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Preface
Python is the most widely used language for natural language processing (NLP) thanks 
to its extensive tools and libraries for analyzing text and extracting computer-usable 
data. This book will take you through a range of techniques for text processing, from 
basics such as parsing parts of speech to complex topics such as topic modeling, text 
classification, and visualization.

Starting with an overview of NLP, the book presents recipes for dividing text into 
sentences, stemming and lemmatization, removing stopwords, and parts-of-speech 
tagging to help you to prepare your data. You'll then learn about ways of extracting 
and representing grammatical information, such as dependency parsing and anaphora 
resolution, discover different ways of representing the semantics using bag of words, 
TF-IDF, word embeddings, and BERT, and develop skills for text classification using 
keywords, SVMs, LSTMs, and other techniques. As you advance, you'll also see how to 
extract information from text, implement unsupervised and supervised techniques for 
topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, 
the book covers developing chatbots using NLTK and Rasa, and visualizing text data.

By the end of this NLP book, you'll have developed the skills to use a powerful set of tools 
for text processing.

Who this book is for
This book is for data scientists and professionals who want to learn how to work with text. 
Intermediate knowledge of Python will help you to make the most out of this book. If you are 
an NLP practitioner, this book will serve as a code reference when working on your projects.

What this book covers
Chapter 1, Learning NLP Basics, is an introductory chapter with basic preprocessing 
steps for working with text. It includes recipes such as dividing up text into sentences, 
stemming and lemmatization, removing stopwords, and parts-of-speech tagging. You will 
find out about different approaches for parts-of-speech tagging, as well as two options for 
removing stopwords.
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Chapter 2, Playing with Grammar, will show how to get and use grammatical information 
about text. We will create a dependency parse and then use it to split a sentence into 
clauses. We will also use the dependency parse and noun chunks to extract entities and 
relations in the text. Certain recipes will show how to extract grammatical information in 
both English and Spanish.

Chapter 3, Representing Text – Capturing Semantics, covers how, as working with words 
and semantics is easy for people but difficult for computers, we need to represent text in a 
way other than words in order for computers to be able to work with the text. This chapter 
presents different ways of representing text, from a simple bag of words, to BERT. This 
chapter also discusses a basic implementation of semantic search that uses these semantic 
representations.

Chapter 4, Classifying Texts, covers text classification, which is one of the most important 
techniques in NLP. It is used in many different industries for different types of texts, such 
as tweets, long documents, and sentences. In this chapter, you will learn how to do both 
supervised and unsupervised text classification with a variety of techniques and tools, 
including K-Means, SVMs and LSTMs.

Chapter 5, Getting Started with Information Extraction, discusses how one of the main 
goals of NLP is extracting information from text in order to use it later. This chapter shows 
different ways of pulling information from text, from the simplest regular expression 
techniques to find emails and URLs to neural network tools to extract sentiment.

Chapter 6, Topic Modeling, discusses how determining topics of texts is an important 
NLP tool that can help in text classification and discovering new topics in texts. This 
chapter introduces different techniques for topic modeling, including unsupervised and 
supervised techniques, and topic modeling of short texts, such as tweets.

Chapter 7, Building Chatbots, covers chatbots, which are an important marketing tool that 
has emerged in the last few years. In this chapter, you will learn how to build a chatbot 
using two different frameworks, NLTK for keyword matching chatbots, and Rasa for 
sophisticated chatbots with a deep learning model under the hood.

Chapter 8, Visualizing Text Data, discusses how visualizing the results of different NLP 
analyses can be a very useful tool for presentation and evaluation. This chapter introduces 
you to visualization techniques for different NLP tools, including NER, topic modeling, 
and word clouds. 



Preface     ix

To get the most out of this book
You will need Python 3 installed on your system. We recommend installing the Python 
libraries discussed in this book using pip. The code snippets in the book mention the 
relevant command to install a given library on the Windows OS.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code via the GitHub repository (link available in the next section). Doing 
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Python-Natural-Language-Processing-
Cookbook. In case there's an update to the code, it will be updated on the existing 
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838987312_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "For this recipe, we will need just the beginning of the book, which 
can be found in the sherlock_holmes_1.txt file."

https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook
https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook
https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838987312_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838987312_ColorImages.pdf
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A block of code is set as follows:

filename = "sherlock_holmes_1.txt"

file = open(filename, "r", encoding="utf-8")

text = file.read()

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

import time

start = time.time()

main()

print("%s s" % (time.time() - start))

Any command-line input or output is written as follows:

python -m spacy download es_core_news_sm

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
example, words in menus or dialog boxes appear in the text like this. Here is an example: 
"It shows that three words from the vocabulary are present, which are seen, of, and 
Holmes."

Tips or important notes
Appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to 
do it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software 
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.
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How it works…
This section usually consists of a detailed explanation of what happened in the previous 
section.

There's more…
This section consists of additional information about the recipe in order to make you 
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about 
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com




1
Learning NLP Basics

While working on this book, I focused on including recipes that would be useful in a wide 
variety of NLP (Natural Language Processing) projects. They range from the simple  
to the advanced, and deal with everything from grammar to visualizations; and in many  
of them, options for languages other than English are included. I hope you find the  
book useful. 

Before we can get on with the real work of NLP, we need to prepare our text for 
processing. This chapter will show you how to do that. By the end of the chapter, you will 
be able to have a list of words in a piece of text arranged with their parts of speech and 
lemmas or stems, and with very frequent words removed. 

NLTK and spaCy are two important packages that we will be working with in this chapter 
and throughout the book.

The recipes included in this chapter are as follows:

•	 Dividing text into sentences 

•	 Dividing sentences into words: tokenization

•	 Parts of speech tagging

•	 Stemming

•	 Combining similar words: lemmatization

•	 Removing stopwords
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Technical requirements
Throughout this book, I will be showing examples that were run using an Anaconda 
installation of Python 3.6.10. To install Anaconda, follow the instructions here: 
https://docs.anaconda.com/anaconda/install/. 

After you have installed Anaconda, use it to create a virtual environment:

conda create -n nlp_book python=3.6.10 anaconda

activate nlp_book

Then, install spaCy 2.3.0 and NLTK 3.4.5:

pip install nltk

pip install spacy

After you have installed spaCy and NLTK, install the models needed to use them. For 
spaCy, use this:

python -m spacy download en_core_web_sm

Use Python commands to download the necessary model for NLTK:

python

>>> import nltk

>>> nltk.download('punkt')

All the code that is in this book can be found in the book's GitHub repository: https://
github.com/PacktPublishing/Python-Natural-Language-Processing-
Cookbook. 

Important note
The files in the book's GitHub repository should be run using the -m option 
from the main directory that contains the code subfolders for each chapter. For 
example, you would use it as follows:

python -m Chapter01.dividing_into_sentences

https://docs.anaconda.com/anaconda/install/
https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook
https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook
https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook
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Dividing text into sentences
When we work with text, we can work with text units on different scales: we can work at 
the level of the document itself, such as a newspaper article; the paragraph, the sentence, 
or the word. Sentences are the main unit of processing in many NLP tasks. In this section, 
I will show you how to divide text into sentences.

Getting ready
For this part, we will be using the text of the book The Adventures of Sherlock Holmes. You 
can find the whole text in the book's GitHub (see the sherlock_holmes.txt file). 
For this recipe, we will need just the beginning of the book, which can be found in the 
sherlock_holmes_1.txt file. 

In order to do this task, you will need the nltk package and its sentence tokenizers, 
described in the Technical requirements section.

How to do it…
We will now divide the text of The Adventures of Sherlock Holmes, outputting a list  
of sentences:

1.	 Import the nltk package:

import nltk

2.	 Read in the book text:

filename = "sherlock_holmes_1.txt"

file = open(filename, "r", encoding="utf-8")

text = file.read()

3.	 Replace newlines with spaces:

text = text.replace("\n", " ")

4.	 Initialize an NLTK tokenizer. This uses the punkt model we downloaded 
previously:

tokenizer = nltk.data.load("tokenizers/punkt/english.
pickle")
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5.	 Divide the text into sentences:

sentences = tokenizer.tokenize(text)

The resulting list, sentences, has all the sentences in the first part of the book:
['To Sherlock Holmes she is always _the_ woman.', 'I have 
seldom heard him mention her under any other name.', 
'In his eyes she eclipses and predominates the whole of 
her sex.', 'It was not that he felt any emotion akin 
to love for Irene Adler.', 'All emotions, and that one 
particularly, were abhorrent to his cold, precise but 
admirably balanced mind.', 'He was, I take it, the most 
perfect reasoning and observing machine that the world 
has seen, but as a lover he would have placed himself 
in a false position.', 'He never spoke of the softer 
passions, save with a gibe and a sneer.', 'They were 
admirable things for the observer—excellent for drawing 
the veil from men's motives and actions.', 'But for the 
trained reasoner to admit such intrusions into his own 
delicate and finely adjusted temperament was to introduce 
a distracting factor which might throw a doubt upon all 
his mental results.', 'Grit in a sensitive instrument, 
or a crack in one of his own high-power lenses, would 
not be more disturbing than a strong emotion in a nature 
such as his.', 'And yet there was but one woman to him, 
and that woman was the late Irene Adler, of dubious and 
questionable memory.']

How it works…
In step 1, we import the nltk package. In step 2, we open the text file and read the 
contents into a string. In step 3, we replace newlines with spaces. This is an optional step, 
and I include it for better readability. In step 4, we initialize the NLTK tokenizer. In step 5, 
we use the tokenizer to divide the text into sentences.

Although it might seem straightforward to instead just divide text into sentences by just 
using a regular expression to split at the periods, in reality, it is more complicated. We use 
periods in places other than ends of sentences, for example, after abbreviations. Similarly, 
while all sentences in English start with a capital letter, we also use capital letters for 
proper names.
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There's more…
We can also use a different strategy to parse the text into sentences, employing another 
very popular NLP package, spaCy. Here is how it works:

1.	 Import the spacy package:

import spacy

2.	 Read in the book text:

filename = "sherlock_holmes_1.txt"

file = open(filename, "r", encoding="utf-8")

text = file.read()

3.	 Replace newlines with spaces:

text = text.replace("\n", " ")

4.	 Initialize the spaCy engine:

nlp = spacy.load("en_core_web_sm")

5.	 Divide the text into sentences:

doc = nlp(text)

sentences = [sentence.text for sentence in doc.sents]

The result will be the sentences in the first part of The Adventures of  
Sherlock Holmes:

['To Sherlock Holmes she is always _the_ woman.', 'I have 
seldom heard him mention her under any other name.', 
'In his eyes she eclipses and predominates the whole of 
her sex.', 'It was not that he felt any emotion akin 
to love for Irene Adler.', 'All emotions, and that one 
particularly, were abhorrent to his cold, precise but 
admirably balanced mind.', 'He was, I take it, the most 
perfect reasoning and observing machine that the world 
has seen, but as a lover he would have placed himself 
in a false position.', 'He never spoke of the softer 
passions, save with a gibe and a sneer.', 'They were 
admirable things for the observer—excellent for drawing 
the veil from men's motives and actions.', 'But for the 
trained reasoner to admit such intrusions into his own 
delicate and finely adjusted temperament was to introduce 
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a distracting factor which might throw a doubt upon all 
his mental results.', 'Grit in a sensitive instrument, 
or a crack in one of his own high-power lenses, would 
not be more disturbing than a strong emotion in a nature 
such as his.', 'And yet there was but one woman to him, 
and that woman was the late Irene Adler, of dubious and 
questionable memory.']

An important difference between spaCy and NLTK is the time it takes to complete the 
sentence-splitting process. We can time the execution by using the time package and 
putting the code to split the sentences into the main function:

import time

start = time.time()

main()

print("%s s" % (time.time() - start))

The spaCy algorithm takes 0.062 seconds, while the NLTK algorithm takes 0.004 seconds. 
It is possible that you will get slightly different values. Make sure that the time you 
measure is not that of the first run, as it is always the slowest one.

The reason why you might use spaCy is if you are doing other processing with the package 
along with splitting it into sentences. The spaCy processor does many other things, and 
that is why it takes longer. If you are using other features of spaCy, there is no reason 
to use NLTK just for sentence splitting, and it's better to employ spaCy for the whole 
pipeline. 

It is also possible to use just the tokenizer from spaCy; please see their documentation for 
more information: https://spacy.io/usage/processing-pipelines. 

Important note
spaCy might be slower, but it does many more things in the background; if you 
are using its other features, use it for sentence splitting as well.

https://spacy.io/usage/processing-pipelines
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See also
You can use NLTK and spaCy to divide text in languages other than English. NLTK 
includes tokenizer models for Czech, Danish, Dutch, Estonian, Finnish, French,  
German, Greek, Italian, Norwegian, Polish, Portuguese, Slovene, Spanish, Swedish, and 
Turkish. In order to load those models, use the name of the language followed by the 
.pickle extension: 

tokenizer = nltk.data.load("tokenizers/punkt/spanish.pickle")

See the NLTK documentation to find out more: https://www.nltk.org/index.
html.

Likewise, spaCy has models for other languages: Chinese, Danish, Dutch, English, French, 
German, Greek, Italian, Japanese, Lithuanian, Norwegian, Polish, Portuguese, Romanian, 
and Spanish. In order to use those models, you would have to download them separately. 
For example, for Spanish, use this command to download the model:

python -m spacy download es_core_news_sm

And then put this line in the code to use it:

nlp = spacy.load("es_core_news_sm")

See the spaCy documentation to find out more: https://spacy.io/usage/models. 

Dividing sentences into words – tokenization
In many instances, we rely on individual words when we do NLP tasks. This happens, 
for example, when we build semantic models of texts by relying on the semantics of 
individual words, or when we are looking for words with a specific part of speech. To 
divide text into words, we can use NLTK and spaCy. 

Getting ready
For this recipe, we will be using the same text of the book The Adventures of Sherlock 
Holmes. You can find the whole text in the book's GitHub repository. For this recipe, 
we will need just the beginning of the book, which can be found in the sherlock_
holmes_1.txt file. 

In order to do this task, you will need the nltk package, described in the Technical 
requirements section.

https://www.nltk.org/index.html
https://www.nltk.org/index.html
https://spacy.io/usage/models
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How to do it…
1.	 Import the nltk package:

import nltk

2.	 Read in the book text:

filename = "sherlock_holmes_1.txt"

file = open(filename, "r", encoding="utf-8")

text = file.read()

3.	 Replace newlines with spaces:

text = text.replace("\n", " ")

4.	 Divide the text into words:

words = nltk.tokenize.word_tokenize(text)

The output will be the list of words in the text:
['To', 'Sherlock', 'Holmes', 'she', 'is', 'always', '_
the_', 'woman', '.', 'I', 'have', 'seldom', 'heard', 
'him', 'mention', 'her', 'under', 'any', 'other', 
'name', '.', 'In', 'his', 'eyes', 'she', 'eclipses', 
'and', 'predominates', 'the', 'whole', 'of', 'her', 
'sex', '.', 'It', 'was', 'not', 'that', 'he', 'felt', 
'any', 'emotion', 'akin', 'to', 'love', 'for', 'Irene', 
'Adler', '.', 'All', 'emotions', ',', 'and', 'that', 
'one', 'particularly', ',', 'were', 'abhorrent', 'to', 
'his', 'cold', ',', 'precise', 'but', 'admirably', 
'balanced', 'mind', '.', 'He', 'was', ',', 'I', 'take', 
'it', ',', 'the', 'most', 'perfect', 'reasoning', 
'and', 'observing', 'machine', 'that', 'the', 'world', 
'has', 'seen', ',', 'but', 'as', 'a', 'lover', 'he', 
'would', 'have', 'placed', 'himself', 'in', 'a', 'false', 
'position', '.', 'He', 'never', 'spoke', 'of', 'the', 
'softer', 'passions', ',', 'save', 'with', 'a', 'gibe', 
'and', 'a', 'sneer', '.', 'They', 'were', 'admirable', 
'things', 'for', 'the', 'observer—excellent', 'for', 
'drawing', 'the', 'veil', 'from', 'men', ''', 's', 
'motives', 'and', 'actions', '.', 'But', 'for', 
'the', 'trained', 'reasoner', 'to', 'admit', 'such', 
'intrusions', 'into', 'his', 'own', 'delicate', 'and', 
'finely', 'adjusted', 'temperament', 'was', 'to', 
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'introduce', 'a', 'distracting', 'factor', 'which', 
'might', 'throw', 'a', 'doubt', 'upon', 'all', 'his', 
'mental', 'results', '.', 'Grit', 'in', 'a', 'sensitive', 
'instrument', ',', 'or', 'a', 'crack', 'in', 'one', 'of', 
'his', 'own', 'high-power', 'lenses', ',', 'would', 
'not', 'be', 'more', 'disturbing', 'than', 'a', 'strong', 
'emotion', 'in', 'a', 'nature', 'such', 'as', 'his', 
'.', 'And', 'yet', 'there', 'was', 'but', 'one', 'woman', 
'to', 'him', ',', 'and', 'that', 'woman', 'was', 'the', 
'late', 'Irene', 'Adler', ',', 'of', 'dubious', 'and', 
'questionable', 'memory', '.']

How it works…
In step 1, we import the nltk package. In step 2, we open the text file and read its contents 
into a string. Step 3 is optional: we replace newlines with spaces for readability. 

In step 4, we divide the text into words using the nltk.tokenize.word_tokenize() 
function. The output is a list, where each token is either a word or a punctuation mark. 
The NLTK tokenizer uses a set of rules to split the text into words. It splits but does 
not expand contractions, such as don't → do n't and men's → men 's, as in the preceding 
example. It treats punctuation and quotes as separate tokens, so the result includes words 
with no other marks.

There's more…
NLTK has a special tokenizer for tweets and similar short texts. It has the options of 
removing Twitter user handles and shortening repeating characters to a maximum of 
three in a row. For example, let's use a made-up tweet: @EmpireStateBldg Central Park 
Tower is reaaaaally hiiiiiiigh and tokenize it with NLTK Twitter tokenizer:

1.	  Import the nltk package:

import nltk

2.	 Initialize the tweet variable:

tweet = "@EmpireStateBldg Central Park Tower is reaaaally 
hiiiigh"
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3.	 Divide the text into words. Set the parameters to preserve case, reduce the length, 
and strip the handles:

words = \

nltk.tokenize.casual.casual_tokenize(tweet,

                                     preserve_case=True,

                                     reduce_len=True, 

                                     strip_handles=True)

The output will be a list of words:
['Central', 'Park', 'Tower', 'is', 'reaaally', 'hiiigh']

The repetition of characters in the words reaaaaally and hiiiiiiigh is shortened to 
three, the twitter handle @EmpireStateBldg has been removed, and the words have 
been tokenized.

We can also use spaCy to do the tokenization. Word tokenization is one task in a larger 
array of tasks that spaCy accomplishes while processing text. Here is how it works:

4.	 Import the spacy package:

import spacy

5.	 Read in the book text:

filename = "sherlock_holmes_1.txt"

file = open(filename, "r", encoding="utf-8")

text = file.read()

6.	 Replace newlines with spaces:

text = text.replace("\n", " ")

7.	 Initialize the spaCy engine using the English model:

nlp = spacy.load("en_core_web_sm")

8.	 Divide the text into sentences:

doc = nlp(text)

words = [token.text for token in doc]
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Important note
If you are doing other processing with spaCy, it makes sense to use it. 
Otherwise, NLTK word tokenization is sufficient.

See also
The NLTK package only has word tokenization for English.

spaCy has models for several other languages: Chinese, Danish, Dutch, English, French, 
German, Greek, Italian, Japanese, Lithuanian, Norwegian, Polish, Portuguese, Romanian, 
and Spanish. In order to use those models, you would have to download them separately. 
For example, for Spanish, use this command to download the model:

python -m spacy download es_core_news_sm

And then put this line in the code to use it:

nlp = spacy.load("es_core_news_sm")

See the spaCy documentation to find out more: https://spacy.io/usage/models. 

Parts of speech tagging
In many cases, NLP processing depends on determining the parts of speech of the words 
in the text. For example, in sentence classification, we sometimes use the parts of speech 
of the words as a feature that is input to the classifier. In this recipe, we will again consider 
the NLTK and spaCy algorithms.

Getting ready
For this recipe, we will be using the same text of the book The Adventures of Sherlock 
Holmes. You can find the whole text in the book's GitHub. For this recipe, we will  
need just the beginning of the book, which can be found in the sherlock_holmes_1.
txt file. 

In order to do this task, you will need the spaCy package, described in the Technical 
requirements section.

How to do it…
In this recipe, we will use the spaCy package to label words with their parts of speech, and 
I will show that it is superior to NLTK in this task.

https://spacy.io/usage/models
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The process is as follows:

1.	 Import the spacy package:

import spacy

2.	 Read in the book text:

filename = "sherlock_holmes_1.txt"

file = open(filename, "r", encoding="utf-8")

text = file.read()

3.	 Replace newlines with spaces:

text = text.replace("\n", " ")

4.	 Initialize the spaCy engine:

nlp = spacy.load("en_core_web_sm")

5.	 Use the spaCy engine to process the text:

doc = nlp(text)

6.	 Get the list of tuples with words and parts of speech tags:

words = [token.text for token in doc]

pos = [token.pos_ for token in doc]

word_pos_tuples = list(zip(words, pos))

Part of the result is shown here; for the rest, please see the book's GitHub:
[('To', 'ADP'), ('Sherlock', 'PROPN'), ('Holmes', 
'PROPN'), ('she', 'PRON'), ('is', 'VERB'), ('always', 
'ADV'), ('_', 'NOUN'), ('the', 'DET'), ('_', 'NOUN'), 
('woman', 'NOUN'), ('.', 'PUNCT'), …]

The resulting list contains tuples of words and parts of speech. The list of parts 
of speech tags is available here: https://universaldependencies.org/
docs/u/pos/, and is also included in Appendix A of this book.

How it works…
In step 1, we import the spacy package. In step 2, we read in the text file. In the optional 
step 3, we replace newlines with spaces. 

https://universaldependencies.org/docs/u/pos/
https://universaldependencies.org/docs/u/pos/
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In step 4, we initialize the spaCy engine, and in step 5, we use it to process the text. The 
resulting Document object contains an iterator with Token objects, and each Token 
object has the information about parts of speech.

In step 6, we create two lists, one with words and one with their corresponding parts of 
speech, and then combine them into a list of tuples. We do this in order to easily print the 
whole list with their corresponding parts of speech. When you use parts of speech tagging 
in your code, you can just iterate through the list of tokens. The result shows the final list 
of word-parts of speech tuples.

There's more…
We can compare spaCy's performance to NLTK in this task. Here are the steps for getting 
the parts of speech with NLTK:

1.	 Import the nltk package:

import nltk

2.	 Read in the book text:

filename = "sherlock_holmes_1.txt"

file = open(filename, "r", encoding="utf-8")

text = file.read()

3.	 Replace newlines with spaces:

text = text.replace("\n", " ")

4.	 Tokenize the text into words:

words = nltk.tokenize.word_tokenize(text)

5.	 Process the list of words with the NLTK parts of speech tagger:

words_with_pos = nltk.pos_tag(words)

6.	 This is the partial result. For the whole output please see the book's GitHub:

[('To', 'TO'), ('Sherlock', 'NNP'), ('Holmes', 'NNP'), 
('she', 'PRP'), ('is', 'VBZ'), ('always', 'RB'), ('_
the_', 'JJ'), ('woman', 'NN'), ('.', '.'), …]
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The list of part of speech tags that NLTK uses is different from spaCy and is 
included in Appendix B of this book and is also available by running the  
following commands:

python

>>> import nltk

>>> nltk.download('tagsets')

>>> nltk.help.upenn_tagset()

Comparing the performance, we see that spaCy takes 0.065 seconds, while NLTK takes 
0.170 seconds, so spaCy is more efficient. Also, the parts of speech information is already 
available in the spaCy objects after the initial processing has been done.

Important note
spaCy does all of its processing at once, and the results are stored in the Doc 
object. The parts of speech information is available by iterating through 
Token objects.

See also
If you would like to tag text that's in another language, you can do so by using spaCy's 
models for other languages. For example, we can load the Spanish spaCy model to run it 
on Spanish text:

nlp = spacy.load("es_core_news_sm")

If spaCy doesn't have a model for the language you are working with, you can train  
your own model with spaCy. See https://spacy.io/usage/training#tagger-
parser. 

Word stemming
In some NLP tasks, we need to stem words, or remove the suffixes and endings such as 
-ing and -ed. This recipe shows how to do that.

Getting ready
To do this recipe, we will be using NLTK and its Snowball Stemmer.

https://spacy.io/usage/training#tagger-parser
https://spacy.io/usage/training#tagger-parser


Word stemming     15

How to do it…
We will load the NLTK Snowball Stemmer and use it to stem words:

1.	 Import the NLTK Snowball Stemmer:

from nltk.stem.snowball import SnowballStemmer

2.	 Initialize stemmer with English:

stemmer = SnowballStemmer('english')

3.	 Initialize a list with words to stem:

words = ['leaf', 'leaves', 'booking', 'writing',

         'completed', 'stemming', 'skies']

4.	 Stem the words:

stemmed_words = [stemmer.stem(word) for word in words]

The result will be as follows:
['leaf', 'leav', 'book', 'write', 'complet', 'stem', 
'sky']

How it works…
In step 1, we import the SnowballStemmer object. In step 2, we initialize the stemmer 
object with English as the input language. In step 3, we create a list with words we would 
like to stem. In step 4, we create a list with the stemmed words. 

The stemmer strips suffixes and endings from the words. As seen here, it removes suffixes 
such as -es, -ing, and -ed, as well as others, such as -ive, -ize, and -ment. It also handles 
exceptions, as seen in the case of skies → sky. However, it does not change the stem to its 
canonical form, as the example with the word leaves shows.

There's more…
The NLTK Snowball Stemmer has algorithms for several languages. To see all the 
languages the NLTK Snowball Stemmer uses, use this command:

print(SnowballStemmer.languages)
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The result is as follows:

('danish', 'dutch', 'english', 'finnish', 'french', 'german', 
'hungarian', 'italian', 'norwegian', 'porter', 'portuguese', 
'romanian', 'russian', 'spanish', 'swedish')

For example, say we used it to stem these Spanish words:

stemmer = SnowballStemmer('spanish')

spanish_words = ['caminando', 'amigo', 'bueno']

stemmed_words = [stemmer.stem(word) for word in spanish_words]

The result would be as follows:

['camin', 'amig', 'buen']

See also
See http://snowball.tartarus.org/algorithms/english/stemmer.html 
for more information about the NLTK Snowball Stemmer.

Combining similar words – lemmatization
A similar technique to stemming is lemmatization. The difference is that lemmatization 
provides us with a real word, that is, its canonical form. For example, the lemma of the 
word cats is cat, and the lemma for the word ran is run.

Getting ready
We will be using the NLTK package for this recipe.

How to do it…
The NLTK package includes a lemmatizer module based on the WordNet database.

Here is how to use it:

1.	 Import the NLTK WordNet lemmatizer:

from nltk.stem import WordNetLemmatizer

2.	 Initialize lemmatizer:

lemmatizer = WordNetLemmatizer()

http://snowball.tartarus.org/algorithms/english/stemmer.html
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3.	 Initialize a list with words to lemmatize:

words = ['duck', 'geese', 'cats', 'books']

4.	 Lemmatize the words:

lemmatized_words = [lemmatizer.lemmatize(word) for word 
in words]

5.	 The result will be as follows:

['duck', 'goose', 'cat', 'book']

How it works…
In step 1, we import WordNetLemmatizer, and in step 2, we initialize it. In step 3, 
we initialize a list of words we want to lemmatize. In step 4, we create a list with the 
lemmatized words. The result shows correct lemmatization for all words, including 
exceptions such as geese.

There's more…
The lemmatize function has a parameter, pos (for parts of speech), which is set to 
noun by default. If you would like to lemmatize a verb or an adjective, you have to 
explicitly specify it:

>>> lemmatizer.lemmatize('loved', 'v')

'love'

>>> lemmatizer.lemmatize('worse', 'a')

'bad'

There is no easy way to lemmatize adverbs.

We can combine parts of speech tagging and lemmatization:

1.	 Import helper functions from the pos_tagging module:

from Chapter01.pos_tagging import pos_tag_nltk, read_
text_file

2.	 Add a dictionary mapping from NLTK parts of speech tags to lemmatizer-
accepted parts of speech tags and a separate set of tags accepted by lemmatizer:

pos_mapping = {'JJ':'a', 'JJR':'a', 'JJS':'a', 'NN':'n',
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               'NNS':'n', 'VBD':'v', 'VBG':'v',  
               'VBN':'v', 'VBP':'v', 'VBZ':'v'}

accepted_pos = {'a', 'v', 'n'}

3.	 Define the lemmatize_long_text function, which will take a long text, tag it 
with parts of speech, and then lemmatize adjectives, verbs, and nouns:

def lemmatize_long_text(text):

    words = pos_tag_nltk(text)

    words = \

    [(word_tuple[0], pos_mapping[word_tuple[1]] if \

      word_tuple[1] in pos_mapping.keys() else 

      word_tuple[1]) for word_tuple in words]

    words = [(lemmatizer.lemmatize(word_tuple[0]) if \

               word_tuple[1] in accepted_pos else \

               word_tuple[0],

             word_tuple[1]) for word_tuple in words]

    return words

4.	 Read in a text file, in this case, the sherlock_holmes_1.txt file, then use the 
preceding function to lemmatize the words and print them:

sherlock_holmes_text = read_text_file("sherlock_holmes_1.
txt")

lem_words = lemmatize_long_text(sherlock_holmes_text)

print(lem_words)

The beginning of the result will be as follows:
[('To', 'TO'), ('Sherlock', 'NNP'), ('Holmes', 'NNP'), 
('she', 'PRP'), ('is', 'v'), ('always', 'RB'), ('_the_', 
'a'), ('woman', 'n'), ('.', '.'), ('I', 'PRP'), ('have', 
'v'), ('seldom', 'v'), ('heard', 'RB'), ('him', 'PRP'), 
('mention', 'VB'), ('her', 'PRP'), ('under', 'IN'), 
('any', 'DT'), ('other', 'a'), ('name', 'n'), ('.', '.'), 
('In', 'IN'), ('his', 'PRP$'), ('eye', 'n'), ('she', 
'PRP'), ('eclipse', 'v'), ('and', 'CC'), ('predominates', 
'v'), ('the', 'DT'), ('whole', 'n'), ('of', 'IN'), 
('her', 'PRP$'), ('sex', 'n'), ('.', '.'), …]

You will see that, while correctly lemmatizing some words, such as eyes and eclipses, it 
leaves others unchanged, for example, predominates.
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The lemmatize_long_text function takes the text and tags it with parts of speech. 
Then, it replaces the NLTK verb, adjective, and noun tags with the tags that are required 
for the lemmatizer, and finally lemmatizes words that have those tags.

Removing stopwords
When we work with words, especially if we are considering words' semantics, we 
sometimes need to exclude some very frequent words that do not bring any substantial 
meaning to a sentence, words such as but, can, we, and so on. This recipe shows how to  
do that.

Getting ready…
For this recipe, we will need a list of stopwords. We provide a list in Appendix C, as well 
as in the book's GitHub repository. You might find that for your project, you need to 
customize the list and add or remove words as necessary.

You can also use the stopwords list provided with the nltk package.

We will be using the Sherlock Holmes text referred to earlier. For this recipe, we will  
need just the beginning of the book, which can be found in the sherlock_holmes_1.
txt file.

How to do it…
In the recipe, we will read in the text file, the file with stopwords, tokenize the text file, 
and remove the stopwords from the list:

1.	 Import the csv and nltk modules:

import csv

import nltk

2.	 Initialize the stopwords list:

csv_file="stopwords.csv"

with open(csv_file, 'r', encoding='utf-8') as fp:

    reader = csv.reader(fp, delimiter=',', quotechar='"')

    stopwords = [row[0] for row in reader]
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3.	 Alternatively, set the stopwords list to the NLTK list:

stopwords = nltk.corpus.stopwords.words('english')

Information
Here is a list of languages that NLTK supports for stopwords: Arabic, 
Azerbaijani, Danish, Dutch, English, Finnish, French, German, Greek, 
Hungarian, Italian, Kazakh, Nepali, Norwegian, Portuguese, Romanian, 
Russian, Spanish, Swedish, and Turkish.

4.	 Read in the text file:

file = open(filename, "r", encoding="utf-8")

text = file.read()

5.	 Remove newlines for better readability:

text = text.replace("\n", " ")

6.	 Tokenize the text:

words = nltk.tokenize.word_tokenize(text)

7.	 Remove the stopwords:

words = [word for word in words if word.lower() not in 
stopwords]

8.	 The result will be as follows:

['Sherlock', 'Holmes', '_the_', 'woman', '.', 
'seldom', 'heard', 'mention', '.', 'eyes', 'eclipses', 
'predominates', 'sex', '.', 'felt', 'emotion', 'akin', 
'Irene', 'Adler', '.', 'emotions', ',', ',', 'abhorrent', 
'cold', ',', 'precise', 'admirably', 'balanced', 'mind', 
'.', ',', ',', 'reasoning', 'observing', 'machine', 
',', 'lover', 'false', 'position', '.', 'spoke', 
'softer', 'passions', ',', 'save', 'gibe', 'sneer', '.', 
'admirable', 'observer—excellent', 'drawing', 'veil', 
'men', ''', 'motives', 'actions', '.', 'trained', 
'reasoner', 'admit', 'intrusions', 'delicate', 'finely', 
'adjusted', 'temperament', 'introduce', 'distracting', 
'factor', 'throw', 'doubt', 'mental', '.', 'Grit', 
'sensitive', 'instrument', ',', 'crack', 'high-power', 
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'lenses', ',', 'disturbing', 'strong', 'emotion', 
'nature', '.', 'woman', ',', 'woman', 'late', 'Irene', 
'Adler', ',', 'dubious', 'questionable', 'memory', '.']

How it works…
The code filters the stopwords from the text and leaves the words in the text only if they 
do not appear in the stopwords list. 

In step 1, we import the csv and NLTK modules. In step 2, we read in the stopwords 
list. We use the csv.reader class to read in the stopwords file, which contains the 
words, one per line. The csv.reader object returns one list per row, where a row is 
a line, and we have to take just the first element of the row. Alternatively, in step 3, we 
initialize the stopwords list from the NLTK package. 

In step 4, we read in the text file. In the optional step 5, we remove newlines for better 
readability. In step 6, we tokenize the text and turn it into a list of words. In step 7, we 
create a new list of words that only keeps words that are not in the stopwords list. You 
will notice that the final line of the code checks whether the lower-case version of the word 
is in the stopwords list, since all the stopwords are lowercase.

Important note
You might find that some of the words in the stopwords list provided are 
not necessary or are missing. You will need to modify the list accordingly.

There's more…
We can also compile a stopwords list by using the text we are working with and 
calculating the frequencies of the words in it. In this section, I will show you two ways of 
doing so. You will need to use the sherlock_holmes.txt file. The FreqDist object 
in the NLTK package counts the number of occurrences of each word:

1.	 Import the ntlk module and the FreqDist class:

import nltk

from nltk.probability import FreqDist

2.	 Read in the text file:

file = open(filename, "r", encoding="utf-8")

text = file.read()
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3.	 Remove newlines for better readability:

text = text.replace("\n", " ")

4.	 Tokenize the text:

words = nltk.tokenize.word_tokenize(text)

5.	 Create the frequency distribution object and use it to create a list of tuples where the 
first element is the word and the second one is the frequency count:

freq_dist = FreqDist(word.lower() for word in words)

words_with_frequencies = \

[(word, freq_dist[word]) for word in freq_dist.keys()]

6.	 Sort the list of tuples by frequency:

sorted_words = sorted(words_with_frequencies, 

                      key=lambda tup: tup[1])

7.	 Now we have two options: use a frequency cutoff for the stopwords or take the top 
n% of words sorted by frequency. Here is the first option. Use 100 as the frequency 
cutoff:

stopwords = [tuple[0] for tuple in sorted_words if 
tuple[1] > 100]

8.	 The result is as follows:

['away', 'never', 'good', 'nothing', 'case', 'however', 
'quite', 'found', 'made', 'house', 'such', 'heard', 
'way', 'yes', 'hand', 'much', 'matter', 'where', 'might', 
'just', 'room', 'any', 'face', 'here', 'back', 'door', 
'how', 'them', 'two', 'other', 'came', 'time', 'did', 
'than', 'come', 'before', 'must', 'only', 'know', 
'about', 'shall', 'think', 'more', 'over', 'us', 'well', 
'am', 'or', 'may', 'they', ';', 'our', 'should', 'now', 
'see', 'down', 'can', 'some', 'if', 'will', 'mr.', 
'little', 'who', 'into', 'do', 'has', 'could', 'up', 
'man', 'out', 'when', 'would', 'an', 'are', 'by', '!', 
'were', 's', 'then', 'one', 'all', 'on', 'no', 'what', 
'been', 'your', 'very', 'him', 'her', 'she', 'so', ''', 
'holmes', 'upon', 'this', 'said', 'from', 'there', 'we', 
'me', 'be', 'but', 'not', 'for', '?', 'at', 'which', 
'with', 'had', 'as', 'have', 'my', ''', 'is', 'his', 
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'was', 'you', 'he', 'it', 'that', 'in', '"', 'a', 'of', 
'to', '"', 'and', 'i', '.', 'the', ',']

9.	 The other option is to use the n% most frequent words as stopwords. Here I use 
0.2% of the most frequent words:

length_cutoff = int(0.02*len(sorted_words))

stopwords = [tuple[0] for tuple in sorted_words[-length_
cutoff:]]

And the result is as follows:
['make', 'myself', 'night', 'until', 'street', 'few', 
'why', 'thought', 'take', 'friend', 'lady', 'side', 
'small', 'still', 'these', 'find', 'st.', 'every', 
'watson', 'too', 'round', 'young', 'father', 'left', 
'day', 'yet', 'first', 'once', 'took', 'its', 'eyes', 
'long', 'miss', 'through', 'asked', 'most', 'saw', 
'oh', 'morning', 'right', 'last', 'like', 'say', 'tell', 
't', 'sherlock', 'their', 'go', 'own', 'after', 'away', 
'never', 'good', 'nothing', 'case', 'however', 'quite', 
'found', 'made', 'house', 'such', 'heard', 'way', 'yes', 
'hand', 'much', 'matter', 'where', 'might', 'just', 
'room', 'any', 'face', 'here', 'back', 'door', 'how', 
'them', 'two', 'other', 'came', 'time', 'did', 'than', 
'come', 'before', 'must', 'only', 'know', 'about', 
'shall', 'think', 'more', 'over', 'us', 'well', 'am', 
'or', 'may', 'they', ';', 'our', 'should', 'now', 'see', 
'down', 'can', 'some', 'if', 'will', 'mr.', 'little', 
'who', 'into', 'do', 'has', 'could', 'up', 'man', 'out', 
'when', 'would', 'an', 'are', 'by', '!', 'were', 's', 
'then', 'one', 'all', 'on', 'no', 'what', 'been', 'your', 
'very', 'him', 'her', 'she', 'so', ''', 'holmes', 'upon', 
'this', 'said', 'from', 'there', 'we', 'me', 'be', 'but', 
'not', 'for', '?', 'at', 'which', 'with', 'had', 'as', 
'have', 'my', ''', 'is', 'his', 'was', 'you', 'he', 'it', 
'that', 'in', '"', 'a', 'of', 'to', '"', 'and', 'i', '.', 
'the', ',']

You can compare the different stopword lists and pick the one that best suits  
your needs.
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Playing with 

Grammar
Grammar is one of the main building blocks of language. Each human language, and 
programming language for that matter, has a set of rules that every person speaking it has 
to follow because otherwise, they risk not being understood. These grammatical rules can 
be uncovered using NLP and are useful for extracting data from sentences. For example, 
using information about the grammatical structure of text, we can parse out subjects, 
objects, and relationships between different entities.

In this chapter, you will learn how to use different packages to reveal the grammatical 
structure of words and sentences, as well as extract certain parts of sentences. We will 
cover the following topics: 

•	 Counting nouns – plural and singular nouns

•	 Getting the dependency parse

•	 Splitting sentences into clauses

•	 Extracting noun chunks

•	 Extracting entities and relations

•	 Extracting subjects and objects of the sentence

•	 Finding references – anaphora resolution
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Let's get started!

Technical requirements
Follow these steps to install the packages and models required for this chapter:

pip install inflect

python -m spacy download en_core_web_md

pip install textacy

For the Finding references: anaphora resolution recipe, we have to install the 
neuralcoref package. To install this package, use the following command:

pip install neuralcoref

In case, when running the code, you encounter errors that mention spacy.strings.
StringStore size changed, you might need to install neuralcoref from  
the source:

pip uninstall neuralcoref

git clone https://github.com/huggingface/neuralcoref.git

cd neuralcoref

pip install -r requirements.txt

pip install -e

For more information about installation and usage, see https://github.com/
huggingface/neuralcoref.

Counting nouns – plural and singular nouns
In this recipe, we will do two things: 

•	 Determine whether a noun is plural or singular

•	 Turn plural nouns into singular nouns and vice versa

You might need these two things in a variety of tasks: in making your chatbot speak in 
grammatically correct sentences, in coming up with text classification features, and so on.

https://github.com/huggingface/neuralcoref
https://github.com/huggingface/neuralcoref
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Getting ready
We will be using nltk for this task, as well as the inflect module we described in 
Technical requirements section. The code for this chapter is located in the Chapter02 
directory of this book's GitHub repository. We will be working with the first part of the 
Adventures of Sherlock Holmes text, available in the sherlock_holmes_1.txt file.

How to do it…
We will be using code from Chapter 1, Learning NLP Basics, to tokenize the text into 
words and tag them with parts of speech. Then, we will use one of two ways to determine 
if a noun is singular or plural, and then use the inflect module to change the number 
of the noun.

Your steps should be formatted like so:

1.	 Do the necessary imports:

import nltk

from nltk.stem import WordNetLemmatizer

import inflect

from Chapter01.pos_tagging import pos_tag_nltk

2.	 Read in the text file:

file = open(filename, "r", encoding="utf-8")

sherlock_holmes_text = file.read()

3.	 Remove newlines for better readability:

sherlock_holmes_text = sherlock_holmes_text.replace("\n", 
" ")

4.	 Do part of speech tagging:

words_with_pos = pos_tag_nltk(sherlock_holmes_text)

5.	 Define the get_nouns function, which will filter out the nouns from all the words:

def get_nouns(words_with_pos):

    noun_set = ["NN", "NNS"]

    nouns = [word for word in words_with_pos if 

             word[1] in noun_set]

    return nouns
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6.	 Run the preceding function on the list of POS-tagged words and print it:

nouns = get_nouns(words_with_pos)

print(nouns)

The resulting list will be as follows:
[('woman', 'NN'), ('name', 'NN'), ('eyes', 'NNS'), 
('whole', 'NN'), ('sex', 'NN'), ('emotion', 'NN'), 
('akin', 'NN'), ('emotions', 'NNS'), ('cold', 'NN'), 
('precise', 'NN'), ('mind', 'NN'), ('reasoning', 
'NN'), ('machine', 'NN'), ('world', 'NN'), ('lover', 
'NN'), ('position', 'NN'), ('passions', 'NNS'), 
('gibe', 'NN'), ('sneer', 'NN'), ('things', 'NNS'), 
('observer—excellent', 'NN'), ('veil', 'NN'), ('men', 
'NNS'), ('motives', 'NNS'), ('actions', 'NNS'), 
('reasoner', 'NN'), ('intrusions', 'NNS'), ('delicate', 
'NN'), ('temperament', 'NN'), ('distracting', 'NN'), 
('factor', 'NN'), ('doubt', 'NN'), ('results', 'NNS'), 
('instrument', 'NN'), ('crack', 'NN'), ('high-power', 
'NN'), ('lenses', 'NNS'), ('emotion', 'NN'), ('nature', 
'NN'), ('woman', 'NN'), ('woman', 'NN'), ('memory', 
'NN')]

7.	 To determine whether a noun is singular or plural, we have two options. The 
first option is to use the NLTK tags, where NN indicates a singular noun and NNS 
indicates a plural noun. The following function uses the NLTK tags and returns 
True if the input noun is plural:

def is_plural_nltk(noun_info):

    pos = noun_info[1]

    if (pos == "NNS"):

        return True

    else:

        return False

8.	 The other option is to use the WordNetLemmatizer class in the nltk.stem 
package. The following function returns True if the noun is plural:

def is_plural_wn(noun):

    wnl = WordNetLemmatizer()

    lemma = wnl.lemmatize(noun, 'n')
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    plural = True if noun is not lemma else False

    return plural

9.	 The following function will change a singular noun into plural:

def get_plural(singular_noun):

    p = inflect.engine()

    return p.plural(singular_noun)

10.	 The following function will change a plural noun into singular:

def get_singular(plural_noun):

    p = inflect.engine()

    plural = p.singular_noun(plural_noun)

    if (plural):

        return plural

    else:

        return plural_noun

We can now use the two preceding functions to return a list of nouns changed into 
plural or singular, depending on the original noun. The following code uses the 
is_plural_wn function to determine if the noun is plural. You can also use the 
is_plural_nltk function:

def plurals_wn(words_with_pos):

    other_nouns = []

    for noun_info in words_with_pos:

        word = noun_info[0]

        plural = is_plural_wn(word)

        if (plural):

            singular = get_singular(word)

            other_nouns.append(singular)

        else:

            plural = get_plural(word)

            other_nouns.append(plural)

    return other_nouns

11.	 Use the preceding function to return a list of changed nouns:

other_nouns_wn = plurals_wn(nouns)
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The result will be as follows:
['women', 'names', 'eye', 'wholes', 'sexes', 
'emotions', 'akins', 'emotion', 'colds', 'precises', 
'minds', 'reasonings', 'machines', 'worlds', 'lovers', 
'positions', 'passion', 'gibes', 'sneers', 'thing', 
'observer—excellents', 'veils', 'mens', 'motive', 
'action', 'reasoners', 'intrusion', 'delicates', 
'temperaments', 'distractings', 'factors', 'doubts', 
'result', 'instruments', 'cracks', 'high-powers', 'lens', 
'emotions', 'natures', 'women', 'women', 'memories']

How it works…
Number detection works in one of two ways. One is by reading the part of speech tag 
assigned by NLTK. If the tag is NN, then the noun is singular, and if it is NNS, then it's 
plural. The other way is to use the WordNet lemmatizer and to compare the lemma and 
the original word. The noun is singular if the lemma and the original input noun are the 
same, and plural otherwise.

To find the singular form of a plural noun and the plural form of a singular noun, we  
can use the inflect package. Its plural and singular_noun methods return the 
correct forms.

In step 1, we import the necessary modules and functions. You can find the pos_tag_
nltk function in this book's GitHub repository, in the Chapter01 module, in the pos_
tagging.py file It uses the code we wrote for Chapter 1, Learning NLP Basics. In step 
2, we read in the file's contents into a string. In step 3, we remove newlines from the text; 
this is an optional step. In step 4, we use the pos_tag_nltk function defined in the code 
from the previous chapter to tag parts of speech for the words. 

In step 5, we create the get_nouns function, which filters out the words that are singular 
or plural nouns. In this function, we use a list comprehension and keep only words that 
have the NN or NNS tags.

In step 6, we run the preceding function on the word list and print the result. As you will 
notice, NLTK tags several words incorrectly as nouns, such as cold and precise. These 
errors will propagate into the next steps, and it is something to keep in mind when 
working with NLP tasks.



Getting the dependency parse     31

In steps 7 and 8, we define two functions to determine whether a noun is singular or 
plural. In step 7, we define the is_plural_nltk function, which uses NLTK POS 
tagging information to determine if the noun is plural. In step 8, we define the is_
plural_wn function, which compares the noun with its lemma, as determined by the 
NLTK lemmatizer. If those two forms are the same, the noun is singular, and if they 
are different, the noun is plural. Both functions can return incorrect results that will 
propagate downstream.

In step 9, we define the get_plural function, which will return the plural form of the 
noun by using the inflect package. In step 10, we define the get_singular function, 
which uses the same package to get the singular form of the noun. If there is no output 
from inflect, the function returns the input.

In step 11, we define the plurals_wn function, which takes in a list of words with the 
parts of speech that we got in step 6 and changes plural nouns into singular and singular 
nouns into plural.

In step 12, we run the plurals_wn function on the nouns list. Most of the words are 
changed correctly; for example, women and emotion. We also see two kinds of error 
propagation, where either the part of speech or number of the noun were determined 
incorrectly. For example, the word akins appears here because akin was incorrectly labeled 
as a noun. On the other hand, the word men was incorrectly determined to be singular 
and resulted in the wrong output; that is, mens.

There's more…
The results will differ, depending on which is_plural/is_singular function you 
use. If you tag the word men with its part of speech, you will see that NLTK returns the 
NNS tag, which means that the word is plural. You can experiment with different inputs 
and see which function works best for you.

Getting the dependency parse
A dependency parse is a tool that shows dependencies in a sentence. For example, in 
the sentence The cat wore a hat, the root of the sentence in the verb, wore, and both the 
subject, the cat, and the object, a hat, are dependents. The dependency parse can be very 
useful in many NLP tasks since it shows the grammatical structure of the sentence,  
along with the subject, the main verb, the object, and so on. It can be then used in 
downstream processing.
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Getting ready
We will use spacy to create the dependency parse. If you already downloaded it while 
working on the previous chapter, you do not need to do anything more. Otherwise, please 
follow the instructions at the beginning of Chapter 1, Learning NLP Basics, to install the 
necessary packages.

How to do it…
We will take a few sentences from the sherlock_holmes1.txt file to illustrate the 
dependency parse. The steps are as follows:

1.	 Import spacy:

import spacy

2.	 Load the sentence to be parsed:

sentence = 'I have seldom heard him mention her under any 
other name.'

3.	 Load the spacy engine:

nlp = spacy.load('en_core_web_sm')

4.	 Process the sentence using the spacy engine:

doc = nlp(sentence)

5.	 The dependency information will be contained in the doc object. We can see the 
dependency tags by looping through the tokens in doc:

for token in doc:

    print(token.text, "\t", token.dep_, "\t",

    spacy.explain(token.dep_))

6.	 The result will be as follows. To learn what each of the tags means, use spaCy's 
explain function, which shows the meanings of the tags: 

I        nsubj   nominal subject

have     aux     auxiliary

seldom   advmod          adverbial modifier

heard    ROOT    None

him      nsubj   nominal subject
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mention          ccomp   clausal complement

her      dobj    direct object

under    prep    prepositional modifier

any      det     determiner

other    amod    adjectival modifier

name     pobj    object of preposition

.        punct   punctuation

7.	 To explore the dependency parse structure, we can use the attributes of the Token 
class. Using its ancestors and children attributes, we can get the tokens that 
this token depends on and the tokens that depend on it, respectively. The code to get 
these ancestors is as follows:

for token in doc:

    print(token.text)

    ancestors = [t.text for t in token.ancestors]

    print(ancestors)

The output will be as follows:
I

['heard']

have

['heard']

seldom

['heard']

heard

[]

him

['mention', 'heard']

mention

['heard']

her

['mention', 'heard']

under

['mention', 'heard']

any

['name', 'under', 'mention', 'heard']

other
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['name', 'under', 'mention', 'heard']

name

['under', 'mention', 'heard']

.

['heard']

8.	 To see all the children token, use the following code:

for token in doc:

    print(token.text)

    children = [t.text for t in token.children]

    print(children)

9.	 The output will be as follows:

I

[]

have

[]

seldom

[]

heard

['I', 'have', 'seldom', 'mention', '.']

him

[]

mention

['him', 'her', 'under']

her

[]

under

['name']

any

[]

other

[]
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name

['any', 'other']

.

[]

10.	 We can also see the subtree that the token is in:

for token in doc:

    print(token.text)

    subtree = [t.text for t in token.subtree]

    print(subtree)

This will produce the following output:
I

['I']

have

['have']

seldom

['seldom']

heard

['I', 'have', 'seldom', 'heard', 'him', 'mention', 'her', 
'under', 'any', 'other', 'name', '.']

him

['him']

mention

['him', 'mention', 'her', 'under', 'any', 'other', 
'name']

her

['her']

under

['under', 'any', 'other', 'name']

any

['any']

other

['other']
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name

['any', 'other', 'name']

.

['.']

How it works…
The spacy NLP engine does the dependency parse as part of its overall analysis. The 
dependency parse tags explain the role of each word in the sentence. ROOT is the main 
word that all the other words depend on, usually the verb.

From the subtrees that each word is part of, we can see the grammatical phrases that 
appear in the sentence, such as the noun phrase (NP) any other name and prepositional 
phrase (PP) under any other name. 

The dependency chain can be seen by following the ancestor links for each word. For 
example, if we look at the word name, we will see that its ancestors are under, mention, 
and heard. The immediate parent of name is under, under's parent is mention, and 
mention's parent is heard. A dependency chain will always lead to the root, or the main 
word, of the sentence.

In step 1, we import the spacy package. In step 2, we initialize the variable sentence that 
contains the sentence to be parsed. In step 3, we load the spacy engine and in step 4, we 
use the engine to process the sentence.

In step 5, we print out each token's dependency tag and use the spacy.explain 
function to see what those tags mean. 

In step 6, we print out the ancestors of each token. The ancestors will start at the parent 
and go up until they reach the root. For example, the parent of him is mention, and the 
parent of mention is heard, so both mention and heard are listed as ancestors of him.

In step 7, we print children of each token. Some tokens, such as have, do not have any 
children, while others have several. The token that will always have children, unless the 
sentence consists of one word, is the root of the sentence; in this case, heard.

In step 8, we print the subtree for each token. For example, the word under is in the 
subtree under any other name.
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See also
The dependency parse can be visualized graphically using the displacy package, which 
is part of spacy. Please see Chapter 8, Visualizing Text Data, for a detailed recipe on how 
to perform visualization.

Splitting sentences into clauses
When we work with text, we frequently deal with compound (sentences with two parts 
that are equally important) and complex sentences (sentences with one part depending 
on another). It is sometimes useful to split these composite sentences into its component 
clauses for easier processing down the line. This recipe uses the dependency parse from 
the previous recipe.

Getting ready
You will only need the spacy package in this recipe.

How to do it…
We will work with two sentences, He eats cheese, but he won't eat ice cream and If it 
rains later, we won't be able to go to the park. Other sentences may turn out to be more 
complicated to deal with, and I leave it as an exercise for you to split such sentences. 
Follow these steps:

1.	 Import the spacy package:

import spacy

2.	 Load the spacy engine:

nlp = spacy.load('en_core_web_sm')

3.	 Set the sentence to He eats cheese, but he won't eat ice cream:

sentence = "He eats cheese, but he won't eat ice cream."

4.	 Process the sentence with the spacy engine:

doc = nlp(sentence)



38     Playing with Grammar

5.	 It is instructive to look at the structure of the input sentence by printing out the 
part of speech, dependency tag, ancestors, and children of each token. This can be 
accomplished using the following code:

for token in doc:

    ancestors = [t.text for t in token.ancestors]

    children = [t.text for t in token.children]

    print(token.text, "\t", token.i, "\t", 

          token.pos_, "\t", token.dep_, "\t", 

          ancestors, "\t", children)

6.	 We will use the following function to find the root token of the sentence, which is 
usually the main verb. In instances where there is a dependent clause, it is the verb 
of the independent clause:

def find_root_of_sentence(doc):

    root_token = None

    for token in doc:

        if (token.dep_ == "ROOT"):

            root_token = token

    return root_token

7.	 We will now find the root token of the sentence:

root_token = find_root_of_sentence(doc)

8.	 We can now use the following function to find the other verbs in the sentence:

def find_other_verbs(doc, root_token):

    other_verbs = []

    for token in doc:

        ancestors = list(token.ancestors)

        if (token.pos_ == "VERB" and len(ancestors) == 1\

            and ancestors[0] == root_token):

            other_verbs.append(token)

    return other_verbs

9.	 Use the preceding function to find the remaining verbs in the sentence:

other_verbs = find_other_verbs(doc, root_token)
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We will use the following function to find the token spans for each verb:
def get_clause_token_span_for_verb(verb, doc, all_verbs):

    first_token_index = len(doc)

    last_token_index = 0

    this_verb_children = list(verb.children)

    for child in this_verb_children:

        if (child not in all_verbs):

            if (child.i < first_token_index):

                first_token_index = child.i

            if (child.i > last_token_index):

                last_token_index = child.i

    return(first_token_index, last_token_index)

10.	 We will put together all the verbs in one array and process each using the preceding 
function. This will return a tuple of start and end indices for each verb's clause:

token_spans = []   

all_verbs = [root_token] + other_verbs

for other_verb in all_verbs:

    (first_token_index, last_token_index) = \

     get_clause_token_span_for_verb(other_verb, 

                                    doc, all_verbs)

    token_spans.append((first_token_index, 

                        last_token_index))

11.	 Using the start and end indices, we can now put together token spans for each 
clause. We sort the sentence_clauses list at the end so that the clauses are in 
the order they appear in the sentence:

sentence_clauses = []

for token_span in token_spans:

    start = token_span[0]

    end = token_span[1]

    if (start < end):

        clause = doc[start:end]

        sentence_clauses.append(clause)

sentence_clauses = sorted(sentence_clauses, 

                          key=lambda tup: tup[0])
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12.	 Now, we can print the final result of the processing for our initial sentence; that is, 
He eats cheese, but he won't eat ice cream:

clauses_text = [clause.text for clause in sentence_
clauses]

print(clauses_text)

The result is as follows: 
['He eats cheese,', 'he won't eat ice cream']

Important note
The code in this section will work for some cases, but not others; I encourage 
you to test it out on different cases and amend the code. 

How it works…
The way the code works is based on the way complex and compound sentences are 
structured. Each clause contains a verb, and one of the verbs is the main verb of the 
sentence (root). The code looks for the root verb, always marked with the ROOT 
dependency tag in spaCy processing, and then looks for the other verbs in the sentence. 

The code then uses the information about each verb's children to find the left and right 
boundaries of the clause. Using this information, the code then constructs the text of the 
clauses. A step-by-step explanation follows.

In step 1, we import the spaCy package and in step 2, we load the spacy engine. In step 
3, we set the sentence variable and in step 4, we process it using the spacy engine. In step 
5, we print out the dependency parse information. It will help us determine how to split 
the sentence into clauses.

In step 6, we define the find_root_of_sentence function, which returns the token 
that has a dependency tag of ROOT. In step 7, we find the root of the sentence we are using 
as an example. 

In step 8, we define the find_other_verbs function, which will find other verbs in the 
sentence. In this function, we look for tokens that have the VERB part of speech tag and 
has the root token as its only ancestor. In step 9, we apply this function.

In step 10, we define the get_clause_token_span_for_verb function, which will 
find the beginning and ending index for the verb. The function goes through all the verb's 
children; the leftmost child's index is the beginning index, while the rightmost child's 
index is the ending index for this verb's clause.
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In step 11, we use the preceding function to find the clause indices for each verb. The 
token_spans variable contains the list of tuples, where the first tuple element is the 
beginning clause index and the second tuple element is the ending clause index. 

In step 12, we create token Span objects for each clause in the sentence using the list of 
beginning and ending index pairs we created in step 11. We get the Span object by slicing 
the Doc object and then appending the resulting Span objects to a list. As a final step, 
we sort the list to make sure that the clauses in the list are in the same order as in the 
sentence.

In step 13, we print the clauses in our sentence. You will notice that the word but is 
missing, since its parent is the root verb eats, although it appears in the other clause. The 
exercise of including but is left to you.

Extracting noun chunks
Noun chunks are known in linguistics as noun phrases. They represent nouns and 
any words that depend on and accompany nouns. For example, in the sentence The big 
red apple fell on the scared cat, the noun chunks are the big red apple and the scared cat. 
Extracting these noun chunks is instrumental to many other downstream NLP tasks, such 
as named entity recognition and processing entities and relationships between them. In 
this recipe, we will explore how to extract named entities from a piece of text. 

Getting ready
We will be using the spacy package, which has a function for extracting noun chunks 
and the text from the sherlock_holmes_1.txt file as an example.

In this section, we will use another spaCy language model, en_core_web_md. Follow 
the instructions in the Technical requirements section to learn how to download it.

How to do it…
Use the following steps to get the noun chunks from a piece of text:

1.	 Import the spacy package and the read_text_file from the code files of 
chapter 1:

import spacy

from Chapter01.dividing_into_sentences import read_text_
file
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Important note
If you are importing functions from other chapters, run it from the directory 
that precedes Chapter02 and use the python -m Chapter02.
extract_noun_chunks command.

2.	 Read in the sherlock_holmes_1.txt file:

text = read_text_file("sherlock_holmes_1.txt")

3.	 Initialize the spacy engine and then use it to process the text:

nlp = spacy.load('en_core_web_md')

doc = nlp(text)

4.	 The noun chunks are contained in the doc.noun_chunks class variable. We can 
print out the chunks:

for noun_chunk in doc.noun_chunks:

    print(noun_chunk.text)

This is the partial result. See this book's GitHub repository for the full printout, 
which can be found in the Chapter02/all_text_noun_chunks.txt file:

Sherlock Holmes

she

the_ woman

I

him

her

any other name

his eyes

she

the whole

…

How it works…
The spaCy Doc object, as we saw in the previous recipe, contains information about 
grammatical relationships between words in a sentence. Using this information, spaCy 
determines noun phrases or chunks contained in the text.
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In step 1, we import spacy and the read_text_file function from the Chapter01 
module. In step 2, we read in the text from the sherlock_holmes_1.txt file.

In step 3, we initialize the spacy engine with a different model, en_core_web_md, 
which is larger and will most likely give better results. There is also the large model, en_
core_web_lg, which is even larger. It will give better results, but the processing will be 
slower. After loading the engine, we run it on the text we loaded in step 2.

In step 4, we print out the noun chunks that appear in the text. As you can see, it gets the 
pronouns, nouns, and noun phrases that are in the text correctly.

There's more…
Noun chunks are spaCy Span objects and have all their properties. See the official 
documentation at https://spacy.io/api/token.

Let's explore some properties of noun chunks:

1.	 Import the spacy package:

import spacy

2.	 Load the spacy engine:

nlp = spacy.load('en_core_web_sm')

3.	 Set the sentence to All emotions, and that one particularly, were abhorrent to his cold, 
precise but admirably balanced mind:

sentence = "All emotions, and that one particularly, were 
abhorrent to his cold, precise but admirably balanced 
mind."

4.	 Process the sentence with the spacy engine:

doc = nlp(sentence)

5.	 Let's look at the noun chunks in this sentence:

for noun_chunk in doc.noun_chunks:

    print(noun_chunk.text)

6.	 This is the result:

All emotions

his cold, precise but admirably balanced mind
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7.	 Some of the basic properties of noun chunks are its start and end offsets; we can 
print them out together with the noun chunks:

for noun_chunk in doc.noun_chunks:

    print(noun_chunk.text, "\t", noun_chunk.start, "\t", 

          noun_chunk.end)

The result will be as follows:
All emotions     0       2

his cold, precise but admirably balanced mind    11      
19

8.	 We can also print out the sentence where the noun chunk belongs:

for noun_chunk in doc.noun_chunks:

    print(noun_chunk.text, "\t", noun_chunk.sent)

Predictably, this results in the following:
All emotions     All emotions, and that one particularly, 
were abhorrent to his cold, precise but admirably 
balanced mind.

his cold, precise but admirably balanced mind    All 
emotions, and that one particularly, were abhorrent to 
his cold, precise but admirably balanced mind.

9.	 Just like a sentence, any noun chunk includes a root, which is the token that all 
other tokens depend on. In a noun phrase, that is the noun:

for noun_chunk in doc.noun_chunks:

    print(noun_chunk.text, "\t", noun_chunk.root.text)

10.	 The result will be as follows:

All emotions     emotions

his cold, precise but admirably balanced mind    mind

11.	 Another very useful property of Span is similarity, which is the semantic 
similarity of different texts. Let's try it out. We will load another noun chunk, 
emotions, and process it using spacy:

other_span = "emotions"

other_doc = nlp(other_span)
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12.	 We can now compare it to the noun chunks in the sentence by using this code:

for noun_chunk in doc.noun_chunks:

    print(noun_chunk.similarity(other_doc))

This is the result:
UserWarning: [W007] The model you're using has no word 
vectors loaded, so the result of the Span.similarity 
method will be based on the tagger, parser and NER, which 
may not give useful similarity judgements. This may 
happen if you're using one of the small models, e.g. `en_
core_web_sm`, which don't ship with word vectors and only 
use context-sensitive tensors. You can always add your 
own word vectors, or use one of the larger models instead 
if available.

  print(noun_chunk.similarity(other_doc))

All emotions

0.373233604751925

his cold, precise but admirably balanced mind

0.030945358271699138

13.	 Although the result makes sense, with all emotions being more similar to emotions 
than to his cold, precise but admirably balanced mind, we get a warning. In 
order to fix this, we will use the medium spacy model, which contains vector 
representations for words. Substitute this line for the line in step 2; the rest of the 
code will remain the same:

nlp = spacy.load('en_core_web_md')

14.	 Now, when we run this code with the new model, we get this result:

All emotions

0.8876554549427152

that one

0.37378867755652434

his cold, precise but admirably balanced mind

0.5102475977383759

The result shows the similarity of all emotions to emotions being very high, 
0.89, and to his cold, precise but admirably balanced mind, 0.51. 
We can also see that the larger model detects another noun chunk, that one.
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Important note
A larger spaCy model, such as en_core_web_md, takes up more space, 
but is more precise.

See also
The topic of semantic similarity will be explored in more detail in Chapter 3, Representing 
Text: Capturing Semantics.

Extracting entities and relations
It is possible to extract triplets of the subject entity-relation-object entity from documents, 
which are frequently used in knowledge graphs. These triplets can then be analyzed for 
further relations and inform other NLP tasks, such as searches.

Getting ready
For this recipe, we will need another Python package based on spacy, called textacy. 
The main advantage of this package is that it allows regular expression-like searching for 
tokens based on their part of speech tags. See the installation instructions in the Technical 
requirements section at the beginning of this chapter for more information.

How to do it…
We will find all verb phrases in the text, as well as all the noun phrases (see the previous 
section). Then, we will find the left noun phrase (subject) and the right noun phrase 
(object) that relate to a particular verb phrase. We will use two simple sentences, All living 
things are made of cells and Cells have organelles. Follow these steps:

1.	 Import spaCy and textacy:

import spacy

import textacy

from Chapter02.split_into_clauses import find_root_of_
sentence

2.	 Load the spacy engine:

nlp = spacy.load('en_core_web_sm')
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3.	 We will get a list of sentences that we will be processing:

sentences = ["All living things are made of cells.", 

             "Cells have organelles."]

4.	 In order to find verb phrases, we will need to compile regular expression-like 
patterns for the part of speech combinations of the words that make up the 
verb phrase. If we print out parts of speech of verb phrases of the two preceding 
sentences, are made of and have, we will see that the part of speech sequences are 
AUX, VERB, ADP, and AUX.

verb_patterns = [[{"POS":"AUX"}, {"POS":"VERB"}, 

                  {"POS":"ADP"}], 

                 [{"POS":"AUX"}]]

5.	 The contains_root function checks if a verb phrase contains the root of the 
sentence:

def contains_root(verb_phrase, root):

    vp_start = verb_phrase.start

    vp_end = verb_phrase.end

    if (root.i >= vp_start and root.i <= vp_end):

        return True

    else:

        return False

6.	 The get_verb_phrases function gets the verb phrases from a spaCy Doc object:

def get_verb_phrases(doc):

    root = find_root_of_sentence(doc)

    verb_phrases = textacy.extract.matches(doc, 

                                           verb_patterns)

    new_vps = []

    for verb_phrase in verb_phrases:

        if (contains_root(verb_phrase, root)):

            new_vps.append(verb_phrase)

    return new_vps
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7.	 The longer_verb_phrase function finds the longest verb phrase:

def longer_verb_phrase(verb_phrases):

    longest_length = 0

    longest_verb_phrase = None

    for verb_phrase in verb_phrases:

        if len(verb_phrase) > longest_length:

            longest_verb_phrase = verb_phrase

    return longest_verb_phrase

8.	 The find_noun_phrase function will look for noun phrases either on the left- or 
right-hand side of the main verb phrase:

def find_noun_phrase(verb_phrase, noun_phrases, side):

    for noun_phrase in noun_phrases:

        if (side == "left" and \

            noun_phrase.start < verb_phrase.start):

            return noun_phrase

        elif (side == "right" and \

              noun_phrase.start > verb_phrase.start):

            return noun_phrase

9.	 In this function, we will use the preceding functions to find triplets of subject-
relation-object in the sentences:

def find_triplet(sentence):

    doc = nlp(sentence)

    verb_phrases = get_verb_phrases(doc)

    noun_phrases = doc.noun_chunks

    verb_phrase = None

    if (len(verb_phrases) > 1):

        verb_phrase = \

        longer_verb_phrase(list(verb_phrases))

    else:

        verb_phrase = verb_phrases[0]

    left_noun_phrase = find_noun_phrase(verb_phrase, 

                                        noun_phrases, 

                                        "left")

    right_noun_phrase = find_noun_phrase(verb_phrase, 
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                                         noun_phrases, 

                                         "right")

    return (left_noun_phrase, verb_phrase, 

            right_noun_phrase)

10.	 We can now loop through our sentence list to find its relation triplets:

for sentence in sentences:

    (left_np, vp, right_np) = find_triplet(sentence)

    print(left_np, "\t", vp, "\t", right_np)

11.	 The result will be as follows:

All living things        are made of     cells

Cells    have    organelles

How it works…
The code finds triplets of subject-relation-object by looking for the root verb phrase and 
finding its surrounding nouns. The verb phrases are found using the textacy package, 
which provides a very useful tool for finding patterns of words of certain parts of speech. 
In effect, we can use it to write small grammars describing the necessary phrases. 

Important note
The textacy package, while very useful, is not bug-free, so use it with 
caution.

Once the verb phrases have been found, we can prune through the sentence noun chunks 
to find those that are around the verb phrase containing the root. 

A step-by-step explanation follows.

In step 1, we import the necessary packages and the find_root_of_sentence 
function from the previous recipe. In step 2, we initialize the spacy engine, and in step 3, 
we initialize a list with the sentences we will be using. 

In step 4, we compile part of speech patterns that we will use for finding relations. For 
these two sentences, the patterns are AUX, VERB, ADP, and AUX. 

In step 5, we create the contains_root function, which will make sure that a verb 
phrase contains the root of the sentence. It does that by checking the index of the root and 
making sure that it falls within the verb phrase span boundaries.
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In step 6, we create the get_verb_phrases function, which extracts all the verb 
phrases from the Doc object that is passed in. It uses the part of speech patterns we 
created in step 4.

In step 7, we create the longer_verb_phrase function, which will find the longest 
verb phrase from a list. We do this because some verb phrases might be shorter than 
necessary. For example, in the sentence All living things are made of cells, both are and are 
made of will be found.

In step 8, we create the find_noun_phrase function, which finds noun phrases on 
either side of the verb. We specify the side as a parameter.

In step 9, we create the find_triplet function, which will find triplets of subject-
relation-object in a sentence. In this function, first, we process the sentence with spaCy. 
Then, we use the functions defined in the previous steps to find the longest verb phrase 
and the nouns to the left- and right-hand sides of it.

In step 10, we apply the find_triplet function to the two sentences we defined at the 
beginning. The resulting triplets are correct. 

In this recipe, we made a few assumptions that will not always be correct. The first 
assumption is that there will only be one main verb phrase. The second assumption is that 
there will be a noun chunk on either side of the verb phrase. Once we start working with 
sentences that are complex or compound, or contain relative clauses, these assumptions 
no longer hold. I leave it as an exercise for you to work with more complex cases.

There's more…
Once you've parsed out the entities and relations, you might want to input them into a 
knowledge graph for further use. There are a variety of tools you can use to work with 
knowledge graphs, such as neo4j. 

Extracting subjects and objects of the 
sentence
Sometimes, we might need to find the subject and direct objects of the sentence, and that 
can easily be accomplished with the spacy package.

Getting ready
We will be using the dependency tags from spacy to find subjects and objects. 
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How to do it…
We will use the subtree attribute of tokens to find the complete noun chunk that is the 
subject or direct object of the verb (see the Getting the dependency parse recipe for more 
information). Let's get started:

1.	 Import spacy:

import spacy

2.	 Load the spacy engine:

nlp = spacy.load('en_core_web_sm')

3.	 We will get the list of sentences we will be processing:

sentences=["The big black cat stared at the small dog.",

           "Jane watched her brother in the evenings."]

4.	 We will use two functions to find the subject and the direct object of the sentence. 
These functions will loop through the tokens and return the subtree that contains 
the token with subj or dobj in the dependency tag, respectively. Here is the 
subject function:

def get_subject_phrase(doc):

    for token in doc:

        if ("subj" in token.dep_):

            subtree = list(token.subtree)

            start = subtree[0].i

            end = subtree[-1].i + 1

            return doc[start:end]

5.	 Here is the direct object function. If the sentence does not have a direct object, it 
will return None:

def get_object_phrase(doc):

    for token in doc:

        if ("dobj" in token.dep_):

            subtree = list(token.subtree)

            start = subtree[0].i
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            end = subtree[-1].i + 1

            return doc[start:end]

6.	 We can now loop through the sentences and print out their subjects and objects:

for sentence in sentences:

    doc = nlp(sentence)

    subject_phrase = get_subject_phrase(doc)

    object_phrase = get_object_phrase(doc)

    print(subject_phrase)

    print(object_phrase)

The result will be as follows. Since the first sentence does not have a direct object, 
None is printed out:

The big black cat

None

Jane

her brother

How it works…
The code uses the spacy engine to parse the sentence. Then, the subject function loops 
through the tokens, and if the dependency tag contains subj, it returns that token's 
subtree, which is a Span object. There are different subject tags, including nsubj for 
regular subjects and nsubjpass for subjects of passive sentences, so we want to look for 
both.

The object function works exactly the same as the subject function, except it looks for the 
token that has dobj (direct object) in its dependency tag. Since not all sentences have 
direct objects, it returns None in those cases.

In step 1, we import spaCy, and in step 2, we load the spacy engine. In step 3, we 
initialize a list with the sentences we will be processing.

In step 4, we create the get_subject_phrase function, which gets the subject of the 
sentence. It looks for the token that has a dependency tag that contains subj and then 
returns the subtree that contains that token. There are several subject dependency tags, 
including nsubj and nsubjpass (for a subject of a passive sentence), so we look for the 
most general pattern.
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In step 5, we create the get_object_phrase function, which gets the direct object of 
the sentence. It works similarly to the get_subject_phrase, but looks for the dobj 
dependency tag instead of a tag that contains "subj".

In step 6, we loop through the list of sentences we created in step 3, and use the preceding 
functions to find the subjects and direct objects in the sentences. For the sentence The 
big black cat stared at the small dog, the subject is the big black cat, and there is no direct 
object (the small dog is the object of the preposition at). For the sentence Jane watched her 
brother in the evenings, the subject is Jane and the direct object is her brother.

There's more…
We can look for other objects; for example, the dative objects of verbs such as give and 
objects of prepositional phrases. The functions will look very similar, with the main 
difference being the dependency tags; that is, dative for the dative object function and 
pobj for the prepositional object function. The prepositional object function will return a 
list since there can be more than one prepositional phrase in a sentence. Let's take a look:

1.	 The dative object function checks the tokens for the dative tag. It returns None if 
there are no dative objects:

def get_dative_phrase(doc):

    for token in doc:

        if ("dative" in token.dep_):

            subtree = list(token.subtree)

            start = subtree[0].i

            end = subtree[-1].i + 1

            return doc[start:end]

2.	 Here is the prepositional object function. It returns a list of objects of prepositions, 
but will be empty if there are none:

def get_prepositional_phrase_objs(doc):

    prep_spans = []

    for token in doc:

        if ("pobj" in token.dep_):

            subtree = list(token.subtree)

            start = subtree[0].i

            end = subtree[-1].i + 1

            prep_spans.append(doc[start:end])

    return prep_spans
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3.	 The prepositional phrase objects in the sentence Jane watched her brother in the 
evenings are as follows:

[the evenings]

4.	 And here is the dative object in the sentence Laura gave Sam a very interesting book:

Sam

It is left as an exercise for you to find the actual prepositional phrases with 
prepositions intact instead of just the noun phrases that are dependent on these 
prepositions.

Finding references – anaphora resolution
When we work on problems of extracting entities and relations from text (see the 
Extracting entities and relations recipe), we are faced with real text, and many of our 
entities might end up being extracted as pronouns, such as she or him. In order to tackle 
this issue, we need to perform anaphora resolution, or the process of substituting the 
pronouns with their referents.

Getting ready
For this task, we will be using a spaCy extension written by Hugging Face called 
neuralcoref (see https://github.com/huggingface/neuralcoref). As the 
name suggests, it uses neural networks to resolve pronouns. To install the package, use the 
following command:

pip install neuralcoref

How to do it…
Your steps should be formatted like so:

1.	 Import spacy and neuralcoref:

import spacy

import neuralcoref

2.	 Load the spaCy engine and add neuralcoref to its pipeline:

nlp = spacy.load('en_core_web_sm')

neuralcoref.add_to_pipe(nlp)

https://github.com/huggingface/neuralcoref
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3.	 We will process the following short text:

text = "Earlier this year, Olga appeared on a new song. 
She was featured on one of the tracks. The singer is 
assuring that her next album will be worth the wait."

4.	 Now that neuralcoref is part of the pipeline, we just process the text using 
spaCy and then output the result:

doc = nlp(text)

print(doc._.coref_resolved)

The output will be as follows:
Earlier this year, Olga appeared on a new song. Olga was 
featured on one of the tracks. Olga is assuring that Olga 
next album will be worth the wait.

How it works…
In step 1, we import the necessary packages. In step 2, we load the spacy engine and then 
add neuralcoref to its pipeline. In step 3, we initialize the text variable with the short 
text we will be using.

In step 4, we use the spacy engine to process the text and then print out the text with the 
pronouns resolved. You can see that the pronouns she and her, and even the phrase The 
singer, were all correctly substituted with the name Olga. 

The neuralcoref package uses custom spacy attributes that are set by using an 
underscore and the attribute name. The coref_resolved variable is a custom 
attribute that is set on a Doc object. To learn more about spaCy custom attributes, see 
https://spacy.io/usage/processing-pipelines#custom-components-
attributes.

There's more…
The neuralcoref package did a good job of recognizing different references to Olga 
in the previous section. However, if we use an unusual name, it might not work correctly. 
Here, we are using an example from the Hugging Face GitHub:

1.	 Let's use the following short text:

text = "Deepika has a dog. She loves him. The movie star 
has always been fond of animals."

https://spacy.io/usage/processing-pipelines#custom-components-attributes
https://spacy.io/usage/processing-pipelines#custom-components-attributes
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2.	 Upon processing this text using the preceding code, we get the following output:

Deepika has a dog. Deepika loves Deepika. Deepika has 
always been fond of animals.

3.	 Because the name Deepika is an unusual name, the model has trouble figuring 
out whether this person is a man or a woman and resolves the pronoun him to 
Deepika, although it is incorrect. In order to solve this problem, we can help it by 
characterizing who Deepika actually is. We will add neuralcoref to the spacy 
pipe, as follows:

neuralcoref.add_to_pipe(nlp, conv_dict={'Deepika': 
['woman']})

4.	 Now, let's process the result, as we did previously:

doc = nlp(text)

print(doc._.coref_resolved)

The output will be as follows:
Deepika has a dog. Deepika loves a dog. Deepika has 
always been fond of animals.

Once we give the coreference resolution module more information, it gives the 
correct output.



3
Representing Text – 

Capturing Semantics
Representing the meaning of words, phrases, and sentences in a form that's 
understandable to computers is one of the pillars of NLP processing. Machine learning, 
for example, represents each data point as a fixed-size vector, and we are faced with the 
question of how to turn words and sentences into vectors. Almost any NLP task starts 
with representing the text in some numeric form, and this chapter will show several ways 
of doing that. Once you've learned how to represent text as vectors, you will be able to 
perform tasks such as classification, which will be described in later chapters. 

We will also learn how to turn phrases such as fried chicken into vectors, how to train a 
word2vec model, and how to create a small search engine with semantic search. 

The following recipes will be covered in this chapter:

•	 Putting documents into a bag of words

•	 Constructing the N-gram model

•	 Representing texts with TF-IDF

•	 Using word embeddings

•	 Training your own embeddings model
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•	 Representing phrases – phrase2vec

•	 Using BERT instead of word embeddings

•	 Getting started with semantic search

Let's get started!

Technical requirements
The code for this chapter is located at https://github.com/PacktPublishing/
Python-Natural-Language-Processing-Cookbook/tree/master/
Chapter03. In this chapter, we will need additional packages. The installation 
instructions for Anaconda are as follows:

pip install sklearn

pip install gensim

pip install pickle

pip install langdetect

conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

pip install transformers

pip install -U sentence-transformers

pip install whoosh

In addition, we will use the models and datasets located at the following URLs:

•	 http://vectors.nlpl.eu/repository/20/40.zip

•	 https://www.kaggle.com/currie32/project-gutenbergs-top-20-
books

•	 https://www.yelp.com/dataset

•	 https://www.kaggle.com/PromptCloudHQ/imdb-data

Putting documents into a bag of words
A bag of words is the simplest way of representing text. We treat our text as a collection 
of documents, where documents are anything from sentences to book chapters to whole 
books. Since we usually compare different documents to each other or use them in a larger 
context of other documents, typically, we work with a collection of documents, not just a 
single document.

https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook/tree/master/Chapter03
http://vectors.nlpl.eu/repository/20/40.zip 
https://www.kaggle.com/currie32/project-gutenbergs-top-20-books 
https://www.kaggle.com/currie32/project-gutenbergs-top-20-books 
https://www.yelp.com/dataset 
https://www.kaggle.com/PromptCloudHQ/imdb-data 
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The bag of words method uses a training text that provides it with a list of words that it 
should consider. When encoding new sentences, it counts the number of occurrences each 
word makes in the document, and the final vector includes those counts for each word in 
the vocabulary. This representation can then be fed into a machine learning algorithm.

The decision of what represents a document lies with the engineer, and in many cases 
will be obvious. For example, if you are working on classifying tweets as belonging to a 
particular topic, a single tweet will be your document. If, on the other hand, you would 
like to find out which of the chapters of a book are most similar to a book you already 
have, then chapters are documents.

In this recipe, we will create a bag of words for the beginning of the Sherlock Holmes text. 
Our documents will be the sentences in the text.

Getting ready
For this recipe, we will be using the CountVectorizer class from the sklearn 
package. To install the package, use the following command:

pip install sklearn

Let's begin.

How to do it…
Our code will take a set of documents – sentences, in this case – and represent them as a 
matrix of vectors. We will use the file sherlock_holmes_1.txt for this task:

1.	 Import the CountVectorizer class and helper functions from Chapter 1, 
Learning NLP Basics:

from sklearn.feature_extraction.text import 
CountVectorizer

from Chapter01.dividing_into_sentences import read_text_
file,\

preprocess_text, divide_into_sentences_nltk

2.	 Define the get_sentences function, which will read in the text file, preprocess 
the text, and divide it into sentences:

def get_sentences(filename):

    sherlock_holmes_text = read_text_file(filename)

    sherlock_holmes_text = \
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    preprocess_text(sherlock_holmes_text)

    sentences = \

    divide_into_sentences_nltk(sherlock_holmes_text)

    return sentences

3.	 Create a function that will return the vectorizer and the final matrix:

def create_vectorizer(sentences):

    vectorizer = CountVectorizer()

    X = vectorizer.fit_transform(sentences)

    return (vectorizer, X)

4.	 Now, use the aforementioned functions on the sherlock_holmes_1.txt file:

sentences = get_sentences("sherlock_holmes_1.txt")

(vectorizer, X) = create_vectorizer(sentences)

5.	 We will now print the matrix representation of the text:

print(X)

6.	 The resulting matrix is a scipy.sparse.csr.csr_matrix object, and the 
beginning of its printout looks like this:

  (0, 114)      1

  (0, 99)       1

  (0, 47)       1

  (0, 98)       1

  (0, 54)       1

  (0, 10)       1

  (0, 0)        1

  (0, 124)      1

   …

7.	 It can also be turned into a numpy.matrixlib.defmatrix.matrix object, 
where each sentence is a vector. These sentence vectors can be used our machine 
learning algorithms later:

denseX = X.todense()
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8.	 Let's print the resulting matrix:

print(denseX)

9.	 Its printout looks like this:

[[1 0 0 ... 0 0 0]

 [0 0 0 ... 0 0 0]

 [0 0 0 ... 0 0 0]

 ...

 [0 0 0 ... 0 0 0]

 [0 0 0 ... 0 1 0]

 [0 0 0 ... 0 0 1]]

10.	 We can see all the words that were used in the document set:

print(vectorizer.get_feature_names())

11.	 The result will be as follows:

['_the_', 'abhorrent', 'actions', 'adjusted', 'adler', 
'admirable', 'admirably', 'admit', 'akin', 'all', 
'always', 'and', 'any', 'as', 'balanced', 'be', 
'but', 'cold', 'crack', 'delicate', 'distracting', 
'disturbing', 'doubt', 'drawing', 'dubious', 'eclipses', 
'emotion', 'emotions', 'excellent', 'eyes', 'factor', 
'false', 'felt', 'finely', 'for', 'from', 'gibe', 
'grit', 'has', 'have', 'he', 'heard', 'her', 'high', 
'him', 'himself', 'his', 'holmes', 'in', 'instrument', 
'into', 'introduce', 'intrusions', 'irene', 'is', 
'it', 'late', 'lenses', 'love', 'lover', 'machine', 
'memory', 'men', 'mental', 'mention', 'might', 'mind', 
'more', 'most', 'motives', 'name', 'nature', 'never', 
'not', 'observer', 'observing', 'of', 'one', 'or', 
'other', 'own', 'particularly', 'passions', 'perfect', 
'placed', 'position', 'power', 'precise', 'predominates', 
'questionable', 'reasoner', 'reasoning', 'results', 
'save', 'seen', 'seldom', 'sensitive', 'sex', 'she', 
'sherlock', 'sneer', 'softer', 'spoke', 'strong', 'such', 
'take', 'temperament', 'than', 'that', 'the', 'there', 
'they', 'things', 'throw', 'to', 'trained', 'under', 
'upon', 'veil', 'was', 'were', 'which', 'whole', 'with', 
'woman', 'world', 'would', 'yet']
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12.	 We can now also use the CountVectorizer object to represent new sentences 
that were not in the original document set. We will use the sentence I had seen 
little of Holmes lately, which is the next sentence after the excerpt in sherlock_
holmes_1.txt. The transform function expects a list of documents, so we will 
create a new list with the sentence as the only element:

new_sentence = "I had seen little of Holmes lately."

new_sentence_vector = vectorizer.transform([new_
sentence])

13.	 We can now print the sparse and dense matrices of this new sentence:

print(new_sentence_vector)

print(new_sentence_vector.todense())

14.	 The result will be as follows:

  (0, 47)       1

  (0, 76)       1

  (0, 94)       1

[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0

  0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]

Important Note
When running the code from this book's GitHub repository, run it like 
python -m Chapter03.bag_of_words. This will ensure the code 
you've imported from previous chapters works properly.
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How it works…
In step 1, we import the CountVectorizer class and helper functions. In step 
2, we define the get_sentences function, which reads the text of a file into a 
string, preprocesses it, and divides into sentences. In step 3, we define the create_
vectorizer function, which takes in a list of sentences and returns the vectorizer 
object and the final matrix representation of the sentences. We will use the vectorizer 
object later on to encode new, unseen sentences. In step 4, we use the preceding two 
functions on the sherlock_holmes_1.txt file. In step 5, we print out the matrix that 
was created from encoding the input text.

The CountVectorizer object makes a representation of each document by looking 
at whether each word is in its vocabulary or all the words seen in all the documents are 
present in a particular document. This can be seen in the sparse representation, where 
each tuple is a pair, with the document number and word number and the corresponding 
number, which is the number of times the word appears in that particular document. For 
example, the sixth entry in the sparse matrix is as follows:

(0, 0)        1

This means that there is one word with the number 0 in the document number 0. 
Document number 0 is the first sentence from our text: To Sherlock Holmes she is 
always _the_ woman. The word number 0 is the first word from the vocabulary listing, 
which is _the_. The ordering of words is alphabetical according to their appearance in 
the whole text. There is one word, _the_, in this sentence, and it is also the sixth word, 
corresponding to the sixth entry in the sparse matrix.

In step 6, we turn the sparse matrix into a dense one, where each sentence is represented 
with a vector. In step 7, we print the resulting matrix out, and we see that it is a nested list, 
where each individual list is a vector that represents each sentence in the text. In this form, 
the sentence representations are suitable to use in machine learning algorithms.

In step 8, we print out all the words that were used to create the vectorizer object. This 
list is sometimes needed to see which words are in the vocabulary, and which are not.

In step 9, we create a string variable with a new sentence that was not used to create the 
vectorizer object, and then apply the transformation to it. In step 10, we print out 
the sparse and dense matrices for this new sentence. It shows that three words from the 
vocabulary are present, which are seen, of, and Holmes. The other words were not  
present in the sentences the vectorizer was created on, and so they are absent from the 
new vectors.



64     Representing Text – Capturing Semantics

There's more…
The CountVectorizer class contains several useful features, such as showing the 
results of a sentence analysis that shows only the words that are going to be used in the 
vector representation, excluding words that are very frequent, or excluding stopwords 
from an included list. We will explore these features here: 

1.	 Import the CountVectorizer class and helper functions from Chapter 1, 
Learning NLP Basics :

from sklearn.feature_extraction.text import 
CountVectorizer

from Chapter01.dividing_into_sentences import read_text_
file, preprocess_text, divide_into_sentences_nltk

2.	 Read in the text file, preprocess the text, and divide it into sentences:

filename="sherlock_holmes_1.txt"

sherlock_holmes_text = read_text_file(filename)

sherlock_holmes_text = preprocess_text(sherlock_holmes_
text)

sentences = divide_into_sentences_nltk(sherlock_holmes_
text)

3.	 Create a new vectorizer class. This time, use the stop_words argument:

vectorizer = CountVectorizer(stop_words='english')

4.	 Use the vectorizer object to get the matrix:

X = vectorizer.fit_transform(sentences)

5.	 We can print the vocabulary like so:

print(vectorizer.get_feature_names())

6.	 The result will be a smaller set with very frequent words, such as of, the, to, and so 
on (stopwords), missing:

['_the_', 'abhorrent', 'actions', 'adjusted', 'adler', 
'admirable', 'admirably', 'admit', 'akin', 'balanced', 
'cold', 'crack', 'delicate', 'distracting', 'disturbing', 
'doubt', 'drawing', 'dubious', 'eclipses', 'emotion', 
'emotions', 'excellent', 'eyes', 'factor', 'false', 
'felt', 'finely', 'gibe', 'grit', 'heard', 'high', 
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'holmes', 'instrument', 'introduce', 'intrusions', 
'irene', 'late', 'lenses', 'love', 'lover', 'machine', 
'memory', 'men', 'mental', 'mention', 'mind', 'motives', 
'nature', 'observer', 'observing', 'particularly', 
'passions', 'perfect', 'placed', 'position', 'power', 
'precise', 'predominates', 'questionable', 'reasoner', 
'reasoning', 'results', 'save', 'seen', 'seldom', 
'sensitive', 'sex', 'sherlock', 'sneer', 'softer', 
'spoke', 'strong', 'temperament', 'things', 'throw', 
'trained', 'veil', 'woman', 'world']

7.	 We can now apply the new vectorizer to one of the sentences in the original  
set and use the build_analyzer function to see the analysis of the sentence 
more clearly:

new_sentence = "And yet there was but one woman to him, 
and that woman was the late Irene Adler, of dubious and 
questionable memory."

new_sentence_vector = vectorizer.transform([new_
sentence])

analyze = vectorizer.build_analyzer()

print(analyze(new_sentence))

We can see that and, yet, there, was, but, one, to, him, that, the, and of are all 
missing from the printout of the sentence analysis:

['woman', 'woman', 'late', 'irene', 'adler', 'dubious', 
'questionable', 'memory']

8.	 We can print out the sparse vector of the sentence like so:

print(new_sentence_vector)

9.	 The result will contain seven words:

  (0, 4)        1

  (0, 17)       1

  (0, 35)       1

  (0, 36)       1

  (0, 41)       1

  (0, 58)       1

  (0, 77)       2
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10.	 Instead of using a prebuilt stopwords list, we can limit the vocabulary by specifying 
either an absolute or relative maximum document frequency. We can specify this 
using the max_df argument, where we either provide it with an integer for the 
absolute document frequency or a float for the maximum percentage of documents. 
Our document set is very small, so it won't have an effect, but in a larger set, you 
would build the CountVectorizer object with a maximum document frequency, 
as follows:

vectorizer = CountVectorizer(max_df=0.8)

In this case, the vectorizer will consider words that appear in less than 80% of all 
documents.

Constructing the N-gram model
Representing a document as a bag of words is useful, but semantics is about more than 
just words in isolation. To capture word combinations, an n-gram model is useful. Its 
vocabulary consists not just of words, but word sequences, or n-grams. We will build a 
bigram model in this recipe, where bigrams are sequences of two words.

Getting ready
The CountVectorizer class is very versatile and allows us to construct n-gram models. 
We will use it again in this recipe. We will also explore how to build character n-gram 
models using this class.

How to do it…
Follow these steps:

1.	 Import the CountVectorizer class and helper functions from Chapter 1, 
Learning NLP Basics, from the Putting documents into a bag of words recipe:

from sklearn.feature_extraction.text import 
CountVectorizer

from Chapter01.dividing_into_sentences import read_text_
file, preprocess_text, divide_into_sentences_nltk

from Chapter03.bag_of_words import get_sentences, get_
new_sentence_vector
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2.	 Get the sentences from the sherlock_holmes_1.txt file:

sentences = get_sentences("sherlock_holmes_1.txt")

3.	 Create a new vectorizer class. In this case, we will use the n_gram argument:

bigram_vectorizer = CountVectorizer(ngram_range=(1, 2))

4.	 Use the vectorizer object to get the matrix:

X = bigram_vectorizer.fit_transform(sentences)

5.	 Print the result:

print(X)

6.	 The resulting matrix is a scipy.sparse.csr.csr_matrix object, and the 
beginning of its printout looks like this:

  (0, 269)      1

  (0, 229)      1

  (0, 118)      1

  (0, 226)      1

  (0, 136)      1

  (0, 20)       1

  (0, 0)        1

  (0, 299)      1

  (0, 275)      1

  (0, 230)      1

  (0, 119)      1

  (0, 228)      1

   …

7.	 To get a numpy.matrixlib.defmatrix.matrix object, where each sentence 
is a vector, use the todense() function:

denseX = X.todense()

print(denseX)

8.	 The printout looks like this:

[[1 1 0 ... 0 0 0]

 [0 0 0 ... 0 0 0]
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 [0 0 0 ... 0 0 0]

 ...

 [0 0 0 ... 0 0 0]

 [0 0 0 ... 1 0 0]

 [0 0 0 ... 0 1 1]]

9.	 Let's look at the vocabulary that the model uses:

print(bigram_vectorizer.get_feature_names())

The resulting vocabulary includes each word and each bigram:
['_the_', '_the_ woman', 'abhorrent', 'abhorrent 
to', 'actions', 'adjusted', 'adjusted temperament', 
'adler', 'adler of', 'admirable', 'admirable things', 
'admirably', 'admirably balanced', 'admit', 'admit 
such', 'akin', 'akin to', 'all', 'all emotions', 'all 
his', 'always', 'always _the_', 'and', 'and actions', 
'and finely', 'and observing', 'and predominates', 
'and questionable', 'and sneer', 'and that', 'and yet', 
'any', 'any emotion', 'any other', 'as', 'as his', 'as 
lover', 'balanced', 'balanced mind', 'be', 'be more', 
'but', 'but admirably', 'but as', 'but for', 'but one', 
'cold', 'cold precise', 'crack', 'crack in', 'delicate', 
'delicate and', 'distracting', 'distracting factor', 
'disturbing', 'disturbing than', 'doubt', 'doubt upon', 
'drawing', 'drawing the', 'dubious', 'dubious and', 
'eclipses', 'eclipses and', 'emotion', 'emotion akin', 
'emotion in', 'emotions', 'emotions and', 'excellent', 
'excellent for', 'eyes', 'eyes she', 'factor', 'factor 
which', 'false', 'false position', 'felt', 'felt any', 
'finely', 'finely adjusted', 'for', 'for drawing', 'for 
irene', 'for the', 'from', 'from men', 'gibe', 'gibe 
and', 'grit', 'grit in', 'has', 'has seen', 'have', 'have 
placed', 'have seldom', 'he', 'he felt', 'he never', 
'he was', 'he would', 'heard', 'heard him', 'her', 'her 
sex', 'her under', 'high', 'high power', 'him', 'him 
and', 'him mention', 'himself', 'himself in', 'his', 'his 
cold', 'his eyes', 'his mental', 'his own', 'holmes', 
'holmes she', 'in', 'in false', 'in his', 'in nature', 
'in one', 'in sensitive', 'instrument', 'instrument or', 
'into', 'into his', 'introduce', 'introduce distracting', 
'intrusions', 'intrusions into', 'irene', 'irene adler', 
'is', 'is always', 'it', 'it the', 'it was', 'late', 
'late irene', 'lenses', 'lenses would', 'love', 'love 
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for', 'lover', 'lover he', 'machine', 'machine that', 
'memory', 'men', 'men motives', 'mental', 'mental 
results', 'mention', 'mention her', 'might', 'might 
throw', 'mind', 'more', 'more disturbing', …]

10.	 We can now also use the CountVectorizer object to represent new sentences 
that were not in the original document set. We will use the sentence I had seen 
little of Holmes lately, which is the next sentence after the excerpt in sherlock_
holmes_1.txt. The transform function expects a list of documents, so we will 
create a new list where the sentence is the only element:

new_sentence = "I had seen little of Holmes lately."

new_sentence_vector = \

bigram_vectorizer.transform([new_sentence])

11.	 We can now print the sparse and dense representations of this new sentence:

print(new_sentence_vector)

print(new_sentence_vector.todense())

The result will be as follows:
  (0, 118)      1

  (0, 179)      1

  (0, 219)      1 

[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0

  0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]



70     Representing Text – Capturing Semantics

12.	 Let's compare the preceding representation with the representation of a sentence 
from the original input text; that is, And yet there was but one woman to him, and 
that woman was the late Irene Adler, of dubious and questionable memory:

new_sentence1 = " And yet there was but one woman to him, 
and that woman was the late Irene Adler, of dubious and 
questionable memory."

new_sentence_vector1 = vectorizer.transform([new_
sentence])

13.	 We will print the sparse and dense representations of this sentence:

print(new_sentence_vector1)

print(new_sentence_vector1.todense())

14.	 The result will be as follows:

  (0, 7)        1

  (0, 8)        1

  (0, 22)       3

  (0, 27)       1

  (0, 29)       1

  …

[[0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 
0 1 1 0 0 0 0 0

  0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0

  1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
0 0 0 0 0 1 1 0

  0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1

  1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 1

  1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 2 1 0 0

  1 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 1 1]]
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How it works…
In step 1, we import the necessary objects and functions, and in step 2, we create a 
list of sentences from the sherlock_holmes_1.txt file. In step 3, we create a 
new CountVectorizer object that has an extra argument, ngram_range. The 
CountVectorizer class, when the ngram_range argument is set, counts not 
only individual words, but also word combinations, where the number of words in the 
combinations depends on the numbers provided to the ngram_range argument. We 
provided ngram_range=(1,2) as the argument, which means that the number of 
words in the combinations ranges from 1 to 2, so unigrams and bigrams are counted. 

In step 4, we use the bigram_vectorizer object and create the matrix, and in step 
5, we print the matrix. The result looks very similar to the matrix output shown in the 
Putting documents into a bag of words recipe, with the only difference that the output 
should now be longer as it includes not just individual words, but also bigrams, or 
sequences of two words.

In step 6, we create a dense matrix and print it out. In step 7, we print out the vocabulary 
of the vectorizer and we see that it includes both individual words and bigrams.

In step 8, we transform an unseen sentence using the vectorizer and in step 9, we print 
out both the sparse and dense vectors for the sentence. In step 10, we transform a 
sentence that was part of the original text and in step 11, we print out its sparse and dense 
representations. Once we analyze the new sentence, we see that only three words (or 
bigrams) from the vectorizer's original vocabulary are present in the sentence, while the 
sentence that was part of the original dataset has a lot more words counted. This shows 
how sentences that are very different from the original sentence set the vectorizer was 
fitted on will be poorly represented, since most of the words and word combinations will 
be missing from the vectorizer's vocabulary.

There's more…
We can use trigrams, quadrigrams, and more in the vectorizer by providing the 
corresponding tuple to the ngram_range argument. The downside of this is the ever-
expanding vocabulary and the growth of sentence vectors, since each sentence vector has 
to have an entry for each word in the input vocabulary.
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Representing texts with TF-IDF
We can go one step further and use the TF-IDF algorithm to count words and ngrams in 
incoming documents. TF-IDF stands for term frequency-inverse document frequency 
and gives more weight to words that are unique to a document than to words that are 
frequent, but repeated throughout most documents. This allows us to give more weight 
to words uniquely characteristic to particular documents. You can find out more at 
https://scikit-learn.org/stable/modules/feature_extraction.
html#tfidf-term-weighting. 

In this recipe, we will use a different type of vectorizer that can apply the TF-IDF 
algorithm to the input text. Like the CountVectorizer class, it has an analyzer that we 
will use to show the representations of new sentences.

Getting ready
We will be using the TfidfVectorizer class from the sklearn package. We will also 
be using the stopwords list from Chapter 1, Learning NLP Basics.

How to do it…
The TfidfVectorizer class allows for all the functionality of CountVectorizer, 
except that it uses the TF-IDF algorithm to count the words instead of direct counts. The 
other features of the class should be familiar. We will again be using the sherlock_
holmes_1.txt file.

Here are the steps you should follow to build and use the TF-IDF vectorizer:

1.	 Import the TfidfVectorizer class, nltk, and the relevant helper functions:

import nltk

import string

from sklearn.feature_extraction.text import 
TfidfVectorizer

from nltk.stem.snowball import SnowballStemmer

from Chapter01.removing_stopwords import read_in_csv

from Chapter03.bag_of_words import get_sentences

2.	 Define the stemmer and the stopwords file path:

stemmer = SnowballStemmer('english')

stopwords_file_path = "Chapter01/stopwords.csv"

https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
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3.	 Get the sentences from the sherlock_holmes_1.txt file:

sentences = get_sentences("sherlock_holmes_1.txt")

4.	 We will use a function to tokenize and stem every word, including stopwords. See 
the Dividing sentences into words and Word stemming recipes in Chapter 1, Learning 
NLP Basics, for more information:

def tokenize_and_stem(sentence):

    tokens = nltk.word_tokenize(sentence)

    filtered_tokens = [t for t in tokens if t not in \

                       string.punctuation]

    stems = [stemmer.stem(t) for t in filtered_tokens]

    return stems

5.	 Read in, tokenize, and stem the stopwords:

stopword_list = read_in_csv(stopwords_file_path)

stemmed_stopwords = [tokenize_and_stem(stopword)[0] for \

                     stopword in stopword_list]

stopword_list = stopword_list + stemmed_stopwords

6.	 Create a new vectorizer class and fit the incoming sentences. You might see some 
warnings here, which is fine:

tfidf_vectorizer = \

TfidfVectorizer(max_df=0.90, max_features=200000,

                min_df=0.05, stop_words=stopword_list,

                use_idf=True,tokenizer=tokenize_and_stem, 

                ngram_range=(1,3))

tfidf_vectorizer = tfidf_vectorizer.fit(sentences)

7.	 Use the vectorizer object to get the matrix:

tfidf_matrix = tfidf_vectorizer.transform(sentences)

8.	 Print the result:

print(tfidf_matrix)
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9.	 The resulting matrix is a scipy.sparse.csr.csr_matrix object, and the 
beginning of its printout looks like this:

  (0, 195)      0.2892833606818738

  (0, 167)      0.33843668854613723

  (0, 166)      0.33843668854613723

  (0, 165)      0.33843668854613723

  (0, 84)       0.33843668854613723

  (0, 83)       0.33843668854613723

  (0, 82)       0.33843668854613723

  (0, 1)        0.33843668854613723

  (0, 0)        0.33843668854613723

   …

10.	 To get a numpy.matrixlib.defmatrix.matrix object, where each sentence 
is a vector, use the todense() function:

dense_matrix = tfidf_matrix.todense()

Its printout looks like this:
[[0.33843669 0.33843669 0.         ... 0.         0.         
0.        ]

 [0.         0.         0.         ... 0.         0.         
0.        ]

 [0.         0.         0.         ... 0.         0.         
0.        ]

 ...

 [0.         0.         0.         ... 0.         0.         
0.        ]

 [0.         0.         0.         ... 0.         0.         
0.        ]

 [0.         0.         0.         ... 0.         0.         
0.        ]] [0 0 0 ... 1 0 0]

 [0 0 0 ... 0 1 1]]

11.	 Let's look at the vocabulary that the model uses:

print(tfidf_vectorizer.get_feature_names())
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The resulting vocabulary includes each stemmed word, each bigram, and  
each trigram:

[['_the_', '_the_ woman', 'abhorr', 'abhorr cold', 
'abhorr cold precis', 'action', 'adjust', 'adjust 
tempera', 'adjust tempera introduc', 'adler', 'adler 
dubious', 'adler dubious question', 'admir', 'admir 
balanc', 'admir balanc mind', 'admir observer—excel', 
'admir observer—excel draw', 'admit', 'admit intrus', 
'admit intrus own', 'akin', 'akin love', 'akin love 
iren', 'balanc', 'balanc mind', 'cold', 'cold precis', 
'cold precis admir', 'crack', 'crack own', 'crack own 
high-pow', 'delic', 'delic fine', 'delic fine adjust', 
'distract', 'distract factor', 'distract factor throw', 
'disturb', 'disturb strong', 'disturb strong emot', 
'doubt', 'doubt mental', 'doubt mental result', 'draw', 
'draw veil', 'draw veil men', 'dubious', 'dubious 
question', 'dubious question memori', 'eclips', 'eclips 
predomin', 'eclips predomin whole', 'emot', 'emot 
abhorr', 'emot abhorr cold', 'emot akin', 'emot akin 
love', 'emot natur', 'eye', 'eye eclips', 'eye eclips 
predomin', 'factor', 'factor throw', 'factor throw 
doubt', 'fals', 'fals posit', 'felt', 'felt emot', 'felt 
emot akin', 'fine', 'fine adjust', 'fine adjust tempera', 
'gibe', 'gibe sneer', 'grit', 'grit sensit', 'grit sensit 
instrument', 'heard', 'heard mention', 'high-pow', 'high-
pow lens', 'high-pow lens disturb', 'holm', 'holm _the_', 
'holm _the_ woman', 'instrument', 'instrument crack', 
'instrument crack own', 'introduc', 'introduc distract', 
'introduc distract factor', 'intrus', 'intrus own', 
'intrus own delic', 'iren', 'iren adler', 'iren adler 
dubious', 'lens', 'lens disturb', 'lens disturb strong', 
…]

12.	 Let's build an analyzer function and analyze the sentence To Sherlock Holmes she is 
always _the_ woman:

analyze = tfidf_vectorizer.build_analyzer()

print(analyze("To Sherlock Holmes she is always _the_ 
woman."))

This is the result:
['sherlock', 'holm', '_the_', 'woman', 'sherlock holm', 
'holm _the_', '_the_ woman', 'sherlock holm _the_', 'holm 
_the_ woman']
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How it works…
The TfidfVectorizer class works almost exactly like the CountVectorizer class, 
differing only in the way the word frequencies are calculated, so most of the steps should 
be familiar here. Word frequencies are calculated as follows. For each word, the overall 
frequency is a product of the term frequency and the inverse document frequency. Term 
frequency is the number of times the word occurs in the document. Inverse document 
frequency is the total number of documents divided by the number of documents where 
the word occurs. Usually, these frequencies are logarithmically scaled.

In step 1, we import the TfidfVectorizer and SnowballStemmer classes and 
helper functions. In step 2, we define the stemmer object and the path to the stopwords 
file. In step 3, we create the list of sentences from the sherlock_holmes_1.txt file. 

In step 4, we define the tokenize_and_stem function, which we will use to tokenize 
and stem the words in a sentence. 

In step 5, we read in the stopwords list and apply the tokenize_and_stem function to 
it. Since we will be stemming the words in the text, we also need to stem the stopwords. 
The reason we need to do this is because if we leave the stopwords unstemmed, the 
stemmed words in the dataset will not match them. The functions also exclude all 
punctuation from text since we do not want to include n-grams with punctuation in 
them. To do that, we check if each token is included in the string.punctuation set, 
which lists all punctuation symbols. In step 6, we create a new vectorizer class and then fit 
the sentences. The min_df and max_df arguments limit the minimum and maximum 
document frequency, respectively. If the corpus is large enough, the maximum document 
frequency can take care of the stopwords by excluding words that are very frequent across 
the documents. For our small corpus, I had to provide the stopword list. The min_df 
and max_df arguments are either floats between 0 and 1, representing a proportion of 
documents, or an integer, representing an absolute count. The max_features argument 
caps the number of words and n-grams in the vocabulary at the number provided. For 
more information about TfidfVectorizer, see https://scikit-learn.org/
stable/modules/generated/sklearn.feature_extraction.text.
TfidfVectorizer.html. 

In step 7, we use the vectorizer to get the matrix encoding the sentences and in step 8, we 
print the result. We can see that the resulting matrix is very similar to the matrices in the 
Putting documents into a bag of words and Constructing the N-gram model recipes of this 
chapter. The difference is that the frequency count is a fraction, since it is a product of  
two ratios.

In step 9, we create a dense matrix that represents each sentence as a vector. 

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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In step 10, we print out the vocabulary of the vectorizer, which includes unigrams as well 
as bigrams.

In step 11, we create the analyzer object and analyze a sentence from the sherlock_
holmes_1.txt file. The result shows that now, the sentence is represented with uni-, bi- 
and trigrams, along with words that have been stemmed and whose stopwords have  
been removed.

There's more…
We can build TfidfVectorizer and use character n-grams instead of word n-grams. 
Character n-grams use the character, and not the word, as their basic unit. For example, if 
we were to build character n-grams for the phrase the woman with the n-gram range (1, 
3), its set would be [t, h, e, w, o, m, a, n, th, he, wo, om, ma, an, 
the, wom, oma, man]. In many experimental settings, models based on character 
n-grams perform better than word-based n-gram models.

We will use the same Sherlock Holmes text file, sherlock_holmes_1.txt, and the 
same class, TfidfVectorizer. We will not need a tokenizer function or a stopwords 
list, since the unit of analysis is the character and not the word. The steps to create the 
vectorizer and analyze a sentence are as follows:

1.	 Get the sentences from the sherlock_holmes_1.txt file:

sentences = get_sentences("sherlock_holmes_1.txt")

2.	 Create a new vectorizer class and fit the incoming sentences:

tfidf_char_vectorizer = \

TfidfVectorizer(analyzer='char_wb', 

                max_df=0.90,

                max_features=200000, 

                min_df=0.05, 

                use_idf=True,

                ngram_range=(1,3))

tfidf_char_vectorizer = tfidf_char_vectorizer.
fit(sentences)
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3.	 Use the vectorizer object to get the matrix:

tfidf_matrix = tfidf_char_vectorizer.transform(sentences)

4.	 Print the result:

print(tfidf_matrix)

Predictably, the resulting matrix is much larger than the ones based on words. The 
beginning of its printout looks like this:

  (0, 763)      0.12662434631923655

  (0, 762)      0.12662434631923655

  (0, 753)      0.05840470946313

  (0, 745)      0.10823388151187574

  (0, 744)      0.0850646359499111

  (0, 733)      0.12662434631923655

  (0, 731)      0.07679517427049085

  (0, 684)      0.07679517427049085

  (0, 683)      0.07679517427049085

  (0, 675)      0.05840470946313

  (0, 639)      0.21646776302375148

  (0, 638)      0.21646776302375148

   …

5.	 To get a numpy.matrixlib.defmatrix.matrix object, where each sentence 
is a vector, use the todense() function:

dense_matrix = tfidf_matrix.todense()

Its printout looks like this:
[[0.12662435 0.12662435 0.         ... 0.         0.         
0.        ]

 [0.         0.         0.         ... 0.         0.         
0.        ]

 [0.         0.         0.         ... 0.         0.         
0.        ]

 ...

 [0.         0.         0.07119069 ... 0.         0.         
0.        ]

 [0.         0.         0.17252729 ... 0.         0.         
0.        ]
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 [0.         0.         0.         ... 0.         0.         
0.        ]]

6.	 Let's look at the vocabulary that the model uses:

print(tfidf_char_vectorizer.get_feature_names())

The resulting vocabulary includes each character, as well as the character bigrams 
and trigrams. The beginning of the printout looks like this:

[' _', ' _t', ' a ', ' ab', ' ac', ' ad', ' ak', ' al', 
' an', ' as', ' b', ' ba', ' be', ' bu', ' c', ' co', 
' cr', ' d', ' de', ' di', ' do', ' dr', ' du', ' e', 
' ec', ' em', ' ey', ' f', ' fa', ' fe', ' fi', ' fo', 
' fr', ' g', ' gi', ' gr', ' ha', ' he', ' hi', ' ho', 
' i', ' i ', ' in', ' ir', ' is', ' it', ' l', ' la', 
' le', ' lo', ' m', ' ma', ' me', ' mi', ' mo', ' n', 
' na', ' ne', ' no', ' o', ' ob', ' of', ' on', ' or', 
' ot', ' ow', ' p', ' pa', ' pe', ' pl', ' po', ' pr', 
' q', ' qu', ' r', ' re', ' s', ' sa', ' se', ' sh', ' 
sn', ' so', ' sp', ' st', ' su', ' ta', ' te', ' th', ' 
to', ' tr', ' u', ' un', ' up', ' v', ' ve', ' wa', ' 
we', ' wh', ' wi', ' wo', ' y', ' ye', ',', ', ', '-', 
'-p', '-po', '_', '_ ', '_t', '_th', 'a ', 'ab', 'abh', 
'abl', 'ac', 'ace', 'ach', 'ack', 'act', 'ad', 'adj', 
'adl', 'adm', 'ai', 'ain', 'ak', 'ake', 'aki', 'al', 'al 
', 'ala', 'all', 'als', 'alw', 'am', 'ame', 'an ', 'an.', 
'anc', 'and', 'any', 'ar', 'ard', 'arl', 'art', 'as', 'as 
', 'as,', 'aso', 'ass', 'at', 'at ', 'ate', 'atu', 'av', 
'ave', 'aw', 'awi', 'ay', 'ays', 'b', 'ba', 'bal', 'be', 
'be ', 'bh', 'bho', 'bi', 'bin', 'bio', 'bl', 'ble', 
'bly', 'bs', 'bse', 'bt', 'bt ', 'bu', 'but', 'c', 'ca', 
'cat', 'ce', 'ce ', 'ced', 'cel', 'ch', 'ch ', 'chi', 
'ci', 'cis', 'ck', 'ck ', 'cl', 'cli', 'co', 'col', 'cr', 
'cra', 'ct', 'ct ', 'cti', 'cto', 'cu', 'cul', …]

7.	 Let's build an analyzer function and analyze the sentence To Sherlock Holmes she is 
always _the_ woman:

analyze = tfidf_char_vectorizer.build_analyzer()

print(analyze("To Sherlock Holmes she is always _the_ 
woman."))
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This is the result:
[' ', 't', 'o', ' ', ' t', 'to', 'o ', ' to', 'to ', ' ', 
's', 'h', 'e', 'r', 'l', 'o', 'c', 'k', ' ', ' s', 'sh', 
'he', 'er', 'rl', 'lo', 'oc', 'ck', 'k ', ' sh', 'she', 
'her', 'erl', 'rlo', 'loc', 'ock', 'ck ', ' ', 'h', 'o', 
'l', 'm', 'e', 's', ' ', ' h', 'ho', 'ol', 'lm', 'me', 
'es', 's ', ' ho', 'hol', 'olm', 'lme', 'mes', 'es ', ' 
', 's', 'h', 'e', ' ', ' s', 'sh', 'he', 'e ', ' sh', 
'she', 'he ', ' ', 'i', 's', ' ', ' i', 'is', 's ', ' 
is', 'is ', ' ', 'a', 'l', 'w', 'a', 'y', 's', ' ', ' a', 
'al', 'lw', 'wa', 'ay', 'ys', 's ', ' al', 'alw', 'lwa', 
'way', 'ays', 'ys ', ' ', '_', 't', 'h', 'e', '_', ' ', 
' _', '_t', 'th', 'he', 'e_', '_ ', ' _t', '_th', 'the', 
'he_', 'e_ ', ' ', 'w', 'o', 'm', 'a', 'n', '.', ' ', ' 
w', 'wo', 'om', 'ma', 'an', 'n.', '. ', ' wo', 'wom', 
'oma', 'man', 'an.', 'n. ']

Using word embeddings
In this recipe we switch gears and learn how to represent words using word embeddings, 
which are powerful because they are a result of training a neural network that predicts  
a word from all other words in the sentence. The resulting vector embeddings are  
similar for words that occur in similar contexts. We will use the embeddings to show  
these similarities. 

Getting ready
In this recipe, we will use a pretrained word2vec model, which can be found at http://
vectors.nlpl.eu/repository/20/40.zip. Download the model and unzip it in 
the Chapter03 directory. You should now have a file whose path is …/Chapter03/40/
model.bin.

We will also be using the gensim package to load and use the model. Install it using pip:

pip install gensim

http://vectors.nlpl.eu/repository/20/40.zip
http://vectors.nlpl.eu/repository/20/40.zip
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How to do it…
We will load the model, demonstrate some features of the gensim package, and then 
compute a sentence vector using the word embeddings. Let's get started:

1.	 Import the KeyedVectors object from gensim.models and numpy:

from gensim.models import KeyedVectors

import numpy as np

2.	 Assign the model path to a variable:

w2vec_model_path = "Chapter03/40/model.bin"

3.	 Load the pretrained model:

model = KeyedVectors.load_word2vec_format(w2vec_model_
path,

                                          binary=True)

4.	 Using the pretrained model, we can now load individual word vectors:

print(model['holmes'])

5.	 The result will be as follows:

[-0.309647 -0.127936 -0.136244 -0.252969  0.410695  
0.206325  0.119236

 -0.244745 -0.436801  0.058889  0.237439  0.247656  
0.072103  0.044183

 -0.424878  0.367344  0.153287  0.343856  0.232269 
-0.181432 -0.050021

  0.225756  0.71465  -0.564166 -0.168468 -0.153668  
0.300445 -0.220122

 -0.021261  0.25779  …]

6.	 We can also get words that are most similar to a given word. For example, let's print 
out the words most similar to Holmes (lowercase, since all the words are lowercased 
in the training process):

print(model.most_similar(['holmes'], topn=15)) 
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The result is as follows:
[('sherlock', 0.8416914939880371), ('parker', 
0.8099909424781799), ('moriarty', 0.8039606809616089), 
('sawyer', 0.8002701997756958), ('moore', 
0.7932805418968201), ('wolfe', 0.7923581600189209), 
('hale', 0.791009247303009), ('doyle', 
0.7906038761138916), ('holmes.the', 0.7895270586013794), 
('watson', 0.7887690663337708), ('yates', 
0.7882785797119141), ('stevenson', 0.7879440188407898), 
('spencer', 0.7877693772315979), ('goodwin', 
0.7866846919059753), ('baxter', 0.7864187955856323)]

7.	 We can now also compute a sentence vector by averaging all the word vectors in the 
sentence. We will use the sentence It was not that he felt any emotion akin to love for 
Irene Adler:

sentence = "It was not that he felt any emotion akin to 
love for Irene Adler."

8.	 Let's define a function that will take a sentence and a model and will return a list of 
the sentence word vectors:

def get_word_vectors(sentence, model):

    word_vectors = []

    for word in sentence:

        try:

            word_vector = model.get_vector(word.lower())

            word_vectors.append(word_vector)

        except KeyError:

            continue

    return word_vectors

9.	 Now, let's define a function that will take the word vector list and compute the 
sentence vector:

def get_sentence_vector(word_vectors):

    matrix = np.array(word_vectors)

    centroid = np.mean(matrix[:,:], axis=0)

    return centroid
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Important Note
Averaging the word vectors to get the sentence vector is only one way of 
approaching this task, and is not without its problems. One alternative is to 
train a doc2vec model, where sentences, paragraphs, and whole documents can 
all be units instead of words.

10.	 We can now compute the sentence vector:

word_vectors = get_word_vectors(sentence, model)

sentence_vector = get_sentence_vector(word_vectors)

print(sentence_vector)

11.	 The result is as follows:

[ 0.09226871  0.14478634  0.23788658 -0.31754282  
0.42911175 -0.05198449

  0.12572111  0.01170996 -0.01138579  0.05200932  
0.15247145  0.34026343

  0.12961692  0.05010585 -0.09165132  0.3782767   
0.08390289  0.30078036

 -0.24396846  0.42507184 -0.13556597  0.157348    
0.19739327 -0.13114193

 -0.16301586  0.19061208 …]

How it works…
In step 1, we import the necessary objects. In step 2, we assign the path of the model we 
downloaded in the Getting ready section to the w2vec_model_path variable. In step 3, 
we load the model.

In step 4, we load the word vector for the word Holmes. We have to lowercase it since all 
the words in the model are in lowercase. The result is a long vector that represents this 
word in the word2vec model. 

In step 5, we get 15 words that are most similar to the input word. The output prints out 
the words that are the most similar (occur in similar contexts), as well as their similarity 
scores. The score is the cosine distance between a pair of vectors, in this case representing 
a pair of words. The larger the score, the more similar the two words. In this case, the 
result is pretty good, as it contains the words Sherlock, Moriarty, Watson, and Doyle. 



84     Representing Text – Capturing Semantics

In the next few steps, we compute a sentence vector by averaging the word vectors. This is 
one approach to representing sentences using word2vec, and it has its disadvantages. One 
of the challenges of this approach is representing words that are not present in the model.

In step 6, we initialize the sentence variable with a sentence from the text. In step 7, 
we create the get_word_vectors function, which returns a list of all word vectors in 
the sentence. The function reads the word vector from the model and appends it to the 
word_vectors list. It also catches the KeyError error that is raised if the word is not 
present in the model.

In step 8, we create the get_sentence_vector function, which takes in a list of words 
vectors and returns their average. In order to compute the average, we represent the 
matrix as a NumPy array and use NumPy's mean function to get the average vector.

In step 9, we compute the word vectors for the sentence we defined in step 6, and then the 
sentence vector using the functions we just defined in steps 7 and 8. We then print the 
resulting sentence vector.

There's more…
There are some other fun things gensim can do with a pretrained model. For example, 
it can find a word that doesn't match from a list of words and find a word that is most 
similar to the given word from a list. Let's look at these:

1.	 Import the KeyedVectors object from gensim.models:

from gensim.models import KeyedVectors

2.	 Assign the model path to a variable:

w2vec_model_path = "Chapter03/40/model.bin"

3.	 Load the pretrained model:

model = \

KeyedVectors.load_word2vec_format(w2vec_model_path,

                                  binary=True)

4.	 Compile a list of words with one that doesn't match:

words = ['banana', 'apple', 'computer', 'strawberry']

5.	 Apply the doesnt_match function to the list and print the result:

print(model.doesnt_match(words))
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The result will be as follows:
computer

6.	 Now, let's find a word that's most similar to another word:

word = "cup"

words = ['glass', 'computer', 'pencil', 'watch']

print(model.most_similar_to_given(word, words))

The result will be as follows:
glass

See also
There are many other pretrained models available, including in other languages; see 
http://vectors.nlpl.eu/repository/ for more details. 

Some of the pretrained models include part of speech information, which can be helpful 
when you're disambiguating words. These models concatenate words with their part-of-
speech (POS), such as cat_NOUN, so keep that in mind when using them.

To learn more about the theory behind word2vec, you could start here: https://
jalammar.github.io/illustrated-word2vec/. 

Training your own embeddings model
We can now train our own word2vec model on a corpus. For this task, we will use the 
top 20 Project Guttenberg books, which includes The Adventures of Sherlock Holmes. The 
reason for this is that training a model on just one book will result in suboptimal results. 
Once we get more text, the results will be better.

Getting ready
You can download the dataset for this recipe from Kaggle: https://www.kaggle.
com/currie32/project-gutenbergs-top-20-books. The dataset includes 
files in RTF format, so you will have to save them as text. We will use the same package, 
gensim, to train our custom model.

We will use the pickle package to save the model on disk. If you do not have it installed, 
install it by using pip:

pip install pickle

http://vectors.nlpl.eu/repository/
https://jalammar.github.io/illustrated-word2vec/
https://jalammar.github.io/illustrated-word2vec/
https://www.kaggle.com/currie32/project-gutenbergs-top-20-books
https://www.kaggle.com/currie32/project-gutenbergs-top-20-books
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How to do it…
We will read in all 20 books and use the text to create a word2vec model. Make sure all 
the books are located in one directory. Let's get started:

1.	 Import the necessary packages and functions:

import gensim

import pickle

from os import listdir

from os.path import isfile, join

from Chapter03.bag_of_words import get_sentences

from Chapter01.tokenization import tokenize_nltk

2.	 Assign the path of the books directory and the model path (where the model will 
be saved) to variables:

word2vec_model_path = "word2vec.model"

books_dir = "1025_1853_bundle_archive"

3.	 The get_all_book_sentences function will read all the text files from a 
directory and return a list containing all the sentences from them:

def get_all_book_sentences(directory):

    text_files = \

    [join(directory, f) for f in listdir(directory) if \

     isfile(join(directory, f)) and ".txt" in f]

    all_sentences = []

    for text_file in text_files:

        sentences = get_sentences(text_file)

        all_sentences = all_sentences + sentences

    return all_sentences

4.	 The train_word2vec function will train the model and save it to a file  
using pickle:

def train_word2vec(words, word2vec_model_path):

    model = gensim.models.Word2Vec(words, window=5, 

                                   size=200)

    model.train(words, total_examples=len(words), 

                epochs=200)
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    pickle.dump(model, open(word2vec_model_path, 'wb'))

    return model

5.	 Get the books directory's sentences:

sentences = get_all_book_sentences(books_dir)

6.	 Tokenize and lowercase all the sentences:

sentences = [tokenize_nltk(s.lower()) for s in sentences]

7.	 Train the model. This step will take several minutes to run:

model = train_word2vec(sentences, word2vec_model_path)

8.	 We can now see which most similar words the model returns for different input 
words, such as river:

w1 = "river"

words = model.wv.most_similar(w1, topn=10)

print(words)

Every time a model is trained, the results will be different. My results look like this: 
[('shore', 0.5025173425674438), ('woods', 
0.46839720010757446), ('raft', 0.44671306014060974), 
('illinois', 0.44637370109558105), ('hill', 
0.4400100111961365), ('island', 0.43077412247657776), 
('rock', 0.4293714761734009), ('stream', 
0.42731013894081116), ('strand', 0.42297834157943726), 
('road', 0.41813182830810547)]

How it works…
The code trains a neural network that predicts a word when given a sentence with words 
blanked out. The byproduct of the neural network being trained is a vector representation 
for each word in the training vocabulary.

In step 1, we import the necessary functions and classes. In step 2, we initialize the 
directory and model variables. The directory should contain the books we are going to 
train the model on, while the model path should be where the model will be saved. 
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In step 3, we create the get_all_book_sentences function, which will return all the 
sentences in all the books in the dataset. The first line in this function creates a list of all 
text files in the given directory. Next, we have a loop where we get the sentences for each 
of the text files and add them to the all_sentences array, which we return at the end.

In step 4, we create the function that will train the word2vec model. The only required 
argument is the list of words, though some of the other important ones are min_count, 
size, window, and workers. min_count is the minimum number of times a word 
has to occur in the training corpus, with the default being 5. The size parameter sets the 
size of the word vector. window restricts the maximum number of words between the 
predicted and current word in a sentence. workers is the number of working threads; 
the more there are, the quicker the training will proceed. When training the model, the 
epoch parameter will determine the number of training iterations the model will  
go through. 

At the end of the function, we save the model to the provided path.

In step 6, we get all the sentences from the books using the previously defined function. 
In step 7, we lowercase and tokenize them into words. Then, we train the word2vec model 
using the train_word2vec function; this will take several minutes. In step 8, we print 
out the words that are the most similar to the word river using the newly trained model. 
Since the model is different every time you train it, your results will be different from 
mine, but the resulting words should still be similar to river in the sense that they will be 
about nature. 

There's more…
There are tools we can use to evaluate a word2vec model, although its creation is 
unsupervised. gensim comes with a file that lists word analogies, such as Athens to 
Greece being the same as Moscow to Russia. The evaluate_word_analogies function 
runs the analogies through the model and calculates how many were correct.

Here is how we can do this:

1.	 Import the necessary packages and functions:

from gensim.test.utils import datapath

from gensim.models import KeyedVectors

import pickle

2.	 Load the previously pickled model:

model = pickle.load(open(word2vec_model_path, 'rb'))
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3.	 Evaluate the model against the provided file. This file is available in this book's 
GitHub repository at Chapter03/questions-words.txt:

(analogy_score, word_list) = \

model.wv.evaluate_word_analogies(datapath('questions-
words.txt'))

4.	 The score is the ratio of correct analogies, so a score of 1 would mean that all the 
analogies were correctly answered using the model, while a score of 0 means that 
none were. The word list is a detailed breakdown by word analogy. We can print the 
analogy score like so:

print(analogy_score)

The result will be as follows:
0.20059045432179762

5.	 We can now load the pretrained model and compare its performance to the 20-book 
model. These commands might take a few minutes to run:

pretrained_model_path = "Chapter03/40/model.bin"

pretrained_model = \

KeyedVectors.load_word2vec_format(pretrained_model_path, 

                                  binary=True)

(analogy_score, word_list) = \

pretrained_model.evaluate_word_
analogies(datapath('questions-words.txt'))

print(analogy_score)

The result will be as follows:
0.5867802524889665

The pretrained model was trained on a much larger corpus, and, predictably, performs 
better. However, it still doesn't get a very high score. Your evaluation should be based on 
the type of text you are going to be working with, since the file that's provided with the 
gensim package is a generic evaluation. 

Important Note
Make sure your evaluation is based on the type of data that you are going to 
be using in your application; otherwise, you risk having misleading evaluation 
results.
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See also
There is an additional way of evaluating the model's performance; that is, by comparing 
the similarity between word pairs that have been assigned by the model to the human-
assigned judgments. You can do this by using the evaluate_word_pairs function 
and the provided  wordsim353.tsv data file. You can find out more at https://
radimrehurek.com/gensim/models/keyedvectors.html#gensim.
models.keyedvectors.FastTextKeyedVectors.evaluate_word_pairs. 

Representing phrases – phrase2vec
Encoding words is useful, but usually, we deal with more complex units, such as phrases 
and sentences. Phrases are important because they specify more detail than just words. 
For example, the phrase delicious fried rice is very different than just the word rice. 

In this recipe, we will train a word2vec model that uses phrases as well as words. 

Getting ready
We will be using the Yelp restaurant review dataset in this recipe, which is available here: 
https://www.yelp.com/dataset (the file is about 4 GB.) Download the file and 
unzip it in the Chapter03 folder. I downloaded the dataset in September 2020, and the 
results in the recipe are from that download. Your results might differ, since the dataset is 
updated by Yelp periodically.

The dataset is multilingual, and we will be working with the English reviews. In order to 
filter them, we will need the langdetect package. Install it using pip:

pip install langdetect

How to do it…
Our recipe will consist of two parts. The first part will discover phrases and tag them 
in the corpus, while the second part will train a word2vec model, following the same 
steps from the previous recipe. This recipe was inspired by reading Kavita Ganesan's 
work (https://kavita-ganesan.com/how-to-incorporate-phrases-
into-word2vec-a-text-mining-approach/), and the idea of using stopwords as 
boundaries from phrases has been taken from there. Let's get started:

1.	 Import the necessary packages and functions:

import nltk

import string

https://radimrehurek.com/gensim/models/keyedvectors.html#gensim.models.keyedvectors.FastTextKeyedVectors.evaluate_word_pairs
https://radimrehurek.com/gensim/models/keyedvectors.html#gensim.models.keyedvectors.FastTextKeyedVectors.evaluate_word_pairs
https://radimrehurek.com/gensim/models/keyedvectors.html#gensim.models.keyedvectors.FastTextKeyedVectors.evaluate_word_pairs
https://www.yelp.com/dataset
https://kavita-ganesan.com/how-to-incorporate-phrases-into-word2vec-a-text-mining-approach/
https://kavita-ganesan.com/how-to-incorporate-phrases-into-word2vec-a-text-mining-approach/
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import csv

import json

import pandas as pd

import gensim

from langdetect import detect

import pickle

from nltk import FreqDist

from Chapter01.dividing_into_sentences import \

divide_into_sentences_nltk

from Chapter01.tokenization import tokenize_nltk

from Chapter01.removing_stopwords import read_in_csv

2.	 Assign the path of the Yelp! reviews JSON file, the stopwords path, and read in  
the stopwords:

stopwords_file = "Chapter01/stopwords.csv"

stopwords = read_in_csv(stopwords_file)

yelp_reviews_file = "Chapter03/yelp-dataset/review.json"

3.	 The get_yelp_reviews function will read the first 10,000 lines from the file and 
only filter out English text:

def get_yelp_reviews(filename):

    reader = pd.read_json(filename, orient="records",

                          lines=True, 

                          chunksize=10000)

    chunk = next(reader)

    text = ''

    for index, row in chunk.iterrows():

        row_text =row['text']

        lang = detect(row_text)

        if (lang == "en"):

            text = text + row_text.lower()

    return text
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4.	 The get_phrases function records all the phrases that have been found in 
the text, and then creates a dictionary with the original phrase as the key and 
the phrases with underscores instead of spaces as the entry. The boundaries are 
stopwords or punctuation. Using this function, we will get all the phrases in the text 
and then annotate them in the dataset:

def get_phrases(text):

    words = nltk.tokenize.word_tokenize(text)

    phrases = {}

    current_phrase = []

    for word in words:

        if (word in stopwords or word in \

            string.punctuation):

            if (len(current_phrase) > 1):

                phrases[" ".join(current_phrase)] = \

                "_".join(current_phrase)

                current_phrase = []

        else:

            current_phrase.append(word)

    if (len(current_phrase) > 1):

        phrases[" ".join(current_phrase)] = \

        "_".join(current_phrase)

    return phrases

5.	 The replace_phrases function takes a corpus of text and replace phrases with 
their underscored versions:

def replace_phrases(phrases_dict, text):

    for phrase in phrases_dict.keys():

        text = text.replace(phrase, phrases_dict[phrase])

    return text

6.	 The write_text_to_file function takes a string and a filename as input and 
will write the text to the specified file:

def write_text_to_file(text, filename):

    text_file = open(filename, "w", encoding="utf-8") 

    text_file.write(text) 

    text_file.close()
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7.	 The create_and_save_frequency_dist function takes a word list and  
a filename as input, creates a frequency distribution, and pickles it to the  
provided file:

def create_and_save_frequency_dist(word_list, filename):

    fdist = FreqDist(word_list)

    pickle.dump(fdist, open(filename, 'wb'))

    return fdist

8.	 Now, we can use the preceding functions to discover and tag the phrases, and then 
train the model. First, read in the Yelp! reviews, find the phrases, and substitute 
the spaces in them with underscores in the original text. We can then save the 
transformed text to a file:

text = get_yelp_reviews(yelp_reviews_file)

phrases = get_phrases(text)

text = replace_phrases(phrases, text)

write_text_to_file(text, "Chapter03/all_text.txt")

9.	 Now, we will create a FreqDist object to look at the most common words and 
phrases. First, divide the text into sentences, then divide each sentence into words, 
and then create a flat word list instead of a list of lists (we will use the list of lists 
later to train the model):

sentences = divide_into_sentences_nltk(text)

all_sentence_words=[tokenize_nltk(sentence.lower()) for \

                      sentence in sentences]

flat_word_list = [word.lower() for sentence in \

                  all_sentence_words for word in

                  sentence]

fdist = \

create_and_save_frequency_dist(flat_word_list,

                               "Chapter03/fdist.bin")

10.	 We can print the most frequent words from the FreqDist object:

print(fdist.most_common()[:1000])
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The result will be as follows:
[('.', 70799), ('the', 64657), (',', 49045), ('and', 
40782), ('i', 38192), ('a', 35892), ('to', 26827), 
('was', 23567), ('it', 21520), ('of', 19241), ('is', 
16366), ('for', 15530), ('!', 14724), ('in', 14670), 
('that', 12265), ('you', 11186), ('with', 10869), ('my', 
10508), ('they', 10311), ('but', 9919), ('this', 9578), 
('we', 9387), ("n't", 9016), ('on', 8951), ("'s", 8732), 
('have', 8378), ('not', 7887), ('were', 6743), ('are', 
6591), ('had', 6586), ('so', 6528), (')', 6251), ('at', 
6243), ('as', 5898), ('(', 5563), ('there', 5341), 
('me', 4819), ('be', 4567), ('if', 4465), ('here', 4459), 
('just', 4401), ('all', 4357), ('out', 4241), ('like', 
4216), ('very', 4138), ('do', 4064), ('or', 3759), …]

11.	 We will now train the word2vec model:

model = \

create_and_save_word2vec_model(all_sentence_words,

                               "Chapter03/phrases.model")

12.	 We can now test the model by looking at words that are the most similar to highly 
recommend and happy hour:

words = model.wv.most_similar("highly_recommend", 
topn=10)

print(words)

words = model.wv.most_similar("happy_hour", topn=10)

print(words)

The result will be as follows:
[('recommend', 0.7311313152313232), ('would_definitely_
recommend', 0.7066166400909424), ('absolutely_
recommend', 0.6534838676452637), ('definitely_
recommend', 0.6242724657058716), ('absolutely_love', 
0.5880271196365356), ('reccomend', 0.5669443011283875), 
('highly_recommend_going', 0.5308369994163513), 
('strongly_recommend', 0.5057551860809326), ('recommend_
kingsway_chiropractic', 0.5053386688232422), 
('recommending', 0.5042617321014404)]

[('lunch', 0.5662612915039062), ('sushi', 
0.5589481592178345), ('dinner', 0.5486307740211487), 
('brunch', 0.5425440669059753), ('breakfast', 
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0.5249745845794678), ('restaurant_week', 
0.4805092215538025), ('osmosis', 0.44396835565567017), 
('happy_hour.wow', 0.4393075406551361), ('actual_
massage', 0.43787407875061035), ('friday_night', 
0.4282568395137787)]

13.	 We can also test out less frequent phrases, such as fried rice and dim sum:

words = model.wv.most_similar("fried_rice", topn=10)

print(words)

words = model.wv.most_similar("dim_sum", topn=10)

print(words)

The result will be as follows:
[('pulled_pork', 0.5275152325630188), ('pork_belly', 
0.5048087239265442), ('beef', 0.5020794868469238), 
('hollandaise', 0.48470234870910645), ('chicken', 
0.47735923528671265), ('rice', 0.4758814871311188), 
('pork', 0.457661509513855), ('crab_rangoon', 
0.4489888846874237), ('lasagna', 0.43910956382751465), 
('lettuce_wraps', 0.4385792315006256)]

[('late_night', 0.4120914041996002), ('lunch', 
0.4054332971572876), ('meal.we', 0.3739640414714813), 
('tacos', 0.3505086302757263), ('breakfast', 
0.34057727456092834), ('high_end_restaurant', 
0.33562248945236206), ('cocktails', 0.3332172632217407), 
('lunch_specials', 0.33315491676330566), ('longer_
period', 0.33072057366371155), ('bubble_tea', 
0.32894694805145264)]

How it works…
Many of the processing steps in this recipe take a long time, and for that reason, we save 
the intermediate results to files.

In step 1, we import the necessary packages and functions. In step 2, we assign the variable 
definitions for the stopwords file and the Yelp! reviews file and then read in the stopwords.



96     Representing Text – Capturing Semantics

In step 3, we define the get_yelp_reviews function, which reads in the reviews. The 
reviews file is 3.9 GB in size and might not fit into memory (or it will fit and slow down 
your computer immensely). In order to solve this problem, we can use the pandas 
read_json method, which lets us read a specified number of lines at once. In the code, 
I just used the first 10,000 lines, though there are many more. This method creates a 
pandas Dataframe object. We iterate through the rows of the object one by one and 
use the langdetect package to determine if the review text is in English. Then, we only 
include English reviews in the text.

In step 4, we define the get_phrases function. This function takes in the review corpus 
as input and detects that they are semantically one unit, such as fried rice. The function 
finds them by considering punctuation and stopwords as border tokens. Anything 
between them is considered a phrase. Once we've found all the phrases, we substitute 
spaces with underscores so that the word2vec module considers them as one token. The 
function returns a dictionary where the key is the input phrase with space(s) and the value 
is the phrase with an underscore.

In step 5, we define the replace_phrases function, which takes in the review corpus 
and replaces all the phrases from the phrases_dict object. Now, the corpus contains 
all the phrases with underscores in them.

In step 6, we define the write_text_to_file function, which will save the provided 
text to the file with the provided filename.

In step 7, we create the create_and_save_frequency_dist function, which creates 
a FreqDist object from the provided corpus and saves it to a file. The reason we create 
this function is to show that high frequency phrases, such as highly recommend and 
happy hour, have good results with word2vec, while with lower frequency phrases, such 
as fried rice and dim sum, the quality of similar words starts to decline. The solution would 
be to process larger quantities of data, which, of course, would slow down the tagging and 
training process. 

In step 8, we create the text review corpus by using the get_yelp_reviews function. 
We then create the phrase dictionary by using the get_phrases function. Finally, we 
write the resulting corpus to a file.

In step 9, we create a FreqDist object, which will show us the most common words 
and phrases in the corpus. First, we divide the text into sentences. Then, we use a list 
comprehension to get all the words in the sentences. After that, we flatten the resulting 
double list and also lowercase all the words. Finally, we use the create_and_save_
frequency_dist function to create the FreqDist object.
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In step 10, we print the most common words and phrases from the frequency distribution. 
The result shows the most common words in the corpus. Your numbers and the order of 
the words might be different, as the Yelp dataset is regularly updated. In steps 11 and 12, 
you can use other phrases that are more or less frequent in your results.

In step 11, we train the word2vec model. In step 12, we print out the words that are 
the most similar to the phrases highly recommend and happy hour. These phrases are 
frequent and the similar words are indeed similar, where recommend and would definitely 
recommend are the most similar phrases to highly recommend. 

In step 13, we print out the most similar words to the phrases fried rice and dim sum. Since 
these a lower frequency phrases, we can see that the words that are returned by the model 
as the most similar are very similar to the input.

One of the intermediate steps is creating a frequency distribution. 

See also
Kavita Ganesan made a Python package for extracting phrases from large corpora using 
PySpark, and her code is available at https://github.com/kavgan/phrase-at-
scale/. You can read about her approach at her blog at https://kavita-ganesan.
com/how-to-incorporate-phrases-into-word2vec-a-text-mining-
approach/.

Using BERT instead of word embeddings
A recent development in the embeddings world is BERT, also known as Bidirectional 
Encoder Representations from Transformers, which, like word embeddings, gives 
a vector representation, but it takes context into account and can represent a whole 
sentence. We can use the Hugging Face sentence_transformers package to 
represent sentences as vectors.

Getting ready
For this recipe, we need to install PyTorch with Torchvision, and then the transformers 
and sentence transformers from Hugging Face. Follow these installation steps in an 
Anaconda prompt. For Windows, use the following code:

conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

pip install transformers

pip install -U sentence-transformers

https://github.com/kavgan/phrase-at-scale/.
https://github.com/kavgan/phrase-at-scale/.
https://kavita-ganesan.com/how-to-incorporate-phrases-into-word2vec-a-text-mining-approach/
https://kavita-ganesan.com/how-to-incorporate-phrases-into-word2vec-a-text-mining-approach/
https://kavita-ganesan.com/how-to-incorporate-phrases-into-word2vec-a-text-mining-approach/
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For macOS, use the following code:

conda install pytorch torchvision torchaudio -c pytorch

pip install transformers

pip install -U sentence-transformers

How to do it…
The Hugging Face code makes using BERT very easy. The first time the code runs, it will 
download the necessary model, which might take some time. Once you've downloaded it, 
it's just a matter of encoding the sentences using the model. We will use the sherlock_
holmes_1.txt file we've used previously for this. Let's get started:

1.	 Import the SentenceTransformer class and helper methods:

from sentence_transformers import SentenceTransformer

from Chapter01.dividing_into_sentences import read_text_
file, \

divide_into_sentences_nltk

2.	 Read the text file and divide the text into sentences:

text = read_text_file("sherlock_holmes.txt")

sentences = divide_into_sentences_nltk(text)

3.	 Load the sentence transformer model:

model = SentenceTransformer('bert-base-nli-mean-tokens')

4.	 Get the sentence embeddings:

sentence_embeddings = model.encode(sentences)

The result will be as follows:
[[-0.41089028  1.1092614   0.653306   ... -0.9232089   
0.4728682

   0.36298898]

 [-0.16485551  0.6998439   0.7076392  ... -0.40428287 
-0.30385852

  -0.3291511 ]

 [-0.37814915  0.34771013 -0.09765357 ...  0.13831234  
0.3604408
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   0.12382   ]

 ...

 [-0.25148678  0.5758055   1.4596572  ...  0.56890184 
-0.6003894

  -0.02739916]

 [-0.64917654  0.3609671   1.1350367  ... -0.04054655  
0.07568665

   0.1809447 ]

 [-0.4241825   0.48146117  0.93001956 ...  0.73677135 
-0.09357803

  -0.0036802 ]]

5.	 We can also encode a part of a sentence, such as a noun chunk:

sentence_embeddings = model.encode(["the beautiful 
lake"])

print(sentence_embeddings)

The result will be as follows:
[[-7.61981383e-02 -5.74670374e-01  1.08264232e+00  
7.36554384e-01

   5.51345229e-01 -9.39117730e-01 -2.80430615e-01 
-5.41626096e-01

   7.50949085e-01 -4.40971524e-01  5.31526923e-01 
-5.41883349e-01

   1.92792594e-01  3.44117582e-01  1.50266397e+00 
-6.26989722e-01

  -2.42828876e-01 -3.66734862e-01  5.57459474e-01 
-2.21802562e-01 …]]

How it works…
The sentence transformer's BERT model is a pre-trained model, just like a word2vec 
model, that encodes a sentence into a vector. The difference between a word2vec model 
and a sentence transformer model is that we encode sentences in the latter, and not words.

In step 1, we import the SentenceTransformer object and the helper functions. 
In step 2, we read in the text of the sherlock_holmes_1.txt file and divide it into 
sentences. In step 3, we load the pretrained model and in step 4, we load the vectors for 
each of the sentences in the text. In step 5, we encode the phrase the beautiful lake. Since 
the encode function expects a list, we create a one-element list.
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Once we've encoded the sentences using the model, we can use them in a downstream 
task, such as classification or sentiment analysis.

Getting started with semantic search
In this recipe, we will get a glimpse of how to get started on expanding search with the 
help of a word2vec model. When we search for a term, we expect the search engine 
to show us a result with a synonym when we didn't use the exact term contained in the 
document. Search engines are far more complicated than what we'll show in the recipe, 
but this should give you a taste of what it's like to build a customizable search engine.

Getting ready
We will be using an IMDb dataset from Kaggle, which can be downloaded from 
https://www.kaggle.com/PromptCloudHQ/imdb-data. Download the dataset 
and unzip the CSV file.

We will also use a small-scale Python search engine called Whoosh. Install it using pip:

pip install whoosh

We will also be using the pretrained word2vec model from the Using word  
embeddings recipe.

How to do it…
We will create a class for the Whoosh search engine that will create a document index 
based on the IMDb file. Then, we will load the pretrained word2vec model and use it to 
augment the queries we pass to the engine. Let's get started:

1.	 Import the helper methods and classes:

from whoosh.fields import Schema, TEXT, KEYWORD, ID, 
STORED, DATETIME

from whoosh.index import create_in

from whoosh.analysis import StemmingAnalyzer

from whoosh.qparser import MultifieldParser

import csv

from Chapter03.word_embeddings import w2vec_model_path

from Chapter03.word_embeddings import load_model

https://www.kaggle.com/PromptCloudHQ/imdb-data
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2.	 Create a directory called whoosh_index in the Chapter03 folder. Then, set the 
paths for the search engine index and the IMDb dataset path:

imdb_dataset_path = "Chapter03/IMDB-Movie-Data.csv"

search_engine_index_path = "Chapter03/whoosh_index"

3.	 Create the IMDBSearchEngine class. The complete code for this class can 
be found in this book's GitHub repository. The most important part of it is the 
query_engine function:

class IMDBSearchEngine:

…

    def query_engine(self, keywords):

        with self.index.searcher() as searcher:

            query=\

            MultifieldParser(["title", "description"],

                              self.index.schema).\

                              parse(keywords)

            results = searcher.search(query)

            print(results)

            print(results[0])

            return results

4.	 The get_similar_words function takes a word and the pretrained model and 
returns the top three words that are similar to the given word:

def get_similar_words(model, search_term):

    similarity_list = model.most_similar(search_term, 
topn=3)

    similar_words = [sim_tuple[0] for sim_tuple in \

                     similarity_list]

    return similar_words

5.	 Now, we can initialize the search engine. Use the first line to initialize the search 
engine when the index doesn't exist yet, and the second line when you've already 
created it once:

search_engine = \

IMDBSearchEngine(search_engine_index_path, 
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                 imdb_dataset_path,

                 load_existing=False)

#search_engine = \

IMDBSearchEngine(search_engine_index_path,

                 load_existing=True)

6.	 Load the word2vec model:

model = load_model(w2vec_model_path)

7.	 Let's say a user wants to find the movie Colossal, but forgot its real name, so they 
search for gigantic. We will use gigantic as the search term:

search_term = "gigantic"

8.	 We will get three words similar to the input word:

other_words = get_similar_words(model, search_term)

9.	 We will then query the engine to return all the movies containing those words:

results = \

search_engine.query_engine(" OR ".join([search_term] + 

                           other_words))

print(results[0])

10.	 The result will be the movie with an ID of 15, which is the movie Colossal:

<Hit {'movie_id': '15'}>

How it works…
In step 1, we import the necessary packages and functions. In step 2, we initialize the 
dataset and search engine paths. Make sure to create a directory called whoosh_index 
in the Chapter03 folder. 

In step 3, we create the IMDBSearchEngine class. The constructor takes the following 
arguments: the path to the search engine index, the path to the CSV dataset, which is an 
empty string by default, and the load_existing boolean argument, which is False 
by default. If load_existing is False, imdb_path needs to point to the dataset. In 
this case, a new index will be created at the path provided by the index_path variable. If 
load_existing is True, the imdb_path variable is ignored, and the existing index is 
loaded from index_path.
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All the indices are created using a schema, and this search engine's schema is created 
in the create_schema function. The schema specifies which fields the information 
about the document will contain. In this case, it is the movie's title, its description, 
genre, director, actors, and year of release. The document index is then created using the 
populate_index function. Once the index has been populated, we do not need to 
reindex it, and can open the index from disk.

The query_engine function searches the index with the keywords that are sent to it. 
When creating a query parser, we use the MultifieldParser class so that we can 
search through multiple fields; in this case, title and description.

In step 4, we create the get_similar_words function, which returns the top three 
words that are similar to the word being passed in using a word2vec model. This should 
be familiar from the Using word embeddings recipe. The function gets the list of word 
similarity score tuples and returns a list of words. 

In step 5, we create the search_engine object. There are two lines, the first one creates 
a new search engine from scratch, while the second one loads an existing index. You 
should run the first line the first time and the second line every other time after that.

In step 6, we load the word2vec model. 

In step 7, we set the search term to gigantic. In step 8, we get the top three similar words 
for the initial search term using the get_similar_words function. In step 9, we use 
the search_engine object to perform the search using the original search term and  
the similar words as the query. The result is movie number 15, Colossal, which is the 
correct answer.

See also
Please refer to the official Whoosh documentation to explore how it's used. It can be 
found at https://whoosh.readthedocs.io/en/latest/.

https://whoosh.readthedocs.io/en/latest/




4
Classifying Texts

In this chapter, we will be classifying texts using different methods. After reading this 
chapter, you will be able to preprocess and classify texts using keywords, unsupervised 
clustering, and two supervised algorithms: support vector machines (SVMs) and long 
short-term memory neural networks (LSTMs).

Here is the list of recipes in this chapter:

•	 Getting the dataset and evaluation baseline ready

•	 Performing rule-based text classification using keywords

•	 Clustering sentences using K-means: unsupervised text classification

•	 Using SVMs for supervised text classification

•	 Using LSTMs for supervised text classification
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Technical requirements
The code for this chapter is located in a folder named Chapter04 in the GitHub 
repository for the book (https://github.com/PacktPublishing/Python-
Natural-Language-Processing-Cookbook). There will be a few packages that we 
will need to install: numpy, sklearn, pandas, tensorflow, keras, and tqdm. Install 
them using these commands:

pip install numpy

pip install sklearn

pip install pandas

pip install tensorflow

pip install keras

pip install tqdm

Please also follow the individual recipe instructions to get the datasets.

Getting the dataset and evaluation baseline 
ready
Classifying texts is a classic NLP problem. This NLP task involves assigning a value to a 
text, for example, a topic or a sentiment, and any such task requires evaluation. In this 
recipe, we will load a dataset, prepare it for processing, and create an evaluation baseline. 
The recipe builds on some of the recipes from Chapter 3, Representing Text: Capturing 
Semantics, where we used different tools to represent text in a computer-readable form.

Getting ready
For most recipes in this chapter, we will use the BBC News dataset, which contains text 
from five topics: business, entertainment, politics, sport, and tech. The dataset is located in 
the bbc-text.csv file in this chapter's GitHub directory.

In this recipe, we will need two additional packages, numpy and sklearn. Install them 
using pip:

pip install numpy

pip install sklearn

https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook
https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook
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How to do it…
In this recipe, we will be classifying just two of the five topics, sport and business. We will 
load the dataset from the provided CSV file and format it into a numpy array. We will 
then use the TfidfVectorizer class, which you might remember from the previous 
chapter, to represent the texts as vectors.

Here are the steps:

1.	 Do the necessary imports:

import csv

import nltk

import string

import numpy as np

from nltk.probability import FreqDist

from sklearn.feature_extraction.text import 
TfidfVectorizer

from sklearn.metrics import classification_report

from sklearn.model_selection import train_test_split

from sklearn.dummy import DummyClassifier

from sklearn import preprocessing

from nltk.stem.snowball import SnowballStemmer

from Chapter01.tokenization import tokenize_nltk

2.	 Initialize the global variables:

stemmer = SnowballStemmer('english')

bbc_dataset = "Chapter04/bbc-text.csv"

stopwords_file_path = "Chapter01/stopwords.csv"

stopwords = []

3.	 We will use the following function to read in the CSV files:

def read_in_csv(csv_file):

    with open(csv_file, 'r', encoding='utf-8') as fp:

        reader = csv.reader(fp, delimiter=',', 

                            quotechar='"')

    data_read = [row for row in reader]

    return data_read
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4.	 We will use another function to tokenize and stem words, including stopwords:

def tokenize_and_stem(sentence):

    tokens = nltk.word_tokenize(sentence)

    filtered_tokens = [t for t in tokens if t not in 

                       string.punctuation]

    stems = [stemmer.stem(t) for t in filtered_tokens]

    return stems

5.	 Here is the function to get the stopwords:

def get_stopwords(path=stopwords_file_path):

    stopwords = read_in_csv(path)

    stopwords = [word[0] for word in stopwords]

    stemmed_stopwords = [stemmer.stem(word) for word in 

                         stopwords]

    stopwords = stopwords + stemmed_stopwords

    return stopwords

6.	 We can immediately use the get_stopwords function to fill the stopwords list:

stopwords = get_stopwords(stopwords_file_path)

7.	 The get_data function will represent the input data as a dictionary:

def get_data(filename):

    data = read_in_csv(filename)

    data_dict = {}

    for row in data[1:]:

        category = row[0]

        text = row[1]

        if (category not in data_dict.keys()):

            data_dict[category] = []

        data_dict[category].append(text)

    return data_dict

8.	 We can print out the number of texts for each topic with the following code:

for topic in data_dict.keys():

    print(topic, "\t", len(data_dict[topic]))
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The result will be as follows:
tech     401

business         510

sport    511

entertainment    386

politics         417

9.	 The get_stats function will return a FreqDist object that will provide the top 
words used in the text:

def get_stats(text, num_words=200):

    word_list = tokenize_nltk(text)

    word_list = [word for word in word_list if word 

                 not in stopwords and re.search(

                                    "[A-Za-z]", word)]

    freq_dist = FreqDist(word_list)

    print(freq_dist.most_common(num_words))

    return freq_dist

10.	 We can now use the preceding functions to get the business and sport text and see 
the differences in their vocabulary:

data_dict = get_data(bbc_dataset)

business_data = data_dict["business"]

sports_data = data_dict["sport"]

business_string = " ".join(business_data)

sports_string = " ".join(sports_data)

get_stats(business_string)

get_stats(sports_string)

The output will look as follows – business first and then sport:
[('year', 637), ('market', 425), ('new', 416), 
('company', 415), ('growth', 384), ('last', 365), 
('firm', 362), ('economy', 359), ('government', 340), 
('bank', 335), ('sales', 316), ('economic', 310), 
('oil', 294), ('shares', 265), ('world', 252), ('years', 
247), ('prices', 246), ('chief', 236), ('china', 223), 
('business', 218), ('companies', 212), ('analysts', 209), 
('uk', 207), ('deal', 206), ('rise', 203), ('expected', 
200), ('group', 199), ('financial', 197), ('yukos', 
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196), ('firms', 193), ('dollar', 180), ('december', 
173), ('country', 173), ('months', 170), ('people', 
170), ('stock', 168), ('first', 165), ('president', 
165), ('three', 164), ('time', 159), ('european', 159), 
('rate', 159), ('state', 158), ('trade', 158), ('told', 
155), ('investment', 153), ('demand', 151), ('interest', 
151),…]

[('game', 476), ('england', 459), ('first', 437), 
('win', 415), ('world', 379), ('last', 376), ('time', 
327), ('back', 318), ('players', 307), ('play', 292), 
('cup', 290), ('new', 285), ('m', 280), ('o', 276), 
('side', 270), ('ireland', 270), ('year', 267), ('team', 
265), ('wales', 265), ('good', 258), ('club', 254), 
('six', 246), ('match', 245), ('won', 241), ('three', 
230), ('set', 228), ('final', 228), ('coach', 228), 
('france', 227), ('season', 223), ('get', 212), ('rugby', 
210), ('injury', 208), ('think', 204), ('take', 201), 
('chelsea', 201), ('added', 200), ('great', 191), 
('open', 181), ('victory', 180), ('best', 178), ('years', 
177), ('next', 174), ('told', 174), ('league', 172), 
('games', 171), …]

11.	 We will use the create_vectorizer function to create a TFIDF vectorizer for 
the text:

def create_vectorizer(text_list):

    tfidf_vectorizer = \

    TfidfVectorizer(max_df=0.90, max_features=200000,

                    min_df=0.05, stop_words='english',

                    use_idf=True,

                    tokenizer=tokenize_and_stem,

                    ngram_range=(1,3))

    tfidf_vectorizer.fit_transform(text_list)

    return tfidf_vectorizer

12.	 We will use the split_test_train function to split the dataset into a training 
and a test set:

def split_test_train(data, train_percent):

    train_test_border = \

    math.ceil(train_percent*len(data))
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    train_data = data[0:train_test_border]

    test_data = data[train_test_border:]

    return (train_data, test_data)

13.	 Now we will split both the business and sports news to get training and test data for 
both of them and create a vectorizer just using the training data:

(business_train_data, business_test_data) = \

 split_test_train(business_data, 0.8)

(sports_train_data, sports_test_data) = \

 split_test_train(sports_data, 0.8)

train_data = business_train_data + sports_train_data

tfidf_vec = create_vectorizer(train_data)

14.	 With the help of the preceding function, we get the label encoder:

le = get_labels(["business", "sport"])

15.	 We will use the create_dataset function to transform the text data into a 
numpy array:

def create_dataset(vectorizer, data_dict, le):

    business_news = data_dict["business"]

    sports_news = data_dict["sport"]

    (sports_vectors, sports_labels) = \

     create_data_matrix(sports_news, vectorizer,

                        "sport", le)

    (business_vectors, business_labels) = \

     create_data_matrix(business_news, vectorizer, 

                        "business", le)

    all_data_matrix = np.vstack((business_vectors,

                                 sports_vectors))

    labels = np.concatenate([business_labels, 

                             sports_labels])

    return (all_data_matrix, labels)
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16.	 The create_dataset function uses the create_data_matrix helper 
function, which encodes the text using the vectorizer and the labels using the 
LabelEncoder object:

def create_data_matrix(input_data, vectorizer, label, 
le):

    vectors = \

    vectorizer.transform(input_data).todense()

    labels = [label]*len(input_data)

    enc_labels = le.transform(labels)

    return (vectors, enc_labels)

17.	 We now create two data dictionaries, a training and a test dictionary, and then 
create the training and test datasets:

train_data_dict = {'business':business_train_data, 

                   'sport':sports_train_data}

test_data_dict = {'business':business_test_data, 

                  'sport':sports_test_data}

(X_train, y_train) = \

create_dataset(tfidf_vec, train_data_dict, le)

(X_test, y_test) = \

create_dataset(tfidf_vec, test_data_dict, le)

18.	 We will now create a dummy classifier that assigns classes randomly and uniformly. 
We will use the predict_trivial function to establish a baseline for the 
classifiers we build in the next recipes:

def predict_trivial(X_train, y_train, X_test, y_test, 
le):

    dummy_clf = DummyClassifier(strategy='uniform',

                                random_state=0)

    dummy_clf.fit(X_train, y_train)

    y_pred = dummy_clf.predict(X_test)

    print(dummy_clf.score(X_test, y_test))

    print(classification_report(y_test, y_pred,

          labels=le.transform(le.classes_), 

          target_names=le.classes_))
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19.	 We now use the predict_trivial function on our dataset:

predict_trivial(X_train, y_train, X_test, y_test, le)

The result will be as follows:
              precision    recall  f1-score   support

    business       0.45      0.44      0.44       102

       sport       0.45      0.45      0.45       102

    accuracy                           0.45       204

   macro avg       0.45      0.45      0.45       204

weighted avg       0.45      0.45      0.45       204

How it works…
The program does the following things: 

1.	 Reads in the BBC topic dataset

2.	 Represents its text as vectors using the TFIDF vectorizer

3.	 Represents the topic labels as numbers

4.	 Analyzes the number of texts available for each topic and the most frequent words 
for the two most numerous topics

5.	 Trains a dummy classifier on the data

In step 1, we import the necessary packages and functions. In step 2, we initialize the 
global variables. In step 3, we define the read_in_csv function, which reads in the file 
and returns the data as a list. In step 4, we define the tokenize_and_stem function, 
which reads in a sentence, splits it into words, removes tokens that are punctuation, and 
finally stems the resulting tokens.

In step 5, we define the get_stopwords function, which reads in the stopwords file and 
returns the stopwords in a list, and in step 6 we use it to get the stopwords list.

In step 7, we define the get_data function, which turns the CSV input into a dictionary, 
where the keys are the five topics and the values are lists of texts for that topic.

In step 8, we print out the number of texts for each topic. Since business and sports have 
the most examples, we use these two topics for classification.
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In step 9, we create the get_stats function. In the function, we tokenize the text, then 
remove all stopwords and words that include characters other than letters of the English 
alphabet, and finally we create a FreqDist object, which provides information about the 
most frequent words in a text. In step 10, we get the data and compare business and sports 
news using the get_stats function. We see that the distributions are quite different 
for business and sport, although there are some frequent words that they share, such as 
world. 

In step 11, we define the create_vectorizer function, which will encode our texts as 
vectors for use with the classifier. In it, we use the TfidfVectorizer class as in Chapter 
3, Representing Text: Capturing Semantics. In step 12, we create the split_test_train 
function, which will split the dataset into training and test sets. The function takes in the 
data and a percent of the data to be used as training. It calculates the border where the list 
needs to be split and uses that to create two lists, one training and the other test.

In step 13, we split both the business and sport news lists with 80% of the data reserved 
for training and 20% for testing. We then create the vectorizer including both business 
and sports news. The creation of the classifier is part of the training process, and thus only 
training data is used.

In step 14, we create the label encoder that will transform text labels into numbers using 
the LabelEncoder class. In step 15, we define the create_dataset function, which 
takes in the vectorizer, the input data dictionary, and the label encoder and creates numpy 
arrays of vector-encoded text and labels for both business and sports news.

In step 16, we define the create_data_matrix function, which is a helper function to 
create_dataset. It takes in a list of texts, the vectorizer, the label being used, and the 
label encoder. It then creates the vector representation of the text using the vectorizer. It 
also creates a list of labels and then encodes them using the label encoder.

In step 17, we create a training and a test data dictionary and create the training and  
test datasets using the create_dataset function. In step 18, we define the  
predict_trivial function, which the DummyClassifier class that predicts the 
labels for the news items. We use the uniform strategy, which generates predictions 
uniformly at random. We then use the classification_report method from the 
sklearn class to do a standard evaluation that computes accuracy, recall, precision,  
and F1.

In step 19, we use the predict_trivial function on our dataset. The scores show  
us that the dummy classifier gets roughly 45% of the answers correct, a little below 
random chance.
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Performing rule-based text classification  
using keywords
In this recipe, we will use the keywords to classify the business and sport data. We will 
create a classifier with keywords that we will choose by ourselves from the frequency 
distributions from the previous recipe.

Getting ready
We will continue using classes from the sklearn, numpy, and nltk packages that we 
used in the previous recipe. 

How to do it…
In this recipe, we will use hand-picked business and sport vocabulary to create a keyword 
classifier that we will evaluate using the same method as the dummy classifier in the 
previous recipe. The steps for this recipe are as follows:

1.	 Do the necessary imports:

import numpy as np

import string

from sklearn import preprocessing

from sklearn.metrics import classification_report

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import 
CountVectorizer

from itertools import repeat

from nltk.probability import FreqDist

from Chapter01.tokenization import tokenize_nltk

from Chapter04.preprocess_bbc_dataset import get_data

from Chapter04.preprocess_bbc_dataset import get_
stopwords

2.	 After examining the 200 most frequent words from the business and sport 
vocabularies, we manually pick vocabularies for sport and business:

business_vocabulary = ["market", "company", "growth", 
"firm", "economy", "government", "bank", "sales", "oil", 
"prices", "business", "uk", "financial", "dollar", 
"stock","trade", "investment", "quarter", "profit", 
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"jobs", "foreign", "tax","euro", "budget", "cost", 
"money", "investor", "industry", "million", "debt"]

sports_vocabulary = ["game", "england", "win", "player", 
"cup", "team", "club", "match","set", "final", 
"coach", "season", "injury", "victory", "league", 
"play","champion", "olympic", "title", "ball", "sport", 
"race", "football", "rugby","tennis", "basketball", 
"hockey"]

3.	 We will now create two different vectorizers, one for sport and one for business:

business_vectorizer = \

CountVectorizer(vocabulary=business_vocabulary)

sports_vectorizer = \

CountVectorizer(vocabulary=sports_vocabulary)

4.	 Initialize the other global variables:

bbc_dataset = "Chapter04/bbc-text.csv"

stopwords_file_path = "Chapter01/stopwords.csv"

stopwords = get_stopwords(stopwords_file_path)

5.	 Define a function to create the label encoder and create it:

def get_labels(labels):

    le = preprocessing.LabelEncoder()

    le.fit(labels)

    return le

le = get_labels(["business", "sport"])

6.	 The create_dataset function will create a numpy array from the data:

def create_dataset(data_dict, le):

    data_matrix = []

    classifications = []

    gold_labels = []

    for text in data_dict["business"]:

        gold_labels.append(le.transform(["business"]))

        text_vector = transform(text)

        data_matrix.append(text_vector)

    for text in data_dict["sport"]:
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        gold_labels.append(le.transform(["sport"]))

        text_vector = transform(text)

        data_matrix.append(text_vector)

    X = np.array(data_matrix)

    y = np.array(gold_labels)

    return (X, y)

7.	 The transform function will take in text and transform it into a vector:

def transform(text):

    business_X = business_vectorizer.transform([text])

    sports_X = sports_vectorizer.transform([text])

    business_sum = \

    sum(business_X.todense().tolist()[0])

    sports_sum = sum(sports_X.todense().tolist()[0])

    return np.array([business_sum, sports_sum])

8.	 We will now define the classify function, which will assign a sports or 
business label to the input text:

def classify(vector, le):

    label = ""

    if (vector[0] > vector[1]):

        label = "business"

    else:

        label = "sport"

    return le.transform([label])

9.	 The evaluate function will evaluate the performance of our classifier:

def evaluate(X, y):

    y_pred = np.array(list(map(classify, X, 

                               repeat(le))))

    print(classification_report(y, y_pred,

          labels=le.transform(le.classes_), 

          target_names=le.classes_))
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10.	 We can now use the preceding functions to evaluate our classifier on all the data 
provided:

data_dict = get_data(bbc_dataset)

(X, y) = create_dataset(data_dict, le)

evaluate(X, y)

The result will be as follows:
              precision    recall  f1-score   support

    business       1.00      0.98      0.99       510

       sport       0.98      1.00      0.99       511

    accuracy                           0.99      1021

   macro avg       0.99      0.99      0.99      1021

weighted avg       0.99      0.99      0.99      1021

How it works…
In step 1, we import the necessary functions and packages. In step 2, we define the 
vocabularies for business and sports to later use them in business and sports vectorizers. 
We selected the most representative words for each category by looking at the top 200 
words data from the previous recipe. I did not use words that appear in both categories, 
such as world.

In step 3, we create the two vectorizers, one for business and one for sports using the 
vocabularies defined in step 2. In step 4, we initialize other global variables. In step 5, we 
define the get_labels function, which creates a label encoder given an input list of 
labels, and then use the function to define the label encoder.

In step 6, we define the create_dataset function, which will take in a data dictionary 
and a label encoder and create the data matrix and a label array. It encodes each news item 
as a vector and transforms labels using the label encoder. Both vectorizers are used on 
each news piece and their data is combined into one vector.

In step 7, we define the transform function. This function transforms an input text 
into a vector of two elements. It first applies the business and sports vectorizers to the 
text. These results provide counts of business and sports vocabulary in the text. We then 
sum both of those and each sum becomes one of the elements in the final vector. The first 
element is the count of business vocabulary, and the second element is the count of sports 
vocabulary.
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In step 8, we define the function classify that takes in a vector and assigns it a label, either 
sports or business. The function takes as input a vector created by the transform 
function and compares the first element to the second. If the first element is greater than 
the second, or there are more business words in the input text than there are sports words, 
it assigns it the business label. If there are more sports words, it assigns it a sports 
label. If the two counts are equal, the sports label is assigned. The function then returns 
the output label encoded with the label encoder.

In step 9, we define the evaluate function. The function takes in the input matrix and 
the label array. It then creates the y_pred array, or the array of predictions for each of 
the vectors in the input matrix. It does that by applying the classify function to the input. 
It then prints out the classification report by comparing the right answers in y to the 
predicted answers in y_pred.

In step 10, we create the data dictionary from the input, then create the dataset and 
evaluate the result. We then run the classification_report function on the data 
and get 99% accuracy.

There's more…
Instead of hand-picking the vocabulary for the vectorizers, we can automate the process. 
We will use automated keyword classification for all five topics in this section. Here is how 
to do it:

1.	 Get the data:

data_dict = get_data(bbc_dataset)

2.	 We will define the divide_data function to randomly split the data into training 
and test sets:

def divide_data(data_dict):

    train_dict = {}

    test_dict = {}

    for topic in data_dict.keys():

        text_list = data_dict[topic]

        x_train, x_test = \

        train_test_split(text_list, test_size=0.2)

        train_dict[topic] = x_train

        test_dict[topic] = x_test

    return (train_dict, test_dict)
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3.	 Use the following function to divide the data:

(train_dict, test_dict) = divide_data(data_dict)

4.	 Get the labels:

le = get_labels(list(data_dict.keys()))

5.	 The create_vectorizers function will create a dictionary of vectorizers by 
topic:

def create_vectorizers(data_dict):

    topic_list = list(data_dict.keys())

    vectorizer_dict = {}

    for topic in topic_list:

        text_array = data_dict[topic]

        text = " ".join(text_array)

        word_list = tokenize_nltk(text)

        word_list = [word for word in word_list if 

                     word not in stopwords]

        freq_dist = FreqDist(word_list)

        top_200 = freq_dist.most_common(200)

        vocab = [wtuple[0] for wtuple in top_200 if 

                 wtuple[0] not in stopwords and 

                 wtuple[0] not in string.punctuation]

        vectorizer_dict[topic] = \

        CountVectorizer(vocabulary=vocab)

    return vectorizer_dict

6.	 The transform_auto function will use the vectorizers to create a vector with 
word counts for each of the topics:

def transform_auto(text, vect_dict, le):

    number_topics = len(list(vect_dict.keys()))

    sum_list = [0]*number_topics

    for topic in vect_dict.keys():

        vectorizer = vect_dict[topic]

        this_topic_matrix = \

        vectorizer.transform([text])

        this_topic_sum = \
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        sum(this_topic_matrix.todense().tolist()[0])

        index = le.transform([topic])[0]

        sum_list[index] = this_topic_sum

    return np.array(sum_list)

7.	 The create_dataset_auto function will use the vectorizer and data 
dictionaries to create the dataset in two numpy arrays:

def create_dataset_auto(data_dict, le, vectorizer_dict):

    data_matrix = []

    classifications = []

    gold_labels = []

    for topic in data_dict.keys():

        for text in data_dict[topic]:

            gold_labels.append(le.transform([topic]))

            text_vector = \

            transform_auto(text, vectorizer_dict, le)

            data_matrix.append(text_vector)

    X = np.array(data_matrix)

    y = np.array(gold_labels)

    return (X, y)

8.	 The classify_auto function will classify the input vector by picking the label 
that corresponds to the highest count of words:

def classify_auto(vector, le):

    result = np.where(vector == np.amax(vector))

    label = result[0][0]

    return [label]

9.	 The evaluate_auto function will evaluate the result:

def evaluate_auto(X, y, le):

    y_pred = np.array(list(map(classify_auto, X, 

                               repeat(le))))

    print(classification_report(y, y_pred, 

          labels=le.transform(le.classes_), 

          target_names=le.classes_))
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10.	 We will now run the defined functions and evaluate the result:

vectorizers = create_vectorizers(train_dict)

(X, y) = create_dataset_auto(test_dict, le, 

                             vectorizers)

evaluate_auto(X, y, le)

The statistics will be as follows:
               precision    recall  f1-score   support

     business       0.91      0.93      0.92       102

entertainment       0.96      0.90      0.93        78

     politics       0.91      0.96      0.94        84

        sport       0.98      1.00      0.99       103

         tech       0.95      0.90      0.92        81

     accuracy                           0.94       448

    macro avg       0.94      0.94      0.94       448

 weighted avg       0.94      0.94      0.94       448

Even when we don't handpick the keywords, the resulting accuracy is 94%.

The main difference between the two recipes for keyword-based classification is that in 
this last piece of code, we use the most frequent words in each of the five topics to create 
the vectorizers that later encode the data, while in the first piece of code we had manually 
handpicked the vocabulary for the vectorizers. Also, here we classified all five topics as 
opposed to just business and sport in the first piece of code.

Clustering sentences using K-means – 
unsupervised text classification
In this recipe, we will use the same data as in the previous chapter and use the 
unsupervised K-means algorithm to sort data. After you have read this recipe, you will 
be able to create your own unsupervised clustering model that will sort data into several 
classes. You can then later apply it to any text data without having to first label it.
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Getting ready
We will use the packages from the previous recipes, as well as the pandas package. Install 
it using pip:

pip install pandas

How to do it…
In this recipe, we will preprocess the data, vectorize it, and then cluster it using K-means. 
Since there are usually no right answers for unsupervised modeling, evaluating the models 
is more difficult, but we will be able to look at some statistics, as well as the most common 
words in all the clusters.

Your steps are as follows:

1.	 Import the necessary functions and packages:

import nltk

import re

import string

import pandas as pd

from sklearn.cluster import KMeans

from nltk.stem.snowball import SnowballStemmer

from sklearn.feature_extraction.text import 
TfidfVectorizer

from nltk.probability import FreqDist

from Chapter01.tokenization import tokenize_nltk

from Chapter01.dividing_into_sentences import divide_
into_sentences_nltk

from Chapter04.preprocess_bbc_dataset import get_data

from Chapter04.keyword_classification import divide_data

from Chapter04.preprocess_bbc_dataset import get_
stopwords

2.	 Initialize the global variables:

bbc_dataset = "Chapter04/bbc-text.csv"

stopwords_file_path = "Chapter01/stopwords.csv"

stopwords = get_stopwords(stopwords_file_path)

stemmer = SnowballStemmer('english')
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3.	 Get the data and divide it into training and testing data:

data_dict = get_data(bbc_dataset)

(train_dict, test_dict) = divide_data(data_dict)

4.	 Create text lists for training and test data:

all_training = []

all_test = []

for topic in train_dict.keys():

    all_training = all_training + train_dict[topic]

for topic in test_dict.keys():

    all_test = all_test + test_dict[topic]

5.	 We will use the tokenize_and_stem function when creating the vectorizer:

def tokenize_and_stem(sentence):

    tokens = nltk.word_tokenize(sentence)

    filtered_tokens = [t for t in tokens if t not in 

                       stopwords and t not in 

                       string.punctuation and 

                       re.search('[a-zA-Z]', t)]

    stems = [stemmer.stem(t) for t in filtered_tokens]

    return stems

6.	 The create_vectorizer function will create and fit the vectorizer on the 
provided data:

def create_vectorizer(data):

    vec = \

    TfidfVectorizer(max_df=0.90, max_features=200000,

                    min_df=0.05, stop_words=stopwords,

                    use_idf=True,

                    tokenizer=tokenize_and_stem, 

                    ngram_range=(1,3))

    vec.fit(data)

    return vec
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7.	 We will now create the vectorizer and get the vector matrix for the training data:

vectorizer = create_vectorizer(all_training)

matrix = vectorizer.transform(all_training)

8.	 Now we can create the KMeans classifier for five clusters and then fit it on the 
matrix produced using the vectorizer from the preceding code:

km = KMeans(n_clusters=5, init='k-means++', 

            random_state=0)

km.fit(matrix)

9.	 The make_predictions function will return a list of cluster numbers for unseen 
data:

def make_predictions(test_data, vectorizer, km):

    predicted_data = {}

    for topic in test_data.keys():

        this_topic_list = test_data[topic]

        if (topic not in predicted_data.keys()):

            predicted_data[topic] = {}

        for text in this_topic_list:

            prediction = \

            km.predict(vectorizer.transform([text]))[0]

            if (prediction not in \

                predicted_data[topic].keys()):

                predicted_data[topic][prediction] = []

            predicted_data[topic][prediction].
append(text)

    return predicted_data

10.	 We will use the print_report function to show the statistics about the model:

def print_report(predicted_data):

    for topic in predicted_data.keys():

        print(topic)

        for prediction in \

        predicted_data[topic].keys():

            print("Cluster number: ", prediction, 
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                  "number of items: ", 

                  len(predicted_data[topic][prediction]))

11.	 Now we will use the make_predictions function on test data and print the 
report:

predicted_data = make_predictions(test_dict, 

                                  vectorizer, km)

print_report(predicted_data)

The results will vary each time you run the training, but they might look like this:
tech

Cluster number:  2 number of items:  60

Cluster number:  4 number of items:  9

Cluster number:  3 number of items:  10

Cluster number:  1 number of items:  2

business

Cluster number:  3 number of items:  100

Cluster number:  0 number of items:  1

Cluster number:  2 number of items:  1

sport

Cluster number:  4 number of items:  98

Cluster number:  3 number of items:  5

entertainment

Cluster number:  1 number of items:  45

Cluster number:  3 number of items:  32

Cluster number:  4 number of items:  1

politics

Cluster number:  0 number of items:  59

Cluster number:  3 number of items:  24

Cluster number:  4 number of items:  1

12.	 The print_most_common_words_by_cluster function will print out the top 
200 words for each cluster:

def print_most_common_words_by_cluster(all_training, km, 
num_clusters):

    clusters = km.labels_.tolist()

    docs = {'text': all_training, 'cluster': clusters}
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    frame = pd.DataFrame(docs, index = [clusters])

    for cluster in range(0, num_clusters):

        this_cluster_text = \

        frame[frame['cluster'] == cluster]

        all_text = \

        " ".join(this_cluster_text['text'].astype(str))

        top_200 = get_most_frequent_words(all_text)

        print(cluster)

        print(top_200)

    return frame

13.	 Using print_most_common_words_by_cluster, we can see which cluster is 
which:

print_most_common_words_by_cluster(all_training, km)

The results will vary from run to run but might look like this:
0

['people', 'technology', 'music', 'mobile', 'users', 
'new', 'use', 'net', 'digital', 'software', 'phone', 
'make', 'service', 'year', 'used', 'broadband', 'uk', 
'online', 'computer', 'get', 'services', 'security', 
'information', 'phones', 'using', 'data', 'internet', 
'microsoft', 'tv', 'system', 'million', 'first', 'world', 
'video', 'work', 'content', 'search', 'access', 'number', 
'networks', 'says', 'time', 'firm', 'web', 'apple', 
'research', 'firms', 'industry', 'media', 'sites', 
'devices', 'site', 'network', 'home', 'help', 'last', 
'market', …]

1

['game', 'games', 'first', 'england', 'world', 'win', 
'time', 'last', 'play', 'players', 'new', 'back', 
'year', 'get', 'cup', 'good', 'm', 'wales', 'o', 'side', 
'team', 'ireland', 'six', 'match', 'set', 'final', 
'won', 'three', 'next', 'club', 'season', 'added', 
'take', 'playing', 'rugby', 'coach', 'years', 'france', 
'best', 'player', 'make', 'chelsea', 'injury', 'victory', 
'think', 'played', 'great', 'minutes', 'start', 'told', 
'nations', 'people', 'come', 'league', 'week', 'title', 
'open', 'top', 'try', 'end', 'arsenal', 'scotland', 
'international', 'chance', 'five', …]
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2

['year', 'new', 'government', 'last', 'company', 
'people', 'market', 'years', 'uk', 'world', 'sales', 
'firm', 'growth', 'economy', 'first', 'bank', 'group', 
'told', 'three', 'time', 'oil', 'deal', 'economic', 
'china', 'shares', 'number', 'chief', 'business', 'make', 
'show', 'law', 'added', 'expected', 'prices', 'country', 
'music', 'companies', 'public', 'european', 'next', 
'london', 'rise', 'financial', 'million', 'money', 
'countries', 'bbc', 'executive', 'work', 'part', 'back', 
'months', 'firms', 'says', 'week', 'news', 'set', 'take', 
'foreign', 'top', 'figures', 'say', 'home', …]

3

['film', 'best', 'awards', 'year', 'award', 'films', 
'director', 'won', 'actor', 'new', 'star', 'actress', 
'british', 'first', 'years', 'last', 'tv', 'show', 
'festival', 'comedy', 'people', 'uk', 'movie', 'oscar', 
'bbc', 'role', 'hollywood', 'aviator', 'prize', 
'music', 'song', 'three', 'including', 'stars', 'time', 
'top', 'nominations', 'world', 'nominated', 'million', 
'ceremony', 'office', 'oscars', 'win', 'drama', 'number', 
'category', 'starring', 'box', 'academy', 'book', 
'london', 'life', 'named', 'series', 'theatre', 'love', 
'think', 'make', 'musical', 'took', 'baby', 'play', …]

4

['labour', 'blair', 'election', 'party', 'government', 
'people', 'minister', 'howard', 'brown', 'prime', 'tory', 
'new', 'told', 'plans', 'leader', 'public', 'tories', 
'tax', 'say', 'chancellor', 'britain', 'tony', 'general', 
'campaign', 'bbc', 'next', 'secretary', 'uk', 'says', 
'michael', 'lib', 'lord', 'kennedy', 'country', 'get', 
'home', 'time', 'make', 'liberal', 'last', 'political', 
'issue', 'parties', 'mps', 'vote', 'year', 'ukip', 
'first', 'conservative', 'voters', 'added', 'house', 
'british', 'take', 'spokesman', 'think', 'saying', 
'back', 'bill', 'believe', 'years', 'politics', …]

14.	 We will now save our model. Import the pickle package:

import pickle

15.	 We will now create the vectorizer and get the vector matrix for the training data:

pickle.dump(km, open("bbc_kmeans.pkl", "wb"))



Clustering sentences using K-means – unsupervised text classification     129

16.	 You can later load the model as follows:

km = pickle.load(open("bbc_kmeans.pkl", "rb"))

How it works…
In step 1, we import the necessary packages and functions. In step 2, we initialize the 
global variables, including the stopwords and the Snowball stemmer object we will use.

In step 3, we get the BBC data as a dictionary by topic and then divide it into training and 
testing data. In step 4, we create text lists for all the training and test data. In step 5, we 
define the tokenize_and_stem function we will use. This function tokenizes the input 
text into words, filters out punctuation and non-letter-containing words, and stems them.

In step 6, we define the create_vectorizer function. This function creates a TF-IDF 
vectorizer that considers uni-, bi-, and trigrams. In step 7, we create the vectorizer using 
the training data and then transform the training text to get the vector matrix.

In step 8, we create and fit the KMeans classifier. We initialize it with five as the number 
of clusters, as that is the number of topics in our data. When you do your own projects on 
unlabeled data, you will have to guess the number of clusters. In his book The Hundred 
Page Machine Learning Book, Andriy Burkov describes an algorithm to determine the 
number of clusters most likely present in your model. The init argument is the way the 
classifier initializes its clusters, and the random_state argument makes sure that the 
random state generated by the model is deterministic. After initializing the classifier, we fit 
the classifier on the training data matrix.

In step 9, we define the make_predictions function, which will return a list of cluster 
numbers for input data. Since the input data needs to be vectorized, the function takes in 
the data, the vectorizer, and the KMeans classifier.

In step 10, we define the print_report function, which prints out statistics about the 
model. It takes in the data dictionary that includes the topic information. It then prints 
out the number of items per cluster for each topic. 

In step 11, we use the make_predictions function to use the model on unseen data 
and then print out the statistics using the print_report function. As we see, all topics 
have more than one cluster as assigned results, which means that the accuracy is not 
100%. The topics that have the best results, or the most texts in one cluster, are business 
and sport, which are also the topics with the largest number of examples.

The print_report function takes the test data and prints the number of texts in each 
topic that were classified in each numbered cluster. 
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In step 12, we define print_most_common_words_by_cluster. This takes the texts 
for each cluster and creates a FreqDist object based on those texts, before printing the 
top 200 most frequent words in each cluster. 

In step 13, we use the print_most_common_words_by_cluster function on 
the training data. Looking at those results, we can conclude that cluster 0 is tech, 
cluster 1 is sport, cluster 2 is business, cluster 3 is entertainment, 
and cluster 4 is politics.

In step 14, we import the pickle package, which will enable us to save the model. In 
step 15, we save the model to a file on disk. Step 16 shows how to later load the model for 
further use.

Using SVMs for supervised text classification
In this recipe, we will build a machine learning classifier that uses the SVM algorithm. By 
the end of the recipe, you will have a working classifier that you will be able to test on new 
inputs and evaluate using the same classification_report tools as we used in the 
previous sections.

Getting ready
We will continue working with the same packages that we already installed in the previous 
recipes.

How to do it…
We will start with the already familiar steps of dividing data into training and testing sets 
and creating a vectorizer. We will then train the SVM classifier and evaluate it. 

Your steps are as follows:

1.	 Import the necessary functions and packages:

import numpy as np

import pandas as pd

import string

import pickle

from sklearn import svm

from sklearn import preprocessing

from sklearn.metrics import classification_report

from sklearn.model_selection import train_test_split
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from sklearn.feature_extraction.text import 
TfidfVectorizer

from Chapter01.tokenization import tokenize_nltk

from Chapter04.unsupervised_text_classification import 
tokenize_and_stem

from Chapter04.preprocess_bbc_dataset import get_data

from Chapter04.keyword_classification import get_labels

from Chapter04.preprocess_bbc_dataset import get_
stopwords

2.	 Initialize the global variables:

bbc_dataset = "Chapter04/bbc-text.csv"

stopwords_file_path = "Chapter01/stopwords.csv"

stopwords = get_stopwords(stopwords_file_path)

3.	 Get the data and create a LabelEncoder object:

data_dict = get_data(bbc_dataset)

le = get_labels(list(data_dict.keys()))

4.	 The create_dataset function will take the data dictionary and create a pandas 
DataFrame object with the data:

def create_dataset(data_dict, le):

    text = []

    labels = []

    for topic in data_dict:

        label = le.transform([topic])

        text = text + data_dict[topic]

        this_topic_labels = \

        [label[0]]*len(data_dict[topic])

        labels = labels + this_topic_labels

    docs = {'text':text, 'label':labels}

    frame = pd.DataFrame(docs)

    return frame
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5.	 The split_dataset function splits the DataFrame into training and test sets:

def split_dataset(df, train_column_name, 

                  gold_column_name, test_percent):

    X_train, X_test, y_train, y_test = \

    train_test_split(df[train_column_name], 

                     df[gold_column_name], 

                     test_size=test_percent, 

                     random_state=0)

    return (X_train, X_test, y_train, y_test) 

6.	 The create_and_fit_vectorizer function will create and fit the vectorizer 
on the provided data:

def create_and_fit_vectorizer(training_text):

    vec = \

    TfidfVectorizer(max_df=0.90, min_df=0.05, 

                    stop_words=stopwords, use_idf=True,

                    tokenizer=tokenize_and_stem, 

                    ngram_range=(1,3))

    return vec.fit(training_text)

7.	 Using the data dictionary and the functions previously defined, we will create the 
test and training data:

df = create_dataset(data_dict, le)

(X_train, X_test, y_train, y_test) = \

split_dataset(df, 'text', 'label')

vectorizer = create_and_fit_vectorizer(X_train)

X_train = vectorizer.transform(X_train).todense()

X_test = vectorizer.transform(X_test).todense()

8.	 The train_svm_classifier function takes the data and returns a trained SVM 
classifier:

def train_svm_classifier(X_train, y_train):

    clf = svm.SVC(C=1, kernel='linear', 

                  decision_function_shape='ovo')

    clf = clf.fit(X_train, y_train)

    return clf
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9.	 The evaluate function prints out a statistics report:

def evaluate(clf, X_test, y_test, le):

    y_pred = clf.predict(X_test)

    print(classification_report(y_test, y_pred, 

          labels=le.transform(le.classes_), 

          target_names=le.classes_))

10.	 Using the preceding functions, we will train the classifier, save it, and then evaluate 
it:

clf = train_svm_classifier(X_train, y_train)

pickle.dump(clf, open("Chapter04/bbc_svm.pkl", "wb"))

evaluate(clf, X_test, y_test, le)

The result will be as follows:
               precision    recall  f1-score   support

     business       0.93      0.93      0.93       105

entertainment       0.96      0.96      0.96        78

     politics       0.93      0.94      0.94        72

        sport       0.98      0.99      0.99       106

         tech       0.96      0.94      0.95        84

     accuracy                           0.96       445

    macro avg       0.95      0.95      0.95       445

 weighted avg       0.96      0.96      0.96       445

11.	 The test_new_example function will take in a string, the classifier, the 
vectorizer, and the label encoder and provide a prediction:

def test_new_example(input_string, clf, vectorizer, le):

    vector = \

    vectorizer.transform([input_string]).todense()

    prediction = clf.predict(vector)

    print(prediction)

    label = le.inverse_transform(prediction)

    print(label)



134     Classifying Texts

12.	 We will test the preceding function on a new article:

new_example = """iPhone 12: Apple makes jump to 5G

Apple has confirmed its iPhone 12 handsets will be its 
first to work on faster 5G networks. 

The company has also extended the range to include a new 
"Mini" model that has a smaller 5.4in screen. 

The US firm bucked a wider industry downturn by 
increasing its handset sales over the past year. 

But some experts say the new features give Apple its best 
opportunity for growth since 2014, when it revamped its 
line-up with the iPhone 6. 

"5G will bring a new level of performance for downloads 
and uploads, higher quality video streaming, more 
responsive gaming, real-time interactivity and so much 
more," said chief executive Tim Cook. 

…"""

test_new_example(new_example, clf, vectorizer, le)

The result will be as follows:
[4]

['tech']

How it works…
In step 1, we import the necessary functions and packages. In step 2, we initialize the 
global variables. In step 3, we get the data dictionary using the get_data function from 
the Getting the dataset and evaluation baseline ready recipe in this chapter. Then we create 
a label encoder object using the get_labels function from the Performing rule-based 
text classification using keywords recipe in this chapter. 

In step 4, we define the create_dataset function, which takes in the data dictionary 
and creates a pandas DataFrame object. The text column in this DataFrame contains 
the text in the dataset, and the label column contains the transformed label assigned to 
the item. 
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In step 5, we define the split_dataset function, which splits the DataFrame into test 
and training sets. It takes in as arguments the DataFrame, the name of the column that 
contains the text to be trained on, the name of the column that contains the label, and 
the proportion of data to be used as test data. It then uses the sklearn train_test_
split function and returns four numpy arrays: two arrays with data, one for testing and 
one for training (X_test and X_train), and two arrays with labels, one for testing and 
one for training (y_test and y_train).

In step 6, we define the create_and_fit_vectorizer function, which creates a 
TFIDF vectorizer that encodes uni-, bi-, and trigrams. It returns the vectorizer fitted on 
the training data. 

In step 7, we use the functions defined in steps 4 to 6. First, we create the dataset as a 
DataFrame using the create_dataset function. Then we divide the dataset into testing 
and training using the split_dataset function, leaving 20% of the data for testing. We 
create the vectorizer using the create_and_fit_vectorizer function, using just the 
training data for it. Finally, we transform the training and test data using the vectorizer.

In step 8, we define the train_svm_classifier function. It trains an SVM classifier 
with the regularization parameter of 1 and the linear kernel. The regularization parameter 
serves to reduce overfitting in machine learning models. You can experiment with 
different values for it. There are different kernels that are used by the SVM algorithm, 
which are different ways to separate data into its classes. The linear kernel is the simplest 
one. 

In step 9, we define the evaluate function. It compares the labels provided in the dataset 
with the classifier predictions and prints out the classification report with accuracy, 
precision, and recall information for the model.

In step 10, we use the train the SVM classifier, save it to a file using the pickle package 
and then evaluate it. We achieve an accuracy of 96%. 

In step 11, we define the test_new_example function, which will take in a text 
and classify it using our model. It takes the input string, classifier, vectorizer, and label 
encoder. It transforms the input text using the vectorizer, gets a prediction from the 
model, and then decodes the prediction into a text label. 

In step 12, we use the test_new_example function to make a prediction on a tech 
article. We see that the prediction is indeed tech.
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There's more…
There are many different machine learning algorithms that can be used instead of the 
SVM algorithm. Some of the others are regression, Naïve Bayes, and decision trees. You 
can experiment with them and see which ones perform better.

Using LSTMs for supervised text classification
In this recipe, we will build a deep learning LSTM classifier for the BBC News dataset. 
There is not enough data to build a great classifier, but we will use the same dataset for 
comparison. By the end of this recipe, you will have a complete LSTM classifier that is 
trained and can be tested on new inputs.

Getting ready
In order to build the recipe, we need to install tensorflow and keras:

pip install tensorflow

pip install keras

In this recipe, we will use the same BBC dataset to create an LSTM classification model.

How to do it…
The general structure of the training is similar to plain machine learning model training, 
where we clean the data, create the dataset, and split it into training and testing datasets. 
We then train a model and test it on unseen data. The particulars of the training are 
different for deep learning as opposed to statistical machine learning, such as SVMs. The 
steps for this recipe are as follows:

1.	 Import the necessary functions and packages:

import pandas as pd

import numpy as np

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

import tensorflow as tf

from keras import Sequential

from tensorflow.keras.layers import Embedding
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from tensorflow.keras.layers import SpatialDropout1D

from tensorflow.keras.layers import LSTM

from tensorflow.keras.layers import Dense

from tensorflow.keras.callbacks import EarlyStopping

from keras.models import load_model

import matplotlib.pyplot as plt

from Chapter04.preprocess_bbc_dataset import get_data

from Chapter04.keyword_classification import get_labels

from Chapter04.preprocess_bbc_dataset import get_
stopwords

from Chapter04.svm_classification import create_dataset, 
new_example

2.	 Initialize the global variables:

MAX_NUM_WORDS = 50000

MAX_SEQUENCE_LENGTH = 1000

EMBEDDING_DIM = 300

bbc_dataset = "Chapter04/bbc-text.csv"

3.	 The create_tokenizer function creates a tokenizer for the LSTM model:

def create_tokenizer(input_data, save_path):

    tokenizer = \

    Tokenizer(num_words=MAX_NUM_WORDS,

              filters='!"#$%&()*+,-./:;<=>?@[\]^_`{|}~',

              lower=True)

    tokenizer.fit_on_texts(input_data)

    save_tokenizer(tokenizer, save_path)

    return tokenizer

4.	 The save_tokenizer and load_tokenizer functions save and load 
tokenizers:

def save_tokenizer(tokenizer, filename):

    with open(filename, 'wb') as f:

        pickle.dump(tokenizer, f, 

                    protocol=pickle.HIGHEST_PROTOCOL)
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def load_tokenizer(filename):

    with open('tokenizer.pickle', 'rb') as f:

        tokenizer = pickle.load(f)

    return tokenizer

5.	 The plot_model function takes a history object from a trained model and plots 
the model's loss for testing and training data, which helps to evaluate the training 
process:

def plot_model(history):

    plt.title('Loss')

    plt.plot(history.history['loss'], label='train')

    plt.plot(history.history['val_loss'],

             label='test')

    plt.legend()

    plt.show()

6.	 The evaluate_model function prints out the already familiar classification 
report:

def evaluate(model, X_test, Y_test, le):

    Y_pred = model.predict(X_test)

    Y_pred = Y_pred.argmax(axis=-1)

    Y_test = Y_test.argmax(axis=-1)

    Y_new_pred = [le.inverse_transform([value]) for 

                  value in Y_pred]

    Y_new_test = [le.inverse_transform([value]) for 

                  value in Y_test]

    print(classification_report(Y_new_test, 

                                Y_new_pred))

7.	 The train_model function takes the input DataFrame and a LabelEncoder 
object as input, trains an LSTM model, saves it, evaluates it, and plots its loss:

def train_model(df, le):

    tokenizer = \

    create_tokenizer(df['text'].values, 

                     'Chapter04/bbc_tokenizer.pickle')

    X = transform_text(tokenizer, df['text'].values)
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    Y = pd.get_dummies(df['label']).values

    X_train, X_test, Y_train, Y_test = \

    train_test_split(X,Y, test_size = 0.20, 

                     random_state = 42)

    model = Sequential()

    optimizer = tf.keras.optimizers.Adam(0.0001)

    model.add(Embedding(MAX_NB_WORDS, EMBEDDING_DIM, 

                        input_length=X.shape[1]))

    model.add(SpatialDropout1D(0.2))

    model.add(LSTM(100, dropout=0.2, 

                   recurrent_dropout=0.2))

    model.add(Dense(5, activation='softmax'))

    #Standard for multiclass classification

    loss='categorical_crossentropy' 

    model.compile(loss=loss, optimizer=optimizer, 

                  metrics=['accuracy'])

    epochs = 7

    batch_size = 64

    es = EarlyStopping(monitor='val_loss', patience=3, 

                       min_delta=0.0001)

    history = model.fit(X_train, Y_train, 

                        epochs=epochs, 

                        batch_size=batch_size, 

                        validation_split=0.2, 

                        callbacks=[es])

    accr = model.evaluate(X_test,Y_test)

    print('Test set\n  Loss: {:0.3f}\n  Accuracy: \

           {:0.3f}'.format(accr[0],accr[1]))

    model.save('Chapter04/bbc_model_scratch1.h5')

    evaluate(model, X_test, Y_test, le)

    plot_model(history)

8.	 Let's load the data, create a label encoder, and create the dataset:

data_dict = get_data(bbc_dataset)

le = get_labels(list(data_dict.keys()))

df = create_dataset(data_dict, le)
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9.	 Now we can train the model using the train_model function defined previously:

train_model(df, le)

The output will vary, but here is an example:
Epoch 1/7

23/23 [==============================] - 279s 12s/step - 
loss: 1.5695 - accuracy: 0.3083 - val_loss: 1.4268 - val_
accuracy: 0.3596

…

Epoch 7/7

23/23 [==============================] - 259s 11s/step - 
loss: 0.0402 - accuracy: 0.9944 - val_loss: 0.5588 - val_
accuracy: 0.8258

14/14 [==============================] - 10s 732ms/step - 
loss: 0.4948 - accuracy: 0.8427

Test set

  Loss: 0.495

  Accuracy: 0.843

               precision    recall  f1-score   support

     business       0.87      0.94      0.90       104

entertainment       0.82      0.73      0.77        75

     politics       0.81      0.73      0.77        82

        sport       0.97      0.85      0.90        99

         tech       0.75      0.92      0.83        85

     accuracy                           0.84       445

    macro avg       0.84      0.83      0.84       445

 weighted avg       0.85      0.84      0.84       445



Using LSTMs for supervised text classification     141

And the plot of the loss function might look like this:

Figure 4.1 – Plot of the training and test loss function

10.	 We will have a function to load and test an existing model:

def load_and_evaluate_existing_model(model_path, 
tokenizer_path, df, le):

    model = load_model(model_path)

    tokenizer = load_tokenizer(tokenizer_path)

    X = transform_text(tokenizer, df['text'].values)

    Y = pd.get_dummies(df['label']).values

    evaluate(model, X, Y, le)

11.	 The test_new_example function will take in a string, the classifier, the 
vectorizer, and the label encoder and provide a prediction:

def test_new_example(model, tokenizer, le, text_input):

    X_example = transform_text(tokenizer, new_example)

    label_array = model.predict(X_example)

    new_label = np.argmax(label_array, axis=-1)

    print(new_label)

    print(le.inverse_transform(new_label))
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12.	 We will test the preceding function on the same tech article as we did in the Using 
SVMs for supervised text classification recipe:

test_new_example(model, tokenizer, le, new_example)

The result will be as follows:
[4]

['tech']

How it works…
In step 1, we import the packages and functions that we will need in this recipe. 

In step 2, we initialize the global variables. The MAX_NUM_WORDS variable will have the 
maximum number of words that the tokenizer processes. The MAX_SEQUENCE_LENGTH 
variable is also used by the tokenizer and is the length of each input string that is fed into 
the model. Deep learning models require that each input string be of the same length, 
and that length is set in the MAX_SEQUENCE_LENGTH variable. The EMBEDDING_DIM 
variable sets the number of values to be used in the embedding vectors. Embedding 
vectors are similar to word2vec vectors, which encode each input text sequence.

In step 3, we define the create_tokenizer function, which creates the tokenizer 
required for LSTM. The tokenizer uses a set number of words for the model, which is set 
in the MAX_NUM_WORDS variable. It filters all punctuation, which is set in the filters 
parameter. It also lowercases all words. The function fits the tokenizer on the input data 
and then saves it to the provided path.

In step 4, we define the save_tokenizer and load_tokenizer functions to be used 
when loading pretrained models.

In step 5, we define the plot_model function. It takes the model history object and plots 
the training and validation loss, which is a useful tool in evaluating model performance.

Important note
Plotting the loss of a deep learning model is a useful tool in evaluating model 
performance. See this blog post to learn more about different possibilities: 
https://machinelearningmastery.com/learning-
curves-for-diagnosing-machine-learning-model-
performance/.

In step 6, we define the evaluate_model function, which should be familiar, as it prints 
out the classification report that we used in previous recipes.

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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In step 7, we define the train_model function. It creates a new model and then trains 
it. First, it uses the create_tokenizer function to get the tokenizer. It then uses the 
transform_text function to get the data into vector form. The pad_sequences 
function then adds empty values to each vector that is not the maximum size, so that 
all vectors are equal in length. We then one-hot encode the labels by using the pandas 
get_dummies function. After that, we split the dataset into training and testing parts. 
We then create a Sequential model and add layers to it. We use the Adam optimizer 
with a learning rate of 0.001. The first layer in the model is the embedding layer, the same 
type of embedding as used in the Using word embeddings recipe in Chapter 3, Representing 
Text: Capturing Semantics. We add the spatial dropout and the LSTM layers, followed by 
the dense layer. We then set the loss function to be categorical cross-entropy, which is 
standard for multi-class classification problems. We use seven epochs, or training rounds, 
and set 64 as the batch size. We use early stopping to prevent overfitting. We then train 
the model, save it, evaluate it, and plot its loss.

In step 8, we load the data, create a label encoder, and create the DataFrame with the input 
text. In step 9, we train the model using the train_model function and the input data. 
The accuracy on this dataset is not as good as with other methods: 84%. This is most likely 
because of the small amount of data for a deep learning network. This is corroborated 
by the loss plot, where the validation loss starts to deviate upward from the training loss, 
which happens frequently in situations with not enough data.

In step 10, we define the load_and_evaluate_existing_model function. Using 
this function, we can load and test an existing model on new data. In the function, we 
load the model and the tokenizer, transform the inputs, and evaluate them using the 
classification report.

In step 11, we define the test_new_example function. We load both the model and 
the tokenizer, apply the tokenizer to the text, and use the model on the transformed input. 
The output will be an array of probabilities for each class, so we have to transform it using 
the NumPy argmax function. This will get the most probable classification according to 
the model. After using the label encoder, we get the same tech label as before.





5
Getting Started 

with Information 
Extraction

In this chapter, we will cover the basics of information extraction. We will start with 
extracting emails and URLs from job announcements. Then we will use an algorithm 
called the Levenshtein distance to find similar strings. Next, we will use spaCy to find 
named entities in text, and later we will train our own named entity recognition (NER) 
model in spaCy. We will then do basic sentiment analysis, and finally, we will train two 
custom sentiment analysis models.

You will learn how to use existing tools and train your own models for information 
extraction tasks.

We will cover the following recipes in this chapter:

•	 Using regular expressions

•	 Finding similar strings: the Levenshtein distance

•	 Performing NER using spaCy

•	 Training your own NER model with spaCy
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•	 Discovering sentiment analysis

•	 Sentiment for short texts using LSTM: Twitter

•	 Using BERT for sentiment analysis 

Technical requirements
The code for this chapter is located in a folder named Chapter05 in the GitHub 
repository of the book (https://github.com/PacktPublishing/Python-
Natural-Language-Processing-Cookbook). In this chapter, you will need to 
install some additional packages using these commands:

pip install pandas

pip install python-Levenshtein

pip install spacy

pip install nltk

pip install textblob

pip install tqdm

pip install transformers

We will also need an additional package to segment Twitter hashtags, which can be 
downloaded at https://github.com/jchook/wordseg. After downloading, install 
it using this command:

python setup.py install

Using regular expressions
In this recipe, we will use regular expressions to find email addresses and URLs in text. 
Regular expressions are special character sequences that define search patterns. We will 
use a job descriptions dataset and write two regular expressions, one for emails and one 
for URLs.

Getting ready
We will need the pandas package for handling the data. If you haven't already installed it, 
install it like so:

pip install pandas

https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook
https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook
https://github.com/jchook/wordseg
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Download the job descriptions dataset from https://www.kaggle.com/
andrewmvd/data-scientist-jobs.

Here is a very handy tool for debugging regular expressions: https://regex101.
com/. You can input a regular expression and a test string. It will show matches  
resulting from the regular expression, and the steps that the regular expression engine 
took in the process.

How to do it…
We will read the data from the CSV file into a pandas DataFrame and will use the Python 
re package to create regular expressions and search the text. The steps for this recipe are 
as follows:

1.	 Import the re and pandas packages and define the data_file variable:

import re

import pandas as pddata_file = "Chapter05/DataScientist.
csv"

2.	 The get_items functions will search a specific column in the DataFrame and find 
everything that matches the regular expression that is passed in:

def get_items(df, regex, column_name):

    df[column_name] = df['Job Description'].apply(

                       lambda x: re.findall(regex, x))

    return df

3.	 The get_list_of_items helper function takes a DataFrame as input and turns 
one of its columns into a list:

def get_list_of_items(df, column_name):

    items = []

    for index, row in df.iterrows():

        if (len(row[column_name]) > 0):

            for item in list(row[column_name]):

                if (type(item) is tuple and \

                len(item) > 1):

                    item = item[0]

https://www.kaggle.com/andrewmvd/data-scientist-jobs
https://www.kaggle.com/andrewmvd/data-scientist-jobs
https://regex101.com/
https://regex101.com/
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                if (item not in items):

    items.append(item)

    return items

4.	 The get_emails function finds all emails in a DataFrame and returns them  
as a list:

def get_emails(df):

    email_regex='[^\s:|()\']+@[a-zA-Z0-9\.]+\.[a-zA-Z]+'

    df['emails'] = df['Job Description'].apply(

                 lambda x: re.findall(email_regex, x))

    emails = get_list_of_items(df, 'emails')

    return emails

5.	 The get_urls helper function takes a DataFrame as input and turns one of its 
columns into a list:

def get_urls(df):

    url_regex = '(http[s]?://(www\.)?[A-Za-z0-9–_\.\-]+\.
[A-Za-z]+/?[A-Za-z0-9$\–_\-\/\.\?]*)[\.)\"]*'

    df = get_items(df, url_regex, 'urls')

    urls = get_list_of_items(df, 'urls')

    return urls

6.	 Now we will read the CSV file into a DataFrame using the pandas read_csv 
method:

df = pd.read_csv(data_file, encoding='utf-8')

7.	 We will now get the emails:

emails = get_emails(df)

print(emails)

Part of the result will look like this:
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['security@quartethealth.com', 'talent@quartethealth.
com', 'accommodations-ext@fb.com', 'talent@ebay.com', 
'recruiting-inquiries@deshaw.com', 'cvwithdraw@deshaw.
com', 'backgroundcheck-inquiries@deshaw.com', 'Candidate.
Accommodations@Disney.com', 'careers@springhealth.com', 
'TalentAcquisition@grubhub.com', 'privacy@grubhub.com', 
'jobs@temboo.com', 'careers@Healthfirst.org', 'mailbox_
tas_recruit@humana.com', …]

8.	 We will get the URLs in a similar fashion:

urls = get_urls(df)

print(urls)

Part of the result will look like this:
['https://www.decode-m.com/', 'https://www.amazon.jobs/
en/disability/us.', 'https://www.techatbloomberg.com/
nlp/', 'https://bloomberg.com/company/d4gx/', 'https://
www.dol.gov/ofccp/regs/compliance/posters/ofccpost.
htm', 'http://www.tapestry.com/', 'https://www.arena.
io/about/careers.html', 'http://www.fujitsu.com/global/
about/corporate/info/', 'http://www.fujitsu.com/global/
digitalannealer/', 'http://www.fujitsu.com/global/
solutions/business-technology/ai/', …]

How it works…
Now let's look at how the steps from the preceding section work.

In step 1, we import re and pandas, the two packages that we need, and define the path 
to the dataset.

In step 2, we define the get_items function, which takes a DataFrame, a regular 
expression, and a column name, and creates a new column that contains the search results. 
The function applies the regular expression to every entry in the Job Description 
column and stores the results in the new column.

In step 3, we define the get_list_of_items function, which takes in a DataFrame and 
returns a list of found items in the specified column. This function also removes duplicates 
and only leaves the match parts that are necessary (that appear first in this case). In the 
case of URLs, we match using groups, and the re package returns a tuple of results that 
include all groups matched. We use just the first group that is the actual URL match.



150     Getting Started with Information Extraction

In step 4, we define the get_emails function to get all the emails that appear in the 
Job Description column. The regular expression consists of three parts that appear 
in square brackets followed by quantifiers:

•	 [^\s:|()\']+ is the username part of the regular expression, followed by the @ 
sign. It consists of one group of characters, which is shown in square brackets. Any 
characters from this group may appear in the username one or more times. This is 
shown using the + quantifier. The characters in the username can be anything but 
a space (\s), colon, |, or an apostrophe. The ^ character shows the negation of the 
character class. The apostrophe is a special character in regular expressions and has 
to be escaped with a backward slash in order to invoke the regular meaning of the 
character.

•	 [a-zA-Z0-9\.]+ is the first part of the domain name, followed by a dot. This 
part is simply alphanumeric characters, lower or upper case, and a dot appearing 
one or more times. Since a dot is a special character, we escape it with a backward 
slash. The a-z expression signifies a range of characters from a to z.

•	 [a-zA-Z]+ is the last part of the domain name, which is the top-level domain, 
such as .com, .org, and so on. Usually, no digits are allowed in these top-level 
domains, and the regular expression matches lower or upper characters that appear 
one or more times.

This regular expression is sufficient to parse all emails in the dataset and not present any 
false positives. You might find that in your data there are additional adjustments that need 
to be made to the regular expression.

In step 5, we define the get_urls function that returns all URLs in a specified Data 
Frame. URLs are significantly more complicated than emails, and here is  
a breakdown of the regular expression:

•	 http[s]?://: This is the http part of the URL. All URLs in this dataset had this 
part; that might not be the case in your data, and you will have to adjust the regular 
expression accordingly. This part of the expression will match both http and 
https, since s is listed as appearing zero times or once, which is signified by  
the ? quantifier.

•	 (www\.)?: Next, we have a group of characters, which are treated as a unit, but 
they all have to appear in the order they are listed. In this case, this is the www 
part of the URL followed by a dot, escaped with a backward slash. The group of 
characters may appear zero times or once, signified by the ? character at the end.
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•	 [A-Za-z0-9–_\.\-]+: This part is the domain name of the website, followed 
by the top-level domain. Website names also include dashes, and the dot character 
appears before the top-level domain and subdomains.

•	 /? [A-Za-z0-9$\–_\-\/\.\?]*): This last part is whatever follows the 
domain name after the slash. It could be a variety of characters that list files, 
parameters, and so on. They could or could not be present, and that is why they  
are followed by the* quantifier. The bracket at the end signifies the end of the 
matching group.

•	 [\.)\"]*: Many URLs in this dataset are followed by dots, brackets, and other 
characters, and this is the last part of the regular expression.

In step 6, we read the dataset into a pandas DataFrame. In step 7, we use the get_emails 
function to parse all the emails out to the job description field. In step 8, we get the URLs 
using the get_urls function.

There's more…
Writing regular expressions can quickly turn into a messy affair. We use regular expression 
testing websites to enter the text that we expect a match and the regular expression. One 
example of such a site is https://regex101.com/. 

Finding similar strings: the Levenshtein 
distance
When doing information extraction, in many cases we deal with misspellings, which can 
bring complications into the task. In order to get around this problem, several methods 
are available, including the Levenshtein distance. This algorithm finds the number of 
edits/additions/deletions needed to change one string into another. In this recipe, you will 
be able to use this technique to find a match for a misspelled email.

Getting ready
We will use the same packages and the dataset that we used in the previous recipe,  
and also the python-Levenshtein package, which can be installed using the  
following command:

pip install python-Levenshtein

https://regex101.com/
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How to do it…
We will read the dataset into a pandas DataFrame and use the emails extracted from it to 
search for a misspelled email.

Your steps should be formatted like so:

1.	 Do the necessary imports:

import pandas as pd

import Levenshtein

from Chapter05.regex import get_emails

2.	 Initialize the data_file variable:

data_file = "Chapter05/DataScientist.csv"

3.	 The find_levenshtein function takes in a DataFrame and an input string  
and computes the Levenshtein distance between it and each string in the  
email column:

def find_levenshtein(input_string, df):

    df['distance_to_' + input_string] = \

    df['emails'].apply(lambda x:Levenshtein.distance(

                                        input_string, x))

    return df

4.	 The get_closest_email_lev function uses the function we defined in the 
previous step to find the email address that is closest to the one input:

def get_closest_email_lev(df, email):

    df = find_levenshtein(email, df)

    column_name = 'distance_to_' + email

    minimum_value_email_index = df[column_name].idxmin()

    email = \

    df.loc[minimum_value_email_index]['emails']

    return email
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5.	 Now we can read in the job descriptions DataFrame we used in the previous recipe 
and create a new DataFrame just from the emails:

df = pd.read_csv(data_file, encoding='utf-8')

emails = get_emails(df)

new_df = pd.DataFrame(emails,columns=['emails'])

6.	 Next, we use the misspelled email rohitt.macdonald@prelim.comto find a 
match in the new email DataFrame:

input_string = "rohitt.macdonald@prelim.com"

email = get_closest_email_lev(new_df, input_string)

print(email)

The output is as follows:
rohit.mcdonald@prolim.com

How it works…
In step 1, we import the pandas and the Levenshtein packages, as well as the get_
emails function from the previous recipe.

In step 2, we define the path to the file with the dataset.

In step 3, we define the find_levenshtein function that takes in an input string and 
a DataFrame with emails and creates a new column where the value is the Levenshtein 
distance between the input and the email in the DataFrame. The column name is 
distance_to_[input_string].

In step 4, we define the get_closest_email_lev function that takes in a DataFrame 
with emails and an email to match that returns the email in the DataFrame that is closest 
to the input. We accomplish this by using the find_levenshtein function to create 
a new column with distances to the input email and then using the idxmin() function 
from pandas to find the index of the minimum value. We use the minimum index to find 
the closest email.

In step 5, we read the dataset and get the emails, and then create a new DataFrame with 
just the emails.

In step 6, we define a misspelled email and use the get_closest_email_lev function 
to find the email that matches it, which is rohit.mcdonald@prolim.com, the correct 
spelling of the email.
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There's more…
We can use another function, Jaro similarity, which outputs the similarity between two 
strings as a number between 0 and 1, where 1 means that two strings are the same. 
The process is similar, but we need the index with the maximum value instead of the 
minimum, since the Jaro similarity function returns a higher value for more similar 
strings. The steps are as follows:

1.	 The find_jaro function takes in a DataFrame and an input string and computes 
the Jaro similarity between it and each string in the email column:

def find_jaro(input_string, df):

    df['distance_to_' + input_string] = \

    df['emails'].apply(lambda x: Levenshtein.jaro(

                                        input_string, x))

    return df

2.	 The get_closest_email_jaro function uses the function we defined in the 
previous step to find the email address that is closest to the one input:

def get_closest_email_jaro(df, email):

    df = find_jaro(email, df)

    column_name = 'distance_to_' + email

    maximum_value_email_index = df[column_name].idxmax()

    email = \

    df.loc[maximum_value_email_index]['emails']

    return email

3.	 Now we can read in the job descriptions DataFrame we used in the previous recipe 
and create a new DataFrame just from the emails:

df = pd.read_csv(data_file, encoding='utf-8')

emails = get_emails(df)

new_df = pd.DataFrame(emails,columns=['emails'])

4.	 Next, we use the misspelled email rohitt.macdonald@prelim.com to find  
a match in the new email DataFrame:

input_string = "rohitt.macdonald@prelim.com"

email = get_closest_email_jaro(new_df, input_string)

print(email)
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The output is as follows:
rohit.mcdonald@prolim.com

An extension of the Jaro similarity function is the Jaro-Winkler function, which attaches 
a weight to the end of the word, and that weight lowers the importance of misspellings 
toward the end, for example:

print(Levenshtein.jaro_winkler("rohit.mcdonald@prolim.com",

      "rohit.mcdonald@prolim.org"))

The resultant output would be as follows:

1.0

See also
There is another Python package that has string similarity functions, jellyfish. It 
has other features, such as converting a spelling into a phonetic string, which allows 
the matching of strings based on the way they sound, as well as fuzzy string matching, 
including Levenshtein and others.

Performing named entity recognition  
using spaCy
In this recipe, we will parse out named entities from an article text used in Chapter 4, 
Classifying Texts. We will load the package and the parsing engine, and loop through the 
NER results.

Getting ready
In this recipe, we will use the spacy package. If you haven't installed it yet, install it using 
the following command:

pip install spacy

After you install spaCy, you will need to download a language model. We will download 
the small model:

python -m spacy download en_core_web_sm
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How to do it…
The NER happens automatically with the processing that spaCy does for an input text. 
Accessing the entities happens through the doc.ents variable. The steps for this recipe 
are as follows:

1.	 Import spacy:

import spacy

2.	 Initialize the spaCy engine:

nlp = spacy.load("en_core_web_sm")

3.	 Initialize the article text:

article = """iPhone 12: Apple makes jump to 5G

Apple has confirmed its iPhone 12 handsets will be its 
first to work on faster 5G networks. 

The company has also extended the range to include a new 
"Mini" model that has a smaller 5.4in screen. 

The US firm bucked a wider industry downturn by 
increasing its handset sales over the past year. 

But some experts say the new features give Apple its best 
opportunity for growth since 2014, when it revamped its 
line-up with the iPhone 6. 

…

"Networks are going to have to offer eye-wateringly 
attractive deals, and the way they're going to do that is 
on great tariffs and attractive trade-in deals," 

predicted Ben Wood from the consultancy CCS Insight. 
Apple typically unveils its new iPhones in September, but 
opted for a later date this year. 

It has not said why, but it was widely speculated to be 
related to disruption caused by the coronavirus pandemic. 
The firm's shares ended the day 2.7% lower. 

This has been linked to reports that several Chinese 
internet platforms opted not to carry the livestream, 

although it was still widely viewed and commented on via 
the social media network Sina Weibo."""
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4.	 Create the spaCy Doc object:

doc = nlp(article)

5.	 Loop through the entities and print their information:

for ent in doc.ents:

    print(ent.text, ent.start_char, ent.end_char, 

          ent.label_)

The result will be as follows:
12 7 9 CARDINAL

Apple 11 16 ORG

5 31 32 CARDINAL

Apple 34 39 ORG

iPhone 58 64 ORG

first 89 94 ORDINAL

5 113 114 CARDINAL

Mini 185 189 WORK_OF_ART

5.4 216 219 CARDINAL

…

the day 2586 2593 DATE

2.7% 2594 2598 PERCENT

Chinese 2652 2659 NORP

Sina Weibo 2797 2807 PERSON

How it works…
In step 1, we import the spacy package. In step 2, we load the small English model, and in 
step 3, we initialize the article text. In step 4, we process the article using the spaCy engine 
and create a Doc object.

In step 5, we loop through the named entities that are contained in the text and print 
out their information: the entity text, the index of the start character, the index of the 
end character, and the label of the named entity. The meaning of the labels can be found 
in Appendix D: spaCy named entity tags, or in the spaCy documentation at https://
spacy.io/api/annotation#named-entities.

https://spacy.io/api/annotation#named-entities
https://spacy.io/api/annotation#named-entities
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There's more…
You can experiment with different spaCy models. We downloaded the small spaCy 
language model, and the accuracy of the medium and large models might be higher. For 
example, you might download the medium model:

python -m spacy download en_core_web_md

And later load it in your program:

nlp = spacy.load("en_core_web_md")

After running the same code, but with a different model, you will notice that the output 
will be slightly different, and possibly better.

Training your own NER model with spaCy
The NER model provided by spaCy can suffice in many cases. There might be other times, 
however, when we would like to augment the existing model or create a new one from 
scratch. spaCy has a toolset specifically for that, and in this recipe, we will do both.

Getting ready
We will use the spacy package to train a new NER model. You do not need any other 
packages than spacy.

How to do it…
We will define our training data and then use it to update an existing model. We will 
then test the model and save it to disk. The code in this recipe is based on the spaCy 
documentation (https://spacy.io/usage/training#ner). The steps for this 
recipe are as follows:

1.	 Import the necessary packages:

import spacy

from spacy.util import minibatch, compounding

from spacy.language import Language

import warnings

import random

from pathlib import Path

https://spacy.io/usage/training#ner
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2.	 Now we will define the training data that we will use:

DATA = [

    ("A fakir from far-away India travels to Asterix's\

     village and asks Cacofonix to save his land from\

     drought since his singing can cause rain.", 

        {'entities':[(39, 46, "PERSON"), 

                     (66, 75, "PERSON")]}),

    ("Cacofonix, accompanied by Asterix and Obelix,\

     must travel to India aboard a magic carpet to\

     save the life of the princess Orinjade, who is to\

     be sacrificed to stop the drought.", 

        {'entities':[(0, 9, "PERSON"), 

                     (26, 33, "PERSON"), 

                     (38, 44, "PERSON"), 

                     (61, 66, "LOC"), 

                     (122, 130, "PERSON")]})

]

3.	 The N_ITER variable contains the number of training iterations and the OUTPUT_
DIR variable lists the directory where the model should be saved:

N_ITER=100

OUTPUT_DIR = "Chapter05/model_output"

4.	 The save_model function saves the model to the specified directory:

def save_model(nlp, output_dir):

    output_dir = Path(output_dir)

    if not output_dir.exists():

        output_dir.mkdir()

    nlp.to_disk(output_dir)

5.	 The load_model function loads a model from the specified directory:

def load_model(input_dir):

    nlp = spacy.load(input_dir)

    return nlp
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6.	 The create_model function either creates a new blank model or loads a model 
specified by the model argument:

def create_model(model):

    if (model is not None):

        nlp = spacy.load(model)

    else:

        nlp = spacy.blank("en")

    return nlp

7.	 The add_ner_to_model function adds the NER model to the spaCy pipeline:

def add_ner_to_model(nlp):

    if "ner" not in nlp.pipe_names:

        ner = nlp.create_pipe("ner")

        nlp.add_pipe(ner, last=True)

    else:

        ner = nlp.get_pipe("ner")

    return (nlp, ner)

8.	 In the add_labels function, we add the named entity labels that need to be 
recognized by the model:

def add_labels(ner, data):

    for sentence, annotations in data:

        for ent in annotations.get("entities"):

            ner.add_label(ent[2])

    return ner

9.	 Now we can define the train_model function:

def train_model(model=None):

    nlp = create_model(model)

    (nlp, ner) = add_ner_to_model(nlp)

    ner = add_labels(ner, DATA)

    pipe_exceptions = ["ner", "trf_wordpiecer", 

                       "trf_tok2vec"]

    other_pipes = [pipe for pipe in nlp.pipe_names if 

                   pipe not in pipe_exceptions]

    with nlp.disable_pipes(*other_pipes), \
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    warnings.catch_warnings():

        warnings.filterwarnings("once",

                                category=UserWarning,

                                module='spacy')

        if model is None:

            nlp.begin_training()

        for itn in range(N_ITER):

            random.shuffle(DATA)

            losses = {}

            batches = minibatch(DATA,

                   size=compounding(4.0, 32.0, 1.001))

            for batch in batches:

                texts, annotations = zip(*batch)

                nlp.update(

                    texts,

                    annotations,

                    drop=0.5,

                    losses=losses,

                )

            print("Losses", losses)

    return nlp

10.	 The test_model function will print the model output for a particular text:

def test_model(nlp, data):

    for text, annotations in data:

        doc = nlp(text)

        for ent in doc.ents:

            print(ent.text, ent.start_char, ent.end_char,

                  ent.label_)

11.	 The without_training function will show us the output of the model before we 
do any training:

def without_training(data=DATA):

nlp = spacy.load("en_core_web_sm")

test_model(nlp, data)
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12.	 Now we can put the code together. First, we output the entities that are output 
without any training:

without_training()

The output will be as follows:
India 22 27 GPE

Asterix 39 46 ORG

Cacofonix 66 75 NORP

Asterix and Obelix 26 44 ORG

India 61 66 GPE

Orinjade 122 130 PRODUCT

13.	 Now we will update the small spaCy model and test it on the data:

model = "en_core_web_sm"

nlp = train_model(model)

test_model(nlp, DATA)

save_model(nlp, OUTPUT_DIR)

The output will be as follows:
Losses {'ner': 15.059146494916945}

…

Losses {'ner': 0.007869491956206238}

Cacofonix 0 9 PERSON

Asterix 26 33 PERSON

Obelix 38 44 PERSON

India 61 66 LOC

Orinjade 122 130 PERSON

Asterix 39 46 PERSON

Cacofonix 66 75 PERSON

14.	 The load_and_test function will load a model and print its output:

def load_and_test(model_dir, data=DATA):

nlp = load_model(model_dir)

test_model(nlp, data)
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15.	 We can check if the loaded model works the same way:

load_and_test(OUTPUT_DIR)

The output will be as follows:
Asterix 39 46 PERSON

Cacofonix 66 75 PERSON

Cacofonix 0 9 PERSON

Asterix 26 33 PERSON

Obelix 38 44 PERSON

India 61 66 LOC

Orinjade 122 130 PERSON

How it works…
In step 1, we import the necessary packages and functions. In step 2, we define the 
annotated data list. The list is a list of tuples, where the first element is the sentence being 
annotated and the second element is a dictionary of entities. The dictionary contains the 
element where the key is the entities string and the value is a list of tuples. Each tuple 
represents an entity and contains, in order, the start and end characters and the type of  
the entity.

In step 3, we define global variables for the number of iterations the model will be trained 
for and the directory where it will be saved.

In step 4, we define the save_model function that takes a model and a directory and 
saves the model into the directory. If there is no such directory, the function creates it.

In step 5, we define the load_model function that takes a directory and loads the model 
that was previously saved there.

The create_model function defined in step 6either creates a blank English model or 
loads an existing model. If the model parameter passed in is None, then the function 
creates a blank model, otherwise, it loads the model using the parameter.

In step 7, we define the add_ner_to_model function, where we add the NER 
component to the spaCy model pipeline if it's not already present. We return it and the 
model for further processing.
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The add_labels function defined in step 8 adds the labels that the model needs to be 
trained on to the NER component of the pipeline. The function takes in the annotated 
data object and reads the labels from the object. Both new and existing labels can be 
added at this step. For larger quantities of data, it would be better to write a new definition 
that does not loop through all the data to add the labels. The way the function is defined 
now, it adds the same label several times.

The train_model function from step 9 prepares the model for training and then trains 
it. It first creates the model using the create_model function defined in step 6, then 
adds the NER component using the add_ner_to_model function from step 7, and then 
adds the labels to be trained on using the add_labels function. It then disables other 
pipeline components and begins the training process. It takes the data in batches and 
updates the model. Finally, it returns the trained model.

In step 10, we define the test_model function, which prints out the model's labeling for 
a given text.

In step 11, we define the without_training function, which shows the output of the 
spaCy NER labeling without the additional training step. When we run this function in 
step 12, we see that although spaCy can find the entities well, the labels are off. Asterix is 
labeled as an organization, Cacofonix as a national/religious group, and so on. 

In step 13, we load the small spaCy model, train it on the two additional sentences, test the 
model, and save it to the output directory. The tagging of the entities is now correct.

In step 14, we define the load_and_test function, which loads a saved model and tests 
it on provided data.

In step 15, we load the saved model and test again on the input data and see that it  
works correctly.

There's more…
Now let's say we would like to create a new entity type, GAULISH_WARRIOR, for all the 
Gaul warriors mentioned in the Asterix comic series. To do this, we will annotate our data 
differently and train a new model:

1.	 Define the NEW_LABEL variable to contain the name GAULISH_WARRIOR and 
annotate the data with the new label:

NEW_LABEL = "GAULISH_WARRIOR"

MODIFIED_DATA = [

    ("A fakir from far-away India travels to Asterix's\

     village and asks Cacofonix to save his land from\
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     drought since his singing can cause rain.", 

        {'entities':[(39, 46, NEW_LABEL), 

                     (66, 75, NEW_LABEL)]}),

    ("Cacofonix, accompanied by Asterix and Obelix, \

     must travel to India aboard a magic carpet to\

     save the life of the princess Orinjade, who is to\

     be sacrificed to stop the drought.", 

        {'entities':[(0, 9, NEW_LABEL), 

                     (26, 33, NEW_LABEL), 

                     (38, 44, NEW_LABEL), 

                     (61, 66, "LOC"), 

                     (122, 130, "PERSON")]})

]

Important note
In this example, we have just two sentences with only a few examples 
of the new entity. In a real-world setting, you should use a few hundred 
examples. Also, it is important to include other entities that spaCy recognized 
before to avoid the problem of catastrophic forgetting. See the spaCy 
documentation for more information: https://spacy.io/usage/
training#example-new-entity-type.

2.	 Define a new function for training:

def train_model_new_entity_type(model=None):

    random.seed(0)

    nlp = create_model(model)

    (nlp, ner) = add_ner_to_model(nlp)

    ner = add_labels(ner,  MODIFIED_DATA)

    if model is None:

        optimizer = nlp.begin_training()

    else:

        optimizer = nlp.resume_training()

    move_names = list(ner.move_names)

    pipe_exceptions = ["ner", "trf_wordpiecer", 

                       "trf_tok2vec"]

    other_pipes = [pipe for pipe in nlp.pipe_names if 

https://spacy.io/usage/training#example-new-entity-type
https://spacy.io/usage/training#example-new-entity-type
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                   pipe not in pipe_exceptions]

    with nlp.disable_pipes(*other_pipes), \

    warnings.catch_warnings():

        warnings.filterwarnings("once", 

                                category=UserWarning, 

                                module='spacy')

        sizes = compounding(1.0, 4.0, 1.001)

        for itn in range(N_ITER):

            random.shuffle(MODIFIED_DATA)

            batches = minibatch(MODIFIED_DATA, 

                                size=sizes)

            losses = {}

            for batch in batches:

                texts, annotations = zip(*batch)

                nlp.update(texts, annotations, 

                           sgd=optimizer, drop=0.35, 

                           losses=losses)

            print("Losses", losses)

    return nlp

3.	 Follow the same steps as before to train and test the model:

model = "en_core_web_sm"

nlp = train_model_new_entity_type(model)

test_model(nlp, DATA)

The output will be as follows:
Losses {'ner': 52.82467313932977}

…

Losses {'ner': 42.32477968116291}

Asterix 39 46 GAULISH_WARRIOR

Cacofonix 66 75 GAULISH_WARRIOR

Cacofonix 0 9 GAULISH_WARRIOR

Asterix 26 33 GAULISH_WARRIOR

Obelix 38 44 GAULISH_WARRIOR

India 61 66 LOC

Orinjade 122 130 PERSON



Discovering sentiment analysis     167

See also
The spaCy NER model is a neural network model. You can learn more about 
its architecture from the spaCy documentation: https://spacy.io/
models#architecture. 

Discovering sentiment analysis
In this recipe, we will use two simple tools for labeling a sentence as having positive or 
negative sentiment. The first tool is the NLTK Vader sentiment analyzer, and the second 
one uses the textblob package.

Getting ready
We will need the nltk and textblob packages for this recipe. If you haven't already 
installed them, install them using these commands:

pip install nltk

pip install textblob

In addition to this, you will need to run the following from Python the first time you use 
the Vader sentiment analyzer:

>> import nltk

>>nltk.download('vader_lexicon')

How to do it…
We will define two functions: one will do sentiment analysis using NLTK, and the other 
using TextBlob.

Your steps should be formatted like so:

1.	 Import the packages:

from textblob import TextBlob

from nltk.sentiment.vader import 
SentimentIntensityAnalyzer

2.	 Define the sentences list:

sentences = ["I love going to school!", "I hate going to 
school!"]

https://spacy.io/models#architecture
https://spacy.io/models#architecture
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3.	 Initialize the NLTK sentiment engine:

sid = SentimentIntensityAnalyzer()

4.	 Define the get_blob_sentiment function, which will use the textblob 
package to determine the sentence sentiment:

def get_blob_sentiment(sentence):

    result = TextBlob(sentence).sentiment

    print(sentence, result.polarity)

    return result.polarity

5.	 Define the get_nltk_sentiment function, which will use the NLTK 
SentimentIntensityAnalyzer:

def get_nltk_sentiment(sentence):

    ss = sid.polarity_scores(sentence)

    print(sentence, ss['compound'])

    return ss['compound']

6.	 First, use the NLTK function on each sentence in the list:

for sentence in sentences:

    sentiment = get_nltk_sentiment(sentence)

The result will be as follows:
I love going to school! 0.6696

I hate going to school! -0.6114

7.	 Now use the TextBlob function:

for sentence in sentences:

    sentiment = get_blob_sentiment(sentence)

The result will be as follows:
I love going to school! 0.625

I hate going to school! -1.0
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How it works…
In step 1, we import the classes that we will need in this recipe. In step 2, we define the 
sentence list that we will use; we include a positive and a negative sentence. In step 3, we 
initialize the NLTK sentiment engine to a global variable, so we don't have to redefine it 
again every time we need to use it. 

In step 4, we use the TextBlob class to get the sentence sentiment. The class works 
similarly to spaCy's engine: it takes a sentence and analyzes it for everything at once. 
The sentiment result is available through the sentiment object. The object contains 
the sentiment score, as well as the subjectivity score. A negative sentiment score means 
negative sentiment, and a positive sentiment score means positive sentiment. The higher 
the absolute value of the score, the more confident the system is about it.

In step 5, we use the NLTK SentimentIntensityAnalyzer object to get the 
sentiment scores. The compound element in the score object contains the overall score. 
Like in the TextBlob results, a negative score means negative sentiment and a positive 
score means positive sentiment, and a higher absolute value means more confidence in  
the result.

In step 6, we print out the results using NLTK, and in step 7, using TextBlob. They are  
very similar. You can test them on your data to see which one performs better for  
your purposes.

Sentiment for short texts using LSTM: Twitter
In this recipe, we will apply the LSTM algorithm to Twitter data, which we will classify by 
positive and negative sentiment. This will be similar to the Using LSTMs for supervised text 
classification recipe in the previous chapter. By the end of the recipe, you will be able to 
load and clean the data, and create and train an LSTM model for sentiment prediction.

Getting ready
For this recipe, we will use the same deep learning packages as before, and an additional 
package to segment Twitter hashtags, which can be downloaded at https://github.
com/jchook/wordseg. After downloading, install it using this command:

python setup.py install

We also need to download the Twitter dataset, which can be found at https://www.
kaggle.com/kazanova/sentiment140.

https://github.com/jchook/wordseg
https://github.com/jchook/wordseg
https://www.kaggle.com/kazanova/sentiment140
https://www.kaggle.com/kazanova/sentiment140
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We will also use the tqdm package to see the progress of functions that take a long time to 
complete. Install it using the following:

pip install tqdm

How to do it…
We will load the data, clean it, and then use it to train an LSTM model. We will not use 
the whole dataset, as it is very large. We will also filter it for language, since it's a multi-
language dataset.

Your steps should be formatted like so:

1.	 Import the necessary functions and packages:

import re

import pandas as pd

from tqdm import tqdm

from wordseg import segment

import html

import numpy as np

from sklearn.metrics import classification_report

from sklearn.model_selection import train_test_split

from langdetect import detect

from langdetect.lang_detect_exception import 
LangDetectException

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

import tensorflow as tf

from keras import Sequential

from tensorflow.keras.layers import Embedding, 
SpatialDropout1D, LSTM, Densefrom tensorflow.keras.
callbacks import EarlyStopping

import matplotlib.pyplot as plt

from Chapter04.lstm_classification import plot_model
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2.	 Initialize the global variables:

MAX_NUM_WORDS = 50000

EMBEDDING_DIM = 500

twitter_csv = \

"Chapter05/training.1600000.processed.noemoticon.csv"

english_twitter = "Chapter05/twitter_english.csv"

3.	 Initialize a tqdm object for use to be able to see the progress of loops:

tqdm.pandas()

4.	 The filter_english function takes a pandas DataFrame and filters only 
English tweets. It also saves the DataFrame to a new, smaller CSV file:

def filter_english(df, save_path):

    df['language'] = df['tweet'].progress_apply(

                            lambda t: lang_detect(t))

    df = df[df['language'] == 'en']

    df.to_csv(save_path, encoding="latin1")

    return df

5.	 The get_data function reads the dataset file, gets 160,000 datapoints from it, and 
filters them for English tweets:

def get_data(filename, save_path, 

             num_datapoints=80000):

    df = pd.read_csv(filename, encoding="latin1")

    df.columns = ['sentiment', 'id', 'date', 'query', 

                  'username', 'tweet']

    df = pd.concat([df.head(num_datapoints),

                    df.tail(num_datapoints)])

    df = filter_english(df, save_path)

    return df
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6.	 The clean_data function cleans the data by lowercasing all tweets, decoding 
HTML tags, removing @ mentions and URLs, segmenting hashtags into their 
component words, removing non-alpha characters, and re-labeling positive tweets 
with 1 instead of 4:

def clean_data(df):

    #Lowercase all tweets

    df['tweet'] = \

    df['tweet'].progress_apply(lambda t: t.lower())

    #Decode HTML

    df['tweet'] = df['tweet'].progress_apply(

                           lambda t: html.unescape(t))

    #Remove @ mentions

    df['tweet'] = df['tweet'].progress_apply(

              lambda t: re.sub(r'@[A-Za-z0-9]+','',t))

    #Remove URLs

    df['tweet'] = df['tweet'].progress_apply(lambda t:\

               re.sub('https?://[A-Za-z0-9./]+','',t))

    #Segment hashtags

    df['tweet'] = df['tweet'].progress_apply(lambda \

                               t: segment_hashtags(t))

    #Remove remaining non-alpha characters

    df['tweet'] = df['tweet'].progress_apply(lambda \

                       t: re.sub("[^a-zA-Z]", " ", t))

    #Re-label positive tweets with 1 instead of 4

    df['sentiment'] = df['sentiment'].apply(lambda \

                                  t: 1 if t==4 else t)

    return df

7.	 The train_model function takes a pandas DataFrame and trains, saves, and 
evaluates the resulting model:

def train_model(df):

    tokenizer = \

    Tokenizer(num_words=MAX_NUM_WORDS, 

    filters='!"#$%&()*+,-./:;<=>?@[\]^_`{|}~', 

    lower=True)

tokenizer.fit_on_texts(df['tweet'].values)
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save_tokenizer(tokenizer, 'Chapter05/twitter_tokenizer.
pkl')

    X = \

    tokenizer.texts_to_sequences(df['tweet'].values)

    X = pad_sequences(X)

    Y = df['sentiment'].values

    X_train, X_test, Y_train, Y_test = \

    train_test_split(X,Y, test_size=0.20,

                     random_state=42, 

                     stratify=df['sentiment'])

    model = Sequential()

    optimizer = tf.keras.optimizers.Adam(0.00001)

    model.add(Embedding(MAX_NUM_WORDS, EMBEDDING_DIM, 

                        input_length=X.shape[1]))

    model.add(SpatialDropout1D(0.2))

    model.add(LSTM(100, dropout=0.5, 

              recurrent_dropout=0.5,

              return_sequences=True))

    model.add(LSTM(100, dropout=0.5, 

              recurrent_dropout=0.5))

    model.add(Dense(1, activation='sigmoid'))

    loss='binary_crossentropy' #Binary in this case

    model.compile(loss=loss, optimizer=optimizer, 

                  metrics=['accuracy'])

    epochs = 15

    batch_size = 32

    es = [EarlyStopping(monitor='val_loss', 

                        patience=3, min_delta=0.0001)]

    history = model.fit(X_train, Y_train, 

                        epochs=epochs, 

                        batch_size=batch_size, 

                        validation_split=0.3, 

                        callbacks=es)

    accr = model.evaluate(X_test,Y_test)

    print('Test set\n  Loss: {:0.3f}\n  \
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           Accuracy: {:0.3f}'.format(accr[0],accr[1]))

    model.save('Chapter05/twitter_model.h5')

    evaluate(model, X_test, Y_test)

    plot_model(history)

8.	 We will now apply the preceding functions to the data to train the model:

df = get_data(twitter_csv)

df = clean_data(df)

train_model(df)

The result will look something like this:
Epoch 1/25

2602/2602 [==============================] - 1381s 531ms/
step - loss: 0.6785 - accuracy: 0.6006 - val_loss: 0.6442 
- val_accuracy: 0.6576

…

Epoch 15/15

2602/2602 [==============================] - 1160s 446ms/
step - loss: 0.4146 - accuracy: 0.8128 - val_loss: 0.4588 
- val_accuracy: 0.7861

929/929 [==============================] - 16s 17ms/step 
- loss: 0.4586 - accuracy: 0.7861

Test set

  Loss: 0.459

  Accuracy: 0.786

              precision    recall  f1-score   support

    negative       0.79      0.78      0.79     14949

    positive       0.78      0.79      0.79     14778

    accuracy                           0.79     29727

   macro avg       0.79      0.79      0.79     29727

weighted avg       0.79      0.79      0.79     29727
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And the loss plot will look something like this:

Figure 5.1 – Plot of the loss function for training and test datasets

How it works…
In step 1, we import the packages and functions we will use in this recipe. In addition to 
the already familiar sklearn functions, we also import the deep learning functions and 
classes from tensorflow. In step 2, we initialize global variables.

In step 3, we initialize the tqdm object. This object provides progress bars when 
performing operations on pandas objects.

In step 4, we define the filter_english function. This function takes a loaded 
DataFrame and saves only English language tweets. It appends a new column with the 
tweet language, filters the DataFrame on it, and then saves the filtered DataFrame to the 
path provided.

In step 5, we define the get_data function. It loads the full dataset into memory and 
takes the first and last num_datapoints rows, which is 80,000 by default. This is done 
so that we get an equal amount of positive and negative tweets, as they are sorted by 
sentiment. We then use the filter_english function on the resulting DataFrame and 
save it to a file.
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In step 6, we define the clean_data function, which does some preprocessing on the 
English tweets. It first lowercases all tweets, then it removes HTML tags, such as &amp;, 
then it removes the @ mentions and URLs. It then uses the wordseg package, which 
breaks the hashtags into words. Then it removes any remaining non-alphanumeric 
characters and turns positive sentiment scores into 1 instead of 4.

In step 7, we define the train_model function. The function is almost identical to the 
one we used in the Using LSTMs for supervised text classification recipe in the previous 
chapter, with a few differences. We use a lower learning rate, a different activation 
function, and a different loss function. The difference in the activation and loss 
function, as well as the accuracy metric, is due to the fact that we have only two labels in 
this case, as opposed to five in the aforementioned recipe. We also increase the depth of 
the network and increase the dropout rate to avoid overfitting.

In step 8, we apply the defined functions to the Twitter data. Using this data, we achieve an 
accuracy of 79% and the loss function plot still shows some overfitting.

Using BERT for sentiment analysis
In this recipe, we will fine-tune a pretrained Bidirectional Encoder Representations 
from Transformers (BERT) model to classify the Twitter data from the previous recipe. 
We will load the model, encode the data, and then fine-tune the model with the data. We 
will then use it on unseen examples.

Getting ready
We will use the Hugging Face transformers library for this recipe. To install the package, 
run the following command:

pip install transformers

We will use the same Twitter dataset as in the previous recipe.



Using BERT for sentiment analysis     177

How to do it…
BERT models are a little more complicated than the models we were using in previous 
recipes, but the general idea is the same: encode the data and train the model. The one 
difference is that in this recipe, the model is already pretrained and we will be just fine-
tuning it with our data. The steps for this recipe are as follows:

1.	 Import the necessary functions and packages:

import pandas as pd

import tensorflow as tf

import numpy as np

from transformers import BertTokenizer

from transformers import TFBertForSequenceClassification

from tensorflow.keras.layers import Dense

from sklearn.model_selection import train_test_split

from Chapter04.svm_classification import split_dataset

from Chapter04.twitter_sentiment import read_existing_
file, clean_data, plot_model

2.	 Initialize the global variables:

batch_size = 32

DATASET_SIZE = 4000

english_twitter = "Chapter04/twitter_english.csv"

tokenizer = \

BertTokenizer.from_pretrained('bert-base-uncased', 

                              do_lower_case=True)

max_length = 200

3.	 The encode_data function turns the pandas DataFrame into  
a TensorFlow dataset:

def encode_data(df):

    input_ids_list = []

    token_type_ids_list = []

    attention_mask_list = []

    label_list = []

    for index, row in df.iterrows():

        tweet = row['tweet']
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        label = row['sentiment']

        tokenized = tokenizer.tokenize(tweet)

        bert_input = \

        tokenizer.encode_plus(tweet,

                              add_special_tokens = True,

                              max_length = max_length, 

                              pad_to_max_length = True,

                              return_attention_mask = \

                              True, 

                              )

        input_ids_list.append(bert_input['input_ids'])

        token_type_ids_list.append(bert_input[

                                    'token_type_ids'])

        attention_mask_list.append(bert_input[

                                    'attention_mask'])

        label_list.append([label])

    return tf.data.Dataset.from_tensor_slices(

        (input_ids_list, attention_mask_list, 

         token_type_ids_list, 

         label_list)).map(map_inputs_to_dict)

4.	 The helper function used by encode_data is map_inputs_to_dict:

def map_inputs_to_dict(input_ids, attention_masks, 

                       token_type_ids, label):

  return {

      "input_ids": input_ids,

      "token_type_ids": token_type_ids,

      "attention_mask": attention_masks,

  }, label

5.	 The prepare_dataset function takes the DataFrame and returns a TensorFlow 
Dataset object:

def prepare_dataset(df):

    df = clean_data(df)

    df = pd.concat([df.head(int(DATASET_SIZE/2)), 

                    df.tail(int(DATASET_SIZE/2))])
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    df = df.sample(frac = 1)

    ds = encode_data(df)

    return ds

6.	 The fine_tune_model function fine-tunes a pretrained BERT model and  
saves it:

def fine_tune_model(ds, export_dir):

    (train_dataset, test_dataset, val_dataset) = \

    get_test_train_val_datasets(ds)

    learning_rate = 2e-5

    number_of_epochs = 3

    model = TFBertForSequenceClassification\

            .from_pretrained('bert-base-uncased')

    optimizer = tf.keras.optimizers.Adam(

                          learning_rate=learning_rate, 

                          epsilon=1e-08)

    loss = \

    tf.keras.losses.SparseCategoricalCrossentropy(

                                     from_logits=True)

    metric = tf.keras.metrics.\

              SparseCategoricalAccuracy('accuracy')

    model.compile(optimizer=optimizer, loss=loss, 

                  metrics=[metric])

    bert_history = model.fit(train_dataset, 

                          epochs=number_of_epochs, 

                          validation_data=val_dataset)

    model.save_pretrained(export_dir)

    return model

7.	 We will now apply the preceding functions to the data to train the model:

df = read_existing_file(english_twitter)

dataset = prepare_dataset(df)

model = fine_tune_model(dataset, 

                        'Chapter05/bert_twitter_model')
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Apart from some warnings you can ignore, the result will look something like this:
88/88 [==============================] - 4067s 46s/step - 
loss: 0.5649 - accuracy: 0.7014 - val_loss: 0.4600 - val_
accuracy: 0.7883

8.	 We can now test our model with new examples using the  
test_new_example function:

def test_new_example(model_path, tweet):

    model = load_existing_model(model_path)

    bert_input = encode_example(tweet)

    tf_output = \

    model.predict([bert_input['input_ids'], 

    bert_input['token_type_ids'], 

    bert_input['attention_mask']])[0]

    tf_pred = tf.nn.softmax(tf_output, 

                            axis=1).numpy()[0]

    new_label = np.argmax(tf_pred, axis=-1)

    print(new_label)

    return new_label

9.	 Let's use the test_new_example function on a new tweet:

test_new_example('Chapter04/bert_twitter_test_model', 

                 "I hate going to school")

The result will be as follows (you can ignore the various warnings):
0

10.	 evaluate_model loads and evaluates an existing model, and prints out a 
classification report:

def evaluate_model(model, X_test, y_test):

    y_pred = []

    for tweet in X_test:

        bert_input = encode_example(tweet)

        tf_output = \

        model.predict([bert_input['input_ids'], 

        bert_input['token_type_ids'], 

        bert_input['attention_mask']])[0]
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        tf_pred = tf.nn.softmax(tf_output, 

                                 axis=1).numpy()[0]

        new_label = np.argmax(tf_pred, axis=-1)

        y_pred.append(new_label)

    print(classification_report(y_test, y_pred, 

          labels=[0, 1], target_names=['negative', 

                                       'positive']))

11.	 The preceding function uses encode_example, which takes in text and returns 
the BERT representation required for the model:

def encode_example(input_text):

    tokenized = tokenizer.tokenize(input_text)

    bert_input = \

    tokenizer.encode_plus(input_text,

                          add_special_tokens = True, 

                          max_length = max_length, 

                          pad_to_max_length = True,

                          return_attention_mask = True, 

                          return_tensors='tf'

                          )

    return bert_input

12.	 load_and_evaluate_existing_model takes a dataset and an existing fine-
tuned model and evaluates it:

def load_and_evaluate_existing_model(export_dir):

    model = load_existing_model(export_dir)

    df = read_existing_file(english_twitter)

    df = clean_data(df)

    df = pd.concat([df.head(200),df.tail(200)])

    (X_train, X_test, y_train, y_test) = \

    split_dataset(df, 'tweet', 'sentiment')

    evaluate_model(model, X_test, y_test)
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13.	 Apply the load_and_evaluate_existing_model function:

load_and_evaluate_existing_model(filename)

The result will be as follows (you can ignore the various warnings):
              precision    recall  f1-score   support

    negative       0.76      0.63      0.69        46

    positive       0.60      0.74      0.66        34

    accuracy                           0.68        80

   macro avg       0.68      0.68      0.67        80

weighted avg       0.69      0.68      0.68        80

How it works…
In step 1, we import the necessary functions and packages.

In step 2, we define global variables. We will use only a small portion of the Twitter 
dataset, 4,000 datapoints; this is entered in the DATASET_SIZE variable. The tokenizer 
that we use comes from Hugging Face, like the pretrained model, and we load it in the 
beginning as well. The max_length variable specifies how long an input string can be. 
Since the longest tweet is 178 characters, we set the limit to 200.

In step 3, we define the encode_data function, which turns text into inputs acceptable 
to the pretrained BERT model. It uses the encode_plus function of the tokenizer. The 
BERT model doesn't accept just a vector as input as other machine and deep learning 
models do, but a series of input IDs, token type IDs, and the attention mask.

In step 4, we define the map_inputs_to_dict function. It maps the inputs and correct 
labels to a dictionary for a list of inputs.

In step 5, we define the prepare_dataset function, which takes our Twitter data, 
cleans it using the clean_data function from the previous recipe, encodes it using the 
tokenizer, and returns a TensorFlow Dataset object.

The fine_tune_model function defined in step 6 loads the pretrained model and then 
trains it further on the data we provide to it, creating a model for further use. The learning 
rate is much smaller due to the size of the model, and we can use sparse categorical loss 
and accuracy, since this is a binary output model. In step 7, we use the defined functions 
to train a model. As you can see, with just one epoch of fine-tuning and 20 times less data, 
we achieve the same accuracy, 78%.
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In step 8, we define the test_new_example function, which uses the trained model to 
make a prediction for an unseen example. In step 9, we use this function on a new tweet, 
and the result is 0, which indicates a negative sentiment.

In step 10, we define a function, evaluate_model, which evaluates the model's 
accuracy and prints out a classification report.

In step 11, we define the encode_example function, which takes text as input and 
returns the representation required by the BERT model.

In step 12, we define the load_and_evaluate_existing_model function. It loads  
a fine-tuned model, our Twitter dataset, and then calculates the statistics for the model. 
The data once again needs to be encoded using the BERT tokenizer and turned into 
tensors, and that is the job of the encode_example function, which encodes one 
example at a time. The accuracy on the test set is lower, which means that it would be 
good to train the model for more epochs and possibly use more data.

Important note
Fine-tuning BERT models is very computationally intensive. You can try 
training them in Google Colab or Kaggle.

Testing the model on a new example requires us to encode the text as before, and use the 
model's predict method. After we do that, we need to apply the softmax function to 
the resulting array, to get the probabilities for each class. Applying the NumPy function 
argmax gets us to the final answer. When we test the model using a new negative 
sentiment tweet, it indeed returns 0 as the final answer.

There's more…
There are many different pretrained models available, both through 
Hugging Face and otherwise. For example, Hugging Face provides the 
TFDistilBertForSequenceClassification model, which is more lightweight 
than the TFBertForSequenceClassification model we used in this recipe. There 
are also other language models and multilingual models that are available.

See also
These are the blog posts I used when researching this recipe: https://atheros.ai/
blog/text-classification-with-transformers-in-tensorflow-2 and 
https://towardsdatascience.com/fine-tuning-hugging-face-model-
with-custom-dataset-82b8092f5333.

https://atheros.ai/blog/text-classification-with-transformers-in-tensorflow-2
https://atheros.ai/blog/text-classification-with-transformers-in-tensorflow-2
https://towardsdatascience.com/fine-tuning-hugging-face-model-with-custom-dataset-82b8092f5333
https://towardsdatascience.com/fine-tuning-hugging-face-model-with-custom-dataset-82b8092f5333




6
Topic Modeling

In this chapter, we will cover topic modeling, or the unsupervised discovery of topics 
present in a corpus of text. There are many different algorithms available to do this, 
and we will cover four of them: Latent Dirichlet Allocation (LDA) using two different 
packages, non-negative matrix factorization, K-means with Bidirectional Encoder 
Representations from Transformers (BERT) embeddings, and Gibbs Sampling 
Dirichlet Multinomial Mixture (GSDMM) for topic modeling of short texts, such as 
sentences or tweets.

The recipe list is as follows:

•	 LDA topic modeling with sklearn

•	 LDA topic modeling with gensim

•	 NMF topic modeling

•	 K-means topic modeling with BERT

•	 Topic modeling of short texts

Technical requirements
In this chapter, we will work with the same BBC dataset that we worked with in 
Chapter 4, Classifying Texts. The dataset is available at https://github.com/
PacktPublishing/Python-Natural-Language-Processing-Cookbook/
blob/master/Chapter04/bbc-text.csv in the book's GitHub repository.

https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook/blob/master/Chapter04/bbc-text.csv 
https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook/blob/master/Chapter04/bbc-text.csv 
https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook/blob/master/Chapter04/bbc-text.csv 
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LDA topic modeling with sklearn
In this recipe, we will use the LDA algorithm to discover topics that appear in the 
BBC dataset. This algorithm can be thought of as dimensionality reduction, or going 
from a representation where words are counted (such as how we represent documents 
using CountVectorizer or TfidfVectorizer, see Chapter 3, Representing Text: 
Capturing Semantics, we instead represent documents as sets of topics, each topic with 
a weight. The number of topics is of course much smaller than the number of words 
in the vocabulary. To learn more about how the LDA algorithm works, see https://
highdemandskills.com/topic-modeling-intuitive/. 

Getting ready
We will use the sklearn and pandas packages. If you haven't installed them, do so 
using the following command:

pip install sklearn

pip install pandas

How to do it…
We will use a dataframe to parse in the data, then represent the documents using the 
CountVectorizer object, apply the LDA algorithm, and finally print out the topics' 
most common words. The steps for this recipe are as follows:

1.	 Perform the necessary imports:

import re

import pandas as pd

from sklearn.feature_extraction.text import 
CountVectorizer

from sklearn.decomposition import 
LatentDirichletAllocation as LDA

from Chapter04.preprocess_bbc_dataset import get_
stopwords

from Chapter04.unsupervised_text_classification import 
tokenize_and_stem

https://highdemandskills.com/topic-modeling-intuitive/
https://highdemandskills.com/topic-modeling-intuitive/


LDA topic modeling with sklearn     187

2.	 Initialize the global variables:

stopwords_file_path = "Chapter01/stopwords.csv"

stopwords = get_stopwords(stopwords_file_path)

bbc_dataset = "Chapter04/bbc-text.csv"

3.	 We then use a function to create the vectorizer:

def create_count_vectorizer(documents):

    count_vectorizer = \

    CountVectorizer(stop_words=stopwords, 

                    tokenizer=tokenize_and_stem)

    data = count_vectorizer.fit_transform(documents)

    return (count_vectorizer, data)

4.	 The clean_data function will remove punctuation and digits:

def clean_data(df):

    df['text'] = \

    df['text'].apply(lambda x: re.sub(r'[^\w\s]', 

                                      ' ', x))

    df['text'] = \

    df['text'].apply(lambda x: re.sub(r'\d', '', x))

    return df

5.	 The following function will create an LDA model and fit it to the data:

def create_and_fit_lda(data, num_topics):

    lda = LDA(n_components=num_topics, n_jobs=-1)

    lda.fit(data)

    return lda

6.	 The get_most_common_words_for_topics function will get the most 
common words for each topic in a dictionary:

def get_most_common_words_for_topics(model, vectorizer, 

                                     n_top_words):

    words = vectorizer.get_feature_names()

    word_dict = {}

    for topic_index, topic in \

    enumerate(model.components_):
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        this_topic_words = [words[i] for i in \

                topic.argsort()[:-n_top_words - 1:-1]]

        word_dict[topic_index] = this_topic_words

    return word_dict

7.	 The print_topic_words function will print the most common words for each 
topic:

def print_topic_words(word_dict):

    for key in word_dict.keys():

        print(f"Topic {key}")

        print("\t", word_dict[key])

8.	 Now we can read the data and clean it. The documents for processing will be in the 
text column of the dataframe:

df = pd.read_csv(bbc_dataset)

df = clean_data(df)

documents = df['text']

9.	 We then set the number of topics to 5:

number_topics = 5

10.	 We can now create the vectorizer, transform the data, and fit the LDA model:

(vectorizer, data) = create_count_vectorizer(documents)

lda = create_and_fit_lda(data, number_topics)

11.	 Now, we create a dictionary with the most common words and print it:

topic_words = \

get_most_common_words_for_topics(lda, vectorizer, 10)

print_topic_words(topic_words)

The results will vary each time you run it, but one possible output might be as 
follows:

Topic 0

         ['film', 'best', 'award', 'year', 'm', 'star',

          'director', 'actor', 'nomin', 'includ']

Topic 1

         ['govern', 'say', 'elect', 'peopl', 'labour', 
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          'parti', 'minist', 'plan', 'blair', 'tax']

Topic 2

         ['year', 'bn', 'compani', 'market', 'm', 'firm', 

          'bank', 'price', 'sale', 'share']

Topic 3

         ['use', 'peopl', 'game', 'music', 'year', 'new', 

          'mobil', 'technolog', 'phone', 'show']

Topic 4

         ['game', 'year', 'play', 'm', 'win', 'time', 

          'england', 'first', 'player', 'back']

How it works…
In step 1, we import the necessary packages. We use the CountVectorizer object for 
the vectorizer and the LatentDirichletAllocation object for the topic model. In 
step 2, we initialize the path to the stopwords file, and read it into a list, and then initialize 
the path to the text dataset. In step 3, we define the function that creates the count 
vectorizer and fits it to the data. We then return both the transformed data matrix and the 
vectorizer itself, which we will use in later steps.

The clean_data function in step 4 removes characters that are not word characters 
and not spaces (mostly punctuation) as well as digits from the dataset. For this we use the 
apply function on the pandas Dataframe object that applies a lambda function that 
uses the re package.

In step 5, we define the create_and_fit_lda function that creates an LDA model. It 
takes the vector-transformed data and the number of topics as arguments. The n_jobs  
argument passed in to the LDA object tells it to use all processors for parallel processing. 
In this case, we know the number of topics in advance, and we can pass that number to 
the function. In cases where we have unlabeled data, we don't know that number.

In step 6, we define the get_most_common_words_for_topics function that gets 
the most frequent words for each topic. It returns a dictionary indexed by the number of 
the topic.

The print_topic_words function in step 7 will print out the frequent word dictionary.

In step 8, we read in the data from the CSV file to a dataframe, remove any unnecessary 
characters, and then get the documents from the text column of the dataframe. In step 9, 
we set the number of topics to 5. In step 10, we create the vectorizer and the LDA model.
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In step 11, we create the most frequent words dictionary and print it. The results 
correspond well to the predefined topics. Topic 0 relates to entertainment, topic 1 
is about politics, topic 2 concerns the economy, topic 3 relates to technology, and 
topic 4 concerns sports.

There's more…
Let's now save the model and test it on a new example:

1.	 Import the pickle package:

import pickle

2.	 Initialize the model and vectorizer paths:

model_path = "Chapter06/lda_sklearn.pkl"

vectorizer_path = "Chapter06/vectorizer.pkl"

3.	 Initialize the new example:

new_example = """Manchester United players slumped 
to the turf at full-time in Germany on Tuesday in 
acknowledgement of what their latest pedestrian first-
half display had cost them. The 3-2 loss at RB Leipzig 
means United will not be one of the 16 teams in the draw 
for the knockout stages of the Champions League. And 
this is not the only price for failure. The damage will 
be felt in the accounts, in the dealings they have with 
current and potentially future players and in the faith 
the fans have placed in manager Ole Gunnar Solskjaer. 
With Paul Pogba's agent angling for a move for his 
client and ex-United defender Phil Neville speaking of a 
"witchhunt" against his former team-mate Solskjaer, BBC 
Sport looks at the ramifications and reaction to a big 
loss for United."""

4.	 Define the save_model function:

def save_model(lda, lda_path, vect, vect_path):

pickle.dump(lda, open(lda_path, 'wb'))

pickle.dump(vect, open(vect_path, 'wb'))
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5.	 The test_new_example function applies the LDA model to the new input:

def test_new_example(lda, vect, example):

    vectorized = vect.transform([example])

    topic = lda.transform(vectorized)

    print(topic)

    return topic

6.	 Let's now run the function:

test_new_example(lda, vectorizer, new_example)

The result will be as follows:
[[0.00509135 0.00508041 0.00508084 0.27087506 
0.71387233]]

The result is an array of probabilities, one for each topic. The largest probability is for the 
last topic, which is sport, and the correct identification.

LDA topic modeling with gensim
In the previous section, we saw how to create an LDA model with the sklearn package. 
In this recipe, we will create an LDA model using the gensim package. 

Getting ready
We will be using the gensim package, which can be installed using the following 
command:

pip install gensim

How to do it…
We will load the data, clean it, preprocess it in a similar fashion to the previous recipe, and 
then create the LDA model. The steps for this recipe are as follows:

1.	 Perform the necessary imports:

import re

import pandas as pd

from gensim.models.ldamodel import LdaModel

import gensim.corpora as corpora
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from gensim.utils import simple_preprocess

import matplotlib.pyplot as plt

from pprint import pprint

from Chapter06.lda_topic import stopwords, bbc_dataset, 
clean_data

2.	 Define the function that will preprocess the data. It uses the clean_data function 
from the previous recipe:

def preprocess(df):

    df = clean_data(df)

    df['text'] = \

    df['text'].apply(lambda x: \

                     simple_preprocess(x, deacc=True))

    df['text'] = \

    df['text'].apply(lambda x: [word for word in x if \

                                word not in stopwords])

    return df

3.	 The create_lda_model function creates and returns the model:

def create_lda_model(id_dict, corpus, num_topics):

    lda_model = LdaModel(corpus=corpus,

                         id2word=id_dict,

                         num_topics=num_topics, 

                         random_state=100,

                         chunksize=100,

                         passes=10)

    return lda_model

4.	 Read and preprocess the BBC dataset:

df = pd.read_csv(bbc_dataset)

df = preprocess(df)
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5.	 Create the Dictionary object and the corpus:

texts = df['text'].values

id_dict = corpora.Dictionary(texts)

corpus = [id_dict.doc2bow(text) for text in texts]

6.	 Set the number of topics to be 5 and create the LDA model:

number_topics = 5

lda_model = create_lda_model(id_dict, corpus, number_
topics)

7.	 Print the topics:

pprint(lda_model.print_topics())

The results will vary and may appear as follows:
[(0,

  '0.010*"net" + 0.008*"software" + 0.007*"users" + 
0.007*"information" + '

  '0.007*"people" + 0.006*"attacks" + 0.006*"computer" + 
0.006*"data" + '

  '0.006*"use" + 0.005*"firms"'),

 (1,

  '0.012*"people" + 0.006*"blair" + 0.005*"labour" + 
0.005*"new" + '

  '0.005*"mobile" + 0.005*"party" + 0.004*"get" + 
0.004*"government" + '

  '0.004*"uk" + 0.004*"election"'),

 (2,

  '0.012*"film" + 0.009*"best" + 0.006*"music" + 
0.006*"year" + 0.005*"show" + '

  '0.005*"new" + 0.004*"uk" + 0.004*"awards" + 
0.004*"films" + 0.004*"last"'),

 (3,

  '0.008*"game" + 0.006*"england" + 0.006*"first" + 
0.006*"time" + '

  '0.006*"year" + 0.005*"players" + 0.005*"win" + 
0.005*"world" + 0.005*"back" '

  '+ 0.005*"last"'),

 (4,
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  '0.010*"bn" + 0.010*"year" + 0.007*"sales" + 
0.005*"last" + '

  '0.004*"government" + 0.004*"new" + 0.004*"market" + 
0.004*"growth" + '

  '0.004*"spending" + 0.004*"economic"')]

How it works…
In step 1, we import the necessary functions and variables. In step 2, we define the 
function that preprocesses the data. In this function, we use the clean_data function 
from the previous recipe that removes punctuation and digits from the texts. We then use 
the gensim simple_preprocess function, which puts the input into lowercase and 
tokenizes it. We then remove stopwords from the input.

In step 3, we create the LDA model. The inputs to the model are as follows: the corpus, or 
the transformed texts, the Dictionary object, which is analogous to a vectorizer, the 
number of topics, the random state, which, if set, ensures model reproducibility, chunk 
size, or the number of documents that are used in each training chunk, and the passes – 
the number of times the corpus is passed during training. The more passes that are done 
through the corpus, the better the model will be.

In step 4, we define the function that plots log perplexity against the number of topics in 
the model. This function creates several models, one each for 2 through 9 topics. It then 
calculates the log perplexity for each and graphs it.

In step 5, we read and preprocess the BBC dataset using the imported and predefined 
functions. In step 6, we create id_dict, a Dictionary object that is analogous to 
a vectorizer, and then use it to map the input texts to bags of words according to their 
mappings in the id_dict object.

In step 7, we create the model using five topics, the id dictionary and the corpus. When 
we print the topics in step 8, we see that the topics make sense and correspond roughly 
as follows: 0 to tech, 1 to politics, 2 to entertainment, 3 to sports, and 4 to 
business.
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There's more…
Now let's save the model and apply it to novel input:

1.	 Define the new example:

new_example = """Manchester United players slumped to the 
turf 

at full-time in Germany on Tuesday in acknowledgement of 
what their 

latest pedestrian first-half display had cost them. The 
3-2 loss at 

RB Leipzig means United will not be one of the 16 teams 
in the draw 

for the knockout stages of the Champions League. And this 
is not the 

only price for failure. The damage will be felt in the 
accounts, in 

the dealings they have with current and potentially 
future players 

and in the faith the fans have placed in manager Ole 
Gunnar Solskjaer. 

With Paul Pogba's agent angling for a move for his client 
and ex-United 

defender Phil Neville speaking of a "witchhunt" against 
his former team-mate 

Solskjaer, BBC Sport looks at the ramifications and 
reaction to a big loss for United."""

2.	 Define the function that will save the model and the Dictionary object:

def save_model(lda, lda_path, id_dict, dict_path):

    lda.save(lda_path)

    id_dict.save(dict_path)

3.	 The load_model function loads the model and the Dictionary object:

def load_model(lda_path, dict_path):

    lda = LdaModel.load(lda_path)

    id_dict = corpora.Dictionary.load(dict_path)

    return (lda, id_dict)
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4.	 The test_new_example function preprocesses the input and predicts the topic 
using the LDA model:

def test_new_example(lda, id_dict, input_string):

    input_list = clean_text(input_string)

    bow = id_dict.doc2bow(input_list)

    topics = lda[bow]

    print(topics)

    return topics

5.	 Save our model and Dictionary object:

save_model(lda_model, model_path, id_dict, dict_path)

6.	 Let's now use the trained model to make a prediction on the new example:

test_new_example(lda_model, id_dict, new_example)

The result will appear as follows:
[(0, 0.023436226), (1, 0.036407135), (3, 0.758486), (4, 
0.17845567)]

The prediction is a list of tuples, where the first element in each tuple is the number of 
the topic and the second element is the probability that this text belongs to this particular 
topic. In this example, we see that the third topic is the most probable, which is sport, and 
is the correct identification.

NMF topic modeling
In this recipe, we will use another unsupervised topic modeling technique, NMF. We will 
also explore another evaluation technique, topic model coherence. NMF topic modeling is 
very fast and memory efficient and works best with sparse corpora.

Getting ready
We will continue using the gensim package in this recipe.
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How to do it…
We will create an NMF topic model and evaluate it using the coherence measure, which 
measures human topic interpretability. Many of the functions used for NMF models are 
the same as for LDA models in the gensim package. The steps for this recipe are  
as follows:

1.	 Perform the necessary imports:

import re

import pandas as pd

from gensim.models.nmf import Nmf

from gensim.models import CoherenceModel

import gensim.corpora as corpora

from gensim.utils import simple_preprocess

import matplotlib.pyplot as plt

from pprint import pprint

from Chapter06.lda_topic_sklearn import stopwords, bbc_
dataset, new_example

from Chapter06.lda_topic_gensim import preprocess, test_
new_example

2.	 The create_nmf_model function creates and returns the model:

def create_nmf_model(id_dict, corpus, num_topics):

    nmf_model = Nmf(corpus=corpus,

                    id2word=id_dict,

                    num_topics=num_topics, 

                    random_state=100,

                    chunksize=100,

                    passes=50)

    return nmf_model

3.	 The plot_coherence function plots the coherence of the model as a function of 
the number of topics:

def plot_coherence(id_dict, corpus, texts):

    num_topics_range = range(2, 10)

    coherences = []

    for num_topics in num_topics_range:

        nmf_model = create_nmf_model(id_dict, corpus, 
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                                     num_topics)

        coherence_model_nmf = \

        CoherenceModel(model=nmf_model, texts=texts, 

                       dictionary=id_dict, 

                       coherence='c_v')

        coherences.append(

            coherence_model_nmf.get_coherence())

    plt.plot(num_topics_range, coherences, 

             color='blue', marker='o', markersize=5)

    plt.title('Coherence as a function of number of \

              topics')

    plt.xlabel('Number of topics')

    plt.ylabel('Coherence')

    plt.grid()

    plt.show()

4.	 Read and preprocess the BBC dataset:

df = pd.read_csv(bbc_dataset)

df = preprocess(df)

5.	 Create the Dictionary object and the corpus:

texts = df['text'].values

id_dict = corpora.Dictionary(texts)

corpus = [id_dict.doc2bow(text) for text in texts]

6.	 Set the number of topics to be 5 and create the NMF model:

number_topics = 5

nmf_model = create_nmf_model(id_dict, corpus, 

                             number_topics)

7.	 Print the topics:

pprint(nmf_model.print_topics())
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The results will vary and may appear as follows:
[(0,

  '0.017*"people" + 0.013*"music" + 0.008*"mobile" + 
0.006*"technology" + '

  '0.005*"digital" + 0.005*"phone" + 0.005*"tv" + 
0.005*"use" + 0.004*"users" '

  '+ 0.004*"net"'),

 (1,

  '0.017*"labour" + 0.014*"party" + 0.013*"election" + 
0.012*"blair" + '

  '0.009*"brown" + 0.008*"government" + 0.008*"people" + 
0.007*"minister" + '

  '0.006*"howard" + 0.006*"tax"'),

 (2,

  '0.009*"government" + 0.008*"bn" + 0.007*"new" + 
0.006*"year" + '

  '0.004*"company" + 0.003*"uk" + 0.003*"yukos" + 
0.003*"last" + 0.003*"state" '

  '+ 0.003*"market"'),

 (3,

  '0.029*"best" + 0.016*"song" + 0.012*"film" + 
0.011*"years" + 0.009*"music" '

  '+ 0.009*"last" + 0.009*"awards" + 0.008*"year" + 
0.008*"won" + '

  '0.008*"angels"'),

 (4,

  '0.012*"game" + 0.008*"first" + 0.007*"time" + 
0.007*"games" + '

  '0.006*"england" + 0.006*"new" + 0.006*"world" + 
0.005*"wales" + '

  '0.005*"play" + 0.004*"back"')]
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8.	 Now, let's plot model coherence as a function of the number of topics:

plot_coherence(id_dict, corpus, texts)

Results, again, might vary and may appear as follows:

Figure 6.2 – Topic coherence as a function of the number of topics

9.	 Let's now test a new example, the same example about soccer we used in  
previous recipes:

test_new_example(nmf_model, id_dict, new_example)

The result will be as follows:
[(2, 0.10007018750350244), (4, 0.8999298124964975)]
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How it works…
In step 1, we import the necessary functions. Many of the functions that work with the 
LdaModel object work the same way with the Nmf object.

In step 2, we have the create_nmf_model function that takes in the corpus of texts, 
encoded using the Dictionary object, the Dictionary object itself, the number of 
topics, the random state that ensures model reproducibility, chunk size, and the number of 
passes through the corpus.

In step 3, we create the plot_coherence function that plots the coherence measure 
against the number of topics in the model. We create a separate NMF model for 2 to 9 
topics and measure their coherence.

In step 4, we read and preprocess the BBC dataset. In step 5, we create the Dictionary 
object and use it to encode the texts creating a corpus. In step 6, we set the number of 
topics to 5 and create the NMF model. In step 7, we then print the topics, which look very 
similar to the ones modeled by the LDA.

In step 8, we plot topic coherence. The plot shows the best coherence for 3, 5, and 8 topics. 
The more topics, the more granular they will be, so it might be the case that 8 topics make 
sense, and they divide the 5 main topics into coherent subtopics. 

In step 9, we test the model with a new example about sports, defined in the LDA topic 
modeling with genism recipe, and it shows topic 4 as the most probable, which is sport,  
and is correct.

K-means topic modeling with BERT
In this recipe, we will use the K-means algorithm to execute unsupervised topic 
classification, using the BERT embeddings to encode the data. This recipe shares lots of 
commonalities with the Clustering sentences using K-means: unsupervised text classification 
recipe from Chapter 4, Classifying Texts.
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Getting ready
We will be using the sklearn.cluster.KMeans object to do the unsupervised 
clustering, along with Hugging Face sentence transformers. To install sentence 
transformers, use the following commands:

conda create -n newenv python=3.6.10 anaconda

conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

pip install transformers

pip install -U sentence-transformers

How to do it…
The steps for this recipe are as follows:

1.	 Perform the necessary imports:

import re

import string

import pandas as pd

from sklearn.cluster import KMeans

from nltk.probability import FreqDist

from Chapter01.tokenization import tokenize_nltk

from Chapter04.preprocess_bbc_dataset import get_data

from Chapter04.keyword_classification import divide_data

from Chapter04.preprocess_bbc_dataset import get_
stopwords

from Chapter04.unsupervised_text_classification import 
get_most_frequent_words, print_most_common_words_by_
cluster

from Chapter06.lda_topic_sklearn import stopwords, bbc_
dataset, new_example

from Chapter06.lda_topic_gensim import preprocess

from sentence_transformers import SentenceTransformer

2.	 Initialize the global variables and read in the stopwords:

bbc_dataset = "Chapter04/bbc-text.csv"

stopwords_file_path = "Chapter01/stopwords.csv"

stopwords = get_stopwords(stopwords_file_path)



K-means topic modeling with BERT     203

3.	 Define the test_new_example function:

def test_new_example(km, model, example):

    embedded = model.encode([example])

    topic = km.predict(embedded)[0]

    print(topic)

    return topic

4.	 Read in the data and preprocess it:

df = pd.read_csv(bbc_dataset)

df = preprocess(df)

df['text'] = df['text'].apply(lambda x: " ".join(x))

documents = df['text'].values

5.	 Read in the sentence transformers model and encode the data using it:

model = SentenceTransformer('distilbert-base-nli-mean-
tokens')

encoded_data = model.encode(documents)

6.	 Create the KMeans model and fit it to the encoded data:

km = KMeans(n_clusters=5, random_state=0)

km.fit(encoded_data)

7.	 Print the most common words by cluster:

print_most_common_words_by_cluster(documents, km, 5)

The result will be as follows:
0

['people', 'new', 'mobile', 'technology', 'music', 
'users', 'year', 'digital', 'use', 'make', 'get', 
'phone', 'net', 'uk', 'games', 'software', 'time', 'tv', 
…]

1

['government', 'people', 'labour', 'new', 'election', 
'party', 'told', 'blair', 'year', 'minister', 'last', 
'bn', 'uk', 'public', 'brown', 'time', 'bbc', 'say', 
'plans', 'company', …]

2
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['year', 'bn', 'growth', 'economy', 'sales', 'economic', 
'market', 'prices', 'last', 'bank', 'government', 'new', 
'rise', 'dollar', 'figures', 'uk', 'rate', 'years', …]

3

['film', 'best', 'year', 'music', 'new', 'awards', 
'first', 'show', 'top', 'award', 'won', 'number', 'last', 
'years', 'uk', 'star', 'director', 'world', 'time', 
'band', 'three', …]

4

['first', 'year', 'game', 'england', 'win', 'time', 
'last', 'world', 'back', 'play', 'new', 'cup', 'team', 
'players', 'final', 'wales', 'side', 'ireland', 'good', 
'half', 'match', …]

8.	 Now we can test the new sports example using the model:

test_new_example(km, model, new_example)

The output will be as follows:
4

How it works…
In step 1, we import the necessary packages and functions. We reuse several functions 
from Chapter 4, Classifying Texts, and also from previous recipes in this chapter. In step 2, 
we initialize the path to the dataset and get the stopwords.

In step 3, we define the test_new_example function, which is very similar to the 
test_new_example function in previous recipes, the only difference being the 
encoding of the data. We use the sentence transformers model to encode the data and 
then the Kmeans model to predict the topic it belongs to.

In step 4, we read in the data and preprocess it. The preprocess function tokenizes the 
text, puts it into lowercase, and removes the stopwords. We then join the word arrays, 
since the sentence transformers model takes a string as input.

We read in the sentence transformers model and use it to encode the documents in step 5. 
Then, we read in the DistilBERT-based model, which is smaller than the regular model.

In step 6, we create the KMeans model, initializing it with five clusters and a random state 
for model reproducibility.
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In step 7, we print the most common words by cluster, where cluster 0 is tech, cluster 1  
is politics, cluster 2 is business, cluster 3 is entertainment, and cluster 4  
is sports.

In step 8, we test the model with a sports example, and it correctly returns cluster 4. 
Coherence is calculated using Pointwise Mutual Information between each pair of words 
and then averaging it across all pairs. Pointwise Mutual Information calculates how 
coincidental it is that two words occur together. Please see more at https://svn.
aksw.org/papers/2015/WSDM_Topic_Evaluation/public.pdf.

Topic modeling of short texts
In this recipe, we will be using Yelp reviews. These are from the same dataset that we used 
in Chapter 3, Representing Text: Capturing Semantics. We will break the reviews down into 
sentences and cluster them using the gsdmm package. The resulting clusters should be 
about similar aspects and experience, and while many reviews are about restaurants, there 
are also other reviews, such as those concerning nail salon ratings.

Getting ready
To install the gsdmm package, you will need to create a new folder and then either 
download the zipped code from GitHub (https://github.com/rwalk/gsdmm) or 
clone it into the created folder using the following command:

git clone https://github.com/rwalk/gsdmm.git

Then, run the setup script in the folder you installed the package in:

python setup.py install

How to do it…
In this recipe, we will load the data, divide it into sentences, preprocess it, and then use the 
gsdmm model to cluster the sentences into topics. The steps for this recipe are as follows:

1.	 Perform the necessary imports:

import nltk

import numpy as np

import string

from gsdmm import MovieGroupProcess

https://svn.aksw.org/papers/2015/WSDM_Topic_Evaluation/public.pdf
https://svn.aksw.org/papers/2015/WSDM_Topic_Evaluation/public.pdf
https://github.com/rwalk/gsdmm
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from Chapter03.phrases import get_yelp_reviews

from Chapter04.preprocess_bbc_dataset import get_
stopwordss

2.	 Define global variables and load the stopwords:

tokenizer = \

nltk.data.load("tokenizers/punkt/english.pickle")

yelp_reviews_file = "Chapter03/yelp-dataset/review.json"

stopwords_file_path = "Chapter06/reviews_stopwords.csv"

stopwords = get_stopwords(stopwords_file_path)

3.	 The preprocess function cleans up the text:

def preprocess(text):

    sentences = tokenizer.tokenize(text)

    sentences = [nltk.tokenize.word_tokenize(sentence) 

                 for sentence in sentences]

    sentences = [list(set(word_list)) for word_list in

                 sentences]

    sentences=[[word for word in word_list if word not 

                in stopwords and word not in 

                string.punctuation]

               for word_list in sentences]

    return sentences

4.	 The top_words_by_cluster function prints out the top words by cluster:

def top_words(mgp, top_clusters, num_words):

    for cluster in top_clusters:

        sort_dicts = \

        sorted(mgp.cluster_word_distribution[cluster].\

               items(), key=lambda k: k[1], 

               reverse=True)[:num_words]

        print(f'Cluster {cluster}: {sort_dicts}')

5.	 We now read the reviews and preprocess them:

reviews = get_yelp_reviews(yelp_reviews_file)

sentences = preprocess(reviews)
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6.	 We then calculate the length of the vocabulary that these sentences contain, as this 
is a necessary input to the GSDMM model:

vocab = set(word for sentence in sentences for word in 

            sentence)

n_terms = len(vocab)

7.	 Now we can create the model and fit it to the data:

mgp = MovieGroupProcess(K=25, alpha=0.1, beta=0.1, 

                        n_iters=30)

mgp.fit(sentences, n_terms)

8.	 Now we get the top 15 topics from the model:

doc_count = np.array(mgp.cluster_doc_count)

top_clusters = doc_count.argsort()[-15:][::-1]

9.	 We can use the preceding top_words_by_cluster function to print the most 
important words for each topic:

top_words_by_cluster(mgp, top_clusters, 10)

Some of the results will appear as follows:
Cluster 6: [('chicken', 1136), ('ordered', 1078), 
('sauce', 1073), ('cheese', 863), ('salad', 747), 
('delicious', 680), ('fries', 539), ('fresh', 522), 
('meat', 466), ('flavor', 465)]

Cluster 4: [('order', 688), ('wait', 626), ('table', 
526), ('service', 493), ('people', 413), ('asked', 412), 
('server', 342), ('told', 339), ('night', 328), ('long', 
316)]

Cluster 5: [('menu', 796), ('prices', 400), ('price', 
378), ('service', 355), ('selection', 319), ('quality', 
301), ('beer', 289), ('delicious', 277), ('options', 
274), ('items', 272)]

Cluster 24: [('room', 456), ('area', 425), ('bar', 
419), ('people', 319), ('small', 314), ('restaurant', 
312), ('clean', 291), ('tables', 283), ('seating', 268), 
('inside', 262)]

Cluster 9: [('service', 1259), ('friendly', 1072), 
('staff', 967), ('helpful', 317), ('customer', 310), 
('attentive', 250), ('experience', 236), ('server', 210), 
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('clean', 208), ('people', 166)]

Cluster 3: [('chocolate', 387), ('cream', 339), ('ice', 
300), ('tea', 258), ('cake', 219), ('sweet', 212), 
('dessert', 186), ('coffee', 176), ('delicious', 176), 
('ordered', 175)]

Cluster 18: [('hair', 168), ('nails', 66), ('cut', 60), 
('work', 53), ('told', 51), ('massage', 46), ('pain', 
46), ('job', 45), ('nail', 43), ('felt', 38)]

…

How it works…
In step 1, we import the necessary packages and functions. In step 2, we define global 
variables and read in the stopwords. The stopwords used in this recipe are different  
from other recipes in that they include a number of words that are common to many 
reviews, such as good, great, and nice. These adjectives and adverbs are very common in 
reviews, carry no topic information, and the clustering models frequently create topics 
around them.

In step 3, we define the preprocessing function. This function first splits the text into 
sentences, tokenizes the sentences into words, and removes duplicates from the word lists. 
The duplicate removal is necessary for the GSDMM model, as it requires a list of unique 
tokens that occur in the text. The preprocessing function then removes stopwords and 
punctuation from the word lists.

In step 4, we define the top_words_by_cluster function that prints out the most 
frequent words that appear in each cluster. It sorts the words in each cluster by their 
frequency and prints out tuples (of word frequency). The number of words per cluster 
printed is determined by the num_words parameter.

In step 5, we read in the reviews and preprocess them using the preprocess function 
defined in step 3.

In step 6, we get a set of all the unique words in the review sentences by turning the list of 
words into a set, and then we assign the count of these words to the n_terms variable to 
be used later in the creation of the model.
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In step 7, we create the GSDMM model. The K parameter is the upper bound on the number 
of clusters, as the algorithm determines the number of clusters less than or equal to this 
number. The alpha parameter controls the probability that a new cluster will be created, 
and the beta parameter defines how new text is clustered. If the value of beta is closer 
to 0, then text will be clustered more according to similarity, while if it is closer to 1, 
the clustering will be more based on the frequency of texts. The n_iters parameter 
determines the number of passes the algorithm makes through the corpus.

In step 8, we get the count of documents by topic and then create a list of the 15 most 
populous topics. We then use this list in step 9 to get the 10 most frequent words in  
each cluster.

The results of the clustering make sense for many of the clusters. In the preceding results, 
cluster 6 is about food, clusters 4 and 9 relate to the service, cluster 5 is about the selection 
available, cluster 24 concerns the atmosphere, cluster 3 is about dessert, and cluster 18 is 
about hair and nail salons.

See also
The gsdmm package is based on an article by Yin and Wang, A dirichlet 
multinomial mixture model-based approach for short text clustering, which can 
be found online at https://www.semanticscholar.org/paper/A-
dirichlet-multinomial-mixture-model-based-for-Yin-Wang/
d03ca28403da15e75bc3e90c21eab44031257e80?p2df.

https://www.semanticscholar.org/paper/A-dirichlet-multinomial-mixture-model-based-for-Yin-Wang/d03ca28403da15e75bc3e90c21eab44031257e80?p2df
https://www.semanticscholar.org/paper/A-dirichlet-multinomial-mixture-model-based-for-Yin-Wang/d03ca28403da15e75bc3e90c21eab44031257e80?p2df
https://www.semanticscholar.org/paper/A-dirichlet-multinomial-mixture-model-based-for-Yin-Wang/d03ca28403da15e75bc3e90c21eab44031257e80?p2df




7
Building Chatbots

In this chapter, we will build chatbots using two different frameworks, the nltk.chat 
package and the Rasa framework. The first recipe talks about the nltk.chat package, 
where we build a simple keyword matching chatbot, and the rest of the chapter is devoted 
to Rasa. Rasa is a complex framework that allows the creation of very sophisticated 
chatbots, and we will have a basic introduction to it. We will build a default bot using 
Rasa, and then we will modify it to do simple interactions.

Here is the list of this chapter's recipes:

•	 Building a basic chatbot with keyword matching

•	 Building a basic Rasa chatbot

•	 Creating question-answer pairs with Rasa

•	 Creating and visualizing conversation paths with Rasa

•	 Creating actions for the Rasa chatbot
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Technical requirements
In this chapter, we will use two different packages for our chatbots; one is nltk.chat 
and the other is the Rasa framework. To install these packages, use the  
following commands:

pip install nltk

pip install rasa

Building a basic chatbot with keyword 
matching
In this recipe, we will build a very basic chatbot that uses keywords to match inquiries and 
responses. This is based on the NLTK Chat class.

Getting ready
We will start by creating a new chat class and initializing it with pairs of responses. Then, 
we will run it on the command line. If you haven't already, you will need to install the 
nltk package:

pip install nltk

How to do it…
We will use the NLTK chat framework to create a simple chatbot. First, we will create the 
question-answer pairs and then create the Chat object. We will then use it to converse 
with the bot:

1.	 Do the necessary imports:

from nltk.chat.util import Chat, reflections

2.	 Initialize the conversation pairs:

pairs = [[r".*hi|hello|hey|what's up.*", 

         ["Hello, I am a simple chatbot. How are you?"]],

         [r'.*(how are you|and you).*', 

          ["Doing well, thank you.", 

           "I'm ok, what's new?"]],

         [r"quit", 
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          ["Bye, nice talking to you!",

           "Talk to you later!"]],

          [r".*weather|rain|snow|sun.*", 

           ["Isn't it nice out today?", 

            "Hopefully, tomorrow the weather will get 

             better.",

            "I don't know about you, but I am glad I am \

             inside today."]],

         [r"I like (.*)", 

          ["Why do you like %1?", 

           "What about %1 do you like?"]],

         [r".*(tasty).*", ["Yeah, I think so too."]],

         [r".*", 

          ["I am sorry, I don't understand. \

            I am a very simple chatbot!"]]

        ]    

3.	 Create a new chatbot:

chatbot = Chat(pairs, reflections)

4.	 Use the chatbot's converse function to carry out the conversation:

chatbot.converse()

It might go something like this, where lines preceded by > are user input:
>hello

Bot: Hello, I am a simple chatbot. How are you?

>Good, and you?

Bot: I'm ok, what's new?

>I like pizza

Bot: What about pizza do you like?

>It's tasty.

Bot: Yeah, I think so too.

>Do you speak other languages?

Bot: I am sorry, I don't understand. I am a very simple 
chatbot!

>quit

Bot: Bye, nice talking to you!
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How it works…
In step 1, we import the Chat class and the reflections dictionary. This dictionary 
maps first-person phrases to their corresponding second-person expressions. For example, 
it will map I am to you are. 

In step 2, we create inquiry-response pairs for the chatbot. The variable is a list of lists. 
Each sub list has two elements: the first one is the regular expression that we use to match 
on the user input, and the second one is a list of possible responses, where one is chosen 
at random. The regular expressions can include groups that can be referenced in the 
response, as in the [r"I like (.*)", ["Why do you like %1?", "What 
about %1 do you like?"]]list. The %1 element in the response refers to the (.*)
group in the input. If you have more than one group, you can refer to them by numbers, 
as in %2, %3, and so on. We also include a list with the .* input regular expression that 
has the line I am sorry, I don't understand. I am a very simple 
chatbot! as the response. This regular expression will match anything but only after it 
tries other expressions, so this is the default option when we don't really know what to say.

In step 3, we initialize the chatbot using the reflections dictionary and the inquiry-
response pairs. In step 4, we use the converse function to start the conversation.  
We see that it matches the inputs that we specified and asks us whether we like pizza. It 
also uses the default response when it doesn't have an entry for the input Do you speak  
other languages?

There's more…
NLTK has other chatbots that it already created: eliza_chat, iesha_chat, rude_
chat, suntsu_chat, zen_chat. For example, you can try the ELIZA bot as follows:

1.	 Do the necessary imports:

from nltk.chat.eliza import eliza_chat

2.	 Initialize the conversation pairs:

eliza_chat()

The output might look like this:
Therapist

---------

Talk to the program by typing in plain English, using 
normal upper-

and lower-case letters and punctuation.  Enter "quit" 
when done.
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=========================================================
===============

Bot: Hello.  How are you feeling today?

>Good

Bot: Very interesting.

>I like pizza

Bot: How does that make you feel?

>Hungry

Bot: How does that make you feel?

>quit

Thank you, that will be $150.  Have a good day!

Read more about the ELIZA chatbot at https://en.wikipedia.org/wiki/ELIZA. 

Building a basic Rasa chatbot
In this recipe, we will use a popular chatbot framework, Rasa, to build a default chatbot. 
In the coming recipes, we will make the chatbot better.

Rasa is an open source deep learning framework for building chatbots. It uses Keras 
and Tensorflow to implement the model. You can read more about the implementation 
here: https://blog.tensorflow.org/2020/12/how-rasa-open-source-
gained-layers-of-flexibility-with-tensorflow-2x.html. 

Getting ready
We will initialize the Rasa framework and use it to build and initialize a default  
Rasa chatbot and then we will explore its structure. If you haven't already, install the  
rasa package:

pip install rasa

https://en.wikipedia.org/wiki/ELIZA
https://blog.tensorflow.org/2020/12/how-rasa-open-source-gained-layers-of-flexibility-with-tensorflow-2x.html
https://blog.tensorflow.org/2020/12/how-rasa-open-source-gained-layers-of-flexibility-with-tensorflow-2x.html
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How to do it…
After installing the rasa package, there are new commands available through the  
Rasa interface. We will use them to create a default chatbot. The steps for this recipe are  
as follows:

1.	 On the command line, enter this:

rasa init

Rasa will start and will produce some colorful output. After that, it will ask you for 
the path you want to create the new chatbot in. The program output might look like 
this:

2020-12-20 21:01:02.764647: I tensorflow/stream_executor/
platform/default/dso_loader.cc:48] Successfully opened 
dynamic library cudart64_101.dll

┌────────────────────────────────────────────────────────
────────────────────────┐

│ Rasa Open Source reports anonymous usage telemetry to 
help improve the product │

│ for all its users.                                                             
│

││

│ If you'd like to opt-out, you can use `rasa telemetry 
disable`.                │

│ To learn more, check out https://rasa.com/docs/rasa/
telemetry/telemetry.       │

└────────────────────────────────────────────────────────
────────────────────────┘

…

Welcome to Rasa! 🤖

To get started quickly, an initial project will be 
created.

If you need some help, check out the documentation at 
https://rasa.com/docs/rasa.

Now let's start! 👇🏽

? Please enter a path where the project will be created 
[default: current directory]
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2.	 Enter the path and press Enter:

./Chapter07/rasa_bot

3.	 If the path does not exist, Rasa will ask if it needs to be created:

? Path './Chapter07/rasa_bot' does not exist 🧐. Create 
path?

4.	 Answer Yes and then the program will ask you if you want to have an initial  
model trained:

Created project directory at 'C:\Users\zhenya\Documents\
Zhenya\consulting\book\code\python-natural-language-
processing--cookbook\Chapter07\rasa_bot'.

Finished creating project structure.

? Do you want to train an initial model? 💪  Yes

5.	 The model will train and Rasa will ask you if you want to interact with the bot; 
answer Yes:

? Do you want to speak to the trained assistant on the 
command line?   Yes

2020-12-21 07:20:53 INFO     rasa.model  - Loading model 
Chapter07\rasa_bot\models\20201221-071928.tar.gz...

2020-12-21 07:20:55 INFO     root  - Starting Rasa server 
on http://localhost:5005

2020-12-21 07:20:55 INFO     rasa.model  - Loading model 
Chapter07\rasa_bot\models\20201221-071928.tar.gz...

2020-12-21 07:21:03 INFO     root  - Rasa server is up 
and running.

Bot loaded. Type a message and press enter (use '/stop' 
to exit):

Our conversation might go something like this:
Your input ->  Hello

Hey! How are you?

Your input ->  Good, and you?

Bye

Your input ->  wow

Great, carry on!

Your input ->  where are you located?
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I am a bot, powered by Rasa.

Your input ->  where do you live?

Hey! How are you?

Your input ->  /stop

6.	 Once we input /stop, the program will stop execution and will return to the 
command line. To power up the chatbot again, change the working directory to the 
bot path and start it up again:

cd Chapter07

cd rasa_bot

rasa shell

It will load up again:
…

Bot loaded. Type a message and press enter (use '/stop' 
to exit):

How it works…
In step 1, we initialize Rasa. This command is used to create a new chatbot project. In the 
last line, Rasa asks us about the location of the project files. In step 2, we enter a path, an 
example path is provided, but you can use any path you like. The path specification should 
follow Unix formatting, so the dot in the path signifies the current directory.

In step 3, Rasa asks us if the directory needs to be created. In step 4, after we answer  
Yes, Rasa creates the necessary directories and then asks us if we want to have an initial 
model trained.

In step 5, Rasa asks us if we want to interact with the trained assistant. After we answer 
Yes, we try out different inputs to see what the bot knows and how it answers. We see 
that at this point it pretty much recognizes greetings. In the next recipe, we will add some 
more utterances that it will be able to handle.

In step 6 we stop the bot. Then we change to the bot directory and power it up again.
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There's more…
Let's now look at the file structure of the project:

Figure 7.1 – File structure of the project

At the top level, the two most important files are config.yml and domain.yml. 
The configuration file specifies how the chatbot should be created and trained, and the 
domain.yml file lists the possible intents it can handle and which responses it should 
provide for those intents. For example, there is a greet intent, and the response to that is 
Hey! How are you? We can modify this file to create our own custom intents and 
custom responses to those intents.

In addition to the config.yml and domain.yml files, there are important files in the 
data directory:

Figure 7.2 – Files in the data directory

The nlu.yml file contains example inputs for each intent. The rules.yml file specifies 
what should be said when. For example, it pairs up the goodbye response with the 
goodbye intent of the user. Finally, the stories.yml file defines conversation paths that 
might happen during interactions with the user.
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See also
Rasa has excellent documentation that can be found at https://rasa.com/docs/.

Even this simple bot can be connected to different channels, such as your website, social 
networks, Slack, Telegram, and so on. See the Rasa documentation on how to do that 
athttps://rasa.com/docs/rasa/connectors/your-own-website.

Creating question-answer pairs with Rasa
Now we will build on the simple chatbot that we built in the previous recipe and create 
new conversation pairs. Our bot will answer simple, frequently asked questions for a 
business, such as questions about hours, address, and so on.

Getting ready
We will continue using the bot we created in the previous recipe. Please follow the 
installation instructions specified there.

How to do it…
In order to create new question-answer pairs, we will modify the following files: domain.
yml, nlu.yml, and rules.yml. The steps are as follows:

1.	 Open the domain.yml file and in the section named intents, add an intent 
named hours. The section should now look like this:

intents:

  - greet

  - goodbye

  - affirm

  - deny

  - mood_great

  - mood_unhappy

  - bot_challenge

  - hours

https://rasa.com/docs/
https://rasa.com/docs/rasa/connectors/your-own-website
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2.	 Now we will create a new response for a question about hours. Edit the section 
named responses and add a response named utter_hours that has the 
text Our hours are Monday to Friday 9 am to 8 pm EST. The 
responses section should now look like this:

responses:

utter_greet:

  - text: "Hey! How are you?"

utter_cheer_up:

  - text: "Here is something to cheer you up:"

    image: "https://i.imgur.com/nGF1K8f.jpg"

utter_did_that_help:

  - text: "Did that help you?"

utter_happy:

  - text: "Great, carry on!"

utter_goodbye:

  - text: "Bye"

utter_iamabot:

  - text: "I am a bot, powered by Rasa."

utter_hours:

  - text: "Our hours are Monday to Friday 9 am to 8 pm 
EST."

3.	 Now we will add the user's possible utterances. Open the nlu.yml file in the data 
folder and add a section under nlu where the intent is hours and there are some 
examples of how the user might inquire about hours. It should look like this (feel 
free to add more examples):

- intent: hours

  examples: |

    - what are your hours?

    - when are you open?
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    - are you open right now?

    - hours

    - open

    - are you open today?

    - are you open

4.	 We can also use regular expressions to express utterances that contain  
certain words:

- regex: hours

  examples: |

    - \bopen\b

5.	 Now we will add a rule that will make sure that the bot answers about hours  
when asked about them. Open the rules.yml file in the data folder and add a 
new rule:

- rule: Say hours when asked about hours

  steps:

  - intent: hours

  - action: utter_hours

6.	 Now we will retrain the model. On the command line, enter the following:

rasa train

7.	 We can now test the chatbot. Enter the following on the command line:

rasa shell

The conversation might go something like this:
Bot loaded. Type a message and press enter (use '/stop' 
to exit):

Your input ->  hello

Hey! How are you?

Your input ->  what are your hours?

Our hours are Monday to Friday 9 am to 8 pm EST.

Your input ->  thanks, bye

Bye
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Your input ->  /stop

2020-12-24 12:43:08 INFO     root  - Killing Sanic server 
now.

How it works…
In step 1, we add an additional intent, hours, and a response that will follow a user's 
utterance classified as this intent. In step 2, we add a response to that intent.

In step 3, we add possible ways a user might inquire about hours of operation. In step 4, 
we connect the user's inquiry and the bot's response by adding a rule that ensures that the 
utter_hours response is given for the hours intent.

In step 5, we retrain the model, and in step 6, we launch the retrained chatbot. As we see 
from the conversation, the bot answers correctly to the hours inquiry.

Creating and visualizing conversation paths 
with Rasa
We will now upgrade our bot to create conversation paths that start and end with 
greetings and will answer the user's questions about the business' hours and address.

Getting ready
In this recipe, we continue using the chatbot we created in the Building a basic Rasa 
chatbot recipe. Please see that recipe for installation information.

How to do it…
We will add new intents and new replies and create a conversation path that can be 
visualized. The steps are as follows:

1.	 We start by editing the domain.yml file. We will first add two intents, address 
and thanks. The intents section should now look like this:

intents:

  - greet

  - goodbye

  - affirm

  - deny

  - mood_great
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  - mood_unhappy

  - bot_challenge

  - hours

  - address

  - thanks

2.	 Now we will add three new chatbot utterances to the responses section, so it will 
look like this:

responses:

utter_greet:

  - text: "Hey! How are you?"

utter_cheer_up:

  - text: "Here is something to cheer you up:"

    image: "https://i.imgur.com/nGF1K8f.jpg"

utter_did_that_help:

  - text: "Did that help you?"

utter_happy:

  - text: "Great, carry on!"

utter_goodbye:

  - text: "Bye"

utter_iamabot:

  - text: "I am a bot, powered by Rasa."

utter_hours:

  - text: "Our hours are Monday to Friday 9 am to 8 pm 
EST."

utter_address:

  - text: "Our address is 123 Elf Road North Pole, 
88888."

utter_help:
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  - text: "Is there anything else I can help you with?"

utter_welcome:

  - text: "You're welcome!"

3.	 In the nlu.yml file in the data folder, we will add the possible user utterances for 
the address and thanks intents:

- intent: address

  examples: |

    - what is your address?

    - where are you located?

    - how can I find you?

    - where are you?

    - what's your address

    - address

- intent: thanks

  examples: |

    - thanks!

    - thank you!

    - thank you very much

    - I appreciate it

4.	 Now we will create stories for possible scenarios. The first scenario will have the 
user asking about hours and then address, and the other story will have the user  
first asking about the address and then hours. In the stories.yml file, enter the 
two stories:

- story: hours address 1

  steps:

  - intent: greet

  - action: utter_greet

  - intent: hours

  - action: utter_hours

  - action: utter_help

  - or:

    - intent: thanks
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    - intent: goodbye

  - action: utter_goodbye

- story: hours address 2

  steps:

  - intent: greet

  - action: utter_greet

  - intent: address

  - action: utter_address

  - action: utter_help

  - intent: hours

  - action: utter_hours

  - intent: thanks

  - action: utter_welcome

  - intent: goodbye

  - action: utter_goodbye

5.	 Now we will train the model and start up the bot:

rasa train

rasa shell

Our conversation might look like this:
Your input ->  hello

Hey! How are you?

Your input ->  what is your address?

Our address is 123 Elf Road North Pole, 88888.

Is there anything else I can help you with?

Your input ->  when are you open?

Our hours are Monday to Friday 9 am to 8 pm EST.

Your input ->  thanks

You're welcome!

Your input ->  bye

Bye

Your input ->  /stop
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6.	 We can visualize all the stories that this bot has. To do that, enter the following 
command:

rasa visualize

The program will create the graph and open it in your browser. It will look like this:

Figure 8.3 – The story graph
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How it works…
In step 1, we add new intents to the chatbot, and in step 2, we add responses to those 
intents. In step 3, we add possible user's utterances for each of the intents added in step 1.

In step 4, we create possible stories that might come up. In the first story, the user greets 
the bot and inquires about the hours. After that, one of two intents might come up: either 
thanks or goodbye, which is handled with an or statement. In the second story, the 
user first asks about the address and then the hours. 

In step 5, we train the new model and load the chatbot. The conversation in the example 
follows the second story.

In step 6, we create a visualization graph of all the chatbot stories, including the ones that 
were predefined. You see that all three stories start with the greeting and continue from 
there. There is also a rule that is not in any of the stories, and that is answering with the 
utter_iamabot response to a user's bot_challenge intent.

Creating actions for the Rasa chatbot
In this recipe, we will add a custom action and greet the user by name.

Getting ready
In order to create custom actions, we will need to install the rasa_core_sdk package:

pip install rasa_core_sdk

How to do it…
We will first edit the configuration files, adding necessary information. Then, we will 
edit the actions.py file, which programs the necessary actions. We will then start the 
actions server and test the chatbot:

1.	 First, in the domain.yml file, add a special intent called inform that may contain 
entities. The section will now look like this: 

intents:

  - greet

  - goodbye

  - affirm

  - deny

  - mood_great
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  - mood_unhappy

  - bot_challenge

  - hours

  - address

  - thanks

  - inform

2.	 In the same file, add a new section called entities where name is the entity:

entities:

  - name

3.	 Add a new chatbot utterance that will ask the question about the user's name:

responses:

…

utter_welcome:

  - text: "You're welcome!"

utter_ask_name:

  - text: "What's your name?"

4.	 Next, add a section called actions in the same file, domain.yml, where the one 
action will be action_save_name:

actions:

  - action_save_name

5.	 Next, in the nlu.yml file, add some examples for the inform intent:

- intent: inform

  examples: |

    - my name is [Zhenya](name)

    - [Philip](name)

    - [Michelle](name)

    - [Mike](name)

    - I'm [Helen](name)
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6.	 In the stories.yml file, add the following to each story after the greeting:

  - action: utter_ask_name

  - intent: inform

    entities:

    - name: "name"

  - action: action_save_name

Our FAQ story will now look like this:
- story: hours address 2

  steps:

  - intent: greet

  - action: utter_greet

  - action: utter_ask_name

  - intent: inform

    entities:

    - name: "name"

  - action: action_save_name

  - intent: address

  - action: utter_address

  - action: utter_help

  - intent: hours

  - action: utter_hours

  - intent: thanks

  - action: utter_welcome

  - intent: goodbye

  - action: utter_goodbye

7.	 Now open the endpoints.yml file and add or uncomment the following  
two lines:

action_endpoint:

  url: "http://localhost:5055/webhook"
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8.	 Now we will edit the actions.py file and add our custom action. Open the 
actions.py file, which is located in the actions folder of your bot. Add the 
following code to it:

from typing import Any, Text, Dict, List

from rasa_sdk import Action, Tracker

from rasa_sdk.executor import CollectingDispatcher

class ActionSaveName(Action):

    def name(self) -> Text:

        return "action_save_name"

    def run(self, dispatcher: CollectingDispatcher,

            tracker: Tracker,

            domain: Dict[Text, Any]) -> List[Dict[Text, 

                                                  Any]]:

        name = \

        next(tracker.get_latest_entity_values("name"))

        dispatcher.utter_message(text=f"Hello, {name}!")

        return []

9.	 Now open a new terminal, activate the custom environment where Rasa is installed, 
and run the actions endpoint. This will start up the Rasa actions server:

rasa run actions

10.	 Now train your new model in a terminal window different from the one in step 8:

rasa train

11.	 Now we can test the bot:

rasa shell

The conversation might go something like this:
Your input ->  hello
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Hey! How are you?

What's your name?

Your input ->Zhenya

Hello, Zhenya!

Your input ->  where are you located?

Our address is 123 Elf Road North Pole, 88888.

Is there anything else I can help you with?

Your input ->  what are your hours?

Our hours are Monday to Friday 9 am to 8 pm EST.

Your input ->  bye

Bye

How it works…
In step 1, we add the inform intent to the list of possible intents. In step 2, we add an 
entity that will be recognized, name. In step 3, we add a new utterance that asks about the 
user's name. In step 4, we add a new action that will be triggered when the user answers 
the question.

In step 5, we add sample user inputs for the inform intent. You will notice that the 
names are listed in parentheses and the entity type, name, is listed in square brackets right 
after the name. The entity name should be the same as the one we listed in step 2 in the 
domain.yml file.

In step 6, we add a piece that asks the user's name and triggers action_save_name 
to each story. The action name should be the same as the one defined in step 4 in the 
domain.yml file. You will notice that after the inform intent, we also list the entities 
that should be parsed from the user's response, in this case, name. 

In step 7, we uncomment the lines that tell the Rasa chatbot where to look for the 
actions server, which we will start up in step 9. 

In step 8, we define the ActionSaveName class, which defines what should happen 
when the action is triggered. Each action requires a class that is a subclass of the Action 
class and that overrides two methods, name and run. The name method defines the 
class name, and that name should be the same as the name we defined in step 4 in the 
domain.yml file. The run method defines the action that should be taken once the 
action is triggered. It is given several arguments, including tracker and dispatcher. 
The tracker object is the chatbot's memory and lets us access parsed entities and other 
information. The dispatcher object generates and sends responses back to the user. We 
get the user's name from the tracker and send the Hello, {name}! response.
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In step 9, we start the actions server, which will be accessed during the bot execution.  
It should be started in a terminal window different from the one where the chatbot is 
being run.

In step 10, we train the bot model, and in step 11, we start it up. In the conversation, we 
now ask the user their name and greet them accordingly.

See also
In addition to parsing entities out, it is possible to parse out information that fills 
certain slots, for example, departure and destination cities in a bot that provides flight 
information. This information can be used for lookup and to provide relevant answers 
to the user. Please see the Rasa documentation for instructions: https://rasa.com/
docs/rasa/forms.

https://rasa.com/docs/rasa/forms
https://rasa.com/docs/rasa/forms
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Visualizing Text Data
In this chapter, we will create different types of visualizations. We will visualize the 
dependency parse, which will show the grammatical relations between words in a 
sentence. Then, we will visualize different types of verbs in a text using a bar graph. After 
that, we will look at visualizing named entities in a text. Next, we will create word clouds 
from a corpus of text, and finally, we will visualize topics created with Latent Dirichlet 
Allocation (LDA) model.

These are the recipes you will find in this chapter:

•	 Visualizing the dependency parse

•	 Visualizing parts of speech

•	 Visualizing NER

•	 Constructing word clouds

•	 Visualizing topics

Technical requirements
We will use the following packages in this chapter: spacy, matplotlib, wordcloud, 
and pyldavis. To install them, use the following commands:

pip install spacy

pip install matplotlib
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pip install wordcloud

pip install pyldavis

Visualizing the dependency parse
In this recipe, we will learn how to use the displaCy library and visualize the 
dependency parse. Details about how to create a dependency parse can be found in 
Chapter 2, Getting the Dependency Parse. We will create two visualizations, one for a short 
text and another for a long, multi-sentence text.

Getting ready
The displaCy library is part of the spacy package. You need at least version 2.0.12 of 
the spacy package. If you don't have spacy, install it using the following command:

pip install spacy

To check the version you have, use the following commands:

>>> import spacy

>>> print(spacy.__version__)

2.3.0

>>> exit()

If your version is lower than 2.0.12, use the following command to upgrade spacy:

pip install -U spacy

To validate that the models you have on your computer are compatible with your new 
version of spacy, use the following command:

python -m spacy validate

How to do it…
To visualize the dependency parse, we will create the visualize function that will use 
displacy to show the dependency parse, first of a short text, and then of a long text. We 
will be able to set different display options:
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1.	 Import the necessary packages:

import spacy

from spacy import displacy

from pathlib import Path

2.	 Load the spaCy engine:

nlp = spacy.load('en_core_web_sm')

3.	 Define the visualize function, which will create the dependency parse 
visualization:

def visualize(doc, is_list=False):

    options = {"add_lemma": True, 

            "compact": True, 

            "color": "green", 

            "collapse_punct": True, 

            "arrow_spacing": 20, 

            "bg": "#FFFFE6",

            "font": "Times",

            "distance": 120}

    if (is_list):

        displacy.serve(list(doc.sents), style='dep', 

                       options=options)

    else:

        displacy.serve(doc, style='dep', options=options)

4.	 Define a short text for processing:

short_text = "The great diversity of life today evolved 
from less-diverse ancestral organisms over billions of 
years."

5.	 Create a Doc object and process it using the visualize function:

doc = nlp(short_text)

visualize(doc)
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You should see the following output:
Using the 'dep' visualizer

Serving on http://0.0.0.0:5000 ...

To see the output, load your browser and enter http://localhost:5000 in the 
address bar. You should see the following visualization in your browser:

Figure 8.1 – Dependency parse visualization
The visualization server will keep running if you don't explicitly stop it. To stop it, 
press Ctrl + C in your Anaconda window.

6.	 Now let's define a long text to test the function on:

long_text = '''To Sherlock Holmes she is always _the_ 
woman. I have seldom heard him mention her under any 
other name. In his eyes she eclipses and predominates the 
whole of her sex. It was not that he felt any emotion 
akin to love for Irene Adler. All emotions, and that 
one particularly, were abhorrent to his cold, precise 
but admirably balanced mind. He was, I take it, the most 
perfect reasoning and observing machine that the world 
has seen, but as a lover he would have placed himself in 
a false position. He never spoke of the softer passions, 
save with a gibe and a sneer. They were admirable things 
for the observer—excellent for drawing the veil from 
men's motives and actions. But for the trained reasoner 
to admit such intrusions into his own delicate and finely 
adjusted temperament was to introduce a distracting 
factor which might throw a doubt upon all his mental 
results. Grit in a sensitive instrument, or a crack in 
one of his own high-power lenses, would not be more 
disturbing than a strong emotion in a nature such as his. 
And yet there was but one woman to him, and that woman 
was the late Irene Adler, of dubious and questionable 
memory.'''
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7.	 Run the visualize function on the long text:

doc = nlp(long_text)

visualize(doc, is_list=True)

To see the output, again load your browser and enter http://localhost:5000 
in the address bar. The visualization will list every sentence as a separate tree and 
the beginning should look like this:

Figure 8.5 – Long text dependency parse visualization

8.	 Now we will define a function that will save the dependency parse as a .svg file:

def save_dependency_parse(doc, path):

    output_path = Path(path)

    svg = displacy.render(doc, style="dep", 

                          jupyter=False)

    output_path.open("w", encoding="utf-8").write(svg)

9.	 Define the text variable and process it using the spacy engine again if necessary, 
and run the preceding function on the Doc object: 

text = "The great diversity of life evolved from less-
diverse ancestral organisms."

doc = nlp(text)

save_dependency_parse(doc, "Chapter08/dependency_parse.
svg")
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This will create the dependency parse and save it at Chapter08/dependency_
parse.svg.

How it works…
In step 1, we import spacy and displacy. In step 2, we load the spaCy engine. 

In step 3, we define the visualize function. We define different visualization options. 
The add_lemma option adds the word's lemma. For example, the lemma of evolved is 
evolve and that is listed under the word itself. The compact option pushes the words and 
arrows together more so it fits in a smaller space. The color option changes the color 
of the words and arrows; for the option values, you can input either color names or color 
values in hex code. The collapse_punct option, if True, adds the punctuation to 
the word before it. The arrow_spacing option sets the distance between the arrows 
in pixels. The bg option sets the color of the background, whose value should be either 
a color name or a color code in hex. The font option changes the font of the words. 
The distance option sets the distance between words in pixels. These options are then 
provided to the displacy visualizer as an argument.

For long texts, displacy provides an option to show each sentence's parse separately, 
on a new line. For that, we need to provide the sentences as a list. In the visualize 
function, we use the is_list argument. If the argument is equal to True, we provide 
the list of sentences to the displacy visualizer; otherwise, we provide the Doc object. It 
is set to False by default.

In step 4, we define a short text for processing, and in step 5, we create the Doc object 
using this sentence and call the visualize function. We omit the is_list parameter, 
since this is not a long text. The displacy.serve function, when run, starts up the 
visualization server on http://localhost:5000 and creates our visualization. When 
you point your browser to this address, you should see the visualization.

In step 6, we define a long text, which is the beginning of The Adventures of Sherlock 
Holmes. In step 7, we create a Doc object and run the visualize function with the 
is_list parameter set to True. The visualization is again available at http://
localhost:5000 once the function is run.

You can check out all the visualization options provided by the displacy engine at 
https://spacy.io/api/top-level#displacy. 

In step 8, we define the save_dependency_parse function, which saves the parse 
output at the provided location. It first saves the dependency parse as an object and then 
writes the resulting object to the path provided. 

https://spacy.io/api/top-level#displacy
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In step 9, we run the preceding function on the short text. Dependency parses for each 
object should be saved to separate files.

Visualizing parts of speech
As you saw in the Visualizing the dependency parse recipe, parts of speech are included in 
the dependency parse, so in order to see parts of speech for each word in a sentence, it is 
enough to do that. In this recipe, we will visualize part of speech counts. We will visualize 
the counts of past and present tense verbs in the book The Adventures of Sherlock Holmes.

Getting ready
We will use the spacy package for text analysis and the matplotlib package to 
create the graph. If you don't have matplotlib installed, install it using the following 
command:

pip install matplotlib

How to do it…
We will create a function that will count the number of verbs by tense and plot each on a 
bar graph:

1.	 Import the necessary packages:

import spacy

import matplotlib.pyplot as plt

from Chapter01.dividing_into_sentences import read_text_
file

2.	 Load the spacy engine and define the past and present tag sets:

nlp = spacy.load("en_core_web_sm")

past_tags = ["VBD", "VBN"]

present_tags = ["VBG", "VBP", "VBZ"]



242     Visualizing Text Data

3.	 Define the visualize_verbs function, which will create the visualization:

def visualize_verbs(text_file):

    text = read_text_file(text_file)

    doc = nlp(text)

    verb_dict = {"Inf":0, "Past":0, "Present":0}

    for token in doc:

        if (token.tag_ == "VB"):

            verb_dict["Inf"] = verb_dict["Inf"] + 1

        if (token.tag_ in past_tags):

            verb_dict["Past"] = verb_dict["Past"] + 1

        if (token.tag_ in present_tags):

            verb_dict["Present"] = \

            verb_dict["Present"] + 1

    plt.bar(range(len(verb_dict)), 

            list(verb_dict.values()), 

            align='center', color=["red","green","blue"])

    plt.xticks(range(len(verb_dict)), 

               list(verb_dict.keys()))

    plt.show()

4.	 Run the visualize_verbs function on the text of the Sherlock Holmes book:

visualize_verbs("Chapter01/sherlock_holmes.txt")
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This will create the following graph:

Figure 8.6 – Infinitive, past, and present verbs in The Adventures of Sherlock Holmes

Once the picture is created, you can use the picture controls to save it. After you save it, 
press Ctrl + C at the command prompt to return.

How it works…
In step 1, we import the spacy package and the pyplot interface from matplotlib. 
We also import the read_text_file function from the code of Chapter 1, Learning 
NLP Basics, located at https://github.com/PacktPublishing/Python-
Natural-Language-Processing-Cookbook.

In step 2, we create the spacy engine and verb tag lists, one for present tense and one for 
past tense. If you read the Parts of speech tagging recipe in Chapter 1, Overview of NLP, 
you will notice that the tags are different from the spacy tags used there. These tags are 
more detailed and use the tag_ attribute instead of the pos_ attribute that is used in the 
simplified tagset.

https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook
https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook
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In step 3, we create the visualize_verbs function. In this function, we check each 
token's tag_ attribute and add the counts of present, past, and infinitive verbs to a 
dictionary. We then use the pyplot interface to plot those counts in a bar graph. We 
use the bar function to define the bar graph. The first argument lists the x coordinates 
of the bars, and the next argument is a list of heights of the bars. We also set the align 
parameter to center and provide the colors for the bars using the color parameter. The 
xticks function sets the labels for the x axis. Finally, we use the plot function to show 
the resulting plot.

In step 4, we run the function on the text of the book The Adventures of Sherlock Holmes.
The resulting plot shows that most verbs in the book are past tense.

Visualizing NER
To visualize named entities, we will again use displacy, the same visualization engine 
that we used for the visualization of dependency parses.

Getting ready
For this recipe, you will need spacy. If you don't have it installed, install it using the 
following command:

pip install spacy

How to do it…
We will use spacy to parse the sentence and then the displacy engine to visualize the 
named entities. The steps are as follows:

1.	 Import both spacy and displacy:

import spacy

from spacy import displacy

2.	 Load the spacy engine:

nlp = spacy.load('en_core_web_sm')
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3.	 Define the visualize function, which will create the dependency  
parse visualization:

def visualize(doc):

    colors = {"ORG":"green", "PERSON":"yellow"}

    options = {"colors": colors}

    displacy.serve(doc, style='ent', options=options)

4.	 Define a text for processing:

text = """iPhone 12: Apple makes jump to 5G

Apple has confirmed its iPhone 12 handsets will be its 
first to work on faster 5G networks. The company has also 
extended the range to include a new "Mini" model that 
has a smaller 5.4in screen. The US firm bucked a wider 
industry downturn by increasing its handset sales over 
the past year. But some experts say the new features 
give Apple its best opportunity for growth since 2014, 
when it revamped its line-up with the iPhone 6. "5G 
will bring a new level of performance for downloads and 
uploads, higher quality video streaming, more responsive 
gaming, real-time interactivity and so much more," said 
chief executive Tim Cook. There has also been a cosmetic 
refresh this time round, with the sides of the devices 
getting sharper, flatter edges. The higher-end iPhone 12 
Pro models also get bigger screens than before and a new 
sensor to help with low-light photography. However, for 
the first time none of the devices will be bundled with 
headphones or a charger."""

5.	 Create a Doc object, set its title, and process it using the visualize function:

doc = nlp(text)

doc.user_data["title"] = "iPhone 12: Apple makes jump to 
5G"

visualize(doc)

You should see the following output: 
Using the 'dep' visualizer

Serving on http://0.0.0.0:5000 ...
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To see the output, load your browser and enter http://localhost:5000 in the 
address bar. You should see the following visualization in your browser:

Figure 8.6 – Named entities visualization

6.	 Now we will define the save_ent_html function that will save the visualization 
as an HTML file:

def save_ent_html(doc, path):

    html = displacy.render(doc, style="ent")

    html_file= open(path, "w", encoding="utf-8")

    html_file.write(html)

    html_file.close()

7.	 Use the preceding function on the previously defined doc variable: 

save_ent_html(doc, "Chapter08/ner_vis.html")

This will create an HTML file with the entities visualization.

How it works…
In step 1, we import the spacy and displacy packages. In step 2, we initialize the 
spacy engine. 
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In step 3, we define the visualize function, which will display the visualization. We use 
custom color settings for the ORG and PERSON named entities. The color values can be 
either color names or hex codes.

In step 4, we define the text for processing. In step 5, we process it using the spacy engine. 
We then set its title to the title of the story; the title will be displayed more prominently in 
the visualization. We then use the visualize function to get the visualization.

In step 6, we define the save_ent_html function that saves the visualization as html. 
In step 7, we use the function to get the html file.

Constructing word clouds
In this recipe, we will create two word clouds. Both of them will use the text from the The 
Adventures of Sherlock Holmes book, and one of them will be shaped like a silhouette of 
Sherlock Holmes' head.

Getting ready
In order to complete this recipe, you will need to install the wordcloud package:

pip install wordcloud

How to do it…
We will define a function to that creates word clouds from text and then use it on the text 
of The Adventures of Sherlock Holmes:

1.	 Import the necessary packages and functions:

import os

import nltk

from os import path

import matplotlib.pyplot as plt

from wordcloud import WordCloud, STOPWORDS

from Chapter01.dividing_into_sentences import read_text_
file

from Chapter01.removing_stopwords import compile_
stopwords_list_frequency
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2.	 Define the create_wordcloud function:

def create_wordcloud(text, stopwords, filename):

    wordcloud = \

    WordCloud(min_font_size=10, max_font_size=100, 

              stopwords=stopwords, width=1000, 

              height=1000, max_words=1000, 

              background_color="white").generate(text)

    wordcloud.to_file(filename)

    plt.figure()

    plt.imshow(wordcloud, interpolation="bilinear")

    plt.axis("off")

    plt.show()

3.	 Read in the book text:

text_file = "Chapter01/sherlock_holmes.txt"

text = read_text_file(text_file)

4.	 Run the create_wordcloud function on the text of the Sherlock Holmes book:

create_wordcloud(text, 

                 compile_stopwords_list_frequency(text), 

                 "Chapter08/sherlock_wc.png")
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This will save the result in the file located at Chapter08/sherlock_wc.png and 
create this visualization:

Figure 8.7 – Sherlock Holmes word cloud visualization

How it works…
In step 1, we import different packages and functions we will need. We need the 
matplotlib.pyplot and wordcloud packages, and in addition, we import the 
read_text_file and compile_stopwords_list_frequency functions from 
Chapter 1, Learning NLP Basics.
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In step 2, we define the create_wordcloud function. The function takes as arguments 
the text to be processed, stopwords, and the filename of where to save the result. It creates 
the WordCloud object, saves it to file, and then outputs the resulting plot. The options 
that we provide to the WordCloud object are the minimum font size, the maximum font 
size, the width and height, the maximum number of words, and the background color.

In step 3, we read in the book text. In step 4, we use the defined the create_wordcloud 
function to create the word cloud. The stopwords are created using the compile_
stopwords_list_frequency function, which returns the top 2% of the words in the 
text as stopwords (see Chapter 1, Learning NLP Basics).

There's more…
We can also apply a mask to the word cloud. Here we will apply a Sherlock Holmes 
silhouette to the word cloud. The steps are as follows:

1.	 Do the additional imports:

import numpy as np

from PIL import Image

2.	 Using the preceding code, modify the create_wordcloud function:

def create_wordcloud(text, stopwords, filename, 

                     apply_mask=None):

    if (apply_mask is not None):

        wordcloud = WordCloud(background_color="white",

                              max_words=2000, 

                              mask=apply_mask,

                              stopwords=stopwords, 

                              min_font_size=10, 

                              max_font_size=100)

        wordcloud.generate(text)

        wordcloud.to_file(filename)

        plt.imshow(wordcloud, interpolation='bilinear')

        plt.axis("off")

        plt.figure()
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        plt.imshow(apply_mask, cmap=plt.cm.gray, 

                   interpolation='bilinear')

        plt.axis("off")

        plt.show()

    else:

        wordcloud = WordCloud(min_font_size=10, 

                              max_font_size=100, 

                              stopwords=stopwords, 

                              width=1000,

                              height=1000, 

                              max_words=1000, 

                              background_color="white")\

                              .generate(text)

        wordcloud.to_file(filename)

        plt.figure()

        plt.imshow(wordcloud, interpolation="bilinear")

        plt.axis("off")

        plt.show()

3.	 Read in the book text:

text_file = "Chapter01/sherlock_holmes.txt"

text = read_text_file(text_file)

4.	 Read in the mask and run the function on the text of the Sherlock Holmes book:

sherlock_data = Image.open("Chapter08/sherlock.png")

sherlock_mask = np.array(sherlock_data)

create_wordcloud(text, 

                 compile_stopwords_list_frequency(text), 

                 "Chapter08/sherlock_mask.png", 

                 apply_mask=sherlock_mask)
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This will save the result in the file located at Chapter08/sherlock_mask.png 
and create this visualization:

Figure 8.8 – Word cloud with mask

When creating the result, this program will show two figures: one is the black-and-white 
image of the silhouette, and the other one is the word cloud with the mask applied.

See also
Please see the wordcloud docs, https://amueller.github.io/word_cloud/ , 
for more options.

Visualizing topics
In this recipe, we will visualize the LDA topic model that we created in Chapter 6, Topic 
Modeling. The visualization will allow us to quickly see words that are most relevant to a 
topic and the distances between topics.

Important note
Please see Chapter 6, Topic Modeling, for how to create the LDA model that we 
will visualize here.

https://amueller.github.io/word_cloud/
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Getting ready
We will use the pyLDAvis package to create the visualization. To install it, use the 
following command:

pip install pyldavis

How to do it…
We will load the model we created in Chapter 6, Topic Modeling and then use the 
pyLDAvis package to create the topic model visualization. The visualization is created 
using a web server:

1.	 Import the necessary packages and functions:

import gensim

import pyLDAvis.gensim

2.	 Load the dictionary, corpus, and LDA model created in Chapter 6, Topic Modeling:

dictionary = \

gensim.corpora.Dictionary.load('Chapter06/gensim/id2word.
dict')

corpus = gensim.corpora.MmCorpus('Chapter06/gensim/
corpus.mm')

lda = \

gensim.models.ldamodel.LdaModel.load('Chapter06/gensim/
lda_gensim.model')

3.	 Create the PreparedData object that will be displayed:

lda_prepared = pyLDAvis.gensim.prepare(lda, corpus, 

                                       dictionary)

4.	 Show the topic model in your browser. Press Ctrl + C on the command line to stop 
the server from running:

pyLDAvis.show(lda_prepared)
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This will create the following visualization:

Figure 8.9 – LDA model visualization

5.	 Save the visualization as html:

pyLDAvis.save_html(lda_prepared, 'Chapter08/lda.html')

How it works…
In step 1, we load the gensim and pyLDAvis packages. In step 2, we load the model 
objects that we created in Chapter 6, Topic Modeling, when we created the LDA model: 
the dictionary, the corpus, and the model itself. In step 3, we use pyLDAvis to create a 
PreparedData object that we will later render as html.
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In step 4, we show the visualization. This starts up a server and opens the browser to show 
the visualization. You will see the topics and the words that are important for each topic. 
To select a particular topic, hover over it with the mouse. Topic 1 is politics, topic 2 
is business, topic 3 is sports, topic 4 is entertainment, and topic 5 is tech. You 
will see the most important words for each topic change while hovering over them. As 
expected, politics and business are closely related, even intertwined, and the rest of the 
topics are separate from each other.

In step 5, we save the visualization as html.

See also
Using pyLDAvis, it is also possible to visualize models created using sklearn. See the 
package documentation for more information: https://github.com/bmabey/
pyLDAvis.

https://github.com/bmabey/pyLDAvis
https://github.com/bmabey/pyLDAvis
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