

Python Data Analysis
Third Edition

Perform data collection, data processing, wrangling,
visualization, and model building using Python

Avinash Navlani
Armando Fandango
Ivan Idris

BIRMINGHAM - MUMBAI

Python Data Analysis
Third Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Group Product Manager: Kunal Parikh
Publishing Product Manager: Ali Abidi
Content Development Editor: Joseph Sunil
Senior Editor: Roshan Kumar
Technical Editor: Sonam Pandey
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Roshan Kawale

First published: October 2014
Second edition: March 2017
Third Edition: February 2021

Production reference: 1070121

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-524-8

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Avinash Navlani has over 8 years of experience working in data science and AI. Currently,
he is working as a senior data scientist, improving products and services for customers by
using advanced analytics, deploying big data analytical tools, creating and maintaining
models, and onboarding compelling new datasets. Previously, he was a university lecturer,
where he trained and educated people in data science subjects such as Python for analytics,
data mining, machine learning, database management, and NoSQL. Avinash has been
involved in research activities in data science and has been a keynote speaker at many
conferences in India.

Armando Fandango creates AI-empowered products by leveraging his expertise in deep
learning, machine learning, distributed computing, and computational methods and has
provided thought leadership roles as the chief data scientist and director at start-ups and
large enterprises. He has advised high-tech AI-based start-ups. Armando has authored
books such as Python Data Analysis - Second Edition and Mastering TensorFlow, Packt
Publishing. He has also published research in international journals and conferences.

Ivan Idris has an MSc in experimental physics. His graduation thesis had a strong
emphasis on applied computer science. After graduating, he worked for several companies
as a Java developer, data warehouse developer, and QA analyst. His main professional
interests are business intelligence, big data, and cloud computing. Ivan Idris enjoys writing
clean, testable code and interesting technical articles. Ivan Idris is the author of NumPy 1.5
Beginner's Guide and NumPy Cookbook by Packt Publishing. You can find more information
and a blog with a few NumPy examples at ivanidris.net.

About the reviewers
Greg Walters has been involved with computers and computer programming since 1972.
He is well versed in Visual Basic, Visual Basic .NET, Python, and SQL and is an
accomplished user of MySQL, SQLite, Microsoft SQL Server, Oracle, C++, Delphi,
Modula-2, Pascal, C, 80x86 Assembler, COBOL, and Fortran. He is a programming trainer
and has trained numerous people on many pieces of computer software, including MySQL,
Open Database Connectivity, Quattro Pro, Corel Draw!, Paradox, Microsoft Word, Excel,
DOS, Windows 3.11, Windows for Workgroups, Windows 95, Windows NT, Windows
2000, Windows XP, and Linux. He is semi-retired and has written over 100 articles for Full
Circle Magazine. He is also a musician and loves to cook. He is open to working as a
freelancer on various projects.

Alistair McMaster is currently employed as a Software Engineer and Quantitative
Strategist at a major financial services firm. He graduated from the University of
Cambridge in 2016 with a B.A. (Hons) in Natural Sciences specializing in Astrophysics. His
broader career interests include applications of data science to relationship networks and
supporting social causes.

Alistair is an active contributor to pandas and a strong advocate of open-source software. In
his spare time, he enjoys distance running, cycling, rock climbing, and walks with his
family and friends on weekends.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Foundation for Data Analysis
Chapter 1: Getting Started with Python Libraries 7

Understanding data analysis 8
The standard process of data analysis 9
The KDD process 10
SEMMA 11
CRISP-DM 12
Comparing data analysis and data science 14

The roles of data analysts and data scientists 14
The skillsets of data analysts and data scientists 15
Installing Python 3 17

Python installation and setup on Windows 17
Python installation and setup on Linux 18
Python installation and setup on Mac OS X with a GUI installer 18
Python installation and setup on Mac OS X with brew 18

Software used in this book 19
Using IPython as a shell 20

Reading manual pages 23
Where to find help and references to Python data analysis libraries 24

Using JupyterLab 24
Using Jupyter Notebooks 26
Advanced features of Jupyter Notebooks 27

Keyboard shortcuts 28
Installing other kernels 29
Running shell commands 30
Extensions for Notebook 30

Summary 36

Chapter 2: NumPy and pandas 37
Technical requirements 38
Understanding NumPy arrays 38

Array features 41
Selecting array elements 42

NumPy array numerical data types 43
dtype objects 45
Data type character codes 46

Table of Contents

[ii]

dtype constructors 47
dtype attributes 47

Manipulating array shapes 48
The stacking of NumPy arrays 50
Partitioning NumPy arrays 53
Changing the data type of NumPy arrays 55
Creating NumPy views and copies 56
Slicing NumPy arrays 58
Boolean and fancy indexing 60
Broadcasting arrays 61
Creating pandas DataFrames 63
Understanding pandas Series 65
Reading and querying the Quandl data 68
Describing pandas DataFrames 72
Grouping and joining pandas DataFrame 75
Working with missing values 79
Creating pivot tables 81
Dealing with dates 83
Summary 85
References 85

Chapter 3: Statistics 86
Technical requirements 87
Understanding attributes and their types 87

Types of attributes 87
Discrete and continuous attributes 89

Measuring central tendency 89
Mean 89
Mode 90
Median 91

Measuring dispersion 91
Skewness and kurtosis 95
Understanding relationships using covariance and correlation
coefficients 96

Pearson's correlation coefficient 97
Spearman's rank correlation coefficient 98
Kendall's rank correlation coefficient 98

Central limit theorem 98
Collecting samples 100
Performing parametric tests 101
Performing non-parametric tests 107
Summary 113

Chapter 4: Linear Algebra 114

Table of Contents

[iii]

Technical requirements 115
Fitting to polynomials with NumPy 115
Determinant 117
Finding the rank of a matrix 117
Matrix inverse using NumPy 118
Solving linear equations using NumPy 119
Decomposing a matrix using SVD 120
Eigenvectors and Eigenvalues using NumPy 122
Generating random numbers 123
Binomial distribution 124
Normal distribution 126
Testing normality of data using SciPy 127
Creating a masked array using the numpy.ma subpackage 131
Summary 133

Section 2: Exploratory Data Analysis and Data Cleaning

Chapter 5: Data Visualization 135
Technical requirements 135
Visualization using Matplotlib 136

Accessories for charts 137
Scatter plot 139
Line plot 140
Pie plot 142
Bar plot 143
Histogram plot 144
Bubble plot 146
pandas plotting 148

Advanced visualization using the Seaborn package 150
lm plots 151
Bar plots 154
Distribution plots 155
Box plots 156
KDE plots 157
Violin plots 158
Count plots 159
Joint plots 161
Heatmaps 162
Pair plots 164

Interactive visualization with Bokeh 166
Plotting a simple graph 166
Glyphs 168
Layouts 169

Table of Contents

[iv]

Nested layout using row and column layouts 173
Multiple plots 175
Interactions 177

Hide click policy 177
Mute click policy 179

Annotations 180
Hover tool 183
Widgets 184

Tab panel 185
Slider 186

Summary 189

Chapter 6: Retrieving, Processing, and Storing Data 190
Technical requirements 191
Reading and writing CSV files with NumPy 191
Reading and writing CSV files with pandas 192
Reading and writing data from Excel 194
Reading and writing data from JSON 195
Reading and writing data from HDF5 196
Reading and writing data from HTML tables 197
Reading and writing data from Parquet 198
Reading and writing data from a pickle pandas object 199
Lightweight access with sqllite3 200
Reading and writing data from MySQL 201

Inserting a whole DataFrame into the database 204
Reading and writing data from MongoDB 205
Reading and writing data from Cassandra 206
Reading and writing data from Redis 207
PonyORM 208
Summary 209

Chapter 7: Cleaning Messy Data 210
Technical requirements 211
Exploring data 211
Filtering data to weed out the noise 214

Column-wise filtration 215
Row-wise filtration 217

Handling missing values 220
Dropping missing values 221

Filling in a missing value 221
Handling outliers 223
Feature encoding techniques 226

One-hot encoding 226
Label encoding 228
Ordinal encoder 229

Table of Contents

[v]

Feature scaling 230
Methods for feature scaling 231

Feature transformation 234
Feature splitting 235
Summary 236

Chapter 8: Signal Processing and Time Series 237
Technical requirements 238
The statsmodels modules 238
Moving averages 239
Window functions 242
Defining cointegration 244
STL decomposition 246
Autocorrelation 248
Autoregressive models 250
ARMA models 254
Generating periodic signals 257
Fourier analysis 259
Spectral analysis filtering 262
Summary 264

Section 3: Deep Dive into Machine Learning
Chapter 9: Supervised Learning - Regression Analysis 266

Technical requirements 267
Linear regression 267

Multiple linear regression 269
Understanding multicollinearity 269

Removing multicollinearity 270
Dummy variables 272
Developing a linear regression model 274
Evaluating regression model performance 276

R-squared 276
MSE 277
MAE 277
RMSE 278

Fitting polynomial regression 279
Regression models for classification 282
Logistic regression 282

Characteristics of the logistic regression model 284
Types of logistic regression algorithms 285
Advantages and disadvantages of logistic regression 285

Implementing logistic regression using scikit-learn 286
Summary 288

Table of Contents

[vi]

Chapter 10: Supervised Learning - Classification Techniques 289
Technical requirements 290
Classification 290
Naive Bayes classification 292
Decision tree classification 296
KNN classification 299
SVM classification 302

Terminology 302
Splitting training and testing sets 305

Holdout 305
K-fold cross-validation 306
Bootstrap method 306

Evaluating the classification model performance 307
Confusion matrix 307
Accuracy 310
Precision 311
Recall 311
F-measure 311

ROC curve and AUC 312
Summary 315

Chapter 11: Unsupervised Learning - PCA and Clustering 316
Technical requirements 317
Unsupervised learning 317
Reducing the dimensionality of data 318

PCA 319
Performing PCA 320

Clustering 323
Finding the number of clusters 324

The elbow method 325
The silhouette method 327

Partitioning data using k-means clustering 329
Hierarchical clustering 332
DBSCAN clustering 336
Spectral clustering 338
Evaluating clustering performance 341

Internal performance evaluation 342
The Davies-Bouldin index 342
The silhouette coefficient 342

External performance evaluation 343
The Rand score 343
The Jaccard score 343
F-Measure or F1-score 344
The Fowlkes-Mallows score 344

Summary 347

Table of Contents

[vii]

Section 4: NLP, Image Analytics, and Parallel
Computing
Chapter 12: Analyzing Textual Data 349

Technical requirements 350
Installing NLTK and SpaCy 350
Text normalization 351
Tokenization 352
Removing stopwords 356
Stemming and lemmatization 358
POS tagging 360
Recognizing entities 361
Dependency parsing 362
Creating a word cloud 363
Bag of Words 365
TF-IDF 366
Sentiment analysis using text classification 367

Classification using BoW 368
Classification using TF-IDF 373

Text similarity 376
Jaccard similarity 377
Cosine similarity 378

Summary 379

Chapter 13: Analyzing Image Data 380
Technical requirements 381
Installing OpenCV 381
Understanding image data 382

Binary images 382
Grayscale images 383
Color images 383

Color models 384
Drawing on images 387
Writing on images 392
Resizing images 393
Flipping images 395
Changing the brightness 398
Blurring an image 399
Face detection 403
Summary 407

Chapter 14: Parallel Computing Using Dask 408
Parallel computing using Dask 409
Dask data types 410

Table of Contents

[viii]

Dask Arrays 411
Dask DataFrames 412

DataFrame Indexing 413
Filter data 416
Groupby 417
Converting a pandas DataFrame into a Dask DataFrame 418
Converting a Dask DataFrame into a pandas DataFrame 418

Dask Bags 419
Creating a Dask Bag using Python iterable items 419
Creating a Dask Bag using a text file 420
Storing a Dask Bag in a text file 421
Storing a Dask Bag in a DataFrame 421

Dask Delayed 422
Preprocessing data at scale 424

Feature scaling in Dask 424
Feature encoding in Dask 426

Machine learning at scale 428
Parallel computing using scikit-learn 429
Reimplementing ML algorithms for Dask 431

Logistic regression 431
Clustering 433

Summary 435

Other Books You May Enjoy 437

Index 440

Preface
Data analysis enables you to generate value from small and big data by discovering new
patterns and trends, and Python is one of the most popular tools for analyzing a wide
variety of data. With this book, you'll get up and running with using Python for data
analysis by exploring the different phases and methodologies used in data analysis, and
you'll learn how to use modern libraries from the Python ecosystem to create efficient data
pipelines.

Starting with the essential statistical and data analysis fundamentals using Python, you'll
perform complex data analysis and modeling, data manipulation, data cleaning, and data
visualization using easy-to-follow examples. You'll then learn how to conduct time series
analysis and signal processing using ARMA models. As you advance, you'll get to grips
with smart processing and data analytics using machine learning algorithms such as
regression, classification, Principal Component Analysis (PCA), and clustering. In the
concluding chapters, you'll work on real-world examples to analyze textual and image data
using natural language processing (NLP) and image analytics techniques, respectively.
Finally, the book will demonstrate parallel computing using Dask.

By the end of this data analysis book, you'll be equipped with the skills you need to prepare
data for analysis and create meaningful data visualizations in order to forecast values from
data.

Who this book is for
This book is for data analysts, business analysts, statisticians, and data scientists looking to
learn how to use Python for data analysis. Students and academic faculties will also find
this book useful for learning and teaching Python data analysis using a hands-on approach.
A basic understanding of math and a working knowledge of Python will help you get
started with this book.

What this book covers
Chapter 1, Getting Started with Python Libraries, explains the data analyst process and the
successful installation of Python libraries and Anaconda. Also, we will discuss Jupyter
Notebook and its advanced features.

Preface

[2]

Chapter 2, NumPy and Pandas, introduces NumPy and Pandas. This chapter provides a
basic overview of NumPy arrays, Pandas DataFrames, and their associated functions.

Chapter 3, Statistics, gives a quick overview of descriptive and inferential statistics.

Chapter 4, Linear Algebra, gives a quick overview of linear algebra and its associated
NumPy and SciPy functions.

Chapter 5, Data Visualization, introduces us to the matplotlib, seaborn, Pandas plotting, and
bokeh visualization libraries.

Chapter 6, Retrieving, Processing, and Storing Data, explains how to read and write various
data formats, such as CSV, Excel, JSON, HTML, and Parquet. Also, we will discuss how to
acquire data from relational and NoSQL databases.

Chapter 7, Cleaning Messy Data, explains how to preprocess raw data and perform feature
engineering.

Chapter 8, Signal Processing and Time Series, contains time series and signal processing
examples using sales, beer production, and sunspot cycle dataset. In this chapter, we will
mostly use NumPy, SciPy, and statsmodels.

Chapter 9, Supervised Learning – Regression Analysis, explains linear regression and logistic
regression in detail with suitable examples using the scikit-learn library.

Chapter 10, Supervised Learning – Classification Techniques, explains various classification
techniques, such as naive Bayes, decision tree, K-nearest neighbors, and SVM. Also, we will
discuss model performance evaluation measures.

Chapter 11, Unsupervised Learning – PCA and Clustering, gives a detailed discussion on
dimensionality reduction and clustering techniques. Also, we will evaluate the clustering
performance.

Chapter 12, Analyzing Textual Data, gives a quick overview of text preprocessing, feature
engineering, sentiment analysis, and text similarity. This chapter mostly uses the NLTK,
SpaCy, and scikit-learn libraries.

Chapter 13, Analyzing Image Data, gives a quick overview of image processing operations
using OpenCV. Also, we will discuss face detection.

Chapter 14, Parallel Computing Using Dask, explains how to perform data preprocessing
and machine learning modeling in parallel using Dask.

Preface

[3]

To get the most out of this book
The execution of the code examples provided in this book requires the installation of
Python 3.5 or newer on Mac OS X, Linux, or Microsoft Windows. In this book, we will
frequently use SciPy, NumPy, Pandas, scikit-learn, statsmodels, matplotlib, and seaborn.
Chapter 1, Getting Started with Python Libraries, provides instructions for the installation
and advanced tips so that you can work smoothly. Also, the process of installing specific
and additional libraries is explained in the respective chapters. Installation of Bokeh is
explained in Chapter 5, Data Visualization. Similarly, the installation of NLTK and SpaCy is
explained in Chapter 12, Analyzing Textual Data.

We can also install any library or package that you want to explore using the pip
command. We need to run the following command with admin privileges:

$ pip install <library name>

We can also install it from our Jupyter Notebook with ! (exclamation mark) before the pip
command:

!pip install <library name>

To uninstall a Python library or package installed with pip, use the following command:

$ pip uninstall <library name>

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https:/ /github.
com/PacktPublishing/ Python- Data- Analysis- Third- Edition. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
https://static.packt-cdn.com/downloads/9781789955248_ColorImages.pdf.

Conventions used
In this book, you will find a number of text styles and conventions used throughout this
book. Here, we have shown some examples of these styles. Code words in the text,
database table names, folder names, filenames, file extensions, pathnames, dummy URLs,
user input, and Twitter handles are shown as follows: "The other convention
the pandas project insists on is the import pandas as pd import statement."

A block of code is set as follows:

Creating an array
import numpy as np

a = np.array([2,4,6,8,10])

print(a)

Any command-line input or output is written as follows:

$ mkdir
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://static.packt-cdn.com/downloads/9781789955248_ColorImages.pdf

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Foundation for Data

Analysis
The main objective of this section is to build fundamental data analysis skills for the
learner. These skills involve the Jupyter Notebook, and basic Python libraries such as
NumPy, Pandas, Scipy, and statsmodels. Also, this section focuses on subjective knowledge
of statistics and linear algebra to build math capabilities.

This section includes the following chapters:

Chapter 1, Getting Started with Python Libraries
Chapter 2, NumPy and pandas
Chapter 3, Statistics
Chapter 4, Linear Algebra

1
Getting Started with Python

Libraries
As you already know, Python has become one of the most popular, standard languages and
is a complete package for data science-based operations. Python offers numerous libraries,
such as NumPy, Pandas, SciPy, Scikit-Learn, Matplotlib, Seaborn, and Plotly. These
libraries provide a complete ecosystem for data analysis that is used by data analysts, data
scientists, and business analysts. Python also offers other features, such as flexibility, being
easy to learn, faster development, a large active community, and the ability to work on
complex numeric, scientific, and research applications. All these features make it the first
choice for data analysis.

In this chapter, we will focus on various data analysis processes, such as KDD, SEMMA,
and CRISP-DM. After this, we will provide a comparison between data analysis and data
science, as well as the roles and different skillsets for data analysts and data scientists.
Finally, we will shift our focus and start installing various Python libraries, IPython,
Jupyter Lab, and Jupyter Notebook. We will also look at various advanced features of
Jupyter Notebooks.

In this introductory chapter, we will cover the following topics:

Understanding data analysis
The standard process of data analysis
The KDD process
SEMMA
CRISP-DM
Comparing data analysis and data science
The skillsets of data analysts and data scientists
Installing Python 3
Software used in this book
Using IPython as a shell

Getting Started with Python Libraries Chapter 1

[8]

Using Jupyter Lab
Using Jupyter Notebooks
Advanced features of Jupyter Notebooks

Let's get started!

Understanding data analysis
The 21st century is the century of information. We are living in the age of information,
which means that almost every aspect of our daily life is generating data. Not only this, but
business operations, government operations, and social posts are also generating huge data.
This data is accumulating day by day due to data being continually generated from
business, government, scientific, engineering, health, social, climate, and environmental
activities. In all these domains of decision-making, we need a systematic, generalized,
effective, and flexible system for the analytical and scientific process so that we can gain
insights into the data that is being generated.

In today's smart world, data analysis offers an effective decision-making process for
business and government operations. Data analysis is the activity of inspecting, pre-
processing, exploring, describing, and visualizing the given dataset. The main objective of
the data analysis process is to discover the required information for decision-making. Data
analysis offers multiple approaches, tools, and techniques, all of which can be applied to
diverse domains such as business, social science, and fundamental science.

Let's look at some of the core fundamental data analysis libraries of the Python ecosystem:

NumPy: This is a short form of numerical Python. It is the most powerful
scientific library available in Python for handling multidimensional arrays,
matrices, and methods in order to compute mathematics efficiently.
SciPy: This is also a powerful scientific computing library for performing
scientific, mathematical, and engineering operations.
Pandas: This is a data exploration and manipulation library that offers tabular
data structures such as DataFrames and various methods for data analysis and
manipulation.
Scikit-learn: This stands for "Scientific Toolkit for Machine learning". It is a
machine learning library that offers a variety of supervised and unsupervised
algorithms, such as regression, classification, dimensionality reduction, cluster
analysis, and anomaly detection.

Getting Started with Python Libraries Chapter 1

[9]

Matplotlib: This is a core data visualization library and is the base library for all
other visualization libraries in Python. It offers 2D and 3D plots, graphs, charts,
and figures for data exploration. It runs on top of NumPy and SciPy.
Seaborn: This is based on Matplotlib and offers easy to draw, high-level,
interactive, and more organized plots.
Plotly: Plotly is a data visualization library. It offers high quality and interactive
graphs, such as scatter charts, line charts, bar charts, histograms, boxplots,
heatmaps, and subplots.

Installation instructions for the required libraries and software will be provided throughout
this book when they're needed. In the meantime, let's discuss various data analysis
processes, such as the standard process, KDD, SEMMA, and CRISP-DM.

The standard process of data analysis
Data analysis refers to investigating the data, finding meaningful insights from it, and
drawing conclusions. The main goal of this process is to collect, filter, clean, transform,
explore, describe, visualize, and communicate the insights from this data to discover
decision-making information. Generally, the data analysis process is comprised of the
following phases:

Collecting Data: Collect and gather data from several sources.1.
Preprocessing Data: Filter, clean, and transform the data into the required2.
format.
Analyzing and Finding Insights: Explore, describe, and visualize the data and3.
find insights and conclusions.
Insights Interpretations: Understand the insights and find the impact each4.
variable has on the system.
Storytelling: Communicate your results in the form of a story so that a layman5.
can understand them.

Getting Started with Python Libraries Chapter 1

[10]

We can summarize these steps of the data analysis process via the following process
diagram:

In this section, we have covered the standard data analysis process, which emphasizes
finding interpretable insights and converting them into a user story. In the next section, we
will discuss the KDD process.

The KDD process
The KDD acronym stands for knowledge discovery from data or Knowledge Discovery in
Databases. Many people treat KDD as one synonym for data mining. Data mining is
referred to as the knowledge discovery process of interesting patterns. The main objective
of KDD is to extract or discover hidden interesting patterns from large databases, data
warehouses, and other web and information repositories. The KDD process has seven
major phases:

Data Cleaning: In this first phase, data is preprocessed. Here, noise is removed,1.
missing values are handled, and outliers are detected.
Data Integration: In this phase, data from different sources is combined and2.
integrated together using data migration and ETL tools.
Data Selection: In this phase, relevant data for the analysis task is recollected.3.

Getting Started with Python Libraries Chapter 1

[11]

Data Transformation: In this phase, data is engineered in the required4.
appropriate form for analysis.
Data Mining: In this phase, data mining techniques are used to discover useful5.
and unknown patterns.
Pattern Evaluation: In this phase, the extracted patterns are evaluated.6.
Knowledge Presentation: After pattern evaluation, the extracted knowledge7.
needs to be visualized and presented to business people for decision-making
purposes.

The complete KDD process is shown in the following diagram:

KDD is an iterative process for enhancing data quality, integration, and transformation to
get a more improved system. Now, let's discuss the SEMMA process.

SEMMA
The SEMMA acronym's full form is Sample, Explore, Modify, Model, and Assess. This
sequential data mining process is developed by SAS. The SEMMA process has five major
phases:

Sample: In this phase, we identify different databases and merge them. After1.
this, we select the data sample that's sufficient for the modeling process.
Explore: In this phase, we understand the data, discover the relationships among2.
variables, visualize the data, and get initial interpretations.
Modify: In this phase, data is prepared for modeling. This phase involves3.
dealing with missing values, detecting outliers, transforming features, and
creating new additional features.
Model: In this phase, the main concern is selecting and applying different4.
modeling techniques, such as linear and logistic regression, backpropagation
networks, KNN, support vector machines, decision trees, and Random Forest.
Assess: In this last phase, the predictive models that have been developed are5.
evaluated using performance evaluation measures.

Getting Started with Python Libraries Chapter 1

[12]

The following diagram shows this process:

The preceding diagram shows the steps involved in the SEMMA process. SEMMA
emphasizes model building and assessment. Now, let's discuss the CRISP-DM process.

CRISP-DM
CRISP-DM's full form is CRoss-InduStry Process for Data Mining. CRISP-DM is a well-
defined, well-structured, and well-proven process for machine learning, data mining, and
business intelligence projects. It is a robust, flexible, cyclic, useful, and practical approach to
solving business problems. The process discovers hidden valuable information or patterns
from several databases. The CRISP-DM process has six major phases:

Business Understanding: In this first phase, the main objective is to understand1.
the business scenario and requirements for designing an analytical goal and
initial action plan.
Data Understanding: In this phase, the main objective is to understand the data2.
and its collection process, perform data quality checks, and gain initial insights.
Data Preparation: In this phase, the main objective is to prepare analytics-ready3.
data. This involves handling missing values, outlier detection and handling,
normalizing data, and feature engineering. This phase is the most time-
consuming for data scientists/analysts.
Modeling: This is the most exciting phase of the whole process since this is4.
where you design the model for prediction purposes. First, the analyst needs to
decide on the modeling technique and develop models based on data.
Evaluation: Once the model has been developed, it's time to assess and test the5.
model's performance on validation and test data using model evaluation
measures such as MSE, RMSE, R-Square for regression and accuracy, precision,
recall, and the F1-measure.
Deployment: In this final phase, the model that was chosen in the previous step6.
will be deployed to the production environment. This requires a team effort from
data scientists, software developers, DevOps experts, and business professionals.

Getting Started with Python Libraries Chapter 1

[13]

The following diagram shows the full cycle of the CRISP-DM process:

The standard process focuses on discovering insights and making interpretations in the
form of a story, while KDD focuses on data-driven pattern discovery and visualizing this.
SEMMA majorly focuses on model building tasks, while CRISP-DM focuses on business
understanding and deployment. Now that we know about some of the processes
surrounding data analysis, let's compare data analysis and data science to find out how
they are related, as well as what makes them different from one other.

Getting Started with Python Libraries Chapter 1

[14]

Comparing data analysis and data science
Data analysis is the process in which data is explored in order to discover patterns that help
us make business decisions. It is one of the subdomains of data science. Data analysis
methods and tools are widely utilized in several business domains by business analysts,
data scientists, and researchers. Its main objective is to improve productivity and
profits. Data analysis extracts and queries data from different sources, performs exploratory
data analysis, visualizes data, prepares reports, and presents it to the business decision-
making authorities.

On the other hand, data science is an interdisciplinary area that uses a scientific approach to
extract insights from structured and unstructured data. Data science is a union of all terms,
including data analytics, data mining, machine learning, and other related domains. Data
science is not only limited to exploratory data analysis and is used for developing models
and prediction algorithms such as stock price, weather, disease, fraud forecasts, and
recommendations such as movie, book, and music recommendations.

The roles of data analysts and data scientists
A data analyst collects, filters, processes, and applies the required statistical concepts to
capture patterns, trends, and insights from data and prepare reports for making decisions.
The main objective of the data analyst is to help companies solve business problems using
discovered patterns and trends. The data analyst also assesses the quality of the data and
handles the issues concerning data acquisition. A data analyst should be proficient in
writing SQL queries, finding patterns, using visualization tools, and using reporting tools
Microsoft Power BI, IBM Cognos, Tableau, QlikView, Oracle BI, and more.

Data scientists are more technical and mathematical than data analysts. Data scientists are
research- and academic-oriented, whereas data analysts are more application-oriented.
Data scientists are expected to predict a future event, whereas data analysts extract
significant insights out of data. Data scientists develop their own questions, while data
analysts find answers to given questions. Finally, data scientists focus on what is going to
happen, whereas data analysts focus on what has happened so far. We can summarize
these two roles using the following table:

Features Data Scientist Data Analyst

Background Predict future events and scenarios
based on data

Discover meaningful insights from
the data.

Role Formulate questions that can profit the
business

Solve the business questions to
make decisions.

Getting Started with Python Libraries Chapter 1

[15]

Type of data Work on both structured and
unstructured data Only work on structured data

Programming Advanced programming Basic programming

Skillset
Knowledge of statistics, machine
learning algorithms, NLP, and deep
learning

Knowledge of statistics, SQL, and
data visualization

Tools R, Python, SAS, Hadoop, Spark,
TensorFlow, and Keras

Excel, SQL, R, Tableau, and
QlikView

Now that we know what defines a data analyst and data scientist, as well as how they are
different from each other, let's have a look at the various skills that you would need to
become one of them.

The skillsets of data analysts and data
scientists
A data analyst is someone who discovers insights from data and creates value out of it. This
helps decision-makers understand how the business is performing. Data analysts must
acquire the following skills:

Exploratory Data Analysis (EDA): EDA is an essential skill for data analysts. It
helps with inspecting data to discover patterns, test hypotheses, and assure
assumptions.
Relational Database: Knowledge of at least one of the relational database tools,
such as MySQL or Postgre, is mandatory. SQL is a must for working on relational
databases.
Visualization and BI Tools: A picture speaks more than words. Visuals have
more of an impact on humans and visuals are a clear and easy option for
representing the insights. Visualization and BI tools such as Tableau, QlikView,
MS Power BI, and IBM Cognos can help analysts visualize and prepare reports.
Spreadsheet: Knowledge of MS Excel, WPS, Libra, or Google Sheets is
mandatory for storing and managing data in tabular form.
Storytelling and Presentation Skills: The art of storytelling is another necessary
skill. A data analyst should be an expert in connecting data facts to an idea or an
incident and turning it into a story.

Getting Started with Python Libraries Chapter 1

[16]

On the other hand, the primary job of a data scientist is to solve problems using data. In
order to do this, they need to understand the client's requirements, their domain, their
problem space, and ensure that they get exactly what they really want. The tasks that data
scientists undertake vary from company to company. Some companies use data analysts
and offer the title of data scientist just to glorify the job designation. Some combine data
analyst tasks with data engineers and offer data scientists designation; others assign them
to machine learning-intensive tasks with data visualizations.

The task of the data scientist varies, depending on the company. Some employ data
scientists as well-known data analysts and combine their responsibilities with data
engineers. Others give them the task of performing intensive data visualization on
machines.

A data scientist has to be a jack of all trades and wear multiple hats, including those of a
data analyst, statistician, mathematician, programmer, ML, or NLP engineer. Most people
are not skilled enough or experts in all these trades. Also, getting skilled enough requires
lots of effort and patience. This is why data science cannot be learned in 3 or 6 months.
Learning data science is a journey. A data scientist should have a wide variety of skills,
such as the following:

Mathematics and Statistics: Most machine learning algorithms are based on
mathematics and statistics. Knowledge of mathematics helps data scientists
develop custom solutions.
Databases: Knowledge of SQL allows data scientists to interact with the database
and collect the data for prediction and recommendation.
Machine Learning: Knowledge of supervised machine learning techniques such
as regression analysis, classification techniques, and unsupervised machine
learning techniques such as cluster analysis, outlier detection, and
dimensionality reduction.
Programming Skills: Knowledge of programming helps data scientists automate
their suggested solutions. Knowledge of Python and R is recommended.
Storytelling and Presentation skills: Communicating the results in the form of
storytelling via PowerPoint presentations.
Big Data Technology: Knowledge of big data platforms such as Hadoop and
Spark helps data scientists develop big data solutions for large-scale enterprises.
Deep Learning Tools: Deep learning tools such as Tensorflow and Keras are
utilized in NLP and image analytics.

Getting Started with Python Libraries Chapter 1

[17]

Apart from these skillsets, knowledge of web scraping packages/tools for extracting data
from diverse sources and web application frameworks such as Flask or Django for
designing prototype solutions is also obtained. It is all about the skillset for data science
professionals.

Now that we have covered the basics of data analysis and data science, let's dive into the
basic setup needed to get started with data analysis. In the next section, we'll learn how to
install Python.

Installing Python 3
The installer file for installing Python 3 can easily be downloaded from the official website
(https://www.python. org/ downloads/) for Windows, Linux, and Mac 32-bit or 64-bit
systems. The installer can be installed by double-clicking on it. This installer also has an
IDE named "IDLE" that can be used for development. We will dive deeper into each of the
operating systems in the next few sections.

Python installation and setup on Windows
This book is based on the latest Python 3 version. All the code that will be used in this book
is written in Python 3, so we need to install Python 3 before we can start coding. Python is
an open source, distributed, and freely available language. It is also licensed for commercial
use. There are many implementations of Python, including commercial implementations
and distributions. In this book, we will focus on the standard Python implementation,
which is guaranteed to be compatible with NumPy.

You can download Python 3.9.x from the Python official website: https:/
/www. python. org/ downloads/ . Here, you can find installation files for
Windows, Linux, Mac OS X, and other OS platforms. You can find
instructions for installing and using Python for various operating systems
at https:/ / docs. python. org/3.7/ using/ index. html.

You need to have Python 3.5.x or above installed on your system. The sunset date for
Python 2.7 was moved from 2015 to 2020, but at the time of writing, Python 2.7 will not be
supported and maintained by the Python community.

At the time of writing this book, we had Python 3.8.3 installed as a prerequisite on our
Windows 10 virtual machine: https:/ /www. python. org/ ftp/ python/ 3. 8.3/ python- 3.8. 3.
exe.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://docs.python.org/3.7/using/index.html
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe
https://www.python.org/ftp/python/3.8.3/python-3.8.3.exe

Getting Started with Python Libraries Chapter 1

[18]

Python installation and setup on Linux
Installing Python on Linux is significantly easier compared to the other OSes. To install the
foundational libraries, run the following command-line instruction:

$ pip3 install numpy scipy pandas matplotlib jupyter notebook

It may be essential to run the sudo command before the preceding command if you don't
have sufficient rights on the machine that you are using.

Python installation and setup on Mac OS X with a
GUI installer
Python can be installed via the installation file from the Python official website. The
installer file can be downloaded from its official web page (https:/ /www. python. org/
downloads/mac-osx/) for macOS. This installer also has an IDE named "IDLE" that can be
used for development.

Python installation and setup on Mac OS X with
brew
For Mac systems, you can use the Homebrew package manager to install Python. It will
make it easier to install the required applications for developers, researchers, and scientists.
The brew install command is used to install another application, such as installing
python3 or any other Python package, such as NLTK or SpaCy.

To install the most recent version of Python, you need to execute the following command in
a Terminal:

$ brew install python3

https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/

Getting Started with Python Libraries Chapter 1

[19]

After installation, you can confirm the version of Python you've installed by running the
following command:

$ python3 --version
Python 3.7.4

You can also open the Python Shell from the command line by running the following
command:

$ python3

Now that we know how to install Python on our system, let's dive into the actual tools that
we will need to start data analysis.

Software used in this book
Let's discuss the software that will be used in this book. In this book, we are going to use
Anaconda IDE to analyze data. Before installing it, let's understand what Anaconda is.

A Python program can easily run on any system that has it installed. We can write a
program on a Notepad and run it on the command prompt. We can also write and run
Python programs on different IDEs, such as Jupyter Notebook, Spyder, and PyCharm.
Anaconda is a freely available open source package containing various data manipulation
IDEs and several packages such as NumPy, SciPy, Pandas, Scikit-learn, and so on for data
analysis purposes. Anaconda can easily be downloaded and installed, as follows:

Download the installer from https:/ /www. anaconda. com/distribution/ .1.
Select the operating system that you are using.2.
From the Python 3.7 section, select the 32-bit or 64-bit installer option and start3.
downloading.
Run the installer by double-clicking on it.4.
Once the installation is complete, check your program in the Start menu or5.
search for Anaconda in the Start menu.

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/

Getting Started with Python Libraries Chapter 1

[20]

Anaconda also has an Anaconda Navigator, which is a desktop GUI application that can be
used to launch applications such as Jupyter Notebook, Spyder, Rstudio, Visual Studio
Code, and JupyterLab:

Now, let's look at IPython, a shell-based computing environment for data analysis.

Using IPython as a shell
IPython is an interactive shell that is equivalent to an interactive computing environment
such as Matlab or Mathematica. This interactive shell was created for the purpose of quick
experimentation. It is a very useful tool for data professionals that are performing small
experiments.

IPython shell offers the following features:

Easy access to system commands.
Easy editing of inline commands.
Tab completion, which helps you find commands and speed up your task.

Getting Started with Python Libraries Chapter 1

[21]

Command History, which helps you view previously used commands.
Easily execute external Python scripts.
Easy debugging with the Python debugger.

Now, let's execute some commands on IPython. To start IPython, use the following
command on the command line:

$ ipython3

When you run the preceding command, the following window will appear:

Now, let's understand and execute some commands that the IPython shell provides:

History Commands: The history command used to check the list of previously
used commands. The following screenshot shows how to use the history
command in IPython:

Getting Started with Python Libraries Chapter 1

[22]

System Commands: We can also run system commands from IPython using the
exclamation sign (!). Here, the input command after the exclamation sign is
considered a system command. For example, !date will display the current date
of the system, while !pwd will show the current working directory:

Writing Function: We can write functions as we would write them in any IDE,
such as Jupyter Notebook, Python IDLE, PyCharm, or Spyder. Let's look at an
example of a function:

Quit Ipython Shell: You can exit or quit the IPython shell using quit() or
exit() or CTRL + D:

 You can also quit the IPython shell using the quit() command:

Getting Started with Python Libraries Chapter 1

[23]

In this subsection, we have looked at a few basic commands we can use on the IPython
shell. Now, let's discuss how we can use the help command in the IPython shell.

Reading manual pages
In the IPython shell, we can open a list of available commands using the help command. It
is not compulsory to write the full name of the function. You can just type in a few initial
characters and then press the tab button, and it will find the word you are looking for. For
example, let's use the arrange() function. There are two ways we can find help about
functions:

Use the help function: Let's type help and write a few initial characters of the
function. After that, press the tab key, select a function using the arrow keys, and
press the Enter key:

Use a question mark: We can also use a question mark after the name of the
function. The following screenshot shows an example of this:

In this subsection, we looked at the help and question mark support that's provided for
module functions. We can also get help from library documentation. Let's discuss how to
get documentation for data analysis in Python libraries.

Getting Started with Python Libraries Chapter 1

[24]

Where to find help and references to Python data
analysis libraries
The following table lists the documentation websites for the Python data analysis libraries
we have discussed in this chapter:

Packages/Software Description
NumPy https:/ /numpy. org/doc/

SciPy https:/ /docs. scipy. org/ doc/

Pandas https:/ /pandas. pydata. org/ docs/

Matplotlib https:/ /matplotlib. org/ 3. 2.1/contents. html

Seaborn https:/ /seaborn. pydata. org/

Scikit-learn https:/ /scikit- learn. org/ stable/

Anaconda https:/ /www. anaconda. com/ distribution/

You can also find answers to various Python programming questions related to NumPy,
SciPy, Pandas, Matplotlib, Seaborn, and Scikit-learn on the StackOverflow platform. You
can also raise issues related to the aforementioned libraries on GitHub.

Using JupyterLab
JupyterLab is a next-generation web-based user interface. It offers a combination of data
analysis and machine learning product development tools such as a Text Editor,
Notebooks, Code Consoles, and Terminals. It's a flexible and powerful tool that should be a
part of any data analyst's toolkit:

https://numpy.org/doc/
https://numpy.org/doc/
https://numpy.org/doc/
https://numpy.org/doc/
https://numpy.org/doc/
https://numpy.org/doc/
https://numpy.org/doc/
https://numpy.org/doc/
https://numpy.org/doc/
https://numpy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/

Getting Started with Python Libraries Chapter 1

[25]

You can install JupyterLab using conda, pip, or pipenv.

To install using conda, we can use the following command:

$ conda install -c conda-forge jupyterlab

To install using pip, we can use the following command:

$ pip install jupyterlab

To install using pipenv, we can use the following command:

$ pipenv install jupyterlab

In this section, we have learned how to install Jupyter Lab. In the next section, we will focus
on Jupyter Notebooks.

Getting Started with Python Libraries Chapter 1

[26]

Using Jupyter Notebooks
Jupyter Notebook is a web application that's used to create data analysis notebooks that
contain code, text, figures, links, mathematical equations, and charts. Recently, the
community introduced the next generation of web-based Jupyter Notebooks, called
JupyterLab. You can take a look at these notebook collections at the following links:

https:// github. com/ jupyter/ jupyter/ wiki/ A- gallery- of- interesting-
Jupyter- Notebooks

https:// nbviewer. jupyter. org/

Often, these notebooks are used as educational tools or to demonstrate Python software.
We can import or export notebooks either from plain Python code or from the special
notebook format. The notebooks can be run locally, or we can make them available online
by running a dedicated notebook server. Certain cloud computing solutions, such as
Wakari, PiCloud, and Google Colaboratory, allow you to run notebooks in the cloud.

"Jupyter" is an acronym that stands for Julia, Python, and R. Initially, the developers
implemented it for these three languages, but now, it is used for various other languages,
including C, C++, Scala, Perl, Go, PySpark, and Haskell:

https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/

Getting Started with Python Libraries Chapter 1

[27]

Jupyter Notebook offers the following features:

It has the ability to edit code in the browser with proper indentation.
It has the ability to execute code from the browser.
It has the ability to display output in the browser.
It can render graphs, images, and videos in cell output.
It has the ability to export code in PDF, HTML, Python file, and LaTex format.

We can also use both Python 2 and 3 in Jupyter Notebooks by running the following
commands in the Anaconda prompt:

For Python 2.7
conda create -n py27 python=2.7 ipykernel

For Python 3.5
conda create -n py35 python=3.5 ipykernel

Now that we now about various tools and libraries and also have installed Python, let's
move on to some of the advanced features in the most commonly used tool, Jupyter
Notebooks.

Advanced features of Jupyter Notebooks
Jupyter Notebook offers various advanced features, such as keyboard shortcuts, installing
other kernels, executing shell commands, and using various extensions for faster data
analysis operations. Let's get started and understand these features one by one.

Getting Started with Python Libraries Chapter 1

[28]

Keyboard shortcuts
Users can find all the shortcut commands that can be used inside Jupyter Notebook by
selecting the Keyboard Shortcuts option in the Help menu or by using the Cmd + Shift +
P shortcut key. This will make the quick select bar appear, which contains all the shortcuts
commands, along with a brief description of each. It is easy to use the bar and users can use
it when they forget something:

Getting Started with Python Libraries Chapter 1

[29]

Installing other kernels
Jupyter has the ability to run multiple kernels for different languages. It is very easy to set
up an environment for a particular language in Anaconda. For example, an R kernel can be
set by using the following command in Anaconda:

$ conda install -c r r-essentials

The R kernel should then appear, as shown in the following screenshot:

Getting Started with Python Libraries Chapter 1

[30]

Running shell commands
In Jupyter Notebook, users can run shell commands for Unix and Windows. The shell
offers a communication interface for talking with the computer. The user needs to put ! (an
exclamation sign) before running any command:

Extensions for Notebook
Notebook extensions (or nbextensions) add more features compared to basic Jupyter
Notebooks. These extensions improve the user's experience and interface. Users can easily
select any of the extensions by selecting the NBextensions tab.

To install nbextension in Jupyter Notebook using conda, run the following command:

conda install -c conda-forge jupyter_nbextensions_configurator

To install nbextension in Jupyter Notebook using pip, run the following command:

pip install jupyter_contrib_nbextensions && jupyter contrib nbextension
install

Getting Started with Python Libraries Chapter 1

[31]

If you get permission errors on macOS, just run the following command:

pip install jupyter_contrib_nbextensions && jupyter contrib nbextension
install --user

All the configurable nbextensions will be shown in a different tab, as shown in the
following screenshot:

Now, let's explore a few useful features of Notebook extensions:

Hinterland: This provides an autocompleting menu for each keypress that's
made in cells and behaves like PyCharm:

Getting Started with Python Libraries Chapter 1

[32]

Table of Contents: This extension shows all the headings in the sidebar or
navigation menu. It is resizable, draggable, collapsible, and dockable:

Execute Time: This extension shows when the cells were executed and how
much time it will take to complete the cell code:

Spellchecker: Spellchecker checks and verifies the spellings that are written in
each cell and highlights any incorrectly written words.

Getting Started with Python Libraries Chapter 1

[33]

Variable Selector: This extension keeps track of the user's workspace. It shows
the names of all the variables that the user created, along with their type, size,
shape, and value.

Slideshow: Notebook results can be communicated via Slideshow. This is a great
tool for telling stories. Users can easily convert Jupyter Notebooks into slides
without the use of PowerPoint. As shown in the following screenshot, Slideshow
can be started using the Slideshow option in the cell toolbar of the view menu:

Getting Started with Python Libraries Chapter 1

[34]

Jupyter Notebook also allows you to show or hide any cell in Slideshow. After adding the
Slideshow option to the cell toolbar of the view menu, you can use a Slide Type drop-
down list in each cell and select various options, as shown in the following screenshot:

Embedding PDF documents: Jupyter Notebook users can easily add PDF
documents. The following syntax needs to be run for PDf documents:

from IPython.display import IFrame
IFrame('https://arxiv.org/pdf/1811.02141.pdf', width=700,
height=400)

This results in the following output:

Getting Started with Python Libraries Chapter 1

[35]

Embedding Youtube Videos: Jupyter Notebook users can easily add YouTube
videos. The following syntax needs to be run for adding YouTube videos:

from IPython.display import YouTubeVideo
YouTubeVideo('ukzFI9rgwfU', width=700, height=400)

Getting Started with Python Libraries Chapter 1

[36]

This results in the following output:

With that, you now understand data analysis, the process that's undertaken by it, and the
roles that it entails. You have also learned how to install Python and use Jupyter Lab and
Jupyter Notebook. You will learn more about various Python libraries and data analysis
techniques in the upcoming chapters.

Summary
In this chapter, we have discussed various data analysis processes, including KDD,
SEMMA, and CRISP-DM. We then discussed the roles and skillsets of data analysts and
data scientists. After that, we installed NumPy, SciPy, Pandas, Matplotlib, IPython, Jupyter
Notebook, Anaconda, and Jupyter Lab, all of which we will be using in this book. Instead of
installing all those modules, you can install Anaconda or Jupyter Lab, which has NumPy,
Pandas, SciPy, and Scikit-learn built-in.

Then, we got a vector addition program working and learned how NumPy offers superior
performance compared to the other libraries. We explored the available documentation and
online resources. In addition, we discussed Jupyter Lab, Jupyter Notebook, and their
features.

In the next chapter, Chapter 2, NumPy and Pandas, we will take a look at NumPy and
Pandas under the hood and explore some of the fundamental concepts surrounding arrays
and DataFrames.

2
NumPy and pandas

Now that we have understood data analysis, its process, and its installation on different
platforms, it's time to learn about NumPy arrays and pandas DataFrames. This chapter
acquaints you with the fundamentals of NumPy arrays and pandas DataFrames. By the
end of this chapter, you will have a basic understanding of NumPy arrays, and pandas
DataFrames and their related functions.

pandas is named after panel data (an econometric term) and Python data analysis and is a
popular open-source Python library. We shall learn about basic pandas functionalities, data
structures, and operations in this chapter. The official pandas documentation insists on
naming the project pandas in all lowercase letters. The other convention the pandas project
insists on is the import pandas as pd import statement.

In this chapter, our focus will be on the following topics:

Understanding NumPy arrays
NumPy array numerical data types
Manipulating array shapes
The stacking of NumPy arrays
Partitioning NumPy arrays
Changing the data type of NumPy arrays
Creating NumPy views and copies
Slicing NumPy arrays
Boolean and fancy indexing
Broadcasting arrays
Creating pandas DataFrames
Understanding pandas Series
Reading and querying the Quandl data
Describing pandas DataFrames

NumPy and pandas Chapter 2

[38]

Grouping and joining pandas DataFrames
Working with missing values
Creating pivot tables
Dealing with dates

Technical requirements
This chapter has the following technical requirements:

You can find the code and the dataset at the following GitHub link: https:/ /
github.com/ PacktPublishing/ Python- Data- Analysis- Third- Edition/ tree/
master/Chapter02.
All the code blocks are available at ch2.ipynb.
This chapter uses four CSV files (WHO_first9cols.csv, dest.csv,
purchase.csv, and tips.csv) for practice purposes.
In this chapter, we will use the NumPy, pandas, and Quandl Python libraries.

Understanding NumPy arrays
NumPy can be installed on a PC using pip or brew but if the user is using the Jupyter
Notebook, then there is no need to install it. NumPy is already installed in the Jupyter
Notebook. I will suggest to you to please use the Jupyter Notebook as your IDE because we
are executing all the code in the Jupyter Notebook. We have already shown in Chapter 1,
Getting Started with Python Libraries, how to install Anaconda, which is a complete suite for
data analysis. NumPy arrays are a series of homogenous items. Homogenous means the
array will have all the elements of the same data type. Let's create an array using NumPy.
You can create an array using the array() function with a list of items. Users can also fix
the data type of an array. Possible data types are bool, int, float, long, double, and
long double.

Let's see how to create an empty array:

Creating an array
import numpy as np
a = np.array([2,4,6,8,10])
print(a)

Output:
[2 4 6 8 10]

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02

NumPy and pandas Chapter 2

[39]

Another way to create a NumPy array is with arange(). It creates an evenly spaced
NumPy array. Three values – start, stop, and step – can be passed to the
arange(start,[stop],step) function. The start is the initial value of the range, the stop
is the last value of the range, and the step is the increment in that range. The stop parameter
is compulsory. In the following example, we have used 1 as the start and 11 as the stop
parameter. The arange(1,11) function will return 1 to 10 values with one step because the
step is, by default, 1. The arrange() function generates a value that is one less than the
stop parameter value. Let's understand this through the following example:

Creating an array using arange()
import numpy as np
a = np.arange(1,11)
print(a)

Output:
[1 2 3 4 5 6 7 8 9 10]

Apart from the array() and arange() functions, there are other options, such as
zeros(), ones(), full(), eye(), and random(), which can also be used to create a
NumPy array, as these functions are initial placeholders. Here is a detailed description of
each function:

zeros(): The zeros()function creates an array for a given dimension with all
zeroes.
ones(): The ones() function creates an array for a given dimension with all
ones.
fulls(): The full() function generates an array with constant values.
eyes(): The eye() function creates an identity matrix.
random(): The random() function creates an array with any given dimension.

Let's understand these functions through the following example:

import numpy as np

Create an array of all zeros
p = np.zeros((3,3))
print(p)

Create an array of all ones
q = np.ones((2,2))
print(q)

Create a constant array
r = np.full((2,2), 4)

NumPy and pandas Chapter 2

[40]

print(r)

Create a 2x2 identity matrix
s = np.eye(4)
print(s)

Create an array filled with random values
t = np.random.random((3,3))
print(t)

This results in the following output:

[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]

[[1. 1.]
 [1. 1.]]

[[4 4]
 [4 4]]

[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]
 [0. 0. 0. 1.]]

[[0.16681892 0.00398631 0.61954178]
 [0.52461924 0.30234715 0.58848138]
 [0.75172385 0.17752708 0.12665832]]

In the preceding code, we have seen some built-in functions for creating arrays with all-
zero values, all-one values, and all-constant values. After that, we have created the identity
matrix using the eye() function and a random matrix using the random.random()
function. Let's see some other array features in the next section.

NumPy and pandas Chapter 2

[41]

Array features
In general, NumPy arrays are a homogeneous kind of data structure that has the same
types of items. The main benefit of an array is its certainty of storage size because of its
same type of items. A Python list uses a loop to iterate the elements and perform operations
on them. Another benefit of NumPy arrays is to offer vectorized operations instead of
iterating each item and performing operations on it. NumPy arrays are indexed just like a
Python list and start from 0. NumPy uses an optimized C API for the fast processing of the
array operations.

Let's make an array using the arange() function, as we did in the previous section, and
let's check its data type:

Creating an array using arange()
import numpy as np
a = np.arange(1,11)

print(type(a))
print(a.dtype)

Output:
<class 'numpy.ndarray'>
int64

When you use type(), it returns numpy.ndarray. This means that the type() function
returns the type of the container. When you use dtype(), it will return int64, since it is
the type of the elements. You may also get the output as int32 if you are using 32-bit
Python. Both cases use integers (32- and 64-bit). One-dimensional NumPy arrays are also
known as vectors.

Let's find out the shape of the vector that we produced a few minutes ago:

print(a.shape)
Output: (10,)

As you can see, the vector has 10 elements with values ranging from 1 to 10. The shape
property of the array is a tuple; in this instance, it is a tuple of one element, which holds the
length in each dimension.

NumPy and pandas Chapter 2

[42]

Selecting array elements
In this section, we will see how to select the elements of the array. Let's see an example of a
2*2 matrix:

a = np.array([[5,6],[7,8]])
print(a)

Output:
[[5 6]
 [7 8]]

In the preceding example, the matrix is created using the array() function with the input
list of lists.

Selecting array elements is pretty simple. We just need to specify the index of the matrix as
a[m,n]. Here, m is the row index and n is the column index of the matrix. We will now
select each item of the matrix one by one as shown in the following code:

print(a[0,0])
Output: 5

print(a[0,1])
Output: 6

printa([1,0])
Output: 7

printa([1,1])
Output: 8

In the preceding code sample, we have tried to access each element of an array using array
indices. You can also understand this by the diagram mentioned here:

NumPy and pandas Chapter 2

[43]

In the preceding diagram, we can see it has four blocks and each block represents the
element of an array. The values written in each block show its indices.

In this section, we have understood the fundamentals of arrays. Now, let's jump to arrays of
numerical data types.

NumPy array numerical data types
Python offers three types of numerical data types: integer type, float type, and complex
type. In practice, we need more data types for scientific computing operations with
precision, range, and size. NumPy offers a bulk of data types with mathematical types and
numbers. Let's see the following table of NumPy numerical types:

Data Type Details

bool
This is a Boolean type that stores a bit and takes True or False
values.

inti Platform integers can be either int32 or int64.
int8 Byte store values range from -128 to 127.
int16 This stores integers ranging from -32768 to 32767.
int32 This stores integers ranging from -2 ** 31 to 2 ** 31 -1.
int64 This stores integers ranging from -2 ** 63 to 2 ** 63 -1.
uint8 This stores unsigned integers ranging from 0 to 255.
uint16 This stores unsigned integers ranging from 0 to 65535.
uint32 This stores unsigned integers ranging from 0 to 2 ** 32 – 1.
uint64 This stores unsigned integers ranging from 0 to 2 ** 64 – 1.

float16
Half-precision float; sign bit with 5 bits exponent and 10 bits
mantissa.

float32
Single-precision float; sign bit with 8 bits exponent and 23 bits
mantissa.

float64 or float Double-precision float; sign bit with 11 bits exponent and 52 bits
mantissa.

complex64
Complex number stores two 32-bit floats: real and imaginary
number.

complex128 or
complex

Complex number stores two 64-bit floats: real and imaginary
number.

NumPy and pandas Chapter 2

[44]

For each data type, there exists a matching conversion function:

print(np.float64(21))
Output: 21.0

print(np.int8(21.0))
Output: 42

print(np.bool(21))
Output: True

print(np.bool(0))
Output: False

print(np.bool(21.0))
Output: True

print(np.float(True))
Output: 1.0

print(np.float(False))
Output: 0.0

Many functions have a data type argument, which is frequently optional:

arr=np.arange(1,11, dtype= np.float32)
print(arr)

Output:
[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]

It is important to be aware that you are not allowed to change a complex number into an
integer. If you try to convert complex data types into integers, then you will get
TypeError. Let's see the following example:

np.int(42.0 + 1.j)

This results in the following output:

NumPy and pandas Chapter 2

[45]

You will get the same error if you try the conversion of a complex number into a floating
point.

But you can convert float values into complex numbers by setting individual pieces. You
can also pull out the pieces using the real and imag attributes. Let's see that using the
following example:

c= complex(42, 1)
print(c)

Output: (42+1j)

print(c.real,c.imag)

Output: 42.0 1.0

In the preceding example, you have defined a complex number using the complex()
method. Also, you have extracted the real and imaginary values using the real and imag
attributes. Let's now jump to dtype objects.

dtype objects
We have seen in earlier sections of the chapter that dtype tells us the type of individual
elements of an array. NumPy array elements have the same data type, which means that all
elements have the same dtype. dtype objects are instances of the numpy.dtype class:

Creating an array
import numpy as np
a = np.array([2,4,6,8,10])

print(a.dtype)
Output: 'int64'

dtype objects also tell us the size of the data type in bytes using the itemsize property:

print(a.dtype.itemsize)
Output:8

NumPy and pandas Chapter 2

[46]

Data type character codes
Character codes are included for backward compatibility with Numeric. Numeric is the
predecessor of NumPy. Its use is not recommended, but the code is supplied here because
it pops up in various locations. You should use the dtype object instead. The following
table lists several different data types and the character codes related to them:

Type Character Code
Integer i
Unsigned integer u
Single-precision float f
Double-precision float d
Bool b
Complex D
String S
Unicode U
Void V

Let's take a look at the following code to produce an array of single-precision floats:

Create numpy array using arange() function
var1=np.arange(1,11, dtype='f')
print(var1)

Output:
[1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]

Likewise, the following code creates an array of complex numbers:

print(np.arange(1,6, dtype='D'))

Output:
[1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 5.+0.j]

NumPy and pandas Chapter 2

[47]

dtype constructors
There are lots of ways to create data types using constructors. Constructors are used to
instantiate or assign a value to an object. In this section, we will understand data type
creation with the help of a floating-point data example:

To try out a general Python float, use the following:

print(np.dtype(float))
Output: float64

To try out a single-precision float with a character code, use the following:

print(np.dtype('f'))
Output: float32

To try out a double-precision float with a character code, use the following:

print(np.dtype('d'))
Output: float64

To try out a dtype constructor with a two-character code, use the following:

print(np.dtype('f8'))
Output: float64

Here, the first character stands for the type and a second character is a number specifying
the number of bytes in the type, for example, 2, 4, or 8.

dtype attributes
The dtype class offers several useful attributes. For example, we can get information about
the character code of a data type using the dtype attribute:

Create numpy array
var2=np.array([1,2,3],dtype='float64')

print(var2.dtype.char)

Output: 'd'

The type attribute corresponds to the type of object of the array elements:

print(var2.dtype.type)

Output: <class 'numpy.float64'>

NumPy and pandas Chapter 2

[48]

Now that we know all about the various data types used in NumPy arrays, let's start
manipulating them in the next section.

Manipulating array shapes
In this section, our main focus is on array manipulation. Let's learn some new Python
functions of NumPy, such as reshape(), flatten(), ravel(), transpose(), and
resize():

reshape() will change the shape of the array:

Create an array
arr = np.arange(12)
print(arr)

Output: [0 1 2 3 4 5 6 7 8 9 10 11]

Reshape the array dimension
new_arr=arr.reshape(4,3)

print(new_arr)

Output: [[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]]

Reshape the array dimension
new_arr2=arr.reshape(3,4)

print(new_arr2)

Output:
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

Another operation that can be applied to arrays is flatten(). flatten()
transforms an n-dimensional array into a one-dimensional array:

Create an array
arr=np.arange(1,10).reshape(3,3)
print(arr)

Output:

NumPy and pandas Chapter 2

[49]

[[1 2 3]
 [4 5 6]
 [7 8 9]]

print(arr.flatten())

Output:
[1 2 3 4 5 6 7 8 9]

The ravel() function is similar to the flatten() function. It also transforms an
n-dimensional array into a one-dimensional array. The main difference is that
flatten() returns the actual array while ravel() returns the reference of the
original array. The ravel() function is faster than the flatten() function
because it does not occupy extra memory:

print(arr.ravel())

Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9]

The transpose() function is a linear algebraic function that transposes the
given two-dimensional matrix. The word transpose means converting rows into
columns and columns into rows:

Transpose the matrix
print(arr.transpose())

Output:
[[1 4 7]
 [2 5 8]
 [3 6 9]]

The resize() function changes the size of the NumPy array. It is similar to
reshape() but it changes the shape of the original array:

resize the matrix
arr.resize(1,9)
print(arr)

Output:[[1 2 3 4 5 6 7 8 9]]

In all the code in this section, we have seen built-in functions such as reshape(),
flatten(), ravel(), transpose(), and resize() for manipulating size. Now, it's time
to learn about the stacking of NumPy arrays.

NumPy and pandas Chapter 2

[50]

The stacking of NumPy arrays
NumPy offers a stack of arrays. Stacking means joining the same dimensional arrays along
with a new axis. Stacking can be done horizontally, vertically, column-wise, row-wise, or
depth-wise:

Horizontal stacking: In horizontal stacking, the same dimensional arrays are
joined along with a horizontal axis using the hstack() and concatenate()
functions. Let's see the following example:

arr1 = np.arange(1,10).reshape(3,3)
print(arr1)

Output:
[[1 2 3]
 [4 5 6]
 [7 8 9]]

We have created one 3*3 array; it's time to create another 3*3 array:

arr2 = 2*arr1
print(arr2)

Output:
[[2 4 6]
 [8 10 12]
 [14 16 18]]

After creating two arrays, we will perform horizontal stacking:

Horizontal Stacking
arr3=np.hstack((arr1, arr2))
print(arr3)

Output:
[[1 2 3 2 4 6]
 [4 5 6 8 10 12]
 [7 8 9 14 16 18]]

In the preceding code, two arrays are stacked horizontally along the x axis. The
concatenate() function can also be used to generate the horizontal stacking
with axis parameter value 1:

Horizontal stacking using concatenate() function
arr4=np.concatenate((arr1, arr2), axis=1)
print(arr4)

NumPy and pandas Chapter 2

[51]

Output:
[[1 2 3 2 4 6]
 [4 5 6 8 10 12]
 [7 8 9 14 16 18]]

In the preceding code, two arrays have been stacked horizontally using the
concatenate() function.

Vertical stacking: In vertical stacking, the same dimensional arrays are joined
along with a vertical axis using the vstack() and concatenate() functions.
Let's see the following example:

Vertical stacking
arr5=np.vstack((arr1, arr2))
print(arr5)

Output:
[[1 2 3]
 [4 5 6]
 [7 8 9]
 [2 4 6]
 [8 10 12]
 [14 16 18]]

In the preceding code, two arrays are stacked vertically along the y axis. The
concatenate() function can also be used to generate vertical stacking with axis
parameter value 0:

arr6=np.concatenate((arr1, arr2), axis=0)
print(arr6)

Output:
[[1 2 3]
 [4 5 6]
 [7 8 9]
 [2 4 6]
 [8 10 12]
 [14 16 18]]

In the preceding code, two arrays are stacked vertically using the
concatenate() function.

NumPy and pandas Chapter 2

[52]

Depth stacking: In depth stacking, the same dimensional arrays are joined along
with a third axis (depth) using the dstack() function. Let's see the following
example:

arr7=np.dstack((arr1, arr2))
print(arr7)

Output:
[[[1 2]
 [2 4]
 [3 6]]

 [[4 8]
 [5 10]
 [6 12]]

 [[7 14]
 [8 16]
 [9 18]]]

In the preceding code, two arrays are stacked in depth along with a third axis
(depth).

Column stacking: Column stacking stacks multiple sequence one-dimensional
arrays as columns into a single two-dimensional array. Let's see an example of
column stacking:

Create 1-D array
arr1 = np.arange(4,7)
print(arr1)

Output: [4, 5, 6]

In the preceding code block, we have created a one-dimensional NumPy array.

Create 1-D array
arr2 = 2 * arr1
print(arr2)

Output: [8, 10, 12]

In the preceding code block, we have created another one-dimensional NumPy
array.

Create column stack
arr_col_stack=np.column_stack((arr1,arr2))
print(arr_col_stack)

NumPy and pandas Chapter 2

[53]

Output:
[[4 8]
 [5 10]
 [6 12]]

In the preceding code, we have created two one-dimensional arrays and stacked
them column-wise.

Row stacking: Row stacking stacks multiple sequence one-dimensional arrays as
rows into a single two-dimensional arrays. Let's see an example of row stacking:

Create row stack
arr_row_stack = np.row_stack((arr1,arr2))
print(arr_row_stack)

Output:
[[4 5 6]
 [8 10 12]]

In the preceding code, two one-dimensional arrays are stacked row-wise.

Let's now see how to partition a NumPy array into multiple sub-arrays.

Partitioning NumPy arrays
NumPy arrays can be partitioned into multiple sub-arrays. NumPy offers three types of
split functionality: vertical, horizontal, and depth-wise. All the split functions by default
split into the same size arrays but we can also specify the split location. Let's look at each of
the functions in detail:

Horizontal splitting: In horizontal split, the given array is divided into N equal
sub-arrays along the horizontal axis using the hsplit() function. Let's see how
to split an array:

Create an array
arr=np.arange(1,10).reshape(3,3)
print(arr)

Output:
[[1 2 3]
 [4 5 6]
 [7 8 9]]

Peroform horizontal splitting
arr_hor_split=np.hsplit(arr, 3)

NumPy and pandas Chapter 2

[54]

print(arr_hor_split)

Output:
[array([[1],
 [4],
 [7]]), array([[2],
 [5],
 [8]]), array([[3],
 [6],
 [9]])]

In the preceding code, the hsplit(arr, 3) function divides the array into three
sub-arrays. Each part is a column of the original array.

Vertical splitting: In vertical split, the given array is divided into N equal sub-
arrays along the vertical axis using the vsplit() and split() functions. The
split function with axis=0 performs the same operation as the vsplit()
function:

vertical split
arr_ver_split=np.vsplit(arr, 3)

print(arr_ver_split)

Output:
[array([[1, 2, 3]]), array([[4, 5, 6]]), array([[7, 8, 9]])]

In the preceding code, the vsplit(arr, 3) function divides the array into three
sub-arrays. Each part is a row of the original array. Let's see another function,
split(), which can be utilized as a vertical and horizontal split, in the following
example:

split with axis=0
arr_split=np.split(arr,3,axis=0)

print(arr_split)

Output:
[array([[1, 2, 3]]), array([[4, 5, 6]]), array([[7, 8, 9]])]

split with axis=1
arr_split = np.split(arr,3,axis=1)

Output:
[array([[1],
 [4],
 [7]]), array([[2],

NumPy and pandas Chapter 2

[55]

 [5],
 [8]]), array([[3],
 [6],
 [9]])]

In the preceding code, the split(arr, 3) function divides the array into three
sub-arrays. Each part is a row of the original array. The split output is similar to
the vsplit() function when axis=0 and the split output is similar to the
hsplit() function when axis=1.

Changing the data type of NumPy arrays
As we have seen in the preceding sections, NumPy supports multiple data types, such as
int, float, and complex numbers. The astype() function converts the data type of the
array. Let's see an example of the astype() function:

Create an array
arr=np.arange(1,10).reshape(3,3)
print("Integer Array:",arr)

Change datatype of array
arr=arr.astype(float)

print array
print("Float Array:", arr)

Check new data type of array
print("Changed Datatype:", arr.dtype)

In the preceding code, we have created one NumPy array and checked its data type using
the dtype attribute.

Let's change the data type of an array using the astype() function:

Change datatype of array
arr=arr.astype(float)

Check new data type of array
print(arr.dtype)

Output:
float64

NumPy and pandas Chapter 2

[56]

In the preceding code, we have changed the column data type from integer to float using
astype().

The tolist() function converts a NumPy array into a Python list. Let's see an example of
the tolist() function:

Create an array
arr=np.arange(1,10)

Convert NumPy array to Python List
list1=arr.tolist()
print(list1)

Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9]

In the preceding code, we have converted an array into a Python list object using the
tolist() function.

Creating NumPy views and copies
Some of the Python functions return either a copy or a view of the input array. A Python
copy stores the array in another location while a view uses the same memory content. This
means copies are separate objects and treated as a deep copy in Python. Views are the
original base array and are treated as a shallow copy. Here are some properties of copies
and views:

Modifications in a view affect the original data whereas modifications in a copy
do not affect the original array.
Views use the concept of shared memory.
Copies require extra space compared to views.
Copies are slower than views.

Let's understand the concept of copy and view using the following example:

Create NumPy Array
arr = np.arange(1,5).reshape(2,2)
print(arr)

Output:
[[1, 2],
[3, 4]]

NumPy and pandas Chapter 2

[57]

After creating a NumPy array, let's perform object copy operations:

Create no copy only assignment
arr_no_copy=arr

Create Deep Copy
arr_copy=arr.copy()

Create shallow copy using View
arr_view=arr.view()

print("Original Array: ",id(arr))
print("Assignment: ",id(arr_no_copy))
print("Deep Copy: ",id(arr_copy))
print("Shallow Copy(View): ",id(arr_view))

Output:
Original Array: 140426327484256
Assignment: 140426327484256
Deep Copy: 140426327483856
Shallow Copy(View): 140426327484496

In the preceding example, you can see the original array and the assigned array have the
same object ID, meaning both are pointing to the same object. Copies and views both have
different object IDs; both will have different objects, but view objects will reference the
same original array and a copy will have a different replica of the object.

Let's continue with this example and update the values of the original array and check its
impact on views and copies:

Update the values of original array
arr[1]=[99,89]

Check values of array view
print("View Array:\n", arr_view)

Check values of array copy
print("Copied Array:\n", arr_copy)

Output:
View Array:
 [[1 2]
 [99 89]]
Copied Array:
 [[1 2]
 [3 4]]

NumPy and pandas Chapter 2

[58]

In the preceding example, we can conclude from the results that the view is the original
array. The values changed when we updated the original array and the copy is a separate
object because its values remain the same.

Slicing NumPy arrays
Slicing in NumPy is similar to Python lists. Indexing prefers to select a single value while
slicing is used to select multiple values from an array.

NumPy arrays also support negative indexing and slicing. Here, the negative sign indicates
the opposite direction and indexing starts from the right-hand side with a starting value of
-1:

Let's check this out using the following code:

Create NumPy Array
arr = np.arange(0,10)
print(arr)

Output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In the slice operation, we use the colon symbol to select the collection of values. Slicing
takes three values: start, stop, and step:

print(arr[3:6])
Output: [3, 4, 5]

This can be represented as follows:

NumPy and pandas Chapter 2

[59]

In the preceding example, we have used 3 as the starting index and 6 as the stopping index:

print(arr[3:])
Output: array([3, 4, 5, 6, 7, 8, 9])

In the preceding example, only the starting index is given. 3 is the starting index. This slice
operation will select the values from the starting index to the end of the array:

print(arr[-3:])
Output: array([7, 8, 9])

This can be represented as follows:

In the preceding example, the slice operation will select values from the third value from
the right side of the array to the end of the array:

print(arr[2:7:2])
Output: array([2, 4,6])

This can be represented as follows:

In the preceding example, the start, stop, and step index are 2, 7, and 2, respectively. Here,
the slice operation selects values from the second index to the sixth (one less than the stop
value) index with an increment of 2 in the index value. So, the output will be 2, 4, and 6.

NumPy and pandas Chapter 2

[60]

Boolean and fancy indexing
Indexing techniques help us to select and filter elements from a NumPy array. In this
section, we will focus on Boolean and fancy indexing. Boolean indexing uses a Boolean
expression in the place of indexes (in square brackets) to filter the NumPy array. This
indexing returns elements that have a true value for the Boolean expression:

Create NumPy Array
arr = np.arange(21,41,2)
print("Orignial Array:\n",arr)

Boolean Indexing
print("After Boolean Condition:",arr[arr>30])

Output:
Orignial Array:
 [21 23 25 27 29 31 33 35 37 39]
After Boolean Condition: [31 33 35 37 39]

Fancy indexing is a special type of indexing in which elements of an array are selected by
an array of indices. This means we pass the array of indices in brackets. Fancy indexing also
supports multi-dimensional arrays. This will help us to easily select and modify a complex
multi-dimensional set of arrays. Let's see an example as follows to understand fancy
indexing:

Create NumPy Array
arr = np.arange(1,21).reshape(5,4)
print("Orignial Array:\n",arr)

Selecting 2nd and 3rd row
indices = [1,2]
print("Selected 1st and 2nd Row:\n", arr[indices])

Selecting 3nd and 4th row
indices = [2,3]
print("Selected 3rd and 4th Row:\n", arr[indices])

Output:

Orignial Array:
 [[1 2 3 4]
 [5 6 7 8]
 [9 10 11 12]
 [13 14 15 16]
 [17 18 19 20]]
Selected 1st and 2nd Row:
 [[5 6 7 8]

NumPy and pandas Chapter 2

[61]

 [9 10 11 12]]
Selected 3rd and 4th Row:
 [[9 10 11 12]
 [13 14 15 16]]

In the preceding code, we have created a 5*4 matrix and selected the rows using integer
indices. You can also visualize or internalize this output from the following diagram:

We can see the code for this as follows:

Create row and column indices
row = np.array([1, 2])
col = np.array([2, 3])

print("Selected Sub-Array:", arr[row, col])

Output:
Selected Sub-Array: [7 12]

The preceding example results in the first value, [1,2], and second value, [2,3], as the
row and column index. The array will select the value at the first and second index values,
which are 7 and 12.

Broadcasting arrays
Python lists do not support direct vectorizing arithmetic operations. NumPy offers a faster-
vectorized array operation compared to Python list loop-based operations. Here, all the
looping operations are performed in C instead of Python, which makes it faster.
Broadcasting functionality checks a set of rules for applying binary functions, such as
addition, subtraction, and multiplication, on different shapes of an array.

NumPy and pandas Chapter 2

[62]

Let's see an example of broadcasting:

Create NumPy Array
arr1 = np.arange(1,5).reshape(2,2)
print(arr1)

Output:
[[1 2]
 [3 4]]

Create another NumPy Array
arr2 = np.arange(5,9).reshape(2,2)
print(arr2)

Output:
[[5 6]
 [7 8]]

Add two matrices
print(arr1+arr2)

Output:
[[6 8]
 [10 12]]

In all three preceding examples, we can see the addition of two arrays of the same size. This
concept is known as broadcasting:

Multiply two matrices
print(arr1*arr2)

Output:
[[5 12]
 [21 32]]

In the preceding example, two matrices were multiplied. Let's perform addition and
multiplication with a scalar value:

Add a scaler value
print(arr1 + 3)

Output:
[[4 5]
 [6 7]]

Multiply with a scalar value
print(arr1 * 3)

NumPy and pandas Chapter 2

[63]

Output:
[[3 6]
 [9 12]]

In the preceding two examples, the matrix is added and multiplied by a scalar value.

Creating pandas DataFrames
The pandas library is designed to work with a panel or tabular data. pandas is a fast,
highly efficient, and productive tool for manipulating and analyzing string, numeric,
datetime, and time-series data. pandas provides data structures such as DataFrames and
Series. A pandas DataFrame is a tabular, two-dimensional labeled and indexed data
structure with a grid of rows and columns. Its columns are heterogeneous types. It has the
capability to work with different types of objects, carry out grouping and joining
operations, handle missing values, create pivot tables, and deal with dates. A pandas
DataFrame can be created in multiple ways. Let's create an empty DataFrame:

Import pandas library
import pandas as pd

Create empty DataFrame
df = pd.DataFrame()

Header of dataframe.
df.head()

Output:
_

In the preceding example, we have created an empty DataFrame. Let's create a DataFrame
using a dictionary of the list:

Create dictionary of list
data = {'Name': ['Vijay', 'Sundar', 'Satyam', 'Indira'], 'Age': [23, 45,
46, 52]}

Create the pandas DataFrame
df = pd.DataFrame(data)

Header of dataframe.
df.head()

Output:
 Name Age
0 Vijay 23

NumPy and pandas Chapter 2

[64]

1 Sundar 45
2 Satyam 46
3 Indira 52

In the preceding code, we have used a dictionary of the list to create a DataFrame. Here, the
keys of the dictionary are equivalent to columns, and values are represented as a list that is
equivalent to the rows of the DataFrame. Let's create a DataFrame using the list of
dictionaries:

Pandas DataFrame by lists of dicts.
Initialise data to lists.
data =[{'Name': 'Vijay', 'Age': 23},{'Name': 'Sundar', 'Age': 25},{'Name':
'Shankar', 'Age': 26}]

Creates DataFrame.
df = pd.DataFrame(data,columns=['Name','Age'])

Print dataframe header
df.head()

In the preceding code, the DataFrame is created using a list of dictionaries. In the list, each
item is a dictionary. Each key is the name of the column and the value is the cell value for a
row. Let's create a DataFrame using a list of tuples:

Creating DataFrame using list of tuples.
data = [('Vijay', 23),('Sundar', 45), ('Satyam', 46), ('Indira',52)]

Create dataframe
df = pd.DataFrame(data, columns=['Name','Age'])

Print dataframe header
df.head()

Output:
 Name Age
0 Vijay 23
1 Sundar 25
2 Shankar 26

NumPy and pandas Chapter 2

[65]

In the preceding code, the DataFrame is created using a list of tuples. In the list, each item is
a tuple and each tuple is equivalent to the row of columns.

Understanding pandas Series
pandas Series is a one-dimensional sequential data structure that is able to handle any type
of data, such as string, numeric, datetime, Python lists, and dictionaries with labels and
indexes. Series is one of the columns of a DataFrame. We can create a Series using a Python
dictionary, NumPy array, and scalar value. We will also see the pandas Series features and
properties in the latter part of the section. Let's create some Python Series:

Using a Python dictionary: Create a dictionary object and pass it to the Series
object. Let's see the following example:

Creating Pandas Series using Dictionary
dict1 = {0 : 'Ajay', 1 : 'Jay', 2 : 'Vijay'}

Create Pandas Series
series = pd.Series(dict1)

Show series
series

Output:
0 Ajay
1 Jay
2 Vijay
dtype: object

Using a NumPy array: Create a NumPy array object and pass it to the Series
object. Let's see the following example:

#Load Pandas and NumPy libraries
import pandas as pd
import numpy as np

Create NumPy array
arr = np.array([51,65,48,59, 68])

Create Pandas Series
series = pd.Series(arr)
series

Output:

NumPy and pandas Chapter 2

[66]

0 51
1 65
2 48
3 59
4 68
dtype: int64

Using a single scalar value: To create a pandas Series with a scalar value, pass
the scalar value and index list to a Series object:

load Pandas and NumPy
import pandas as pd
import numpy as np

Create Pandas Series
series = pd.Series(10, index=[0, 1, 2, 3, 4, 5])
series

Output:
0 10
1 10
2 10
3 10
4 10
5 10
dtype: int64

Let's explore some features of pandas Series:

We can also create a series by selecting a column, such as country, which
happens to be the first column in the datafile. Then, show the type of the object
currently in the local scope:

Import pandas
import pandas as pd

Load data using read_csv()
df = pd.read_csv("WHO_first9cols.csv")

Show initial 5 records
df.head()

NumPy and pandas Chapter 2

[67]

This results in the following output:

In the preceding code, we have read the WHO_first9cols.csv file using the
read_csv() function. You can download this file from the following GitHub
location:https:/ /github. com/ PacktPublishing/ Python- Data- Analysis- Third-
Edition/ tree/ master/ Chapter02. In the output, you can see the top five records
in the WHO_first9cols dataset using the head() function:

Select a series
country_series=df['Country']

check datatype of series
type(country_series)

Output:
pandas.core.series.Series

The pandas Series data structure shares some of the common attributes of
DataFrames and also has a name attribute. Explore these properties as follows:

Show the shape of DataFrame
print("Shape:", df.shape)

Output:
Shape: (202, 9)

Let's check the column list of a DataFrame:

Check the column list of DataFrame
print("List of Columns:", df.columns)

Output:List of Columns: Index(['Country', 'CountryID', 'Continent',
'Adolescent fertility rate (%)',
 'Adult literacy rate (%)',
 'Gross national income per capita (PPP international $)',
 'Net primary school enrolment ratio female (%)',
 'Net primary school enrolment ratio male (%)',

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter02

NumPy and pandas Chapter 2

[68]

 'Population (in thousands) total'],
 dtype='object')

Let's check the data types of DataFrame columns:

Show the datatypes of columns
print("Data types:", df.dtypes)

Output:
Data types: Country
object
 CountryID
int64
 Continent
int64
 Adolescent fertility rate (%)
float64
 Adult literacy rate (%)
float64
 Gross national income per capita (PPP international $)
float64
 Net primary school enrolment ratio female (%)
float64
 Net primary school enrolment ratio male (%)
float64
 Population (in thousands) total
float64
 dtype: object

Let's see the slicing of a pandas Series:3.

Pandas Series Slicing
country_series[-5:]

Output:
197 Vietnam
198 West Bank and Gaza
199 Yemen
200 Zambia
201 Zimbabwe
Name: Country, dtype: object

Now that we know how to use pandas Series, let's move on to using Quandl to work on
databases.

NumPy and pandas Chapter 2

[69]

Reading and querying the Quandl data
In the last section, we saw pandas DataFrames that have a tabular structure similar to
relational databases. They offer similar query operations on DataFrames. In this section, we
will focus on Quandl. Quandl is a Canada-based company that offers commercial and
alternative financial data for investment data analyst. Quandl understands the need for
investment and financial quantitative analysts. It provides data using API, R, Python, or
Excel.

In this section, we will retrieve the Sunspot dataset from Quandl. We can use either an API
or download the data manually in CSV format.

Let's first install the Quandl package using pip:

$ pip3 install Quandl

If you want to install the API, you can do so by downloading installers from https:/ / pypi.
python.org/pypi/ Quandl or by running the preceding command.

Using the API is free, but is limited to 50 API calls per day. If you require
more API calls, you will have to request an authentication key. The code
in this tutorial does not use a key. It should be simple to change the code
to either use a key or read a downloaded CSV file. If you have difficulties,
refer to the Where to find help and references section in Chapter 1, Getting
Started with Python Libraries, or search through the Python docs at https:/
/docs. python. org/ 2/.

Let's take a look at how to query data in a pandas DataFrame:

As a first step, we obviously have to download the data. After importing the 1.
Quandl API, get the data as follows:

import quandl
sunspots = quandl.get("SIDC/SUNSPOTS_A")

The head() and tail() methods have a purpose similar to that of the Unix2.
commands with the same name. Select the first n and last n records of a
DataFrame, where n is an integer parameter:

sunspots.head()

https://pypi.python.org/pypi/Quandl
https://pypi.python.org/pypi/Quandl
https://pypi.python.org/pypi/Quandl
https://pypi.python.org/pypi/Quandl
https://pypi.python.org/pypi/Quandl
https://pypi.python.org/pypi/Quandl
https://pypi.python.org/pypi/Quandl
https://pypi.python.org/pypi/Quandl
https://pypi.python.org/pypi/Quandl
https://pypi.python.org/pypi/Quandl
https://pypi.python.org/pypi/Quandl
https://pypi.python.org/pypi/Quandl
https://docs.google.com/document/d/1BDrtOc3RwvX2ZzT42tRXvfrzPQ8EMJRy/edit#bookmark=id.4d34og8
https://docs.python.org/2/
https://docs.python.org/2/
https://docs.python.org/2/
https://docs.python.org/2/
https://docs.python.org/2/
https://docs.python.org/2/
https://docs.python.org/2/
https://docs.python.org/2/
https://docs.python.org/2/
https://docs.python.org/2/
https://docs.python.org/2/

NumPy and pandas Chapter 2

[70]

This results in the following output:

Let's check out the tail function as follows:

sunspots.tail()

This results in the following output:

The head() and tail() methods give us the first and last five rows of the
Sunspot data, respectively.

Filtering columns: pandas offers the ability to select columns. Let's select 3.
columns in a pandas DataFrame:

Select columns
sunspots_filtered=sunspots[['Yearly Mean Total Sunspot
Number','Definitive/Provisional Indicator']]

Show top 5 records
sunspots_filtered.head()

NumPy and pandas Chapter 2

[71]

This results in the following output:

Filtering rows: pandas offers the ability to select rows. Let's select rows in a4.
pandas DataFrame:

Select rows using index
sunspots["20020101": "20131231"]

This results in the following output:

NumPy and pandas Chapter 2

[72]

Boolean filtering: We can query data using Boolean conditions similar to the5.
WHERE clause condition of SQL. Let's filter the data greater than the arithmetic
mean:

Boolean Filter
sunspots[sunspots['Yearly Mean Total Sunspot Number'] >
sunspots['Yearly Mean Total Sunspot Number'].mean()]

This results in the following output:

Describing pandas DataFrames
The pandas DataFrame has a dozen statistical methods. The following table lists these
methods, along with a short description of each:

Method Description
describes This method returns a small table with descriptive statistics.
count This method returns the number of non-NaN items.

mad
This method calculates the mean absolute deviation, which is a robust measure
similar to standard deviation.

median
This method returns the median. This is equivalent to the value at the 50th

percentile.
min This method returns the minimum value.

NumPy and pandas Chapter 2

[73]

max This method returns the maximum value.
mode This method returns the mode, which is the most frequently occurring value.

std
This method returns the standard deviation, which measures dispersion. It is
the square root of the variance.

var This method returns the variance.

skew
This method returns skewness. Skewness is indicative of the distribution
symmetry.

kurt This method returns kurtosis. Kurtosis is indicative of the distribution shape.

Using the same data used in the previous section, we will demonstrate these statistical
methods:

Describe the dataset
df.describe()

This results in the following output:

The describe() method will show most of the descriptive statistical measures for all
columns:

Count number of observation
df.count()

NumPy and pandas Chapter 2

[74]

This results in the following output:

The count() method counts the number of observations in each column. It helps us to
check the missing values in the dataset. Except for the initial three columns, all the columns
have missing values. Similarly, you can compute the median, standard deviation, mean
absolute deviation, variance, skewness, and kurtosis:

Compute median of all the columns
df.median()

This results in the following output:

We can compute deviation for all columns as follows:

Compute the standard deviation of all the columns
df.std()

NumPy and pandas Chapter 2

[75]

This results in the following output:

The preceding code example is computing the standard deviation for each numeric column.

Grouping and joining pandas DataFrame
Grouping is a kind of data aggregation operation. The grouping term is taken from a
relational database. Relational database software uses the group by keyword to group
similar kinds of values in a column. We can apply aggregate functions on groups such as
mean, min, max, count, and sum. The pandas DataFrame also offers similar kinds of
capabilities. Grouping operations are based on the split-apply-combine strategy. It first
divides data into groups and applies the aggregate operation, such as mean, min, max,
count, and sum, on each group and combines results from each group:

Group By DataFrame on the basis of Continent column
df.groupby('Continent').mean()

This results in the following output:

NumPy and pandas Chapter 2

[76]

Let's now group the DataFrames based on literacy rates as well:

Group By DataFrame on the basis of continent and select adult literacy
rate(%)
df.groupby('Continent').mean()['Adult literacy rate (%)']

This results in the following output:

In the preceding example, the continent-wise average adult literacy rate in percentage was
computed. You can also group based on multiple columns by passing a list of columns to
the groupby() function.

Join is a kind of merge operation for tabular databases. The join concept is taken from the
relational database. In relational databases, tables were normalized or broken down to
reduce redundancy and inconsistency, and join is used to select the information from
multiple tables. A data analyst needs to combine data from multiple sources. pandas also
offers to join functionality to join multiple DataFrames using the merge() function.

To understand joining, we will take a taxi company use case. We are using two files:
dest.csv and tips.csv. Every time a driver drops any passenger at their destination, we
will insert a record (employee number and destination) into the dest.csv file. Whenever
drivers get a tip, we insert the record (employee number and tip amount) into the
tips.csv file. You can download both the files from the following GitHub link: https:/ /
github.com/PacktPublishing/ Python- Data- Analysis- Third- Edition/ tree/ master/
Python-Data-Analysis- Third- Edition/ Ch2:

Import pandas
import pandas as pd

Load data using read_csv()
dest = pd.read_csv("dest.csv")

Show DataFrame
dest.head()

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2

NumPy and pandas Chapter 2

[77]

This results in the following output:

In the preceding code block, we have read the dest.csv file using the read_csv()
method:

Load data using read_csv()
tips = pd.read_csv("tips.csv")

Show DataFrame
tips.head()

This results in the following output:

In the preceding code block, we have read the tips.csv file using the read_csv()
method. We will now check out the various types of joins as follows:

Inner join: Inner join is equivalent to the intersection operation of a set. It will
select only common records in both the DataFrames. To perform inner join, use
the merge() function with both the DataFrames and common attribute on the
parameter and inner value to show the parameter. The on parameter is used to
provide the common attribute based on the join will be performed and how
defines the type of join:

Join DataFrames using Inner Join
df_inner= pd.merge(dest, tips, on='EmpNr', how='inner')
df_inner.head()

NumPy and pandas Chapter 2

[78]

This results in the following output:

Full outer join: Outer join is equivalent to a union operation of the set. It merges
the right and left DataFrames. It will have all the records from both DataFrames
and fills NaNs where the match will not be found:

Join DataFrames using Outer Join
df_outer= pd.merge(dest, tips, on='EmpNr', how='outer')
df_outer.head()

This results in the following output:

Right outer join: In the right outer join, all the records from the right side of the
DataFrame will be selected. If the matched records cannot be found in the left
DataFrame, then it is filled with NaNs:

Join DataFrames using Right Outer Join
df_right= pd.merge(dest, tips, on='EmpNr', how='right')
df_right.head()

This results in the following output:

NumPy and pandas Chapter 2

[79]

Left outer join: In the left outer join, all the records from the left side of the
DataFrame will be selected. If the matched records cannot be found in the right
DataFrame, then it is filled with NaNs:

Join DataFrames using Left Outer Join
df_left= pd.merge(dest, tips, on='EmpNr', how='left')
df_left.head()

This results in the following output:

We will now move on to checking out missing values in the datasets.

Working with missing values
Most real-world datasets are messy and noisy. Due to their messiness and noise, lots of
values are either faulty or missing. pandas offers lots of built-in functions to deal with
missing values in DataFrames:

Check missing values in a DataFrame: pandas' isnull() function checks for
the existence of null values and returns True or False, where True is for null
and False is for not-null values. The sum() function will sum all the True
values and returns the count of missing values. We have tried two ways to count
the missing values; both show the same output:

Count missing values in DataFrame
pd.isnull(df).sum()

The following is the second method:

df.isnull().sum()

NumPy and pandas Chapter 2

[80]

This results in the following output:

Drop missing values: A very naive approach to deal with missing values is to
drop them for analysis purposes. pandas has the dropna() function to drop or
delete such observations from the DataFrame. Here, the inplace=True attribute
makes the changes in the original DataFrame:

Drop all the missing values
df.dropna(inplace=True)

df.info()

This results in the following output:

Here, the number of observations is reduced to 118 from 202.

Fill the missing values: Another approach is to fill the missing values with zero,
mean, median, or constant values:

Fill missing values with 0
df.fillna(0,inplace=True)

df.info()

NumPy and pandas Chapter 2

[81]

This results in the following output:

Here, we have filled the missing values with 0. This is all about handling missing
values.

In the next section, we will focus on pivot tables.

Creating pivot tables
A pivot table is a summary table. It is the most popular concept in Excel. Most data analysts
use it as a handy tool to summarize theire results. pandas offers the pivot_table()
function to summarize DataFrames. A DataFrame is summarized using an aggregate
function, such as mean, min, max, or sum. You can download the dataset from the
following GitHub link: https:/ /github. com/ PacktPublishing/ Python- Data- Analysis-
Third-Edition/tree/ master/ Python- Data- Analysis- Third- Edition/ Ch2:

Import pandas
import pandas as pd

Load data using read_csv()
purchase = pd.read_csv("purchase.csv")

Show initial 10 records
purchase.head(10)

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch2

NumPy and pandas Chapter 2

[82]

This results in the following output:

In the preceding code block, we have read the purchase.csv file using the read_csv()
method.

Now, we will summarize the dataframe using the following code:

Summarise dataframe using pivot table
pd.pivot_table(purchase,values='Number', index=['Weather',],
 columns=['Food'], aggfunc=np.sum)

This results in the following output:

In the preceding example, the purchase DataFrame is summarized. Here, index is the
Weather column, columns is the Food column, and values is the aggregated sum of the
Number column. aggfun is initialized with the np.sum parameter. It's time to learn how to
deal with dates in pandas DataFrames.

NumPy and pandas Chapter 2

[83]

Dealing with dates
Dealing with dates is messy and complicated. You can recall the Y2K bug, the upcoming
2038 problem, and time zones dealing with different problems. In time-series datasets, we
come across dates. pandas offers date ranges, resamples time-series data, and performs
date arithmetic operations.

Create a range of dates starting from January 1, 2020, lasting for 45 days, as follows:

pd.date_range('01-01-2000', periods=45, freq='D')

Output:
DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03', '2000-01-04',
 '2000-01-05', '2000-01-06', '2000-01-07', '2000-01-08',
 '2000-01-09', '2000-01-10', '2000-01-11', '2000-01-12',
 '2000-01-13', '2000-01-14', '2000-01-15', '2000-01-16',
 '2000-01-17', '2000-01-18', '2000-01-19', '2000-01-20',
 '2000-01-21', '2000-01-22', '2000-01-23', '2000-01-24',
 '2000-01-25', '2000-01-26', '2000-01-27', '2000-01-28',
 '2000-01-29', '2000-01-30', '2000-01-31', '2000-02-01',
 '2000-02-02', '2000-02-03', '2000-02-04', '2000-02-05',
 '2000-02-06', '2000-02-07', '2000-02-08', '2000-02-09',
 '2000-02-10', '2000-02-11', '2000-02-12', '2000-02-13',
 '2000-02-14'],
 dtype='datetime64[ns]', freq='D')

January has less than 45 days, so the end date falls in February, as you can check for
yourself.

date_range() freq parameters can take values such as B for business day frequency, W for
weekly frequency, H for hourly frequency, M for minute frequency, S for second frequency,
L for millisecond frequency, and U for microsecond frequency. For more details, you can
refer to the official documentation at https:/ /pandas. pydata. org/ pandas- docs/ stable/
user_guide/timeseries. html.

pandas date range: The date_range() function generates sequences of date and
time with a fixed-frequency interval:

Date range function
pd.date_range('01-01-2000', periods=45, freq='D')

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html

NumPy and pandas Chapter 2

[84]

This results in the following output:

to_datetime(): to_datetime() converts a timestamp string into datetime:

Convert argument to datetime
pd.to_datetime('1/1/1970')

Output: Timestamp('1970-01-01 00:00:00')

We can convert a timestamp string into a datetime object in the specified format:

Convert argument to datetime in specified format
pd.to_datetime(['20200101', '20200102'], format='%Y%m%d')

Output:
DatetimeIndex(['2020-01-01', '2020-01-02'], dtype='datetime64[ns]',
freq=None)

Handling an unknown format string: Unknown input format can cause value
errors. We can handle this by using an errors parameter with coerce. coerce
will set invalid strings to NaT:

Value Error
pd.to_datetime(['20200101', 'not a date'])

Output:
ValueError: ('Unknown string format:', 'not a date')

Handle value error
pd.to_datetime(['20200101', 'not a date'], errors='coerce')

Output:
DatetimeIndex(['2020-01-01', 'NaT'], dtype='datetime64[ns]',
freq=None)

NumPy and pandas Chapter 2

[85]

In the preceding example, the second date is still not valid and cannot be converted into a
datetime object. The errors parameter helped us to handle such errors by inputting the
value NaT (not a time).

Summary
In this chapter, we have explored the NumPy and pandas libraries. Both libraries help deal
with arrays and DataFrames. NumPy arrays have the capability to deal with n-dimensional
arrays. We have learned about various array properties and operations. Our main focus is
on data types, data type as an object, reshaping, stacking, splitting, slicing, and indexing.

We also focused on the pandas library for Python data analysis. We saw how pandas
mimics the relational database table functionality. It offers functionality to query,
aggregate, manipulate, and join data efficiently.

NumPy and pandas work well together as a tool and make it possible to perform basic
data analysis. At this point, you might be tempted to think that pandas is all we need for
data analysis. However, there is more to data analysis than meets the eye.

Having picked up the fundamentals, it's time to proceed to data analysis with the
commonly used statistics functions in Chapter 3, Statistics. This includes the usage of
statistical concepts.

You are encouraged to read the books mentioned in the References section for exploring
NumPy and pandas in further detail and depth.

References
Ivan Idris, NumPy Cookbook – Second Edition, Packt Publishing, 2015.
Ivan Idris, Learning NumPy Array, Packt Publishing, 2014.
Ivan Idris, NumPy: Beginner's Guide – Third Edition, Packt Publishing, 2015.
L. (L.-H.) Chin and T. Dutta, NumPy Essentials, Packt Publishing, 2016.
T. Petrou, Pandas Cookbook, Packt Publishing, 2017.
F. Anthony, Mastering pandas, Packt Publishing, 2015.
M. Heydt, Mastering pandas for Finance, Packt Publishing, 2015.
T. Hauck, Data-Intensive Apps with pandas How-to, Packt Publishing, 2013.
M. Heydt, Learning pandas, Packt Publishing, 2015.

#bookmark=id.2s8eyo1

3
Statistics

Exploratory data analysis (EDA) is the first step toward data analysis and building a
machine learning model. Statistics provide fundamental knowledge and a set of tools for
exploratory or descriptive data analysis. This chapter is designed to make you data-ready.
For any kind of data professional role, you need to understand real-world data that is
generally noisy, has missing values, and is collected from various sources.

Before performing any kind of preprocessing and analysis, you need to get familiar with
the data present, and statistics is the only tool that will help you here. This makes statistics
a primary and very necessary skill for data professionals, helping them gain initial insights
and an understanding of the data. For example, the arithmetic mean of the monthly
working hours of an employee can help us to understand the load of an employee in an
organization. Similarly, the standard deviation of monthly working hours can help us to
infer the range of working hours. Correlation between two variables such as blood pressure
and age of patients can help us understand the relationship between blood pressure and
age. Sampling methods can be useful in any kind of primary data collection. We can also
perform parametric and non-parametric hypothesis tests to infer facts about the
population.

In this chapter, we will cover the following topics:

Understanding attributes and their types
Measuring central tendency
Measuring dispersion
Skewness and kurtosis
Understanding relationships using covariance and correlation coefficients
Central limit theorem
Collecting samples
Performing parametric tests
Performing non-parametric tests

Statistics Chapter 3

[87]

Technical requirements
For this chapter, the following technical information is available:

You can find the code and the dataset at the following GitHub link: https:/ /
github.com/ PacktPublishing/ Python- Data- Analysis- Third- Edition/ tree/
master/Chapter03.
All the code blocks are available in ch3.ipynb.
In this chapter, we will use the NumPy, Pandas, and SciPy Python libraries.

Understanding attributes and their types
Data is the collection of raw facts and statistics such as numbers, words, and observations.
An attribute is a column or data field or series that represents the characteristics of an
object and is also known as a variable, a feature, or a dimension. Statisticians use the term
variable, while machine learning engineers prefer the term feature. The term dimension is
used in data warehousing, while database professionals use the term attribute.

Types of attributes
The data type of attributes is more crucial for data analysis because certain situations
require certain data types. The data type of attributes helps analysts select the correct
method for data analysis and visualization plots. The following list shows the various
attributes:

Nominal attributes: Nominal refers to names or labels of categorized variables.1.
The value of a nominal attribute can be the symbol or name of items. The values
are categorical, qualitative, and unordered in nature such as product name,
brand name, zip code, state, gender, and marital status. Finding the mean and
median values of qualitative and categorical values will not make any sense but
data analysts can calculate the mode, which is the most commonly occurring
value.
Ordinal attributes: Ordinal refers to names or labels with a meaningful order or2.
ranking, but the magnitude of values is not known. These types of attributes
measure subjective qualities alone. That is why they are used in surveys for
customer satisfaction ratings, product ratings, and movie rating reviews.
Customer satisfaction ratings appear in the following order:

1: Very dissatisfied
2: Somewhat dissatisfied

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter03

Statistics Chapter 3

[88]

3: Neutral
4: Satisfied
5: Very satisfied

Another example could be the size of a drink: small, medium, or large. Ordinal
attributes can only be measured via the mode and the median. The mean cannot
be calculated for ordinal attributes because of their qualitative nature. Ordinal
attributes can also be recreated by discretization of a quantitative variable by
dividing their values in a range of finite numbers.

Numeric attributes: A numeric attribute is quantitatively presented as integer or3.
real values. Numeric attributes can be of two types: interval-scaled or ratio-
scaled.

Interval-scaled attributes are measured on an ordered scale of equal-sized units.
The meaningful difference between the two values of an interval-scaled attribute
can be calculated, and this allows a comparison between the two values—for
example, the birth year, and the temperature in °C. The main problem with
interval-scaled attribute values is that they don't have a "true zero"—for example,
if the temperature in °C is 0 then it doesn't mean that temperature doesn't exist.
Interval-scaled data can add and subtract but can't multiply and divide because of
no true zero. We can also calculate the mean value of an interval-scaled attribute,
in addition to the median and mode.

Ratio-scaled attributes are measured on an ordered scale of equal-sized units,
similar to an interval scale with an inherent zero point. Examples of ratio-scaled
attributes are height, weight, latitude, longitude, years of experience, and the
number of words in a document. We can perform multiplication and division,
and calculate the difference between ratio-scaled values. We can also compute
central tendency measures such as mean, median, and mode. The Celsius and
Fahrenheit temperature scales are measured on an interval scale, while the Kelvin
temperature scale is measured on a ratio scale because it has a true zero point.

Statistics Chapter 3

[89]

Discrete and continuous attributes
There are various ways to classify attributes. In the previous sub-section, we have seen
nominal, ordinal, and numeric attributes. In this sub-section, we will see another type of
attribute classification. Here, we will talk about discrete or continuous attributes. A discrete
variable accepts only a countable finite number, such as how many students are present in
a class, how many cars are sold, and how many books are published. It can be obtained by
counting numbers. A continuous variable accepts an infinite number of possible values,
such as the weight and height of students. It can be obtained by measuring.

A discrete variable accepts integral values, while a continuous variable accepts real values.
In other words, we can say a discrete variable accepts values whose fraction doesn't make
sense, whereas a continuous variable accepts values whose fraction makes sense. A discrete
attribute uses a limited number of values, while a continuous attribute uses an unlimited
number of values.

After understanding the attributes and their types, it's time to focus on basic statistical
descriptions such as central tendency measures.

Measuring central tendency
Central tendency is the trend of values clustered around the averages such as the mean,
mode, and median values of data. The main objective of central tendency is to compute the
center-leading value of observations. Central tendency determines the descriptive summary
and provides quantitative information about a group of observations. It has the capability
to represent a whole set of observations. Let's see each type of central tendency measure in
detail in the coming sections.

Mean
The mean value is the arithmetic mean or average, which is computed by the sum of
observations divided by the number of observations. It is sensitive to outliers and noise,
with the result that whenever uncommon or unusual values are added to a group, its mean
gets deviated from the typical central value. Assume x1, x2, . . . , x N is N observations. The
formula for the mean of these values is shown here:

Statistics Chapter 3

[90]

Let's compute the mean value of the communication skill score column using the pandas
library, as follows:

Import pandas library
import pandas as pd

Create dataframe
sample_data = {'name': ['John', 'Alia', 'Ananya', 'Steve', 'Ben'],
 'gender': ['M', 'F', 'F', 'M', 'M'],
 'communication_skill_score': [40, 45, 23, 39, 39],
 'quantitative_skill_score': [38, 41, 42, 48, 32]}

data = pd.DataFrame(sample_data, columns = ['name', 'gender',
'communcation_skill_score', 'quantitative_skill_score'])

find mean of communication_skill_score column
data['communcation_skill_score'].mean(axis=0)

Output:
37.2

In the preceding code block, we have created one DataFrame named data that has four
columns (name, gender, communication_skill_score, and
quantitative_skill_score) and computed the mean using the mean(axis=0)
function. Here, axis=0 represents the mean along the rows.

Mode
The mode is the highest-occurring item in a group of observations. The mode value occurs
frequently in data and is mostly used for categorical values. If all the values in a group are
unique or non-repeated, then there is no mode. It is also possible that more than one value
has the same occurrence frequency. In such cases, there can be multiple modes.

Let's compute the mode value of the communication skill score column using the pandas
library, as follows:

find mode of communication_skill_score column
data['communcation_skill_score'].mode()

Output:
39

Statistics Chapter 3

[91]

In the preceding code block, we have computed the mode of the communication skill score
column using the mode() function. Let's compute another central tendency measure: the
median.

Median
The median is the midpoint or middle value in a group of observations. It is also called the
50th percentile. The median is less affected by outliers and noise than the mean, and that is
why it is considered a more suitable statistic measure for reporting. It is much near to a
typical central value. Let's compute the median value of the communication skill score
column using the pandas library, as follows:

find median of communication_skill_score column
data['communcation_skill_score'].median()

Output:
39.0

In the preceding code block, we have computed the median of the communication skill
score column using the median() function. Let's understand dispersion measures and
compute them in the next section.

Measuring dispersion
As we have seen, central tendency presents the middle value of a group of observations but
does not provide the overall picture of an observation. Dispersion metrics measure the
deviation in observations. The most popular dispersion metrics are range, interquartile
range (IQR), variance, and standard deviation. These dispersion metrics value the
variability in observations or the spread of observations. Let's see each dispersion measure
in detail, as follows:

Range: The range is the difference between the maximum and minimum value of
an observation. It is easy to compute and easy to understand. Its unit is the same
as the unit of observations. Let's compute the range of communication skill
scores, as follows:

Statistics Chapter 3

[92]

column_range=data['communcation_skill_score'].max()-
data['communcation_skill_score'].min()
print(column_range)

Output:
22

In the preceding code block, we have computed the range of communication skill
scores by finding the difference between the maximum and minimum scores. The
maximum and minimum scores were computed using the max() and min()
functions.

IQR: IQR is the difference between the third and first quartiles. It is easy to
compute and easy to understand. Its unit is the same as the unit of observations.
It measures the middle 50% in the observation. It represents the range where
most of the observation lies. IQR is also known as midspread or middle 50%, or
H-spread. Let's compute the IQR of communication skill scores, as follows:

First Quartile
q1 = data['communcation_skill_score'].quantile(.25)

Third Quartile
q3 = data['communcation_skill_score'].quantile(.75)

Inter Quartile Ratio
iqr=q3-q1
print(iqr)

Output:
1.0

In the preceding code block, we have computed the IQR of communication skill
scores by finding the difference between the first and third quartile of scores. Both
the first and third quartile scores were computed using the quantile(.25) and
quantile(.75) functions.

Statistics Chapter 3

[93]

Variance: The variance measures the deviation from the mean. It is the average
value of the squared difference between observed values and the mean. The main
problem with the variance is its unit of measurement because of squaring the
difference between observations and mean. Let's assume x1 , x2, . . . , x N are N
observations. The formula for the variance of these values will then be the
following:

Let's compute the variance of communication skill scores, as follows:

Variance of communication_skill_score
data['communcation_skill_score'].var()

Output:
69.2

In the preceding code block, we have computed the variance of communication
skill scores using the var() function.

Standard deviation: This is the square root of the variance. Its unit is the same as
for the original observations. This makes it easier for an analyst to evaluate the
exact deviation from the mean. The lower value of standard deviation represents
the lesser distance of observations from the mean; this means observations are
less widely spread. The higher value of standard deviation represents a large
distance of observations from the mean—that is, observations are widely spread.
Standard deviation is mathematically represented by the Greek letter sigma
(Σ). Assume x1, x2, . . . , x N are N observations. The formula for the standard
deviation of these values is the following:

Statistics Chapter 3

[94]

Let's compute the standard deviation of communication skill scores, as follows:

Standard deviation of communication_skill_score
data['communcation_skill_score'].std()

Output:
8.318653737234168

In the preceding code block, we have computed the standard deviation of
communication skill scores using the std() function.

We can also try to describe the function to get all the summary statistics in a
single command. The describe() function returns the count, mean, standard
deviation, first quartile, median, third quartile, and minimum and maximum
values for each numeric column in the DataFrame, and is illustrated in the
following code block:

Describe dataframe
data.describe()

Output:
 communcation_skill_score quantitative_skill_score
count 5.000000 5.000000
mean 37.200000 40.200000
std 8.318654 5.848077
min 23.000000 32.000000
25% 39.000000 38.000000
50% 39.000000 41.000000
75% 40.000000 42.000000
max 45.000000 48.000000

In the preceding code block, we have generated a descriptive statistics summary of data
using the describe() method.

Statistics Chapter 3

[95]

Skewness and kurtosis
Skewness measures the symmetry of a distribution. It shows how much the distribution
deviates from a normal distribution. Its values can be zero, positive, and negative. A zero
value represents a perfectly normal shape of a distribution. Positive skewness is shown by
the tails pointing toward the right—that is, outliers are skewed to the right and data
stacked up on the left. Negative skewness is shown by the tails pointing toward the
left—that is, outliers are skewed to the left and data stacked up on the right. Positive
skewness occurs when the mean is greater than the median and the mode. Negative
skewness occurs when the mean is less than the median and mode. Let's compute skewness
in the following code block:

skewness of communication_skill_score column
data['communcation_skill_score'].skew()

Output:
-1.704679180800373

In the preceding code block, we have computed the skewness of the communication skill
score column using the skew() method.

Kurtosis measures the tailedness (thickness of tail) compared to a normal distribution. High
kurtosis is heavy-tailed, which means more outliers are present in the observations, and
low values of kurtosis are light-tailed, which means fewer outliers are present in the
observations. There are three types of kurtosis shapes: mesokurtic, platykurtic, and
leptokurtic. Let's define them one by one, as follows:

A normal distribution having zero kurtosis is known as a mesokurtic
distribution.
A platykurtic distribution has a negative kurtosis value and is thin-tailed
compared to a normal distribution.
A leptokurtic distribution has a kurtosis value greater than 3 and is fat-tailed
compared to a normal distribution.

Statistics Chapter 3

[96]

Let's see the type of kurtosis shapes in the following diagram:

A histogram is an effective medium to present skewness and kurtosis. Let's compute the
kurtosis of the communication skill score column, as follows:

kurtosis of communication_skill_score column
data['communcation_skill_score'].kurtosis()

Output:
3.6010641852384015

In the preceding code block, we have computed the kurtosis of the communication skill
score column using the kurtosis() method.

Understanding relationships using
covariance and correlation coefficients
Measuring the relationship between variables will be helpful for data analysts to
understand the dynamics between variables—for example, an HR manager needs to
understand the strength of the relationship between employee performance score and
satisfaction score. Statistics offers two measures of covariance and correlation to
understand the relationship between variables. Covariance measures the relationship
between a pair of variables. It shows the degree of change in the variables—that is, how the
change in one variable affects the other variable. Its value ranges from -infinity to + infinity.
The problem with covariance is that it does not provide effective conclusions because it is
not normalized. Let's find the relationship between the communication and quantitative
skill score using covariance, as follows:

Covariance between columns of dataframe
data.cov()

Statistics Chapter 3

[97]

This results in the following output:

In the preceding code block, covariance is computed using the cov() method. Here, the
output of this method is the covariance matrix.

Pearson's correlation coefficient
Correlation shows how variables are correlated with each other. Correlation offers a better
understanding than covariance and is a normalized version of covariance. Correlation
ranges from -1 to 1. A negative value represents the increase in one variable, causing a
decrease in other variables or variables to move in the same direction. A positive value
represents the increase in one variable, causing an increase in another variable, or a
decrease in one variable causes decreases in another variable. A zero value means that there
is no relationship between the variable or that variables are independent of each other.
Have a look at the following code snippet:

Correlation between columns of dataframe
data.corr(method ='pearson')

This results in the following output:

The 'method' parameter can take one of the following three parameters:

pearson: Standard correlation coefficient
kendall: Kendall's tau correlation coefficient
spearman: Spearman's rank correlation coefficient

Statistics Chapter 3

[98]

Spearman's rank correlation coefficient
Spearman's rank correlation coefficient is Pearson's correlation coefficient on the ranks of
the observations. It is a non-parametric measure for rank correlation. It assesses the
strength of the association between two ranked variables. Ranked variables are ordinal
numbers, arranged in order. First, we rank the observations and then compute the
correlation of ranks. It can apply to both continuous and discrete ordinal variables. When
the distribution of data is skewed or an outlier is affected, then Spearman's rank correlation
is used instead of Pearson's correlation because it doesn't have any assumptions for data
distribution.

Kendall's rank correlation coefficient
Kendall's rank correlation coefficient or Kendall's tau coefficient is a non-parametric
statistic used to measure the association between two ordinal variables. It is a type of rank
correlation. It measures the similarity or dissimilarity between two variables. If both the
variables are binary, then Pearson's = Spearman's = Kendall's tau.

Till now, we have seen descriptive statistics topics such as central measures, dispersion
measures, distribution measures, and variable relationship measures. It's time to jump to
the inferential statistics topics such as the central limit theorem, sampling techniques, and
parametric and non-parametric tests.

Central limit theorem
Data analysis methods involve hypothesis testing and deciding confidence intervals. All
statistical tests assume that the population is normally distributed. The central limit
theorem is the core of hypothesis testing. According to this theorem, the sampling
distribution approaches a normal distribution with an increase in the sample size. Also, the
mean of the sample gets closer to the population means and the standard deviation of the
sample gets reduced. This theorem is essential for working with inferential statistics,
helping data analysts figure out how samples can be useful in getting insights about the
population.

Statistics Chapter 3

[99]

Does it provide answers to questions such as what size of sample should be taken or which
sample size is an accurate representation of the population? You can understand this with
the help of the following diagram:

In the preceding diagram, you can see four histograms for different-different sample sizes
50, 100, 200, and 500. If you observe here, as the sample size increases, the histogram
approaches a normal curve. Let's learn sampling techniques in the next section.

Statistics Chapter 3

[100]

Collecting samples
A sample is a small set of the population used for data analysis purposes. Sampling is a
method or process of collecting sample data from various sources. It is the most crucial part
of data collection. The success of an experiment depends upon how well the data is
collected. If anything goes wrong with sampling, it will hugely affect the final
interpretations. Also, it is impossible to collect data for the whole population. Sampling
helps researchers to infer the population from the sample and reduces the survey cost and
workload to collect and manage data. There are lots of sampling techniques available, for
various purposes. These techniques can be categorized into two categories: probability
sampling and non-probability sampling, described in more detail here:

Probability sampling: With this technique, there is a random selection of every
respondent of the population, with an equal chance of the selected sample. Such
types of sampling techniques are more time-consuming and expensive, and
include the following:

Simple random sampling: With this technique, each respondent is
selected by chance, meaning that each respondent has an equal
chance of being selected. It is a simple and straightforward
method—for example, 20 products being randomly selected from
500 products for quality testing.
Stratified sampling: With this technique, the whole population is
divided into small groups known as strata that are based on some
similarity criteria. These strata can be of unequal size. This
technique improves accuracy by reducing selection bias.
Systematic sampling: With this technique, respondents are
selected at regular intervals. In other words, we can say
respondents are selected in systematic order from the target
population, such as every nth respondent from the population.
Cluster sampling: With this sampling technique, the entire
population is divided into clusters or sections. Clusters are formed
based on gender, location, occupation, and so on. These entire
clusters are used for sampling rather than the individual
respondent.

Statistics Chapter 3

[101]

Non-probability sampling: This sampling non-randomly selects every
respondent of the population, with an unequal chance of the selected sample. Its
outcome might be biased. Such types of sampling techniques are cheaper and
more convenient, and include the following:

Convenience sampling: This is the easiest technique for data
collection. It selects respondents based on their availability and
willingness to participate. Statisticians prefer this technique for the
initial survey due to cost and fast collection of data, but the results
are more prone to bias.
Purposive sampling: This is also known as judgmental sampling
because it depends upon the statistician's judgment. Statisticians
decide at runtime who will participate in the survey based on
certain predefined characteristics. News reporters use this
technique to select people whose opinions they wish to obtain.
Quota sampling: This technique predefines the properties of strata
and proportions for the sample. Sample respondents are selected
until a definitive proportion is met. It differs from stratified
sampling in terms of selection strategy; it selects items in strata
using random sampling.
Snowball sampling: This technique is used in a situation where
finding respondents in a population is rare and difficult to trace, in
areas such as illegal immigration or HIV. Statisticians contact
volunteers to reach out to the victims. It is also known as referral
sampling because the initial person taking part in the survey refers
to another person who fits the sample description.

In this section, we have seen sampling methods and their types: probability sampling and
non-probability sampling. Now, it's time to jump to hypothesis testing techniques. In
upcoming sections, we will focus on parametric and non-parametric hypothesis testing.

Performing parametric tests
The hypothesis is the main core topic of inferential statistics. In this section, we will focus
on parametric tests. The basic assumption of a parametric test is the underlying statistical
distribution. Most elementary statistical methods are parametric in nature. Parametric tests
are used for quantitative and continuous data. Parameters are numeric quantities that
represent the whole population. Parametric tests are more powerful and reliable than non-
parametric tests. The hypothesis is developed on the parameters of the population
distribution. Here are some examples of parametric tests:

Statistics Chapter 3

[102]

A t-test is a kind of parametric test that is used for checking if there is a
significant difference between the means of the two groups concerned. It is the
most commonly used inferential statistic that follows the normal distribution. A
t-test has two types: a one-sample t-test and a two-sample t-test. A one-sample t-
test is used for checking if there is a significant difference between a sample and
hypothesized population means. Let's take 10 students and check whether their
average weight is 68 kg or not by using a t-test, as follows:

import numpy as np

from scipy.stats import ttest_1samp

Create data
data=np.array([63, 75, 84, 58, 52, 96, 63, 55, 76, 83])

Find mean
mean_value = np.mean(data)

print("Mean:",mean_value)

Output:

Mean: 70.5

In the preceding code block, we have created an array of 10 students' weight and
computed its arithmetic mean using numpy.mean().

Let's perform a one-sample t-test, as follows:

Perform one-sample t-test
t_test_value, p_value = ttest_1samp(data, 68)

print("P Value:",p_value)

print("t-test Value:",t_test_value)

0.05 or 5% is significance level or alpha.
if p_value < 0.05:

 print("Hypothesis Rejected")

else:
 print("Hypothesis Accepted")

Output:

P Value: 0.5986851106160134

Statistics Chapter 3

[103]

t-test Value: 0.5454725779039431
Hypothesis Accepted

In the preceding code block, we have tested the null hypothesis (average weight
of 10 students is 68 kg) by using ttest_1samp(). The output results have shown
that the null hypothesis is accepted with a 95% confidence interval, which means
that the average weight of 10 students is 68 kg.

A two-sample t-test is used for comparing the significant difference between two
independent groups. This test is also known as an independent samples t-test.
Let's compare the average weight of two independent student groups, as
follows:

Null Hypothesis H0: Sample means are equal—μ 1 = μ 2

Alternative Hypothesis Ha: Sample means are not equal—μ 1 > μ 2 or μ 2 > μ 1

 Have a look at the following code block:

from scipy.stats import ttest_ind

Create numpy arrays
data1=np.array([63, 75, 84, 58, 52, 96, 63, 55, 76, 83])

data2=np.array([53, 43, 31, 113, 33, 57, 27, 23, 24, 43])

In the preceding code block, we have created two arrays of 10 students' weights.

Let's perform a two-sample t-test, as follows:

Compare samples

stat, p = ttest_ind(data1, data2)

print("p-values:",p)

print("t-test:",stat)

0.05 or 5% is significance level or alpha.

if p < 0.05:

 print("Hypothesis Rejected")

else:

 print("Hypothesis Accepted")

Statistics Chapter 3

[104]

Output:
p-values: 0.015170931362451255
t-test: 2.6835879913819185
Hypothesis Rejected

In the preceding code block, we have tested the hypothesis average weight of two
groups using the ttest_ind() method, and results show that the null
hypothesis is rejected with a 95% confidence interval, which means that the
sample means are different.

A paired sample t-test is a dependent sample t-test, which is used to decide
whether the mean difference between two observations of the same group is
zero—for example, to compare the difference in blood pressure level for a group
of patients before and after some drug treatment. This is equivalent to a one-
sample t-test and is also known as a dependent sample t-test. Let's perform a
paired t-test to assess the impact of weight loss treatment. We have collected the
weight of patients before and after treatment. This can be represented using the
following hypothesis:

Null Hypothesis H0: Mean difference between the two dependent samples is
0.

Alternative Hypothesis Ha: Mean difference between the two dependent
samples is not 0.

 Have a look at the following code block:

paired test
from scipy.stats import ttest_rel

Weights before treatment
data1=np.array([63, 75, 84, 58, 52, 96, 63, 65, 76, 83])

Weights after treatment
data2=np.array([53, 43, 67, 59, 48, 57, 65, 58, 64, 72])

In the preceding code block, we have created two arrays of 10 patients' weights
before and after treatment. Let's perform a paired sample t-test, as follows:

Compare weights

stat, p = ttest_rel(data1, data2)

print("p-values:",p)

print("t-test:",stat)

Statistics Chapter 3

[105]

0.05 or 5% is the significance level or alpha.

if p < 0.05:
 print("Hypothesis Rejected")

else:

 print("Hypothesis Accepted")

Output:
p-values: 0.013685575312467715
t-test: 3.0548295044306903
Hypothesis Rejected

In the preceding code block, we have tested the hypothesis of the average weight
of two groups before and after treatment using the ttest_rel() method. Results
show that the null hypothesis is rejected with a 95% confidence interval, which
means that weight loss treatment has a significant impact on the patient's weight.

ANOVA: A t-test only deals with two groups, but sometimes we have more than
two groups or multiple groups at the same time to compare. ANOVA (ANalysis
Of VAriance) is a statistical inference test used for comparing multiple groups. It
analyzes the variance between and within multiple groups and tests several null
hypotheses at the same time. It usually compares more than two sets of data and
checks statistical significance. We can use ANOVA in three ways: one-way
ANOVA, two-way ANOVA, and N-way multivariate ANOVA.
With the one-way ANOVA method, we compare multiple groups based on only
one independent variable—for example, an IT company wants to compare
multiple employee groups' or teams' productivity based on performance score. In
our example, we are comparing the performance of employees in an IT company
based in three locations: Mumbai, Chicago, and London. Here, we will perform a
one-way ANOVA test and check for a significant difference in performance. Let's
define the null and alternative hypotheses, as follows:

Null Hypothesis H0: There is no difference between the mean performance
score of multiple locations.

Alternative Hypothesis Ha: There is a difference between the mean
performance score of multiple locations.

 Have a look at the following code block:

from scipy.stats import f_oneway

Performance scores of Mumbai location

Statistics Chapter 3

[106]

mumbai=[0.14730927, 0.59168541, 0.85677052, 0.27315387,
0.78591207,0.52426114, 0.05007655, 0.64405363, 0.9825853 ,
0.62667439]

Performance scores of Chicago location
chicago=[0.99140754, 0.76960782, 0.51370154, 0.85041028,
0.19485391,0.25269917, 0.19925735, 0.80048387, 0.98381235,
0.5864963]

Performance scores of London location
london=[0.40382226, 0.51613408, 0.39374473, 0.0689976 ,
0.28035865,0.56326686, 0.66735357, 0.06786065, 0.21013306,
0.86503358]

In the preceding code block, we have created three lists of employee performance
scores for three locations: Mumbai, Chicago, and London.

Let's perform a one-way ANOVA test, as follows:

Compare results using Oneway ANOVA
stat, p = f_oneway(mumbai, chicago, london)

print("p-values:", p)

print("ANOVA:", stat)

if p < 0.05:
 print("Hypothesis Rejected")

else:

 print("Hypothesis Accepted")

Output:
p-values: 0.27667556390705783
ANOVA: 1.3480446381965452
Hypothesis Accepted

In the preceding code block, we have tested the hypothesis that there is no
difference between the mean performance score of various locations using the
f_oneway() method. The preceding results show that the null hypothesis is
accepted with a 95% confidence interval, which means that there is no significant
difference between the mean performance score of all the locations.

Statistics Chapter 3

[107]

With the two-way ANOVA method, we compare multiple groups based on two
independent variables—for example, if an IT company wants to compare
multiple employee groups' or teams' productivity based on working hours and
project complexity.
In N-way ANOVA, we compare multiple groups based on N independent
variables—for example, if an IT company wants to compare multiple employee
groups' or teams' productivity based on working hours, project complexity,
employee training, and other employee perks and facilities.

In this section, we have explored parametric tests such as the t-test and ANOVA tests in
detail. Let's jump to the non-parametric hypothesis test.

Performing non-parametric tests
A non-parametric test doesn't rely on any statistical distribution; that is why it is known as
a "distribution-free" hypothesis test. Non-parametric tests don't have parameters of the
population. Such types of tests are used for order and rank of observations and require
special ranking and counting methods. Here are some examples of non-parametric tests:

A Chi-Square test is determined by a significant difference or relationship
between two categorical variables from a single population. In general, this test
assesses whether distributions of categorical variables differ from each other. It is
also known as a Chi-Square goodness of fit test or a Chi-Square test for
independence. A small value of the Chi-Square statistic means observed data fit
with expected data, and a larger value of the Chi-Square statistic means observed
data doesn't fit with expected data. For example, the impact of gender on voting
preference or the impact of company size on health insurance coverage can be
assessed by a Chi-Square test:

Here, O is the observed value, E is the expected value, and "i" is the "ith" position
in the contingency table.

Statistics Chapter 3

[108]

Let's understand the Chi-Square test using an example. Suppose we have done a
survey in a company of 200 employees and asked about their highest qualification
such as High School, Higher Secondary, Graduate, Post-Graduate, and compare it
with performance levels such as Average and Outstanding. Here is the hypothesis
and contingency criteria:

Null Hypothesis H0: The two categorical variables are independent—that is,
employee performance is independent of the highest qualification level.

Alternative Hypothesis Ha: The two categorical variables are not
independent—that is, employee performance is not independent of the
highest qualification level.

The contingency table can be represented as follows:

High School Higher Secondary Graduate Post-Graduate
Average 20 16 13 7

Outstanding 31 40 50 13

Let's perform a Chi-Square test and check for a significant difference in the
association between variables, as follows:

from scipy.stats import chi2_contingency

Average performing employees
average=[20, 16, 13, 7]

Outstanding performing employees
outstanding=[31, 40, 60, 13]

contingency table
contingency_table= [average, outstanding]

In the preceding code block, we have created two lists of average and outstanding
performing employees and created a contingency table.

Let's perform a Chi-Square test, as follows:

Apply Test
stat, p, dof, expected = chi2_contingency(contingency_table)

print("p-values:",p)

if p < 0.05:
 print("Hypothesis Rejected")

Statistics Chapter 3

[109]

else:

 print("Hypothesis Accepted")

Output:
p-values: 0.059155602774381234
Hypothesis Accepted

In the preceding code block, we have tested the hypothesis that employee
performance is independent of the highest qualification level. The preceding
results show that the null hypothesis is accepted with a 95% confidence interval,
which means that employee performance is independent of the highest
qualification level.

The Mann-Whitney U test is the non-parametric counterpart of the t-test for two
samples. It doesn't assume that the difference between the samples is normally
distributed. The Mann-Whitney U test is used when the observation is ordinal
and assumptions of the t-test were not met—for example, comparing two groups
of movie test preferences from their given movie ratings. Let's compare two
groups of movie ratings using the following criteria:

Null Hypothesis H0: There is no difference between the two sample
distributions.

Alternative Hypothesis Ha: There is a difference between the two sample
distributions.

 Have a look at the following code block:

from scipy.stats import mannwhitneyu

Sample1

data1=[7,8,4,9,8]

Sample2

data2=[3,4,2,1,1]

In the preceding code block, we have created two lists of data.

Let's perform a Mann-Whitney U test, as follows:

Apply Test

stat, p = mannwhitneyu(data1, data2)

Statistics Chapter 3

[110]

print("p-values:",p)

0.01 or 1% is significance level or alpha.

if p < 0.01:

 print("Hypothesis Rejected")

else:
 print("Hypothesis Accepted")

Output:
p-values: 0.007666581056801412
Hypothesis Rejected

In the preceding code block, we have tested the hypothesis that there is
no difference between the distribution of two movie rating groups using the
mannwhitneyu() method. The results show that the null hypothesis is rejected
with a 99% confidence interval, which means that there is a significant difference
between the two movie rating groups.

The Wilcoxon signed-rank test compares two paired samples. It is a non-
parametric counterpart version of the paired t-test. It tests the null hypothesis as
to whether the two paired samples belong to the same distribution or not—for
example, to compare the difference between two treatment observations for
multiple groups. Let's compare the difference between two treatment
observations using the following criteria:

Null Hypothesis H0: There is no difference between the dependent sample
distributions.

Alternative Hypothesis Ha: There is a difference between the dependent
sample distributions.

 Have a look at the following code block:

from scipy.stats import wilcoxon

Sample-1
data1 = [1, 3, 5, 7, 9]

Sample-2 after treatement
data2 = [2, 4, 6, 8, 10]

In the preceding code block, we have created two lists of data.

Statistics Chapter 3

[111]

Let's perform a Wilcoxon signed-rank test, as follows:

Apply
stat, p = wilcoxon(data1, data2)

print("p-values:",p)

0.01 or 1% is significance level or alpha.

if p < 0.01:

 print("Hypothesis Rejected")

else:
 print("Hypothesis Accepted")

Output:
p-values: 0.025347318677468252
Hypothesis Accepted

In the preceding code block, we have tested the hypothesis that there is
no difference between the distribution of groups before and after treatment using
the wilcoxon() method. The preceding results show that the null hypothesis is
accepted with a 99% confidence interval, which means that there is no significant
difference between the groups before and after treatment.

The Kruskal-Wallis test is the non-parametric version of one-way ANOVA, to
assess whether samples belong to the same distribution or not. It compares two
or more independent samples. It extends the limit of the Mann-Whitney U test,
which compares only two groups. Let's compare three sample groups using the
following code:

from scipy.stats import kruskal

Data sample-1
x = [38, 18, 39, 83, 15, 38, 63, 1, 34, 50]

Data sample-2
y = [78, 32, 58, 59, 74, 77, 29, 77, 54, 59]

Data sample-3
z = [117, 92, 42, 79, 58, 117, 46, 114, 86, 26]

Statistics Chapter 3

[112]

In the preceding code block, we have created three lists of data. Let's perform a Kruskal-
Wallis test, as follows:

Apply kruskal-wallis test
stat, p = kruskal(x,y,z)

print("p-values:",p)

0.01 or 1% is significance level or alpha.

if p < 0.01:

 print("Hypothesis Rejected")

else:
 print("Hypothesis Accepted")

Output:
p-values: 0.01997922369138151
Hypothesis Accepted

In the preceding code block, we have tested the hypothesis that there is no
difference between the three sample groups using the kruskal() method. The
preceding results show that the null hypothesis is accepted with a 99% confidence
interval, which means that there is no difference between the three sample
groups. Let's compare both parametric and non-parametric tests, as follows:

Features Parametric Tests Non-Parametric Tests
Test Statistic Distribution Arbitrary or "Distribution-Free"

Attribute Type Numeric Nominal and Ordinal
Central Tendency Measures Mean Median

Correlation Tests Pearson's Correlation Spearman's Correlation
Information about Population Complete Information No Information

In the preceding table, you have seen examples of parametric and non-parametric tests
based on various features such as test statistic, attribute type, central tendency measures,
correlation tests, and population information. Finally, you made it to the end. In this
chapter, we have explored the fundamentals of descriptive as well as inferential statistics
with Python.

Statistics Chapter 3

[113]

Summary
The core fundamentals of statistics will provide the foundation for data analysis, facilitating
how data is described and understood. In this chapter, you have learned the basics of
statistics such as attributes and their different types such as nominal, ordinal, and numeric.
You have also learned about mean, median, and mode for measuring central tendency.
Range, IQR, variance, and standard deviation measures are used to estimate variability in
the data; skewness and kurtosis are used for understanding data distribution; covariance
and correlation are used to understand the relationship between variables. You have also
seen inferential statistics topics such as the central limit theorem, collecting samples, and
parametric and non-parametric tests. You have also performed hands-on coding on
statistics concepts using the pandas and scipy.stats libraries.

The next chapter, Chapter 4, Linear Algebra, will help us to learn how to solve the linear
system of equations, find Eigenvalues and Eigenvectors, and learn about binomial and
normal distribution, normality tests, and masked arrays using the Python packages NumPy
and SciPy.

4
Linear Algebra

Both linear algebra and statistics are the foundation for any kind of data analysis activity.
Statistics help us to get an initial descriptive understanding and make inferences from data.
In the previous chapter, we have understood descriptive and inferential statistical measures
for data analysis. On the other side, linear algebra is one of the fundamental mathematical
subjects that is the core foundation for any data professional. Linear algebra is useful for
working with vectors and matrices. Most of the data is available in the form of either a
vector or a matrix. In-depth knowledge of linear algebra helps data analysts and data
scientists understand the workflow of machine learning and deep learning algorithms,
giving them the flexibility to design and modify the algorithms as per your business needs.
For example, if you want to work with principal component analysis (PCA) you must
know the basics of Eigenvalues and Eigenvectors, or if you want to develop a recommender
system you must know singular value decomposition (SVD). A solid background in
mathematics and statistics will facilitate a smoother transition into the world of data
analytics.

This chapter mainly focuses on the core concepts of linear algebra, such as polynomials,
determinant, matrix inverse; solving linear equations; eigenvalues and eigenvectors; SVD;
random numbers; binomial and normal distributions; normality tests; and masked arrays.
We can also perform these operations in Python using the NumPy and SciPy
packages. NumPy and SciPy both offer the linalg package for linear algebra operations.

In this chapter, we will cover the following topics:

Fitting to polynomials with NumPy
Determinant
Finding the rank of a matrix
Matrix inverse using NumPy
Solving linear equations using NumPy
Decomposing a matrix using SVD
Eigenvectors and Eigenvalues using NumPy

Linear Algebra Chapter 4

[115]

Generating random numbers
Binomial distribution
Normal distribution
Testing normality of data using SciPy
Creating a masked array using the numpy.ma subpackage

Technical requirements
For this chapter, the following technical information is available:

You can find the code and the dataset at the following GitHub link: https:/ /
github.com/ PacktPublishing/ Python- Data- Analysis- Third- Edition/ tree/
master/Chapter04.
All the code blocks are available in ch4.ipynb.
In this chapter, we will use the NumPy, SciPy, Matplotlib, and Seaborn Python
libraries.

Fitting to polynomials with NumPy
Polynomials are mathematical expressions with non-negative strategies. Examples of
polynomial functions are linear, quadratic, cubic, and quartic functions. NumPy offers the
polyfit() function to generate polynomials using least squares. This function takes x-
coordinate, y-coordinate, and degree as parameters, and returns a list of polynomial
coefficients.

NumPy also offers polyval() to evaluate the polynomial at given values. This function
takes coefficients of polynomials and arrays of points and returns resultant values of
polynomials. Another function is linspace(), which generates a sequence of equally
separated values. It takes the start, stop, and the number of values between the start-stop
range and returns equally separated values in the closed interval.

Let's see an example to generate and evaluate polynomials using NumPy, as follows:

Import required libraries NumPy, polynomial and matplotlib
import numpy as np
import matplotlib.pyplot as plt

Generate two random vectors
v1=np.random.rand(10)

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter04

Linear Algebra Chapter 4

[116]

v2=np.random.rand(10)

Creates a sequence of equally separated values
sequence = np.linspace(v1.min(),v1.max(), num=len(v1)*10)

Fit the data to polynomial fit data with 4 degrees of the polynomial
coefs = np.polyfit(v1, v2, 3)

Evaluate polynomial on given sequence
polynomial_sequence = np.polyval(coefs,sequence)

plot the polynomial curve
plt.plot(sequence, polynomial_sequence)

Show plot
plt.show()

This results in the following output:

The graph shown in the preceding screenshot will change in each iteration using the
program written previously. The reason for this fluctuation is the random value generation
of vectors.

Let's jump on to the next topic: Determinant. We will perform most of the linear algebra
operations using the numpy.linalg subpackage. NumPy offers the linalg subpackage
for linear algebra. We can use linear algebra for matrix operations such as inverse, rank,
eigenvalues, eigenvectors, solving linear equations, and performing linear regression.

Linear Algebra Chapter 4

[117]

Determinant
The determinant is the most essential concept of linear algebra. It is a scalar value that is
calculated from a square matrix. The determinant is a fundamental operation that helps us
in the inverse matrix and in solving linear equations. Determinants are only calculated for
square matrices. A square matrix has an equal number of rows and columns. The
numpy.linalg subpackage provides the det() function for calculating the determinant of
a given input matrix. Let's compute the determinant in the following code block:

Import numpy
import numpy as np

Create matrix using NumPy
mat=np.mat([[2,4],[5,7]])
print("Matrix:\n",mat)

Calculate determinant
print("Determinant:",np.linalg.det(mat))

This results in the following output:

Matrix:
[[2 4]
[5 7]]
Determinant: -5.999999999999998

In the preceding code block, we have calculated the determinant of a given matrix using the
np.linalg.det() method. Let's understand one more concept of linear algebra, which is
rank, and compute it using the numpy.linalg subpackage.

Finding the rank of a matrix
Rank is a very important concept when it comes to solving linear equations. The rank of a
matrix represents the amount of information that is kept in the matrix. A lower rank means
less information, and a higher rank means a high amount of information. Rank can be
defined as the number of independent rows or columns of a matrix. The numpy.linalg
subpackage provides the matrix_rank() function. The matrix_rank() function takes
the matrix as input and returns the computed rank of the matrix. Let's see an example of
the matrix_rank() function in the following code block:

import required libraries
import numpy as np
from numpy.linalg import matrix_rank

Linear Algebra Chapter 4

[118]

Create a matrix
mat=np.array([[5, 3, 1],[5, 3, 1],[1, 0, 5]])

Compute rank of matrix
print("Matrix: \n", mat)
print("Rank:",matrix_rank(mat))

This results in the following output:

Matrix:
[[5 3 1]
[5 3 1]
[1 0 5]]
Rank: 2

In the preceding code block, the matrix_rank() function of numpy.linalg is used to
generate the rank of the matrix. Let's see another important concept of linear algebra:
matrix inverse.

Matrix inverse using NumPy
A matrix is a rectangular sequence of numbers, expressions, and symbols organized in
rows and columns. The multiplication of a square matrix and its inverse is equal to the
identity matrix I. We can write it using the following equation:

AA-1= I

The numpy.linalg subpackage provides a function for an inverse operation: the inv()
function. Let's invert a matrix using the numpy.linalg subpackage. First, we create a
matrix using the mat() function and then find the inverse of the matrix using the inv()
function, as illustrated in the following code block:

Import numpy
import numpy as np

Create matrix using NumPy
mat=np.mat([[2,4],[5,7]])
print("Input Matrix:\n",mat)

Find matrix inverse
inverse = np.linalg.inv(mat)
print("Inverse:\n",inverse)

Linear Algebra Chapter 4

[119]

This results in the following output:

Input Matrix:
[[2 4]
[5 7]]
Inverse:
[[-1.16666667 0.66666667]
[0.83333333 -0.33333333]]

In the preceding code block, we have computed the inverse of a matrix using the inv()
function of the numpy.linalg subpackage.

If the given input matrix is not a square matrix and a singular matrix, it
will raise a LinAlgError error. If you want, you can test the inv()
function manually. I will leave this as an activity for you.

Solving linear equations using NumPy
Matrix operations can transform one vector into another vector. These operations will help
us to find the solution for linear equations. NumPy provides the solve() function to solve
linear equations in the form of Ax=B. Here, A is the n*n matrix, B is a one-dimensional
array and x is the unknown one-dimensional vector. We will also use the dot() function to
compute the dot product of two floating-point number arrays.

Let's solve an example of linear equations, as follows:

Create matrix A and array B for a given equation, like this:1.

x1+x2 = 200
3x1+2x2 = 450

This is illustrated in the following code block

Create matrix A and Vector B using NumPy
A=np.mat([[1,1],[3,2]])
print("Matrix A:\n",A)

B = np.array([200,450])
print("Vector B:", B)

Linear Algebra Chapter 4

[120]

This results in the following output:

Matrix A:
[[1 1]
[3 2]]
Vector B: [200 450]

In the preceding code block, we have created a 2*2 matrix and a vector.

Solve a linear equation using the solve() function, like this:2.

Solve linear equations
solution = np.linalg.solve(A, B)
print("Solution vector x:", solution)

This results in the following output:

Solution vector x: [50. 150.]

In the preceding code block, we have solved a linear equation using the solve()
function of the numpy.linalg subpackage.

Check the solution using the dot() function, like this:3.

Check the solution
print("Result:",np.dot(A,solution))

This results in the following output:

Result: [[200. 450.]]

In the preceding code block, we have assessed the solution using the dot() function. You
can see the dot product of A and the solution is equivalent to B. Till now, we have seen the
determinant, rank, inverse, and how to solve linear equations. Let's jump to SVD for matrix
decomposition.

Decomposing a matrix using SVD
Matrix decomposition is the process of splitting a matrix into parts. It is also known as
matrix factorization. There are lots of matrix decomposition methods available such as
lower-upper (LU) decomposition, QR decomposition (where Q is orthogonal and R is
upper-triangular), Cholesky decomposition, and SVD.

Linear Algebra Chapter 4

[121]

Eigenanalysis decomposes a matrix into vectors and values. SVD decomposes a matrix into
the following parts: singular vectors and singular values. SVD is widely used in signal
processing, computer vision, natural language processing (NLP), and machine
learning—for example, topic modeling and recommender systems where SVD is widely
accepted and implemented in real-life business solutions. Have a look at the following:

Here, A is a m x n left singular matrix, Σ is a n x n diagonal matrix, V is a m x n right
singular matrix, and VT is the transpose of the V. The numpy.linalg subpackage offers the
svd() function to decompose a matrix. Let's see an example of SVD, as follows:

import required libraries
import numpy as np
from scipy.linalg import svd

Create a matrix
mat=np.array([[5, 3, 1],[5, 3, 0],[1, 0, 5]])

Perform matrix decomposition using SVD
U, Sigma, V_transpose = svd(mat)

print("Left Singular Matrix:",U)
print("Diagonal Matrix: ", Sigma)
print("Right Singular Matrix:", V_transpose)

This results in the following output:

Left Singular Matrix: [[-0.70097269 -0.06420281 -0.7102924]
 [-0.6748668 -0.26235919 0.68972636]
 [-0.23063411 0.9628321 0.14057828]]

Diagonal Matrix: [8.42757145 4.89599358 0.07270729]

Right Singular Matrix: [[-0.84363943 -0.48976369 -0.2200092]
 [-0.13684207 -0.20009952 0.97017237]
 [0.51917893 -0.84858218 -0.10179157]]

In the preceding code block, we have decomposed the given matrix into three parts: Left
Singular Matrix, Diagonal Matrix, and Right Singular Matrix using the svd()
function of the scipy.linalg subpackage.

Linear Algebra Chapter 4

[122]

Eigenvectors and Eigenvalues using NumPy
Eigenvectors and Eigenvalues are the tools required to understand linear mapping and
transformation. Eigenvalues are solutions to the equation Ax = λx. Here, A is the square
matrix, x is the eigenvector, and λ is eigenvalues. The numpy.linalg subpackage provides
two functions, eig() and eigvals(). The eig() function returns a tuple of eigenvalues
and eigenvectors, and eigvals() returns the eigenvalues.

Eigenvectors and eigenvalues are the core fundamentals of linear algebra. Eigenvectors and
eigenvalues are used in SVD, spectral clustering, and PCA.

Let's compute the eigenvectors and eigenvalues of a matrix, as follows:

Create the matrix using the NumPy mat() function, like this:

Import numpy
import numpy as np

Create matrix using NumPy
mat=np.mat([[2,4],[5,7]])
print("Matrix:\n",mat)

This results in the following output:

Matrix: [[2 4]
 [5 7]]

Compute eigenvectors and eigenvalues using the eig() function, like this:

Calculate the eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(mat)
print("Eigenvalues:", eigenvalues)
print("Eigenvectors:", eigenvectors)

This results in the following output:

Eigenvalues: [-0.62347538 9.62347538]

Eigenvectors: [[-0.83619408 -0.46462222]
 [0.54843365 -0.885509]]

Linear Algebra Chapter 4

[123]

In the preceding two blocks, we have created a 2*2 matrix and computed
eigenvectors and eigenvalues using the eig() function of the numpy.linalg
subpackage.

Compute eigenvalues using the eigvals() function, like this:

Compute eigenvalues
eigenvalues= np.linalg.eigvals(mat)
print("Eigenvalues:", eigenvalues)

This results in the following output:

Eigenvalues: [-0.62347538 9.62347538]

In the preceding code snippet, we have computed the eigenvalues using the eigvals()
function of the numpy.linalg subpackage. After performing eigendecomposition, we will
see how to generate random numbers and a matrix.

Generating random numbers
Random numbers offer a variety of applications such as Monte Carlo simulation,
cryptography, initializing passwords, and stochastic processes. It is not easy to generate
real random numbers, so in reality, most applications use pseudo-random numbers.
Pseudo numbers are adequate for most purposes except for some rare cases. Random
numbers can be generated from discrete and continuous data. The numpy.random()
function will generate a random number matrix for the given input size of the matrix.

The core random number generator is based on the Mersenne Twister
algorithm (refer to https:/ /en. wikipedia. org/wiki/ Mersenne_ twister).

Let's see one example of generating random numbers, as follows:

Import numpy
import numpy as np

Create an array with random values
random_mat=np.random.random((3,3))
print("Random Matrix: \n",random_mat)

This results in the following output:

Random Matrix: [[0.90613234 0.83146869 0.90874706]

https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister

Linear Algebra Chapter 4

[124]

 [0.59459996 0.46961249 0.61380679]
 [0.89453322 0.93890312 0.56903598]]

In the preceding example, we have generated a 3*3 random matrix using the
numpy.random.random() function. Let's try other distributions for random number
generation, such as binomial and normal distributions.

Binomial distribution
Binomial distribution models the number of repeated trials with the same probability on
each trial. Here, each trial is independent and has two possible outcomes—success and
failure—that can occur on each client. The following formula represents the binomial
distribution:

Here, p and q are the probabilities of success and failure, n is the number of trials, and X is
the number of the desired output.

The numpy.random subpackage provides a binomial() function that generates samples
based on the binomial distribution for certain parameters, number of trials, and the
probability of success.

Let's consider a 17th-century gambling house where you can bet on eight tossing pieces and
nine coins being flipped. If you get five or more heads then you win, otherwise you will
lose. Let's write code for this simulation for 1,000 coins using the binomial() function, as
follows:

Import required libraries
import numpy as np
import matplotlib.pyplot as plt

Create an numpy vector of size 5000 with value 0
cash_balance = np.zeros(5000)

cash_balance[0] = 500

Generate random numbers using Binomial
samples = np.random.binomial(9, 0.5, size=len(cash_balance))

Update the cash balance
for i in range(1, len(cash_balance)):

Linear Algebra Chapter 4

[125]

if samples[i] < 5:
 cash_balance[i] = cash_balance[i - 1] - 1
else:
 cash_balance[i] = cash_balance[i - 1] + 1

Plot the updated cash balance
plt.plot(np.arange(len(cash_balance)), cash_balance)
plt.show()

This results in the following output:

In the preceding code block, we first created the cash_balance array of size 500 with zero
values and updated the first value with 500. Then, we generated values between 0 to 9
using the binomial() function. After this, we updated the cash_balance array based on
the results of coin tosses and plotted the cash balance using the Matplotlib library.

In each execution, the code will generate different results or random walks. If you want to
make walking constant, you need to use the seed value in the binomial() function. Let's
try another form of distribution for the random number generator: normal distribution.

Linear Algebra Chapter 4

[126]

Normal distribution
Normal distributions occur frequently in real-life scenarios. A normal distribution is also
known as a bell curve because of its characteristic shape. The probability density function
models continuous distribution. The numpy.random subpackage offers lots of continuous
distributions such as beta, gamma, logistic, exponential, multivariate normal, and normal
distribution. The normal() functions find samples from Gaussian or normal distribution.

Let's write code for visualizing the normal distribution using the normal() function, as
follows:

Import required library
import numpy as np
import matplotlib.pyplot as plt

sample_size=225000

Generate random values sample using normal distribution
sample = np.random.normal(size=sample_size)

Create Histogram
n, bins, patch_list = plt.hist(sample, int(np.sqrt(sample_size)),
density=True)

Set parameters
mu, sigma=0,1

x= bins
y= 1/(sigma * np.sqrt(2 * np.pi)) * np.exp(- (bins - mu)**2 / (2 *
sigma**2))

Plot line plot(or bell curve)
plt.plot(x,y,color='red',lw=2)
plt.show()

Linear Algebra Chapter 4

[127]

This results in the following output:

Here, we have generated random values using the normal() function of the numpy.
random subpackage and displayed the values using a histogram and line plot or bell curve
or theoretical probability density function (PDF) with mean 0 and standard deviation of 1.

Testing normality of data using SciPy
A normal distribution is commonly used at a wide scale in scientific and statistical
operations. As per the central limit theorem, as sample size increases, the sample
distribution approaches a normal distribution. The normal distribution is well known and
easy to use. In most cases, it is recommended to confirm the normality of data, especially in
parametric methods, assuming that the data is Gaussian-distributed. There are lots of
normality tests that exist in the literature such as the Shapiro-Wilk test, the Anderson-
Darling test, and the D'Agostino-Pearson test. The scipy.stats package offers most of the
tests for normality.

In this section, we will learn how to apply normality tests on data. We are using three
samples of small-, medium-, and large-sized random data. Let's generate the data samples
for all three samples using the normal() function, as follows:

Import required library
import numpy as np

create small, medium, and large samples for normality test

Linear Algebra Chapter 4

[128]

small_sample = np.random.normal(loc=100, scale=60, size=15)
medium_sample = np.random.normal(loc=100, scale=60, size=100)
large_sample = np.random.normal(loc=100, scale=60, size=1000)

We will now explore various techniques to check the normality of the data:

Using a histogram: A histogram is the easiest and fastest method to check the1.
normality of the data. It divides the data into bins and counts the observation
into each bin. Finally, it visualizes the data. Here, we are using distplot() from
the seaborn library to plot the histogram and kernel density estimation. Let's see
an example of a histogram for a small sample, as follows:

Histogram for small
import seaborn as sns
import matplotlib.pyplot as plt

Create distribution plot
sns.distplot(small_sample)

sns.distplot(small_sample)

plt.show()

This results in the following output:

Linear Algebra Chapter 4

[129]

Let's see an example of the histogram for a medium sample, as follows:

Histogram for medium
import seaborn as sns
import matplotlib.pyplot as plt

Create distribution plot
sns.distplot(medium_sample)

plt.show()

This results in the following output:

Let's see an example of the histogram for a large sample, as follows:

Histogram for large
import seaborn as sns
import matplotlib.pyplot as plt

Create distribution plot
sns.distplot(large_sample)

plt.show()

Linear Algebra Chapter 4

[130]

This results in the following output:

In the preceding three plots, we can observe that as the sample size increases, the
curve becomes a normal curve. Histograms can be a good tool to test the
normality of data.

Shapiro-Wilk test: This test is used to assess the normality of data. In Python, the2.
shapiro() function of the scipy.stats subpackage can be used to assess
normality. The shapiro() function will return tuples of two values: test
statistics and p-value. Let's see the following example:

Import shapiro function
from scipy.stats import shapiro

Apply Shapiro-Wilk Test
print("Shapiro-Wilk Test for Small Sample: ",shapiro(small_sample))
print("Shapiro-Wilk Test for Medium Sample:
",shapiro(medium_sample))
print("Shapiro-Wilk Test for Large Sample: ",shapiro(large_sample))

Linear Algebra Chapter 4

[131]

This results in the following output:

Shapiro-Wilk Test for Small Sample: (0.9081739783287048,
0.2686822712421417)
Shapiro-Wilk Test for Medium Sample: (0.9661878347396851,
0.011379175819456577)
Shapiro-Wilk Test for Large Sample: (0.9991633892059326,
0.9433153867721558)

In the preceding code block, you can see that the small and large datasets have p-values
greater than 0.05, so as the null hypothesis has failed to reject it, this means that the sample
looks like a Gaussian or normal distribution; while for the medium dataset, the p-value is
less than 0.05, so the null hypothesis has rejected it, which means the sample does not look
like a Gaussian or normal distribution.

Similarly, we can try the Anderson-Darling test and the D'Agostino-Pearson test for
normality using the anderson() and normaltest() functions of the scipy.stats
subpackage. I will leave this for you as an activity. In visualization, we can also try the box
plot and quantile-quantile (QQ) plot techniques to assess the normality of data. We will
learn the box plot technique in the upcoming chapter, Chapter 5, Data Visualization. Let's
move on to the concept of a masked array.

Creating a masked array using the
numpy.ma subpackage
In most situations, real-life data is noisy and messy. It contains lots of gaps or missing
characters in the data. Masked arrays are helpful in such cases and handle the issue.
Masked arrays may contain invalid and missing values. The numpy.ma subpackage offers
all the masked array-required functionality. In this section of the chapter, we will use the
face image as the original image source and perform log mask operations.

Have a look at the following code block:

Import required library
import numpy as np
from scipy.misc import face
import matplotlib.pyplot as plt

face_image = face()
mask_random_array = np.random.randint(0, 3, size=face_image.shape)

fig, ax = plt.subplots(nrows=2, ncols=2)

Linear Algebra Chapter 4

[132]

Display the Original Image
plt.subplot(2,2,1)
plt.imshow(face_image)
plt.title("Original Image")
plt.axis('off')

Display masked array
masked_array = np.ma.array(face_image, mask=mask_random_array)
plt.subplot(2,2,2)
plt.title("Masked Array")
plt.imshow(masked_array)
plt.axis('off')

Log operation on original image
plt.subplot(2,2,3)
plt.title("Log Operation on Original")
plt.imshow(np.ma.log(face_image).astype('uint8'))
plt.axis('off')

Log operation on masked array
plt.subplot(2,2,4)
plt.title("Log Operation on Masked")
plt.imshow(np.ma.log(masked_array).astype('uint8'))
plt.axis('off')

Display the subplots
plt.show()

This results in the following output:

Linear Algebra Chapter 4

[133]

In the preceding code block, we first loaded the face image from the scipy.misc
subpackage and created a random mask using the randint() function. Then, we applied
the random mask on the face image. After this, we applied the log operation on the original
face image and masked face image. Finally, we displayed all the images in 2*2 subplots.
You can also try a range of mask operations on the image from the numpy.ma subpackage.
Here, we are only focusing on the log operation of the masked array. That is all about basic
linear algebra concepts. It's time to move on to data visualization concepts, in the next
chapter.

Summary
Finally, we can conclude that mathematical subjects such as linear algebra are the backbone
for all machine learning algorithms. Throughout the chapter, we have focused on essential
linear algebra concepts to improve you as a data professional. In this chapter, you learned a
lot about linear algebra concepts using the NumPy and SciPy subpackages. Our main focus
was on polynomials, determinant, matrix inverse; solving linear equations; eigenvalues and
eigenvectors; SVD; random numbers; binomial and normal distributions; normality tests;
and masked arrays.

The next chapter, Chapter 5, Data Visualization, is about the important topic of visualizing
data with Python. Visualization is something we often do when we start analyzing data. It
helps to display relations between variables in the data. By visualizing the data, we can also
get an idea about its statistical properties.

2
Section 2: Exploratory Data
Analysis and Data Cleaning

The main objective of this section is to develop Exploratory Data Analysis (EDA) and data
cleaning skills for the learner. These skills comprise data visualization, data extraction, and
preprocessing. This section will mostly be using matplotlib, seaborn, Bokeh, pandas, scikit-
learn, NumPy, and SciPy. It also focuses on signal processing and time series analysis.

This section includes the following chapters:

Chapter 5, Data Visualization
Chapter 6, Retrieving, Processing, and Storing Data
Chapter 7, Cleaning Messy Data
Chapter 8, Signal Processing and Time Series

5
Data Visualization

Data visualization is the initial move in the data analysis system toward easily
understanding and communicating information. It represents information and data in
graphical form using visual elements such as charts, graphs, plots, and maps. It helps
analysts to understand patterns, trends, outliers, distributions, and relationships. Data
visualization is an efficient way to deal with a large number of datasets.

Python offers various libraries for data visualization, such as Matplotlib, Seaborn,
and Bokeh. In this chapter, we will first focus on Matplotlib, which is the basic Python
library for visualization. After Matplotlib, we will explore Seaborn, which uses Matplotlib
and offers high-level and advanced statistical plots. In the end, we will work on interactive
data visualization using Bokeh. We will also explore pandas plotting. The following is a list
of topics that will be covered in this chapter:

Visualization using Matplotlib
Advanced visualization using the Seaborn package
Interactive visualization with Bokeh

Technical requirements
This chapter has the following technical requirements:

You can find the code and the datasets at the following GitHub link: https:/ /
github.com/ PacktPublishing/ Python- Data- Analysis- Third- Edition/ tree/
master/Chapter05.
All the code blocks are available in the ch5.ipynb file.
This chapter uses only one CSV file (HR_comma_sep.csv) for practice purposes.
In this chapter, we will use the Matplotlib, pandas, Seaborn, and Bokeh Python
libraries.

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter05

Data Visualization Chapter 5

[136]

Visualization using Matplotlib
As we know, a picture speaks a thousand words. Humans understand visual things better.
Visualization helps to present things to any kind of audience and can easily explain a
complex phenomenon in layman's terms. Python offers a couple of visualization libraries,
such as Matplotlib, Seaborn, and Bokeh.

Matplotlib is the most popular Python module for data visualization. It is a base library for
most of the advanced Python visualization modules, such as Seaborn. It offers flexible and
easy-to-use built-in functions for creating figures and graphs.

In Anaconda, Matplotlib is already installed. If you still find an error, you can install it in
the following ways.

We can install Matplotlib with pip as follows:

pip install matplotlib

For Python 3, we can use the following command:

pip3 install matplotlib

You can also simply install Matplotlib from your terminal or Command Prompt using the
following command:

conda install matplotlib

To create a very basic plot in Matplotlib, we need to invoke the plot() function in the
matplotlib.pyplot subpackage. This function produces a two-dimensional plot for a
single list or multiple lists of points with known x and y coordinates.

The following demo code is in the ch5.ipynb file in this book's code bundle, which you
can find at the following GitHub link: https:/ /github. com/ PacktPublishing/ Python-
Data-Analysis-Third- Edition/ blob/ master/ Chapter05/ Ch5. ipynb.

Let's see a small demo code for visualizing the line plot:

Add the essential library matplotlib
import matplotlib.pyplot as plt
import numpy as np

create the data
a = np.linspace(0, 20)

Draw the plot
plt.plot(a, a + 0.5, label='linear')

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter05/Ch5.ipynb

Data Visualization Chapter 5

[137]

Display the chart
plt.show()

This results in the following output:

In the preceding code block, first, we are importing the Matplotlib and NumPy
modules. After this, we are creating the data using the linespace() function of NumPy
and plotting this data using the plot() function of Matplotlib. Finally, we are displaying
the figure using the show() function.

There are two basic components of a plot: the figure and the axes. The figure is a container
on which everything is drawn. It contains components such as plots, subplots, axes, titles,
and a legend. In the next section, we will focus on these components, which act like
accessories for charts.

Accessories for charts
In the matplotlib module, we can add titles and axes labels to a graph. We can add a title
using plt.title() and labels using plt.xlabel() and plt.ylabel().

Data Visualization Chapter 5

[138]

Multiple graphs mean multiple objects, such as line, bar, and scatter. Points of different
series can be shown on a single graph. Legends or graph series reflect the y axis. A legend is
a box that appears on either the right or left side of a graph and shows what each element
of the graph represents. Let's see an example where we see how to use these accessories in
our charts:

Add the required libraries
import matplotlib.pyplot as plt

Create the data
x = [1,3,5,7,9,11]
y = [10,25,35,33,41,59]

Let's plot the data
plt.plot(x, y,label='Series-1', color='blue')

Create the data
x = [2,4,6,8,10,12]
y = [15,29,32,33,38,55]

Plot the data
plt.plot(x, y, label='Series-2', color='red')

Add X Label on X-axis
plt.xlabel("X-label")

Add X Label on X-axis
plt.ylabel("Y-label")

Append the title to graph
plt.title("Multiple Python Line Graph")

Add legend to graph
plt.legend()

Display the plot
plt.show()

Data Visualization Chapter 5

[139]

This results in the following output:

In the preceding graph, two lines are shown on a single graph. We have used two extra
parameters – label and color – in the plot() function. The label parameter defines the
name of the series and color defines the color of the line graph. In the upcoming sections,
we will focus on different types of plots. We will explore a scatter plot in the next section.

Scatter plot
Scatter plots draw data points using Cartesian coordinates to show the values of numerical
values. They also represent the relationship between two numerial values. We can create a
scatter plot in Matplotlib using the scatter() function, as follows:

Add the essential library matplotlib
import matplotlib.pyplot as plt

create the data
x = [1,3,5,7,9,11]
y = [10,25,35,33,41,59]

Draw the scatter chart
plt.scatter(x, y, c='blue', marker='*',alpha=0.5)

Append the label on X-axis
plt.xlabel("X-label")

Data Visualization Chapter 5

[140]

Append the label on X-axis
plt.ylabel("Y-label")

Add the title to graph
plt.title("Scatter Chart Sample")

Display the chart
plt.show()

This results in the following output:

In the preceding scatter plot, the scatter() function takes x-axis and y-axis values. In our
example, we are plotting two lists: x and y. We can also use optional parameters such as c
for color, alpha for the transparency of the markers, ranging between 0 and 1, and marker
for the shape of the points in the scatter plot, such as *, o, or any other symbol. In the next
section, we will focus on the line plot.

Line plot
A line plot is a chart that displays a line between two variables. It has a sequence of data
points joined by a segment:

Add the essential library matplotlib
import matplotlib.pyplot as plt

Data Visualization Chapter 5

[141]

create the data
x = [1,3,5,7,9,11]
y = [10,25,35,33,41,59]

Draw the line chart
plt.plot(x, y)

Append the label on X-axis
plt.xlabel("X-label")

Append the label on X-axis
plt.ylabel("Y-label")

Append the title to chart
plt.title("Line Chart Sample")

Display the chart
plt.show()

This results in the following output:

In the preceding line plot program, the plot() function takes x-axis and y-axis values. In
the next section, we will learn how to plot a pie chart.

Data Visualization Chapter 5

[142]

Pie plot
A pie plot is a circular graph that is split up into wedge-shaped pieces. Each piece is
proportionate to the value it represents. The total value of the pie is 100 percent:

Add the essential library matplotlib
import matplotlib.pyplot as plt

create the data
subjects = ["Mathematics","Science","Communication Skills","Computer
Application"]
scores = [85,62,57,92]

Plot the pie plot
plt.pie(scores,
 labels=subjects,
 colors=['r','g','b','y'],
 startangle=90,
 shadow= True,
 explode=(0,0.1,0,0),
 autopct='%1.1f%%')

Add title to graph
plt.title("Student Performance")

Draw the chart
plt.show()

This results in the following output:

Data Visualization Chapter 5

[143]

In the preceding code of the pie chart, we specified values, labels, colors, startangle,
shadow, explode, and autopct. In our example, values is the scores of the student in
four subjects and labels is the list of subject names. We can also specify the color list for
the individual subject scores. The startangle parameter specifies the first value angle,
which is 90 degrees; this means the first line is vertical.

Optionally, we can also use the shadow parameter to specify the shadow of the pie slice
and the explode parameter to pull out a pie slice list of the binary value. If we want to pull
out a second pie slice, then a tuple of values would be (0, 0.1, 0, 0). Let's now jump to the
bar plot.

Bar plot
A bar plot is a visual tool to compare the values of various groups. It can be drawn
horizontally or vertically. We can create a bar graph using the bar() function:

Add the essential library matplotlib
import matplotlib.pyplot as plt

create the data
movie_ratings = [1,2,3,4,5]
rating_counts = [21,45,72,89,42]

Plot the data
plt.bar(movie_ratings, rating_counts, color='blue')

Add X Label on X-axis
plt.xlabel("Movie Ratings")

Add X Label on X-axis
plt.ylabel("Rating Frequency")

Add a title to graph
plt.title("Movie Rating Distribution")

Show the plot
plt.show()

Data Visualization Chapter 5

[144]

This results in the following output:

In the preceding bar chart program, the bar() function takes x-axis values, y-axis values,
and a color. In our example, we are plotting movie ratings and their frequency. Movie
ratings are on the x axis and the rating frequency is on the y axis. We can also specify the
color of the bars in the bar graph using the color parameter. Let's see another variant of
bar plot in the next subsection.

Histogram plot
A histogram shows the distribution of a numeric variable. We create a histogram using the
hist() method. It shows the probability distribution of a continuous variable. A histogram
only works on a single variable while a bar graph works on two variables:

Add the essential library
import matplotlib.pyplot as plt

Create the data
employee_age = [21,28,32,34,35,35,37,42,47,55]

Create bins for histogram
bins = [20,30,40,50,60]

Plot the histogram

Data Visualization Chapter 5

[145]

plt.hist(employee_age, bins, rwidth=0.6)

Add X Label on X-axis
plt.xlabel("Employee Age")

Add X Label on X-axis
plt.ylabel("Frequency")

Add title to graph
plt.title("Employee Age Distribution")

Show the plot
plt.show()

This results in the following output:

In the preceding histogram, the hist() function takes values, bins, and rwidth. In our
example, we are plotting the age of the employee and using a bin of 10 years. We are
starting our bin from 20 to 60 with a 10 years bin size. We are using a relative bar width of
0.6, but you can choose any size for thicker and thinner width. Now it's time to jump to the
bubble plot, which can handle multiple variables in a two-dimensional plot.

Data Visualization Chapter 5

[146]

Bubble plot
A bubble plot is a type of scatter plot. It not only draws data points using Cartesian
coordinates but also creates bubbles on data points. Bubble shows the third dimension of a
plot. It shows three numerical values: two values are on the x and y axes and the third one
is the size of data points (or bubbles):

Import the required modules
import matplotlib.pyplot as plt
import numpy as np

Set figure size
plt.figure(figsize=(8,5))

Create the data
countries =
['Qatar','Luxembourg','Singapore','Brunei','Ireland','Norway','UAE','Kuwait
']
populations = [2781682,
604245,5757499,428963,4818690,5337962,9630959,4137312]
gdp_per_capita = [130475, 106705, 100345, 79530, 78785, 74356,69382, 67000]

scale GDP per capita income to shoot the bubbles in the graph
scaled_gdp_per_capita = np.divide(gdp_per_capita, 80)

colors = np.random.rand(8)

Draw the scatter diagram
plt.scatter(countries, populations, s=scaled_gdp_per_capita, c=colors,
cmap="Blues",edgecolors="grey", alpha=0.5)

Add X Label on X-axis
plt.xlabel("Countries")

Add Y Label on X-axis
plt.ylabel("Population")

Add title to graph
plt.title("Bubble Chart")

rotate x label for clear visualization
plt.xticks(rotation=45)

Show the plot
plt.show()

Data Visualization Chapter 5

[147]

This results in the following output:

In the preceding plot, a bubble chart is created using the scatter function. Here, the
important thing is the s (size) parameter of the scatter function. We assigned a third
variable, scaled_gdp_per_capita, to the size parameters. In the preceding bubble plot,
countries are on the x axis, the population is on the y axis, and GDP per capita is shown by
the size of the scatter point or bubble. We also assigned a random color to the bubbles to
make it attractive and more understandable. From the bubble size, you can easily see that
Qatar has the highest GDP per capita and Kuwait has the lowest GDP per capita. In all the
preceding sections, we have focused on most of the Matplotlib plots and charts. Now, we
will see how we can plot the charts using the pandas module.

Data Visualization Chapter 5

[148]

pandas plotting
The pandas library offers the plot() method as a wrapper around the Matplotlib library.
The plot() method allows us to create plots directly on pandas DataFrames. The
following plot() method parameters are used to create the plots:

kind: A string parameter for the type of graph, such as line, bar, barh, hist, box,
KDE, pie, area, or scatter.
figsize: This defines the size for a figure in a tuple of (width, height).
title: This defines the title for the graph.
grid: Boolean parameter for the axis grid line.
legend: This defines the legend.
xticks: This defines the sequence of x-axis ticks.
yticks: This defines the sequence of y-axis ticks.

Let's create a scatter plot using the pandas plot() function:

Import the required modules
import pandas as pd
import matplotlib.pyplot as plt

Let's create a Dataframe
df = pd.DataFrame({
 'name':['Ajay','Malala','Abhijeet','Yming','Desilva','Lisa'],
 'age':[22,72,25,19,42,38],
 'gender':['M','F','M','M','M','F'],
'country':['India','Pakistan','Bangladesh','China','Srilanka','UK'],
 'income':[2500,3800,3300,2100,4500,5500]
 })

Create a scatter plot
df.plot(kind='scatter', x='age', y='income', color='red', title='Age Vs
Income')

Show figure
plt.show()

Data Visualization Chapter 5

[149]

This results in the following output:

In the preceding plot, the plot() function takes kind, x, y, color, and title values. In
our example, we are plotting the scatter plot between age and income using the kind
parameter as 'scatter'. The age and income columns are assigned to the x and y
parameters. The scatter point color and the title of the plot are assigned to the color and
title parameters:

import matplotlib.pyplot as plt
import pandas as pd

Create bar plot
df.plot(kind='bar',x='name', y='age', color='blue')

Show figure
plt.show()

Data Visualization Chapter 5

[150]

This results in the following output:

In the preceding plot, the plot() function takes kind, x, y, color, and title values. In
our example, we are plotting the bar plot between age and income using the kind
parameter as 'bar'. The name and age columns are assigned to the x and y parameters.
The scatter point color is assigned to the color parameter. This is all about pandas
plotting. Now, from the next section onward, we will see how to visualize the data using
the Seaborn library.

Advanced visualization using the Seaborn
package
Visualization can be helpful to easily understand complex patterns and concepts. It
represents the insights in pictorial format. In the preceding sections, we have learned
about Matplotlib for visualization. Now, we will explore the new Seaborn library for high-
level and advanced statistical plots. Seaborn is an open source Python library for high-level
interactive and attractive statistical visualization. Seaborn uses Matplotlib as a base library
and offers more simple, easy-to-understand, interactive, and attractive visualizations.

Data Visualization Chapter 5

[151]

In the Anaconda software suite, you can install the Seaborn library in the following way:

Install Seaborn with pip:

pip install seaborn

For Python 3, use the following command:

pip3 install seaborn

You can simply install Seaborn from your terminal or Command Prompt using the
following:

conda install seaborn

If you are installing it into the Jupyter Notebook, then you need to put the ! sign before the
pip command. Here is an example:

!pip install seaborn

Let's jump to the lm plot of Seaborn.

lm plots
The lm plot plots the scatter and fits the regression model on it. A scatter plot is the best
way to understand the relationship between two variables. Its output visualization is a joint
distribution of two variables. lmplot() takes two column names – x and y – as a string and
DataFrame variable. Let's see the following example:

Import the required libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Create DataFrame
df=pd.DataFrame({'x':[1,3,5,7,9,11],'y':[10,25,35,33,41,59]})

Create lmplot
sns.lmplot(x='x', y='y', data=df)

Show figure
plt.show()

Data Visualization Chapter 5

[152]

This results in the following output:

By default, lmplot() fits the regression line. We can also remove this by setting
the fit_reg parameter as False:

Create lmplot
sns.lmplot(x='x', y='y', data=df, fit_reg=False)

Show figure
plt.show()

Data Visualization Chapter 5

[153]

This results in the following output:

Let's take a dataset of HR Analytics and try to plot lmplot():

Load the dataset
df=pd.read_csv("HR_comma_sep.csv")

Create lmplot
sns.lmplot(x='satisfaction_level', y='last_evaluation', data=df,
fit_reg=False, hue='left')

Show figure
plt.show()

Data Visualization Chapter 5

[154]

This results in the following output:

In the preceding example, last_evaluation is the evaluated performance of the
employee, satisfaction_level is the employee's satisfaction level in the company, and
left means whether the employee left the company or not. satisfaction_level and
last_evaluation were drawn on the x and y axes, respectively. The third variable left is
passed in the hue parameter. The hue property is used for color shade. We are passing a
left variable as hue. We can clearly see in the diagram that employees that have left are
scattered into three groups. Let's now jump to bar plots.

Bar plots
barplot() offers the relationship between a categorical and a continuous variable. It uses
rectangular bars with variable lengths:

Import the required libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Data Visualization Chapter 5

[155]

Create DataFrame
df=pd.DataFrame({'x':['P','Q','R','S','T','U'],'y':[10,25,35,33,41,59]})

Create lmplot
sns.barplot(x='x', y='y', data=df)

Show figure
plt.show()

This results in the following output:

In the preceding example, the bar plot is created using the bar() function. It takes two
columns – x and y – and a DataFrame as input. In the next section, we will see how to plot a
distribution plot.

Distribution plots
This plots a univariate distribution of variables. It is a combination of a histogram with the
default bin size and a Kernel Density Estimation (KDE) plot. In our example, distplot()
will take the satisfaction_level input column and plot the distribution of it. Here, the
distribution of satisfaction_level has two peaks:

Create a distribution plot (also known as Histogram)
sns.distplot(df.satisfaction_level)

Show figure
plt.show()

Data Visualization Chapter 5

[156]

This results in the following output:

In the preceding code block, we have created the distribution plot using distplot(). It's
time to jump to the box plot diagram.

Box plots
Box plot, aka box-whisker plot, is one of the best plots to understand the distribution of
each variable with its quartiles. It can be horizontal or vertical. It shows quartile
distribution in a box, which is known as a whisker. It also shows the minimum and
maximum and outliers in the data. We can easily create a box plot using Seaborn:

Create boxplot
sns.boxplot(data=df[['satisfaction_level','last_evaluation']])

Show figure
plt.show()

Data Visualization Chapter 5

[157]

This results in the following output:

In the preceding example, we have used two variables for the box plot. Here, the box plot
indicates that the range of satisfaction_level is higher than last_evaluation
(performance). Let's jump to the KDE plot in Seaborn.

KDE plots
The kde() function plots the probability density estimation of a given continuous variable.
It is a non-parametric kind of estimator. In our example, the kde() function takes one
parameter, satisfaction_level, and plots the KDE:

Create density plot
sns.kdeplot(df.satisfaction_level)

Show figure
plt.show()

Data Visualization Chapter 5

[158]

This results in the following output:

In the preceding code block, we have created a density plot using kdeplot(). In the next
section, we will see another distribution plot, which is a combination of a density and box
plot, known as a violin plot.

Violin plots
Violin plots are a combined form of box plots and KDE, which offer easy-to-understand
analysis of the distribution:

Create violin plot
sns.violinplot(data=df[['satisfaction_level','last_evaluation']])

Show figure
plt.show()

Data Visualization Chapter 5

[159]

This results in the following output:

In the preceding example, we have used two variables for the violin plot. Here, we can
conclude that the range of satisfaction_level is higher than last_evaluation
(performance) and both the variables have two peaks in the distribution. After working on
distribution plots, we will see how we can combine the groupby operation and box plot
into a single plot using a count plot.

Count plots
countplot() is a special type of bar plot. It shows the frequency of each categorical
variable. It is also known as a histogram for categorical variables. It makes operations very
simple compared to Matplotlib. In Matplotlib, to create a count plot, first we need to group
by the category column and count the frequency of each class. After that, this count is
consumed by Matplotlib's bar plot. But the Seaborn count plot offers a single line of code to
plot the distribution:

Create count plot (also known as Histogram)
sns.countplot(x='salary', data=df)

Show figure
plt.show()

Data Visualization Chapter 5

[160]

This results in the following output:

In the preceding example, we are counting the salary variable. The count() function
takes a single column and DataFrame. So, we can easily conclude from the graph that most
of the employees have low and medium salaries. We can also use hue as the second
variable. Let's see the following example:

Create count plot (also known as Histogram)
sns.countplot(x='salary', data=df, hue='left')

Show figure
plt.show()

Data Visualization Chapter 5

[161]

This results in the following output:

In the preceding example, we can see that left is used as the hue or color shade. This
indicates that most of the employees with the lowest salary left the company. Let's see
another important plot for visualizing the relationship and distribution of two variables.

Joint plots
The joint plot is a multi-panel visualization; it shows the bivariate relationship and
distribution of individual variables in a single graph. We can also plot a KDE using the
kind parameter of jointplot(). By setting the kind parameter as "kde", we can draw
the KDE plot. Let's see the following example:

Create joint plot using kernel density estimation(kde)
sns.jointplot(x='satisfaction_level', y='last_evaluation', data=df,
kind="kde")

Show figure
plt.show()

Data Visualization Chapter 5

[162]

This results in the following output:

In the preceding plot, we have created the joint plot using jointplot() and also added
the kde plot using a kind parameter as "kde". Let's jump to heatmaps for more diverse
visualization.

Heatmaps
Heatmap offers two-dimensional grid representation. The individual cell of the grid
contains a value of the matrix. The heatmap function also offers annotation on each cell:

Import required library
import seaborn as sns

Read iris data using load_dataset() function
data = sns.load_dataset("iris")

Find correlation

Data Visualization Chapter 5

[163]

cor_matrix=data.corr()

Create heatmap
sns.heatmap(cor_matrix, annot=True)

Show figure
plt.show()

This results in the following output:

In the preceding example, the Iris dataset is loaded using load_dataset() and the
correlation is calculated using the corr() function. The corr() function returns the
correlation matrix. This correlation matrix is plotted using the heatmap() function for the
grid view of the correlation matrix. It takes two parameters: the correlation matrix and
annot. The annot parameter is passed as True. In the plot, we can see a symmetric matrix,
and all the values on the diagonal are ones, which indicates a perfect correlation of a
variable with itself. We can also set a new color map using the cmap parameter for different
colors:

Create heatmap
sns.heatmap(cor_matrix, annot=True, cmap="YlGnBu")

Show figure
plt.show()

Data Visualization Chapter 5

[164]

This results in the following output:

In the preceding heatmap, we have changed the color map using the cmap parameter for
different colors. Here, we are using the YlGnBu (yellow, green, and blue) combination for
cmap. Now, we will move on to the pair plot for faster exploratory analysis.

Pair plots
Seaborn offers quick exploratory data analysis with relationships and individual
distribution using a pair plot. A pair plot offers a single distribution using a histogram and
joint distribution using a scatter plot:

Load iris data using load_dataset() function
data = sns.load_dataset("iris")

Create a pair plot
sns.pairplot(data)

Show figure
plt.show()

Data Visualization Chapter 5

[165]

This results in the following output:

In the preceding example, the Iris dataset is loaded using load_dataset() and that
dataset is passed into the pairplot() function. In the plot, it creates an n by n matrix or a
grid of graphs. The diagonal shows the distribution of the columns, and the non-diagonal
elements of the grid show the scatter plot to understand the relationship among all the
variables.

Data Visualization Chapter 5

[166]

In the preceding few sections, we have seen how to use the Seaborn plots. Now, we will
jump to another important visualization library, which is Bokeh. In the upcoming sections,
we will draw interactive and versatile plots using the Bokeh library.

Interactive visualization with Bokeh
Bokeh is an interactive, high-quality, versatile, focused, and more powerful visualization
library for large-volume and streaming data. It offers interactive, rich charts, plots, layouts,
and dashboards for modern web browsers. Its output can be mapped to a notebook, HTML,
or server.

Both the Matplotlib and Bokeh libraries have different intentions. Matplotlib focuses on
static, simple, and fast visualization while Bokeh focuses on highly interactive, dynamic,
web-based, and quality visualization. Matplotlib is generally used for publication images
while Bokeh is for a web audience. In the remaining sections of this chapter, we will learn
basic plotting using Bokeh. We can create more interactive visuals for data exploration
using Bokeh.

The simplest way to install the Bokeh library is with the Anaconda distribution package. To
install Bokeh, use the following command:

conda install bokeh

We can also install it using pip. To install Bokeh using pip, use the following command:

pip install bokeh

Plotting a simple graph
Let's plot a first and simple plot using Bokeh. First, we need to import the
basic bokeh.plotting module. The output_notebook() function defines that the plot
will render on the Jupyter Notebook. The figure object is used as one of the core objects to
draw charts and graphs. The figure object focuses on the plot title, size, label, grids, and
style. The figure object also deals with plot style, title, axes labels, axes, grids, and various
methods for adding data:

Import the required modules
from bokeh.plotting import figure
from bokeh.plotting import output_notebook
from bokeh.plotting import show

Create the data

Data Visualization Chapter 5

[167]

x = [1,3,5,7,9,11]
y = [10,25,35,33,41,59]

Output to notebook
output_notebook()

Instantiate a figure
fig= figure(plot_width = 500, plot_height = 350)

Create scatter circle marker plot by rendering the circles
fig.circle(x, y, size = 10, color = "red", alpha = 0.7)

Show the plot
show(fig)

This results in the following output:

Data Visualization Chapter 5

[168]

After setting up the figure object, we will create a scatter circle markers plot using a circle
function. The circle() function will take x and y values. It also takes size, color, and
alpha parameters. The show() function will finally plot the output once all the features and
data are added to the plot.

Glyphs
Bokeh uses a visual glyph, which refers to the circles, lines, triangles, squares, bars,
diamonds, and other shape graphs. The glyph is a unique symbol that is used to convey
information in pictorial form. Let's create a line plot using the line() function:

Import the required modules
from bokeh.plotting import figure, output_notebook, show

Import the required modules
from bokeh.plotting import figure
from bokeh.plotting import output_notebook
from bokeh.plotting import show

Create the data
x_values = [1,3,5,7,9,11]
y_values = [10,25,35,33,41,59]

Output to notebook
output_notebook()

Instantiate a figure
p = figure(plot_width = 500, plot_height = 350)

create a line plot
p.line(x_values, y_values, line_width = 1, color = "blue")

Show the plot
show(p)

Data Visualization Chapter 5

[169]

This results in the following output:

In the preceding example, the line() function takes the x- and y-axis values. It also takes
the line_width and color values of the line. In the next section, we will focus on the
layouts for multiple plots.

Layouts
Bokeh offers layouts for organizing plots and widgets. Layouts organize more than one plot
in a single panel for interactive visualizations. They also allow setting the sizing modes for
resizing the plots and widgets based on panel size. The layout can be of the following types:

Row layout: This organizes all the plots in a row or in a horizontal fashion.
Column layout: This organizes all the plots in a column or in a vertical fashion.
Nested layout: This is a combination of row and column layouts.
Grid layout: This offers you a grid of matrices for arranging the plots in.

Data Visualization Chapter 5

[170]

Let's see a row layout example:

Import the required modules
from bokeh.plotting import figure
from bokeh.plotting import output_notebook, show
from bokeh.layouts import row, column

Import iris flower dataset as pandas DataFrame
from bokeh.sampledata.iris import flowers as df

Output to notebook
output_notebook()

Instantiate a figure
fig1 = figure(plot_width = 300, plot_height = 300)
fig2 = figure(plot_width = 300, plot_height = 300)
fig3 = figure(plot_width = 300, plot_height = 300)

Create scatter marker plot by render the circles
fig1.circle(df['petal_length'], df['sepal_length'], size=8, color =
"green", alpha = 0.5)
fig2.circle(df['petal_length'], df['sepal_width'], size=8, color = "blue",
alpha = 0.5)
fig3.circle(df['petal_length'], df['petal_width'], size=8, color = "red",
alpha = 0.5)

Create row layout
row_layout = row(fig1, fig2, fig3)

Show the plot
show(row_layout)

Data Visualization Chapter 5

[171]

This results in the following output:

In this layout plot, we have imported the row and column layouts, loaded the Iris data from
Bokeh sample data, instantiated the three figure objects with plot width and height,
created the three scatter circle markers on each figure object, and created the row layout.
This row layout will take the figure objects as input and is drawn using the show()
function. We can also create a column layout by creating a column layout in place of a row
layout, as shown:

Create column layout
col_layout = column(fig1, fig2, fig3)

Show the plot
show(col_layout)

Data Visualization Chapter 5

[172]

This results in the following output:

Data Visualization Chapter 5

[173]

In the preceding plot, we have created the column layout of three plots. Let's jump to the
nested layouts for more powerful visualizations.

Nested layout using row and column layouts
A nested layout is the combination of multiple row and column layouts. Let's see the
example given here for a better practical understanding:

Import the required modules
from bokeh.plotting import figure, output_notebook, show

Import the required modules
from bokeh.plotting import figure
from bokeh.plotting import output_notebook
from bokeh.plotting import show
from bokeh.layouts import row, column

Import iris flower dataset as pandas DataFrame
from bokeh.sampledata.iris import flowers as df

Output to notebook
output_notebook()

Instantiate a figure
fig1 = figure(plot_width = 300, plot_height = 300)
fig2 = figure(plot_width = 300, plot_height = 300)
fig3 = figure(plot_width = 300, plot_height = 300)

Create scatter marker plot by render the circles
fig1.circle(df['petal_length'], df['sepal_length'], size=8, color =
"green", alpha = 0.5)
fig2.circle(df['petal_length'], df['sepal_width'], size=8, color = "blue",
alpha = 0.5)
fig3.circle(df['petal_length'], df['petal_width'], size=8, color = "red",
alpha = 0.5)

Create nested layout
nasted_layout = row(fig1, column(fig2, fig3))

Show the plot
show(nasted_layout)

Data Visualization Chapter 5

[174]

This results in the following output:

Here, you can see the row layout has two rows. In the first, fig1 is assigned and the second
row has the column layout of fig2 and fig3. So, this layout becomes a 2*2 layout, in which
the first column has only one component and the second column has two components.

Data Visualization Chapter 5

[175]

Multiple plots
Multiple plots and objects can also be created using a grid layout. A grid layout arranges
the plots and widget objects in a row-column matrix fashion. It takes a list of figure objects
for each row. We can also use None as a placeholder:

Import the required modules
from bokeh.plotting import figure
from bokeh.plotting import output_notebook
from bokeh.plotting import show
from bokeh.layouts import gridplot

Import iris flower dataset as pandas DataFrame
from bokeh.sampledata.iris import flowers as df

Output to notebook
output_notebook()

Instantiate a figure
fig1 = figure(plot_width = 300, plot_height = 300)
fig2 = figure(plot_width = 300, plot_height = 300)
fig3 = figure(plot_width = 300, plot_height = 300)

Create scatter marker plot by render the circles
fig1.circle(df['petal_length'], df['sepal_length'], size=8, color =
"green", alpha = 0.5)
fig2.circle(df['petal_length'], df['sepal_width'], size=8, color = "blue",
alpha = 0.5)
fig3.circle(df['petal_length'], df['petal_width'], size=8, color = "red",
alpha = 0.5)

Create a grid layout
grid_layout = gridplot([[fig1, fig2], [None,fig3]])

Show the plot
show(grid_layout)

Data Visualization Chapter 5

[176]

This results in the following output:

The preceding layout is similar to the nested layout. Here, we have imported gridplot().
It arranges the components in rows and columns. The grid plot has taken a list of row
figures. The first items in the list are fig1 and fig2. The second items are None and fig3.
Each item is a row in the grid matrix. The None placeholder is used to leave the cell empty
or without components.

Data Visualization Chapter 5

[177]

Sizing modes can help us to configure figures with resizing options. Bokeh offers the
following sizing modes:

fixed: This retains the same original width and height.
stretch_width: This stretches to the available width based on the type of the
other component. It doesn't maintain the aspect ratio.
stretch_height: This stretches to the available height based on the type of the
other component. It doesn't maintain the aspect ratio.
stretch_both: This stretches both the width and height based on the type of the
other component without maintaining the original aspect ratio.
scale_width: This stretches to the available width based on the type of the
other component while maintaining the original aspect ratio.
scale_height: This stretches to the available height based on the type of the
other component while maintaining the original aspect ratio.
scale_both: This stretches both the width and height based on the type of the
other component while maintaining the original aspect ratio.

After learning about layouts and multiple plots, it's time to learn about interactions for
interactive visualizations.

Interactions
Bokeh offers interactive legends for runtime-actionable graphs. Legends can be hidden or
muted by clicking on glyph plots. We can activate these modes by activating the
click_policy property and clicking on the legend entry.

Hide click policy
Hide click policy hides the desirable glyphs by clicking on the legend entry. Let's see an
example of a hide click policy:

Import the required modules
from bokeh.plotting import figure
from bokeh.plotting import output_notebook
from bokeh.plotting import show
from bokeh.models import CategoricalColorMapper

Import iris flower dataset as pandas DataFrame
from bokeh.sampledata.iris import flowers as df

Data Visualization Chapter 5

[178]

Output to notebook
output_notebook()

Instantiate a figure object
fig = figure(plot_width = 500, plot_height = 350, title="Petal length Vs.
Petal Width",
 x_axis_label='petal_length', y_axis_label='petal_width')

Create scatter marker plot by render the circles
for specie, color in zip(['setosa', 'virginica','versicolor'], ['blue',
'green', 'red']):
 data = df[df.species==specie]
 fig.circle('petal_length', 'petal_width', size=8, color=color, alpha =
0.7, legend_label=specie, source=data)

Set the legend location and click policy
fig.legend.location = 'top_left'
fig.legend.click_policy="hide"

Show the plot
show(fig)

This results in the following output:

Data Visualization Chapter 5

[179]

Here, we can set the click policy with the legend.click_policy parameter of the figure
object. Also, we need to run a for loop of each type of glyph or legend element on which
you click. In our example, we are running a for loop for types of species and colors. On the
click of any species in the legend, it will filter the data and hide that glyph.

Mute click policy
Mute click policy mutes the glyph by clicking on a legend entry. Here, the following code
shows the desirable glyph with high intensity and uninteresting glyphs using lower
intensity instead of hiding the whole glyph. Let's see an example of a mute click policy:

Import the required modules
from bokeh.plotting import figure
from bokeh.plotting import output_notebook
from bokeh.plotting import show
from bokeh.models import CategoricalColorMapper

Import iris flower dataset as pandas DataFrame
from bokeh.sampledata.iris import flowers as df

Output to notebook
output_notebook()

Instantiate a figure object
fig = figure(plot_width = 500, plot_height = 350, title="Petal length Vs.
Petal Width",
 x_axis_label='petal_length', y_axis_label='petal_width')

Create scatter marker plot by render the circles
for specie, color in zip(['setosa', 'virginica','versicolor'], ['blue',
'green', 'red']):
 data = df[df.species==specie]
 fig.circle('petal_length', 'petal_width', size=8, color=color, alpha =
0.7,legend_label=specie,source=data,
 muted_color=color, muted_alpha=0.2)

Set the legend location and click policy
fig.legend.location = 'top_left'
fig.legend.click_policy="mute"

Show the plot
show(fig)

Data Visualization Chapter 5

[180]

This results in the following output:

Here, we can set the mute click policy with the legend.click_policy parameter to mute
figure objects. Also, we need to run the for loop of each type of glyph or legend element on
which you click. In our example, we are running a for loop for types of species and colors.
On the click of any species in the legend, it will filter the data and hide that glyph. In
addition to that, we need to add a muted_color and muted_alpha parameter to the
scatter circle marker.

Annotations
Bokeh offers several annotations for supplementary information for visualizations. It helps
the viewer by adding the following information:

Titles: This annotation provides a name to the plot.
Axis labels: This annotation provides labels to the axis. It helps us to understand
what the x and y axes represent.

Data Visualization Chapter 5

[181]

Legends: This annotation represents the third variable via color or shape and
helps us to link features for easy interpretations.
Color bars: Color bars are created using ColorMapper with the color palette.

Let's see an annotation example:

Import the required modules
from bokeh.plotting import figure
from bokeh.plotting import output_notebook
from bokeh.plotting import show
from bokeh.models import CategoricalColorMapper

Import iris flower dataset as pandas DataFrame
from bokeh.sampledata.iris import flowers as df

Output to notebook
output_notebook()

Create color mapper for categorical column
color_mapper = CategoricalColorMapper(factors=['setosa', 'virginica',
'versicolor'], palette=['blue', 'green', 'red'])

color_dict={'field': 'species','transform': color_mapper }

Instantiate a figure object
p = figure(plot_width = 500, plot_height = 350, title="Petal length Vs.
Petal Width",
 x_axis_label='petal_length', y_axis_label='petal_width')

Create scatter marker plot by render the circles
p.circle('petal_length', 'petal_width', size=8, color=color_dict, alpha =
0.5, legend_group='species', source=df)

Set the legend location
p.legend.location = 'top_left'

Show the plot
show(p)

Data Visualization Chapter 5

[182]

This results in the following output:

In the preceding example, CategoricalColorMapper is imported and objects are created
by defining factors or unique items in iris species and their respective colors. A color
dictionary is created by defining the field and transform parameters for the mapper. We
need to define the figure title; x_axis_label and y_axis_label were defined inside the
figure object. The legend is defined in the circle scatter marker function with the species
column and its location is defined using the location attribute of the figure object with
top_left.

Data Visualization Chapter 5

[183]

Hover tool
The hover tool shows the related information whenever the mouse pointer is placed over a
particular area. Let's see examples to understand the hovering plots:

Import the required modules
from bokeh.plotting import figure
from bokeh.plotting import output_notebook
from bokeh.plotting import show
from bokeh.models import CategoricalColorMapper
from bokeh.models import HoverTool

Import iris flower dataset as pandas DataFrame
from bokeh.sampledata.iris import flowers as df

Output to notebook
output_notebook()

Create color mapper for categorical column
mapper = CategoricalColorMapper(factors=['setosa', 'virginica',
'versicolor'],
 palette=['blue', 'green', 'red'])

color_dict={'field': 'species','transform': mapper}

Create hovertool and specify the hovering information
hover = HoverTool(tooltips=[('Species type','@species'),
 ('IRIS Petal Length','@petal_length'),
 ('IRIS Petal Width', '@petal_width')])

Instantiate a figure object
p = figure(plot_width = 500, plot_height = 350, title="Petal length Vs.
Petal Width",
 x_axis_label='petal_length', y_axis_label='petal_width',
 tools=[hover, 'pan', 'wheel_zoom'])

Create scatter marker plot by render the circles
p.circle('petal_length', 'petal_width', size=8, color=color_dict, alpha =
0.5,legend_group='species',source=df)

Set the legend location
p.legend.location = 'top_left'

Show the plot
show(p)

Data Visualization Chapter 5

[184]

This results in the following output:

In the preceding example, we have imported HoverTool from bokeh.models and created
its object by defining the information that will be shown on mouse hover. In our example,
we have defined information in the list of tuples. Each tuple has two arguments. The first is
for the string label and the second is for the actual value (preceded with @). This hover
object is passed into the figure object's tools parameter.

Widgets
Widgets offer real-time interaction on the frontend. Widgets have the capability to modify
and update plots at runtime. They can run either a Bokeh server or a standalone HTML
application. For using widgets, you need to specify the functionality. It can be nested inside
the layout. There are two approaches to add the functionality of widgets into the program:

CustomJS callback
With the Bokeh server and setup event handler, such as onclick or onchange
event

Data Visualization Chapter 5

[185]

Tab panel
Tab panes allow us to create multiple plots and layouts in a single window. Let's see an
example of a tab panel:

Import the required modules
from bokeh.plotting import figure
from bokeh.plotting import output_notebook
from bokeh.plotting import show
from bokeh.models.widgets import Tabs
from bokeh.models.widgets import Panel

Import iris flower dataset as pandas DataFrame
from bokeh.sampledata.iris import flowers as df

Output to notebook
output_notebook()

Instantiate a figure
fig1 = figure(plot_width = 300, plot_height = 300)
fig2 = figure(plot_width = 300, plot_height = 300)

Create scatter marker plot by render the circles
fig1.circle(df['petal_length'], df['sepal_length'], size=8, color =
"green", alpha = 0.5)
fig2.circle(df['petal_length'], df['sepal_width'], size=8, color = "blue",
alpha = 0.5)

Create panels
tab1 = Panel(child=fig1, title='tab1')
tab2 = Panel(child=fig2, title='tab2')

Create tab by putting panels into it
tab_layout = Tabs(tabs=[tab1,tab2])

Show the plot
show(tab_layout)

Data Visualization Chapter 5

[186]

This results in the following output:

In the preceding code, we have created the two panels by passing figure objects to a child
parameter and title to a title parameter to Panel. Both panels are combined into a list
and passed to the Tabs layout object. This Tabs object is shown by the show() function.
You can change the tab by just clicking on it.

Slider
A slider is a graphical track bar that controls the value by moving it on a horizontal scale.
We can change the values of the graph without affecting its formatting. Let's see an
example of a slider:

Import the required modules
from bokeh.plotting import Figure
from bokeh.plotting import output_notebook
from bokeh.plotting import show
from bokeh.models import CustomJS
from bokeh.models import ColumnDataSource
from bokeh.models import Slider
from bokeh.layouts import column

Show output in notebook

Data Visualization Chapter 5

[187]

output_notebook()

Create list of data
x = [x for x in range(0, 100)]
y = x

Create a DataFrame
df = ColumnDataSource(data={"x_values":x, "y_values":y})

Instantiate the Figure object
fig = Figure(plot_width=350, plot_height=350)

Create a line plot
fig.line('x_values', 'y_values', source=df, line_width=2.5, line_alpha=0.8)

Create a callback using CustomJS
callback = CustomJS(args=dict(source=df), code="""
 var data = source.data;
 var f = cb_obj.value
 var x_values = data['x_values']
 var y_values = data['y_values']
 for (var i = 0; i < x_values.length; i++) {
 y_values[i] = Math.pow(x_values[i], f)
 }
 source.change.emit();
""")

slider_widget = Slider(start=0.0, end=10, value=1, step=.1, title="Display
power of x")

slider_widget.js_on_change('value', callback)

Create layout
slider_widget_layout = column(fig,slider_widget)

Display the layout
show(slider_widget_layout)

Data Visualization Chapter 5

[188]

This results in the following output:

In the preceding code, the Bokeh slider() function takes start, end, value, step,
title, and CustomJS callback as input. In our example, we are creating a line graph and
changing its y variable by the power of the x variable using the slide bar. We can create the
slider by passing start, end, value, step, title, and a CustomJS callback to the Slider
object. We need to focus on the CustomJS callback. It takes the source DataFrame, gets the
value of the slider using cb_obj.value, and updates its values using the change.emit()
function. We are updating y_value in the for loop by finding its power using the slider
value.

Data Visualization Chapter 5

[189]

Summary
In this chapter, we discussed visualizing data using plotting with Matplotlib, pandas,
Seaborn, and Bokeh. We covered various plots, such as line plots, pie plots, bar plots,
histograms, scatter plots, box plots, bubble charts, heatmaps, KDE plots, violin plots, count
plots, joint plots, and pair plots. We focused on accessories for charts, such as titles, labels,
legends, layouts, subplots, and annotations. Also, we learned about interactive
visualization using Bokeh layouts, interactions, hover tools, and widgets.

The next chapter, Chapter 6, Retrieving, Processing, and Storing Data, will teach us skills of
data reading and writing from various sources such as files, objects, and relational and
NoSQL databases. Although some people don't consider these skills for data analysis, an
independent or assistant data analyst must know how they can fetch data from various file
formats and databases for analysis purposes.

6
Retrieving, Processing, and

Storing Data
Data can be found everywhere, in all shapes and forms. We can get it from the web, IoT
sensors, emails, FTP, and databases. We can also collect it ourselves in a lab experiment,
election polls, marketing polls, and social surveys. As a data professional, you should know
how to handle a variety of datasets as that is a very important skill. We will discuss
retrieving, processing, and storing various types of data in this chapter. This chapter offers
an overview of how to acquire data in various formats, such as CSV, Excel, JSON, HDF5,
Parquet, and pickle.

Sometimes, we need to store or save the data before or after the data analysis. We will also
learn how to access data from relational and NoSQL (Not Only SQL) databases such as
sqlite3, MySQL, MongoDB, Cassandra, and Redis. In the world of the21st-century web,
NoSQL databases are undergoing substantial growth in big data and web applications.
They provide a more flexible, faster, and schema-free database. NoSQL databases can store
data in various formats, such as document style, column-oriented, objects, graphs, tuples,
or a combination.

The topics covered in this chapter are listed as follows:

Reading and writing CSV files with NumPy
Reading and writing CSV files with pandas
Reading and writing data from Excel
Reading and writing data from JSON
Reading and writing data from HDF5
Reading and writing data from HTML tables
Reading and writing data from Parquet
Reading and writing data from a pickle pandas object
Lightweight access with sqllite3
Reading and writing data from MySQL

Retrieving, Processing, and Storing Data Chapter 6

[191]

Reading and writing data from MongoDB
Reading and writing data from Cassandra
Reading and writing data from Redis
PonyORM

Technical requirements
This chapter has the following technical requirements:

You can find the code and the dataset at the following GitHub link: https:/ /
github.com/ PacktPublishing/ Python- Data- Analysis- Third- Edition/ tree/
master/Chapter06.
All the code blocks are available in the ch6.ipynb file.
This chapter uses CSV files (demo.csv, product.csv, demo_sample_df.csv,
my_first_demo.csv, and employee.csv), Excel files (employee.xlsx,
employee_performance.xlsx, and new_employee_details.xlsx), JSON
files (employee.json and employee_demo.json), an HTML file
(country.html), a pickle file (demo_obj.pkl), an HDF5 file
(employee.h5), and a Parquet file (employee.parquet) for practice purposes.
In this chapter, we will use the pandas, pickle, pyarrow, sqlite3, pymysql,
mysql-connector, pymongo, cassandra-driver, and redis Python libraries.

Reading and writing CSV files with NumPy
In Chapter 2, NumPy and pandas, we looked at the NumPy library in detail and explored
lots of functionality. NumPy also has functions to read and write CSV files and get output
in a NumPy array. The genfromtxt() function will help us to read the data and
the savetxt() function will help us to write the data into a file. The genfromtxt()
function is slow compared to other functions due to its two-stage operation. In the first
stage, it reads the data in a string type, and in the second stage, it converts the string type
into suitable data types. genfromtxt() has the following parameters:

fname: String; filename or path of the file.
delimiter: String; optional, separate string value. By default, it takes
consecutive white spaces.
skip_header: Integer; optional, number of lines you want to skip from the start
of the file.

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter06

Retrieving, Processing, and Storing Data Chapter 6

[192]

Let's see an example of reading and writing CSV files:

import genfromtxt function
from numpy import genfromtxt

Read comma separated file
product_data = genfromtxt('demo.csv', delimiter=',')

display initial 5 records
print(product_data)

This results in the following output:

[[14. 32. 33.]
 [24. 45. 26.]
 [27. 38. 39.]]

In the preceding code example, we are reading the demo.csv file using the genfromtxt()
method of the NumPy module:

import numpy
import numpy as np

Create a sample array
sample_array = np.asarray([[1,2,3], [4,5,6], [7,8,9]])

Write sample array to CSV file
np.savetxt("my_first_demo.csv", sample_array, delimiter=",")

In the preceding code example, we are writing the my_first_demo.csv file using the
savetxt() method of the NumPy module.

Let's see how can we read CSV files using the pandas module in the next section.

Reading and writing CSV files with pandas
The pandas library provides a variety of file reading and writing options. In this section,
we will learn about reading and writing CSV files. In order to read a CSV file, we will use
the read_csv() method. Let's see an example:

import pandas
import pandas as pd

Read CSV file
sample_df=pd.read_csv('demo.csv', sep=',' , header=None)

Retrieving, Processing, and Storing Data Chapter 6

[193]

display initial 5 records
sample_df.head()

This results in the following output:

We can now save the dataframe as a CSV file using the following code:

Save DataFrame to CSV file
sample_df.to_csv('demo_sample_df.csv')

In the preceding sample code, we have read and saved the CSV file using the read_csv()
and to_csv(0) methods of the pandas module.

The read_csv() method has the following important arguments:

filepath_or_buffer: Provides a file path or URL as a string to read a file.
sep: Provides a separator in the string, for example, comma as ',' and
semicolon as ';'. The default separator is a comma ','.
delim_whitespace: Alternative argument for a white space separator. It is a
Boolean variable. The default value for delim_whitespace is False.
header: This is used to identify the names of columns. The default value is
infer.
names: You can pass a list of column names. The default value for names is None.

In pandas, a DataFrame can also be exported in a CSV file using the to_csv() method.
CSV files are comma-separated values files. This method can run with only a single
argument (filename as a string):

path_or_buf: The file path or location where the file will export.
sep: This is a delimiter used for output files.
header: To include column names or a list of column aliases (default value:
True).
index: To write an index to the file (default value: True).

Retrieving, Processing, and Storing Data Chapter 6

[194]

For more parameters and detailed descriptions, visit https:/ /pandas. pydata. org/pandas-
docs/stable/reference/ api/ pandas. DataFrame. to_csv. html. Let's see how can we read
Excel files using the pandas module in the next section.

Reading and writing data from Excel
Excel files are widely used files in the business domain. Excel files can be easily read in
Python's pandas using the read_excel() function. The read_excel() function takes a
file path and sheet_name parameters to read the data:

Read excel file
df=pd.read_excel('employee.xlsx',sheet_name='performance')

display initial 5 records
df.head()

This results in the following output:

DataFrame objects can be written on Excel sheets. We can use the to_excel() function to
export DataFrame objects into an Excel sheet. Mostly, the to_excel() function arguments
are the same as to_csv() except for the sheet_name argument:

df.to_excel('employee_performance.xlsx')

In the preceding code example, we have exported a single DataFrame into an Excel sheet.
We can also export multiple DataFrames in a single file with different sheet names. We can
also write more than one DataFrame in a single Excel file (each DataFrame on different
sheets) using ExcelWriter, as shown:

Read excel file
emp_df=pd.read_excel('employee.xlsx',sheet_name='employee_details')

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html

Retrieving, Processing, and Storing Data Chapter 6

[195]

write multiple dataframes to single excel file
with pd.ExcelWriter('new_employee_details.xlsx') as writer:
 emp_df.to_excel(writer, sheet_name='employee')
 df.to_excel(writer, sheet_name='perfromance')

In the preceding code example, we have written multiple DataFrames to a single Excel file.
Here, each DataFrame store on a different sheet using the ExcelWriter function. Let's see
how can we read the JSON files using the pandas module in the next section.

Reading and writing data from JSON
JSON (JavaScript Object Notation) files are a widely used format for interchanging data
among web applications and servers. It acts as a data interchanger and is more readable
compared to XML. pandas offers the read_json function for reading JSON data and
to_json() for writing JSON data:

Reading JSON file
df=pd.read_json('employee.json')

display initial 5 records
df.head()

This results in the following output:

In the preceding code example, we have read the JSON file using the read_json()
method. Let's see how to write a JSON file:

Writing DataFrame to JSON file
df.to_json('employee_demo.json',orient="columns")

Retrieving, Processing, and Storing Data Chapter 6

[196]

In the preceding code example, we have written the JSON file using the to_json()
method. In the to_json() method, the orient parameter is used to handle the output
string format. orient offers record, column, index, and value kind of formats. You can
explore it in more detail on the official web page, at https:/ /pandas. pydata. org/ pandas-
docs/version/0.24. 2/reference/ api/ pandas. DataFrame. to_ json. html. It's time to jump
into HDF5 files. In the next section, we will see how to read and write HDF5 files using the
pandas module.

Reading and writing data from HDF5
HDF stands for Hierarchical Data Format. HDF is designed to store and manage large
amounts of data with high performance. It offers fast I/O processing and storage of
heterogeneous data. There are various HDF file formats available, such as HDF4 and HDF5.
HDF5 is the same as a dictionary object that reads and writes pandas DataFrames. It uses
the PyTables library's read_hdf() function for reading the HDF5 file and the to_hdf()
function for writing:

Write DataFrame to hdf5
df.to_hdf('employee.h5', 'table', append=True)

In the preceding code example, we have written the HDF file format using the to_hdf()
method. 'table' is a format parameter used for the table format. Table format may
perform slower but offers more flexible operations, such as searching and selecting. The
append parameter is used to append input data onto the existing data file:

Read a hdf5 file
df=pd.read_hdf('employee.h5', 'table')

display initial 5 records
df.head()

This results in the following output:

https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.to_json.html

Retrieving, Processing, and Storing Data Chapter 6

[197]

In the preceding code example, we have read the HDF file format using the read_hdf()
method. Let's see how to read and write HTML tables from a website in the next section.

Reading and writing data from HTML tables
HTML tables store rows in the <tr>...</tr> tag and each row has corresponding
<td>...</td> cells for holding values. In pandas, we can also read the HTML tables from
a file or URL. The read_html() function reads an HTML table from a file or URL and
returns HTML tables into a list of pandas DataFrames:

Reading HTML table from given URL
table_url =
'https://en.wikipedia.org/wiki/List_of_sovereign_states_and_dependent_terri
tories_in_North_America'
df_list = pd.read_html(table_url)

print("Number of DataFrames:",len(df_list))

This results in the following output:

Number of DataFrames: 7

In the preceding code example, we have read the HTML table from a given web page using
the read_html() method. read_html() will return all the tables as a list of DataFrames.
Let's check one of the DataFrames from the list:

Check first DataFrame
df_list[0].head()

This results in the following output:

Retrieving, Processing, and Storing Data Chapter 6

[198]

In the preceding code example, we have shown the initial five records of the first table
available on the given web page. Similarly, we can also write DataFrame objects as HTML
tables using to_html(). to_html() renders the content as an HTML table:

Write DataFrame to raw HTML
df_list[1].to_html('country.html')

With the preceding code example, we can convert any DataFrame into an HTML page that
contains the DataFrame as a table.

Reading and writing data from Parquet
The Parquet file format provides columnar serialization for pandas DataFrames. It reads
and writes DataFrames efficiently in terms of storage and performance and shares data
across distributed systems without information loss. The Parquet file format does not
support duplicate and numeric columns.

There are two engines used to read and write Parquet files in pandas: pyarrow and
the fastparquet engine. pandas's default Parquet engine is pyarrow; if pyarrow is
unavailable, then it uses fastparquet. In our example, we are using pyarrow. Let's install
pyarrow using pip:

pip install pyarrow

You can also install the pyarrow engine in the Jupyter Notebook by putting an ! before the
pip keyword. Here is an example:

!pip install pyarrow

Let's write a file using the pyarrow engine:

Write to a parquet file.
df.to_parquet('employee.parquet', engine='pyarrow')

In the preceding code example, we have written the using to_parquet() Parquet
file and the pyarrow engine:

Read parquet file
employee_df = pd.read_parquet('employee.parquet', engine='pyarrow')

display initial 5 records
employee_df.head()

Retrieving, Processing, and Storing Data Chapter 6

[199]

This results in the following output:

In the preceding code example, we have read the Parquet file using read_parquet() and
the pyarrow engine. read_parquet() helps to read the Parquet file formats. Let's see how
to read and write the data using pickle files in the next section.

Reading and writing data from a pickle
pandas object
In the data preparation step, we will use various data structures such as dictionaries, lists,
arrays, or DataFrames. Sometimes, we might want to save them for future reference or send
them to someone else. Here, a pickle object comes into the picture. pickle serializes the
objects to save them and can be loaded again any time. pandas offer two functions:
read_pickle() for loading pandas objects and to_pickle() for saving Python objects:

import pandas
import pandas as pd

Read CSV file
df=pd.read_csv('demo.csv', sep=',' , header=None)

Save DataFrame object in pickle file
df.to_pickle('demo_obj.pkl')

In the preceding code, we read the demo.csv file using the read_csv() method with
sep and header parameters. Here, we have assigned sep with a comma and header with
None. Finally, we have written the dataset to a pickle object using the to_pickle()
method. Let's see how to read pickle objects using the pandas library:

#Read DataFrame object from pickle file
pickle_obj=pd.read_pickle('demo_obj.pkl')

Retrieving, Processing, and Storing Data Chapter 6

[200]

display initial 5 records
pickle_obj.head()

This results in the following output:

In the preceding code, we have read the pickle objects using the read_pickle() method.

Lightweight access with sqllite3
SQLite is an open-source database engine. It offers various features such as faster execution,
lightweight processing, serverless architecture, ACID compliance, less administration, high
stability, and reliable transactions. It is the most popular and widely deployed database in
the mobile and computer world. It is also known as an embedded relational database
because it runs as part of your application. SQLite is a lighter database and does not offer
full-fledged features. It is mainly used for small data to store and process locally, such as
mobile and desktop applications. The main advantages of SQLite are that it is easy to use,
efficient, and light, and can be embedded into the application.

We can read and write data in Python from the sqlite3 module. We don't need to
download and install sqlite3 as it is already available in all the standard Python
distributions. With sqlite3, we can either store the database in a file or keep it in RAM.
sqlite3 allows us to write any database using SQL without any third-party application
server. Let's look at the following example to understand database connectivity:

Import sqlite3
import sqlite3

Create connection. This will create the connection with employee
database. If the database does not exist it will create the database
conn = sqlite3.connect('employee.db')

Create cursor
cur = conn.cursor()

Execute SQL query and create the database table

Retrieving, Processing, and Storing Data Chapter 6

[201]

cur.execute("create table emp(eid int,salary int)")

Execute SQL query and Write the data into database
cur.execute("insert into emp values(105, 57000)")

commit the transaction
con.commit()

Execute SQL query and Read the data from the database
cur.execute('select * from emp')

Fetch records
print(cur.fetchall())

Close the Database connection
conn.close()

Output:
[(105, 57000)]

Here, we are using the sqlite3 module. First, we import the module and create a
connection using the connect() method. The connect() method will take the database
name and path; if the database does not exist, it will create the database with the given
name and on the given location path. Once you have established a connection with the
database, then you need to create the Cursor object and execute the SQL query using the
execute() method. We can create a table in the execute() method, as given in the
example emp table, which is created in the employee database. Similarly, we can write the
data using the execute() method with an insert query argument and commit the data
into the database using the commit() method. Data can also be extracted using the
execute() method by passing the select query as an argument and fetched using
fetchall() and the fetchone() method. fetchone() extracts a single record and
fetchall() extracts all the records from a database table.

Reading and writing data from MySQL
MySQL is a fast, open-source, and easy-to-use relational or tabular database. It is suitable
for small and large business applications. It is very friendly with database-driven web
development applications. There are lots of ways to access data in Python from MySQL.
Connectors such as MySQLdb, mysqlconnector, and pymysql are available for MySQL
database connectivity. For this connectivity purpose, you should install a MySQL relational
database and the mysql-python connector. The MySQL setup details are available on its
website: https://www. mysql. com/ downloads/ .

https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/
https://www.mysql.com/downloads/

Retrieving, Processing, and Storing Data Chapter 6

[202]

You can use the pymysql connector as the client library and it can be installed using pip:

pip install pymysql

We can establish a connection with the following steps:

Import the library.1.
Create a database connection.2.
Create a cursor object.3.
Execute the SQL query.4.
Fetch the records or response for the update or insert the record.5.
Close the connection.6.

In our examples, we are trying database connectivity using mysqlconnecter and
pymysql. Before running the database connectivity script, the first step is to design and
create a database and then create a table in MySQL.

Let's create a database using the following query:

>> create database employee

Change the database to the employee database:

>> use employee

Create a table in the database:

>> create table emp(eid int, salary int);

Now we can insert and fetch the records from a table in MySQL. Let's look at the following
example to understand the database connectivity:

import pymysql connector module
import pymysql

Create a connection object using connect() method
connection = pymysql.connect(host='localhost', # IP address of the MySQL
database server
 user='root', # user name
 password='root',# password
 db='emp', # database name
 charset='utf8mb4', # character set
 cursorclass=pymysql.cursors.DictCursor) #
cursor type

try:

Retrieving, Processing, and Storing Data Chapter 6

[203]

 with connection.cursor() as cur:
 # Inject a record in database
 sql_query = "INSERT INTO `emp` (`eid`, `salary`) VALUES (%s, %s)"
 cur.execute(sql_query, (104,43000))

 # Commit the record insertion explicitly.
 connection.commit()

 with connection.cursor() as cur:
 # Read records from employee table
 sql_query = "SELECT * FROM `emp`"
 cur.execute(sql_query)
 table_data = cur.fetchall()
 print(table_data)
except:
 print("Exception Occurred")
finally:
 connection.close()

Here, we are using the pymysql module. First, we import the module and create a
connection. The connect() function will take the host address, which is localhost, in
our case (we can also use the IP address of the remote database), username, password,
database name, character set, and cursor class.

After establishing the connection, we can read or write the data. In our example, we are
writing the data using the insert SQL query and retrieving it using the select query. In
the insert query, we are executing the query and passing the argument that we want to
enter into the database, and committing the results into the database using the commit()
method. When we read the records using the select query, we will get some number of
records. We can extract those records using the fetchone() and fetchall() functions.
The fetchone() method extracts only single records and the fetchall() method extracts
multiple records from a database table.

One more thing; here, all the read-write operations are performed in a try block and the
connection is closed in the final block. We can also try one more
module mysql.connector for MySQL and Python connectivity. It can be installed
using pip:

pip install mysql-connector-python

Let's look at the following example to understand the database connectivity:

Import the required connector
import mysql.connector
import pandas as pd

Retrieving, Processing, and Storing Data Chapter 6

[204]

Establish a database connection to mysql
connection=mysql.connector.connect(user='root',password='root',host='localh
ost',database='emp')

Create a cursor
cur=connection.cursor()

Running sql query
cur.execute("select * from emp")

Fetch all the records and print it one by one
records=cur.fetchall()
for i in records:
 print(i)

Create a DataFrame from fetched records.
df = pd.DataFrame(records)

Assign column names to DataFrame
df.columns = [i[0] for i in cur.description]

close the connection
connection.close()

In the preceding code example, we are connecting to Python with the MySQL database
using the mysql.connector module and the approach and steps for retrieving data are the
same as with the pymysql module. We are also writing the extracted records into a pandas
DataFrame by just passing fetched records into the DataFrame object and assigning column
names from the cursor description.

Inserting a whole DataFrame into the database
In the preceding program, a single record is inserted using the insert command. If we
want to insert multiple records, we need to run a loop to insert the multiple records into the
database. We can also use the to_sql() function to insert multiple records in a single line
of code:

Import the sqlalchemy engine
from sqlalchemy import create_engine

Instantiate engine object
en = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}"
 .format(user="root",
 pw="root",
 db="emp"))

Retrieving, Processing, and Storing Data Chapter 6

[205]

Insert the whole dataframe into the database
df.to_sql('emp', con=en, if_exists='append',chunksize=1000, index= False)

In the preceding code example, we will create an engine for a database connection with
username, password, and database parameters. The to_sql() function writes multiple
records from the DataFrame to a SQL database. It will take the table name, the con
parameter for the connection engine object, the if_exists parameter for checking whether
data will append to a new table or replace with a new table, and chunksize for writing
data in batches.

Reading and writing data from MongoDB
MongoDB is a document-oriented non-relational (NoSQL) database. It uses JSON-like
notation, BSON (Binary Object Notation) to store the data. MongoDB offers the following
features:

It is a free, open-source, and cross-platform database software.
It is easy to learn, can build faster applications, supports flexible schemas,
handles diverse data types, and has the capability to scale in a distributed
environment.
It works on concepts of documents.
It has a database, collection, document, field, and primary key.

We can read and write data in Python from MongoDB using the pymongo connector. For
this connectivity purpose, we need to install MongoDB and the pymongo connector. You
can download MongoDB from its official web portal: https:/ /www. mongodb. com/ download-
center/community. PyMongo is a pure Python MongoDB client library that can be installed
using pip:

pip install pymongo

Let's try database connectivity using pymongo:

Import pymongo
import pymongo

Create mongo client
client = pymongo.MongoClient()

Get database
db = client.employee

https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community

Retrieving, Processing, and Storing Data Chapter 6

[206]

Get the collection from database
collection = db.emp

Write the data using insert_one() method
employee_salary = {"eid":114, "salary":25000}
collection.insert_one(employee_salary)

Create a dataframe with fetched data
data = pd.DataFrame(list(collection.find()))

Here, we are trying to extract data from database collection in MongoDB by creating a
Mongo client, inserting data, extracting collection details, and assigning it to the
DataFrame. Let's see how to create a database connection with the columnar database
Cassandra in the next section.

Reading and writing data from Cassandra
Cassandra is scalable, highly available, durable, and fault-tolerant, has lower admin
overhead, has faster read-write, and is a resilient column-oriented database. It is easier to
learn and configure. It provides solutions for quite complex problems. It also supports
replication across multiple data centers. Plenty of big companies, for example, Apple, eBay,
and Netflix use Cassandra.

We can read and write data in Python from Cassandra using the cassandra-driver
connector. For this connectivity purpose, we need to install Cassandra and cassandra-
driver connectors. You can download Cassandra from its official website: http:/ /
cassandra.apache. org/ download/ . cassandra-driver is a pure Python Cassandra client
library that can be installed using pip:

pip install cassandra-driver

Let's try database connectivity using cassandra-driver:

Import the cluster
from cassandra.cluster import Cluster

Creating a cluster object
cluster = Cluster()

Create connections by calling Cluster.connect():
conn = cluster.connect()

Execute the insert query
conn.execute("""INSERT INTO employee.emp_details (eid, ename, age) VALUES

http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/

Retrieving, Processing, and Storing Data Chapter 6

[207]

(%(eid)s, %(ename)s, %(age)s)""", {'eid':101, 'ename': "Steve Smith",
'age': 42})

Execute the select query
rows = conn.execute('SELECT * FROM employee.emp_details')

Print the results
for emp_row in rows:
 print(emp_row.eid, emp_row.ename, emp_row.age)

Create a dataframe with fetched data
data = pd.DataFrame(rows)

Here, we are trying to extract data from the Cassandra database by creating a cluster object,
creating a connection using the connect() method, executing an insert, and selecting
query data. After running the query, we are printing the results and assigning the extracted
records to the pandas DataFrame. Let's move on now to another NoSQL database: Redis.

Reading and writing data from Redis
Redis is an open-source NoSQL database. It is a key-value database, in-memory, extremely
fast, and highly available. It can also be employed as a cache or act as a message broker. In-
memory means it uses RAM for the storage of data and handles bigger-sized data using
virtual memory. Redis offers a cache service or permanent storage. Redis supports a variety
of data structures, such as string, set, list, bitmap, geospatial indexes, and hyperlogs. Redis
can deal with geospatial, streaming, and time-series data. It is offered with cloud services
such as AWS and Google Cloud.

We can read and write data in Python from Redis using the Redis connector. For this
connectivity purpose, we need to install Redis and the Redis connector. You can download
Redis from the following link: https:/ / github. com/ rgl/ redis/ downloads. Redis is a pure
Python Redis client library that can be installed using pip:

pip install redis

Let's try database connectivity using Redis:

Import module
import redis

Create connection
r = redis.Redis(host='localhost', port=6379, db=0)

Setting key-value pair

https://github.com/rgl/redis/downloads
https://github.com/rgl/redis/downloads
https://github.com/rgl/redis/downloads
https://github.com/rgl/redis/downloads
https://github.com/rgl/redis/downloads
https://github.com/rgl/redis/downloads
https://github.com/rgl/redis/downloads
https://github.com/rgl/redis/downloads
https://github.com/rgl/redis/downloads
https://github.com/rgl/redis/downloads
https://github.com/rgl/redis/downloads
https://github.com/rgl/redis/downloads
https://github.com/rgl/redis/downloads

Retrieving, Processing, and Storing Data Chapter 6

[208]

r.set('eid', '101')

Get value for given key
value=r.get('eid')

Print the value
print(value)

Here, we are trying to extract data from the Redis key-value database. First, we have
created a connection with the database. We are setting the key-value pairs into the Redis
database using the set() method and we have also extracted the value using the get()
method with the given key parameter.

Finally, its time to shift to the last topic of this chapter, which is PonyORM for object-
relational mapping (ORM).

PonyORM
PonyORM is a powerful ORM package that is written in pure Python. It is fast and easy to
use and performs operations with minimum effort. It provides automatic query
optimization and a GUI database schema editor. It also supports automatic transaction
management, automatic caching, and composite keys. PonyORM uses Python generator
expressions, which are translated in SQL. We can install it using pip:

$ pip install pony

Let's see an example of ORM using pony:

Import pony module
from pony.orm import *

Create database
db = Database()

Define entities
class Emp(db.Entity):
 eid = PrimaryKey(int,auto=True)
 salary = Required(int)

Check entity definition
show(Emp)

Bind entities to MySQL database
db.bind('mysql', host='localhost', user='root', passwd='12345',
db='employee')

Retrieving, Processing, and Storing Data Chapter 6

[209]

Generate required mappings for entities
db.generate_mapping(create_tables=True)

turn on the debug mode
sql_debug(True)

Select the records from Emp entities or emp table
select(e for e in Emp)[:]

Show the values of all the attribute
select(e for e in Emp)[:].show()

Output:
eid|salary
---+------
104|43000
104|43000

In the preceding code example, we are performing ORM. First, we have created a
Database object and defined entities using an Emp class. After that, we have attached the
entities to the database using db.bind(). We can bind it with four databases: sqlite,
mysql, postgresql, and oracle. In our example, we are using MySQL and passing its
credential details, such as username, password, and database name. We can perform the
mapping of entities with data using generate_mapping(). The create_tables=True
argument creates the tables if it does not exist. sql_debug(True) will turn on the debug
mode. The select() function translates a Python generator into a SQL query and returns a
pony object. This pony object will be converted into a list of entities using the slice operator
([:]) and the show() function will display all the records in a tabular fashion.

Summary
In this chapter, we learned about retrieving, processing, and storing data in different
formats. We have looked at reading and writing data from various file formats and sources,
such as CSV, Excel, JSON, HDF5, HTML, pickle, table, and Parquet files. We also learned
how to read and write from various relational and NoSQL databases, such as SQLite3,
MySQL, MongoDB, Cassandra, and Redis.

The next chapter, Chapter 7, Cleaning Messy Data, is about the important topic of data
preprocessing and feature engineering with Python. The chapter starts with exploratory
data analysis, and leads to filtering, handling missing values, and outliers. After cleaning,
the focus will be on data transformation, such as encoding, scaling, and splitting.

7
Cleaning Messy Data

Data analysts and scientists spend most of their time cleaning data and pre-processing
messy datasets. While this activity is less talked about, it is one of the most performed
activities and one of the most important skills for any data professional. Mastering the skill
of data cleaning is necessary for any aspiring data scientist. Data cleaning and pre-
processing is the process of identifying, updating, and removing corrupt or incorrect data.
Cleaning and pre-processing results in high-quality data for robust and error-free analysis.
Quality data can beat complex algorithms and outperform simple and less complex
algorithms. In this context, high quality means accurate, complete, and consistent data.
Data cleaning is a set of activities such as handling missing values, removing outliers,
feature encoding, scaling, transformation, and splitting.

This chapter focuses on data cleaning, manipulation, and wrangling. Data preparation,
manipulation, wrangling, and munging are all terms for the same thing, and the main
objective is to clean up the data in order to get valuable insights. We will start by exploring
employee data and then start filtering the data and handling missing values and outliers.
After cleaning, we will focus on performing data transformation activities such as
encoding, scaling, and splitting. We will mostly be using pandas and scikit-learn in
this chapter.

In this chapter, we will cover the following topics:

Exploring data
Filtering data to weed out the noise
Handling missing values
Handling outliers
Feature encoding techniques
Feature scaling
Feature transformation
Feature splitting

Let's get started!

Cleaning Messy Data Chapter 7

[211]

Technical requirements
The following are the technical requirements for this chapter:

You can find the code and the datasets that will be used in this chapter in this
book's GitHub repository at https:/ /github. com/ PacktPublishing/ Python-
Data-Analysis- Third- Edition/ tree/ master/ Chapter07.
All the code is available in the ch7.ipynb file.
This chapter uses only one CSV file (employee.csv) for practice purposes.
In this chapter, we will use the pandas and scikit-learn Python libraries, so
please ensure you have them installed.

Exploring data
In this section, we will explore data by performing Exploratory Data Analysis (EDA). EDA
is the most critical and most important component of the data analysis process. EDA offers
the following benefits:

It provides an initial glimpse of data and its context.
It captures quick insights and identifies the potential drivers from the data for
predictive analysis. It finds the queries and questions that can be answered for
decision-making purposes.
It assesses the quality of the data and helps us build the road map for data
cleaning and preprocessing.
It finds missing values, outliers, and the importance of features for analysis.
EDA uses descriptive statistics and visualization techniques to explore data.

In EDA, the first step is to read the dataset. We can read the dataset using pandas. The
pandas library offers various options for reading data. It can read files in various formats,
such as CSV, Excel, JSON, parquet, HTML, and pickle. All these methods were covered in
the previous chapter. After reading the data, we can explore the data. This initial
exploration will help us understand the data and gain some domain insights. Let's start
with the EDA process.

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter07

Cleaning Messy Data Chapter 7

[212]

First, we will read the employee.csv file (you can find this file in the Chapter-7 folder of
this book's GitHub repository at https:/ / github. com/ PacktPublishing/ Python- Data-
Analysis-Third-Edition/ blob/ master/ Chapter07/ employee. csv):

import pandas
import pandas as pd

Read the data using csv
data=pd.read_csv('employee.csv')

Let's take a look at the first five records in the file using the head() method:

See initial 5 records
data.head()

This results in the following output:

Similarly, let's look at the last five records using the head() method:

See last 5 records
data.tail()

This results in the following output:

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter07/employee.csv

Cleaning Messy Data Chapter 7

[213]

We can check the list of columns using the columns attribute:

Print list of columns in the data
print(data.columns)

This results in the following output:

Index(['name', 'age', 'income', 'gender', 'department', 'grade',
 'performance_score'], dtype='object')

Let's check out the list of columns by using the shape of the DataFrame by using the shape
attribute:

Print the shape of a DataFrame
print(data.shape)

This results in the following output:

(9, 7)

As we can see, the dataset has 9 rows and 7 columns.

We can check the table schema, its columns, rows, data types, and missing values in the
DataFrame by using the following code:

Check the information of DataFrame
data.info()

This results in the following output:

In the preceding output, you can see that there are 7 columns in the data. Out of these 7
columns, 3 columns (age, income, and gender) have missing values. Out of these 7 columns,
4 are objects, 2 are floats, and 1 is an integer.

Cleaning Messy Data Chapter 7

[214]

Now, let's take a look at the descriptive statistics of the data by using the describe
function. This function will describe numerical objects. In our example, the age, income,
and performance scores will describe the count, mean, standard deviation, min-max, and
the first, second, and third quartiles:

Check the descriptive statistics
data.describe()

This results in the following output:

In the preceding code block, we have checked the descriptive statistics values of the data
using the describe() function. From these results, we can interpret that the employee's
age is ranging from 23 to 54 years. Here, the mean age is 40 years and the median age is 45
years. Similarly, we can draw conclusions for income and performance scores. Now that
we've described the data, let's learn how to filter noise from data.

Filtering data to weed out the noise
In the last two decades, the data size of companies and government agencies has increased
due to digitalization. This also caused an increase in consistency, errors, and missing
values. Data filtering is responsible for handling such issues and optimizing them for
management, reporting, and predictions. The filtering process boosts the accuracy,
relevance, completeness, consistency, and quality of the data by processing dirty, messy, or
coarse datasets. It is a very crucial step for any kind of data management because it can
make or break a competitive edge of business. Data scientists need to master the skill of
data filtering. Different kinds of data need different kinds of treatment. That's why a
systematic approach to data filtering needs to be taken.

Cleaning Messy Data Chapter 7

[215]

In the previous section, we learned about data exploration, while in this section, we will
learn about data filtering. Data can be filtered either column-wise or row-wise. Let's explore
them one by one.

Column-wise filtration
In this subsection, we will learnhow to filter column-wise data. We can filter columns using
the filter() method. The slicing []. filter() method selects the columns when
they're passed as a list of columns. Take a look at the following example:

Filter columns
data.filter(['name', 'department'])

This results in the following output:

Similarly, we can also filter columns using slicing. In slicing, a single column does not need
a list, but when we are filtering multiple columns, then they should be on the list. The
output of a single column is a pandas Series. If we want the output as a DataFrame, then we
need to put the name of the single column into a list. Take a look at the following example:

Filter column "name"
data['name']

0 Allen Smith
1 S Kumar
2 Jack Morgan
3 Ying Chin
4 Dheeraj Patel

Cleaning Messy Data Chapter 7

[216]

5 Satyam Sharma
6 James Authur
7 Josh Wills
8 Leo Duck
Name: name, dtype: object

In the preceding example, we have selected a single column without passing it into the list
and the output is a pandas Series.

Now, let's select a single column using a Python list:

Filter column "name"
data[['name']]

This results in the following output:

As you can see, a single column can be selected using a Python list. The output of this filter
is a pandas DataFrame with a single column.

Now, let's filter multiple columns from the pandas DataFrame:

Filter two columns: name and department
data[['name','department']]

Cleaning Messy Data Chapter 7

[217]

This results in the following output:

As you can see, we have filtered the two columns without using the filter() function.

Row-wise filtration
Now, let's filter row-wise data. We can filter data using indices, slices, and conditions. In
indices, you have to pass the index of the record, while for slicing, we need to pass the
slicing range. Take a look at the following example:

Select rows for the specific index
data.filter([0,1,2],axis=0)

This results in the following output:

In the preceding example, we have filtered the data based on indexes.

The following is an example of filtering data by slicing:

Filter data using slicing
data[2:5]

Cleaning Messy Data Chapter 7

[218]

This results in the following output:

In condition-based filtration, we have to pass some conditions in square brackets, [], or
brackets, (). For a single value, we use the == (double equal to) condition, while for
multiple values, we use the isin() function and pass the list of values. Let's take a look at
the following example:

Filter data for specific value
data[data.department=='Sales']

This results in the following output:

In the preceding code, we filtered the department sales in the first line of code using ==
(double equal to) as a condition. Now, let's filter multiple columns using the isin()
function:

Select data for multiple values
data[data.department.isin(['Sales','Finance'])]

This results in the following output:

Cleaning Messy Data Chapter 7

[219]

In the preceding example, we filtered the department sales and finance department using
the isin() function.

Now, let's look at the >= and <= conditions for continuous variables. We can have single or
multiple conditions. Let's take a look at the following example:

Filter employee who has more than 700 performance score
data[(data.performance_score >=700)]

This results in the following output:

In the preceding example, we filtered employees on the basis of their performance score
(performance_score >=700). Now, let's filter data using multiple conditions:

Filter employee who has more than 500 and less than 700 performance score
data[(data.performance_score >=500) & (data.performance_score < 700)]

This results in the following output:

We can also try the query() method. This method queries the columns using a boolean
expression. Let's look at an example:

Filter employee who has performance score of less than 500
data.query('performance_score<500')

Cleaning Messy Data Chapter 7

[220]

This results in the following output:

In the preceding example, we filtered the employees who have performance scores less
than 500. Now, let's learn how to handle missing values.

Handling missing values
Missing values are the values that are absent from the data. Absent values can occur due to
human error, privacy concerns, or the value not being filled in by the respondent filling in
the survey. This is the most common problem in data science and the first step of data
preprocessing. Missing values affect a machine learning model's performance. Missing
values can be handled in the following ways:

Drop the missing value records.
Fill in the missing value manually.
Fill in the missing values using the measures of central tendency, such as mean,
median, and mode. The mean is used to impute the numeric feature, the median
is used to impute the ordinal feature, and the mode or highest occurring value is
used to impute the categorical feature.
Fill in the most probable value using machine learning models such as
regression, decision trees, KNNs.

It is important to understand that in some cases, missing values will not impact the data.
For example, driving license numbers, social security numbers, or any other unique
identification numbers will not impact the machine learning models because they can't be
used as features in the model.

In the following subsections, we will look at how missing values can be handled in more
detail. First, we'll learn how to drop missing values.

Cleaning Messy Data Chapter 7

[221]

Dropping missing values
In Python, missing values can be dropped using the dropna() function. dropna takes one
argument: how. how can take two values: all or any. any drops certain rows that contain
NAN or missing values, while all drops all the rows contains NAN or missing values:

Drop missing value rows using dropna() function
Read the data

data=pd.read_csv('employee.csv')
data=data.dropna()
data

This results in the following output:

This summarizes the dataset as a dataframe.

Filling in a missing value
In Python, missing values can be dropped using the fillna() function. The fillna()
function takes one value that we want to fill at the missing place. We can fill in the missing
values using the mean, median, and mode:

Read the data
data=pd.read_csv('employee.csv')

Fill all the missing values in the age column with mean of the age column
data['age']=data.age.fillna(data.age.mean())
data

Cleaning Messy Data Chapter 7

[222]

This results in the following output:

In the preceding example, the missing values in the age column have been filled in with the
mean value of the age column. Let's learn how to fill in the missing values using the
median:

Fill all the missing values in the income column with a median of the
income column
data['income']=data.income.fillna(data.income.median())
data

This results in the following output:

Cleaning Messy Data Chapter 7

[223]

In the preceding example, the missing values in the income column have been filled in with
the median value of the income column. Let's learn how to fill in missing values using the
mode:

Fill all the missing values in the gender column(category column) with
the mode of the gender column
data['gender']=data['gender'].fillna(data['gender'].mode()[0])
data

This results in the following output:

In the preceding code example, the missing values in the gender column have been filled in
with the mode value of the gender column. As you have seen, the mean, median, and mode
help us handle missing values in pandas DataFrames. In the next section, we will focus on
how to handle outliers.

Handling outliers
Outliers are those data points that are distant from most of the similar points – in other
words, we can say the outliers are entities that are different from the crowd. Outliers cause
problems when it comes to building predictive models, such as long model training times,
poor accuracy, an increase in error variance, a decrease in normality, and a reduction in the
power of statistical tests.

Cleaning Messy Data Chapter 7

[224]

There are two types of outliers: univariate and multivariate. Univariate outliers can be
found in single variable distributions, while multivariates can be found in n-dimensional
spaces. We can detect and handle outliers in the following ways:

Box Plot: We can use a box plot to create a bunch of data points through
quartiles. It groups the data points between the first and third quartile into a
rectangular box. The box plot also displays the outliers as individual points using
the interquartile range.
Scatter Plot: A scatter plot displays the points (or two variables) on the two-
dimensional chart. One variable is placed on the x-axis, while the other is placed
on the y-axis.
Z-Score: The Z-score is a kind of parametric approach to detecting outliers. It
assumes a normal distribution of the data. The outlier lies in the tail of the
normal curve distribution and is far from the mean:

Interquartile Range (IQR): IQR is a robust statistical measure of data dispersion.
It is the difference between the third and first quartile. These quartiles can be
visualized in a box plot. This is also known as the midspread, the middle 50%, or
H-spread:

Percentile: A percentile is a statistical measure that divides data into 100 groups
of equal size. Its value indicates the percentage of the population below that
value. For example, the 95th percentile means 95% of people fall under this
category.

Let's drop some outliers using standard deviation and the mean:

Dropping the outliers using Standard Deviation
Read the data
data=pd.read_csv('employee.csv')

Dropping the outliers using Standard Deviation
upper_limit= data['performance_score'].mean () + 3 *
data['performance_score'].std ()
lower_limit = data['performance_score'].mean () - 3 *

Cleaning Messy Data Chapter 7

[225]

data['performance_score'].std ()
data = data[(data['performance_score'] < upper_limit) &
(data['performance_score'] > lower_limit)]
data

This results in the following output:

In the preceding example, we are handling the outliers using standard deviation and the
mean. We are using as the upper limit and

 as the lower limit for filtering the outliers. We can also try
the percentile values to remove the outliers. Let's take a look at the following example:

Read the data
data=pd.read_csv('employee.csv')

Drop the outlier observations using Percentiles
upper_limit = data['performance_score'].quantile(.99)
lower_limit = data['performance_score'].quantile(.01)
data = data[(data['performance_score'] < upper_limit) &
(data['performance_score'] > lower_limit)]
data

This results in the following output:

Cleaning Messy Data Chapter 7

[226]

In the preceding code example, we handled the outliers using percentiles. We removed the
outliers by using a percentile of 1 for the lower limit and by using a percentile of 99 for the
upper limit. This helps us handle outliers in pandas DataFrames. In the next section, we
will focus on how to perform feature encoding.

Feature encoding techniques
Machine learning models are mathematical models that required numeric and integer
values for computation. Such models can't work on categorical features. That's why we
often need to convert categorical features into numerical ones. Machine learning model
performance is affected by what encoding technique we use. Categorical values range from
0 to N-1 categories.

One-hot encoding
One-hot encoding transforms the categorical column into labels and splits the column into
multiple columns. The numbers are replaced by binary values such as 1s or 0s. For
example, let's say that, in the color variable, there are three categories; that is, red, green,
and blue. These three categories are labeled and encoded into binary columns, as shown in
the following diagram:

One-hot encoding can also be performed using the get_dummies() function. Let's use the
get_dummies() function as an example:

Read the data
data=pd.read_csv('employee.csv')
Dummy encoding
encoded_data = pd.get_dummies(data['gender'])

Join the encoded _data with original dataframe
data = data.join(encoded_data)

Cleaning Messy Data Chapter 7

[227]

Check the top-5 records of the dataframe
data.head()

This results in the following output:

Here, we can see two extra columns, F and M. Both columns are dummy columns that were
added by the Boolean encoder. We can also perform the same task with OneHotEncoder
from the scikit-learn module. Let's look at an example of using OneHotEncoder.

Import one hot encoder
from sklearn.preprocessing import OneHotEncoder

Initialize the one-hot encoder object
onehotencoder = OneHotEncoder()

Fill all the missing values in income column(category column) with mode
of age column
data['gender']=data['gender'].fillna(data['gender'].mode()[0])

Fit and transforms the gender column
onehotencoder.fit_transform(data[['gender']]).toarray()

This results in the following output:

array([[1., 0.],
 [1., 0.],
 [0., 1.],
 [1., 0.],
 [1., 0.],
 [1., 0.],
 [1., 0.],
 [1., 0.],
 [0., 1.]])

In the preceding code example, we imported OneHotEncoder, initialized its object, and
then fit and transformed the model on the gender column. We can see that the output array
has two columns for female and male employees.

Cleaning Messy Data Chapter 7

[228]

Label encoding
Label encoding is also known as integer encoding. Integer encoding replaces categorical
values with numeric values. Here, the unique values in variables are replaced with a
sequence of integer values. For example, let's say there are three categories: red, green, and
blue. These three categories were encoded with integer values; that is, red is 0, green is 1,
and blue is 2.

Let's take a look at the following label encoding example:

Import pandas
import pandas as pd

Read the data
data=pd.read_csv('employee.csv')

Import LabelEncoder
from sklearn.preprocessing import LabelEncoder

Instantiate the Label Encoder Object
label_encoder = LabelEncoder()

Fit and transform the column
encoded_data = label_encoder.fit_transform(data['department'])

Print the encoded
print(encoded_data)

This results in the following output:

[2 1 0 0 2 1 2 1 0 2]

In the preceding example, we performed simple label encoding.

In the following example, we are encoding the department column using the
LabelEncoder class. First, we must import and initialize the LabelEncoder object and
then fit and transform the column that we want to encode. Let's perform the inverse
transformation on the encoded labels:

Perform inverse encoding
inverse_encode=label_encoder.inverse_transform([0, 0, 1, 2])

Print inverse encode
print(inverse_encode)

Cleaning Messy Data Chapter 7

[229]

This results in the following output:

['Finance' 'Finance' 'Operations' 'Sales']

In the preceding example, we reversed the encoding of the encoded values using
inverse_transformation(). We can also use one-hot encoding with numerical
variables. Here, each unique numeric value is encoded into an equivalent binary variable.

Ordinal encoder
Ordinal encoding is similar to label encoding, except there's an order to the encoding. The
output encoding will start from 0 and end at one less than the size of the categories. Let's
look at an example containing employee grades such as G0, G1, G2, G3, and G4. These five
grades have been encoded with ordinal integer values; that is, G0 is 0, G1 is 1, G2 is 2, G3 is
3, and G4 is 4. We can define the order of the values as a list and pass it to the category
parameter. The ordinal encoder uses the integer or numeric values to encode. Here, the
integer and numeric values are ordinal in nature. This encoding helps machine learning
algorithms take advantage of this ordinal relationship.

Let's take a look at the following OrdinalEncoder example:

Import pandas and OrdinalEncoder
import pandas as pd
from sklearn.preprocessing import OrdinalEncoder

Load the data
data=pd.read_csv('employee.csv')

Initialize OrdinalEncoder with order
order_encoder=OrdinalEncoder(categories=['G0','G1','G2','G3','G4'])

fit and transform the grade
data['grade_encoded'] = label_encoder.fit_transform(data['grade'])

Check top-5 records of the dataframe
data.head()

Cleaning Messy Data Chapter 7

[230]

This results in the following output:

The preceding example is similar to the LabelEncoder example, except for the order of the
values that were passed when the OrdinalEncoder object was initialized. In this example,
the categories parameters were passed alongside the grade order at the time of
initialization.

Feature scaling
In real life, most features have different ranges, magnitudes, and units, such as age being
between 0-200 and salary being between 0 to thousands or millions. From a data analyst or
data scientist's point of view, how can we compare these features when they are on
different scales? High-magnitude features will weigh more on machine learning models
than lower magnitude features. Thankfully, feature scaling or feature normalization can
solve such issues.

Feature scaling brings all the features to the same level of magnitude. This is not
compulsory for all kinds of algorithms; some algorithms clearly need scaled data, such as
those that rely on Euclidean distance measures such as K-nearest neighbor and the K-
means clustering algorithm.

Cleaning Messy Data Chapter 7

[231]

Methods for feature scaling
Now, let's look at the various methods we can use for feature scaling:

Standard Scaling or Z-Score Normalization: This method computes the scaled
values of a feature by using the mean and standard deviation of that feature. It is
best suited for normally distributed data. Suppose is the mean and is the
standard deviation of the feature column. This results in the following formula:

Let's take a look at the following standard scaling example:

Import StandardScaler(or z-score normalization)
from sklearn.preprocessing import StandardScaler

Initialize the StandardScaler
scaler = StandardScaler()

To scale data
scaler.fit(data['performance_score'].values.reshape(-1,1))
data['performance_std_scaler']=scaler.transform(data['performance_s
core'].values.reshape(-1,1))
data.head()

This results in the following output:

Here, we need to import and initialize the StandardScaler object. After
initialization, we must perform fit and transform operations on the column that
we want to scale.

Cleaning Messy Data Chapter 7

[232]

Min-Max Scaling: This method linearly transforms the original data into the
given range. It preserves the relationships between the scaled data and the
original data. If the distribution is not normally distributed and the value of the
standard deviation is very small, then the min-max scaler works better since it is
more sensitive to outliers. Let's say that is the minimum value and is
the maximum value of a feature column, while and are the
new minimum and new maximum. This results in the following formula:

Let's take a look at the following min-max scaling example:

Import MinMaxScaler
from sklearn.preprocessing import MinMaxScaler

Initialise the MinMaxScaler
scaler = MinMaxScaler()

To scale data
scaler.fit(data['performance_score'].values.reshape(-1,1))
data['performance_minmax_scaler']=scaler.transform(data['performanc
e_score'].values.reshape(-1,1))
data.head()

This results in the following output:

Here, we need to import and initialize the MinMaxScaler object. After
initialization, we, must perform the fit and transform operations on the column
that we want to scale.

Cleaning Messy Data Chapter 7

[233]

Robust Scaling: This method is similar to the min-max scaler method. Instead of
min-max, this method uses an interquartile range. That's why it is robust to
outliers. Suppose and are the first and third quartiles of column x. This
results in the following formula:

Let's take a look at the following robust scaling example:

Import RobustScaler
from sklearn.preprocessing import RobustScaler

Initialise the RobustScaler
scaler = RobustScaler()

To scale data
scaler.fit(data['performance_score'].values.reshape(-1,1))
data['performance_robust_scaler']=scaler.transform(data['performanc
e_score'].values.reshape(-1,1))

See initial 5 records
data.head()

This results in the following output:

Cleaning Messy Data Chapter 7

[234]

Here, we need to import and initialize the RobustScaler object. After initialization, we
must fit and transform the column that we want to scale.

Feature transformation
Feature transformation alters features so that they're in the required form. It also reduces
the effect of outliers, handles skewed data, and makes the model more robust. The
following list shows the different kinds of feature transformation:

Log transformation is the most common mathematical transformation used to
transform skewed data into a normal distribution. Before applying the log
transform, ensure that all the data values only contain positive values; otherwise,
this will throw an exception or error message.
Square and cube transformation has a moderate effect on distribution shape. It
can be used to reduce left skewness.
Square and cube root transformation has a fairly strong transformation effect on
the distribution shape but it is weaker than logarithms. It can be applied to right-
skewed data.
Discretization can also be used to transform a numeric column or attribute. For
example, the age of a group of candidates can be grouped into intervals such as
0-10, 11-20, and so on. We can also use discretization to assign conceptual labels
instead of intervals such as youth, adult, and senior.

If the feature is right-skewed or positively skewed or grouped at lower values, then we can
apply the square root, cube root, and logarithmic transformations, while if the feature is
left-skewed or negative skewed or grouped at higher values, then we can apply the cube,
square, and so on.

Let's take a look at an example of discretization transformation:

Read the data
data=pd.read_csv('employee.csv')

Create performance grade function
def performance_grade(score):
 if score>=700:
 return 'A'
 elif score<700 and score >= 500:
 return 'B'
 else:
 return 'C'

Cleaning Messy Data Chapter 7

[235]

Apply performance grade function on whole DataFrame using apply()
function.
data['performance_grade']=data.performance_score.apply(performance_grade)

See initial 5 records
data.head()

This results in the following output:

In the preceding example, we loaded the dataset and created the performance_grade()
function. The performance_grade() function takes the performance score and converts it
into grades; that is, A, B, and C.

Feature splitting
Feature splitting helps data analysts and data scientists create more new features for
modeling. It allows machine learning algorithms to comprehend features and uncover
potential information for decision-making; for example, splitting name features into first,
middle, and last name and splitting an address into house number, locality, landmark, area,
city, country, and zip code.

Composite features such as string and date columns violate the tidy data principles. Feature
splitting is a good option if you wish to generate more features from a composite feature.
We can utilize the components of a column to do this. For example, from a date object, we
can easily get the year, month, and weekday. These features may directly affect the
prediction model. There is no rule of thumb when it comes to breaking the features into
components; this depends on the characteristics of the feature:

Split the name column in first and last name
data['first_name']=data.name.str.split(" ").map(lambda var: var[0])
data['last_name']=data.name.str.split(" ").map(lambda var: var[1])

Cleaning Messy Data Chapter 7

[236]

Check top-5 records
data.head()

This results in the following output:

In the preceding example, we split the name column using the split() and map()
functions. The split() function splits the name column using a space, while the map()
function assigns the first divided string to the first name and the second divided string to
the last name.

Summary
In this chapter, we explored data preprocessing and feature engineering with Python. This
had helped you gain important skills for data analysis. The main focus of this chapter was
on cleaning and filtering out dirty data. We started with EDA and discussed data filtering,
handling missing values, and outliers. After this, we focused on feature engineering tasks
such as transformation, feature encoding, feature scaling, and feature splitting. We then
explored various methods and techniques we can use when it comes to feature engineering.

In the next chapter, Chapter 8, Signal Processing and Time Series, we will focus on the
importance of signal processing and time series data in Python. We'll start this chapter by
analyzing time series data and discussing moving averages, autocorrelations,
autoregressive models, and ARMA models. Then, we will look at signal processing and
discuss Fourier transform, spectral transform, and filtering on signals.

8
Signal Processing and Time

Series
Signal processing is a subdomain of electrical engineering and applied mathematics. It
covers the analysis and processing of time-related variables or variables that change over
time, such as analog and digital signals. Analog signals are non-digitized signals, such as
radio or telephone signals. Digital signals are digitized, discrete, time-sampled signals, such
as computer and digital device signals. Time-series analysis is the category of signal
processing that deals with ordered or sequential lists of observations. This data can be
ordered hourly, daily, weekly, monthly, or annually. The time component in the time series
plays a very important role. We need to extract all the relations in the data with respect to
time. There are lots of examples that are related to time-series analysis, such as the
production and sales of a product, predicting stock prices on an hourly or daily basis,
economic forecasts, and census analysis.

In this chapter, our main focus is on signal processing and time-series operations using the
NumPy, SciPy, pandas, and statsmodels libraries. This chapter will be helpful for data
analysts to understand trends and patterns and forecast sales, stock prices, production,
population, rainfall, and weather temperature.

We will cover the following topics in this chapter:

The statsmodels modules
Moving averages
Window functions
Defining cointegration
STL decomposition
Autocorrelation
Autoregressive models

Signal Processing and Time Series Chapter 8

[238]

ARMA models
Generating periodic signals
Fourier analysis
Spectral analysis filtering

Technical requirements
This chapter has the following technical requirements:

You can find the code and the dataset at the following GitHub link: https:/ /
github.com/ PacktPublishing/ Python- Data- Analysis- Third- Edition/ tree/
master/Chapter08.
All the code blocks are in the Ch8.ipynb file.
This chapter uses two CSV files (beer_production.csv and sales.csv) for
practice purposes.
In this chapter, we will use the pandas and Scikit-learn Python libraries.

The statsmodels modules
statsmodels is an open source Python module that offers functionality for various
statistical operations, such as central values (mean, mode, and median), dispersion
measures (standard deviation and variance), correlations, and hypothesis tests.

Let's install statsmodels using pip and run the following command:

pip3 install statsmodels

statsmodels provides the statsmodels.tsa submodule for time-series operations.
statsmodels.tsa provides useful time-series methods and techniques, such as
autoregression, autocorrelation, partial autocorrelation, moving averages,
SimpleExpSmoothing, Holt's linear, Holt-Winters, ARMA, ARIMA, vector
autoregressive (VAR) models, and lots of helper functions, which we will explore in the
upcoming sections.

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter08

Signal Processing and Time Series Chapter 8

[239]

Moving averages
Moving averages, or rolling means, are time-series filters that filter impulsive responses by
averaging the set or window of observations. It uses window size concepts and finds the
average of the continuous window slides for each period. The simple moving average can
be represented as follows:

There are various types of moving averages available, such as centered, double, and
weighted moving averages. Let's find the moving average using the rolling() function,
but before that, we'll first load the data and visualize it:

import needful libraries
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt

Read dataset
sales_data = pd.read_csv('sales.csv')

Setting figure size
plt.figure(figsize=(10,6))

Plot original sales data
plt.plot(sales_data['Time'], sales_data['Sales'], label="Sales-Original")

Rotate xlabels
plt.xticks(rotation=60)

Add legends
plt.legend()

#display the plot
plt.show()

Signal Processing and Time Series Chapter 8

[240]

This results in the following output:

In the preceding code, we have read the sales dataset of 36 months from January 2017 to
December 2019 and plotted it using Matplotlib. Now, we will compute the moving average
using the rolling function:

Moving average with window 3
sales_data['3MA']=sales_data['Sales'].rolling(window=3).mean()

Moving average with window 5
sales_data['5MA']=sales_data['Sales'].rolling(window=5).mean()

Setting figure size
plt.figure(figsize=(10,6))

Plot original sales data
plt.plot(sales_data['Time'], sales_data['Sales'], label="Sales-Original",
color="blue")

Plot 3-Moving Average of sales data
plt.plot(sales_data['Time'], sales_data['3MA'], label="3-Moving

Signal Processing and Time Series Chapter 8

[241]

Average(3MA)", color="green")

Plot 5-Moving Average of sales data
plt.plot(sales_data['Time'], sales_data['5MA'], label="5-Moving
Average(5MA)", color="red")

Rotate xlabels
plt.xticks(rotation=60)

Add legends
plt.legend()

Display the plot
plt.show()

This results in the following output:

In the preceding code, we computed the 3 and 5 moving averages using the rolling mean
and displayed the line plot using Matplotlib. Now, let's see different types of window
functions for moving averages in the next section.

Signal Processing and Time Series Chapter 8

[242]

Window functions
NumPy offers several window options that can compute weights in a rolling window as we
did in the previous section.

The window function uses an interval for spectral analysis and filter design (for more
background information, refer to http:/ / en.wikipedia. org/ wiki/ Window_ function). The
boxcar window is a rectangular window with the following formula:

w(n) = 1

The triangular window is shaped like a triangle and has the following formula:

Here, L can be equal to N, N+1, or N–1.

If the value of L is N–1, it is known as the Bartlett window and has the following formula:

In the pandas module, the DataFrame.rolling() function provides the same
functionality using the win_type parameter for different window functions. Another
parameter is the window for defining the size of the window, which is easy to set as shown
in the previous section. Let's use the win_type parameter and try different window
functions:

import needful libraries
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt

http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function

Signal Processing and Time Series Chapter 8

[243]

Read dataset
sales_data = pd.read_csv('sales.csv', index_col ="Time")

Apply all the windows on given DataFrame
sales_data['boxcar']=sales_data.Sales.rolling(3, win_type ='boxcar').mean()
sales_data['triang']=sales_data.Sales.rolling(3, win_type ='triang').mean()
sales_data['hamming']=sales_data.Sales.rolling(3, win_type
='hamming').mean()
sales_data['blackman']=sales_data.Sales.rolling(3, win_type
='blackman').mean()

#Plot the rolling mean of all the windows
sales_data.plot(kind='line',figsize=(10,6))

This results in the following output:

In the preceding code block, we have plotted the rolling mean for different window
functions, such as boxcar, triangular, hamming, and Blackman window, using the
win_type parameter in the rolling() function. Now, let's learn how to find a correlation
between two time series using cointegration.

Signal Processing and Time Series Chapter 8

[244]

Defining cointegration
Cointegration is just like a correlation that can be viewed as a superior metric to define the
relatedness of two time series. Cointegration is the stationary behavior of the linear
combination of two time series. In this way, the trend of the following equation must be
stationary:

y(t) - a x(t)

Consider a drunk man and his dog out on a walk. Correlation tells us whether they are
going in the same direction. Cointegration tells us something about the distance over time
between the man and his dog. We will show cointegration using randomly generated time-
series and real data. The Augmented Dickey-Fuller (ADF) test tests for a unit root in a time
series and can be used to determine the stationarity of time series.

Let's see an example to understand the cointegration of two time series.

You can check out the full code for this example at the following GitHub link: https:/ /
github.com/PacktPublishing/ Python- Data- Analysis- Third- Edition/ blob/ master/
Chapter08/Ch8.ipynb.

Let's get started with the cointegration demo:

Import the required libraries and define the following function to calculate the1.
ADF statistic:

Import required library
import statsmodels.api as sm
import pandas as pd
import statsmodels.tsa.stattools as ts
import numpy as np

Calculate ADF function
def calc_adf(x, y):
 result = sm.OLS(x, y).fit()
 return ts.adfuller(result.resid)

Load the Sunspot data into a NumPy array:2.

Read the Dataset
data = sm.datasets.sunspots.load_pandas().data.values
N = len(data)

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter08/Ch8.ipynb

Signal Processing and Time Series Chapter 8

[245]

Generate a sine wave and calculate the cointegration of the sine with itself:3.

Create Sine wave and apply ADF test
t = np.linspace(-2 * np.pi, 2 * np.pi, N)
sine = np.sin(np.sin(t))
print("Self ADF", calc_adf(sine, sine))

The code should print the following:

Self ADF (-5.0383000037165746e-16, 0.95853208606005591, 0, 308,
{'5%': -2.8709700936076912, '1%': -3.4517611601803702, '10%':
-2.5717944160060719}, -21533.113655477719)

In the printed results, the first value represents the ADF metric and the second
value represents the p-value. As you can see, the p-value is very high. The
following values are the lag and sample size. The dictionary at the end gives the t-
distribution values for this exact sample size.

Now, add noise to the sine to demonstrate how noise will influence the signal:4.

Apply ADF test on Sine and Sine with noise
noise = np.random.normal(0, .01, N)
print("ADF sine with noise", calc_adf(sine, sine + noise))

With the noise, we get the following results:

ADF sine with noise (-7.4535502402193075, 5.5885761455106898e- 11,
3, 305, {'5%': -2.8710633193086648, '1%': -3.4519735736206991,
'10%': -2.5718441306100512}, -1855.0243977703672)

The p-value has gone down considerably. The ADF metric here, -7.45, is lower
than all the critical values in the dictionary. All these are strong arguments to
reject cointegration.

Let's generate a cosine of a larger magnitude and offset. Again, let's add noise to5.
it:

Apply ADF test on Sine and Cosine with noise
cosine = 100 * np.cos(t) + 10

print("ADF sine vs cosine with noise", calc_adf(sine, cosine +
noise))

Signal Processing and Time Series Chapter 8

[246]

The following values get printed:

ADF sine vs cosine with noise (-17.927224617871534,
2.8918612252729532e-30, 16, 292, {'5%': -2.8714895534256861, '1%':
-3.4529449243622383, '10%': -2.5720714378870331},
-11017.837238220782)

Similarly, we have strong arguments to reject cointegration. Checking for
cointegration between the sine and sunspots gives the following output:

print("Sine vs sunspots", calc_adf(sine, data))

The following values get printed:

Sine vs sunspots (-6.7242691810701016, 3.4210811915549028e-09, 16,
292,
{'5%': -2.8714895534256861, '1%': -3.4529449243622383,
'10%': -2.5720714378870331}, -1102.5867415291168)

The confidence levels are roughly the same for the pairs used here because they
are dependent on the number of data points, which doesn't vary much. The
outcome is summarized in the following table:

Pair Statistic p-value 5% 1% 10% Reject
Sine with self -5.03E-16 0.95 -2.87 -3.45 -2.57 No
Sine versus sine with noise -7.45 5.58E-11 -2.87 -3.45 -2.57 Yes
Sine versus cosine with noise -17.92 2.89E-30 -2.87 -3.45 -2.57 Yes
Sine versus sunspots -6.72 3.42E-09 -2.87 -3.45 -2.57 Yes

In the preceding table, the results are summarized for all four sine waves and their
significance level with rejection/acceptance is discussed. Let's now move on to another
important topic of the chapter, which is STL decomposition of any time series.

STL decomposition
STL stands for seasonal and trend decomposition using LOESS. STL is a time-series
decomposition method that can decompose an observed signal into a trend, seasonality,
and residual. It can estimate non-linear relationships and handle any type of seasonality.
The statsmodels.tsa.seasonal subpackage offers the seasonal_decompose method
for splitting a given input signal into trend, seasonality, and residual.

Signal Processing and Time Series Chapter 8

[247]

Let's see the following example to understand STL decomposition:

import needful libraries
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose

Read the dataset
data = pd.read_csv('beer_production.csv')
data.columns= ['date','data']

Change datatype to pandas datetime
data['date'] = pd.to_datetime(data['date'])
data=data.set_index('date')

Decompose the data
decomposed_data = seasonal_decompose(data, model='multiplicative')

Plot decomposed data
decomposed_data.plot()

Display the plot
plt.show()

This results in the following output:

Signal Processing and Time Series Chapter 8

[248]

In the preceding code block, the given time-series signal is decomposed into trend,
seasonal, and residual components using the seasonal_decompose() function of
the statsmodels module. Let's now jump to autocorrelation to understand the
relationship between a time series and its lagged series.

Autocorrelation
Autocorrelation, or lagged correlation, is the correlation between a time series and its
lagged series. It indicates the trend in the dataset. The autocorrelation formula can be
defined as follows:

We can calculate the autocorrelation using the NumPy correlate() function to calculate
the actual autocorrelation of sunspot cycles. We can also directly visualize the
autocorrelation plot using the autocorrelation_plot() function. Let's compute the
autocorrelation and visualize it:

import needful libraries
import pandas as pd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt

Read the dataset
data = sm.datasets.sunspots.load_pandas().data

Calculate autocorrelation using numpy
dy = data.SUNACTIVITY - np.mean(data.SUNACTIVITY)
dy_square = np.sum(dy ** 2)

Cross-correlation
sun_correlated = np.correlate(dy, dy, mode='full')/dy_square
result = sun_correlated[int(len(sun_correlated)/2):]

Diplay the Chart
plt.plot(result)

Display grid
plt.grid(True)

Signal Processing and Time Series Chapter 8

[249]

Add labels
plt.xlabel("Lag")

plt.ylabel("Autocorrelation")
Display the chart
plt.show()

This results in the following output:

In the preceding code block, we have seen an autocorrelation example using the NumPy
module. Let's compute the autocorrelation plot produced by pandas:

from pandas.plotting import autocorrelation_plot

Plot using pandas function
autocorrelation_plot(data.SUNACTIVITY)

Signal Processing and Time Series Chapter 8

[250]

This results in the following output:

In the preceding code block, we have produced an autocorrelation plot using the
autocorrelation_plot() function of the pandas library. It is easier to draw the
autocorrelation plot using the pandas library compared to the NumPy library. Let's now
jump to autoregressive models for time-series prediction.

Autoregressive models
Autoregressive models are time-series models used to predict future incidents. The
following formula shows this:

In the preceding formula, c is a constant and the last term is a random component, also
known as white noise.

Signal Processing and Time Series Chapter 8

[251]

Let's build the autoregression model using the statsmodels.tsa subpackage:

Import the libraries and read the dataset:1.

import needful libraries
from statsmodels.tsa.ar_model import AR
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import statsmodels.api as sm
from math import sqrt

Read the dataset
data = sm.datasets.sunspots.load_pandas().data

Split the Sunspot data into train and test sets:2.

Split data into train and test set
train_ratio=0.8

train=data[:int(train_ratio*len(data))]
test=data[int(train_ratio*len(data)):]

Train and fit the autoregressive model:3.

AutoRegression Model training
ar_model = AR(train.SUNACTIVITY)
ar_model = ar_model.fit()

print lags and
print("Number of Lags:", ar_model.k_ar)
print("Model Coefficients:\n", ar_model.params)

This results in the following output:

Number of Lags: 15
Model Coefficients:
const 9.382322
L1.SUNACTIVITY 1.225684
L2.SUNACTIVITY -0.512193
L3.SUNACTIVITY -0.130695
L4.SUNACTIVITY 0.193492
L5.SUNACTIVITY -0.168907
L6.SUNACTIVITY 0.054594
L7.SUNACTIVITY -0.056725
L8.SUNACTIVITY 0.109404
L9.SUNACTIVITY 0.108993
L10.SUNACTIVITY -0.117063

Signal Processing and Time Series Chapter 8

[252]

L11.SUNACTIVITY 0.200454
L12.SUNACTIVITY -0.075111
L13.SUNACTIVITY -0.114437
L14.SUNACTIVITY 0.177516
L15.SUNACTIVITY -0.091978
dtype: float64

In the preceding code, we have read the Sunspot dataset and split it into two
parts: train and test sets. Then, we built the autoregressive model by creating an
instance and fitting a model. Let's make predictions and assess the model's
performance.

Perform predictions and assess the model:4.

make predictions
start_point = len(train)
end_point = start_point + len(test)-1
pred = ar_model.predict(start=start_point, end=end_point,
dynamic=False)

Calculate errors
mae = mean_absolute_error(test.SUNACTIVITY, pred)
mse = mean_squared_error(test.SUNACTIVITY, pred)
rmse = sqrt(mse)
print("MAE:",mae)
print("MSE:",mse)
print("RMSE:",rmse)

This results in the following output:

MAE: 31.17846098350052
MSE: 1776.9463826165913
RMSE: 42.15384184883498

In the preceding code block, we have made the predictions on the test dataset and
assessed the model's performance using Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Root Mean Squared Error (RMSE). Let's plot the line
plot for the original series and prediction series.

Let's plot the predicted and original series to understand the forecasting results5.
in a better way:

Setting figure size
plt.figure(figsize=(10,6))

Plot test data
plt.plot(test.SUNACTIVITY, label='Original-Series')

Signal Processing and Time Series Chapter 8

[253]

Plot predictions
plt.plot(pred, color='red', label='Predicted Series')

Add legends
plt.legend()

Display the plot
plt.show()

This results in the following output:

In the preceding plot, we can see the original series and predicted series using the
autoregressive model. After generating the autoregressive model, we need to jump to one
more advanced approach for time-series prediction, which is Autoregressive Moving
Average (ARMA).

Signal Processing and Time Series Chapter 8

[254]

ARMA models
The ARMA model blends autoregression and moving averages. The ARMA model is
commonly referred to as ARMA(p,q), where p is the order of the autoregressive part, and q
is the order of the moving average:

In the preceding formula, just like in the autoregressive model formula, we have a constant
and a white noise component; however, we try to fit the lagged noise components as well:

Import the libraries and read the dataset:1.

import needful libraries
import statsmodels.api as sm
from statsmodels.tsa.arima_model import ARMA
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
from math import sqrt

Read the dataset
data = sm.datasets.sunspots.load_pandas().data
data.drop('YEAR',axis=1,inplace=True)

Split the Sunspot data into train and test sets:2.

Split data into train and test set
train_ratio=0.8
train=data[:int(train_ratio*len(data))]
test=data[int(train_ratio*len(data)):]

Train and fit the autoregressive model:3.

AutoRegression Model training
arma_model = ARMA(train, order=(10,1))
arma_model = arma_model.fit()

Signal Processing and Time Series Chapter 8

[255]

Perform predictions and assess the model:4.

make predictions
start_point = len(train)
end_point = start_point + len(test)-1
pred = arma_model.predict(start_point,end_point)

Calculate errors
mae = mean_absolute_error(test.SUNACTIVITY, pred)
mse = mean_squared_error(test.SUNACTIVITY, pred)
rmse = sqrt(mse)
print("MAE:",mae)
print("MSE:",mse)
print("EMSE:",rmse)

This results in the following output:

MAE: 33.95457845540467
MSE: 2041.3857010355755
EMSE: 45.18169652675268

Let's plot the predicted and original series to understand the forecasting results5.
in a better way:

Setting figure size
plt.figure(figsize=(10,6))

Plot test data
plt.plot(test, label='Original-Series')

Plot predictions
plt.plot(pred, color='red', label='Predicted Series')

Add legends
plt.legend()

Display the plot
plt.show()

Signal Processing and Time Series Chapter 8

[256]

This results in the following output:

In the preceding code, we have read the Sunspot dataset and split it into two parts: train
and test sets. Then, we built the ARMA model by creating an instance and fitting a model.
We made the predictions on the test dataset and assessed the model performance using
MAE, MSE, and RMSE. Finally, we saw the line plot for the original series and prediction
series. Let's jump to one more important topic, which is generating periodic signals.

Signal Processing and Time Series Chapter 8

[257]

Generating periodic signals
Many natural phenomena are regular and trustworthy, such as an accurate clock. Some
phenomena exhibit patterns that seem regular. A group of scientists found three cycles in
the sunspot activity with the Hilbert-Huang transform (see https:/ /en. wikipedia. org/
wiki/Hilbert%E2%80%93Huang_ transform). The cycles have a duration of 11, 22, and 100
years, approximately. Normally, we would simulate a periodic signal using trigonometric
functions such as a sine function. You probably remember a bit of trigonometry from high
school. That's all we need for this example. Since we have three cycles, it seems reasonable
to create a model that is a linear combination of three sine functions. This just requires a
tiny adjustment of the code for the autoregressive model:

Create model, error, and fit functions:1.

Import required libraries
import numpy as np
import statsmodels.api as sm
from scipy.optimize import leastsq
import matplotlib.pyplot as plt

Create model function
def model(p, t):
 C, p1, f1, phi1 , p2, f2, phi2, p3, f3, phi3 = p
 return C + p1 * np.sin(f1 * t + phi1) + p2 * np.sin(f2 * t +
phi2) +p3 * np.sin(f3 * t + phi3)

Create error function
def error(p, y, t):
 return y - model(p, t)

Create fit function
def fit(y, t):
 p0 = [y.mean(), 0, 2 * np.pi/11, 0, 0, 2 * np.pi/22, 0, 0, 2 *
np.pi/100, 0]
 params = leastsq(error, p0, args=(y, t))[0]
 return params

Let's load the dataset:2.

Load the dataset
data_loader = sm.datasets.sunspots.load_pandas()
sunspots = data_loader.data["SUNACTIVITY"].values
years = data_loader.data["YEAR"].values

https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform

Signal Processing and Time Series Chapter 8

[258]

Apply and fit the model:3.

Apply and fit the model
cutoff = int(.9 * len(sunspots))
params = fit(sunspots[:cutoff], years[:cutoff])
print("Params", params)

pred = model(params, years[cutoff:])
actual = sunspots[cutoff:]

Print the results:4.

print("Root mean square error", np.sqrt(np.mean((actual - pred) **
2)))
print("Mean absolute error", np.mean(np.abs(actual - pred)))
print("Mean absolute percentage error", 100 *
np.mean(np.abs(actual - pred)/actual))
mid = (actual + pred)/2
print("Symmetric Mean absolute percentage error", 100 *
 np.mean(np.abs(actual - pred)/mid))
print("Coefficient of determination", 1 - ((actual - pred)
 **2).sum()/ ((actual - actual.mean()) ** 2).sum())

This results in the following output:

Params [47.1880006 28.89947462 0.56827279 6.51178464 4.55214564
 0.29372076 -14.30924768 -18.16524123 0.06574835
-4.37789476]
Root mean square error 59.56205597915569
Mean absolute error 44.58158470150657
Mean absolute percentage error 65.16458348768887
Symmetric Mean absolute percentage error 78.4480696873044
Coefficient of determination -0.3635315489903188

The first line displays the coefficients of the model we attempted. We have an
MAE of 44, which means that we are off by that amount in either direction on
average. We also want the coefficient of determination to be as close to 1 as
possible to have a good fit. Instead, we get a negative value, which is undesirable.
Let's create a graph to understand the results in detail.

Plot the original and predicted series:5.

year_range = data_loader.data["YEAR"].values[cutoff:]

Plot the actual and predicted data points
plt.plot(year_range, actual, 'o', label="Sunspots")
plt.plot(year_range, pred, 'x', label="Prediction")
plt.grid(True)

Signal Processing and Time Series Chapter 8

[259]

Add labels
plt.xlabel("YEAR")
plt.ylabel("SUNACTIVITY")

Add legend
plt.legend()

Display the chart
plt.show()

This results in the following output:

From the preceding graph, we can conclude that the model is not able to capture the actual
pattern of the series. This is why we get a negative coefficient of determination or R-
squared. Now, we will look at another important technique for time-series analysis, Fourier
analysis.

Fourier analysis
Fourier analysis uses the Fourier series concept thought up by the mathematician Joseph
Fourier. The Fourier series is a mathematical method used to represent functions as an
infinite series of sine and cosine terms. The functions in question can be real- or complex-
valued:

Signal Processing and Time Series Chapter 8

[260]

For Fourier analysis, the most competent algorithm is Fast Fourier Transform (FFT). FFT
decomposes a signal into different frequency signals. This means it produces a frequency
spectrum of a given signal. The SciPy and NumPy libraries provide functions for FFT.

The rfft() function performs FFT on real-valued data. We could also have used the
fft() function, but it gives a warning on this Sunspot dataset. The fftshift() function
moves the zero-frequency component to the middle of the spectrum.

Let's see the following example to understand FFT:

Import the libraries and read the dataset:1.

Import required library
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from scipy.fftpack import rfft
from scipy.fftpack import fftshift

Read the dataset
data = sm.datasets.sunspots.load_pandas().data

Create Sine wave
t = np.linspace(-2 * np.pi, 2 * np.pi,
len(data.SUNACTIVITY.values))
mid = np.ptp(data.SUNACTIVITY.values)/2
sine = mid + mid * np.sin(np.sin(t))

 2. Compute the FFT for sine waves and sunspots:

Compute FFT for Sine wave
sine_fft = np.abs(fftshift(rfft(sine)))
print("Index of max sine FFT", np.argsort(sine_fft)[-5:])

Compute FFT for sunspots dataset
transformed = np.abs(fftshift(rfft(data.SUNACTIVITY.values)))
print("Indices of max sunspots FFT", np.argsort(transformed)[-5:])

Create the subplots:3.

Create subplots
fig, axs = plt.subplots(3,figsize=(12,6),sharex=True)
fig.suptitle('Power Specturm')
axs[0].plot(data.SUNACTIVITY.values, label="Sunspots")
axs[0].plot(sine, lw=2, label="Sine")
axs[0].legend() # Set legends
axs[1].plot(transformed, label="Transformed Sunspots")

Signal Processing and Time Series Chapter 8

[261]

axs[1].legend() # Set legends
axs[2].plot(sine_fft, lw=2, label="Transformed Sine")
axs[2].legend() # Set legends

Display the chart
plt.show()

This results in the following output:

In the preceding code, first, we read the Sunspot dataset and created the sine wave. After
that, we computed the FFT for the sine wave and the SUNACTIVITY column. Finally, we
plotted the three graphs for the original series and sine wave and transformed sunspots and
sine wave.

Signal Processing and Time Series Chapter 8

[262]

Spectral analysis filtering
In the previous section, we discussed the amplitude spectrum of the dataset. Now is the
time to explore the power spectrum. The power spectrum of any physical signal can
display the energy distribution of the signal. We can easily change the code and display the
power spectrum by squaring the transformed signal using the following syntax:

plt.plot(transformed ** 2, label="Power Spectrum")

We can also plot the phase spectrum using the following Python syntax:

plt.plot(np.angle(transformed), label="Phase Spectrum")

Let's see the complete code for the power and phase spectrum for the Sunspot dataset:

Import the libraries and read the dataset:1.

Import required library
import numpy as np
import statsmodels.api as sm
from scipy.fftpack import rfft
from scipy.fftpack import fftshift
import matplotlib.pyplot as plt

Read the dataset
data = sm.datasets.sunspots.load_pandas().data

Compute FFT, Spectrum, and Phase:2.

Compute FFT
transformed = fftshift(rfft(data.SUNACTIVITY.values))

Compute Power Spectrum
power=transformed ** 2

Compute Phase
phase=np.angle(transformed)

Create the subplot:3.

Create subplots
fig, axs = plt.subplots(3,figsize=(12,6),sharex=True)
fig.suptitle('Power Specturm')
axs[0].plot(data.SUNACTIVITY.values, label="Sunspots")
axs[0].legend() # Set legends
axs[1].plot(power, label="Power Spectrum")
axs[1].legend() # Set legends

Signal Processing and Time Series Chapter 8

[263]

axs[2].plot(phase, label="Phase Spectrum")
axs[2].legend() # Set legends

Display the chart
plt.show()

This results in the following output:

In the preceding code, first, we read the Sunspot dataset and computed the FFT for the
SUNACTIVITY column. After this, we computed the power and phase spectrum for the
transformed FFT. Finally, we plotted the three graphs for the original series and the power
and phase spectrums using subplots.

Signal Processing and Time Series Chapter 8

[264]

Summary
In this chapter, the time-series examples we used were annual sunspot cycles data, sales
data, and beer production. We learned that it's common to try to derive a relationship
between a value and another data point or a combination of data points with a fixed
number of periods in the past in the same time series. We learned how moving averages
convert the random variation trend into a smooth trend using a window size. We learned
how the DataFrame.rolling() function provides win_type string parameters for
different window functions. Cointegration is similar to correlation and is a metric to define
the relatedness of two time series. We also focused on STL decomposition, autocorrelation,
autoregression, the ARMA model, Fourier analysis, and spectral analysis filtering.

The next chapter, Chapter 9, Supervised Learning – Regression Analysis, will focus on the
important topics of regression analysis and logistic regression in Python. The chapter starts
with multiple linear regression, multicollinearity, dummy variables, and model evaluation
measures. In the later sections of the chapter, the focus will be on logistic regression.

3
Section 3: Deep Dive into

Machine Learning
The main objective of this section is to deep dive into machine learning algorithms and
develop predictive models. This section focuses on regression, classification, PCA, and
clustering methods. This section will mostly use pandas and scikit-learn.

This section includes the following chapters:

Chapter 9, Supervised Learning – Regression Analysis
Chapter 10, Supervised Learning – Classification Techniques
Chapter 11, Unsupervised Learning – PCA and Clustering

9
Supervised Learning -

Regression Analysis
Regression is the most popular algorithm in statistics and machine learning. In the machine
learning and data science field, regression analysis is a member of the supervised machine
learning domain that helps us to predict continuous variables such as stock prices, house
prices, sales, rainfall, and temperature. As a sales manager at an electronic store, for
example, say you need to predict the sales of upcoming weeks for all types of products,
such as televisions, air conditioners, laptops, refrigerators, and many more. Lots of factors
can affect your sales, such as weather conditions, festivals, promotion strategy, competitor
offers, and so on. Regression analysis is one of the tools that can help you to identify the
importance of such factors that are important to make decisions at the store.

Regression analysis identifies how the dependent variable depends upon independent
variables. For example, say as an education officer you want to identify the impact of sports
activities, smart classes, teacher-student ratio, extra classes, and teachers' training on
students' results. Ordinary Least Square (OLS) minimizes the sum of squares error (or
error variance) to find out the best fit function. It predicts the most probable outcome under
the given conditions. The main objective of this chapter is to learn the fundamentals of
Multiple Linear Regression (MLR), multicollinearity, dummy variables, regression, and
model evaluation measures such as R-squared, Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Root Mean Square Error (RMSE). Another objective is creating
a logistic regression classification model.

The topics covered in this chapter are listed as follows:

Linear regression
Understanding multicollinearity
Dummy variables
Developing a linear regression model
Evaluating regression model performance

Supervised Learning - Regression Analysis Chapter 9

[267]

Fitting polynomial regression
Regression models for classification
Logistic regression
Implementing logistic regression using scikit-learn

Technical requirements
This chapter has the following technical requirements:

You can find the code and the datasets at the following GitHub link: https:/ /
github.com/ PacktPublishing/ Python- Data- Analysis- Third- Edition/ tree/
master/Chapter09.

All the code blocks are available in the ch9.ipynb file.
This chapter uses three CSV files (Advertising.csv, bloodpress.txt,
and diabetes.csv) for practice purposes.
In this chapter, we will use the Matplotlib, pandas, Seaborn, and scikit-learn
Python libraries.

Linear regression
Linear regression is a kind of curve-fitting and prediction algorithm. It is used to discover
the linear association between a dependent (or target) column and one or more
independent columns (or predictor variables). This relationship is deterministic, which
means it predicts the dependent variable with some amount of error. In regression analysis,
the dependent variable is continuous and independent variables of any type are continuous
or discrete. Linear regression has been applied to various kinds of business and scientific
problems, for example, stock price, crude oil price, sales, property price, and GDP growth
rate predictions. In the following graph, we can see how linear regression can fit data in
two-dimensional space:

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter09

Supervised Learning - Regression Analysis Chapter 9

[268]

The main objective is to find the best-fit line to understand the relationship between
variables with minimum error. Error in regression is the difference between the forecasted
and actual values. Coefficients of regression are estimated using the OLS method. OLS tries
to minimize the sum of squares residuals. Let's see the equation for the regression model:

Here, x is the independent variable and y is a dependent variable. intercepts are the
coefficient of x, and (the Greek letter pronounced as epsilon) is an error term that will act
as a random variable.

The parameters of linear regression are estimated using OLS. OLS is a method that is
widely used to estimate the regression intercept and coefficients. It reduces the sum of
squares of residuals (or error), which is the difference between the predicted and actual.

After getting an idea about linear regression, it's now time to learn about MLR.

Supervised Learning - Regression Analysis Chapter 9

[269]

Multiple linear regression
MLR is a generalized form of simple linear regression. It is a statistical method used to
predict the continuous target variable based on multiple features or explanatory variables.
The main objective of MLR is to estimate the linear relationship between the multiple
features and the target variable. MLR has a wide variety of applications in real-life
scenarios. The MLR model can be represented as a mathematical equation:

Here, are the independent variables and is a dependent variable.
 intercepts are coefficients of x and (the Greek letter pronounced as epsilon) is an error
term that will act as a random variable.

Now that we know what linear regression is, let's move on to multicollinearity.

Understanding multicollinearity
Multicollinearity represents the very high intercorrelations or inter-association among the
independent (or predictor) variables.

Multicollinearity takes place when independent variables of multiple regression analysis
are highly associated with each other. This association is caused by a high correlation
among independent variables. This high correlation will trigger a problem in the linear
regression model prediction results. It's the basic assumption of linear regression analysis
to avoid multicollinearity for better results:

It occurs due to the inappropriate use of dummy variables.
It also occurs due to the repetition of similar variables.
It is also caused due to synthesized variables from other variables in the data.
It can occur due to high correlation among variables.

Multicollinearity causes the following problems:

It causes difficulty in estimating the regression coefficients precisely and
coefficients become more susceptible to minor variations in the model.
It can also cause a change in the signs and magnitudes of the coefficient.
It causes difficulty in assessing the relative importance of independent variables.

Supervised Learning - Regression Analysis Chapter 9

[270]

Removing multicollinearity
Multicollinearity can be detected using the following:

The correlation coefficient (or correlation matrix) between independent variables
Variance Inflation Factor (VIF)
Eigenvalues

Correlation coefficients or correlation matrices will help us to identify a high correlation
between independent variables. Using the correlation coefficient, we can easily detect the
multicollinearity by checking the correlation coefficient magnitude:

Import pandas
import pandas as pd

Read the blood pressure dataset
data = pd.read_csv("bloodpress.txt",sep='\t')

See the top records in the data
data.head()

This results in the following output:

In the preceding code block, we read the bloodpress.txt data using the read_csv()
function. We also checked the initial records of the dataset. This dataset has BP, Age,
Weight, BSA, Dur, Pulse, and Stress fields. Let's check the multicollinearity in the dataset
using the correlation matrix:

Import seaborn and matplotlib
import seaborn as sns
import matplotlib.pyplot as plt

Correlation matrix

Supervised Learning - Regression Analysis Chapter 9

[271]

corr=data.corr()

Plot Heatmap on correlation matrix
sns.heatmap(corr, annot=True, cmap='YlGnBu')

display the plot
plt.show()

This results in the following output:

In the preceding example, we are finding the correlation between multiple variables using
the correlation matrix. We loaded the bloodpress.txt file and found the correlation
using the corr() function. Finally, we visualized the correlation matrix using the
heatmap() function.

Here, BP (Blood Pressure) is the dependent or target variable, and the rest of the columns
are independent variables or features. We can see that Weight and BSA (Body Surface
Area) have a high correlation. We need to remove one variable (either Weight or BSA) to
remove the multicollinearity. In our case, weight is easier to measure compared to BSA, so
experts will choose the weight and remove the BSA.

Supervised Learning - Regression Analysis Chapter 9

[272]

Dummy variables
Dummy variables are categorical independent variables used in regression analysis. It is
also known as a Boolean, indicator, qualitative, categorical, and binary variable. Dummy
variables convert a categorical variable with N distinct values into N–1 dummy variables. It
only takes the 1 and 0 binary values, which are equivalent to existence and nonexistence.

pandas offers the get_dummies() function to generate the dummy values. Let's
understand the get_dummies() function through an example:

Import pandas module
import pandas as pd

Create pandas DataFrame
data=pd.DataFrame({'Gender':['F','M','M','F','M']})

Check the top-5 records
data.head()

This results in the following output:

Gender
0 F
1 M
2 M
3 F
4 M

In the preceding code block, we have created the DataFrame with the Gender column and
generated the dummy variable using the get_dummies() function. Let's see an example in
the following code:

Dummy encoding
encoded_data = pd.get_dummies(data['Gender'])

Check the top-5 records of the dataframe
encoded_data.head()

Supervised Learning - Regression Analysis Chapter 9

[273]

This results in the following output:

 F M
0 1 0
1 0 1
2 0 1
3 1 0
4 0 1

Here, in the preceding example, the get_dummies() function is generating two columns,
which means a separate column for each value.

We can remove one column to avoid collinearity using the drop_first=True argument
and drop first the N–1 dummies out of N categorical levels by removing the first level:

Dummy encoding
encoded_data = pd.get_dummies(data['Gender'], drop_first=True)

Check the top-5 records of the dataframe
encoded_data.head()

This results in the following output:

 M
0 0
1 1
2 1
3 0
4 1

In the preceding code block, we have created the dummy variables for the Gender column
using the get_dummies() function with the drop_first=True parameter. This has
removed the first column and leaves N–1 columns. Let's now learn how to implement the
linear regression model using the scikit-learn library.

Supervised Learning - Regression Analysis Chapter 9

[274]

Developing a linear regression model
After understanding the concepts of regression analysis, multicollinearity, and dummy
variables, it's time to get some hands-on experience with regression analysis. Let's learn
how to build the regression model using the scientific toolkit for machine learning (scikit-
learn):

We will first load the dataset using the read_csv() function:1.

Import pandas
import pandas as pd

Read the dataset using read_csv method
df = pd.read_csv("Advertising.csv")

See the top-5 records in the data
df.head()

This results in the following output:

Now that we have loaded the Advertising.csv dataset using read_csv() and
checked the initial records using the head() function, we will split the data into
two parts: dependent or target variable and independent variables or features.

In this step, we will split the data two times:2.

Split into two parts: dependent or target variable and independent
variables or features.
Split data into training and test sets. This can be done using the
following code:

Independent variables or Features

Supervised Learning - Regression Analysis Chapter 9

[275]

X = df[['TV', 'Radio', 'Newspaper']]

Dependent or Target variable
y = df.Sales

After splitting the columns into dependent and independent variable parts, we
will split the data into train and test sets in a 75:25 ratio using
train_test_split(). The ratio can be specified using the test_size
parameter and random_state is used as a seed value for reproducing the same
data split each time. If random_state is None, then it will randomly split the
records each time, which will give different performance measures:

Lets import the train_test_split method
from sklearn.model_selection import train_test_split

Distribute the features(X) and labels(y) into two parts training
and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.25, random_state=0)

In the preceding code block, we have divided the data into two parts – train and
test sets – in a 75:25 or 3:1 ratio.

Let's import the LinearRegression model, create its object, and fit it to the3.
training dataset (X_train, y_train). After fitting the model, we can predict the
values for testing data (X_test). We can see the intercept and coefficient of the
regression equation using the intercept_ and coef_ attributes:

Import linear regression model
from sklearn.linear_model import LinearRegression
Create linear regression model
lin_reg = LinearRegression()

Fit the linear regression model
lin_reg.fit(X_train, y_train)

Predict the values given test set
predictions = lin_reg.predict(X_test)

Print the intercept and coefficients
print("Intercept:",lin_reg.intercept_)
print("Coefficients:",lin_reg.coef_)

Supervised Learning - Regression Analysis Chapter 9

[276]

This results in the following output:

Intercept: 2.8925700511511483
Coefficients: [0.04416235 0.19900368 0.00116268]

In the preceding code, we have prepared the linear regression model, performed the
predictions on test sets, and displayed the intercepts and coefficients. In the upcoming
section, we will assess the regression model's performance using model evaluation
measures such as R-squared and error functions.

Evaluating regression model performance
In this section, we will review the regression evaluation measures for understanding the
performance level of a regression model. Model evaluation is one of the key aspects of any
machine learning model building process. It helps us to assess how our model will perform
when we put it into production. We will use the following metrics for model evaluation:

R-squared
MSE
MAE
RMSE

R-squared
R-squared (or coefficient of determination) is a statistical model evaluation measure that
assesses the goodness of a regression model. It helps data analysts to explain model
performance compared to the base model. Its value lies between 0 and 1. A value near 0
represents a poor model while a value near 1 represents a perfect fit. Sometimes, R-squared
results in a negative value. This means your model is worse than the average base model.
We can explain R-squared using the following formula:

Supervised Learning - Regression Analysis Chapter 9

[277]

Let's understand all the components one by one:

Sum of Squares Regression (SSR): This estimates the difference between
the forecasted value and the mean of the data.
Sum of Squared Errors (SSE): This estimates the change between the original or
genuine value and the forecasted value.
Total Sum of Squares (SST): This is the change between the original or genuine
value and the mean of the data.

MSE
MSE is an abbreviation of mean squared error. It is explained as the square of change
between the original and forecasted values and the average between them for all the values:

Here, is the original value and is the forecasted value.

MAE
MAE is an abbreviation of mean absolute error. It is explained as the absolute change
between the original and forecasted values and the average between them for all the values:

Here, is the original value, and is the forecasted value.

Supervised Learning - Regression Analysis Chapter 9

[278]

RMSE
RMSE is an abbreviation of root mean squared error. It is explained as the square root of
MSE:

Let's evaluate the model performance on a testing dataset. In the previous section, we
predicted the values for the test set. Now, we will compare the predicted values with the
actual values of the test set (y_test). scikit-learn offers the metrics class for evaluating
the models. For regression model evaluation, we have methods for R-squared, MSE, MAE,
and RMSE. Each of the methods takes two inputs: the actual values of the test set and the
predicted values (y_test and y_pred). Let's assess the performance of the linear
regression model:

Import the required libraries
import numpy as np
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score

Evaluate mean absolute error
print('Mean Absolute Error(MAE):', mean_absolute_error(y_test,predictions))

Evaluate mean squared error
print("Mean Squared Error(MSE):", mean_squared_error(y_test, predictions))

Evaluate root mean squared error
print("Root Mean Squared Error(RMSE):", np.sqrt(mean_squared_error(y_test,
predictions)))

Evaluate R-square
print("R-Square:",r2_score(y_test, predictions))

This results in the following output:

Mean Absolute Error(MAE): 1.300032091923545
Mean Squared Error(MSE): 4.0124975229171
Root Mean Squared Error(RMSE): 2.003121944095541
R-Square: 0.8576396745320893

Supervised Learning - Regression Analysis Chapter 9

[279]

In the example, we have evaluated the linear regression model using MAE, MSE, RMSE,
and R-squared. Here, R-squared is 0.85, which indicates that the model explains the 85%
variability of the data.

Fitting polynomial regression
Polynomial regression is a type of regression analysis that is used to adapt the nonlinear
relationships between dependent and independent variables. In this type of regression,
variables are modeled as the nth polynomial degree. It is used to understand the growth
rate of various phenomena, such as epidemic outbreaks and growth in sales. Let's
understand the equation of polynomial regression:

Here, is the independent variable and is a dependent variable. The intercepts, ...
, are a coefficient of x and (the Greek letter pronounced as epsilon) is an error term that

will act as a random variable.

Let's see an example to understand the polynomial concept in detail:

import libraries
import matplotlib.pyplot as plt
import numpy as np

Create X and Y lists
X=[1,2,3,4,5,6,7,8,9,10]
y=[9,10,12,16,22,28,40,58,102,200]

Plot scatter diagram
plt.scatter(X,y, color = 'red')
plt.title('Polynomial Regression')
plt.xlabel('X-Axis')
plt.ylabel('y-Axis')

Supervised Learning - Regression Analysis Chapter 9

[280]

This results in the following output:

In the preceding code, we have displayed a dataset that has a polynomial relationship. Let's
see how we can map this relationship in regression analysis:

import libraries
import pandas as pd
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

Prepare dataset
data = pd.DataFrame({"X":[1,2,3,4,5,6,7,8,9,10],
"y":[9,10,12,16,22,28,40,58,102,200]})

X = data[['X']] y = data[['y']]

Apply Polynomial Features
polynomial_reg = PolynomialFeatures(degree = 6)
X_polynomial = polynomial_reg.fit_transform(X)

Apply Linear Regression Model
linear_reg = LinearRegression()
linear_reg.fit(X_polynomial, y)
predictions=linear_reg.predict(X_polynomial)

Plot the results
plt.scatter(X,y, color = 'red')

Supervised Learning - Regression Analysis Chapter 9

[281]

plt.plot(X, predictions, color = 'red')
plt.title('Polynomial Regression')
plt.xlabel('X-Axis')
plt.ylabel('y-Axis')

This results in the following output:

In the preceding code, we have read the polynomial relationship dataset, converted the X
column into a polynomial nth degree column using PolynomialFeatures(), and then
applied linear regression on X_polynomial and label. The preceding output plot shows
that the resultant model captures the performance. Now, it's time to jump to another type
of regression model, which can be used for classification purposes.

Supervised Learning - Regression Analysis Chapter 9

[282]

Regression models for classification
Classification is the most utilized technique in the area of machine and statistical learning.
Most machine learning problems are classification problems, such as detecting spam
emails, analyzing financial risk, churn analysis, and discovering potential customers.

Classification can be of two types: binary and multi-class classification. Binary classification
target variables have only two values: either 0 and 1 or yes or no. Examples of binary
classification are whether a customer will buy an item or not, whether the customer will
switch or churn to another brand or not, spam detection, disease prediction, and whether a
loan applicant will default or not. Multi-class classification has more than two classes, for
example, for categories of news articles, the classes could be sports, politics, business, and
many more.

Logistic regression is one of the classification methods, although its name ends with
regression. It is a commonly used binary class classification method. It is a basic machine
learning algorithm for all kinds of classification problems. It finds the association between
dependent (or target) variables and sets of independent variables (or features). In the next
section, we will look at logistic regression in detail.

Logistic regression
Logistic regression is a kind of supervised machine learning algorithm that is utilized to
forecast a binary outcome and classify observations. Its dependent variable is a binary
variable with two classes: 0 or 1. For example, it can be used to detect whether a loan
applicant will default or not. It is a unique type of regression where the dependent or target
variable is binary. It computes a log of the odds ratio of the target variable, which
represents the probability of occurrence of an event, for example, the probability of a
person suffering from diabetes.

Supervised Learning - Regression Analysis Chapter 9

[283]

Logistic regression is a kind of simple linear regression where the dependent or target
variable is categorical. It uses the sigmoid function on the prediction result of linear
regression. We can also use the logistic regression algorithm for multiple target classes. For
multiple-class problems, it is called multinomial logistic regression. Multinomial logistic
regression is a modification of logistic regression; it uses the softmax function instead of the
sigmoid activation function:

The sigmoid function is also known as a logistic function or an S-shaped curve. It maps
input values between the ranges 0 and 1, which represents the probability of occurrence of
an event. If the curve moves toward positive infinity, then the outcome becomes 1 and if
the curve moves toward negative infinity, then the outcome becomes 1. Let's see the
formula for the sigmoid function and logistic regression equation:

The following formula shows the logistic regression equation:

Supervised Learning - Regression Analysis Chapter 9

[284]

The term in the log() function is known as an odds ratio or "odds." The odds ratio is the
ratio of the probability of the occurrence of an event to the probability of not occurrence of
an event. In the following graph, you can see how logistic regression output behaves:

We can see the ratio lands roughly around 0.5 here. Let's explore logistic regression a bit
more in the upcoming subsections.

Characteristics of the logistic regression model
In this subsection, we will focus on the basic characteristics and assumptions of logistic
regression. Let's understand the following characteristics:

The dependent or target variable should be binary in nature.
There should be no multicollinearity among independent variables.
Coefficients are estimated using maximum likelihood.
Logistic regression follows Bernoulli distribution.
There is no R-squared for model evaluation. The model was evaluated using
concordance, KS statistics.

Supervised Learning - Regression Analysis Chapter 9

[285]

Types of logistic regression algorithms
There are various types of logistic regression algorithms available for different use cases
and scenarios. In this section, we will focus on binary, multinomial, and ordinal logistic
regression. Let's see each of them and understand where we can utilize them:

Binary logistic regression model:

In the binary logistic regression model, the dependent or target column has
only two values, such as whether a loan will default or not default, an email
is spam or not spam, or a patient is diabetic or non-diabetic.

 Multinomial logistic regression model:

In a multinomial logistic regression model, a dependent or target column has
three or more than three values, such as predicting the species of the iris
flower and predicting the category of news articles, such as politics, business,
and sports.

 Ordinal logistic regression:

In the ordinal logistic regression model, a dependent variable will have
ordinal or sequence classes, such as movie and hotel ratings.

Advantages and disadvantages of logistic
regression
The logistic regression model not only provides prediction (0 or 1) but also gives the
probabilities of outcomes, which helps us to understand the confidence of a prediction. It is
easy to implement and understand and is interpretable.

A large number of independent variables will increase the amount of variance explained,
which results in model overfitting. Logistic regression cannot work with non-linear
relationships. It will also not perform well with highly correlated feature variables (or
independent variables).

Supervised Learning - Regression Analysis Chapter 9

[286]

Implementing logistic regression using
scikit-learn
Now that you know all about logistic regression, let's implement it in Python using the
scikit-learn library. Let's create a model using naive Bayes classification. We will do so
using the following steps:

We will first import the dataset and the required libraries using the following1.
code:

Import libraries
import pandas as pd
read the dataset
diabetes = pd.read_csv("diabetes.csv")

Show top 5-records
diabetes.head()

This results in the following output:

In our preceding example, we are reading the Pima Indians Diabetes dataset. This
dataset does not give the column names, so we have to do so.

In the read_csv() function, we will pass the header to None and names to the2.
column list that was created before reading the CSV file:

Split dataset in two parts: feature set and target label
feature_set = ['pregnant', 'insulin', 'bmi',
'age','glucose','bp','pedigree']

features = diabetes[feature_set]

target = diabetes.label

Supervised Learning - Regression Analysis Chapter 9

[287]

Partition data into training and testing set
from sklearn.model_selection import train_test_split
feature_train, feature_test, target_train, target_test =
train_test_split(features, target, test_size=0.3, random_state=1)

After loading the dataset, we need to divide the dataset into independent (feature
set) column features and dependent (or label) column targets. After this, the
dataset will be partitioned into training and testing sets. Now, both the dependent
and independent columns are divided into train and test sets (feature_train,
feature_test, target_train, and target_test) using
train_test_split(). train_test_split() takes dependent and
independent DataFrames, test_size and random_state. Here, test_size will
decide the ratio of the train-test split (that is, a test_size value of 0.3 means
30% testing set and the remaining 70% will be the training set), and
random_state is used as a seed value for reproducing the same data split each
time. If random_state is None, then it will randomly split the records each time,
which will give different performance measures:

import logistic regression scikit-learn model
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

instantiate the model
logreg = LogisticRegression(solver='lbfgs')

fit the model with data
logreg.fit(feature_train,target_train)

Forecast the target variable for given test dataset
predictions = logreg.predict(feature_test)

Assess model performance using accuracy measure
print("Logistic Regression Model
Accuracy:",accuracy_score(target_test, predictions))

This results in the following output:

Logistic Regression Model Accuracy: 0.7835497835497836

Now, we are ready to create a logistic regression model. First, we will import the
LogisticRegression class and create its object or model. This model will fit on the
training dataset (X_train and y_train). After training, the model is ready to make
predictions using the predict() method. scikit-learn's metrics class offers various
methods for performance evaluation, such as accuracy. The accuracy_score() methods
will take actual labels (y_test) and predicted labels (y_pred).

Supervised Learning - Regression Analysis Chapter 9

[288]

Summary
In this chapter, we discovered regression analysis algorithms. This will benefit you in
gaining an important skill for predictive data analysis. You have gained an understanding
of concepts such as regression analysis, multicollinearity, dummy variables, regression
evaluation measures, and logistic regression. The chapter started with simple linear and
multiple regressions. After simple linear and multiple regressions, our main focus was on
multicollinearity, model development, and model evaluation measures. In later sections,
we focused on logistic regression, characteristics, types of regression, and its
implementation.

The next chapter, Chapter 10, Supervised Learning – Classification Techniques, will focus on
classification, its techniques, the train-test split strategy, and performance evaluation
measures. In later sections, the focus will be on data splitting, the confusion matrix, and
performance evaluation measures such as accuracy, precision, recall, F1-score, ROC, and
AUC.

10
Supervised Learning -

Classification Techniques
 Most real-world machine learning problems use supervised learning. In supervised
learning, the model will learn from a labeled training dataset. A label is a target variable
that we want to predict. It is an extra piece of information that helps in making decisions or
predictions, for example, which loan application is safe or risky, whether a patient suffers
from a disease or not, house prices, and credit eligibility scores. These labels act as a
supervisor or teacher for the learning process. Supervised learning algorithms can be of two
types: classification or regression. A classification problem has a categorical target variable,
such as a loan application status as safe or risky, whether a patient suffers from a "disease"
or "not disease," or whether a customer is "potential" or "not potential."

This chapter focuses on supervised machine learning, and specifically covers classification
techniques. This chapter will mostly be using scikit-learn. It will delve into basic techniques
of classification, such as naive Bayes, Support Vector Machines (SVMs), K-Nearest
Neighbor (KNN), and decision trees. Also, it focuses on train-test split strategies and model
evaluation methods and parameters.

The topics of this chapter are listed as follows:

Classification
Naive Bayes classification
Decision tree classification
KNN classification
SVM classification
Splitting training and testing sets
Evaluating the classification model performance
ROC curve and AUC

Supervised Learning - Classification Techniques Chapter 10

[290]

Technical requirements
This chapter has the following technical requirements:

You can find the code and the datasets at the following GitHub link: https:/ /
github.com/ PacktPublishing/ Python- Data- Analysis- Third- Edition/ tree/
master/Chapter10.
All the code blocks are available in the ch10.ipynb file.
This chapter uses only one CSV file (diabetes.csv) for practice purposes.
In this chapter, we will use the pandas and scikit-learn Python libraries.

Classification
As a healthcare data analyst, your job is to identify patients or sufferers that have a higher
chance of a particular disease, for example, diabetes or cancer. These predictions will help
you to treat patients before the disease occurs. Similarly, a sales and marketing manager
wants to predict potential customers who have more of a chance of buying a product. This
is the process of categorizing customers into two or more categories known as classification.
The classification model predicts the categorical class label, such as whether the customer is
potential or not. In the classification process, the model is trained on available data, makes
predictions, and evaluates the model performance. Developed models are called classifiers.
This means it has three stages: training, prediction, and evaluation. The trained model is
evaluated using parameters such as accuracy, precision, recall, F1-score, and Area Under
Curve (AUC). Classification has a variety of applications in various domains, such as
banking, finance, citizen services, healthcare, text analysis, image identification, and object
detection.

As an analyst, you have to first define the problem that you want to solve using
classification and then identify the potential features that predict the labels accurately.
Features are the columns or attributes that are responsible for prediction. In diabetes
prediction problems, health analysts will collect patient information, such as age, exercise
routine, junk food-eating habits, alcohol consumption, and smoking habit characteristics or
features. These features will be used to predict whether the patient will suffer from
diabetes. You can see in the following diagram how data can be classified into two classes
using a line:

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter10

Supervised Learning - Classification Techniques Chapter 10

[291]

Machine learning and data mining processes have various steps: data collection, data
preprocessing, train-test split, model generation, and evaluation. We have seen data
analysis models such as KDD, SEMMA, and CRISP-DM. In classification, we only focus on
the train-test split, model generation, and evaluation.

The classification model has three stages: train-test split, model generation, and model
evaluation. In the train-test split stage, data is divided into two parts: training and testing
sets. In training, the training set is used to generate the model, and testing is used in the
model evaluation stage to assess the model's performance using evaluation metrics such as
accuracy, error, precision, and recall. You can see the classification process in the following
diagram:

In the preceding diagram, steps for the classification process are presented. Now that we
understand the classification process, it's time to learn the classification techniques. In the
next section, we will focus on the naive Bayes classification algorithm.

Supervised Learning - Classification Techniques Chapter 10

[292]

Naive Bayes classification
Naive Bayes is a classification method based on the Bayes theorem. Bayes' theorem is
named after its inventor, the statistician Thomas Bayes. It is a fast, accurate, robust, easy-to-
understand, and interpretable technique. It can also work faster on large datasets. Naive
Bayes is effectively deployed in text mining applications such as document classification,
predicting sentiments of customer reviews, and spam filtering.

The naive Bayes classifier is called naive because it assumes class conditional
independence. Class conditional independence means each feature column is independent
of the remaining other features. For example, in the case of determining whether a person
has diabetes or not, it depends upon their eating habits, their exercise routine, the nature of
their profession, and their lifestyle. Even if features are correlated or depend on each other,
naive Bayes will still assume they are independent. Let's understand the Bayes theorem
formula:

Here, y is the target and X is the set of features. p(y) and p(X) are the prior probabilities
regardless of evidence. This means the probability of events before evidence is seen. p(y|X)
is the posterior probability of event X after evidence is seen. It is the probability of y given
evidence X. p(X|y) is the posterior probability of event y after evidence is seen. It is the
probability of X given evidence y. Let's take an example of the preceding equation:

Here, we are finding the probability of a patient who will suffer from diabetes based on
their smoking frequency using Bayes' theorem.

Let's see the working of the naive Bayes classification algorithm. Assume that dataset D has
X features and label y. Features can be n-dimensional, X=X1, X2, X3... Xn. Label y may have
m classes, C1, C2, C3...Cm. It will work as follows:

Calculate the prior probabilities, and , for the given class labels.1.
Calculate the posterior probabilities, and , with each attribute for each2.
class:

Supervised Learning - Classification Techniques Chapter 10

[293]

Multiply the same class posterior probability, :3.

If the attribute is categorical then there should be several records of class in4.

with value, divided by records in the dataset.
If the attribute is continuous, then it is calculated using Gaussian distribution:5.

Multiply the prior probability, p(y), by the posterior probability from step 3:6.

Find the class with the maximum probability for the given input feature set. This7.
class will be our final prediction.

Now, let's create a model using naive Bayes classification in Python:

Load the Pima Indians Diabetes dataset (https:/ /github. com/1.
PacktPublishing/ Python- Data- Analysis- Third- Edition/ blob/ master/
Chapter09/ diabetes. csv) using the following lines of code:

Import libraries
import pandas as pd
read the dataset
diabetes = pd.read_csv("diabetes.csv")

Show top 5-records
diabetes.head()

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter09/diabetes.csv

Supervised Learning - Classification Techniques Chapter 10

[294]

This results in the following output:

We have thus imported pandas and read the dataset. In the preceding example,
we are reading the Pima Indians Diabetes dataset.

We will now split the dataset into two parts, as follows:2.

split dataset in two parts: feature set and target label
feature_set = ['pregnant', 'insulin', 'bmi',
'age','glucose','bp','pedigree'] features = diabetes[feature_set]
target = diabetes.label

partition data into training and testing set
from sklearn.model_selection import train_test_split

feature_train,feature_test, target_train, target_test = \
train_test_split(features, target, test_size=0.3, random_state=1)

After loading the dataset, we divide the dataset into a dependent or label column
(target) and independent or feature columns (feature_set). After this, the
dataset will be broken up into train and test sets. Now, both the dependent and
independent columns are broken up into train and test sets (feature_train,
feature_test, target_train, and target_test) using
train_test_split(). train_test_split() takes dependent and
independent DataFrames, test_size and random_state. Here, test_size will
decide the ratio of the train-test split (that is, test_size 0.3 means 30% is the
testing set and the remaining 70% of data will be the training set), and
random_state is used as a seed value for reproducing the same data split each
time. If random_state is None, then it will randomly split the records each time,
which will give different performance measures.

We will now build the naive Bayes classification model:3.

Import Gaussian Naive Bayes model
from sklearn.naive_bayes import GaussianNB

Supervised Learning - Classification Techniques Chapter 10

[295]

Create a Gaussian Classifier
model = GaussianNB()

Train the model using the training sets
model.fit(feature_train,target_train)

Forecast the target variable for given test dataset
predictions = model.predict(feature_test)

Here, we have created a naive Bayes model. First, we will import the GaussianNB
class and create its object or model. This model will fit on the training dataset
(feature_train, target_train). After training, the model is ready to make
predictions using the predict() method.

Finally, we will evaluate the model's performance:4.

Import metrics module for performance evaluation
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
Calculate model accuracy
print("Accuracy:",accuracy_score(target_test, predictions))

Calculate model precision
print("Precision:",precision_score(target_test, predictions))

Calculate model recall
print("Recall:",recall_score(target_test, predictions))

Calculate model f1 score
print("F1-Score:",f1_score(target_test, predictions))

This results in the following output:

Accuracy: 0.7748917748917749
Precision: 0.7391304347826086
Recall: 0.6
F1-Score: 0.6623376623376623

scikit-learn's metrics class offers various methods for performance evaluation, for
example, accuracy, precision, recall, and F1-score metrics. These methods will take actual
target labels (target_test) and predicted labels (predictions). We will understand
these metrics in detail in the Evaluating the classification model performance section.

Supervised Learning - Classification Techniques Chapter 10

[296]

Naive Bayes is a simple, fast, accurate, and easy-to-understand method for prediction. It
has a lower computation cost and can work with large datasets. Naive Bayes can also be
employed in multi-class classification problems. The naive Bayes classifier performs better
compared to logistic regression when data has a class independence assumption.

Naive Bayes suffers from the zero frequency problem. Zero frequency means that if any
category in the feature is missing, then it will have a zero frequency count. This problem is
solved by Laplacian correction. Laplacian correction (or Laplace transformation) is a kind of
smoothing technique that will add one record for each class so that the frequency count for
the missing class will become 1, thus probabilities of Bayes' theorem will not be affected.
Another issue with naive Bayes is its assumption of class conditional independence, as it is
practically impossible for all the predictors to be fully independent. In this section, we have
learned about naive Bayes classification. Now it's time to learn about the decision tree
classification algorithm.

Decision tree classification
A decision tree is one of the most well-known classification techniques. It can be employed
for both types of supervised learning problems (classification and regression problems). It
is a flowchart-like tree structure and mimics human-level thinking, which makes it easier to
understand and interpret. It also makes you see the logic behind the prediction unlike
black-box algorithms such as SVMs and neural networks.

The decision tree has three basic components: the internal node, the branch, and leaf nodes.
Here, each terminal node represents a feature, the link represents the decision rule or split
rule, and the leaf provides the result of the prediction. The first starting or master node in
the tree is the root node. It partitions the data based on features or attributes values. Here,
we divide the data and again divide the remaining data recursively until all the items refer
to the same class or there are no more columns left. Decision trees can be employed in both
types of problems: classification and regression. There are lots of decision tree algorithms
available, for example, CART, ID3, C4.5, and CHAID. But here, we are mainly focusing on
CART and ID3 because in scikit-learn, these are the two that are available. Let's see the
decision tree classifier generation process in the following figure:

Supervised Learning - Classification Techniques Chapter 10

[297]

CART stands for Classification and Regression Tree. CART utilizes the Gini index for
selecting the best column. The Gini index is the difference between the sum of the squared
probabilities of each class from 1. The feature or column with the minimum Gini index
value is selected as the splitting or partition feature. The value of the Gini index lies in the
range of 0 and 1. If the Gini index value is 0, it indicates that all items belong to one class,
and if the Gini index value is exactly 1, it indicates that all the elements are randomly
distributed. A 0.5 value of the Gini index indicates the equal distribution of items into some
classes:

ID3 stands for Iterative Dichotomiser 3. It uses information gain or entropy as an attribute
selection measure. Entropy was invented by Shannon, and it measures the amount of
impurity or randomness in a dataset. Information gain measures the variations between
entropy before partition and mean entropy after the partition of the dataset for a specific
column. The feature or attribute with the largest value of information gain will be selected
as a splitting feature or attribute. If entropy is 0, it indicates that there exists only a single
class, and if entropy is 1, it indicates that items are equally distributed:

Supervised Learning - Classification Techniques Chapter 10

[298]

The decision tree is very intuitive and easy to understand, interpret, and explain to
stakeholders. There is no need to normalize features and distribution-free algorithms.
Decision trees are also used to predict missing values. They have the capability to capture
non-linear patterns. Decision trees can overfit and are sensitive to noisy data. Decision trees
are biased with imbalanced data, which is why before applying decision trees, we should
balance out the dataset. Decision trees are more expensive in terms of time and complexity.

Let's work on a decision tree using scikit-learn and perform a prediction dataset. After this,
we will be ready for the model building:

First, you need to import pandas and load the Pimas dataset using the1.
read_csv() method that we already saw in the last section.

After this, we need to divide the dataset into training and testing datasets similar2.
to what we performed in the preceding section.

Now, we will build the decision tree classification model:3.

Import Decision Tree model
from sklearn.tree import DecisionTreeClassifier

Create a Decision Tree classifier object
clf = DecisionTreeClassifier()

Train the model using training dataset
clf = clf.fit(feature_train,target_train)

Predict the response for test dataset
predictions = clf.predict(feature_test)

Here, we have created a decision tree model. First, we will import the
DecisionTreeClassifier class and create its object or model. This model will
fit on the training dataset (feature_train, target_train). After training, the
model is ready to make predictions using the predict() method.

We will now evaluate the model's performance:4.

Import metrics module for performance evaluation
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score

Calculate model accuracy
print("Accuracy:",accuracy_score(target_test, predictions))

Supervised Learning - Classification Techniques Chapter 10

[299]

Calculate model precision
print("Precision:",precision_score(target_test, predictions))

Calculate model recall
print("Recall:",recall_score(target_test, predictions))

Calculate model f1 score
print("F1-Score:",f1_score(target_test, predictions))

This results in the following output:

Accuracy: 0.7229437229437229
Precision: 0.6438356164383562
Recall: 0.5529411764705883
F1-Score: 0.5949367088607594

In the preceding example, model performance is assessed using accuracy, precision, recall,
and F1-score.

After getting a full understanding of decision trees, let's move on to the KNN classification.

KNN classification
KNN is a simple, easy-to-comprehend, and easy-to-implement classification algorithm. It
can also be used for regression problems. KNN can be employed in lots of use cases, such
as item recommendations and classification problems. Specifically, it can suggest movies on
Netflix, articles on Medium, candidates on naukari.com, products on eBay, and videos on
YouTube. In classification, it can be used to classify instances such as, for example, banking
institutes that can classify the loan of risky candidates, or political scientists can classify
potential voters.

KNN has three basic properties, which are non-parametric, lazy learner, and instance-based
learning. Non-parametric means the algorithm is distribution-free and there is no need for
parameters such as mean and standard deviation. Lazy learner means KNN does not train
the model; that is, the model is trained in the testing phase. This makes for faster training
but slower testing. It is also more time- and memory-consuming. Instance-based learning
means the predicted outcome is based on the similarity with its nearest neighbors. It does
not create any abstract equations or rules for prediction; instead, it stores all the data and
queries each record.

Supervised Learning - Classification Techniques Chapter 10

[300]

The KNN classification algorithm finds the k most similar instances from the training
dataset and the majority decides the predicted label of the given input features. The
following steps will be performed by the KNN classifier to make predictions:

Compute the distance for an input observation with all the observations in the1.
training dataset.
Find the K top closest neighbors by sorting the distance with all the instances in2.
ascending order.
Perform voting on the K top closest neighbors and predict the label with the3.
majority of votes.

This is better represented using the following diagram:

Let's work on a KNN classifier using scikit-learn and perform a prediction on a dataset:

Load the Pima Indians Diabetes dataset. 1.

First, you need to import pandas and load the dataset using the read_csv()
method that we have already seen in the Naive Bayes classification session.

Split the dataset.2.

After this, we need to break down the dataset into two sets – a training and a
testing set – as we did in the Naive Bayes classification section.

Build the KNN classification model. 3.

Supervised Learning - Classification Techniques Chapter 10

[301]

Now, we are ready for the model building:

Import KNN model
from sklearn.neighbors import KNeighborsClassifier

Create a KNN classifier object
model = KNeighborsClassifier(n_neighbors=3)

Train the model using the training dataset
model.fit(feature_train,target_train)

Predict the target variable for test dataset
predictions = model.predict(feature_test)

In the preceding code block, we imported the KNeighborsClassifier class and
created its object or model. Here, we have taken 3 neighbors as an input
parameter to the model. If we do not specify the number of neighbors as an input
parameter, then the model will choose 5 neighbors by default. This model will fit
on the training dataset (feature_train, target_train). After training, the
model is ready to make predictions using the predict() method.

Evaluate the model's performance:4.

Import metrics module for performance evaluation
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score

Calculate model accuracy
print("Accuracy:",accuracy_score(target_test, predictions))

Calculate model precision
print("Precision:",precision_score(target_test, predictions))

Calculate model recall
print("Recall:",recall_score(target_test, predictions))

Calculate model f1 score
print("F1-Score:",f1_score(target_test, predictions))

This results in the following output:

Accuracy: 0.7532467532467533
Precision: 0.7058823529411765
Recall: 0.5647058823529412
F1-Score: 0.6274509803921569

Supervised Learning - Classification Techniques Chapter 10

[302]

In the preceding example, model performance is assessed using accuracy, precision, recall,
and F1-score.

After understanding the KNN classification algorithm, it's time to learn about the SVM
classification algorithm.

SVM classification
SVMs are the most preferred and favorite machine learning algorithms by many data
scientists due to their accuracy with less computation power. They are employed for both
regression and classification problems. They also offer a kernel trick to model non-linear
relationships. SVM has a variety of use cases, such as intrusion detection, text classification,
face detection, and handwriting recognition.

SVM is a discriminative model that generates optimal hyperplanes with a large margin in
n-dimensional space to separate data points. The basic idea is to discover the Maximum
Marginal Hyperplane (MMH) that perfectly separates data into given classes. The
maximum margin means the maximum distance between data points of both classes.

Terminology
We will now explore some of the terminology that goes into SVM classification:

Hyperplane: Hyperplane is a decision boundary used to distinguish between
two classes. Hyperplane dimensionality is decided by the number of features. It
is also known as a decision plane.
Support vectors: Support vectors are the closest points to the hyperplane and
help in the orientation of the hyperplane by maximizing the margin.
Margin: Margin is the maximum gap between the closest points. The larger the
margin, the better the classification is considered. The margin can be calculated
by the perpendicular distance from the support vector line.

The core objective of an SVM is to choose the hyperplane with the largest possible
boundary between support vectors. The SVM finds the MMH in the following two stages:

Create hyperplanes that separate the data points in the best possible manner.1.
Select the hyperplane with maximum margin hyperplane:2.

Supervised Learning - Classification Techniques Chapter 10

[303]

The SVM algorithm is a faster and more accurate classifier compared to naive Bayes. It
performs better with a larger margin of separation. SVM is not favorable for large datasets.
Its performance also depends upon the type of kernel used. It performs poorly with
overlapping classes.

Let's work on support vector classifiers using scikit-learn and perform a prediction
dataset. After this, we will divide the dataset into two sets of training and testing sets as we
did in the Naive Bayes classification section. After this, we are ready with the model building:

Load the Pima Indians Diabetes dataset. 1.

First, you need to import pandas and load the dataset using the read_csv()
method that we already saw in the Naive Bayes classification session.

Split the dataset.2.

After this, we need to break the dataset up into two sets – a training and testing
set – as we did in the naive Bayes classification section.

Build the SVM classification model. 3.

Now, we are ready with the model building:

Import SVM model
from sklearn import svm

Create a SVM classifier object
clf = svm.SVC(kernel='linear')

Train the model using the training sets

Supervised Learning - Classification Techniques Chapter 10

[304]

clf.fit(feature_train,target_train)

Predict the target variable for test dataset
predictions = clf.predict(feature_test)

In the preceding code block, we will import the svm module and create its
svm.SVC() object or model. Here, we have passed the linear kernel. You can
also pass another kernel, such as poly, rbf, or sigmoid. If we don't specify the
kernel, then it will select rbf by default as the kernel. The linear kernel will create
a linear hyperplane to separate diabetic and non-diabetic patients. This model
will fit on the training dataset (feature_train, target_train). After training,
the model is ready to make predictions using the predict() method.

Evaluate the model's performance:4.

Import metrics module for performance evaluation
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score

Calculate model accuracy
print("Accuracy:",accuracy_score(target_test, predictions))

Calculate model precision
print("Precision:",precision_score(target_test, predictions))

Calculate model recall
print("Recall:",recall_score(target_test, predictions))

Calculate model f1 score
print("F1-Score:",f1_score(target_test, predictions))

This results in the following output:

Accuracy: 0.7835497835497836
Precision: 0.7868852459016393
Recall: 0.5647058823529412
F1-Score: 0.6575342465753424

In the preceding example, model performance will be assessed using metrics such as
accuracy, precision, recall, and F1-score. After understanding all these classifiers, it's time to
see the training and testing set splitting strategies.

Supervised Learning - Classification Techniques Chapter 10

[305]

Splitting training and testing sets
Data scientists need to assess the performance of a model, overcome overfitting, and tune
the hyperparameters. All these tasks require some hidden data records that were not used
in the model development phase. Before model development, the data needs to be divided
into some parts, such as train, test, and validation sets. The training dataset is used to build
the model. The test dataset is used to assess the performance of a model that was trained on
the train set. The validation set is used to find the hyperparameters. Let's look at the
following strategies for the train-test split in the upcoming subsections:

Holdout method
K-fold cross-validation
Bootstrap method

Holdout
In this method, the dataset is divided randomly into two parts: a training and testing set.
Generally, this ratio is 2:1, which means 2/3 for training and 1/3 for testing. We can also
split it into different ratios, such as 6:4, 7:3, and 8:2:

partition data into training and testing set
from sklearn.model_selection import train_test_split

split train and test set
feature_train, feature_test, target_train, target_test =
train_test_split(features, target, test_size=0.3, random_state=1)

In the preceding example, test_size=0.3 represents 30% for the testing set and 70% for
the training set. train_test_split() splits the dataset into 7:3.

Supervised Learning - Classification Techniques Chapter 10

[306]

K-fold cross-validation
In this approach, the data is split into k partitions of approximately equal size. It will train k
models and evaluate them using each partition. In each iteration, one partition will hold for
testing, and the remaining k partitions are collectively used for training purposes.
Classification accuracy will be the average of all accuracies. It also ensures that the model is
not overfitting:

In stratified cross-validation, k partitions are divided with approximately the same class
distribution. This means it preserves the percentages of each class in each partition.

Bootstrap method
Bootstrap is a resampling technique. It performs a sampling iteratively from the dataset
with replacement. Sampling with replacement will make random selections. It requires the
size of the sample and the number of iterations. In each iteration, it uniformly selects the
records. Each record has equal chances of being selected again. The samples that are not
selected are known as "out-of-bag" samples. Let's understand bootstrap using the following
diagram:

Supervised Learning - Classification Techniques Chapter 10

[307]

In the preceding diagram, we can see that each element has an equal chance of selection in
each bootstrap sample. Let's jump to another important topic of classification, which is
classification model evaluation. The next topic helps us to assess the performance of the
classification model.

Evaluating the classification model
performance
Up to now, we have learned how to create classification models. Creating a machine
learning classification model is not enough; as a business or data analyst, you also want to
assess its performance so that you can deploy it in live projects.

scikit-learn offers various metrics, such as a confusion matrix, accuracy, precision, recall,
and F1-score, to evaluate the performance of a model.

Confusion matrix
A confusion matrix is an approach that gives a brief statement of prediction results on a
binary and multi-class classification problem. Let's assume we have to find out whether a
person has diabetes or not. The concept behind the confusion matrix is to find the number
of right and mistaken forecasts, which are further summarized and separated into each
class. It clarifies all the confusion related to the performance of our classification model.
This 2x2 matrix not only shows the error being made by our classifier but also represents
what sort of mistakes are being made. A confusion matrix is used to make a complete
analysis of statistical data faster and also make the results more readable and
understandable through clear data visualization. It contains two rows and columns, as
shown in the following list. Let's understand the basic terminologies of the confusion
matrix:

True Positive (TP): This represents cases that are forecasted as Yes and in reality,
the cases are Yes; for example, we have forecasted them as fraudulent cases and
in reality, they are fraudulent.
True Negative (TN): This represents cases that are forecasted as No and in
reality, the cases are No; for example, we have forecasted them as non-fraudulent
cases and in reality, they are non-fraudulent.

Supervised Learning - Classification Techniques Chapter 10

[308]

False Positive (FP): This represents cases that are forecasted as Yes and in reality,
the cases are No; for example, we have forecasted them as fraudulent cases and in
reality, they are not fraudulent. This type of incident class represents a Type I
error.
False Negative (FN): This represents cases that are forecasted as No and in
reality, the cases are No; for example, we have forecasted them as non-fraudulent
cases and in reality, they are fraudulent. This type of incident class represents a
Type II error.

Let's take an example of a fraud detection problem:

In the preceding example, we have taken two classes of fraud: Yes and No. Yes indicates
fraudulent activity and No indicates non-fraudulent activity. The total number of predicted
records is 825, which means 825 transactions were tested. In all these 825 cases, the model
or classifier forecasted 550 times Yes and 275 times No. In reality, actual fraudulent cases
are 525 and non-fraudulent cases are 300.

Supervised Learning - Classification Techniques Chapter 10

[309]

Let's create a confusion matrix in Python using scikit-learn:

Import libraries
import pandas as pd

read the dataset
diabetes = pd.read_csv("diabetes.csv")

split dataset in two parts: feature set and target label
feature_set = ['pregnant', 'insulin', 'bmi',
'age','glucose','bp','pedigree']
features = diabetes[feature_set]

target = diabetes.label

partition data into training and testing set
from sklearn.model_selection import train_test_split
feature_train, feature_test, target_train, target_test =
train_test_split(features, target, test_size=0.3, random_state=1)

import logistic regression scikit-learn model
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score # for performance evaluation

instantiate the model
logreg = LogisticRegression(solver='lbfgs')

fit the model with data
logreg.fit(feature_train,target_train)

Forecast the target variable for given test dataset
predictions = logreg.predict(feature_test)

Get prediction probability
predictions_prob = logreg.predict_proba(feature_test)[::,1]

Import the confusion matrix
from sklearn.metrics import plot_confusion_matrix

Plot Confusion matrix
plot_confusion_matrix(logreg , feature_test, target_test,
values_format='d')

Supervised Learning - Classification Techniques Chapter 10

[310]

This results in the following output:

In the preceding example, we have loaded the data and divided the data into two parts:
training and testing sets. After this, we performed model training using logistic regression
as we did in the previous chapter. Here, to plot the confusion matrix, we have used the
plot_confusion_matrix() method with the model object, testing feature set, testing
label set, and values_format parameters.

Accuracy
Now, we will find the accuracy of the model calculated from the confusion matrix. It tells
us how accurate our predictive model is:

Supervised Learning - Classification Techniques Chapter 10

[311]

Precision
When the model predicted Yes, how often was it correct? This is the percentage of positive
cases out of the total predicted cases in the dataset. In simple terms, we can understand
precision as "Up to what level our model is right when it says it's right":

Recall
When it is actually Yes, how often did the model predict Yes? This is also known as
sensitivity. This is the percentage of positive cases out of all the total actual cases present in
the dataset:

F-measure
F-measure is considered as one of the better ways to assess the model. In lots of areas of
data science, competition model performance is assessed using F-measure. It is a harmonic
mean of precision and recall. The higher the value of the F1-score, the better the model is
considered. F1-score provides equal weightage to precision and recall, which means it
indicates a balance between both:

Supervised Learning - Classification Techniques Chapter 10

[312]

One drawback of F-measure is that it assigns equal weightage to precision and recall but in
some examples, one needs to be higher than the other, which is the reason why the F1-score
may not be an exact metric.

In the preceding sections, we have seen classification algorithms such as naive Bayes,
decision trees, KNN, and SVMs. We have assessed the model performance using scikit-
learn's accuracy_score() for model accuracy, precision_score() for model precision,
recall_score() for model recall, and f1_score() for model F1-score.

We can also print the classification report to dig down into the details to understand the
classification model. Let's create the confusion report:

import classification report
from sklearn.metrics import classification_report

Create classification report
print(classification_report(target_test, predictions,
target_names=['Yes(1)','No(0)']))

This results in the following output:

In the preceding code, we have printed the confusion matrix report using the
confusion_report() method with test set labels, prediction set or predicted labels, and
target value list parameters.

ROC curve and AUC
AUC-ROC curve is a tool to measure and assess the performance of classification models.
ROC (Receiver Operating Characteristics) is a pictorial visualization of model
performance. It plots a two-dimensional probability plot between the FP rate (or 1-
specificity) and the TP rate (or sensitivity). We can also represent the area covered by a
model with a single number using AUC:

Supervised Learning - Classification Techniques Chapter 10

[313]

Let's create the ROC curve using the scikit-learn module:

import plot_roc_curve
from sklearn.metrics import plot_roc_curve

plot_roc_curve(logreg , feature_test, target_test)

This results in the following output:

Supervised Learning - Classification Techniques Chapter 10

[314]

In the preceding example, We have drawn the ROC plot plot_roc_curve() method with
model object, testing feature set, and testing label set parameters.

In the ROC curve, the AUC is a measure of divisibility. It tells us about the model's class
distinction capability. The higher the AUC value, the better the model is at distinguishing
between "fraud" and "not fraud." For an ideal classifier, the AUC is equal to 1:

Let's compute an AUC score as follows:

import ROC AUC score
from sklearn.metrics import roc_auc_score

Compute the area under ROC curve
auc = roc_auc_score(target_test, predictions_prob)

Print auc value
print("Area Under Curve:",auc)

This results in the following output:

Area Under Curve: 0.8628525382755843

scikit-learn's metrics class offers an AUC performance evaluation measure.
roc_auc_score() methods will take actual labels (y_test) and predicted probability
(y_pred_prob).

Supervised Learning - Classification Techniques Chapter 10

[315]

Summary
In this chapter, we discovered classification, its techniques, the train-test split strategy, and
performance evaluation measures. This will benefit you in gaining an important skill for
predictive data analysis. You have seen how to develop linear and non-linear classifiers for
predictive analytics using scikit-learn. In the earlier topics of the chapter, you got an
understanding of the basics of classification and machine learning algorithms, such as naive
Bayes classification, decision tree classification, KNN, and SVMs. In later sections, you saw
data splitting approaches and model performance evaluation measures such as accuracy
score, precision score, recall score, F1-score, ROC curve, and AUC score.

The next chapter, Chapter 11, Unsupervised Learning – PCA and Clustering, will concentrate
on the important topics of unsupervised machine learning techniques and dimensionality
reduction techniques in Python. The chapter starts with dimension reduction and principal
component analysis. In the later sections of the chapter, the focus will be on clustering
methods such as k-means, hierarchical, DBSCAN, and spectral clustering.

11
Unsupervised Learning - PCA

and Clustering
 Unsupervised learning is one of the most important branches of machine learning. It
enables us to make predictions when we don't have target labels. In unsupervised learning,
the model learns only via features because the dataset doesn't have a target label column.
Most machine learning problems start with something that helps automate the process. For
example, when you want to develop a prediction model for detecting diabetes patients, you
need a set of target labels for each patient in your dataset. In the initial stages, arranging
target labels for any machine learning problem is not an easy task, because it requires
changing the business process to get the labels, whether by manual in-house labeling or
collecting the data again with labels.

In this chapter, our focus is on learning about unsupervised learning techniques that can
handle situations where target labels are not available. We will especially cover
dimensionality reduction techniques and clustering techniques. Dimensionality reduction
will be used where we have a large number of features and we want to reduce that amount.
This will reduce the model complexity and training cost because it means we can achieve
the results we want with just a few features.

Clustering techniques find groups in data based on similarity. These groups essentially
represent unsupervised classification. In clustering, classes or labels for feature observations
are found in an unsupervised manner. Clustering is useful for various business operations,
such as cognitive search, recommendations, segmentation, and document clustering.

Here are the topics of this chapter:

Unsupervised learning
Reducing the dimensions of data
Principal component analysis
Clustering
Partitioning data using k-means clustering

Unsupervised Learning - PCA and Clustering Chapter 11

[317]

Hierarchical clustering
DBSCAN clustering
Spectral clustering
Evaluating clustering performance

Technical requirements
This chapter has the following technical requirements:

You can find the code and the datasets at the following GitHub link: https:/ /
github.com/ PacktPublishing/ Python- Data- Analysis- Third- Edition/ tree/
master/Chapter11.
All the code blocks are available in the ch11.ipynb file.
This chapter uses only one CSV file (diabetes.csv) for practice purposes.
In this chapter, we will use the pandas and scikit-learn Python libraries.

Unsupervised learning
Unsupervised learning means learning by observation, not by example. This type of
learning works with unlabeled data. Dimensionality reduction and clustering are examples
of such learning. Dimensionality reduction is used to reduce a large number of attributes to
just a few that can produce the same results. There are several methods that are available
for reducing the dimensionality of data, such as principal component analysis (PCA), t-
SNE, wavelet transformation, and attribute subset selection.

The term cluster means a group of similar items that are closely related to each other.
Clustering is an approach for generating units or groups of items that are similar to each
other. This similarity is computed based on certain features or characteristics of items. We
can say that a cluster is a set of data points that are similar to others in its cluster and
dissimilar to data points of other clusters. Clustering has numerous applications, such as in
searching documents, business intelligence, information security, and
recommender systems:

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter11

Unsupervised Learning - PCA and Clustering Chapter 11

[318]

In the preceding diagram, we can see how clustering puts data records or observations into
a few groups, and dimensionality reduction reduces the number of features or attributes.
Let's look at each of these topics in detail in the upcoming sections.

Reducing the dimensionality of data
Reducing dimensionality, or dimensionality reduction, entails scaling down a large number
of attributes or columns (features) into a smaller number of attributes. The main objective of
this technique is to get the best number of features for classification, regression, and other
unsupervised approaches. In machine learning, we face a problem called the curse of
dimensionality. This is where there is a large number of attributes or features. This means
more data, causing complex models and overfitting problems.

Dimensionality reduction helps us to deal with the curse of dimensionality. It can transform
data linearly and nonlinearly. Techniques for linear transformations include PCA, linear
discriminant analysis, and factor analysis. Non-linear transformations include techniques
such as t-SNE, Hessian eigenmaps, spectral embedding, and isometric feature mapping.
Dimensionality reduction offers the following benefits:

It filters redundant and less important features.
It reduces model complexity with less dimensional data.
It reduces memory and computation costs for model generation.
It visualizes high-dimensional data.

Unsupervised Learning - PCA and Clustering Chapter 11

[319]

In the next section, we will focus on one of the important and popular dimension reduction
techniques, PCA.

PCA
In machine learning, it is considered that having a large amount of data means having a
good-quality model for prediction, but a large dataset also poses the challenge of higher
dimensionality (or the curse of dimensionality). It causes an increase in complexity for
prediction models due to the large number of attributes. PCA is the most commonly used
dimensionality reduction method and helps us to identify patterns and correlations in the
original dataset to transform it into a lower-dimension dataset with no loss of information.

The main concept of PCA is the discovery of unseen relationships and correlations among
attributes in the original dataset. Highly correlated attributes are so similar as to be
redundant. Therefore, PCA removes such redundant attributes. For example, if we have 200
attributes or columns in our data, it becomes very difficult for us to proceed, what with
such a huge number of attributes. In such cases, we need to reduce that number to 10 or 20
variables. Another objective of PCA is to reduce the dimensionality without affecting the
significant information. For p-dimensional data, the PCA equation can be written as
follows:

Principal components are a weighted sum of all the attributes. Here, are the
attributes in the original dataset and are the weights of the attributes.

Let's take an example. Let's consider the streets in a given city as attributes, and let's say
you want to visit this city. Now the question is, how many streets you will visit? Obviously,
you will want to visit the popular or main streets of the city, which let's say is 10 out of the
50 available streets. These 10 streets will give you the best understanding of that city. These
streets are then principal components, as they explain enough of the variance in the data
(the city's streets).

Unsupervised Learning - PCA and Clustering Chapter 11

[320]

Performing PCA
Let's perform PCA from scratch in Python:

Compute the correlation or covariance matrix of a given dataset.1.
Find the eigenvalues and eigenvectors of the correlation or covariance matrix.2.
Multiply the eigenvector matrix by the original dataset and you will get the3.
principal component matrix.

Let's implement PCA from scratch:

We will begin by importing libraries and defining the dataset:1.

Import numpy
import numpy as np
Import linear algebra module
from scipy import linalg as la
Create dataset
data=np.array([[7., 4., 3.],
[4., 1., 8.],
[6., 3., 5.],
[8., 6., 1.],
[8., 5., 7.],
[7., 2., 9.],
[5., 3., 3.],
[9., 5., 8.],
[7., 4., 5.],
[8., 2., 2.]])

Calculate the covariance matrix:2.

Calculate the covariance matrix
Center your data
data -= data.mean(axis=0)
cov = np.cov(data, rowvar=False)

Calculate the eigenvalues and eigenvector of the covariance matrix:3.

Calculate eigenvalues and eigenvector of the covariance matrix
evals, evecs = la.eig(cov)

Multiply the original data matrix by the eigenvector matrix:4.

Multiply the original data matrix with Eigenvector matrix.

Sort the Eigen values and vector and select components
num_components=2

Unsupervised Learning - PCA and Clustering Chapter 11

[321]

sorted_key = np.argsort(evals)[::-1][:num_components]
evals, evecs = evals[sorted_key], evecs[:, sorted_key]

print("Eigenvalues:", evals)
print("Eigenvector:", evecs)
print("Sorted and Selected Eigen Values:", evals)
print("Sorted and Selected Eigen Vector:", evecs)

Multiply original data and Eigen vector
principal_components=np.dot(data,evecs)
print("Principal Components:", principal_components)

This results in the following output:

Eigenvalues: [0.74992815+0.j 3.67612927+0.j 8.27394258+0.j]
Eigenvector: [[-0.70172743 0.69903712 -0.1375708]
[0.70745703 0.66088917 -0.25045969]
[0.08416157 0.27307986 0.95830278]]

Sorted and Selected Eigen Values: [8.27394258+0.j 3.67612927+0.j]

Sorted and Selected Eigen Vector: [[-0.1375708 0.69903712]
[-0.25045969 0.66088917]
[0.95830278 0.27307986]]

Principal Components: [[-2.15142276 -0.17311941]
[3.80418259 -2.88749898]
[0.15321328 -0.98688598]
[-4.7065185 1.30153634]
[1.29375788 2.27912632]
[4.0993133 0.1435814]
[-1.62582148 -2.23208282]
[2.11448986 3.2512433]
[-0.2348172 0.37304031]
[-2.74637697 -1.06894049]]

Here, we have computed a principal component matrix from scratch. First, we centered the
data and computed the covariance matrix. After calculating the covariance matrix, we
calculated the eigenvalues and eigenvectors. Finally, we chose two principal components
(the number of components should be equal to the number of eigenvalues greater than 1)
and multiplied the original data by the sorted and selected eigenvectors. We can also
perform PCA using the scikit-learn library.

Let's perform PCA using scikit-learn in Python:

Import pandas and PCA
import pandas as pd

Unsupervised Learning - PCA and Clustering Chapter 11

[322]

Import principal component analysis
from sklearn.decomposition import PCA

Create dataset
data=np.array([[7., 4., 3.],
[4., 1., 8.],
[6., 3., 5.],
[8., 6., 1.],
[8., 5., 7.],
[7., 2., 9.],
[5., 3., 3.],
[9., 5., 8.],
[7., 4., 5.],
[8., 2., 2.]])

Create and fit_transformed PCA Model
pca_model = PCA(n_components=2)
components = pca_model.fit_transform(data)
components_df = pd.DataFrame(data = components,

columns = ['principal_component_1', 'principal_component_2'])
print(components_df)

This results in the following output:

principal_component_1 principal_component_2

0 2.151423 -0.173119
1 -3.804183 -2.887499
2 -0.153213 -0.986886
3 4.706518 1.301536
4 -1.293758 2.279126
5 -4.099313 0.143581
6 1.625821 -2.232083
7 -2.114490 3.251243
8 0.234817 0.373040
9 2.746377 -1.068940

In the preceding code, we performed PCA using the scikit-learn library. First, we created
the dataset and instantiated the PCA object. After this, we performed fit_transform()
and generated the principal components.

That was all about PCA. Now it's time to learn about another unsupervised learning
concept, clustering.

Unsupervised Learning - PCA and Clustering Chapter 11

[323]

Clustering
Clustering means grouping items that are similar to each other. Grouping similar products,
grouping similar articles or documents, and grouping similar customers for market
segmentation are all examples of clustering. The core principle of clustering is minimizing
the intra-cluster distance and maximizing the intercluster distance. The intra-cluster
distance is the distance between data items within a group, and the inter-cluster distance is
the distance between different groups. The data points are not labeled, so clustering is a
kind of unsupervised problem. There are various methods for clustering and each method
uses a different way to group the data points. The following diagram shows how data
observations are grouped together using clustering:

As we are combining similar data points, the question that arises here is how to find the
similarity between two data points so we can group similar data objects into the same
cluster. In order to measure the similarity or dissimilarity between data points, we can use
distance measures such as Euclidean, Manhattan, and Minkowski distance:

Unsupervised Learning - PCA and Clustering Chapter 11

[324]

Here, the distance formula calculates the distance between two k-dimensional vectors,
xi and yi.

Now we know what clustering is, but the most important question is, how many numbers
of clusters should be considered when grouping the data? That's the biggest challenge for
most clustering algorithms. There are lots of ways to decide the number of clusters. Let's
discuss those methods in the next section.

Finding the number of clusters
In this section, we will focus on the most fundamental issue of clustering algorithms, which
is discovering the number of clusters in a dataset – there is no definitive answer. However,
not all clustering algorithms require a predefined number of clusters. In hierarchical and
DBSCAN clustering, there is no need to define the number of clusters, but in k-means, k-
medoids, and spectral clustering, we need to define the number of clusters. Selecting the
right value for the number of clusters is tricky, so let's look at a couple of the methods for
determining the best number of clusters:

The elbow method
The silhouette method

Let's look at these methods in detail.

Unsupervised Learning - PCA and Clustering Chapter 11

[325]

The elbow method
The elbow method is a well-known method for finding out the best number of clusters. In
this method, we focus on the percentage of variance for the different numbers of clusters.
The core concept of this method is to select the number of clusters that appending another
cluster should not cause a huge change in the variance. We can plot a graph for the sum of
squares within a cluster using the number of clusters to find the optimal value. The sum of
squares is also known as the Within-Cluster Sum of Squares (WCSS) or inertia:

Here is the cluster centroid and is the data points in each cluster:

As you can see, at k = 3, the graph begins to flatten significantly, so we would choose 3 as
the number of clusters.

Unsupervised Learning - PCA and Clustering Chapter 11

[326]

Let's find the optimal number of clusters using the elbow method in Python:

import pandas
import pandas as pd

import matplotlib
import matplotlib.pyplot as plt

import K-means
from sklearn.cluster import KMeans

Create a DataFrame
data=pd.DataFrame({"X":[12,15,18,10,8,9,12,20],
"Y":[6,16,17,8,7,6,9,18]})
wcss_list = []

Run a loop for different value of number of cluster
for i in range(1, 6):
 # Create and fit the KMeans model
 kmeans_model = KMeans(n_clusters = i, random_state = 123)
 kmeans_model.fit(data)
 # Add the WCSS or inertia of the clusters to the score_list
 wcss_list.append(kmeans_model.inertia_)

Plot the inertia(WCSS) and number of clusters
plt.plot(range(1, 6), wcss_list, marker='*')

set title of the plot
plt.title('Selecting Optimum Number of Clusters using Elbow Method')

Set x-axis label
plt.xlabel('Number of Clusters K')

Set y-axis label
plt.ylabel('Within-Cluster Sum of the Squares(Inertia)')

Display plot
plt.show()

Unsupervised Learning - PCA and Clustering Chapter 11

[327]

This results in the following output:

In the preceding example, we created a DataFrame with two columns, X and Y. We
generated the clusters using K-means and computed the WCSS. After this, we plotted the
number of clusters and inertia. As you can see at k = 2, the graph begins to flatten
significantly, so we would choose 2 as the best number of clusters.

The silhouette method
The silhouette method assesses and validates cluster data. It finds how well each data point
is classified. The plot of the silhouette score helps us to visualize and interpret how well
data points are tightly grouped within their own clusters and separated from others. It
helps us to evaluate the number of clusters. Its score ranges from -1 to +1. A positive value
indicates a well-separated cluster and a negative value indicates incorrectly assigned data
points. The more positive the value, the further data points are from the nearest clusters; a
value of zero indicates data points that are at the separation line between two clusters. Let's
see the formula for the silhouette score:

Unsupervised Learning - PCA and Clustering Chapter 11

[328]

ai is the average distance of the ith data point from other points within the cluster.

bi is the average distance of the ith data point from other cluster points.

This means we can easily say that S(i) would be between [-1, 1]. So, for S(i) to be near to 1, ai

must be very small compared to bi, that is,e. ai << bi.

Let's find the optimum number of clusters using the silhouette score in Python:

import pandas
import pandas as pd

import matplotlib for data visualization
import matplotlib.pyplot as plt

import k-means for performing clustering
from sklearn.cluster import KMeans

import silhouette score
from sklearn.metrics import silhouette_score

Create a DataFrame
data=pd.DataFrame({"X":[12,15,18,10,8,9,12,20],
"Y":[6,16,17,8,7,6,9,18]})
score_list = []

Run a loop for different value of number of cluster
for i in range(2, 6):
 # Create and fit the KMeans model
 kmeans_model = KMeans(n_clusters = i, random_state = 123)
 kmeans_model.fit(data)
 # Make predictions
 pred=kmeans_model.predict(data)
 # Calculate the Silhouette Score
 score = silhouette_score (data, pred, metric='euclidean')

 # Add the Silhouette score of the clusters to the score_list
 score_list.append(score)

Plot the Silhouette score and number of cluster
plt.bar(range(2, 6), score_list)

Set title of the plot
plt.title('Silhouette Score Plot')

Set x-axis label
plt.xlabel('Number of Clusters K')

Unsupervised Learning - PCA and Clustering Chapter 11

[329]

Set y-axis label
plt.ylabel('Silhouette Scores')

Display plot
plt.show()

This results in the following output:

In the preceding example, we created a DataFrame with two columns, X and Y. We
generated clusters with different numbers of clusters on the created DataFrame using K-
means and computed the silhouette score. After this, we plotted the number of clusters and
the silhouette scores using a barplot. As you can see, at k = 2, the silhouette score has the
highest value, so we would choose 2 clusters. Let's jump to the k-means clustering
technique.

Partitioning data using k-means clustering
k-means is one of the simplest, most popular, and most well-known clustering algorithms.
It is a kind of partitioning clustering method. It partitions input data by defining a random
initial cluster center based on a given number of clusters. In the next iteration, it associates
the data items to the nearest cluster center using Euclidean distance. In this algorithm, the
initial cluster center can be chosen manually or randomly. k-means takes data and the
number of clusters as input and performs the following steps:

Select k random data items as the initial centers of clusters.1.
Allocate the data items to the nearest cluster center.2.

Unsupervised Learning - PCA and Clustering Chapter 11

[330]

Select the new cluster center by averaging the values of other cluster items.3.
Repeat steps 2 and 3 until there is no change in the clusters.4.

This algorithm aims to minimize the sum of squared errors:

k-means is one of the fastest and most robust algorithms of its kind. It works best with a
dataset with distinct and separate data items. It generates spherical clusters. k-means
requires the number of clusters as input at the beginning. If data items are very much
overlapped, it doesn't work well. It captures the local optima of the squared error function.
It doesn't perform well with noisy and non-linear data. It also doesn't work well with non-
spherical clusters. Let's create a clustering model using k-means clustering:

import pandas
import pandas as pd

import matplotlib for data visualization
import matplotlib.pyplot as plt

Import K-means
from sklearn.cluster import KMeans

Create a DataFrame
data=pd.DataFrame({"X":[12,15,18,10,8,9,12,20],
"Y":[6,16,17,8,7,6,9,18]})

Define number of clusters
num_clusters = 2

Create and fit the KMeans model
km = KMeans(n_clusters=num_clusters)
km.fit(data)

Predict the target variable
pred=km.predict(data)

Plot the Clusters
plt.scatter(data.X,data.Y,c=pred, marker="o", cmap="bwr_r")

Set title of the plot
plt.title('K-Means Clustering')

Unsupervised Learning - PCA and Clustering Chapter 11

[331]

Set x-axis label
plt.xlabel('X-Axis Values')

Set y-axis label
plt.ylabel('Y-Axis Values')

Display the plot
plt.show()

This results in the following output:

In the preceding code example, we imported the KMeans class and created its object or
model. This model will fit it on the dataset (without labels). After training, the model is
ready to make predictions using the predict() method. After predicting the results, we
plotted the cluster results using a scatter plot. In this section, we have seen how k-means
works and its implementation using the scikit-learn library. In the next section, we will look
at hierarchical clustering.

Unsupervised Learning - PCA and Clustering Chapter 11

[332]

Hierarchical clustering
Hierarchical clustering groups data items based on different levels of a hierarchy. It
combines the items in groups based on different levels of a hierarchy using top-down or
bottom-up strategies. Based on the strategy used, hierarchical clustering can be of two types
– agglomerative or divisive:

The agglomerative type is the most widely used hierarchical clustering
technique. It groups similar data items in the form of a hierarchy based on
similarity. This method is also called Agglomerative Nesting (AGNES). This
algorithm starts by considering every data item as an individual cluster and
combines clusters based on similarity. It iteratively collects small clusters and
combines them into a single large cluster. This algorithm gives its result in the
form of a tree structure. It works in a bottom-up manner; that is, every item is
initially considered as a single element cluster and in each iteration of the
algorithm, the two most similar clusters are combined and form a bigger cluster.
Divisive hierarchical clustering is a top-down strategy algorithm. It is also known
as Divisive Analysis (DIANA). It starts with all the data items as a single big
cluster and partitions recursively. In each iteration, clusters are divided into two
non-similar or heterogeneous sub-clusters:

Unsupervised Learning - PCA and Clustering Chapter 11

[333]

In order to decide which clusters should be grouped or split, we use various distances and
linkage criteria such as single, complete, average, and centroid linkage. These criteria
decide the shape of the cluster. Both types of hierarchical clustering (agglomerative and
divisive hierarchical clustering) require a predefined number of clusters or a distance
threshold as input to terminate the recursive process. It is difficult to decide the distance
threshold, so the easiest option is to check the number of clusters using a dendrogram.
Dendrograms help us to understand the process of hierarchical clustering. Let's see how to
create a dendrogram using the scipy library:

import pandas
import pandas as pd

import matplotlib for data visualization
import matplotlib.pyplot as plt

Import dendrogram
from scipy.cluster.hierarchy import dendrogram
from scipy.cluster.hierarchy import linkage

Create a DataFrame
data=pd.DataFrame({"X":[12,15,18,10,8,9,12,20],
"Y":[6,16,17,8,7,6,9,18]})

create dendrogram using ward linkage
dendrogram_plot = dendrogram(linkage(data, method = 'ward'))

Set title of the plot
plt.title('Hierarchical Clustering: Dendrogram')

Set x-axis label
plt.xlabel('Data Items')

Set y-axis label
plt.ylabel('Distance')

Display the plot
plt.show()

Unsupervised Learning - PCA and Clustering Chapter 11

[334]

This results in the following output:

In the preceding code example, we created the dataset and generated the dendrogram
using ward linkage. For the dendrograms, we used the scipy.cluster.hierarchy
module. To set the plot title and axis labels, we used matplotlib. In order to select the
number of clusters, we need to draw a horizontal line without intersecting the clusters and
count the number of vertical lines to find the number of clusters. Let's create a clustering
model using agglomerative clustering:

import pandas
import pandas as pd

import matplotlib for data visualization
import matplotlib.pyplot as plt

Import Agglomerative Clustering
from sklearn.cluster import AgglomerativeClustering

Create a DataFrame
data=pd.DataFrame({"X":[12,15,18,10,8,9,12,20],
"Y":[6,16,17,8,7,6,9,18]})

Specify number of clusters
num_clusters = 2

Create agglomerative clustering model

Unsupervised Learning - PCA and Clustering Chapter 11

[335]

ac = AgglomerativeClustering(n_clusters = num_clusters, linkage='ward')

Fit the Agglomerative Clustering model
ac.fit(data)

Predict the target variable
pred=ac.labels_

Plot the Clusters
plt.scatter(data.X,data.Y,c=pred, marker="o")

Set title of the plot
plt.title('Agglomerative Clustering')

Set x-axis label
plt.xlabel('X-Axis Values')

Set y-axis label
plt.ylabel('Y-Axis Values')

Display the plot
plt.show()

This results in the following output:

Unsupervised Learning - PCA and Clustering Chapter 11

[336]

In the preceding code example, we imported the AgglomerativeClustering class and
created its object or model. This model will fit on the dataset without labels. After training,
the model is ready to make predictions using the predict() method. After predicting the
results, we plotted the cluster results using a scatter plot. In this section, we have seen how
hierarchical clustering works and its implementation using the scipy and scikit-learn
libraries. In the next section, we will look at density-based clustering.

DBSCAN clustering
Partitioning clustering methods, such as k-means, and hierarchical clustering methods,
such as agglomerative clustering, are good for discovering spherical or convex clusters.
These algorithms are more sensitive to noise or outliers and work for well-separated
clusters:

Intuitively, we can say that a density-based clustering approach is most similar t how we as
humans might instinctively group items. In all the preceding figures, we can quickly see the
number of different groups or clusters due to the density of the items.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is based on the
idea of groups and noise. The main idea behind it is that each data item of a group or
cluster has a minimum number of data items in a given radius.

Unsupervised Learning - PCA and Clustering Chapter 11

[337]

The main goal of DBSCAN is to discover the dense region that can be computed using
minimum number of objects (minPoints) and given radius (eps). DBSCAN has the
capability to generate random shapes of clusters and deal with noise in a dataset. Also,
there is no requirement to feed in the number of clusters. DBSCAN automatically identifies
the number of clusters in the data.

Let's create a clustering model using DBSCAN clustering in Python:

import pandas
import pandas as pd

import matplotlib for data visualization
import matplotlib.pyplot as plt

Import DBSCAN clustering model
from sklearn.cluster import DBSCAN

import make_moons dataset
from sklearn.datasets import make_moons

Generate some random moon data
features, label = make_moons(n_samples = 2000)

Create DBSCAN clustering model
db = DBSCAN()

Fit the Spectral Clustering model
db.fit(features)

Predict the target variable
pred_label=db.labels_

Plot the Clusters
plt.scatter(features[:, 0], features[:, 1], c=pred_label,
marker="o",cmap="bwr_r")

Set title of the plot
plt.title('DBSCAN Clustering')

Set x-axis label
plt.xlabel('X-Axis Values')

Set y-axis label
plt.ylabel('Y-Axis Values')

Display the plot
plt.show()

Unsupervised Learning - PCA and Clustering Chapter 11

[338]

This results in the following output:

First, we import the DBSCAN class and create the moon dataset. After this, we create the
DBSCAN model and fit it on the dataset. DBSCAN does not need the number of clusters.
After training, the model is ready to make predictions using the predict() method. After
predicting the results, we plotted the cluster results using a scatter plot. In this section, we
have seen how DBSCAN clustering works and its implementation using the scikit-learn
library. In the next section, we will see the spectral clustering technique.

Spectral clustering
Spectral clustering is a method that employs the spectrum of a similarity matrix. The
spectrum of a matrix represents the set of its eigenvalues, and a similarity matrix consists of
similarity scores between each data point. It reduces the dimensionality of data before
clustering. In other words, we can say that spectral clustering creates a graph of data points,
and these points are mapped to a lower dimension and separated into clusters.

Unsupervised Learning - PCA and Clustering Chapter 11

[339]

A similarity matrix converts data to conquer the lack of convexity in the distribution. For
any dataset, the data points could be n-dimensional, and here could be m data points. From
these m points, we can create a graph where the points are nodes and the edges are
weighted with the similarity between points. A common way to define similarity is with a
Gaussian kernel, which is a nonlinear function of Euclidean distance:

The distance of this function ranges from 0 to 1. The fact that it's bounded between zero and
one is a nice property. The absolute distance (it can be anything) in Euclidean distance can
cause instability and difficulty in modeling. You can think of the Gaussian kernel as a
normalization function for Euclidean distance.

After getting the graph, create an adjacency matrix and put in each cell of the matrix the
weight of the edge . This is a symmetric matrix. Let's call the adjacency matrix A. We
can also create a "degree" diagonal matrix D, which will have in each element the sum of
the weights of all edges linked to node i. Let's call this matrix D. For a given graph G with n
vertices, its n*n Laplacian matrix can be defined as follows:

Here D is the degree matrix and A is the adjacency matrix of the graph.

Now we have the Laplacian matrix of the graph (G). We can compute the spectrum of a
matrix of eigenvectors. If we take k least-significant eigenvectors, we get a representation in
k dimensions. The least-significant eigenvectors are the ones associated with the smallest
eigenvalues. Each eigenvector provides information about the connectivity of the graph.

The idea of spectral clustering is to cluster the points using these k eigenvectors as features.
So, you take the k least-significant eigenvectors and you have your m points in k
dimensions. You run a clustering algorithm, such as k-means, and then you have your
result. This k in spectral clustering is deeply related to the Gaussian kernel k-means. You
can also think about it as a clustering method where your points are projected into a space
of infinite dimensions, clustered there, and then you use those results as the results of
clustering your points.

Unsupervised Learning - PCA and Clustering Chapter 11

[340]

Spectral clustering is used when k-means works badly because the clusters are not linearly
distinguishable in their original space. We can also try other clustering methods, such as
hierarchical clustering or density-based clustering, to solve this problem. Let's create a
clustering model using spectral clustering in Python:

import pandas
import pandas as pd

import matplotlib for data visualization
import matplotlib.pyplot as plt

Import Spectral Clustering
from sklearn.cluster import SpectralClustering

Create a DataFrame
data=pd.DataFrame({"X":[12,15,18,10,8,9,12,20],
"Y":[6,16,17,8,7,6,9,18]})

Specify number of clusters
num_clusters = 2

Create Spectral Clustering model
sc=SpectralClustering(num_clusters, affinity='rbf', n_init=100,
assign_labels='discretize')

Fit the Spectral Clustering model
sc.fit(data)

Predict the target variable
pred=sc.labels_

Plot the Clusters
plt.scatter(data.X,data.Y,c=pred, marker="o")

Set title of the plot
plt.title('Spectral Clustering')

Set x-axis label
plt.xlabel('X-Axis Values')

Set y-axis label
plt.ylabel('Y-Axis Values')

Display the plot
plt.show()

Unsupervised Learning - PCA and Clustering Chapter 11

[341]

This results in the following output:

In the preceding code example, we imported the SpectralClustering class and created a
dummy dataset using pandas. After this, we created the model and fit it on the dataset.
After training, the model is ready to make predictions using the predict() method. In this
section, we have seen how spectral clustering works and its implementation using the
scikit-learn library. In the next section, we will see how to evaluate a clustering algorithm's
performance.

Evaluating clustering performance
Evaluating clustering performance is an essential step to assess the strength of a clustering
algorithm for a given dataset. Assessing performance in an unsupervised environment is
not an easy task, but in the literature, many methods are available. We can categorize these
methods into two broad categories: internal and external performance evaluation. Let's
learn about both of these categories in detail.

Unsupervised Learning - PCA and Clustering Chapter 11

[342]

Internal performance evaluation
In internal performance evaluation, clustering is evaluated based on feature data only. This
method does not use any target label information. These evaluation measures assign better
scores to clustering methods that generate well-separated clusters. Here, a high score does
not guarantee effective clustering results.

Internal performance evaluation helps us to compare multiple clustering algorithms but it
does not mean that a better-scoring algorithm will generate better results than other
algorithms. The following internal performance evaluation measures can be utilized to
estimate the quality of generated clusters:

The Davies-Bouldin index
The Davies-Bouldin index (BDI) is the ratio of intra-cluster distance to inter-cluster
distance. A lower DBI value means better clustering results. This can be calculated as
follows:

Here, the following applies:

n: The number of clusters
ci: The centroid of cluster i
σi: The intra-cluster distance or average distance of all cluster items from the
centroid ci

d(ci, cj): The inter-cluster distance between two cluster centroids ci and cj

The silhouette coefficient
The silhouette coefficient finds the similarity of an item in a cluster to its own cluster items
and other nearest clusters. It is also used to find the number of clusters, as we have seen
elsewhere in this chapter. A high silhouette coefficient means better clustering results. This
can be calculated as follows:

Unsupervised Learning - PCA and Clustering Chapter 11

[343]

ai is the average distance of the ith data point to other points within the cluster.

bi is the average distance of the ith data point to other cluster points.

So, we can say that S(i) would be between [-1, 1]. So, for S(i) to be near to 1, ai must be very
small compared to bi, that is, ai << bi.

External performance evaluation
In external performance evaluation, generated clustering is evaluated using the actual
labels of clusters that are not used in the clustering process. It is similar to a supervised
learning evaluation process; that is, we can use the same confusion matrix here to assess
performance. The following external evaluation measures are used to evaluate the quality
of generated clusters.

The Rand score
The Rand score shows how similar a cluster is to the benchmark classification and
computes the percentage of correctly made decisions. A lower value is preferable because
this represents distinct clusters. This can be calculated as follows:

Here, the following applies:

TP: Total number of true positives
TN: Total number of true negatives
FP: Total number of false positives
FN: Total number of false negatives

The Jaccard score
The Jaccard score computes the similarity between two datasets. It ranges from 0 to 1. 1
means the datasets are identical and 0 means the datasets have no common elements. A low
value is preferable because it indicates distinct clusters. This can be calculated as follows:

Unsupervised Learning - PCA and Clustering Chapter 11

[344]

Here A and B are two datasets.

F-Measure or F1-score
The F-measure is a harmonic mean of precision and recall values. It measures both the
precision and robustness of clustering algorithms. It also tries to equalize the participation
of false negatives using the value of β. This can be calculated as follows:

Here β is the non-negative value. β=1 gives equal weight to precision and recall, β = 0.5
gives twice the weight to precision than to recall, and β = 0 gives no importance to recall.

The Fowlkes-Mallows score
The Fowlkes-Mallows score is a geometric mean of precision and recall. A high value
represents similar clusters. This can be calculated as follows:

Let's create a cluster model using k-means clustering and evaluate the performance using
the internal and external evaluation measures in Python using the Pima Indian Diabetes
dataset (https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/b
lob/master/Chapter11/diabetes.csv):

Import libraries
import pandas as pd

read the dataset
diabetes = pd.read_csv("diabetes.csv")

Show top 5-records
diabetes.head()

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter11/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter11/diabetes.csv
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/blob/master/Chapter11/diabetes.csv

Unsupervised Learning - PCA and Clustering Chapter 11

[345]

This results in the following output:

First, we need to import pandas and read the dataset. In the preceding example, we are
reading the Pima Indian Diabetes dataset:

split dataset in two parts: feature set and target label
feature_set = ['pregnant', 'insulin', 'bmi',
'age','glucose','bp','pedigree']

features = diabetes[feature_set]
target = diabetes.label

After loading the dataset, we need to divide the dataset into dependent/label columns
(target) and independent/feature columns (feature_set). After this, the dataset will be
broken into train and test sets. Now both dependent and independent columns are broken
into train and test sets (feature_train, feature_test, target_train,
and target_test) using train_test_split(). Let's split the dataset into train and test
parts:

partition data into training and testing set
from sklearn.model_selection import train_test_split

feature_train, feature_test, target_train, target_test =
train_test_split(features, target, test_size=0.3, random_state=1)

Here, train_test_split() takes the dependent and independent DataFrames,
test_size and random_state. Here, test_size will decide the ratio for the train-test
split (having a test_size value of 0.3 means 30% of the data will go to the testing set and
the remaining 70% will be for the training set), and random_state is used as a seed value
for reproducing the same data split each time. If random_state is None, then it will split
the records in a random fashion each time, which will give different performance measures:

Import K-means Clustering
from sklearn.cluster import KMeans

Unsupervised Learning - PCA and Clustering Chapter 11

[346]

Import metrics module for performance evaluation
from sklearn.metrics import davies_bouldin_score
from sklearn.metrics import silhouette_score
from sklearn.metrics import adjusted_rand_score
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.metrics import fowlkes_mallows_score

Specify the number of clusters
num_clusters = 2

Create and fit the KMeans model
km = KMeans(n_clusters=num_clusters)
km.fit(feature_train)

Predict the target variable
predictions = km.predict(feature_test)

Calculate internal performance evaluation measures
print("Davies-Bouldin Index:", davies_bouldin_score(feature_test,
predictions))
print("Silhouette Coefficient:", silhouette_score(feature_test,
predictions))

Calculate External performance evaluation measures
print("Adjusted Rand Score:", adjusted_rand_score(target_test,
predictions))
print("Jaccard Score:", jaccard_score(target_test, predictions))
print("F-Measure(F1-Score):", f1_score(target_test, predictions))
print("Fowlkes Mallows Score:", fowlkes_mallows_score(target_test,
predictions))

This results in the following output:

Davies-Bouldin Index: 0.7916877512521091
Silhouette Coefficient: 0.5365443098840619
Adjusted Rand Score: 0.03789319261940484
Jaccard Score: 0.22321428571428573
F-Measure(F1-Score): 0.36496350364963503
Fowlkes Mallows Score: 0.6041244457314743

First, we imported the KMeans and metrics modules. We created a k-means object or
model and fit it on the training dataset (without labels). After training, the model makes
predictions and these predictions are assessed using internal measures, such as the DBI and
the silhouette coefficient, and external evaluation measures, such as the Rand score, the
Jaccard score, the F-Measure, and the Fowlkes-Mallows score.

Unsupervised Learning - PCA and Clustering Chapter 11

[347]

Summary
In this chapter, we have discovered unsupervised learning and its techniques, such as
dimensionality reduction and clustering. The main focus was on PCA for dimensionality
reduction and several clustering methods, such as k-means clustering, hierarchical
clustering, DBSCAN, and spectral clustering. The chapter started with dimensionality
reduction and PCA. After PCA, our main focus was on clustering techniques and how to
identify the number of clusters. In later sections, we moved on to cluster performance
evaluation measures such as the DBI and the silhouette coefficient, which are internal
measures. After looking at internal clustering measures, we looked at external measures
such as the Rand score, the Jaccard score, the F-measure, and the Fowlkes-Mallows index.

The next chapter, Chapter 12, Analyzing Textual Data, will focus on text analytics, covering
the text preprocessing and text classification using NLTK, SpaCy, and scikit-learn. The
chapter starts by exploring basic operations on textual data such as text normalization
using tokenization, stopwords removal, stemming and lemmatization, parts-of-speech
tagging, entity recognition, dependency parsing, and word clouds. In later sections, the
focus will be on feature engineering approaches such as Bag of Words, term presence, TF-
IDF, sentiment analysis, text classification, and text similarity.

4
Section 4: NLP, Image
Analytics, and Parallel

Computing
The main objective of this section is to get an overview of NLP, image analytics, and
parallel computing. NLP skills comprise text preprocessing, sentiment analysis, and text
similarity using NLTK and SpaCy. Image analytics comprises image processing and face
detection using OpenCV. This section also focuses on the parallel computation of
DataFrames, arrays, and machine learning algorithms.

This section includes the following chapters:

Chapter 12, Analyzing Textual Data
Chapter 13, Analyzing Image Data
Chapter 14, Parallel Computing Using Dask

12
Analyzing Textual Data

In the age of information, data is produced at incredible speeds and volumes. The data
produced is not only structured or tabular types, it can also be in a variety of unstructured
types such as textual data, image or graphic data, speech data, and video. Text is a very
common and rich type of data. Articles, blogs, tutorials, social media posts, and website
content all produce unstructured textual data. Thousands of emails, messages, comments,
and tweets are sent by people every minute. Such a large amount of text data needs to be
mined. Text analytics offers lots of opportunities for business people; for instance, Amazon
can interpret customer feedback on a particular product, news analysts can analyze news
trends and the latest issues on Twitter, and Netflix can also interpret reviews of each movie
and web series. Business analysts can interpret customer activities, reviews, feedback, and
sentiments to drive their business effectively using NLP and text analysis.

In this chapter, we will start with basic text analytics operations such as tokenization,
removing stopwords, stemming, lemmatization, PoS tagging, and entity recognition. After
this, we will see how to visualize your text analysis using WordCloud. We will see how to
find out the opinions of customers about a product based on reviews, using sentiment
analysis. Here, we will perform sentiment analysis using text classification and assess
model performance using accuracy, precision, recall, and f1-score. Finally, we will focus on
text similarity between two sentences using Jaccard and cosine similarity.

The topics of this chapter are listed as follows:

Installing NLTK and SpaCy
Text normalization
Tokenization
Removing stopwords
Stemming and lemmatization
POS tagging

Analyzing Textual Data Chapter 12

[350]

Recognizing entities
Dependency parsing
Creating a word cloud
Bag of words
TF-IDF
Sentiment analysis using text classification
Text similarity

Technical requirements
This chapter has the following technical requirements:

You can find the code and the datasets at the following GitHub link: https:/ /
github.com/ PacktPublishing/ Python- Data- Analysis- Third- Edition/ tree/
master/Chapter12.

All the code blocks are available in the ch12.ipynb file.
This chapter uses only one TSV file (amazon_alexa.tsv) for practice purposes.
In this chapter, we will use the NLTK, SpaCy, WordCloud, matplotlib, seaborn,
and scikit-learn Python libraries.

Installing NLTK and SpaCy
NLTK is one of the popular and essential Python packages for natural language processing.
It offers all the basic, as well as advanced, NLP operations. It comprises common
algorithms such as tokenization, stemming, lemmatization, part-of-speech, and named
entity recognition. The main features of the NLTK library are that it's open-source, easy to
learn, easy to use, has a prominent community, and has well-organized documentation.
The NLTK library can be installed using the pip install command running on the
command line as follows:

pip install nltk

NLTK is not a pre-installed library in Anaconda. We can directly install nltk in the Jupyter
Notebook. We can use an exclamation point (!) before the command in the cell:

!pip install nltk

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter12

Analyzing Textual Data Chapter 12

[351]

SpaCy is another essential and powerful Python package for NLP. It offers a common NLP
algorithm as well as advanced functionalities. It is designed for production purposes and
develops applications for a large volume of data. The SpaCy library can be installed using
the pip install command running on the command line as follows:

pip install spacy

After installing spaCy, we need to install a spacy English-language model. We can install it
using the following command:

python -m spacy download en

Spacy and its English model are not pre-installed in Anaconda. We can directly install
spacy using the following code. We can use the exclamation point (!) before the command
in the cell:

!pip install spacy
!python -m spacy download en

Using the preceding syntax, we can install spacy and its English model in Jupyter
Notebooks.

Text normalization
Text normalization converts text into standard or canonical form. It ensures consistency
and helps in processing and analysis. There is no single approach to the normalization
process. The first step in normalization is the lower case all the text. It is the simplest, most
applicable, and effective method for text pre-processing. Another approach could be
handling wrongly spelled words, acronyms, short forms, and the use of out-of-vocabulary
words; for example, "super," "superb," and "superrrr" can be converted into "super". Text
normalization handles the noise and disturbance in test data and prepares noise-free data.
We also apply stemming and lemmatization to normalize the words present in the text.

Let's perform a basic normalization operation by converting the text into lowercase:

Input text
paragraph="""Taj Mahal is one of the beautiful monuments. It is one of the
wonders of the world. It was built by Shah Jahan in 1631 in memory of his
third beloved wife Mumtaj Mahal."""

Converting paragraph in lowercase
print(paragraph.lower())

Analyzing Textual Data Chapter 12

[352]

This results in the following output:

taj mahal is one of the beautiful monuments. it is one of the wonders of
the world. it was built by shah jahan in 1631 in memory of his third
beloved wife mumtaj mahal.

In the preceding code block, we have converted the given input paragraph into lowercase
by using the lower() method.

In NLP, text normalization deals with the randomness and converts text into a standard
form that improves the overall performance of NLP solutions. It also reduces the size of the
document term matrix by converting the words into their root word. In the upcoming
sections, we will focus on basic text preprocessing operations.

Tokenization
Tokenization is the initial step in text analysis. Tokenization is defined as breaking down
text paragraphs into smaller parts or tokens such as sentences or words and ignoring
punctuation marks. Tokenization can be of two types: sentence tokenization and word
tokenization. A sentence tokenizer splits a paragraph into sentences and word tokenization
splits a text into words or tokens.

Let's tokenize a paragraph using NLTK and spaCy:

Before tokenization, import NLTK and download the required files:1.

Loading NLTK module
import nltk

downloading punkt
nltk.download('punkt')

downloading stopwords
nltk.download('stopwords')

downloading wordnet
nltk.download('wordnet')

downloading average_perception_tagger
nltk.download('averaged_perceptron_tagger')

Analyzing Textual Data Chapter 12

[353]

Now, we will tokenize paragraphs into sentences using the sent_tokenize()2.
method of NLTK:

Sentence Tokenization
from nltk.tokenize import sent_tokenize

paragraph="""Taj Mahal is one of the beautiful monuments. It is one
of the wonders of the world. It was built by Shah Jahan in 1631 in
memory of his third beloved wife Mumtaj Mahal."""

tokenized_sentences=sent_tokenize(paragraph)
print(tokenized_sentences)

This results in the following output:

['Taj Mahal is one of the beautiful monument.', 'It is one of the
wonders of the world.', 'It was built by Shah Jahan in 1631 in
memory of his third beloved wife Mumtaj Mahal.']

In the preceding example, we have taken a paragraph and passed it as a parameter to the
sent_tokenize() method. The output of this method will be a list of sentences.

Let's tokenize the paragraph into sentences using spaCy:

Import spacy
import spacy

Loading english language model
nlp = spacy.load("en")

Build the nlp pipe using 'sentencizer'
sent_pipe = nlp.create_pipe('sentencizer')

Append the sentencizer pipe to the nlp pipeline
nlp.add_pipe(sent_pipe)
paragraph = """Taj Mahal is one of the beautiful monuments. It is one of
the wonders of the world. It was built by Shah Jahan in 1631 in memory of
his third beloved wife Mumtaj Mahal."""

Create nlp Object to handle linguistic annotations in a documents.
nlp_doc = nlp(paragraph)

Generate list of tokenized sentence
tokenized_sentences = []
for sentence in nlp_doc.sents:
 tokenized_sentences.append(sentence.text)
print(tokenized_sentences)

Analyzing Textual Data Chapter 12

[354]

This results in the following output:

['Taj Mahal is one of the beautiful monument.', 'It is one of the wonders
of the world.', 'It was built by Shah Jahan in 1631 in memory of his third
beloved wife Mumtaj Mahal.']

In the preceding example, first, we have imported the English language model and
instantiated it. After this, we created the NLP pipe using sentencizer and added it to the
pipeline. Finally, we created the NLP object and iterated through the sents attribute of the
NLP object to create a list of tokenized sentences.

Let's tokenize paragraphs into words using the word_tokenize() function of NLTK:

Import nltk word_tokenize method
from nltk.tokenize import word_tokenize

Split paragraph into words
tokenized_words=word_tokenize(paragraph)
print(tokenized_words)

This results in the following output:

['Taj', 'Mahal', 'is', 'one', 'of', 'the', 'beautiful', 'monument', '.',
'It', 'is', 'one', 'of', 'the', 'wonders', 'of', 'the', 'world', '.', 'It',
'was', 'built', 'by', 'Shah', 'Jahan', 'in', '1631', 'in', 'memory', 'of',
'his', 'third', 'beloved', 'wife', 'Mumtaj', 'Mahal', '.']

In the preceding example, we have taken a paragraph and passed it as a parameter to the
word_tokenize() method. The output of this method will be a list of words.

Let's tokenize the paragraph into words using spaCy:

Import spacy
import spacy

Loading english language model
nlp = spacy.load("en")

paragraph = """Taj Mahal is one of the beautiful monuments. It is one of
the wonders of the world. It was built by Shah Jahan in 1631 in memory of
his third beloved wife Mumtaj Mahal."""

Create nlp Object to handle linguistic annotations in a documents.
my_doc = nlp(paragraph)

tokenize paragraph into words
tokenized_words = []
for token in my_doc:

Analyzing Textual Data Chapter 12

[355]

 tokenized_words.append(token.text)

print(tokenized_words)

This results in the following output:

['Taj', 'Mahal', 'is', 'one', 'of', 'the', 'beautiful', 'monument', '.',
'It', 'is', 'one', 'of', 'the', 'wonders', 'of', 'the', 'world', '.', 'It',
'was', 'built', 'by', 'Shah', 'Jahan', 'in', '1631', 'in', 'memory', 'of',
'his', 'third', 'beloved', 'wife', 'Mumtaj', 'Mahal', '.']

In the preceding example, first, we imported the English language model and instantiated
it. After this, we created a text paragraph. Finally, we created the NLP object using text
paragraphs and iterated it to create a list of tokenized words.

Let's create the frequency distribution of tokenized words:

Import frequency distribution
from nltk.probability import FreqDist

Find frequency distribution of paragraph
fdist = FreqDist(tokenized_words)

Check top 5 common words
fdist.most_common(5)

This results in the following output:

[('of', 4), ('the', 3), ('.', 3), ('Mahal', 2), ('is', 2)]

Let's create a frequency distribution plot using matplotlib:

Import matplotlib
import matplotlib.pyplot as plt

Plot Frequency Distribution
fdist.plot(20, cumulative=False)
plt.show()

Analyzing Textual Data Chapter 12

[356]

This results in the following output:

In the preceding example, we have generated the frequency distribution of tokens using
the FreqDist class. After sentence and word tokenization, we will learn how to remove
stopwords from the given text.

Removing stopwords
Stopwords are counted as noise in text analysis. Any text paragraph has to have verbs,
articles, and propositions. These are all considered stop words. Stop words are necessary
for human conversation but they don't make many contributions in text analysis. Removing
stopwords from text is called noise elimination.

Let's see how to remove stopwords using NLTK:

import the nltk stopwords
from nltk.corpus import stopwords

Load english stopwords list
stopwords_set=set(stopwords.words("english"))

Removing stopwords from text

Analyzing Textual Data Chapter 12

[357]

filtered_word_list=[]
for word in tokenized_words:
 # filter stopwords
 if word not in stopwords_set:
 filtered_word_list.append(word)

print tokenized words
print("Tokenized Word List:", tokenized_words)

print filtered words
print("Filtered Word List:", filtered_word_list)

This results in the following output:

Tokenized Word List: ['Taj', 'Mahal', 'is', 'one', 'of', 'the',
'beautiful', 'monuments', '.', 'It', 'is', 'one', 'of', 'the', 'wonders',
'of', 'the', 'world', '.', 'It', 'was', 'built', 'by', 'Shah', 'Jahan',
'in', '1631', 'in', 'memory', 'of', 'his', 'third', 'beloved', 'wife',
'Mumtaj', 'Mahal', '.']

Filtered Word List: ['Taj', 'Mahal', 'one', 'beautiful', 'monuments', '.',
'It', 'one', 'wonders', 'world', '.', 'It', 'built', 'Shah', 'Jahan',
'1631', 'memory', 'third', 'beloved', 'wife', 'Mumtaj', 'Mahal', '.']

In the preceding example, first, we imported the stopwords and loaded the English word
list. After this, we iterated the tokenized word list that we generated in the previous section
using a for loop and filtered the tokenized words from the stop word list using the if
condition. We saved the filtered words in the fltered_word_list list object.

Let's see how to remove stopwords using spaCy:

Import spacy
import spacy

Loading english language model
nlp = spacy.load("en")

text paragraph
paragraph = """Taj Mahal is one of the beautiful monuments. It is one of
the wonders of the world. It was built by Shah Jahan in 1631 in memory of
his third beloved wife Mumtaj Mahal."""

Create nlp Object to handle linguistic annotations in a documents.
my_doc = nlp(paragraph)

Removing stopwords from text
filtered_token_list = []
for token in my_doc:

Analyzing Textual Data Chapter 12

[358]

 # filter stopwords
 if token.is_stop==False:
 filtered_token_list.append(token)

print("Filtered Word List:",filtered_token_list)

This results in the following output:

Filtered Sentence: [Taj, Mahal, beautiful, monument, ., wonders, world, .,
built, Shah, Jahan, 1631, memory, beloved, wife, Mumtaj, Mahal, .]

In the preceding example, first, we imported the stopwords and loaded the English word
list into the stopwords variable. After this, we iterated the NLP object using a for loop and
filtered each word with the property "is_stop" from the stop word list using the if
condition. We appended the filtered words in the fltered_token_list list object. In this
section, we have looked at removing stopwords. Now, it's time to learn about stemming
and lemmatization to find the root word.

Stemming and lemmatization
Stemming is another step in text analysis for normalization at the language level. The
stemming process replaces a word with its root word. It chops off the prefixes and suffixes.
For example, the word connect is the root word for connecting, connected, and connection.
All the mentioned words have a common root: connect. Such differences between word
spellings make it difficult to analyze text data.

Lemmatization is another type of lexicon normalization, which converts a word into its root
word. It is closely related to stemming. The main difference is that lemmatization considers
the context of the word while normalization is performed, but stemmer doesn't consider the
contextual knowledge of the word. Lemmatization is more sophisticated than a stemmer.
For example, the word "geese" lemmatizes as "goose." Lemmatization reduces words to
their valid lemma using a dictionary. Lemmatization considers the part of speech near the
words for normalization; that is why it is difficult to implement and slower, while
stemmers are easier to implement and faster but with less accuracy.

Let's see how to get stemmed and lemmatized using NLTK:

Import Lemmatizer
from nltk.stem.wordnet import WordNetLemmatizer

Import Porter Stemmer
from nltk.stem.porter import PorterStemmer

Analyzing Textual Data Chapter 12

[359]

Create lemmatizer object
lemmatizer = WordNetLemmatizer()

Create stemmer object
stemmer = PorterStemmer()

take a sample word
sample_word = "crying"
print("Lemmatized Sample Word:", lemmatizer.lemmatize(sample_word, "v"))

print("Stemmed Sample Word:", stemmer.stem(sample_word))

This results in the following output:

Lemmatized Sample Word: cry
Stemmed Sample Word: cri

In the preceding example, first, we imported WordNetLemmatizer for lemmatization and
instantiated its object. Similarly, we imported PorterStemmer to stem an instantiate of its
object. After this, we got the lemma using the lemmatize() function and the stemmed
word using the stem() function.

Let's see how to get lemmatized words using spaCy:

Import english language model
import spacy

Loading english language model
nlp = spacy.load("en")

Create nlp Object to handle linguistic annotations in documents.
words = nlp("cry cries crying")

Find lemmatized word
for w in words:
 print('Original Word: ', w.text)
 print('Lemmatized Word: ',w.lemma_)

This results in the following output:

Original Word: cry
Lemmatized Word: cry
Original Word: cries
Lemmatized Word: cry
Original Word: crying
Lemmatized Word: cry

Analyzing Textual Data Chapter 12

[360]

In the preceding example, first, we imported the English language model and instantiated
it. After this, we created the NLP object and iterated it using a for loop. In the loop, we got
the text value and its lemma value using the text and lemma_ properties. In this section,
we have looked at stemming and lemmatization. Now, we will learn PoS tagging in the
given document.

POS tagging
PoS stands for part of speech. The main objective of POS tagging is to discover the syntactic
type of words, such as nouns, pronouns, adjectives, verbs, adverbs, and prepositions.
PoS tagging finds the relationship among words within a sentence.

Let's see how to get POS tags for words using NLTK:

import Word Tokenizer and PoS Tagger
from nltk.tokenize import word_tokenize
from nltk import pos_tag

Sample sentence
sentence = "Taj Mahal is one of the beautiful monument."

Tokenize the sentence
sent_tokens = word_tokenize(sentence)

Create PoS tags
sent_pos = pos_tag(sent_tokens)

Print tokens with PoS
print(sent_pos)

This results in the following output:

[('Taj', 'NNP'), ('Mahal', 'NNP'), ('is', 'VBZ'), ('one', 'CD'), ('of',
'IN'), ('the', 'DT'), ('beautiful', 'JJ'), ('monument', 'NN'), ('.', '.')]

In the preceding example, first, we imported word_tokenize and pos_tag. After this, we
took a text paragraph and passed it as a parameter to the word_tokenize() method. The
output of this method will be a list of words. After this, generate PoS tags for each token
using the pos_tag() function.

Let's see how to get POS tags for words using spaCy:

Import spacy
import spacy

Analyzing Textual Data Chapter 12

[361]

Loading small english language model
nlp = spacy.load("en_core_web_sm")

Create nlp Object to handle linguistic annotations in a documents.
sentence = nlp(u"Taj Mahal is one of the beautiful monument.")

for token in sentence:
 print(token.text, token.pos_)

This results in the following output:

Taj PROPN
Mahal PROPN
is VERB
one NUM
of ADP
the DET
beautiful ADJ
monument NOUN
. PUNCT

In the preceding example, first, we imported the English language model and instantiated
it. After this, we created the NLP object and iterated it using a for loop. In the loop, we got
the text value and its lemma value using the text and pos_ properties. In this section, we
have looked at PoS tags. Now, it's time to jump to recognizing named entities in the text.

Recognizing entities
Entity recognition means extracting or detecting entities in the given text. It is also known
as Named Entity Recognition (NER). An entity can be defined as an object, such as a
location, people, an organization, or a date. Entity recognition is one of the advanced topics
of NLP. It is used to extract important information from text.

Let's see how to get entities from text using spaCy:

Import spacy
import spacy

Load English model for tokenizer, tagger, parser, and NER
nlp = spacy.load('en')

Sample paragraph
paragraph = """Taj Mahal is one of the beautiful monuments. It is one of
the wonders of the world. It was built by Shah Jahan in 1631 in memory of
his third beloved wife Mumtaj Mahal."""

Analyzing Textual Data Chapter 12

[362]

Create nlp Object to handle linguistic annotations in documents.
docs=nlp(paragraph)
entities=[(i.text, i.label_) for i in docs.ents]
print(entities)

This results in the following output:

[('Taj Mahal', 'PERSON'), ('Shah Jahan', 'PERSON'), ('1631', 'DATE'),
('third', 'ORDINAL'), ('Mumtaj Mahal', 'PERSON')]

In the preceding example, first, we imported spaCy and loaded the English language
model. After this, we created the NLP object and iterated it using a for loop. In the loop,
we got the text value and its entity type value using the text and label_ properties. Let's
visualize the entities in the text using a spaCy display class:

Import display for visualizing the Entities
from spacy import displacy

Visualize the entities using render function
displacy.render(docs, style = "ent",jupyter = True)

This results in the following output:

In the preceding example, we imported the display class and called its render() method
with a NLP text object, style as ent, and jupyter as True.

Dependency parsing
Dependency parsing finds the relationship among words – how words are related to each
other. It helps computers to understand sentences for analysis; for example, "Taj Mahal is
one of the most beautiful monuments." We can't understand this sentence just by analyzing
words. We need to dig down and understand the word order, sentence structure, and parts
of speech:

Import spacy
import spacy

Load English model for tokenizer, tagger, parser, and NER
nlp = spacy.load('en')

Analyzing Textual Data Chapter 12

[363]

Create nlp Object to handle linguistic annotations in a documents.
docs=nlp(sentence)

Visualize the using render function
displacy.render(docs, style="dep", jupyter= True, options={'distance':
150})

This results in the following output:

In the preceding example, we have imported the display class and called its render()
method with a NLP text object, style as 'dep', jupyter as True, and options as a
dictionary with a distance key and a value of 150. Now, we will see how to visualize text
data using a word cloud, based on the word's frequency in the text.

Creating a word cloud
As a data analyst, you need to identify the most frequent words and represent them in
graphical form to the top management. A word cloud is used to represent a word-
frequency plot. It represents the frequency by the size of the word, that is, the more
frequent word looks larger in size and less frequent words looks smaller in size. It is also
known as a tag cloud. We can create a word cloud using the wordcloud library in Python.
We can install it using the following commands:

pip install wordcloud

Or, alternatively, this one:

conda install -c conda-forge wordcloud

Analyzing Textual Data Chapter 12

[364]

Let's learn how to create a word cloud:

Import libraries and load a stopwords list:1.

importing all necessary modules
from wordcloud import WordCloud
from wordcloud import STOPWORDS
import matplotlib.pyplot as plt

stopword_list = set(STOPWORDS)

paragraph="""Taj Mahal is one of the beautiful monuments. It is one
of the wonders of the world. It was built by Shah Jahan in 1631 in
memory of his third beloved wife Mumtaj Mahal."""

In the preceding example, we imported WordCloud, STOPWORDS, and
matplotlib.pyplot classes. We also created the stopword set and defined the
paragraph text.

Create and generate a word cloud: 2.

word_cloud = WordCloud(width = 550, height = 550,
background_color ='white',
stopwords = stopword_list,
min_font_size = 10).generate(paragraph)

After this, the WordCloud object with the parameters width, height,
background_color, stopwords, and min_font_size are created and
generated the cloud on the paragraph text string.

Visualize the word cloud:3.

0.# Visualize the WordCloud Plot
Set wordcloud figure size
plt.figure(figsize = (8, 6))

Show image
plt.imshow(word_cloud)

Remove Axis
plt.axis("off")

show plot
plt.show()

Analyzing Textual Data Chapter 12

[365]

This results in the following output:

In the preceding example, we visualized the word cloud using matplotlib.pyplot. Let's
learn how to convert text documents into a numeric vector using Bag of Words.

Bag of Words
Bag of Words (BoW) is one of the most basic, simplest, and popular feature engineering
techniques for converting text into a numeric vector. It works in two steps: collecting
vocabulary words and counting their presence or frequency in the text. It does not consider
the document structure and contextual information. Let's take the following three
documents and understand BoW:

Document 1: I like pizza.

Document 2: I do not like burgers.

Document 3: Pizza and burgers both are junk food.

Now, we will create the Document Term Matrix (DTM). This matrix consists of the
document at rows, words at the column, and the frequency at cell values.

I like pizza do not burgers and both are junk food
Doc-1 1 1 1 0 0 0 0 0 0 0 0
Doc-2 1 1 0 1 1 1 0 0 0 0 0
Doc-3 0 0 1 0 0 1 1 1 1 1 1

Analyzing Textual Data Chapter 12

[366]

In the preceding example, we generated the DTM using a single keyword known as a
unigram. We can also use a combination of continuous two keywords, known as the
bigram model, and three keywords, known as the trigram model. The generalized form is
known as the n-gram model.

In Python, scikit-learn offers CountVectorizer for generating the BoW DTM. We'll see in
the Sentiment analysis using text classification section how to generate it using scikit-learn.

TF-IDF
TF-IDF stands for Term Frequency-Inverse Document Frequency. It has two segments:
Term Frequency (TF) and Inverse Document Frequency (IDF). TF only counts the
occurrence of words in each document. It is equivalent to BoW. TF does not consider the
context of words and is biased toward longer documents. IDF computes values that
correspond to the amount of information kept by a word.

TF-IDF is the dot product of both segments – TF and IDF. TF-IDF normalizes the document
weights. A higher value of TF-IDF for a word represents a higher occurrence in that
document. Let's take the following three documents:

Document 1: I like pizza.

Document 2: I do not like burgers.

Document 3: Pizza and burgers both are junk food.

Now, we will create the DTM. This matrix consists of the document name in the row
headers, the words in the column headers, and the TF-IDF values in the cells:

I like pizza do not burgers and both are junk food
Doc-1 0.58 0.58 0.58 0 0 0 0 0 0 0 0
Doc-2 0.58 0.58 0 1.58 1.58 0.58 0 0 0 0 0
Doc-3 0 0 0.58 0 0 0.58 1.58 1.58 1.58 1.58 1.58

In Python, scikit-learn offers TfidfVectorizer for generating the TF-IDF DTM. Let's see
in the upcoming section how to generate it using scikit-learn.

Analyzing Textual Data Chapter 12

[367]

Sentiment analysis using text classification
A business or data analyst needs to understand customer feedback and reviews about a
specific product. What did customers like or dislike? And how are sales going? As a
business analyst, you need to analyze these things with reasonable accuracy and quantify
customer reviews, feedback, opinions, and tweets to understand the target audience.
Sentiment analysis extracts the core information from the text and provides people's
perception of products, services, brands, and political and social topics. Sentiment analysis
is used to understand customers' and people's mindset. It is not only used in marketing, we
can also use it in politics, public administration, policy-making, information security, and
research. It helps us to understand the polarity of people's feedback. Sentiment analysis
also covers words, tone, and writing style.

Text classification can be one of the approaches used for sentiment analysis. It is a
supervised method used to detect a class of web content, news articles, blogs, tweets, and
sentiments. The classification has a huge number of applications, from marketing, finance,
e-commerce, and security. First, we preprocess the text, then we find the features of the
preprocessed text, and then we feed features and the labels to the machine learning
algorithm to do the classification. The following diagram explains the full idea of sentiment
analysis using text classification:

Let's classify the sentiments for Amazon Alexa product reviews. We can get data from the
Kaggle website (https:/ / www. kaggle. com/sid321axn/ amazon- alexa- reviews).

The Alexa product reviews data is a tab-separated values file (TSV file). This data has five
columns or attributes – rating, date, variation, verified_reviews, and feedback.

https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews
https://www.kaggle.com/sid321axn/amazon-alexa-reviews

Analyzing Textual Data Chapter 12

[368]

The rating column indicates the user ratings for Alexa products. The date column is the
date on which the review was given by the user. The variation column represents the
product model name. verified_reviews has the actual user review about the product.

The rating denotes the rating given by each user to the product. The date is the date of the
review, and variation describes the model name. verified_reviews contains the text
review written by the user, and the feedback column represents the sentiment score, where
1 denotes positive and 0 denotes negative sentiment.

Classification using BoW
In this subsection, we will perform sentiment analysis and text classification based on BoW.
Here, a bag of words is generated using the scikit-learn library. Let's see how we
perform sentiment analysis using BoW features in the following steps:

Load the dataset:1.

The first step to build a machine learning model is to load the dataset. Let's first
read the data using the pandas read_csv() function:

Import libraries
import pandas as pd

read the dataset
df=pd.read_csv('amazon_alexa.tsv', sep='\t')

Show top 5-records
df.head()

This results in the following output:

In the preceding output dataframe, we have seen that the Alexa review dataset
has five columns: rating, date, variation, verified_reviews, and feedback.

Analyzing Textual Data Chapter 12

[369]

Explore the dataset.2.

Let's plot the feedback column count to see how many positive and negative
reviews the dataset has:

Import seaborn
import seaborn as sns
import matplotlib.pyplot as plt

Count plot
sns.countplot(x='feedback', data=df)

Set X-axis and Y-axis labels
plt.xlabel('Sentiment Score')
plt.ylabel('Number of Records')

Show the plot using show() function
plt.show()

This results in the following output:

In the preceding code, we drew the bar chart for the feedback column using the
seaborn countplot() function. This function counts and plots the values of the
feedback column. In this plot, we can observe that 2,900 reviews are positive and
250 reviews are negative feedback.

Analyzing Textual Data Chapter 12

[370]

Generating features using CountVectorizer:3.

Let's generate a BoW matrix for the customer reviews using scikit-learn's
CountVectorizer:

Import CountVectorizer and RegexTokenizer
from nltk.tokenize import RegexpTokenizer
from sklearn.feature_extraction.text import CountVectorizer

Create Regex tokenizer for removing special symbols and numeric
values
regex_tokenizer = RegexpTokenizer(r'[a-zA-Z]+')

Initialize CountVectorizer object
count_vectorizer = CountVectorizer(lowercase=True,
stop_words='english',
ngram_range = (1,1),
tokenizer = regex_tokenizer.tokenize)

Fit and transform the dataset
count_vectors = count_vectorizer.fit_transform(
df['verified_reviews'])

In the preceding code, we created a RegexTokenizer object with an input
regular expression that removes the special characters and symbols. After this,
the CountVectorizer object was created and performed the fit and transform
operation on verified reviews. Here, CountVectorizer takes parameters such as
lowercase for converting keywords into lowercase, stop_words for specifying a
language-specific stopwords list, ngram_range for specifying the unigram,
bigram, or trigram, and tokenizer is used to pass the tokenizer object.
The RegexTokenizer object is passed to the tokenizer parameter. Finally, we
called the fit_transform() function that converts text reviews into a DTM as
per specified parameters.

Analyzing Textual Data Chapter 12

[371]

Split train and test set:4.

Let's split the feature set and target column into feature_train,
feature_test, target_train, and target_test using
train_test_split(). train_test_split() takes dependent, independent
dataframes, test_size and random_state. Here, test_size will decide the
ratio of the train-test split (that is, test_size 0.3 means 30% for the testing set
and the remaining 70% will be the training set), and random_state is used as a
seed value for reproducing the same data split each time. If random_state is
None, then it will randomly split the records each time, which will give different
performance measures:

Import train_test_split
from sklearn.model_selection import train_test_split

Partition data into training and testing set
feature_train, feature_test, target_train, target_test =
train_test_split(count_vectors, df['feedback'], test_size=0.3,
random_state=1)

In the preceding code, we are partitioning the feature set and target column into
feature_train, feature_test, target_train, and target_test using the
train_test_split() method.

Classification Model Building using Logistic Regression:5.

In this section, we will build the logistic regression model to classify the review
sentiments using BoW (or CountVectorizer). Let's create the logistic regression
model:

import logistic regression scikit-learn model
from sklearn.linear_model import LogisticRegression

Create logistic regression model object
logreg = LogisticRegression(solver='lbfgs')

fit the model with data
logreg.fit(feature_train,target_train)

Forecast the target variable for given test dataset
predictions = logreg.predict(feature_test)

Analyzing Textual Data Chapter 12

[372]

In the preceding code, we imported LogisticRegression and created the
LogisticRegression object. After creating the model object, we performed the
fit() operation on the training data and predict() to forecast the sentiment for
the test dataset.

Evaluate the Classification Model:6.

Let's evaluate the classification model using the metrics class and its methods
– accuracy_score, precision_score, and recall_score:

Import metrics module for performance evaluation
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score

Assess model performance using accuracy measure
print("Logistic Regression Model
Accuracy:",accuracy_score(target_test, predictions))

Calculate model precision
print("Logistic Regression Model
Precision:",precision_score(target_test, predictions))

Calculate model recall
print("Logistic Regression Model Recall:",recall_score(target_test,
predictions))

Calculate model f1 score
print("Logistic Regression Model F1-Score:",f1_score(target_test,
predictions))

This results in the following output:

Logistic Regression Model Accuracy: 0.9428571428571428
Logistic Regression Model Precision: 0.952433628318584
Logistic Regression Model Recall: 0.9873853211009175
Logistic Regression Model F1-Score: 0.9695945945945945

In the preceding code, we have evaluated the model performance using accuracy, precision,
recall, and f1-score using the scikit-learn metrics function. All the measures are
greater than 94%, so we can say that our model is performing well and classifying both the
sentiment levels with a good amount of precision and recall.

Analyzing Textual Data Chapter 12

[373]

Classification using TF-IDF
In this subsection, we will perform sentiment analysis and text classification based on TF-
IDF. Here, TF-IDF is generated using the scikit-learn library. Let's see how we
perform sentiment analysis using TF-IDF features using the following steps:

Load the dataset:1.

The first step for building a machine learning model is to load the dataset.

Let's first read the data using the pandas read_csv() function:

Import libraries
import pandas as pd

read the dataset
df=pd.read_csv('amazon_alexa.tsv', sep='\t')

Show top 5-records
df.head()

This results in the following output:

In the preceding output dataframe, we have seen that the Alexa review dataset
has five columns: rating, date, variation, verified_reviews, and feedback.

Feature generation using TfidfVectorizer:2.

Let's generate a TF-IDF matrix for the customer reviews using scikit-learn's
TfidfVectorizer:

Import TfidfVectorizer and RegexTokenizer
from nltk.tokenize import RegexpTokenizer
from sklearn.feature_extraction.text import TfidfVectorizer

Analyzing Textual Data Chapter 12

[374]

Create Regex tokenizer for removing special symbols and numeric
values
regex_tokenizer = RegexpTokenizer(r'[a-zA-Z]+')

Initialize TfidfVectorizer object
tfidf = TfidfVectorizer(lowercase=True, stop_words
='english',ngram_range = (1,1),tokenizer =
regex_tokenizer.tokenize)

Fit and transform the dataset
text_tfidf = tfidf.fit_transform(df['verified_reviews'])

In the preceding code, we created a RegexTokenizer object with an input
regular expression that removes the special characters and symbols. After this,
the TfidfVectorizer object was created and performed the fit and transform
operation on verified reviews. Here, TfidfVectorizer takes parameters such as
lowercase for converting keywords into lowercase, stop_words for a specified
language-specific stopwords list, ngram_range for specifying the unigram,
bigram, or trigram, and tokenizer is used to pass the tokenizer object. The
RegexTokenizer object is passed to the tokenizer parameter. Finally, we called
the fit_transform() function that converts text reviews into a DTM as per
specified parameters.

Split the training and testing datasets:3.

Let's split the feature set and target column into feature_train,
feature_test, target_train, and target_test using
train_test_split(). train_test_split() takes dependent, independent
dataframes, test_size and random_state. Let's split the dataset into a training
and testing set:

Import train_test_split
from sklearn.model_selection import train_test_split

Partition data into training and testing set
from sklearn.model_selection import train_test_split

feature_train, feature_test, target_train, target_test =
train_test_split(text_tfidf, df['feedback'], test_size=0.3,
random_state=1)

Analyzing Textual Data Chapter 12

[375]

In the preceding code, we partition the feature set and target column into
feature_train, feature_test, target_train, and target_test using the
train_test_split() method.

Classification model building using logistic regression:4.

In this section, we will build the logistic regression model to classify the review
sentiments using TF-IDF. Let's create the logistic regression model:

import logistic regression scikit-learn model
from sklearn.linear_model import LogisticRegression

instantiate the model
logreg = LogisticRegression(solver='lbfgs')

fit the model with data
logreg.fit(feature_train,target_train)

Forecast the target variable for given test dataset
predictions = logreg.predict(feature_test)

In the preceding code, we imported LogisticRegression and created the
LogisticRegression object. After creating the model object, we performed a
fit() operation on the training data and predict() to forecast the sentiment for
the test dataset.

Evaluate the classification model:5.

Let's evaluate the classification model using the metrics class and its methods
– accuracy_score, precision_score, and recall_score:

Import metrics module for performance evaluation
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score

Assess model performance using accuracy measure
print("Logistic Regression Model
Accuracy:",accuracy_score(target_test, predictions))

Calculate model precision
print("Logistic Regression Model
Precision:",precision_score(target_test, predictions))

Calculate model recall

Analyzing Textual Data Chapter 12

[376]

print("Logistic Regression Model Recall:",recall_score(target_test,
predictions))

Calculate model f1 score
print("Logistic Regression Model F1-Score:",f1_score(target_test,
predictions))

This results in the following output:

Logistic Regression Model Accuracy: 0.9238095238095239
Logistic Regression Model Precision: 0.923728813559322
Logistic Regression Model Recall: 1.0
Logistic Regression Model F1-Score: 0.960352422907489

In the preceding code, we evaluated the model performance using accuracy, precision,
recall, and f1-score using the scikit-learn metrics function. All the measures are greater
than 94%, so we can say that our model is performing well and classifying both sentiment
levels with a good amount of precision and recall. In this section, we have looked at
sentiment analysis using text classification. Text classification is performed using BoW and
TF-IDF features. In the next section, we will learn how to find similarities between two
pieces of text, such as sentences or paragraphs.

Text similarity
Text similarity is the process of determining the two closest texts. Text similarity is very
helpful in finding similar documents, questions, and queries. For example, a search engine
such as Google uses similarity to find document relevance, and Q&A systems such as
StackOverflow or a consumer service system use similar questions. There are two common
metrics used for text similarity, namely Jaccard and cosine similarity.

We can also use the similarity method available in spaCy. The nlp object's similarity
method returns a score between two sentences. Let's look at the following example:

Import spacy
import spacy

Load English model for tokenizer, tagger, parser, and NER
nlp = spacy.load('en')

Create documents
doc1 = nlp(u'I love pets.')
doc2 = nlp(u'I hate pets')

Analyzing Textual Data Chapter 12

[377]

Find similarity
print(doc1.similarity(doc2))

This results in the following output:

0.724494176985974

<ipython-input-32-f157deaa344d>:12: UserWarning: [W007] The model you're
using has no word vectors loaded, so the result of the Doc.similarity
method will be based on the tagger, parser and NER, which may not give
useful similarity judgements. This may happen if you're using one of the
small models, e.g. `en_core_web_sm`, which don't ship with word vectors and
only use context-sensitive tensors. You can always add your own word
vectors, or use one of the larger models instead if available.

In the preceding code block, we have found the similarity between two sentences using
spaCy's similarity() function. Spacy's similarity function does not give better results
with small models (such as the en_core_web_sm and en models); that's why you will get a
warning: UserWarning: [W007]. To remove this warning, use larger models such
as en_core_web_lg.

Jaccard similarity
Jaccard similarity calculates the similarity between two sets by the ratio of common words
(intersection) to totally unique words (union) in both sets. It takes a list of unique words in
each sentence or document. It is useful where the repetition of words does not matter.
Jaccard similarity ranges from 0-100%; the higher the percentage, the more similar the two
populations:

Let's look at a Jaccard similarity example:

def jaccard_similarity(sent1, sent2):
 """Find text similarity using jaccard similarity"""
 # Tokenize sentences
 token1 = set(sent1.split())
 token2 = set(sent2.split())
 # intersection between tokens of two sentences
 intersection_tokens = token1.intersection(token2)
 # Union between tokens of two sentences
 union_tokens=token1.union(token2)
 # Cosine Similarity

Analyzing Textual Data Chapter 12

[378]

 sim_= float(len(intersection_tokens) / len(union_tokens))
 return sim_

jaccard_similarity('I love pets.','I hate pets.')

This results in the following output:

0.5

In the preceding example, we have created a function, jaccard_similarity(), which
takes two arguments, sent1 and sent2. It will find the ratio between the intersection of
keywords and the union of keywords between two sentences.

Cosine similarity
Cosine similarity computes the cosine of the angle between two multidimensional projected
vectors. It indicates how two documents are related to each other. Two vectors can be made
of the bag of words or TF-IDF or any equivalent vector of the document. It is useful where
the duplication of words matters. Cosine similarity can measure text similarity irrespective
of the size of documents.

Let's look at a cosine similarity example:

Let's import text feature extraction TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
docs=['I love pets.','I hate pets.']

Initialize TfidfVectorizer object
tfidf= TfidfVectorizer()

Fit and transform the given data
tfidf_vector = tfidf.fit_transform(docs)

Import cosine_similarity metrics
from sklearn.metrics.pairwise import cosine_similarity

compute similarity using cosine similarity
cos_sim=cosine_similarity(tfidf_vector, tfidf_vector)

print(cos_sim)

Analyzing Textual Data Chapter 12

[379]

This results in the following output:

[[1. 0.33609693]
[0.33609693 1.]]

In the preceding example, first, we import TfidfVectorizer and generate the TF-IDF
vector for given documents. After this, we apply the cosine_similarity() metric on the
document list and get similarity metrics.

Summary
In this chapter, we explored text analysis using NLTK and spaCy. The main focus was on
text preprocessing, sentiment analysis, and text similarity. The chapter started with text
preprocessing tasks such as text normalization, tokenization, removing stopwords,
stemming, and lemmatization. We also focused on how to create a word cloud, recognize
entities in a given text, and find dependencies among tokens. In later sections, we focused
on BoW, TFIDF, sentiment analysis, and text classification.

The next chapter, Chapter 13, Analyzing Image Data, focuses on image processing, basic
image processing operations, and face detection using OpenCV. The chapter starts with
image color models, and image operations such as drawing on an image, resizing an image,
and flipping and blurring an image. In later sections, the focus will be on face detection in a
given input image.

13
Analyzing Image Data

We are in the age of information, where every movement will generate data in a variety of
formats, such as text, images, geospatial data, and videos. Smartphones have reached rural
areas of the world and people are capturing activities, especially in images and videos, and
sharing them on social media platforms. This is how lots of big chunks of data are
generated and most of the data is in image and video formats. Industry and research
institutes want to analyze image and video datasets to generate value and make automated
solutions to reduce costs. Image processing and computer vision are fields that explore and
develop image- and video-based solutions. There are lots of opportunities for research,
innovation, and start-ups in the area of computer vision. In this chapter, we focus on the
basics of image processing to build your fundamental knowledge in the computer
vision area.

Image processing is a subset of computer vision. Computer vision is an advanced and more
powerful field within machine learning and artificial intelligence. Computer vision offers
enormous applications, such as detecting objects, classifying images and objects, image
captioning, and image segmentation. An image can be defined as two-dimensional signals
in signal processing, a set of points in 2D or 3D in geometry, and a two-dimensional or
three-dimensional NumPy array in Python. Image processing refers to processing image
data and performing operations such as drawing, writing, resizing, flipping, blurring,
changing the brightness, and detecting faces. In this chapter, we will focus on all these
image processing operations in detail.

We will cover the following topics in this chapter:

Installing OpenCV
Understanding image data
Color models
Drawing on images
Writing on images
Resizing images
Flipping images

Analyzing Image Data Chapter 13

[381]

Changing the brightness
Blurring an image
Face detection

Technical requirements
This chapter has the following technical requirements:

You can find the code, face classifier file, and the datasets at the following Github
link: https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edi
tion/tree/master/Chapter13.

All the code blocks are available in the ch13.ipynb file.
This chapter uses .jpg/.jpeg files (google.jpg, image.jpg, messi.png,
nature.jpeg, barcelona.jpeg, and tajmahal.jpg) for practice purposes.
This chapter uses one face classifier XML file
(haarcascade_frontalface_default.xml).
In this chapter, we will use the OpenCV, NumPy, and matplotlib Python
libraries.

Installing OpenCV
OpenCV is an open source library for computer vision operations such as image and video
analysis. OpenCV is primarily developed by Intel in C++ and offers interfaces with Python,
Java, and Matlab. OpenCV has the following features:

It is an open source image processing Python library.
OpenCV is the core Python library for image processing and computer vision.
OpenCV is easy to learn and deploy with web and mobile applications.
OpenCV in Python is an API and wrapper around its C++ core implementation.
It is fast due to background C++ code.

We can install OpenCV using the following command:

pip install opencv-python

https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Python-Data-Analysis-Third-Edition/Ch13

Analyzing Image Data Chapter 13

[382]

Using the preceding pip command, we can easily install OpenCV. OpenCV is the most
popular library for image processing and computer vision tasks. It offers various use cases
related to image analysis operations such as improving image quality, filtering and
transforming images, drawing on images, changing colors, detecting faces and objects,
identifying human actions, tracking objects, analyzing motion, and finding similar
images. After installing the OpenCV library, it's time to understand the basics of image
processing.

Understanding image data
Image data is a two-dimensional array or function f(x,y) with spatial coordinates. The
amplitude of the coordinate(x,y) is known as intensity. In Python, an image is a 2D or
3D NumPy array with pixel values. Pixels are the smallest, core tiny picture elements,
which decide the image quality. A large number of pixels results in a higher
resolution. Also, there are various image formats available, such as .jpeg, .png, .gif, and
.tiff. These file formats are helpful in organizing and maintaining digital image files.
Before analyzing image data, we need to understand the types of images. Image data can be
of three types:

Binary
Grayscale
Color

Binary images
Binary image pixels have only two colors, generally black and white. Binary image pixels
take only binary values 0 or 1.

The preceding image is an example of a binary image. It has only two colors, black and
white. It does not use shades of black and white.

Analyzing Image Data Chapter 13

[383]

Grayscale images
A grayscale image looks like a black and white image. It is represented by 8 bits per pixel,
that is, 256 intensity values or tones ranging from 0 to 255. These 256 shades move from
pure black to pure white; 0 represents pure black while 255 represents the color white.

The preceding image is a grayscale image. It is a black and white image where shades move
from pure black to pure white.

Color images
Color images are a mixture of the primary colors red, blue, and green. These primary colors
have the capability to form new colors by blending in certain proportions. Each color uses
eight bits (intensity values between 0-255), that is, 24 bits per pixel. Let's take an example of
a color image:

Analyzing Image Data Chapter 13

[384]

In the preceding image file, we can see most of the color shades with different
intensities. After understanding the type of images, it's time to understand color models
such as RGB, CMYK, HSV, HSL, and grayscale. Let's jump to color models.

Color models
Color models are a structure for processing and measuring the combination of primary
colors. They help us to explain how colors will display on the computer screen or on paper.
Color models can be of two types: additive or subtractive. Additive models are used for
computer screens, for example, the RGB (red, green, and blue) model, and subtractive
models are used for printing images, for example, the CMYK (cyan, magenta, yellow, and
black) model:

There are lots of models other than RGB and CMYK, such as HSV, HSL, and Gray Scale.
HSV is an acronym for hue, saturation, and value. It is a three-dimensional color model,
which is an improved version of the RGB model. In the HSV model, the top of the center
axis is white, the bottom is black, and the remaining colors lie in between. Here, the hue is
the angle, saturation is the distance from the center axis, and value is the distance from the
bottom of the axis.

Analyzing Image Data Chapter 13

[385]

HSL is an acronym for hue, saturation, and lightness. The main difference between HSV
and HSL is the amount of lightness and the value of colors from the center axis.

Let's learn how to read and display the image file:

Import cv2 latest version of OpenCV library
import cv2

Import numeric python (NumPy) library
import numpy as np

Import matplotlib for showing the image
import matplotlib.pyplot as plt

magic function to render the figure in a notebook
%matplotlib inline

Read image using imread() function
image = cv2.imread('google.jpg')

Let's check image data type
print('Image Type:',type(image))

Let's check dimension of image
print('Image Dimension:',image.shape)

Let's show the image
plt.imshow(image)
plt.show()

Analyzing Image Data Chapter 13

[386]

This results in the following output:

In the preceding example, we imported cv2, NumPy, and matplotlib.pyplot. cv2 is for
image processing, NumPy is for arrays, and matplotlib.pyplot is for displaying an
image. We read the image using the imread() function and returned an array of images.
We can check its type using the type() function and its shape using the shape attribute of
the NumPy array. We can display the image using the show() function of the
matpltlib.pyplot module. The preceding image is not showing the correct colors of the
Google logo image. This is because imread() reads images in the BGR color model. Lets
convert BGR to the RGB color model using the cvtColor() function and passing tthe flag
cv2.COLOR_BGR2RGB:

Convert image color space BGR to RGB
rgb_image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)

Display the image
plt.imshow(rgb_image)
plt.show()

This results in the following output:

Analyzing Image Data Chapter 13

[387]

Here, you can see the correct image in RGB format.

Let's write the image file on a local disk using the imwrite() function:

Write image using imwrite()
cv2.imwrite('image.jpg',image)

Output: True

In the preceding code block, we have written the image file on a local disk with the image
name image.jpg. After understanding color models, it's time to learn how to draw
elements on an image.

Drawing on images
Let's learn how to draw different figure shapes, such as a line, square, or triangle, on an
image using OpenCV. When we draw any shape on an image, we need to take care of the
coordinates, color, and thickness of the shape. Let's first create a blank image with a white
or black background:

Import cv2 latest version of OpenCV library
import cv2

Import numeric python (NumPy) library
import numpy as np

Import matplotlib for showing the image
import matplotlib.pyplot as plt

Magic function to render the figure in a notebook
%matplotlib inline

Let's create a black image
image_shape=(600,600,3)
black_image = np.zeros(shape=image_shape,dtype=np.int16)

Show the image
plt.imshow(black_image)

Analyzing Image Data Chapter 13

[388]

This results in the following output:

In the preceding example, we created a blank image with a black background using the
zeros() function of the NumPy module. The zeros() function creates an array of the
given size and fills the matrix with zeros.

Let's create a blank image with a white background:

Create a white image
image_shape=(600,600,3)
white_image = np.zeros(shape=image_shape,dtype=np.int16)

Set every pixel of the image to 255
white_image.fill(255)

Show the image
plt.imshow(white_image)

This results in the following output:

Analyzing Image Data Chapter 13

[389]

In the preceding example, we created a blank image with a white background using the
zeros() function of the NumPy module and filled the image with 255 for each pixel. The
zeros() function creates an array of the given size and fills the matrix with zeros. The
fill() function assigns a given value to all the elements of the matrix. Let's draw a line
using OpenCV on a black image:

Draw a line on black image
line = cv2.line(black_image,(599,0),(0,599),(0,255,0),4)

Show image
plt.imshow(line)

This results in the following output:

In the preceding example, we drew the green line on the black image using the line()
function. The line() function takes the following arguments: image file, start_point,
end_point, color, and thickness. In our example, the start and endpoints are (599,0) and
(0,599), the color tuple is (0,255,0), and the thickness is 4. Similarly, we can create a line on a
white image. Let's see the following example:

Let's draw a blue line on white image

line = cv2.line(white_image,(599,0),(0,599),(0,0,255),4)
Show the image
plt.imshow(line)

This results in the following output:

Analyzing Image Data Chapter 13

[390]

Let's see an example of drawing a circle on a white image:

Let's create a white image
img_shape=(600,600,3)
white_image = np.zeros(shape=image_shape,dtype=np.int16)

Set every pixel of the image to 255
white_image.fill(255)

Draw a red circle on white image
circle=cv2.circle(white_image,(300, 300), 100, (255,0,0),6)

Show the image
plt.imshow(circle)

This results in the following output:

Analyzing Image Data Chapter 13

[391]

In the preceding example, we created a white image and drew a circle using the circle()
function. The circle() function takes the following arguments: image,
center_coordinates, radius, color, and thickness. In our example, the center is (300, 300),
the radius is 100, a color tuple is (255,0,0), and the thickness is 6.

Let's see an example of drawing a rectangle on a black image:

Let's create a black image
img_shape=(600,600,3)
black_image = np.zeros(shape=image_shape,dtype=np.int16)

Draw a green rectangle on black image
rectangle= cv2.rectangle(black_image,(200,200),(400,500),(0,255,0),5)

Show the image
plt.imshow(rectangle)

This results in the following output:

In the preceding example, we created a black image and drew a rectangle using the
rectangle() function. The rectangle() function takes the following arguments: image,
start_point, end_point, color, and thickness. Here, thickness also takes an argument -1,
the -1 px value will fill the rectangle shape with the specified color. Let's see an example of
a filled rectangle:

Let's create a black image
img_shape=(600,600,3)
black_image = np.zeros(shape=image_shape,dtype=np.int16)

Draw a green filled rectangle on black image
rectangle= cv2.rectangle(black_image,(200,200),(400,500),(0,255,0),-1)

Analyzing Image Data Chapter 13

[392]

Show the image
plt.imshow(rectangle)

This results in the following output:

In the preceding example, we filled the rectangle by passing thickness values as -1 px. In a
nutshell, we can say that the line takes mainly the start and endpoints as the input, the
rectangle takes the top-left and the bottom-right coordinates, and the circle takes center
coordinates and radius values.

Writing on images
In the previous section, we created various shapes on images. Now, we will learn how to
write text on images. Writing text on an image is similar to drawing shapes. Let's see an
example of writing on an image:

Let's create a black image
img_shape=(600,800,3)
black_image = np.zeros(shape=image_shape,dtype=np.int16)

Write on black image
text = cv2.putText(black_image,'Thanksgiving',(10,500),
cv2.FONT_HERSHEY_SIMPLEX, 3,(255,0,0),2,cv2.LINE_AA)

Display the image
plt.imshow(text)

Analyzing Image Data Chapter 13

[393]

This results in the following output:

In the preceding example, we created a blank image with the color black. We have written
text on an image using the putText() function. The putText() function will take the
following arguments: image, text, coordinates of the bottom-left corner, font, fontScale,
color, thickness, and linetype.

Resizing images
Resizing an image means changing the dimension or scaling of a given image. Scaling or
resizing is done either from the width, height, or both. One of the applications of resizing
images is training deep learning models where reduced image sizes can speed up the
training. Training a deep learning model is out of the scope of this book. If you are
interested, then you can refer to any deep learning book from Packt Publishing. Let's see an
example of resizing an image:

Import cv2 module
import cv2

Import matplotlib for showing the image
import matplotlib.pyplot as plt

magic function to render the figure in a notebook
%matplotlib inline

read image
image = cv2.imread('tajmahal.jpg')

Convert image color space BGR to RGB
rgb_image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)

Analyzing Image Data Chapter 13

[394]

Display the image
plt.imshow(rgb_image)

This results in the following output:

In the preceding code, we read the image and converted it from BGR into the RGB space.
Let's resize it now using the resize() function:

Resize the image
image_resized = cv2.resize(rgb_image, (200, 200))
interpolation = cv2.INTER_NEAREST

Display the image
plt.imshow(image_resized)

This results in the following output:

Analyzing Image Data Chapter 13

[395]

In the preceding example, we read the image, converted BGR to RGB color using the
cvtColor() function, and resized the image using the resize() function. The resize()
function takes the following arguments: image, size, and interpolation. Interpolation is
used to scale moire-free images. Interpolation takes one of the following flags:
INTER_NEAREST (for nearest-neighbor interpolation), INTER_LINEAR (bilinear
interpolation), and INTER_AREA (resampling using pixel area relation).

Flipping images
Flipping an image is equivalent to a mirror effect. Let's learn how to flip an image across
the x axis (vertical flipping), y axis (horizontal flipping), or both axes. OpenCV offers the
flip() function to flip an image. The flip() function will take two arguments: image and
flipcode. The image is a NumPy array of pixel values and the flipcode used defines the type
of flip, such as horizontal, vertical, or both. The following flipcode values are for different
types of flips:

Flipcode > 0 is for a horizontal flip.
Flipcode = 0 is for a vertical flip.
Flipcode < 0 is for both a horizontal and vertical flip.

Let's see an example of flipping an image:

Import OpenCV module
import cv2

Import NumPy
import numpy as np

Import matplotlib for showing the image
import matplotlib.pyplot as plt

magic function to render the figure in a notebook
%matplotlib inline

Read image
image = cv2.imread('messi.png')

Convert image color space BGR to RGB
rgb_image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)

Display the image
plt.imshow(rgb_image)

Analyzing Image Data Chapter 13

[396]

This results in the following output:

This is the original image, of Lionel Messi. Let's flip it horizontally using the flip()
function by passing 1 as the flipcode in the flip() function:

Flipping image (Horizontal flipping)
image_flip = cv2.flip(rgb_image, 1)

Display the image
plt.imshow(image_flip)

This results in the following output:

Analyzing Image Data Chapter 13

[397]

This is the horizontally flipped image. Let's flip the original image vertically:

Flipping image (Vertical flipping)
image_flip = cv2.flip(rgb_image,0)

Display the image
plt.imshow(image_flip)

This results in the following output:

You can see the vertically flipped image. Let's flip the original image on both axes:

Flipping image (Horizontal and vertical flipping)
image_flip = cv2.flip(rgb_image, -1)

Display the image
plt.imshow(image_flip)

This results in the following output:

Analyzing Image Data Chapter 13

[398]

You can see the vertically and horizontally flipped image. After flipping the image, let's
learn how to change the brightness of the image in the next section.

Changing the brightness
Brightness is a comparative term that is determined by visual perception. Sometimes it is
difficult to perceive the brightness. The value of pixel intensity can help us to find a
brighter image. For example, if two pixels have the intensity values 110 and 230, then the
latter one is brighter.

In OpenCV, adjusting image brightness is a very basic operation. Brightness can be
controlled by changing the intensity of each pixel in an image:

Import cv2 latest version of OpenCV library
import cv2

Import matplotlib for showing the image
import matplotlib.pyplot as plt

Magic function to render the figure in a notebook
%matplotlib inline

Read image
image = cv2.imread('nature.jpeg')

Convert image color space BGR to RGB
rgb_image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)

Display the image
plt.imshow(rgb_image)

This results in the following output:

Analyzing Image Data Chapter 13

[399]

In the preceding code example, we have read the image and converted the BGR color
model-based image into an RGB color model-based image. Let's change the brightness of
the image in the following code block:

set weightage for alpha and betaboth the matrix
alpha_=1
beta_=50

Add weight to the original image to change the brightness
image_change=cv2.addWeighted(rgb_image, alpha_,
np.zeros(image.shape,image.dtype),0, beta_)

Display the image
plt.imshow(image_change)

This results in the following output:

In the preceding example, we added the two matrices with the given weightage; alpha and
beta using the addWeighted() function. addWeighted() takes the following arguments:
first_image, alpha, second_image, gamma, and beta. In our example, the argument
first_image input image and the argument second_image is the null matrix. The values
of alpha and beta are the weights for both matrices and gamma is 0.

Blurring an image
Blurring is one of the crucial steps of image preprocessing. In preprocessing, the removal of
noise impacts the performance of algorithms. Blurring is the process of reducing noise in
image data to achieve better accuracy. Blurring also helps us to take charge of handling
pixel intensity.

Analyzing Image Data Chapter 13

[400]

Let's see an example of blurring an image:

Import OpenCV module
import cv2

Import matplotlib for showing the image
import matplotlib.pyplot as plt

Magic function to render the figure in a notebook
%matplotlib inline

Read image
image = cv2.imread('tajmahal.jpg')

Convert image color space BGR to RGB
rgb_image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)

Display the image
plt.imshow(rgb_image)

This results in the following output:

In the preceding code sample, we read the image and converted it from a BGR to RGB
based image. Let's blur it using the blur() function. Blur takes two arguments: image and
kernel size. The blur() function uses the average blurring method:

Blur the image using blur() function
image_blur = cv2.blur(rgb_image,(15,15))

Display the image
plt.imshow(image_blur)

Analyzing Image Data Chapter 13

[401]

This results in the following output:

In the preceding example, we read the image, converted BGR to RGB color using the
cvtColor() function, and displayed the image. Here, we blurred the image using the
blur() function. The blur() function applies average blurring, which uses a normalized
box filter. The blur() function takes the following arguments: image and kernel size.

We have seen a blurred image using average blurring. Let's explore blurring using
Gaussian blurring. In this blurring, the Gaussian kernel is used instead of a box filter.
GaussianBlur() will take the image and kernel size. The kernel size will be a tuple of the
width and height. Both width and height must be a positive and odd number:

Import cv2 module
import cv2

Import matplotlib for showing the image
import matplotlib.pyplot as plt

magic function to render the figure in a notebook
%matplotlib inline

read image
image = cv2.imread('tajmahal.jpg')

Convert image color space BGR to RGB
rgb_image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)

Blurring the image using Gaussian Blur
image_blur = cv2.GaussianBlur(rgb_image, (7,7), 0)

Analyzing Image Data Chapter 13

[402]

Display the image
plt.imshow(image_blur)

This results in the following output:

Let's explore the median blurring of the given image. Median blur takes pixels in the kernel
area and replaces the central element with the median value. medianBlur() will take
image and kernel size as an argument. It is recommended that the kernel size should be an
odd number and greater than 1, for example, 3, 5, 7, 9, 11, and so on:

Import cv2 module
import cv2

Import matplotlib for showing the image
import matplotlib.pyplot as plt

Convert image color space BGR to RGB
%matplotlib inline

read image
image = cv2.imread('tajmahal.jpg')

Convert image color space BGR to RGB
rgb_image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)

Blurring the image using Median blurring
image_blur = cv2.medianBlur(rgb_image,11)

Display the image
plt.imshow(image_blur)

Analyzing Image Data Chapter 13

[403]

This results in the following output:

In the preceding code block, we blurred the image using median blurring. Here, we used
the medianBlur() method for median blurring and we can observe the blurred image in
the output. In this section, we discussed average blurring, Gaussian blurring, and median
blurring techniques. In the next section, we will learn how to detect human faces in images.

Face detection
Nowadays, everyone is using Facebook and you all must have seen facial recognition in an
image on Facebook. Facial recognition identifies who a face belongs to and face detection
only finds faces in an image, that is, face detection does not determine to whom the
detected face belongs. Face detection in a given input image is quite a popular functionality
in lots of applications; for example, counting the number of people in an image. In face
detection, the algorithm tries to find human faces in a digital image.

Face detection is a kind of classification problem. We can classify images into two classes,
face or not face. We need lots of images to train such a model for classification. Thankfully,
OpenCV offers pre-trained models such as the Haar Feature-Based Cascade Classifier and
the Local Binary Pattern (LBP) classifier, trained on thousands of images. In our example,
we will use Haar feature extraction to detect a face. Let's see how to capture a face in an
image using OpenCV:

Read the image and convert it into grayscale:1.

Import cv2 latest version of OpenCV library
import cv2

Analyzing Image Data Chapter 13

[404]

Import numeric python (NumPy) library
import numpy as np

Import matplotlib for showing the image
import matplotlib.pyplot as plt

magic function to render the figure in a notebook
%matplotlib inline

Read image
image= cv2.imread('messi.png')

Convert image color space BGR to grayscale
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Displaying the grayscale image
plt.imshow(image_gray, cmap='gray')

This results in the following output:

In the preceding code example, we read the Lionel Messi image and converted it
into a grayscale image using the cvtColor() function.

Let's find the faces in the generated gray image:

Load the Haar cascade face classifier file:2.

Load the haar cascade face classifier file
haar_cascade =
cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

Analyzing Image Data Chapter 13

[405]

Get coordinates for all the faces in the image:3.

Get the faces coordinates for all the faces in the image
faces_cordinates = haar_cascade.detectMultiScale(image_gray,
scaleFactor = 1.3, minNeighbors = 7);

Draw a rectangle on detected faces:4.

Draw rectangle on detected faces
for (p,q,r,s) in faces_cordinates:
 cv2.rectangle(image, (p, q), (p+r, q+s), (255,255,0), 2)

Convert image color space BGR to RGB and display the image:5.

Convert image color space BGR to RGB
image_rgb=cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

Display face detected image
plt.imshow(image_rgb)

This results in the following output:

In the preceding example, we converted the BGR image to a grayscale image. OpenCV has
pre-trained classifiers for face, eye, and smile detection. We can use a pre-trained face
cascade classifier XML file (haarcascade_frontalface_default.xml). You can get the
classifier file (haarcascade_frontalface_default.xml) from the official Git repo:
https://github.com/ opencv/ opencv/ tree/ master/ data/ haarcascades or you can get it
from our GitHub repo: https:/ /github. com/ PacktPublishing/ Python- Data- Analysis-
Third-Edition/tree/ master/ Chapter13.

https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13
https://github.com/PacktPublishing/Python-Data-Analysis-Third-Edition/tree/master/Chapter13

Analyzing Image Data Chapter 13

[406]

After this, we can pass the image to the cascade classifier and get the face coordinates in the
image. We have drawn rectangles on these face coordinates using the rectangle()
function. Before displaying the output, we need to convert the RGB image to BGR to
display it properly. Let's try this example on an image with multiple faces:

Read the image
image= cv2.imread('barcelona.jpeg')

Convert image BGR to grayscale
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Load the haar cascade face classifier file
haar_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

Get the faces coordinates for all the faces in the image
faces_cordinates = haar_cascade.detectMultiScale(image_gray, scaleFactor =
1.3, minNeighbors = 5);

Draw rectangle on detected faces
for (x1,y1,x2,y2) in faces_cordinates:
cv2.rectangle(image, (x1, y1), (x1+x2, y1+y2), (255,255,0), 2)

Convert image color space BGR to RGB
image_rgb=cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

Display face detected the image
plt.imshow(image_rgb)

This results in the following output:

In the preceding example, we can see the program has detected all the faces in the image.

Analyzing Image Data Chapter 13

[407]

Summary
In this chapter, we discussed image processing using OpenCV. The main focus of the
chapter was on basic image processing operations and face detection. The chapter started
with an introduction to types of images and image color models. In later sections, the focus
was on image operations such as drawing, resizing, flipping, and blurring an image. In the
last section, we discussed face detection in a given input image

The next chapter, Chapter 14, Parallel Computing Using Dask, will focus on parallel
computation on basic data science Python libraries such as Pandas, NumPy, and scikit-
learn using Dask. The chapter will start with Dask data types such as dataframes, arrays,
and bags. In later sections, we'll shift focus from dataFrames and arrays to delayed,
preprocessing, and machine learning algorithms in parallel using Dask.

14
Parallel Computing Using Dask

Dask is one of the simplest ways to process your data in a parallel manner. The platform is
for pandas lovers who struggle with large datasets. Dask offers scalability in a similar
manner to Hadoop and Spark and the same flexibility that Airflow and Luigi provide. Dask
can be used to work on pandas DataFrames and Numpy arrays that cannot fit into RAM. It
splits these data structures and processes them in parallel while making minimal code
changes. It utilizes your laptop power and has the ability to run locally. We can also deploy
it on large distributed systems as we deploy Python applications. Dask can execute data in
parallel and processes it in less time. It also scales the computation power of your
workstation without migrating to a larger or distributed environment.

The main objective of this chapter is to learn how to perform flexible parallel computation
on large datasets using Dask. The platform provides three data types for parallel execution:
Dask Arrays, Dask DataFrames, and Dask Bags. The Dask array is like a NumPy array,
while Dask DataFrames are like pandas DataFrames. Both can execute data in parallel. A
Dask Bag is a wrapper for Python objects so that they can perform operations
simultaneously. Another concept we'll cover in this chapter is Dask Delayed, which
parallelizes code. Dask also offers data preprocessing and machine learning model
development in parallel mode.

In this chapter, we will cover the following topics:

Parallel computing using Dask
Dask data types
Dask Delayed
Preprocessing data at scale
Machine learning at scale

Let's get started!

Parallel Computing Using Dask Chapter 14

[409]

Parallel computing using Dask
Python is one of the most popular programming languages among data professionals.
Python data science libraries such as Numpy, Pandas, Scipy, and Scikit-learn can
sequentially perform data science tasks. However, with large datasets, these libraries will
become very slow due to not being scalable beyond a single machine. This is where Dask
comes into the picture. Dask helps data professionals handle datasets that are larger than
the RAM size on a single machine. Dask utilizes the multiple cores of a processor or uses it
as a distributed computed environment. Dask has the following qualities:

It is familiar with existing Python libraries
It offers flexible task scheduling
It offers a single and distributed environment for parallel computation
It performs fast operations with lower latency and overhead
It can scale up and scale down

Dask offers similar concepts to pandas, NumPy, and Scikit-learn, which makes it easier to
learn. It is an open source parallel computing Python library that runs on top of pandas,
Numpy, and Scikit-learn across multiple cores of a CPU or multiple systems. For example,
if a laptop has a quad-core processor, then Dask will use 4 cores for processing the data. If
the data won't fit in the RAM, it will be partitioned into chunks before processing. Dask
scales up the pandas and NumPy capacity to deal with moderately large datasets. Let's
understand how Dask perform operations in parallel by looking at the following diagram:

Parallel Computing Using Dask Chapter 14

[410]

Dask creates a task graph to execute a program in parallel mode. In the task graph, nodes
represent the task, and the edges between the nodes represent the dependency of one task
over another.

Let's install the Dask library on our local system. By default, Anaconda has Dask installed
already, but if you want to reinstall or update Dask, you can use the following command:

conda install dask

We can also install it using the pip command, as shown here:

pip install dask

With that, we have learned how to install the dask library for parallel and fast execution.
Now, let's look at the core data types of the Dask library.

Dask data types
In computer programming, data types are basic building blocks for writing any kind of
functionality. They help us work with different types of variables. Data types are the kind
of values that are stored in variables. They can be primary and secondary.

Primary data types are the basic data types such as int, float, and char, while secondary
data types are developed using primary data types such as lists, arrays, strings, and
DataFrames. Dask offers three data structures for parallel operations: DataFrames, Bags,
and Arrays. These data structures split data into multiple partitions and distribute them to
multiple nodes in the cluster. A Dask DataFrame is a combination of multiple small pandas
DataFrames and it operates in a similar manner. Dask Arrays are like NumPy arrays and
support all the operations of Numpy. Finally, Dask Bags are used to process large Python
objects.

Now, it's time to explore these data types. We'll start with Dask Arrays.

Parallel Computing Using Dask Chapter 14

[411]

Dask Arrays
A Dask Array is an abstraction of the NumPy n-dimensional array, processed in parallel
and partitioned into multiple sub-arrays. These small arrays can be on local or distributed
remote machines. Dask Arrays can compute large-sized arraysby utilizing all the available
cores in the system. They can be applied to statistics, optimization, bioinformatics, business
domains, environmental science, and many more fields. They also support lots of NumPy
operations, such as arithmetic and scalar operations, aggregation operations, matrices, and
linear algebra operations. However, they do not support unknown shapes. Also, the
tolist and sort operations are difficult to perform in parallel. Let's understand how Dask
Arrays decompose data into a NumPy array and execute them in parallel by taking a look
at the following diagram:

As we can see, there are multiple blocks of different shapes, all of which represent NumPy
arrays. These arrays form a Dask Array and can be executed on multiple machines. Let's
create an array using Dask:

import Dask Array
import dask.array as da

Create Dask Array using arange() function and generate values from 0 to
17
a = da.arange(18, chunks=4)

Compute the array
a.compute()

Parallel Computing Using Dask Chapter 14

[412]

This results in the following output:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17])

In the preceding example, we used the compute() function to get the final output. The
da.arange() function will only create the computational graph, while the compute()
function is used to execute that graph. We have generated 18 values with a chunk size of 4
using the da.arange() function. Let's also check the chunks in each partition:

Check the chunk size
a.chunks

This results in the following output:

((4, 4, 4, 4, 2),)

In the preceding example, an array with 18 values was partitioned into five parts with a
chunk size of 4, where these initial chunks have 4 values each and the last one has 2 values.

Dask DataFrames
Dask DataFrames are abstractions of pandas DataFrames. They are processed in parallel
and partitioned into multiple smaller pandas DataFrames, as shown in the following
diagram:

Parallel Computing Using Dask Chapter 14

[413]

These small DataFrames can be stored on local or distributed remote machines. Dask
DataFrames can compute large-sized DataFrames by utilizing all the available cores in the
system. They coordinate the DataFrames using indexing and support standard pandas
operations such as groupby, join, and time series. Dask DataFrames perform
operations such as element-wise, row-wise, isin(), and date faster compared to
set_index() and join() on index operations. Now, let's experiment with the
performance or execution speed of Dask:

Read csv file using pandas
import pandas as pd
%time temp = pd.read_csv("HR_comma_sep.csv")

This results in the following output:

CPU times: user 17.1 ms, sys: 8.34 ms, total: 25.4 ms

Wall time: 36.3 ms

In the preceding code, we tested the read time of a file using the pandas read_csv()
function. Now, let's test the read time for the Dask read_csv() function:

Read csv file using Dask

import dask.dataframe as dd

%time df = dd.read_csv("HR_comma_sep.csv")

This results in the following output:

CPU times: user 18.8 ms, sys: 5.08 ms, total: 23.9 ms

Wall time: 25.8 ms

In both examples, we can observe that the execution time for data reading is reduced when
using the Dask read_csv() function.

DataFrame Indexing
Dask DataFrames support two types of index: label-based and positional indexing. The
main problem with Dask Indexing is that it does not maintain the partition's information.
This means it is difficult to perform row indexing; only column indexing is possible.
DataFrame.iloc only supports integer-based indexing, while DataFrame.loc supports
label-based indexing. DataFrame.iloc only selects columns.

Parallel Computing Using Dask Chapter 14

[414]

Let's perform these indexing operations on a Dask DataFrame:

First, we must create a DataFrame and perform column indexing:1.

Import Dask and Pandas DataFrame
import dask.dataframe as dd
import pandas as pd

Create Pandas DataFrame
df = pd.DataFrame({"P": [10, 20, 30], "Q": [40, 50, 60]},
index=['p', 'q', 'r'])

Create Dask DataFrame
ddf = dd.from_pandas(df, npartitions=2)

Check top records
ddf.head()

This results in the following output:

P Q

p 10 40

q 20 50

r 30 60

In the preceding example, we created a pandas DataFrame (with p, q, and r
indexes and P and Q columns) and converted it into a Dask DataFrame.

The column selection process in Dask is similar to what we do in pandas. Let's2.
select a single column in our Dask DataFrame:

Single Column Selection
ddf['P']

This results in the following output:

Dask Series Structure:

npartitions=1

p int64

r ...
Name: P, dtype: int64
Dask Name: getitem, 2 tasks

Parallel Computing Using Dask Chapter 14

[415]

In the preceding code, we selected a single column by passing the name of the
column. For multiple column selection, we need to pass a list of columns.

Let's select multiple columns in our Dask DataFrame:3.

Multiple Column Selection
ddf[['Q', 'P']]

This results in the following output:

Dask DataFrame Structure:

Q P

npartitions=1

p int64 int64

r

Dask Name: getitem, 2 tasks

Here, we have selected two columns from the list of columns available.

Now, let's create a DataFrame with an integer index:4.

Import Dask and Pandas DataFrame
import dask.dataframe as dd
import pandas as pd

Create Pandas DataFrame
df = pd.DataFrame({"X": [11, 12, 13], "Y": [41, 51, 61]})

Create Dask DataFrame
ddf = dd.from_pandas(df, npartitions=2)

Check top records
ddf.head()

This results in the following output:

X Y

0 11 41

1 12 51

2 13 61

Parallel Computing Using Dask Chapter 14

[416]

In the preceding code, we created a pandas DataFrame and converted it into a
Dask DataFrame using the from_pandas() function.

Let's select the required column using a positional integer index:5.

ddf.iloc[:, [1, 0]].compute()

This results in the following output:

Y X
0 41 11

1 51 12

2 61 13

In the preceding code, we swapped the column's location using iloc while using
a positional integer index.

If we try to select all the rows, we will get a NotImplementedError, as shown6.
here:

ddf.iloc[0:4, [1, 0]].compute()

This results in the following output:

NotImplementedError: 'DataFrame.iloc' only supports selecting
columns. It must be used like 'df.iloc[:, column_indexer]'.

In the preceding code block, we can see that the DataFrame.iloc only supports selecting
columns.

Filter data
We can filter the data from a Dask DataFrame similar to how we would do this for a
pandas DataFrame. Let's take a look at the following example:

Import Dask DataFrame
import dask.dataframe as dd

Read CSV file
ddf = dd.read_csv('HR_comma_sep.csv')

See top 5 records
ddf.head(5)

Parallel Computing Using Dask Chapter 14

[417]

This results in the following output:

In the preceding code, we read the human resource CSV file using the read_csv()
function into the Dask DataFrame. This output is only showing some of the columns.
However, when you run the notebook for yourself, you will be able to see all the available
columns. Let's filter the low-salary employees in the dataset:

Filter employee with low salary
ddf2 = ddf[ddf.salary == 'low']

ddf2.compute().head()

This results in the following output:

In the preceding code, we filtered the low-salary employees through the condition into the
brackets.

Groupby
The groupby operation is used to aggregate similar items. First, it splits the data based on
the values, finds an aggregate of similar values, and combines the aggregated results. This
can be seen in the following code:

Find the average values of all the columns for employee left or stayed
ddf.groupby('left').mean().compute()

Parallel Computing Using Dask Chapter 14

[418]

This results in the following output:

In the preceding example, we grouped the data based on the left column (it shows an
employee who stayed or left the company) and aggregated it by the mean value.

Converting a pandas DataFrame into a Dask DataFrame
Dask DataFrames are implemented based on pandas DataFrames. For data analysts, it is
necessary to learn how to convert a Dask DataFrame into a pandas DataFrame. Take a look
at the following code:

Import Dask DataFrame
from dask import dataframe as dd

Convert pandas dataframe to dask dataframe
ddf = dd.from_pandas(pd_df,chunksize=4)

type(ddf)

This results in the following output:

dask.dataframe.core.DataFrame

Here, we have used the from_pandas() method to convert a pandas DataFrame into a
Dask DataFrame.

Converting a Dask DataFrame into a pandas DataFrame
In the previous subsection, we converted a pandas DataFrame into a Dask DataFrame.
Similarly, we can convert a Dask DataFrame into a pandas DataFrame using the
compute() method, as shown here:

Convert dask DataFrame to pandas DataFrame
pd_df = df.compute()

type(pd_df)

Parallel Computing Using Dask Chapter 14

[419]

This results in the following output:

pandas.core.frame.DataFrame

Now, let's learn about another important topic: Dask Bags.

Dask Bags
A Dask Bag is an abstraction over generic Python objects. It performs map, filter, fold,
and groupby operations in the parallel interface of smaller Python objects using a Python
iterator. This execution is similar to PyToolz or the PySpark RDD. Dask Bags are more
suitable for unstructured and semi-structured datasets such as text, JSON, and log files.
They perform multiprocessing for computation for faster processing but will not perform
well with inter-worker communication. Bags are immutable types of structures that cannot
be changed and are slower compared to Dask Arrays and DataFrames. Bags also perform
slowly on the groupby operation, so it is recommended that you use foldby instead of
groupby.

Now, let's create various Dask Bag objects and perform operations on them.

Creating a Dask Bag using Python iterable items
Let's create some Dask Bag objects using Python iterable items:

Import dask bag
import dask.bag as db

Create a bag of list items
items_bag = db.from_sequence([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
npartitions=3)

Take initial two items
items_bag.take(2)

This results in the following output:

(1, 2)

In the preceding code, we created a bag of list items using the from_sequence() method.
The from_Sequence() method takes a list and places it into npartitions (a number of
partitions). Let's filter odd numbers from the list:

Filter the bag of list items

Parallel Computing Using Dask Chapter 14

[420]

items_square=items_bag.filter(lambda x: x if x % 2 != 0 else None)

Compute the results
items_square.compute()

This results in the following output:

[1, 3, 5, 7, 9]

In the preceding code, we filtered the odd numbers from the bag of lists using the
filter() method. Now, let's square each item of the bag using the map function:

Square the bag of list items
items_square=items_b.map(lambda x: x**2)

Compute the results
items_square.compute()

This results in the following output:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

In the preceding code, we used the map() function to map the bag items. We mapped these
items to their square value.

Creating a Dask Bag using a text file
We can create a Dask Bag using a text file by using the read_text() method, as follows:

Import dask bag
import dask.bag as db

Create a bag of text file
text = db.read_text('sample.txt')

Show initial 2 items from text
text.take(2)

This results in the following output:

('Hi! how are you? \n', '\n')

In the preceding code, we read a text file into a dask bag object by using the read_text()
method. This allowed us to show the two initial items in the Dask Bag.

Parallel Computing Using Dask Chapter 14

[421]

Storing a Dask Bag in a text file
Let's store a Dask Bag in a text file:

Convert dask bag object into text file
text.to_textfiles('/path/to/data/*.text.gz')

This results in the following output:

['/path/to/data/0.text.gz']

In the preceding code, to_textfiles() converted the bag object into a text file.

Storing a Dask Bag in a DataFrame
Let's store a Dask Bag in a DataFrame:

Import dask bag
import dask.bag as db

Create a bag of dictionary items
dict_bag = db.from_sequence([{'item_name': 'Egg', 'price': 5},
{'item_name': 'Bread', 'price': 20},
{'item_name': 'Milk', 'price': 54}],
npartitions=2)

Convert bag object into dataframe
df = dict_bag.to_dataframe()

Execute the graph results
df.compute()

This results in the following output:

In the preceding example, we created a Dask Bag of dictionary items and converted it into a
Dask DataFrame using the to_dataframe() method. In the next section, we'll look at Dask
Delayed.

Parallel Computing Using Dask Chapter 14

[422]

Dask Delayed
Dask Delayed is an approach we can use to parallelize code. It can delay the dependent
function calls in task graphs and provides complete user control over parallel processes
while improving performance. Its lazy computation helps us control the execution of
functions. However, this differs from the execution timings of functions for parallel
execution.

Let's understand the concept of Dask Delayed by looking at an example:

Import dask delayed and compute
from dask import delayed, compute

Create delayed function
@delayed
def cube(item):
 return item ** 3

Create delayed function
@delayed
def average(items):
 return sum(items)/len(items)

create a list
item_list = [2, 3, 4]

Compute cube of given item list
cube_list= [cube(i) for i in item_list]

Compute average of cube_list
computation_graph = average(cube_list)

Compute the results
computation_graph.compute()

This results in the following output:

33.0

In the preceding example, two methods, cube and average, were annotated with
@dask.delayed. A list of three numbers was created and a cube containing every value
was computed. After computing the cube of list values, we calculated the average of all the
values. All these operations are lazy in nature and are computed later when the output is
expected from the programmer and the flow of execution is stored in a computational
graph. We executed this using the compute() method. Here, all the cube operations will
execute in a parallel fashion.

Parallel Computing Using Dask Chapter 14

[423]

Now, we will visualize the computational graph. However, before we can do this, we need
to install the Graphviz editor.

On Windows, we can install Graphviz using pip. We must also set the path in an
environment variable:

 pip install graphviz

On Mac, we can install it using brew, as follows:

brew install graphviz

On Ubuntu, we need to install it on a Terminal using the sudo apt-get command:

sudo apt-get install graphviz

Now, let's visualize the computational graph:

Compute the results
computation_graph.visualize()

This results in the following output:

Parallel Computing Using Dask Chapter 14

[424]

In the preceding example, we printed a computational graph using the visualize()
method. In this graph, all the cube operations were executed in a parallel fashion and their
result was consumed by the average() function.

Preprocessing data at scale
Dask preprocessing offers scikit-learn functionalities such as scalers, encoders, and
train/test splits. These preprocessing functionalities work well with Dask DataFrames and
Arrays since they can fit and transform data in parallel. In this section, we will discuss
feature scaling and feature encoding.

Feature scaling in Dask
As we discussed in Chapter 7, Cleaning Messy Data, feature scaling, also known as feature
normalization, is used to scale the features at the same level. It can handle issues regarding
different column ranges and units. Dask also offers scaling methods that have parallel
execution capacity. It uses most of the methods that scikit-learn offers:

Scaler Description
MinMaxScaler Transforms features by scaling each feature to a given range
RobustScaler Scales features using statistics that are robust to outliers
StandardScaler Standardizes features by removing the mean and scaling them to unit variance

Let's scale the last_evaluation (employee performance score) column of the human
resource dataset:

Import Dask DataFrame
import dask.dataframe as dd

Read CSV file
ddf = dd.read_csv('HR_comma_sep.csv')

See top 5 records
ddf.head(5)

Parallel Computing Using Dask Chapter 14

[425]

This results in the following output:

In the preceding code, we read the human resource CSV file using the read_csv()
function into a Dask DataFrame. The preceding output only shows some of the columns
that are available. However, when you run the notebook for yourself, you'll be able to see
all the columns in the dataset. Now, let's scale the last_evalaution column (last
evaluated performance score):

Import MinMaxScaler
from sklearn.preprocessing import MinMaxScaler

Instantiate the MinMaxScaler Object
scaler = MinMaxScaler(feature_range=(0, 100))

Fit the data on Scaler
scaler.fit(ddf[['last_evaluation']])

Transform the data
performance_score=scaler.transform(ddf[['last_evaluation']])

Let's see the scaled performance score
performance_score

This results in the following output:

array([[26.5625],

[78.125],

[81.25],

...,

[26.5625],

[93.75],

[25.]])

Parallel Computing Using Dask Chapter 14

[426]

In the preceding example, we scaled the last_evaluation (last evaluated performance
score) column. We scaled it from a range of 0-1 range to a range of 0-100. Next, we will look
at feature encoding in Dask.

Feature encoding in Dask
As we discussed in Chapter 7, Cleaning Messy Data, feature encoding is a very useful
technique for handling categorical features. Dask also offers encoding methods that have
parallel execution capacity. It uses most of the methods that scikit-learn offers:

Encoder Description

LabelEncoder Encodes labels with a value between 0 and 1 that's less than the number of
classes available.

OneHotEncoder Encodes categorical integer features as a one-hot encoding.
OrdinalEncoder Encodes a categorical column as an ordinal variable.

Let's try using these methods:

Import Dask DataFrame
import dask.dataframe as dd

Read CSV file
ddf = dd.read_csv('HR_comma_sep.csv')

See top 5 records
ddf.head(5)

This results in the following output:

Parallel Computing Using Dask Chapter 14

[427]

In the preceding code, we read the human resource CSV file using the read_csv()
function into a Dask DataFrame. The preceding output only shows some of the columns
that are available. However, when you run the notebook for yourself, you'll be able to see
all the columns in the dataset. Now, let's scale the last_evalaution column (last
evaluated performance score):

Import Onehot Encoder
from dask_ml.preprocessing import Categorizer
from dask_ml.preprocessing import OneHotEncoder
from sklearn.pipeline import make_pipeline

Create pipeline with Categorizer and OneHotEncoder
pipe = make_pipeline(Categorizer(), OneHotEncoder())

Fit and transform the Categorizer and OneHotEncoder
pipe.fit(ddf[['salary',]])
result=pipe.transform(ddf[['salary',]])

See top 5 records
result.head()

This results in the following output:

salary_low salary_medium salary_high
0 1.0 0.0 0.0
1 0.0 1.0 0.0
2 0.0 1.0 0.0
3 1.0 0.0 0.0
4 1.0 0.0 0.0

In the preceding example, the scikit-learn pipeline was created using Categorizer()
and OneHotEncoder(). The Salary column of the Human Resource data was then encoded
using the fit() and transform() methods. Note that the categorizer will convert the
columns of a DataFrame into categorical data types.

Similarly, we can also encode the Salary column using the ordinal encoder. Let's take a look
at an example:

Import Onehot Encoder
from dask_ml.preprocessing import Categorizer
from dask_ml.preprocessing import OrdinalEncoder
from sklearn.pipeline import make_pipeline

Create pipeline with Categorizer and OrdinalEncoder

Parallel Computing Using Dask Chapter 14

[428]

pipe = make_pipeline(Categorizer(), OrdinalEncoder())

Fit and transform the Categorizer and OneHotEncoder
pipe.fit(ddf[['salary',]])
result=pipe.transform(ddf[['salary',]])

Let's see encoded results
result.head()

This results in the following output:

salary

0 0

1 1

2 1

3 0

4 0

In the preceding example, the scikit-learn pipeline was created using Categorizer() and
OrdinalEncoder(). The Salary column of the Human Resource data was then encoded
using the fit() and transform() methods. Note that the categorizer will convert the
columns of a DataFrame in categorical data types.

Machine learning at scale
Dask offers Dask-ML services for large-scale machine learning operations using Python.
Dask-ML decreases the model training time for medium-sized datasets and experiments
with hyperparameter tuning. It offers scikit-learn-like machine learning algorithms for ML
operations.

We can scale scikit-learn in three different ways: parallelize scikit-learn using joblib by
using random forest and SVC; reimplement algorithms using Dask Arrays using
generalized linear models, preprocessing, and clustering; and partner it with distributed
libraries such as XGBoost and Tensorflow.

Let's start by looking at parallel computing using scikit-learn.

Parallel Computing Using Dask Chapter 14

[429]

Parallel computing using scikit-learn
To perform parallel computing using scikit-learn on a single CPU, we need to use joblib.
This makes scikit-learn operations parallel computable. The joblib library performs
parallelization on Python jobs. Dask can help us perform parallel operations on multiple
scikit-learn estimators. Let's take a look:

First, we need to read the dataset. We can load the dataset using a pandas1.
DataFrame, like so:

Import Dask DataFrame
import pandas as pd

Read CSV file
df = pd.read_csv('HR_comma_sep.csv')

See top 5 records
df.head(5)

This results in the following output:

In the preceding code, we read the human resource CSV file using the
read_csv() function into a Dask DataFrame. The preceding output only shows
some of the columns that are available. However, when you run the notebook for
yourself, you will be able to see all the columns in the dataset. Now, let's scale the
last_evalaution column (last evaluated performance score).

Next, we must select the dependent and independent columns. To do this, select2.
the columns and divide the data into dependent and independent variables, as
follows:

select the feature and target columns
data=df[['satisfaction_level', 'last_evaluation']]

label=df['left']

Parallel Computing Using Dask Chapter 14

[430]

Create a scheduler and generate the model in parallel. Import the3.
dask.distributed client to create a scheduler and worker on a local machine:

Import client
from dask.distributed import Client

Instantiate the Client
client = Client()

The next step is to create a parallel backend using sklearn.externals.joblib4.
and write the normal scikit-learn code:

import dask_ml.joblib
from sklearn.externals.joblib import parallel_backend

with parallel_backend('dask'):
 # Write normal scikit-learn code here
 from sklearn.ensemble import RandomForestClassifier
 from sklearn.metrics import accuracy_score
 from sklearn.model_selection import train_test_split

 # Divide the data into two parts: training and testing set
 X_train, X_test, y_train, y_test = train_test_split(data,label,
 test_size=0.2,
 random_state=0)
 # Instantiate RandomForest Model
 model = RandomForestClassifier()

 # Fit the model
 model.fit(X_train,y_train)

 # Predict the classes
 y_pred = model.predict(X_test)

 # Find model accuracy
 print("Accuracy:",accuracy_score(y_test, y_pred))

This results in the following output:

Accuracy: 0.92

The preceding parallel generated random forest model has given us 92% accuracy, which is
very good.

Parallel Computing Using Dask Chapter 14

[431]

Reimplementing ML algorithms for Dask
Some machine learning algorithms have been reimplemented by the Dask development
team using Dask Arrays and DataFrames. The following algorithms have been
reimplemented:

Linear machine learning models such as linear regression and logistic regression
Preprocessing with scalers and encoders
Unsupervised algorithms such as k-means clustering and spectral clustering

In the following subsection, we will build a logistic regression model and perform
clustering on the dataset.

Logistic regression
Let's build a classifier using logistic regression:

Load the dataset into a Dask DataFrame, as follows:1.

Read CSV file using Dask
import dask.dataframe as dd

Read Human Resource Data
ddf = dd.read_csv("HR_comma_sep.csv")

Let's see top 5 records
ddf.head()

This results in the following output:

In the preceding code, we read the human resource CSV file using the
read_csv() function into a Dask DataFrame. The preceding output only shows
some of the columns that are available. However, you run the notebook for
yourself, you will be able to see all the columns in the dataset. Now, let's scale the
last_evalaution column (last evaluated performance score).

Parallel Computing Using Dask Chapter 14

[432]

Next, select the required column for classification and divide it into dependent2.
and independent variables:

data=ddf[['satisfaction_level','last_evaluation']].to_dask_array(le
ngths=True)

label=ddf['left'].to_dask_array(lengths=True)

Now, let's create a LogisticRegression model. First, import3.
LogisticRegression and train_test_split. Once you've imported the
required libraries, divide the dataset into two parts; that is, training and testing
datasets:

Import Dask based LogisticRegression
from dask_ml.linear_model import LogisticRegression

Import Dask based train_test_split
from dask_ml.model_selection import train_test_split

Split data into training and testing set
X_train, X_test, y_train, y_test = train_test_split(data, label)

Instantiate the model and fit it to a training dataset. Now, you can predict the test4.
data and compute the model's accuracy, as follows:

Create logistic regression model
model = LogisticRegression()

Fit the model
model.fit(X_train,y_train)

Predict the classes
y_pred = model.predict(X_test)

Find model accuracy
print("Accuracy:",accuracy_score(y_test, y_pred))

This results in the following output:

Accuracy: 0.7753333333333333

As we can see, the model is offering an accuracy of 77.5%, which is considered
good.

Parallel Computing Using Dask Chapter 14

[433]

Clustering
The developers of Dask have also reimplemented various k-means clustering algorithms.
Let's perform clustering using Dask:

Read the human resource data into a Dask DataFrame, as follows:1.

Read CSV file using Dask
import dask.dataframe as dd

Read Human Resource Data
ddf = dd.read_csv("HR_comma_sep.csv")

Let's see top 5 records
ddf.head()

This results in the following output:

In the preceding code, we read the human resource CSV file using the
read_csv() function into a Dask DataFrame. The preceding output only shows
some of the columns that are available. However, when you run the notebook for
yourself, you will be able to see all the columns in the dataset. Now, let's scale the
last_evalaution column (last evaluated performance score).

Next, select the required column for k-means clustering. We have selected the2.
satisfaction_level and last_evaluation columns here:

data=ddf[['satisfaction_level',
'last_evaluation']].to_dask_array(lengths=True)

Now, let's create a k-means clustering model. First, import k-means. Once you've3.
imported the required libraries, fit them onto the dataset and get the necessary
labels. We can find these labels by using the compute() method:

Import Dask based Kmeans
from dask_ml.cluster import KMeans

Create the Kmeans model

Parallel Computing Using Dask Chapter 14

[434]

model=KMeans(n_clusters=3)

Fit the model
model.fit(data)

Predict the classes
label=model.labels_

Compute the results
label.compute()

This results in the following output:

array([0, 1, 2, ..., 0, 2, 0], dtype=int32)

In the preceding code, we created the k-means model with three clusters, fitted
the model, and predicted the labels for the cluster.

Now, we will visualize the k-means results using the matplotlib library:4.

Import matplotlib.pyplot
import matplotlib.pyplot as plt

Prepare x,y and cluster_labels
x=data[:,0].compute()
y=data[:,1].compute()
cluster_labels=label.compute()

Draw scatter plot
plt.scatter(x,y, c=cluster_labels)

Add label on X-axis
plt.xlabel('Satisfaction Level')

Add label on X-axis
plt.ylabel('Performance Level')

Add a title to the graph
plt.title('Groups of employees who left the Company')

Show the plot
plt.show()

Parallel Computing Using Dask Chapter 14

[435]

This results in the following output:

In the preceding code, we visualized the clusters using matplotlib.pyplot. Here, we
have plotted the satisfaction score on the X-axis, the performance score on the Y-axis, and
distinguished between the clusters by using different colors.

Summary
In this chapter, we focused on how to perform parallel computation on basic data science
Python libraries such as pandas, Numpy, and scikit-learn. Dask provides a complete
abstraction for DataFrames and Arrays for processing moderately large datasets over
single/multiple core machines or multiple nodes in a cluster.

We started this chapter by looking at Dask data types such as DataFrames, Arrays, and
Bags. After that, we focused on Dask Delayed, preprocessing, and machine learning
algorithms in a parallel environment.

Parallel Computing Using Dask Chapter 14

[436]

This was the last chapter of this book, which means our learning journey ends here. We
have focused on core Python libraries for data analysis and machine learning such as
pandas, Numpy, Scipy, and scikit-learn. We have also focused on Python libraries that can
be used for text analytics, image analytics, and parallel computation such as NLTK, spaCy,
OpenCV, and Dask. Of course, your learning process doesn't need to stop here; keep
learning new things and about the latest changes. Try to explore and change code based on
your business or client needs. You can also start private or personal projects for learning
purposes. If you are unable to decide on what kind of project you want to start, you can
participate in Kaggle competitions at http:/ /www. kaggle. com/ and more!

http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/
http://www.kaggle.com/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Practical Data Analysis Using Jupyter Notebook

Marc Wintjen

ISBN: 978-1-83882-603-1

Understand the importance of data literacy and how to communicate
effectively using data
Find out how to use Python packages such as NumPy, pandas,
Matplotlib, and the Natural Language Toolkit (NLTK) for data analysis
Wrangle data and create DataFrames using pandas
Produce charts and data visualizations using time-series datasets
Discover relationships and how to join data together using SQL
Use NLP techniques to work with unstructured data to create
sentiment analysis models
Discover patterns in real-world datasets that provide accurate insights

https://www.packtpub.com/product/practical-data-analysis-using-jupyter-notebook/9781838826031

Other Books You May Enjoy

[438]

Essential Statistics for Non-STEM Data Analysts

Rongpeng Li

ISBN: 978-1-83898-484-7

Find out how to grab and load data into an analysis environment
Perform descriptive analysis to extract meaningful summaries from data
Discover probability, parameter estimation, hypothesis tests, and experiment
design best practices
Get to grips with resampling and bootstrapping in Python
Delve into statistical tests with variance analysis, time series analysis, and A/B
test examples
Understand the statistics behind popular machine learning algorithms
Answer questions on statistics for data scientist interviews

https://www.packtpub.com/product/essential-statistics-for-non-stem-data-analysts/9781838984847

Other Books You May Enjoy

[439]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
advanced visualization, with Seaborn package
 about 150
 bar plots 154
 box plots 156
 count plots, using 159, 161
 distribution plot, plotting 155
 heatmaps 164
 joint plots 161
 KDE plots 157
 lm plots 151, 153, 154
 pair plots 164, 166
 violin plots 158
agglomerative hierarchical clustering 332
Agglomerative Nesting (AGNES) 332
Anaconda Navigator 20
Anaconda
 URL 19
ANOVA (ANalysis Of VAriance) 105
Area Under Curve (AUC) 290
ARMA models 254, 255, 256
array shapes
 manipulating 48, 49
arrays
 broadcasting 61, 62
attributes
 about 87
 nominal attributes 87
 numeric attributes 88
 ordinal attributes 87
AUC curve 312, 314
Augmented Dickey-Fuller (ADF) 244
autocorrelation 248, 249, 250
autoregressive models 250, 251, 252, 253
Autoregressive Moving Average (ARMA) 253
averages

 moving 239, 240, 241

B
Bag of Words (BoW)
 about 365
 used, for performing text classification 368, 372
bar plot 143, 144
binary images 382
binary logistic regression model 285
Binary Object Notation (BSON) 205
binomial distribution 124, 125
Bokeh
 interactive visualization with 166
Boolean filtering 72
Boolean indexing 60
box plots 156
brew
 Python, installing on Mac OS X 18
bubble plot 146, 147

C
Cassandra
 data, reading from 206
 data, writing from 206
 download link 206
central limit theorem 98
central tendency measure
 about 89
 mean 89
 median 91
 mode 90
character codes 46
charts
 accessories 137, 139
Chi-Square test 107
Classification and Regression Tree (CART) 297
classification model 290

[441]

classification model performance
 accuracy 310
 confusion matrix 307, 308, 310
 evaluating 307
 F-measure 311, 312
 precision 311
 recall 311
classification
 for regression models 282
cluster sampling 100
clustering performance evaluation, categories
 about 341
 external performance evaluation 343
 internal performance evaluation 342
clustering
 about 323, 324
 performance, evaluating 341
clusters
 count, finding 324
cointegration 244, 245, 246
color images 383
color models 384, 385, 386
column stacking 52
columns
 filtering 70
components, decision tree
 branch 296
 internal node 296
 leaf nodes 296
confusion matrix
 terminologies 307
continuous variable 89
convenience sampling 101
Cosine similarity 378
count plots
 using 159, 160, 161
covariance 96
CRISP-DM process
 cycle 13
 phases 12, 13
CRoss-InduStry Process for Data Mining 12
CSV files
 reading, with NumPy 191, 192
 reading, with pandas 192, 194
 writing, with NumPy 191, 192

 writing, with pandas 192, 194

D
Dask Arrays 411, 412
Dask Bag
 about 419
 creating, with Python iterable items 419, 420
 creating, with text file 420
 storing, in DataFrame 421
 storing, in text file 421
Dask DataFrames
 about 412, 413
 converting, into pandas DataFrame 418
 data, filtering 416, 417
 groupby operation, using 417, 418
 indexing 413, 414, 415, 416
 pandas DataFrame, converting into 418
Dask Delayed 422, 423, 424
Dask, data types
 about 410
 Dask Arrays 411, 412
 Dask Bag 419
 Dask DataFrames 412, 413
Dask
 feature encoding 426, 427, 428
 feature scaling 424, 425, 426
 preprocessing 424
 used, for parallel computing 409, 410
data analysis libraries
 Matplotlib 9
 NumPy 8
 Pandas 8
 Plotly 9
 scikit-learn 8
 SciPy 8
 Seaborn 9
data analysis
 about 8
 standard process 9, 10
 versus data science 14
data analysts
 about 14
 skillsets, requisites 15
data filtering
 column-wise filtration 215, 217

[442]

 row-wise filtration 217, 218, 219, 220
data scientists
 about 14
 skillsets, requisites 16
data
 about 87
 exploring 211, 212, 213, 214
 filtering, to weed out noise 214
 partitioning, with k-means clustering 329, 330,

331

 reading, from Cassandra 206
 reading, from Excel 194
 reading, from HDF5 196
 reading, from HTML tables 197
 reading, from JSON 195
 reading, from MongoDB 205
 reading, from MySQL 201, 204
 reading, from Parquet 198
 reading, from pickle pandas object 199
 reading, from Redis 207
 row-wise filtration 218
 writing, from Cassandra 206
 writing, from Excel 194
 writing, from HDF5 196
 writing, from HTML tables 197
 writing, from JSON 195
 writing, from MongoDB 205
 writing, from MySQL 202, 204
 writing, from Parquet 198
 writing, from pickle pandas object 199
 writing, from Redis 207
DataFrame
 Dask Bag, storing in 421
 inserting, into database 204
dates
 dealing with 83, 84
Davies-Bouldin index (BDI) 342
DBSCAN clustering 336, 337, 338
decision tree classification 296, 298, 299
Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) 336
dependency parsing 362
depth stacking 52
determinant 117
dimension reduction, techniques

 principal component analysis (PCA) 319
dimensionality reduction
 benefits 318
dimensionality, of data
 reducing 318
discrete variable 89
dispersion measure
 IQR 92
 range 91
 standard deviation 93
 variance 93
distribution plots
 plotting 155
Divisive Analysis (DIANA) 332
divisive hierarchical clustering 332
Document Term Matrix (DTM) 365
dtype attributes 47
dtype constructors 47
dtype objects 45
dummy variables 272, 273

E
Eigenvalues
 about 122
 computing, with NumPy 122
Eigenvectors
 about 122
 computing, with NumPy 122
elbow method 325, 327
Excel
 data, reading from 194, 195
 data, writing from 194, 195
exploratory data analysis (EDA) 15, 86, 211
external performance evaluation
 about 343
 F-Measure 344
 F1-score 344
 Fowlkes-Mallows score 344, 345, 346
 Jaccard score 343
 Rand score 343

F
face detection 403, 404, 405, 406
fancy indexing 60
Fast Fourier Transform (FFT) 260

[443]

feature encoding, techniques
 about 226
 label encoding 228, 229
 one-hot encoding 226, 227
 ordinal encoder 229, 230
feature encoding
 in Dask 426, 427, 428
feature scaling methods
 Min-Max Scaling 232
 Robust Scaling 233
 Standard Scaling or Z-Score Normalization 231
feature scaling
 about 230
 in Dask 424, 425, 426
 methods 231, 232, 233, 234
feature
 splitting 235
 transforming 234, 235
flatten() function 48
Fourier analysis 259, 261
Fowlkes-Mallows score 344, 345, 346
full outer join 78

G
glyphs 168
grayscale images 383
groupby operation
 using 417, 418
grouping 75
GUI installer
 Python, installing on Mac OS X 18

H
heatmaps 162, 164
help function
 using 23
hide click policy 177, 179
hierarchical clustering 332, 333, 334, 336
hierarchical clustering, types
 agglomerative hierarchical clustering 332
 divisive hierarchical clustering 332
Hierarchical Data Format (HDF5)
 data, reading from 196
 data, writing from 196
histogram 96

histogram plot 144, 145
horizontal splitting 53
horizontal stacking 50
hover tool 183, 184
HTML tables
 data, reading from 197
 data, writing from 197

I
image data
 about 382
 binary images 382
 color images 383
 grayscale images 383
images
 blurring 399, 400, 401, 402
 brightness, adjusting 398, 399
 drawing on 387, 388, 389, 390, 391, 392
 flipping 395, 396, 397, 398
 resizing 393, 394, 395
 writing on 392, 393
inner join 77
instance-based learning 299
interactions
 about 177
 hide click policy 177, 180
 interactions 179
 mute click policy 179
interactive visualization, with Bokeh
 about 166
 annotations 180, 182
 glyphs 168
 hover tool, using 183, 184
 interactions 177
 layouts, for organizing plots and widgets 169,

173

 multiple plots 175, 177
 simple graph, plotting 166, 168
 widgets 184
internal performance evaluation
 about 342
 Davies-Bouldin index (BDI) 342
 silhouette coefficient 342
interquartile range (IQR) 91, 92, 224
interval-scaled attributes 88

[444]

IPython shell
 features 20
 functions, writing 22
 history commands 21
 manual pages, reading 23
 quitting 22
 system commands 22
IPython
 using, as shell 20
Iterative Dichotomiser 3 (ID3) 297

J
Jaccard score 343
Jaccard similarity 377
JavaScript Object Notation (JSON)
 data, reading from 195
 data, writing from 195
join 76
joint plots 161
Jupyter Notebooks, advanced features
 about 27
 extensions 30
 kernels, installing 29
 keyboard shortcuts 28
 shell commands, running 30
Jupyter Notebooks
 about 26
 features 27
 PDF documents, embedding 34
 references 26
 using 26
 YouTube Videos, embedding 35
JupyterLab
 using 24, 25

K
k-means clustering algorithms 433, 434, 435
k-means clustering
 used, for partitioning data 329, 330, 331
KDD process
 phases 10, 11
KDE plots 157
Kendall's rank correlation coefficient 98
Kernel Density Estimation (KDE) plot 155
KNN classification 299, 300, 301, 302

KNN properties
 instance-based learning 299
 lazy learner 299
 non-parametric 299
Knowledge Discovery in Databases 10
Kruskal-Wallis test 111, 112
kurtosis 95

L
label encoding 228, 229
layouts
 column layout 169
 grid layout 169
 nested layout 169
 row layout 169
lazy learner 299
left outer join 79
lemmatization 358, 360
lightweight access
 with sqllite3 200, 201
line plot 140
linear equations
 solving, with NumPy 119, 120
linear regression algorithm 267, 268
linear regression model
 developing 274, 276
Linux
 Python, installing on 18
lm plots 151, 153, 154
Local Binary Pattern (LBP) 403
logistic regression algorithm 282, 283, 284
logistic regression algorithms, types
 about 285
 binary logistic regression model 285
 multinomial logistic regression model 285
 ordinal logistic regression 285
logistic regression model
 advantages 285
 characteristics 284
 disadvantages 285
 implementing, with scikit-learn 286, 287
 using 431, 432
lower-upper (LU) decomposition 120

[445]

M
Mac OS X
 Python, installing on 18
machine learning
 at large-scale 428
Mann-Whitney U test 109
masked array
 creating, with numpy.ma subpackage 131, 133
Matplotlib
 about 9
 used, for visualization 136, 137
matrix factorization 120
matrix inverse
 NumPy, using 118
matrix
 about 118
 decomposing, with SVD 121
 rank, finding 117
Maximum Marginal Hyperplane (MMH) 302
mean 89
Mean Absolute Error (MAE) 252, 277
Mean Squared Error (MSE) 252, 277
median 91
median blurring 402
methods, for determining number of clusters
 about 324
 elbow method 325, 327
 silhouette method 327, 328, 329
missing values
 checking 79
 dropping 80, 221
 filling 80
 filling in 221, 223
 handling 220
 working with 79
ML algorithms for Dask, reimplementing
 about 431
 clustering 433, 434, 435
 logistic regression, using 431, 432
mode 90
MongoDB
 data, reading from 205
 data, writing from 205
 download link 205

 features 205
multicollinearity
 about 269
 removing 270, 271
multinomial logistic regression model 285
multiple linear regression (MLR) 269
multivariate outliers 224
mute click policy 180
MySQL
 data, reading from 201, 204
 data, writing from 201, 204

N
N-way ANOVA 107
Naive Bayes classification 292, 293, 294, 295,

296

named entities
 recognizing 361
Named Entity Recognition (NER) 361
natural language processing (NLP) 121
nested layouts
 creating, with row and column layouts 173, 174
NLTK
 installing 350
nominal attributes 87
non-parametric tests
 Chi-Square test 107
 Mann-Whitney U test 109
 performing 107
non-probability sampling
 about 101
 convenience sampling 101
 purposive sampling 101
 quota sampling 101
 snowball sampling 101
normal distribution 126
Notebook extensions, features
 Execute Time 32
 Hinterland 31
 Slideshow 33
 Spellchecker 32
 Table of Contents 32
 Variable Selector 33
numeric attributes
 about 88

[446]

 interval-scaled attributes 88
 ratio-scaled attributes 88
NumPy arrays, numerical data types
 about 43, 44, 45
 character codes 46
 dtype attributes 47
 dtype constructors 47
 dtype objects 45
NumPy arrays
 about 38, 39
 column stacking 52
 data type, modifying 55, 56
 depth stacking 52
 elements, selecting 42, 43
 features 41
 horizontal splitting 53
 horizontal stacking 50
 partitioning 53
 row stacking 53
 slicing 58, 59
 stacking 50
 vertical splitting 54
 vertical stacking 51
numpy.ma subpackage
 used, for creating masked array 131, 133
NumPy
 about 8
 copies, creating 56, 58
 Eigenvalues, computing with 122
 Eigenvectors, computing with 122
 used, for evaluating polynomials 115, 116
 used, for reading and writing CSV files 191, 192
 used, for solving linear equations 119, 120
 using, in matrix inverse 118
 views, creating 56, 58

O
object-relational mapping (ORM) 208
one-hot encoding 226, 227
OpenCV
 about 381
 features 381
 installing 381
ordinal attributes 87
ordinal encoder 229, 230

ordinal logistic regression 285
outliers, types
 multivariate outliers 224
 univariate outliers 224
outliers
 handling 223, 224, 225, 226

P
pair plots 164, 166
paired sample t-test 104
Pandas 8
pandas DataFrames
 count() method 74
 creating 63
 describe() method 73
 grouping 75
 joining 76
 methods 72
pandas plot () function
 used, for creating scatter plot 148, 150
pandas Series
 about 65
 features 66, 67
pandas
 used, for reading and writing 193
 used, for reading and writing CSV files 192
parallel computing
 using, Dask 409, 410
 using, scikit-learn 429, 430
parametric tests
 ANOVA 105
 paired sample t-test 104
 performing 101
 t-test 102
 two-sample t-test 103
Parquet
 data, reading from 198
 data, writing from 198
Pearson's correlation coefficient 97
periodic signals
 generating 257, 258, 259
pickle pandas object
 data, reading from 199
 data, writing from 199
pie plot 142, 143

[447]

pivot tables
 creating 81, 82
Plotly 9
polynomial regression
 fitting 279, 280, 281
polynomials
 evaluating, with NumPy 115, 116
PonyORM 208
POS tagging 360, 361
principal component analysis (PCA)
 about 317, 319
 performing 320, 321, 322
probability density function (PDF) 127
probability sampling
 about 100
 cluster sampling 100
 simple random sampling 100
 stratified sampling 100
 systematic sampling 100
purposive sampling 101
Python 3.8.3
 reference link 17
Python 3
 installing 17
Python data analysis libraries
 reference links 24
Python iterable items
 used, for creating Dask Bag 419, 420
Python programs 19
Python Series
 creating, with NumPy array 65
 creating, with Python dictionary 65
 creating, with single scalar value 66
Python
 installing, on Linux 18
 installing, on Mac OS X with brew 18
 installing, on Mac OS X with GUI installer 18
 installing, on Windows 17
 URL 17

Q
Quandl data
 about 69
 querying 69
 reading 69

quantile-quantile (QQ) plot technique 131
question mark
 using 23
quota sampling 101

R
R-squared 276
Rand score 343
random numbers
 generating 123
range 91
ratio-scaled attributes 88
ravel() function 49
Receiver Operating Characteristics (ROC) 312
Redis
 data, reading from 207
 data, writing from 207
 download link 207
regression model evaluation, Metrics
 about 276
 Mean Absolute Error (MAE) 277
 Mean Squared Error (MSE) 277
 R-squared 276
 Root Mean Squared Error (RMSE) 278, 279
regression model performance
 evaluating 276
regression models
 for classification 282
reshape() function 48
resize() function 49
right outer join 78
ROC curve 312, 314
Root Mean Squared Error (RMSE) 252, 278, 279
row stacking 53

S
sample 100
Sample, Explore, Modify, Model, and Assess

(SEMMA) 11
scatter plots 139, 140
scikit-learn
 about 8
 used, for parallel computing 429, 430
SciPy
 about 8

[448]

 used, for testing normality of data 127, 131
Seaborn
 about 9
 heatmaps 162
 used, for advanced visualization 150
seasonal and trend decomposition using LOESS

(STL)
 about 246
 time-series decomposition method 246, 247,

248

SEMMA process
 phases 11, 12
sentiment analysis
 performing, with text classification 367
set splitting strategies
 bootstrap method 306
 holdout method 305
 k-fold cross validation 306
 testing 305
 training 305
Shapiro-Wilk test 130
silhouette coefficient 342
silhouette method 327, 328, 329
simple random sampling 100
singular value decomposition (SVD)
 used, for decomposing matrix 120, 121
skewness 95
snowball sampling 101
SpaCy
 installing 350
Spearman's rank correlation coefficient 98
spectral analysis
 filtering 262
spectral clustering 338, 339, 341
sqllite3
 lightweight access with 200, 201
stacking
 about 50
standard deviation 93, 94
statsmodels modules 238
stemming 358, 360
stopwords
 removing 356, 358
stratified sampling 100
SVM classification 302

SVM classification, terminology
 about 302, 303, 304
 Hyperplane 302
 margin 302
 support vectors 302
systematic sampling 100

T
t-test 102
techniques, for checking normality of data
 histogram, using 128, 130
 Shapiro-Wilk test 130
Term Frequency-Inverse Document Frequency

(TF-IDF)
 about 366
 used, for text classification 373, 376
text classification
 performing, with BoW 368, 372
 TF-IDF, using 373, 376
 used, for sentiment analysis 367
text file
 Dask Bag, storing in 421
 used, for creating Dask Bag 420
text normalization 351
text similarity
 about 376
 Cosine similarity 378
 Jaccard similarity 377
tokenization 352, 355, 356
transpose() function 49
two-sample t-test 103
two-way ANOVA method 107

U
univariate outliers 224
unsupervised learning 317, 318
use cases, SVM
 face detection 302
 handwriting recognition 302
 intrusion detection 302
 text classification 302

V
variance 93
Variance Inflation Factor (VIF) 270

vector autoregressive (VAR) 238
vertical splitting 54
vertical stacking 51
violin plots 158
visualization, with Matplotlib
 about 136, 137
 accessories, for charts 137, 139
 bar plot 143, 144
 bubble plot, creating 146, 147
 histogram plot 144, 145
 line plot 140
 pandas plot () function, using 148, 150
 pie plot, creating 142, 143
 scatter plot, creating 139, 140

W

widgets
 about 184
 slider 186
 tab panel 185, 186
Wilcoxon signed-rank test 110
window function
 about 242, 243
 reference link 242
Windows
 Python, installing on 17
Within-Cluster Sum of Squares (WCSS) 325
word cloud
 creating 363, 365

Z
zero frequency problem 296
zeros() function 388

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Foundation for Data Analysis
	Chapter 1: Getting Started with Python Libraries
	Understanding data analysis
	The standard process of data analysis
	The KDD process
	SEMMA
	CRISP-DM
	Comparing data analysis and data science
	The roles of data analysts and data scientists

	The skillsets of data analysts and data scientists
	Installing Python 3
	Python installation and setup on Windows
	Python installation and setup on Linux
	Python installation and setup on Mac OS X with a GUI installer
	Python installation and setup on Mac OS X with brew

	Software used in this book
	Using IPython as a shell
	Reading manual pages
	Where to find help and references to Python data analysis libraries

	Using JupyterLab
	Using Jupyter Notebooks
	Advanced features of Jupyter Notebooks
	Keyboard shortcuts
	Installing other kernels
	Running shell commands
	Extensions for Notebook

	Summary

	Chapter 2: NumPy and pandas
	Technical requirements
	Understanding NumPy arrays
	Array features
	Selecting array elements

	NumPy array numerical data types
	dtype objects
	Data type character codes
	dtype constructors
	dtype attributes

	Manipulating array shapes
	The stacking of NumPy arrays
	Partitioning NumPy arrays
	Changing the data type of NumPy arrays
	Creating NumPy views and copies
	Slicing NumPy arrays
	Boolean and fancy indexing
	Broadcasting arrays
	Creating pandas DataFrames
	Understanding pandas Series
	Reading and querying the Quandl data
	Describing pandas DataFrames
	Grouping and joining pandas DataFrame
	Working with missing values
	Creating pivot tables
	Dealing with dates
	Summary
	References

	Chapter 3: Statistics
	Technical requirements
	Understanding attributes and their types
	Types of attributes
	Discrete and continuous attributes

	Measuring central tendency
	Mean
	Mode
	Median

	Measuring dispersion
	Skewness and kurtosis
	Understanding relationships using covariance and correlation coefficients
	Pearson's correlation coefficient
	Spearman's rank correlation coefficient
	Kendall's rank correlation coefficient

	Central limit theorem
	Collecting samples
	Performing parametric tests
	Performing non-parametric tests
	Summary

	Chapter 4: Linear Algebra
	Technical requirements
	Fitting to polynomials with NumPy
	Determinant
	Finding the rank of a matrix
	Matrix inverse using NumPy
	Solving linear equations using NumPy
	Decomposing a matrix using SVD
	Eigenvectors and Eigenvalues using NumPy
	Generating random numbers
	Binomial distribution
	Normal distribution
	Testing normality of data using SciPy
	Creating a masked array using the numpy.ma subpackage
	Summary

	Section 2: Exploratory Data Analysis and Data Cleaning
	Chapter 5: Data Visualization
	Technical requirements
	Visualization using Matplotlib
	Accessories for charts
	Scatter plot
	Line plot
	Pie plot
	Bar plot
	Histogram plot
	Bubble plot
	pandas plotting

	Advanced visualization using the Seaborn package
	lm plots
	Bar plots
	Distribution plots
	Box plots
	KDE plots
	Violin plots
	Count plots
	Joint plots
	Heatmaps
	Pair plots

	Interactive visualization with Bokeh
	Plotting a simple graph
	Glyphs
	Layouts
	Nested layout using row and column layouts

	Multiple plots
	Interactions
	Hide click policy
	Mute click policy

	Annotations
	Hover tool
	Widgets
	Tab panel
	Slider

	Summary

	Chapter 6: Retrieving, Processing, and Storing Data
	Technical requirements
	Reading and writing CSV files with NumPy
	Reading and writing CSV files with pandas
	Reading and writing data from Excel
	Reading and writing data from JSON
	Reading and writing data from HDF5
	Reading and writing data from HTML tables
	Reading and writing data from Parquet
	Reading and writing data from a pickle pandas object
	Lightweight access with sqllite3
	Reading and writing data from MySQL
	Inserting a whole DataFrame into the database

	Reading and writing data from MongoDB
	Reading and writing data from Cassandra
	Reading and writing data from Redis
	PonyORM
	Summary

	Chapter 7: Cleaning Messy Data
	Technical requirements
	Exploring data
	Filtering data to weed out the noise
	Column-wise filtration
	Row-wise filtration

	Handling missing values
	Dropping missing values
	Filling in a missing value

	Handling outliers
	Feature encoding techniques
	One-hot encoding
	Label encoding
	Ordinal encoder

	Feature scaling
	Methods for feature scaling

	Feature transformation
	Feature splitting
	Summary

	Chapter 8: Signal Processing and Time Series
	Technical requirements
	The statsmodels modules
	Moving averages
	Window functions
	Defining cointegration
	STL decomposition
	Autocorrelation
	Autoregressive models
	ARMA models
	Generating periodic signals
	Fourier analysis
	Spectral analysis filtering
	Summary

	Section 3: Deep Dive into Machine Learning
	Chapter 9: Supervised Learning - Regression Analysis
	Technical requirements
	Linear regression
	Multiple linear regression

	Understanding multicollinearity
	Removing multicollinearity

	Dummy variables
	Developing a linear regression model
	Evaluating regression model performance
	R-squared
	MSE
	MAE
	RMSE

	Fitting polynomial regression
	Regression models for classification
	Logistic regression
	Characteristics of the logistic regression model
	Types of logistic regression algorithms
	Advantages and disadvantages of logistic regression

	Implementing logistic regression using scikit-learn
	Summary

	Chapter 10: Supervised Learning - Classification Techniques
	Technical requirements
	Classification
	Naive Bayes classification
	Decision tree classification
	KNN classification
	SVM classification
	Terminology

	Splitting training and testing sets
	Holdout
	K-fold cross-validation
	Bootstrap method

	Evaluating the classification model performance
	Confusion matrix
	Accuracy
	Precision
	Recall
	F-measure

	ROC curve and AUC
	Summary

	Chapter 11: Unsupervised Learning - PCA and Clustering
	Technical requirements
	Unsupervised learning
	Reducing the dimensionality of data
	PCA
	Performing PCA

	Clustering
	Finding the number of clusters
	The elbow method
	The silhouette method

	Partitioning data using k-means clustering
	Hierarchical clustering
	DBSCAN clustering
	Spectral clustering
	Evaluating clustering performance
	Internal performance evaluation
	The Davies-Bouldin index
	The silhouette coefficient

	External performance evaluation
	The Rand score
	The Jaccard score
	F-Measure or F1-score
	The Fowlkes-Mallows score

	Summary

	Section 4: NLP, Image Analytics, and Parallel Computing
	Chapter 12: Analyzing Textual Data
	Technical requirements
	Installing NLTK and SpaCy
	Text normalization
	Tokenization
	Removing stopwords
	Stemming and lemmatization
	POS tagging
	Recognizing entities
	Dependency parsing
	Creating a word cloud
	Bag of Words
	TF-IDF
	Sentiment analysis using text classification
	Classification using BoW
	Classification using TF-IDF

	Text similarity
	Jaccard similarity
	Cosine similarity

	Summary

	Chapter 13: Analyzing Image Data
	Technical requirements
	Installing OpenCV
	Understanding image data
	Binary images
	Grayscale images
	Color images

	Color models
	Drawing on images
	Writing on images
	Resizing images
	Flipping images
	Changing the brightness
	Blurring an image
	Face detection
	Summary

	Chapter 14: Parallel Computing Using Dask
	Parallel computing using Dask
	Dask data types
	Dask Arrays
	Dask DataFrames
	DataFrame Indexing
	Filter data
	Groupby
	Converting a pandas DataFrame into a Dask DataFrame
	Converting a Dask DataFrame into a pandas DataFrame

	Dask Bags
	Creating a Dask Bag using Python iterable items
	Creating a Dask Bag using a text file
	Storing a Dask Bag in a text file
	Storing a Dask Bag in a DataFrame

	Dask Delayed
	Preprocessing data at scale
	Feature scaling in Dask
	Feature encoding in Dask

	Machine learning at scale
	Parallel computing using scikit-learn
	Reimplementing ML algorithms for Dask
	Logistic regression
	Clustering

	Summary

	Other Books You May Enjoy
	Index

