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Preface

This book provides a blend of both the theoretical and practical aspects of Natural
Language Processing (NLP). It covers the concepts essential to develop a thorough
understanding of NLP and also delves into a detailed discussion on NLP-based use cases
such as language translation, sentiment analysis, chatbots, and many more. The book also
goes into the details of the application of machine learning and deep learning in improving
the efficiency of NLP applications and introduces readers to the recent developments in this
field. Every module covers real-world examples that can be replicated and built upon.

Who this book is for

This book is for anyone interested in NLP who is seeking to learn about its theoretical and
practical aspects alike. The book starts from the basics and gradually progresses to more
advanced concepts, making it suitable for an audience with varying levels of prior NLP
proficiency, and for those who want to develop a thorough understanding of NLP
methodologies to build linguistic applications. However, a working knowledge of the
Python programming language and high-school-level mathematics is expected.

What this book covers

Chapter 1, Understanding the Basics of NLP, will introduce you to the past, present, and
future of NLP research and applications.

Chapter 2, NLP Using Python, will gently introduce you to the Python libraries that are
used frequently in NLP and that we will use later in the book.

Chapter 3, Building Your NLP Vocabulary, will introduce you to methodologies for natural
language data cleaning and vocabulary building.

Chapter 4, Transforming Text into Data Structures, will discuss basic syntactical techniques
for representing text using numbers and building a chatbot.

Chapter 5, Word Embeddings and Distance Measurements for Text, will introduce you to word-
level semantic embedding creation and establishing the similarity between documents.

Chapter 6, Exploring Sentence-, Document-, and Character-Level Embeddings, will dive deeper
into techniques for embedding creation at character, sentence, and document level, along
with building a spellchecker.
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Chapter 7, Identifying Patterns in Text Using Machine Learning, will use machine learning
algorithms to build a sentiment analyzer.

Chapter 8, From Human Neurons to Artificial Neurons for Understanding Text, will introduce
you to the concepts of deep learning and how they are used for NLP tasks such as question
classification.

Chapter 9, Applying Convolutions to Text, will discuss how convolutions can be used to
extract patterns in text data for solving NLP problems such as sarcasm detection.

Chapter 10, Capturing Temporal Relationships in Text, will explain how to extract sequential
relationships prevalent in text data and build a text generator using them.

Chapter 11, State of the Art in NLP, will discuss recent concepts, including Seq2Seq
modeling, attention, transformers, BERT, and will also see us building a language
translator.

To get the most out of this book

You will need Python 3 installed on your system. You can use any IDE to practice the code
samples provided in the book, but since the code samples are provided as Jupyter
notebooks, we recommend installing the Jupyter IDE. All code examples have been tested
on the Windows OS. However, the programs are platform agnostic and should work with
other 32/64-bit OSes as well. Other system requirements include RAM of 4 GB or higher,
and at least 6 GB of free disk space.

We recommend installing the Python libraries discussed in this book using pip or conda.
The code snippets in the book mention the relevant command to install a given library on
the Windows OS. Please refer to the source page of the library for installation instructions
for other OSes.

Software/hardware covered in the book OS requirements
pandas Windows 7 or later, macOS, Linux
NumPy Windows 7 or later, macOS, Linux
Jupyter Windows 7 or later, macOS, Linux
beautifulsoup4 Windows 7 or later, macOS, Linux
scikit-learn Windows 7 or later, macOS, Linux
Keras Windows 7 or later, macOS, Linux
NLTK Windows 7 or later, macOS, Linux

[2]
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The last project covered in this book requires a higher-spec machine. However, you can run
the program on the Google Colab GPU machine if needs be.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Python-Natural-Language-Processing. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781838989590_ColorImages.pdf.

[3]
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Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "We will be performing preprocessing on the Tips dataset, which comes with the
seaborn Python package."

A block of code is set as follows:

import pandas as pd
data = pd.read_csv ("amazon_cells_labelled.txt", sep='\t', header=None)

X = data.iloc[:,0] # extract column with review
vy data.iloc[:,-1] # extract column with sentiment

# tokenize the news text and convert data in matrix format

from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer (stop_words='english')

X_vec = vectorizer.fit_transform(X)

X_vec = X_vec.todense () # convert sparse matrix into dense matrix

# Transform data by applying term frequency inverse document frequency
(TFIDF)

from sklearn.feature_extraction.text import TfidfTransformer

tfidf = TfidfTransformer ()

X_tfidf = tfidf.fit_transform(X_vec)

X_tfidf = X_tfidf.todense()

Any command-line input or output is written as follows:

pip install requests
pip install beautifulsoup4

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"This is called cross-validation and is an important part of ML model training. "

Warnings or important notes appear like this.

[4]
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Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please
Visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[5]
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Section 1: Introduction

This section introduces the field of Natural Language Processing (NLP) and its
applications. It also provides you with an overview of the ongoing research in this area and
what future applications could be expected.

This section comprises the following chapters:

e cChapter 1, Understanding the Basics of NLP
e Chapter 2, NLP Using Python



Understanding the Basics of
NLP

Natural Language Processing (NLP) is an interdisciplinary area of research aimed at
making machines understand and process human languages. It is an evolving field, with a
rapid increase in its acceptability and adoption in industry, and its growth is projected to
continue. NLP-based applications are everywhere, and chances are that you already
interact with an NLP-enabled application regularly (Alexa, Google Translate, chatbots, and
so on). The objective of this book is to provide a hands-on learning experience and help you
build NLP applications by understanding key NLP concepts. The book lays particular
emphasis on Machine Learning (ML)- and Deep Learning (DL)-based applications and
also delves into recent advances such as Bidirectional Encoder Representations from
Transformers (BERT). We start this journey by providing a brief context of NLP and
introduce you to some existing and evolving applications of NLP.

In this chapter, we'll cover the following topics:

¢ Programming languages versus natural languages
e Why should I learn NLP?
e Current applications of NLP



Understanding the Basics of NLP Chapter 1

Programming languages versus natural
languages

Language has played a critical role in the evolution of our species and was arguably the key
competitive advantage for our hunter-gatherer ancestors over other species. Naturally
evolved languages, also called natural languages, allowed our ancestors to communicate
more efficiently with their flock. The development of language scripts further accelerated
their growth, as important information could now be documented and reproduced,
obviating the need for memorizing. Needless to say, we humans have a deep affinity
toward our languages, and we cherish the ability to communicate with fellow humans.

A new class of languages called programming languages surfaced around the mid-20th
century, with the objective of communicating with machines to get the desired output. With
the explosive growth of computers, gaining familiarity with programming languages
assumed great significance in order to harness the computational power of these machines.
You will come across various profiles on LinkedIn in which people refer to themselves as
polyglots, implying that they are proficient in multiple programming languages. While
there are similarities between natural languages and programming languages, in that they
are used to communicate and have rules and syntax, there are some major differences. The
most important difference is that natural languages are ambiguous, and therefore cannot be
comprehended by machines. For example, refer to the following statement: Pick an integer
and divide it by two; if the remainder is zero, then it is an even number.

For those who are presumably proficient in Math and English, the preceding statement may
make complete sense. However, for someone who is new to deciphering human languages,
it may refer to either the integer, two, or the remainder. Likewise, natural languages
encompass many other elements, such as sarcasm, double negation, rhetorical expressions,
and so on, which increases complexity and requires a monumental effort to code every
inherent rule of the language for the machine to understand. These factors make natural
languages unfit to be used as programming languages.

How, then, do we communicate with computers humanly?

[8]
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Chapter 1

Understanding NLP

Scientists have been working on this precise question since the turn of the last century and,
as of today, we have attained reasonable success in this area. The research on how to make

computers understand and manipulate natural languages draws from several fields,
including computer science, math, linguistics, and neuroscience, and the resulting

interdisciplinary area of research is called NLP. Take a look at the following diagram,
which illustrates this:

NaturaI‘Language
Processing

P

=]

2
\ @

o

NLP is categorized as a subfield of the broader Artificial Intelligence (AI) discipline, which
delves into simulating human intelligence in machines. English scientist Alan Turing, who
is considered one of the pioneers of Al, developed a set of criteria (called the Turing test),
which tested whether a machine could display intelligent behavior indistinguishable from

that of a human. The machine's ability to understand and process natural languages is a
prominent criterion of the Turing test.

[9]




Understanding the Basics of NLP Chapter 1

Most early research in the field of NLP relied on fixed complex rules and mapping-based
systems. These systems, although moderately successful, were difficult to scale. Another
issue with the rule-based approach is that it does not mimic human learning of language
very well. For example, if you are from Asia and are traveling to the USA, you will come
across people who greet you by saying, How'’s it going? or How are you doing? A fixed rule-
based language processing system would signal that the person cares about you and is
genuinely interested to know about your wellbeing. However, before you prepare to give
your long-winded response of how you are actually doing, you will see that the person has
already walked by. When you see this pattern reoccurring and observe how other people
respond to the same question, your brain overwrites the pre-existing rule and replaces it
with a new contextual understanding, which was derived by some form of data analysis.

This data-driven approach is the cornerstone of most modern-day NLP research. With the
advent of ML algorithms and the data deluge propelled by the internet and significantly
increased computational capacity, NLP solutions have become way more scalable and
reliable. The most exciting thing about this NLP revolution is that most of this is driven by
open source technology, meaning these solutions are freely available to anyone who wants
to consume or contribute to these projects.

We have covered many of these algorithms and tools in this book, including the following:

e ML algorithms (Naive Bayes; Support Vector Machine (SVM))

¢ DL algorithms (Convolutional Neural Network (CNN); Recurrent Neural
Network (RNN))

e Similarity/dissimilarity measures

¢ Long Short-Term Memory (LSTM) network; Gated Recurrent Unit (GRU)
e BERT

e Building chatbots; sentiment analyzer

e Predictive analytics on text data

e Machine translation system

We hope that by the end of this book, you will be able to build reasonably sophisticated
NLP applications on your desktop PC.

[10]
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Why should | learn NLP?

Al is rapidly penetrating various facets of our lives, from being our home assistant to
fielding our queries as automated tech support. Various industry outlook reports project
that AI will create millions of jobs (projection range between 200 and 500 million)
worldwide by the year 2030. The majority of these jobs will require ML and NLP skills, and
therefore it is imperative for engineers and technologists to upskill and prepare for the
impending Al revolution and the rapidly evolving tech landscape.

NLP consistently features as the fastest-growing skill in demand by Upwork (largest
freelancing platform), and the job listings with an NLP tag continue to feature prominently
on various job boards. Since NLP is a subfield of ML, organizations typically hire
candidates as ML engineers to work on NLP projects. You could be working on the most
cutting-edge ideas in large technology firms or implementing NLP technology-based
applications in banks, e-commerce organizations, and so on. The exact work performed by
NLP engineers can vary from project to project. However, working with large volumes of
unstructured data, preprocessing data, reading research papers on the new development in
the field, tuning model parameters, continuous improvement, and so on are some of the
tasks that are commonly performed. The authors, having worked on several NLP projects
and having followed the latest industry trends closely, can safely state that it's a very
exciting time to work in the field of NLP.

You can benefit from learning about NLP even if you are simply a tech enthusiast and not
particularly looking for a job as an NLP engineer. You can expect to build reasonably
sophisticated NLP applications and tools on your MacBook or PC, on a shoestring budget.
It is not surprising, therefore, that there has been a surge of start-ups providing NLP-based
solutions to enterprises and retail clients.

A few of the exciting start-ups in this area are listed as follows:

¢ Luminance: Legal tech start-up aimed at analyzing legal documents
¢ NetBase: Real-time social media feed analytics

¢ Agolo: Summarizes large bodies of text at scale

e Idibon: Converts unstructured data to structured data

This area is also witnessing brisk acquisition activities with larger tech companies acquiring
start-ups (Samsung acquired Kngine; Reliance Communications acquired chatbot start-up
Haptik; and so on). Given the low barriers for entry and easily accessible open source
technologies, this trend is expected to continue.

Now that we have familiarized ourselves with NLP and the benefits of gaining proficiency
in this area, we will discuss the current and evolving applications of NLP.
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Current applications of NLP

NLP applications are everywhere, and it is highly unlikely that you have not interacted
with any such application over the past few days. The current applications include virtual
assistants (Alexa, Siri, Cortana, and so on), customer support tools (chatbots, email
routers/classifiers, and so on), sentiment analyzers, translators, and document ranking
systems. The adoption of these tools is quickly growing, since the speed and accuracy of
these applications have increased manifold over the years. It should be noted that many
popular NLP applications such as, Alexa and conversational bots, need to process audio
data, which can be quantified by capturing the frequency of the underlying sound waves of
the audio. For these applications, the data preprocessing steps are different from those for a
text-based application, but the core principles of analyzing the data remain the same and
will be discussed in detail in this book.

The following are examples of some widely used NLP tools. These tools could be web
applications or desktop applications with which you can interact via the user interface. We
will be covering the models powering these tools in detail in the subsequent chapters.

Chatbots

Chatbots are Al-based software that can conduct conversations with humans in natural
languages. Chatbots are used extensively as the first point of customer support and have
been very effective in resolving simple user queries. As per industry estimates, the size of
the global chatbot market is expected to grow to $102 billion by 2025, compared to the
market size of $17 billion in 2019 (source: https://www.mordorintelligence.com/
industry-reports/chatbot-market). The significant savings generated by these chatbots
for organizations is the major driver for the increase in the uptake of this technology.

Chatbots can be simple and rule-based, or highly sophisticated, depending on business
requirements. Most chatbots deployed in the industry today are trained to direct users to
the appropriate source of information or respond to queries pertaining to a specific subject.
It is highly unlikely to have a generalist chatbot capable of fielding questions pertaining to
a number of areas. This is because training a chatbot on a given topic requires a copious
amount of data, and training on a number of topics could result in performance issues.

The next screenshots are from my conversation with one of the smartest chatbots available,
named Mitsuku (https://www.pandorabots.com/mitsuku/). The Mitsuku chatbot was
created by Steve Worswick and it has the distinction of winning the Loebner Prize multiple
times due to it being adjudged the most human-like Al application.

[12]


https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.mordorintelligence.com/industry-reports/chatbot-market
https://www.pandorabots.com/mitsuku/
https://www.pandorabots.com/mitsuku/
https://www.pandorabots.com/mitsuku/
https://www.pandorabots.com/mitsuku/
https://www.pandorabots.com/mitsuku/
https://www.pandorabots.com/mitsuku/
https://www.pandorabots.com/mitsuku/
https://www.pandorabots.com/mitsuku/
https://www.pandorabots.com/mitsuku/
https://www.pandorabots.com/mitsuku/
https://www.pandorabots.com/mitsuku/
https://www.pandorabots.com/mitsuku/

Understanding the Basics of NLP Chapter 1

The application was created using Artificial Intelligence Markup Language (AIML) and is
mostly a rule-based application. Have a look at the following screenshots:

Mitsuku

World's best conversational Al

Hi. I'm the world's most humanlike
conversational Al. You can talk to
me normally or try to answer the...

...daily quiz question
... or play Tic Tac Toe

@ Add me to Mitsuku's brain! &

what is there to talk about

| like to talk about movies, robots
and history.

W

Mitsuku

World's best conversational Al

what is there to talk about

I like to talk about movies, robots
and history.

None of which enthuse me.

Some of them could be though.

How are you so sure?

It seems obvious to me. | see no
reason to have any doubt.

@40y pa

As you can see, this bot is able to hold simple conversations, just like a human. However,
once you start asking technical questions or delve deeper into a topic, the quality of the
responses deteriorates. This is expected, though, and we are still some time away from full
human-like chatbots. You are encouraged to try engaging with Mitsuku in both simple and
technical conversations and judge the accuracy yourself.
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Sentiment analysis

Sentiment analysis is a set of algorithms and techniques used to detect the sentiment
(positive, negative, or neutral) of a given text. This is a very powerful application of NLP
and finds usage in a number of industries. Sentiment analysis has allowed entities to mine
opinions from a much wider audience at significantly reduced costs. The traditional way of
garnering feedback for companies has been through surveys, closed user group testing, and
so on, which could be quite expensive. However, organizations can reduce costs by
scraping data (from social media platforms or review-gathering sites) and using sentiment
analysis to come up with an overall sentiment index of their products.

Here are some other examples of use cases of sentiment analysis:

¢ A stock investor scanning news about a company to assess overall market
sentiment

¢ An individual scanning tweets about the launch of a new phone to decide the
prevailing sentiment

¢ A political party analyzing social media feeds to assess the sentiment regarding
their candidate

Sentiment analyzing systems can be simple lexicon-based (akin to a dictionary lookup) or
ML-/DL-based. The choice of the method is dictated by business requirements, the
respective pros and cons of each approach, and other development constraints. We will be
covering the ML/DL based methods in detail in this book.

A simple Google search will yield numerous online sentiment analyzing sources such as
pamlleldots.com (https ://www.paralleldots.com/sentiment—-analysis).

You are encouraged to try submitting sentences or paragraphs to the tool and analyze the
response. These tools will most likely do a reasonably good analysis of simple sentences or
articles. However, the output for sentences with complex structures (double negation,
rhetorical questions, qualifiers, and so on) will likely not be accurate. It should also be
noted that before using a prebuilt sentiment analyzer, it is very important to understand
the methodology and training dataset used to build that analyzer. You do not want to use a
sentiment analyzer trained on movie review data to predict the sentiment of text from a
different area (such as financial news articles or restaurant reviews), as words that carry a
positive or negative context for one area may have a neutral or opposite polarity context for
another area. For example, some words signifying a positive sentiment in financial news
articles are bullish, green, expansion, and growth. However, these words, if used in a movie
review context, would not be polarity-influencing words. Therefore, it is important to use
suitable training data in order to build a sentiment analyzer.
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We will delve deeper into sentiment analysis in Chapter 7, Identifying Patterns in Text Using
Machine Learning, and will build a sentiment analyzer using product review data.

Machine translation

Language translation was one of the early problems NLP techniques tried to solve. At the
height of the Cold War, there was a pressing need for American researchers to translate
Russian documents into English using Al techniques. In 1964, the US government even
created a multidisciplinary committee of leading scientists, linguists, and researchers to
explore the feasibility of machine translation, and called the committee the Automatic
Language Processing Advisory Committee (ALPAC). However, ALPAC was unable to
make any significant breakthrough, which caused major skepticism around the feasibility
of Al technology, leading to massive funding cuts and a reduced interest in Al research
throughout the 1970s. This period is often called the AI Winter due to the significant drop
in research output pertaining to Al. Although the efforts of ALPAC did not yield promising
results back then, today, we have translators with a very high level of accuracy.

The high market value of the translation industry in the present era of highly
interconnected communities and global businesses is self-evident. Although businesses still
rely mostly on human translators to translate important documents such as legal contracts,
the use of NLP techniques to translate conversations has been increasing.

The modern NLP approach toward document translation is rooted in DL and pattern
detection, which has significantly increased the accuracy of translations. Google Translate
(https://translate.google.co.in/) supposedly uses an Artificial Neural Network
(ANN)-based system that predicts the possible sequence of the translated words.

We wanted to conduct a quick test of Google Translate's accuracy in translating a text from
English to Hindi.

Here is a screenshot, showing the result:

= Google Translate

Hn Text B Documents
DETECT LANGUAGE ENGLISH SPANISH FRENCH ~ g HINDI SPANISH ENGLISH v
| don't have money to hire b translator. | wonder if | X ﬁiwwaﬁﬁwaﬂﬁﬁimﬁﬁ%ﬁ%l H@f
could use this to translate my book to Hindi 3T ¢ o5 SAR T ofo= fopara &1 fgdt & \Hﬂﬁ]’dﬂv_{ﬁ

@ 10 3BT UL HR Gbdll §

as anuvaadak ko niyukt karane ke lie paise nahin hain. mujhe aashchary hai ki agar

panee kitaab ko hindee mein anuvaad karane ke lie isaka upayog kar sakata hoon
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For readers who can read Hindj, the first sentence was translated perfectly. However, the
second translated sentence is nonsensical. This could be because the usage of the word
wonder in the sentence is not a wide one, and the training data possibly had all instances of
wonder in a different context.

We thought it may be a good idea to see how other popular translators would translate the
same sentence. The following screenshot shows the result derived from the Bing translator
(https ://www.bing. com/translator):

English v 0 & Hindi v V72 DI
| don't have money to hire a translator. | wonder WUy HIER P S U T Tl & |
if | could use this to translate my book to Hindi. & H@@ﬂyﬁ o 3R H gaeT ST U+ [Hare
I g1 F 3JdIe o & [ PR IS |

mere pas anuvadak ko hayer karane kay liye paise nahin hain
mujhe ashchary hai ki agar main iska istemal apni kitab ko hindi
mein anuvad karane kay liye kr sakata hoon

100/5000

We found that the Bing translator's translation for our sentence was slightly inferior to that
provided by Google Translate as, in addition to getting the context of the word
wonder wrong, it was also unable to translate the word hire and simply transliterated it.

Finally, we tried the Babylon translator (https://translation.babylon-software.com/)
with the same sentence. The following screenshot shows the result:

Source Language Target Language

- :
Y Human Translation

I don't have money to hire & translator. I wonder if I could
use this to translate my book to Hindi.
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We found that the Babylon translator was unable to translate the sentence, as the output
was gibberish.

It should be noted that the translation was instant in all three translators, meaning that the
execution time for machine translation has greatly reduced. Based on our very unscientific
testing, it is clear that while we have made huge strides in machine translation efficacy,
there is still scope for improvement, and research in this area is still ongoing.

Named-entity recognition

When we read and process sentences, we tend to first identify the key players in the
sentence (for example, people, places, and organizations). This classification helps us break
down the sentence into entities and make sense of the semantics of the sentence. Named-
entity recognition (NER) mimics the same behavior and is used to classify the named
entities (or proper nouns) in a given text. The applications of this seemingly facile
categorization are profound and are used extensively in the industry. Here are some real-
world applications of NER:

¢ Text summarization: Scanning text documents and summarizing them by
identifying key entities in the document. A popular use case is resume
categorization, wherein the NER processes a large number of resumes and
highlights key entities such as name, institution, and skills, which facilitates
quick evaluation.

¢ Automatic indexing: Indexing is the method of organizing data for efficient
retrieval. Using NER, documents are indexed based on underlying entities,
which facilitates faster retrieval.

¢ Information extraction: Extracting relevant information (entities) from a
document for faster processing. A use case is customer feedback processing,
wherein key entities from feedback, such as product name and location are
extracted for further processing. Typically, customer feedback processing also
involves a sentiment analyzer that detects the tone of the feedback (positive or
negative), and the NER then identifies the product, location, and so on, which is
covered in the feedback. Such systems allow organizations to quickly process
large volumes of customer feedback data and gain precision insights.
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Stanford Named Entity Tagger (https://nlp.stanford.edu/software/CRF-NER.html) is

a popular open source NER tool that comes with a default trained model that classifies
entities such as Person, Location, and Organization. However, users can train their own
models on the Stanford NER tool using a labeled dataset. The application is built on a linear
chain Conditional Random Field (CRF) sequence model, which is a class of statistical
modeling methods often used for pattern recognition. The software is written in Java and is
available to download for free.

In addition, the trained model can also be accessed through a web interface. The following
screenshot shows a sample sentence being processed by the Stanford NER web interface:

&« C {4 @ Notsecure | nip.stanford.edu:8080/ner/process

Stanford Named Entity Tagger

Classifier: | english.conll. 4class distsim.crf.sergz v
Cutput Format: | highlighted ¥

Preserve Spacing: | yes ¥
Flease enter vour text here:

Virat Kohli could be the cricketer from India to break
Sachin Tendulkar's 182 century record.

Submit || Clear

[IES L could be the cricketer from [GIE to break FENY IEMGMLEY s 100 century record.

Potential tags:
PERSON
MiSC]

In this example, the NER tool did a decent job and correctly categorized the two persons
(Virat Kohli and Sachin Tendulkar) and one location (India) mentioned in the sentence. It
should be noted that there are other entities as well in the sentence shown in the preceding
screenshot (for example, number and profession). However, the Stanford NER tool only
recognizes four entities. The choice of the number of entities to be recognized depends on
the training data and the model design.

Now, let's look at some promising future applications of NLP as well.
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Future applications of NLP

Although we have made huge strides in improving NLP technologies, ongoing research
continues to strive for improved accuracy and more optimized algorithms (for reduced
response time). The objective continues to be moving toward more human-like
applications. Here are some examples of technological advances and potential future
applications in the area of NLP:

e BERT: BERT is a path-breaking technique for NLP research and development. It
is being developed by Google and is a very clever amalgamation of a number of
algorithms and techniques used in NLP (Transformer, ELMo, Semi-Supervised
Sequence Learning, and so on). The paper, published by Google researchers,
explaining this model can be accessed at https://arxiv.org/abs/1810.04805.
At a high level, BERT tries to understand the context of a word by taking into
account all surrounding words rather than an ordered sequence of words. For
example, if the sentence Are you game for a cup of coffee? is analyzed by traditional
NLP algorithms, they will analyze the word game by either looking at Are you
game or at game for a cup of coffee. However, since BERT is bidirectional, it
considers the entire sentence to decide the context of the word. BERT is open
source and comes with rigorous pre trained models. BERT has significantly
improved the efficiency and accuracy of building NLP models. We will get into
the details of BERT in chapter 11, State of the Art in NLP.

¢ Legal tech: The possibility of applying NLP technology to the legal profession is
a very promising and lucrative prospect, and a lot of research is being conducted
in this area. Given the vast number of legal documents lawyers need to pore
through in order to retrieve required information for a case or the repetitive
nature of perusing through legal contracts to ensure that they are correct, NLP
can play a significant role in this field. However, most solutions to date remain in
the Proof of Concept (PoC) phase, and adoption is minimal. However, many
legal, tech-focused start-ups are springing up, trying to get a piece of a very
lucrative developing market.

¢ Unstructured data: Most NLP tools rely on clean input data to be provided as
input. However, the real world has a lot of unstructured data that needs
analyzing. For example, a financial analyst may need to go through a company's
annual financial filings, emails, call records, chat transcripts, news reports,
complaint logs, and so on to prepare their report. Extracting relevant information
from these unstructured data sources is a promising area of NLP application, and
some exciting research in this area is ongoing.

¢ Text summarization: Research is underway around building applications that
have the ability to read through a document, understand the context, and present
a summary in a coherent way.
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Summary

In this chapter, we discussed the foundational aspects of NLP and highlighted the
importance of this evolving field of research. We also introduced some existing and
upcoming applications of NLP, which we will build upon in the subsequent chapters.

In the next chapter, we will discuss Python and how it is playing a pivotal role in the
development of NLP. We will gain familiarity with key Python libraries used in NLP and
also delve into web scraping.
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NLP Using Python

Natural Language Processing (NLP) research and development is occurring concurrently
in many programming languages. Some very popular NLP libraries are written in various
programming languages, such as Java, Python, and C++. However, we have chosen to write
this book in Python and, in this chapter, we'll discuss the merits of using Python to delve
into NLP. We'll also introduce the important Python libraries and tools that we will be
using throughout this book.

In the chapter, we'll cover the following topics:

¢ Understanding Python with NLP

¢ Important Python libraries

e Web scraping libraries and methodology
e Overview of Jupyter Notebook

Let's get started!

Technical requirements

The code files for this chapter can be found at the following GitHub link: https://github.
com/PacktPublishing/Hands-On-Python-Natural-Language-Processing/tree/master/

Chapter02.

Understanding Python with NLP

Python is a high-level, object-oriented programming language that has experienced a
meteoric rise in popularity. It is an open source programming language, meaning anyone
with a functioning computer can download and start using Python. Python's syntax is
simple and aids in code readability, ease of use in terms of debugging, and supports Python
modules, thereby encouraging modularity and scalability.
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In addition, it has many other features that contribute to its halo and make it an extremely
popular language in the developer community. A prominent drawback often attributed to
Python is its relatively slower execution speed compared to compiled languages. However,
Python's performance is shown to be comparable to other languages and it can be vastly
improved by employing clever programming techniques or using libraries built using
compiled languages.

If you are a Python beginner, you may consider downloading the Python Anaconda
distribution (https://www.anaconda.com/products/individual), which is a free and open
source distribution for scientific computing and data science. Anaconda has a number of
very useful libraries and it allows very convenient package management
(installing/uninstalling applications). It also ships with multiple Interactive Development
Environments (IDEs) such as Spyder and Jupyter Notebook, which are some of the most
widely used IDEs due to their versatility and ease of use. Once downloaded, the Anaconda
suite can be installed easily. You can refer to the installation documentation for this
(https://docs.anaconda.com/anaconda/install/).

After installing Anaconda, you can use the Anaconda Prompt (this is similar to Command
Prompt, but it lets you run Anaconda commands) to install any Python library using any of
the Anaconda's package managers. pip and conda are the two most popular package
managers and you can use either to install libraries.

The following is a screenshot of the Anaconda Prompt with the command to install the
pandas library using pip:

B Anaconda Prompt - O *

(base) C:\Users\User»pip install pandas_,

Now that we know how to install libraries, let's explore the simplicity of Python in terms of
carrying out reasonably complex tasks.

We have a CSV file with flight arrival and departure data from major US airports from July
2019. The data has been sourced from the US Department of Transportation website
(https ://www.transtats.bts.gov/DL_SelectFields. asp?Table_ID=236).

The file extends to more than half a million rows. The following is a partial snapshot of the
dataset:
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YEAR MONTH |DAY  |CARRIER [ORIGIMN |DEST SCHED_DEP_TIMﬂ;QCT_DEP_TIME DEP_DELAY |SCHED_ARR_TIME |ACT_ARR_TIME [ARR_DELAY
2019 7 24|64 PIE AVL 1511 1533 2 1644 165% 15
2019 7 28|64 AUS SFB 2002 2010 B 2335 2344 3
2019 7 7|64 GRI LAS 1118 1118 0 1144 1135 -5
2015 7 7G4 AUS MEM 1643 1726 43 1827 1922 55
2019 7 BG4 IND FIE 858 905 7 1107 1118 12
2019 7 20|64 PBG FLL 1135 1135 -4 1457 1436 -21
2019 7 25(G4 GRR ALA 1233 1240 7 1315 1314 -1
2019 7 31|64 BNA CID 1529 1528 = 1701 1654 -7
201% 7 2|64 SFB LIT 1800 1907 67 1511 2016 65
2019 7 2|64 SFB DsM 1141 1136 -5 1330 1327 -3
2019 7 4|64 P5C LAX 1842 1854 12 2104 2135 21
2015 7 18/G4 RFD PGD 163% 1652 13 2015 2035 16
2019 7 18/G4 TUs FVU 1528 1527 = 1808 1756 -12
2015 7 18/G4 PIE FWA 1817 1813 -4 2034 2023 -11
2019 7 21|64 BLV LAS 1242 1231 =1 1405 1340 -25
2015 7 2|64 LCK FIE 1021 1014 -7 1231 1218 -13
2015 7 15/G4 TYS BWI 1348 1344 -4 1516 1515 3
2019 7 12|64 PGD BNA 1036 1028 -8 1132 1108 -23
2015 7 16(G64 CiD FIE 1720 1835 75 2056 2213 7
201% 7 17|64 AZA LAS 830 1018 48 1036 1121 45

We are interested to know about which airport has the longest average delay in terms of
flight departure. This task was completed using the following three lines of code. The
pandas library can be installed using pip, as discussed previously:

import pandas as pd

data = pd.read_csv ("flight_data.csv")
data.groupby ("ORIGIN") .mean () ["DEP_DELAY"] .idxmax ()

Here's the output:

Out[15]: 'PPG'

So, it turns out that a remote airport (Pago Pago international airport) somewhere in the
American Samoa had the longest average departure delays recorded in July 2019. As you
can see, a relatively complex task was completed using only three lines of code. The simple-
looking, almost English-like code helped us read a large dataset and perform quantitative
analysis in a fraction of a second. This sample code also showcases the power of Python's
modular programming.

In the first line of the code, we imported the pandas library, which is one of the most
important libraries of the Python data science stack. Please refer pandas' documentation
page (https://pandas.pydata.org/docs/) for more information, which is quite helpful
and easy to follow. By importing the pandas library, we were able to avoid writing the code
for reading a CSV file line by line and parsing the data. It also helped us utilize pre-coded
pandas functions such as idxmax (), which returns the index of the maximum value of a
row or column in a data frame (a pandas object that stores data in tabular format). Using
these functions significantly reduced our effort in getting the required information.
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Other programming languages have powerful libraries too, but the difference is that
Python libraries tend to be very easy to install, import, and deploy. In addition, the large,
open source developer community of Python translates to a vast number of very useful
libraries being made available regularly. It's no surprise, then, that Python is particularly
popular in the data science and machine learning domain and that the most widely used
Machine Learning (ML) and DS libraries are either Python-based or are Python wrappers.
Since NLP draws a lot from data science, ML, and Deep Learning (DL) disciplines, Python
is very much becoming the lingua franca for NLP as well.

Python's utility in NLP

Learning a new language is not easy. For an average person, it can take months or even
years to attain intermediate level fluency in a new language. It requires an understanding
of the language's syntax (grammar), memorizing its vocabulary, and so on, to gain
confidence in that language. Likewise, it is also quite challenging for computers to learn
natural language since it is impractical to code every single rule of that language.

Let's assume we want to build a virtual assistant that reads queries submitted by a
website's users and then directs them to the appropriate section of the website. Let's say the
virtual assistant receives a request stating, How do we change the payment method and payment

frequency?

If we want to train our virtual assistant the human way, then we will need to upload an
English dictionary in its memory (the easy part), find a way to teach it English grammar
(speech, clause, sentence structure, and so on), and logical interpretation. Needless to say,
this approach is going to require a herculean effort. However, what if we could transform
the sentence into mathematical objects so that the computer can apply mathematical or
logical operations and make some sense out of it? That mathematical construct can be a
vector, matrix, and so on.

For example, what if we assume an N-dimensional space where each dimension (axis) of
the space corresponds to a word from the English vocabulary? With this, we can represent
the preceding statement as a vector in that space, with its coordinate along each axis being
the count of the word representing that axis. So, in the given sentence, the sentence vector's
magnitude along the payment axes will be 2, the frequency axes will be 1, and so on. The
following is some sample code we can use to achieve this vectorization in Python. We will
use the scikit-learn library to perform vectorization, which can be installed by running
the following command in the Anaconda Prompt:

pip install scikit-learn
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Using the CountVectorizer module of Python's scikit-learn library, we have vectorized
the preceding sentence and generated the output matrix with the vector (we will go into the
details of this in subsequent chapters):

from sklearn.feature_extraction.text import CountVectorizer

sentence = ["How to change payment method and payment frequency"]
vectorizer = CountVectorizer (stop_words='english')
vectorizer.fit_transform(sentence) .todense ()

Here is the output:

matrix([[1, 1, 1, 2]]), dtype=int64)

This vector can now be compared with other sentence vectors in the same N-dimensional
space and we can derive some sort of meaning or relationship between these sentences by
applying vector principles and properties. This is an example of how a sentence
comprehension task could be transformed into a linear algebra problem. However, as you
may have already noticed, this approach is computationally intensive as we need to
transform sentences into vectors, apply vector principles, and perform calculations. While
this approach may not yield a perfectly accurate outcome, it opens an avenue for us to
explore by leveraging mathematical theorems and established bodies of research.

Expecting humans to use this approach for sentence comprehension may be impractical,
but computers can do these tasks fairly easily, and that's where programming languages
such as Python become very useful in NLP research. Please note that the example in this
section is just one example of transforming an NLP problem into a mathematical construct
in order to facilitate processing. There are many other methods that will be discussed in
detail in this book.

Important Python libraries

We will now discuss some of the most important Python libraries for NLP. We will delve
deeper into some of these libraries in subsequent chapters.
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NLTK

The Natural Language Toolkit library (NLTK) is one of the most popular Python libraries
for natural language processing. It was developed by Steven Bird and Edward Loper of the
University of Pennsylvania. Developed by academics and researchers, this library is
intended to support research in NLP and comes with a suite of pedagogical resources that
provide us with an excellent way to learn NLP. We will be using NLTK throughout this
book, but first, let's explore some of the features of NLTK.

However, before we do anything, we need to install the library by running the following
command in the Anaconda Prompt:

pip install nltk

NLTK corpora

A corpus is a large body of text or linguistic data and is very important in NLP research for
application development and testing. NLTK allows users to access over 50 corpora and
lexical resources (many of them mapped to ML-based applications). We can import any of
the available corpora into our program and use NLTK functions to analyze the text in the
imported corpus. More details about each corpus could be found here: http://www.nltk.
org/book/ch02.html

Text processing

As discussed previously, a key part of NLP is transforming text into mathematical objects.
NLTK provides various functions that help us transform the text into vectors. The most
basic NLTK function for this purpose is tokenization, which splits a document into a list of
units. These units could be words, alphabets, or sentences.

Refer to the following code snippet to perform tokenization using the NLTK library:
import nltk

text = "Who would have thought that computer programs would be analyzing
human sentiments"

from nltk.tokenize import word_tokenize

tokens = word_tokenize (text)
print (tokens)
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Here's the output:

['Who', 'would', 'have', 'thought', 'that', 'computer', 'programs',
'would', 'be', 'analyzing', 'human', 'sentiments']

We have tokenized the preceding sentence using the word_tokenize () function of NLTK,
which is simply splitting the sentence by white space. The output is a list, which is the first
step toward vectorization.

In our earlier discussion, we touched upon the computationally intensive nature of the
vectorization approach due to the sheer size of the vectors. More words in a vector mean
more dimensions that we need to work with. Therefore, we should strive to rationalize our
vectors, and we can do that using some of the other useful NLTK functions such as
stopwords, lemmatization, and stemming.

The following is a partial list of English stop words in NLTK. Stop words are mostly
connector words that do not contribute much to the meaning of the sentence:

import nltk

stopwords = nltk.corpus.stopwords.words ('english')
print (stopwords)

Here's the output:

['1', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves',6 'you',
"you're", "you'wve", "you'll", "you'd", 'your', 'yours', 'yourself',
'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers',
'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their',
'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that',
"that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be',
'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does',6 'did’',
'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because',K 'as',
'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against',
'between', 'into', 'through', 'during', 'before', 'after', 'above',
'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over',
'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when',
'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most',
'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so',
'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't",
'should', "should've", 'now', '4', '11', 'm', 'o', 're', 've', 'y', 'ain',
'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn',
"doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn',
"isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn',
"needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't",
'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]
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Since NLTK provides us with a list of stop words, we can simply look up this list and filter
out stop words from our word list:

newtokens=[word for word in tokens if word not in stopwords]

Here's the output:

['Who',
'would',
'thought',
'computer',
'programs',
'would',
'analyzing',
'human',
'sentiments']

We can further modify our vector by using lemmatization and stemming, which are
techniques that are used to reduce words to their root form. The rationale behind this step
is that the imaginary n-dimensional space that we are navigating doesn't need to have
separate axes for a word and that word's inflected form (for example, eat and eating don't
need to be two separate axes). Therefore, we should reduce each word's inflected form to its
root form. However, this approach has its critics because, in many cases, inflected word
forms give a different meaning than the root word. For example, the sentences My manager
promised me promotion and He is a promising prospect use the inflected form of the root word
promise but in entirely different contexts. Therefore, you must perform stemming and
lemmatization after considering its pros and cons.

The following code snippet shows an example of performing lemmatization using the
NLTK library's WordNet lemmat izer module:

from nltk.stem import WordNetLemmatizer

text = "Who would have thought that computer programs would be analyzing
human sentiments"
tokens = word_tokenize (text)

lemmatizer = WordNetLemmatizer ()
tokens=[lemmatizer.lemmatize (word) for word in tokens]
print (tokens)

Here's the output:

['"Who', 'would', 'have', 'thought', 'that', 'computer', 'program', 'would',
'be', 'analyzing', 'human', 'sentiment']
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Lemmatization is performed by looking up a word in WordNet's inbuilt root word map. If
the word is not found, it returns the input word unchanged. However, we can see that the
performance of the lemmatizer was not good and it was only able to reduce programs and
sentiments from their plural forms. This shows that the lemmatizer is highly dependent
on the root word mapping and is highly susceptible to incorrect root word transformation.

Stemming is similar to lemmatization but instead of looking up root words in a pre-built
dictionary, it defines some rules based on which words are reduced to their root form. For
example, it has a rule that states that any word with ing as a suffix will be reduced by
removing the suffix.

The following code snippet shows an example of performing stemming using the NLTK
library's PorterStemmer module:

from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize

text = "Who would have thought that computer programs would be analyzing
human sentiments"

tokens=word_tokenize (text.lower ())

ps = PorterStemmer ()

tokens=[ps.stem(word) for word in tokens]

print (tokens)

Here's the output:

['who', 'would', 'have', 'thought', 'that', 'comput', 'program', 'would',
'be', 'analyz', 'human', 'sentiment']

As per the preceding output, stemming was able to transform more words than
lemmatizing, but even this is far from perfect. In addition, you will notice that some
stemmed words are not even English words. For example, analyz was derived from
analyzing as it blindly applied the rule of removing ing.

The preceding examples show the challenges of reducing words correctly to their
respective root forms using NLTK tools. Nevertheless, these techniques are quite popular
for text preprocessing and vectorization. You can also create more sophisticated solutions
by building on these basic functions to create your own lemmatizer and stemmer. In
addition to these tools, NLTK has other features that are used for preprocessing, all of
which we will discuss in subsequent chapters.
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Part of speech tagging

Part of speech tagging (POS tagging) identifies the part of speech (noun, verb, adverb, and
so on) of each word in a sentence. It is a crucial step for many NLP applications since, by
identifying the POS of a word, we can deduce its contextual meaning. For example, the
meaning of the word ground is different when it is used as a noun; for example, The ground
was sodden due to rain, compared to when it is used as an adjective, for example, The
restaurant’s ground meat recipe is quite popular. We will get into the details of POS tagging
and its applications, such as Named Entity Recognizer (NER), in subsequent chapters.

Refer to the following code snippets to perform POS tagging using NLTK:

nltk.pos_tag(["your"])
Out[148]: [('your', 'PRPS$')]

nltk.pos_tag(["beautiful"])
Out[149]: [('beautiful', 'NN')]

nltk.pos_tag(["eat"])
Out [150]: [('eat', 'NN'")]

We can pass a word as a list to the pos_tag () function, which outputs the word and its
part of speech. We can generate POS for each word of a sentence by iterating over the token
list and applying the pos_tag () function individually. The following code is an example
of how POS tagging can be done iteratively:

from nltk.tokenize import word_tokenize

text = "Usain Bolt is the fastest runner in the world"
tokens = word_tokenize (text)

[nltk.pos_tag([word]) for word in tokens]

Here's the output:

[ Usain' 'NN") ],

Bolt' 'NN')],
'VBZ') ]

the 'DT") ],

fastest' 'JJgs') 1,

runner', 'NN')],

n', 'IN")],
the 'DT") ],

L'
L'
L'
L'
L'
L'
L'
L'
[(' world' 'NN') ]
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The exhaustive list of NLTK POS tags can be accessed using the upenn_tagset () function
of NLTK:

import nltk

nltk.download('tagsets') # need to download first time
nltk.help.upenn_tagset ()

Here is a partial screenshot of the output:

MN: noun, common, singular or mass
common-carrier cabbage knuckle-duster Casino afghan shed thermostat
investment slide humour falleff slick wind hyena override subhumanity
machinist ...

NNP: noun, proper, singular
Motown Venneboerger Czestochwa Ranzer Conchita Trumplane Christos
Oceanside Escobar Kreisler Sawyer Cougar Yvette Ervin ODI Darryl CTCA
Shannon A.K.C. Meltex Liverpool ...

NNPS: noun, proper, plural
Americans Americas Amharas Amityvilles Amusements Anarcho-Syndicalists
Andalusians Andes Andruses Angels Animals Antheny Antilles Antiques
Apache Apaches Apocrypha ...

Textblob

Textblob is a popular library used for sentiment analysis, part of speech tagging,
translation, and so on. It is built on top of other libraries, including NLTK, and provides a
very easy-to-use interface, making it a must-have for NLP beginners. In this section, we
would like you to dip your toes into this very easy-to-use, yet very versatile library. You
can refer to Textblob's documentation, https://textblob.readthedocs.io/en/dev/, Or
visit its GitHub page, https://github.com/sloria/TextBlob, to get started with this
library.

Sentiment analysis

Sentiment analysis is an important area of research within NLP that aims to analyze text
and assess its sentiment. The Textblob library allows users to analyze the sentiment of a
given piece of text in a very convenient way. Textblob library's documentation (https://
textblob.readthedocs.io/en/dev/) is quite detailed, easy to read, and contains tutorials
as well.
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We can install the textblob library and download the associated corpora by running the
following commands in the Anaconda Prompt:

pip install -U textblob
python —-m textblob.download_corpora

Refer to the following code snippet to see how conveniently the library can be used to
calculate sentiment:

from textblob import TextBlob
TextBlob ("I love pizza") .sentiment

Here's the output:
Sentiment (polarity=0.5, subjectivity=0.6)

Once the TextBlob library has been imported, all we need to do to calculate the sentiment
is to pass the text that needs to be analyzed and use the sentiment module of the library.
The sentiment module outputs a tuple with the polarity score and subjectivity score. The
polarity score ranges from -1 to 1, with ~1 being the most negative sentiment and 1 being
the most positive statement. The subjectivity score ranges from 0 to 1, with a score of 0
implying that the statement is factual, whereas a score of 1 implies a highly subjective
statement.

For the preceding statement, I love pizza, we get a polarity score of 0. 5, implying a
positive sentiment. The subjectivity of the preceding statement is also calculated as high,
which seems correct. Let's analyze the sentiment of other sentences using Textblob:

TextBlob ("The weather is excellent") .sentiment
Here's the output:
Sentiment (polarity=1.0, subjectivity=1.0)
The polarity of the preceding statement was calculated as 1 due to the word excellent.

Now, let's look at an example of a highly negative statement. Here, the polarity score of -1
is due to the word terrible:

TextBlob ("What a terrible thing to say") .sentiment

Here's the output:

Sentiment (polarity=-1.0, subjectivity=1.0)
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It also appears that polarity and subjectivity have a high correlation.

Machine translation

Textblob uses Google Translator's API to provide a very simple interface for translating
text. Simply use the translate () function to translate a given text into the desired
language (from Google's catalog of languages). The to parameter in the translate ()
function determines the language that the text will be translated into. The output of the
translate () function will be the same as what you will get in Google Translate.

Here, we have translated a piece of text into three languages (French, Mandarin, and
Hindi). The list of language codes can be obtained from https://cloud.google.com/

translate/docs/basic/translating-text#language-params:

from textblob import TextBlob

languages = ['fr','zh-CN', 'hi']
for language in languages:

print (TextBlob ("Who knew translation could be
fun") .translate (to=language))

Here's the output:

Qui savait que la traduction pouvait étre amusante
ERERESREE
D SFdl Ul [ S4dIE HUGR 81 9Pl 8

Part of speech tagging

Textblob's POS tagging functionality is built on top of NLTK's tagging function, but with
some modifications. You can refer to NLTK's documentation on POS tagging for more
details: https://www.nltk.org/book/ch05.html

The tags function performs POS tagging like so:

TextBlob ("The global economy is expected to grow this year") .tags

Here's the output:

[('The', 'DT'"),
('global', 'JJd'"),
('economy', 'NN'),
('

is', 'VBzZ'),

[33]


https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://cloud.google.com/translate/docs/basic/translating-text#language-params
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html

NLP Using Python Chapter 2

('expected', 'VBN'),
("to', 'TO"),
('grow', 'VB'),
('this', 'DT"),
('year', 'NN')]

Since Textblob uses NLTK for POS tagging, the POS tags are the same as NLTK. This list
can be accessed using the upenn_tagset () function of NLTK:

import nltk

nltk.download('tagsets') # need to download first time
nltk.help.upenn_tagset ()

These are just a few popular applications of Textblob and they demonstrate the ease of use
and versatility of the program. There are many other applications of Textblob, and you are
encouraged to explore them. A good place to start your Textblob journey and familiarize
yourself with other Textblob applications would be the Textblob tutorial, which can be
accessed at https://textblob.readthedocs.io/en/dev/quickstart.html.

VADER

Valence Aware Dictionary and sEntiment Reasoner (VADER) is a recently developed
lexicon-based sentiment analysis tool whose accuracy is shown to be much greater than the
existing lexicon-based sentiment analyzers. This model was developed by computer science
professors from Georgia Tech and they have published the methodology of building the
lexicon in their very easy-to-read paper (http://comp.social.gatech.edu/papers/
icwsml4.vader.hutto.pdf). It improves on other sentiment analyzers by including
colloquial language terms, emoticons, slang, acronyms, and so on, which are used
generously in social media. It also factors in the intensity of words rather than classifying
them as simply positive or negative.

We can install VADER by running the following command in the Anaconda Prompt:

pip install vaderSentiment

The following is an example of VADER in action:

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyser = SentimentIntensityAnalyzer ()
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First, we need to import SentimentIntensityAnalyzer module from the
vaderSentiment library and create an analyser object of

the SentimentIntensityAnalyzer class. We can now pass any text into this object and it
will return the sentiment analysis score. Refer to the following example:

analyser.polarity_scores ("This book is very good")

Here's the output:

{'neg': 0.0, 'neu': 0.556, 'pos': 0.444, 'compound': 0.4927}

Here, we can see that VADER outputs the negative score, neutral score, and positive score
and then aggregates them to calculate the compound score. The compound score is what
we are interested in. Any score greater than 0.05 is considered positive, while less than -0.05
is considered negative:

analyser.polarity_scores ("OMG! The book is so cool")

Here's the output:
{'neg': 0.0, 'neu': 0.604, 'pos': 0.396, 'compound': 0.5079}

While analyzing the preceding sentence, VADER correctly interpreted the colloquial terms
(0MG and cool) and was able to quantify the excitement of the statement. The compound
score is greater than the previous statement, which seems reasonable.

Web scraping libraries and methodology

While discussing NLTK, we highlighted the significance of a corpus or large repository of
text for NLP research. While the available corpora are quite useful, NLP researchers may
require the text of a particular subject. For example, someone trying to build a sentiment
analyzer for financial markets may not find the available corpus (presidential speeches,
movie reviews, and so on) particularly useful. Consequently, NLP researchers may have to
get data from other sources. Web scraping is an extremely useful tool in this regard as it lets
users retrieve information from web sources programmatically.

Before we start discussing web scraping, we wish to underscore the importance of
complying with the respective website policies on web scraping. Most websites allow web
scraping for individual non-commercial use, but you must always confirm the policy before
scraping a website.
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To perform web scraping, we will be using a test website (https://webscraper.io/test—
sites/e-commerce/allinone) to implement our web scraping script. The test website is that
of a fictitious e-commerce company that sells computers and phones.

Here's a screenshot of the website:

8 webscraper.io/test-sites/e-commerce/allinone/computers/laptops Q o~

rstell

Test Sites

Computers / Laptops

Prestigio SmartB... $299.00
P martBo =

N3450, 4GB, 128CB 550, Endless
%k

The website lists the products that it sells and each product has price and user rating
information. Let's say we want to extract the price and user ratings of every laptop listed on
the website. You can do this task manually, but that would be very time-consuming and
inefficient. Web scraping helps us perform tasks like this much more efficiently and
elegantly.

Now, let's get into how the preceding task could be carried out using web scraping tools in
Python. First, we need to install the Requests and BeautifulSoup libraries, which are the
most commonly used Python libraries for web scraping. The documentation for Requests
can be accessed at https://requests.readthedocs.io/en/master/, while the
documentation for BeatifulSoup can be accessed at https://www.crummy.com/software/
BeautifulSoup/:

pip install requests
pip install beautifulsoup4
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Once installed, we will import the Requests and BeautifulSoup libraries. The pandas
library will be used to store all the extracted data in a data frame and export data into a
CSV file:

import requests
from bs4 import BeautifulSoup
import pandas as pd

When we type a URL into our web browser and hit Enter, a set of events get triggered
before the web page gets rendered in our browser. These events include our browser
looking up the IP address of the website, our browser sending an HTTP request to the
server hosting the website, and the server responding by sending another HTTP response.
If everything is agreed to, a handshake between the server and your browser occurs and the
data is transferred. The request library helps us perform all these steps using Python
scripts.

The following code snippet shows how we can programmatically connect to the website
using the Requests library:

url =
'https://webscraper.io/test-sites/e-commerce/allinone/computers/laptops’
request = requests.get (url)

Running the preceding commands establishes a connection with the given website and
reads the HTML code of the page. Everything we see on a website (text, images, layouts,
links to other web pages, and so on) can be found in the HTML code of the page. Using the
.text function of request, we can output the entire HTML script of the web page, as
shown here:

request.text

Here's the output:

Qut[146]: '<!DOCTYPE htmlx\n<html:\n<head:\n\n\t\t\t<!-- Anti-flicker snippet (recommended)
--»\n<styler.async-hide { opacity: @ !impertant} </style»
\n<script>(function(a,s,y,n,c,h,i,d,e){s.className+=\" \'+y;h.start=1%new Date;
\nh.end=i=function(){s.className=s.className.replace(RegExp(\' ?\'+y),\'\")};\n(a[n]=a[n]]||
[1).hide=h;setTimeout{function(){i();h.end=null},c);h.timecut=c;\n})
(window,document.documentElement,\ "async-hidel " ,\ "dataLayer’ ' 4888, \n{\ ' GTM-NVFPDWE
Wrtruel);</scriptrinitin <!-- Google Tag Manager --»\n<scripts(function(w,d,s,1,i)
{w[1]=w[1]||[]1sw[1].push({\ gtm.start\ :\n\t\t\tnew Date().getTime(),event:\'gtm.js\" });var
f=d.getElementsByTagName(s)[@], \n\t\tj=d.createElement(s},dl=1!=\"datalayer\ ' ?\"&1=\"+1:
VAT jeasyne=true; L sre=\n\t\EN "hittps: //www. googletagmanager. com/gtm. js?id=\"+1
+d1;f.parentlede.insertBefore(], ) \n\t}) (window, document, ' script\",\ "dataLayer\’,\'GTM-
NVFPDWE. ' ) ; </script>\n<!-- End Google Tag Manager --» <titlexWeb Scraper Test Sites</
titlex\n <meta charset="utf-8":\n <meta http-equiv="X-UA-Compatible”
content="IE=edge,chrome=1">\n\n <meta name="keywords"™ content="web scraping,ueb
Scraper,Chrome extension,Crawling,Cross platform scraper, "/>\n <meta name="description”
centent="The most popular web scraping extension. Start scraping in minutes. Automate your
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If you want to see the HTML code of the page on your browser, simply right-click
anywhere on the page and select Inspect, as shown here:

k - Computers/ Laptops
o H H 4

Asus Vivo Prestigio SmartB... $299.00

Cpen link in new tab

Chocolate Bla Cpen link in new window

N3450, 4GB Cpen link in incognito window
Hh ok reviews

L0 Send link to MI MAX 2

Save link as...

Copy link address

n Adobe Acrobat 3
@ Video DownloadHelper 4

321.94

Lenovo V110-151A... $356.49

Aspire E1

Inspect

Ctrl+Shift=+I

This will open a panel containing the HTML code of the page. If you hover your mouse
over any part of the HTML code, the corresponding section on the web page will be
highlighted. This tells us that the code for the highlighted portion of the web page's code

can be found by expanding that section of the HTML code:

& webscraper.io/test-sites/e-commerce/allinone/computers/laptops a f -~ ¥ Q
“ % O] | Eements Console Sources  Network > @1
sdiv> == $@
0l-sm-4 col-1g-4 col-md-
s + /1 + col-sm-4 col-lg-4 col-md-4
v NnmMnlitarc anTtNnng o0l-sm-4 col-1g-4 col-md-4"
div.col-sm-4.col-Ig-4.col-md-4 2425« 235.95 Col-sm-8 col-1g-2 col-md-4
- 0l-sm-2 col-1g-4 col-md-&
col-sm-4 col-lg-4 col-md-4
01-sm-4 col-1g-4 col-md-4">.</di
>
div div div div.col-sm-d.col-lg-d.col-md-4 divthumbnail div.caption hd
Styles  EventListeners  DOM Breakpoints  Properties  Accessibility
- P thov .cls +
Asus VivoBoo§285.99 Prestigio Sm&289.00 4
@media (min-width: 992px)
.col-nd-4 { app.css?id=.
width: 33.3333333333%;
T
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HTML code is generally divided into sections, with a typical page having a header section
and a body section. The body section is further divided into elements, with each element
having attributes that are represented by a specific tag. In the preceding screenshot, we can
see the various elements, classes, and tags of the HTML code. We will need to navigate
through this complex-looking code and extract the relevant information (in our case, the
product title, price, and rating). This seemingly complex task can be carried out quite
conveniently using any of the web scraping libraries available. Beautiful Soup is one of the
most popular scrapers out there, so we will see how it can help us parse the intimidating
HTML code text. We strongly encourage you to visit Beautiful Soup's documentation page
(https://www.crummy.com/software/BeautifulSoup/bs4/doc/) and gain a better
understanding of this fascinating library.

We use the Beaut i fulSoup module and pass the HTML code (request.text)and a
parameter called HTML Parser to it, which creates a BeautifulSoup HTML parser object.
We can now apply many of the versatile Beaut ifulSoup functions to this object and
extract the information that we seek. But before we start doing that, we will have to
familiarize ourselves with the web page we are trying to scrape and identify where on the
web page the elements that we are interested in are to be found. In the e-commerce
website's HTML code, we can see that each product's detail is coded within a <div> tag (div
refers to division in HTML) with col-sm-4 col-1g-4 col-md-4 as the class. If you
expand the <div> tag by clicking on the arrow, you will see that, within the <div> tag,
there are other tags and elements as well that store various pieces of information.

To begin with, we are interested in getting the list of product names. To find out where in
the HTML code the product names are incorporated, we will have to hover the cursor
above any of the product's names, right-click, and then click on Inspect.

This will open a panel containing the web page's HTML code, as shown in the following
screenshot:

t="item" src="/images/test-

Computers / Laptops

ice">$295.99</h4

H ght pri
st-sites/e-commerce/allinone/product/251
class="title tle="Asus VivoBook X441NA-GA198">Asus
VivoBook X4.. £8
html  body div div div div div nail  div.caption hd  atitle
523225 Styles  Eventlistenars  DOM Breakpoints  Propartie = y

atitle 175.2x225

Filter thov .cls 4+

ASUS £265.99 Prestigio Sm#&#289.00 Prestigio Sm&2893.00
00 35

color: E#337ab7;
text-decoration: » none;
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As we can see, the name of the product can be extracted from the title element of the <a>
tag, which is within the caption subdivision of the code. Likewise, we can also find price
information within the same caption subdivision but under the pull-right price class.
Lastly, rating information can be extracted from the subdivision with the rating class:

S e ol Elements  Console  Sources  Network  » Q142

cl Ci n

h4 class="pull-right price ’I'L
Computers / Laptops ~an _— ,

a href="/test_sites/e_commerce/allinone/product/251
class="title le="Asus VivoBook X441NA-GAL98"|Asus
VivoBook X4...</ar == 20
/ha

¥ <p class="description”.</p

h4.pull-right.price &
Asus VivoBooB288.99 Prestigio Sma&289.00 Prestigio Sma289.00

html  body div v div div div  divithumbnail

Styles  Eventlisteners DOM Breakpoints  Properties
Filter thov .cls +,

Consele  What's New X

Highlights frem the Chrome 20 update

We can now start formulating our web scraping strategy, which will involve iterating over
all the code divisions with the col-sm-4 col-1g-4 col-md-4 class and then extracting
the relevant information in each iteration. We'll use Beautiful Soup's find_all () function
to identify all the <div> tags of the col-sm-4 col-1g-4 col-md-4 class. This function
creates an iteratable object and we use a for loop to search each subdivision. We can
extract the text from a Beaut i fulSoup object by using the . text function and can extract
the name of an element by using the . get () function. Please refer to the following scraping
code:

titles = []
prices = []
ratings = []
url =
'https://webscraper.io/test-sites/e-commerce/allinone/computers/laptops’
request = requests.get (url)
soup = BeautifulSoup (request.text, "html.parser")
for product in soup.find_all('div', {'class': 'col-sm-4 col-1lg-4 col-
md-4"'}) :

for pr in product.find_all('div', {'class': 'caption'}):

for p in pr.find_all('h4', {'class': 'pull-right price'}):
prices.append (p.text)

for title in pr.find_all('a' , {'title'}):
titles.append(title.get ('title'))
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for rt in product.find_all('div', {'class': 'ratings'}):
ratings.append(len(rt.find_all('span', \
{'class': 'glyphicon glyphicon-star'})))

As the last step, we pass the extracted information to a data frame and export the final
result in a CSV file or other file type:

product_df = pd.data frame(zip(titles,prices,ratings), columns = \
['Titles', 'Prices', 'Ratings'])

product_df.to_csv ("ecommerce.csv", index=False)

The following is a partial screenshot of the file that was created:

Titles Prices Ratings
Asus VivoBook X441NA-GA190 $295.99 3
Prestigio SmartBook 1335 Dark Grey $299.00 2
Prestigio SmartBook 1335 Gold $299.00 4
Aspire E1-510 $306.99 3
Lenovo V110-151AP $321.94 3
Lenovo V110-151AP 5356.49 2]
Hewlett Packard 250 G6 Dark Ash Silver 5364.46 1]
Acer Aspire 3 A315-31 Black 5372.70 2|
Acer Aspire A315-31-C33) $379.94 2
Acer Aspire ES1-572 Black $379.95 4
Acer Aspire 3 A315-31 Black $391.48 4
Acer Aspire 3 A315-21 $393.88 3
Asus VivoBook Max 5399.00 1
Asus VivoBook ES02NA-GO022T Dark Blue 5399.99 4
Lenovo ThinkPad E31-80 5404.23 1|
1

Likewise, you can extract text information, such as user reviews and product descriptions,
for NLP-related projects. Please note that scraped data may require further processing
based on requirements.

The preceding steps demonstrate how we can programmatically extract relevant
information from web sources using web scraping with relative ease using applicable
Python libraries. The more complex the structure of a web page is, the more difficult it is to
scrape that page. Websites also keep changing the structure and format of their web pages,
which means large-scale changes need to be made to the underlying HTML code. Any
change in the HTML code of the page necessitates a review of your scraping code. You are
encouraged to practice scraping other websites and gain a better understanding of HTML
code structure. We would like to reiterate that it is imperative that you comply with any
web scraping restrictions or limits put in place by that website.
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Overview of Jupyter Notebook

IDEs are software applications that provide software programmers with a suite of services
such as coding interfaces, debugging, and compiling/interpreting. Python programmers are
spoilt for choice as there are many open source IDEs for Python, including Jupyter
Notebook, spyder, atom, and pycharm, and each IDE comes with its own set of features.
We have used Jupyter Notebook for this book. and all the code and exercises discussed in
this book can be accessed at https://github.com/PacktPublishing/Hands-On-Python-

Natural-Language—-Processing.

Jupyter Notebook is the IDE of choice for pedagogical purposes as it allows us to weave
together code blocks, narrative, multimedia, and graphs in one flowing notebook format. It
comes pre-packaged with the Anaconda Python distribution and installing it is quite
simple. Please refer to the very nicely written beginner's guide, which should help you gain
a basic understanding of Jupyter Notebook: https://jupyter—notebook-beginner-guide.

readthedocs.io/en/latest/execute.html.

Jupyter Notebook has an . ipynb extension. In order to launch a notebook, open the
terminal (if you have installed Anaconda, please use the Anaconda Prompt) and cd to the
directory where the notebook is located. Run the jupyter notebook command, which
will launch a starter page that lists the files stored in that location. You can either select an
existing notebook to open or create a new notebook by clicking on the New button and
selecting Python3, as shown in the following screenshot:

(Y @ localhost:8888/tree o~ i Q
: Jupyter Logout
Files Running Clusters

Select items to perform actions on them. Upload Z

Notebook:
> »~
Python 3 I
Notebook list empty. Create a new notebook with Python 3|

Text File
Folder
Terminals Unavailable
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This will create a new notebook with a single cell. By default, this cell is meant for you to
type your code into it. However, using the drop-down menu shown in the following
screenshot, you can toggle between Code and Markdown (text):

Y @ localhost:8888/notebooks/Untitled.ipynbZkernel_name=python3 W~ ' Q
— JUpytE‘r Untitled Last Checkpoint: 2 minutes ago (autosaved) F Logout
File Edit View Insert Cell Kemel Widgets Help Trusted | Python 3 €
B+ = @B 4 ¥ |[H B Clcoue v|| e

Code
Markdown

Raw NEConvert
Heading

In[ I:

You can either use the icons in the notebook to insert/run cells or use hot keys such as Shift
+ Enter to run the current cell, Ctrl + Enter to run multiple selected cells, A to insert a cell
above, B to insert a cell below, and so on. Once you have completed working on the
notebook, you can save it in the format of your choice by navigating to File | Download as,
as shown in the following screenshot. Jupyter provides various options for you to save the
file based on the requirement (although you would typically want to save it in Jupyter
Notebook (. ipynb) format):

Y @ localhost:8888/notebooks/Untitled.ipynb?kernel_name=python3 b S Q
: JUpyTer Untitled Last Checkpoint: 22 minutes ago (autosaved) ﬁ Logout
File Edit View Insert Cel Kemel Widgets Help Trusted | Python3 %
New Notebook o ¥ M B C cCode T =
Open

Make a Copy...
Rename

Save and Checkpoint

Revert to Checkpoint »

Print Preview
Download as 3 Notebook ( ipynb)
Script (txt)
Trusted Noteboo HTML (html)
Close and Halt Markdown (md)
reST (rst)
LaTeX (tex)

PDF via LaTeX (_pdf)
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You can also access a finished notebook (a pre-existing . ipynb file) by running the
jupyter notebook <filename>command. This will open the required notebook in a
browser. The following are some screenshots of launching and working on a completed
notebook.

The following is a screenshot of running a Jupyter Notebook cell with code:

& Al the basic preprocessing X +
C @ localhost:8888/notebooks/Chapter%203/Code/All%20the%20basic%20preprocessing%20in%20one%20place.ipynb # @000 @ :
#! Apps [ Oracle [ Bots 5 Kafka [ Docker [ Kubernetes [ Prep [E5 Machine Learning

~" Jupyter All the basic preprocessing in one place Last Cheokpoint: 01/28/2020 ({autosaved) A Logout

File  Edit  View Insert  Cell Kemel  Widgets  Help rusted | Python 3 ©

B + % @ B 4 + MHRn B C B |Makdown ¢ &=

In [1]: import nltk
nltk.download('stopwords’)
nltk.download( 'wordnet')
£rom nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer
import pandas as pd
import re

[nltk_data] Downloading package stopwords to
[nltk_data] /Users/amankedia/nltk data...
(nltk_data] Package stopwords is already up-to-datel
(nltk data] Downloading package wordnet to
[nltk_data) /Users/amankedia/nltk_data...

(nltk data] Package wordnet is already up-to-date!

In (2]: df = pd.read csv("../../zomato_reviews.csv")
df .head(3)

Review sentiment

0 Virat Kohii did a great thing to open his rest positive
1 This place have some really haathy options ta pasitive
2 Asrocity is the most finest place in Delhi for..  positive

In [3]: corpus = pd.Series(df.Review.tolist()).astype(str)

In [4]: corpus

out[4]: 0 Virat Kohli did a great thing to open his rest...
1 This place have some really heathy options to ...
2 Rerocity is the most finest place in Delhi for...
3 Yesterday evening there was small team lunch ,...
4 I find aerocity to be the best place in delhi ...
1591 || DESI LANE || So we were at alipore's most h...
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The following screenshot shows how variables can be visualized in Jupyter Notebook inline
by running the variable name. You can also see how bar plots can be rendered inline by
running the barplot command:

& Classification - Jupyter Notebc X +

C @ localt r / ification.ipynb * & 6 0 @ ° H

i Apps [3 Oracle [ Bots B Kafka B3 Docker [ES) Kubernetes B Prep B3 Machine Learning

"_ Jupyter Classification Last Checkpoint: 11/13/2019 (autosaved) A Logout
File Edit View Insert Cell Kernel Widgets Help Trusted ‘ Python3 O
+ < @ B 4+ ¥ MRin B C B Code D=}

Observations: We have data for 8792 restaurant, this would include restaurant chains.

In [11]: restaurant_chains = df["name"].value_counts()

In [12]: restaurant_chains
Out[12]: cafe Coffee Day 96
Onesta 85
Just Bake 73
Empire Restaurant 71
Five Star Chicken 70

Campus Juice Corner 1
Sri Rajalakshmi Sweets and Bakery 1
Get Grilled 1
Incanto - The Zuri 1
Nethravathi Military Hotel 1
Name: name, Length: 8792, dtype: int64

In [13]: ax = sns.barplot(x = restaurant_chains[:10], y= restaurant_chains[:10].index, palette="Set3")

Cafe Coffee Day
Onesta

Just Bake

Empire Restaurant
Five Star Chicken
Kanti Sweets
Petoo

Polar Bear

Baskin Robbins

Pizza Hut
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The following screenshot shows how easily you can render a histogram or distribution plot
in the Jupyter notebook and how you can add text just below the plot to explain the main
points to potential readers:

B Classification - Jupyter Noteb. X +

C @ localhost:8888/notebooks/Classification.ipynb * © 0 0@ o 3
#! Apps [ Oracle (5 Bots [5 Kafka [5 Docker [ Kubernetes [5 Prep [5 Machine Learning
: Jupyter Classification Last Checkpoint: 11/13/2018 (autosaved) A Logout
Fle  Edit View Inset  Cell  Kemel  Widgets  Help Trusted | Python 3 ©
B + x A B 4 % MNRn B C B |Coe i | =

In [69]: sns.distplot(ratings, bins=30, color='black')

Out[69]: <matplotlib.axes. subplots.hxesSubplot at Oxllc£3dd38>

Observations

+ Most of the restaurants have a rating between 3.5 and 4
« The ratings curve seems to be following Nornam Distributions under the specified conditions

‘We can make use of Imputer here, but | feel the approach taken below provides more control

In [70]: X train['rate"] = X_train.rate.replace(np.nan, (str(ratings.mean()) + "/5"))

/Library/Frameworks/Python.framework/Versions/3.6/1ib/python3.6/si /ipykernel la her.py:l: Se
yWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.htmléreturning-
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The following screenshot shows how a count plot can be rendered inline and explained
using rich text:

& Classification - Jupyter Noteb: X +

C  @® localhost r ification.ipynb

* @0 000 :

i Apps [ Oracle B Bots [ Kafka B3 Docker [E5 Kubernetes ES Prep [ Machine Learning

: Jupyter Classification Last Checkpoint: 11/13/2019  (autosaved) f" Logout

File  Edit  View Insert  Cell  Kemel  Widgets  Help Trusted | Python 3 ©
B 4+ < @ B 4 % MRin B C W Code 4 | @

Online order

In [15]: print(df["online order"].nunique(), "possibilities for Online ordering in data:", df["online order"].unique())

2 possibilities for Online ordering in data: ['Yes' 'No']

In [16]: sns.countplot(df['online order'])

Out[16]: <matplotlib.axes._ subplots lot at 0xl1

30000

25000

20000

15000

count

10000

5000

online_order

Observation : 30000+ restaurant accept online orders.

We will replace Yes with 1 and No with 0

In [17]: df["online order"] = df["online order"].map({"Yes": 1, "No":0})

Table Booking
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Given its powerful features and ease of use, Jupyter Notebook has become one of the most
popular Python IDEs in both academia and industries. Please note that the authors have no
intention of persuading you to switch to Jupyter Notebook if you are already comfortable
with another IDE. However, we would very much appreciate it if you attain basic
familiarity with Jupyter Notebook as the supporting code and exercises in this book have
been composed as Notebook.

Summary

In this chapter, we discussed the importance of the Python programming language for NLP
and familiarized ourselves with key Python libraries and tools. We will be using these
libraries and tools throughout this book, so you are encouraged to practice the code
snippets provided and develop some basic level of comfort with these libraries.

In the next chapter, we will get into building the vocabulary for NLP and preprocessing
text data, which is arguably the most important step for any NLP-related work.
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Section 2: Natural Language
Representation and
Mathematics

This section delves into the preprocessing and text representation aspects of NLP. We will
discuss strategies that should be employed as part of natural language data cleaning. After
that, we'll deep dive into multiple methodologies that can be used for representing text in
the form of numbers capturing syntactical and semantic information.

This section comprises the following chapters:

e Chapter 3, Building Your NLP Vocabulary

e Chapter 4, Transforming Text into Data Structures

e chapter 5, Word Embeddings and Distance Measurements for Text

e chapter 6, Exploring Sentence-, Document-, and Character-Level Embeddings



Building Your NLP Vocabulary

In the earlier chapters, you were introduced to why Natural Language Processing

(NLP) is important especially in today's context, which was followed by a discussion on a
few prerequisites and Python libraries that are highly beneficial for NLP tasks. In this
chapter, we will take this discussion further and discuss some of the most concrete tasks
involved in building a vocabulary for NLP tasks and preprocessing textual data in detail.
We will start by learning what a vocabulary is and take the notion forward to actually build
a vocabulary. We will do this by applying various methods on text data that are present in
most of the NLP pipelines across any organization.

In this chapter, we'll cover the following topics:

e Lexicons

¢ Phonemes, graphemes, and morphemes
¢ Tokenization

¢ Understanding word normalization

Technical requirements

The code files for this chapter can be downloaded from the following GitHub
repository: https://github.com/PacktPublishing/Hands-On-Python-Natural-Language-—
Processing/tree/master/Chapter03.
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Lexicons

Lexicons can be defined as the vocabulary of a person, language, or branch of knowledge.
In simple terms, a lexicon can be thought of as a dictionary of terms that are called lexemes.
For instance, the terms used by medical practitioners can be thought of as a lexicon for their
profession. As an example, when trying to build an algorithm to convert a physical
prescription provided by doctors into an electronic form, the lexicons would

be primarily composed of medical terms. Lexicons are used for a wide variety of NLP tasks,
where they are provided as a list of words, or vocabulary. Conversations in the concerned
field are driven by their respective vocabulary. In this chapter, we will look at the steps and
processes involved in building a natural language vocabulary.

Phonemes, graphemes, and morphemes

Before we start looking at the steps for building vocabulary, we need to understand
phonemes, graphemes, and morphemes:

e Phonemes can be thought of as the speech sounds, made by the mouth or unit of
sound, that can differentiate one word from another in a language.

¢ Graphemes are groups of letters of size one or more that can represent these
individual sounds or phonemes. The word spoon consists of five letters that
actually represent four phonemes, identified by the graphemes s, p, 0o, and n.

¢ A morpheme is the smallest meaningful unit in a language. The word unbreakable
is composed of three morphemes:
e yn—a bound morpheme signifying not

e break—the root morpheme
e able—a free morpheme signifying can be done

Now, let's delve into some practical aspects that form the base of every NLP-based system.
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Tokenization

In order to build up a vocabulary, the first thing to do is to break the documents or
sentences into chunks called tokens. Each token carries a semantic meaning associated with
it. Tokenization is one of the fundamental things to do in any text-processing activity.
Tokenization can be thought of as a segmentation technique wherein you are trying to
break down larger pieces of text chunks into smaller meaningful ones. Tokens generally
comprise words and numbers, but they can be extended to include punctuation marks,
symbols, and, at times, understandable emoticons.

Let’s go through a few examples to understand this better:

sentence = "The capital of China is Beijing"
sentence.split ()
Here's the output.

['"The', 'capital', 'of', 'China', 'is', 'Beijing']

A simple sentence.split () method could provide us with all the different tokens in the
sentence The capital of China is Beijing. Each token in the preceding split carries
an intrinsic meaning; however, it is not always as straightforward as this.

Issues with tokenization

Consider the sentence and corresponding split in the following example:

sentence = "China's capital is Beijing"
sentence.split ()

Here's the output:
["China's", 'capital', 'is', 'Beijing']

In the preceding example, should it be China, Chinas, or China's? A split method does
not often know how to deal with situations containing apostrophes.

In the next two examples, how do we deal with we'11 and I'm? We'11 indicates we

will and I'mindicates I am. What should be the tokenized form of we ' 11? Should it

be well or we'll or we and '11 separately? Similarly, how do we tokenize I'm? An ideal
tokenizer should be able to process we ' 11 into two tokens, we and will, and I'm into two
tokens, I and am. Let's see how our split method would do in this situation.
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Here's the first example:

sentence = "Beijing is where we'll go"
sentence.split ()

Here's the output:
['Beijing', 'is', 'where', "we'll", 'go']
Here's the second example:

sentence = "I'm going to travel to Beijing"
sentence.split ()

Here's the output:
["I'm", 'going', 'to', 'travel', 'to', 'Beijing']

How do we represent Hong Kong? Should it be two different tokens or should they be one
token?

sentence = "Let's travel to Hong Kong from Beijing"
sentence.split ()

Here's the output:
["Let's", 'travel', 'to', 'Hong', 'Kong', 'from', 'Beijing']

Here, ideally, Hong Kong should be one token, but think of another sentence: The name of
the King is Kong. In such scenarios, Kong should be an individual token. In such situations,
context can play a major role in understanding how to treat similar token representations
when the context varies. Tokens of size 1, such as Kong, are referred to as unigrams,
whereas tokens of size 2, such as Hong Kong, are referred to as bigrams. These can be
generalized under the wing of n-grams, which we'll discuss towards the end of this chapter.

How do we deal with periods? How do we understand whether they signify the end of a
sentence or indicate an abbreviation?

In the following code snippet and subsequent output, the period between M and S is
actually indicative of an abbreviation:

sentence = "A friend is pursuing his M.S from Beijing"
sentence.split ()

Here's the output:

['A', 'friend', 'is', 'pursuing', 'his', 'M.S', 'from', 'Beijing']
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In the next example, does a token such as umm carry any meaning? Shouldn't it be removed?
Even though a token such as umm is not a part of English vocabulary, it becomes important
in use cases where speech synthesis is involved as it indicates that the person is taking a
pause here and trying to think of something. Again, as well as the context, the notion of the
use case also matters when understanding where something should be tokenized or simply
removed as a fragment of text that doesn't convey any meaning:

sentence = "Most of the times umm I travel"
sentence.split ()

Here's the output:
["Most', 'of', 'the', 'times', 'umm', 'I', 'travel']

The rise of social media platforms has resulted in a massive influx of user data, which is a
rich mine of information to understand individuals and communities; however, it has also
catered to the rise of a world of emoticons, short forms, new abbreviations (often called the
millennial language), and so on. There is a need to understand this ever-growing kind of
text, as well those cases where, for instance, a character P used with a colon (:) and hyphen
(-) denotes a face with a stuck -out tongue. Hashtags are another very common thing on
social media that are mostly indicative of summaries or emotions behind a Facebook post
or a tweet on Twitter. An example of this is shown in the following example. Such growth
leads to the development of tokenizers such as TweetTokenizer:

sentence = "Beijing is a cool place!!! :-P <3 #Awesome"
sentence.split ()

Here's the output:
['Beijing', 'is', 'a', 'cool', 'place!!!', ':-P', '<3', '#Awesome']

In the next section, we will look at Tweet Tokenizer and a few other standard tokenizers
available from the n1tk library.

Different types of tokenizers

Based on the understanding we have developed so far, let's discuss the different types of
tokenizers that are readily available for usage and see how these could be leveraged for the
proper tokenization of text.
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Regular expressions

Regular expressions are sequences of characters that define a search pattern. They are one
of the earliest and are still one of the most effective tools for identifying patterns in text.
Imagine searching for email IDs in a corpus of text. These follow the same pattern and are
guided by a set of rules, no matter which domain they are hosted upon. Regular
expressions are the way to go for identifying such things in text data instead of trying out
machine learning-oriented techniques. Other notable examples where regular expressions
have been widely employed include the SUTime offering from Stanford NLP, wherein
tokenization based on regular expressions is used to identify the date, time, duration, and
set type entities in text. Look at the following sentence:

Last summer, they met every Tuesday afternoon, from 1:00 pm to 3:00 pm.

For this sentence, the SUTime library would return TIMEX expressions where each TIMEX
expression would indicate the existence of one of the aforementioned entities:

Last summer, they met every Tuesday afternoon, from 1:00 pm to 3:00 pm.

<TIMEX3 tid="t1" type="DATE" value="2019-

L -
ast summer 2019-SU SU">Last summer</TIMEX3>

every <TIMEX3 periodicity="P1W" quant="every"
Tuesday | XXXX-WXX-2TAF tid="t2" type="SET" value="XXXX-
afternoon WXX-2TAF">every Tuesday afternoon</TIMEX3>

_ _ <TIMEX3 tid="t3" type="TIME"
1:00 pm  12020-01-06T13:00 | 1, 0—n2020-01-06T13:00">1:00 pm</TIMEX3>

) ' <TIMEX3 tid="t4" type="TIME"
3:00 pm12020-01-06T15:00 | | 1 10— n2020-01-06T15:00">3:00 pm</TIMEX3>

The TIMEX expressions can be parsed to convert them into a user-readable format.

You can try various phrases at https://nlp.stanford.edu/software/

sutime.shtml.

Try it out!
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Regular expressions-based tokenizers

The n1tk package in Python provides a regular expressions-based
tokenizers (RegexpTokenizer) functionality. It can be used to tokenize or split a sentence
based on a provided regular expression. Take the following sentence:

A Rolex watch costs in the range of $3000.0 - $8000.0 in the USA.

Here, we would like to have expressions indicating money, alphabetic sequences, and
abbreviations together. We can define a regular expression to do this and pass the utterance
to the corresponding t okenizer object, as shown in the following code block:

from nltk.tokenize import RegexpTokenizer

s = "A Rolex watch costs in the range of $3000.0 - $8000.0 in USA."
tokenizer = RegexpTokenizer ("\w+|\$[\d\.]+[\S+")
tokenizer.tokenize (s)

Here's the output:

['A",
'Rolex',
'watch',
'costs',
'in',
'the',
'range’',
'of"',
'$3000.0"',

'$8000.0",
linl,
'USA’',
U

Now, how did this work?

The \w+ [\$[\d\.]+]|\sS+ regular expression allows three alternative patterns:

e First alternative: \w+ that matches any word character (equal to [a-zA-20-9_1]).
The + is a quantifier and matches between one and unlimited times as many
times as possible.

e Second alternative: \ s [\d\ . ]+. Here, \ $ matches the character $, \d matches a
digit between 0 and 9, \ . matches the character . (period), and + again acts as a
quantifier matching between one and unlimited times.

e Third alternative: \s+. Here, \ S accepts any non-whitespace character and +
again acts the same way as in the preceding two alternatives.
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There are other tokenizers built on top of the RegexpTokenizer, such as the
BlankLine tokenizer, which tokenizes a string treating blank lines as delimiters where
blank lines are those that contain no characters except spaces or tabs.

The WordPunct tokenizer is another implementation on top of RegexpTokenizer, which
tokenizes a text into a sequence of alphabetic and nonalphabetic characters using the
regular expression \w+ | [*\w\s] +.

Try it out!

Build a regular expression to figure out email IDs from the text. Validate your expression at
https://regex101.comn.

Treebank tokenizer

The Treebank tokenizer also uses regular expressions to tokenize text according to the
Penn Treebank (https://catalog.ldc.upenn.edu/docs/LDC95T7/c193.html). Here, words
are mostly split based on punctuation.

The Treebank tokenizer does a great job of splitting contractions such as doesn’t to does and
n't. It further identifies periods at the ends of lines and eliminates them. Punctuation such
as commas is split if followed by whitespaces.

Let’s look at the following sentence and tokenize it using the Treebank tokenizer:

I'm going to buy a Rolex watch that doesn't cost more than $3000.0

The code is as follows:

from nltk.tokenize import TreebankWordTokenizer

s = "I'm going to buy a Rolex watch that doesn't cost more than $3000.0"
tokenizer = TreebankWordTokenizer ()

tokenizer.tokenize (s)

Here's the output:

['t,
lllmll,
'going',
'tO',
lbuyl,
lal,
'Rolex',
'watch',
'which',
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'does',
"n't",
'cost',
'more’',
'than',
'$Y,
'3000.0"]

As can be seen in the example and corresponding output, this tokenizer primarily helps in
analyzing each component in the text separately. The I'm gets split into two components,
namely the I, which corresponds to a noun phrase, and the 'm, which corresponds to a verb
component. This split allows us to work on individual tokens that carry significant
information that would have been difficult to analyze and parse if it was a single token.
Similarly, doesn 't gets split into does and n't, helping to better parse and understand the
inherent semantics associated with the n't, which indicates negation.

TweetTokenizer

As discussed earlier, the rise of social media has given rise to an informal language wherein
people tag each other using their social media handles and use a lot of emoticons, hashtags,
and abbreviated text to express themselves. We need tokenizers in place that can parse such
text and make things more understandable. Tweet Tokenizer caters to this use case
significantly. Let's look at the following sentence/tweet:

@amankedia I'm going to buy a Rolexxxxxxxx watch!!! :-D #happiness frolex
<3

The tweet contains a social media handle, amankedia, a couple of hashtags in the form of
#happiness and #rolex, and :-D and <3 emoticons. The next code snippet and the
corresponding output show how all the text gets tokenized using TweetTokenizer to take
care of all of these occurrences.

Consider the following example:

from nltk.tokenize import TweetTokenizer

s = "@amankedia I'm going to buy a Rolexxxxxxxx watch!!! :-D #happiness
frolex <3"
tokenizer = TweetTokenizer ()

tokenizer.tokenize (s)

Here's the output:

['@amankedia',
"Ilm",
'going',
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'tO',
lbuyl’

lal’
'Rolexxxxxxxx',

'watch',
l!l

':7D',
'#happiness’',
'"#rolex’',
l<3l]

Another common thing with social media writing is the use of expressions such
as Rolexxxxxxxx. Here, a lot of x's are present in addition to the normal one; it is a very
common trend and should be addressed to bring it to a form as close to normal as possible.

The TweetTokenizer provides two additional parameters in the form of reduce_len,
which tries to reduce the excessive characters in a token. The word Rolexxxxxxxx is
actually tokenized as Rolexxx in an attempt to reduce the number of x's present:

from nltk.tokenize import TweetTokenizer

s = "@amankedia I'm going to buy a Rolexxxxxxxx watch!!! :-D #happiness
#rolex <3"
tokenizer = TweetTokenizer (strip_handles=True, reduce_len=True)

tokenizer.tokenize (s)

Here's the output:

["I'm"l
'going',
'to',
'buy',
rar,
'Rolexxx',
'watch',
l!l
T
l!l,

':-D',

'#happiness’',

"#rolex',

'<3']

The parameter strip_handles, when set to True, removes the handles mentioned in a
post/tweet. As can be seen in the preceding output, @amankedia is stripped, since it is a
handle.
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One more parameter that is available with TweetTokenizer is preserve_case, which,
when set to False, converts everything to lower case in order to normalize the vocabulary.
The default value for this parameter is True.

Understanding word normalization

Most of the time, we don't want to have every individual word fragment that we have ever
encountered in our vocabulary. We could want this for several reasons, one being the need
to correctly distinguish (for example) the phrase U.N. (with characters separated by a
period) from UN (without any periods). We can also bring words to their root form in the
dictionary. For instance, am, are, and is can be identified by their root form, be. On another
front, we can remove inflections from words to bring them down to the same form. Words
car, cars, and car’s can all be identified as car.

Also, common words that occur very frequently and do not convey much meaning, such as
the articles a, an, and the, can be removed. However, all these highly depend on the use
cases. Wh- words, such as when, why, where, and who, do not carry much information in
most contexts and are removed as part of a technique called stopword removal, which we
will see a little later in the Stopword removal section; however, in situations such as question
classification and question answering, these words become very important and should not
be removed. Now, with a basic understanding of these techniques, let's deep dive into them
in detail.

Stemming

Imagine bringing all of the words computer, computerization, and computerize into one

word, compute. What happens here is called stemming. As part of stemming, a crude
attempt is made to remove the inflectional forms of a word and bring them to a base form
called the stem. The chopped-off pieces are referred to as affixes. In the preceding example,
compute is the base form and the affixes are 7, rization, and rize, respectively. One thing to
keep in mind is that the stem need not be a valid word as we know it. For example, the
word traditional would get stemmed to tradit, which is not a valid word in the English
dictionary.
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The two most common algorithms/methods employed for stemming include the Porter
stemmer and the Snowball stemmer. The Porter stemmer supports the English language,
whereas the Snowball stemmer, which is an improvement on the Porter stemmer, supports
multiple languages, which can be seen in the following code snippet and its output:

from nltk.stem.snowball import SnowballStemmer
print (SnowballStemmer.languages)

Here's the output:
('arabic', 'danish', 'dutch', 'english', 'finnish', 'french', 'german',
'hungarian', 'italian', 'norwegian', 'porter', 'portuguese', 'romanian',
'russian', 'spanish', 'swedish')

One thing to note from the snippet is that the Porter stemmer is one of the offerings
provided by the Snowball stemmer. Other stemmers include the Lancaster, Dawson,
Krovetz, and Lovins stemmers, among others. We will look at the Porter and Snowball
stemmers in detail here.

The Porter stemmer works only with strings, whereas the Snowball stemmer works with
both strings and Unicode data. The Snowball stemmer also allows the option to ignore
stopwords as an inherent functionality.

Let's now first apply the Porter stemmer to words and see its effects in the following code
block:

plurals = ['caresses', 'flies', 'dies', 'mules', 'died', 'agreed', 'owned',
'humbled', 'sized', 'meeting', 'stating',

'siezing', 'itemization', 'traditional', 'reference', 'colonizer',
'plotted', 'having', 'generously']

from nltk.stem.porter import PorterStemmer

stemmer = PorterStemmer ()
singles = [stemmer.stem(plural) for plural in plurals]
print (' '.join(singles))

Here's the stemmed output from the Porter stemming algorithm:

caress fli die mule die agre own humbl size meet state siez item tradit
refer colon plot have gener

Next, let's see how the Snowball stemmer would do on the same text:

stemmer2 = SnowballStemmer (language='english')
singles = [stemmer2.stem(plural) for plural in plurals]
print (' '.join(singles))
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Here's the stemmed output of applying the Snowball stemming algorithm:

caress fli die mule die agre own humbl size meet state siez item tradit
refer colon plot have generous

As can be seen in the preceding code snippets, the Snowball stemmer requires the
specification of a language parameter. In most of cases, its output is similar to that of the
Porter stemmer, except for generously, where the Porter stemmer outputs gener and the
Snowball stemmer outputs generous. The example shows how the Snowball stemmer
makes minor changes to the Porter algorithm, achieving improvements in some cases.

Over-stemming and under-stemming

Potential problems with stemming arise in the form of over-stemming and under-
stemming. A situation may arise when words that are stemmed to the same root should
have been stemmed to different roots. This problem is referred to as over-stemming. In
contrast, another problem occurs when words that should have been stemmed to the same
root aren't stemmed to it. This situation is referred to as under-stemming.

More about stemming can be read at https://pdfs.semanticscholar.
org/1c0c/0£fa35d4f£f8a2f925eb955e48d655494bd167.pdf.

Lemmatization

Unlike stemming, wherein a few characters are removed from words using crude methods,
lemmatization is a process wherein the context is used to convert a word to its meaningful
base form. It helps in grouping together words that have a common base form and so can
be identified as a single item. The base form is referred to as the lemma of the word and is
also sometimes known as the dictionary form.

Lemmatization algorithms try to identify the lemma form of a word by taking into account
the neighborhood context of the word, part-of-speech (POS) tags, the meaning of a word,
and so on. The neighborhood can span across words in the vicinity, sentences, or even
documents.
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Also, the same words can have different lemmas depending on the context. A lemmatizer
would try and identify the part-of-speech tags based on the context to identify the
appropriate lemma. The most commonly used lemmatizer is the WordNet lemmatizer.
Other lemmatizers include the Spacy lemmatizer, TextBlob lemmatizer, and Gensim
lemmatizer, and others. In this section, we will explore the WordNet and Spacy
lemmatizers.

WordNet lemmatizer

WordNet is a lexical database of English that is freely and publicly available. As part of
WordNet, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive
synonyms (synsets), each expressing distinct concepts. These synsets are interlinked using
lexical and conceptual semantic relationships. It can be easily downloaded, and the n1tk
library offers an interface to it that enables you to perform lemmatization.

Let's try and lemmatize the following sentence using the WordNet lemmatizer:

We are putting in efforts to enhance our understanding of Lemmatization

Here is the code:

import nltk

nltk.download ('wordnet')

from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer ()

s = "We are putting in efforts to enhance our understanding of \
Lemmatization"

token_list = s.split ()

print ("The tokens are: ", token_list)

lemmatized_output = ' '.Jjoin([lemmatizer.lemmatize (token) for token \

in token_list])
print ("The lemmatized output is: ", lemmatized_output)
Here's the output:

The tokens are: ['"We', 'are', 'putting', 'in', 'efforts', 'to', 'enhance',

'our', 'understanding', 'of', 'Lemmatization']

The lemmatized output is: We are putting in effort to enhance our

understanding of Lemmatization

As can be seen, the WordNet lemmatizer did not do much here. Out of are, putting,
efforts, and understanding, none were converted to their base form.
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What are we lacking here?
The WordNet lemmatizer works well if the POS tags are also provided as inputs.

It is really impossible to manually annotate each word with its POS tag in a text corpus.
Now, how do we solve this problem and provide the part-of-speech tags for individual
words as input to the WordNet lemmatizer?

Fortunately, the n1tk library provides a method for finding POS tags for a list of words
using an averaged perceptron tagger, the details of which are out of the scope of this
chapter.

The POS tags for the sentence We are trying our best to understand
Lemmatization here provided by the POS tagging method can be found in the following
code snippet:

nltk.download ('averaged_perceptron_tagger')
pos_tags = nltk.pos_tag(token_list)
pos_tags

Here's the output:

[('We', '"PRP'),

('are', 'VBP'"),

( puttlng 'VBG'"),

(' 'IN ),

(' efforts , 'NNS'),

(' 'TO0'"),

(' enhance 'VB'),

("ou 'PRP$

(" understandlng 'NN"),
('of', 'IN'"),
('"Lemmatization' 'NN') ]

As can be seen, a list of tuples of the form (the token and POS tag) is returned by the POS
tagger. Now, the POS tags need to be converted to a form that can be understood by the
WordNet lemmatizer and sent in as input along with the tokens.

The code snippet does what's needed by mapping the POS tags to the first character, which
is accepted by the lemmatizer in the appropriate format:

from nltk.corpus import wordnet

##This is a common method which is widely used across the NLP community of
practitioners and readers

def get_part_of_speech_tags (token):

"""Maps POS tags to first character lemmatize() accepts.

We are focusing on Verbs, Nouns, Adjectives and Adverbs here."""
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tag_dict = {"J": wordnet.ADJ,

"N": wordnet .NOUN,

"V": wordnet.VERB,

"R": wordnet .ADV}
tag = nltk.pos_tag([token]) [0][1][0].upper ()
return tag_dict.get (tag, wordnet.NOUN)

Now, let’s see how the WordNet lemmatizer performs when the POS tags are also provided
as inputs:

lemmatized_output_with_POS_information = [lemmatizer.lemmatize (token,
get_part_of_speech_tags (token)) for token in token_list]
print (' '.join(lemmatized_output_with_POS_information))
Here's the output:
We be put in effort to enhance our understand of Lemmatization

The following conversions happened:

e are to be

e putting to put

effortstoeffort

e understanding to understand

Let’s compare this with the Snowball stemmer:

stemmer2 = SnowballStemmer (language='english')
stemmed_sentence = [stemmer2.stem(token) for token in token_list]
print (' '.join (stemmed_sentence))

The following conversions happened:

we are put in effort to enhanc our understand of lemmat

As can be seen, the WordNet lemmatizer makes a sensible and context-aware conversion of

the token into its base form, unlike the stemmer, which tries to chop the affixes from the
token.
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Spacy lemmatizer

The Spacy lemmatizer comes with pretrained models that can parse text and figure out the
various properties of the text, such as POS tags, named-entity tags, and so on, with a simple
function call. The prebuilt models identify the POS tags and assign a lemma to each token,
unlike the WordNet lemmatizer, where the POS tags need to be explicitly provided.

We can install Spacy and download the en model for the English language by running the
following command from the command line:

pip install spacy && python -m spacy download en

Now that we have installed spacy, let's see how spacy helps with lemmatization using the
following code snippet:

import spacy

nlp = spacy.load('en')

doc = nlp("We are putting in efforts to enhance our understanding of
Lemmatization")

" ".join([token.lemma_ for token in doc])

Here's the output:
'-PRON- be put in effort to enhance -PRON- understanding of lemmatization'
The spacy lemmatizer performed a decent job without the input information of the POS

tags. The advantage here is that there's no need to look out for external dependencies for
fetching POS tags as the information is built into the pretrained model.

Another thing to note in the preceding output is the ~-PRON- lemma. The lemma
for Pronouns is returned as ~PRON- in Spacy's default behavior. It can act as a feature or,
conversely, can be a limitation, since the exact lemma is not being returned.

Spacy supports multiple languages other than English. You can learn
what they are at https://spacy.io/usage/models.

Stopword removal

From time to time in the previous sections, a technique called stopword removal was
mentioned. We will finally look at the technique in detail here.
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What are stopwords?

Stopwords are words such as 4, an, the, in, at, and so on that occur frequently in text corpora
and do not carry a lot of information in most contexts. These words, in general, are required
for the completion of sentences and making them grammatically sound. They are often the
most common words in a language and can be filtered out in most NLP tasks, and
consequently help in reducing the vocabulary or search space. There is no single list of
stopwords that is available universally, and they vary mostly based on use cases; however,
a certain list of words is maintained for languages that can be treated as stopwords specific
to that language, but they should be modified based on the problem that is being solved.

Let’s look at the stopwords available for English in the n1tk library!

nltk.download ('stopwords')

from nltk.corpus import stopwords
stop = set (stopwords.words ('english'))
", ".join(stop)

Here's the output:

"it's, yours, an, doing, any, mightn't, you, having, wasn't, themselves,
just, over, below, needn't, a, this, shan't, them, isn't, was, wouldn't,
as, only, his, or, shan, wouldn, don, where, own, were, he, out, do, it,
am, won, isn, there, hers, to, 11, most, for, weren, have, by, while, the,
re, that, down, haven, has, is, here, itself, all, didn, herself, shouldn,
him, ve, who, doesn, m, hadn't, after, further, weren't, at, hadn,
should've, too, because, can, now, same, more, she's, wasn, these,
yourself, himself, being, very, until, myself, few, so, which, ourselves,
they, t, you'd, did, o, aren, but, that'll, such, whom, of, s, you'll,
those, doesn't, my, what, aren't, during, hasn, through, will, couldn, i,
mustn, needn, mustn't, d, had, me, under, won't, haven't, its, with, when,
their, between, if, once, against, before, on, not, you're, each,
yourselves, in, and, are, shouldn't, some, nor, her, does, she, off, how,
both, our, then, why, again, we, no, y, be, other, ma, from, up, theirs,
couldn't, should, into, didn't, ours, about, ain, you've, don't, above,
been, than, your, hasn't, mightn"

If you look closely, you'll notice that Wh- words such as who, what, when, why, how, which,
where, and whom are part of this list of stopwords; however, in one of the previous sections,
it was mentioned that these words are very significant in use cases such as question
answering and question classification. Measures should be taken to ensure that these words
are not filtered out when the text corpus undergoes stopword removal. Let's learn how this
can be achieved by running through the following code block:

wh_words = ['who', 'what', 'when', 'why', 'how', 'which', 'where', 'whom']
stop = set (stopwords.words ('english'))
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sentence = "how are we putting in efforts to enhance our understanding of
Lemmatization"
for word in wh_words:

stop.remove (word)
sentence_after_stopword_removal = [token for token in sentence.split () if
token not in stop]
" ".join(sentence_after_stopword_removal)

Here's the output:

'how putting efforts enhance understanding Lemmatization'

The preceding code snippet shows that the sentence how are we putting in efforts
to enhance our understanding of Lemmatization gets modified to how putting
efforts enhance understanding Lemmatization.TheSKﬁNNordsare,we,in,tq
our, and of were removed from the sentence. Stopword removal is generally the first step
that is taken after tokenization while building a vocabulary or preprocessing text data.

Case folding

Another strategy that helps with normalization is called case folding. As part of case
folding, all the letters in the text corpus are converted to lowercase. The and the will be
treated the same in a scenario of case folding, whereas they would be treated differently in
a non-case folding scenario. This technique helps systems that deal with information
retrieval, such as search engines.

Lamborghini, which is a proper noun, will be treated as lamborghini; whether the user typed
Lamborghini or lamborghini would not make a difference, and the same results would be
returned.

However, in situations where proper nouns are derived from common noun terms, case
folding will become a bottleneck as case-based distinction becomes an important feature
here. For instance, General Motors is composed of common noun terms but is itself a proper
noun. Performing case folding here might cause issues. Another problem is when acronyms
are converted to lowercase. There is a high chance that they will map to common nouns. An
example widely used here is CAT which stands for Common Admission Test in India
getting converted to cat.

A potential solution to this is to build machine learning models that can use features from a
sentence to determine which words or tokens in the sentence should be lowercase and
which shouldn't be; however, this approach doesn't always help when users mostly type in
lowercase. As a result, lowercasing everything becomes a wise solution.
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The language here is a major feature; in some languages, such as English, capitalization
from point to point in a text carries a lot of information, whereas in some other languages,
cases might not be as important.

The following code snippet shows a very straightforward approach that would convert all
letters in a sentence to lowercase, making use of the 1lower () method available in Python:

s = "We are putting in efforts to enhance our understanding of
Lemmatization"
s = s.lower ()

S

Here's the output:

'we are putting in efforts to enhance our understanding of lemmatization'

N-grams

Until now, we have focused on tokens of size 1, which means only one word. Sentences
generally contain names of people and places and other open compound terms, such as
living room and coffee mug. These phrases convey a specific meaning when two or more
words are used together. When used individually, they carry a different meaning
altogether and the inherent meaning behind the compound terms is somewhat lost. The
usage of multiple tokens to represent such inherent meaning can be highly beneficial for the
NLP tasks being performed. Even though such occurrences are rare, they still carry a lot of
information. Techniques should be employed to make sense of these as well.

In general, these are grouped under the umbrella term of n-grams. When 7 is equal to 1,
these are termed as unigrams. Bigrams, or 2-grams, refer to pairs of words, such as dinner
table. Phrases such as the United Arab Emirates comprising three words are termed as
trigrams or 3-grams. This naming system can be extended to larger n-grams, but most NLP
tasks use only trigrams or lower.

Let’s understand how this works for the following sentence:

Natural Language Processing is the way to go

The phrase Natural Language Processing carries an inherent meaning that would be
lost if each of the words in the phrase is processed individually; however, when we use
trigrams, these phrases can be extracted together and the meaning gets captured. In
general, all NLP tasks make use of unigrams, bigrams, and trigrams together to capture all
the information.
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The following code illustrates an example of capturing bigrams:

from nltk.util import ngrams

s = "Natural Language Processing is the way to go"
tokens = s.split ()
bigrams = list (ngrams (tokens, 2))

[" ".join(token) for token in bigrams]

The output shows the list of bigrams that we captured:

['Natural Language',
'Language Processing',
'Processing is',

'is the',
'the way',
'way to',
'to go']

Let's try and capture trigrams from the same sentence using the following code:

s = "Natural Language Processing is the way to go"
tokens = s.split ()
trigrams = list (ngrams (tokens, 3))

[" ".join(token) for token in trigrams]

The output shows the trigrams that were captured from the sentence:

['Natural Language Processing',
'Language Processing is',
'Processing is the',

'is the way',
'the way to',
'way to go']

Taking care of HTML tags

Often, data is scraped from online websites for information retrieval. Since these are mostly
HTML pages, there needs to be some preprocessing to remove the HTML tags. HTML tags
are mostly noise; however, sometimes they can also carry specific information. Let's think
of a use case where a website such as Amazon uses specific tags for identifying features of a
product—for example, a <price> tag can be custom created to carry price entries for
products. In such scenarios, HTML can be highly useful; however, they are noise for most

NLP data.
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How do we get rid of them?

BeautifulSoup is an amazing library that helps us with handling such data. The following
code snippet shows an example of how this can be achieved:

html = "<!DOCTYPE html><html><body><h1>My First Heading</hl1><p>My first
paragraph.</p></body></html>"

from bs4 import BeautifulSoup

soup = BeautifulSoup (html)

text = soup.get_text ()

print (text)

Here's the output:

My First HeadingMy first paragraph.

How does all this fit into my NLP pipeline?

The steps we discussed should be performed as part of preprocessing the text corpora
before applying any algorithms to the data; however, which steps to apply and which to
ignore depend on the use case.

These tokens can also be put together after the necessary preprocessing steps that we
looked at previously to form the vocabulary. A simple example of this can be seen in the
following code:

s = "Natural Language Processing is the way to go"
tokens = set (s.split())

vocabulary = sorted (tokens)

vocabulary

Here's the output:

['Language', 'Natural', 'Processing', 'go', 'is', 'the', 'to', 'way']
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Summary

In this chapter, we looked at the various steps that are needed to build a natural language
vocabulary. These play the most critical role in preprocessing any natural language data.
Data preprocessing is probably one of the most important aspects of any machine learning
application, and the same applies to NLP as well. When performed properly, these steps
help with the machine learning aspects that generally occur after preprocessing the data,
consequently providing better results most of the time compared with scenarios where no
preprocessing is involved.

In the next chapter, we will use the techniques discussed in this chapter to preprocess data
and subsequently build mathematical representations of text that can be understood by
machine learning algorithms.
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Text data offers a very unique proposition by not providing any direct representation
available for it in terms of numbers. Computers only understand numbers. Representing
text using numbers is a challenge. At the same time, it is an opportunity to invent and try
out approaches to represent text so that the maximum information can be captured in the
process. In this chapter, we will look at how text and math interface. Let's take baby

steps toward transforming text data into mathematical data structures that will provide
insights on how to actually represent text using numbers and, consequently, build Natural
Language Processing (NLP) models.

Pause for a moment here and dwell on how would you try to solve it.

As we progress toward the end of this chapter, we will be better equipped to handle text
data as we understand techniques including count vectorization and term frequency-
inverse document frequency (TF-IDF) vectorization, among others.

Before we proceed and discuss various possible approaches such as count vectors and TF-
IDF vectors in this chapter and more approaches such as Word2vec in future chapters, we
need to understand two supremely important concepts that validate every language. These
are syntax and semantics. Syntax defines the grammatical structures or the set of rules
defining a language. It can be thought of as a set of guiding principles that define how
words can be put in each other's vicinity to form sentences or phrases. However,
syntactically correct sentences may not be meaningful. Semantics is the part that takes care
of the meanings and defines how to put words together so that they actually make sense
when organized based on the available syntactical rules.

In this chapter, we will primarily focus on the syntactical aspects, where we use
information such as how many times a word occurred in a document or in a set of
documents as potential features to represent documents. Let's see how these approaches
pan out in solving the representation problem we have.
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The following topics will be covered in this chapter:

e Understanding vectors and matrices

Exploring the Bag-of-Words (BoW) architecture
TE-IDF vectors
Distance/similarity calculation between document vectors

One-hot vectorization

Building a basic chatbot

Technical requirements

The code files for this chapter can be found at the following GitHub link: https://github.
com/PacktPublishing/Hands-On-Python-Natural-Language-Processing/tree/master/

Chapter04.

Understanding vectors and matrices

The introduction to this chapter touched upon the challenge of representing text data in a
mathematical form. Two of the most popular data structures used with text data are vectors
and matrices. We will now have a look at each one of these in detail.

Vectors

Vectors are a one-dimensional array of numbers in which each number could be identified
by its respective indices. They are typically represented as a column enclosed in square
brackets, as shown here:

T1

T3
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In this example, the x vector has three elements, and these three elements store information
about the vector. Mathematicians abstract vectors as an object in space, where each element
of the vector represents the projection of that vector along a given axis. We often use the
term R" to define a vector, where R is a representation mechanism and 7 denotes the
number of dimensions used to describe the vector. In general, R" is the set of all n-tuples of
real numbers.

In the preceding example, the x vector is in R’, meaning the vector is in a three-dimensional
space and its projection along the three axes is x1, x2, and x3. Once an object is abstracted as
a vector, it must satisfy all vector properties, and we can perform any vector operation on
it.

For example, let's assume we have height and weight data on two people—Person A and
Person B, as shown in the following table:

Height in cm Weight in kg
Person A 164 68
Person B 188 81

We can assume a two-dimensional space where these two persons are represented by two
vectors, as shown in the following screenshot. The respective height and weight of a person
can be thought of as the coordinates that determine their position in the R* space:

1\
(188, B1)
{164, 68)
oo
-
£ g o
- 3 &
) & &
‘D ko <
=
Height in cm

If we also had the body temperature of these people, we could have abstracted this

in R’space, which would have required a three-dimensional visualization.

Vectorization enables us to analyze subjects by using vector properties and operations such
as magnitude, similarity, dissimilarity, and so on. Although visualizing vectors in a space
greater than R’ is not humanly possible, all vector properties hold true for any dimensional
space, and therefore we are not limited by the number of features of a given subject to
transform data into vectors.
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All this is great, but how is this going to help us with text analysis?

We have already discussed tokenization in chapter 3, Building Your NLP Vocabulary. A
tokenized text document could be abstracted as a vector in an n-dimensional space where
each dimension (axis) in the space corresponds to a unique token of that document. The
vector's projection along a given axis (coordinate) would be the count of that unique token
in the text document. Once vectorized, the text document could be analyzed along with
other text document vectors, using vector math.

Matrices

Matrices are an extension of arrays. They are a rectangular array of numbers wherein each
number is identified by two indices. Like vectors, matrices are also represented using
squared brackets, but matrices have both rows and columns, as shown in the following
screenshot:

11 212
A= T21 222
31 232

mxn

A matrix with height m and width # is said to be in R"*" (the preceding matrix belongs

to R’*?). In the context of text analysis, matrices are used frequently to represent and
analyze text data. Typically, each document vector is represented as a row of a matrix. In
the following example, we have read three (small) documents in our system and have used
the CountVectorizer module of the sklearn library to represent this data in a matrix
format. The CountVectorizer module helps us vectorize each document and then
combine each document vector to create the matrix.

The following code block will give you some perspective about building vectors and
matrices based on text data. These will be discussed in detail in the later sections of this
chapter:

from sklearn.feature_extraction.text import CountVectorizer
X = ("Computers can analyze text",

"They do it using vectors and matrices",

"Computers can process massive amounts of text data")
vectorizer = CountVectorizer (stop_words='english')
X_vec = vectorizer.fit_transform(X)
print (vectorizer.vocabulary_)
print (X_vec.todense())
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The following output block from the previous code block shows a matrix, wherein each
row corresponds to the document being imported in the same order and each column
corresponds to a unique token whose ordering can be obtained using

the .vocabulary_ function of the CountVectorizer class

{'computers': 2, 'analyze': 1, 'text': 7, 'using': 8, 'vectors': 9,
'matrices': 5, 'process': 6, 'massive': 4, 'amounts': 0, 'data': 3}
[[01 1000010 0]
[000001O0O0T11]
[1 01110110 0]]

Once text data is converted into a matrix, we can apply any matrix operation to it (vector-
matrix multiplication, matrix-matrix multiplication, transpose, and so on).

Now that we have understood vectors and matrices, let's see how can we leverage them to
obtain the syntactical representation of text in the next sections.

Exploring the Bag-of-Words architecture

A very intuitive approach to representing a document is to use the frequency of the words
in that particular document. This is exactly what is done as part of the BoW approach.

In chapter 3, Building Your NLP Vocabulary, we saw how it is possible to build a
vocabulary based on a list of sentences. The vocabulary-building step comes as a
prerequisite to the BoOW methodology. Once the vocabulary is available, each sentence can
be represented as a vector. The length of this vector would be equal to the size of the
vocabulary. Each entry in the vector would correspond to a term in the vocabulary, and the
number in that particular entry would be the frequency of the term in the sentence under
consideration. The lower limit for this number would be 0, indicating that the vocabulary
term does not occur in the sentence concerned.

What would be the upper limit for the entry in the vector?
Think!

Well, that could possibly be the frequency of the occurrence of the word in the text corpora.
This would indicate that the most frequently occurring word occurs in only one sentence.
However, this is an extremely rare situation.
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Hey! I understood the BoW approach, but how do I code all this?

Let's begin with importing the various libraries we will be using, as follows:

import nltk

nltk.download ('stopwords')

nltk.download ('wordnet')

from nltk.corpus import stopwords

from nltk.stem.porter import PorterStemmer

from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer
import pandas as pd

import re

import numpy as np

Now, let's figure that out with the help of the following steps:

1. Take a list of sentences, as illustrated in the following code snippet:

sentences = ["We are reading about Natural Language Processing
Here",

"Natural Language Processing making computers comprehend language
data",

"The field of Natural Language Processing is evolving everyday"]

2. Create a pandas series object from the list of sentences, as follows:

corpus = pd.Series (sentences)
corpus

Here's the output:

0 We are reading about Natural Language Processi...
1 Natural Language Processing making computers c...
2 The field of Natural Language Processing is ev...

dtype: object

3. Preprocess the corpus using the NLP pipeline we built in the previous chapter, as

follows:
preprocessed_corpus = preprocess (corpus, \
keep_list = common_dot_words, stemming = False, \
stem_type = None, lemmatization = True, \
remove_stopwords = True)

preprocessed_corpus
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This gives the following output:

['read natural language process',

'natural language process make computers comprehend language
data',

'field natural language process evolve everyday']
4. Build your vocabulary, like this:

set_of_words = set ()

for sentence in preprocessed_corpus:
for word in sentence.split():
set_of_words.add (word)
vocab = list (set_of_words)
print (vocab)

Here is the output:

['read', 'natural', 'language', 'computers', 'everyday',6 'data',
'evolve', 'field', 'process', 'comprehend', 'make']

5. Fetch the position/index of each token in the vocabulary, like this:

position = {}

for i, token in enumerate (vocab) :
position[token] = i

print (position)

Here is the output:

{'read': 0, 'natural': 1, 'language': 2, 'computers': 3,
'everyday': 4, 'data': 5, 'evolve': 6, 'field': 7, 'process': 8,
'comprehend': 9, 'make': 10}

6. Create a placeholder matrix for holding the BoW. Attention: the shape of the

matrix is (number of sentences * length of vocabulary), as illustrated in the following
code snippet:

bow_matrix = np.zeros((len(preprocessed_corpus), len(vocab)))

7. Increase the positional index of every word by 1 if it appears in a sentence, as
illustrated in the following code snippet:

for i, preprocessed_sentence in enumerate (preprocessed_corpus) :

for token in preprocessed_sentence.split () :
bow_matrix[i] [position[token]] = \

bow_matrix[i] [position[token]] + 1
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8. Let's see the final BoW:

bow_matrix

Here is the output:
array((([f1., 1., 1., 0., 0., 0., O., O., 1., O.,
(6., 2., 2., 1., 0., 1., 0., 0., 1., 1.,

(6., 2., 1., 0., 2., 0., 2., 2., 1., 0.,

-1
-]
-11)

o = O

If you look at Step 5, the index for the 1anguage token is 2. Column 2 in the BoW matrix
has 1, 2, and 1 respectively, which resonates with the fact that the 1anguage

token appeared once, twice, and again once in the sentences 1, 2, and 3 respectively. You
can draw more similar conclusions from the matrix.

Try it out!

Here, we only took into account unigrams. This can be easily extended to bigrams,
trigrams, and other n-grams. As part of this Try it out exercise, include bigrams and
trigrams in the BoW model.

Hey! Do I need to code all this up? Doesn't any Python library provide all this as an inbuilt
functionality?

Of course it does!! Let's see how can we do that.

Understanding a basic CountVectorizer

CountVectorizer is a tool provided by the sklearn or scikit-learn library in Python
that saves all the effort performed in the previous section and provides application
programming interfaces (APIs) that would conveniently help in building a BoW model.

It converts a list of text documents into a matrix such that each entry in the matrix would
correspond to the count of a particular token in the respective sentences. Let's look at how
to instantiate CountVectorizer and fit data to it in the following code block:

vectorizer = CountVectorizer ()
bow_matrix = vectorizer.fit_transform(preprocessed_corpus)
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The results on the preprocessed corpus are as follows. As shown in the following code
snippet, the results are the same as what was obtained for the BoW model discussed in the
previous section:

print (vectorizer.get_feature_names())
print (bow_matrix.toarray())

Here is the output:

['comprehend', 'computers', 'data', 'everyday', 'evolve', 'field',
'language', 'make', 'natural', 'process', 'read']
[[OOO0OO0OO0OO01O0111]

[11100021110]

[0O0O011110110]]

Hence, we can conclude that this simple API does wonders in terms of saving efforts.
However, that's not all. Let's look into other important features provided by the
CountVectorizer tool in the upcoming section.

Out-of-the-box features offered by
CountVectorizer

Next, we will explore some necessary features that are offered off the shelf by the
CountVectorizer module, eliminating the need to write custom code.

Prebuilt dictionary and support for n-grams

CountVectorizer offers a lot of flexibility in terms of using a prebuilt dictionary of words
instead of creating a dictionary based on the data. It provides options to tokenize text as
well, along with the removal of stopwords. In the previous Try it out! exercise you were
asked to build a BoW using bigrams and trigrams. The CountVectorizer module
provides the ability to do that without explicitly writing code, using an attribute named
ngram_range. Let's explore an example of that in the following code block:

vectorizer_ngram_range = CountVectorizer (analyzer='word',
ngram_range=(1,3))
bow_matrix_ngram =
vectorizer_ngram_range.fit_transform(preprocessed_corpus)

print (vectorizer_ngram_range.get_feature_names())
print (bow_matrix_ngram.toarray())
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Here is the output:

['comprehend', 'comprehend language', 'comprehend language data',
'computers', 'computers comprehend', 'computers comprehend language',
'data', 'everyday', 'evolve', 'evolve everyday', 'field', 'field natural',
'field natural language', 'language', 'language data', 'language process',
'language process evolve', 'language process make', 'make', 'make
computers', 'make computers comprehend', 'natural', 'natural language',
'natural language process', 'process', 'process evolve', 'process evolve
everyday', 'process make', 'process make computers', 'read', 'read
natural', 'read natural language']
[[OO0OO0OO0CO0OO0ODO0ODO00ODO01T010000O011110000111]
(t1111110000002121201111121212100111200 0]
[bOOOOOO1I121212111012000012121211100000]]

As can be seen in the preceding example, we modified the ngram_range parameter to
accommodate unigrams, bigrams, and trigrams. If you observe closely, the ninth phrase
from the end is the natural language process trigram, and it occurs once in every
sentence. Consequently, the column corresponding to it contains values 1, 1, and

1 respectively, as we would have expected.

max_features

An extremely important thing to keep in mind while building a BoW model is to ensure
that the vocabulary does not shoot up and become excessively large. This is because this
would increase the dimensionality of the model largely, and a very big dimensionality does
not convert into a very good model; rather, it can hamper the model's inference ability. This
is referred to as the curse of dimensionality and it can potentially lead to a condition

called overfitting, which we will look into in chapter 8, From Human Neurons to Artificial
Neurons for Understanding Text. The CountVectorizer functionality provides a parameter
called max_features that will build a vocabulary such that the size of the vocabulary
would be less than or equal to max_features ordered by the frequency of tokens occurring
in a corpus, as illustrated in the following code block:

vectorizer_max_features = CountVectorizer (analyzer='word',
ngram_range=(1,3), max_features = 6)
bow_matrix_max_features =
vectorizer_max_features.fit_transform(preprocessed_corpus)

print (vectorizer_max_features.get_feature_names())
print (bow_matrix_max_features.toarray())
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Here is the output:

['language', 'language process', 'natural', 'natural language',
'natural language process', 'process']
(111111 (211111711111 171]

This example illustrates that only six of the most frequently occurring n-grams among
unigrams, bigrams, or trigrams in the corpus were selected since the value of the
max_features attribute was set to 6.

Min_df and Max_df thresholds

Now that we are clear on how max_features help by limiting the vocabulary size, we also
need to understand that at the top of this limited vocabulary would be terms or phrases
that have occurred very frequently in the text corpus under consideration. These phrases
might occur very frequently in an individual document or may be present in almost all
documents in the corpus, and may not carry any pattern. One approach we have discussed
so far to remove such terms is the removal of stopwords.

Another convenient technique that comes along with CountVectorizer is max_df, which
will ignore terms having a document frequency higher than a provided threshold
mentioned as part of the max_df parameter. Similarly, we can remove rarely occurring
terms that occur fewer times in a document than a given threshold, using amin_df
parameter. This can potentially have issues as these rarely occurring terms might be very
significant for certain documents in the text corpus. We will look into how to capture such
information in the TF-IDF vectors section.

The following example illustrates how max_df and min_df can be put into action and
consequently provide minimum and maximum thresholds toward the occurrence of a
phrase in a corpus:

vectorizer_max_features = CountVectorizer (analyzer='word',
ngram_range=(1,3), max_df = 3, min_df = 2)
bow_matrix_max_features =
vectorizer_max_features.fit_transform(preprocessed_corpus)

print (vectorizer_max_features.get_feature_names/())
print (bow_matrix_max_features.toarray())

Here is the output:

['language', 'language process', 'natural', 'natural language', 'natural
language process', 'process']
[[1 1111 1]
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]

[2
1 1]

11111
(111111
Now that we have developed an understanding of the BoW model, let's see what its
limitations are.

Limitations of the BoW representation

The BoW model provides a mechanism for representing text data using numbers. However,
there are certain limitations to it. The model only relies on the count of terms in a
document. This might work well for certain tasks or use cases with a limited vocabulary,
but it would not scale to large vocabularies efficiently.

The BoW model also intrinsically provides possibilities for eliminating or reducing the
significance of tokens or phrases that occur very rarely. These phrases might be present in a
very small number of documents, but they can be very important in the representation of
those documents. The BoW model does not support such possibilities.

These models do not take into account semantics or meanings associated with a token or
phrases in a document. It ignores the possibility of capturing features from the
neighborhood of a phrase that can hint at the context in which a word or phrase is being
used. Therefore, it completely ignores the context involved.

The BoW model can also get extremely huge in terms of the vocabulary for a large text
corpus. This can lead to vectors of huge sizes representing every document, which might
cause a deterioration in the model's performance.

TF-IDF vectors

In the Exploring the BoW architecture section, it was witnessed that the frequency of words
across a document was the only pointer for building vectors for documents. The words that
occur rarely are either removed or their weights are too low compared to words that occur
very frequently. While following this kind of approach, the pattern of information carried
across terms that are rarely present but carry a high amount of information for a document
or an evident pattern across similar documents is lost. The TF-IDF approach for weighing
terms in a text corpus helps mitigate this issue.
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The TE-IDF approach is by far the most commonly used approach for weighing terms. It is
found in applications, in search engines, information retrieval, and text mining systems,
among others. TE-IDF is also an occurrence-based method for vectorizing text and
extracting features out of it. It is a composite of two terms, which are described as follows:

e TF is similar to the CountVectorizer tool. It takes into account how frequently
a term occurs in a document. Since most of the documents in a text corpus are of
different lengths, it is very likely that a term would appear more frequently in
longer documents rather than in smaller ones. This calls for normalizing the
frequency of the term by dividing it with the count of the terms in the document.
There are multiple variations to calculate TF, but the following is the most
common representation:

Number of times the word w occurs in a document
TF(w) =

Total number of words in the document

¢ IDF is what does justice to terms that occur not so frequently across documents
but might be more meaningful in representing the document. It measures the
importance of a term in a document. The usage of TF only would provide more
weightage to terms that occur very frequently. As part of IDF, just the opposite is
done, whereby the weights of frequently occurring terms are suppressed and the
weights of possibly more meaningful but less frequently occurring terms are
scaled up. Similar to TF, there are multiple ways to measure IDF, but the
following is the most common representation:

T
IDF(w) otal number of documents

=lo
J Number of documents containing word w

As you can see, the weight of word w in document 4 is given by the following TF-
IDF weighting:

weight(w,d) = TF(w,d) x IDF(w)

As can be seen, the weight of word w in document 4 is a product of the TF of word w in
document d and the IDF of word w across the text corpus.

Let's understand how all this pans out in action. We will take the same corpus as the one
taken for the CountVectorizer model for this example to see the differences. Also, the
data underwent the same preprocessing pipeline here as well.
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Building a basic TF-IDF vectorizer

A basic TF-IDF vectorizer can be instantiated, as shown in the two steps demonstrated in
the following code snippet. The second step allows the data to be fitted to the TF-IDF
vectorizer, followed by the transformation of the data into TF-IDF vector forms using the
fit_transform function:

vectorizer = TfidfVectorizer ()
tf_idf_matrix = vectorizer.fit_transform(preprocessed_corpus)

The results on the preprocessed corpus after TE-IDF vectorization are shown in the
following code snippet. The vocabulary is the same as CountVectorizer; however, the
weights are completely different for the various terms across the documents:

print (vectorizer.get_feature_names())
print (tf_idf_matrix.toarray())
print ("\nThe shape of the TF-IDF matrix is: ", tf_idf_matrix.shape)

Here is the output:

['comprehend', 'computers', 'data', 'everyday', 'evolve',K 'field',
'language', 'make', 'natural', 'process', 'read']

[[0. 0. 0. O. O. 0. 0.41285857 0. 0.41285857 0.41285857 0.69903033]

[0.40512186 0.40512186 0.40512186 0. 0. 0. 0.478543 0.40512186 0.2392715
0.2392715 0. 1 [0. O. 0. 0.49711994 0.49711994 0.49711994 0.29360705 0.
0.29360705 0.29360705 0. 11

The shape of the TF-IDF matrix is: (3, 11)

If you look carefully, the third column from the end corresponds to the term natural. It
occurs once in each document; still, the TF-IDF weight for the term is different across the
documents because even though the IDF would remain the same across the documents

for natural, the TF would change since the size of each document is different and the TF
component gets normalized based on that. Another reason for this is that each row or
vector is normalized to have a unit norm or the length of the vector as 1. The default option,
which need not be explicitly specified, has been taken in this example, which is

the 12 norm, wherein the sum of squares of the vector elements is equal to 1.

Let's see how the TF-IDF matrix would change when the norm is changed to 11 and the rest
of the settings are kept the same. The sum of absolute values of the vector elements is 1
with the 11 norm. The following code block illustrates this:

vectorizer_1l1_norm = TfidfVectorizer (norm="11")
tf_idf _matrix_11_norm =
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vectorizer_11_norm.fit_transform(preprocessed_corpus)

print (vectorizer_11_norm.get_feature_names())
print (tf_idf_matrix_11_norm.toarray())
print ("\nThe shape of the TF-IDF matrix is: ", tf_idf_matrix_11_norm.shape)

Here is the output:

['comprehend', 'computers', 'data', 'everyday', 'evolve', 'field',
'language', 'make', 'natural', 'process', 'read']

[[0. 0. 0. 0. 0. 0.
0.21307663 0. 0.21307663 0.21307663 0.3607701 ]
[0.1571718 0.1571718 0.1571718 0. 0. 0.
0.1856564 0.1571718 0.0928282 0.0928282 0. ]

[0. 0 0. 0.2095624 0.2095624 0.2095624
0.12377093 0 0.12377093 0.12377093 0. 1]
The shape of the TF-IDF matrix is: (3, 11)

The TF-IDF matrix changed as we changed the norm to 11, as can be seen in the preceding
code snippet and the corresponding output.

N-grams and maximum features in the TF-IDF
vectorizer

Similar to CountVectorizer, the TF-IDF vectorizer offers the capability of using n-grams
and max_features to limit our vocabulary. The following code snippet shows the same:

vectorizer_n_gram max_features = TfidfVectorizer (norm="12",
analyzer='word', ngram_range=(1,3), max_features = 6)
tf_idf_matrix_n_gram_max_features =

vectorizer_n_gram max_features.fit_transform(preprocessed_corpus)
print (vectorizer_n_gram_max_features.get_feature_names())

print (tf_idf_matrix_n_gram_max_features.toarray())

print ("\nThe shape of the TF-IDF matrix is: ",
tf_idf_matrix_n_gram_max_features.shape)
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Here is the output:

['language', 'language process', 'natural', 'natural language', 'natural

language process', 'process']

[[0.40824829 0.40824829 0.40824829 0.40824829 0.40824829 0.40824829]
[0.66666667 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333]
[0.40824829 0.40824829 0.40824829 0.40824829 0.40824829 0.40824829]]

The shape of the TF-IDF matrix is: (3, 6)

Here, we took the top six features among unigrams, bigrams, and trigrams, and used them
to represent the TF-IDF vectors. The TF-IDF vectorizer provides the Min_df and Max_df
parameters as well, and the usage is exactly the same as CountVectorizer. Other features
offered by the TF-IDF vectorizer include the usage of a prebuilt vocabulary, tokenization,
and the removal of stopwords.

Limitations of the TF-IDF vectorizer's
representation

The TF-IDF vectorizer offers an improvement over CountVectorizer by scaling the
weights of the less frequently occurring terms as well as by using the IDF component. It is
also computationally fast. However, it still relies on lexical analysis and does not take into
account things such as the co-occurrence of terms, semantics, the context associated with
terms, and the position of a term in a document. It is dependent on the vocabulary size,
like CountVectorizer, and will get really slow with large vocabulary sizes.

Now that we have understood some representation techniques, let's apply them to a real-
life problem of computing the distance between text documents using cosine similarity, in
the next section.

Distance/similarity calculation between
document vectors

We have seen two methods of building vectors to represent text documents. The next
question that comes up is:

How can you measure how similar or dissimilar text documents are and how can the vectors built so
far be leveraged to have a solution to this problem?
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If the words being used in two documents are similar, it indicates that the documents are
similar as well. In this section, we will look into cosine similarity and use it to find how
similar documents are based on the term vectors.

Cosine similarity

Cosine similarity provides insights into the angle between two vectors. Two vectors would
be similar if they are pretty close in terms of both direction and magnitude. We will use
techniques developed in the previous sections to build these vectors, and then figure out
how close or far they are from each other using cosine similarity.

Cosine similarity helps in measuring the cosine of the angles between two vectors. The
value of cosine similarity would lie in the range -1 to +1. The value +1 indicates that the
vectors are perfectly similar, and the value -1 indicates that the vectors are perfectly
dissimilar or exactly opposite to each other. As you can comprehend, two documents are
similar if their cosine similarity values are close to +1. Also, these similarity measures are
always between document pairs. Cosine similarity can only be computed for vectors that
are of the same size. The formula for cosine similarity for two vectors A and B is as follows:

A-B
cos(0) = ————
[1AIlIIBII
Here, A.B is the scalar product or dot product between the two vectors, and | 1Al | and
[ Bl | represent the magnitude of these two vectors respectively. The preceding formula
can also be represented as follows:

COS

\/Z =1 sz\/Zz 1 wip

Here, w,, and w;;represent the weight or magnitude of vectors A and B along the i"
dimension respectively, in an n-dimensional space.

Solving Cosine math

Let's try to do some math around cosine similarity. We have two documents, d1 and d2,
such that the count vectors for them are d1=(5,0,3,0,2,0,0,2,0,0)and d2=(3,0,2,0, 1, 1,
0,1,0,1).
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Therefore, we have the following:

1.d2
cos(dl,d2) = _di-d2_
[ld1][[|a2|

Here, the following applies:

d1-d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25

| 1d1] |= (5*5+0%0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)** = (42)™* = 6.481
| 1d21 = (3*3+0%0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)*° = (17)*° = 4.12
cos(d1, d2)=0.94

A cosine value of 0.94 indicates that the documents are highly similar. Now that we know
what cosine similarity is and we have also done the math behind it, let's see how it works in
code.

The following method in Python would help in calculating the cosine similarity between
two vectors:

def cosine_similarity (vectorl, vector?2):

vectorl = np.array (vectorl)
vector2 = np.array (vector?2)
return np.dot (vectorl, vector2) / (np.sqrt(np.sum(vectorl**2)) * \

np.sqrt (np.sum(vector2**2)))

Now, how can the preceding method be used to calculate the cosine similarity for the
document vectors built using a CountVectorizer tool and a TfIdfVectorizer tool?
Let's find out!

Cosine similarity on vectors developed using
CountVectorizer

We would use bow_matrix, obtained in the CountVectorizer section, here to find the
document distances. The following code block helps us to do that:

for i in range (bow_matrix.shape[0]) :
for j in range(i + 1, bow_matrix.shape[0]):

print ("The cosine similarity between the documents ", i, "and", \
j, "is: ", cosine_similarity (bow_matrix.toarray () [i], \
bow_matrix.toarray () [j]))
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As can be noted from the cosine similarity calculations in the following output block,
document 0 and document 1 are the closest or most similar, while document 1 and
document 2 are the farthest or least similar:

The cosine similarity between the documents 0 and 1 is:
0.6324555320336759
The cosine similarity between the documents 0 and 2 is:
0.6123724356957946
The cosine similarity between the documents 1 and 2 is:
0.5163977794943223

Let's see how the values change when T£Idf is used instead of CountVectorizer.

Cosine similarity on vectors developed using
TfldfVectorizers tool

Next, we will use the t £-idf matrix obtained in the TfIdfVectorizer section and
compute document distances based on that, as follows:

for i in range(tf_idf_matrix.shape([0]):
for j in range(i + 1, tf_idf_matrix.shape[0]):

print ("The cosine similarity between the documents ", i, "and", \
j, "is: ", cosine_similarity(tf_idf_matrix.toarray () [i], \
tf_idf_matrix.toarray () []]))

The results are also shown in the following output block, showing that document 0 and
document 1 are the closest, and document 1 and document 2 are the farthest. However, the
magnitudes here vary from what was obtained with CountVectorizer but the relative
order of similarity remains the same, as can be seen here:

The cosine similarity between the documents 0 and 1 is:
0.39514115766749125

The cosine similarity between the documents 0 and 2 is:
0.36365455673761865

The cosine similarity between the documents 1 and 2 is:
0.2810071916500233

In actual systems, though, these values can vary based on the form of vectorization being
used. In case you didn't realize already, the cosine similarity is actually helping to measure
BoW overlap across documents. In the next section, we will discuss a technique called one-
hot vectorization for token representation, which is widely used in the deep-learning
world, as we will see when we talk about the Word2vec algorithm.
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One-hot vectorization

In general, a one-hot vector is used to represent categorical variables that take in values
from a predefined list of values. These help in representing tokens as vectors that are
required in certain use cases. In such vectors, all values are 0 except the one where the
token is present, and this entry is marked 1. As you may have guessed, these are binary
vectors.

For example, weather can be represented as a categorical variable with the values hot and
cold. In this scenario, the one-hot vectors would be as follows:

vec (hot) = <0, 1>
vec (cold) = <1, 0>

There are two bits in here—the second bit is 1, to denote hot, and the first bit is 1, to denote
cold. The size of the vector is 2 since there are only two possibilities available in terms of
hot and cold.

Hey! Where does this work similarly in NLP?

In NLP, each of the terms present in the vocabulary can be thought of as a category, just as
we had two categories to represent weather conditions. Now, whenever there is a need to
represent a token in the vocabulary as a vector, it can be one-hot encoded. Only one slot in
this vector corresponding to the position of the term in the vocabulary would take the value
1, and the rest would be zeros. The dimensionality of these vectors, as you might have
guessed already, is | VI1*1, where V is the vocabulary and | V| denotes the size of the
vocabulary.

These primarily find their place in developing word embedding, which will be discussed in
detail in the next chapter.

How do we build one-hot vectors?
Let's try to write some code to figure that out! The steps are as follows:

1. In here, for the demonstration, only one sentence would be taken in the corpus,

as follows:
sentence = ["We are reading about Natural Language Processing
Here"]
corpus = pd.Series (sentence)
corpus
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Here is the output:

0 We are reading about Natural Language Processi...
dtype: object

2. The data undergoes the same preprocessing pipeline that we have been using
throughout. The following code is for the preprocessed corpus:

# Preprocessing with Lemmatization here
preprocessed_corpus = preprocess (corpus, keep_list = [], stemming =

False, stem_type = None,lemmatization = True, remove_stopwords =

True)
preprocessed_corpus

Here is the output:
['read natural language process']
3. In the following code snippet, we are building the vocabulary:
set_of_words = set ()
for word in preprocessed_corpus[0].split () :
set_of_words.add (word)

vocab = list (set_of_words)
print (vocab)

Here is the output:
['read', 'process', 'natural', 'language']

4. Here is the code for maintaining the position of each token in the vocabulary:

position = {}
for i, token in enumerate (vocab) :
position[token] = i

print (position)
Here is the output:
{'read': 0, 'process': 1, 'natural': 2, 'language': 3
5. In the following code snippet, we are instantiating the one-hot matrix:

one_hot_matrix = np.zeros((len(preprocessed_corpus[0].split()),
len (vocab)))
one_hot_matrix.shape
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Here is the output:
(4, 4)

The shape hereis 4, 4 because there would be one row for the one-hot
vector of each token in the preprocessed corpus.

6. Here is the code for building the one-hot vectors:

for i, token in enumerate (preprocessed_corpus[0].split()):
one_hot_matrix[i] [position[token]] = 1

The preceding code snippet marks the position in the vector where the token is
present as 1; other positions remain at 0.

7. Here is the code for visualizing the one-hot matrix:
one_hot_matrix

Here is the output:

array ([

= O O O
o O - O
o = O O

[1. P p .
[0. P p .
[0. P p .
[0. P P .

N NN

)

As can be seen in the matrix, only one entry in each row is 1 and the others are 0. The first
row corresponds to the one-hot vector of read, the second to natural, the third

to language, and the final one to process, based on their respective indices in the
vocabulary.

Building a basic chatbot

We discussed chatbots as one of the important real-world applications of NLP in Chapter
1, Understanding the Basics of NLP. By now, we know enough to create a basic chatbot that
could be trained using a predefined corpus and provide responses to queries using
similarity concepts. In this section, we will create a chatbot using the concepts of
vectorization and cosine similarity.
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The most important requirement for building a chatbot is the corpus or text data on which
the chatbot will be trained. The corpus should be relevant and exhaustive. If you are
building a chatbot for the Human Resources (HR) department of your organization, you
would typically need a corpus with all HR policies to train the bot and not a corpus
containing presidential speeches. You would also need to ensure that the response time is
acceptable and that the bot is not taking an inordinate amount of time to respond. The bot
should also ideally seem human-like and have an acceptable accuracy rate.

For the purposes of the chatbot that we will create in this section, we will be using
Amazon's Q&A data, which is a repository of questions and answers gathered from
Amazon's website for various product categories
(http://jmcauley.ucsd.edu/data/amazon/qga/). Since the dataset is massive, we will only
be using the Q&A data for electronic items. Being trained on Q&A data for electronic items,
our chatbot could be deployed as automated Q&A support under the Electronic Items
section. The following screenshot shows a partial snapshot of the corpus, whichisin a
JavaScript Object Notation (JSON)-like format:

{
{
t
{
{
{
t
{
{
{

As we can see, each row of data is in a dictionary format with various key-value pairs. Now
that we have familiarized ourselves with the corpus, let's design the architecture of the
chatbot, as follows:

1. Store all the questions from the corpus in a list

Store all corresponding answers from the corpus in a list

Vectorize and preprocess the question data

Vectorize and preprocess the user's query

Assess the most similar question to the user's query using cosine similarity

oG W

Return the corresponding answer to the most similar question as a chat response
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Now that we have the blueprint of the solution, let's start coding. As the first step, we will
need to import the corpus (ga_Electronics. json) into Python. We read the file as a text
file and then use the ast library's literal_eval function to convert the rows from a string
to a Python dictionary. We then iterate through each dictionary to extract and store
questions and answers in separate lists, as shown in the following code block:

import ast

questions = []

answers = []

with open('ga_Electronics.json','r') as f:

for line in f:

data = ast.literal eval (line)
questions.append(data['question'].lower())
answers.append (data['answer'].lower())

While importing, we also perform the preprocessing step of converting all characters to
lowercase. Next, using the CountVectorizer module of the sklearn library, we convert
the questions list into a sparse matrix and apply TF-IDF transformation, as shown in the
following code block:

from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer (stop_words='english')

X_vec = vectorizer.fit_transform(questions)

tfidf = TfidfTransformer (norm='12")

X_tfidf = tfidf.fit_transform(X_vec)

X_tfidf is the repository matrix that will be searched every time a new question is entered
in the chatbot for the most similar question. To implement this, we create a function to
calculate the angle between every row of the X_t fidf matrix and the new question vector.
We use the sklearn library's cosine_similarity module to calculate the cosine between
each row and the vector, and then convert the cosine into degrees. Finally, we search the
row that has the maximum cosine (or the minimum angle) with the new question vector
and return the corresponding answer to that question as the response. If the smallest angle
between the question vector and every row of the matrix is greater than a threshold value,
then we consider that question to be different enough to not warrant a response. The
implementation of the function is shown in the following code block:

def conversation (im) :
global tfidf, answers, X_tfidf

Y_vec = vectorizer.transform(im)

Y _tfidf = tfidf.fit_transform(Y_vec)

angle = np.rad2deg(np.arccos (max (cosine_similarity(Y_tfidf, \
X_tfidf) [01)))

if angle > 60
return "sorry, I did not quite understand that"
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else:
return answers|[np.argmax (cosine_similarity(Y_tfidf, X_tfidf) [0])]

Lastly, we implement the chat, wherein the user enters their username and is then greeted
by the chatbot. The chat is initiated with the user asking questions and the bot providing a
response based on the preceding functions. The chat continues until the user types bye. The
implementation of the chat function is shown in the following code block:

def main () :
usr = input ("Please enter your username: ")
print ("support: Hi, welcome to Q&A support. How can I help you?")
while True:

im = input ("{}: ".format (usr))
if im.lower () == 'bye':
print ("Q&A support: bye!")
break
else:
print ("Q&A support: "+conversation([im]))

That's it. We have just created a Q&A support chatbot that answers electronics products-
related questions based on an existing repository of similar Q&As. The following is a
sample conversation performed by the chatbot, which does not seem too bad for such a
simple implementation:

Please enter your username: mike

support: Hi, welcome to Q&A support. How can I help you?

mike: what is the battery life of my phone?

Q&A support: so far after i charge the battery it will last about 90

minutes. i have not had any issues with the battery.

mike: great. does it have blue tooth?
Q&A support: no

mike: too bad. is there a replacement warranty on my phone?
Q&A support: the guarantee is one month. (the phone must be free of shocks
or manipulated its hardware) the costs paid by the buyer.

mike: what about theft?
Q&A support: have to see if it covers it.

mike: bye
Q&A support: bye!
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In this section, we used the concepts of vectorization and cosine similarity to create a basic
chatbot. Needless to say, there is plenty of room for further improvement in this chatbot
and we urge you to explore ways to improve its accuracy. Some areas that can be further
refined are preprocessing, the cleaning of raw data, tweaking TF-IDF normalization, and so
on. While cosine similarity-based chatbots were the first-generation NLP applications used
in industry to automate simple Q&A-based tasks, new-age chatbots have come a long way
and are able to handle much more complex and bespoke requirements using deep learning-
based models. We will be covering some of these advanced concepts in the later chapters of
this book.

Summary

In this chapter, we took baby steps in understanding the math involved in the
representation of text data using numbers based on some heuristics. We made an attempt to
understand the BoW model and build it using the CountVectorizer API provided by the
sklearn module. After looking into limitations associated with Countvectorizer, we
tried mitigating those using TfIdfVectorizer, which scales the weights of the less
frequently occurring terms. We understood that these methods are purely based on lexical
analysis and have limitations in terms of not taking into account features such as semantics
associated with words, the co-occurrence of words together, and the position of words in a
document, among others.

The study of the vectorization methods was followed up by making use of these vectors to
find similarity or dissimilarity between documents using cosine similarity as the measure
that provides the angle between two vectors in n-dimensional space. Finally, we looked
into one-hot vectorization, a mechanism used for building vectors for tokens.

Which vectorization method to use where TD-IDF is concerned, of course, builds on top of
the idea of CountVectorizer and helps in mitigating the issues involved with it.
However, neither of these methods would scale well if the vocabulary is large or keeps on
increasing. These would be ideally suited in use cases where the vocabulary size is limited
and similar terms occur frequently across documents.

Now that we have understood a few mechanisms of representing text using its syntactical
representation, let's take it forward in the next chapter by taking semantics into account as
well. On these lines, let's explore techniques such as Word2vec in the next chapter.
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Word Embeddings and
Distance Measurements for
Text

In chapter 4, Transforming Text into Data Structures, we discussed the bag-of-words and
term-frequency and inverse document frequency-based methods to represent text in the
form of numbers. These methods mostly rely on the syntactical aspects of a word in terms
of its presence or absence in a document or across a text corpus. However, information
about the neighborhood of the word, in terms of what words come after or before a word,
wasn't taken into account in the approaches we have discussed so far. The neighborhood of
a word carries important information in terms of what context the word is carrying in a
sentence. The relationship between the word and its neighborhood tends to define the
semantics of a word and its overall positioning and presence in a sentence. In this chapter,
we will use this idea to build word vectors that will try to capture the meaning of the word
based on the context it's been used in.

The following topics will be covered in this chapter:

¢ Understanding word embeddings
e Demystifying Word2vec

¢ Training a Word2vec model

o Word mover's distance

Technical requirements

The code files for this chapter can be found at the following GitHub link: https://github.
com/PacktPublishing/Hands-On-Python-Natural-Language-Processing/tree/master/
Chapter05.
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Understanding word embeddings

Word embedding is a learned representation of a word wherein each word is represented
using a vector in n-dimensional space. Words with similar meanings should have similar
representations. These representations can also help in identifying synonyms, antonym:s,
and various other relationships between words. We mentioned that embeddings can be
built to correspond to individual words; however, this idea can be extended to develop
embeddings for individual sentences, documents, characters, and so on. Word2vec captures
relationships in text; consequently, similar words have similar representations. Let's try to
understand what type of semantic information Word2vec can actually encapsulate.

We will look at a few examples to understand what relationships and analogies can be
captured by a Word2vec model. A very frequently used example deals with the embedding
of King, Man, Queen, and Woman. Once a Word2vec model is built properly and the
embedding from it is obtained for these words, the following relationship is frequently
obtained, provided that these words are actually a part of the vocabulary:

vector (Man) —vector (King) + vector (Queen) = vector (Woman)
This equation boils down to the following relationship:
vector (Man) + vector (Queen) = vector (King) + vector (Woman)

The thought process here is that the relationship of Man:King is the same as Woman : Queen.
The Word2vec algorithm is able to capture these semantic relationships when it devises an
embedding for each of these words.

Let's take one more example, but this time we will relate countries to capitals. If we build
vectors for France, Italy, and Paris using Word2vec, what would be the output of the
following equation?

vector (France) + vector (Rome) - vector (Italy) = 22

The output would be vector (Paris).

Similar to the previous example, the analogy here is that the Italy: Rome relationship is
the same as the France: Paris relationship.

All of this seems to be magic!

Now, let's try to understand how exactly we capture all of this information. It all boils
down to the Word2vec algorithm. Let's look at Word2vec in detail in the next section.
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The values or vectors obtained from the simple mathematics discussed
previously are not exactly equal to the actual vector representation of the
words, but they are close enough to substantiate that these relationships
are obtained using the Word2vec methodology.

Demystifying Word2vec

Word2vec targets exactly what John Rupert Firth famously said:
" A word is known by the company it keeps.”

It is a model that enables the building of word vectors using contextual information from
the neighborhood of a word. For every word whose embedding is developed, it's based on
the words around it. Word2vec uses a simple neural network to build this architecture.
We'll discuss the details of neural networks in depth in chapter 8, From Human Neurons to

Artificial Neurons for Text Understanding, onward.

A paper on Word2vec came out in 2013 and was one of the revolutionary
findings in the domain of Natural Language Processing (NLP). It was

developed by Thomas Mikolov et al. at Google and was later made open
source for the community to use and build on. A link to the paper can be

found at https://papers.nips.cc/paper/5021-distributed-
representations-of-words—and-phrases—-and-their-compositionality.

pdf.

Before we get into the details of Word2vec, we will try to define what supervised and
unsupervised learning is.

Supervised and unsupervised learning

Supervised and unsupervised learning will be covered in detail in chapter 7, Identifying
Patterns in Text Using Machine Learning. In order to just give you a brief heads up on
supervised and unsupervised learning, we'll look at a few examples here:

¢ Supervised learning: This includes cases such as breast cancer prediction, where
we have labeled data in which each data point either belongs to a person
suffering from breast cancer or someone who is not.
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¢ Unsupervised learning: Apart from the type of task mentioned in the previous
point, there are tasks such as ones where we need to figure out segments or
groups of customers based on their spending patterns. These data points do not
have any labels, such as high-spending or low-spending, and the aim is to just
group users. These tasks come under the scope of unsupervised learning.

Now that we have understood the difference between supervised and unsupervised, let's
find out which category Word2vec belongs to.

Word2vec - supervised or unsupervised?

Word2vec is an unsupervised methodology for building word embeddings. In the
Word2vec architecture, an attempt is made to do either of the following:

e Predict the target word based on the context word
e Predict the context word based on the target word

Even though words are being predicted, the prediction component or the class attribute
itself comes from the text or the corpus. Hence, there is no specific class attribute available,
as is the case in a supervised learning scenario. Due to this, Word2vec falls under the class
of unsupervised algorithms. All the learning comes from unstructured data in an
unsupervised manner.

Pretrained Word2vec

As discussed previously, the Word2vec algorithm tries to capture relationships between
words in the text corpus. In this section, we will explore the pretrained implementations
available for Word2vec. This will be followed by a deep dive into the Word2vec
architecture, where, using that knowledge, we will try to understand how exactly the
Word2vec model encapsulates contextual information.

The output of the Word2vec algorithm is a | VI * D matrix, where |V is the size of the
vocabulary we want vector representations for and D is the number of dimensions used to
represent each word vector. As you may have guessed, each row in this matrix carries the
embedding for an individual word in the vocabulary. The value of D can be changed and
played around with depending on several factors, such as the size of the text corpus and
the various relationships that need to be captured. Generally, D takes values between 50
and 300 in real-life use cases.
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There is a pretrained, globally available Word2vec model that Google trained on Google
News dataset. It has a vocabulary size of 3 million words and phrases and each vector has
300 dimensions. This model is 1.5 GB in size and can be downloaded from https://code.
google.com/archive/p/word2vec/. Python's gensim library provides various methods to
use the pretrained model directly or to fine-tune it. It also allows the Word2vec model to be
built from scratch based on any provided dataset. We will use this model intensively as
part of this chapter.

Exploring the pretrained Word2vec model using
gensim

Let's go through a few steps in detail that will help us import, explore, and infer from the
pretrained model:

1. Install the genism library:
pip install gensim
The preceding statement can be run from the command line.
2. Import the gensim library and the Keyedvectors component:

import gensim
from gensim.models import KeyedVectors

3. Load the pretrained vectors from the pretrained Word2vec model file:
model=KeyedVectors.load_word2vec_format ('/Users/amankedia/Desktop/S
unday/nlp-book/Chapter5/Code/GoogleNews-vectors-negative300.bin',
binary=True)

4. Validate the size of the pretrained Word2vec vocabulary:
len (model.wv.vocab)

Here is the output:
3000000
As you can see, the vocabulary size for this model is 3000000.

5. Explore the size of each Word2vec vector:

model .vector_size
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Here is the output:

300
As you can see, each vector is 300-dimensional.

6. Explore the pretrained Word2vec vocabulary:

model.wv.vocab

You can check the output of the preceding command in the Jupyter
notebook (code files) for this book as the output is too large to be
displayed here.

7. Check the most_similar functionality:
model .most_similar ('Delhi'")

Here is the output:

[ ('Kolkata', 0.7663769721984863),
('Mumbai', 0.7306068539619446),
('Lucknow', 0.7277829051017761),
('Patna', 0.7159016728401184),
('Guwahati', 0.7072612643241882),
('Jaipur', 0.6992814540863037),
('Hyderabad', 0.6983195543289185),
('Ranchi', 0.6962575912475586),
('Bhubaneswar', 0.6959235072135925),
('Chandigarh', 0.6940240859985352) ]

This output shows that the embedding for 'Delhi' is most similar to
'Kolkata'.

8. Let's validate the king, queen, woman, and man examples from earlier, both in
terms of the closest word and the second-closest word:

result = model.most_similar (positive=['man', 'queen'],

negative=['king'], topn=1)
print (result)

Here is the output:

[('woman', 0.7609435319900513) ]
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9. Let's see what the two closest words are:

result = model.most_similar (positive=['man', 'queen'],
negative=['king'], topn=1)
print (result)

Here is the output:

[('woman', 0.7609435319900513), ('girl', 0.6139994263648987)]

This output validates the first equation that we saw earlier, where we had vector
(man) + vector (queen) —vector (king) = vector (woman). The second closest entity here
isgirl.

10. Let’s now validate the country and capital example we saw earlier in this chapter:

result = model.most_similar (positive=['France', 'Rome'],
negative=['Italy'], topn=1)

print (result)

[('Paris', 0.7190686464309692) ]

The result is Paris, which is consistent with our expected output.

The Word2vec architecture

In the previous section, Pretrained Word2vec, we saw the pretrained Word2vec offering from
Google and explored its various associated features. In this section, we will try to
understand how Word2vec models are trained and what the architecture for training a
Word2vec algorithm is.

As we discussed earlier, Word2vec models can be trained by two approaches, as follows:

¢ Predicting the context word using the target word as input, which is referred to
as the Skip-gram method

e Predicting the target word using the context words as input, which is referred to
as the Continuous Bag-of-Words (CBOW) method

Here, we will discuss the Skip-gram method in detail, but you can use the ideas from our
Skip-gram discussion to build the Word2vec model using the CBOW approach.
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The Skip-gram method

The Skip-gram method builds a Word2vec model by trying to predict a context word when
a target word is taken as input. These words are present in each others' neighborhoods.
Each target-context pair will help you build the embeddings of these target words. Let's see
how the Skip-gram method works.

How do you define target and context words?

Let's take the following sentence:

All that glitters is not gold
Here, glitters is the target word.

The context words are comprised of the words appearing in the neighborhood of
glitters. We can define something called window_size, which is a configurable
parameter that conveys to the model the size of the neighborhood to consider when taking
in a word as the target word. For the preceding sentence, let's define a window_size value
of 5. When the window size is defined as 5, the model takes in two words from the left and
two words from the right of the target word as the context words.

In this example, the mapping would be as follows for glitters:

Target/Input Word Context Word
glitters All
glitters that
glitters is
glitters not

The expectation is that whenever glitters is provided as input, the model should be able
to predict the correct context word. Based on how it is doing in terms of predicting the
correct context word, it learns and, over time, gets better at predicting the right context
work.

Now, that we understand what the target word and context word are, let's try to generalize
our understanding. We will follow a sliding window approach to generate target and
context words for the sentence.
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Say we have the sentence Let us make an effort to understand natural
language processing:

Let us make an effort to understand Natural = Language | Processing
Let us make an effort to understand Natural @ Language Processing
Let us make an effort to understand Natural @ Language Processing
Let us make an effort to understand Natural = Language | Processing
Let us make an effort to understand Natural Language | Processing
Let us make an effort to understand Natural Language | Processing
Let us make an effort to understand Natural Language Processing
Let us make an effort to understand Natural Language Processing
Let us make an effort to understand Natural Language Processing
Let us make an effort to understand Natural Language Processing

Every row in the preceding graph has one word shaded in brown. This word represents the
target word. Each row also has some words shaded in gray. These words represent the
context words for the corresponding target word. As you will have guessed, the
window_size value used here is 5.

As an example, let's pick up the fourth row. The word an, shaded in brown, is the target
word and the words us, make, effort, and to, shaded in gray, are the context words for
the target word, an.

Let's now dive into the various components that are required as part of building the Skip-

gram model and attain the functionality to predict correct context words based on the
target word.

Exploring the components of a Skip-gram model

Let's now understand and explore the various components that are involved in building a
Skip-gram model.

Input vector

The input is a one-hot vector with a size of |V * 1, where |V is the size of the vocabulary.
Only one entry in this vector is marked 1, which corresponds to the position of the target
word. All other entries are marked 0.
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For example, let's assume that our vocabulary contains the words the, Sun, is, and
rising. If the words are in the same order, the one-hot vector for each of these words
would be as follows:

For the, we would have the following:

1000

e For sun, we would have the following:

0100

e For is, we would have the following;:

0010

e For rising, we would have the following:

0001

The size of each vector is 4, since our vocabulary contains four words. In each of the
vectors, only one entry is 1, which corresponds to the index of the word in the vocabulary.

Embedding matrix

The next entry in the Word2vec architecture is the embedding matrix, which has a size
of VI * N, where |V is the size of the vocabulary and N is the number of dimensions we
wish to represent each word vector with.

The embedding matrix can be instantiated with random numbers; however, certain
initialization methods, such as Xavier initialization, provide better results than random
initialization. You can read more about this at http://cs231n.github.io/neural-

networks—-2/#init.

[108 ]


http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init
http://cs231n.github.io/neural-networks-2/#init

Word Embeddings and Distance Measurements for Text Chapter 5

A dot product is performed between the embedding matrix and the input vector, which
yields an intermediate vector. In hindsight, when this dot product is performed, the row
corresponding to the target word in the embedding matrix will be activated and come out
as the intermediate vector because only that particular word's entry is 1 in the input vector,
and the rest are 0.

Context matrix

The next matrix in our architecture is called the context matrix, which also has a size of | V|
* N, which is the same dimensionality as the embedding matrix. The dot product of the
intermediate vector obtained previously and the context matrix is performed to yield the
output vector.

The thinking here is that the target word's embedding obtained as the intermediate vector
will be able to activate the context word's entry in the context matrix.

Output vector

The dot product of the intermediate vector and the context matrix yields the output vector,
which has a size of |V * 1, where |V is the size of the vocabulary. Each entry in this vector
has a number that represents the chances of the word corresponding to that index being the
context word predicted by the model. The higher the value in a particular position, the
higher the model's inclination to predict the word corresponding to that index as the
context word.

These entries can take in any real numbers as their values. However, we want normalized
values between 0 and 1, and for that, we use something called the softmax function, which
is discussed next.

Softmax

The softmax function takes the following form:

ez

%
ZL_|1 e*
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Here, z is the predicted value of each word being the context word.
The softmax function returns normalized probabilities for a set of numbers.
Let's look at an example so as to be able to understand softmax.

Assuming we have seven words, the following array shows z, or the predicted value of
each word to be the context word:

z=[2.0,3.0, 1.0, 4.0, 2.0, 3.0, 2.0]
Now, we want the normalized probabilities such that they sum up to 1.
The normalized probability of 2. 0 will be as follows:

ezp(2.0)
exp(2.0) + exp(3.0) + exp(1.0) + exp(4.0) + exp(2.0) + exp(3.0) + ezp(2.0)

Let's see how can we achieve this using three lines of code:

import numpy as np
z = [2.0, 3.0, 1.0, 4.0, 2.0
np.exp(z) / np.sum(np.exp(z)

, 3.0, 2.0]
)
The normalized probabilities outputted by our simple code are as follows:

array ([0.06175318, 0.16786254, 0.02271772, 0.45629768, 0.06175318,
0.16786254, 0.06175318])

The first value in our output array gives the normalized probability of the first entry in the
input array, z. The same is true for other indices as well. So, the normalized probability of
2.0, in this case,is 0.06175318.
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Loss calculation and backpropagation

After the normalized probability is obtained for whether something is the context word,
this is compared with the actual expected context word, and the loss function or error in
prediction is calculated, as in the following diagram. The models predict the predicted
vector, which contains the normalized probability of each word in the vocabulary being the
context word. The target vector is a one-hot vector, which indicates which value we expect
to be the context word. These two vectors are subtracted to compute the error made in
predicting the context word when given the target word as input:

Target Vector Predicted Vector Error in Prediction
0 0.4 -0.4
0 0 0
1 0.05 . 0.95
0 - 0.1 - 0.1
0 0 0

As part of the loss function calculation, we attempt to figure out how close or far the model
was to predicting the correct context word. The results of the loss function show how

well or badly the model performed in predicting the context word. The computed error is
sent back to the model, where the weights or entries in the embedding and context matrices
are adjusted based on how much they were responsible for predicting the context word
correctly or incorrectly. This methodology is referred to as backpropagation. You can read
more about backpropagation and loss functions at http://cs231n.github.io/
optimization-2/ and http://cs231n.github.io/neural-networks-2/

#losses, respectively.
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Inference

The preceding steps are repeated several times or for several epochs (which is a
configurable parameter) and, at the end of the training, the embedding matrix provides the
output we need. It is drawn out of the architecture and each row in this trained matrix
contains the word embedding for a word in the vocabulary. The i" row here contains the
word vector for the i" word in our vocabulary:

Normalized Expected
Intermediate Output Qutput
Vector Vector Vector Error
r'y
0 0.34 1 -0.66
Vocabul 1 0.14 0 0.14
acanbulary Embedding Context .
Size Matrix Matrix — _
0 0.51 0 0.51
o] 0.01 0 0.01
L
Input
Vector Error propagates back
for the model to learn

This diagram shows all the components and various interactions involved in building the
Word2vec model based on the Skip-gram method.

The CBOW method

The CBOW method works similarly to the Skip-gram method. However, the change here is
that the vector corresponding to the context word is sent in as input and the model tries to
predict the target word.
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Computational limitations of the methods discussed
and how to overcome them

The methods we discussed previously are computationally expensive since all the weights
or entries in the embedding and context matrix are updated for each target word,
context wordor context word, target word pair. Mikolov et al. addressed this
problem by employing two strategies—subsampling and negative sampling. We will
discuss both of them in the following sections.

Subsampling

There are some situations where certain words, such as a, an and the, don’t add much
context when they appear in the neighborhood of a target word. Also, these words occur
too frequently in any text corpus, so the creators of this method decided to subsample
certain words so that these words would be deleted from the text itself. These words would
not be used as target words, hence reducing the training data size, and neither would they
play a role in being the context word for other target words. Whether a word is sampled
depends on a metric called the sampling rate.

The sampling rate or probability of keeping a word is determined by the following formula:

d; 0.001
P(word;) = ( —f((i)l,]ggl ) +1) x Tlword)

Here, f(word,) is the fraction of total words in the corpus, which is word,.

Negative sampling

The other methodology applied to prevent all the weights updating is referred to as
negative sampling. As part of negative sampling, a very small subset of negative words, or
words that are not expected to appear in the context of a target word, are selected and only
their weights are updated, apart from the actual context word. As a result, only a very
small fraction of weights in the matrix are updated, instead of all the weights.
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How to select negative samples

The negative samples or words whose weights are updated again depend on the frequency
of the occurrence of the word relative to other words in the corpus.

The probability of picking a word is given by the following formula:

freq(word,;)
Z?j)‘/l freq(word;)

P(word;) =

freq(word,) is the number of times the ith word occurs in the corpus.

These two methodologies largely help in reducing the computational efforts required to
build Word2vec models.

Training a Word2vec model

Now that we know how the pretrained Word2vec model can be leveraged and we have
looked at and understood the Word2vec model architecture, let's try to actually train a
Word2vec model. We can create a custom implementation for this; however, for the sake of
this exercise, we will leverage the functionalities provided by the gensim library.

The gensim library provides a convenient interface for building a Word2vec model. We
will start by building a very simple model using the fewest possible parameters and then
we will build on it.

Building a basic Word2vec model

Let's build a basic Word2vec model by executing the following steps:

1. We will start by importing the Word2vec module from gensim, define a few
sentences as our data, and then build a model using the following code:

from gensim.models import Word2Vec
sentences = [["I", "am", "trying", "to", "understand", "Natural",
"Language", "Processing"],
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["Natural", "Language", "Processing", "is", "fun",
"tO", lllearnll]’

["There", "are", "numerous", "use", "cases", "of",
"Natural", "Language", "Processing"]]

model = Word2Vec (sentences, min_count=1)

We can provide the Word2vec module with a list of tokenized sentences as input,
as we have done in the preceding example. We can also provide a text corpus as
input using the corpus_file parameter as the corpus contains a list of sentences
where the words in each sentence are separated by whitespace.

The min_count parameter helps create custom vocabulary based on the text
itself. The value of min_count sets a minimum threshold so that vectors are built
only for words that occur more often than the value specified in the min_count
parameter.

Here, we have used a very small list of custom-built sentences to build out the
Word2vec model. However, this can be extended to any dataset. In real-life
scenarios, the entire dataset is provided as a list of sentences or a corpus a whole.

2. Let’s see what the size of each vector that we just built is using the following one-
line code:

model .vector_size
The output for this is as follows:
100

The default vector size in Word2vec is 100; however, this is a configurable
parameter and we will look at changing it in the upcoming sections.

3. Let's find out the size of the vocabulary we built:

len (model .wv.vocab)

Our vocabulary has a size of 17, as shown in the following output:

17
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The size of the vocabulary is equal to the number of unique words in the
sentences we have defined.

Now that we have built a basic Word2vec model, let's learn how to modify the min_count
parameter in the following section.

Modifying the min_count parameter

In order to modify the min_count parameter, we execute the following steps:

1. The min_count parameter helps restrict the vocabulary so that word vectors are
only built for words that occur at least min_count times in the corpus:

model = Word2Vec (sentences, min_count=2)

2. Let's find out what the vocabulary size is when we set min_count to 2 based on
the previous code block:

len (model.wv.vocab)
Here is the output:

4

The vocabulary size is 4 because only four words occur twice or more in our
corpus.

3. Let's see what those words are:

model.wv.vocab

Here is the output:

{'to': <gensim.models.keyedvectors.Vocab at 0x127591a58>,
'Natural': <gensim.models.keyedvectors.Vocab at 0x127591a90>,
'Language': <gensim.models.keyedvectors.Vocab at 0x127591ac8>,
'Processing': <gensim.models.keyedvectors.Vocab at 0x127591b00>}
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4. The dimension for these vectors would still be 100. Let’s validate that:

model .vector_size

As expected, the vector size is 100, as we can see in the following output code
block:

100

Let's move on and try some more interesting things with the Word2vec parameters.

Playing with the vector size

Higher-dimensional vectors capture more information across dimensions, especially when
the corpus and vocabulary are big and the data is highly varied.

Let's try to build a model where each vector is 300-dimensional using the following code
block:

model = Word2Vec (sentences, min_count=2, size = 300)

Let's now find out the vector size for the model we just built using the following line of
code:

model.vector_size
Here is our vector size:

300

As we can see, each of the four words that occur more than once is now represented using
300 dimensions.
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Other important configurable parameters

Apart from min_count and size, some other important parameters are as follows:

¢ sg, whose value when 1 uses the Skip-gram approach and, when 0, uses the
CBOW approach

® negative, which when greater than 0, indicates that negative sampling should
be used and the integer value signifies the number of negative samples to use

e workers, which defines the number of threads to use for training;:

model = Word2Vec (sentences, min_count=1, size = 300, workers = 2, sg = 1, negative = 1)

Let's find out the vocabulary size and vocabulary for this model:

len (model.wv.vocab)

Our vocabulary size is as follows:

17

Let's check the vocabulary using the following code:

model.wv.vocab

Here's our vocabulary:

{'I': <gensim.models.keyedvectors.Vocab at 0x1275ab5c0>,
'am': <gensim.models.keyedvectors.Vocab at 0x1275ab588>,
'trying': <gensim.models.keyedvectors.Vocab at 0x1275ab518>,
'to': <gensim.models.keyedvectors.Vocab at 0x1275ab4e0>,
'understand': <gensim.models.keyedvectors.Vocab at 0x1275ab4a8>,
'Natural': <gensim.models.keyedvectors.Vocab at 0x1275ab438>,
'Language': <gensim.models.keyedvectors.Vocab at 0x1275ab400>,
'Processing': <gensim.models.keyedvectors.Vocab at 0x1275ab3c8>,
'is': <gensim.models.keyedvectors.Vocab at 0x1275ab390>,
'fun': <gensim.models.keyedvectors.Vocab at 0x1275ab358>,
'learn': <gensim.models.keyedvectors.Vocab at 0x1275ab2e8>,
'There': <gensim.models.keyedvectors.Vocab at 0x1275ab208>,
'are': <gensim.models.keyedvectors.Vocab at 0x1275ab240>,
'numerous': <gensim.models.keyedvectors.Vocab at 0x1275abld0>,
'use': <gensim.models.keyedvectors.Vocab at 0x127591a20>,
'cases': <gensim.models.keyedvectors.Vocab at 0x1275919e8
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Word2vec models are generally stored as pickle files that serialize the model; the save ()
method can be used for this.

Limitations of Word2vec

Word2vec is a great tool for capturing semantic information from text, and we have seen
how well it captures information. However, the Word2vec model has some limitations.
Let's take the following two sentences:

I am eating an apple.
I am using an apple desktop.

apple in the first sentence signifies the fruit and, in the second sentence, it signifies the
company. However, the word vector generated for apple would be the same for both the
company and the fruit. In other words, since a static embedding is created for each word
after the training, generating an embedding on the fly based on the context for a word's
specific usage is a limitation of the Word2vec model.

Word2vec can also capture stereotypical or biased relationships depending on the text
corpus it was trained on. These biases can be related to gender, ethnicity, religion, and so
on. For example, some patterns that can be observed are as follows:

man:doctor what woman:nurse
man:computer programmer what woman:homemaker

This is another limitation of the Word2vec model, but this is highly dependent on the text
provided and, as is always said, the model is as good as the data it was trained on.

Applications of the Word2vec model

Word2vec has a large-scale application. It can be used in search engines, building
classification, and clustering models where sentences can be represented by using
embeddings of the words in them. Another very important scenario where Word2vec is
used is in capturing document similarity or how related two or more documents are to each
other. These are only some of its use cases, and the internet is filled with other examples of
where Word2vec finds its place and is highly relevant.
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Word mover’s distance

In the previous section, we discussed how measuring document similarity is one of the
major use cases of Word2vec. Think of a problem statement, such as one where we are
building an engine that can rank resumes based on their relevance to a job description.
Here, we ideally need to figure out the distance between the job description and the set of
resumes. The smaller the distance between the resume and the job description, the higher
the relevance of the resume to the job description.

One measure we discussed in Chapter 4, Transforming Text into Data Structures, was to use
cosine similarity to find how close or far text documents are to one another or how far
removed they are from one another. In this section, we will discuss another measure, Word
Mover's Distance (WMD), which is more relevant than cosine similarity, especially when
we base the distance measure for documents on word embeddings.

Kusner et al. devised the WMD algorithm. They define the dissimilarity between two text
documents as the minimum amount of distance that the embedded words of one document
need to travel to reach the embedded words of another document.

Let's look at an example that the authors use in their research paper:

Sentence 1: Obama speaks to the media in Illinois.
Sentence 2: President greets the press in Chicago.

Based on the Word2vec model, the embedding for Obama would be very close to
President. Similarly, speaks would be pretty close to greets, media would be pretty
close to press, and I11inois would map pretty closely to Chicago.

Let's take a look at a third sentence—Apple is my favorite company.Now, thisis
likely to be more distant to sentence 1 than sentence 2 is. This is because there is not much
of a semantic relationship between the words in the first and third sentences.

WMD computes the pairwise Euclidean distance between words across the sentences and it
defines the distance between two documents as the minimum cumulative cost in terms of
the Euclidean distance required to move all the words from the first sentence to the second
sentence.
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Let's see how we implement this using gensim:

1. We will import the libraries using the following two lines of code:

import gensim
from gensim.models import KeyedVectors

2. Now, we will load our pretrained model:
model=KeyedVectors.load_word2vec_format ('/Users/amankedia/Desktop/S
unday/nlp-book/Chapter 5/Code/GoogleNews-vectors—negative300.bin',

binary=True)

3. Now that we have loaded our model, let's define our data:

sentence_1 = "Obama speaks to the media in Illinois"
sentence_2 = "President greets the press in Chicago"
sentence_3 = "Apple is my favorite company"

We will get into the real action next!

4. We will now compute the WMD between the sentences from the data we just
defined. Let's begin by calculating the WMD between sentence_1 and
sentence_?2 first:

word_mover_distance = model.wmdistance (sentence_1, sentence_2)
word_mover_distance

This is the WMD between sentence_1 and sentence_2:

1.1642040735998236

5. Now, we will compute the distance between sentence_1 and sentence_3:

word_mover_distance = model.wmdistance (sentence_1, sentence_3)
word_mover_distance

The distance between sentence_1 and sentence_3 is given in the following
output block:

1.365806580758697
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6. Let's normalize our word embeddings using the following line of code to get the
best measure of distance:

model.init_sims (replace = True)

7. Let's now recompute the WMD between the sentences based on the normalized
embeddings we created in the previous step. We will again start by calculating
the WMD between sentence_1 and sentence_2, this time with normalized
embeddings:

word_mover_distance = model.wmdistance (sentence_1, sentence_2)
word_mover_distance

Here's the distance between sentence_1 and sentence_2 using normalized
embeddings:

0.4277553083600646

8. Let's repeat this for sentence_1 and sentence_2:

word_mover_distance = model.wmdistance (sentence_1, sentence_3)
word_mover_distance

The WMD between sentence_1 and sentence_3 based on normalized
embeddings is as follows:

0.47793400675650705

As we can see, the distance between sentence 1 and sentence 2 is much smaller than the
distance between sentence 1 and sentence 3. This indicates that sentence 2 is much more
similar to sentence 1 compared to sentence 3. With this understanding of how WMD works,
we are now better equipped to apply it to cases where we need to compute distances
between documents based on their Word2vec representations. A simple use case would be
to apply this to document clustering, where documents with small WMDs between them
are clustered together and documents with larger WMDs are kept further apart.
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Summary

In this chapter, we expanded on the ideas introduced in chapter 4, Transforming Text into
Data Structures. Instead of using the syntactical aspects of a document, we focused on
capturing the semantics of words in a sentence. Properties such as the co-occurrence of
words help in understanding the context of a word, and we tried to leverage this to build
vector representations of text using the Word2vec algorithm. We explored the pretrained
Word2vec model developed by Google and looked at a few relationships that it can
capture. We followed this up by learning about the architecture of a Word2vec model. After
that, we trained a few Word2vec models from scratch. Limitations and bias around the
Word2Vec model were then discussed, followed by a discussion on some applications of
the Word2vec model. Finally, we looked at how the WMD algorithm uses word vectors to
capture document distances.

In the next chapter, we will take this idea further to build vectors for documents, sentences,
and characters.
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Exploring Sentence-,
Document-, and Character-
Level Embeddings

In chapter 5, Word Embeddings and Distance Measurements for Text, we looked at how
information related to the ordering of words, along with their semantics, can be taken into
account when building embeddings to represent words. The idea of building embeddings
will be extended in this chapter. We will explore techniques that will help us build
embeddings for documents and sentences, as well as words based on their characters. We
will start by looking into an algorithm called Doc2Vec, which, as the name suggests,
provides document- or paragraph-level contextual embeddings. A sentence can essentially
be treated as a paragraph, and embeddings for individual sentences can also be obtained
using Doc2Vec. We will briefly discuss techniques such as Sent2Vec, which are focused on
obtaining embeddings for sentences based on n-grams. Before Sent2Vec, we will discuss
fastText extensively, which is a technique for building word representations using n-grams.
An introduction to the Universal Sentence Encoder (USE) will be provided toward the end
of this chapter.

The following topics will be covered in this chapter:

e Venturing into Doc2Vec
¢ Exploring fastText
¢ Understanding Sent2Vec and the Universal Sentence Encoder

Technical requirements

The code files for this chapter can be found at the following GitHub link: https://github.
com/PacktPublishing/Hands-On-Python-Natural-Language-Processing/tree/master/
Chapter06.
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Venturing into Doc2Vec

As we saw in chapter 5, Word Embeddings and Distance Measurements for Text, Word2Vec
helped in fetching semantic embeddings for word-level representations. However, most of
the NLP tasks we deal with are a combination of words or are essentially what we call a
paragraph:

How do we fetch paragraph-level embeddings?

One simple mechanism would be to take the word embeddings for the words occurring in
the paragraph and average them out to have representations of paragraphs:

Can we do better than averaging word embeddings?

Le and Mikolov extended the idea of Word2Vec to develop paragraph-level embeddings
so that paragraphs of differing lengths can be represented by fixed-length vectors. In doing
so, they presented the paper Distributed Representations of Sentences and Documents (https:/
/arxiv.org/abs/1405.4053), which aimed at building paragraph-level embeddings.
Similar to Word2Vec, the idea here is to predict certain words as well. However, in addition
to using word representations for predicting words, as we did in the Word2Vec model,
here, document representations are used as well.

These documents are represented using dense vectors, similar to how we represent words.
The vectors are called document or paragraph vectors and are trained to predict words in
the document. Documents vectors are updated similarly to how word vectors are. The
paragraph vectors are concatenated with multiple word vectors to predict the next word in
the context. Similar to Word2Vec, Doc2Vec also falls under the class of unsupervised
algorithms since the data that's used here is unlabeled.

The paper described two ways of building paragraph vectors, as follows:

¢ Distributed Memory Model of Paragraph Vectors (PV-DM): This is similar to
the continuous bag-of-words approach we discussed regarding Word2Vec.
Paragraph vectors are concatenated with the word vectors to predict the target
word. Another approach is to use the average of the word and paragraph vectors
to predict the target word. How are embeddings built for unseen documents
after training? The model uses the built word matrix to develop embeddings for
unseen documents, and these are added to the paragraph vector or document
matrix. The following diagram shows how the PV-DM model is trained. In Learn
Natural Language Processing (NLP), along with the word vectors of Learn,
Natural, and Language, the Document vector is used to predict the next
word, Processing. The model is tuned based on how it did in terms of predicting
the word Processing and how it learned throughout:
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¢ Distributed Bag-of-Words Model of Paragraph Vectors (PV-DBOW): In this
approach, word vectors aren't taken into account. Instead, the paragraph vector
is used to predict randomly sampled words from the paragraph. In the process of
using gradient descent and backpropagation, the paragraph vectors get adjusted
and learning happens based on how good or bad they are doing in terms of

making predictions. This approach is analogous to the Skip-gram approach used
in Word2Vec.

The following diagram shows the architecture of a PV-DBOW model wherein the
paragraph vector gets trained by predicting words in the paragraph itself:

Learn MNatural Language | Processing

Document Matrix

f

Paragraph 1D
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The PV-DBOW model is simpler and more memory-efficient as word vectors don't need to
be stored in this approach. The learned representations that are obtained from both the
distributed memory model and the distributed bag-of-words model can be combined to
form the paragraph vector. Each of the learned representations can individually be treated
as paragraph vectors, which are also used to represent the document. These learned
representations serve as vector representations of documents and can be fed as input to any
machine learning model to perform various tasks such as the classification/clustering of the
documents and so on.

Now that we have understood the intuition behind Doc2Vec, let's look at it in action. We
will use the Doc2Vec module that was built as part of the Gensim library for our
experimentation. Here, we will look at some basic examples to understand the theory we
described here. We will use these in conjunction with machine learning algorithms to solve
actual problems in chapter 7, Identifying Patterns in Text Using Machine Learning.

Building a Doc2Vec model

Next, we will look into the step-wise details of building a Doc2Vec model. Let's begin!

1. We will begin by importing common_texts from genism. This is a small
document corpus. Along with this, we will import the Doc2vec and
TaggedDocument modules since Doc2Vec expects sentences in
TaggedDocument format:

from gensim.test.utils import common_texts
from gensim.models.doc2vec import Doc2Vec, TaggedDocument

2. Now, let's check the training corpus:
common_texts

Here's our training corpus:

'graph', 'trees'],
'graph', 'minors', 'trees'],
'graph', 'minors', 'survey']]

[["human', 'interface', 'computer'],
['survey', 'user', 'computer', 'system', 'response', 'time'],
['eps', 'user', 'interface', 'system'],
['system', 'human', 'system',K 'eps'],
['user', 'response', 'time'],
["trees'],
[
[
[
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3. We will now convert the tokenized documents into TaggedDocument format
and validate this:

documents = [TaggedDocument (doc, [i]) for i, doc in \

enumerate (common_texts) ]
documents

Here is our corpus in the TaggedDocument form:

[TaggedDocument (words=["'human', 'interface', 'computer'],
tags=[0]),

TaggedDocument (words=["'survey', 'user',6 'computer', 'system',
'response’', 'time'], tags=[1l]),

TaggedDocument (words=["'eps', 'user', 'interface', 'system'],
tags=[2]),

TaggedDocument (words=['system', 'human', 'system', 'eps'],
tags=[3]),

TaggedDocument (words=['user', 'response',K 'time'], tags=[4]),

TaggedDocument (words

(

( =['trees'], tags=[5]),
TaggedDocument (words=

( =

(

[

["graph', 'trees'], tags=[6]),
TaggedDocument (words=['graph', 'minors', 'trees'], tags=[7]),
TaggedDocument (words=["'graph', 'minors', 'survey'], tags=[8])]

Here, we have used a simple iterator to act as a tag for the documents. This can be
extended to a list of topics and so on. Also, note that Doc2Vec expects a list of
tokens as input for each document.

4. Next, let's build and train a basic Doc2vec model using the following code:

model = Doc2Vec (documents, vector_size=5, min_count=1, workers=4,
epochs = 40)

model.train (documents, total_examples=model.corpus_count,
epochs=model.epochs)

Here, vector size of 5 denotes that each document will be represented by a
vector of five floating-point values. The min_count parameter sets a threshold so
that only terms that occur at least min_count number of times will be considered
in the vocabulary.

The workers parameter denotes the number of threads to be used while training
to speed up the process. Finally, the epochs parameter represents the number of
iterations that will be made over the corpus.

5. Now, we will validate the vector size for the document embeddings:

model .vector_size
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Our vectors are of the following size:

5

6. Let's check whether the number of document vectors being built is equal to the
number of documents being used in the training process:

len (model.docvecs)

There are 9 documents in total, as can be seen in the following output block. This
is in line with our expectations:

9

7. Now, we need to check the vocabulary and the vocabulary size of the model
we've developed. Let's begin by checking the length of our vocabulary:

len (model.wv.vocab)

Here's our vocabulary size:

12

Now, let's take a look at our vocabulary:

model.wv.vocab

Here's our vocabulary:

{'human': <gensim.models.keyedvectors.Vocab at 0x1275bfa58>,
'interface': <gensim.models.keyedvectors.Vocab at 0x1275bfa90>,
'computer': <gensim.models.keyedvectors.Vocab at 0x1275bfac8>,
'survey': <gensim.models.keyedvectors.Vocab at 0x1275bfb00>,
'user': <gensim.models.keyedvectors.Vocab at 0x1275bfb38>,
'system': <gensim.models.keyedvectors.Vocab at 0x1275bfb70>,
'response’': <gensim.models.keyedvectors.Vocab at 0x1275bfba8>,
'time': <gensim.models.keyedvectors.Vocab at 0x1275bfbe0>,
'eps': <gensim.models.keyedvectors.Vocab at 0x1275bfcl8>,

'trees': <gensim.models.keyedvectors.Vocab at 0x1275bfc50>,
'graph': <gensim.models.keyedvectors.Vocab at 0x1275bfc88>,
'minors': <gensim.models.keyedvectors.Vocab at 0x1275bfcc0>}

8. Now that we have trained a very basic Doc2Vec model, let's build a document
vector for a new sentence:

vector = model.infer_vector(['user', 'interface', 'for',
'computer'])
print (vector)
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Here's our vector for the document specified in the previous code block:

[-0.00837848 0.02508169 -0.07431821 -0.0596405 -0.0423368 ]

Now, let's experiment with the other important parameters. This can be useful for
building paragraph vectors.

Changing vector size and min_count

We will begin by building a Doc2Vec model, but this time with vectors of size 50 and the
min_count parameter set to 3. We will take a look at these in detail in the upcoming code

and output blocks:
1. First, let's build our Doc2vVec model using the following code block:

model = Doc2Vec (documents, vector_size=50, min_count=3, epochs=40)
model.train (documents, total_examples=model.corpus_count,
epochs=model.epochs)

2. Now that we have built our models, let's do some basic checks in terms of the
vocabulary and its size. Let's check the vocabulary size using the following code:

len (model.wv.vocab)
Here's our vocabulary size:
4
3. Now, let's check the vocabulary:
model .wv.vocab

Here's our vocabulary:

{'user': <gensim.models.keyedvectors.Vocab at 0x1275e5278>,
'system': <gensim.models.keyedvectors.Vocab at 0x1275e52b0>,
'trees': <gensim.models.keyedvectors.Vocab at 0x1275e52e8>,
'graph': <gensim.models.keyedvectors.Vocab at 0x1275e5320>}

4. Let's build a new paragraph vector using the Doc2Vec model:

vector = model.infer_vector(['user', 'interface', 'for',

'computer'])
print (vector)
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Here's our paragraph vector:

[-0.0007554 0.00245294 -0.00753151 -0.00607859 -0.00448105 0.00735318

-0.00594467 0.00859313 0.00224831 0.00329965 -0.00813412 -0.00946166

-0.00889105 -0.00073677 .00183127 0.00870271 0.00402407 -0.00895064

-0.00469407 -0.00866868 .00176067 -0.00080887 -0.00720792 0.0097493
0.00787539 0.00132159 .00142888 0.00662106 0.00739355 -0.0035373

-0.004258 0.00317122 -0.00414719 0.0087981 0.00254999 0.0062838
0.00276298 -0.00396981 .00029113 0.0015878 0.0088333 0.00634579

-0.00670296 0.00886645 -0.00246914 -0.00679858 -0.0062902 0.00156767
0.00728981 0.00063676]

O O O O O o

As we can see, the vector size is now 50 and only 4 terms are in the vocabulary.
This is because min_count was modified to 3 and, consequently, terms that were
equal to or greater than 3 terms are present in the vocabulary now.

Earlier, we discussed that there are two approaches we can use to build paragraph vectors:
the PV-DM and PV-DBOW approaches. Next, we'll check how we can change between
them.

The dm parameter for switching between modeling

approaches

The value of dm, when set to 1, indicates that the model should be based on the distributed
memory approach.

The following code builds a PV-DM model:

model = Doc2Vec (documents, vector_size=50, min_count=2, epochs=40, dm=1)
model.train (documents, total_examples=model.corpus_count,
epochs=model.epochs)

dm equal to 0 builds the Doc2Vec model based on the distributed bag-of-words approach,
as shown in the following code block:

model = Doc2Vec (documents, vector_size=50, min_count=2, epochs=40, dm=0)
model.train (documents, total_examples=model.corpus_count,
epochs=model.epochs)

The distributed memory model takes word vectors into account and comes with two
additional parameters, dm_concat and dm_mean. We'll discuss them next.
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The dm_concat parameter

The dm_concat parameter is used in the PV-DM approach. Its value, when set to 1,
indicates to the algorithm that the context vectors should be concatenated while trying to
predict the target word. This, of course, leads to building a larger model since multiple
word embeddings get concatenated.

Let's see how it can be built in the following code snippet:

model = Doc2Vec (documents, vector_size=50, min_count=2, epochs=40,
window=2, dm=1, alpha=0.3, min_alpha=0.05, dm_concat=1)
model.train (documents, total_examples=model.corpus_count,
epochs=model.epochs)

What to do if I don’t wish to concatenate and use a lighter model?

The dm_concat parameter can be set to 0 for that:

However, how do I take into account information related to the context
vectors?

Next, we'll look at this in terms of the dm_mean parameter.

The dm_mean parameter

In the previous section, The dm_concat parameter, we saw that context vectors can be
concatenated. Here, we will look at other options that can be used instead of concatenating
the context vectors. Two alternative approaches are to sum or average the context vectors
instead of concatenating them. Whether the context vectors should be summed up or
averaged can be controlled by the dm_mean parameter.

When the dm_mean parameter is set to 1, the mean of the context word vectors is taken. The
sum of the context word vectors is taken into account when dm_mean is set to 0. Let's see
the two in action.

Using the code in the following code block, the mean of the context vectors can be taken:

model = Doc2Vec (documents, vector_size=50, min_count=2, epochs=40,
window=2, dm=1, dm_concat=0, dm_mean=1, alpha=0.3, min_alpha=0.05)
model.train (documents, total_examples=model.corpus_count,
epochs=model.epochs)
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The following piece of code can be executed to take the sum of the context vectors:

model = Doc2Vec (documents, vector_size=50, min_count=2, epochs=40,
window=2, dm=1, dm_concat=0, dm_mean=0, alpha=0.3, min_alpha=0.05)
model.train (documents, total_examples=model.corpus_count,
epochs=model.epochs)

Now, we will see the effect the window size has.

Window size

The window size parameter controls the distance between the word under concentration
and the word to be predicted, similar to the Word2Vec approach. The following code block
illustrates the same:

model = Doc2Vec (documents, vector_size=50, min_count=2, epochs=40,
window=2, dm=0)

model.train (documents, total_examples=model.corpus_count,
epochs=model.epochs)

Now, let's explore what the learning rate is and how it can be leveraged.

Learning rate

Most machine learning models come with a learning rate, which we will look at in detail in
Chapter 8, From Human Neurons to Artificial Neurons for Understanding Text. For Doc2Vec,
the initial learning rate can be specified using the alpha parameter. With the min_alpha
parameter, we can specify what value the learning rate should drop to over the course of
training. These details have been specified in the following code block:

model = Doc2Vec (documents, vector_size=50, min_count=2, epochs=40,
window=2, dm=1, alpha=0.3, min_alpha=0.05)

model.train (documents, total_examples=model.corpus_count,
epochs=model.epochs)

Apart from these, there are other parameters, including negat ive for enabling negative
sampling similar to Word2Vec, max_vocab_size to limit the vocabulary, and more.

Before we proceed and briefly discuss other algorithms that have been built for developing
sentence-level representations, let's discuss a character-based n-gram approach known as
fastText, which is used to build word-level embeddings that outperform Word2Vec in most
use cases. We will build on the fastText approach later to see how sentence-level
embeddings can be built in a similar manner.
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Exploring fastText

We discussed and built models based on the Word2Vec approach in chapter 5, Word
Embeddings and Distance Measurements for Text, wherein each word in the vocabulary had a
vector representation. Word2Vec relies heavily on the vocabulary it has been trained to
represent. Words that occur during inference times, if not present in the vocabulary, will be
mapped to a possibly unknown token representation. There can be a lot of unseen words
here:

Can we do better than this?

In certain languages, sub-words or internal word representations and structures carry
important morphological information:

Can we capture this information?

To answer the preceding code block, yes, we can, and we will use fastText to capture the
information contained in the sub-words:

What is fastText and how does it work?

Bojanowski et al., researchers from Facebook, built on top of the Word2Vec Skip-gram
model developed by Mikolov et al., which we discussed in chapter 5, Word Embeddings and
Distance Measurements for Text, by encapsulating each word as a combination of character n-
grams. Each of these n-grams has a vector representation. Word representations are
actually a result of the summation of their character n-grams:

What are the character n—-grams?
Let's see the two- and three-character n-grams for the word language:
la, lan, an, ang, ng, ngu, gu, gua, ua, uag, ag, age, ge

fastText leads to parameter sharing among various words that have any overlapping n-
grams. We capture their morphological information from sub-words to build an
embedding for the word itself. Also, when certain words are missing from the training
vocabulary or rarely occur, we can still have a representation for them if their n-grams are
present as part of other words.
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The authors kept most of the settings similar to the Word2Vec model. They initially trained
fastText using a Wikipedia corpus based on 9 different languages. As of March 18, 2020, the
fastText GitHub documentation states that fastText models have been built for 157
languages.

Facebook released the fastText library as a standalone implementation that can be
directly imported and worked on in Python. Gensim offers its own fastText
implementation and has also built a wrapper around Facebook's fastText library. Since
we have focused on Gensim for most of our tasks, we will use Gensim's fastText
implementation next to build word representations.

We will discuss parameters that are new to fastText as most of them are common to the
Word2Vec and Doc2Vec models. We have taken the same common_texts data to explore
fastText.

Building a fastText model

In this section, we will look at how to build a fastText model:

1. We will begin by importing the necessary libraries and dataset using the
following code block:

from gensim.models import FastText
from gensim.test.utils import common_texts

2. Let's instantiate and train a basic Fast Text model using the following code:
model = FastText (size=5, window=3, min_count=1)

model.build_vocab (sentences=common_texts)
model.train (sentences=common_texts,
total_examples=len (common_texts), epochs=10)

3. Now, let's validate our vocabulary:

model.wv.vocab

Here's our vocabulary:

{'human': <gensim.models.keyedvectors.Vocab at 0x1103db780>,
'interface': <gensim.models.keyedvectors.Vocab at 0x1103db7£0>,
'computer': <gensim.models.keyedvectors.Vocab at 0x1274b84a8>,
'survey': <gensim.models.keyedvectors.Vocab at 0x1274b8710>,
'user': <gensim.models.keyedvectors.Vocab at 0x1274b8748>,
'system': <gensim.models.keyedvectors.Vocab at 0x1274b8780>,
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'response': <gensim.models.keyedvectors.Vocab at 0x1274b87b8>,
'time': <gensim.models.keyedvectors.Vocab at 0x1274b87£0>,
'eps': <gensim.models.keyedvectors.Vocab at 0x1274b8828>,

'trees': <gensim.models.keyedvectors.Vocab at 0x1274b8860>,
'graph': <gensim.models.keyedvectors.Vocab at 0x1274b8898>,
'minors': <gensim.models.keyedvectors.Vocab at 0x1274b88d0>}

Let's visualize the vector of the word human:

model.wv [ "human']

Here's the vector of the word human:

array ([ 0.03953331, -0.02951075, 0.02039873, 0.00304991,
-0.009681837,
dtype=float32)

The size of the vector is 6—it's size + 1 as we specified size = 5 inour
fastText model.

4. Now, let's explore the most similar method to this, as we did with Word2Vec in
Chapter 5, Word Embeddings and Distance Measurements for Text. We will see what
the closest vector is to the following vector expression:

vec(computer) + vec(interface) - vec(human)

model.wv.most_similar (positive=["'computer', 'interface'],
negative=["'human'])

Here's the output:

[("system', 0.908109724521637),
('eps', 0.886881947517395),
('response', 0.6286922097206116),
('user', 0.38861846923828125),
('minors', 0.24753454327583313),
('time', 0.0608618408441543¢6),
('survey', -0.0791618824005127),
('trees', -0.40337082743644714)

(

’
'graph', -0.46148836612701416) ]

5. Let's understand the very important min_n and max_n parameters.
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Since word representations in FastText are built using the n-grams, min_n, and
max_n characters, this helps us by setting the minimum and maximum lengths of
the character n-grams so that we can build representations. In the following code

block, we have used a range of 1-gram to 5-grams to build our fastText model:

model = FastText (size=5, window=3, min_count=1, min_n=1, max_n=5)

model.build_vocab (sentences=common_texts)
model.train (sentences=common_texts,
total_examples=len (common_texts), epochs=10)

6. Now, we will try and build a representation of a word that does not occur in our
vocabulary. Let's try and fetch the vector for the word rubber:

model .wv [ 'rubber']

Here's the vector for rubber:

array ([-0.01671136, -0.01868909, -0.03945312, -0.01389101,
-0.0250267 1,
dtype=float32)

7. Now, let's use an out-of-vocabulary term in the most_similar function to
validate whether it works:

model.wv.most_similar (positive=["'computer', 'human'],
negative=["'rubber'])

Here's the output:

[('time', 0.5615436434745789),
'system', 0.4772699475288391),
'minors', 0.3850055932998657),
'eps', 0.15983597934246063),
'user', -0.2565014064311981),
'graph', -0.411243200302124),
'response', -0.4405473470687866),
'trees', -0.6079868078231812),
'interface', -0.63817393779754¢64),
'survey', -0.8393087387084961) ]

8. Now, we will try and extend our model so that it incorporates new sentences and
vocabulary. This can be done using the following code snippet:

sentences_to_be_added = [["I", "am", "learning", "Natural",
"Language", "Processing"],
["Natural", "Language", "Processing", "is", "cool"]]

[137]



Exploring Sentence-, Document-, and Character-Level Embeddings Chapter 6

model.build_vocab (sentences_to_be_added, update=True)
model.train (sentences=common_texts,
total_examples=len (sentences_to_be_added), epochs=10)

Note: The update parameter is set to True.

Here's the output:

{'human': <gensim.models.keyedvectors.Vocab at 0x1103db908>,
'interface': <gensim.models.keyedvectors.Vocab at 0x1274cbcf8>,
'computer': <gensim.models.keyedvectors.Vocab at 0x1274cb9%e8>,
'survey': <gensim.models.keyedvectors.Vocab at 0x1274cba20>,
'user': <gensim.models.keyedvectors.Vocab at 0x1274cbab8>,
'system': <gensim.models.keyedvectors.Vocab at 0x1274cba9%90>,
'response': <gensim.models.keyedvectors.Vocab at 0x1274cbac8>,
'time': <gensim.models.keyedvectors.Vocab at 0x1274cbdd8>,
'eps': <gensim.models.keyedvectors.Vocab at 0x1274cbcc0>,
'trees': <gensim.models.keyedvectors.Vocab at 0x1274cbel0>,
'graph': <gensim.models.keyedvectors.Vocab at 0x1274cbb38>,
'minors': <gensim.models.keyedvectors.Vocab at 0x1274cbef0>,
'I': <gensim.models.keyedvectors.Vocab at 0x1274cb320>,

'am': <gensim.models.keyedvectors.Vocab at 0x1274cb240>,
'learning': <gensim.models.keyedvectors.Vocab at 0x1274cb2b0>,
'Natural': <gensim.models.keyedvectors.Vocab at 0x1274cbf28>,
'Language': <gensim.models.keyedvectors.Vocab at 0x1274cbbe0>,
'Processing': <gensim.models.keyedvectors.Vocab at 0x1274cb5c0>,
'is': <gensim.models.keyedvectors.Vocab at 0x1274cb550>,

'cool': <gensim.models.keyedvectors.Vocab at 0x1274cbc88>}

As we can see, the model was updated to incorporate the new vocabulary terms.

The original fastText research paper extended on the Skip-gram approach for Word2Vec,
but today, both the Skip-gram and continuous bag-of-words approach can be used. Pre-
trained fastText models across multiple languages are available online and can be directly
used or fine-tuned so that we can understand a specific dataset better.

fastText can be applied to solve a plethora of problems such as spelling correction, auto
suggestions, and so on since it is based on sub-word representation. Datasets such as user
search query, chatbots or conversations, reviews, and ratings can be used to build fastText
models. We can apply them to enhance the customer experience in the future by providing
information such as better suggestions, displaying better products, autocorrecting user
input, and so on. In the next section, we'll take a look at the spelling corrector/auto-
suggestion use case and build a fastText model for it.
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Building a spelling corrector/word suggestion
module using fastText

Let's try and build a fastText model based on some comments data that can be obtained
from Kaggle's toxic comment classification challenge. This data can be sourced
fronlhttps://www.kaggle.com/c/jigsawftoxicfcommentfclassificationfchallenge.VVe
will take the comments column from the dataset and build a fastText model on top of it. We
will also provide some incorrect spellings to the built model and see how well the model
does in terms of correcting them. The same code can be extended to the problem statements
mentioned in the previous section. We will use the Gensim implementation of fastText for
this exercise. Let's begin!

1. We will start by importing the necessary libraries:

import nltk

import re

nltk.download ('stopwords"')

nltk.download ('wordnet')

from nltk.corpus import stopwords

from nltk.stem.porter import PorterStemmer
from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer
from gensim.models import FastText

import io

import collections

2. Let's read the data into basic data structures using the following code snippet:

words = []
data = []
with io.open('comment_text.txt', 'r') as file:
for entry in file:
entry = entry.strip()
data.append (entry)
words.extend (entry.split())

3. Let's fetch some basic information about the data in terms of the most common
words in the corpus using the following code snippet:

unique_words = []
unique_words = collections.Counter (words)
unique_words.most_common (10)
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Here are our most common terms:

[('the', 445892),

'to', 288753),
'of', 219279),
'and', 207335),
a', 201765),
I', 182618),
is', 164602),
you', 157025),
that', 140495),
in', 130244)]

As we can see, the data is dominated by stopwords. We can apply necessary
preprocessing in terms of keeping only alphanumeric data, case-folding, and
removing stopwords. We won't lemmatize or stem because we want the model to
understand incorrect spellings as well.

4. Let's preprocess the data using the preprocessing pipeline we built in Chapter
3, Building Your NLP Vocabulary:

data = preprocess (data)

You can learn about the preprocess method in more detail by reading chapter
3, Building Your NLP Vocabulary, or by viewing the code files.

5. fastText expects data to be in a certain format, so let's modify our data so that it
comprehends our requirements. The following code block does that for us:

preprocessed_data = []
for line in data:
if line != "":
preprocessed_data.append(line.split())
6. Now, we will initialize our fastText model:

model = FastText (size=300, window=3, min_count=1, min_n=1, max_n=5)

7. Now, let's build our vocabulary and check the size of the built vocabulary. Here,
we're building the vocabulary:

model.build_vocab (sentences=preprocessed_data)

Now, let's check the size of our vocabulary:

len (model .wv.vocab)
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Here's our vocabulary size:

182228

The size would have been smaller if we had applied stemming or lemmatization.
8. Let's train our model now:

model.train (sentences=preprocessed_data,
total_examples=len (preprocessed_data), epochs=10)

9. Now, we will check whether our model can actually predict the correct spelling
for the incorrect words as part of the top 5 similar suggestions.

Let's see what autocorrect suggestion our model provides for the word eplain:
model.wv.most_similar ('eplain', topn=5)
Here's the output:

[ ('xplain', 0.8792348504066467),
('eexplain', 0.8370275497436523),
('explain', 0.8350315093994141),
('plain', 0.8258184194564819),

(

'reexplain', 0.8141466379165649)]

explainand plain occur in the top 5 most similar words to eplain, which is
very positive for us.

Now, let's see the outputs for the term reminder:

model.wv.most_similar ('reminder', topn=5)

Here's the output:

[ ('remainder', 0.9140011668205261),
('rejoinder', 0.9139667749404907),
('reminde', 0.9069227576255798),
('minderbinder', 0.9042780995368958),
(

'reindeer', 0.9034557342529297) ]

Even though reminder is a correct word in itself, the model suggests remainder
as a potential correct spelling:

How does our model do for the incorrectly spelled term relevnt?
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Now, let's check out how the model does for relevnt:

model.wv.most_similar ('relevnt', topn=5)
Here are the top 5 suggestions for relevnt:

[('relevant', 0.7919449806213379),

(
('relev', 0.7878341674804688),
('relevanmt', 0.7624361515045166),
('releant', 0.7576485276222229),
('releve', 0.7547794580459595) ]

relevant appears right at the top of the suggestions for relevnt, which is what
we wanted:

What suggestions does my model provide for the possibly correctly spelled
word, purse?

Next, let's look at how the model does for purse:

model.wv.most_similar ('purse', topn=5)
Here are the top 5 suggestions for purse:

[ ('purpse', 0.9245591163635254),

(
('cpurse', 0.910297691822052),
('pursue', 0.8908491134643555),
('pure', 0.8890833258628845),
('pulse', 0.8745534420013428)]

Again, purse is a correctly spelled word; however, pursue and pulse are valid
suggestions provided by the model.

Our fastText model does a good job in terms of suggesting corrections and potential
alternatives for input text. This model can further be improved by providing better data
where incorrect and correct spellings have been used in the same context across different
sentences. An ideal example of such data would be conversations, wherein a lot of short
forms and incorrect spellings are typed in by users. Next, we'll learn how document
distances can be computed using fastText.
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fastText and document distances

Let's use the model we built for spelling correction to check for document distances using
the Word Mover's Distance (WMD) algorithm. We will use the same example that we used
in the Word2Vec section in chapter 5, Word Embeddings and Distance Measurements for Text.

Let's get started:

1. We will start by initializing the sentences that we wish to compute the distances

between:
sentence_1 = "Obama speaks to the media in Illinois"
sentence_2 = "President greets the press in Chicago"
sentence_3 = "Apple is my favorite company"

2. Let's compute the distance between the document pairs using WMD, which we
discussed extensively in chapter 5, Word Embeddings and Distance Measurements

for Text.

Let's compute the WMD between sentence_1 and sentence_2 using fastText-
based vectors:

word_mover_distance = model.wmdistance (sentence_1, sentence_2)
word_mover_distance

Here's the distance between sentence_1 and sentence_2:
16.179816809121103

Now, we can compute the distance between sentence_2 and sentence_3:

word_mover_distance = model.wmdistance (sentence_2, sentence_3)
word_mover_distance

Here's the corresponding distance:
21.01126373005312

As expected, sentences 1 and 2 have a smaller distance compared to the distance
between sentences 2 and 3.

The results that we obtained in the spelling correction and distance calculations would be
potentially better if pre-trained fastText models were used since those are mostly built on
Wikipedia text corpora and are more generalized to understand different data points.
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fastText is a very convenient technique for building word representations using character-
level features. It outperformed Word2Vec since it incorporated internal word structure
information and associated it with morphological features, which are very important in
certain languages. It also allows us to represent words not present in the original
vocabulary. Now, we will extend our understanding of n-grams and briefly discuss how
this can be extended to build embeddings for documents and sentences by using an
approach called Sent2Vec. We will also briefly touch upon the Universal Sentence Encoder,
which is one of the most recent algorithms that's used to build sentence-level embeddings.

Understanding Sent2Vec and the Universal
Sentence Encoder

In the previous sections, we discussed Doc2Vec and fastText extensively. We will build on
the concepts we learned about there and try to understand the basic underlying concepts of
another algorithm, called Sent2Vec. We will briefly touch on the Universal Sentence
Encoder (USE) in the second part of this section.

Sent2Vec

Sent2Vec combines the continuous bag-of-words approach we discussed regarding
Word2Vec, along with the fastText thought process of using constituent n-gram, to build
sentence embeddings.

Matteo et al. devised the Sent2Vec approach, wherein contextual word embeddings and
target word embeddings were learned by trying to predict the target words based on the
context of the words, similar to the C-BOW approach. However, they extended the C-BOW
methodology to define sentence embeddings as the average of the context word
embeddings present in the sentence, wherein context word embeddings are not restricted
to unigrams but extended to n-grams in each sentence, similar to the fastText approach. The
sentence embedding would then be represented as the average of these n-gram
embeddings. Research has shown that Sent2Vec outperforms Doc2Vec in the majority of
the tasks it undertakes and that it is a better representation method for sentences or
documents. The Sent2Vec library is an open sourced implementation of the model that's
built on top of fastText and can be used similar to the Doc2Vec and fastText models, which
we have discussed extensively so far.

[144 ]



Exploring Sentence-, Document-, and Character-Level Embeddings Chapter 6

Before we close this chapter, we will briefly look at the Universal Sentence Encoders, which
is a very recent technique that has been open sourced by Google to build sentence or
document-level embeddings.

The Universal Sentence Encoder

The Universal Sentence Encoder (USE) is a model for fetching embeddings at the sentence
level. These models are trained using Wikipedia, web news, web question-answer pages,
and discussion forums. The pre-trained generalized model can be used for transfer learning
directly or can be fine-tuned to a specific task or dataset. The basic building block of USE is
an encoder (we will learn about this in chapter 9, Applying Convolutions to Text). The USE
model can be built using the transformers methodology, which will be discussed in
Chapter 10, Capturing Temporal Relationships in Text, or it can be built by combining
unigram and bigram representations and feeding them to a neural network to output
sentence embeddings through a technique known as deep averaging networks. Several
models that have been built using USE-based transfer learning have outperformed state-of-
the-art results in the recent past. USE can be used similar to TF-IDF, Word2Vec, Doc2Vec,
fastText, and so on for fetching sentence-level embeddings.

Summary

In this chapter, we began by extending our discussion on Word2Vec, applied a similar
thought process to building document-level embedding, and discussed the Doc2Vec
algorithm extensively. We followed that up by building word representations using
character n-grams from the words themselves, a technique referred to as fastText. The
fastText model helped us capture morphological information from sub-word
representations. fastText is also flexible as it can provide embeddings for out-of-vocabulary
words since embeddings are a result of sub-word representations. After that, we briefly
discussed Sent2Vec, which combines the C-BOW and fastText approaches to building
sentence-level representations. Finally, we introduced the Universal Sentence Encoder,
which can also be used for fetching sentence-level embeddings and is based on complex
deep learning architectures, all of which we will read about in the upcoming chapters.

In the next chapter, we will use whatever we have discussed so far in terms of text cleaning,
preprocessing, and word and document representations to build models that can solve real-
life machine learning tasks.
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Section 3: NLP and Learning

This section deep dives into the application of machine learning and deep learning
algorithms in NLP. Each algorithm will be explained in detail and a real-world application
will be discussed to provide you with a hands-on understanding.

This section comprises the following chapters:

e chapter 7, Identifying Patterns in Text Using Machine Learning

e Chapter 8, From Human Neurons to Artificial Neurons for Understanding Text
e Chapter 9, Applying Convolutions to Text

e Chapter 10, Capturing the Temporal Relationship in Text

® Chapter 11, State of the Art in NLP



|dentifying Patterns in Text
Using Machine Learning

In the previous chapter, we learned about advanced vector representation methodologies
such as Doc2Vec and Sent2Vec, which significantly improve text processing accuracy. In
this chapter, we will explore the applications of Machine Learning (ML) algorithms in
Natural Language Processing (NLP). We will start with a gentle introduction to ML and
learn about some additional preprocessing steps required for ML model training. We will
then gain a thorough understanding of Naive Bayes and Support Vector Machine (SVM)
algorithms and build a sentiment analyzer using them. By the end of this chapter, you will
have gained a sound understanding of the application of ML algorithms for text processing
and will be able to build a production-ready ML-based sentiment analyzer.

The following topics will be covered in this chapter:

e Introduction to ML
¢ Data preprocessing

The Naive Bayes algorithm
The SVM algorithm
Productionizing a trained sentiment analyzer

Let's get started!

Technical requirements

The code files for this chapter can be found at the following GitHub link: https://github.
com/PacktPublishing/Hands-On-Python-Natural-Language-Processing/tree/master/

Chapter07.
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Introduction to ML

ML is a subfield of artificial intelligence and aims at building systems that are capable of
performing tasks without being explicitly programmed to do so. ML algorithms employ
mathematical models that learn from existing data to perform tasks such as prediction,
classification, decision-making, and so on. The learning bit of the model is also called
training, where the model analyzes large volumes of data to identify patterns. This process
is computationally intensive as the model needs to perform numerous calculations for the
given data. However, with the continual advancement in computational power at our
disposal, training, and the deployment of ML models, this has become fairly easy and quite
popular. Since NLP also requires that we analyze large volumes of data, ML algorithms are
widely applied in terms of text processing.

ML algorithms can be divided into three categories, as shown in the following diagram:

Machine
Learning
|

Unsupervised
Learning

Reinforcement
Learning

Supervised
Learning

Let's look at these in more depth:

¢ Supervised learning: Supervised learning algorithms involve training the model
using labeled data. The training dataset contains values of independent variables
(also called a feature set) and the corresponding values of dependent variables.
The algorithm analyzes these values and tries to learn a function that maps the
independent variables to the dependent variables. Some widely used supervised
learning algorithms include linear regression, k-nearest neighbor, decision tree,
random forest, SVMs, Naive Bayes, and so on.

¢ Unsupervised learning: Unsupervised learning algorithms involve training the
model using unlabeled data. The training process involves studying the dataset
to understand the underlying structure of the data. Unsupervised learning is
mostly used to cluster data and to perform anomaly detection by analyzing a
data point with respect to other data points in the training set. Popular
unsupervised algorithms include k-means, k-medoids, BIRCH, DBSCAN, and so
on.
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¢ Reinforcement learning: Reinforcement learning algorithms involve training the
model based on simulations wherein the model learns based on the rewards that
it receives for performing certain actions. Examples of popular reinforcement
learning algorithms include Q-learning, SARSA, and so on.

While all three categories of ML algorithms have found applications in the field of text
processing, NLP tools based on supervised learning algorithms are the most popular
among the three categories. Supervised learning-based tools have a sizable adoption in the
industry and they enjoy an established track record. Given their importance, we will delve
into the nitty-gritty of two popularly used supervised learning algorithms. We will then
combine our understanding of these algorithms with the tools we have learned so far to
create and deploy a reasonably accurate NLP tool (sentiment analyzer).

Data preprocessing

Before we delve into these models and gain familiarity with some of these algorithms, we
must learn about preprocessing the training data. We covered some of the preprocessing
steps when working with text data such as tokenization, stop word removal,
lemmatization, stemming, and so on in chapter 3, Building Your NLP Vocabulary. However,
there are some additional data preprocessing steps that are extremely crucial in ML as the
training data needs to adhere to certain rules to be of any value to the model. Poorly
processed data is guaranteed to train low accuracy models. It should be noted that data
preprocessing is a vast field and that you may be required to perform various
preprocessing steps based on the data you are working with. For example, you may be
required to handle unstructured data; perform outlier analysis, invalid data analysis, and
duplicate data analysis; identify correlated features; and more. However, we will focus on
some of the most widely used preprocessing steps that are almost always required.

We will be performing preprocessing on the Tips dataset, which comes with the seaborn
Python package. First, let's import the dataset and print out the first five lines to gain a
basic understanding of the dataset:

import seaborn as sns

tips_df = sns.load_dataset ('tips')
tips_df.head()

Here's the output:

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
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2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

This dataset contains information about tips that have been paid in a particular restaurant
by its patrons. Other than the tip amount, the dataset contains information regarding the
total bill amount, the gender of the person paying the bill, the number of people in the
group, the day and time of the visit, and whether there were any smokers in the group. Per
the output, we can figure out that the sex, smoker, day, and t ime features are categorical
features, whereas the others are numeric.

From the outset, we can see that there are some clear challenges with the data. Let's address
them one by one.

NaN values

Data needs to be checked for NaN values after it's been imported. This is important because
undetected NaN values can be very problematic for training and may even cause the
training process to fail. Detecting NaN values is easy and can be done in various ways. The
following is an example of how the pandas isnull () function can be used to figure out if
there are any NaN values in the dataset:

tips_df.isnull () .values.any ()

The preceding command scans the entire dataset and returns True if there is even a single
NaN in the dataset. The following is the output:

False

For this dataset, we do not have any NaN values. However, had the output been true, you
would then be interested to determine which column or which row contains the NaN
values. This can be done by running the following command:

tips_df.isnull () .any ()

This will output the result of the NaN search, which provides the results for each column,
as follows:

total bill False
tip False

sex False

smoker False

day False

time False
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size False
dtype: bool

To identify the rows with NaN values, we need to pass the value 1 for the axis parameter of
the any () function, which will scan the data for NaN values along the rows. The updated
command is as follows:

tips_df.isnull () .any (axis=1)

The following is the partial output of the preceding command, which shows the results of
the search along the rows:

False
False
False
False
False
False
False
False

oUW N O

Once the NaN values have been identified, you need to decide what to do with them.
Among the many methods for addressing NaN values, some of the popular methods are as
follows:

¢ Dropping the row/column with NaN value(s). The dropna () function can be
used to drop rows/columns containing NaN value(s).

¢ Replacing the NaN value with another value. The value could be the previous
value, the next value, zero, the mean of the row or column, and so on. This can be
done using the £il11lna () function.

There is no boilerplate solution to addressing NaN values, and how to deal with NaN
values is a question that needs to be answered by the user.

Label encoding and one-hot encoding

In the Tips dataset, we can see that there are four categorical variables, namely sex,
smoker, day, and time. The values of these variables are non-numeric, which is
problematic because the mathematical models underpinning our ML system only
understand numeric inputs. Therefore, we need to convert these non-numeric values into
numeric values, which can be done by label encoding. As the name suggests, we use label
encoding to map non-numeric values to numeric values.
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To perform label encoding, we import the LabelEncoder class from sklearn's
preprocessing module and apply the fit_transform() function to the non-numeric
categorical variables of the DataFrame, as follows:

from sklearn.preprocessing import LabelEncoder
label_encoding = LabelEncoder ()

tips_df.iloc[:,[2,3,4,5]] =
tips_df.iloc[:,[2,3,4,5]].apply(label_encoding.fit_transform)

This transforms the t ips_df DataFrame containing all the non-numeric categorical
variables so that they're encoded as numeric variables, as shown in the following partial
output of tips_df:

total_bill tip sex smoker day time size

0 16.99 1.01 0 0 2 0 2
1 10.34 1.66 1 0 2 0 3
2 21.01 3.50 1 0 2 0 3
3 23.68 3.31 1 0 2 0 2
4 24.59 3.61 0 0 2 0 4

To map non-numeric values to the encoded value, you can use the fit function on the
relevant column and then print out the unique values for that column, as well as the
corresponding encoding (using the t ransform () method), as follows:

label_encoding = LabelEncoder ()
col_fit = label_encoding.fit (tips_df["day"])
dict (zip(col_fit.classes_, col_fit.transform(col_fit.classes_)))

The following is the output of the preceding code, along with the encoded values for the
day column of the DataFrame:

{0: 0, 1: 1, 2: 2, 3: 3}

By using label encoding, we have addressed the issue of non-numeric data values in the
dataset. However, encoding categorical variables that are nominal (where the values of the
variable can't be ordered; for example, gender, days in a week, color, and so on) and not
ordinal (the values of the variable can be ordered; for example, rank, size, and so on)
creates another complication. For example, in the preceding case, we encoded Friday as 0
and Saturday as 1. When we feed these values to a mathematical model, it will consider
these values as numbers and therefore will consider 1 to be greater than 0, which is not a
correct treatment of these values.
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To address this issue, we can use one-hot encoding, which splits a column with categorical
variables into multiple columns, with each new column corresponding to a unique value of
the categorical variable. In the preceding example, using one-hot encoding on the day
column will result in four columns (Fri, Sat, Sun, Thur), with each column containing
only 0 or 1, depending on whether the unique value occurred in a given row. We
introduced one-hot encoding in the One-hot vectorization section in Chapter 4, Transforming
Text into Data Structures, where we built a one-hot matrix for a corpus. We will now learn
how to use sklearn's OneHotEncoder method to do the same. Please note that we will be
applying one-hot encoding only after performing label encoding.

To perform one-hot encoding, we need to import the ColumnTransformer class from
sklearn's compose module and the OneHotEncoder class from sklearn's preprocessing
module. Since we are essentially transforming the columns of the DataFrame by splitting
categorical features, we need to use this class. The OneHotEncoder class goes as an
argument to the ColumnTransformer object which tells our program what kind of
transformation we seek. We also need to pass the list of columns on which we seek to
perform the transformation and use the remainder=passthrough argument to ignore
other columns. Finally, just like label encoding, we'll apply the fit_transform() function
to the DataFrame and store the output as an array called tips_df_ohe, as follows:

from sklearn.preprocessing import OneHotEncoder

from sklearn.compose import ColumnTransformer

oh_encoding = ColumnTransformer ([ ('OneHotEncoding', OneHotEncoder (), \
[2,3,4,5])], remainder="passthrough')

tips_df_ohe = oh_encoding.fit_transform(tips_df)

tips_df_ohe

This splits all the labeled categorical variables in the t ips_df DataFrame into columns for
each unique value, as shown in the following output of tips_df_ohe:

array(([ 1. , 0. , 1. , ..., 16.99, 1.01, 2. 1,
ro., 1., 1., ..., 10.34, 1.66, 3. 1,
ro., 1., 1., ..., 21.01, 3.5, 3.1,
[o., 1., 0., ..., 22.67, 2. , 2.1,
ro., 1., 1., ..., 17.82, 1.75, 2. 1],
(1., 0., 1., ..., 18.78, 3. , 2. 11])
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There is still an outstanding issue that we need to resolve and that is the issue of the
dummy variable trap. Say we use one-hot encoding on the day variable, which has four
unique values. Splitting this variable into four columns will cause collinearity in our data
(high correlation between variables) because we can always predict the outcome of the
fourth column with the three other columns (if the day is not Friday, Saturday, or Sunday,
then it will have to be Thursday). To address this issue, we will need to drop one dummy
variable from the split columns of each categorical variable. This could be done by simply
passing the argument drop="first' when defining the OneHotEncoder class.

Data standardization

Standardization is a data preprocessing step that attempts to equalize the range of values
for all the columns. This is important because most ML algorithms require data to be in the
same range, and non-uniform value ranges can impair the model's ability to learn from the
data. For example, if all the columns in a dataset are in the range of [0, 10], whereas
values in one column range from [-1000, 1000], then there is a high likelihood that this
column will have a disproportionate influence over the model and that the trained model
will be pretty much a one-to-one mapping between this column and the dependent
variable. Therefore, you should always try to standardize the data before feeding it into the
model for training. There are various standardization techniques we can use, but the two
most popular techniques are min-max standardization and z-score standardization.

Min-max standardization

Each value in a column is transformed using the following formula:

Xemr — X — min(X)
STD = maz(X) — min(X)

Here, X is the vector representing the column. Each value in the column is subtracted by
the minimum value of the column and divided by the column range. Post transformation,
the range of the column becomes [0, 1].
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Min-max standardization is quite simple to implement using the pandas min () and

max () functions. However, since we have been discussing sklearn, here is how we can
import the MinMaxScaler class from sklearn's preprocessing module to implement min-
max standardization:

from sklearn.preprocessing import MinMaxScaler
minmax = MinMaxScaler ()

tips_df_std = minmax.fit_transform(tips_df_ohe)
tips_df_std

The following is the output of the tips_df_std DataFrame. We can see that the one-hot
encoded vectors remain the same, whereas other vectors are transformed so that they fit in
the range [0, 1]:

array(([1. , 0. , 1. , ..., 0.29157939, 0.00111111, 0.2 ],
(6., 1., 1., ..., 0.1522832 , 0.07333333, 0.4 1,
(., 1., 1., ..., 0.3757855 , 0.27777778, 0.4 1,
(6., 1., o0. , ..., 0.41055718, 0.11111112, 0.2 1,
(6., 1., 1., ..., 0.30896523, 0.08333333, 0.2 1,
(. , 0., 1., ..., 0.32907415, 0.22222222, 0.2 11])

Z-score standardization

Z-score standardization transforms the column by calculating the z-score for each value, as
per the following formula:

Komn = X — mean(X)

ST = "ot dev(X)

Here, X is the vector representing the column. The z-score is the numerical measurement of
how many standard deviations away a value from the mean of the group is. Post
transformation, most values are expected to fall in the range of [-3, 3].

We can use the StandardScaler () class of sklearn's preprocessing module to
implement z-score standardization, as shown here:

from sklearn.preprocessing import StandardScaler
zs = StandardScaler ()

tips_df_std = zs.fit_transform(tips_df_ohe)
tips_df_std
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The following is the output of the t ips_df_std DataFrame. We can see that z-score
standardization transforms each vector, depending on the mean and standard deviation:

array ([[-0.06415003,
-0.14463921,
[-0.06415003,
-0.14463921,
[-0.06415003,
-0.14463921,
[-0.06415003,
-0.14463921,
[-0.06415003,
-0.14463921,
[-0.06415003,
-0.14463921,

-0.
-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.
-0.
-0.
-0.

06415003, -0.

129099447,

06415003, -0.

129099447,

06415003, -0.

129099447,

06415003, -0.

129099447,

06415003, -0.

129099447,

06415003, -0.

1290994411)

09090909,

09090909,

09090909,

09090909,

09090909,

09090909,

.7

42278122,

42278122,

42278122,

42278122,

42278122,

42278122,

Now that we have covered various preprocessing techniques, we will explore some ML
algorithms we can use to build NLP applications.

The Naive Bayes algorithm

In this section, we will delve into the Naive Bayes algorithm and build a sentiment
analyzer. Naive Bayes is a popular ML algorithm based on the Bayes' theorem. The Bayes'
theorem can be represented as follows:

Here, A, B are events:

s - PBIA-PA)

P(B)

e P(AIB) is the probability of A given B, while P(B|A) is the probability of B given

A

e P(A)is the independent probability of A, while P(B) is the independent

probability of B.
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Let's say we have the following fictitious dataset containing information about applications
to Ivy League schools. The independent variables in the dataset are the applicant's SAT
score, applicant's GPA, and information regarding whether the applicant's parents are
alumni to an Ivy League school. The dependent variable is the outcome of the application.
Based on this data, we are interested in calculating the likelihood of an applicant getting
admission to an Ivy League school given that their SAT score is greater than 1,500, their
GPA is greater than 3.2, and their parents are not alumni:

SAT Score GPA Alumni Parents Ivy League Admission?
1,580 4.0 0 1
1,450 3.1 1 1
1,480 3.6 0 0
1,410 3.33 0 0
1,280 3.0 1 1
1,440 3.7 0 0
1,560 3.9 1 1
>1,500 >3.2 0 ?

The likelihood of an applicant being admitted to an Ivy League school can be represented
as a probability expression, as follows:

P(Ivy League| (SAT>1500, GPA>3.2, AP=0))

Using Bayes' theorem, the preceding probabilistic expression can be represented as follows:

P((SAT > 1500, GPA > 3.2, AP = 0)|IvyLeague) * P(IvyLeague)
P(SAT > 1500, GPA > 3.2, AP = 0)

We can solve the given equation by calculating the respective joint probabilities given in the
previous table. However, for bigger datasets, calculating joint probability can get a bit
challenging. To get around this problem, we use Naive Bayes, which assumes that all the
features are independent of each other, so the joint probability is simply the product of
independent probabilities. This assumption is naive because it is almost always wrong.
Even in our example, an applicant having a high SAT score is more likely to have a high
GPA, so these two events are not independent. However, the Naive Bayes assumption has
been proved to work well for classification problems.
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Using the Naive Bayes assumption we provided in the previous example, the Bayes'
theorem expression can be written as follows:

P(SAT > 1500|IvyLeague) x P(GPA > 3.2|IvyLeague) * P(AP = 0|IvyLeague) * P(IvyLeague)
P(SAT > 1500) * P(GPA > 3.2) x P(AP = 0)

This equation can easily be solved by calculating the respective probabilities. The
numerator can be calculated as follows:

(2/4) * (2/4) * (1/4) * (4/7)
The denominator can be calculated as follows:
(2/7) *(5/7) * (4/7)

By calculating the ratio of the products, the final answer as 0.306, which can be rounded to
0. So, based on the data, Naive Bayes calculation predicts that an applicant with a SAT score
> 1,500, GPA > 3.2, and parents not being alumni is not likely to be admitted to Ivy League.
This is an unfair world!

Building a sentiment analyzer using the Naive
Bayes algorithm

Sentiment analysis, sometimes called opinion mining or polarity detection, refers to the set
of algorithms and techniques that are used to extract the polarity of a given document; that
is, it determines whether the sentiment of a document is positive, negative, or

neutral. Sentiment analysis is gaining popularity in the industry as it allows organizations
to mine opinions of a large group of users or potential customers in a cost-efficient

way. Sentiment analysis is now used extensively in advertisement campaigns, political
campaigns, stock analysis, and more.

Now that we understand the mathematics behind the Naive Bayes algorithm, we will build
a sentiment analyzer by training our Naive Bayes model on a labeled product review
dataset gathered from Amazon. This dataset was created for the paper, From Group to
Individual Labels using Deep Features, Kotzias et. al., KDD 2015, and can be accessed at http:/

/archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences.
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Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [nhttp://
archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of
Information and Computer Science.

The data is stored in a text file. The following is a partial snapshot of the text file:

Eo there is no way for me to plug it in here in the US unless I go by a converter. 8

Good case, Excellent value. 1

Great for the jawbone. 1

Tied to charger for conversations lasting more than 45 minutes.MAJOR PROBLEMS!! @

The mic is great. 1

I have to jiggle the plug to get it to line up right to get decent volume. %]

If you have several dozen or several hundred contacts, then imagine the fun of sending each of them one by one. @
If you are Razr owner...you must have this! 1

Needless to say, I wasted my money. e

What a waste of money and timel. 8

As we can see, the document contains a list of customer reviews and each review is
assigned a sentiment score, with 0 representing negative sentiment and 1 representing
positive sentiment.

First, we will import the raw data into a DataFrame called data, as follows:

import pandas as pd
data = pd.read_csv ("amazon_cells_labelled.txt", sep='\t', header=None)
data.head()

Here are the first five lines of the DataFrame:

So there is no way for me to plug it in here i... O
Good case, Excellent wvalue. 1

Great for the jawbone. 1

Tied to charger for conversations lasting more... 0
The mic is great. 1

Sw NN O

Next, we will separate the columns that contain text reviews and the column containing
sentiment labels:

X
Yy

data.iloc[:,0] # extract column with reviews

data.iloc[:,-1] # extract column with sentiments
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We're doing this because the text data needs to be preprocessed for the ML model.
Following this, we will import the CountVectorizer class, which performs key
preprocessing steps on the text data such as tokenization, stop word removal, one-hot
encoding, and so on. The following code snippet shows how CountVectorization is used
to preprocess the text data:

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer (stop_words='english')
X_vec = vectorizer.fit_transform(X)
X_vec.todense () # convert sparse matrix into dense matrix

The following is the matrix, with each row representing a review and each column
representing a unique word in the corpus. Each row vector represents the word count in
that row for each unique word:

matrix([[0O, O, O, ..., O, O, O],
(0, 0, O, ., 0, 0, 0],
(0, 0, O, ., 0, 0, 0],
(6, o, 0, ..., 0, 0, 01,
(6, o, 0, ..., 0, 0, 01,
(o, o, 0, ..., 0, 0, 0]], dtype=int64)

Next, we import the TfidfTransformer class to transform word counts into their
respective t £-idf values (refer to chapter 4, Transforming Text into Data Structures, for
more details). Here is how we can transform the word count matrix into a matrix with
corresponding t £-idf values:

from sklearn.feature_extraction.text import TfidfTransformer
tfidf = TfidfTransformer ()

X_tfidf = tfidf.fit_transform(X_vec)

X_tfidf = X_tfidf.todense ()

The following is the t f-idf matrix. Please note that because each review in the corpus is
quite brief, the majority of the values in each row of the matrix are set to 0:

matrix([[O, O, O, ..., 0O, O, 0],
[0, 0, O, ., 0, 0, 01,
[0, 0, O, ., 0, 0, 01,
[0, 0, O, ., 0, 0, 01,
(o, o, 0, ..., 0, 0, 01,
(o, o, 0, ..., 0, 0, 0]], dtype=int64)
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With this, we've completed the preprocessing part and are now ready to train the model
using the processed data. However, before we do that, we need to split the data into
training and testing sets so that we can evaluate the performance of our trained model. This
is called cross-validation and is an important part of ML model training. We can easily split
the data manually but for the sake of consistency, let's use the train_test_split class of
sklearn's model_selection module to do this. For this, we pass our processed reviews
data (X_t £idf) and the sentiment data to the train_test_split object and pass another
argument regarding the desired ratio of the split, as follows:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_tfidf, y, test_size =
0.25, random_state = 0)

The preceding code splits both independent variables (the t fidf matrix) and the
dependent variable (sentiment) into training and testing data.

We now have everything we need to train our model. For this, we need to import the
MultinomialNaive Bayes class from sklearn's naive_bayes module and fit the training
data to the model, as follows:

from sklearn.naive_bayes import MultinomialNaive Bayes
clf = MultinomialNaive Bayes()
clf.fit (X_train, y_train)

Fitting the training data essentially means that our Naive Bayes classifier has now learned
the training data and is now in a position to calculate relevant probabilities. Therefore, if an
out-of-sample review (such as I was very disappointed with this product) is now passed to the
classifier, it will try to calculate the probability of the sentiment being positive or negative
given that the words this, disappointed, and product exist in the review. Here is how we
obtain the predicted sentiment values from the classifier for the test reviews that are stored
in the y_pred array:

y_pred = clf.predict (X_test)

To determine the performance of our model, we will create a confusion matrix that
calculates the number of correct predictions, broken down for each classification:

from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, y_pred)
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The following is the output of the confusion matrix. The vertical axis of sklearn's confusion
matrix should be interpreted as the actual values, while the horizontal axis should be
interpreted as the predicted values. Therefore, our model predicted 107 (87 + 20) values
as having a sentiment score of 0, out which 87 were correctly predicted and 20 were
incorrectly predicted. Likewise, the model predicted 143 (33+110) values as having a
sentiment score of 1, out of which 110 were correctly predicted and 33 were incorrectly
predicted:

array ([[ 87, 331,
[ 20, 110]], dtype=int64)

Therefore, the total number of correct predictions is obtained by summing the left diagonal
(in this case, 87 + 110). The accuracy is the ratio of the total correct predictions divided by
the total count of the test set (obtained by summing all the numbers in the confusion
matrix). Therefore, the accuracy, in this case, is 197/250 = 78.8%. This is a decent accuracy
score given the simple model and limited training data we had (only 750 abridged reviews).
Tuning model parameters and performing further preprocessing steps such as
lemmatization, stemming, and so on can improve the accuracy further.

The SVM algorithm

SVM is a supervised ML algorithm that attempts to classify data within a dataset by
finding the optimal hyperplane that best segregates the classes. Each data point in the
dataset can be considered a vector in an N-dimensional plane, with each dimension
representing a feature of the data. SVM identifies the frontier data points (or points closest
to the opposing class), also known as support vectors, and then attempts to find the
boundary (also known as the hyperplane in the N-dimensional space) that is the farthest
from the support vector of each class.

Say we have a fruit basket with two types of fruits in it and we want to create an algorithm
that segregates them. We only have information about two features of the fruits; that is,
their weight and radius. Therefore, we can abstract this problem as a linear algebra
problem, with each fruit representing a vector in a two-dimensional space, as shown in the
following diagram. In order to segregate the two types of fruit, we will have to identify a
hyperplane (in two dimensions, the hyperplane would be a line) whose equation can be
represented as follows:

wl * radius + w2 * weight —c =0
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Here, w1 and w2 are coefficients and c is a constant. The equation of the hyperplane in the n
dimension can be generalized as follows:

WlsxX—c=0

Here, W is a vector of coefficients and X represents each dimension of the space.

Weight

Class A

Radius

From the preceding diagram, it is obvious that there are many hyperplanes that can
segregate the two classes in this case. However, the SVM algorithm tries to find the
optimum W (coefficients) and ¢ (constant) so that the hyperplane is at the maximum
distance from both support vectors. To perform this optimization, the algorithm starts with
a hyperplane with random parameters and then calculates the distance of each point from
the hyperplane using the following equation:

WT X, —c
W
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Knowing the distance of the hyperplane from each point, the algorithm can easily figure
out the frontier points and calculate the distance from each support vector. The algorithm
creates a number of hyperplanes and repeats this calculation to identify the hyperplane
that's the most equidistant from both support vectors. This algorithm is also called linear
SVM as the points are linearly separable. It should be noted that the SVM algorithm can
also be applied to non-linearly separable data points, albeit after applying various
transformations to the data.

Building a sentiment analyzer using SVM

In this section, we will build a sentiment analyzer using a linear SVM. We will be using the
same dataset that we used to build the Naive Bayes-based sentiment analyzer for the sake
of comparison. The feature matrix that was created while training the Naive Bayes
sentiment analyzer had 1,642 columns, so the objective, in this case, is to identify a
hyperplane that segregates vectors in a 1,642-dimensional space into positive sentiment
classes and negative sentiment classes. This hyperplane will then be used to predict the
sentiment of the newly vectorized and t f-idf transformed documents.

All the data preprocessing steps will be identical to those in the Naive Bayes sentiment
analyzer section, as follows:

import pandas as pd
data = pd.read_csv ("amazon_cells_labelled.txt", sep='\t', header=None)

X = data.iloc[:,0] # extract column with review
vy data.iloc[:,-1] # extract column with sentiment

# tokenize the news text and convert data in matrix format

from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer (stop_words='english')

X_vec = vectorizer.fit_transform(X)

X_vec = X_vec.todense () # convert sparse matrix into dense matrix

# Transform data by applying term frequency inverse document frequency (TF-
IDF)

from sklearn.feature_extraction.text import TfidfTransformer

tfidf = TfidfTransformer ()

X_tfidf = tfidf.fit_transform(X_vec)

X_tfidf = X_tfidf.todense()
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Again, we will split the processed input data into training data and testing data, as follows:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_tfidf, y, test_size =
0.25, random_state = 0)

The previous code splits both the independent variables (the t £idf matrix) and the
dependent variable (sentiment) into training and testing data. Now, we import the Support
Vector Classification (SVC) class from sklearn's svm module and fit the training data to the
model, as follows:

from sklearn.svm import SVC
classifier = SVC(kernel='linear')
classifier.fit (X_train, y_train)

Fitting the training data means that the classifier has identified the optimum hyperplane
after identifying the frontier points and calculating the relevant distances based on the
training data. To assess the accuracy of the hyperplane, we will fit the vectorized test
reviews (stored in the y_pred array) to the hyperplane equation. Based on the sign of the
value of the equation, the model will predict the sentiment analysis score. The following
command shows how the predicted values are calculated using the predict () function:

y_pred = classifier.predict (X_test)

Once again, we will be using a confusion matrix to measure the performance of our model,
as follows:

from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, y_pred)

Here is the output of the confusion matrix. Our model predicted 135 (102 + 33) values
as having a sentiment score of 0, out which 102 were correctly predicted and 33 were
incorrectly predicted. Likewise, the model predicted 115 (18+97) values as having a
sentiment score of 1, out of which 97 were correctly predicted and 18 were incorrectly
predicted:

array ([[102, 18],
[ 33, 97]]1, dtype=int64)
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Therefore, the total number of correct predictions is obtained by summing the left diagonal
(in this case, 102 + 97). The accuracy is the ratio of the total correct predictions divided by
the total count of the test set (obtained by summing all the numbers in the confusion
matrix). Therefore, the accuracy, in this case, 199/250 = 79.6%, which is marginally better
than the Naive Bayes model's accuracy. The model's performance can be further improved
by improving input data preprocessing (via lemmatization, stemming, and so on) and
optimizing various SVM hyperparameters.

Productionizing a trained sentiment analyzer

Now that we have trained our sentiment analyzer, we need a way to reuse this model to
predict the sentiment of new product reviews. Python provides a very convenient way for
us to do this through the pickle module. Pickling in Python refers to serializing and
deserializing Python object structures. In other words, by using the pickle module, we can
save the Python objects that are created as part of model training for reuse. The following
code snippet shows how easily the trained classifier model and the feature matrix, which
are created as part of the training process, can be saved in your local machine:

import pickle

pickle.dump (vectorizer, open ("vectorizer_sa", 'wb')) # Save vectorizer for
reuse
pickle.dump (classifier, open("nb_sa", 'wb')) # Save classifier for reuse

Running the previous lines of code will save the Python object's vectorizer and classifier,
which were created as part of the model training exercise we discussed in the Building a
sentiment analyzer sections. These objects are saved as the vectorizer_sa and nb_sa files
in your working directory. We can now import these pickled objects as we wish. We will
use the same trained classifier and feature matrix as the ones we created during the training
exercise.

Now, we will create a function that predicts the sentiment of any new product review. We
will pass the trained classifier, feature matrix, and the new product review as parameters to
this function and the function will return the predicted sentiment. The function simply
vectorizes the new product review (passed as a string) based on the feature matrix that we
have passed. The feature matrix is the matrix that contains all the words we learned from
our training sample.
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When we use the transform () function of the feature matrix on the new document, it
simply creates a vector with the same number of elements as the number of columns
(words) in the feature matrix and updates each element with the frequency of the
corresponding word in the new document. The frequency vector is then transformed into a
t f-idf vector before it's passed to the classifier. The function returns a positive or negative
sentiment based on the classifier's output. Here is the implementation of the function:

def sentiment_pred(classifier, training matrix, doc):
"""function to predict the sentiment of a product review
classifier : pre trained model
training_matrix : matrix of features associated with the trained
model
doc = product review whose sentiment needs to be identified"""
X_new = training matrix.transform(pd.Series (doc))
#don't use fit_transform here because the model is already fitted
X_new = X_new.todense () #convert sparse matrix to dense

from sklearn.feature_extraction.text import TfidfTransformer
tfidf = TfidfTransformer ()

X_tfidf_new = tfidf.fit_transform(X_new)

X_tfidf_new X_tfidf_new.todense ()

y_new = classifier.predict(X_tfidf_new)
if y_new[0] ==

return "negative sentiment”
elif y_new[0] ==

return "positive sentiment”

Now that the function is ready, all we need to do is unpickle and import the classifier and
feature matrix and pass them to the function, along with the new product review. The
following code snippet shows how we can unpickle objects by using the 1oad () function:

nb_clf = pickle.load(open("nb_sa", 'rb'))
vectorizer = pickle.load(open ("vectorizer_sa", 'rb'))
new_doc = "The gadget works like a charm. Very satisfied with the product"

sentiment_pred(nb_clf, vectorizer, new_doc)
After this, we pass a fictitious product review to the function. The following is the output:
'positive sentiment'

Let's try passing another fictitious product review to our function:

new_doc = "Not even close to the quality one would expect"
sentiment_pred(nb_clf, vectorizer, new_doc)
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Here is the output:

'negative sentiment'
As we can see, our ML-based sentiment analyzer is live and performing decently.

However, the following are some important things to consider while creating and
deploying the sentiment analyzer:

e The training data should be consistent with the objective of the sentiment
analyzer. Don't train the model using movie reviews if the objective is to predict
the sentiment of financial news articles.

e Accurately labeling the training data is critical for the model to perform well. We
have used pre-labeled data in this chapter. However, if you are creating a real-
world application, you will have to spend time labeling the training documents.
Typically, labeling should be done by someone with a good understanding of
industry jargon.

e Sourcing training data is a difficult task. You can use tools such as web scraping
or social media scraping, subject to permissions. Effort should be spent on
sourcing data from multiple platforms and you shouldn't rely too much on a
particular source.

¢ Evaluate the performance of your model regularly and retrain the model if
required.

With that, we have come to the end of this chapter!

Summary

In this chapter, we built on our understanding of text vectorization, data preprocessing, and
so on to gain an end-to-end understanding of applying ML algorithms to develop NLP
applications. We learned about the additional pre-processing steps required for ML
training and gained a thorough understanding of the Naive Bayes and SVM algorithms. We
applied our understanding of text data processing and ML algorithms to build a sentiment
analyzer and deployed the model to perform sentiment analysis in real-time. We also
learned how to measure the performance of ML models and discussed some important dos
and don'ts about building ML-based applications.

In the next chapter, we will learn how to apply deep learning to text processing and cover
how neural networks can help us improve the accuracy of our applications.
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From Human Neurons to
Artificial Neurons for
Understanding Text

There has been an unprecedented rise in the use of neural network-based applications and
architectures in the first two decades of the twenty-first century. This has been largely
catered to by the extensive research that has been carried out over the past few decades.
The evolution of high-end processors in the form of graphical processing units (GPUs) and
tensor processing units (TPUs) has supplemented the rise of neural network-based
applications by making it possible to perform heavy calculations that are very commonly
encountered in any neural network. Self-driving cars, language translation services,
chatbots, document summarization, and image captioning are some common modern-day
use cases that are powered by neural networks.

In this chapter, we will begin by looking at how the idea of an artificial neural network
(ANN) came into being thanks to neurons in the human brain. We will learn about the
various components that make up an ANN and learn how the network as a whole works
and how it learns. We will briefly talk about Keras, which is a popular framework for
building deep learning models. Based on the knowledge we will gain about ANNs, we will
apply it to solve the real-life NLP task of classifying questions. By the end of the chapter,
based on the theoretical discussions and hands-on exercises, we will be comfortable in
using neural networks for solving tasks related to text processing.

In this chapter, the following topics will be covered:

¢ Exploring the biology behind neural networks
e How does a neural network learn?

Understanding regularization
Let's talk Keras
Building a question classifier using neural networks
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Technical requirements

The code files for this chapter can be found at the following GitHub link: https://github.
com/PacktPublishing/Hands-On-Python-Natural-Language-Processing/tree/master/

Chapter08.

Exploring the biology behind neural
networks

Neural networks were based on the functioning of neurons in the brain. Dendrites in the
brain receive input signals from the neighboring neurons. Each dendrite has a weight
associated with it and the signal coming in from a specific dendrite gets multiplied by its
corresponding weight. These incoming signals are then summed up in the cell body. As this
summed-up value reaches a particular threshold, the summed-up signal is then sent across
through the neuron's axon and is further propagated forward. The weights associated with
a dendrite dictate the importance of the signal coming in through a particular dendrite.
These values get changed dynamically. ANNs build upon the same context. Let's look at
the structure of a basic ANN in the next section.

Neurons

An ANN is an interconnected network of neurons. Each neuron, as shown in the diagram
at the end of this section, receives n input signals that are nothing but a set of features,
represented by X in the following equation:

X =[xy, Xoy -+, X, ]

These input features are multiplied by a set of weights, W, depending on the edge they are
coming in from:

W = [Wll WZ/ ey Wn]
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These are then summed up. In reality, it boils down to the following equation:

zZ=x,W; +Xx,W, +X;w; +b (Equation. 1)

But there are two questions that arise from this:

1. Whatis b?

2. Isn't it a simple linear equation?
Let's answer question 1 first.

b is referred to as the bias, and it is analogous to the intercept term in linear equations. It
can be seen as the property of the neuron and is trained like the other parameters in the
network. It allows the model to fit the data better:

X4
1
X5 Wo
W3
X3
b
]

Activation
Function

—> Output
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To answer the second question, yes: until now, everything has been a multivariate linear
equation; however, these multivariate linear equations coupled with activation functions
offer a powerful way to theoretically classify any decision boundary in any dimensional
space. Let's illustrate this through an example. Let's assume that we have been provided
with two types of objects and the objects are defined by two features, X1 and X2, as shown
in the following diagram:

X2
0

X1

These two input features could be the radius and weight for fruits, age and salary for
employees, annual returns and volatility for stocks, and so on. Now, let's say that we are
asked to build a classifier that learns from the preceding training data and predicts the type
of new objects based on their X1 and X2 features. To solve this problem, our classifier will
have to figure out the decision boundaries that separate one class of object from others. Any
new object falling within the boundary would be categorized as one type of object, and any
object falling outside the decision boundary would be categorized as another type of object
(assuming binary classification). The decision boundary for this problem is shown in the
following diagram:

X2
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Recall high school coordinate geometry and how we define the equation of a line in a two-
dimensional plane. The equation of a line is as follows:

ax+by+c=0

Here, x and y are the axes (the same as X1 and X2 in our example) and 4, b, and c are the
coefficients. The slope (-a/b) and the intercept (-c/b) of the line can be calculated using the
coefficients.

Therefore, all that our classifier needs to do is to calculate the value of the coefficients (a, b,
and c) for the three lines that constitute our decision boundary. Now let's revisit the neuron
architecture and appreciate how linear equations coupled with activation functions help us
replicate the same decision boundary. In the following neuron architecture diagram, the
three weighted sums of the input X1 and X2 (and bias) coupled with a simple activation
function will mimic the three lines that constitute our decision boundary:
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The following diagram shows how the linear system of equations coupled with the
activation functions in the preceding neuron architecture is the same as the equations of the
decision boundary:

X2

X1

If we are able to find the optimum value of the weights and the biases of the neuron
architecture, then we have solved the problem of creating the classifier. Please note that the
same concept applies to higher dimensional spaces (more than two input features) as well,
and therefore neural networks can help us create decision boundaries in any dimensional
space. In theory, we can use neural networks to create a decision boundary of any shape by
increasing or decreasing the number of intermediate nodes (also called hidden nodes), as
illustrated in the following diagram:
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Based on the neuron architecture described in the preceding diagram, it can be deduced
that activation functions play a key role in transforming the system of linear equations to a
nonlinear construct (complex nonlinear decision boundaries). Choosing an appropriate
activation function for a neural network is key to its performance. Let's now delve into the
various types of activation functions.

Activation functions

Activation functions introduce nonlinearity in the network. Without nonlinearity, the
network would be performing linear mappings between the input, which would be nothing
but a multivariate linear equation. Activation functions control the threshold that decides
what the neuron would provide as output, analogous to what was mentioned when we
discussed biological neurons. In Equation 2, f() is the activation function. The input to the
activation function is z, which we computed in Equation. 1. The final output, y, is released
from the neuron at the particular instance:

y =£(z) (Equation. 2)
There are various types of activation functions. We will look into three of them in this

chapter, as others would be beyond the scope of this book. More can be read about different
types of activation functions at https://en.wikipedia.org/wiki/Activation_function.
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Sigmoid
The sigmoid activation function constrains the output in a range between 0 and 1. It is
defined using the following mathematical equation:

1

The curve of the sigmoid function is as follows:

: sig(t)
sig(t) = H]? 1.0

0.8

0.6

0.2

-8 —6 —4 -2 2 4 6 8

The sigmoid function will pull down very large values to 1 and very small values to 0. It is
very commonly used for tasks involving binary outputs; however, due to issues such as
values not being zero-centered and gradients getting killed because of the saturation of the
sigmoid function for the majority of the values, its usage has dropped significantly.

Tanh activation

The tanh activation function is pretty similar to the sigmoid function; however, it's a zero-
centered function, unlike sigmoid, and overcomes this drawback associated with sigmoid
functions. It converts the input values within the range of -1 to 1. The equation governing
tanh is as follows:
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You can see the curve of the tanh function in the following diagram:

tanh.x
10}

-10F

The tanh function is used primarily in place of sigmoid in most of the networks today since
it overcomes the zero-centered problem associated with the sigmoid function. However,
similar to the sigmoid function, the tanh function also saturates quickly and, as a result, the
gradients get killed.

Rectified linear unit

Rectified linear unit (ReLU) is probably the most commonly used activation function
today. It is defined by the following formula:

ReLu(x) =max(0, x)
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ReLU's charm is its very simple formula, which does not require complex computations
and, at the same time, overcomes the problems associated with the sigmoid and tanh
nonlinearity functions. However, if you look at the graph of ReLU in the following
diagram, you may note that for negative values, the neuron with ReLLU as the activation
function would never get triggered and would die. This problem can be solved by using
similar activation functions, such as leaky ReLU; however, details of these are beyond the
scope of this book:

relu(x) = max(0, x)

10

-10 -5 0 5 10

Now that we have understood neurons and activation functions, let's see how these all
come together to form a neural network.

Neurons form an interconnected network that we call an ANN. An ANN consists of three
layers, with each layer consisting of a particular number of neurons or nodes. Let's look at
the various ANN layers next.
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Layers in an ANN

An ANN consists of three types of layers:

e Input layer: This is the first layer in a neural network, and the number of nodes
or neurons in this layer is equal to the number of features that would be fed to
the network.

e Hidden layer: An ANN can have one or more hidden layers. These are the
intermediate layers in a network. The relationships and patterns in data are
derived in these layers. The number of hidden layers is a hyperparameter that
needs to be tuned. The number of nodes in each hidden layer is a
hyperparameter. For fairly simple datasets, an ANN with only one hidden layer
will suffice. However, depending on the complexity of the data and the features
that need to be extracted, the number of hidden layers can be varied, along with
the number of nodes in each hidden layer.

¢ Output layer: This is the final layer in an ANN that provides the output for a
particular input. It receives the results from the hidden layers and puts it across.
The number of nodes in the output layer depends on the type of problem being
solved. The output layer has only one node if it is a binary classification problem
since this node itself can emit 0 or 1 depending on which class the data point is
categorized into. For multiclass classification problems, the number of nodes in
the output layer is equal to the number of classes so that each node portrays the
probability of the data point belonging to a particular class.

The nodes in an ANN are connected across the layers and there is no
0 connection between the nodes in the same layer.
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The following diagram shows a neural network with an input layer comprising four nodes
catering to four input features. The input layer is followed by a hidden layer consisting of
three neurons. As expected, the final layer is an output layer that has one node. The ANN
structure shown can work for both binary classification and regression problems. The
summation sign in the diagram shows the operations taking place in a neuron followed by
the application of the activation function:

Input Hidden Output
Layer Layer Layer

Input 1
EEEE—

>

Input 2
— >

9 Z Output
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>

Input 4
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Okay. I have understood the structure of a neural network, but how does it learn?

We will answer this question in the following section.

How does a neural network learn?

The following steps represent step-by-step description of how information goes forward in
a neural network. This process is referred to as forward propagation:

1. The input values arrive at the input layer and are processed in the neurons.

2. The outputs are then forwarded to the hidden layers wherein the randomly
initialized weights are multiplied by the values and the bias is added.

3. These values are then passed through the activation function.

4. Finally, the values reach the output layer and the neurons perform the processing
and emit an output value, y’.

5. This y’ is the predicted value for the input that came in.
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Everything that we have discussed hitherto falls under the category of forward
propagation.

As we saw, a value y’ was predicted by the network. No learning has happened yet.

Now we need to judge the performance of our network, in terms of how far away or close it
was to predicting the correct value. We do this by measuring something called the loss
function. There are multiple kinds of loss function that can be used. Loss functions provide
an indication of how well the network performed in terms of predicting the output for a
particular data point. The objective of the network is to minimize the loss function by
improving its prediction ability.

There are techniques for initializing weight matrices, such as Xavier
initialization, that result in better results than randomly initialized weight
matrices.

How does the network get better at making
predictions?

Depending on the value of the loss function, the weight matrices and bias vector are
updated to figure out their optimal values so that the neural network as a whole improves
in making predictions. This is referred to as gradient descent, and in using it, we try to go
down the slope of the weights versus loss function curve so that we can reach a minimum
loss function value. This is performed by calculating the partial derivatives of the loss
function with respect to the individual weights and biases. The details of this process are
beyond the scope of this book. However, in a nutshell, by calculating the partial
derivatives, each weight and bias tries to understand how responsible it was for the
prediction and updates itself accordingly. This process is illustrated by the following
formula:

oJ
OWoid

Whew = Woig — alpha X

Let's look at each of the components:

e W, ,and W,

new

represent the present and modified weights, respectively.

e | represents the loss function.
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oJ

o Wi is the partial derivative of the loss function with respect to the weight W,,.

e alpha represents the learning rate.

In the aforementioned formula, we have essentially discussed everything except alpha. The
learning rate, alpha, controls how big or small a step to take when updating values. We
would ideally want to modify the learning rate during training so that larger steps are
taken when we are far away from the optimum value of the loss function, and smaller steps
are taken as we progress towards the optimal value of the loss function.

Essentially, this process is referred to as backpropagation, wherein the signal flows
backward to the network in terms of how good or bad the network performed in predicting
values. Accordingly, the various parameters in the network get updated so that the optimal
value of the loss function can be achieved and the network can learn in the process.

Before we proceed and solve an NLP problem using an ANN, let's learn about the concept
of regularization, which is a very critical concept to know before training any machine
learning or deep learning model. We will also discuss dropout, which is a regularization
technique for neural networks.

Understanding regularization

During model training, two problems come up quite often: underfitting and overfitting. Let's
learn about them next:

¢ Underfitting: When our model performs poorly on both training and test data, it
is said to be underfitting. This basically means that the model was not able to
capture patterns or underlying trends in our data, and so it could not generalize
well when working with unseen data. For such models, we can try out the tuning
of various hyperparameters so that it can fit data well. In the case of neural
networks, we can add more layers and create a bigger network so that the model
can capture complex patterns in data.

¢ Overfitting: Overfitting is another problem that can happen during model
training. When the model performs very well on training data, but does not
generalize well and performs poorly on test data, it is said to be overfitting.
Basically, the model is trying to memorize data here rather than learn patterns. It
can, at times, model noise and inaccurate data points as well. In order to solve
the problem of overfitting, regularization is a very useful technique that can be
used.
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We do not want a model that performs very well on training data. Rather, we want a model
that generalizes well and performs decently on both training data that it has already seen
and test data that is unseen. Regularization helps us with that. It prevents the model from
overfitting by penalizing it when it performs too well on training data. A penalty term is
added to the loss function that will take care of preventing overfitting by incorporating
regularization. Details of this are beyond the scope of this book. The popular forms of
regularization include L1 or Lasso, L2 or Ridge, and Elastic Net.

Dropout is another very commonly used and effective form of regularization that helps
prevent overfitting in neural networks. Let's look at dropout in the next section to
understand how exactly it achieves this.

Dropout

We discussed how regularization can help us prevent overfitting. Dropout is an extremely
efficient regularization technique for preventing overfitting in neural networks. As part of
dropout, every neuron in a network is only active with a probability, p. Essentially, a
particular percentage of signals going to the subsequent layers are turned off. This helps the
model to prevent overfitting as the model would not concentrate on the specifics of data
but generalize better, since in every pass, a different variation of weights would be used
corresponding to the active neurons.

In addition to L1, L2, Elastic Net, and dropout, another technique that helps in preventing
dropout is early stopping. As part of early stopping, the model is asked to look at a
parameter or function during the training phase. As soon as the value for the parameter is
met, the training stops. One of the commonly used parameters is validation accuracy,
wherein during training, the model's performance is evaluated on an unseen dataset, called
the validation set. When the performance of the model degrades on the validation dataset,
training is stopped. At this point, the model can be seen as generalizing well to the data.

We now have a decent theoretical understanding of neural networks. In order to get
practical exposure, we need to understand how we can code neural networks. For this, we
will next discuss Keras, which is a very convenient framework for building deep learning
models.
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Let's talk Keras

Keras is a high-level framework that can be used to build neural networks. It is written in
Python and provides numerous APIs and modules for defining, building, and training
neural networks with ease. It can use multiple platforms, such as TensorFlow, in its
backend.

TensorFlow is an open source library developed by Google for machine learning model
building and deployment. It provides several low-level controls as well.

Keras provides a wrapper around frameworks such as TensorFlow and hides low-lying
implementations that let developers concentrate on solving problems using deep learning
by taking care of all internal implementations and interfacing with backend frameworks,
such as TensorFlow.

A neural network can be envisioned as a computational graph in which layers are stacked.
Keras provides an interface to build these stacks of layers. The simplest among these is the
sequential model, which is nothing but a linear stack of layers. It can be imported and
instantiated in Keras using the following code snippet:

from keras.models import Sequential
model = Sequential ()

We have already looked into the concept of fully connected layers and dropout. These
layers can be added to the sequential stack by using the following piece of code:

from keras.layers import Dense, Dropout
model.add (Dense (units=64, activation='relu'))
model.add (Dropout (0.3))

The dense layer is synonymous with the fully connected layer, and here it has 64 neurons.
The ReLU activation function is used. The dropout layer is added when the value 0. 3
indicates that 30% of the neurons would be dropped randomly. Similarly, we can add or
move layers, such as convolutions, and pooling, which we will see in the next sections and
subsequent chapters. Now, once we define our network architecture, we need to build it.
The compile method in Keras helps us to build the architecture, and here we can specify the
loss function, optimizer, and other features that we will be using in our model. We can
build our model using the following code snippet:

model.compile (loss="'binary_crossentropy',
optimizer= 'adam',
metrics=["'accuracy'])
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Here, we would want to use binary cross-entropy for loss computation and Adam as our
optimization technique.

Now that everything is defined and built, Keras provides the £it () method to actually
train our model, as can be seen in the following code snippet:

model.fit (x_train, y_train, epochs=5, batch_size=32)

We provide the training data, predictor variable, the number of epochs that the training
will happen for, and the batch size or the number of samples to be used during one input
pass, before updating the weights for the parameters, respectively.

Finally, the evaluate () APIin Keras provides us with a mechanism for evaluating the
performance of our model on test data and the predict () APIhelps make predictions for
new data.

We talked about early stopping when discussing regularization. Keras
provides a method called EarlyStopping inits callback module. You
should check it out.

Now that we have a fair understanding of neural networks and how can we use Keras to
leverage it, let's apply what we have learned to solve an NLP problem of classifying
questions.

Building a question classifier using neural
networks

We have used a question classification dataset that is open sourced by the University of
Illinois, Urbana Champaign. We will try and classify questions based on their text into one
of the following six classes:

o ABBREVIATION
e ENTITY
DESCRIPTION
HUMAN
LOCATION

e NUMERIC

More about the dataset can be found at https://cogcomp.seas.upenn.edu/Data/QA/QC/.
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Go through the following steps to classify the questions based on their text:
1. Import the basic libraries:

import nltk

nltk.download ('stopwords"')

nltk.download ('wordnet')

from nltk.corpus import stopwords

from nltk.stem.porter import PorterStemmer

from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer
import pandas as pd

import re

import numpy as np

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder

2. Now, we will read the dataset using the following code snippet:
train_data = open('Dataset/training_data.txt', 'r+')
test_data = open('Dataset/test_dataset.txt', 'r+')
train = pd.DataFrame (train_data.readlines (), columns =
['"Question'])
test = pd.DataFrame (test_data.readlines (), columns = ['Question'])

3. Let's look at some data points next:

train.head ()

Here's what our data looks like in raw form:

Question

0 DESC:manner How did serfdom develop in and the...

1 ENTY:cremat What films featured the character ...
2 DESC:manner How can | find a list of celebriti...
3 ENTY:animal What fowl grabs the spotlight afte...
4 ABBR:exp What is the full form of .com 7\n

Our dataset offers a unique challenge in terms of segregating it into Questions
and Question Types, which are attached together. Furthermore, as the Question
Type consists of both coarse and fine classes, we will need to perform separation
for these as well. Our focus should be on the questions and determining which
coarse classes they fall into as part of this exercise. Let's do that next.
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4. Split the data points to obtain question strings and coarse and fine question

categories:
train['QType'] = train.Question.apply (lambda x: x.split(' ', 1)[0])
train['Question'] = train.Question.apply(lambda x: x.split (' ',
1) [11)
train['QType-Coarse'] = train.QType.apply(lambda x:
x.split (':") [0])
train['QType-Fine'] = train.QType.apply (lambda x: x.split (':"')[1])
test['QType'] = test.Question.apply(lambda x: x.split(' ', 1)[0])
test['Question'] = test.Question.apply(lambda x: x.split (' ',
1) [11)
test['QType-Coarse'] = test.QType.apply(lambda x: x.split (':"')[0])
test['QType-Fine'] = test.QType.apply (lambda x: x.split(':")[1])
5. Now let's look at our grained dataset:
train.head()
Here's our segregated dataset:
Question QType QType-Coarse|QType-Fine
0 How did serfdom develop in and then leave | . ... | ... manner
Russ...
1 What films featured the character Popeye ENTY : cremat |ENTY cremat
Doyle...
2 |How can I find a list of celebrities' real na... |[DESC:manner|DESC manner
3 What fowl grabs the spotlight after the ENTY : animallENTY animal
Chines...
4 |[What is the full form of .com ? ABBR:exp ABBR exp

6. Next, we will use the following code snippet to pop out the 0Type and QType-
Fine variables, as our focus is on predicting the coarse classes for a question:

train.pop ('QType"')
train.pop ('QType-Fine')
test.pop ('QType"')
test.pop ('QType-Fine')

7. Let's look at the classes in our dataset:

classes = np.unique (np.array (train['QType-Coarse']))

classes
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Here's our array of classes:

array ([ 'ABBR', 'DESC', 'ENTY', 'HUM', 'LOC', 'NUM'], dtype=object)

8. In chapter 7, Identifying Patterns in Text Using Machine Learning, we looked at
label encoding. Next, we will use this to convert our classes into integral
identifiers:

le = LabelEncoder ()
le.fit (pd.Series (train['QType-Coarse'].tolist () + test['QType-

Coarse'].tolist ()) .values)
train['QType-Coarse'] = le.transform(train['QType-Coarse'].values)
test['QType-Coarse'] = le.transform(test['QType-Coarse'].values)

9. We will preprocess our dataset using the preprocessing pipeline that we
developed in chapter 3, Building Your NLP Vocabulary:

all_corpus = pd.Series(train.Question.tolist () +
test.Question.tolist ()) .astype(str)
all_corpus = preprocess(all_corpus, remove_stopwords = True)

The preprocess method can be viewed in chapter 3, Building Your NLP
Vocabulary, or the code files.

10. Now, we will split our data back into a training and test corpus, which we had
combined for preprocessing:

train_corpus = all_corpus[0O:train.shape[0]]
test_corpus = all_corpus[train.shape[0]:]

Hey, I converted my classes into integral identifiers. But how do I convert my text
into numbers?

Let's make use of TF-IDF for building embeddings that we discussed in chapter
4, Transforming Text into Data Structures.

11. We will vectorize our text data using TF-IDF, making use of the following code
block:

vectorizer = TfidfVectorizer ()
tf_idf matrix_train = vectorizer.fit_transform(train_corpus)
tf_idf matrix_test = vectorizer.transform(test_corpus)
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Our embeddings are ready now. Next, let's make use of Keras to build our

network architecture.

12. Import the Keras library and various modules:

import keras

from keras.models import Sequential, Model
from keras import layers

from keras.layers import Dense, Dropout, Input
from keras.utils import np_utils

13. We discussed one-hot encoding in chapter 7, Identifying Patterns in Text Using
Machine Learning, as well. Since we have multiple possibilities in our problem
statement, we need to one-hot encode the class labels that are expected by the

network:

y_train = np_utils.to_categorical (train['QType-Coarse'],

train['QType-Coarse'] .nunique ())

y_test = np_utils.to_categorical (test['QType-Coarse'],

train['QType-Coarse'] .nunique ())

14. Next, let's define our network architecture by using the following code block:

model = Sequential ()

model.add (Dense (128, activation='relu',
input_dim=tf_idf_matrix_train.shape[l]))
model.add (Dropout (0.3))

model.add (Dense (6, activation='softmax'))

model.compile (optimizer="adam', loss='categorical_crossentropy',

metrics=["'categorical_accuracy'])
model . summary ()

Here is the summary of the model we just defined.

Model: "sequential 1"

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 128) 1027968
dropout_1 (Dropout) (None, 128) 0
dense_2 (Dense) (None, ©6) Eqg. 774

Total params: 1,028,742
Trainable params: 1,028,742
Non-trainable params: O
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We have added a fully connected layer that will accept the inputs. It will apply
the ReLU activation function to the processed values before emitting the output
from each neuron.

Next, we apply dropout. Since we have provided a value of 0. 3, it will randomly
delete 30% of the neurons during each training epoch so as to prevent overfitting.

The dropout layer is followed by the output layer comprising six neurons, where
each neuron caters to one class in our dataset.

We have used the Adam optimizer and categorical cross-entropy function for loss
computation, the details of which are beyond the scope of this chapter. More
about the Adam optimizer can be read at https://arxiv.org/pdf/1412.6980.
pdf, and you can check out the link at https://arxiv.org/pdf/1702.05659.

pdf for reading about loss functions for deep neural networks in classification.

Softmax is used in our network for computing the normalized probabilities for
each of the six classes. We have discussed softmax extensively in chapter 5, Word
Embeddings and Distance Measurements for Text.

15. Let's train our model next:

training_history = model.fit (tf_idf_matrix_train, y_train,
epochs=10, batch_size=100)

16. Let's evaluate the model that we built using accuracy as the metric:

loss, accuracy = model.evaluate (tf_idf_matrix_test, y_test,
verbose=False)
print ("Testing Accuracy: {:.4f}".format (accuracy))

Testing Accuracy: 0.8580
Our model achieves a performance of 85.8% on test data.

17. Let's save the model architecture and weights using the following code block:

import hb5py
model_structure = model.to_json()
with open ("Output Files/question_classification_model.json", "w")
as json_file:

json_file.write (model_structure)
model.save_weights ("Output
Files/question_classification_weights.h5")
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Alongside our method, you can try fine-tuning the various hyperparameters, including the
following;:

e Number of hidden layers

Number of neurons in each layer
Different activation functions

¢ Learning rate

Different optimizers
Batch size

¢ The number of epochs, among other things

Let's summarize what we have learned from this chapter.

Summary

We made attempts to understand neural networks by looking into the working of a
biological neuron and how a similar setup is imitated to build artificial neurons. We looked
at the various components of neural networks, including neurons, layers, activation
functions, and dropout, among other components. We attempted to answer how a signal
flows through a neural network and how it learns. We discussed Keras,

which conveniently helps us build our neural networks by providing high-level APIs.
Finally, we applied our understanding to solve an NLP problem of classifying questions
using an ANN so that the input to the network could comprise embeddings that were built
using the TF-IDF vectorization technique.

Now that we have understood the architecture of ANNs and have seen the NLP
applications that are based on it, let's take this forward and discuss the interaction of
convolutional neural networks with text data in the next chapter.
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The relationships between words can be derived by looking at their relative placement with
respect to each other. These relationships can be viewed as a time series wherein words that
are spoken can be thought of as constituting a time series database. On the other hand, we
can view their relative positions and derive relationships out of these. These approaches are
used by more complex and modern forms of Artificial Neural Networks (ANNs), known
as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).
Here, we will deep dive into CNNs and understand how they help us solve problems for
the textual domain.

We will begin by understanding what a CNN is and view the various components in the
CNN architecture. We will try and form an understanding of convolutions as an operation,
followed by exploring the various layers that comprise a CNN. Based on the knowledge we
gain, we will make use of Keras to solve a very challenging NLP problem of detecting
sarcasm in text.

The following topics will be covered in this chapter:

e What is a CNN?
e Detecting sarcasm in text using CNNs

Let's get started!

Technical requirements

The code files for this chapter can be found at the following GitHub link: https://github.
com/PacktPublishing/Hands-On-Python-Natural-Language-Processing/tree/master/
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What is a CNN?

CNN:s try to capture the spatial relationships in data. These are ideally suited for capturing
patterns in images since images have spatial relationships in those pixels that are in the
same vicinity contribute to making sense of the object. The nature of convolutions, as we
will see in the upcoming sections, is more suited for pictures, so we will try and see how
they can be used to make sense of the text and capture spatial relationships in text data as
well. First, let's try and understand convolutions and the other components that come with
them. After doing this, we will extend our learning to text.

Understanding convolutions

Images are described using pixels. These pixels can have varying values, depending on
whether the image is black and white, grayscale, or color. The values in the pixels are
reflective of the patterns they might be carrying. As part of convolution, we try and slide
(perform a dot product) what we call filters across the image so as to capture patterns from
the pixels. Let's look at an example of an image and filter it to understand this better:

Let's say that the preceding image can be represented by the following 4 x 4 pixel matrix,
where each value indicates the intensity of that pixel in the image:

= (s oo oy
W lw|on =
NN
o |w
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We can apply the following filter to the image:

0 -1
0 -1
0 -1

Now, using this filter, we want to find the pattern specified in the filter across the image.
What we can do here is perform an element-wise multiplication, which is nothing but a dot
product across the image. The element-wise multiplication results are summed up for each
pass the filter took over the image. By doing this, we get the resultant matrix, which shows
the intensity of the pattern or filter at various points in the image. The following matrix is
obtained after applying the filter to the image:

5 -9

-1 -8

Let's pick up 5 from the output matrix and understand how we got that.

We performed element-wise multiplication between the entries from (1, 1) to (3, 3) in the
input matrix. This filter looks as follows:

(6*1) + (170) + (4*-1) + (8*1) + (6¥0) + (7*-1) + (4¥1) + (3%0) + (2*-1) =5

Similarly, we obtain other values. Here, we assumed that the matrix was indexed starting
from 1.

These values are then passed through activation functions, which can be thought of as
being present inside the filter, along with the weights.

The process we described here is primarily what happens in the convolutional layer. Each
convolutional layer can have multiple filters, also known as kernels. The values in these
filters are weights that the network updates in order to fit those patterns to the data. We
used a filter of size 3 x 3 in the example we discussed. These filters can take different
dimensions as well.

There is a simple formula governing what we discussed here.

If we have an image of n x n and a filter of size f x f, then the output would be a matrix of
dimensions, as follows:

(n-f+1)*(n-f+1)
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Let's see what we have got in the preceding image:

e A4x4image
o A 3 x 3 filter

The expected output is as follows:
(4-3+1)*(4-3+1)
This is exactly what we got — a 2 x 2 output matrix.

As you may have noticed, our filter started with a sidewise movement at 7 x I, moved to 1
x 2, followed by 2 x 1 and 2 x 2. However, it never went to 1 x 3 or 1 x 4 since we would
have overshot our boundaries since the image is 4 x 4. In simple terms, the leftmost column
in our filter was never applied to the rightmost column in our image. In certain situations,
the filter pattern in the leftmost column might be present in the rightmost column of our
image. Somewhere, it is being provided a fewer number of times to the network as input
compared to the rows or columns toward the beginning or internal in the input matrix.

Now, let's learn how to enable our network so that it captures this information.

Let's pad our data

What we essentially do is use a technique called padding, which is like applying pseudo
entries containing Os as the values to the end. This is referred to as zero-padding and as a
result of this, the values toward the edges can also be perceived as being internal in the
matrix. No value is under-sampled compared to others. It also enables the filter to find
patterns at all the places in the image, irrespective of their position.

Here's how the equation changes after applying padding:

o A 4x4image
e Padding of size 1 around the image
e A 3 x 3 filter size

Here's how things change when padding of size 1 is applied all around the image. The
image, along with the padding, is now of size n + 2p since padding of size p is applied to all
the outer edges.

The output matrix will now use the following equation:

(n+2p-f+1)*(n+2p-f+1)
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Let's try and understand what the size of the padding we need to apply is. The size will
depend on the size of the filters we wish to apply. This generally follows the following
equation:

F-1
5 )

p = floor(

Understanding strides in a CNN

One more thing we should discuss here is that we moved sideways 1 pixel at a time. This
value is a configurable parameter referred to as the stride. It helps to determine how an
overlap or transition from one pixel to another should be captured.

Here's how we can generalize the equation to accommodate different strides by using
strides as a parameter.

Let's say we apply a stride of s when performing convolutions. Here, our output matrix will
use the following equation:

n+2p — n+2p —
+f +f+1)

(

+1) % (

Along with convolutions, we are using a pooling and a fully connected layer. Next, we'll
figure out how these layers work and what happens after filters are applied to the input
data.

What is pooling?

In the convolution operation, what we tried to capture were features or patterns in data
using some filters. The objective is to keep computation as minimal as possible while
capturing as much information as possible. Hence, at all times, we should try and keep only
required information that can describe the feature that's been captured. This is performed
using pooling layers. The pooling operation helps in downsampling the data so that only
relevant information is preserved. We let go of most of the unwanted information so that
minimal computation is required. As a result, this helps prevent overfitting. Another thing
you may have realized is that even if the data shifts somewhat, pooling allows us to capture
the information we need, irrespective of where the feature is located in the data. This
property is referred to as spatial invariance.
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Now, let's try and understand some commonly used pooling techniques. There are various
types of pooling that can be performed. Let's take a matrix and see how the various pooling
strategies can be applied to it. We will take a stride of 2:

—l5&joc oy
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Let's take a look at the various types of pooling;:

® Max pooling: This is the most common pooling technique that can be applied. In
max pooling, the maximum value across a filter window is taken up. The max
that's pooled out for our matrix with a stride of 2 would be as follows:

8

4

We have basically taken the maximum over every 2 x 2 block in the matrix.

e Average pooling: This technique, as the name suggests, takes the average across
the 2 x 2 blocks. Let's see what the results of average pooling on the matrix would

be:

Here, we have rounded our averages to the nearest integer. In most use cases,
max pooling outperforms and proves to be more efficient compared to average

pooling.

e Sum pooling: The next technique we will discuss is sum pooling, where we just
take the sum of the values across the filter. The following matrix shows the result
that's obtained by using sum pooling. Sum pooling is the least used pooling

method among the ones we'll discuss:

21

23

11

18
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¢ Global max pooling: This pooling technique comes into effect for temporal data
primarily. A global outlook for the data is taken and the maximum value across
the input is the output. For an image of height x width dimensions, the output of
global max pooling would be tensor of size k, where k is the number of filters.
Basically, after the dot product is performed between the input and each filter,
the maximum value among the resultants is added to the output. The global max
pooling operation can replace the flatten option in neural networks.

There are other forms of pooling as well, such as min pooling and L2 pooling, but these are
rarely used.

Now that we have made sense of pooling and how it helps us, let's put that last piece of the
puzzle into place and look at the fully connected layer.

The fully connected layer

The convolutional and pooling layers help us extract and refine features from the inputs the
network receives. We need something in place that can actually classify or do things with
these features. The results after performing convolutions and pooling are flattened into a
vector that is fed to a feedforward neural network, as we discussed in the previous
chapter. After sending the feature vector through a neural network containing possibly
multiple layers and activation functions, we get our final classification results.

The learning process in a CNN happens similarly to how it does in ANNSs, where the
weights get updated based on the losses encountered and the corresponding gradient
calculation. The details of these are beyond the scope of this book.

So far, we have understood how a CNN captures features from images, but how does all
this make sense with text data?

We'll try and answer this question in the next section.
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Detecting sarcasm in text using CNNs

The convolutions that we have seen so far capture spatial relations in data as specific
images. However, text has more of a sequential relationship, where words in the vicinity of
a given account for more information for that particular word rather than any word
appearing in a line right above them. Hence, for text data, we look at one-dimensional
spatial relationships and leverage the Conv1D layer for this purpose. This is similar to
going through n-grams, wherein there would be overlaps in consecutive n-gram windows.
The value of n would be specified by the kernel size parameter you provide as input to the
Conv1D layer.

The following diagram will help us understand how CNNs can be used to find patterns in
text data:

wait
for
the
video
and
do
n't
rent
it

n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

This image has been sourced from the paper, Convolutional Neural Networks for Sentence Classification by Yoon Kim, which was released in 2014

The preceding diagram shows how word embeddings are sent across as inputs to the
convolutional layer, which contains multiple filters. This is followed by max pooling and,
finally, the fully connected layer and dropout are applied with the appropriate activation
function. We will use a similar architecture in our sarcasm detection study.

Now that we have understood convolutions and how they capture features, we are now
well equipped to use them to perform text analysis.
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Sarcasm detection is a big NLP challenge in today's world, from print media to

commentaries and so on. Let's try and use CNNs to detect sarcasm in text. We will use the
word embeddings we discussed in chapter 5, Word Embeddings and Distance Measurements
for Text, to understand the interaction between CNNs and text. The word embeddings will
be sent as input to the CNN-based architecture.

Loading the libraries and the dataset

Perform the following steps to load the required libraries and dataset:

1. First, we need to import the various libraries that we'll be using during the
course of this exercise, as follows:

import pandas as pd
import numpy as np
import re

import Jjson

import gensim

import math

import nltk

nltk.
nltk.

from
from
from
from
from

download ('stopwords')

download ('wordnet')

nltk.corpus import stopwords
nltk.stem.porter import PorterStemmer
nltk.stem.snowball import SnowballStemmer
nltk.stem.wordnet import WordNetLemmatizer
gensim.models import KeyedVectors

import keras

from
from
from

keras.models import Sequential, Model
keras import layers

keras.layers import Dense, Dropout, ConvilD,

import h5py

2. Let's add the following code block to read our data:

def parse_data(file):

data

for 1 in open(file,'r'):

yield json.loads (1)

GlobalMaxPoolinglD

list (parse_data ('Dataset/Sarcasm_Headlines_Dataset_v2.json'))

df =

pd.DataFrame (data)
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The data that we will be using for this exercise has been taken

from https://www.kaggle.com/rmisra/news-headlines-dataset-for—
sarcasm-detection. This is primarily data from news headlines sourced
from The Onion and the Huffington Post.

Performing basic data analysis and
preprocessing our data

Next, let's perform some basic data analysis:

1. First, let's understand our data better:

df .head (5)

Here's what the first five rows in our data will look like:

is_sarcastic headline article_link

0 1 thirtysomething scientists unveil doomsday clo...  https://www.theonion.com/thirtysomething-scien...
1 0 dem rep. totally nails why congress is falling... https://www.huffingtonpost.com/entry/donna-edw...
2 0 eat your veggies: 9 deliciously different recipes https://www.huffingtonpost.com/entry/eat-your-...
3 1 inclement weather prevents liar from getting t... https://local.theonion.com/inclement-weather-p...
4 1 mother comes pretty close to using word 'strea... https://www.theonion.com/mother-comes-pretty-c...

The preceding output shows five rows from the data. Our data consists of three
columns:

e headline that contains sarcastic and non-sarcastic text.

e is_sarcastic, which is the class variable. This tells us if a headline is
sarcastic or not.

e article_link, which contains the link to the original article for the
headline.

Since article_link is not of much use in our analysis, we can eliminate the
column using the following command:

df .pop('article_link")
What's the size of our data? Let's take a look:

len (df)
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The size of our data can be seen in the following output:

28619

2. Let's clean and preprocess our data using the same pipeline that we've used
throughout this book. Details can be found in chapter 3, Building Your NLP
Vocabulary. Here, we do the following:

e Remove special characters.
e Keep only alphanumeric data.

Remove stopwords
Lemmatize our data

Perform case-folding on the data:

headlines = preprocess(df['headline'], lemmatization = True,
remove_stopwords = True)

Loading the Word2Vec model and vectorizing our
data

Next, let's load the Word2Vec model:

1. First, we will convert the text into numbers using an embedding technique we
have already discussed.

We use Word2Vec to fetch embeddings of our data. For this, we would use the
pre-trained Word2Vec model, as we discussed in chapter 5, Word Embeddings and
Distance Measurements for Text:

model = KeyedVectors.load_word2vec_format ('GoogleNews-vectors—
negative300.bin', binary=True)

2. In the upcoming steps, we will be sending the word vectors, each of size 300, to
our CNN model. However, for that, our data dimensions should be
standardized. Since our data is from headlines, we will standardize them so that
they have a length of 10. If any of the headlines contain more than 10 characters,
they will be subsampled to keep the word embeddings for the first 10 characters.
If any of the headlines contain less than 10 characters, we will pad them so that
they have vectors with values of 0.
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We define this using the following parameters:

MAX_LENGTH = 10
VECTOR_SIZE = 300

Now, let's define a code snippet that will convert the preprocessed headlines into
their respective vectors and also pad or subsample the data based on whether the
size of the data is greater or less than the maximum length we have defined:

def vectorize_data (data) :
vectors = []
padding_vector = [0.0] * VECTOR_SIZE

for i, data_point in enumerate (data):
data_point_vectors = []
count = 0

tokens = data_point.split ()

for token in tokens:
if count >= MAX_LENGTH:
break
if token in model.wv.vocab:
data_point_vectors.append (model.wv[token])
count = count + 1

if len(data_point_vectors) < MAX_LENGTH:
to_fill = MAX_LENGTH - len(data_point_vectors)

for _ in range(to_fill):
data_point_vectors.append(padding_vector)

vectors.append (data_point_vectors)
return vectors

Now, let's call our vectorize_data () method:

vectorized_headlines = vectorize_data (headlines)

The vectorized_headlines parameter contains our headlines after they've
been converted into vectors using Word2Vec.
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3. Let's add a small validation to ensure that the 10 vectors are present for each
headline, as defined in the MAX_LENGTH parameter:

for i, vec in enumerate (vectorized_headlines) :
if len(vec) != MAX_LENGTH:
print (i)

The output of the previous code snippet is null, as expected, indicating that all the
headlines have been defined using 10 word vectors.

Splitting our dataset into train and test sets

Follow these steps:

1. We need to split our data into train and test sets. We'll use the following code
snippet to do so. We can also verify the size of each component using a simple
print statement:

X_train = vectorized_headlines[:train_div]
y_train = df['is_sarcastic'][:train_div]
X_test = vectorized_headlines[train_div:]
y_test = df['is_sarcastic'] [train_div:]

print ('The size of X_train is:', len(X_train),
'\nThe size of y_train is:', len(y_train),
'\nThe size of X_test is:', len(X_test),
'\nThe size of y_test is:', len(y_test))

Here's the output of the print statement:

The size of X_train is: 20033
The size of y_train is: 20033
The size of X_test is: 8586
The size of y_test is: 8586

2. We need to reshape our data in order to convert it into the form expected by our
CNN model. The following code snippet helps us with that:

X_train = np.reshape (X_train, (len(X_train), MAX_LENGTH,
VECTOR_SIZE))

X_test = np.reshape (X_test, (len(X_test), MAX_LENGTH, VECTOR_SIZE))
y_train = np.array(y_train)

y_test = np.array(y_test)
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Building the model

Follow these steps:

1. Now that we are ready with our vectorized data, let's get into the CNN part. We
begin by defining the hyperparameters of our network:

FILTERS=8

KERNEL_SIZE=3
HIDDEN_LAYER_ 1_NODES=10
HIDDEN_LAYER_ 2_NODES=5
DROPOUT_PROB=0.35
NUM_EPOCHS=10
BATCH_SIZE=50

We have specified the following hyperparameters:

The number of filters.

The kernel size, which indicates the number of tokens in the text we will
look at.

The number of nodes to be used in each of the hidden layers.
The dropout, indicating the percentage of nodes to be dropped at random.
The number of epochs or number of times we'll see the entire data.

The batch size, which specifies the number of vectorized headlines to input
to the model in each batch.

2. Now, let's define our convolutional layer using the following code snippet:

model = Sequential ()model.add(Convl1D (FILTERS, KERNEL_SIZE,
padding="'same', strides=1,
activation='relu', input_shape =

(MAX_LENGTH, VECTOR_SIZE)))

Here, we have defined a stride of 1 and ReLU as the activation function.

We have used one-dimensional convolutions due to the signal dimensionality
associated with text data. We'll define our pooling layer next. We will use global
max pooling for this:

model.add (GlobalMaxPoolinglD())
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3. Next, we will define our feedforward neural network, along with the dropout
layers:

model.add (Dense (HIDDEN_LAYER_1_NODES, activation='relu'))
model.add (Dropout (DROPOUT_PROB) )

model.add (Dense (HIDDEN_LAYER_2_NODES, activation='relu'))
model . add (Dropout (DROPOUT_PROB) )

model.add (Dense (1, activation='sigmoid'))

We have only defined one node in our output layer since sarcasm detection boils
down to a binary classification problem. In the earlier layers, we used ReLU as the
activation function and sigmoid in the last layer since we are trying to solve a
binary classification problem.

4. Let's take a look at the summary of our model:
print (model.summary ())

Here's our model summary:

Model: "sequential_ 1"

Layer (type) Output Shape Param #
convld_1 (ConvlD) (None, 10, 8) 7208
global_max_poolingld_1 (Glob (None, 8) 0
dense_1 (Dense) (None, 10) 90
dropout_1 (Dropout) (None, 10) 0
dense_2 (Dense) (None, 5) 55
dropout_2 (Dropout) (None, 5) 0
dense_3 (Dense) (None, 1) 6

Total params: 7,359
Trainable params: 7,359
Non-trainable params: O

We have 7,359 trainable parameters in our model. You can add more layers so as
to have more parameters in the model.
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5. Now, let's build our model using the compile command:

model.compile (loss='binary_crossentropy',
metrics=["'accuracy'])

optimizer="'adam',

Our loss can be calculated using binary cross-entropy. We have used the Adam

optimizer here.

6. We are now ready to train our model. Use the following code block to do so:

training_history
batch_size=BATCH_SIZE)

= model.fit (X_train,

y_train,

epochs=NUM_EPOCHS,

Here are some snippets from our model training process over time:

Epoch 1/10
20033/20033 [
0.6523 - acc:
Epoch 2/10
20033/20033 [
0.5698 - acc:
Epoch 3/10
20033/20033 [
0.5224 - acc:
Epoch 4/10
20033/20033 [
0.4946 - acc:
Epoch 5/10
20033/20033 [
0.4703 - acc:
Epoch 6/10
20033/20033 [
0.4460 - acc:
Epoch 7/10
20033/20033 [
0.4302 - acc:
Epoch 8/10
20033/20033 [
0.4128 - acc:
Epoch 9/10
20033/20033 [
0.3986 - acc:
Epoch 10/10
20033/20033 [
0.3850 - acc:

0.

6119

0.

7280

.7642

0.

7842

0.

8002

0.

8124

0.

8251

0.

8326

0.

8410

0.

8488
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Evaluating and saving our model

Perform the following steps to evaluate and save the model:

1. Now, we need to evaluate our model on the test data we have, as follows:

loss, accuracy = model.evaluate (X_test,

y_test, verbose=False)
print ("Testing Accuracy:

{:.4f}".format (accuracy))
Here's the model's accuracy on the test data:

Testing Accuracy: 0.7616

You can fine-tune various parameters and add/delete layers to obtain other
results.

2. Finally, we need to save our model. The following code snippet will help us with
that:

model_structure = model.to_json()

with open ("Output Files/sarcasm_detection_model_cnn.json", "w") as
json_file:

json_file.write (model_structure)

model.save_weights ("Output Files/sarcasm_detection_model_cnn.h5")

With that, we have successfully built a model for sarcasm detection using Word2Vec and
CNNs. CNNs can be extended to various flavors. Research into the CNN architecture has
led to the rise of standard CNN-based architectures such as VGGNet, ResNet (Residual
Networks), Inception networks, and so on, all of which build on the ideas on CNN and
experiment with various filter sizes, combine the results from such filters, and so on. You
are encouraged to further read about these architectures and try them out.
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Summary

In this chapter, we understood a specialized form of neural network, that is, CNNs, which
help us capture spatial relationships and patterns in data. We looked at the various
components involved in a CNN for encompassing convolutions, pooling, fully connected
layers, and their functionality. We understood the way spatial relationships can exist in text
and how can we extract them using CNNSs. Finally, we applied all our understanding to
solve a fairly complex problem regarding detecting sarcasm from text data using CNNs
and pre-trained word embeddings from the Word2Vec algorithm.

In the next chapter, we will expand on the knowledge we gained in this chapter and look at
another specialized form of neural network known as RNNs. We will look at the
improvements we can make to the RNN architecture, which are suited for natural language
data as they tend to capture temporal relationships in data.
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Capturing Temporal
Relationships in Text

In the previous chapters, we saw how we could leverage Artificial Neural Networks
(ANNSs) and Convolutional Neural Networks (CNNs) to mine patterns in text and apply
them to various tasks such as classifying questions and sarcasm detection in news
headlines. With ANNs, we primarily saw that inputs are independent of one another. With
CNNs, we went one step further and tried to capture spatial relationships in the inputs by
trying to extract patterns across a set of tokens together. However, our scope was limited to
only a few tokens in the vicinity.

Sentences are essentially sequences of words, and the contextual meaning of a particular
word in a sentence may not be derived solely from the immediately surrounding words. It
might actually be a result of some words far away in the sentence as well. Also, the sense
behind the usage of the word might be a result of a word or words in the past or in the
future. In this chapter, we will look at Recurrent Neural Networks (RNNs) and
improvements built on them to help us capture context and temporal relationships in
sequences. In addition to discussing basic RNNs, we will also discuss their various use
case-based forms and variants.

We will see how the Long Short-Term Memory (LSTM) cell, a memory-based variant of
the RNN, helps us solve some issues pertaining to RNNs. An LSTM-based architecture will
be used to generate text for a practical use case of generating descriptions. In this exercise,
we will try to generate descriptions of hotels for the city of Mumbai, but the same concept
can be extended to other similar problems such as music generation and lyrics generation,
among other things. Finally, we will look at other variants of the memory-based RNN and
discuss Gated Recurrent Units (GRUs) and stacked LSTM cells in brief.
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The following topics will be covered in this chapter:

¢ Baby steps toward understanding RNNs
¢ Vanishing and exploding gradients
Architectural forms of RNNs

¢ Giving memory to our networks—LSTMs

Building a text generator using LSTMs
¢ Exploring memory-based variants of the RNN architecture

Now that the plot is set up, let's begin!

Technical requirements

The code files for this chapter can be found at the following GitHub link: https://github.
com/PacktPublishing/Hands-On-Python-Natural-Language—-Processing/tree/master/
Chapterl0.

Baby steps toward understanding RNNs

Sentences can be thought of as combinations of words, such that words are spoken over
time in a sequential manner. It is essential to capture this temporal relationship in natural
language data. The presence of a word in a lot of scenarios might be influenced by words
not necessarily in the immediate neighborhood. Think of the following sentences:

She went on a walk along with her dog.
He went on a walk with his dog.

The sentences are exactly similar except in the usage of words for the identification of
gender. The usage of the term her or his is directly dependent on the term She or He used
toward the beginning of the sentence. With CNNs, we only looked at the immediate
proximity of a word. Text data, as we saw in the examples, offers a unique challenge
wherein we need to preserve context and have some notion of memory, which can help in
making judgments at various points in time. RNNs are the go-to thing in such scenarios as
they keep a notion of what happened in the past. Let's dig in and understand their structure
in depth.
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Every recurrent neuron takes in two inputs—one is the current or external input at that
state and the other is called a hidden state, which is basically an output from the previous
state. You may have noticed, this is in contrast to Feedforward Neural Networks (FNNs),
wherein only the current input is taken into account when predicting anything. These
inputs are independent of one another.

In an RNN, the output from a time step t depends on the input at time step t and the
hidden state from the time step ¢-1. The following figure shows the structure of an RNN. It
shows the input x, going into the network at time step ¢t and producing an output y, for the
corresponding time step. The interesting part is the feedback loop, which shows how the
hidden state from the previous time step is also provided as input to the recurrent neuron
in addition to the input x,, as can be seen in the following figure:

X¢

Yt

In simple terms, the circle in the middle is basically an FNN, such that at each time step it
outputs something based on the input to the network at that time step, along with the
hidden state received from the previous time step. Let's look at the unrolled version of this
so that things get clearer.

The following figure shows an unrolled version of an RNN wherein each rectangular block
containing the circles is the neural network. Two outputs are emitted at every time step,
one being the external output and the other being the hidden state, which is fed as input to
the subsequent step. A many-to-many RNN is what's shown in the figure. It can be used for
tasks such as music and lyrics generation, among other things. There can be multiple
variations of RNNs, as we will see later. One thing to be careful about is that we should not
think of these as n different neural networks. Instead, each of them is a snapshot of the
same FNN with parameters shared across the time steps.
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This can be illustrated as shown in the following figure:
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While discussing CNNs, we took a window size, such that the network tried to find
patterns among the word vectors for the tokens in each window by sliding over them at
once. In contrast with RNNs, we would send across one token as input to the network at
each time step. Let's take in the sentence She went on a walk along with her dog to understand
this better.

The input to the RNN at time step 0 is the embedding for the word She. At time step 1, the
input is the embedding of the word went along with the hidden state output from time step
0. As a result, the contextual information from the word She is captured in the hidden state,
and it can be used when working with the word her at a later time step. This is illustrated in
the following figure:
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She went on a walk along with her dog

The following figure shows how the sentence would be processed by the RNN over time. In
figure 2, we showed a many-to-many RNN, whereas, in figure 3, we have portrayed a
many-to-one RNN, which takes in multiple inputs in the form of a sequence of words and
provides one output at the last time step. An ideal use case for such an RNN would be a
text classification problem where multiple tokens are used to predict the class label for a
document.

Forward propagation in an RNN

Forward propagation is pretty straightforward in an RNN, whereby an input vector along
with a hidden state vector is taken as input at each time step to produce an output that is
further used as the hidden state for the next time step. There can be variations in terms of
the output layer where the RNN can produce an output at each time step, as we saw in
figure 2, or just the last time step, as we witnessed in figure 3.

Now that we have understood the basic structure of an RNN, let's next understand how it
actually learns by backpropagating results through time in the next section.

[214]



Capturing Temporal Relationships in Text Chapter 10

Backpropagation through time in an RNN

One of the key concepts to understand in RNNss is the process of backpropagation through
time (BPTT). We discussed backpropagation in detail in chapter 8, From Human Neurons to
Artificial Neurons for Text Understanding, where we saw that for each input, there is an
output label based on which the algorithm computes the loss or error in a prediction. The
error propagates back to the network and the parameters understand how much they were
responsible for the error, and they tune themselves accordingly. There, we had one output
for one input. However, as we have discussed, for RNNs each token is an input, and figure
3 shows that we need not have one output per token but a single output for a group of
tokens, and, while forward propagating, we use snapshots of the network itself at various
time steps. As a result, parameters are shared across the time steps.

How do we backpropagate in this scenario?

As we discussed, since the parameters are shared across the time steps, the gradient
calculated at each of the time steps would not only be dependent on the computations of
the present time step but also on the previous time steps. Essentially, this can be thought of
as the same neurons firing differently across various points in time. At each time step, these
neurons can be thought of as unrolling themselves one by one, and, finally, we reach the
end state and get our output. The error calculated at the final step can be sent back the same
way the network forward-propagated results at the various time steps. We can now see
which neuron fired what at each time step, and this can be propagated back to the network
in the same way as it's done for normal ANNSs. One difference here would be that, as with
normal ANNSs, we go to the previous layer while backpropagating using the chain rule, but
here, we go to the layer in the past time step since we are thinking of each unrolled version
of the network we discussed previously as a different network altogether. While going back
in time, we make use of the chain rule to do the math. At each step, the gradient with
respect to the more recent time step is calculated. All these gradients and changes across
each time step are aggregated. Since the weights are shared across time steps, we cannot
apply the changes to the weights at each time step since the same weights may have
produced different outputs for the changing inputs across time. Here, we try to
backpropagate from the final time step to the initial time step, keeping track of the weight
corrections at each time step, and, in the end, applying these aggregated changes all at once
to the shared weights in our network, as illustrated in the following figure:
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She went on a walk along with her dog

Why did we sum up the weight corrections at each time step and apply them all at once
instead of making the corrections at each time step?

This is because, during the forward pass at each time step for an input, the weight was the
same. If we computed the gradient at time step ¢ and applied the changes to the weights
there and then, the weights at time step t-1 would be different and the error calculation
would be wrong since, during the forward pass, we had the same weights at every time
step. If we had updated the weights at each time step, we would have simply penalized the
weights while computing the gradient for something it did not do at all.

Sequences need not always be at the word level. Characters can be used as
input sequences as well.

We saw how RNNs can help us perform a better analysis of sequential data and capture
relationships over time, a case ideally suited to temporal dependencies such as usage of
words in a sentence or time-series data, and so on. However, everything comes at a price,
and, for RNNs, the problem is related to either vanishing or exploding gradients. Let's
understand these in the next section.

Keras provides a SimpleRNN wrapper application programming
interface (API) layer that helps us in building RNNs.
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Vanishing and exploding gradients

Gradients help us to update weights in the right direction and at the right amount. What if
these values become too high or too low?

The weights would not be updated correctly, the network would become unstable, and,
consequently, our training of the network as a whole would fail.

The problem of vanishing and exploding gradients is seen predominantly in neural
networks with a large number of hidden layers. When backpropagating in such neural
networks, the error can become too large or too small whenever we compute the gradient,
leading to instability in weight updates.

The exploding gradient problem occurs when large error gradients pile up and cause huge
updates to the weights in our network. On the other hand, when the values of these
gradients are too small, they effectively prevent the weights from getting updated in a
network. This is called the vanishing gradient problem. Vanishing gradients can lead to
the stopping of training altogether since the weights would not get updated.

We discussed that vanishing and exploding gradients can be troublesome when training
neural networks with a lot of hidden layers. Now, imagine training an RNN wherein going
back in each time step is like backpropagating the error to the previous layer in an ANN.
Now, ANNSs are generally a few layers deep. RNNs, on the other hand, can process
sequences of sizes greater than 100 easily. As the error flows back in time, it can easily
diminish or become huge. While going back in time, these gradients can take in vanishingly
small or explodingly large values. The weight corrections for the time steps in the past can
diminish when we encounter a vanishing gradient problem; this would feel as if the inputs
in those time steps had no effect on the output at all. When encountering an exploding
gradient problem, the gradients in the past time steps or for the initial inputs for the RNN
can be very large and may subsequently lead to huge weight updates, causing instability in
the model.

One technique for preventing the exploding gradient problem is called gradient clipping.
As part of gradient clipping, the gradient is capped at a maximum value.
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Vanishing and exploding gradients are very common problems in RNNs and there are
ways to encounter these, as we will see when we discuss LSTMs.

Architectural forms of RNNs

In this section, we will begin by taking a look into what forms an RNN can take, depending
on the application it is being built for. After that, we will dive into bidirectional RNNs, and,
finally, we'll end this section by looking into how RNNs can be stacked to build deep
RNNS.

Different flavors of RNN

RNNSs can take multiple forms, depending on the type of use case it is applied to. Let's see
the various forms an RNN can take, as follows:

¢ One-to-one: This is the simplest form of RNN and is very similar to a traditional
neural network, wherein the RNN takes in a single input and provides a
single output. An example of a one-to-one RNN is shown in the following figure:

<i>

y
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¢ One-to-many: In a one-to-many RNN, the network takes in only one input and
produces multiple outputs. Such an RNN is used for solving problems such as
music generation, wherein music is generated on the input of a single musical
note. An example of a one-to-many RNN is shown in the following figure:
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|

¢ Many-to-one: As the name suggests, this form of RNN takes in multiple inputs
and produces one output. This can be used in applications such as sentiment
analysis applications, wherein multiple words are fed into the network as input
to produce an output depicting the sentiment from the input sentence. An
example of a many-to-one RNN is shown in the following figure:
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e Many-to-many: These RNNs take in multiple inputs and produce multiple
outputs. These RNNs can take two forms, depending on whether the size of the
input is equal or not to the size of the output. Let's discuss the two forms
depending on the variation in the sizes of the input and output, as follows:

e Tx =Ty: This is the many-to-many form in which the size of the input is
equal to the size of the output. A common use case for this is named entity
recognition, where we try to classify each input token into entity groups
such as person names, locations, organizations, and so on. An example of
such an RNN is shown in the following figure:
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e Tx !=Ty: In this form, the size of the input is not equal to the size of the
output. Machine translation problems encountered when we try to convert
one language to another is an example of such an RNN. Think of the string
Goodbye in English. We need to convert it into German so as to produce the
output, Auf Wiedersehen. The input is of size 1, whereas the output is of size
2. Essentially, these RNNs can produce an output string greater than or less
than the size of the input string. An example of such an RNN is shown in
the following figure:

> x<Tx>
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We have learned about the various flavors that an RNN can take based on the application.
In the next section, let's see whether RNNs can use information from the beginning as well
as the end of some input data.

Carrying relationships both ways using
bidirectional RNNs

The RNNs we have discussed so far carry relationships from the beginning to the end using
a hidden state.

Is that all we need?

Let's look at the following two sentences:
The boy named Harry became the greatest wizard.
The boy named Harry became a Duke: the Duke of Sussex.

The first sentence talks about the fictional character Harry Potter created by author J.K.
Rowling, whereas the second sentence talks about Prince Harry from the United Kingdom.
Until we arrive at the word Harry, both the sentences are exactly the same: The boy named
Harry. Using a simple RNN, we cannot infer much about Harry from the words before its
occurrence. Once we see the latter half of the sentence, we know who's being talked about:
the wizard or the prince. It would be good if, using an RNN architecture, we could carry
things from the end as well to infer things at a point in time. Bidirectional neural networks
help us in this situation.

Bidirectional RNNs, as shown in the following figure, are essentially two independent
RNNSs such that one of them processes the inputs in the correct time order, whereas the
other processes the inputs in the reverse time order. The outputs for these two networks are
concatenated at every time step. This formation allows a network to have information from
both directions at every time step. An example of such an RNN is shown in the following
figure:
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Bidirectional RNNs can be built by wrapping the SimpleRNN API from Keras into the
bidirectional wrapper offered by Keras.

Before we begin discussing LSTMs, let's briefly talk about deep RNNSs.

Going deep with RNNs

At times, it becomes essential to capture complex relationships in text that can be difficult
to capture using a standard RNN. In such scenarios, we resort to stacking RNNs in order to
capture the complex relationships. The following figure shows what a deep RNN looks like.
The deep RNN shown has three hidden layers. The middle and outer layers do not receive
input directly but, instead, they compute their activation outputs using the output at that
time step from the previous hidden layer and the output of the previous time step in the
same layer. Standard RNNSs can be computationally expensive because of the notion of time
steps. Deep RNNss take that one step further by stacking these RNNs on top of each other,
and a deep RNN with three hidden layers can itself be highly expensive to compute. Also,
instead of getting outputs (v, y™,..., y™) directly from the RNN, these RNN cell outputs
can be fed to FNNs or other neural networks to get outputs from those instead of RNN
cells.
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An example of a deep RNN is shown in the following figure:
y<1:- y«:2:- y<3> y<n>
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In this section, we looked at what an RNN is and how it uniquely helps capture sequential
information and temporal relationships by combining previous outputs with present
inputs. We looked at the various forms of RNN and also explored bidirectional RNNs5s,
which help carry information from both directions. The major problem associated with

RNN:s is that they suffer in terms of capturing and making sense of long-term

dependencies. Vanishing and exploding gradients can take a huge toll on the performance
of such networks, as we discussed. In the next section, we will look into LSTM, which helps
in overcoming the vanishing and exploding gradient problems by providing memory to

our networks. Let's begin, then!

[223]




Capturing Temporal Relationships in Text Chapter 10

Giving memory to our networks - LSTMs

If the word in the eighth position in a sentence has a causal relationship with the word used
in the first position, it becomes essential to remember this and apply it in the

eighth position. However, RNNs are poor at capturing long-term dependencies because of
the vanishing gradient problem, and for such use cases, it is important to remember these
relationships. Along with remembering, we also need to understand what should be
remembered from the past and what should be forgotten. An LSTM cell will help us with
what we discussed here. LSTM cells help in remembering by using a structure called gates
that help keep the necessary information in memory as long as it's required.

LSTM cells use the concept of state or memory to retain long-term dependencies. At every
stage, it is decided as to what to keep in memory and what to discard. All this is done using
gates. Let's look at the working of an LSTM cell in detail (this is shown in the following
figure).

Understanding an LSTM cell

The input to an LSTM cell, as with RNNSs, is a concatenation of the input for that time step
and the output of the previous time step. These values are passed on to the gates in the
LSTM cell, which are nothing but an FNN along with some form of activation function.
These gates are referred to as the forget gate, input gate, and output gate. The neural
networks in each of these gates get trained and allow the signal to flow through them into
the memory in different amounts. They decide as to what information should be
remembered, forgotten, or discarded at each step. An example of an LSTM cell is shown in
the following figure:
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e
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Let's look at the workings of each of these gates individually.

Forget gate

The first juncture in an LSTM cell is the forget gate. The concatenated vector from the
present state's input along with the previous state's output goes to the forget gate first. The
forget gate's job is to decide how much of the information should be removed from
memory.

Hey, hold on a second!
We wanted to remember things using LSTMs, and we are suddenly discarding things from memory.

Yes! That is absolutely right. It is as important to understand what should be forgotten as it
is to understand what should be remembered. Think of the following example:

Leonardo is a good actor. He won at the Oscars. Brad is a good actor too.

Initially, our cell should remember that Leonardo is being talked about. However, as soon
as we arrive in the third sentence, it should now remember that Brad is being talked about
and it should discard information about Leonardo from its memory. Basically, our network
should have the ability to forget long-term dependencies as soon as new dependencies
worth remembering arrive in our data. Forget gates help us exactly with this by allowing
space for new dependencies.

The forget gate is an FNN, as we mentioned, and the activation function applied here is
sigmoid, which brings the output between 0 and 1, helping us figure out how much of the
information must be forgotten. An output of 0 from this gate would indicate that we should
forget everything from the past. On the contrary, an output of 1 indicates that the memory
state should be retained.

The values from the forget gate are multiplied with the values in the memory cell in order
to maintain only relevant information from the past.

We understood why forgetting is important and how the forget gate helps us with it. Now
that we have understood how to forget, let's try to understand how to remember next.
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Input gate

We should next understand what we need to remember and how much of it should be
remembered. This is exactly what the input gate does for us.

Think of the following example:
Ronaldo is a good football player. Messi is another good player.

As soon as we arrive at the second sentence, the forget gate will help us forget about
Ronaldo, but it is the job of the input gate to ensure that we now remember about Messi.

The input gate has two parts, which simultaneously help in figuring out what is to be
remembered and how much of it needs to be remembered. Let's understand the functioning
of the two parts next.

Part 1 in the input gate uses a sigmoid activation function, to pinpoint which part of the
input values needs to be remembered by creating a sort of a mask with values between 0
and 1. A value of 0 would indicate that nothing is worth remembering from the inputs of
this state, whereas a value of 1 would indicate everything from this input state must be
remembered.

Part 2 uses a tanh activation function to help us figure out what is potentially the relevant
information from the present state that the memory cell can get updated with. This part is
also often referred to as the candidate vector since this vector holds the values that the
memory cell might get updated with. The output ranges between -1 and 1 from this FNN.

An element-wise multiplication is performed between the outputs from part 1 and part 2.
Essentially, what we did is we understood how relevant various components of part 2 are
based on the values from part 1. The resultant output is added to the memory vector, thus
updating the information in the memory cell.

Now that we have understood how to forget and remember, let's understand how to
output next.
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Output gate

The job of the output gate is to understand which bits of information in the current step
should be sent across as output from the cell. With the forget gate and input gate, we
always update our memory cell, but with the output gate, we will make use of our updated
memory to see what information should be sent across as output from this LSTM cell.

There are two things that happen at this stage in the LSTM cell, as follows:

1. First, the output gate receives the input that was received by the LSTM cell
initially, and these inputs are applied to the FNN in the output gate. Thereafter,
the sigmoid activation function is applied to the computed values to bring the
output in the range of 0 to 1.

2. Second, the memory at this juncture is already updated based on what should
have been forgotten and what should have been remembered from the
computations performed at the forget gate and input gate stages. This memory
state is now passed through a tanh activation function at this stage to bring the
values between -1 and 1.

Finally, the tanh-applied values from memory along with the sigmoid-applied values from
the output gate are multiplied element-wise to get the final output from this LSTM cell in
the network. This value can be taken as output and can also be sent across as the hidden
state for the next LSTM time step.

Thus, we have sent across an output at this time step and also put forward the hidden state,
which can be sent across to the next time step.

Backpropagation through time in LSTMs

The backpropagation in LSTMs works similarly to RNNs. However, unlike RNNs, we don't
encounter the problem of vanishing or exploding gradients, wherein the gradients either
become exceedingly small or large. It is primarily because of the memory component we
introduced in LSTMs. The weights in the neural networks of each of the gates were used to
update the memory cells. These weights get updated, using the various derivatives of the
functions applied during the forward pass to update the memory cell. Consequently, the
updates on these weights are only dependent on the state of the memory at the previous
and present time steps.
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We have had enough of theory. Now, let's try to solve an interesting problem of text
generation using LSTMs.

Building a text generator using LSTMs

Text generation is a unique problem wherein, given some data, we should be able to predict
the next occurring data. Good examples of where text generation is required include
predicting the next word in our mobile phone keyboards, generating stories, music, and
lyrics and so on. Let's try to build a model that can generate text related to describing hotels
for the city of Mumbeai, as follows:

1. We will begin by importing the various libraries we will be using during the
course of solving this problem, as follows:

import nltk

from nltk.corpus import stopwords

import pandas as pd

import numpy as np

import re

from keras.preprocessing.sequence import pad_sequences
from keras.utils import np_utils

from keras.models import Sequential

from keras.layers import Dense, LSTM, Dropout, Embedding

2. Now that we have loaded our libraries, let's load our dataset. For this exercise,
we will use the Hotels on MakeMyTrip dataset, obtained from https://data.
world/promptcloud/hotelsfonfmakemytripfcom.Rlulthefouovvhugcode:

data = pd.read_csv ('Dataset/hotel_data.csv')

3. Let's try to see how our data looks, using the head () command offered by the
pandas library, as follows:

data.head (5)
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Here are a few rows of our data:

area city country | crawl_date | highlight_value |hotel_overview | hotel_star_rating
|Zion Home
Hardasiji . . - Stay is located
0 Udaipur | India 2016-06-21 | {{facilit 1 star
Ki Magri P {{ Vi in a city that
sets...
Araliayas
Near lResor‘t: isa3
1| Nai Udaipur | India 2016-06-21 | {{facility}} 3 star
star hotel
Gaon
located ...
Near |A 2 star
Bagore . ) . property is
2 Ud Ind 2016-06-21 | {{facilit 2 st
Ki aipur | India {{facility}} located at 24 star
Haveli km from Ma...
Airport |SNP House
Transfer|C Airport Hotel
3|Dabok |Udaipur|India | 2016-06-21 | TansferiCar port HOte! 14 star
rental|Conference | And Restaurant
Hall|Cu... is loa..
| Hotel Pichola
455 Udaipur|India | 2016-06-21 | {ffacility}} Haveliis 2 star
Udaipur P Y situated in the
beau...

4. Let's see information on how many hotels per city are available in our dataset,
using the following command:

data.city.value_counts ()

Here's the output:

NewDelhiAndNCR 1163
Goa 1122
Mumbai 543
Jaipur 534
Bangalore 512
Gajraula 1
Chamba Uttaranchal 1
Krishnanagar 1
Nagarholae 1
Bijapur 1

Name: city, Length: 770, dtype: inté64
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A substantial amount of hotel data from the city of Mumbai in India is available
in this dataset. Let's concentrate on generating descriptions for Mumbai hotels.

5. As discussed, let's focus on data for Mumbai, as follows:

array = ['Mumbai']
data = data.loc[data['city'].isin(array)]

You can add in more cities to your array in order to use data from them as
well.

6. Let's see whether we were able to filter out data for Mumbai, as follows:

data.head (5)

Here's the output—we were able to filter out data for Mumbai, as illustrated in the
following figure:

area city country | crawl_date | highlight_value hotel_overview | hotel_star_rating
Nestled i
Doctor on Call|Front Mismzai ma it
294 |Charai |Mumbai|India 2016-08-28 | desk|Laundry . ’ Y
. with strong
Service|Park... o
historic...
3 km from
Andheri Air Conditioned|Airport | Chhatrapati
309 (East) Mumbai | India 2016-08-28 | Transfer|Conference Shivaji 2
Ha... International
Ai...
Location Hotel
Airport/Riwy Stn Riciulglrdif is
321 |Khar Mumbai | India 2016-08-28 | Transfer|Bar|Conference | y
Hall situated on
Juh...
Andheri 24 Hour Checkin- ﬁgﬁiﬁ
334 Mumbai | India 2016-08-28 | Icon|24 hour . 2
(East) . beautiful
reception|24 hou...
property locat...
Andheri 24 Hour Check in- ﬁi:t:??dency
1238 Mumbai | NaN 2016-08-22 | Icon|24 hour . .
(East) . situated in the
reception|24 hou... )
City of...
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7. Since we are interested in generating hotel descriptions, we will only keep the
hotel_overview column, since others will not be required in our analysis. We
will also follow that up by removing descriptions that are empty. The following
code block helps us with this:

data = data.hotel_overview
data data.dropna ()

8. We now need to preprocess our data and, as part of preprocessing, we need to
perform case-folding (converting to lowercase, stopword removal, and keeping
only alphabetic data). Also, we will not keep single-character words. The
following code block will help us do that:

stop = set (stopwords.words ('english'))
def stopwords_removal (data_point) :
data = [x for x in data_point.split() if x not in stop]

return data

9. Here's our method for overall data cleansing:

def clean_data (data) :
cleaned_data = []
all_unique_words_in_each_description = []
for entry in data:

entry = re.sub(pattern='["a-zA-Z]"',repl=' ',string = entry)
entry = re.sub(r'\b\w{0,1}\b', repl=' ',string = entry)
entry = entry.lower ()

entry = stopwords_removal (entry)

cleaned_data.append(entry)

unique = list (set (entry))

all_unique_words_in_each_description.extend (unique)
return cleaned_data, all_unique_words_in_each_description

10. Let's figure out the unique words in our data. This will basically be our
vocabulary. We can do this using the following code block:

def unique_words (data) :
unique_words = set (all_unique_words_in_each_description)
return unique_words, len (unique_words)

11. Apply the cleansing and unique word-finding methods we described on our
data, as follows:

cleaned_data, all_unique_words_in_each_description = \
clean_data (data)
unique_words, length_of_unique_words = \

unique_words (all_unique_words_in_each_description)
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We now have the following outcome:

e The cleaned_data parameter contains our preprocessed data.
e The unique_words parameter contains our list of unique words.

e The length_of_unique_words parameter is the number of unique words
in the data.

12. Let's look at one cleaned entry from our dataset and also figure out the number
of unique words, as follows:

cleaned_data[0]

Here's a cleaned output block:

['nestled',
'mumbai’,
'city',
'strong',
'historical',
'links"',
'wonderful',
'british',
'architecture',
'museums’',
'beaches’',
'places’', ...

13. Now, let's see the total number of unique words we have, as follows:

length_of_unique_words

Here is the number of unique words in our data:

3395

14. Next, we need to build a mapping of words to an index and a reverse mapping

from an index to a word, which will help us give out the word given by an index
and vice versa, as follows:

def build_indices (unique_words) :
word_to_idx = {}
idx_to_word = {}
for i, word in enumerate (unique_words) :
word_to_idx[word] = i
idx_to_word[i] = word
return word_to_idx, idx_to_word
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15. Now, let's build our indices using the following code block, which calls the
method defined in the previous code block:

word_to_idx, 1idx_to_word = build_indices (unique_words)

16. The next step is to prepare our training corpus. As part of this, let's see what we
aim to do, given the following excerpt from a sentence:

nestled mumbai city

The sequences of training data we generate from this three-word sentence would
be the following:

® nestled, mumbai

® nestled, mumbai, city

17. We essentially have generated continuous sequences of a size greater than 1 from

the sentence. This is followed by converting the words into their index values,
which we build in the last step, as follows:

def prepare_corpus (corpus, word_to_idx):

sequences = []
for line in corpus:
tokens = line

for i in range(l, len(tokens)):
i_gram_sequence = tokens[:1+1]
i_gram_sequence_ids = []
for j, token in enumerate (i_gram_sequence) :
i_gram_sequence_ids.append (word_to_idx[token])
sequences.append (i_gram_sequence_ids)
return sequences

18. Let's call the defined prepare_corpus method next, as follows:

sequences = prepare_corpus (cleaned_data, word_to_idx)
max_sequence_len = max([len(x) for x in sequences])

Here, we have the following outcome:

¢ The sequences parameter contains all the sequences from our data.

e The max_sequence_len parameter conveys the length of the maximum
sequence size that was built based on our data.
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19. Let's validate what we built just now, as follows:

print (sequences[0])
print (sequences|[1])

We get the following output:

[1647, 867]
[1647, 867, 1452]

20. Let's see which words are mapped to these indices, using the following code
block:
print (idx_to_word[1647])

print (idx_to_word[867])
print (idx_to_word[1452])

Here's the output:

nestled
mumba i
city

So, we have correctly built our sequences.
21. Next, let's figure out some metadata about the sequences built, as follows:

len (sequences)

The total number of sequences we have is the following;:
51836

Now, we will see the size of the longest sequence we have, as follows:
max_sequence_len

Here's the output:
308

Now that we have built our sequences, how do we use those to build a text generator?

Let's answer that in this step. What we will do is try and predict the last entry in our
sequence, using the rest of the entries from the sequence.
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The last entry in the sequences we generated becomes our class or dependent variable, and
the entries prior to that become our independent variable. We will build a model that can
predict one single value based on the input value of some length.

Let's see our example again.
The first sequence was this:
® nestled, mumbai

Here, we would have nestled as our independent variable and mumbai as our dependent
variable.

Similarly, for the second sequence, we have the following:
® nestled, mumbai, city

nestled, mumbai forms our independent variable or X, and city is our dependent variable or
Y.

Also, since our input size should be consistent for all training samples, we will pad our data
to make this the same size. The size of each training sample after padding would be equal
to the size of the longest sequence, which we captured in the

max_sequence_len parameter in step 18. Here's the code for splitting our data into
independent and dependent variables and also for padding the input samples:

1. Define build_input_data, as follows:

def build_input_data (sequences, max_sequence_len, \
length_of_unique_words) :

sequences = np.array (pad_sequences (sequences, \
maxlen = max_sequence_len, padding = 'pre'))
X = sequences|[:,:-1]
y = sequences|[:,-1]
y = np_utils.to_categorical (y, length_of_unique_words)

return X, y

2. Let's call our build_input_data method defined in the previous code block
next, as follows:

X, v = build_input_data (sequences, max_sequence_len,
length_of_unique_words)
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3. Now, we are ready with our data, so let's go ahead and define and build our
model next, as follows:

def create_model (max_sequence_len, length_of_unique_words) :
model = Sequential ()
model.add (Embedding (length_of_unique_words, 10, \
input_length=max_sequence_len - 1))
model.add (LSTM(128))
model.add (Dropout (0.2))
model.add (Dense (length_of_unique_words, activation='softmax'))
model.compile (loss="'categorical_crossentropy', \
optimizer="adam"')
return model

4. Let's bring our model into existence, using the following code block:

model = create_model (max_sequence_len, length_of_unique_words)
model.summary ()

Here's the summary of our model:

Model: "sequential 1"

Layer (type) Output Shape Param #
embedding_1 (Embedding) (None, 307, 10) 33950
lstm_1 (LSTM) (None, 128) 71168
dropout_1 (Dropout) (None, 128) 0
dense_1 (Dense) (None, 3395) 437955

Total params: 543,073
Trainable params: 543,073
Non-trainable params: 0O

Here are the components in our model:

¢ The Embedding layer, which provides us embeddings for each training
sample in our data. The parameters are as follows:

e length_of_unique_words tells the model the size of our vocabulary.

e 10 indicates that we want a Dense embedding of size 10 as output from
our model.
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e (input_length=max_sequence_len - 1) indicates thateach
training sample to the layer would have a size of max_sequence_len -
1.

e The Embedding layer is followed by the LSTM layer, where we define 128 as
the dimensionality of the inner cells in the LSTM layer.

¢ Next, we randomly drop off 20% of neurons from the network using the
Dropout layer.

e Finally using the Dense layer from Keras, we define our output layer,
where the number of neurons is equal to the size of our
length_of_unique_words vocabulary. We have translated this problem
into a multi-class classification problem, and so the softmax activation
function is used.

e Finally, we have calculated our loss using the
categorical_crossentropy technique and used adam for optimization.

All these values and techniques are hyperparameters that can be tuned to obtain
other results. We can, in fact, try adding more LSTM layers, adding more units to
each layer, among others methods.

5. Next, we will train our model, as follows:

model.fit (X, y, batch_size = 512, epochs=100)
We have used the following;:

e A batch size of 512
e A number of epochs of 100

These are, again, hyperparameters that can be tuned, as follows:

Epoch 1/100
51836/51836 [
loss: 6.9315
Epoch 2/100
51836/51836 [ ] - 152s 3ms/step -
loss: 6.5816

Epoch 3/100

51836/51836 [ ] - 156s 3ms/step -
loss: 6.5273

Epoch 4/100

51836/51836 [ ] - 159s 3ms/step -
loss: 6.4325

Epoch 5/100

51836/51836 [ ] - 157s 3ms/step -

157s 3ms/step -
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loss: 6.2997

Epoch 6/100

51836/51836 [ ] - 157s 3ms/step -
loss: 6.2009

This can be viewed in its entirety in the code files of this book.
Now that we have trained our model, let's put it to the test and see how it works.

The following code block helps us to generate the next_words number of words based on
the input we provide to the method:

def generate_text (seed_text, next_words, model, max_seqg_len):

for _ in range (next_words):
cleaned_data = clean_data([seed_text])
sequences= prepare_corpus (cleaned_datal[0], word_to_idx)
sequences = pad_sequences ([sequences[-1]], maxlen=max_seq_len-1, \

padding="pre')
predicted = model.predict_classes (sequences, verbose=0)
output_word "
output_word idx_to_word[predicted[0]]
seed_text = seed_text + " " + output_word
return seed_text.title ()

Let's try the method we defined to generate some text, as follows:

print (generate_text ("in Mumbai there we need", 30, model,
max_sequence_len))

Here's our generated text:

In Mumbai There We Need Located Mumbai City Mumbai Charismatic Electrifying
Open Hearted Mumbai Bombay City Dreamers Stalwarts Common Man Guests Visit
Majestic Places Like Gateway India Chhatrapati Shivaji International
Airport Km Chhatrapati Shivaji International

Let's try for another input, as follows:

print (generate_text ("The beauty of the city", 30, model, max_sequence_len))

Here's our generated text:

The Beauty Of The City World Pilgrimage Employment Opportunities Park Km
Chhatrapati Shivaji International Airport Km Chhatrapati Shivaji
International Airport Km Vile Parle Railway Station Km Kamgar Hospital Bus
Stand Prominent Tourist Spots Like Tikuji
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We can see that the generated text captures a lot of meaningful information and is in line
with the initial text we provided it as input. It does a decent job.

Hyperparameter tuning, along with building more complex and larger models, can help in
generating better results.

Now that we have generated some beautiful text using LSTMs, let's go ahead and look at
some other memory-based variants built on the foundation of RNNS.

Exploring memory-based variants of the
RNN architecture

Before we close this chapter, we will briefly look at GRUs and stacked LSTMs.

GRUs

As we saw, LSTMs are huge networks and they have a lot of parameters. Consequently, we
need to update a lot of parameters that are highly computationally expensive. Can we do
better?

Yes! GRUs can help us with it.

GRUs use only two gates instead of three, as we used in LSTMs. They combine the forget
gate and the candidate-choice part in the input gate into one gate, called the update gate.
The other gate is the reset gate, which decides how the memory should get updated with
the newly computed information. Based on the output of these two gates, it is decided what
to send across as the output from this cell and how the hidden state is to be updated. This is
done via using something called a content state, which holds the new information. As a
result, the number of parameters in the network is drastically reduced.

You can read more about GRUs here: https://en.wikipedia.org/wiki/
0 Gated_recurrent_unit.
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Stacked LSTMs

Stacked LSTMs follow an architecture similar to deep RNNs, which we discussed earlier in
this chapter. During the discussion on deep RNNs, we mentioned that stacking RNN layers
one above the other helps the network capture highly complex patterns and relationships.
The same idea is used when building stacked LSTMs, which can help us capture highly
complex patterns from data. Each LSTM layer in a stacked LSTM model has its own gates
and memory vector.

We saw that LSTMs can be highly computationally expensive because of the huge number
of parameters involved. Stacked LSTMs take that forward as the number of parameters
becomes even more dependent upon the number of LSTM layers involved. Hence, stacked
LSTMs are very expensive in terms of computational requirements.

Summary

In this chapter, we began with understanding RNNs and how they enable us to capture
sequential dependencies in data. We made an effort to understand the problem of the RNN
in terms of it not being able to capture long-term dependencies because of vanishing and
exploding gradient issues. We also looked at various forms an RNN can take, depending on
the type of problem it is being used to solve. We followed that up with a brief discussion on
some variants of RNNs by talking about bidirectional and deep RNNs. We went a step
further next and looked at how the vanishing and exploding gradient problem can be
solved by adding memory to the network and, as a result, we had an expansive discussion
on LSTM, which is a variant of an RNN, using the concept of a memory state. We tried to
solve the problem of text generation, where we used LSTMs to generate text for describing
hotels in the city of Mumbai. Finally, we had a brief discussion on other memory variants of
an RNN, including GRUs and stacked LSTMs.

We will take the knowledge from this chapter forward into the next chapter, where we look
into sequence-to-sequence modeling using encoders and decoders. We will also discuss
some of the state-of-the-art methodologies in Natural Language Processing (NLP) and talk
about attention and transformers, among other topics.
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State of the Art in NLP

Applications based on Natural Language Processing (NLP) have witnessed a tremendous
rise in the last few years. New use cases are coming along every day and in order to keep
pace with the ever-evolving demand, the need of the hour is to research, innovate, and
build efficient solutions for solving the complex problems we face. Innovation in the field of
NLP over the years has made it possible to solve some of the most challenging problems,
such as language translation and building chatbots, among others.

In this chapter, we will take a look at some of the recent advancements in the field of NLP.
We will begin by developing an understanding of Sequence-to-Sequence (Seq2Seq)
models and discuss encoders and decoders in the process. We will use this new knowledge
to build a French-to-English translator using Seq2Seq modeling. After that, we will have a
look at the attention mechanism, one of the key recent developments. The attention
mechanism has not only improved the inferencing abilities of existing architectures but has
also paved the way for the development of other amazingly efficient architectures such as
Transformers and Bidirectional Encoder Representations from Transformers (BERT),
which we will look at toward the end of this chapter.

The following topics will be covered in this chapter:

¢ Seq2S5eq modeling

Translating between languages using Seq2Seq modeling

Let's pay some attention
Transformers

BERT

Technical requirements

The code files for this chapter can be found at the following GitHub link: https://github.
com/PacktPublishing/Hands-On-Python-Natural-Language-Processing/tree/master/
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Seq2Seq modeling

Before we begin with Seq2Seq modeling, I would like to share an anecdote that I witnessed
at Bengaluru Airport in India. A traveler from China was trying to order a meal at one of
the airport restaurants and the butler was unable to comprehend Mandarin. An onlooker
stepped in and used Google Translate to convert the English being spoken by the store
owner into Mandarin and vice versa. Seq25eq modeling has helped build applications such
as Google Translate, which made the conversation between these folks possible.

When we try to build chatbots or language translating systems, we essentially try to
convert a sequence of text of some arbitrary length into another sequence of text of some
unknown length. For example, the same chatbot might respond with one word or multiple
words depending on the conversational prompts coming from the other party involved in
the conversation. We do not always respond with text of the same length. We saw this as
one of the many-to-many variants of the RNN architecture in chapter 10, Capturing
Temporal Relationships in Text. This architecture is referred to as Seq2Seq modeling, where
we try to convert one sequence into another.

Let's consider the example of language translation.

The English sentence how are you doing? is written as como estas? in Spanish. These two
sentences are of different lengths. Let's think of another example: can we do this? in English
is represented as podemos hacer esto? in Spanish. Even though both English sentences have
four words in them, their Spanish counterparts are of differing lengths. When building such
systems, we try to map an input sequence to an output sequence that can be of varying
lengths.

Okay. Now that we understand what Seq2Seq modeling is, how do we do it? We use two
building blocks, called Encoders and Decoders and shown in the following diagram, to
build our Seq2Seq modeling systems:

Output

Context Vector
Decoder

Input
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These encoders and decoders can be built using Long Short Term Memory (LSTM)
networks, Gated Recurrent Units (GRU), and so on. Let's take a deep dive and understand
how these encoders and decoders enable us to build these systems.

Encoders

The encoder is the first component in the encoder-decoder architecture. The input data is
fed to the encoder and it builds a representation of the input data. This low-dimensional
representation of the input data is referred to as the context vector. Some literature also
refers to it as the thought vector. The context vector tries to capture the meaning in the
input data. Essentially, it tries to build an embedding for the input data.

The encoder can be built using RNNs, LSTMs, GRUs, or bidirectional RNNs, among others.
We saw that RNN-based architectures hold the context of the inputs that they saw in the
hidden state. Hence, the last hidden state will hold the context of the entire sentence. The
hidden state from the last timestep is what we want. It is our context vector since it has seen
all the input and has maintained the context of all the input words.

Let's think of a natural language translation task where we want to convert sentences from
English into French. As an example, let's pick the sentence, Learning Natural Language
Processing and see what the encoder does to convert it into its French equivalent:

Context

Encoder Vector

@{WHMHWHWF
T

Learning Natural Language Processing

The preceding diagram illustrates an encoder built using LSTM that develops a context
vector for the English sentence, Learning Natural Language Processing. The output from the
encoder is the context vector, which contains two parts:

e The hidden state from the last timestep of the encoder
¢ The memory state of the LSTM for the input sentence
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The return_state parameter in Keras' LSTM implementation allows us
to include the last hidden state in our output.

Now that we have successfully built a context vector of our input sentence, the next step is
to decode this context vector and build our French sentence using it. Let's do that next.

Decoders

We got an embedding of our input sentence, Learning Natural Language Processing, using the
encoder. The next part is to decode this context vector and build its French representation,
Apprendre le traitement du langage naturel. The following diagram shows how a decoder,
built using LSTM, gets trained to do this:

Decoder

Apprendre le traitement du langage naturel <end>

111t 1t 1 1

—» LSTM —>» LSTM —>» LSTM —>» LSTM —>» LSTM —>» LSTM —> LSTM

[ T T

<start> Apprendre le traitement du langage naturel

Context
Vector

Let's understand its working in depth next.

Up to now, we have seen that the initial hidden state for any RNN-based architecture is a
randomly initialized vector. However, with decoders, the input is the context vector that
we received as output from the encoder.

Okay, we have now understood that the initial hidden state should not be a randomly
initialized vector, but rather, the context vector. However, we still don't understand what
the input to the decoder should be.
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The input to the decoder at the first timestep is a token that indicates the start of the
sentence, <start>. Using this <start> token, the decoder now has the task of learning to
predict the first token of the target sentence. However, the working of the decoder is a little
different for the learning and inferencing phases explained next. Let's understand that now.

The training phase

During the training phase, the decoder has passed the target sequence as input along with
the context vector. The input to the decoder at timestep 0 is the <start> token. At timestep
1 the input to the decoder is the predicted token or the first token of the target sequence,
and so on. The decoder's job here is to learn that when provided a context vector and an
initial <start> token, it should be capable of producing a set of tokens.

The inference phase

During the inference stage, we don't know what the target sequence should be and it is the
decoder's job to predict this target sequence. The decoder will receive the context vector
and the initial token using which it should be able to predict the first token. Thereon, it
should be able to predict the second token, using the first predicted token and the hidden
state from the first timestep, and this should continue as such. Essentially, the input at
timestep t is the predicted output of the previous timestep t-1, as shown in the diagram in
the Decoders section. The input at timestep 1 is Apprendre, which is actually the predicted
output from the previous timestep. The same pattern follows for the rest of the decoder's
work.

Okay, we've got a fair idea of the initial hidden state and also how the decoder learns and
predicts, but we need to stop sending outputs at the point when predictions occur. How do
we do that?

Whenever the output from a decoder state is a token indicating the end of the

sentence, <end>, or we have reached a pre-defined maximum length of output or target
sequence, we get a signal that the decoder has completed its job of building the output
sequence and we need to stop here.

Simple LSTMs on both ends enabled us to convert one sequence of data to another using
just a context vector in between them. This approach for Seq2Seq generation can be used to
build chatbots, speech recognition systems, natural language translation systems, and so
on. Now that we have a sound theoretical understanding of Seq2Seq generation systems,
let's try and do some practical stuff with it in the next section.
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Translating between languages using
Seq2Seq modeling

English is the most spoken language in the world and French is an official language in 29
countries. As part of this exercise, we will build a French-to-English translator. Let's begin:

The dataset used here is sourced from http://www.manythings.org/anki/

1. As with any other exercise, we begin by importing the libraries that we need to
build our French-to-English translator:

import pandas as pd

import string

import re

import io

import numpy as np

from unicodedata import normalize

import keras, tensorflow

from keras.models import Model

from keras.layers import Input, LSTM, Dense

2. Now that we have imported our libraries, let's read the dataset using the

following code block:
def read_data(file):
data = []
with io.open(file, 'r') as file:
for entry in file:

entry = entry.strip/()
data.append (entry)
return data
data = read_data('dataset/bilingual_pairs.txt')

3. Let's figure out some basics of our data.

We can see some of the data points using the following code block:

data[139990:140000]
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Here's the output:

['"Never choose a vocation just because
choisissez jamais une profession Jjuste
courtes.',
"No other mountain in the world is so
montagne au monde n'atteint la hauteur
"No sooner had he met his family than

peine avait-il rencontré sa famille qu'

the hours are short.\tNe
parce que les heures y sont

high as Mt. Everest.\tAucune
du Mont Everest.",

he burst into tears.\tA

il éclata en sanglots.",

"Nothing is more disappointing than to lose in the finals.\tRien
n'est plus décevant que de perdre en finale.",

"Now that he is old, it is your duty to go look after him.\tA
présent qu'il est vieux, c'est ton devoir de veiller sur lui.",

"Now that you'wve decided to quit your

job, you look

happy.\tMaintenant que vous avez décidé de quitter votre emploi,

vous avez l'air heureux.",
"Now that you'wve decided to quit your

job, you look

happy.\tMaintenant que tu as décidé de quitter ton emploi, tu as

l'air heureux.",
"Now that you'wve decided to quit your

job, you look

happy.\tMaintenant que vous avez décidé de quitter votre emploi,

vous avez l'air heureuse.",
"Now that you've decided to quit your

job, you look

happy.\tMaintenant que tu as décidé de quitter ton emploi, tu as

l'air heureuse.",
'Please drop in when you happen to be

in the

neighborhood.\tVeuillez donc passer quand vous €tes dans le coin

1]

The output shows that our data consists of tab-separated English-French sentence

pairs.
Let's see the size of our dataset next:
len (data)

The size of our data is as follows:

145437

We use the first 140,000 English-French sentence pairs for this exercise:

data = datal[:140000]
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4. We saw that our dataset contains tabs that separate the English-French sentence

pairs, so we need to split them into different English and French lists:

def build_english_french_sentences (data) :
english_sentences = []
french_sentences = []
for data_point in data:
english_sentences.append (data_point.split ("\t") [0])
french_sentences.append (data_point.split ("\t") [1])
return english_sentences, french_sentences
english_sentences, french_sentences =
build_english_french_sentences (data)

5. Now that we have different lists holding our English and French sentences, let's

clean our data next.

The clean_sentence method defined in the following code block takes care of

processing individual sentences:

def clean_sentences (sentence) :
# prepare regex for char filtering

re_print = re.compile('["%s]' % re.escape(string.printable))

# prepare translation table for removing punctuation

table = str.maketrans('', '', string.punctuation)

cleaned_sent = normalize ('NFD', sentence).encode('ascii',
'ignore')

cleaned_sent = cleaned_sent.decode ('UTF-8")

cleaned_sent = cleaned_sent.split ()

cleaned_sent = [word.lower () for word in cleaned_sent]

cleaned_sent = [word.translate(table) for word in cleaned_sent]

[

cleaned_sent = [re_print.sub('', w) for w in cleaned_sent]

cleaned_sent = [word for word in cleaned_sent if \
word.isalpha ()]

return ' '.join(cleaned_sent)

The previous function does the following:

Normalizes characters
e Removes punctuation

Performs case-folding
e Removes non-printable characters

Keeps only alphabetic words
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Next, we will build a function, build_clean_english_french_sentences (),
and get it to clean our English and French sentences by calling the function we
defined in the previous code block on individual sentences:

def build_clean_english_french_sentences (english_sentences,
french_sentences) :
french_sentences_cleaned = []
english_sentences_cleaned = []
for sent in french_sentences:
french_sentences_cleaned.append(clean_sentences (sent))
for sent in english_sentences:
english_sentences_cleaned.append(clean_sentences (sent))
return english_sentences_cleaned, french_sentences_cleaned

english_sentences_cleaned, french_sentences_cleaned =
build_clean_english_french_sentences (english_sentences,
french_sentences)

6. We cleaned our data in the previous step. The following steps are where we
build our vocabulary and also add tokens that convey the start and end of a
sequence, as required by our decoder.

In chapter 10, Capturing Temporal Relationships in Text, when we had built a text
generator, we used words as our vocabulary. However, we will go down to the
character level in order to build our vocabulary in this exercise, as defined in the
following code block:

def build_data(english_sentences_cleaned,
french_sentences_cleaned) :

input_dataset = []

target_dataset = []

input_characters = set ()

target_characters = set ()

for french_sentence in french_sentences_cleaned:
input_datapoint = french_sentence

input_dataset.append (input_datapoint)
for char in input_datapoint:
input_characters.add(char)
for english_sentence in english_sentences_cleaned:
target_datapoint = "\t" + english_sentence + "\n"
target_dataset.append(target_datapoint)
for char in target_datapoint:
target_characters.add (char)
return input_dataset, target_dataset, \
sorted(list (input_characters)), \
sorted(list (target_characters))
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input_dataset, target_dataset, input_characters, target_characters
= build_data (english_sentences_cleaned, french_sentences_cleaned)

The method defined in the previous code block helped us to do the following:

e Add \t to our target data to convey the start of a sentence to our decoder.
e Add \n to our target data to convey the end of a sentence to our decoder.

e Prepare a list of unique input and output characters. Our model will try and
predict at the character level for this exercise.

7. We developed our input and target vocabularies in the previous step. Let's see
what unique input and output characters are in store for us with the following
command:

print (input_characters)
Here's our set of input characters:
[' ', lal, 'b', lcl, 'd', lel, 'f', lgl, 'h', lil, 'j', lkl, 'l',

m' 'I’l', lol, vpv, lql, ']f', lSl, 't', lul, 'V',
Z

"]

Next, let's see our target characters with the following command:
print (target_characters)

Here's our set of target characters:

[l\tl, l\nl, i v, lal, 'b', lcl, 'd', lel, va, lgl, 'h', lil, vjv,
lkl, 'l', lml, 'D', lol, vpv, lql, ']f', ISI, 't', lul, 'V', lwl,
le, vyv, AR

Notice that in addition to our input characters, the target character dataset has
\t and \n tokens, which help the decoder to understand the start and end of a
target sequence.

8. Our input and output vocabulary may not be the same for tasks such as natural
language translation. In fact, at times, our character set may not be the same
either. For example, we might be trying to translate between English and Hindi,
which have different character sets altogether.

Apart from the difference in vocabulary, we should also be aware that our input
sequence and target sequence may not be of the same size.

The English sentence how are you today, dear? is written in French as comment tu vas
aujourd "hui mon cher.
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The number of words in the preceding sentences is different. If we go to the
character level, then we can see that the number of characters in both sentences is
very different as well.

Let's take another very similar English sentence, how are you today? which is
written in French as comment vas-tu aujourd 'hui? Now, if we make a comparison
between the two examples we discussed, their English and French counterparts
have differing lengths.

We next want to find out some metadata about our data, in terms of the
following:

e The size of the input and target vocabularies (basically, the size of the input
and target character sets)

¢ The maximum length of input and output character sequences

The following code block helps us to do that:

def build_metadata (input_dataset, target_dataset, \
input_characters, target_characters):

num_Encoder_tokens = len (input_characters)

num_Decoder_tokens = len(target_characters)

max_Encoder_seq_length = max([len(data_point) for data_point \
in input_dataset])

max_Decoder_seq_length = max([len(data_point) for data_point \
in target_dataset])

print ('Number of data points:', len(input_dataset))

print ('Number of unique input tokens:', num_Encoder_tokens)

print ('Number of unique output tokens:', num_Decoder_tokens)

print ('Maximum sequence length for inputs:', \
max_Encoder_seqg_length)

print ('Maximum sequence length for outputs:', \

max_Decoder_seqg_length)
return num_Encoder_tokens, num_Decoder_tokens, \
max_Encoder_seg_length, max_Decoder_seqg_length

num_Encoder_tokens, num_Decoder_tokens, max_Encoder_seqg_ length,
max_Decoder_seqg_length = build_metadata (input_dataset,
target_dataset, input_characters, target_characters)

Here's the metadata we acquired using the previous code block:

Number of data points: 140000

Number of unique input tokens: 27
Number of unique output tokens: 29
Maximum sequence length for inputs: 117
Maximum sequence length for outputs: 58
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Here's what we get from the metadata:

We have 140,000 unique English-French sentence pairs in our dataset.

The number of unique input tokens/characters is 27.

The number of unique target tokens/characters that we'll try and predict is
29.

Our longest input character sequence is 117 characters long.

Our longest target character sequence is 58 characters long.

9. A very important step is to build mappings from characters to indices and vice
versa. This will help us to do the following;:

e Represent our input characters using their corresponding indices

e Convert our predicted indices into their corresponding characters when
making predictions

The following code block helps us with this:

def build_indices (input_characters, target_characters):

input_char_to_idx = {}

input_idx_to_char = {}

target_char_to_idx {}

target_idx_to_char = {}

for i, char in enumerate (input_characters):
input_char_to_idx[char] = 1
input_idx_to_char[i] = char

for i, char in enumerate (target_characters):
target_char_to_idx[char] = 1
target_idx_to_char[i] = char

return input_char_to_idx, input_idx_to_char, \

target_char_to_idx, target_idx_to_char

input_char_to_idx, input_idx_to_char, target_char_to_idx,
target_idx_to_char = build_indices (input_characters,
target_characters)

10. Next, we build our data structure based on the metadata we obtained in step 8
using the following code block:

def build_data_structures (length_input_dataset,
max_Encoder_seq_length, max_Decoder_seqg length, num_Encoder_tokens,
num_Decoder_tokens) :
Encoder_input_data = np.zeros((length_input_dataset, \
max_Encoder_seq_length, num_Encoder_tokens), dtype='float32"')
Decoder_input_data = np.zeros((length_input_dataset, \
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max_Decoder_seq_length, num_Decoder_tokens), dtype='float32')
Decoder_target_data = np.zeros((length_input_dataset, \
max_Decoder_seq_length, num_Decoder_tokens), dtype='float32')

print ("Dimensionality of Encoder input data is : ", \
Encoder_input_data.shape)

print ("Dimensionality of Decoder input data is : ", \
Decoder_input_data.shape)

print ("Dimensionality of Decoder target data is : ", \

Decoder_target_data.shape)
return Encoder_input_data, Decoder_input_data, \
Decoder_target_data

Encoder_input_data, Decoder_input_data, Decoder_target_data =
build_data_structures (len (input_dataset), max_Encoder_seq_length,
max_Decoder_seq_length, num_Encoder_tokens, num_Decoder_tokens)

Here's the output that shows the shape of the data structures we built:

¢ The dimensionality of the encoder input datais (140000, 117, 27).
¢ The dimensionality of the decoder input datais (140000, 58, 29).
e The dimensionality of the decoder target datais (140000, 58, 29).

Note the following points:

¢ The dimensionality of the input datais (140000, 117, 27):
e The first dimension caters to the number of data points we have:
140,000.
¢ The second dimension caters to the maximum length of our input
sequence: 117.
¢ The third dimension caters to the number of unique inputs we can have
or the size of our input character set: 27.
¢ The dimensionality of the decoder input and decoder target data is
(140000, 58, 29):
e The first dimension caters to the number of data points we have:
140,000.
¢ The second dimension caters to the maximum length of our target
sequence: 58.
¢ The third dimension caters to the number of unique inputs we can have
or the size of our target character set: 29.
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11. Now that we have our data structure ready, it is time to add some data to it:

def add_data_to_data_structures (input_dataset, target_dataset,
Encoder_input_data, Decoder_input_data, Decoder_target_data):
for i, (input_data_point, target_data_point) in \
enumerate (zip (input_dataset, target_dataset)):
for t, char in enumerate (input_data_point):
Encoder_input_datali, t, input_char_to_idx[char]] = 1.
for t, char in enumerate (target_data_point):
# Decoder_target_data is ahead of Decoder_input_data by
# one timestep
Decoder_input_datal[i, t, target_char_to_idx[char]] = 1.
if t > 0:
# Decoder_target_data will be ahead by one timestep
# and will not include the start character.
Decoder_target_datali, t - 1, \
target_char_to_idx[char]] = 1.
return Encoder_input_data, Decoder_input_data, \
Decoder_target_data

Encoder_input_data, Decoder_input_data, Decoder_target_data =
add_data_to_data_structures (input_dataset, target_dataset,
Encoder_input_data, Decoder_input_data, Decoder_target_data)

We have used the character-to-indices mapping and converted some entries in
our data structure to 1, which indicates the presence of a particular character at a
specific position in each of the sentences.

If you carefully examine our work so far, notice that the last dimension (27 in the
encoder input data structure and 29 in the decoder input or decoder target) is a
one-hot vector, which indicates which entry is present for that particular position
in our data.

One final thing to note is that when building the decoder target data, we do not
include anything for the <start> token, and it is also ahead by one timestep for
the same reasons that we discussed when talking about decoders in the previous
section.

Our decoder target data is the same as the decoder input data, except that it is
offset by one timestep.

12. We are ready with our data, so let's define the hyperparameters for our model:

batch_size = 256
epochs = 100
latent_dim = 256
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13.

14.

It's time we bring our encoder into existence using the following code block:

Encoder_inputs = Input (shape=(None, num_Encoder_tokens))
Encoder = LSTM(latent_dim, return_state=True)
Encoder_outputs, state_h, state_c = Encoder (Encoder_inputs)
Encoder_states = [state_h, state_c]

We have set return_ state as True so that the decoder returns us the last
hidden state and memory, which will form the context vector.

state_h and state_c represent our last hidden state and memory cell,
respectively.

However, how does our encoder learn?

The encoder's job is to provide a context vector where it captures the context or
thought in the input sentence. However, we do not have any explicit target
context vector defined against which to compare the encoder's performance. The
encoder learns from the performance of the decoder, which happens further
down the line. The decoder's error flows back and that's how the backpropagation
in the encoder works and it learns.

Let's define the second part of our architecture, the decoder, using the following
code block:

Decoder_inputs = Input (shape=(None, num_Decoder_tokens))
Decoder_lstm = LSTM(latent_dim, return_sequences=True, \
return_state=True)
Decoder_outputs, _, _ = Decoder_lstm(Decoder_inputs, \
initial_state=Encoder_states)
Decoder_dense = Dense (num_Decoder_tokens, activation='softmax')
Decoder_outputs = Decoder_dense (Decoder_outputs)

As we discussed, during training, the decoder is provided both the input data and
the target data and is asked to predict the input data with an offset of 1. This
helps the decoder to understand, given a context vector from the encoder, what it
should be predicting. This method of learning is referred to as teacher forcing.

The initial state for the decoder is Encoder_states, which is our context vector
retrieved from the encoder in step 13.
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A dense layer is part of the decoder where the number of neurons is equal to the
number of tokens (characters in our case) present in the decoder's target character
set. The dense layer is coupled with the softmax output that helps us to get the
normalized probabilities for every target character. It predicts the target character
with the highest probability.

The return_sequences parameter in the decoder LSTM helps us to retrieve the
entire output sequence from the decoder. We want an output from the decoder at
every timestep and that is why we set this parameter to True. Since we used the
dense layer along with the softmax output, we get a probability distribution over
our target characters for every timestep, and as mentioned already, we pick the
character with the highest probability. We judge the performance of our decoder
by comparing its output produced at every timestep.

15. We have defined our encoder and decoder, but how do they come together to
build our model? The way we define our model here will be a little different
from what we had in our previous examples. We use the Keras Model API to
define the various inputs and outputs we will use at various stages. The Model
APl is provided by Encoder_input_data; Decoder_input_data is the input
to our model, which will be used as the encoder and decoder inputs; and
Decoder_target_data is used as the decoder output. The model will try to
convert Encoder_input_data and Decoder_input_data into
Decoder_target_data:

model = Model (inputs=[Encoder_inputs, Decoder_inputs],
outputs=Decoder_outputs)

Let's compile and train our model next:

model.compile (optimizer="rmsprop', loss='categorical_ crossentropy')
model . summary ()

Here's the summary of our model:

Model: "model 1"

Layer (type) Output Shape Param #
Connected to

input_1 (Inputlayer) (None, None, 27) 0

input_2 (Inputlayer) (None, None, 29) 0
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lstm_1 (LSTM)
input_1[0][0]

[ (None, 256), (None, 290816

lstm_2 (LSTM)
input_2[0][0]
1stm_1[0][1]
1stm_1[0][2]

[ (None, None, 256), 292864

dense_1 (Dense)
1stm_2[0][0]

(None, None, 29) 7453

Total params: 591,133
Trainable params:

Non-trainable params: O

Let's train our model now:

model.fit ([Encoder_input_data,

591,133

Decoder_input_datal,

Decoder_target_data,
batch_size=batch_size,
epochs=epochs,
validation_split=0.2)

We train on 80% of our data and validate on the remaining 20% of the data.

Here's some sample output from our model training;:

Train on 112000 samples,
Epoch 1/100

validate on 28000 samples

114s

112000/112000 [
loss: 0.9022 - wval_loss:
Epoch 2/100

] - lms/step -

1.5125

112000/112000 [

115s 1lms/step -

loss: 0.7103 - wval_loss:
Epoch 3/100

1.3070

115s

112000/112000 [
loss: 0.6220 - val_loss:
Epoch 4/100

lms/step -
1.2398

112000/112000 [

116s lms/step -

loss: 0.5705 - val_loss:
Epoch 5/100

1.1785

116s

112000/112000 [
loss: 0.5368 - val_loss:

lms/step -
1.1203
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Epoch 6/100

112000/112000 [ ] - 116s 1ms/step -
loss: 0.5117 - val_loss: 1.1075

Epoch 7/100

112000/112000 [ ] - 115s 1ms/step -
loss: 0.4921 - wval_loss: 1.1037

Epoch 8/100

112000/112000 [ ] - 114s 1ms/step -
loss: 0.4780 - val_loss: 1.0276

16. We save our model next using the following code:

model.save ('Output
Files/neural_machine_translation_french_to_english.h5")

17. Hey! Are we done? We trained our model to convert a French sentence into
English. However, we did not figure out how we would infer from the model we
built.

We do this with the following code block. This performs the following steps:

1. We send the input sequence to the encoder and retrieve the initial
decoder state.

2. After this, we send the start token (\t in our case) and the initial
decoder state to the decoder to get the next target character as the
output.

3. We then add the predicted target character to the sequence.

4. Repeat from step 2 until we obtain the end token or reach the maximum
number of predicted characters:

Encoder_model = Model (Encoder_inputs, Encoder_states)

Decoder_state_input_c = Input (shape=(latent_dim,))
Decoder_state_input_h = Input (shape=(latent_dim,))
Decoder_states_inputs = [Decoder_state_input_h, \

Decoder_state_input_c]

Decoder_outputs, state_h, state_c = Decoder_lstm(Decoder_inputs, \
initial_state=Decoder_states_inputs)

Decoder_states = [state_h, state_c]

Decoder_outputs = Decoder_dense (Decoder_outputs)

Decoder_model = Model ([Decoder_inputs] + Decoder_states_inputs,
[Decoder_outputs] + Decoder_states)
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Let's define the decode_sequence () method that uses the encoder-decoder
model we built:

def decode_sequence (input_seq) :
states_value = Encoder_model.predict (input_seq)

target_seq = np.zeros((1, 1, num_Decoder_tokens))
target_seq[0, 0, target_char_to_idx['\t']] = 1.

stop_condition = False

decoded_sentence = "'

while not stop_condition:
output_tokens, h, c = Decoder_model.predict ([target_seqgl+ \

states_value)

sampled_token_index = np.argmax (output_tokens[0, -1, :1)
sampled_char = target_idx_to_char[sampled_token_index]
decoded_sentence += sampled_char

if (sampled_char == '\n' or len(decoded_sentence) > \
max_Decoder_seqg_length) :
stop_condition = True

target_seq = np.zeros((1, 1, num_Decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.

states_value = [h, c]
return decoded_sentence

A simple call to the decode_ sequence () method defined in the preceding code
will help us with our inference.

18. Let's translate some French to English now:

def decode (seg_index) :

input_seq = Encoder_input_datal[seq_index: seqg_index + 1]
decoded_sentence = decode_sequence (input_seq)
print('-")

print ('Input sentence:', input_dataset[seq_index])
print ('Decoded sentence:', decoded_sentence)

Let's make a few calls to the decode method to perform our translations. The
decode method takes in the index of a French data point and converts it into
English.

Let's decode the 55,000" French sentence from our data first:

decode (55000)
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Here's the output:

Input sentence: hier etait une bonne journee
Decoded sentence: yesterday was a little too far

The next call will decode the 10,000" sentence:
decode (10000)

Here's the output:

Input sentence: jen ai ras le bol
Decoded sentence: im still not sure

The next method call decodes the 200" sentence:
decode (200)

Here's the output:

Input sentence: soyez calmes
Decoded sentence: be careful

Let's decode the 3,000™ sentence next:
decode (3000)
Here's the output:

Input sentence: je me sens affreusement mal
Decoded sentence: 1 feel like such an idiot

We will decode the 40,884™ sentence next:

decode (40884)

Here's the output:

Input sentence: Jje pense que Jje peux arranger ca
Decoded sentence: i1 think i can do it

Comparisons with Google Translate results showed that our model performs a decent job.
Also, the output contains proper English words. However, we have only tried to decode
sentences from the input data.

The model can further be built at the word level instead of training it at the character level,
as we did in this exercise.

[ 260 ]



State of the Art in NLP Chapter 11

We can try tuning our hyperparameters and see if we make improvements with our
translation results.

Now that we have successfully built a Seq2Seq model, in the upcoming sections, let's
understand some more architectures that were developed in the recent past.

Let's pay some attention

The encoder-decoder architecture that we studied in the previous section for neural
machine translation converted our source text into a fixed-length context vector and sent it
to the decoder. The last hidden state was used by our decoder to build the target sequence.

Research has shown that this approach of sending the last hidden state turns out to be a
bottleneck for long sentences, especially where the length of the sentence is longer than the
sentences used for training. The context vector is not able to capture the meaning of the
entire sentence. The performance of the model is not good and keeps deteriorating in such
cases.

A new mechanism called the attention mechanism, shown in the following

diagram, evolved to solve this problem of dealing with long sentences. Instead of sending
only the last hidden state to the decoder, all the hidden states are passed on to the decoder.
This approach provides the ability to encode an input sequence into a sequence of vectors
without being constrained to a single fixed-length vector as was the case earlier. The
network is now freed from having to use a single vector to represent all the information in
the source sequence. During the decoding stage, these sequences of vectors are weighted at
every timestep to figure out the relevance of each input for predicting a particular output.
This does not mean a one-to-one mapping between the input token and output token. The
target word is predicted during the decoding stage using the sum of the weighted context
hidden states along with the previous target words:

will

Encoder

Ly
R

i

v

'\

LSTM LSTM LSTM LSTM > LSTM > LSTM

Hidden State 1
Hidden State 2
Hidden State 3
Hidden State 1
Hidden State 2
Hidden State 3

Decoder

Je vais essayer
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Let's understand in depth how the attention mechanism works. The computation of the
context vector is performed using the following steps:

1. The first step is to obtain the hidden states, as shown in the following diagram:

Hidden State 1
Hidden State 2
Hidden State 3

2. Now we have the decoder hidden state vector d. Each of the encoder's hidden
state vectors, along with the decoder hidden state vector, are passed to a function
such as a dot product, as shown in the following diagram. The function returns a
score for each of these input hidden states for that particular timestep ¢. This

score reflects the importance of the various input tokens toward the prediction of
the token at timestep ¢:

Encoder

/ Hidden State ¢

Decoder
Hidden State d

/

Scoring Function

l

Weight of Input token t
for predicting
Output token d

The following shows some example attention scores for each of the hidden states:

I| 11 | 5 | 5 |
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The scores represent the importance of each hidden state for that particular
timestep.

3. Scores obtained are normalized using the softmax function:

_ exp(bi;)
2?:1 exp(bir,)

In the preceding equation, the following is the case:

aij

e T, represents the length of the input.

* b; is the influence of input token j in the prediction of the output i. We get
this value in the previous step.

The softmax score, a;, is nothing but the probability of the output token y, being
aligned to the input x;.

The softmax scores for each of the hidden states are as follows:

| 0.995 | 0.0025 | 0.0025 I

4. The input hidden state vectors are multiplied by their corresponding softmax
scores:

a;; X hj

5. The weighted input hidden state vectors are summed up, and this summed

vector represents our context vector for timestep f, as shown in the following
diagram:

Weighted
Hidden State 1
+
Weighted
Hidden State 2
Weighted
Hidden State 3

Context Vector
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The formula for the summed vectors that represent our context vector for timestep t can be
written as follows:

T,
contextVector; = E a;; X h;
J=1

The context vector at timestep i carries the overall weight of each of the input tokens in
determining the output at timestep i.

The aforementioned steps are repeated for each timestep at the decoder end. Also, this
approach does not perform a one-to-one mapping between the encoder input at timestep ¢
and the decoder output at timestep t. Instead, the learning involved allows the architecture
to align tokens in the input sequence at various positions to tokens in the output sequence,
possibly at different positions.

The paper Neural Machine Translation by Jointly Learning to Align and
Translate (Bahdanau et al.) discussed the concept of the attention
mechanism, and is available at https://arxiv.org/pdf/1409.0473.pdf.

The attention mechanism has significantly improved the ability of neural machine
translation models.

Do we stop at attention?

No, let's take this forward and understand how Transformers came into existence and how
we can use them to advance even further.

Transformers

The encoders and decoders we built up to now used RNN-based architectures. Even while
discussing attention in the previous section, the attention-based mechanism was used in
conjunction with RNN architecture-based encoders and decoders. Transformers approach
the problem differently and build the encoders and decoders by using the attention
mechanism, doing away with the RNN-based architectural backbones. Transformers have
shown themselves to be more parallelizable and require a lot less time for training, thus
having multiple benefits over the previous architectures.
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Let's try and understand the complex architecture of Transformers next.

Understanding the architecture of Transformers

As in the previous section, Transformer modeling is based on converting a set of input
sequences into a bunch of hidden states, which are then further decoded into a set of output
sequences. However, the way these encoders and decoders are built is changed when using
a Transformer. The following diagram shows a simplistic view of a Transformer:

Output Sequence
Encoder 6 Decoder 6
A T
Encoder 5 Decoder5
A T
Encoder 4 Context flows Decoder 4
from final
A Encoder T
to each of the
Decoders
Encoder 3 Decoder 3
A T
Encoder 2 Decoder 2
A T
Encoder 1 Decoder 1
A
Input Sequence

Let's now look at the various components involved.
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Encoders

Transformers are composed of six encoders stacked on top of each other. All these encoders
are identical but do not share weights between them. Each encoder is composed of two
components: a self-attention layer that allows the encoder to look into other tokens in the
input sequence as it tries to encode a specific input token, and a position-wise feedforward
neural network.

A residual connection is applied to the output of each of these aforementioned components,
followed by layer normalization. We will look at residuals and layer normalization in the
upcoming sections. The input flowing into the first encoder is an embedding for the input
sequence. The embeddings can be as simple as one-hot vectors, or other forms such as
Word2Vec embeddings, and so on. The input to the other encoders is the output of the
previous encoder, as shown in the following diagram:

Encoder Output

/ Residual Addition and
Layer Normalization

, *

Feed-Forward Network

Residual Addition and
~>» Layer Normalization
Z=X+Y

A
Y

0

Self-Attention

— /

Encoder Input
X

The preceding diagram shows a detailed flow of the signal into the encoder and out from it.
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Decoders

Like the encoder, the Transformer architecture has six identical decoders stacked on top of
each other. The following diagram shows the architecture of one of these stacked decoders.
In addition to the self-attention and feedforward neural network present in the encoder, the
decoder has an additional attention layer, which allows it to pay attention to the relevant
parts in the output of the encoder stack.

The self-attention layer in the decoder is modified to allow positions to only attend to
previous positions and not attend to subsequent positions. This is referred to as masked
attention. Also, from the previous sections of this chapter, we remember that output
embeddings are offset by 1 position in the decoder. This offsetting, along with the masked
attention, ensures that while predicting for a particular position, we only have outputs from
the previous positions available to us.

Like encoders, the output from each sub-layer here is applied with residual connects and
layer normalization:

Decoder Output

T

/ Residual Addition and
Layer Normalization

A

-«

-

Feed-Forward Network

A

Residual Addition and -«

Layer Normalization
A

Encoder 3 Encoder-Decoder
Output Attention

Residual Addition and
Layer Normalization

A

Self-Attention

A /

Shifted Input Sequence X
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Now that we have understood the architecture for the Encoder and Decoder, let's look into
the attention mechanism used in the Transformer architecture.

Self-attention

When trying to build a representation for a position in an input sequence, the self-attention
mechanism allows the model to look at other positions/input tokens in the same sequence,
which can help the model to build a better representation for this input position. This helps
the model to infuse information about other tokens in the sequence that are relevant for a
particular token when building the representation for this token.

Let's consider an example to understand this:
The man is eating a lot of mangoes and they seem to be his favorite fruit.

In this sentence, when the embedding of the word they is being built, the self-attention
mechanism allows the representation of they to be highly influenced by the word mangoes
and associates they with mangoes. Similarly, when the embedding for his is built, self-
attention allows it to be associated with the word man.

How does self-attention work mathematically?

Self-attention tries to find the embedding of a token based on the other tokens in the
sequence. For this purpose, it uses three abstractions, namely the key, query, and value
vectors. Let's understand all of this now:

1. In the first step, the input embedding is multiplied by three matrices, Wk, Wg and
Wo. This multiplication produces three embeddings, namely the key, query, and
value embeddings. The model learns the three matrices, Wk, Wg, and Wv, during
the training process as a result of backpropagation. The dimensionality of each of
these embeddings is the same:
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Token 2 Token 1

Token 3

Embedding Embedding
for for
Token 2 Token 1

Embedding
for
Token 3

Value vector
for Token 1

Value vector
for Token 2

Wq W,
Query vector Key vector
for Token 1 for Token 1
Query vector Key vector
for Token 2 for Token 2
Query vector Key vector
for Token 3 for Token 3

Value vector
for Token 3

2. The second step is to understand how important the other tokens are for every
individual token in the sequence. Let's say that we are computing the embedding
for the second token. Our job is to figure out how important each token in the
sequence is for the second token. This is found by performing the dot product
between the query vector of the second token with the key vector of all tokens
individually. This process can be thought of as the second token asking other
tokens how important they are to it by sending the tokens its query vector, and
the other tokens responding with their key vectors, and finally the dot product
between them, giving the importance. Since the key and query vectors are of the
same dimension, the output of this is a single number. Let's refer it as the score.
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3. In the third step, the scores obtained for each word are divided by root v,
where d, is the dimensionality of the key vector. In the standard Transformer, this
is 64.

The softmax of the scores obtained from the previous step is performed next. This
leads to stable gradients. The intuition here is that the higher the score for a token,
the more important it is for the token whose representation is being computed.

4. Next, the value vector of each token is multiplied by its softmax score. As a
result, the tokens that are more important for that position will have their values
dominate the representation compared to tokens that are not that relevant for
that specific position:

Natural Language
Input Embedding Input Embedding
for Token 1 for Token 2

Query vector for
Token 1 (q1)

Query vector for
Token 2 (q2)

Key vector for Key vector for
Token 1 (k1) Token 2 (k2)
Value vector for Value vector for
Token 1 (v1) Token 2 (v2)
Score computation Score computation
s1 =q2*k1 =128 s1 =q2*k2 =160
Division by root of di Division by root of di
Softmax score = Softmax score =
0.02 0.98
| Softmax score*vi ‘ | Softmax score*v2 ‘

Self-Attention

Qutput for Token 2 =
Sum of vectors
lobtained in previous
step
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5. Finally, the obtained value vectors from the previous step are summed up to
obtain the new representation for the token under consideration. The preceding
diagram shows how the self-attention representation of the token Language is
constructed for the input sequence Natural Language.

However, the Transformer doesn't just use a single attention head. The model uses multiple
attention heads, which allows the model to focus on multiple different positions, instead of
just one. The outputs from the multiple attention heads are concatenated and projected to
provide the final values.

A small note on masked self-attention

Another important thing to understand is that inside the decoder, the multi-head attention
mechanism is masked, meaning that it is only allowed to use representations from positions
toward the left. This is because, while predicting the token for a particular position, only
tokens from the left side would be available. As a result, all embeddings from the right are
multiplied with 0 to mask them and the representations created can only be influenced by
the tokens on the left.

Before we move on, let's quickly look into the encoder-decoder attention layer. This layer
allows the decoder to capture contextual and positional information coming in from the
encoder; basically, the information contained in the input sequence.
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Now that we have discussed attention in detail, let's understand the rest of the components
in the Transformer architecture shown in the following diagram:

Output
Probabilities

Linear

Add & Norm
Feed
Forward
| Add & Norm ;
== Mut-Head
Feed Attention
Forward T 7 Nx
-~
Nx Add & Norm
,—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
L At
— J \ — )
Positional . Positional
Encodin D % i
g Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

The Transformer model from the original paper Attention is all you

need (available at https://arxiv.org/pdf/1706.03762.pdf)

Feedforward neural networks

Each encoder and decoder in the Transformer stack has a fully connected two-layer
feedforward neural network with a ReLU activation function in between them. This
feedforward neural network maps embeddings from one space to another space and the

dimensionality of the inputs and outputs to these networks are the same.
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Residuals and layer normalization

Residuals are applied to the output of each layer in a Transformer, thus enabling it to retain
some information present in the previous layer. After the application of the residuals, the
output is fed into layer normalization, which applies normalization across the features. The
values calculated as a result are independent of the other examples.

Positional embeddings

Another interesting feature that we should try and capture is the sequential order of tokens
in terms of the absolute position of the tokens, as well as features such as the relative
distance between tokens. The Transformer architecture achieves this by using a positional
embedding vector, which is added to the input embeddings. This model learns a pattern for
this vector, which enables it to understand the aforementioned features.

How the decoder works

We have already seen the decoder's architecture and discussed the working of its internal
components. Let's quickly try and throw light on the inputs to the decoder and the outputs
from it. The output from the final encoder is transformed into a set of attention vectors
represented by K and V. These outputs are received by the encoder-decoder attention layer
in each of the decoders. Also, the decoder receives the embeddings for the tokens of the
output sequence shifted by one, as happens in normal decoder operation. The decoder
keeps producing outputs until it reaches the <end> token.

The linear layer and the softmax function

The decoder produces a vector of values as its output. Now, these values are projected to
our vocabulary using the linear layer whose dimensionality is the same as the size of our
vocabulary. The obtained values are normalized and a probability distribution is produced
over the vocabulary using the softmax function, and the highest value is taken to be the
output for that timestep. The index for the highest value is mapped to the vocabulary to
obtain the predicted token.

The error computation happens in a similar way and the loss is backpropagated to the
network for it to learn.
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Transformer model summary

So, to summarize the architecture and training that we've looked at so far, the encoder
receives an input embedding along with a position embedding, which are summed
together and passed to a series of stacked encoders composed of self-attention and
feedforward neural networks. The output from the last encoder is passed to the decoder,
which itself contains the self-attention and feedforward neural network layers. In addition,
the decoder contains an encoder-decoder attention layer, which helps it to understand the
information coming in from the encoder. The decoder produces a vector as output, which is
applied to a dense layer followed by softmax, and the word with the highest probability is
taken as output for the given timestep. The error is computed based on the performance of
the Transformer in predicting the output and the result is backpropagated for the network
to learn.

BERT

The embeddings that we created when discussing Word2vec and fastText were static in the
sense that no matter what context a word was being used in, its embedding would be the
same.

Let's consider an example to understand this:
Apple is a fruit
Apple is a company

In both these sentences, no matter what context Apple is being used in, the embeddings for
the word would be the same. Instead, we should work on building techniques that can
provide representations of a word based on the current context it is being used in.

Moreover, we need to build semi-supervised models that could be pre-trained on a broader
task and later be fine-tuned to a specific task. The knowledge built while solving the
broader task could be applied to solve a different but related task. This is referred to as
transfer learning.

BERT catered to both our aforementioned problems in its own unique way. Researchers at
Google developed BERT and made the methodology that they used to build BERT open
source, along with the pre-trained weights.

Let's look into the architecture for BERT next.
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The BERT architecture

We read about Transformers in the previous section. BERT was built using the encoder
component of the Transformer architecture. BERT is nothing but a set of stacked encoders,
as we saw in the previous section. The researchers built two variants of the BERT model, as
summarized in the following table:

BERTBASE BERTLARGE
Number of encoder blocks 12 24
Hidden layer size 768 1024
Self-attention heads 12 16
Total parameters 110M 340M

The Transformer architecture upon which BERT was built had six stacked encoders. The
hidden layer size (that is, the number of hidden units in the feedforward layers) was 512
and it had 8 self-attention heads. The details of the various layers in BERT are the same as
what we discussed while talking about Transformers.

The BERT model input and output

Since the BERT model was built such that it could be fine-tuned to a wide variety of tasks,
its inputs and outputs needed to be designed carefully such that they could handle single-
sentence tasks such as text classification, along with two-sentence tasks such as question
answering. The BERT model was built with a vocabulary of 30,000 words and used the
WordPiece tokenizer for tokenization.

The BERT model input is explained in the following diagram. Let's try and understand each
of the input components in the diagram.

The first input token to the BERT model is the [CLS] token, where CLS stands for
Classification. It is a special token and the final hidden state output from the BERT model
corresponding to this token is used for classification tasks. The [CLS] token carries the
output for single-sentence classification tasks.
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For two-sentence tasks, the sentences are brought in together and separated by a special
[SEP] token, which helps to differentiate between the sentences. In addition to the [SEP]
token, an additional learned embedding is added to the token to represent whether it
belongs to the first sentence or the second.

As with Transformers, a positional embedding is added to the tokens for the same reason
we discussed regarding Transformers.

Hence, the input for every token to the BERT model is a sum of the token embeddings,
positional embeddings, and segment embeddings:

Output | | ——— [ | s==ememmmmmmmr e
t Encoder 12
A A 0 A h
{ Encoder 2 ‘
{ Encoder 1 ‘
T 4 A A A T T h
Position E E E E E E E E E
Embeddings 0 1 2 3 4 5 6 7 8
+ + + + + + + + +
Segment Ep Ep Ep Ep Ep Eg Eg Eg Eg
Embeddings
+ + + + + + + + +
Token g Eqnai E E E E; Eui E E
Embeddings CLS India is ready [SEP] it will rock [SEP]
[CLS] India is ready [SEP] it will rock [SEP]
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Now that we have talked about the inputs, let's briefly discuss the outputs. The BERT
model at every position on a vector of size 768 is BERT},q; and a vector of size 1024 is the
BERT, rcz model. These output vectors can be used differently depending on the fine-
tuning task to be solved.

So, we've understood that BERT is such a cool thing, along with its architecture and the
inputs and outputs for the model. One thing that we haven't got a sense of yet is how it was
trained. Let's investigate this now.

How did BERT the pre-training happen?

The BERT model was pre-trained using two unsupervised tasks, namely the masked
language model and next-sentence prediction. Let's look at the details of these next.

The masked language model

Conditional language models prior to BERT were built using either the left-to-right
approach or the right-to-left approach. We know that a bidirectional approach that can look
both backward and forward would be more powerful than a unidirectional model.
However, since with Transformers we have a multilayered context, the bidirectional
approach would allow each token to indirectly see itself.

How do we build a model that can be conditioned using both the left and right contexts?

The developers of BERT decided to use masks to allow bidirectional conditioning. The
BERT model picks 15% of the tokens at random and masks them. Next, it tries to predict
these masked tokens. This process is referred to as Masked Language Modeling (MLM).
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However, there is a problem with this approach: the [MASK] token will not be present
during fine-tuning. In order to resolve this, among the 15% of the tokens chosen at random,
let's say if the ith token is chosen, then the following would happen:

e It would be replaced with the [MASK] token 80% of the time (80% of 15% = 125 of

the times).

e It will be replaced with a random token 10% of the time (10% of 15% = 1.5% of
the time).

e It is kept unchanged for the remaining 10% of the time (10% of 15% = 1.5% of the
time).

Next-sentence prediction

During the MLM task, we did not really work with multiple sentences. However, with
BERT, the thought process was to accommodate the possibility of tasks involving a pair of
sentences, as often happens in question answering tasks, where the relationships between
multiple sentences need to be captured. In order to do this, BERT resorted to working with
a next-sentence prediction task. A pair of sentences, A and B, are input to the model such
that 50% of the time, sentence B would actually be the next sentence in the corpus after
sentence A where the labeling used would be IsNext, and it would not be the next sentence
50% of the time, where the labeling would be NotNext. In the next-sentence prediction task,
the model would be asked to predict whether sentence B is actually the next sentence
following sentence A or not.

Now we know how the BERT pre-training worked, let's look into the fine-tuning of BERT
next and understand how its outputs can be utilized.

For the purpose of pre-training, we used as our datasets the Book Corpus, comprising 800
million words, and English Wikipedia, comprising 2.5 billion words.

BERT fine-tuning

The pre-trained weights developed using the ways we've discussed can now be fine-tuned
to cater to a number of tasks. Let's look at those next.
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For single classification tasks, the output for position 1 carries information about the
classification label. The vector from the first position is sent across to a feedforward neural
network, followed by the application of the softmax function, which returns the probability
distribution for the number of classes involved in the task, as shown in the following
diagram:
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Similarly, for sentence-pair text classification tasks, such as whether the second sentence
follows the first sentence in a corpus or the second sentence is the answer to the first
sentence (a question), these are classification tasks where we need to respond with a Yes or
No answer. Such tasks can also make use of the first output vector to determine the results,

as shown in the following diagram:
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Named Entity Recognition (NER)-like tasks want an output for each input token. For
example, in an NER task, we may require the model to figure out whether the tokens in a
sentence refer to a person, location, date, and so on. Each token must say which entity it is
catering to from the ones we've mentioned. This is a Seq2Seq task where the size of the
input should be equal to the size of the output. The BERT model outputs a vector for each
position. Now, each of these position outputs can be fed to a neural network to figure out
the named entity for a particular token. This is illustrated in the following diagram:
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Similarly, the BERT model can be fine-tuned for other tasks such as question answering, as
shown in the following diagram:
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Ideas for these have been sourced original BERT paper, BERT: Pre-Training of Deep
Bidirectional Transformers for Language Understanding by Delvin et al., available at https://
arxiv.org/pdf/1810.04805.pdf.

The rise of BERT revolutionized the domain of NLP and great improvements were
achieved in solving numerous tasks. BERT even outperformed all the previous benchmark
results for certain tasks.
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The open source code for BERT is available on GitHub at https://github.com/google-
research/bert.

An approach to fine-tune the BERT model for the question classification task we tried
solving in Chapter 8, From Human Neurons to Artificial Neurons for Text Understanding, was
made, and the code has been posted at https://github.com/amankedia/Question-
Classification-using-BERT, along with the results.

Similarly, BERT can be applied to numerous tasks such as part-of-speech tagging, building
chatbots, and so on.

Summary

In this chapter, we had a look at some of the recent advancements in the field of NLP,
encompassing Seq2Seq modeling, the attention mechanism, the Transformer model, and
BERT, all of which have revolutionized the way NLP problems are approached today. We
began with a discussion on Seq2Seq modeling where we looked at its core components, the
encoder and decoder. Based on the knowledge garnered, we built a French-to-English
translator using the encoder-decoder stack. After that, we had a detailed discussion on the
attention mechanism, which has allowed great parallelization leading to fast NLP training,
and has also improved upon the results from the existing architectures. Next, we looked at
Transformers and discussed every component inside the encoder-decoder stack of the
Transformers. We also saw how the attention mechanism can be used as the core building
block of such architectures, and can possibly provide a replacement for the existing RNN-
based architectures. Finally, we had an in-depth discussion on BERT, which is a very recent
development that has paved the way for building highly efficient, fine-tuned NLP models
for a wide variety of tasks.

Throughout this book, attempts were made to understand multiple NLP techniques and
how they could be applied to solve a plethora of problems related to NLP. We built
numerous applications such as a chatbot, a spell-checker, a sentiment analyzer, a question
classifier, a sarcasm detector, a language generator, and a language translator, among many
others throughout the course of this book. As a result, along with the theoretical knowledge
we've acquired, we've had plenty of necessary hands-on experience in solving NLP
problems as well.
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