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ABSTRACT
This book presents a taxonomy framework and survey of methods relevant to explaining the
decisions and analyzing the inner workings of Natural Language Processing (NLP) models. The
book is intended to provide a snapshot of Explainable NLP, though the field continues to rapidly
grow. The book is intended to be both readable by first-year M.Sc. students and interesting to
an expert audience. The book opens by motivating a focus on providing a consistent taxonomy,
pointing out inconsistencies and redundancies in previous taxonomies. It goes on to present (i) a
taxonomy or framework for thinking about how approaches to explainable NLP relate to one
another; (ii) brief surveys of each of the classes in the taxonomy, with a focus on methods that are
relevant for NLP; and (iii) a discussion of the inherent limitations of some classes of methods,
as well as how to best evaluate them. Finally, the book closes by providing a list of resources for
further research on explainability.

KEYWORDS
natural language processing, interpretability, explainability, taxonomies, resources
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1

C H A P T E R 1

Introduction
Explainable Natural Language Processing (NLP)1 is a new subfield of NLP, only really tak-
ing off within the last four or five years.2 Whenever a new subfield of a scientific discipline
emerges, it almost by definition attracts a mixed crowd of researchers from related, but different
subfields. These researchers of course do not yet form a consolidated network and also typically
bring slightly different traditions, languages, and protocols from their respective subfields. This,
undoubtedly, leads to a lot of redundancy: researchers presenting what is essentially the same,
in radically different ways; researchers reinventing what they did not know already existed; and
researchers proposing new models that only in the absence of established evaluation protocols,
seem superior to existing ones.

This book first and foremost presents a taxonomy of approaches to explainable (neural)
NLP. I present this taxonomy with the noble, yet perhaps not so humble, goal of accelerating
progress in this emerging subfield. I want to make it easier for researchers to relate existing
approaches and to monitor the development of new ones, and to provide a common language
for talking about explanations in the context of contemporary NLP research. I also briefly survey
representative samples of existing work on explainable NLP, as well as discuss principled ways
of evaluating such work. I will not be interested in the models that are being interpreted, and
what we have learned about them (no Bertology here!), only in different methods for deriving
explanations and how they are related.

Why are taxonomies important? In Chapter 12, I will derive some general results about
interpretability methods from the taxonomy presented here and hopefully thereby convince
you that the taxonomy is practically useful. In biology, taxonomies are a form of book-keeping
device that primarily is intended to single out important dimensions along which living
creatures differ, and possibly provide a useful way of thinking about fauna as a whole.3 In
engineering, I believe taxonomies play additional roles: they are vehicles for thinking about
what is possible, and what is not, identifying options that no one yet considered, as well as

1A brief word on terminology is appropriate: I will use the words explainable and interpretable somewhat interchangeably.
If anything, I will follow Clinciu and Hastie (2019) in defining ”interpretability as intersecting with explainability as some
models may be interpretable without needing explanations,” but I generally do not think it is practically important to worry
too much about the exact difference, if any, between these terms.

2While some of the methods discussed here are somewhat older than that, the oldest being from 1989 (Church and
Hanks, 1989), explainable NLP only became an independent track at the Association for Computational Linguistics’s main
conference in 2020, and was not represented by independent workshops until 2018 (Alishahi et al., 2019).

3This is not entirely fair to biology. Biological taxonomies provide a basis for conservation and development, for example,
and can possibly be used to generate interesting scientific questions about missing species; see Bacher (2012), for example.



2 1. INTRODUCTION
establishing formal relations between existing methods. This is exactly the motivation behind
this book: I want to make it easier to see what open problems are left for explainable NLP,
what methods are useful to compare (and how), what methods may be mathematically related,
and what properties apply to what methods.

The taxonomy is presented in Chapter 2 (§2.2–2.5). It is two-dimensional:

(a) Its first dimension relates to the data requirements of the interpretability method itself,
namely whether it requires a representative sample of data points or not. As we will see,
this correlates with a number of other differences, including whether the interpretabil-
ity methodmodifies the model it aims to explain, typically adding extra parameters, and
whether the method is motivated by an interest in general model characterization or
an interest in worst-case behavior on particularly problematic instances. We call this
dimension local-global, in line with most previous work, referring to whether you
are interested in characterizing the model’s decision boundary locally or globally: local
methods are typically interested in worst-case behavior or behavior on specific samples;
global methods typically train new parameters on larger samples to evaluate the learned
representations globally.

(b) The second dimension is where our taxonomy differs from previous work: while most
previous taxonomies distinguish between intrinsic and post-hoc methods (see below),
we distinguish between those that rely on forward passes over the parameters, and
those that rely on backward passes.

Some examples are easy to place in this taxonomy: using vanilla gradients to highlight which
parts of an input are most responsible for a prediction (Denil et al., 2014) clearly falls into the
class of local approaches that rely on backward passes. In contrast, attention head pruning (Voita
et al., 2019), for example, falls into the class of global approaches that focus on forward passes.
While attention head pruning does not involve extra parameters, it requires further training
based on a sample of representative data. Other approaches are slightly harder to classify, per-
haps.4 Other papers combine methods from two or more classes in the taxonomy presented here,

4Analogies, for example, i.e., quadruples of concepts that relate in a pairwise, analogous fashion, e.g., Berlin is to Germany
asCopenhagen is toDenmark, are used to probe and evaluate word embeddings and languagemodels. In a languagemodel, words
and phrases are represented by vectors, and if the relationship between the two pairs of vectors was completely analogous, the
following would hold: berlin � germany D copenhagen � denmark. In practice, we say a language model exhibits analogous
encoding if the nearest neighbor of berlin � germany C copenhagen (ignoring any of the three input words) is denmark.
Analogies have been used to evaluate the global consistency of language models (Garneau et al., 2021) and the extent to
which they encode for semantic relations between concepts (Mikolov et al., 2013a). This obviously concerns the continuous
outputs of language models, i.e., word vectors rather than discrete output (masked or next words). However, at first it may seem
that analogies are global evaluation methods, because researchers have often used relatively large analogy datasets (Drozd et al.,
2016) when evaluating models. We, however, classify analogies as local methods, and the reason is simple, yet important for
understanding the taxonomy presented here: while large collections of analogies can be used to collect aggregate statistics that
say something about models beyond their local decision boundaries, we can also use a single analogy such as the above to infer
something about whether these four words were encoded analogously. You will see this throughout this book: local methods
can be used to collect aggregate statistics from samples of data, but unlike global methods, they do not require samples of data.
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either because they compare different methods (Rei and Søgaard, 2018) or because their meth-
ods are composed of different steps, e.g., the two-stage methods in Ribeiro et al. (2018), Sushil
et al. (2018), MAME (Ramamurthy et al., 2020), etc. In this book, we will generally not discuss
two-stage methods. See Chapter 12 (§12.2) for a discussion of what the book omits.

1.1 TWOCOMMONDISTINCTIONS
Explainable NLP has only been an active research field for a few years, and only recently
have there been attempts to consolidate and systematically compare such research. The sim-
plest taxonomies presented for interpretability methods are one-dimensional, i.e., simple group-
ings (Atanasova et al., 2020a; Kotonya and Toni, 2020). Other methods introduce several dis-
crete dimensions and use these to cross-classify existing methods. The taxonomies with most
dimensions introduce four (4) dimensions (Carvalho et al., 2019; Guidotti et al., 2018; Molnar,
2019). The 10 taxonomies discussed in this section are at most a couple of years old. Two are
from 2019 (Carvalho et al., 2019; Molnar, 2019), the rest from 2020 or 2021. I discuss them in
roughly chronological order below. First, however, I will discuss two common distinctions that
are largely agreed upon: local-global, i.e., the distinction between local and global interpretability
methods, which is shared among all of the eight multi-dimensional taxonomies in Figure 1.1;
and intrinsic-post-hoc, i.e., the distinction between between intrinsic and post-hoc interpretabil-
ity methods, which is shared among 7/8 of the multi-dimensional taxonomies. I will argue that
one of these distinctions, local-global, is useful, while the other is problematic in several respects.

1.1.1 LOCALANDGLOBALEXPLANATIONS
The distinction between local and global interpretability methods is shared across all the tax-
onomies discussed in this chapter, and will also be one of the two dimensions in the taxonomy I
propose below. The distinction is defined slightly differently by different authors,5 or not defined
at all, e.g., Guidotti et al. (2018), but here I present the definition that the taxonomy proposed
below relies on:

Definition 1.1 Local-Global. An interpretability method is said to be global if and only if
its explanations rely on access to an (i.i.d.) sample of representative instances; otherwise, if the
method can provide explanations for individual instances in the absence of such samples, it is
said to be local.

5Danilevsky et al. (2020), for example, says that a local explanation provides information or justification for the model ’s predic-
tion on a specific input, [while] a global explanation provides similar justification by revealing how the model’s predictive process works,
independently of any particular input. As should be clear from the discussion below, this is not equivalent to our definition,
which uses the reliance of global methods on samples, rather than the reliance of local methods on specific instances, as the
distinguishing criterion. One argument against the definition in Danilevsky et al. (2020) is that it is not entirely clear in what
sense global methods such as concept activation vectors (Kim et al., 2018), for example, are independent of any particular input.
The function that provides us with explanations is global, but of course its output depends on the input.
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GradCAM L L-H L-H

DeepLift H L-H L-H

LRP L/G-H S-H L-I/H L/G-H

LIME L L-H L-H L L-H L-H L/G-H

TCAV G-I G-H G-H

IF L/G L-H

Explanation: local (L), global (G), intrinsic (I), and post-hoc (H).

Forward Backward

L
o

ca
l Attention, Attention roll-out, Gradients, Layer-wise relevance 

propagation, Deep Taylor decomposition, 
Integrated gradients, DeepLift

G
lo

b
al Weight pruning, Correlation of 

representations, Clustering, Probing 
Dynamic sparse training, Binary networks, 
Sparse coding, Concept activation, 
Gradient-based weight pruning

(a)

(b)

Figure 1.1: (a) 4/6 methods (bottom half ) are classified incoherently across taxonomies. Expla-
nation: local (L), global (G), intrinsic (I), and post-hoc (H). (b) our novel taxonomy.

Note that the definition does not refer to how themethods characterize themodels, e.g., whether
they describe individual inferences, or derive aggregate statistics that quantify ways the models
are biased. This is to avoid a common source of confusion: local methods can be used to derive
aggregate statistics that characterize global properties of models. LIME (Ribeiro et al., 2016),
for example, is mostly classified as a local method,6 but in Ribeiro et al. (2016), the authors
explicitly discuss how LIME can be used on i.i.d. samples to derive aggregate statistics that
characterize model behavior on distributions. Definition 1.1 makes it clear that such methods
are local; local methods can be applied globally, whereas global methods cannot be applied locally.

6Das and Rad (2020) classify it as both local and global.
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It is also clear from Definition 1.1 that the two classes of interpretability methods are

often motivated by different prototypical applications: local methods are often used to explain
the motivation behind critical decisions, e.g., why a customer was assessed as high risk, why a
traveling review was flagged as fraudulent, or why a newspaper article was flagged as misleading,
whereas global methods are used to characterize biases in models and evaluate their robustness.

Challenge Definition 1.1 helps us clarify what we mean by local and global interpretability
methods. Nevertheless, when applying this definition in practice, some methods can be a little
harder to classify than others. Concept activation approaches, for example, use joint global train-
ing to learn mappings of individual examples into local explanations. Contrastive interpretabil-
ity methods provide explanations in terms of pair of examples. Zhang et al. (2020) discuss what
they call semi-local approaches, and Carvalho et al. (2019) introduce a category for interpretabil-
ity methods that relate to groups of examples. It may also seem a bit unclear whether a challenge
dataset provides a local or global explanation, for example.

Definition 1.1, however, focuses very clearly on the induction of explanations from repre-
sentative samples. This focus leads us to classify concept activation methods as global, since the
explanatory model component is induced from a representative sample (and relies, theoretically,
on the representativity of this sample); we classify contrastive and group methods as local meth-
ods, since they do not assume representative samples; and, finally, we classify challenge datasets
as local methods, since challenge datasets also do not have to be representative.

Examples Examples of local methods include gradients (Denil et al., 2014; Leray et al., 1998;
Simonyan et al., 2014), layer-wise relevance propagation (Arras et al., 2016), deep Taylor de-
composition (Montavon et al., 2017), integrated gradients (Mudrakarta et al., 2018; Sundarara-
jan et al., 2017), DeepLift (Shrikumar et al., 2017), direct interpretation of gate or attention
weights (Rei and Søgaard, 2018), attention roll-out and flow (Abnar and Zuidema, 2020), word
association norms and analogies (Mikolov et al., 2013b), time step dynamics Strobelt et al.
(2017), challenge datasets (Liu et al., 2019;Mullenbach et al., 2019; Richardson et al., 2013; Sun
et al., 2019), local uptraining (Ribeiro et al., 2016), and influence sketching and influence func-
tions (Koh and Liang, 2017); examples of global methods include unstructured pruning, lottery
tickets, dynamic sparse training, binary networks, sparse coding, gate and attention head prun-
ing, correlation of representations (Kriegeskorte et al., 2008), clustering (Aharoni and Goldberg,
2020; Trost and Klakow, 2017; Yenicelik et al., 2020), probing classifiers (Belinkov, 2021), con-
cept activation (Kim et al., 2018), representer point selection (Yeh et al., 2018), TracIn (Pruthi
et al., 2020a), and uptraining (Petrov et al., 2010).

1.1.2 INTRINSICANDPOST-HOCEXPLANATIONS
The distinction between intrinsic and post-hoc methods has many names, including active-
passive in Zhang et al. (2020) and self-explaining-ad hoc in Danilevsky et al. (2020), all meant
to introduce a distinction between intrinsic methods that jointly output explanations, and meth-
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ods that derive these explanations post-hoc using techniques that are orthogonal to the models
themselves. While most taxonomies introduce this distinction, we argue that it is inherently
problematic.

Challenge First of all, the distinction between intrinsic and post-hoc methods can be
hard to maintain. Consider the difference between the two global interpretability methods,
concept activation vectors and probing classifiers: CAV are trained jointly, probing classifiers
sequentially. These are extremes of a (curriculum) continuum, which is hard to binarize: if a
probing classifier is trained jointly with the last epoch of the model training, is the method
then intrinsic or post-hoc? For a real example, consider TracIn (Pruthi et al., 2020a), in which
influence functions are estimated across various training check points. Again, is TracIn intrinsic
or post-hoc? That the binary distinction covers a continuum, makes the distinction hard to
apply in practice. Moreover, for a method to be post-hoc means different things to local and
global methods. A post-hoc, local method is post-hoc relative to a class inference (in the case
of classification); a post-hoc, global method is post-hoc relative to training, introducing a
disjoint training phase for learning the interpretability functions. Strictly speaking, the fact that
“post-hoc” takes on two disjoint meanings for local and global methods, namely post-inference
and post-training, makes taxonomies that rely on both dimensions inconsistent.

1.2 SHORTCOMINGSOFEXISTINGTAXONOMIES
We have seen that the intrinsic-post-hoc distinction found in most taxonomies is inconsistent.
We now briefly, yet critically, assess the 10 taxonomies, pointing out the ways in which they are
inconsistent, incomplete, or redundant.

1.2.1 GUIDOTTI ETAL. (2018)
Guidotti et al. (2018) first introduce the distinction between local and global interpretability
methods, as well as two that relate to how explanations are communicated (how much time the
user is expected to have to understand the model decisions, and how much domain knowledge
and technical experience the user is expected to have). In addition to the terms local and global,
they also refer, synonymously, to outcome explanation and model explanation. Later in their sur-
vey, Guidotti et al. (2018) make a fourth distinction that is very similar to intrinsic-post-hoc,
namely between transparent design (leading to intrinsically interpretable models) and (post-hoc)
black box inspection, but oddly, this is not seen as an orthogonal dimension, but as two additional
classes on par with outcome and model explanation.

Challenge How to classify methods that are both, say, local and post-hoc, i.e., do outcome
explanation by black-box inspection? Examples would include gradients (Denil et al., 2014;
Leray et al., 1998; Simonyan et al., 2014), layer-wise relevance propagation (Arras et al., 2016),
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deep Taylor decomposition (Montavon et al., 2017), integrated gradients (Mudrakarta et al.,
2018; Sundararajan et al., 2017), etc.

1.2.2 ADADI ANDBERRADA (2019)
Adadi and Berrada (2018) rely on the local-global and intrinsic-post-hoc distinctions (referring
to the later as complexity), and, as a third dimension, they distinguish between model-agnostic
and model-specific interpretability methods.

Inconsistencies We argue that the distinction between model-specific and model-agnostic
methods is suboptimal in that state-of-the-art models are moving targets, and so is what counts
as model-specific. This may lead to inconsistencies over time.

Challenge How do we classify a method that applies to all known methods, but not to all
possible methods?

1.2.3 CARVALHOETAL. (2019)
Carvalho et al. (2019) introduce four dimensions in their taxonomy: (a) scope, which coincides
with the local-global distinction (Definition 1.1); (b) intrinsic-post-hoc; (c) pre-model, in-model,
and post-model, with in-model corresponding to intrinsic methods, and post-model correspond-
ing to post-hoc methods, whereas pre-model comprises various approaches to data analysis. We
argue below that (c) is both redundant and inconsistent. Finally, they introduce (d) a results di-
mension, which concerns the form of the explanations provided by the methods. We discuss this
(somewhat orthogonal) aspect of interpretability methods in §1.3.

Inconsistencies In addition to the inconsistency of intrinsic-post-hoc, including pre-model
explanations leads to further taxonomic inconsistency in that pre-model approaches cannot be
classified along the other dimensions in that they do not refer to models at all. For the same
reason, one might argue they are not model interpretation methods in the first place.

Redundancies The redundancy of (c) follows from the observation that the distinction be-
tween in-model and post-model explanations is identical to the distinction made in (b), as well
as the observation that pre-model explanations do not refer to models at all7.

Challenge What is an intrinsic interpretability method that presents post-model explanations,
or a post-hoc interpretability method that presents in-model explanations?

7In other words, all in-model explanations are intrinsic, and all post-model explanations are post-hoc. Carvalho et al.
(2019) are explicit about this redundancy: “In-model interpretability concernsMLmodels that have inherent interpretability in
it (through constraints or not), being intrinsically interpretable. Post-model interpretability refers to improving interpretability
after building a model (post hoc)”.
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1.2.4 MOLNAR (2019)
Molnar (2019) also distinguishes between local-global and intrinsic-post-hoc, as well as between
different results. Their taxonomy thus relies on three out of four of the dimensions in Carvalho et
al. (2019); instead of the distinction between pre-model, in-model and post-model explanations,
they instead distinguish between model-specific and model-agnostic methods.

Inconsistencies See the discussion of Adadi and Berrada (2018), which also applies here. In
addition, the results dimension distinguishes between intrinsic interpretations and feature sum-
mary statistics is also inconsistent in that explanations can, simultaneously, be intrinsically in-
terpretable models and feature summary statistics. LIME (Ribeiro et al., 2016), for example,
presents local explanations as the linear coefficients of a linear fit, i.e., an intrinsically inter-
pretable model that consists solely of feature summary statistics.

Redundancies The most important redundancy in the taxonomy presented in Molnar (2019)
is that all model-agnostic interpretability methods are also post-hoc, since intrinsic methods
require joint training, which in turn requires compatibility with model architectures. Moreover,
model-agnostic interpretability methods are all grounded in input features and thus lead to ex-
planations in terms of feature summary statistics or visualizations. Moreover, all explanations in
terms of intrinsically interpretable models are, quite obviously, intrinsic.

Challenge What is a post-hoc interpretability method whose explanations are intrinsically
interpretable models?

1.2.5 ZHANGETAL. (2020)
Zhang et al. (2020) present a three-dimensional taxonomy with the following dimensions:
(a) global-local; (b) intrinsic-post-hoc (which they call active-passive; and (c) a distinction be-
tween four explanation types, namely examples, attribution, hidden semantics, and rules.

Inconsistencies The explanation type dimension in Zhang et al. (2020) conflates two different
things, namely the model components we are trying to explain, and what the explanations look
like. Hidden semantics, for example, is a model component, whereas examples and rules refer
(somewhat vaguely) to the (syntactic) form of the explanations. The distinction between hidden
semantics and attribution, for example, is also apparent. Hidden semantics can be used to derive
attribution (a results type in Carvalho et al. (2019) and Molnar (2019)), e.g., in LSTMVis, the
visualization software presented by Strobelt et al. (2017); this is because hidden semantics is
not a type of explanation, but a model component. Attribution, examples, and rules are types of
explanations, but this list is not exhaustive, since explanations can also be in terms of concepts,
free texts, or visualizations, for example.

Challenge What is a passive interpretabilitymethod that does not provide local explanations?8

8Inherently interpretable models are not methods, but simply models that are directly interpretable.
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1.2.6 DANILEVSKYETAL. (2020)
Danilevsky et al. (2020) present a two-dimensional taxonomy, distinguishing only between
global-local and intrinsic-post-hoc (which they call self-explaining and ad-hoc) methods.

Inconsistencies Danilevsky et al. (2020) cite a lot of attribution methods as global and ad-
hoc. We wish to argue that such attribution methods are necessarily local, and while aggregate
statistics can of course be computed across real or synthetic corpora, little is gained by blurring
taxonomies to reflect that. All local methods can be used to compute summary statistics; this
is completely orthogonal to any differences between these methods. This inconsistency follows
from the their definition of local-global (see §1.1.1).

Incompleteness Danilevsky et al. (2020) admit their survey is biased toward local methods,
and many global interpretability methods are left uncovered.9

Challenge What is a local interpretability method that cannot be used to compute summary
statistics?

1.2.7 DAS ETAL. (2020)
Das and Rad (2020) present a three-way taxonomy. They also distinguish between local and
global methods. Their second dimension is called methodology, in which they distinguish be-
tween methods based on back-propagation or gradient-based methods on the one hand–and
perturbation-based methods on the other; their third dimension is called usage, in which they
distinguish between intrinsic and post-hoc methods. As is evident from their classification of
current approaches, their taxonomy is both incomplete and redundant.

Incompleteness Several approaches are neither gradient-based or perturbation-based.

Redundancies All gradient-based approaches are classified as post-hoc approaches in Das and
Rad (2020); similarly, all intrinsic methods are classified as global methods. Of course these cells
may be filled with methods that were not covered, but in particular, it seems that gradient-based
approaches are, almost always, post-hoc?10

Challenge What is an intrinsic, gradient-based approach?

9The only example they cite for the class of global and self-explaining methods is Pröllochs et al. (2019), a paper on using
reinforcement learning to learn interpretable rules. The method in Pröllochs et al. (2019) learns a global policy to extract these
rules. See §1.1.1 for a list of methods left uncovered.

10Weight pruning methods that rely on gradients seem like a counter example, but typically, gradients are only used to
prune weights after a full round of training, and these methods are therefore best seen as post-hoc methods.
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1.2.8 ATANASOVAETAL. (2020)
Atanasova et al. (2020a) distinguish between three classes of explainability methods: gradient-
based, perturbation-based, and simplification-based methods, evaluating examples of each
across various NLP tasks.

Inconsistencies The distinction between gradient-based and perturbation-based methods is
similar to Das and Rad (2020), but the two classifications are inconsistent, with Atanasova
et al. (2020a) citing LIME Ribeiro et al. (2016) as a simplification-based method. It seems
that the distinction between perturbation-based and simplification-based methods is in itself
inconsistent in that both perturbations and gradients can be used to simplify models; similarly,
perturbations can be used to baseline gradient-based approaches.

Incompleteness Clearly, not all interpretability methods are gradient-based, perturbation-
based or simplification-based: othermethods are based onweightmagnitudes, carefully designed
example templates, visualizing and quantifying attention weights or gating mechanisms.

Challenge How would you classify attention roll-out Abnar and Zuidema (2020), for exam-
ple?

1.2.9 KOTONYAANDTONI (2020)
Kotonya and Toni (2020) distinguish between attention-based explanations, explanations as rule
discovery, and explanations as summarization.

Incompleteness Several things are not easily fitted into this classification scheme. Using gat-
ing mechanisms to interpret models, for example, does not seem to fit any of the three categories.

Inconsistencies This classification defines one class of interpretability methods in terms of
the model components being interpreted (attention-based) and another in terms of the form of
explanations they provide (rule discovery and summarization). Mixing orthogonal dimensions
is inconsistent, since methods easily can belong to several categories, e.g., attention head prun-
ing (Voita et al., 2019), which is both attention-based and a form of summarization, or when
rules are induced from attention weights (Ruzsics et al., 2021).

Chen et al. (2021) Chen et al. (2021) introduce the global-local distinction, but not the
intrinsic-post-hoc distinction. In addition, they distinguish between interpretability methods
that present explanations in terms of training instances, approximations, feature attribution, and
counterfactuals.

Inconsistencies The second dimension again makes orthogonal distinctions. Approximations,
for example, can be used to attribute importance to features (LIME).
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Incompleteness Explanations in terms of concepts, attention weights, gate activations, rules,
etc., are not covered by the second dimension.

Redundancies All methods that present explanations in terms of training instances are neces-
sarily local.

Challenge What’s a global interpretability method providing explanations in terms of training
instances?

1.3 THEMETHOD-FORMFALLACY
Several of the above taxonomies include dimensions that pertain to the (syntactic) form of the
output of interpretation methods. We argue such distinctions are completely orthogonal to the
interpretability methods and should therefore not be included in taxonomies. To see this, note
that most interpretability methods, e.g., LIME, can provide explanations of different form: ag-
gregate statistics, coefficients, rules, visualizations, etc.11

1.4 INCONSISTENTCLASSIFICATIONS
Figure 1.1a shows that taxonomies are not only internally inconsistent, but also inconsistent
(between them) in how they classify methods. Somewhat surprisingly, only six interpretability
methods were mentioned by more than one of the above surveys; since the taxonomies rely on
the same two dimensions (global-local and intrinsic-post-hoc), we can easily compare whether
these six methods are classified consistently. For those six methods, only two were classified con-
sistently by different surveys. Four in six methods were classified differently. Concept activation
(§8.4), for example, is classified as intrinsic in Molnar (2019), but as post-hoc in Zhang et al.
(2020).12

1.5 ANOVELTAXONOMY
Our proposed taxonomy is quite simple and contains only two dimensions. One is local-global,
like other taxonomies, and the other is a distinction between explanations based on forward

11That said, many observations can be made about the syntactic form of explanations. All methods that return extractive
rationales, for example, suffer from the following inherent limitations: (i) these methods can only explain decisions in terms of
tokens or features present in the input, but not in terms of tokens or features absent from the input (Dhurandhar et al., 2018);
(ii) sometimes explanations are not about the presence or absence of input tokens or features, but about how they relate, or
add up. To see (i), think of how explaining why good sentiment models label some sentences as neutral, for example, is more
about the absence of polarity words than about the presence of any other words. Limitation (ii) shows up, for example, when
explaining the decisions of a model trained to detect sentences with more digits and punctuation than letters. Such a model
would pay equal attention to all characters in a sentence, and a highlighting of the most important tokens or features would
not really provide us with any explanation of the inner workings of the model. In our taxonomy, this limitation primarily
concerns local backward methods (see Observation 5.1).

12We classify concept activation as global-forward.
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passes through neural networks and explanations based on backward passes. Note that a back-
ward pass can accumulate not only gradients, but also relevance scores (Arras et al., 2016), for
example. The forward explanations typically correlate intermediate representations or continu-
ous or discrete output representations to obtain explanations, whereas backward explanations
concern the training dynamics. We define the distinction between forward and backward meth-
ods in the following way.

Definition 1.2 Forward-backward. An interpretability method is said to be backward if it
relies solely on quantities derived from one or more backward passes through the instances;
otherwise, if it relies on quantities from forward passes, it is said to be forward.

Local backward methods include gradients (Denil et al., 2014; Leray et al., 1998; Simonyan et
al., 2014), integrated gradients (Mudrakarta et al., 2018; Sundararajan et al., 2017), layer-wise
relevance propagation (Bach et al., 2015), DeepLIFT (Shrikumar et al., 2017), and deep Taylor
decomposition (Montavon et al., 2017), which all derive explanations for individual instances
from what is normally used as training signals, typically based on derivatives of the loss function
(gradients) evaluating h on training data, e.g., d.`.h.xi /; yi //. Global backward methods rely on
such training signals to modify or extend the model parameters w associated with h, typically
extracting approximations, rules, or visualizations.

Local forward methods either consider intermediate representations, e.g., gates (Lakretz
et al., 2019), attention (Rei and Søgaard, 2018), attention flow (Abnar and Zuidema, 2020),
etc.; continuous output representations, e.g., using word association norms (Church and Hanks,
1989) or word analogies (Garneau et al., 2021; Mikolov et al., 2013a); or discrete output, such
as when evaluating on challenge datasets (Liu et al., 2019; Mullenbach et al., 2019; Richardson
et al., 2013; Sun et al., 2019), or when approximating the model’s output distribution (Alvarez-
Melis and Jaakkola, 2017; Koh and Liang, 2017; Ribeiro et al., 2016). In the same way, global
forward methods can rely on intermediate representations in forward passes, e.g., in attention
head pruning (Voita et al., 2019), attention factor analysis (Kobayashi et al., 2020), syntactic
decoding of attention heads (Ravishankar et al., 2021), attention head manipulation (Vashishth
et al., 2019), etc.; continuous output in forward passes, including work using clustering in the
vector space to manually analyze model representations (Heylen et al., 2012; Reif et al., 2019),
probing classifiers (Belinkov, 2021), and concept activation strategies (Kim et al., 2018); or on
discrete output, e.g., in uptraining (Petrov et al., 2010) and knowledge distillation (Kim and
Rush, 2016).
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C H A P T E R 2

AFramework for Explainable
NLP

An NLP model is a hypothesis h.�/ from some hypothesis class H. In the early days of NLP, h

was selected or designed by hand, but today, h is typically induced from a sample of n data points
D D fhxi ; yi i j i � ng by a learning algorithm. In linear classification,H is the set of all possible
lines (hyperplanes), and the perceptron learning algorithm, for example, can be used to search for
a good line h.�/ by iteratively correcting the errors made by the current hypothesis. Other popular
model classes in NLP include recurrent neural networks and transformers. It is the decisions of
such learned models we wish to explain. This chapter first introduces standard architectures in
NLP that, in combination with task-specific input and output spaces, will define the hypothesis
classes from which h.�/ will be induced. Once we have been reminded about these standard
architectures, we are in a position to introduce a simple, yet incredibly useful, framework for
thinking about interpretability methods.

2.1 NLPARCHITECTURES
2.1.1 LINEARANDNONLINEARCLASSIFICATION
A linear model is a parameter vector w that interacts with a data point x in the following way to
produce a class prediction y:

y D b � 1 C w0x0 C w1x1 C w2x2 C : : : D wxT

Thedecision of a linear model is the sign of the inner-product of model parameters and the
representation (vectorization) of the data instance. Our learning algorithms will attempt to select
w such as to minimize our loss across D, `.h.xi /; yi /. We will assume a smooth, differentiable
loss function, e.g., logistic loss, �yi log.h.xi //. Saliency maps (Fong et al., 2019) are a broad
class of explanation methods that analyze how a change in some input x changes the output y.
A straightforward way to do this in the case of linear classificationmodels is to take the derivative
of the loss function with respect to the input, d.`.h.xi /; yi //. We discuss saliency maps in more
detail in Chapter 3.

Nonlinear classification models, like linear ones, come in many different flavors, but the
vast majority of recent research in NLP revolves around recurrent models and transformers.
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2.1.2 RECURRENTMODELS
A simple vanilla recurrent neural network for sequences of variable length n is a multi-layered
perceptron with n tied layers, i.e., a variable set of layers with the same parameter weights. The
n tied layers are used to process a sequence of n time steps, represented by vectors (embeddings)
t1 : : : tn. Formally, the hidden representation at time step ti is hti D �.wexti C whti�1

/ with
xti the one-hot vector encoding token ti , and where we is a separate set of model parameters
commonly referred to as the embedding layer.

The advantage of recurrent networks is that they condition the representation of each
sequence token on the representation of its left context. It is common to design bidirectional
architectures that enable conditioning on both left and right context by simply concatenating
the representations of two recurrent networks, processing the input in opposite order.

In practice, most researchers rely on gated recurrent networks. We briefly discuss these,
since gates are intermediate representations that have been used to explain the decisions of re-
current networks. Several gating techniques exist, but in NLP, two techniques have gained the
most traction: gated recurrent units (GRUs) (Cho et al., 2014) and long short-term memory
cells (Hochreiter and Schmidhuber, 1997).

GRUs The key difference between a simple recurrent network and a network with GRUs is
that the model parameters (including the embedding layer) are split (or copied) in three inde-
pendent sets of parameters, w; wz; wr . We first compute what is commonly referred to as the
update gate vector zti :

zti D �z.we
zxti C wzhti�1

/

Intuitively, the update gate vector controls which weights are updates in the current time
step. Next we compute the reset gate vector, which is used to ensure memory flow throughout
the sequence:

rti D �r.we
rxti C wrhti�1

/

Note that both these update rules are identical to the update rule in simple recurrent
networks. With those two vectors, we can now compute our hidden state representations in two
steps. First, we compute

Ohti D �.wexti C w.rti ı hti�1
//

which is the standard update rule after factoring in the reset gate vector, controlling the infor-
mation flow from the previous state hti�1

. Second, we compute

hti D .1 � zt�i / ı hti�1
C zt ı Ohti

which intuitively uses the update gate vector to focus on parts of the current time step and demote
the corresponding part of the previous time step. In other words, the update gate vector is used
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to control the relative importance of the current input over the context. Many researchers have
been interested in the extent to which recurrent networks rely on context (Weiss et al., 2018),
which makes update gate vector weights an interesting object of analysis.

LSTMs Just like GRUs divide the weights into three and apply three independent updates
(per layer) in every time step, LSTMs divide the weights into four subspaces: the basic weights
(w), the input weights (wi ), the output weights (wo), and the forget gates (wf ). We compute
the input and output activation vectors, iti and oti , as well as the forget gate activation vector,
fti , with the standard update rules, applied to the relevant parameters. We now compute two
intermediate time step representations; Octi is computed using the standard update rule (just like
Ohti in GRUs). We then compute

cti D fti ı cti�1
C iti ı Octi

and finally set hti to oti ı �.cti /. The input, output, and forget gates have all been objects of
interpretation (Lakretz et al., 2019).

For more details on recurrent networks, we refer the interested reader to another book in this
book series, Goldberg (2017).

2.1.3 TRANSFORMERS
The Transformer architecture (Vaswani et al., 2017) constrains a soft alignment (self-attention)
to be learned across discrete states in the input. Just like recurrent networks maintain hid-
den states to draw on context information, transformers rely on self-attention to capture long-
distance dependencies. We obtain self-attention by maintaining several vectors using distinct
sets of model parameters, wq (for query vectors), wk (for key vectors), and wv (for value vectors).
Multiplying the embedding vector1 for a particular time step with wq gives us the query vector
for that time step, etc. The self-attention across the input tokens t1 : : : tn associated with a par-
ticular time step ti is obtained by computing the dot products of ti ’s query vector wqxti with the
key vectors of the other words, subsequently passing these values through a softmax operator.
We then integrate context information accordingly by multiplying the softmax values into the
value vectors of these words. The sum of these weighted value vectors is the self-attention pre-
sentation for the time step ti . In practice, we typically use multiple sets of query, key, and value
vectors, often referred to as attention heads. Attention heads are the object of interpretation in
both local and global interpretability methods, e.g., using attention flow (Abnar and Zuidema,
2020) or attention head pruning (Voita et al., 2019). To produce the final output, the output

1One advantage of transformers is that we can do inference for input tokens in parallel, but at the expense of word
order infromation. As a hack, the embedding vectors are combined with so-called positional embeddings to encode word order
information; this hack makes sense for monolingual language models, but known failure modes in the context of multilingual
language models (Dufter and Schütze, 2020; Liu et al., 2020).
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of the transformer multi-head self-attention architecture is added to its input, normalized and
passed through feed-forward layers.

2.1.4 OVERVIEWOFAPPLICATIONSANDARCHITECTURES
Word embeddings and language models Language models traditionally served the purpose
of ranking more or less likely sentences. When word embeddings were first introduced, how-
ever, it was with a different purpose in mind, namely learning representations of words that
enable lexical generalization (Turian et al., 2010). Modern language models now serve both
purposes (Khandelwal et al., 2020): they provide representations that generalize and enable sim-
ilarity judgments, and can be used to rank more or less likely sentences. Word embeddings are
typically learned using linear or nonlinear classification algorithms, but can also be side products
of language models based on recurrent or transformer architectures.

Sentiment analysis and related applications A large chunk of NLP is concerned with docu-
ment classification problems such as sentiment analysis, fake news detection, argument mining,
and so on. Historically, these tasks have been modeled with linear and nonlinear classification
algorithms, possibly relying on word embeddings, but these days, most algorithms rely on rep-
resentations learned with recurrent or transformer architectures.

Inference and related applications A wide range of other tasks can be construed as classifi-
cation of pairs of sentences or chunks of texts, including natural language inference, question
answering, stance detection, etc. For these tasks, we can generally use the same methods as for
document classification tasks.

Syntactic and semantic parsers For a handful of traditional NLP tasks, the input is a sentence,
and the output is a tree or directed acyclic graph representing a linguistic analysis. We will ignore
the complexities of structured prediction with graphs in this book, i.e., the search algorithms
used to find optimal subgraphs in weightmatrices, but refer the interested reader to another book
in this book series, Kubler et al. (2009). We will, however, refer to core concepts in syntactic and
semantic parsing, as well as to the linguistic knowledge these models are designed to capture.

Translation models Translation models generally consist of two parts: an encoder and a de-
coder. We will not discuss these in any detail, but simply note that the two most prominent
architectures are based on recurrent and transformer architectures. A recurrent encoder-decoder
architecture was first introduced in Sutskever et al. (2014) and generally consists of a recurrent
encoder that encodes the input sentence. The decoder then generates a string from the input
encoding, predicting one token at a time (like a language model). This architecture became com-
petitive with existing translation models at the time, when combined the recurrent architecture
with attention, enabling generation from a (dynamically) weightedmixture of hidden states asso-
ciated with input time steps, rather than simply from a vector encoding the entire input sentence.
Transformer architectures can be used in encoder-decoder architectures in the same way.
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2.2 LOCALANDGLOBALEXPLANATIONS
In the rest of the book, we rely on the two-dimensional taxonomy presented in Chapter 1, dis-
tinguishing between local and global interpretability methods, as well as between forward and
backward ones. To add additional structure to the book, and to balance the chapters a bit, we
further distinguish between forward methods that focus on intermediate representations, con-
tinuous output, or discontinuous output. This is not a clear-cut, taxonomical distinction, and it
is easy to imagine methods that focus equally on all three modes of representation, but we found
it helpful to group interpretability methods this way.

This way we end up with eight categories of interpretability methods, four local and four
global ones: Recall how local methods are typically motivated by an interest in explaining the
inner workings of h leading to critical decisions (on that small set of examples of specific in-
terest), e.g., why a traveling review was flagged as fraudulent, or a newspaper article flagged as
misleading. These methods are designed to explain local decisions or decision boundaries and
are used, for example, when an insurance customer needs to know why they were estimated to
be high risk customers. The customer is not interested in the global properties of the model, only
why they were labeled high-risk, regardless of how representative they were of the underlying
population. Global methods, in contrast, are typically motivated by an interested in the global
properties of h, e.g., whether h is sparse, biased, unfair, or subscribes to particular beliefs. Such
methods are used to evaluate models, identify their vulnerabilities, estimate their sensitivity to
drift, etc. Both local and global methods can rely on backward or forward passes through the
neural networks they seek to explain. This leads to four categories, as discussed in Chapter 1.

We now further sub-divide the class of local-forward methods into local methods that
explain models locally by forward passing weights to form (a) intermediate representations, (b)
continuous output, or (c) discrete output; and global methods into global methods that explain
models globally in the same way. This, in total, leads to eight categories. The eight categories are
described in the next eight chapters, Chapters 3–10.

2.3 BACKWARDMETHODS
Backward methods rely on signals that are passed backward through neural networks, e.g., back-
propagated error gradients or relevance scores. Chapters 3 and 4 cover explanation methods that
derive explanations from training signals, typically based on derivatives of the loss function (gra-
dients) evaluating h on training data, e.g., d.`.h.xi /; yi //. Chapter 3 deals with local methods
that do not require learning of additional parameters, but provide direct interpretations of sin-
gle examples based on model gradients. We begin with simple approaches that rely on vanilla
gradients to construct saliency maps and proceed with more sophisticated techniques, including
integrated gradients (Mudrakarta et al., 2018; Sundararajan et al., 2017), layer-wise relevance
propagation (Bach et al., 2015), DeepLIFT (Shrikumar et al., 2017), deep Taylor decompo-
sition (Montavon et al., 2017), as well as their applications in NLP. In Chapter 4, we then
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proceed with methods that rely on training signals (gradients or resulting weight magnitudes)
to extract smaller, approximate characterizations of models. Most of these methods require addi-
tional training on a representative sample of data, e.g., lottery tickets (Frankle and Carbin, 2019;
Movva and Zhao, 2020) and will either modify or extend the model parameters w associated
with h.

2.4 FORWARDEXPLAININGBY INTERMEDIATE
REPRESENTATIONS

For brevity, we simply refer to explanations by forward passes to form intermediate representa-
tions as explanations by or of intermediate representations. Some architectures rely on intermedi-
ate representations during inference that can also be the object of explanations. One example of
this is gates in recurrent architectures. Gates were, for example, used to explain model decisions
in Lakretz et al. (2019). More recently, many researchers have explored attention in recurrent
and transformer architectures. This is today one of the most popular approaches to explaining
neural network decisions. Most of this work focuses on directly explaining model decisions on
specific data points (local decisions), without training, but there is also a significant body of work
on using additional training to characterize the global, structural properties of attention heads
in trained models (Ravishankar et al., 2021). In Chapter 5, we discuss the following local ex-
plainability methods: gates (Lakretz et al., 2019), attention (Rei and Søgaard, 2018), attention
flow (Abnar and Zuidema, 2020), etc.; in Chapter 6, we discuss global explainability methods
for intermediate representations, including attention head pruning (Voita et al., 2019), attention
factor analysis (Kobayashi et al., 2020), syntactic decoding of attention heads Ravishankar et al.
(2021), attention head manipulation (Vashishth et al., 2019), etc.

In the taxonomy presented here, the least motivated distinction, in my view, is that be-
tween what I call intermediate representations and what I call training dynamics. Gates and
attention weights are really just weights, like the weights of a feed-forward layer, and in a way,
there is no obvious reason to distinguish between approaches to explainable NLP that focus
on gates and attention weights, and approaches that focus on weights and gradients in general.
However, since gates and attention weights have been a locus of research in explainable NLP,
I have introduced the distinction nevertheless, to make the representation below as coherent as
possible, and to divide the burden between the various chapters more equally.
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2.5 FORWARDEXPLAININGBYCONTINUOUS
OUTPUTS

Deep neural networks—whether they are feed-forward, recurrent, or transformer
architectures—are representation learning devices. Or, in other words, they are (in our
case, language) encoders. While they output class labels, or sequences of tags or output symbols,
they also provide vector representations of the input, which can be used for multiple purposes.
Imagine a feed-forward network accepting bag-of-word representations of documents as input,
passing information through a densely connected hidden layer of d weights, and then to a
logistic regression classifier, trained on data for a document classification task. The hidden
layer provides a d-dimensional representation that supposedly better represents the aspects of
documents relevant for the task at hand. If you throw away the classifier, we are left with a
mapping from bag-of-word representations to d-dimensional document embeddings that may
also be useful for related tasks. This observation, and the vision of all-purpose representations,
is what has driven the resurgent interest in multi-task learning with deep architectures (Baxter,
2000; Caruana, 1993; Søgaard and Goldberg, 2016).

Such embeddings can be learned for characters, words, phrases, and documents. Di-
rect interpretations of vector representations of words, for example, include using word asso-
ciation norms to query for whether nearest neighbors in vector space align with human in-
tuitions (Church and Hanks, 1989). Other work uses word analogies (Garneau et al., 2021;
Mikolov et al., 2013a) to test whether the vector space is well-structured. Chapter 7 covers the
above. Finally, Chapter 8 covers representational similarity analysis (Kriegeskorte et al., 2008),
which was originally used to analyze fMRI encodings, but has recently become a popular tech-
nique for comparing vector spaces, as well as a range of other global techniques for explaining
NLP models at the level of their representations or continuous output, including work using
clustering in the vector space to manually analyze model representations (Heylen et al., 2012;
Reif et al., 2019), probing classifiers Belinkov (2021), and concept activation strategies Kim et
al. (2018).

2.6 FORWARDEXPLAININGBYDISCRETEOUTPUTS

The architectures discussed in this book also produce discrete outputs, yi , of course, ranging
from class labels to words and to sequences of words (sentences). Some of the work on ex-
plaining architectures by looking at their (discrete) output resembles traditional error analysis.
This holds for many recent papers on challenge datasets (Liu et al., 2019; Mullenbach et al.,
2019; Richardson et al., 2013; Sun et al., 2019), for example. Here, architectures are analyzed
or explained by looking at their performance on interesting edge cases collected in carefully con-
structed test suites. Challenge datasets are examples of local explanations by discrete outputs
and are discussed in Chapter 9. Challenge datasets can be combined with surprisal studies (Et-
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tinger, 2020). Other examples covered in Chapter 9 include LIME (Ribeiro et al., 2016), causal
analysis (Alvarez-Melis and Jaakkola, 2017), and influence functions (Koh and Liang, 2017).

Chapter 10 covers global interpretations of discrete output. If the model complexity of h

prevents direct explanation by inspecting its parameters, a common technique is to first learn
a more interpretable approximation of h. For example, by learning a linear approximation of
a deep neural network, we can directly inspect the interaction of the coefficients of the linear
model and input features to (approximately2) explain the decisions of the network we learned to
approximate. I briefly review the most common ways of learning such approximations, including
uptraining (Petrov et al., 2010) and knowledge distillation (Kim and Rush, 2016). The chapter
also covers self-explained neural networks, trained with the auxiliary objective of generating
explanations (Narang et al., 2020).

2Needless to say, approximation can be very misleading at times.
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C H A P T E R 3

Local-Backward Explanations
This chapter captures explanation methods that use training signals or training dynamics to
directly explain model decisions. The explanations are direct, in the sense that they do not require
induction of additional parameters, and local, in that the explanations do not aim to generalize
across representative samples of data: each data point is explained on its own terms.

3.1 VANILLAGRADIENTS
The seminalmethodwithin this class is simply using vanilla gradients to explain amodel decision.
Early work on using gradients for explainable NLP goes (at least) back to 2014 (Denil et al.,
2014; Simonyan et al., 2014), but the method itself is even older (Leray et al., 1998).

The key intuition is to compute the gradient of the loss function or the logit of the pre-
dicted class with respect to the input embeddings given model parameters1

d.`.h.xi /; yi //

d.w/

by simply running regular gradient back-propagation without changing weights. You can do
this on a single data point (to derive an explanation) or on a validation dataset (to do feature
selection or weight pruning). Since the method works on a single data point, this is classified as
a local method that relies on training dynamics (gradients).

3.2 GUIDEDBACK-PROPAGATION
The machine learning literature is rich on small, incremental improvements over using vanilla
gradients, and I include guided back-propagation (Springenberg et al., 2015) to illustrate this.
The common idea behind using vanilla gradients and guided back-propagation is to compute
the gradient of the network’s prediction with respect to the input, holding the weights fixed.
This determines which input elements need to be changed the least to affect the prediction the
most. While using vanilla gradients relies on actual gradients, guided back-propagation only
back-propagates positive error signals, setting negative gradients to zero, reflecting the intuition
that positive gradients provide more direct explanations of model decisions. While Atanasova
et al. (2020a) evaluate guided back-propagation across a range of NLP tasks, the method was

1We cannot compute the gradient with respect to tokens, only with respect to their embeddings. We therefore must
reduce the d-dimensional gradients to a scalar value, e.g., by computing their `n norm.
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Method Year Reference

Vanilla gradients 2014 Denil et al. (2014)

Guided back-propagation 2015 Springenberg et al. (2015)

Layer-wise relevance propagation 2015 Bach et al. (2015)

Deep Taylor decomposition 2017 Montavon et al. (2017)

Integrated gradients 2017 Sundararajan et al. (2017)

DeepLift 2017 Shrikumar et al. (2017)

Figure 3.1: Methods: Local Explanations of Training Dynamics.

developed for computer vision applications of convolutional neural networks, and it is not im-
mediately obvious that guided back-propagation is motivated for standard NLP tasks.

3.3 LAYER-WISERELEVANCEPROPAGATION
Layer-wise relevance propagation replace standard back-propagation with carefully designed
back-propagation rules for relevance values. To see what this involves, let j and k be weights at
consecutive layers. The relevance propagation from all such weights k to j

Rj D
X

k

aj wjkP
j aj wjk

Rk

is the normalized product of the activation of j and the model parameter connecting j and
k, i.e., intuitively, the relative contribution of j toward making k relevant. The method back-
propagates relevance recursively from the output layer to the input layer in this way. We can
obtain sparser explanations by adding an � to the denominator in the above. A major advan-
tage of this method compared to the above is that it does not require neural activations to be
smooth or differentiable. Layer-wise relevance propagation can be seen as an instance of deep
Taylor expansion (Montavon et al., 2017), and if � D 0, it is equivalent to a restricted version of
DeepLift (Kindermans et al., 2016); both are discussed below.

Layer-wise relevance propagation is widely used in NLP. Arras et al. (2016) were first to
use it for document classification using convolutional networks. Arras et al. (2017) then used it
to explain the decisions of sentiment analysis systems based on recurrent architectures. Ding et
al. (2017) used the method for explaining recurrent architectures for neural machine translation.
Poerner et al. (2018) compared layer-wise relevance propagation to other local, gradient-based
methods for the tasks of question answering andmorpho-syntactic agreement. Arras et al. (2019)
compared layer-wise relevance propagation with vanilla gradients, integrated gradients, and oc-
clusion (Chapter 9), as well as a technique specifically developed for recurrent networks. They
argue that the variant of layer-wise relevance propagation introduced in Arras et al. (2017) is
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superior to all these other methods. Voita et al. (2019) propose using layer-wise relevance propa-
gation to identify transformer attention heads that can be pruned; see Chapter 6 for a discussion
of attention head pruning in transformer architectures. Calvillo and Crocker (2018), in contrast,
use layer-wise relevance propagation to compute corpus-wide (aggregate) word statistics and
analyze differences between different morphosyntactic and semantic word classes.

3.4 DEEPTAYLORDECOMPOSITION
Deep Taylor decomposition (Montavon et al., 2017) applies Taylor decomposition on the local
relevance functions of Rj in order to redistribute relevances to lower layers. This instantiates the
hyperparameters of layer-wise relevance propagation, including �, previously set heuristically.
The only variable is the root point x0 at which the Taylor expansion is performed. Montavon et
al. (2017) present a few methods for selecting good root points (that remove an object of interest,
but deviate only slightly from xi ). The final feature importance map is the element-wise product
between the gradient of df

dxi
, the root point x0, with f the Taylor expansion, and the difference

xi � x0. Schwarzenberg et al. (2019a) and Chefer et al. (2020) use deep Taylor decomposition
for text classification tasks.

3.5 INTEGRATEDGRADIENTS
The root points in deep Taylor decomposition can be thought of as baselines or reference points.
Integrated gradients (Mudrakarta et al., 2018; Sundararajan et al., 2017) also use neutral ref-
erence points as baselines: the method simply integrates over the data points connecting our
reference to xi . The data points are weighted by their distance to xi , putting more weight on
data points closest to the data point of interest. Specifically, the integrated gradient along a
dimension j for an input xi and a neutral reference data point x0, is

.xi � x0/ �

Z 1

˛D0

ıh.x0 C ˛.xi � x0//

ıxj
i

:

Some authors have proposed improvements to integrated gradients by considering alternative
(nonlinear) paths between x0 and xi (Jha et al., 2019).

 OpenProblem Are enhanced integrated gradients derived from alternative paths between
x0 and xi beneficial in NLP?

In NLP, integrated gradients have been used widely: it was used to explain the decisions of a
large-scale language model in Ramnath et al. (2020); Lu et al. (2020) used integrated gradients
to compute influence paths in recurrent architectures; Kobs et al. (2020) used it in the context
of paper-venue matching; and so on.
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3.6 DEEPLIFT
Deep Taylor decomposition, integrated gradients and DeepLift all consider gradients relative
to a neural reference data point or baseline vector x0. This makes the three approaches differ-
ent from using vanilla gradients or guided back-propagation, as well as from using layer-wise
relevance propagation.2 DeepLift is therefore also motivated by the observation that a a single
weight can be signaling meaningful information even in the regime where its gradient is zero.

Integrated Gradients compute the average partial derivative per feature as on the way
from the neutral reference data point to xi . DeepLIFT, in contrast, approximates this quantity
in a single step by replacing the gradient at each nonlinearity with its average value. DeepLIFT
can be shown to often be a good approximation of Integrated Gradients (Ancona et al., 2018).
DeepLIFT linearizes each node just like deep Taylor decomposition does. Unlike deep Taylor
decomposition, however, it does not constrain relevance assigned to each input feature to be
positive. Deep Taylor decomposition has several rules to identify root points; DeepLIFT selects
root points for linearization such that the sum of the feature relevances equals the difference
between the baseline output and the output for xi .

Poerner et al. (2018) compare this method to other local, gradient-based methods for
question answering and morpho-syntactic agreement. They show layer-wise relevance propaga-
tion and DeepLift to perform well across these tasks. Kim et al. (2020) use DeepLift, as well
as integrated gradients, across two tasks, namely sentiment analysis and inference, and several
neural architectures.

2Extensions of layer-wise relevance propagation, e.g., for neural networks with renormalization layers, rely on decompo-
sitions with respect to neural reference data points (Binder et al., 2016).
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C H A P T E R 4

Global-Backward Explanations
Many global explanation methods rely on the assumption that sparser models are inherently
more interpretable. Carvalho et al. (2019) distinguishes between models that are simple enough
to be comprehended holistically, and models that are more complex, but that can be decomposed
into modules that are comprehensible. Obviously, the interpretability of a model—and the value
of its explanations—is an empirical question (Jacovi and Goldberg, 2020), but it seems plausible
that sparsification can be a step toward making a model easier to understand. Previous work has
evaluated the interpretability of pruned networks through model visualization, for example.1
Lage et al. (2019) show a negative correlation between model size and interpretability, but others
have questioned whether this correlation holds in general (Freitas, 2013), and it is important
to remember that weight pruning strategies are often motivated by other concerns, including
making inference faster, and storage and memory requirements smaller (Kim and Hassan, 2020).

Other explainabilitymethods can be used to selects weights that can be pruned. Yeom et al.
(2020), for example, use layer-wise relevance propagation (Chapter 3) to select which weights
to prune. Similarly, Molchanov et al. (2019) use a method similar to deep Taylor expansion
(Chapter 3) to prune networks. Conversely, weight pruning methods and other ways of sparsi-
fying models to make them easier to interpret can also be evaluated by subsequently applying
interpretability methods to their representations.

Generally speaking, there are two flavors of pruning methods: unstructured pruning meth-
ods that prune weights one at a time, disregarding the overall structure of the network, and
structured pruning methods that prune weights in groups as defined by the neural network archi-
tecture. Attention head pruning (Chapter 6) is an example of the latter. While local methods can
be used to identify candidate weights to prune, all pruning methods are global, since they change
the set of model parameters. In addition, however, pruning methods differ in when weights
are pruned (before, during or after training), whether multiple iterations of pruning are per-
formed, and whether candidate weights are identified by raw magnitudes (Han et al., 2015),
gradients (LeCun et al., 1990), or whether they are somehow learned (Liu et al., 2020).

4.1 POST-HOCUNSTRUCTUREDPRUNING
The idea of doing weight pruning based on the magnitude or gradients of the weights after train-
ing, has been around since LeCun et al. (1990). I refer to this approach as post-hoc unstructured
weight pruning. Han et al. (2015) is a good example of this class of methods, relying on raw

1https://www.alignmentforum.org/posts/maBNBgopYxb9YZP8B/sparsity-and-interpretability-1

https://www.alignmentforum.org/posts/maBNBgopYxb9YZP8B/sparsity-and-interpretability-1
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Method Year Reference

Sparse coding 1996 Olshausen and Field (1996)

Binary networks 2015 Courbariaux et al. (2015)

Dynamic sparse training 2016 Misra et al. (2016)

Lottery tickets 2019 Frankle and Carbin (2019)

Figure 4.1: Methods: Global Explanations of Training Dynamics.

magnitudes to decide which weights should be pruned. Gordon et al. (2020) and Mao et al.
(2020) both use this method to compress language models.

Post-hoc unstructured pruning, of course, does not have to be a one-shot operation. It
is perfectly possible to imagine iterating over training and pruning steps, leading to gradually
smaller networks. Zhu and Gupta (2017), for example, add a binary weight mask for every layer,
which is updated at every training iteration. They simply mask to zero the smallest magnitude
weights at that step until some fixed sparsity level is reached.

Obviously, brute-force ablation is also a weight pruning strategy, albeit an expensive one.
Several papers have proposed using ablation to identify cells in recurrent architectures that cor-
relate with sentiment or linguistic properties (Kementchedjhieva and Lopez, 2018; Lakretz et
al., 2019; Radford et al., 2017). Shibata et al. (2020) extract subspaces of the context vectors cti

that correlate with linguistic properties.

4.2 LOTTERYTICKETS
The lottery ticket hypothesis (Frankle and Carbin, 2019) refers to the idea that we can some-
times train networks from initialisations that are 10 or 100 times smaller than the full network,
with a minimal loss in performance. The method is in its most general form: after training you
identify (using some identification method) a subset of weights that you then re-initialize (to
their original initial weights, not to new random weights); you then retrain the network omit-
ting all other weights. This adds a second perspective to our search through the loss landscape;
our search for a decent-sized valley is also a search for a subset of parameters with good initial
weights. Encouragingly, Morcos et al. (2019) and others found that these initializations are use-
ful across datasets and tasks. Several identification methods have been proposed for extracting
such tickets.

Frankle and Carbin (2019) present an iterative, unstructured pruning method that relies
on raw weight magnitudes. The method is simply referred to as iterative magnitude pruning.
The pruning is done after training, and the magnitudes are the changes in weight magnitudes
relative to the random initialization. Frankle et al. (2020) shows that iterativemagnitude pruning
succeeds in finding good sub-networks if they are stable to noise. In order to make sub-networks
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more robust, they re-initialize weights to their values at iteration k (for some small k) rather than
their values at iteration 0. This is called iterative magnitude pruning with rewinding. Rewinding
empirically performs well (Renda et al., 2020) and has also seen applications in NLP (Brix et al.,
2020). Malach et al. (2020) and Orseau et al. (2020) subsequently showed that for sufficiently
large networks, good performance can be achieved without training.

Lottery tickets have become very popular in NLP: Yu et al. (2020) successfully applied
this weight pruning technique to language modeling and machine translation with recurrent and
transformer architectures. Brix et al. (2020) also demonstrated its effectiveness for a transformer
architecture used for machine translation. Movva and Zhao (2020) did the same, and showed
that the weight pruning lead tomore interpretablemodels. Prasanna et al. (2020) presents lottery
ticket experiments for a pre-trained language model.

While lottery ticket-style weight pruning generally leads to sparser models with compet-
itive performance, recent work from outside of NLP suggests the pruned models have a down-
side: they perform comparatively worse on minority groups. Paganini (2020) evaluates the fair-
ness, i.e., the difference between the best- and worst-case groups, of lottery ticket-style weight
pruning for digit recognition problems: specifically, they retrain models for a fixed number of
iterations using global unstructured pruning. In addition, they present a meta-regression study
suggesting that underrepresented and more complex classes are most severely affected by prun-
ing procedures. See Hooker et al. (2020) for related work and similar results for face recognition.

 Open Problem Do lottery tickets increase group disparities in NLP?

Another question is whether lottery tickets have been properly baselined? Evci et al. (2021)
suggest that lottery ticket methods simply re-learn the post-hoc pruned network they derive
from (§4.1) (and that retraining does not add anything), and argue instead in favor of dynamic
sparse training.

4.3 DYNAMIC SPARSETRAINING
Post-hoc weight pruning induces a network first, then prunes it. The lottery ticket method re-
trains the network after pruning it, but would it perhaps be superior to jointly train and prune
networks? Several papers have in recent years presented variations over the idea that I here refer
to as dynamic sparse training, i.e., that idea that we can learn a binary weightmask during training,
not simply by ranking weight magnitudes or performing post-hoc relevance propagation.

Earlier work on dynamic sparse training was mostly about structured pruning: cross-stitch
networks (Misra et al., 2016) used special parameters to control sharing between pairs of layers
of deep neural networks. The parameters were called stitches, stitching together two task-specific
neural networks, but can also be thought of as masking sub-networks in a fully shared archi-
tecture. Ruder et al. (2018) used a similar approach to make recurrent multi-task learning ar-
chitectures for NLP tasks better and more sparse, but using smooth indicator functions. These
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indicator functions were called sluices and are directly interpretable. Note that since the indicator
functions are smooth, the joint architecture is differentiable in both cases.

Several unstructured pruning methods have been proposed more recently: Auto-
Prune (Xiao et al., 2019), for example, learns a binary indicator function that tells you which
individual weights can be pruned. A binary (hard) indicator function is not differentiable. The
authors use leaky ReLU activation functions to obtain their indicator functions.They show this is
superior to using so-called linear straight-through estimators (Hubara et al., 2016). Global Sparse
Momentum SGD (Ding et al., 2019) is another end-to-end unstructured pruning method. The
authors present a novel optimization method, which splits the update rule of momentum SGD
into two parts. Momentum SGD adds a coefficient that controls the fraction of gradients re-
tained in every iteration; the authors propose to use the smoothening effects of retraining gra-
dients as an accelerator to boost the passive updates. In each mini-batch, they use a first-order
Taylor decomposition to estimate which parameters can be removed withminimal change in loss.
This distinguishes active from inactive parameters: active parameters are updated using both the
actual gradients and weight decay; passive parameters are only updated with weight decay. This
drives inactive parameters toward zero. Azarian et al. (2020) use a relaxation of `0-regularization
to obtain soft masks. Instead of using a step-wise function over the uncompressed weights wjk

after subtracting a pruning threshold � , they use the sigmoid function with a temperature term
T :

vjk D wjk � sigm
�w2

jk
� �

T

�
:

Bastings et al. (2019), Paranjape et al. (2020), Martins et al. (2020), and Cao et al.
(2021) use relaxations of `0-regularization to induce sparse attention. Ramakrishnan et al. (2020)
and Csordás et al. (2021) learn differentiable masks for individual weights and subnetworks, ap-
plicable to both structured and unstructured pruning.

In NLP, the structured pruning technique in Ruder et al. (2018) has been used for
metaphor identification (Do Dinh and Gurevych, 2016), semantic tagging (Abdou et al., 2018),
generating fact checking explanations (Atanasova et al., 2020b), etc. Zhao et al. (2020) use
straight-through estimation (Hubara et al., 2016) for domain adaptation and report results on
par with fintuning.

 Open Problem Can AutoPrune or Global Sparse Momentum SGD lead to even better
performance for language model domain adaptation?

4.4 BINARYNETWORKSANDSPARSECODING
Binary weights are arguably more interpretable than floats. Courbariaux et al. (2015) and Cour-
bariaux et al. (2016) introduced the idea of learning binarized networks, i.e., with binary weights
(and activation functions). While this work (like much work on weight pruning) was mainly
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motivated by reducing storage requirements and inference time, it is relevant to discuss in the
context of global explanations of training dynamics. Binarized networks have been used for lan-
guage modeling (Liu et al., 2018) and document classification (Shridhar et al., 2020), as well as
combined with weight pruning strategies to obtain even smaller and faster models.

Sparse coding is a way of representing xi by the activation of a small set of neurons. Sparse-
ness is here measured as the average fraction of active neurons. The idea of jointly optimizing for
high sparseness and low reconstruction error has been around for a while (Olshausen and Field,
1996), and sparse coding has seen several applications in NLP, e.g., in word and sentence em-
beddings (Berend, 2017; Murphy et al., 2012; Trifonov et al., 2018). If the sparse coding relies
on neurons that correspond to human-interpretable concepts, this of course makes the sparse
codes easier to interpret (Apicella et al., 2020).
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C H A P T E R 5

Local-Forward Explanations of
Intermediate Representations

There are bolts and nuts in widely used neural networks that lend themselves easily to interpreta-
tion. In this chapter, I focus on methods to visualize or interpret gates and attention in recurrent
architectures, as well as attention in transformer architectures. In computer vision, methods have
in the same way been developed for convolutions.

5.1 GATES
Quantifying changes in hidden state dynamics is one technique for providing explanations in re-
current networks (Strobelt et al., 2017). Such explanations are at the level of continuous output
and are discussed in Chapter 7. In this chapter, I discuss explanations based on gate activations.
Gates, however, are in some sense not easily interpretable. They add parameters to neural net-
works, and introduce nonlinear computations that are hard to comprehend holistically. For this
reason, researchers have suggested using uptraining methods to interpret gated recurrent net-
works, e.g., Hou and Zhou (2020). On the other hand, gate activations have been widely used to
visualize the inner working of recurrent networks, especially in the context of synthetic (formal)
languages (Suzgun et al., 2019; Weiss et al., 2018). Lakretz et al. (2019) visualize gate dynam-
ics to show how language models encode linguistic properties Ghaeini et al. (2018) compare
visualizations of input, forget, and output gate activations with attention in natural language
inference models. Wang and Jiang (2016) used visualizations of forget gates to arrive at the
conclusion that recurrent architectures for natural language inference worked by remembering
important mismatches, useful for predicting contradictions, while forgetting matching phrases.

5.2 ATTENTION
While there have been several papers that try to use gate values as a vehicle to understand recur-
rent networks, attention (Bahdanau et al., 2015; Vaswani et al., 2017) has attracted the most—
well, attention. Even in the seminal paper of Bahdanau et al. (2015), attention was used to shed
light on the inner workings of a machine translation architecture. Subsequently, dozens of re-
searchers have used attention weights to analyze the inner workings of recurrent and transformer
architectures; see, for example, Rei and Søgaard (2018) for a comparison of gradient-based and
attention-based analyses across sentiment analysis and grammatical error correction. While the
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Method Year Reference

Gates 2016 Wang and Jiang (2016)

Attention 2015 Bahdanau et al. (2015)

2020 Abnar and Zuidema (2020)

Layer-wise attention tracing 2020 Wu et al. (2020)

Attention decoding 2018 Raganato and Tiedemann (2018)

Figure 5.1: Methods: Global Explanations of Intermediate Representations.

extent to which attention faithfully represents input token importance has been subject of de-
bate (Serrano and Smith, 2019), attention is still widely used to provide explanations (Bastings
and Filippova, 2020).

Jain and Wallace (2019) show that attention is often uncorrelated with gradient-based
saliency scores, and completely different set of attention weights often result in the same pre-
dictions. This was also shown in Serrano and Smith (2019), and Moradi et al. (2019) showed
similar results for machine translation. Pruthi et al. (2020a) explicitly showed how to manipulate
attention weights to provide deceitful explanations without hurting performance.

Vashishth et al. (2019) makes the interesting point that attention seems to be less im-
portant (and therefore less effective in providing explanations) for sequence classification tasks,
than for bi-sequence classification or sequence-to-sequence problems. Other researchers have
proposed ways to make attention more amenable for explanation. Kobayashi et al. (2020), for ex-
ample, remind us that attention is a weighted sum of transformed vectors, and that the attention
weights interact with the vector norms to produce attention. Taking this into account, attention
aligns better with salience, it seems. Mohankumar et al. (2020) modify the LSTM objective to
explicitly diversify hidden representations across time steps and show through heuristic evalua-
tions how this makes attention more predictive of input token importance. Brunner et al. (2020)
show that attention can be decomposed into a component that is independent of the output, and
propose to rely only on the remainder, which they call effective attention, for deriving explana-
tions. Attention flow (Abnar and Zuidema, 2020), which I explain next, is another attempt to
make attention more predictive of input token importance.

5.3 ATTENTIONROLL-OUTANDATTENTIONFLOW
In multi-layer transformer architectures, information about input tokens is quickly mixed, and
attention weights at different layers can therefore be unreliable if not interpreted properly. At-
tention flow and layer-wise attention training (§5.4) are methods for computing more reliable
attention weights. Abnar and Zuidema (2020) propose two different algorithms for this: atten-
tion roll-out and attention flow.
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In attention roll-out, Abnar and Zuidema (2020) compute the attention associated with

a particular position, i.e., a particular time step t at some layer l by an attention head h, Al
h.t/

, by
summing over all multiplications of edge weights along a path connecting the current position
with higher (connected) positions in the network. In attention flow, in contrast, maximum flow
values are used to represent attention.Thismeans that to compute Al

h.t/
, we rely on themaximum

path, i.e., the largest multiplication of edge weights, rather than the sum of all possible path
weights.

Both methods lead to less mixed attention weights at higher layers, i.e., more distinct
attention patterns. The authors show that roll-out and maximum flow values correlate much
better than raw attention weights—with both gradient-based methods and the effect of leaving
out input tokens on output. Attention roll-out is faster than attention flow, and the evaluations
in Abnar and Zuidema (2020) suggest that there is little reason to choose attention flow over
attention roll-out. DeRose et al. (2020) present a similar method for backward computation of
attention flow, as well as per-instance visualizations thereof.

5.4 LAYER-WISEATTENTIONTRACING

Remember (from §2.1.3 in Chapter 2) how a self-attention layer in a transformer architecture
consists of three sets (matrices) of model parameters, wq (for query vectors), wk (for key vetors),
and wv (for value vectors). This gives us three vector representations of each time step or input
token. We then calculate the attention distributed from the time step t in our input example
xi by taking the dot product of t ’s query vector and the key vector of all other time steps, and
normalizing these values to produce an attention distribution ˛. We then multiply in the value
vectors and pass the resulting vector on to the next layer.

When computing layer-wise attention we move backward. Our transformer architecture
turns an input sequence xi into a representation. The attention that contributed to this repre-
sentation can be divided back to each attention head h at position t according to the value of ˛

in this position, i.e., the attention distribution at t . The attention coming from higher layers at
head h, position t , layer l , say Al

h.t/
is the weighted sum of all AlC1

h.t 0/
, where the weight is given

by ˛h.t!t 0/. This procedure distributes attention all the way back to the input tokens.
Since computing the sum of the attention path scores is equivalent to tracking a layer-

wise redistribution of the attention weights, this approach is equivalent to doing attention roll-
out (Abnar and Zuidema, 2020).

 Observation Layer-wise attention training and attention roll-out (§6.1) are the same
method.



34 5. LOCAL-FORWARDEXPLANATIONSOF INTERMEDIATEREPRESENTATIONS

5.5 ATTENTIONDECODING
In order to see to what extent certain attention heads encode for syntactic information, Raganato
andTiedemann (2018) suggested usingmaximum spanning tree algorithms–originally proposed
for syntactic dependency parsing in McDonald et al. (2005)—to decode the best hierarchical
structures induced from the n � n dense graphs by single attention heads for sentences with n

words. Htut et al. (2019) followed up on this work, experimenting with more language models.
Ravishankar et al. (2021) decode attention flow scores (Abnar and Zuidema, 2020) instead of
attention weights and extend their analysis to multilingual language models before and after
fine-tuning with dependency parsing objectives. They show that grammatical relations are often
encoded or reflected by the same attention heads across languages, and fine-tuning makes it
easier to decode this information.
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C H A P T E R 6

Global-Forward Explanations
of Intermediate
Representations

In Chapter 5, gate activations and attention weights were referred to as intermediate representa-
tions. Global explanations at the level of such intermediate representations tend to address which
gates and attention heads are discriminative, and which are redundant and dispensable: exam-
ples would include sentences such as These gates are used to implement counting or This model relies
heavily on a single attention head. The extent to which gates or attention heads can be removed,
tells us a lot about the inner workings of a neural network.

The removal of gates or attention heads is commonly referred to as pruning. Some of
the heuristic evaluation strategies discussed in Chapter 11 involve the removal of input tokens.
The idea is simply that explanation methods that attribute relevance to input tokens, can be
evaluated in part by whether removing the input tokens predicted to be relevant, has more of
an effect on the output, than removing input tokens predicted not to be relevant. I argue the
pruning strategies discussed in this chapter can be thought of in two ways: as (a) methods for
obtaining simpler models that are more likely to be comprehended holistically, and as (b) ways
to evaluate local explainability methods, typically those based on training dynamics.

6.1 GATEPRUNING

While there is a growing literature on attention head pruning, there is not really literature on
gate pruning. Previous work on pruning recurrent neural models, at least in NLP, has not singled
out gates, but rather evaluated general weight pruning strategies (Chapter 4). See et al. (2016),
for example, use relatively simple magnitude-based weight pruning schemes in the context of
neural machine translation based on LSTM architectures, but they analyze the pruning rates of
different types of parameters, and show that gates are particularly important at the outermost
layers of their networks. Zhang and Stadie (2019) also study general GRU weight pruning and
observe that various normalization techniques are crucial to prevent too aggressive pruning of
GRU gates, in particular for the update gates wz . These techniques lead to sparse connections
being more evenly distributed across the weight matrix.
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Method Year Reference

Gate pruning 2016 See et al. (2016)

Attention head pruning 2019 Voita et al. (2019)

Figure 6.1: Methods: Global Explanations of Intermediate Representations.

 Open Problem Would gate pruning, e.g., using dynamic sparse training techniques such
as in Voita et al. (2019), lead to more interpretable recurrent architectures?

6.2 ATTENTIONHEADPRUNING
In Chapter 4, I covered standard weight pruning algorithms. Here I instead focus on the pruning
and analysis of the intermediate representations that are special to the neural networks employed
in NLP. In fact, while there has been some work on pruning gates, e.g., Dai et al. (2018) and Ri-
era et al. (2019), I focus on attention here.

Voita et al. (2019) use layer-wise relevance propagation to identify the least relevant atten-
tion heads for subsequent pruning.

Michel et al. (2019) show that we can use simple gradients (Chapter 3) to effectively
prune attention heads; Hao et al. (2021) use integrated gradients (Chapter 3) for this. These
are two-stage methods, using accumulated statistics from running local methods over samples
of data to perform global pruning. Gordon et al. (2020) study the effect of general magnitude-
based processing of language models (Chapter 4) before and after fine-tuning, but their analysis
focuses on the effect of head pruning.

Voita et al. (2019) rely on layer-wise relevance propagation (Chapter 3) to identify less rel-
evant attention heads (but do not use this method to prune the heads). As pointed out in Voita
et al. (2019), the local methods used for attention head analysis and pruning are not applied
to identify important input regions, but to compute the relevance of neurons or model compo-
nents. In fact, Voita et al. (2019) do not propagate relevance scores all the way back to the input
variables, but stop at the layer of interest. Voita et al. (2019) analyze attention heads trained for
machine translation and identify heads with different roles, such as encoding positions, gram-
matical relations, or attributing attention to rare tokens. As mentioned, they do not, however,
use the propagated relevance scores to directly prune the heads. Instead they use regularized
gates in a way similar to dynamic sparse training (Chapter 4) to learn Transformer models that
rely on fewer attention heads. Treviso and Martins (2020) use a sparsity-inducing regularizer to
learn a recurrent model with a more interpretable (because sparse) attention function.

Budhraja et al. (2020), however, question how direct the relation between the importance
of attention heads and their prunability.They show that a large fraction of the attention heads can
be randomly pruned with limited effect on accuracy, and that there is little difference between
pruning random heads and more relevant heads. There is a fundamental difference between
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the experiments reported in Budhraja et al. (2020) and the experiments reported in Michel
et al. (2019) and Hao et al. (2021): Budhraja et al. (2020) evaluate models that are fine-tuned
after attention head pruning;Michel et al. (2019) andHao et al. (2021) do not.This suggests that
gradient-based methods can identify less relevant attention heads that can be pruned without
affecting performance much, and that fine-tuning can also, perhaps unsurprisingly, compensate
for removing relevant attention heads.
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C H A P T E R 7

Local-Forward Explanations of
Continuous Output

As already discussed, neural networks are also representation learners. Transformers, for exam-
ple, can be used for classification, sequence labeling, or generation, but they also produce text
encodings, i.e., continuous output vectors, which can be used directly for a range of tasks, e.g.,
synonymy detection, word alignment, bilingual dictionary induction, sentence retrieval, docu-
ment retrieval. This chapter presents several (very different) techniques for interpreting neural
networks at the level of input encodings or continuous output vectors.

7.1 WORDASSOCIATIONNORMS
The performance improvements from using word embeddings (Turian et al., 2010) helped spark
the NLP community’s interest in representation learning. Word embeddings, as a branch of
distributional semantics (Evert, 2010), represent words in a vector space such that related words
are close. NLPmodels that take word embeddings as input, can learn to generalize across regions
of this vector space. Word association norms, i.e., psycho-linguistic studies of human word-to-
word associations, is a standard way to evaluate distributional semantics, an idea first proposed
in Church and Hanks (1989). Given human associations or human similarity or relatedness
scores, we can either compute how association strengths correlate between humans and models,
or how human associations are ranked by the word embedding models. Whether it is better to
think of correlations with word association norms as an extrinsic evaluation of language models
or an analysis or interpretation thereof, is not entirely clear to me, but such correlations have
often been used to explain or characterize the weaknesses of language models. Hartmann and
Søgaard (2018), for instance, use this technique to show that visually grounded language models
are much better at representing concrete nouns than any other parts of speech.

7.2 WORDANALOGIES
A word analogy is a quadruple of words, e.g., Berlin, Germany, Paris, and France, that stand in
a pair-wise analogous relationship. Berlin is the capital of Germany, for example; analogously,
Paris is the capital of France. This analogy works in both directions, e.g., Germany is the country
governed by the government in Berlin, just like France is the country governed by the govern-
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Method Year Reference

Word association norms 1987 Church and Hanks (1989)

Word analogies 2013 Mikolov et al. (2013a)

Time step dynamics 2017 Strobelt et al. (2017)

Figure 7.1: Methods: Local Explanations of Continuous Outputs. Direct evaluations of con-
tinuous outputs, no representative sample is required (but may be leveraged for corpus-level
statistics).

ment in Paris. Others work only in one direction. The above analogy is semantic, but researchers
have also explored morphosyntactic analogies, e.g., run is to ran, what swim is to swam.

We can query language models to see if they reflect the semantic or morphosyntactic
relations encoded by word analogies in the following way: if we take the vector representations
of Berlin, Germany, Paris, and France, and assume the analogous relationships are encoded the
same way, then the difference between the vectors for the two pairs of countries and capitals
should be the same way. In other words, we can query whether we obtain the vector for France
by subtracting the vector for Germany from the vector for Berlin and then adding the vector for
Paris, or vice versa. While it is unlikely this produces exactly the vector for France, we can ask,
alternatively, whether the vector for France is the nearest neighbor to this offset vector.

Like word association norms, word analogies can perhaps be argued to be an evaluation
of language models, but they are often used to analyze language models (Mikolov et al., 2013a).
Using the above vector offset method, researchers have analyzed to what extent language models
encode various semantic or morphosyntactic relations (Drozd et al., 2016), for example, show
that three common word embedding models encode the capital-of relation in the above example
very consistently, as well as morphosyntactic relations that pertain to inflectional morphology;
for other semantic and morphosyntactic relations, the encoding is much less consistent.

While many initial analyses using word analogies were flawed (Rogers et al., 2017), word
analogy datasets have been refined in recent work (Fournier et al., 2020; Garneau et al., 2021),
e.g., zooming in on bidirectional analogies. Analogies have also been proposed to evaluate sen-
tence encodings (Zhu and de Melo, 2020).

7.3 TIME STEPDYNAMICS
Several researchers have proposed methods for quantifying time step dynamics in recurrent neural
networks. By this they mean to refer to significant changes in activation across the time steps of
a specific input sequence. The simplest possible method for this, for example, is simply plotting
the activations (Strobelt et al., 2017), but more sophisticated methods have been proposed more
recently.
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Murdoch et al. (2018) partition the activation value of each output or hidden state in a part

that is caused by some selected token or phrase in focus, and a part that is not. The technique,
which is called contextual decomposition, is based on a linearization of the activation functions that
enables this partitioning. It is computationally expensive, though, since a forward pass has to be
run once for every time step. Kádár et al. (2017) rely on word omission scores to quantify time
step dynamics. Saphra and Lopez (2020) propose a decompositional interdependence measure
to quantify dependencies between time steps in recurrent networks. The measure is defined over
hidden state representations.
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C H A P T E R 8

Global-Forward Explanations
of Continuous Output

Neural networks produce vectors or representations. On a sample of input examples, they pro-
duce distributions of vectors. Such point clouds of vectors can also be interpreted. If we consider
two such clouds, we can quantify the extent to which they are structurally similar, for example.
Or we can learn clusters of vectors and analyze the clusters manually, or use these to compute
functions that enable us to extract influential data points for our test examples.

8.1 CORRELATIONOFREPRESENTATIONS

We can learn about properties of our models by correlation point clouds across vocabularies
or samples with baseline point clouds, e.g., external reference points. This holds not only for
word embedding models, but for any neural network with one or more hidden layers that map
individual words or sentences to vectors. For example, we can ask if humans represent words or
sentences in ways similar to how humans organize them by correlating point clouds with fMRI
signals (Abnar et al., 2019; Gauthier and Levy, 2019; Hollenstein et al., 2019; Søgaard, 2016)
(glossing over the non-trivial relation between fMRI and how humans organize information),
we can correlate representations across models or layers (Abdou et al., 2019), or we can see how
similar point clouds are across languages (Vulić et al., 2020).

One simple method for quantifying the similarity of point clouds is to see whether we can
learn a linear regression from one to the other (Søgaard, 2016). This amounts to learning a linear
transformation from one vector space into the other in a way similar to how linear projections
are learned for cross-lingual embeddings (Mikolov et al., 2013a). See Søgaard et al. (2019) for
a book-length discussion of linear projections and related methods, including both supervised
and unsupervised ones. Other methods introduce fewer parameters and more directly measure
the extent to which two point clouds are structurally similar.

Abnar et al. (2019) andAbdou et al. (2019), for example, both use amethod for correlating
vector distributions called representational similarity analysis, originally proposed in Kriegeskorte
et al. (2008): this method computes the (nonparametric) correlation coefficient across the pair-
wise distances in the aligned point clouds. Intuitively, if two sentences are represented similarly
in your neural network, this method can be used to quantify the extent to which, in general,
these two sentences are also similar in other vector space, e.g., a dataset of fMRI recordings.
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Method Year Reference

Correlation of representations 2013 Mikolov et al. (2013a)

Clustering 2017 Trost and Klakow (2017)

2017 Belinkov et al. (2017)

Concept activation 2018 Kim et al. (2018)

2018 Yeh et al. (2018)

Figure 8.1: Methods: Global Explanations of Continuous Outputs. All methods induce
parameters—from correlation coefficients to complex task-specific models—based on contin-
uous representations from the underlying model.

8.2 CLUSTERING
Several of the concept activation approaches discussed below rely on clustering as an integral step
in deriving explanations, but there is also considerable work on simply clustering the continuous
output of NLP models: Trost and Klakow (2017), for example, use clostering to analyze word
embeddings. Aharoni and Goldberg (2020), for example, use clustering to see how large-scale
language models encode textual domains. Yenicelik et al. (2020) use clustering to see how large-
scale language models encode for semantics. Hiebert et al. (2018) cluster time steps by output
gate activations to analyze how recurrent networks generalize.

8.3 PROBINGCLASSIFIERS
Probing classifiers (Ettinger et al., 2016) learn to classify continuous output vectors from
supervision—rather than how to cluster them in the absence of supervision. The core intuition
behind probing is if we can learn simple (typically linear) classifiers that predict properties with
high accuracy (say, > 0:9) from the representations of a neural network, then this neural network
has, in a sense, learned this property. In recent years there has been a lot of studies using probing
classifiers to see whether language models encode various properties, both in NLP and related
fields, such as computer vision (Alain and Bengio, 2017). Belinkov et al. (2017), for example,
evaluated to what extent morphosyntactic and semantic information was reflected in machine
translation models. Tenney et al. (2019) is perhaps an even better example of this line of work,
using linear classifiers to show how a particular large-scale language model provides very useful
representations for a wide range of NLP tasks. Jawahar et al. (2019) present a very similar study,
and Ravishankar et al. (2019) extend such studies to multiple languages.

The extent to which the success of probing classifiers, say in discriminating between sen-
tences with and without relative clauses, says something about the extent to which they encode
for relative clauses, has been discussed. Kunz and Kuhlmann (2020), for example, suggest that
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the success of probing classifiers trained on large-scale language models is likely a side-effect of
their capacity for representing and memorizing contexts.

Belinkov (2021) discuss probing classifiers and their limitations at length, including the
importance of properly baselining probing classifiers to put their performance into perspective.
If probing classifiers achieve good performance on random representations, the fact that they
also achieve good performance on the representations from your neural network, does not tell
you much about what your neural network has learned. See Hewitt and Liang (2019) for work
on baselining the performance of probing classifiers. It remains an open problem, however, how
to best probe for linguistic properties (Elazar et al., 2021; Pimentel et al., 2020).

 Open Problem What is the most reliable method for probing for linguistic properties?

8.4 CONCEPTACTIVATION
The idea behind concept activation is to generalize across examples by pointing to abstract con-
cepts that describe these examples. As such, it is related to clustering, except that the methods
described here require supervision and are based on deriving a loss from discrete output pre-
dictions of auxiliary classifiers. Since these are auxiliary classifiers relying on the representations
(continuous output) of our models, we classify these as global explanations of continuous output.
Concept activation are even more similar to the probing classifiers we just discussed. In fact, you
can think of concept activation as training a set of linear of probing classifiers to distinguish
concepts, and a way to attribute relevance to a set of concepts based on these classifiers.

Kim et al. (2018) present an approach to interpreting continuous model output based on
so-called concept activation vectors. Concept activation vectors are simply vectors in the direc-
tion of the examples associated with particular concepts. They are obtained by training a linear
classifier between the examples associated with a concept and random counter examples and
then taking the vector that is orthogonal to the decision boundary of the linear classifier. The
probability of a class given a vector (the directionality of the derivative of the logit layer) now
intuitively means how would the probability of the class would change if I make the picture a
little more like the concept or a little like the concept. While this idea makes intuitive sense
in continuous input spaces, it is perhaps a little less intuitive in the context of text, where the
concept activation vectors would enable us to ask questions such as whether the probability of
positive sentiment by making a review more or less technical, for example.

Goyal et al. (2020) build directly on Kim et al. (2018), but argue their original proposal
was prone to confounding, i.e., unfaithful (see Chapter 12 for a discussion of faithfulness). In
response, they present a causal effect model that approximately learns the effect of the pres-
ence or absence of concepts by using a variational autoencoder. Auto-encoders have been used
in the context of both local and global methods to make them less sensitive to confounding.
See Alvarez-Melis and Jaakkola (2017) and Shankaranarayana and Runje (2019) for a similar
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extensions of LIME, for example. See Moraffah et al. (2020) for an overview of this line of
work.

Ghorbani et al. (2019) present an approach to concept activation for computer vision that,
while similar to Kim et al. (2018), does not require any supervision. Instead of supervision, they
rely on multi-level segmentation of the input images. They then cluster the segments and return
these as concept vectors in the same way as was done in Kim et al. (2018).

Koh et al. (2020) present a more radical model in which the predicted concepts are used
to make the final class prediction. In their architecture, a concept distribution is first predicted,
which is fed into a linear classifier mapping these distributions onto the output space.

While concept activation methods are technically very similar to probing classifiers, they
have not seen widespread adoption in the NLP community. In part, this may be because many
concepts of relevance to NLP tasks are hard to think of in a continuous way; for example, what
would it mean to be more or less a relative clause? Schwarzenberg et al. (2019b), though, present
a method for probing language models based on concept activations, and Bashier et al. (2020)
uses unsupervised concept activation vectors in the context of document classification. I leave it
as an open problem what other applications of concept activations there might be in NLP.

 Open Problem What are meaningful applications of concept activations in NLP?

8.5 INFLUENTIALEXAMPLES
Chapter 9 discusses methods for generating influential training data points for test examples,
providing explanations for model decisions in terms of training instances. Popular methods in-
clude influence sketching (Wojnowicz et al., 2016) and influence functions (Koh and Liang, 2017).
These local methods are very slow, however. Yeh et al. (2018) presents a faster alternative to
detecting influential examples, compared to influence sketching and influence functions. They
train neural networks with `2 regularization and show how this guarantees the output can be
approximated well by a linear decomposition into training data point activations. Their method
is global, since the decomposition is learned once and for all.

Pruthi et al. (2020b) present another global method for computing influential examples.
Instead of a linear decomposition, they rely on training checkpoints and a held-out data set
that enables them to correlate training examples with loss changes on unseen examples. Unlike
the method in Yeh et al. (2018), their method is not fully post-hoc, since it relies on extracting
checkpoints of the training procedure. Both approaches rely on the outermost softmax layers of
the explained models.

The relation between global methods for finding influential examples and concept activa-
tion methods has to the best of my knowledge not previously been discussed, but it seems to me
the two subclasses are non-trivially, yet intimately, related: explaining with influential examples
and explaining with concepts seem to form two points on a continuum: the approach to con-



8.5. INFLUENTIALEXAMPLES 47
cept activation in Ghorbani et al. (2019), for example, uses clusters of segments (found in the
training data) as concepts and learn concept activation vectors by training a linear classifier for
each cluster. If in Yeh et al. (2018), we think of each training example as a cluster or concept
activation vector, how then do these two approaches relate?

 Open Problem What is the exact relationship between methods for generating concept
activation vectors and methods for generating influential examples?
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C H A P T E R 9

Local-Forward Explanations of
Discrete Output

Say you realize your language model behaves oddly in the context of a sentence that begins
with the character +. You may hypothesize that the language model is generally sensitive to
mathematical symbols appearing in first positions in input sentences. To test this, what would
you do? One obvious thing to do is to sample n sentences and design a test data set of .k C 1/ � n

input examples, k examples for each of the original sentences. The number k would refer to a
set of predefined mathematical symbols. If the sentence John loves Mary was sampled, the test
data set would also include + John loves Mary, � John loves Mary, etc. The model’s performance
on this data set and its k subsets would enable you to determine if your hypothesis is plausible
or implausible. What you have produced, is sometimes called a challenge dataset in the NLP
literature, and it illustrates how we can explain model decisions based on the model’s discrete
output across a set of local (non-representative) input examples.

9.1 CHALLENGEDATASETS

Challenge datasets are collections of particularly hard or interesting examples, designed to test
models for their ability to cope with specific phenomena. The phenomena of interest obviously
differ across NLP tasks.

In the context of language models, Goldberg (2019), for example, examines the ability
of a particular language model to capture subject-verb agreement phenomena in English. van
Schijndel et al. (2019) discuss the performance of a range of language models across a suite of
different linguistic constructions in English. Warstadt et al. (2019), in contrast, design fill-in-
the-gap examples for the phenomenon of negative polarity item licensing and evaluate language
models across carefully designed examples highlighting various aspects of this phenomenon, also.
Chaves (2020) uses surprisal studies to see whether English language models based on recurrent
architectures learn about filler-gap constructions. The challenge datasets designed for language
models are sometimes referred to as fill-in-the-gap probes (Rogers et al., 2020). See Hu et al.
(2020) for a nice survey of existing challenge datasets for English language modeling and a
benchmarking of commonly used language models.

For question answering and natural language inference, for example, challenge datasets
have focused on examples that violate specific heuristics that models are likely to learn (McCoy
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Method Year Reference

Challenge datasets 2018 Naik et al. (2018)

Local uptraining 2016 Ribeiro et al. (2016)

2017 Koh and Liang (2017)

Figure 9.1: Methods: Local Explanations of Discrete Outputs. These methods directly interpret
discrete output on particular datasets. Somemethods (e.g., LIME) induce additional parameters,
but from perturbations rather than representative samples.

et al., 2019), numerical reasoning (Dua et al., 2019; Naik et al., 2018), or negation (Gururangan
et al., 2018; Naik et al., 2018).

While most challenge datasets are typically designed to evaluate task-specificNLPmodels
across a few or maybe a dozen challenging phenomena, González et al. (2020) instead presents
a multi-task (and multi-lingual) challenge dataset focusing instead on a single linguistic phe-
nomenon, namely reflexive pronouns. Ribeiro et al. (2020) present a comprehensive guide for
constructing challenge datasets for NLP tasks.

9.2 LOCALUPTRAINING
In the next chapter (§10.1), I discuss a strategy for learning simple approximations of neural net-
works called uptraining (Petrov et al., 2010). Uptraining refers to the idea of training a simple
model on the output of the more complex model h to obtain enough supervision to learn a good
approximation of h. In this section, I discuss a very influential local explanation method called
LIME (Ribeiro et al., 2016) and its offspring. As I will show, these methods perform uptraining
on perturbations of a single example. This approximates the decision boundary locally, but is dif-
ferent from standard uptraining in that it does not rely on i.i.d. samples. In Chapter 12, I argue
that these methods, along with all other local methods, cannot, strictly speaking, be unfaithful.
The random sampling of perturbations in these methods is really just a hack to approximate the
analytical solution.

The Local Model-agnostic Explanations (LIME) method (Ribeiro et al., 2016) has be-
come one of the most widely used post-hoc model interpretability methods in NLP. LIME aims
to interpret model predictions by locally approximating a model’s decision boundary around an
individual prediction. This is done by training a linear classifier on perturbations of this example.
Since the units of attribution in text are words, the perturbations are obtained by randomly re-
moving words. When training the linear classifier, say a logistic regression model, the examples
are weighted by the inverse of their distance to the original input example.

Several weaknesses of LIME have been identified in the literature: LIME is lin-
ear (Bramhall et al., 2020), unstable (Elshawi et al., 2019), and very sensitive to the width of
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the kernel used to assign weights to input example perturbations (Kopper, 2019; Vlassopou-
los, 2019), an increasing number of features also increases weight instability (Gruber, 2019),
and Vlassopoulos (2019) argues that with sparse data, sampling is insufficient. Laugel et al.
(2018) argues the specific sampling technique is suboptimal. Moreover, LIME is computation-
ally expensive. Nevertheless, LIME has remained extremely popular (Dieber and Kirrane, 2020).

Poerner et al. (2018), in addition to comparing gradient-based methods, introduce an
extension of LIME for recurrent architectures, based on sampling substrings rather than words.
Bramhall et al. (2020) extend LIME by fitting quadractic functions rather than linear functions
to the local decision boundary. Alvarez-Melis and Jaakkola (2017) and Shankaranarayana and
Runje (2019) have present causal extensions of LIME relying on variational autoencoders.

9.3 INFLUENTIALEXAMPLES
Explanations do not have to be in the form of input token importance attributions (or, more
generally, in the form of extractive or abstractive rationales; see Chapter 11), or of model visual-
izations. If you ask me why I think a sentence s is ungrammatical, I can either point to the words
that I think make it ungrammatical (in context), or I can point to the examples that taught me
examples such as s are ungrammatical. Methods for finding such influential examples are mostly
local explanations of discrete output. That is, they find the examples that were influential for an
individual model decision, and they do so by correlating training examples with discrete output.

The simplest way to see the influence of a training example is to train without it. This form
of leave-one-out training is conceptually simple and simple to implement, but unfortunately, it
is extremely expensive for large training data sets. The effect of deleting a training example xi

is sometimes referred to as Cook’s distance; this is calculated as the sum of all changes (over a
population or a sample thereof ) induced by removing xi .

Wojnowicz et al. (2016) came up with an approximation of Cook’s distance that worked
for large-scale regression datasets, by injecting random projections. Koh and Liang (2017) pro-
pose a few tricks to efficiently compute influence functions, a technique from robust statistics
for estimating how model parameter are affected by upweighting a training point. Exact compu-
tation of influence functions relies on computing the inverse Hessian matrix, which is expensive,
but Koh and Liang (2017) instead propose to compute Hessian vector products instead of ex-
plicitly computing the entire matrix. Guo et al. (2020) and Han et al. (2020) present additional
hacks for faster computation of influence function, as well as application to large-scale language
models. Basu et al. (2020) introduce a way of computing second order influence functions for
detecting influential subsets of examples.

Influence sketching and influence functions are both local explanation method in that
they compute explanations for individual data points. This makes them slow. Global methods for
detecting influential examples (for test data points) have been proposed, though, and I covered
some of these in Chapter 8.
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C H A P T E R 10

Global-Forward Explanations
of Discrete Output

Other approaches to explaining the decisions of h are motivated by the simple idea of learning
an approximation of h0 that is so simple that it can be comprehended holistically. Obviously,
the faithfulness of h0 depends on the extent to which it agrees with h, e.g., its loss relative to
h, `.h.xi /; h0.xi //. Some approaches explicitly minimize this loss through a process, sometimes
referred to as uptraining of h0 (Petrov et al., 2010). Related work trains a model h0 to predict the
performance of h based on data set characteristics. The approximation h0 does not provide local
explanations in this case, but a high-level error analysis of h known as a meta-analysis.

10.1 UPTRAINING

The core idea behind the post-hoc interpretability technique of uptraining is simple: apply your
final hypothesis h to (a large set of ) unlabeled data U , and fit a model h0 from a simpler (“inher-
ently interpretable”) hypothesis class to the predictions of h. Since U can be much larger than
the original training data D, this increases the chance that we can find a reasonable approxima-
tion of h within our simpler hypothesis class. If the hypothesis class is sufficiently simple, it may
be possible to holistically comprehend h0, e.g., by model visualization.

Ba and Caruana (2014) use this technique to learn shallow neural networks from deeper
ones. Frosst and Hinton (2017) learn a decision tree from the predictions of a neural network
on unlabeled data. In NLP, the idea goes at least back to Petrov et al. (2010). In more recent
literature, uptraining has become extremely popular under the banner of knowledge distillation:
Kim and Rush (2016), for example, uptrains word-level and sequence-level models for machine
translation and combine this with weight pruning. Tang et al. (2019) uptrains a simple recurrent
language model by training on examples sampled from much larger transformer-based language
models. Wu et al. (2020), also the context of machine translation, explore doing uptraining with
supervision from multiple layers of the original model.

Others have explored jointly training the simple and the complex models. Li et al. (2020),
for example, present a method where knowledge is alternately transferred between decision trees
and neural networks. A similar idea was explored in Wang et al. (2018). Lan et al. (2018) takes
things one step further, learning a multi-branch network of simple models and using the ensem-
ble as a teacher, but note how this is no longer an explanation method, since there is no complex
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Method Year Reference

Uptraining 2010 Petrov et al. (2010)

Meta-analysis 2012 Kolachina et al. (2012)

Downstream evaluation 2020 Fu et al. (2020)

Figure 10.1: Methods: Global Explanations of Discrete Outputs. Multi-task or multi-domain
datasets can be used to say something about how well a model generalizes; meta-analysis goes
beyond this and analyzes what in a dataset is predictive of model error.

model knowledge distillation is used to simplify. Conversely, the ensembles are created from the
simpler models.

10.2 META-ANALYSIS
The idea of meta-analysis is to induce a regressor to predict the performance of our model on
different batches or data sets. The data sets are typically featurized along relevant data set charac-
teristics, but this can also include the occurrence of concepts or overlaps with clusters (Chapter 8),
for example. It is common to use simple linear regression, but `1-regularized regression (lasso
regression) or group lasso regression lead to sparser and more interpretable explanations.

Meta-analysis has been used to analyze a wide range of neural NLP architectures and
models, including machine translation architectures and their sensitivity to the amount of train-
ing data available (Kolachina et al., 2012); multi-task recurrent networks and their sensitivity to
the characteristics of the task-specific data (Bingel and Søgaard, 2017); cross-lingual zero-shot
applications of models and their sensitivity to cross-lingual differences (Lauscher et al., 2020);
etc.

10.3 DOWNSTREAMEVALUATION
Papers on explainableNLP are oftenmotivated by a need to go beyondmere performance figures,
say an F1 score on a common benchmark. We not only want to know how good models are,
but what they are good at, where they fail, and how they can be improved. However, while a
single performance figure is not particularly informative, a large set of such numbers may be. In
the limit, all practically different models can be distinguished by their performance across data
sets, and performance figures across a decent-sized collection of data sets often tell us which
models are likely to have picked up on some of the same things (Zhou et al., 2020). We can
also compare the outputs of models to each other, giving us even more information about how
models relate (Fu et al., 2020). Using multiple benchmarks also provide much better grounds
for testing whether a model is significantly better than another (Søgaard et al., 2014).
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C H A P T E R 11

Evaluating Explanations
Model performance metrics are functions from pairs of instances of data structures to real num-
bers, typically in [0,1].These functions thus abstract away from themodels themselves.The same
holds for the metrics we use to evaluate explanations. The metrics are, in other words, orthog-
onal to the taxonomy presented here. In this chapter, we therefore introduce a classification of
explanations (not methods), distinguishing, for example, explanations in terms of input subseg-
ments (so-called extractive rationales), e.g., from LIME, and explanations in terms of training
instances, e.g., from influence functions. Since the explanation classes are somewhat informal
(compared to taxonomy presented here), I simply refer to them as flavors.

We subsequently discuss the different evaluation methodologies that have been proposed.
I follow Doshi-Velez and Kim (2017) in making a three-way distinction: while they talk about
functionally grounded, human-grounded, and application-grounded evaluations, I will discuss
using heuristics, human annotations, and human experiments. Functionally, grounded evalu-
ations correspond well to the notion of heuristic evaluations, discussed here, but while using
human annotations count as human-grounded in Doshi-Velez and Kim (2017), so do some of
our human experiments. The category of human experiments is, in other words, a union of a
subset of human-grounded evaluations and (all of ) application grounded evaluations. Since lin-
guistic annotations occupy a special role in NLP, traditionally, I believe this three-way divide is
more useful in our context than the one proposed in Doshi-Velez and Kim (2017).

11.1 FLAVORSOFEXPLANATIONS
First, however, it is important to consider the syntax of explanations. In computer vision, expla-
nations often take the form of saliency maps. Similarly, explanations in NLP are often in the
form of a mark-up of the input example highlighting important regions (text spans) or words.
I follow DeYoung et al. (2020) and call such explanations extractive rationales and distinguish
them from three other types of explanations: abstractive rationales, training instances, andmodel
visualizations.1

1Jacovi and Goldberg (2021) criticize the use of the term rationale and instead propose highlighting, which they find
less misleading. I fully agree that the term rationale is suggestive, but so is most words used in this book. Consider the title:
Explainable Natural Language Processing. The word explainable is used by English language users in a variety of contexts,
referring to very different levels of knowledge; the word natural is, when you think about it, odd in the context of a book that
is mostly written language; even the word language is a bit of stretch in the context of disembodied, finite samples of sentences
or paragraphs, taken from narrow textual domains; and what is meant by processing is certainly different from what is meant
by the same term in the psychological literature.
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Extractive Rationales Extractive rationales are similar to saliency maps in computer vision.
They highlight regions in our input examples xi that are deemed particular relevant for the pre-
diction. Such rationales are produced, for example, when passing vanilla gradients or attention
weights back to the input layer (Rei and Søgaard, 2018).

Formally, extractive rationales can either be a subset or substring of the input, or it can be
an assignment of weights (relevance attribution scores) to words or phrases.The output of LIME,
for example, is a word-level relevance scoring. In human evaluations, it is common, however, to
only highlight the top-k (3, 5, maybe 10) most relevant words; these words are then either
marked in the same way, reflecting equal importance, or in a graded way, e.g., using heatmap-
like coloring, to reflect estimated degrees of importance (Lai and Tan, 2019). Providing human
with sparse rationales, by limiting the highlighting to the top-k most relevant words, is often
motivated by the assumption that rationales need to be simple to be comprehensible (Lei et al.,
2016).

Murdoch et al. (2018) discuss evaluation of recurrent models and go beyond just using
words as rationales, arguing that previous attribution methods treat recurrent models as if they
were bag-of-words models, and ignore the exact thing they are designed to capture, namely
compositionality. They instead assign importance scores to phrases by contextual decomposition
(Chapter 7). Similarly, Chen et al. (2020) also go beyond just presenting highlighted words,
and represent extractive rationales in the form of highlighted tree structures to visualize the
effects of composition. From a linguistic perspective, there is a clear relationship between such
explanations, based on syntax, and explanations based on semantic concepts. Since the units of
surface syntax correspond to substrings of our input examples, I think of the above explanations
as extractive rationales, whereas explanations in terms of semantic concepts are discussed below,
as abstractive rationales:

Abstractive Rationales In the NLP literature, abstractive rationales typically consist of con-
cepts (Bashier et al., 2020; Jeblee et al., 2018), logical or linguistic structures (Hu et al., 2016),
or human-readable free text (Forrest et al., 2018; Marasović et al., 2020). Free-text explanations
have the advantage that they are accessible to anyone, but explanations presented in a formal lan-
guage are unambiguous, typically easier to generate, and often more faithful. Sen et al. (2020),
who present a neural rule-based approach to sentence classification, argue that first-order logic
rules are also easily interpretable, and are sufficiently expressive to capture complex explanations.

The free-text explanations in Marasović et al. (2020) and the first order logic rules in Sen
et al. (2020) are simply lists of propositions. Reiter (2019) argues this is insufficient. He lists four
challenges of providing useful free-text explanations: human rationales are normally written with
a purpose in mind. The quality of the explanation is to a large extent determined by whether it
enables readers to grasp or follow the explanation with respect to its purpose. Human rationales
are also written for particular audiences. Moreover, explanations are often more than just lists
of facts; they often exhibit narrative and argumentative structure. Finally, human rationales ex-
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Explanations Form Evaluation Strategies

Extractive rationales highlights, heatmaps heuristics, annotation, in-the-loop

Abstractive rationales concepts, rules, text annotation, in-the-loop

Training instances examples heuristics

Model visualizations pictures in-the-loop

Figure 11.1: Flavors of explanations.

press varying degrees of certainty. Reiter (2019) argues that all of these four characteristics are
challenging to integrate in machine-generated free-text rationales.

Training Instances Explanations can also be a set or a ranked list of training examples: the
decision to classify a review as positive, can be explained in terms of the words and phrases
used in that review; but also in terms of the documents that led the learned model to induce
positive polarity from these patterns. Exactly computing which training instances were most
influential is computationally expensive, so sometimes explanations in terms of training instances
sometimes rely on a subset of data, e.g., prototypical training instances or the training instances
that are closest to the current example in an off-line text similarity space. Training instances are
generally evaluated using heuristics. Feng and Boyd-Graber (2019) show that explanations in
terms of training instances can complement extractive rationales in a real-world use case.

Model Visualizations Very few deep neural models can be comprehended holistically if
printed on a piece of paper; most linear models or decision trees can be difficult to grasp this way.
Nevertheless it sometimes make sense to visualize models or model components, or approxima-
tions thereof (say, through uptraining or knowledge distillation, both described in Chapter 10).

Human Explanations While we, as humans, often find it hard to provide a rationale for
our impulses and judgments (Nisbett and Wilson, 1977), we often ask for and expect there
are rationales behind the decisions of others. Such rationales can take the form of pointing to
parts of the input: think, for example, of a school teacher highlighting grammatical errors in
a student essay as a rationale for their grading of it. They can also take the form of logic rules,
e.g., when a philosopher rejects their colleague’s thesis; they can amount to mere reference
to abstract concepts, e.g, classifying a novel as romantic because it is about love; or they can
take the form of a full-fledged narrative (Reiter, 2019). The only one of the above forms of
explanation that humans generally do not use is model visualization: we generally do not draw
visualizations of our brains or approximations thereof as explanations of our decisions.

I list of the different flavors of explanation in Figure 11.1. Each flavor is associated with dif-
ferent evaluation strategies. I discuss heuristic evaluations (§11.2), evaluations against human
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gold-standard annotations (§11.3), as well as various forms of live experiments with human
participants (§11.4), below.

11.2 HEURISTICS
Transformations Some researchers have shown that some interpretability methods have un-
wanted properties, e.g., that they are easily fooled. Kindermans et al. (2017), for example, show
that gradient-based functions (Chapter 9) are sensitive to constant shifts that do not affect model
output. Shifts are simple transformations of existing datasets. Zhang et al. (2019) also discuss
the vulnerability of gradient-based relevance attribution, but use adversarial training to learn
such transformations. Similar observations have been made about other explainability meth-
ods: Alvarez-Melis and Jaakkola (2018), for example, discuss the sensitivity of LRP, Integrated
Gradients, and LIME to Gaussian noise injection; Dombrowski et al. (2019) show how LRP,
Integrated Gradients and several other algorithms are also sensitive to adversarial attacks.

SyntheticDatasets It is often useful to explore the limits of explainability methods by creating
synthetic datasets. All methods that provide explanations in the form of input mark-up (saliency
maps) have a major limitation: they can only explain model decisions if some input regions are
more related to the predicted class than others. Think, for example, of a recurrent architecture
(e.g., an LSTM network) successfully trained to distinguish strings of odd length from strings of
equal length. How would a gradient-based method explain any decision made by such a model,
for example? The assumption that some input regions are more important than others, is called
the linearity assumption in Jacovi and Goldberg (2020). This assumption is not discussed in
their work, but the above example proves the linearity assumption is not always true.

 OpenProblem How pervasive are violations of the linearity assumption in real-life NLP
applications?

The idea of using synthetic datasets is also very related to the idea of using white-box models to
evaluate explanations: if we know what happens inside a model, we can check if the explanations
reflect this or not. That is, if we either hand-build a model that we can comprehend holistically,
or design a synthetic dataset that is guaranteed to induce such a model, we can evaluate whether
explainability methods produce rationales that explain their inner workings. Hao (2020), for
example, uses white-box LSTMs to evaluate attribution methods.

Metrics for Extractive Rationales A natural notion of the goodness of an extractive
rationale—e.g., these k words are most important—is to quantify the degree to which it cap-
tures how h.xi / changes in response to perturbations of xi that, based on such a rationale, would
remove some or all of the k most important words.

Ancona et al. (2018) present a heuristic metric called sensitivity-n that measure the corre-
lation between a feature subset’s estimated importance and the observed change in output when
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setting these features to 0. In an NLP context, this could, for example, be the correlation be-
tween the relevance attribution to a subset of k words and the observed change in output after
removing those k words from the input.

Yeh et al. (2019) build on this work to propose a heuristic measure called explanation
infidelity: instead of using the original input as baseline, they use random perturbations of the
input; and they replace the correlation test with a proper loss function (mean square error). In
an NLP context, this, for example, could be the cross-entropy between the model output after
removing the above k words and the expected model output after removing k words randomly.

Adebayo et al. (2018) present two heuristics for evaluating extractive rationales. The so-
called model parameter randomization test compares the extractive rationales of a trained model
to the extractive rationales of a randomly initialized network. If the extractive rationales depend
on the learned parameters, we would expect the rationales to differ. If the saliency method de-
pends on the learned parameters of the model, we should expect its output to differ substantially
between the two cases. The other heuristic, the so-called data randomization test, compares the
rationales of the learned model with the rationales of a model trained on the same training
dataset, but with randomly permuted labels (Bahdanau et al., 2015). Again, if the rationales are
sensitive to input-output relations, the rationales of the two models should differ.

Note how the heuristic in Adebayo et al. (2018) differs from explanation infidelity in
comparing the rationales of two models (rather than the output of one model across two exam-
ples). While explanation infidelity is perhaps more discriminatory, the methods in Adebayo et
al. (2018) are perhaps more obviously adequate: if the rationales are not different under model
parameter or data randomization, something is clearly wrong.

Carton et al. (2020) show, however, that human rationales are generally not in agreement
with the heuristics used to evaluate relevance attribution in interpretability methods.

Metrics for Abstractive Rationales Camburu et al. (2018) and Marasović et al. (2020) ar-
gue that standard n-gram-based automated metrics for text generation tasks are not sufficient
for evaluating the plausibility of free-text abstractive rationales, since several rationales are typ-
ically valid without being paraphrases of one another. They instead rely on human judgments.
Narang et al. (2020), however, report both human judgments and a standard metric from the
machine translation literature. Abstractive rationales in the form of concepts or logic rules are
more amenable for automated metrics, but human evaluations seem more common. Sen et al.
(2020), for example, evaluate their logic rules in a human-in-the-loop experiment.

 Open Problem Can we design—or learn—robust automated metrics for abstractive
rationales?

Metrics for Training Instances Hanawa et al. (2020) discuss various heuristic metrics for
evaluation explanations in terms of training instances: (a) the identical instance test, (b) the
identical class test, (c) the top-k identical class test, and (d) the identical subclass test. The first
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two are sanity checks: (a) simply checks whether the most influential training data point xj for
a training data point xi is xi itself (i D j ). (b) checks whether the most influential training data
point xj for a test data point xi is of the same class (yi D yj ). Next, (c) requires the same to hold
true for the k most relevant training data points. Finally, (d) is only relevant for hierarchical
classification problems and further stipulates that xj and xi should also share their subclasses.
There is no evaluation of whether these heuristics are valid and capture human intuitions about
relevance. It is not immediately clear why training instances should always be themost influential
data points for their own classification by neural networks. Depending on how the network was
initialized, some training instances have maybe never led to updates, but even if we abstract away
from the initialization, some training instances may simply be redundant. Basu et al. (2021)
use retrained networks, leaving out training data points, to obtain ground truths for evaluating
influence functions. It is an open problem whether unbiased heuristics exist that approximate
exact influence across initializations.

 Open Problem Can we design heuristics that estimate true influence across random
initializations of our networks?

11.3 HUMANANNOTATIONS
We briefly review some of the human annotations for evaluating rationales, but provide a more
extensive list of resources in §13.2. Søgaard et al. (2013) present human annotations of relevant
(discontinuous) text spans across two document classification tasks: answer relevance and aspect-
based sentiment analysis. The data has never been used to evaluate extractive rationales. Cam-
buru et al. (2018) present human annotations of a natural language inference data set. Compared
to Søgaard et al. (2013), their annotations highlighted single words, not discontinuous phrases.
This means the data is not useful for evaluating hierarchical extractive rationales (Chen et al.,
2020; Murdoch et al., 2018).

 Open Problem How do methods for generating hierarchical extractive rationales
compare?

Rei and Søgaard (2018) show how to use multi-level annotations in existing NLP datasets
for evaluating extractive rationales. They consider two sentence classification tasks: sentiment
analysis and grammatical error detection. A similar experiment was performed for sentiment
analysis in Bastings et al. (2019).

 Open Problem Can we leverage other NLP datasets with multi-level annotations for
evaluating explanations?
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Meanwhile, more human annotations of rationales have become available:

ERASER (DeYoung et al., 2020) present a collection of such datasets, including the one
presented in Camburu et al. (2018). They also cover sentiment analysis, machine reading,
fact checking, etc. Other datasets include one for the task of detecting personal attacks in
Wikipedia revision histories (Carton et al., 2018), one for aspect-based sentiment analysis (of
beer reviews) discussed in Bastings et al. (2019), one for algebra word problems (Upadhyay and
Chang, 2017), as well as a few datasets for machine reading or question answering (Lamm et
al., 2020; Lee et al., 2020).

In both comparison with human annotations, and other types of experiments with hu-
man participants (see §11.4), it is important to consider the impact of how saliency maps are
presented. Obviously, user interfaces can affect inference time, but I also want to point out a
technical challenge: naive saliency maps are, in conjunction with some local attribution methods,
sensitive to simple shifts of the data (Kindermans et al., 2017). Multiplying by the input, for ex-
ample, can cause this to happen, because the input shift is carried through to the final attribution.
If using such methods, this has to be corrected for in how the saliency maps are extracted.

11.4 HUMANEXPERIMENTS
Human Forward Prediction You fully understand something when you can predict its be-
havior. By the same token, obtaining explanations of the inner workings of a neural network
should make its behavior more predictable to us. This is the idea behind human forward pre-
diction (Gonzalez and Søgaard, 2020; Hase and Bansal, 2020; Nguyen, 2018): seeing a sample
of good rationales should make it easier to predict the model’s behavior on unseen data points.
We can therefore evaluate explanation methods by average human performance when assisted
by rationales generated by these methods.

Most NLP papers on human forward prediction (Gonzalez and Søgaard, 2020; Hase and
Bansal, 2020; Nguyen, 2018) evaluate extractive rationales only. Feng and Boyd-Graber (2019)
present a combination of extractive rationales and training instances. Alqaraawi et al. (2020)
argue more categorically that, at least in the context of computer vision, it is not possible to
reach a solid understanding of the inner workings of a deep neural network with the sole use of
saliency-based explanations (extractive rationales).

 Open Problem What explanations are more useful for human forward prediction across
tasks: extractive or abstractive rationales, training instances, or model visualizations?

Rater Studies A simpler alternative to human forward prediction experiments is human rater
studies. Generally, rater studies involve choosing a system over another in the presence of ex-
planations; this is a simpler task for human participants than predicting the output of a system.
Ribeiro et al. (2016) presented two rater studies of LIME. In one of them, given two classifiers,
participants were asked to choose which they believed would generalize better. In the second
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experiment, participants were asked to improve the accuracy of the classifier by removing fea-
tures that do not seem to generalize. Unfortunately, both studies lacked significance testing and
proper baselining by comparing with a condition in which no explanations were provided to
participants. Lamm et al. (2020) provides another example of rater study evaluation in NLP.

Real-WorldUseCases The above experiments with human participants are either performed
in the lab or on crowdsourcing platforms. Some authors have argued that such evaluations intro-
duce an unfortunate bias (Buçinca et al., 2020; Gonzalez et al., 2020). While there is perhaps a
continuum between the above experiments and real-world or in-the-wild evaluations, suffering
from such biases to different degrees, some researchers have striven to simulate actual employ-
ment scenarios as much as possible.

Feng and Boyd-Graber (2019), for example, present an experiment in which participants
in QuizBowl are assisted by an question answering model. The model can assist in three ways:
(a) by presenting a list of predictions, along with confidence scores; (b) by presenting related
training data points (in their case, by nearest neighbor search); and (c) by highlighting relevant
input words (in their case, by elastic search). They sample a player’s condition from the space
of all possible combinations of these three methods and evaluate the impact of each method
on human (machine-assisted) performance. Gonzalez et al. (2020) present a similar experiment
in the context of voice assistants for open-domain question answering. Adebayo et al. (2020)
presents experiments in using extractive rationales (from a total of 15 local explanation methods)
for model debugging and show that the rationales are useful for identifying spurious correlations,
but much less useful for identifying mislabeled training examples.

It is important to note that the arguments against human forward prediction and similar
human-in-the-loop evaluations put forward in Buçinca et al. (2020), are based on the empiri-
cal observation that predictability does not correlate with the usefulness of rationales for other
decision-making tasks. One weakness of their experimental design, however, is that they did
not provide participants in their human forward prediction (proxy task) condition with training
instances to learn model behavior. The importance of including such a training stage in human
forward prediction experiments is discussed at length in Hase and Bansal (2020) and Gonzalez
et al. (2020).

Bansal et al. (2021) further argues for the importance of when users are presented with
model predictions and explanations. This information is typically presented to human partici-
pants before they are given a chance to reflect on their own, leading humans to perhaps rely too
heavily on the model. On the other hand, Gonzalez and Søgaard (2020) show that explanations
can speed up human inference if presented in advance.

 Open Problem How do we design experimental protocols for human evaluation of
explanations based on training instances?
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C H A P T E R 12

Perspectives
Part of the motivation behind a taxonomy of machine learning methods is that it enables us to
say something general about classes of methods, even about unseen members of these classes,
i.e., methods that we are not aware of or that will be proposed in the future. §12.1 presents a
few observations that hold for all members of different classes of the taxonomy presented here.
§12.2 discusses a few things that I did not cover in the taxonomy presented here.

12.1 GENERALOBSERVATIONS
Throughout this book I already discussed various observations about interpretability methods
and how they relate. One example is the following observation.

Observation 12.1 Local methods can be applied globally,1 whereas global methods cannot be
applied locally.

In this section, I present additional observations that I believe are important to keep in
mind when thinking coherently about explainable NLP. Here’s a first example:

Observation12.2 Local backwardmethods are always attributionmethods (presenting feature
summary statistics).

Since local interpretability methods have to provide explanations in terms of input or
output (because they do not modify model weights), and since backward passes do not generate
output distributions, they have to present explanations in terms of attribution of relevance or
gradients to input features or input segments.

The next observation I would like to make here relates to the notion of the faithfulness of
model explanations. Faithfulness is a commonly used term in several areas of NLP, including
abstractive summarization and machine translation, but here it refers to whether the output of
such models is semantically coherent with the input. This is not what I mean here. Faithful
explanations refer to explanations that adequate account for the inner workings of the models
they explain. In the words of Jacovi and Goldberg (2020), a faithful interpretation is one that
accurately represents the reasoning process behind the model ’s prediction.

Faithfulness has been a key discussion point in recent literature on explainable NLP (Ja-
covi and Goldberg, 2020), as well as more generally in machine learning (Le Merrer and Trédan,

1See Ribeiro et al. (2016) for how to do this with LIME, for example.
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2020). I argue that in some sense, only global methods can be unfaithful. This may sound sur-
prising at first, given that the literature on faithfulness has focused mostly on local methods.2
My point, however, is that previous discussions often conflate the idea that an explanation is
unfaithful and situations where an explanation is simply misinterpreted. While the contribution
of local methods have often been misunderstood or overestimated, the local methods in some
sense just do what they do. Global methods can, however, easily be misleading.

Gradients represent gradients, gates represent gates, attention heads represent attention
heads, etc. None of these represent reasoning in a sense that would satisfy a philosopher, but they
all represent aspects of what models are doing. Do they represent reasoning in a sense that we
care about when explaining NLP models? Of course they do. When explaining NLP models we
are interested in how they operate. Gradients, gates, attention heads, etc., are model components
that influence model output. They are meaningful objects of explanation, but they do what they
do. They cannot be unfaithful: gradients reflect what gradients do, gates reflect what gates do,
attention heads reflect what attention heads do, etc. In summary, none of the local methods can
be unfaithful.

Observation 12.3 Only global methods can be unfaithful.

Local methods compute quantities based on forward or backward passes, but these quan-
tities are not induced to simulate anything. Global methods induce parameters to simulate a
distribution and can be more or less faithful to this distribution, but since local methods simply
’read off ’ their quantities, they cannot be unfaithful. Only, the quantities can be misinterpreted
by those who wish to use them for downstream applications.3

Observation 12.4 Global methods can at best be epsilon-faithful and only on i.i.d. instances.

Definition 1.1 explicates how global methods rely on inductions from representative sam-
ples.4 Since their faithfulness is the inverse of the empirical risk of these inductions, it follows

2Ribeiro et al. (2016), for example, presents a local explainability method, yet explicitly discusses its faithfulness. Its
faithfulness is also discussed in Lundberg and Lee (2017), for example. The method, which is called LIME, presented in their
paper does initially look like an exception to my discussion above. Is this an exception to the above observation? In Chapter 9,
in which I discussed LIME, it was discussed at some length, whether the method is in fact local or global; it is in some ways
similar to global methods. The two discussions are related: LIME seems like a method that can be unfaithful, because it, in
some ways, is similar to global methods. In Chapter 9, I argue that LIME is a local method, because the induction of the linear
approximation of the model’s decision boundary is based on random perturbations of the input example, not an actual sample
of observations. The fact that a learning algorithm is used to derive the linear approximation does not mean the approximation
is learned in any real sense of the word: the approximation can be more or less tight, but not unfaithful.

3LIME (Ribeiro et al., 2016), a local uptraining method, presents an interesting borderline case. Ribeiro et al. (2016)
explicitly discuss the faithfulness of LIME, directly contradicting Observation 5.2. We argue their discussion is misleading.
While LIME uses a learning algorithm (e.g., logistic regression) to estimate a linear approximation of the model decision
boundary around a single example, they do not induce this approximation from a sample of data, but random perturbations
of the example. This is merely an efficient way of approximating an expensive model decomposition and can therefore not be
unfaithful, but merely a more or less tight approximation.

4However, NLP data samples are rarely i.i.d. (Søgaard et al., 2021). If samples are not representative, � is un-
bounded (Wolpert, 1996), and we can therefore conclude that global methods are always potentially misleading on specific
data points.
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that global methods can at best be �-faithful, with � the expected loss of these inductions. Note
that when the explanation is a model approximation � 0, � D EŒ`.�.x/; � 0.x//�.

Observation 12.5 Only forward methods can be used for local layer-wise analysis.

Several papers compare representations at different layers to better understand the dynam-
ics of deep neural networks in the context of individual examples (Abdou et al., 2019). Since lo-
cal backward methods are always attribution methods (Observation 5.1), and layer-wise analysis
concerns differences between layers, local backward methods cannot be used for local layer-wise,
simply because they only output attributions at the input level.

Observation 12.6 No equivalence relations can hold across the four categories, e.g., between
local and global methods, or forward and backward ones.

This is perhaps a trivial observation in the context of a taxonomy, but it shows the value
of having a taxonomy: several equivalence results have been presented in the literature (Ancona
et al., 2018; Samek et al., 2021), e.g., between configurations of layer-wise relevance propaga-
tion (using LRP-0 at every layer) and deep Taylor decomposition (Montavon et al., 2017), or
between DeepLift (Shrikumar et al., 2017) and integrated gradients (Mudrakarta et al., 2018;
Sundararajan et al., 2017) (to be precise, DeepLift approximates integrated gradients). By con-
sistently classifying approaches in our taxonomy, we effectively prune the search space of possible
equivalences.

Observation 12.7 Local methods can always characterize models globally on i.i.d. samples.

See Ribeiro et al. (2016) for how to do this with LIME. It should be easy to see how this
result generalizes to all other local methods.

Other observations relate to the form of explanations.

Observation 12.8 All methods that return extractive rationales can only explain decisions in
terms of tokens or features present in the input, but not in terms of tokens or features absent
from the input (Dhurandhar et al., 2018). Furthermore, sometimes explanations are not about
the presence or absence of input tokens or features, but about how they relate, or add up.

To see (i), think of how explaining why good sentiment models label some sentences as
neutral, for example, is more about the absence of polarity words than about the presence of any
other words. Limitation (ii) shows up, for example, when explaining the decisions of a model
trained to detect sentences with more digits and punctuation than letters. Such a model would
pay equal attention to all characters in a sentence, and a highlighting of the most important
tokens or features would not really provide us with any explanation of the inner workings of the
model. The methods to which this applies, are limited by the expressivity of extractive rationales.
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These limitations follow simply from the fact that extractive rationales are extractive, i.e., sub-
sets of the input tokens or features, but note that the limitation is coherent with the taxonomy
presented in this book.

Another observation relates only to local methods. Many local methods are attribution
methods that produce highlighting or heat maps of our input examples, but this does not hold
for all local methods. Counter-examples are word association norms, word analogies, concept
activation, fill-in-the-gap probes, etc. Note that thesemethods are all local-forward explanations
of continuous output (Chapter 7) or discrete output (Chapter 9).Thismakes intuitive sense: local
explanations are either in terms of the input or the output of a model, since these are the what
we, as end users, relate to.

Observation 12.9 Of the local methods, only explanations of continuous or discrete output
provide explanations that are not extractive rationales.

Most of these methods provide explanations that are akin to traditional error analysis based on
test suites or cherry picking, and some provide explanations in terms of training instances.

Here is an observation about evaluations of explanations: heuristic evaluations for extrac-
tive rationales, e.g., looking at output change from removing relevant or random words, do not
apply to abstractive rationales or explanations in terms of training instances. This is because
these heuristics are designed to probe the importance of the input tokens or features that are
attributed relevance in the extractive rationale. On the other hand, the heuristics used to eval-
uate explanations in terms of training instances, e.g., whether a training data point is assigned
influence for its own classification, are not applicable to extractive or abstractive rationales.

Observation 12.10 Evaluation heuristics apply to extractive rationales or training instances,
but not to both.

Our final observation relates to the possibility of layer-wise analysis. Several papers have
engaged in layer-wise analysis of NLP models, e.g., Abdou et al. (2019); Ravishankar et al.
(2021); Tenney et al. (2019), performing comparisons of representations at different layers of
these models. Tenney et al. (2019) use probing classifiers (Chapter 8) to obtain such an analysis,
while Abdou et al. (2019) uses representational similarity analysis (Chapter 8), and Ravishankar
et al. (2021) uses attention flow (Chapter 5). In fact, almost all the methods covered in this
book can be used to perform such layer-wise, comparative analysis. Only exceptions seem to be
explanations of discrete output.5

Observation 12.11 All methods, except explanations of discrete output, can be used for layer-
wise comparative analysis.

5Obtaining discrete output from hidden layers would amount to training auxiliary probing classifiers.
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12.2 BEYONDTAXONOMY
In this section, I discuss a few topics the taxonomy presented here does not cover, and that are
orthogonal to the distinctions made in it.

Contrastive Explanations The terms of contrastive and comparative are easily conflated, but
in explainable NLP, the former term seems to refer to methods that either reason about the
impact of the presence and absence of input features, or reason about the impact of the presence
of input features given alternative labelings, while comparative analyses perform model or layer-
wise comparisons. Contrastive analyses thus pertain to local methods, whereas both local and
global methods can be relevant for comparative analyses.

In a contrastive analysis of a local decision, we are interested in which parts of the input
should beminimally present, andwhat other features or input tokens should beminimally absent,
for the model to make the decision it made. The key insight here is that while some features
make positive contributions, other (absent) features could have perhaps overruled these. In other
words, a decision may be explained by the absence of absent features.

How do you reason about what absent features are relevant for a decision? Dhurandhar
et al. (2018), albeit in the context of computer vision, relies on an autoencoder to generate
candidate features; the architecture is similar to causal local uptraining methods (Chapter 9).
In Jacovi andGoldberg (2020), the term contrastive refers to attributing relevance to input tokens
for a particular decision, baselined by what would have been relevant for an alternative decision.
A better term for this is perhaps counterfactual explanations, the term used in Mothilal et al.
(2020).

ComparativeExplanations As just argued for in §12.1, most of the methods discussed in this
book can be used to compare two models or two layers in a deep neural network. It seems the
only exceptions here are explanations of discrete output (local or global), which can of course
be used to compare different models, but not different layers. For example, Abdou et al. (2019)
use representational similarity analysis (Chapter 8) to compare the geometry of representations
in different language models and different layers of these language models. While such compar-
isons can be performed in different ways, associated with different experimental protocols, I have
ignored these questions here, as they are completely orthogonal to my taxonomy of explanation
methods.

Method Combination In the above I discussed explainability methods in isolation, except
for briefly mentioning that two-stage methods (Ramamurthy et al., 2020; Ribeiro et al., 2018;
Sushil et al., 2018) exist (Chapter 1). I also mentioned the human-in-the-loop evaluation pre-
sented in Fu et al. (2020), which also included conditions in which participants were presented
with both extractive rationales and training instances. Olah et al. (2018), however, treat all of
these methods as building blocks for creating rich interfaces. This is a very interesting research
direction that I, alas, will not discuss in this book.
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12.3 MORALFOUNDATIONSOFEXPLANATIONS
Explainable NLP is often motivated by the premise that humans have a right to explanation: if
their life is in some way affected by NLP models, they should want to and be able to query
for the rationale behind the decisions of those models. There are many other motivations, such
as error analysis, model maintenance, more efficient computing, and detection of vulnerabilities
against adversarial attacks, but perhaps themost citedmotivation, especially for local explanation
methods, is the right to explanation.

Goodman and Flaxman (2017) point out how the EU’s General Data Protection Regu-
lation (GDPR) and other regulations is an opportunity for researchers to explore explainability
techniques such as those discussed in the above. Others (Wachter et al., 2017) have questioned
whether GDPR does give people a right to explanation, or in what sense it does.

It is interesting to think about where the right to explanation would come from, from
a moral perspective. Zerilli et al. (2018), for example, worry that automated decision-making
is being held to an unrealistically high standard. Are we really, they ask, asking for the same
degree of transparency from human decision-makers? The reviewability of decisions made by
lower courts, tribunals, and administrative agencies is a key feature of modern democracies, of
course, and even students can typically ask for the rationale behind their teachers’ grading of
their essays. What Zerilli et al. (2018) argue, though, is that if human decision-making represents
the gold standard for transparency, we think AI can in some respects already be said to meet it. The
explanations that we typically ask human decision-makers for do not yield the entrails of a decision,
or illuminate the cognitive processes leading to its conclusion. These processes are not transparent,
often not even to the decision makers themselves.

Say, for example, that after reading 12 chapters of this book you come to the conclusion
you do not like it. As a consequence, you decide not to cite it or not to recommend it to your
students or peers. Why did you arrive at that conclusion? You may not like the language in
which it is written, you may feel it fails to discuss relevant work, or you may disagree with
specific arguments I made. Either of the above would provide a rationale. Now say your reason
for not liking the book is that I failed to include your favorite paper on explainable NLP. This
seems like an explanation at first, but why is this your favorite paper, and how come you think it
should be included in this book? And how did you come to think of that in the first place? Your
ability to recall this paper while reading my book, likely depends on how you brain organizes
such information, which in turn depends on your experience with organizing and retrieving such
information, the extent of which you are hardly cognizant of. It would there be a bit of an uphill
battle to provide a full account of the processes that led you to your conclusion that you do not
like this book.

Note that the literature on explainable NLP and machine learning typically assumes that
human decision-making is, in principle, fully transparent: Mittelstadt et al. (2016), for example,
states that algorithmic processing contrasts with traditional decision-making, where human decision-
makers can in principle articulate their rationale when queried, limited only by their desire and capacity
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to give an explanation, and the questioner’s capacity to understand it. I tend to think that, on the con-
trary, while human decision-making is largely black-boxed (for now), we have come a long way
in understanding the dynamics of neural networks; while much work remains, and current meth-
ods have clear limitations—leading to misleading global explanations, useless local explanations,
and such—the problem of understanding the processes involved in neural network decisions is
near-trivial compared to the problem of understanding the processes involved in human deci-
sions.
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C H A P T E R 13

Resources
13.1 CODE
There exists a wide range of libraries and code bases for explainability methods already, but
many of them overlap in what they cover. Here is a list of libraries that I have used or that
seemed relevant to me, with a slight bias toward Python, and trying to avoid too much overlap.
I apologize in advance for all the amazing toolkits I left out.

ACE Tensorflow code for Ghorbani et al. (2019). See https://github.com/amiratag/ACE.

AIX360 Python library with implementations of LIME (Ribeiro et al., 2016) and con-
trastive explanation (Dhurandhar et al., 2018), among other algorithms. See https://github.com/
Trusted-AI/AIX360.

Alibi Explain Python toolkit for integrated gradients, contrastive, and counterfactual expla-
nations. See https://docs.seldon.io/projects/alibi/en/stable/.

AllenInterpret Library built on top of AllenNLP, with a focus on gradient-based saliency
maps and adversarial attacks; described in Wallace et al. (2019). See https://allennlp.org/
interpret.

BertViz BertViz (Vig, 2019) is a popular visualization tool for attention (Chapter 5) in lan-
guage models. It is available at https://github.com/jessevig/bertviz.

Captum.ai The PyTorch library Captum (Kokhlikyan et al., 2020) is available at https://
captum.ai/ and supports integrated gradients for most neural architectures relevant to NLP.

Dalex Library for interpretability, bias, and fairness, described in Biecek (2018); includes
LIME, for example. See https://dalex.drwhy.ai/python/api/.

Darkon Library for influence functions and gradience-based explanations. See https://darkon.
readthedocs.io.

DeepLift Keras/Tensorflow implementation of DeepLift. See https://github.com/
kundajelab/deeplift.

DiCE Code base for counterfactual explanations (Mothilal et al., 2020). See https://github.
com/interpretml/DiCE.

https://github.com/amiratag/ACE
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://docs.seldon.io/projects/alibi/en/stable/
https://allennlp.org/interpret
https://allennlp.org/interpret
https://github.com/jessevig/bertviz
https://captum.ai/
https://captum.ai/
https://dalex.drwhy.ai/python/api/
https://darkon.readthedocs.io
https://darkon.readthedocs.io
https://github.com/kundajelab/deeplift
https://github.com/kundajelab/deeplift
https://github.com/interpretml/DiCE
https://github.com/interpretml/DiCE
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ExBert The ExBert tool (Hoover et al., 2020) is a visualization fool for transformer architec-
tures and available at https://github.com/bhoov/exbert.

LIT The LIT tool (Tenney et al., 2020) provides an implementation of and interface to several
local explanation methods, including attention, vanilla gradients, and LIME.

LRP for LSTMs The code from Arras et al. (2017) (see Chapter 3). See https://github.com/
ArrasL/LRP_for_LSTM.

LRP Toolbox The LRP Toolbox (Lapuschkin et al., 2016) provides simple and accessible
stand-alone implementations of layer-wise relevance propagation for deep neural networks in
Caffe, supporting Matlab and Python. See the project Github at https://github.com/sebastian-
lapuschkin/lrp_toolbox.

LSTMVis The LSTMVis tool (Strobelt et al., 2017) visualizes gates in recurrent neural net-
works. See http://lstm.seas.harvard.edu/.

Lucid Tensorflow library for compositing interfaces combining multiple explanation methods.
The library is available at https://github.com/tensorflow/lucid.

iNNvestigate Keras library described in Alber et al. (2019); comes with implementations of
a range of methods for local explanations of training dynamics (Chapter 3), including guided
backpropagation, Deep Taylor decomposition, layer-wise relevance propagation, etc. See https:
//github.com/albermax/innvestigate.

mPerturb PyTorch implementation of Fong and Vedaldi (2017), deriving explanations from
data perturbations. See https://github.com/ajsanjoaquin/mPerturb.

NeuroX A library for ablation of individual neurons, described in Dalvi et al. (2018). See
https://github.com/fdalvi/NeuroX.

PathExplain Code from Janizek et al. (2020), improving explanations from integrated gradi-
ents. See https://github.com/suinleelab/path_explain.

TCAV Code from Kim et al. (2018). See https://github.com/tensorflow/tcav.

TextBrewer The TextBrewer toolkit (Yang et al., 2020) facilitates setting up distillation exper-
iments. See https://github.com/airaria/TextBrewer.

TransformerAnatomy Code for Jo and Myaeng (2020), i.e., visualization of attention heads.
See https://github.com/heartcored98/transformer_anatomy.

Word2Viz Online tool for visualizing word analogies. See https://lamyiowce.github.io/
word2viz/.

https://github.com/bhoov/exbert
https://github.com/ArrasL/LRP_for_LSTM
https://github.com/ArrasL/LRP_for_LSTM
https://github.com/sebastian-lapuschkin/lrp_toolbox
https://github.com/sebastian-lapuschkin/lrp_toolbox
http://lstm.seas.harvard.edu/
https://github.com/tensorflow/lucid
https://github.com/albermax/innvestigate
https://github.com/albermax/innvestigate
https://github.com/ajsanjoaquin/mPerturb
https://github.com/fdalvi/NeuroX
https://github.com/suinleelab/path_explain
https://github.com/tensorflow/tcav
https://github.com/airaria/TextBrewer
https://github.com/heartcored98/transformer_anatomy
https://lamyiowce.github.io/word2viz/
https://lamyiowce.github.io/word2viz/
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13.2 DATASETSANDBENCHMARKS
In Chapter 11, I briefly discussed the use of human annotations for evaluating extractive and
abstractive rationales. Here is a list of interesting benchmark datasets for different NLP tasks.
See also Wiegreffe and Marasović (2021).

AQUA-RAT Dataset for algebra solving with explanations, discussed in Ling et
al. (2017). See https://www.kaggle.com/jeromeblanchet/aquarat-algebra-question-answering-
with-rationale.

ATOMIC The ATOMIC knowledge graph (Sap et al., 2019) for querying for common sense
patterns in language models. See https://mosaickg.apps.allenai.org/kg_atomic.

BeerAdvocate Aspect-based sentiment analysis dataset, with two-level annotations, used in
several explainable NLP papers (Bastings et al., 2019; Søgaard et al., 2013). See https://snap.
stanford.edu/data/web-BeerAdvocate.html.

ERASER The ERASER benchmark (DeYoung et al., 2020) is available at https://www.
eraserbenchmark.com/. It comprises several NLP datasets with explanations, including for sen-
timent analysis and natural language inference.

EQUATE TheEQUATEbenchmark (Ravichander et al., 2019) probes the sensitivity ofNLP
models to numerical reasoning (see Chapter 9).

Evidence Inference Dataset for medical QA with explanations. See https://evidence-
inference.ebm-nlp.com/blog/.

Explainaboard Platform for analysis based on downstream evaluation, discussed in Fu et al.
(2020). See http://explainaboard.nlpedia.ai/.

ExplanationBank Multihop question answering resource with explanations, discussed in Xie
et al. (2020). See http://cognitiveai.org/explanationbank/.

QED Structured rationale annotations for question answering, described in Lamm et al.
(2020). See https://github.com/google-research-datasets/QED.

SciFact Dataset for fact checking with explanations, discussed in Wadden et al. (2020). See
https://github.com/allenai/scifact.

Stanford Sentiment Treebank Multi-level sentiment analysis annotations used in several ex-
plainable NLP papers (Bastings et al., 2019; Rei and Søgaard, 2018). See https://nlp.stanford.
edu/sentiment/treebank.html.

https://www.kaggle.com/jeromeblanchet/aquarat-algebra-question-answering-with-rationale
https://www.kaggle.com/jeromeblanchet/aquarat-algebra-question-answering-with-rationale
https://mosaickg.apps.allenai.org/kg_atomic
https://snap.stanford.edu/data/web-BeerAdvocate.html
https://snap.stanford.edu/data/web-BeerAdvocate.html
https://www.eraserbenchmark.com/
https://www.eraserbenchmark.com/
https://evidence-inference.ebm-nlp.com/blog/
https://evidence-inference.ebm-nlp.com/blog/
http://explainaboard.nlpedia.ai/
http://cognitiveai.org/explanationbank/
https://github.com/google-research-datasets/QED
https://github.com/allenai/scifact
https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/sentiment/treebank.html


74 13. RESOURCES
VCR Dataset for visual commonsense reading with explanations, discussed in Zellers et al.
(2019). See https://visualcommonsense.com/.

WIQA The What-If QA dataset is available at https://allenai.org/data/wiqa.

https://visualcommonsense.com/
https://allenai.org/data/wiqa
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