to decision-making processes, the source of data, and the extent of
biases in that data.

In health care, questions arise regarding AI-controlled robots prescrib-
ing medicine and performing surgery. Moreover, there are legal issues and
accountability when robots make mistakes, such as who is responsible (the
owner or the robot manufacturer?) and determining the type of penalty to
impose (deactivate one robot or every robot in the same series?)

In parallel with the preceding issues, recent developments in AI are creat-
ing a sense of optimism that breakthroughs may well be on the event horizon.
Recently, OpenAI created DALL-E (coined from Salvador Dali and Pixar’s
WALL-E), which is 12-billion parameter variation of GPT-3: https://openai.
com/blog/dall-e/.

In addition, DeepMind developed AlphaFold, which made a significant
contribution toward solving the protein folding problem, referred to as a
“50-year-old problem in biology.” AlphaFold won the competition to solve
this problem by a substantial margin.

To give you an idea of the impact of AlphaFold, Andrei Lupas, who is an
evolutionary biologist at the Max Planck Institute for Developmental Biology
in Tübingen, Germany, stated “The [AlphaFold] model from group 427 gave
us our structure in half an hour, after we had spent a decade trying every-
thing.” 2

Indeed, the future of NLP and AI in general looks both challenging and
promising, guided by ethical principles that may lead us to a more mindful
way of life.

SUMMARY

This chapter started with an introduction to the concept of attention, fol-
lowed by the transformer architecture that was developed by Google and
released in late 2017. You also learned how to use the transformer model
from HuggingFace to perform tasks such as NER, QnA, Sentiment Analysis,
and mask-filling tasks.

Next, you learned about BERT, which is a pre-trained NLP model that
is based on the transformer architecture, along with some of its features. You
also saw how to perform sentence similarity in BERT, and how to generate
BERT tokens. Then you learned about several BERT-based trained models,
including DistilledBERT, CamemBERT, and FlauBERT.

NLPFD.Ch7.indd 287NLPFD.Ch7.indd 287 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

288 • Natural Language Processing Fundamentals for Developers

In the final portion of this chapter, you learned about GPT-3 and some
of its remarkable features, and its strengths as well as its weaknesses. You also
learned about various types of learners and how GPT-3 was trained.

Congratulations! You have reached the end of a fast-paced introduction
to NLP, and now you are in a good position to use the knowledge that you
acquired in this book as a stepping stone to further your understanding of
NLP.

NLPFD.Ch7.indd 288NLPFD.Ch7.indd 288 6/7/2021 3:56:32 PM6/7/2021 3:56:32 PM

A P P E N D I X A
Introduction to Regular
Expressions

This appendix introduces you to regular expressions, which are a powerful
language feature in Python. Since regular expressions are available in other
programming languages (such as JavaScript and Java), the knowledge that you
gain from the material in this appendix will be useful to you outside of Python.

Why would anyone be interested in learning regular expressions in a book
for NLP with Python? The answer is threefold. First, the Pandas library sup-
ports regular expressions, which demonstrates that regular expressions are
relevant to Pandas. Second, if you plan to use Pandas extensively or perhaps
also work with NLP, then regular expressions will prove useful because of the
ease with which you can solve certain types of tasks (such as removing HTML
tags) with regular expressions. Third, the knowledge you gain from the mate-
rial in this appendix will instantly transfer to other languages that support
regular expressions.

This appendix contains a mixture of code blocks and complete code sam-
ples, with varying degrees of complexity, that are suitable for beginners as
well as people who have had some exposure to regular expressions. In fact,
you have probably used (albeit simple) regular expressions in a command line
on a laptop, whether it be Windows, UNIX, or Linux-based systems.

The first part of this appendix shows how to define regular expressions
with digits and letters (uppercase as well as lowercase), and also how to use
character classes in regular expressions. We examine character sets and char-
acter classes.

The second portion discusses the Python re module, which contains sev-
eral useful methods, such as the re.match() method for matching groups
of characters, the re.search() method to perform searches in character
strings, and the findAll() method. We show how to use character classes
(and how to group them) in regular expressions.

NLPFD.Ch8.AppA.indd 289NLPFD.Ch8.AppA.indd 289 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

290 • Natural Language Processing Fundamentals for Developers

The final portion of this appendix contains an assortment of code sam-
ples, such as modifying text strings, splitting text strings with the re.split()
method, and substituting text strings with the re.sub() method.

As you read the code samples in this appendix, some concepts and facets
of regular expressions might make you feel overwhelmed with the density of
the material if you are a novice. However, practice and repetition will help
you become comfortable with regular expressions.

WHAT ARE REGULAR EXPRESSIONS?

Regular expressions are referred to as REs, or regexes, or regex patterns, and
they enable you to specify expressions that can match specific “parts” of a
string. For instance, you can define a regular expression to match a single
character or digit, a telephone number, a zip code, or an email address. You
can use metacharacters and character classes (defined in the next section) as
part of regular expressions to search text documents for specific patterns. As
you learn how to use REs, you will find other ways to use them, as well.

The re module (added in Python 1.5) provides Perl-style regular expres-
sion patterns. Note that earlier versions of Python provided the regex mod-
ule that was removed in Python 2.5. The re module provides an assortment of
methods (discussed later in this appendix) for searching text strings or replac-
ing text strings, which is similar to the basic search and/or replace functional-
ity that is available in word processors (but usually without regular expression
support). The re module also provides methods for splitting text strings based
on regular expressions.

Before delving into the methods in the re module, you need to learn
about metacharacters and character classes, which are the topic of the next
section.

METACHARACTERS IN PYTHON

Python supports a set of metacharacters, most of which are the same as the
metacharacters in other scripting languages such as Perl, as well as program-
ming languages such as JavaScript and Java. The complete list of metacharac-
ters in Python is here:

. ^ $ * + ? { } [] \ | ()

NLPFD.Ch8.AppA.indd 290NLPFD.Ch8.AppA.indd 290 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

Appendix A: Introduction to Regular Expressions • 291

The meaning of the preceding metacharacters is as follows:

●● ? (matches 0 or 1): the expression a? matches the string a (but not ab)
●● * (matches 0 or more): the expression a* matches the string aaa (but not

baa)
●● + (matches 1 or more): the expression a+ matches aaa (but not baa)
●● ^ (beginning of line): the expression ^[a] matches the string abc (but

not bc)
●● $ (end of line): [c]$ matches the string abc (but not cab)
●● . (a single dot): matches any character (except newline)

Sometimes you need to match the metacharacters themselves rather than
their representation, which can be done in two ways. The first way involves
“escaping” their symbolic meaning with the backslash (“\”) character. Thus,
the sequences \?, *, \+, \^, \$, and \. represent the literal characters
instead of their symbolic meaning. You can also “escape” the backslash char-
acter with the sequence “\\.” If you have two consecutive backslash char-
acters, you need an additional backslash for each of them, which means that
“\\\\” is the “escaped” sequence for “\\.”

The second way is to list the metacharacters inside a pair of square
brackets. For example, [+?] treats the two characters “+” and “?” as lit-
eral characters instead of metacharacters. The second approach is obviously
more compact and less prone to error (it’s easy to forget a backslash in a long
sequence of metacharacters). As you might surmise, the methods in the re
module support metacharacters.

The “^” character that is to the left (and outside) of a sequence in square
brackets (such as ^[A-Z]) “anchors” the regular expression to the beginning
of a line, whereas the “^” character that is the first character inside a pair of
square brackets negates the regular expression (such as [^A-Z]) inside the
square brackets.

The interpretation of the “^” character in a regular expression depends on
its location in a regular expression, as shown here:

●● “^[a-z]” means any string that starts with any lowercase letter
●● “[^a-z]” means any string that does not contain any lowercase letters
●● “^[^a-z]” means any string that starts with anything except a lowercase

letter
●● “^[a-z]$” means a single lowercase letter
●● “^[^a-z]$” means a single character (including digits) that is not a low-

ercase letter

NOTE

NLPFD.Ch8.AppA.indd 291NLPFD.Ch8.AppA.indd 291 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

292 • Natural Language Processing Fundamentals for Developers

As a quick preview of the re module that is discussed later in this appen-
dix, the re.sub() method enables you to remove characters (including
metacharacters) from a text string. For example, the following code snippet
removes all occurrences of a forward slash (“/”) and the plus sign (“+”) from
the variable str:

>>> import re
>>> str = "this string has a / and + in it"
>>> str2 = re.sub("[/]+","",str)
>>> print('original:',str)
original: this string has a / and + in it
>>> print('replaced:',str2)
replaced: this string has a and + in it

We can easily remove occurrences of other metacharacters in a text string
by listing them inside the square brackets, just as we have done in the preced-
ing code snippet.

Listing A.1 shows the contents of RemoveMetaChars1.py that illustrate
how to remove other metacharacters from a line of text.

LISTING A.1: RemoveMetaChars1.py

import re

text1 = "meta characters ? and / and + and ."
text2 = re.sub("[/\.*?=+]+","",text1)

print('text1:',text1)
print('text2:',text2)

Let’s examine the contents of Listing A.1. First of all, the term [/\.*?=+]
matches a forward slash (“/”), a dot (“.”), a question mark (“?”), an equals sign
(“=”), or a plus sign (“+”). Notice that the dot “.” is preceded by a backs-
lash character “\.” Doing so “escapes” the meaning of the “.” metacharacter
(which matches any single non-whitespace character) and treats it as a literal
character.

Thus, the term [/\.*?=+]+ means “one or more occurrences of any
of the metacharacters—treated as literal characters—inside the square
brackets.”

Consequently, the expression re.sub("[/\.*?=+]+","",text1)
matches any occurrence of the previously listed metacharacters, and then

NLPFD.Ch8.AppA.indd 292NLPFD.Ch8.AppA.indd 292 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

Appendix A: Introduction to Regular Expressions • 293

replaces them with an empty string in the text string specified by the variable
text1. The output from Listing A.1 is here:

text1: meta characters ? and / and + and .
text2: meta characters and and and

Later in this appendix, we discuss other functions in the re module that
enable you to modify and split text strings.

CHARACTER SETS IN PYTHON

A single digit in base 10 is a number between 0 and 9 inclusive, which is repre-
sented by the sequence [0-9]. Similarly, a lowercase letter can be any letter
between a and z, which is represented by the sequence [a-z]. An upper-
case letter can be any letter between A and Z, which is represented by the
sequence [A-Z].

The following code snippets illustrate how to specify sequences of digits
and sequences of character strings using a shorthand notation that is much
simpler than specifying every matching digit:

●● [0-9] matches a single digit
●● [0-9][0-9] matches 2 consecutive digits
●● [0-9]{3} matches 3 consecutive digits
●● [0-9]{2,4} matches 2, 3, or 4 consecutive digits
●● [0-9]{5,} matches 5 or more consecutive digits
●● ^[0-9]+$ matches a string consisting solely of digits

You can define similar patterns using uppercase or lowercase letters in a
way that is much simpler than explicitly specifying every lowercase letter or
every uppercase letter:

●● [a-z][A-Z] matches a single lowercase letter that is followed by 1
uppercase letter

●● [a-zA-Z] matches any upper- or lowercase letter

Working with “^” and “\”

The purpose of the “^” character depends on its context in a regular expres-
sion. For example, the following expression matches a text string that starts
with a digit:

^[0-9].

NLPFD.Ch8.AppA.indd 293NLPFD.Ch8.AppA.indd 293 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

294 • Natural Language Processing Fundamentals for Developers

However, the following expression matches a text string that does not
start with a digit because of the “^” metacharacter that is at the beginning of
an expression in square brackets as well as the “^” metacharacter that is to the
left (and outside) the expression in square brackets (which you learned in a
previous note):

^[^0-9]

Thus, the “^” character inside a pair of matching square brackets (“[]”)
negates the expression immediately to its right that is also located inside the
square brackets.

The backslash (“\”) allows you to “escape” the meaning of a metacharac-
ter. Consequently, a dot “.” matches a single character (except for whitespace
characters), whereas the sequence “\.” matches the dot “.” character. Other
examples involving the backslash metacharacter are here:

●● \.H.* matches the string .Hello
●● H.* matches the string Hello
●● H.*\. matches the string Hello.
●● .ell. matches the string Hello
●● .* matches the string Hello
●● \..* matches the string .Hello

CHARACTER CLASSES IN PYTHON

Character classes are convenient expressions that are shorter and simpler
than their “bare” counterparts that you saw in the previous section. Some
convenient character sequences that express patterns of digits and letters are
as follows:

●● \d matches a single digit
●● \w matches a single character (digit or letter)
●● \s matches a single whitespace (space, newline, return, or tab)
●● \b matches a boundary between a word and a nonword
●● \n, \r, \t represent a newline, a return, and a tab, respectively
●● \ “escapes” any character

Based on the preceding definitions, \d+ matches one or more digits and
\w+ matches one or more characters, both of which are more compact expres-
sions than using character sets. In addition, we can reformulate the expressions
in the previous section:

NLPFD.Ch8.AppA.indd 294NLPFD.Ch8.AppA.indd 294 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

Appendix A: Introduction to Regular Expressions • 295

●● \d is the same as [0-9] and \D is the same as [^0-9]
●● \s is the same as [\t\n\r\f\v] and it matches any non-whitespace

character, whereas \S is the opposite (it matches [^ \t\n\r\f\v])
●● \w is the same as [a-zA-Z0-9_] and it matches any alphanumeric

character, whereas \W is the opposite (it matches [^a-zA-Z0-9_])

Additional examples are as follows:

●● \d{2} is the same as [0-9][0-9]
●● \d{3} is the same as [0-9]{3}
●● \d{2,4} is the same as [0-9]{2,4}
●● \d{5,} is the same as [0-9]{5,}
●● ^\d+$ is the same as ^[0-9]+$

The curly braces (“{}”) are called quantifiers, and they specify the num-
ber (or range) of characters in the expressions that precede them.

MATCHING CHARACTER CLASSES WITH THE re MODULE

The re module provides the following methods for matching and searching
one or more occurrences of a regular expression in a text string:

●● match(): Determine if the RE matches at the beginning of the string
●● search(): Scan through a string, looking for any location where the RE

matches
●● findall(): Find all substrings where the RE matches and return them

as a list
●● finditer(): Find all substrings where the RE matches and return them

as an iterator

The match() function only matches patterns to the start of string.

The next section shows you how to use the match() function in the re
module.

USING THE re.match() METHOD

The re.match() method attempts to match RE patterns in a text string (with
optional flags), and it has the following syntax:

re.match(pattern, string, flags = 0)

NOTE

NLPFD.Ch8.AppA.indd 295NLPFD.Ch8.AppA.indd 295 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

296 • Natural Language Processing Fundamentals for Developers

The pattern parameter is the regular expression that you want to match
in the string parameter. The flags parameter allows you to specify multiple
flags using the bitwise OR operator that is represented by the pipe “|” symbol.

The re.match method returns a match object on success and None on
failure. Use the group(num) or groups() function of the match object to
get a matched expression.

●● group(num = 0): This method returns the entire match (or specific
subgroup num)

●● groups(): This method returns all matching subgroups in a tuple (empty
if there weren’t any)

The re.match() method only matches patterns from the start of a text string,
which is different from the re.search() method discussed later in this
appendix.

The following code block illustrates how to use the group() function in
regular expressions:

>>> import re
>>> p = re.compile('(a(b)c)de')
>>> m = p.match('abcde')
>>> m.group(0)
'abcde'
>>> m.group(1)
'abc'
>>> m.group(2)
'b'

Notice that the higher numbers inside the group() method match more
deeply nested expressions that are specified in the initial regular expression.

Listing A.2 shows the contents of MatchGroup1.py that illustrate how
to use the group() function to match an alphanumeric text string and an
alphabetic string.

LISTING A.2: MatchGroup1.py

import re

line1 = 'abcd123'
line2 = 'abcdefg'
mixed = re.compile(r"^[a-z0-9]{5,7}$")
line3 = mixed.match(line1)
line4 = mixed.match(line2)

NOTE

NLPFD.Ch8.AppA.indd 296NLPFD.Ch8.AppA.indd 296 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

Appendix A: Introduction to Regular Expressions • 297

print('line1:',line1)
print('line2:',line2)
print('line3:',line3)
print('line4:',line4)
print('line5:',line4.group(0))

line6 = 'a1b2c3d4e5f6g7'
mixed2 = re.compile(r"^([a-z]+[0-9]+){5,7}$")
line7 = mixed2.match(line6)

print('line6:',line6)
print('line7:',line7.group(0))
print('line8:',line7.group(1))

line9 = 'abc123fgh4567'
mixed3 = re.compile(r"^([a-z]*[0-9]*){5,7}$")
line10 = mixed3.match(line9)
print('line9:',line9)
print('line10:',line10.group(0))

The output from Listing A.2 is as follows:

line1: abcd123
line2: abcdefg
line3: <_sre.SRE_Match object at 0x100485440>
line4: <_sre.SRE_Match object at 0x1004854a8>
line5: abcdefg
line6: a1b2c3d4e5f6g7
line7: a1b2c3d4e5f6g7
line8: g7
line9: abc123fgh4567
line10: abc123fgh4567

Notice that line3 and line7 involve two similar but different regular
expressions. The variable mixed specifies a sequence of lowercase letters fol-
lowed by digits, where the length of the text string is also between 5 and 7.
The string abcd123 satisfies all of these conditions.

However, mixed2 specifies a pattern consisting of one or more pairs,
where each pair contains one or more lowercase letters followed by one or
more digits, where the length of the matching pairs is also between 5 and 7.
In this case, the string abcd123 as well as the string a1b2c3d4e5f6g7 both
satisfy these criteria.

The third regular expression mixed3 specifies a pair such that each pair
consists of zero or more occurrences of lowercase letters and zero or more

NLPFD.Ch8.AppA.indd 297NLPFD.Ch8.AppA.indd 297 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

298 • Natural Language Processing Fundamentals for Developers

occurrences of a digit, and also that the number of such pairs is between
5 and 7. As you can see from the output, the regular expression in mixed3
matches lowercase letters and digits in any order.

In the preceding example, the regular expression specified a range for
the length of the string, which involves a lower limit of 5 and an upper limit
of 7. However, you can also specify a lower limit without an upper limit (or an
upper limit without a lower limit).

Listing A.3 shows the contents of MatchGroup2.py that illustrate how to
use a regular expression and the group() function to match an alphanumeric
text string and an alphabetic string.

LISTING A.3: MatchGroup2.py

import re

alphas = re.compile(r"^[abcde]{5,}")
line1 = alphas.match("abcde").group(0)
line2 = alphas.match("edcba").group(0)
line3 = alphas.match("acbedf").group(0)
line4 = alphas.match("abcdefghi").group(0)
line5 = alphas.match("abcdefghi abcdef")

print('line1:',line1)
print('line2:',line2)
print('line3:',line3)
print('line4:',line4)
print('line5:',line5)

Listing A.3 initializes the variable alphas as a regular expression that
matches any string that starts with one of the letters a through e, and consists
of at least five characters. The next portion of Listing A.3 initializes the four
variables line1, line2, line3, and line4 by means of the alphas RE
that is applied to various text strings. These four variables are set to the first
matching group by means of the expression group(0).

The output from Listing A.3 is as follows:

line1: abcde
line2: edcba
line3: acbed
line4: abcde
line5: <_sre.SRE_Match object at 0x1004854a8>

NLPFD.Ch8.AppA.indd 298NLPFD.Ch8.AppA.indd 298 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

Appendix A: Introduction to Regular Expressions • 299

Listing A.4 shows the contents of MatchGroup3.py that illustrate how to use
a regular expression with the group() function to match words in a text string.

LISTING A.4: MatchGroup3.py

import re

line = "Giraffes are taller than elephants";

matchObj = re.match(r'(.*) are(\.*)', line, re.M|re.I)

if matchObj:
 print("matchObj.group() : ", matchObj.group())
 print("matchObj.group(1) : ", matchObj.group(1))
 print("matchObj.group(2) : ", matchObj.group(2))
else:
 print("matchObj does not match line:", line)

The code in Listing A.4 produces the following output:

matchObj.group() : Giraffes are
matchObj.group(1) : Giraffes
matchObj.group(2) :

Listing A.4 contains a pair of delimiters separated by a pipe (“|”) symbol.
The first delimiter is re.M for “multiline” (this example contains only a single
line of text), and the second delimiter re.I means “ignore case” during the
pattern matching operation. The re.match() method supports additional
delimiters, as discussed in the next section.

OPTIONS FOR THE re.match() METHOD

The match() method supports various optional modifiers that affect the
type of matching that will be performed. As you saw in the previous example,
you can also specify multiple modifiers separated by the OR (“|”) symbol.
Additional modifiers that are available for RE are as follows:

●● re.I performs case-insensitive matches (see previous section)
●● re.L interprets words according to the current locale
●● re.M makes $ match the end of a line and makes ^ match the start of

any line

NLPFD.Ch8.AppA.indd 299NLPFD.Ch8.AppA.indd 299 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

300 • Natural Language Processing Fundamentals for Developers

●● re.S makes a period (“.”) match any character (including a newline)
●● re.U interprets letters according to the Unicode character set

Experiment with these modifiers by writing Python code that uses them
in conjunction with different text strings.

MATCHING CHARACTER CLASSES WITH THE re.search()
METHOD

As you saw earlier in this appendix, the re.match() method only matches
from the beginning of a string, whereas the re.search() method can suc-
cessfully match a substring anywhere in a text string.

The re.search() method takes two arguments, a regular expression
pattern and a string, and then searches for the specified pattern in the given
string. The search() method returns a match object (if the search was suc-
cessful) or None.

As a simple example, the following searches for the pattern tasty fol-
lowed by a five-letter word:

import re

str = 'I want a tasty pizza'

match = re.search(r'tasty \w\w\w\w\w', str)

if match:

 ## 'found tasty pizza'

 print('found', match.group())

else:

 print('Nothing tasty here')

The output of the preceding code block is

found tasty pizza

The following code block further illustrates the difference between the
match() method and the search() method:

>>> import re

>>> print(re.search('this', 'this is the one').span())

(0, 4)

NLPFD.Ch8.AppA.indd 300NLPFD.Ch8.AppA.indd 300 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

Appendix A: Introduction to Regular Expressions • 301

>>>

>>> print(re.search('the', 'this is the one').span())

(8, 11)

>>> print(re.match('this', 'this is the one').span())

(0, 4)

>>> print(re.match('the', 'this is the one').span())

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'NoneType' object has no attribute 'span'

MATCHING CHARACTER CLASSES WITH THE findAll()
METHOD

Listing A.5 shows the contents of the Python script RegEx1.py that illustrate
how to define simple character classes that match various text strings.

LISTING A.5: RegEx1.py

import re

str1 = "123456"
matches1 = re.findall("(\d+)", str1)

print('matches1:',matches1)

str1 = "123456"
matches1 = re.findall("(\d\d\d)", str1)
print('matches1:',matches1)

str1 = "123456"
matches1 = re.findall("(\d\d)", str1)
print('matches1:',matches1)

print
str2 = "1a2b3c456"
matches2 = re.findall("(\d)", str2)
print('matches2:',matches2)

NLPFD.Ch8.AppA.indd 301NLPFD.Ch8.AppA.indd 301 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

302 • Natural Language Processing Fundamentals for Developers

print
str2 = "1a2b3c456"
matches2 = re.findall("\d", str2)
print('matches2:',matches2)

print
str3 = "1a2b3c456"
matches3 = re.findall("(\w)", str3)
print('matches3:',matches3)

Listing A.5 contains simple regular expressions (which you have seen
already) for matching digits in the variables str1 and str2. The final code
block of Listing A.5 matches every character in the string str3, effectively
“splitting” str3 into a list where each element consists of one character. The
output from Listing A.5 is here (notice the blank lines after the first three
output lines):

matches1: ['123456']

matches1: ['123', '456']

matches1: ['12', '34', '56']

matches2: ['1', '2', '3', '4', '5', '6']

matches2: ['1', '2', '3', '4', '5', '6']

matches3: ['1', 'a', '2', 'b', '3', 'c', '4', '5', '6']

Finding Capitalized Words in a String

Listing A.6 shows the contents of the Python script FindCapitalized.py
that illustrate how to define simple character classes that match various text
strings.

LISTING A.6: FindCapitalized.py

import re

str = "This Sentence contains Capitalized words"

caps = re.findall(r'[A-Z][\w\.-]+', str)

print('str: ',str)

print('caps:',caps)

NLPFD.Ch8.AppA.indd 302NLPFD.Ch8.AppA.indd 302 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

Appendix A: Introduction to Regular Expressions • 303

Listing A.6 initializes the string variable str and the RE caps that matches
any word that starts with a capital letter because the first portion of caps is
the pattern [A-Z] that matches any capital letter between A and Z inclusive.

The output of Listing A.6 is here:

str: This Sentence contains Capitalized words

caps: ['This', 'Sentence', 'Capitalized']

ADDITIONAL MATCHING FUNCTION FOR REGULAR
EXPRESSIONS

After invoking any of the methods match(), search(), findAll(), or
finditer(), you can invoke additional methods on the “matching object.” An
example of this functionality using the match() method is as follows:

import re

p1 = re.compile('[a-z]+')

m1 = p1.match("hello")

In the preceding code block, the p1 object represents the compiled reg-
ular expression for one or more lowercase letters, and the “matching object”
m1 object supports the following methods:

●● group() returns the string matched by the RE
●● start() returns the starting position of the match
●● end() returns the ending position of the match
●● span() returns a tuple containing the (start, end) positions of the match

As a further illustration, Listing A.7 shows the contents of SearchFunc-
tion1.py that illustrate how to use the search() method and the group()
method.

LISTING A.7: SearchFunction1.py

import re

line = "Giraffes are taller than elephants";

searchObj = re.search(r'(.*) are(\.*)', line, re.M|re.I)

NLPFD.Ch8.AppA.indd 303NLPFD.Ch8.AppA.indd 303 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

304 • Natural Language Processing Fundamentals for Developers

if searchObj:
 print("searchObj.group() : ", searchObj.group())
 print("searchObj.group(1) : ", searchObj.group(1))
 print("searchObj.group(2) : ", searchObj.group(2))
else:
 print("searchObj does not match line:", line)

Listing A.7 contains the variable line that represents a text string, and
the variable searchObj is an RE involving the search() method and pair
of pipe-delimited modifiers (discussed in more detail in the next section). If
searchObj is not null, the if/else conditional code in Listing A.7 displays
the contents of the three groups resulting from the successful match with the
contents of the variable line.

The output from Listing A.7 is as follows:

searchObj.group() : Giraffes are

searchObj.group(1) : Giraffes

searchObj.group(2) :

GROUPING WITH CHARACTER CLASSES IN REGULAR
EXPRESSIONS

In addition to the character classes that you have seen earlier in this appendix,
you can specify subexpressions of character classes.

Listing A.8 shows the contents of Grouping1.py that illustrate how to
use the search() method.

Listing A.8: Grouping1.py

import re

p1 = re.compile('(ab)*')

print('match1:',p1.match('ababababab').group())

print('span1: ',p1.match('ababababab').span())

p2 = re.compile('(a)b')

m2 = p2.match('ab')

print('match2:',m2.group(0))

print('match3:',m2.group(1))

NLPFD.Ch8.AppA.indd 304NLPFD.Ch8.AppA.indd 304 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

Appendix A: Introduction to Regular Expressions • 305

Listing A.8 starts by defining the RE p1 that matches zero or more occur-
rences of the string ab. The first print() statement displays the result of
using the match() function of p1 (followed by the group() function) against
a string, and the result is a string. This illustrates the use of “method chain-
ing,” which eliminates the need for an intermediate object (as shown in the
second code block). The second print() statement displays the result of
using the match() function of p1, followed by applying the span() function,
against a string. In this case, the result is a numeric range.

The second part of Listing A.8 defines the RE p2 that matches an optional
letter a followed by the letter b. The variable m2 invokes the match method
on p2 using the string ab. The third print() statement displays the result
of invoking group(0) on m2, and the fourth print() statement displays
the result of involving group(1) on m2. Both results are substrings of the
input string ab. Recall that group(0) returns the highest level match that
occurred, and group(1) returns a more “specific” match that occurred, such
as one that involves the parentheses in the definition of p2. The higher the
value of the integer in the expression group(n), the more specific the match.

The output from Listing A.8 is here:

match1: ababababab

span1: (0, 10)

match2: ab

match3: a

USING CHARACTER CLASSES IN REGULAR EXPRESSIONS

This section contains some examples that illustrate how to use character
classes to match various strings and how to use delimiters to split a text string.
For example, one common date string involves a date format of the form
MM/DD/YY. Another common scenario involves records with a delimiter
that separates multiple fields. Usually such records contain one delimiter,
but as you will see, Python makes it very easy to split records using multiple
delimiters.

Matching Strings with Multiple Consecutive Digits

Listing A.9 shows the contents of the Python script MatchPatterns1.py
that illustrate how to define simple regular expressions to split the contents of
a text string based on the occurrence of one or more consecutive digits.

NLPFD.Ch8.AppA.indd 305NLPFD.Ch8.AppA.indd 305 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

306 • Natural Language Processing Fundamentals for Developers

Although the regular expressions \d+/\d+/\d+ and \d\d/\d\d/\d\d\
d\d both match the string 08/13/2014, the first regular expression matches
more patterns than the second regular expression, which is an “exact match”
with respect to the number of matching digits that are allowed.

LISTING A.9: MatchPatterns1.py

import re

date1 = '02/28/2013'
date2 = 'February 28, 2013'

Simple matching: \d+ means match one or more digits
if re.match(r'\d+/\d+/\d+', date1):
 print('date1 matches this pattern')
else:
 print('date1 does not match this pattern')

if re.match(r'\d+/\d+/\d+', date2):
 print('date2 matches this pattern')
else:
 print('date2 does not match this pattern')

The output from launching Listing A.9 is as follows:

date1 matches this pattern
date2 does not match this pattern

Reversing Words in Strings

Listing A.10 shows the contents of the Python script ReverseWords1.py
that illustrate how to reverse a pair of words in a string.

LISTING A.10: ReverseWords1.py

import re

str1 = 'one two'
match = re.search('([\w.-]+) ([\w.-]+)', str1)

str2 = match.group(2) + ' ' + match.group(1)

print('str1:',str1)

NLPFD.Ch8.AppA.indd 306NLPFD.Ch8.AppA.indd 306 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

Appendix A: Introduction to Regular Expressions • 307

print('str2:',str2)

The output from Listing A.10 is shown here:

str1: one two
str2: two one

Now that you understand how to define regular expressions for digits and
letters, let’s look at some more sophisticated regular expressions.

For example, the following expression matches a string that is any com-
bination of digits, uppercase letters, or lowercase letters (i.e., no special
characters):

^[a-zA-Z0-9]$

Here is the same expression rewritten using character classes:

^[\w\W\d]$

MODIFYING TEXT STRINGS WITH THE re MODULE

The Python re module contains several methods for modifying strings. The
split() method uses a regular expression to “split” a string into a list. The
sub() method finds all substrings where the regular expression matches, and
then replaces them with a different string. The subn() method performs the
same functionality as sub(), and returns the new string and the number of
replacements. The following subsections contain examples that illustrate how
to use the functions split(), sub(), and subn() in regular expressions.

SPLITTING TEXT STRINGS WITH THE re.split() METHOD

Listing A.11 shows the contents of the Python script RegEx2.py that illus-
trate how to define simple regular expressions to split the contents of a text
string.

LISTING A.11: RegEx2.py

import re

line1 = "abc def"
result1 = re.split(r'[\s]', line1)

NLPFD.Ch8.AppA.indd 307NLPFD.Ch8.AppA.indd 307 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

308 • Natural Language Processing Fundamentals for Developers

print('result1:',result1)

line2 = "abc1,abc2:abc3;abc4"
result2 = re.split(r'[,:;]', line2)
print('result2:',result2)

line3 = "abc1,abc2:abc3;abc4 123 456"
result3 = re.split(r'[,:;\s]', line3)
print('result3:',result3)

Listing A.11 contains three blocks of code, each of which uses the split()
method in the re module to tokenize three different strings. The first regu-
lar expression specifies a whitespace, the second regular expression specifies
three punctuation characters, and the third regular expression specifies the
combination of the first two regular expressions.

The output from launching RegEx2.py is

result1: ['abc', 'def']

result2: ['abc1', 'abc2', 'abc3', 'abc4']

result3: ['abc1', 'abc2', 'abc3', 'abc4', '123', '456']

SPLITTING TEXT STRINGS USING DIGITS AND DELIMITERS

Listing A.12 shows the contents of SplitCharClass1.py that illustrate how
to use a regular expression consisting of a character class, the “.” character,
and a whitespace to split the contents of two text strings.

LISTING A.12: SplitCharClass1.py

import re

line1 = '1. Section one 2. Section two 3. Section three'
line2 = '11. Section eleven 12. Section twelve 13. Section
� thirteen'

print(re.split(r'\d+\. ', line1)
print(re.split(r'\d+\. ', line2)

Listing A.12 contains two text strings that can be split using the same reg-
ular expression \d+\. . Note that if you use the expression \d\. , only the
first text string will split correctly. The result of launching Listing A.12 is here:

NLPFD.Ch8.AppA.indd 308NLPFD.Ch8.AppA.indd 308 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

Appendix A: Introduction to Regular Expressions • 309

['', 'Section one ', 'Section two ', 'Section three']

['', 'Section eleven ', 'Section twelve ', 'Section
thirteen']

SUBSTITUTING TEXT STRINGS WITH THE re.sub()
METHOD

Earlier in this appendix you saw a preview of using the sub() method to
remove all the metacharacters in a text string. The following code block illus-
trates how to use the re.sub() method to substitute alphabetic characters
in a text string.

>>> import re

>>> p = re.compile('(one|two|three)')

>>> p.sub('some', 'one book two books three books')

'some book some books some books'

>>>

>>> p.sub('some', 'one book two books three books',
� count = 1)

'some book two books three books'

The following code block uses the re.sub() method to insert a line feed
after each alphabetic character in a text string:

>>> line = 'abcde'

>>> line2 = re.sub('', '\n', line)

>>> print('line2:',line2)

line2:

a

b

c

d

e

NLPFD.Ch8.AppA.indd 309NLPFD.Ch8.AppA.indd 309 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

310 • Natural Language Processing Fundamentals for Developers

MATCHING THE BEGINNING AND THE END OF TEXT
STRINGS

Listing A.13 shows the contents of the Python script RegEx3.py that illus-
trate how to find substrings using the startswith() function and ends-
with() function.

LISTING A.13: RegEx3.py

import re

line2 = "abc1,Abc2:def3;Def4"
result2 = re.split(r'[,:;]', line2)

for w in result2:
 if(w.startswith('Abc')):
 print('Word starts with Abc:',w)
 elif(w.endswith('4')):
 print('Word ends with 4:',w)
 else:
 print('Word:',w)

Listing A.13 starts by initializing the string line2 (with punctuation char-
acters as word delimiters) and the RE result2 that uses the split() func-
tion with a comma, colon, and semicolon as “split delimiters” to tokenize the
string variable line2.

The output after launching Listing A.13 is as follows:

Word: abc1

Word starts with Abc: Abc2

Word: def3

Word ends with 4: Def4

Listing A.14 shows the contents of the Python script MatchLines1.py
that illustrate how to find substrings using character classes.

LISTING A.14: MatchLines1.py

import re

line1 = "abcdef"
line2 = "123,abc1,abc2,abc3"
line3 = "abc1,abc2,123,456f"

NLPFD.Ch8.AppA.indd 310NLPFD.Ch8.AppA.indd 310 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

Appendix A: Introduction to Regular Expressions • 311

if re.match("^[A-Za-z]*$", line1):
 print('line1 contains only letters:',line1)

better than the preceding snippet:
line1[:-1].isalpha()	
 print('line1 contains only letters:',line1

if re.match("^[\w]*$", line1):
 print('line1 contains only letters:',line1)

if re.match(r"^[^\W\d_]+$", line1, re.LOCALE):
 print('line1 contains only letters:',line1)
print

if re.match("^[0-9][0-9][0-9]", line2):
 print('line2 starts with 3 digits:',line2)

if re.match("^\d\d\d", line2):
 print('line2 starts with 3 digits:',line2)
print

if re.match(".*[0-9][0-9][0-9][a-z]$", line3):
 print('line3 ends with 3 digits and 1 char:',line3)

if re.match(".*[a-z]$", line3):
 print('line3 ends with 1 char:',line3)

Listing A.14 starts by initializing three string variables line1, line2,
and line3. The first RE contains an expression that matches any line con-
taining uppercase or lowercase letters (or both):

if re.match("^[A-Za-z]*$", line1):

The following two snippets also test for the same thing:

line1[:-1].isalpha()

The preceding snippet starts from the rightmost position of the string and
checks if each character is alphabetic.

The next snippet checks if line1 can be tokenized into words (a word
contains only alphabetic characters):

if re.match("^[\w]*$", line1):

NLPFD.Ch8.AppA.indd 311NLPFD.Ch8.AppA.indd 311 6/7/2021 4:00:43 PM6/7/2021 4:00:43 PM

312 • Natural Language Processing Fundamentals for Developers

The next portion of Listing A.14 checks if a string contains three consec-
utive digits:

if re.match("^[0-9][0-9][0-9]", line2):

 print('line2 starts with 3 digits:',line2)

if re.match("^\d\d\d", line2):

The first snippet uses the pattern [0-9] to match a digit, whereas the
second snippet uses the expression \d to match a digit.

The output from Listing A.14 is as follows:

line1 contains only letters: abcdef

line1 contains only letters: abcdef

line1 contains only letters: abcdef

line1 contains only letters: abcdef

line2 starts with 3 digits: 123,abc1,abc2,abc3

line2 starts with 3 digits: 123,abc1,abc2,abc3

COMPILATION FLAGS

Compilation flags modify the manner in which regular expressions work.
Flags are available in the re module as a long name (such as IGNORECASE)
and a short, one-letter form (such as I). The short form is the same as the
flags in pattern modifiers in Perl. You can specify multiple flags by using the
“|” symbol. For example, re.I | re.M sets both the I and M flags.

COMPOUND REGULAR EXPRESSIONS

Listing A.15 shows the contents of MatchMixedCase1.py that illustrate how
to use the pipe (“|”) symbol to specify two regular expressions in the same
match() function.

LISTING A.15: MatchMixedCase1.py

import re

line1 = "This is a line"
line2 = "That is a line"

NLPFD.Ch8.AppA.indd 312NLPFD.Ch8.AppA.indd 312 6/7/2021 4:00:44 PM6/7/2021 4:00:44 PM

Appendix A: Introduction to Regular Expressions • 313

if re.match("^[Tt]his", line1):
 print('line1 starts with This or this:')
 print(line1)
else:
 print('no match')

if re.match("^This|That", line2):
 print('line2 starts with This or That:')
 print(line2)
else:
 print('no match')

Listing A.15 starts with two string variables line1 and line2, followed
by an if/else conditional code block that checks if line1 starts with the RE
[Tt]his, which matches the string This as well as the string this.

The second conditional code block checks if line2 starts with the string
This or the string That. Notice the “^” metacharacter, which in this context
anchors the RE to the beginning of the string. The output from Listing A.15
is here:

line1 starts with This or this:

This is a line

line2 starts with This or That:

That is a line

COUNTING CHARACTER TYPES IN A STRING

You can use a regular expression to check whether a character is a digit, a
letter, or some other type of character. Listing A.16 shows the contents of
CountDigitsAndChars.py that performs this task.

LISTING A.16: CountDigitsAndChars.py

import re

charCount = 0
digitCount = 0
otherCount = 0

line1 = "A line with numbers: 12 345"

NLPFD.Ch8.AppA.indd 313NLPFD.Ch8.AppA.indd 313 6/7/2021 4:00:44 PM6/7/2021 4:00:44 PM

314 • Natural Language Processing Fundamentals for Developers

for ch in line1:
 if(re.match(r'\d', ch)):
 digitCount = digitCount + 1
 elif(re.match(r'\w', ch)):
 charCount = charCount + 1
 else:
 otherCount = otherCount + 1

print('charcount:',charCount)
print('digitcount:',digitCount)
print('othercount:',otherCount)

Listing A.16 initializes three numeric counter-related variables, followed
by the string variable line1. The next part of Listing A.16 contains a for loop
that processes each character in the string line1. The body of the for loop
contains a conditional code block that checks whether the current character is
a digit, a letter, or some other non-alphanumeric character. Each time there
is a successful match, the corresponding “counter” variable is incremented.

The output from Listing A.16 is as follows:

charcount: 16

digitcount: 5

othercount: 6

REGULAR EXPRESSIONS AND GROUPING

You can also “group” subexpressions and even refer to them symbolically. For
example, the following expression matches zero or 1 occurrences of 3 con-
secutive letters or digits:

^([a-zA-Z0-9]{3,3})?

The following expression matches a telephone number (such as
650-555-1212) in the United States:

^\d{3,3}[-]\d{3,3}[-]\d{4,4}

The following expression matches a zip code (such as 67827 or
94343-04005) in the United States:

^\d{5,5}([-]\d{5,5})?

NLPFD.Ch8.AppA.indd 314NLPFD.Ch8.AppA.indd 314 6/7/2021 4:00:44 PM6/7/2021 4:00:44 PM

Appendix A: Introduction to Regular Expressions • 315

The following code block partially matches an email address:

str = 'john.doe@google.com'
match = re.search(r'\w+@\w+', str)
if match:
 print(match.group() ## 'doe@google')

Exercise: Use the preceding code block as a starting point to define a regular
expression for email addresses.

SIMPLE STRING MATCHES

Listing A.17 shows the contents of the Python script RegEx4.py that illus-
trate how to define regular expressions that match various text strings.

LISTING A.17: RegEx4.py

import re

searchString = "Testing pattern matches"

expr1 = re.compile(r"Test")
expr2 = re.compile(r"^Test")
expr3 = re.compile(r"Test$")
expr4 = re.compile(r"\b\w*es\b")
expr5 = re.compile(r"t[aeiou]", re.I)

if expr1.search(searchString):
 print('"Test" was found.')

if expr2.match(searchString):
 print('"Test" was found at the beginning of the line.')

if expr3.match(searchString):
 print('"Test" was found at the end of the line.')

result = expr4.findall(searchString)

if result:
 print('There are %d words(s) ending in "es":' % \)
 (len(result)),

NLPFD.Ch8.AppA.indd 315NLPFD.Ch8.AppA.indd 315 6/7/2021 4:00:44 PM6/7/2021 4:00:44 PM

316 • Natural Language Processing Fundamentals for Developers

 for item in result:
 print(" " + item,)

print

result = expr5.findall(searchString)
if result:
 print('The letter t, followed by a vowel, occurs %d
� times:' % \)
 (len(result)),

 for item in result:
 print(" "+item,)

print

Listing A.17 starts with the variable searchString that specifies a
text string, followed by the REs expr1, expr2, and expr3. The RE expr1
matches the string Test that occurs anywhere in searchString, whereas
expr2 matches Test if it occurs at the beginning of searchString, and
expr3 matches Test if it occurs at the end of searchString. The RE expr
matches words that end in the letters es, and the RE expr5 matches the let-
ter t followed by a vowel.

The output from Listing A.17 is here:

"Test" was found.

"Test" was found at the beginning of the line.

There are 1 words(s) ending in "es": matches

 The letter t, followed by a vowel, occurs
� 3 times: Te ti te

PANDAS AND REGULAR EXPRESSIONS

This section is optional because the code snippets require an understanding
of the Python-based Pandas library. If you are not interested in learning about
Pandas, you can skip this section with no loss of continuity. Alternatively, you
can search online for various tutorials regarding Pandas, after which you can
return to this portion of the appendix.

NLPFD.Ch8.AppA.indd 316NLPFD.Ch8.AppA.indd 316 6/7/2021 4:00:44 PM6/7/2021 4:00:44 PM

Appendix A: Introduction to Regular Expressions • 317

Listing A.18 shows the contents pandas_regexs.py that illustrate how
to extract data from a Pandas data frame using regular expressions.

LISTING A.18: pandas_regexs.py

import pandas as pd

schedule = �["Monday: Prepare lunch at 12:30pm for VIPs",
 �"Tuesday: Yoga class from 10:00am to 11:00am",
 �"Wednesday: PTA meeting at library at 3pm",
 �"Thursday: Happy hour at 5:45 at Julie's

house.",
 �"Friday: Prepare pizza dough for lunch at

12:30pm.",
 �"Saturday: Early shopping for the week at

8:30am.",
 �"Sunday: Neighborhood bbq block party at

2:00pm."]

create a Pandas dataframe:
df = pd.DataFrame(schedule, columns = ['dow_of_week'])

convert to lowercase:
df = df.applymap(lambda s:s.lower() if type(s) == str else s)
print("df:")
print(df)
print()

character count for each string in df['dow_of_week']:
print("string lengths:")
print(df['dow_of_week'].str.len())
print()

the number of tokens for each string in df['dow_of_week']
print("number of tokens in each string in df['dow_of_week']:")
print(df['dow_of_week'].str.split().str.len())
print()

the number of occurrences of digits:
print("number of digits:")
print(df['dow_of_week'].str.count(r'\d'))
print()

NLPFD.Ch8.AppA.indd 317NLPFD.Ch8.AppA.indd 317 6/7/2021 4:00:44 PM6/7/2021 4:00:44 PM

318 • Natural Language Processing Fundamentals for Developers

display all occurrences of digits:
print("show all digits:")
print(df['dow_of_week'].str.findall(r'\d'))
print()

display hour and minute values:
print("display (hour, minute) pairs:")
print(df['dow_of_week'].str.findall(r'(\d?\d)\d\')'))
print()

create new columns from hour:minute value:

print ("hour and minute column:")
print(df['dow_of_week'].str.extract'r'(\d?\d):(\d\')'))
print()

Listing A.18 initializes the variable schedule with a set of strings, each
of which specifies a daily to-do item for an entire week. The format for each
to-do item is of the form day:task, where is a day of the week and task is a
string that specifies what needs to be done on that particular day. Next, the
data frame df1 is initialized with the contents of schedule, followed by an
example of defining a lambda expression that converts string-based values to
lower case, as shown here:

df = df.applymap(lambda s:s.lower() if type(s) == str
� else s)

The preceding code snippet is useful because you do not need to specify
individual columns of a data frame. The code ignores any non-string values
(such as integers and floating point values).

The next pair of code blocks involve various operations using the meth-
ods applymap(), split(), and len(). The next code block displays the
number of digits in each to-do item by means of the regular expression in the
following code snippet:

print(df['dow_of_week'].str.count(r'\d'))

The next code block displays the actual digits (instead of the number of
digits) in each to-do item by means of the regular expression in the following
code snippet:

print(df['dow_of_week'].str.findall(r'\d'))

NLPFD.Ch8.AppA.indd 318NLPFD.Ch8.AppA.indd 318 6/7/2021 4:00:44 PM6/7/2021 4:00:44 PM

Appendix A: Introduction to Regular Expressions • 319

The final code block displays the strings of the form hour:minutes by
means of the regular expression in the following code snippet:

print(df['dow_of_week'].str.findall(r'(\d?\d):(\d\d)'))

As mentioned in the beginning of this section, you can learn more about
regular expressions by reading one of the appendices of this book. Launch the
code in Listing A.18 to see the following output:

=> df:

� dow_of_week

0� monday: prepare lunch at 12:30pm for vips

1 � tuesday: yoga class from 10:00am to 11:00am

2 � wednesday: pta meeting at library at 3pm

3� thursday: happy hour at 5:45 at julie's house.

4� friday: prepare pizza dough for lunch at 12:30pm.

5� saturday: early shopping for the week at 8:30am.

6� sunday: neighborhood bbq block party at 2:00pm.

=> string lengths:

0 41

1 43

2 40

3 46

4 49

5 48

6 47

Name: dow_of_week, dtype: int64

=> number of tokens in each string in df['dow_of_week']:

0 7

1 7

2 7

3 8

4 8

5 8

6 7

Name: dow_of_week, dtype: int64

NLPFD.Ch8.AppA.indd 319NLPFD.Ch8.AppA.indd 319 6/7/2021 4:00:44 PM6/7/2021 4:00:44 PM

320 • Natural Language Processing Fundamentals for Developers

=> number of digits:

0 4

1 8

2 1

3 3

4 4

5 3

6 3

Name: dow_of_week, dtype: int64

=> show all digits:

0 [1, 2, 3, 0]

1 [1, 0, 0, 0, 1, 1, 0, 0]

2 [3]

3 [5, 4, 5]

4 [1, 2, 3, 0]

5 [8, 3, 0]

6 [2, 0, 0]

Name: dow_of_week, dtype: object

=> display (hour, minute) pairs:

0 [(12, 30)]

1 [(10, 00), (11, 00)]

2 []

3 [(5, 45)]

4 [(12, 30)]

5 [(8, 30)]

6 [(2, 00)]

Name: dow_of_week, dtype: object

=> hour and minute columns:

 0 1

0 12 30

NLPFD.Ch8.AppA.indd 320NLPFD.Ch8.AppA.indd 320 6/7/2021 4:00:44 PM6/7/2021 4:00:44 PM

Appendix A: Introduction to Regular Expressions • 321

1 10 00

2 NaN NaN

3 5 45

4 12 30

5 8 30

6 2 00

SUMMARY

This appendix showed you how to create various types of regular expressions.
First, you learned how to define primitive regular expressions using sequences
of digits, lowercase letters, and uppercase letters. Next, you learned how to
use character classes, which are more convenient and simpler expressions that
can perform the same functionality. You also learned how to use the Python
re library to compile regular expressions and then use them to see if they
match substrings of text strings.

EXERCISES

●● Exercise 1: Given a text string, find the list of words (if any) that start or
end with a vowel, and treat upper- and lowercase vowels as distinct let-
ters. Display this list of words in alphabetical order and also in descending
order based on their frequency.

●● Exercise 2: Given a text string, find the list of words (if any) that contain
lowercase vowels or digits or both, but no uppercase letters. Display this
list of words in alphabetical order and also in descending order based on
their frequency.

●● Exercise 3: There is a spelling rule in English specifying that “the letter
i is before e, except after c,” which means that “receive” is correct but
“recieve” is incorrect. Write a Python script that checks for incorrectly
spelled words in a text string.

●● Exercise 4: Subject pronouns cannot follow a preposition in the English
language. Thus, “between you and me” and “for you and me” are correct,
whereas “between you and I” and “for you and I” are incorrect. Write a
Python script that checks for incorrect grammar in a text string, and search

NLPFD.Ch8.AppA.indd 321NLPFD.Ch8.AppA.indd 321 6/7/2021 4:00:44 PM6/7/2021 4:00:44 PM

322 • Natural Language Processing Fundamentals for Developers

for the prepositions “between,” “for,” and “with.” In addition, search for
the subject pronouns “I,” “you,” “he,” and “she.” Modify and display the
text with the correct grammar usage.

●● Exercise 5: Find the words in a text string whose length is at most 4
and then print all the substrings of those characters. For example, if a
text string contains the word “text”, then print the strings “t,” “te,” “tex,”
and “text.”

NLPFD.Ch8.AppA.indd 322NLPFD.Ch8.AppA.indd 322 6/7/2021 4:00:44 PM6/7/2021 4:00:44 PM

A P P E N D I X B
Introduction to Probability and
Statistics

This appendix introduces you to concepts in probability as well as a wide
assortment of statistical terms and algorithms.

The first section of this appendix starts with a discussion of probability,
how to calculate the expected value of a set of numbers (with associated prob-
abilities), the concept of a random variable (discrete and continuous), and a
short list of some well-known probability distributions.

The second section of this appendix introduces basic statistical concepts,
such as mean, median, mode, variance, and standard deviation, along with
simple examples that illustrate how to calculate these terms. We also discuss
the terms RSS, TSS, R^2, and F1 score.

The third section of this appendix introduces Gini impurity, entropy, per-
plexity, cross-entropy, and KL divergence. We also include a section on skew-
ness and kurtosis.

The fourth section explains covariance and correlation matrices and how
to calculate eigenvalues and eigenvectors.

The fifth section explains PCA (Principal Component Analysis), which is a
well-known dimensionality reduction technique. The final section introduces
you to Bayes’s Theorem.

WHAT IS A PROBABILITY?

If you have ever performed a science experiment in one of your classes, you
might remember that measurements have some uncertainty. In general, we
assume that there is a correct value, and we endeavor to find the best estimate
of that value.

NLPFD.Ch9.AppB.2pp.indd 323NLPFD.Ch9.AppB.2pp.indd 323 5/28/2021 4:42:12 PM5/28/2021 4:42:12 PM

324 • Natural Language Processing Fundamentals for Developers

When we work with an event that can have multiple outcomes, we try to
define the probability of an outcome as the chance that it will occur, which is
calculated as follows:

p(outcome) = # of times outcome occurs/(total number of
� outcomes)

For example, in the case of a single balanced coin, the probability of toss-
ing a head H equals the probability of tossing a tail T:

p(H) = 1/2 = p(T)

The set of probabilities associated with the outcomes {H, T} is shown in
the set P:

P = {1/2, 1/2}

Some experiments involve replacement while others involve non-replace-
ment. For example, suppose that an urn contains 10 red balls and 10 green
balls. What is the probability that a randomly selected ball is red? The answer
is 10/(10+10) = 1/2. What is the probability that the second ball is also red?

There are two scenarios with two different answers. If each ball is selected
with replacement, then each ball is returned to the urn after selection, which
means that the urn always contains 10 red balls and 10 green balls. In this
case, the answer is 1/2 ∗ 1/2 = 1/4. In fact, the probability of any event is inde-
pendent of all previous events.

However, if balls are selected without replacement, then the answer is
10/20 ∗ 9/19. As you undoubtedly know, card games are also examples of
selecting cards without replacement.

One other concept is called conditional probability, which refers to the
likelihood of the occurrence of event E1 given that event E2 has occurred. A
simple example is the following statement:

"If it rains (E2), then I will carry an umbrella (E1)."

Calculating the Expected Value

Consider the following scenario involving a well-balanced coin. Whenever a
head appears, you earn $1 and whenever a tail appears, you earn $1 dollar. If
you toss the coin 100 times, how much money do you expect to earn? Since
you will earn $1 regardless of the outcome, the expected value (in fact, the
guaranteed value) is $100.

Now consider this scenario. Whenever a head appears, you earn $1 and
whenever a tail appears, you earn 0 dollars. If you toss the coin 100 times, how

NLPFD.Ch9.AppB.2pp.indd 324NLPFD.Ch9.AppB.2pp.indd 324 5/28/2021 4:42:12 PM5/28/2021 4:42:12 PM

Appendix B: Introduction to Probability and Statistics • 325

much money do you expect to earn? You probably determined the value 50
(which is the correct answer) by making a quick mental calculation. The more
formal derivation of the value of E (the expected earning) is here:

E = 100 *[1 * 0.5 + 0 * 0.5] = 100 * 0.5 = 50

The quantity 1 ∗ 0.5 + 0 ∗ 0.5 is the amount of money you expected to
earn during each coin toss (half the time you earn $1 and half the time you
earn 0 dollars), and multiplying this number by 100 is the expected earnings
after 100 coin tosses. However, you might never earn $50. The actual amount
that you earn can be any integer between 1 and 100 inclusive.

As another example, suppose that you earn $3 whenever a head appears,
and you lose $1.50 dollars whenever a tail appears. Then the expected earn-
ings E after 100 coin tosses is

E = 100 *[3 * 0.5 - 1.5 * 0.5] = 100 * 1.5 = 150

We can generalize the preceding calculations as follows. Let P =
{p1,…,pn} be a probability distribution, which means that the values in
P are nonnegative and their sum equals 1. In addition, let R = {R1,…,Rn} be
a set of rewards, where reward Ri is received with probability pi. Then the
expected value E after N trials is shown here:

E = N * [SUM pi*Ri]

In the case of a single balanced die, we have the following probabilities:

p(1) = 1/6
p(2) = 1/6
p(3) = 1/6
p(4) = 1/6
p(5) = 1/6
p(6) = 1/6
P = { 1/6, 1/6, 1/6, 1/6, 1/6, 1/6}

As a simple example, suppose that the earnings are {3, 0, −1, 2, 4, −1}
when the values 1,2,3,4,5, and 6, respectively, appear when tossing the single
die. Then after 100 trials, our expected earnings are calculated as follows:

E = 100 * [3 + 0 + -1 + 2 + 4 + -1]/6 = 100 * 7/6 = 116.67

In the case of two balanced dice, we have the following probabilities of
rolling 2,3, … , or 12:

p(2) = 1/36

p(3) = 2/36

NLPFD.Ch9.AppB.2pp.indd 325NLPFD.Ch9.AppB.2pp.indd 325 5/28/2021 4:42:12 PM5/28/2021 4:42:12 PM

326 • Natural Language Processing Fundamentals for Developers

...

p(12) = 1/36

P = {1/36,2/36,3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36}

RANDOM VARIABLES

A random variable is a variable that can have multiple values, and each value
has an associated probability of occurrence. For example, if we let X be a ran-
dom variable whose values are the outcomes of tossing a well-balanced die,
then the values of X are the numbers in the set {1,2,3,4,5,6}. Moreover, each
of those values can occur with equal probability (which is 1/6).

In the case of two well-balanced dice, let X be a random variable whose
values can be any of the numbers in the set {2,3,4, . . . , 12}. Then the asso-
ciated probabilities for the different values for X are listed in the previous
section.

Discrete versus Continuous Random Variables

The preceding section contains examples of discrete random variables because
the list of possible values is either finite or countably infinite (such as the set
of integers). As an aside, the set of rational numbers is also countably infinite,
but the set of irrational numbers and also the set of real numbers are both
uncountably infinite (proofs are available online). The associated set of prob-
abilities must form a probability distribution, which means that the probabil-
ity values are non-negative and their sum equals 1.

A continuous random variable is a variable whose values can be any num-
ber in an interval, which can be an uncountably infinite number of values. For
example, the amount of time required to perform a task is represented by a
continuous random variable.

A continuous random variable also has a probability distribution that is
represented as a continuous function. The constraint for such a variable is that
the area under the curve (which is sometimes calculated via a mathematical
integral) equals 1.

Well-Known Probability Distributions

There are many probability distributions, and some of the well-known prob-
ability distributions are listed here:

NLPFD.Ch9.AppB.2pp.indd 326NLPFD.Ch9.AppB.2pp.indd 326 5/28/2021 4:42:12 PM5/28/2021 4:42:12 PM

Appendix B: Introduction to Probability and Statistics • 327

●● Gaussian distribution
●● Poisson distribution
●● Chi-squared distribution
●● Binomial distribution

The Gaussian distribution is named after Karl F. Gauss, and it is some-
times called the normal distribution or the Bell curve. The Gaussian distribu-
tion is symmetric. The shape of the curve on the left of the mean is identical
to the shape of the curve on the right side of the mean. As an example, the dis-
tribution of IQ scores follows a curve that is similar to a Gaussian distribution.

The frequency of traffic at a given point in a road follows a Poisson dis-
tribution (which is not symmetric). Interestingly, if you count the number of
people who go to a public pool based on five-degree (Fahrenheit) increments
of the temperature, followed by five-degree decrements in temperature, that
set of numbers follows a Poisson distribution.

Perform an Internet search for each of the bullet items in the preceding
list to find numerous articles that contain images and technical details about
these (and other) probability distributions.

FUNDAMENTAL CONCEPTS IN STATISTICS

This section contains several subsections that discuss the mean, median,
mode, variance, and standard deviation. Feel free to skim (or skip) this section
if you are already familiar with these concepts. As a starting point, let’s sup-
pose that we have a set of numbers X ={x1, ..., xn} that can be positive,
negative, integer-valued, or decimal values.

The Mean

The mean of the numbers in the set X is the average of the values. For exam-
ple, if the set X consists of {-10,35,75,100}, then the mean equals (−10
+ 35 + 75 + 100)/4 = 50. If the set X consists of {2,2,2,2}, then the mean
equals (2+2+2+2)/4 = 2. As you can see, the mean value is not necessarily one
of the values in the set.

Keep in mind that the mean is sensitive to outliers. For example, the mean
of the set of numbers {1,2,3,4} is 2.5, whereas the mean of the set of number
{1,2,3,4,1000} is 202. Since the formulas for the variance and standard devia-
tion involve the mean of a set of numbers, both of these terms are also more
sensitive to outliers.

NLPFD.Ch9.AppB.2pp.indd 327NLPFD.Ch9.AppB.2pp.indd 327 5/28/2021 4:42:12 PM5/28/2021 4:42:12 PM

328 • Natural Language Processing Fundamentals for Developers

The Median

The median of the numbers (sorted in increasing or decreasing order) in the
set X is the middle value in the set of values, which means that half the numbers
in the set are less than the median and half the numbers in the set are greater
than the median. For example, if the set X consists of {-10,35,75,100},
then the median equals 55 because 55 is the average of the two numbers 35
and 75. As you can see, half the numbers are less than 55 and half the num-
bers are greater than 55. If the set X consists of {2,2,2,2}, then the median
equals 2.

By contrast, the median is much less sensitive to outliers than the mean.
For example, the median of the set of numbers {1,2,3,4} is 2.5, and the median
of the set of numbers {1,2,3,4,1000} is 3.

The Mode

The mode of the numbers (sorted in increasing or decreasing order) in the
set X is the most frequently occurring value, which means that there can be
more than one such value. If the set X consists of {2,2,2,2}, then the mode
equals 2.

If X is the set of numbers {2,4,5,5,6,8}, then the number 5 occurs
twice and the other numbers occur only once, so the mode equals 5.

If X is the set of numbers {2,2,4,5,5,6,8}, then the numbers 2 and 5
occur twice and the other numbers occur only once, so the mode equals 2 and
5. A set that has two modes is called bimodal, and a set that has more than two
modes is called multimodal.

One other scenario involves sets that have numbers with the same fre-
quency and they are all different. In this case, the mode does not provide
meaningful information, and one alternative is to partition the numbers into
subsets and then select the largest subset. For example, if set X has the values
{1,2,15,16,17,25,35,50}, we can partition the set into subsets whose
elements are in ranges that are multiples of ten, which results in the subsets
{1,2}, {15,16,17}, {25}, {35}, and {50}. The largest subset is {15,16,17}, so we
could select the number 16 as the mode.

As another example, if set X has the values {-10,35,75,100}, then par-
titioning this set does not provide any additional information, so it’s probably
better to work with either the mean or the median.

NLPFD.Ch9.AppB.2pp.indd 328NLPFD.Ch9.AppB.2pp.indd 328 5/28/2021 4:42:12 PM5/28/2021 4:42:12 PM

Appendix B: Introduction to Probability and Statistics • 329

The Variance and Standard Deviation

The variance is the sum of the squares of the difference between the numbers
in X and the mean mu of the set X, divided by the number of values in X, as
shown here:

variance = [SUM (xi - mu)**2] / n

For example, if the set X consists of {-10,35,75,100}, then the mean
equals (−10 + 35 + 75 + 100)/4 = 50, and the variance is computed as follows:

variance = [(-10-50)**2 + (35-50)**2 + (75-50)**2 +
� (100-50)**2]/4

 = [60**2 + 15**2 + 25**2 + 50**2]/4

 = [3600 + 225 + 625 + 2500]/4

 = 6950/4 = 1,737

The standard deviation std is the square root of the variance:

std = sqrt(1737) = 41.677

If the set X consists of {2,2,2,2}, then the mean equals (2+2+2+2)/4 =
2, and the variance is computed as follows:

variance = [(2-2)**2 + (2-2)**2 + (2-2)**2 + (2-
� 2)**2]/4

 = [0**2 + 0**2 + 0**2 + 0**2]/4

 = 0

The standard deviation std is the square root of the variance:

std = sqrt(0) = 0

Population, Sample, and Population Variance

The population specifically refers to the entire set of entities in a given group,
such as the population of a country, the people over 65 in the United States,
or the number of first-year students in a university.

However, in many cases statistical quantities are calculated on samples
instead of an entire population. Thus, a sample is a (much smaller) subset of
the given population. See the central limit theorem regarding the distribution
of the mean of a sample of a population (which need not be a population with
a Gaussian distribution).

If you want to learn about techniques for sampling data, here is a list of
three different techniques that you can investigate:

NLPFD.Ch9.AppB.2pp.indd 329NLPFD.Ch9.AppB.2pp.indd 329 5/28/2021 4:42:12 PM5/28/2021 4:42:12 PM

330 • Natural Language Processing Fundamentals for Developers

●● Stratified sampling
●● Cluster sampling
●● Quota sampling

The population variance is calculated by multiplying the sample variance
by n/(n-1), as shown here:

population variance = [n/(n-1)]*variance

Chebyshev’s Inequality

Chebyshev’s inequality provides a very simple way to determine the mini-
mum percentage of data that lies within k standard deviations. Specifically,
this inequality states that for any positive integer k greater than 1, the amount
of data in a sample that lies within k standard deviations is at least 1 – 1/k∗∗2.
For example, if k = 2, then at least 1 – 1/2∗ ∗2 = 3/4 of the data must lie within
2 standard deviations.

The interesting part of this inequality is that it’s been mathematically
proven to be true; that is, it’s not an empirical or heuristic-based result. An
extensive description regarding Chebyshev’s inequality (including some
advanced mathematical explanations) is here:

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality.

What is a p-value?

The null hypothesis states that there is no correlation between a dependent
variable (such as y) and an independent variable (such as x). The p-value is
used to reject the null hypothesis if the p-value is small enough (< 0.005),
which indicates a higher significance. The threshold value for p is typically 1%
or 5%.

There is no straightforward formula for calculating p-values, which are
values that are always between 0 and 1. In fact, p-values are statistical quan-
tities to evaluate the null hypothesis, and they are calculated by means of
p-value tables or via spreadsheet/statistical software.

THE MOMENTS OF A FUNCTION (OPTIONAL)

The previous sections describe several statistical terms that are sufficient for
the material in this book. However, several of those terms can be viewed from
the perspective of different moments of a function.

NLPFD.Ch9.AppB.2pp.indd 330NLPFD.Ch9.AppB.2pp.indd 330 5/28/2021 4:42:12 PM5/28/2021 4:42:12 PM

Appendix B: Introduction to Probability and Statistics • 331

In brief, the moments of a function are measures that provide information
regarding the shape of the graph of a function. In the case of a probability
distribution, the first four moments are defined as follows:

●● The mean is the first central moment
●● The variance is the second central moment
●● The skewness (discussed later) is the third central moment
●● The kurtosis (discussed later) is the fourth central moment

More detailed information (including the relevant integrals) regarding
moments of a function is available here:

https://en.wikipedia.org/wiki/Moment_(mathematics)#Variance.

What is Skewness?

Skewness is a measure of the asymmetry of a probability distribution. A
Gaussian distribution is symmetric, which means that its skew value is zero
(it’s not exactly zero, but close enough for our purposes). In addition, the
skewness of a distribution is the third moment of the distribution.

A distribution can be skewed on the left side or on the right side. A left-
sided skew means that the long tail is on the left side of the curve, with the
following relationships:

mean < median < mode

A right-sided skew means that the long tail is on the right side of the
curve, with the following relationships (compare with the left-sided skew):

mode < median < mean

If need be, you can transform skewed data to a normally distributed data-
set using one of the following techniques (which depends on the specific use-
case):

●● Exponential transform
●● Log transform
●● Power transform

Perform an online search for more information regarding the preceding
transforms and when to use each of these transforms.

What is Kurtosis?

Kurtosis is related to the skewness of a probability distribution, in the sense
that both of them assess the asymmetry of a probability distribution. The

NLPFD.Ch9.AppB.2pp.indd 331NLPFD.Ch9.AppB.2pp.indd 331 5/28/2021 4:42:12 PM5/28/2021 4:42:12 PM

332 • Natural Language Processing Fundamentals for Developers

kurtosis of a distribution is a scaled version of the fourth moment of the dis-
tribution, whereas its skewness is the third moment of the distribution. Note
that the kurtosis of a univariate distribution equals 3.

If you are interested in learning about additional kurtosis-related con-
cepts, you can perform an online search for information regarding mesokur-
tic, leptokurtic, and platykurtic types of so-called “excess kurtosis.”

DATA AND STATISTICS

This section contains various subsections that briefly discuss some of the chal-
lenges and obstacles that you might encounter when working with datasets.
This section and subsequent sections introduce you to the following concepts:

●● Correlation versus causation
●● The bias-variance tradeoff
●● Types of bias
●● The central limit theorem
●● Statistical inferences

Statistics typically involves data samples, which are subsets of observa-
tions of a population. The goal is to find well-balanced samples that provide a
good representation of the entire population.

Although this goal can be very difficult to achieve, it’s also possible to
achieve highly accurate results with a very small sample size. For example,
the Harris poll in the United States has been used for decades to analyze
political trends. This poll computes percentages that indicate the favorability
rating of political candidates, and it’s usually within 3.5% of the correct per-
centage values. What’s remarkable about the Harris poll is that its sample size
is a mere 4,000 people that are from the U.S. population that is greater than
325,000,000 people.

Another aspect to consider is that each sample has a mean and variance,
which do not necessarily equal the mean and variance of the actual popula-
tion. However, the expected value of the sample mean and variance equal the
mean and variance, respectively, of the population.

The Central Limit Theorem

Samples of a population have an interesting property. Suppose that you take
a set of samples {S1, S3, …, Sn} of a population and you calculate the

NLPFD.Ch9.AppB.2pp.indd 332NLPFD.Ch9.AppB.2pp.indd 332 5/28/2021 4:42:12 PM5/28/2021 4:42:12 PM

Appendix B: Introduction to Probability and Statistics • 333

mean of those samples, which is {m1, m2, …, mn}. The Central Limit
Theorem provides a remarkable result. Given a set of samples of a popula-
tion and the mean value of those samples, the distribution of the mean values
can be approximated by a Gaussian distribution. Moreover, as the number of
samples increases, the approximation becomes more accurate.

Correlation versus Causation

In general, datasets have some features (columns) that are more significant in
terms of their set of values, and some features only provide additional infor-
mation that does not contribute to potential trends in the dataset. For exam-
ple, the passenger names in the list of passengers on the Titanic are unlikely
to affect the survival rate of those passengers, whereas the gender of the pas-
sengers is likely to be an important factor.

In addition, a pair of significant features may also be “closely coupled”
in terms of their values. For example, a real estate dataset for a set of houses
will contain the number of bedrooms and the number of bathrooms for each
house in the dataset. As you know, these values tend to increase together and
also decrease together. Have you ever seen a house that has ten bedrooms
and one bathroom, or a house that has ten bathrooms and one bedroom? If
you did find such a house, would you purchase that house as your primary
residence?

The extent to which the values of two features change is called their cor-
relation, which is a number between −1 and 1. Two “perfectly” correlated
features have a correlation of 1, and two features that are not correlated have
a correlation of 0. In addition, if the values of one feature decrease when the
values of another feature increase, and vice versa, then their correlation is
closer to −1 (and might also equal −1).

Causation between two features means that the values of one feature can
be used to calculate the values of the second feature (within some margin of
error).

Keep in mind this fundamental point about machine learning models:
They can provide correlation, but they cannot provide causation.

Statistical Inferences

Statistical thinking relates to processes and statistics, whereas statistical infer-
ence refers to the process by which inferences are made regarding a popula-
tion. Those inferences are based on statistics that are derived from samples
of the population. The validity and reliability of those inferences depend on

NLPFD.Ch9.AppB.2pp.indd 333NLPFD.Ch9.AppB.2pp.indd 333 5/28/2021 4:42:12 PM5/28/2021 4:42:12 PM

334 • Natural Language Processing Fundamentals for Developers

random sampling in order to reduce bias. There are various metrics that you
can calculate to help you assess the validity of a model that has been trained
on a particular dataset.

STATISTICAL TERMS – RSS, TSS, R^2, AND F1 SCORE

Statistics is important in machine learning, so it’s not surprising that many
concepts are common to both fields. Machine learning relies on a number of
statistical quantities to assess the validity of a model, some of which are listed
here:

●● RSS
●● TSS
●● R^2

The term RSS is the “residual sum of squares” and the term TSS is the
“total sum of squares.” These terms are also used in regression models.

As a starting point so we can simplify the explanation of the preceding
terms, suppose that we have a set of points {(x1,y1), . . . , (xn,yn)}
in the Euclidean plane. In addition, let’s define the following quantities:

●● (x,y) is any point in the dataset.
●● y is the y-coordinate of a point in the dataset.
●● y_ is the mean of the y-values of the points in the dataset.
●● y_hat is the y-coordinate of a point on a best-fitting line.

Just to be clear, (x,y) is a point in the dataset, whereas (x,y_hat) is the
corresponding point that lies on the best fitting line. With these definitions
in mind, the definitions of RSS, TSS, and R^2 are listed here (n equals the
number of points in the dataset):

RSS = Iy - y_hat)**2/n

TSS = (y - y_bar)**2/n

R^2 = 1 - RSS/TSS

We also have the following inequalities involving RSS, TSS, and R^2:

0 <= RSS

RSS <= TSS

0 <= RSS/TSS <= 1

0 <= 1 - RSS/TSS <= 1

0 <= R^2 <= 1

NLPFD.Ch9.AppB.2pp.indd 334NLPFD.Ch9.AppB.2pp.indd 334 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

Appendix B: Introduction to Probability and Statistics • 335

When RSS is close to 0, then RSS/TSS is also close to zero, which means
that R^2 is close to 1. Conversely, when RSS is close to TSS, then RSS/TSS is
close to 1, and R^2 is close to 0. In general, a larger R^2 is preferred (i.e., the
model is closer to the data points), but a lower value of R^2 is not necessarily
a bad score.

What is an F1 Score?

In machine learning, an F1 score is for models that are evaluated on a feature
that contains categorical data, and the p-value is useful for machine learning
in general. An F1 score is a measure of the accuracy of a test, and it’s defined
as the harmonic mean of precision and recall. Here are the relevant formulas,
where p is the precision and r is the recall:

p = (# of correct positive results)/(# of all positive
� results)

r = (# of correct positive results)/(# of all relevant
� samples)

F1-score = 1/[((1/r) + (1/p))/2]

 = 2*[p*r]/[p+r]

The best value of an F1 score is 1 and the worst value is 0. An F1 score is
for categorical classification problems, whereas the R^2 value is typically for
regression tasks (such as linear regression).

GINI IMPURITY, ENTROPY, AND PERPLEXITY

These concepts are useful for assessing the quality of a machine learning
model, and the latter pair are useful for dimensionality reduction algorithms.

Before we discuss the details of Gini impurity, suppose that P is a set of
nonnegative numbers {p1, p2, …, pn} such that the sum of all the num-
bers in the set P equals 1. Under these two assumptions, the values in the set P
comprise a probability distribution, which we can represent with the letter p.

Now suppose that the set K contains a total of M elements, with k1 ele-
ments from class S1, k2 elements from class S2, . . . , and kn elements from
class Sn. Compute the fractional representation for each class as follows:

p1 = k1/M, p2 = k2/M, . . ., pn = kn/M

NLPFD.Ch9.AppB.2pp.indd 335NLPFD.Ch9.AppB.2pp.indd 335 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

336 • Natural Language Processing Fundamentals for Developers

As you can surmise, the values in the set {p1, p2, …, pn} form a prob-
ability distribution. We’re going to use the preceding values in the following
subsections.

What is the Gini Impurity?

The Gini impurity is defined as follows, where {p1,p2,…,pn} is a probability
distribution:

Gini = 1 – [p1*p1 + p2*p2 + . . . + pn*pn]

 = 1 – SUM pi*pi (for all i, where 1<=i<=n)

Since each pi is between 0 and 1, then pi*pi <= pi, which means that

1 = p1 + p2 + . . . + pn

 >= p1*p1 + p2*p2 + . . . + pn*pn

 = Gini impurity

Since the Gini impurity is the sum of the squared values of a set of prob-
abilities, the Gini impurity cannot be negative. Hence, we have derived the
following result:

0 <= Gini impurity <= 1

What is Entropy?

Entropy is a measure of the expected (“average”) number of bits required to
encode the outcome of a random variable. The calculation for the entropy H
(the letter E is reserved for Einstein’s formula) is defined via the following
formula:

H = (-1)*[p1*log p1 + p2 * log p2 + . . . + pn * log pn]

 = (-1)* SUM [pi * log(pi)] (for all i, where 1<=i<=n)

Calculating Gini Impurity and Entropy Values

For our first example, suppose that we have two classes A and B and a cluster
of 10 elements with 8 elements from class A and 2 elements from class B.
Therefore, p1 and p2 are 8/10 and 2/10, respectively. We can compute the
Gini score as follows:

Gini = 1 – [p1*p1 + p2*p2]

 = 1 – [64/100 + 04/100]

 = 1 - 68/100

NLPFD.Ch9.AppB.2pp.indd 336NLPFD.Ch9.AppB.2pp.indd 336 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

Appendix B: Introduction to Probability and Statistics • 337

 = 32/100

 = 0.32

We can also calculate the entropy for this example as follows:

Entropy = (-1)*[p1 * log p1 + p2 * log p2]

 = (-1)*[0.8 * log 0.8 + 0.2 * log 0.2]

 = (-1)*[0.8 * (-0.322) + 0.2 * (-2.322)]

 = 0.8 * 0.322 + 0.2 * 2.322

 = 0.7220

For our second example, suppose that we have three classes A, B, C and a
cluster of 10 elements with 5 elements from class A, 3 elements from class B,
and 2 elements from class C. Therefore p1, p2, and p3 are 5/10, 3/10, and
2/10, respectively. We can compute the Gini score as follows:

Gini = 1 – [p1*p1 + p2*p2 + p3*p3]

 = 1 – [25/100 + 9/100 + 04/100]

 = 1 – 38/100

 = 62/100

 = 0.62

We can also calculate the entropy for this example as follows:

Entropy = (-1)*[p1 * log p1 + p2 * log p2]

 = (-1)*[0.5*log0.5 + 0.3*log0.3 + 0.2*log0.2]

 = (-1)*[-1 + 0.3*(-1.737) + 0.2*(-2.322)]

 = 1 + 0.3*1.737 + 0.2*2.322

 = 1.9855

In both examples, the Gini impurity is between 0 and 1. However, while
the entropy is between 0 and 1 in the first example, it’s greater than 1 in the
second example (which was the rationale for showing you two examples).

A set whose elements belong to the same class has a Gini impurity equal
to 0, and its entropy equal to 0. For example, if a set has 10 elements that
belong to class S1, then

Gini = 1 – SUM pi*pi

 = 1 – p1*p1

 = 1 – (10/10)*(10/10)

 = 1 – 1 = 0

NLPFD.Ch9.AppB.2pp.indd 337NLPFD.Ch9.AppB.2pp.indd 337 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

338 • Natural Language Processing Fundamentals for Developers

Entropy = (-1)*SUM pi*log pi

 = (-1) * p1*log p1

 = (-1) * (10/10) * log(10/10)

 = (-1)*1*0 = 0

Multidimensional Gini Index

The Gini index is a one-dimensional index that works well because the value
is uniquely defined. However, when working with multiple factors, we need
a multidimensional index. Unfortunately, the multidimensional Gini index
(MGI) is not uniquely defined. While there have been various attempts to
define an MGI that has unique values, they tend to be non-intuitive and
mathematically much more complex. More information about MGI is avail-
able online:

https://link.springer.com/appendix/10.1007/978-981-13-1727-9_5.

What is Perplexity?

Suppose that q and p are two probability distributions, and {x1, x2, …,
xN} is a set of sample values that is drawn from a model whose probability
distribution is p. In addition, suppose that b is a positive integer (it’s usually
equal to 2). Now define the variable S as the following sum (logarithms are in
base b not 10):

S = (-1/N) * [log q(x1) + log q(x2) + . . . + log q(xN)]

 = (-1/N) * SUM log q(xi)

The formula for the perplexity PERP of the model q is b raised to the
power S:

PERP = b^S

If you compare the formula for entropy with the formula for S, you can
see that the formulas are similar, so the perplexity of a model is somewhat
related to the entropy of a model.

CROSS-ENTROPY AND KL DIVERGENCE

Cross-entropy is useful for understanding machine learning algorithms and
frameworks such as TensorFlow, which supports multiple APIs that involve

NLPFD.Ch9.AppB.2pp.indd 338NLPFD.Ch9.AppB.2pp.indd 338 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

Appendix B: Introduction to Probability and Statistics • 339

cross-entropy. KL divergence is relevant in machine learning, deep learning,
and reinforcement learning.

As an example, consider the credit assignment problem, which involves
assigning credit to different elements or steps in a sequence. Specifically,
suppose that users arrive at a Webpage by clicking on a previous page, which
was also reached by clicking on yet another Webpage. Then, on the final Web-
page, users click on an ad. How much credit is given to the first and second
Webpages for the selected ad? You might be surprised to discover that one
solution to this problem involves KL Divergence.

What is Cross-Entropy?

The following formulas for logarithms are presented here because they are
useful for the derivation of cross entropy in this section:

●● log (a * b) = log a + log b
●● log (a / b) = log a - log b
●● log (1 / b) = (-1) * log b

In a previous section, you learned that for a probability distribution P with
values {p1,p2,… pn}, its entropy is H defined as follows:

H(P) = (-1)*SUM pi*log(pi)

Now let’s introduce another probability distribution Q whose values are
{q1,q2,…, qn}, which means that the entropy H of Q is defined as follows:

H(Q) = (-1)*SUM qi*log(qi)

We can define the cross-entropy CE of Q and P as follows (notice the log
qi and log pi terms and recall the formulas for logarithms in earlier in this
section):

CE(Q,P) = SUM (pi*log qi) - SUM (pi*log pi)

 = SUM (pi*log qi - pi*log pi)

 = SUM pi*(log qi - log pi)

 = SUM pi*(log qi/pi)

What is KL Divergence?

We can easily define the KL divergence of the probability distributions Q and
P as follows:

KL(P||Q) = CE(P,Q) - H(P)

NLPFD.Ch9.AppB.2pp.indd 339NLPFD.Ch9.AppB.2pp.indd 339 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

340 • Natural Language Processing Fundamentals for Developers

The definitions of entropy H, cross-entropy CE, and KL divergence in
this appendix involve discrete probability distributions P and Q. However,
these concepts have counterparts in continuous probability density functions.
The mathematics involves the concept of a Lebesgue measure on Borel sets
(which is beyond the scope of this book) that is described online:

●● https://en.wikipedia.org/wiki/Lebesgue_measure
●● https://en.wikipedia.org/wiki/Borel_set

In addition to KL divergence, there is also JS divergence, also called Jen-
son-Shannon divergence, which was developed by Johan Jensen and Claude
Shannon (who defined the formula for entropy). JS divergence is based on
KL divergence, but it has some differences. JS divergence is symmetric and a
true metric, whereas KL divergence is neither. More information regarding
JS divergence is available online:

https://en.wikipedia.org/wiki/Jensen–Shannon_divergence.

What’s Their Purpose?

The Gini impurity is often used to obtain a measure of the homogeneity of a
set of elements in a decision tree. The entropy of that set is an alternative to
its Gini impurity, and you will see both of these quantities used in machine
learning models.

The perplexity value in NLP is one way to evaluate language models,
which are probability distributions over sentences or texts. This value pro-
vides an estimate for the encoding size of a set of sentences.

Cross-entropy is used in various methods in the TensorFlow framework,
and the KL divergence is used in various algorithms, such as the dimension-
ality reduction algorithm t-SNE. For more information about any of these
terms, perform an online search to find numerous online tutorials that pro-
vide more detailed information.

COVARIANCE AND CORRELATION MATRICES

This section explains two important matrices: the covariance matrix and the
correlation matrix. Although these are relevant for PCA (Principal Component
Analysis) that is discussed later in this appendix, these matrices are not spe-
cific to PCA, which is the rationale for discussing them in a separate section.
If you are familiar with these matrices, feel free to skim through this section.

NLPFD.Ch9.AppB.2pp.indd 340NLPFD.Ch9.AppB.2pp.indd 340 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

Appendix B: Introduction to Probability and Statistics • 341

The Covariance Matrix

As a reminder, the statistical quantity called the variance of a random variable
X is defined as follows:

variance(x) = [SUM (x – xbar)*(x-xbar)]/n

A covariance matrix C is an n×n matrix whose values on the main diagonal
are the variance of the variables X1, X2, . . . , Xn. The other values of C are the
covariance values of each pair of variables Xi and Xj.

The formula for the covariance of the variables X and Y is a generalization
of the variance of a variable, and the formula is

covariance(X, Y) = [SUM (x – xbar)*(y-ybar)]/n

Notice that you can reverse the order of the product of terms (multipli-
cation is commutative), and therefore the covariance matrix C is a symmetric
matrix:

covariance(X, Y) = covariance(Y,X)

Suppose that a CSV file contains four numeric features, all of which have
been scaled appropriately, and let’s call them x1, x2, x3, and x4. Then the
covariance matrix C is a 4×4 square matrix that is defined with the following
entries (pretend that there are outer brackets on the left side and the right
side to indicate a matrix):

cov(x1,x1) cov(x1,x2) cov(x1,x3) cov(x1,x4)

cov(x2,x1) cov(x2,x2) cov(x2,x3) cov(x2,x4)

cov(x3,x1) cov(x3,x2) cov(x3,x3) cov(x3,x4)

cov(x4,x1) cov(x4,x2) cov(x4,x3) cov(x4,x4)

Note that the following is true for the diagonal entries in the preceding
covariance matrix C:

var(x1,x1) = cov(x1,x1)

var(x2,x2) = cov(x2,x2)

var(x3,x3) = cov(x3,x3)

var(x4,x4) = cov(x4,x4)

In addition, C is a symmetric matrix, which is to say that the transpose of
matrix C (rows become columns and columns become rows) is identical to
the matrix C. The latter is true because (as you saw already in this section)
cov(x,y) = cov(y,x) for any feature x and any feature y.

NLPFD.Ch9.AppB.2pp.indd 341NLPFD.Ch9.AppB.2pp.indd 341 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

342 • Natural Language Processing Fundamentals for Developers

Covariance Matrix: An Example

Suppose we have the two-column matrix A defined as follows:

 x y

A = | 1 1 | <= 6x2 matrix

 | 2 1 |

 | 3 2 |

 | 4 2 |

 | 5 3 |

 | 6 3 |

The mean x_bar of column x is (1+2+3+4+5+6)/6 = 3.5, and the
mean y_bar of column y is (1+1+2+2+3+3)/6 = 2. Subtract x_bar from
column x and subtract y_bar from column y to obtain matrix B:

B = | -2.5 -1 | <= 6x2 matrix

 | -1.5 -1 |

 | -0.5 0 |

 | 0.5 0 |

 | 1.5 1 |

 | 2.5 1 |

Let Bt indicate the transpose of the matrix B (i.e., switch columns with
rows and rows with columns), which means that Bt is a 2 × 6 matrix:

Bt = |-2.5 -1.5 -0.5 0.5, 1.5, 2.5|

 |-1 -1 0 0 1 1 |

The covariance matrix C is the product of Bt and B:

C = Bt * B = | 15.25 4 |

 | 4 8 |

Note that if the units of measure of features x and y do not have a similar
scale, then the covariance matrix is adversely affected. In this case, the solu-
tion is simple. Use the correlation matrix, which is defined in the next section.

The Correlation Matrix

As you learned in the preceding section, if the units of measure of features
x and y do not have a similar scale, then the covariance matrix is adversely
affected. The solution involves the correlation matrix, which equals the

NLPFD.Ch9.AppB.2pp.indd 342NLPFD.Ch9.AppB.2pp.indd 342 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

Appendix B: Introduction to Probability and Statistics • 343

covariance values cov(x,y) divided by the standard deviation stdx and
stdy of x and y, respectively, as shown here:

corr(x,y) = cov(x,y)/[stdx * stdy]

The correlation matrix no longer has units of measure, and we can use this
matrix to find the eigenvalues and eigenvectors.

Now that you understand how to calculate the covariance matrix and the
correlation matrix, you are ready for an example of calculating eigenvalues
and eigenvectors, which are the topic of the next section.

Eigenvalues and Eigenvectors

The eigenvalues of a symmetric matrix are real numbers. Consequently, the
eigenvectors of C are vectors in a Euclidean vector space (not a complex vec-
tor space).

Before we continue, a nonzero vector x' is an eigenvector of the matrix C
if there is a nonzero scalar lambda such that C*x' = lambda * x'.

Now suppose that the eigenvalues of C are b1, b2, b3, and b4, in decreas-
ing numeric order from left to right, and that the corresponding eigenvectors
of C are the vectors w1, w2, w3, and w4. Then the matrix M that consists of
the column vectors w1, w2, w3, and w4 represents the principal components.

CALCULATING EIGENVECTORS: A SIMPLE EXAMPLE

As a simple illustration of calculating eigenvalues and eigenvectors, suppose
that the square matrix C is defined as follows:

C = | 1 3 |

 | 3 1 |
Let I denote the 2×2 identity matrix, and let b' be an eigenvalue of C,

which means that there is an eigenvector x' such that

C* x' = b' * x', or

(C-b*I)*x' = 0 (the right side is a 2x1 vector)

Since x' is nonzero, that means the following is true (where det refers to
the determinant of a matrix):

det(C-b*I) = det | 1-b 3 | = (1-b)*(1-b)-9 = 0

 | 3 1-b |

NLPFD.Ch9.AppB.2pp.indd 343NLPFD.Ch9.AppB.2pp.indd 343 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

344 • Natural Language Processing Fundamentals for Developers

We can expand the quadratic equation in the preceding line to obtain

det(C-b*I) = (1-b)*(1-b) - 9

 = 1 - 2*b + b*b - 9

 = -8 - 2*b + b*b

 = b*b - 2*b – 8

Use the quadratic formula (or perform factorization by visual inspection)
to determine that the solution for det(C-b*I) = 0 is b = -2 or b = 4.
Next, substitute b = -2 into (C-b*I)x' = 0 to obtain the following result:

|1-(-2) 3 | |x1| = |0|

|3 1-(-2)| |x2| |0|

The preceding reduces to the following identical equations:

3*x1 + 3*x2 = 0

3*x1 + 3*x2 = 0

The general solution is x1 = -x2, and we can choose any nonzero value
for x2, so let’s set x2 = 1 (any nonzero value is acceptable), which yields
x1 = −1. Therefore, the eigenvector [−1, 1] is associated with the eigenvalue
−2. In a similar fashion, if x' is an eigenvector whose eigenvalue is 4, then
[1,1] is an eigenvector.

Notice that the eigenvectors [−1, 1] and [1,1] are orthogonal because
their inner product is zero:

[-1,1] * [1,1] = (-1)*1 + (1)*1 = 0

In fact, the set of eigenvectors of a square matrix (whose eigenvalues are
real) are always orthogonal, regardless of the dimensionality of the matrix.

Gauss Jordan Elimination (Optional)

This simple technique enables you to find the solution to systems of linear
equations “in place,” which involves a sequence of arithmetic operations to
transform a given matrix into an identity matrix.

The following example combines the Gauss-Jordan elimination technique
(which finds the solution to a set of linear equations) with the “bookkeeper’s
method,” which determines the inverse of an invertible matrix (its determi-
nant is nonzero).

This technique involves two adjacent matrices: the left-side matrix is the
initial matrix, and the right-side matrix is an identity matrix. Next, perform
various linear operations on the left-side matrix to reduce it to an identity

NLPFD.Ch9.AppB.2pp.indd 344NLPFD.Ch9.AppB.2pp.indd 344 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

Appendix B: Introduction to Probability and Statistics • 345

matrix. The matrix on the right side equals its inverse. For example, consider
the following pair of linear equations whose solution is x = 1 and y = 2:

2*x + 2*y = 6

4*x - 1*y = 2

Step 1: Create a 2×2 matrix with the coefficients of x in column one and
the coefficients of y in column two, followed by the 2×2 identity matrix, and
finally a column from the numbers on the right of the equals sign:

| 2 2 | 1 0 | 6|

| 4 -1 | 0 1 | 2|

Step 2: Add (−2) times the first row to the second row:

| 2 2 | 1 0 |6 |

| 0 -5 | -2 1 |-10|

Step 3: Divide the second row by 5:

| 2 2 | 1 0 |6 |

| 0 -1 | -2/5 1/5 |-10/5|

Step 4: Add 2 times the second row to the first row:

| 2 0 | 1/5 2/5 |2 |

| 0 -1 | -2/5 1/5 |-2|

Step 5: Divide the first row by 2:

| 1 0 | -2/10 2/10 |1 |

| 0 -1 | -2/5 1/5 |-2|

Step 6: Multiply the second row by (−1):

| 1 0 | -2/10 2/10 |1|

| 0 1 | 2/5 -1/5 |2|

As you can see, the left-side matrix is the 2×2 identity matrix, the middle
matrix is the inverse of the original matrix, and the rightmost column is the
solution to the original pair of linear equations (x=1 and y=2).

PCA (PRINCIPAL COMPONENT ANALYSIS)

PCA is a linear dimensionality reduction technique for determining the most
important features in a dataset. This section discusses PCA because it’s a very

NLPFD.Ch9.AppB.2pp.indd 345NLPFD.Ch9.AppB.2pp.indd 345 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

346 • Natural Language Processing Fundamentals for Developers

popular technique that you will encounter frequently. Other techniques are
more efficient than PCA, so later on it’s worthwhile to learn other dimension-
ality reduction techniques as well.

Keep in mind the following points regarding the PCA technique:

●● PCA is a variance-based algorithm.
●● PCA creates variables that are linear combinations of the original

variables.
●● The new variables are all pair-wise orthogonal.
●● PCA can be a useful preprocessing step before clustering.
●● PCA is generally preferred for data reduction.

PCA can be useful for variables that are strongly correlated. If most of
the coefficients in the correlation matrix are smaller than 0.3, PCA is not
helpful. PCA provides some advantages: less computation time for training a
model (for example, using only five features instead of 100 features), a simpler
model, and the ability to render the data visually when two or three features
are selected. Here is a key point about PCA:

PCA calculates the eigenvalues and the eigenvectors of the covariance (or
correlation) matrix C.

If you have four or five components, you won’t be able to display them
visually, but you could select subsets of three components for visualization,
and perhaps gain some additional insight into the dataset.

The PCA algorithm involves the following sequence of steps:

1.	 Calculate the correlation matrix (from the covariance matrix) C of a
dataset.

2.	 Find the eigenvalues of C.

3.	 Find the eigenvectors of C.

4.	 Construct a new matrix that comprises the eigenvectors.

The covariance matrix and correlation matrix were explained in a previous
section. You also saw the definition of eigenvalues and eigenvectors, along
with an example of calculating eigenvalues and eigenvectors.

The eigenvectors are treated as column vectors that are placed adjacent
to each other in decreasing order (from left to right) with respect to their
associated eigenvectors.

PCA uses the variance as a measure of information: the higher the vari-
ance, the more important the component. PCA determines the eigenvalues

NLPFD.Ch9.AppB.2pp.indd 346NLPFD.Ch9.AppB.2pp.indd 346 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

Appendix B: Introduction to Probability and Statistics • 347

and eigenvectors of a covariance matrix (discussed in a previous section) and
constructs a new matrix whose columns are eigenvectors, ordered from left
to right in a sequence that matches the corresponding sequence of eigenval-
ues: the leftmost eigenvector has the largest eigenvalue, the next eigenvector
has the second-largest eigenvalue, and continuing on in this fashion until we
reach the rightmost eigenvector (which has the smallest eigenvalue).

Alternatively, there is an interesting theorem in linear algebra: If C is a
symmetric matrix, then there is a diagonal matrix D and an orthogonal matrix
P (the columns are pair-wise orthogonal, which means their pair-wise inner
product is zero), such that the following holds:

C = P * D * Pt (where Pt is the transpose of matrix P)

In fact, the diagonal values of D are eigenvalues, and the columns of P are
the corresponding eigenvectors of the matrix C.

Fortunately, we can use NumPy and Pandas to calculate the mean, stan-
dard deviation, covariance matrix, and correlation matrix, as well as the matri-
ces D and P to determine the eigenvalues and eigenvectors.

Any positive definite square matrix has real-valued eigenvectors, which
also applies to the covariance matrix C because it is a real-valued symmetric
matrix.

The New Matrix of Eigenvectors

The previous section described how the matrices D and P are determined.
The leftmost eigenvector of D has the largest eigenvalue, the next eigenvector
has the second-largest eigenvalue, and so forth. This fact is very convenient.
The eigenvector with the highest eigenvalue is the principal component of
the dataset. The eigenvector with the second-highest eigenvalue is the second
principal component, and so forth. You specify the number of principal com-
ponents that you want via the n_components hyperparameter in the PCA
class of Sklearn (a very powerful Python-based machine learning library).

As a simple and minimalistic example, consider the following code block
that uses PCA for a (somewhat contrived) dataset:

import numpy as np

from sklearn.decomposition import PCA

data = np.array([[-1,-1], [-2,-1], [-3,-2], [1,1],
� [2,1], [3,2]])

pca = PCA(n_components = 2)

pca.fit(X)

NLPFD.Ch9.AppB.2pp.indd 347NLPFD.Ch9.AppB.2pp.indd 347 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

348 • Natural Language Processing Fundamentals for Developers

Note the trade-off here. We greatly reduce the number of components,
which reduces the computation time and the complexity of the model, but we
also lose some accuracy. However, if the unselected eigenvalues are small, we
lose only a small amount of accuracy.

Now let’s use the following notation:

●● NM denotes the matrix with the new principal components.
●● NMt is the transpose of NM.
●● PC is the matrix of the subset of selected principal components.
●● SD is the matrix of scaled data from the original dataset.
●● SDt is the transpose of SD.

Then the matrix NM is calculated via the following formula:

NM = PCt * SDt

Although PCA is a useful technique for dimensionality reduction, it does
have some limitations:

●● less suitable for data with non-linear relationships
●● less suitable for special classification problems

A related algorithm is called Kernel PCA, which is an extension of PCA
that introduces a nonlinear transformation so you can still use the PCA
approach.

WELL-KNOWN DISTANCE METRICS

There are several similarity metrics available, such as item similarity metrics,
Jaccard (user-based) similarity, and cosine similarity (which is used to com-
pare vectors of numbers). The following subsections introduce you to these
similarity metrics.

Another well-known distance metric is the so-called “taxicab” metric,
which is also called the Manhattan distance metric. Given two points A and B
in a rectangular grid, the taxicab metric calculates the distance between two
points by counting the number of “blocks” that must be traversed in order to
reach B from A (the other direction has the same taxicab metric value). For
example, if you need to travel two blocks north and then three blocks east in
a rectangular grid, then the Manhattan distance is 5.

There are various other metrics available that you can learn about by
searching Wikipedia. In the case of NLP, the most commonly used distance
metric is calculated via the cosine similarity of two vectors, and it’s derived
from the formula for the inner (“dot”) product of two vectors.

NLPFD.Ch9.AppB.2pp.indd 348NLPFD.Ch9.AppB.2pp.indd 348 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

Appendix B: Introduction to Probability and Statistics • 349

Pearson Correlation Coefficient

The Pearson similarity is the Pearson coefficient between two vectors. Given
random variables X and Y, and the following terms

std(X) = standard deviation of X
std(Y) = standard deviation of Y
cov(X,Y) = covariance of X and Y,

then the Pearson correlation coefficient rho(X,Y) is defined as follows:

 cov(X,Y)
rho(X,Y) = -------------
 std(X)*std(Y)

The Pearson coefficient is limited to items of the same type. More infor-
mation about the Pearson correlation coefficient is available online:

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient.

Jaccard Index (or Similarity)

The Jaccard similarity is based on the number of users who have rated item
A and B divided by the number of users who have rated either A or B. The
Jaccard similarity is based on the unique words in a sentence and is unaffected
by duplicates, whereas the cosine similarity is based on the length of all word
vectors (which changes when duplicates are added). The choice between the
cosine similarity and Jaccard similarity depends on whether word duplicates
are important.

The following Python method illustrates how to compute the Jaccard sim-
ilarity of two sentences:

def get_jaccard_sim(str1, str2):

 set1 = set(str1.split())

 set2 = set(str2.split())

 set3 = set1.intersection(set2)

 # (size of intersection) / (size of union):

 return float(len(set3)) / (len(set1) + len(set2) -
� len(set3))

The Jaccard similarity can be used in situations involving Boolean values,
such as product purchases (true/false), instead of numeric values. More infor-
mation is available online:

https://en.wikipedia.org/wiki/Jaccard_index.

NLPFD.Ch9.AppB.2pp.indd 349NLPFD.Ch9.AppB.2pp.indd 349 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

350 • Natural Language Processing Fundamentals for Developers

Local Sensitivity Hashing (Optional)

If you are familiar with hash algorithms, you know that they are algorithms
that create a hash table that associates items with a value. The advantage of
hash tables is that the lookup time to determine whether an item exists in the
hash table is constant. Of course, it’s possible for two items to collide, which
means that they both occupy the same bucket in the hash table. In this case, a
bucket can consist of a list of items that can be searched in more or less con-
stant time. If there are too many items in the same bucket, then a different
hashing function can be selected to reduce the number of collisions. The goal
of a hash table is to minimize the number of collisions.

The local sensitivity hashing (LSH) algorithm hashes similar input items
into the same “buckets.” In fact, the goal of LSH is to maximize the number
of collisions, whereas traditional hashing algorithms attempt to minimize the
number of collisions.

Since similar items end up in the same buckets, LSH is useful for data
clustering and nearest neighbor searches. Moreover, LSH is a dimensional-
ity reduction technique that places data points of high dimensionality closer
together in a lower-dimensional space, while simultaneously preserving the
relative distances between those data points.

More details about LSH are available online:

https://en.wikipedia.org/wiki/Locality-sensitive_hashing.

TYPES OF DISTANCE METRICS

Non-linear dimensionality reduction techniques can also have different dis-
tance metrics. For example, linear reduction techniques can use the Euclidean
distance metric (based on the Pythagorean theorem). However, you need to
use a different distance metric to measure the distance between two points
on a sphere (or some other curved surface). In the case of NLP, the cosine
similarity metric is used to measure the distance between word embeddings
(which are vectors of floating point numbers that represent words or tokens).

Distance metrics are used for measuring physical distances, and some
well-known distance metrics are listed here:

●● Euclidean distance
●● Manhattan distance
●● Chebyshev distance

NLPFD.Ch9.AppB.2pp.indd 350NLPFD.Ch9.AppB.2pp.indd 350 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

Appendix B: Introduction to Probability and Statistics • 351

The Euclidean algorithm also obeys the “triangle inequality,” which states
that for any triangle in the Euclidean plane, the sum of the lengths of any pair
of sides must be greater than the length of the third side.

In spherical geometry, you can define the distance between two points as
the arc of a great circle that passes through the two points (always selecting
the smaller of the two arcs when they are different).

In addition to physical metrics, there are algorithms that implement the
concept of “edit distance” (the distance between strings), as listed here:

●● Hamming distance
●● Jaro–Winkler distance
●● Lee distance
●● Levenshtein distance
●● Mahalanobis distance metric
●● Wasserstein metric

The Mahalanobis metric is based on an interesting idea. Given a point P
and a probability distribution D, this metric measures the number of standard
deviations that separate point P from distribution D. More information about
Mahalanobis is available online:

https://en.wikipedia.org/wiki/Mahalanobis_distance.

In the branch of mathematics called topology, a metric space is a set for
which distances between all members of the set are defined. Various met-
rics are available (such as the Hausdorff metric), depending on the type of
topology.

The Wasserstein metric measures the distance between two probability
distributions over a metric space X. This metric is also called the “earth mov-
er’s metric” for the following reason. Given two unit piles of dirt, it’s the mea-
sure of the minimum cost of moving one pile on top of the other pile.

The KL divergence bears some superficial resemblance to the Wasser-
stein metric. However, there are some important differences between them.
Specifically, the Wasserstein metric has the following properties:

1.	 It is a metric.

2.	 It is symmetric.

3.	 It satisfies the triangle inequality.

NLPFD.Ch9.AppB.2pp.indd 351NLPFD.Ch9.AppB.2pp.indd 351 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

352 • Natural Language Processing Fundamentals for Developers

The KL divergence has the following properties:

1.	 It is not a metric (it’s a divergence).

2.	 It is not symmetric: KL(P,Q) != KL(Q,P).

3.	 It does not satisfy the triangle inequality.

Note that the JS divergence (which is based on the KL Divergence) is a
true metric, which enables us to make a more meaningful comparison with
other metrics (such as the Wasserstein metric):

https://stats.stackexchange.com/questions/295617/what-is-the-
advantages-of-wasserstein-metric-compared-to-kullback-leibler-diverg.

More information is available online:

https://en.wikipedia.org/wiki/Wasserstein_metric.

WHAT IS BAYESIAN INFERENCE?

Bayesian inference is an important technique in statistics that involves statisti-
cal inference and Bayes’s theorem to update the probability for a hypothesis
as more information becomes available. Bayesian inference is often called
“Bayesian probability,” and it’s important in the dynamic analysis of sequen-
tial data.

Bayes’s Theorem

Given two sets A and B, let’s define the following numeric values (all of them
are between 0 and 1):

P(A) = probability of being in set A

P(B) = probability of being in set B

P(Both) = probability of being in A intersect B

P(A|B) = probability of being in A (given you're in B)

P(B|A) = probability of being in B (given you're in A)

Then the following formulas are also true:

P(A|B) = P(Both)/P(B) (#1)

P(B|A) = P(Both)/P(A) (#2)

NLPFD.Ch9.AppB.2pp.indd 352NLPFD.Ch9.AppB.2pp.indd 352 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

Appendix B: Introduction to Probability and Statistics • 353

Multiply the preceding pair of equations by the term that appears in the
denominator to obtain these equations:

P(B)*P(A|B) = P(Both) (#3)

P(A)*P(B|A) = P(Both) (#4)

Now set the left-side of Equations (#3) and (#4) equal to each another and
that gives us this equation:

P(B)*P(A|B) = P(A)*P(B|A) (#5)

Divide both sides of Equation (#5) by P(B) to obtain this well-known
equation:

P(A|B) = P(A)*P(A|B)/P(B) (#6)

Some Bayesian Terminology

In the previous section, we derived the following relationship:

P(h|d) = (P(d|h) * P(h)) / P(d)

There is a name for each of the four terms in the preceding equation.
First, the posterior probability is P(h|d), which is the probability of

hypothesis h given the data d.
Second, P(d|h) is the probability of data d given that the hypothesis h

was true.
Third, the prior probability of h is P(h), which is the probability of

hypothesis h being true (regardless of the data).
Finally, P(d) is the probability of the data (regardless of the hypothesis).
We are interested in calculating the posterior probability of P(h|d) from

the prior probability p(h) with P(D) and P(d|h).

What is MAP?

The maximum a posteriori (MAP) hypothesis is the hypothesis with the high-
est probability, which is the maximum probable hypothesis. This can be writ-
ten as follows:

MAP(h) = max(P(h|d))
or:
MAP(h) = max((P(d|h) * P(h)) / P(d))
or:
MAP(h) = max(P(d|h) * P(h))

NLPFD.Ch9.AppB.2pp.indd 353NLPFD.Ch9.AppB.2pp.indd 353 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

354 • Natural Language Processing Fundamentals for Developers

Why Use Bayes’s Theorem?

Bayes’s Theorem describes the probability of an event based on the prior
knowledge of the conditions that might be related to the event. If we know
the conditional probability, we can use Bayes’s rule to find out the reverse
probabilities. The previous statement is the general representation of the
Bayes rule.

SUMMARY

This appendix started with a discussion of probability, expected values, and
the concept of a random variable. Then you learned about some basic statisti-
cal concepts, such as mean, median, mode, variance, and standard deviation.
Next, you learned about the terms RSS, TSS, R^2, and F1 score. In addition,
you were introduced to the concepts of skewness, kurtosis, Gini impurity,
entropy, perplexity, cross-entropy, and KL divergence.

Next, you learned about covariance and correlation matrices and how
to calculate eigenvalues and eigenvectors. Then you were introduced to the
dimensionality reduction technique known as PCA, after which you learned
about Bayes’s theorem.

NLPFD.Ch9.AppB.2pp.indd 354NLPFD.Ch9.AppB.2pp.indd 354 5/28/2021 4:42:13 PM5/28/2021 4:42:13 PM

Index

A

Abstractive text summarization, 206–207
AlphaFold, 287
Analysis of variance (ANOVA), 17–18
Attention mechanism

algorithms, 249
description, 248
types of, 249
word embeddings, types of, 248–249

Availability bias, 19

B

Bag of Words (BoW) algorithm, 59, 86–88
advantages, 87
CountVectorizer class, 87
word/index pairs, 88

Bayesian inference
Baye’s theorem, 352–354
MAP hypothesis, 353
terminology, 353

BERT
ALBERT, 271
deBERTa model, 272
DistilBERT, 271–272
encoding, 259–262
features, 256
fine-tuning step, 256
vs. GPT-2, 285
history of, 255
masked language model, 257

next sentence prediction, 257–258
vs. NLP techniques, 256–257
pre-training step, 256
RoBERTa, 272
sentence similarity, 264–265
SMITH model, 273
special tokens, 258–259
tokens, 267–270
versions of, 255–256
word context, 265–267

Bias-variance trade-off
availability bias, 19
biased statistic, 18–19
confirmation bias, 19
false causality, 19–20
in machine learning, 18
sunk cost, 20
survivorship bias, 20

BiLingual Evaluation Understudy (BLEU)
score, 120–121

Binning continuous data, 5–6
Brown Corpus, 54
Byte-pair encoding (BPE), 263

C

Case folding, 62
Character data (categorical data)

gender feature, 9
inconsistent data values, 8–9
mapping technique, 9–10

NLPFD.Ch10.Index.indd 355NLPFD.Ch10.Index.indd 355 6/7/2021 5:31:55 PM6/7/2021 5:31:55 PM

356 • Index

one-hot encoding, 9
types, 9

Chatbots
abuses, 244–245
logic flow, 244
open domain chatbots, 243
rule-based chatbots, 244
self-learning chatbots, 244
useful links, 245–246

Chunking, 72
Collaborative filtering algorithm, 212

item-item collaborative filtering,
215–216

Surprise, 216
user-user collaborative filtering, 215

Comma separated values (CSV), 1
Conditional probability, 324
Confirmation bias, 19
Context-free grammar (CFG), 149–151
Contextual Vectors (CoVe), 111
Continuous data type, 5

binning, 5–6
Convolutional neural networks (CNNs), 55
Correlation matrix, 342–343
Cosine similarity, 82, 98–100
Covariance matrix, 341–342
Covid19 dataset, 240–242
Cross-entropy, 339

D

DALL-E, 287
Data drift, 14
Dataset

anomalies and outliers, 12–13
categorical data

gender feature, 9
inconsistent data values, 8–9
mapping technique, 9–10
one-hot encoding, 9
types, 9

Covid19 dataset, 240–242
currency formats, 11

data cleaning tasks, 4
data drift, 14
data preprocessing

content validation, 2
data wrangling, 2
resource bundle, 3

date formats, 10–11
definition, 1
discrete vs. continuous data, 4–5
features, 1–2
gender feature, 4
imbalanced classification, 14–15
local outliers, 14
machine learning classifiers

ANOVA, 17–18
LIME, 17

missing data, 12
outlier detection, 13–14
scaling data

via normalization, 6–7
via standardization technique, 7–8

Data types
in machine learning, 3
in programming languages, 3
real estate data, 3
seasons, 3–4

Data wrangling, 2
Dimensionality reduction algorithms, 2
Discrete data type, 4–5
Distance metrics

earth mover’s metric, 351
Euclidean algorithm, 351
KL divergence, 351–352
Mahalanobis metric, 351
Wasserstein metric, 351

Documents
classification, 80
context for words

contextual word representations, 98
discrete text representations, 97
distributed text representations,

97–98

NLPFD.Ch10.Index.indd 356NLPFD.Ch10.Index.indd 356 6/7/2021 5:31:55 PM6/7/2021 5:31:55 PM

Index • 357

distributional hypothesis, 97
pragmatic context, 97
semantic context, 96
textual entailment, 97

similarity, 80–81

E

Eigenvalues and eigenvectors, 343–344
English pronouns and prepositions, 52–53
Entropy, 336–338
Excel spreadsheet, 1
Extractive text summarization, 206

F

FastText library, 112
Flair, 235–236
FlintKnapper Theory, 23
Frequency-based vectorization, 84

G

Gaussian distribution, 327
Gauss-Jordan elimination technique,

344–345
Generative Pre-Training (GPT)

description, 273
GPT-2

gpt2_auto.py, 278–279
gpt2_qna.py, 275–276
gpt2_sentiment.py, 274–275
pytorch_gpt_next_word.py,

280–282
text generation pipeline, 277–278
text strings, 275

GPT-3
architecture, 285
characteristics, 283
Elon Musk poem, 283
few-shot learner, 283, 285
goals, 284
key differentiator of, 283
one-shot learner, 285

task performance, 285–286
task strengths and mistakes, 284–285
temperature parameter, 283
zero-shot learner, 285

installation process, 273–274
Gensim

description, 151
gensim_tfidf.py, 152
save a word2vec model, 153–154

Gini impurity, 336, 337
Global Matrix Factorization (GMF), 111
GloVe, 103, 248

global matrix factorization, 111
limitations, 110–111
local context window, 111
vs. word2vec, 110

H

HuggingFace transformer, 251

I

Imbalanced classification
random oversampling, 15
random resampling, 15
random undersampling technique, 15
SMOTE technique, 15

Information extraction (IE), 59, 119–120
Inverse Document Frequency (IDF), 93

J

Japanese grammar
ambiguity, 39–40
consonant mutation, 43–44
Google Translate, 41–42
and Korean, 42
negative opinions, 44
nominalization, 41
postpositions, 37–39

consecutive postpositions, 39
in Romanji, 37–38

NLPFD.Ch10.Index.indd 357NLPFD.Ch10.Index.indd 357 6/7/2021 5:31:55 PM6/7/2021 5:31:55 PM

358 • Index

vowel-optional languages and word
direction, 42–43

Japanese nominalizers, 41
Jenson-Shannon (JS) divergence, 339–340

K

Keyword extraction, 74
KL divergence, 339–340
kNN (k Nearest Neighbor) algorithm,

13, 15

L

Language(s)
case endings, 34–35
and dialects, 28–29
evolution, 22
families, 25–26
FlintKnapper Theory, 23
fluency, 23–24
and gender, 35
models, 115–116
natural languages, complexity of, 29–36
origin of, 22
peak usage of, 26
phonetic languages

double consonants, 45
English words of Greek and Latin

origin, 46–47
phonemes and morphemes, 46
vowels and consonants, 45

pronunciation of consonants
in English, 50–52
Ess, Zee, and Sh sounds, 48–49
hard vs. soft consonant sounds, 47–48
letter “j” in various languages, 47
three consecutive consonants, 49

and regional accents, 27
Sapir-Whorf Hypothesis, 23
singular and plural forms of nouns, 36
slang words, 27–28
spelling of words, 36

stop words, 65–66
Strong Minimalist Thesis (SRT), 23
tokenization

in Japanese, 63–64
UNIX commands, 64–65

translation process, 30
Universal Grammar, 23
verbs

auxiliary verbs, 32–33
English sentences, 32
English verb tenses, 31
moods, 32

vocabulary, 22
word order in sentences, 30–31
word sense disambiguation, 60

Latent Dirichlet Analysis (LDA)
high-level description, 114
JS (Jenson-Shannon) metric, 115
latent variables, 115
sentence similarity, 79
soft clustering, 114

Latent semantic analysis (LSA), 111
Lemmatization

caveats, 69
description, 68–69
limitations, 69

Linguistic relativity hypothesis. See
Sapir-Whorf Hypothesis

Local Context Window (LCW), 111
Local Interpretable Model-Agnostic

Explanations (LIME), 17
Localization, 10
Local Outlier Factor (LOF) technique, 13
Local sensitivity hashing (LSH)

algorithm, 350

M

Manhattan distance metric, 348
Masked language model (MLM), 257
Matrix factorization, 83
Maximum a posteriori (MAP)

hypothesis, 353

NLPFD.Ch10.Index.indd 358NLPFD.Ch10.Index.indd 358 6/7/2021 5:31:55 PM6/7/2021 5:31:55 PM

Index • 359

Mean Absolute Error (MAE), 14
Minimum Covariance Determinant, 13
Moments of a function

definition, 331
kurtosis, 331–332
skewness, 331

Multidimensional Gini index (MGI), 338

N

Naïve Bayes, 223–228
Named Entity Recognition (NER), 63

abbreviations and acronyms, 71–72
deep learning techniques, 72
description, 71
feature-based supervised learning, 72
rule-based techniques, 72
unsupervised learning techniques, 72

Natural Language Generation (NLG), 58
Natural language processing (NLP)

applications, 56
Brown Corpus, 54
challenges, 53
convolutional neural networks, 55
description, 53
evolution of, 54–55
information extraction and retrieval, 59
language translation, 53
neural networks, 53–54
NLU and NLG, 57–58
rule-based approaches, 53
steps for training a model, 61
techniques, 61
text classification, 58–59
topic modeling, 54
traditional machine learning, 53
transformer architecture, 54
use cases, 57

Natural Language Toolkit (NLTK)
and BoW, 124–125
and context-free grammar, 149–151
description, 123–124
and lemmatization, 129–132

lxml and XPath, 137–139
and n-grams, 139–141
and parts of speech

entities() function, 146
nltk_entities.py, 146
nltk_movie_reviews.py,

143–144
nltk_pos.py, 141–142
wordnet.synsets() method, 142

Python-based NLP libraries, 157
sentiment analysis, 228–231
and stemmers, 125–129
and stop words, 132–133
support, 124
task-specific libraries, 157–160
and tokenizers, 147–148
wordnet

path_similarity()
function, 134

similarity scorers, 133
synonyms and antonyms, 136–137
synsets() function, 133

Natural language understanding (NLU)
challenges, 57
lexical ambiguity, 58
referential ambiguity, 58
relation extraction, 57
sentiment analysis and topic

classification, 57
syntactical ambiguity, 58

Next sentence prediction (NSP), 257–258
Nominalizers, 41
NoSQL database, 2

O

One-hot document vectorization, 83
One-hot encoding (OHE) technique,

9, 84–85
Out of vocabulary (OOV) words, 85, 262

NLPFD.Ch10.Index.indd 359NLPFD.Ch10.Index.indd 359 6/7/2021 5:31:55 PM6/7/2021 5:31:55 PM

360 • Index

P

Parts Of Speech (POS), 69–71
NLTK

entities() function, 146
nltk_entities.py, 146
nltk_movie_reviews.py,

143–144
nltk_pos.py, 141–142
wordnet.synsets() method, 142

tagging, 70
deep learning methods, 71
lexical-based methods, 70
probabilistic methods, 71
rule-based methods, 70

Perplexity, 338
Poisson distribution, 327
Principal Component Analysis (PCA), 2

advantages, 346
eigenvectors, 347–348
Kernel PCA, 348
points to remember, 346
steps involved, 346

Probability, 323–326
Pronunciation of consonants

in English, 50–52
Canada, UK, Australia, and United

States, 51–52
challenging sounds, 50–51
diphthongs and triphthongs, 50
semi-vowels, 50

Ess, Zee, and Sh sounds, 48–49
hard vs. soft consonant sounds, 47–48
letter “j” in various languages, 47
three consecutive consonants, 49

R

Random oversampling technique, 15
Random resampling technique, 15
Random undersampling technique, 15
Random variables

discrete vs. continuous, 326

well-known probability distributions,
326–327

Recommendation systems
collaborative filtering algorithm, 212

item-item collaborative filtering,
215–216

Surprise, 216
user-user collaborative filtering, 215

content-based approach, 212, 214–215
hybrid approach, 212
matrix factorization, 213–214
movie recommender system, 212–213
reinforcement learning

concepts and algorithms, 218–219
deep Q-learning, 218
epsilon greedy algorithm, 216
Markov decision process, 218
q-learning, 218
RecSim, 219

RecSim, 219
Regular expressions (REs)

character classes
CountDigitsAndChars.py,

306–307
Grouping1.py, 304–305
MatchPatterns1.py, 305–306
ReverseWords1.py, 306–307

compilation flags, 312
compound, 312–313
counting character types, 313–314
definition, 290
and grouping, 314–315
Pandas, 316–321
Python

character classes, 294–295
character sets in, 293–294
metacharacters in, 290–293
startswith() and endswith()

function, 310–312
re module, 290

additional matching methods,
303–304

NLPFD.Ch10.Index.indd 360NLPFD.Ch10.Index.indd 360 6/7/2021 5:31:55 PM6/7/2021 5:31:55 PM

Index • 361

findAll() method, 301–303
modifying strings, 307
re.match() method, 295–300
re.search() method, 300–301
re.split() method, 307–308
re.sub() method, 309
SplitCharClass1.py, 308–309

string matches, 315–316
Reinforcement learning

concepts and algorithms, 218–219
deep Q-learning, 218
epsilon greedy algorithm, 216
Markov decision process, 218
q-learning, 218
RecSim, 219

Relational Database Management System
(RDMBS), 1

Relation extraction (RE), 119–120
Resource bundle, 3
ROUGE score, 121

S

Sapir-Whorf Hypothesis, 23
Sensibleness and specificity average

(SSA), 243
Sentence embedding models, 79
Sentence similarity

Jaccard similarity, 79
LDA, 79
sentence encoders, 79–80
word2vec with cosine similarity, 79

Sentiment analysis, 74
aspect-based, 222–223
deep learning models, 223
with Flair, 235–236
logistic regression, 237–240
machine learning approach, 221
with Naïve Bayes, 223–228
purpose, 220
rule-based approach, 220
spam classifier, 236–237
with TextBlob, 231–234

tools, 222
with Vader and NLTK, 228–231

Skip-gram algorithm
architecture, 108
backward error propagation, 109
concept of, 108
high-level description, 107
neural network reduction, 109–110
shallow network, 109

Sklearn, 13
Statistics

Central Limit Theorem, 332–333
Chebyshev’s inequality, 330
correlation vs. causation, 333
data samples, 332
F1 score, 335
inferences, 333–334
mean, 327
median, 328
mode, 328
population, 329
p-value, 330
R^2, 334–335
RSS, 334
sample and population variance,

329–330
standard deviation, 329
TSS, 334
variance, 329

Stemming
caveats, 69
description, 66
ISRIStemmer, 67
Lancaster Stemmer, 67
Lancaster stemmer, 67
limitations, 69
over stemming, 68
Porter stemmer, 67
RSLPS Stemmer, 67
RSLPS stemmer, 67
singular vs. plural word endings, 66
SnowballStemmer, 67

NLPFD.Ch10.Index.indd 361NLPFD.Ch10.Index.indd 361 6/7/2021 5:31:55 PM6/7/2021 5:31:55 PM

362 • Index

under stemming, 68
and word prefixes, 67–68

Stop words, 65–66
Strong Minimalist Thesis (SRT), 23
Sub-word tokenization algorithms

byte-pair encoding, 263
SentencePiece, 264
unigram language model, 264
WordPiece, 263

Survivorship bias, 20
Switch Transformer, 286
Synthetic Minority Oversampling

Technique (SMOTE), 12, 15
description, 16
extensions, 16

T

Tab separated values (TSV), 1
Task-specific libraries, 157–160
Taxicab metric, 348
Teacher forcing technique, 255
Term frequency (TF), 92–93
TextBlob, 231–234
Text classification

description, 58–59
vs. topic modeling, 115

Text encoding
BoW algorithm, 86–88

advantages, 87
CountVectorizer class, 87
word/index pairs, 88

description, 82
document vectorization, 83–84
index-based encoding, 86
N-grams, 88–91

calculating probabilities, 89–91
character n-grams, 88
word n-grams, 88

OHE technique, 84–85
other encoding techniques, 86
tf-idf algorithm, 91–96

description, 93–95
inverse document frequency, 93
limitations, 95–96
pointwise mutual information

(PMI), 96
term frequency, 92–93

Text mining, 119
Text normalization, 62
Text similarity, 78–79

techniques, 81–82
Text summarization, 74

abstractive summarization
technique, 206

description, 205
extractive summarization technique,

206–207
Gensim and spaCy

gensim_spacy.py, 209–211
text_summarization.py,

207–209
Text-to-text transfer transformer (T5),

254–255
Text vectorization, 100–101
Topic modeling, 73

goal of, 113
latent variables, 113
LDA algorithm, 114–115
lda_topic_modeling.py, 154–156
LSA algorithm, 114
LSI algorithm, 114
vs. text classification, 115

Transformer architecture
context vector, 250
decoder component, 250
encoder component, 250
HuggingFace, 251
mask-filling task, 254
NER task, 252
QnA tasks, 252–253
sentiment analysis task, 253

Trimming technique, 13

NLPFD.Ch10.Index.indd 362NLPFD.Ch10.Index.indd 362 6/7/2021 5:31:55 PM6/7/2021 5:31:55 PM

Index • 363

U

Universal Grammar (Noam Chomsky), 23

V

Vector space models (VSM), 117
advantages and disadvantages, 118–119
term-document matrix, 118

W

Well-known distance metrics
Jaccard similarity, 349
LSH algorithm, 350
Pearson correlation coefficient, 349

Winsorizing, 13
Word embeddings

attention mechanism, 248–249
contextual, 113
definition, 102
discrete, 112

distributional, 113
fastText, 112
GloVe, 248

global matrix factorization, 111
limitations, 110–111
local context window, 111
vs. word2vec, 110

goals, 102
techniques, 102
word2vec algorithm

architecture, 105
CBoW architecture, 106
cosine similarity, 103
description, 103
limitations, 105–106
principles, 104–105
skip-grams, 107–110

Word relevance, 77–78
Word sense disambiguation, 60
Word vectorization technique, 79

NLPFD.Ch10.Index.indd 363NLPFD.Ch10.Index.indd 363 6/7/2021 5:31:55 PM6/7/2021 5:31:55 PM

NLPFD.Ch10.Index.indd 364NLPFD.Ch10.Index.indd 364 6/7/2021 5:31:55 PM6/7/2021 5:31:55 PM

	NLPFD.Ch00.FM.pdf
	NLPFD.Ch1.pdf
	NLPFD.Ch2.pdf
	NLPFD.Ch3.pdf
	NLPFD.Ch4.pdf
	NLPFD.Ch5.pdf
	NLPFD.Ch6.pdf
	NLPFD.Ch7.pdf
	NLPFD.Ch8.AppA.pdf
	NLPFD.Ch9.AppB.pdf

