
Deploy Machine
Learning Models
to Production

With Flask, Streamlit, Docker, and
Kubernetes on Google Cloud Platform
—
Pramod Singh

Deploy Machine
Learning Models to

Production
With Flask, Streamlit, Docker,
and Kubernetes on Google

Cloud Platform

Pramod Singh

Deploy Machine Learning Models to Production

ISBN-13 (pbk): 978-1-4842-6545-1		 ISBN-13 (electronic): 978-1-4842-6546-8
https://doi.org/10.1007/978-1-4842-6546-8

Copyright © 2021 by Pramod Singh

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6545-1. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Pramod Singh
Bangalore, Karnataka, India

https://doi.org/10.1007/978-1-4842-6546-8

iii

Table of Contents

Chapter 1: ��Introduction to Machine Learning��1

History��2

The Last Decade���3

Rise in Data��3

Increased Computational Efficiency���4

Improved ML Algorithms��5

Availability of Data Scientists���6

Machine Learning��6

Supervised Machine Learning��7

Unsupervised Learning���10

Semi-supervised Learning���11

Reinforcement Learning���12

Gradient Descent��13

Bias vs. Variance��15

Cross Validation and Hyperparameters��16

Performance Metrics��17

About the Author���vii

About the Technical Reviewer��ix

Acknowledgments��xi

Introduction��xiii

iv

Deep Learning��22

Human Brain Neuron vs. Artificial Neuron��23

Activation Functions���26

Neuron Computation Example��28

Neural Network��30

Training Process���32

Role of Bias in Neural Networks���35

CNN��37

RNN��39

Industrial Applications and Challenges��48

Retail��48

Healthcare��49

Finance���50

Travel and Hospitality���50

Media and Marketing���51

Manufacturing and Automobile��51

Social Media���52

Others���52

Challenges��52

Requirements���53

Conclusion���54

Chapter 2: ��Model Deployment and Challenges������������������������������������55

Model Deployment���56

Why Do We Need Machine Learning Deployment?��58

Challenges���59

Challenge 1: Coordination Between Stakeholders��61

Challenge 2: Programming Language Discrepancy��62

Table of Contents

v

Challenge 3: Model Drift���62

Challenge 4: On-Prem vs. Cloud-Based Deployment��������������������������������������64

Challenge 5: Clear Ownership��64

Challenge 6: Model Performance Monitoring���64

Challenge 7: Release/Version Management���65

Challenge 8: Privacy Preserving and Secure Model���������������������������������������65

Conclusion���66

Chapter 3: ��Machine Learning Deployment as a Web Service��������������67

Introduction to Flask��68

route Function��68

run Method���69

Deploying a Machine Learning Model as a REST Service������������������������������������69

Templates���73

Deploying a Machine Learning Model Using Streamlit��76

Deploying a Deep Learning Model���81

Training the LSTM Model���82

Conclusion���90

Chapter 4: ��Machine Learning Deployment Using Docker��������������������91

What Is Docker, and Why Do We Need It?��92

Introduction to Docker��93

Docker vs. Virtual Machines���94

Docker Components and Useful Commands��96

Docker Image���96

Docker Hub���100

Docker Client and Docker Server���100

Docker Container��105

Table of Contents

vi

Machine Learning Using Docker��110

Step 1: Training the Machine Learning Model��110

Step 2: Exporting the Trained Model���114

Step 3: Creating a Flask App Including UI���115

Step 4: Building the Docker Image���118

Step 5: Running the Docker Container���119

Step 6: Stopping/Killing the Running Container���126

Conclusion���126

Chapter 5: ��Machine Learning Deployment Using Kubernetes�����������127

Kubernetes Architecture��128

Kubernetes Master���129

Worker Nodes��130

ML App Using Kubernetes��131

Google Cloud Platform���132

Conclusion���146

��Index��147

Table of Contents

vii

About the Author

Pramod Singh is a manager of data science at

Bain & Company. He has more than 11 years

of rich experience in the data science field

working with multiple product- and service-

based organizations. He has been part of

numerous large-scale ML and AI projects. He

has published three books on large-scale data

processing and machine learning. He is also a

regular speaker at major AI conferences such

as O’Reilly AI and Strata.  

ix

About the Technical Reviewer

Manohar Swamynathan is a data science

practitioner and an avid programmer, with

14+ years of experience in various data science

areas that include data warehousing, business

intelligence (BI), analytical tool development,

ad hoc analysis, predictive modeling, data

science product development, consulting,

formulating strategy, and executing analytics

programs. He’s had a career covering the

life cycle of data across different domains

such as US mortgage banking, retail/e-commerce, insurance, and

industrial IoT. He has a bachelor’s degree with a specialization in

physics, mathematics, and computers, and a master’s degree in project

management. He’s currently living in Bengaluru, the Silicon Valley of India. 

He has also been the technical reviewer of books such as Data Science

Using Python and R.

xi

Acknowledgments

I want to take a moment to thank the most important person in my life: my

wife, Neha. Without her support, this book wouldn’t have seen the light of

day. She is the source of my energy, motivation, and happiness and keeps

me going despite challenges and hardships. I dedicate this book to her.

I also want to thank a few other people who helped a great deal

during these months and provided a lot of support. Let me start with

Aditee, who was very patient and kind to understand the situation and

help to reorganize the schedule. Thanks to Celestian John as well to offer

me another opportunity to write for Apress. Last but not the least, my

mentors: Barron Beranjan, Janani Sriram, Sebastian Keupers, Sreenivas

Venkatraman, Dr. Vijay Agneeswaran, Shoaib Ahmed, and Abhishek

Kumar. Thank you for your continuous guidance and support.

xiii

Introduction

This book helps upcoming data scientists who have never deployed any

machine learning model. Most data scientists spend a lot of time analyzing

data and building models in Jupyter Notebooks but have never gotten an

opportunity to take them to the next level where those ML models are

exposed as APIs. This book helps those people in particular who want to

deploy these ML models in production and use the power of these models

in the background of a running application.

The term ML productionization covers lots of components and

platforms. The core idea of this book is not to look at each of the options

available but rather provide a holistic view on the frameworks for

productionizing models, from basic ML-based apps to complex ones.

Once you know how to take an ML model and put it in production, you

will become more confident to work on complicated applications and big

deployments. This book covers different options to expose the ML model

as a web service using frameworks such as Flask and Streamlit. It also

helps readers to understand the usage of Docker in machine learning apps

and the end-to-end process of deployment on Google Cloud Platform

using Kubernetes.

I hope there is some useful information for every reader, and

potentially they can apply it in their workstreams to go beyond Jupyter

Notebooks and productionalize some of their ML models.

1© Pramod Singh 2021
P. Singh, Deploy Machine Learning Models to Production,
https://doi.org/10.1007/978-1-4842-6546-8_1

CHAPTER 1

Introduction to
Machine Learning
In this first chapter, we are going to discuss some of the fundamentals

of machine learning and deep learning. We are also going to look at

different business verticals that are being transformed by using machine

learning. Finally, we are going to go over the traditional steps of training

and building a rather simple machine learning model and deep learning

model on a cloud platform (Databricks) before moving on to the next set

of chapters on productionization. If you are aware of these concepts and

feel comfortable with your level of expertise on machine learning already,

I encourage you to skip the next two sections and move on to the last

section, where I mention the development environment and give pointers

to the book’s accompanying codebase and data download information so

that you are able to set up the environment appropriately. This chapter

is divided into three sections. The first section covers the introduction

to the fundamentals of machine learning. The second section dives into

the basics of deep learning and the details of widely used deep neural

networks. Each of the previous sections is followed up by the code to build

a model on the cloud platform. The final section is about the requirements

and environment setup for the remainder of the chapters in the book.

https://doi.org/10.1007/978-1-4842-6546-8_1#DOI

2

�History
Machine learning/deep learning is not new; in fact, it goes back to 1940s

when for the first time an attempt was made to build something that had

some amount of built-in intelligence. The great Alan Turing worked on

building this unique machine that could decrypt German code during

World War II. That was the beginning of machine intelligence era, and

within a few years, researchers started exploring this field in great detail

across many countries. ML/DL was considered to be significantly powerful

in terms of transforming the world at that time, and an enormous number

of funds were granted to bring it to life. Nearly everybody was very

optimistic. By late 1960s, people were already working on machine vision

learning and developing robots with machine intelligence.

While it all looked good on the surface level, there were some serious

challenges that were impeding the progress in this field. Researchers

were finding it extremely difficult to create intelligence in the machines.

Primarily it was due to a couple of reasons. One of them was that the

processing power of computers in those days was not enough to handle

and process large amounts of data, and the reason was the availability of

relevant data itself. Despite the support of government and the availability

of sufficient funds, the ML/AI research hit a roadblock from the period of

the late 1960s to the early 1990s. This block of time period is also known as

the “AI winters” among the community members.

In the late 1990s, corporations once again became interested in AI.

The Japanese government unveiled plans to develop a fifth-generation

computer to advance machine learning. AI enthusiasts believed that soon

computers would be able to carry on conversations, translate languages,

interpret pictures, and reason like people. In 1997, IBM’s Deep Blue

became the first computer to beat a reigning world chess champion, Garry

Kasparov. Some AI funding dried up when the dot-com bubble burst in the

early 2000s. Yet machine learning continued its march, largely thanks to

improvements in computer hardware.

Chapter 1 Introduction to Machine Learning

3

�The Last Decade
There is no denying the fact that the world has seen significant progress

in terms of machine learning and AI applications in the last decade or

so. In fact, if it were to be compared with any other technology, ML/AI

has been path-breaking in multiple ways. Businesses such as Amazon,

Google, and Facebook are thriving on these advancements in AI and are

partly responsible for it as well. The research and development wings

of organizations like these are pushing the limits and making incredible

progress in bringing AI to everyone. Not only big names like these but

thousands of startups have emerged on the landscape specializing in AI-

based products and services. The numbers only continue to grow as I write

this chapter. As mentioned earlier, the adoption of ML and AI by various

businesses has exponentially grown over the last decade or so, and the

prime reason for this behavior has been multifold.

•	 Rise in data

•	 Increased computational efficiency

•	 Improved ML algorithms

•	 Availability of data scientists

�Rise in Data
The first most prominent reason for this trend is the massive rise in data

generation in the past couple of decades. Data was always present, but

it’s imperative to understand the exact reason behind this abundance of

data. In the early days, the data was generated by employees or workers

of particular organizations as they would save the data into systems, but

there were limited data points holding only a few variables. Then came

the revolutionary Internet, and generic information was made accessible

to virtually everyone using the Internet. With the Internet, the users got

Chapter 1 Introduction to Machine Learning

4

the control to enter and generate their own data. This was a colossal shift

as the total number of Internet users in the world grew at an exploding

rate, and the amount of data created by these users grew at an even

higher rate. All of this data—login/sign-up forms capturing user details,

photos and videos uploads on various social platforms, and other online

activities—led to the coining of the term Big Data. As a result, the challenges

that ML and AI researchers faced in earlier times due to a lack of data points

were completely eliminated, and this proved to be a major enabler for the

adoption of in ML and AI.

Finally, from a data perspective, we have already reached the next level

as machines are generating and accumulating data. Every device around

us is capturing data such as cars, buildings, mobiles, watches, and flight

engines. They are embedded with multiple monitoring sensors and are

recording data every second. This data is even higher in magnitude than the

user-generated data and commonly referred as Internet of Things (IoT) data.

�Increased Computational Efficiency
We have to understand the fact that ML and AI at the end of the day

are simply dealing with a huge set of numbers being put together and

made sense out of. To apply ML or AI, there is a heavy need for powerful

processing systems, and we have witnessed significant improvements

in computation power at a breakneck pace. Just to observe the changes

that we have seen in the last decade or so, the size of mobile devices has

reduced drastically, and the speed has increased to a great extent. This

is not just in terms of physical changes in the microprocessor chips for

faster processing using GPUs and TPUs but also in the presence of data

processing frameworks such as Spark. The combination of advancement in

processing capabilities and in-memory computations using Spark made it

possible for lots of ML algorithms to be able to run successfully in the past

decade.

Chapter 1 Introduction to Machine Learning

5

�Improved ML Algorithms
Over the last few years, there has been tremendous progress in terms

of the availability of new and upgraded algorithms that have not only

improved the predictions accuracy but also solved multiple challenges that

traditional ML faced. In the first phase, which was a rule-based system,

one had to define all the rules first and then design the system within

those set of rules. It became increasingly difficult to control and update the

number of rules as the environment was too dynamic. Hence, traditional

ML came into the picture to replace rule-based systems. The challenge

with this approach was that the data scientist had to spent a lot of time

to hand design the features for building the model (known as feature

engineering), and there was an upper threshold in terms of predictions

accuracy that these models could never go above no matter if the input

data size increased. The third phase was the introduction of deep neural

networks where the network would figure out the most important features

on its own and also outperform other ML algorithms. In addition, some

other approaches that have been creating a lot of buzz over the last few

years are as follows:

•	 Meta learning

•	 Transfer learning (nano nets)

•	 Capsule networks

•	 Deep reinforcement learning

•	 Generative adversarial networks (GANs)

Chapter 1 Introduction to Machine Learning

6

�Availability of Data Scientists
ML/AI is a specialized field as the skills required to be able to do this is

indeed a combination of multiple disciplines. To be able to build and apply

ML models, one needs to have a sound knowledge of math and statistics

fundamentals. Along with that, a deep understanding of machine learning

algorithms and various optimization techniques is critical to taking the

right approach to solve a business problem using ML and AI. The next

important skill is to be extremely comfortable at coding, and the last one is

to be an expert of particular domain (finance, retail, auto, healthcare, etc.)

or carry deep knowledge of multiple domains. There is a huge excitement

in the job markets with respect to data scientist roles, and there are a

huge number of requirements for data scientists everywhere, especially in

countries such as the United States, United Kingdom, and India.

�Machine Learning
Now that we know a little bit of history around machine learning, we can

go over the fundamentals of machine learning. We can break down ML

into four parts, as shown in Figure 1-1.

•	 Supervised machine learning

•	 Unsupervised machine learning

•	 Semi-supervised machine learning

•	 Reinforcement machine learning

Chapter 1 Introduction to Machine Learning

7

�Supervised Machine Learning
Supervised machine learning is the major category of machine learning

that drives a lot of applications and value for businesses. In this type of

learning, the model is trained on the data for which we already have the

correct labels or output. In short, we try to map the relationship between

input data and output data in such a way that it can generalize well on

unseen data as well, as shown in Figure 1-2. The training of the model

takes place by comparing the actual output with the predicted output and

then optimizing the function to reduce the total error between the actual

and predicted.

Figure 1-1.  Machine learning categories (source: en.proft.me)

Chapter 1 Introduction to Machine Learning

8

This type of learning is predominantly used in cases where historical
data is available and predictions need to be made on future data. The
further categorization of supervised learning is based on types of labels
being used for prediction, as shown in Figure 1-3. If the nature of the
output variable is numerical, it falls under regression, whereas if it is
categorical, it is in the classification category.

Figure 1-3.  Regression versus classification

Figure 1-2.  Generalization

Chapter 1 Introduction to Machine Learning

9

Classification refers to the case when the output variable is a discrete

value or categorical in nature. Classification comes in two types.

•	 Binary classification

•	 Multiclassification

When the target class is of two categories, it is referred to as binary,

and when it is more than two classes, it is known as multiclassifications, as

shown in Figure 1-4.

Another property of supervised learning is that the model’s

performance can be evaluated. Based on the type of model (classification

or regression), the evaluation metric can be applied, and performance

results can be measured. This happens mainly by splitting the training data

into two sets (the train set and the validation set) and training the model

on the train set and testing its performance on the validation set since we

already know the right label/outcome for the validation set.

Figure 1-4.  Binary versus multiclass

Chapter 1 Introduction to Machine Learning

10

�Unsupervised Learning
Unsupervised learning is another category of machine learning that is used

heavily in business applications. It is different from supervised learning in terms

of the output labels. In unsupervised learning, we build the models on similar

sort of data as of supervised learning except for the fact that this dataset does

not contain any label or outcomes column. Essentially, we apply the model

on the data without any right answers. In unsupervised learning, the machine

tries to find hidden patterns and useful signals in the data that can be later used

for other applications. The main objective is to probe the data and come up

with hidden patterns and a similarity structure within the dataset, as shown in

Figure 1-5. One of the use cases is to find patterns within the customer data and

group the customers into different clusters. It can also identify those attributes

that distinguish between any two groups. From a validation perspective, there

is no measure of accuracy for unsupervised learning. The clustering done by

person A can be totally different from that of person B based on the parameters

used to build the model. There are different types of unsupervised learning.

•	 K-means clustering

•	 Mapping of nearest neighbor

Figure 1-5.  Clustering

Chapter 1 Introduction to Machine Learning

11

�Semi-supervised Learning
As the name suggests, semi-supervised learning lies somewhere in between

supervised and unsupervised learning. In fact, it uses both of the techniques.

This type of learning is mainly relevant in scenarios when we are dealing

with a mixed sort of dataset, which contains both labeled and unlabeled

data. Sometimes it’s just unlabeled data completely, but we label some part

of it manually. The whole idea of semi-supervised learning is to use this

small portion of labeled data to train the model and then use it for labeling

the other remaining part of data, which can then be used for other purposes.

This is also known as pseudo-labeling as it labels the unlabeled data using

the predictions made by the supervised model. To quote a simple example,

say we have lots of images of different brands from social media and most

of it is unlabeled. Now using semi-supervised learning, we can label some

of these images manually and then train our model on the labeled images.

We then use the model predictions to label the remaining images to

transform the unlabeled data to labeled data completely.

The next step in semi-supervised learning is to re-train the model

on entire labeled dataset. The advantage that it offers is that the model

gets trained on a bigger dataset, which was not the case earlier and is

now more robust and better at predictions. The other advantage is that

semi-supervised learning saves a lot of effort and time that could go in to

manually label the data. The flipside of doing all this is that it’s difficult to

get the high performance of the pseudo-labeling as it uses a small part of

the labeled data to make the predictions. However, it is still a better option

rather than manually labeling the data, which can be expensive and time-

consuming at the same time. This is how semi-supervised learning uses

both the supervised and unsupervised learning to generate the labeled

data. Businesses that face challenges regarding costs associated with the

labeled training process usually go for semi-supervised learning.

Chapter 1 Introduction to Machine Learning

12

�Reinforcement Learning
Reinforcement learning is the fourth kind of learning and is little different

in terms of the data usage and its predictions. Reinforcement learning

is a big research area in itself, and an entire book could be written just

on it. The main difference between the other kinds of learning and

reinforcement learning is that we need data, mainly historical data, to train

the models, whereas reinforcement learning works on a reward system,

as shown in Figure 1-6. It is primarily decision-making based on certain

actions that the agent takes to change its state while trying to maximize the

rewards. Let’s break this down to individual elements using a visualization.

•	 Autonomous agent: This is the main character in this

whole learning who is responsible for taking action. If it is

a game, the agent makes the moves to finish or reach the

end goal.

•	 Actions: These are set of possible steps that the agent

can take to move forward in the task. Each action will

have some effect on the state of the agent and can result

in either reward or penalty. For example, in a game of

tennis, the actions might be to serve, return, move left

or right, etc.

Figure 1-6.  Reinforcement learning

Chapter 1 Introduction to Machine Learning

13

•	 Reward: This is the key to making progress in

reinforcement learning. Rewards enable the agents

to take actions based on if they’re positive rewards

or penalties. It is an instant feedback mechanism

that differentiates it from traditional supervised and

unsupervised learning techniques.

•	 Environment: This is the territory in which the agent gets

to play in. The environment decides whether the actions

that the agent takes results in rewards or penalties.

•	 State: The position the agent is in at any given point of

time defines the state of the agent. To move forward

or reach the end goal, the agent has to keep changing

states in the positive direction to maximize the rewards.

The unique thing about reinforcement learning is that there is an

immediate feedback mechanism that drives the next behavior of the agent

based on a reward system. Most of the applications that use reinforcement

learning are in navigation, robotics, and gaming. However, it can be also

used to build recommender systems.

Now let’s go over some of the important concepts in machine learning

as its critical to have a good understanding of these aspects before moving

on to the machine learning in production.

�Gradient Descent
At the end of the day, the machine learning model is as good as the loss

it’s able to minimize in its predictions. There are different types of loss

functions pertaining to a specific category of problems, and most often in

the typical classification or regression tasks, we try to minimize the mean

squared error and log loss during training and cross validation. If we think

of the loss as a curve, as shown in Figure 1-7, gradient descent helps us to

Chapter 1 Introduction to Machine Learning

14

reach the point where the loss value is at its minimum. We start a random
point based on the initial weights or parameters in the model and move in
the direction where it starts reducing. One thing worth remembering here
is that gradient descent takes big steps when it’s far away from the actual
minima, whereas once it reaches a nearby value, the step sizes become
very small to not miss the minima.

To move toward the minimum value point, it starts with taking the
derivative of the error with respect to the parameters/coefficients (weights
in case of neural networks) and tries to find the point where the slope
of this error curve is equal to zero. One of the important components
in gradient descent is the learning rate as it decides how quickly or
how slowly it descends toward the lowest error value. If learning rate
parameters are set to be higher value, then chances are that it might
skip the lowest value, and on the contrary, if learning rate is too small, it
would take a long time to converge. Hence, the learning rate becomes an
important part in the overall gradient descent process.

The overall aim of gradient descent is to reach to a corresponding
combination of input coefficients that reflect the minimum errors based
on the training data. So, in a way we try to change these coefficient values
from earlier values to have minimum loss. This is achieved by the process
of subtracting the product of the learning rate and the slope (derivative
of error with regard to the coefficient) from the old coefficient value. This
alteration in coefficient values keeps happening until there is no more
change in the coefficient/weights of the model as it signifies that the

gradient descent has reached the minimum value point in the loss curve.

Figure 1-7.  Gradient descent

Chapter 1 Introduction to Machine Learning

15

Another type of gradient descent technique is stochastic gradient

descent (SGD), which deals with a similar approach for minimizing the

error toward zero but with sets of data points instead of considering all

data in one go. It takes sample data from input data and applies gradient

descent to find the point of lowest error.

�Bias vs. Variance
Bias variance trade-off is the most common problem that gets attention from

data scientists. High bias refers to the situation where the machine learning

model is not learning enough of the signal from the input data and leads to

poor performance in terms of final predictions. In such a case, the model

is too simple to approximate the output based on the given inputs. On the

other hand, high variance refers to overfitting (learning too much on training

data). In the case of high variance, the learning of the model on the training

data affects the generalization performance on the unseen or test data due

to an overcomplex model. One needs to balance the bias versus variance

as both are opposite of each other. In other words, if we increase bias, the

variance goes down, and vice versa, as shown in Figure 1-8.

Figure 1-8.  Bias versus variance

Chapter 1 Introduction to Machine Learning

16

�Cross Validation and Hyperparameters
For most of the machine learning algorithms out there, there is a set

of hyperparameters that can be adjusted accordingly to have the best

performance coming out of the model. The famous analogy of the

hyperparameters is that of tuning knobs in a radio/transistor to match the

exact frequency of the radio station to hear the sound properly. Likewise,

hyperparameters provide the best possible combination for a model’s

performance for a given training data. The following are a few examples of

hyperparameters in the case of a machine learning model such as random

forest:

•	 Number of trees

•	 Maximum number of features

•	 Maximum depth of trees

For the different values of the previous hyperparameters, the model

would learn the different parameters for the given input data, and the

prediction performance would vary accordingly. Most libraries provide

the default value of these parameters for the vanilla version of the

model, and it’s the responsibility of the data scientist to find out the best

hyperparameters that work in that particular situation. We also have to

be careful that we don’t overfit the data. Now, hyperparameters and cross

validations go hand in hand. Cross validation is a technique where we split

the training data in such a way that the majority of records in the training

set are used to train the model and the remaining set (smaller set) is used

to test the performance of the model. Depending on the type of cross

validation (with repetition or without repetition), the training data is split

accordingly, as shown in Figure 1-9.

Chapter 1 Introduction to Machine Learning

17

�Performance Metrics
There are different ways in which the performance of a machine learning

model can be evaluated depending on the nature of algorithm used.

As mentioned previously, there are broadly two categories of models:

regression and classification. For the models that predict a continuous

target, such as R-square, root mean squared error (RMSE) can be used,

whereas for the latter, an accuracy measure is the standard metric.

However, the cases where there is class imbalance and the business needs

to focus on only one out of the positive or negative class, measures such as

precision and recall can be used.

Now that we have gone over the fundamentals and important concepts

in machine learning, it’s time for us to build a simple machine learning

model on a cloud platform, namely, Databricks.

Figure 1-9.  Cross validation

Chapter 1 Introduction to Machine Learning

18

Databricks is an easy and convenient way to get started with cloud

infrastructure to build and run machine learning models (single-threaded

as well as distributed). I have given a deep introduction of the Databricks

platform in a couple of my earlier books (Machine Learning Using PySpark

and Learn PySpark). The objective of this section in this chapter is to give

you a flavor of how to get up and running with ML on the cloud by just

signing up for any of the major cloud services providers (Google, Amazon,

Microsoft, Databricks). Most of these platforms allows users to simply sign

up and use the ML services (in some cases with limited capabilities) for a

predefined period or up to the extent of exhausting the free credit points.

Databricks allows you to use the community edition of its platform that

offers up to 6 GB of cluster size. We are going to use the community edition

to build and understand a decision tree model on a fake currency dataset.

The dataset contains four attributes of the currency notes that can be used

to detect whether a currency note is genuine or fake. Since we are using

the community edition, there is a limitation on the size of the dataset, and

hence it’s been kept relatively small for demo purpose.

Note  Sign up for the Databricks community edition to run this code.

The first step is to start a new cluster with the default settings as we

are not building a complicated model here. Once the cluster is up and

running, we need to simply upload the data to Databricks from the local

system. The next step is to create a new notebook and attach it to the

cluster we created earlier. The next step is to import all required libraries

and confirm that the data was uploaded successfully.

[In]: import pandas as pd

[In]: import numpy as np

[In]: from sklearn.model_selection import train_test_split

[In]: from sklearn.tree import DecisionTreeClassifier

[In]: from sklearn.metrics import classification_report

Chapter 1 Introduction to Machine Learning

19

The following line of command will show the table (dataset) that was

uploaded from the local system:

[In]: display(dbutils.fs.ls("/FileStore/tables/"))

The next step is to create a Spark dataframe from the table and later

convert it to a pandas dataframe to build the model.

[In:sparkDF=spark.read.csv('/FileStore/tables/currency_note_

data.csv', header="true", inferSchema="true")

[In]: df=sparkDF.toPandas()

We can take a look at the top five rows of the dataframe by using the

pandas head function. This confirms that we have a total of five columns

including the target column (Class).

[In]: df.head(5)

[Out]:

As mentioned earlier, the data size is relatively small, and we can see

that it contains just 1,372 records in total, but the target class seems to be

well balanced, and hence we are not dealing with an imbalanced class.

Chapter 1 Introduction to Machine Learning

20

[In]: df.shape

[Out]: (1372, 5)

[In]: df.Class.value_counts()

[Out]:

0 762

1 610

We can also check whether there are any missing values in the

dataframe by using the info function. The dataframe seems to contain no

missing values as such.

[In]: df.info()

[Out]:

The next step is to split the data into training and test sets using the

train test split functionality

[In]: X = df.drop('Class', axis=1)

[In]: y = df['Class']

[In]:�X_train,X_test,y_train,y_test=train_test_split(X,y,test_

size=0.25,random_state=30)

Chapter 1 Introduction to Machine Learning

21

Now that we have the training set separated out, we can build a decision

tree with default hyperparameters to keep things simple. Remember, the

objective of building this model is simply to introduce the process of training

a model on a cloud platform. If you want to train a much more complicated

model, please feel free to add your own steps such as enhanced feature

engineering, hyperparameter tuning, baseline models, visualization, or

more. We are going to build much more complicated models that include all

the previous steps in later chapters of this book.

[In]: dec_tree=DecisionTreeClassifier().fit(X_train,y_train)

[In]: dec_tree.score(X_test,y_test)

[Out]: 0.9854227405247813

We can see that the decision tree seems to be doing incredibly well

on the test data. We can also go over the other performance metrics apart

from accuracy using the classification report function.

[In]: y_preds = dec_tree.predict(X_test)

[In]: print(classification_report(y_test,y_preds))

[Out]:

Chapter 1 Introduction to Machine Learning

22

�Deep Learning
In this section of the chapter, we will go over the fundamentals of deep

learning and its underlying operating principles. Deep learning has

been in the limelight for quite a few years now and is improving leaps

and bounds in terms of solving various business challenges. From image

captioning to language translation to self-driving cars, deep learning has

become an important component in the larger scheme of things. To give

you an example, Google’s products such as Gmail, YouTube, Search, Maps,

and Assistance are all using deep learning in some or the other way in

the background due to its incredible ability to provide far better results

compared to some of the other traditional machine learning algorithms.

But what exactly is deep learning? Well, before even getting into deep

learning, we must understand what neural networks are. Deep learning in

fact is sort of an extension to the neural network. As mentioned earlier in

the chapter, neural networks are not new, but they didn’t take off due to

various limitations. Those limitations don’t exist anymore, and businesses

and research community are able to leverage the true power of neural

networks now.

In supervised learning settings, there is a specific input and

corresponding output. The objective of the machine learning algorithms

is to use this data and approximate the relationship between input and

output variables. In some cases, this relationship is evident and easy to

capture, but in realistic scenarios, the relationship between the input and

output variables is complex and nonlinear in nature. To give an example,

for a self-driving car, the input variables could be as follows:

•	 Terrain

•	 Distance from nearest object

•	 Traffic light

•	 Sign boards

Chapter 1 Introduction to Machine Learning

23

The output needs to be either turn, drive fast or slowly, apply brakes,

etc. As you might think, the relationship between input variables and

output variables is pretty complex in nature. Hence, the traditional

machine learning algorithm finds it hard to map this kind of relationship.

Deep learning outperforms machine learning algorithms in such

situations as it is able to learn those nonlinear features as well.

�Human Brain Neuron vs. Artificial Neuron
As mentioned, deep learning is extension of neural networks only and

also known as deep neural networks. Neural networks are a little different

compared to other machine learning algorithms in terms of learning.

Neural networks are loosely inspired by neurons in the human brain.

Neural networks are made up of artificial neurons. Although I don’t claim

to be an expert of neuroscience or functioning of the brain, let me try to

give you a high-level overview of “how the human brain functions.” As you

might be already aware, the human brain is made up of billions of neurons

and an incredible number of connections between them. Each neuron

is connected to multiple other neurons, and they repeatedly exchange

information (signal). Each activity that we do physically or mentally fires

up a certain set of neurons in our brains. Now, every single neuron consists

of three basic components.

•	 Dendrites

•	 Cell body

•	 Terminals

Chapter 1 Introduction to Machine Learning

24

As we can see in Figure 1-10, the dendrites are responsible for

receiving the signal from other neurons. A dendrite act as a receiver to

the particular neuron and passes information to the cell body where this

specific information is processed. Now, based on the level of information,

it either activates (fires up) or doesn’t trigger. This activity depends on a

particular threshold value of the neuron. If the incoming signal value is

below that threshold, it would not fire; otherwise, it activates. Finally, the

third component are the terminals that are connected with dendrites of

other neurons. Terminals are responsible for passing on the output of the

particular neuron to other relevant connections.

Now, we come to the artificial neuron, which is the basic building

block of a neural network. A single artificial neuron consists of two

parts mainly; one is the summation, and other is activation, as shown

in Figure 1-11. This is also known as a perceptron. Summation refers to

adding all the input signals, and activation refers to deciding whether the

neuron would trigger or not based on the threshold value.

Figure 1-10.  Neuron

Chapter 1 Introduction to Machine Learning

25

Let’s say we have two binary inputs (X1, X2) and the weights of their

respective connections (W1, W2). The weights can be considered similar

to the coefficients of input variables in traditional machine learning.

These weights indicate how important the particular input feature is in the

model. The summation function calculates the total sum of the input. The

activation function then uses this total summated value and gives a certain

output, as shown in Figure 1-12. Activation is sort of a decision-making

function. Based on the type of activation function used, it gives an output

accordingly. There are different types of activation functions that can be

used in a neural network layer.

Figure 1-11.  Artificial neuron

Figure 1-12.  Neuron calculation

Chapter 1 Introduction to Machine Learning

26

�Activation Functions
Activation functions play a critical role in neural networks as the output

varies based on the type of activation function used. There are typically

four main activation functions that are widely used. We will briefly cover

these in this section.

�Sigmoid Activation Function

The first type of activation function is a sigmoid function. This activation

function ensures the output is always between 0 and 1 irrespective of

the input, as shown in Figure 1-13. That’s why it is also used in logistic

regression to predict the probability of the event.

	
f x

e x() =
+ -

1
1 	

�Hyperbolic Tangent

The other activation function is known as the hyperbolic tangent activation

function, or tanh. This function ensures the value remains between -1 to 1

irrespective of the output, as shown in Figure 1-14. The formula of the tanh

activation function is as follows:

Figure 1-13.  Sigmoid

Chapter 1 Introduction to Machine Learning

27

	
f x e

e

x

x() = -
+

2

2

1

1 	

�Rectified Linear Unit

The rectified linear unit (relu) has been really successful over the past

couple of years and has become the default choice for the activation

function. It is powerful as it produces a value between 0 and ∞. If the input

is 0 or less than 0, then the output is always going to be 0, but for anything

more than 0, the output is similar to the input, as shown in Figure 1-15.

The formula for relu is as follows:

f(x)= max⁡(0,x)

Figure 1-14.  Tanh

Figure 1-15.  Relu

Chapter 1 Introduction to Machine Learning

28

�Neuron Computation Example
Since we have basic understanding of different activation functions, let’s

look at an example to understand how the actual output is calculated

inside a neuron. Say we have two inputs, X1 and X2, with values of 0.2 and

0.7, respectively, and the weights are 0.05 and 0.03, as shown in Figure 1-16.

The summation function calculates the total sum of incoming input signals

as shown in Figure 1-17.

Here is the summation:

	 sum X W X W= * + *1 1 2 2 	

	 sum = * + *0 2 0 05 0 7 0 03. . . . 	

	 sum = +0 01 0 021. . 	

	 sum = 0 031. 	

Figure 1-16.  Neuron input

Chapter 1 Introduction to Machine Learning

29

The next step is to pass this sum through an activation function. Let’s

consider using a sigmoid function that returns values between 0 and 1

irrespective of the input. The sigmoid function would calculate the value

as shown here and in Figure 1-18:

	

f x
e x() =

+()-

1
1 	

	

f sum
e sum() =

+()-

1
1 	

	

f
e

0 031
1

1
0 031

.
.

() =
+()-

	

	 f 0 031 0 5077. .() = 	

Figure 1-17.  Summation

Chapter 1 Introduction to Machine Learning

30

So, the output of this single neuron is equal to 0.5077.

�Neural Network
When we combine multiple neurons, we end up with a neural network.

The simplest and most basic neural network can be built using just the

input and output neurons, as shown in Figure 1-19.

Figure 1-19.  Simple network

Figure 1-18.  Activation

Chapter 1 Introduction to Machine Learning

31

The challenge with using a neural network like this is that it can only

learn linear relationships and cannot perform well in cases where the

relationship between the input and output is nonlinear. As we have already

seen, in real-world scenarios, the relationship is hardly simple and linear.

Hence, we need to introduce an additional layer of neurons between the

input and output layers to increase its capability to learn different kinds

of nonlinear relationships as well. This additional layer of neurons is

known as the hidden layer, as shown in Figure 1-20. It is responsible for

introducing the nonlinearities into the learning process of the network.

Neural networks are also known as universal approximators since they

carry the ability to approximate any relationship between the input and

output variables no matter how complex and nonlinear it is nature. A lot

depends on the number of hidden layers in the networks and the total

number of neurons in each hidden layer. Given enough hidden layers, it

can perform incredibly well at mapping this relationship.

Figure 1-20.  Neural network with hidden layer

Chapter 1 Introduction to Machine Learning

32

�Training Process
A neural network is all about the various connections (red lines) and

different weights associated with these connections. The training of neural

networks primarily includes adjusting these weights in such a way that the

model can predict with a higher amount of accuracy. To understand how

neural networks are trained, let’s break down the steps of network training.

Step 1: Take the input values as shown in Figure 1-21 and calculate the

output values that are passed to hidden neurons. The weights used for the

first iteration of the sum calculation are generated randomly.

An additional component that is passed is the bias neuron input, as

shown in Figure 1-22. This is mainly used when you want to have some

nonzero output for even the zero input values (you’ll learn more about bias

later in the chapter).

Figure 1-21.  Hidden layer

Chapter 1 Introduction to Machine Learning

33

Step 2: The network-predicted output is compared with the actual

output, as shown in Figure 1-23.

Step 3: The error is back propagated to the network, as shown in

Figure 1-24.

Figure 1-22.  Bias component

Figure 1-23.  Output comparison

Chapter 1 Introduction to Machine Learning

34

Step 4: The weights are re-adjusted according to the output to

minimize the errors, as shown in Figure 1-25.

Step 5: A new output value is calculated based on the updated weights.

Step 2 repeats until no more changes in the weights are possible.

Figure 1-25.  Weight adjustment

Figure 1-24.  Error propogation

Chapter 1 Introduction to Machine Learning

35

�Role of Bias in Neural Networks
One common question that people have is, why do we add bias in neural

networks? Well, the role of bias is critical for the right learning of the model

as it a direct relation to the performance of the model. To understand the

role of bias in neural networks, we need to go back to linear regression and

uncover the role of intercepts in the regression line. We know for a fact that

the value of intercept changes the position of a line to up or down, whereas

slope changes the angle of the line, as shown in Figure 1-26. If the slope

is less than the input, the variable has less impact on the final prediction

because for changes in value in the input, the corresponding output

change is less for a small slope, whereas if the slope value if higher, then

the output is more sensitive toward the smallest change in the input value,

as shown in Figure 1-26.

Figure 1-26.  Slope in regression

Chapter 1 Introduction to Machine Learning

36

Hence, the slope value decides the angle at which the line exists, whereas

the intercept value decides at what position the line exists (low or high).

In the same way, if we don’t use bias for a network, the simple

calculation would be the combined output from the weight and the input

to the activation function. Since the inputs are fixed and only the weights

can be altered, we can only change the steepness/angle of the activation

curve, which is only half the work done (although some cases it works), as

shown in Figure 1-27.

Ideally, we also want to shift the curve horizontally (left to right) to have

the specific output from the activation function for proper learning, as shown

in Figure 1-28. That is the exact purpose of bias in the network as it allows us to

shift the curve from left to right just like intercept does in the regression.

Figure 1-28.  With bias

Figure 1-27.  Without bias

Chapter 1 Introduction to Machine Learning

37

Now that we have a good understanding of how deep learning works,

we can dive into specific neural networks that are widely used. There are

many variants of deep learning models, but we are going to focus on two

types of deep learning models only.

•	 Convolutional neural networks (CNNs)

•	 Recurrent neural networks (RNNs)

�CNN
There was a major breakthrough when CNNs were first used for image-

based tasks. The amount of accuracy they provided surpassed every other

algorithm that was previously used for image recognition. Since then, there

are multiple variants of CNNs being used with added capabilities to solve

specific image-based tasks such as face recognition, computer vision, self-

driving cars, etc. The CNNs have the ability to extract high-level features

from the images that capture the most important aspects of the image for

recognition via the process known as convolution, as shown in Figure 1-29.

Figure 1-29.  Image classification

Chapter 1 Introduction to Machine Learning

38

Convolution is an easy process to understand as we roll a filter (also

called as kernel) over the image pixel values to extract the convoluted

feature, as shown in Figure 1-30.

Rolling of the filter over the image indicates that we take a dot product

of the specific region of values of the image with the filter. Once we have

the convoluted feature map, we reduce it using pooling. There are different

versions of pooling (max pooling, min pooling, and average pooling).

This is done to ensure that the spatial size of the image data is reduced

over the network. We can have pooling layers at different stages of the

CNN depending on the dataset and other metrics. Figure 1-31 shows the

example of max pooling and image pooling.

Figure 1-30.  Image convolution

Chapter 1 Introduction to Machine Learning

39

We can repeat the previous steps (convolution and pooling) multiple

times in a network to learn the main features of the image and finally pass

it to the fully connected layer at the end to make the classification.

�RNN
The general feedforward neural networks and CNNs are not good for

time-series kinds of datasets as these networks don’t have any memory of

their own. Recurrent neural networks bring with them the unique ability

to remember important stuff during the training over a period of time.

This makes them well suited for tasks such as natural language translation,

speech recognition, and image captioning. These networks have states

defined over a timeline and use the output of the previous state in the

current input, as shown in Figure 1-32.

Figure 1-31.  Pooling

Chapter 1 Introduction to Machine Learning

40

Although RNNs have proved to be really effective in time-series kinds

of applications, it does run into some serious limitations in terms of

performance because of its architecture. It struggles with what is known as

a vanishing gradient problem that occurs due to no or very little updates in

the weights of the network as the network tries to use data points that are

at the early stages of timeline. Hence, it has a limited memory to put it in

simple terms. To tackle this problem, there are couple of other variants of

RNNs.

•	 Long short-term memory (LSTM)

•	 Gradient recurring unit (GRU)

•	 Attention networks (encoder-decoder model)

Figure 1-32.  RNN

Chapter 1 Introduction to Machine Learning

41

Now we are going to use a small dataset and build a deep learning

model to predict the sentiment given the user review. We are going to

make use of TensorFlow and Keras to build this model. There are couple of

steps that we need to do before we train this model in Databricks. We first

need to go to the cluster and click Libraries. On the Libraries tab, we need

to select the Pypi option and mention Keras to get it installed. Similarly, we

need to mention TensorFlow as well once Keras is installed.

Once we upload the reviews dataset, we can create a pandas dataframe

like we did in the earlier case.

[In]: from tensorflow.keras.models import Sequential

[In]: from tensorflow.keras.layers import LSTM,Embedding

[In]: from tensorflow.keras.layers import Dense

[In]: from tensorflow.keras.preprocessing.text import Tokenizer

[In]: �from tensorflow.keras.preprocessing.sequence import pad_

sequences

[In]:�sparkDF= spark.read.csv('/FileStore/tables/text_summary.

csv', header="true", inferSchema="true")

[In]: df=sparkDF.toPandas()

[In]: df.columns

[Out]: Index(['Sentiment', 'Summary'], dtype='object')

As we can see, there are just two columns in the dataframe.

[In]: df.head(10)

[Out]:

Chapter 1 Introduction to Machine Learning

42

[In]: df.Sentiment.value_counts()

[Out]:
1 1000
0 1000

We can also confirm the class balance by taking a value counts of the
target column. It seems the data is well balanced. Before we go ahead with
building the model, since we are dealing with text data, we need to clean it
a little bit to ensure no unwanted errors are thrown at the time of training.
Hence, we write a small helper function using regular expressions.

[In]:
import re
def clean_reviews(text):
 text=re.sub("[^a-zA-Z]"," ",str(text))
 return re.sub("^\d+\s|\s\d+\s|\s\d+$", " ", text)

[In]: df['Summary']=df.Summary.apply(clean_reviews)

[In]: df.head(10)

Chapter 1 Introduction to Machine Learning

43

[Out]:

The next step is to separate input and output data. Since the data is
already small, we are not going to split it into train and test sets; rather, we
will train the model on all the data.

[In]: X=df.Summary
[In]: y=df.Sentiment

We now create the tokenizer object with 10,000 vocab words, and an
out-of-vocabulary (oov) token is mentioned for the unseen words that the
model gets exposed to that are not part of the training.

[In]: tokenizer=Tokenizer(num_words=10000,oov_token='xxxxxxx')

[In]: tokenizer.fit_on_texts(X)

[In]: X_dict=tokenizer.word_index

[In]: len(X_dict)

[Out]: 2018

Chapter 1 Introduction to Machine Learning

44

[In]: X_dict.items()

[Out]:

As we can see, there are 2,018 unique words in the training data. Now

we transform each review into a numerical vector based on the token

mapping done using tokenizer.

[In]: X_seq=tokenizer.texts_to_sequences(X)

[In]: X_seq[:10]

[Out]:

Although the text-to-sequence function converted each review into a
vector, there is a slight problem as each vector’s length is different based
on the length of the original review. To fix this issue, we make use of

Chapter 1 Introduction to Machine Learning

45

the padding function. It ensures that each vector is conformed to a fix
length (we add a set of 0s at the end or beginning depending on the type of
padding used: pre or post).

[In]: X_padded_seq=pad_sequences(X_
seq,padding='post',maxlen=100)

[In]: X_padded_seq[:3]

[Out]:

[In]: X_padded_seq.shape

[Out]: (2000, 100)

Chapter 1 Introduction to Machine Learning

46

As we can see, we have now every review that has been converted

into a fixed-size vector. In the next step, we flatten our target variable and

declare some of the global parameters for the network. You can choose

your own parameter values.

[In]: y = np.array(y)

[In]: y=y.flatten()

[In]: max_length = 100

[In]: vocab_size = 10000

[In]: embedding_dims = 50

Now we build the model that is sequential in nature and makes use of

the relu activation function.

[In]: model = tf.keras.Sequential([

tf.keras.layers.Embedding(input_length=100,input_

dim=10000,output_dim=50),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(50, activation='relu'),

tf.keras.layers.Dense(1, activation='sigmoid')

])

[In]:model.compile(loss='binary_crossentropy',optimizer='adam',

metrics=['accuracy'])

[In]: model.summary()

Chapter 1 Introduction to Machine Learning

47

[Out]:

[In]: num_epochs = 10

[In]: model.fit(X_padded_seq,y, epochs=num_epochs)

The model seems to be learning really well, but there are chances of

overfitting the data as well. We will deal with overfitting and other settings

of a network in later chapters of the book.

Chapter 1 Introduction to Machine Learning

48

Now that we have gotten some exposure to both machine learning and

deep learning fundamentals and a sense of how to build models in cloud,

we can look at different applications of ML/DL in businesses around the

world along with some of the challenges that come with it.

�Industrial Applications and Challenges
In the final section of this chapter, we will go though some of the real

applications of ML and AI. Businesses are heavily investing in ML and

AL across the globe and establishing standard procedures to leverage

the capabilities of ML and AI to build their competitive edge. There are

multiple areas where ML and AI are being currently applied and providing

great value to businesses. We will look at few of the major domains where

ML and AI are transforming the landscape.

�Retail
One of the business verticals that is making incredible use of ML and AI

is retail. Since retail business generates a lot of customer data, it offers

a perfect platform for applying ML and AI. The retail sector has always

faced multiple challenges such as out-of-stock situations, suboptimal

pricing, limited cross sell or upsell, and inadequate personalization. ML

and AI have been able attack many of these challenges and offer incredible

impact in retail space. There are numerous applications that have been

Chapter 1 Introduction to Machine Learning

49

built in the retail space that are powered by ML and AL in the last decade,

and the number continues to grow. The most prominent application

is the recommender system. Online retail businesses are thriving on

recommender systems as they can increase their revenue by a great deal.

In addition, retail uses ML and AI capabilities for stock optimization to

control the inventory levels and reduce costs. Dynamic pricing is another

area where AI and ML are being used comprehensively to get maximum

returns. Customer segmentation is also done using ML as it uses not only

the demographics information of the customer but the transactional data

and takes multiple other variables into consideration before revealing

the different groups within the customer base. Product categorization is

also being done using ML as it saves a huge amount of manual effort and

increases the accuracy levels of labeling the products. Demand forecasting

and stock optimization are tackled using ML and AI to save costs. Route

planning has also been handled by ML and AI in the last few years as it

enables businesses to fulfill orders in more effective way. As a result of ML

and AI applications in retail, the cost savings have improved, businesses

are able to take informed decisions, and the overall customer satisfaction

has gone up.

�Healthcare
Another business vertical to be deeply impacted by ML and AI is

healthcare. Diagnoses based on image data using ML and AI are being

adopted at a quick rate across healthcare spectrum. The prime reasons are

the levels of accuracy levels offered by ML and AI and the ability to learn

from data of past decades. ML and AI algorithms on X-rays, MRI scans,

and various other images in the healthcare domain are being heavily used

to detect any anomalies. Virtual assistants and chatbots are also being

deployed as part of applications to assist with explaining lab reports.

Finally, insurance verification is also being done using ML models in

healthcare to avoid any inconsistency.

Chapter 1 Introduction to Machine Learning

50

�Finance
The finance domain has always had data, lots of it. Out of any other domain,

finance has always been data enriched. Hence, there are multiple applications

being built over the last decade based on ML and AI. The most prominent

one is the fraud detection system, which used anomaly detection algorithms

in the background. Other areas are portfolio management and algorithmic

trading. ML and AI have the ability to scan more than 100 years of past data

and learn the hidden patterns to suggest the best calibration of a portfolio.

Complex AI systems are being used to make extremely fast decisions about

trading to maximize the gains. ML and AI are also used in risk mitigation and

loan insurance underwriting. Again, recommender systems are being used

to upsell and cross sell various financial products by various institutions.

They also use recommender systems to predict the churn of the customer

base in order to formulate a strategy to retain the customers who are likely

to discontinue with a specific product or service. Another important usage

of ML and AI in the finance sector is to check whether the loan should be

granted or not to various applicants based on predictions made by the model.

In addition, ML is being used to validate whether the insurance claims are

genuine or fraud based on the ML model predictions.

�Travel and Hospitality
Just like retail, the travel and hospitality domain is thriving on ML- and

AI-based applications. To name a few, recommender systems, price

forecasting, and virtual assistants are all ML- and AI-based applications

that are being leveraged in the travel and hospitality vertical. From

recommending best deals to alternative travel dates, recommender

systems are super-critical to drive customer behavior in this sector. It also

recommends new travel destinations based on a user’s preferences, which

are highly tailored using ML in the background. AI is also being used to
sending timely alerts to customers by predicting future price movements

Chapter 1 Introduction to Machine Learning

51

based on the various factors. Virtual assistants nowadays are part of every
travel website as the customers don’t want to wait to get the relevant
information. On top of that, the interactions with these virtual assistants
are very human like as natural language intelligence is already being
embedded into these chat bots to a great extent so as to understand simple
questions and reply in a similar manner.

�Media and Marketing
Every business more or less depends on marketing to get more customers,
and reaching out to the right customer has always been a big challenge.
Thanks to ML and AI, that problem is now better handled as it can
anticipate the customer behavior to a great extent. The ML- and AI-based
applications are being used to differentiate between potential prospects
who are more likely to buy or subscribe to the offer or product and casual
candidates. They are also being used to provide an absolute personalized
offer to convert or retain the customers. A churn predictor is again used
heavily to identify the group of consumers who are likely to discontinue
the usage of any particular product or service. Advanced customer
segmentation for hypertargeting is being done using ML and AI. Finally, a
lot of marketing content is being generated artificially using ML and AI to
send out the best-performing content.

�Manufacturing and Automobile
The manufacturing domain has not been able to escape the wave of ML and
AI either. The most predominant use is predictive maintenance as ML- and
AI-based applications can help in preventing potential damages by predicting
the need for maintenance in advance based on earlier data. Automobile
companies are using telematics data to learn the driving patterns of the
customers and act more promptly to help them in many ways. They are also
using web data to understand their customers better to try to personalize the

experience for seamless navigation during the online journey.

Chapter 1 Introduction to Machine Learning

52

�Social Media
Most people (the young generation in particular) spend a great deal of

time on social media without realizing that a lot of the applications are

using ML and AI. Facebook, YouTube, LinkedIn, Twitter, and other similar

apps use ML heavily to provide the experience. From photo auto-tag

suggestions to recommendations of friends, everything is driven by ML

and AI. They are also used to generate subtitle and language translations

for various platforms such as YouTube. Various search engines and voice

assistants are using a good amount of ML implementation in them.

�Others
There are many other applications where ML and AI are used. For

example, email spam filters use ML instead of rule-based systems. One

advantage that the ML approach offers over the traditional rule-based

system is that the former automatically updates and upgrades itself as

per the new mails to make this distinction. Another area is the oil and

gas industry where ML and AI help in analyzing underground minerals

and finding alternative energy sources. ML and AI are also being used in

transportation as they can predict the likely traffic conditions and alert you

in advance.

�Challenges
So far, we have covered the capabilities and impact that ML and AI can

have on this world. However, there are still lots of gaps that exist in order

to realize the true potential of ML and AI. To start with, the shortage of

skilled talent is a major blocker to the advancement of ML and AI. We have

already discussed that people will require the combination of multiple

skills to excel in this field, which makes it more difficult to find those kinds

of resources.

Chapter 1 Introduction to Machine Learning

53

“Finding a data scientist is hard. Finding people who under-
stand who a data scientist is, is equally hard.”

—Krzysztof Zawadzki

The next challenge is access to increased computing power. Although

we have an availability of highly capable processing units as GPUs and

TPUs, it’s restricted to set of people rather than to everyone because of

the cost factor and time taken to train big models. Hence, it still remains

a challenge if the situation demands large data processing and model

training. Security is the most critical aspect when it comes to using ML and

AI as they use a lot of data to get trained in order to give better predictions.

However, using personal and sensitive data for building the models can

compromise users’ data security and confidentiality. At the end of the day,

machine learning and AI are not a silver bullet that can solve all problems.

Another challenge associated with ML and AI is the explainability part as it

is difficult to explain the rationale behind the predictions of the models. In

fact, we can call them a black box as the interpretation of machine learning

mapping features can get utterly complicated sometimes and might not

make lot of sense to other stakeholders. There are certain areas where ML

and AI cannot be applied, and hence many initiatives and applications are

bound to fail.

�Requirements
The following chapters makes use of Docker to build and deploy

containers, and hence your system should have Docker installed and

working properly. You also need to have admin rights to install some of the

dependencies. You should also have a virtual box installed on your system.

To deploy apps using a cloud service, you should have a Google Cloud

account.

Chapter 1 Introduction to Machine Learning

54

�Conclusion
In this chapter, we went over the fundamentals of both machine learning

and deep learning. We also saw the process of building a model on

Databricks. We covered the different applications of machine learning and

deep learning along with their existing challenges.

Chapter 1 Introduction to Machine Learning

55© Pramod Singh 2021
P. Singh, Deploy Machine Learning Models to Production,
https://doi.org/10.1007/978-1-4842-6546-8_2

CHAPTER 2

Model Deployment
and Challenges
You got a refresher on machine learning concepts in the previous chapter,

so it is now logical to move to the next stage. What is machine learning

deployment, and what are some of the common challenges when doing it?

This chapter covers two main themes. First, the chapter talks

about what exactly model deployment is and the different aspects of

productionalizing the model. Second, the chapter covers the different

challenges that are faced during ML productionization. The challenges can

be observed at both stages of model deployment (the pre-deployment and

post-deployment phases), but for simplicity we are going focus on the set

of challenges as a whole. Although the challenges faced by the machine

learning team can be unique for each specific case, we will go over the

most common cases pertaining to deployment.

https://doi.org/10.1007/978-1-4842-6546-8_2#DOI

56

�Model Deployment
In the previous chapter, we saw what it takes to build a machine learning
model or a deep learning model (be it local or in the cloud). The level of
complexity or the nature of the model can vary on a case-to-case basis,
but the underlying framework remains similar. We have some typical data
coming in from the data source (which can be a single source or multiple
sources), followed by series of data cleaning and preprocessing steps, and
then we extract or create important features from the input data to train
the machine learning model for a specific use case. Once the model is
trained or ready to be used in a production environment, it can be exposed
to unseen data for making predictions through some APIs. However, the
last part creates a handful of challenges. If we try to observe the cycle after
building a successful ML model, it looks something like Figure 2-1.

The first stage is to deploy the trained ML model in production and test
the results. This is followed by the performance monitoring of the model on
continuous levels. Once the model starts performing below the expected
benchmark level, the model needs to be retrained and evaluated again to
replace the old model with the new. This includes the model management
(versioning, features, etc.). The model is deployed again in production
without affecting the existing user requests (you’ll learn more about this in
upcoming chapters on ML deployment). Once the new model is deployed,

the same steps shown in Figure 2-1 are repeated through the framework.

Figure 2-1.  ML model in deployment

Chapter 2 Model Deployment and Challenges

57

Although deployment is quite intuitive in nature because there are

millions of applications out there that are already working seamlessly in

the context of machine learning, it might need a bit of further explanation.

Machine learning applications differ in nature compared to other typical

software applications such as mobile applications in two main ways.

•	 Underlying model

•	 Underlying data

When we say we are going to deploy the model in production or

productionalize the model, we are referring to integrating the machine

learning model into an existing business application. In simple terms,

we expose the ML model as REST API endpoints to serve the requests

within the application platform or to direct user requests. This model to

be deployed in production can be a stand-alone predictor that gives some

output based on the algorithm used for batch data, or it can be used to

serve requests in real time, making it a dynamic model. Model deployment

can often be considered as the last stage in the machine learning cycle

from a data scientist’s standpoint; however, it’s the start of what is known

as the model management phase. Being able to successfully deploy a

machine learning model requires lots of inputs and alignment from

multiple stakeholders such as data scientists, data engineers, application

developers, MLOps/DevOps, and business team members. To be honest,

it’s the most difficult stage in the machine learning lifecycle as a number

of issues can crop up in the deployment phase. We will go into these

challenges later in this chapter.

Chapter 2 Model Deployment and Challenges

58

�Why Do We Need Machine Learning
Deployment?
By now we have a good understanding of what a machine learning model

does and how it is trained, but the critical piece is to understand the role

of the ML model in the overall business application. It can be simply a

prediction or a combination of multiple predictions or recommendations

of some sort. At the end of the day, it needs to make the overall business

application more effective. For example, a ML model in production can

be used to predict the propensity for each online visitor based on the

activities on the website toward buying or not buying a specific product or

anticipating the web traffic based on other factors. Irrespective of the actual

role of ML in the overall application, deployment becomes an integral part

to enable the ML model to talk to the application.

One might ask, why is it so important to take the ML model into

production? There are multiple answers to this question, but the most

important is to extract real value from the machine learning model. It

has to become part of the application and power the application with

all its predictions and insights. The best analogy that I can think of for

not putting machine learning models into production is like training for

a sports event but not participating in it. This restricts the impact that

it could have had if embedded in the application. Having said that, in

some cases, it makes more sense to not put models into production. As

mentioned earlier, it depends on the case and the actual context of the

application in which machine learning is used. In some cases, a stand-

alone model does prove to be simpler and easier to use. Stand-alone

models are much faster to build, train, make predictions, and extract

insights for the business and do decision-making. However, this might not

be a relevant approach in the following situations:

•	 The data is huge.

•	 The data is streaming.

Chapter 2 Model Deployment and Challenges

59

•	 There are lots of active users.

•	 There are faster responses.

The ML models specifically trained on big data to handle a similar kind

of data for predictions need to be well managed in the overall application.

Similarly, if the data at hand is of a streaming type, then the model should

be integrated with the application to handle the continuously incoming

data. Another aspect is when you have a large number of users; in that

case, you want to ensure that the models are able to handle that many

requests and multiple instances of the same models are running in parallel

to serve the requests. One key thing to remember is that deploying an ML

model in production does not guarantee consistent quality in predictions.

In reality, the performance of the model is often expected to deteriorate

quickly as the model is exposed to real data (this effect is known as drift,

and you’ll learn more about it in the “Challenges” section), and that’s

where model management plays an important role.

To summarize, the deployment helps to extract the real value of

machine learning by integrating the model with the application to

generate tangible business insights. It also means that predictions can be

made on real-time data.

�Challenges
I wouldn’t be writing this section of the chapter if it were easy to deploy ML

models without any hiccups. It’s rare that someone has the ideal conditions

to go from the dev stage to production without some alterations and tweaks.

We have to understand that there is a major difference between developing

a model and deploying a model. The expectations in terms of performance,

speed, and resource consumption are all different for both of these tasks.

More often than not, there are two separate groups working on each of these

Chapter 2 Model Deployment and Challenges

60

stages separately (although this trend is changing as more data scientists
are taking up the ML deployment task and as DevOps folks are learning to
build ML/DL models on their own). Out of all the expectations from the ML
models, the most differentiating one is that the performance of the model
needs to be continuously monitored while the model is in production
serving live requests from users because the application must have the best
available version of the model in production.

The famous Google paper published by Sculley et al. in 2015, “Hidden
Technical Debt in Machine Learning Systems,” presented a different
viewpoint to the machine learning community when it questioned the
actual role and importance of machine learning in the overall application
(https://papers.nips.cc/paper/5656-hidden-technical-debt-in-
machine-learning-systems.pdf).

“They said that in real-world Machine Learning (ML) systems,
only a small fraction is comprised of actual ML code. There is
a vast array of surrounding infrastructure and processes to
support their evolution.”

The paper mentioned that other components such as data
dependencies, model complexity, reproducibility, testing, monitoring, and
version changes play comparatively a bigger role in getting a realistic ML
application. The general perception of the role of machine learning before
that paper was that it was the most critical part of the overall lifecycle, as

shown in Figure 2-2.

Figure 2-2.  ML role in application

Chapter 2 Model Deployment and Challenges

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

61

According to the paper, this is far from reality. In actuality, the machine

learning code is a small piece of the entire scheme of things, as shown in

Figure 2-3. There are multiple other components that drive the real value

of an ML-based application.

To be honest, the challenges faced during the model deployment

are closely related to the components shown in Figure 2-3 as they make

the whole application practical. As mentioned earlier, there are other

challenges that deployment teams can face. The following sections offer

you a fair idea regarding what to expect when you take your ML model into

production.

�Challenge 1: Coordination Between Stakeholders
As mentioned earlier, the most natural hurdle while deploying a model

is to align with other team members who do not have data science or

machine learning backgrounds such as DevOps, application developers,

and business team members. Model deployment is a group task that needs

constant communication and a common understanding of the overall

objective. Proper planning at the early stages of ML model development

will help the MLOps/DevOps team to prepare well in advance for the

deployment.

Figure 2-3.  Actual ML role in application

Chapter 2 Model Deployment and Challenges

62

�Challenge 2: Programming Language
Discrepancy
It is likely that the machine learning model is built in a different language

(Python/TensorFlow/PyTorch) compared to the language that the

application integrates with or developers use (Java/C++/Ruby). This makes

integration even more difficult as the ML model needs to be recoded using

the native language of the application. These days it has become easier to

migrate the ML models to easily integrate with the rest of the application,

but it helps to use a common language to build the model to avoid

integration issues.

�Challenge 3: Model Drift
Model drift is a common phenomenon when it comes to the performance

of machine learning models in production. Model drift happens when

the prediction performance of the model degrades below the accepted

benchmark. Again, it depends on what context the model is being used

in and how those predictions are being evaluated, but every application

would need to have the best version of the back-end ML model for higher

efficiency and output. This becomes one of the main reasons to track the

performance of the deployed model on an ongoing basis in production.

But if we look deeper at the reasons for performance degradation of

the models in production, we can attribute degradation to a couple of

reasons.

•	 Changing behavior of new data

•	 Changing interpretation of the new data

Chapter 2 Model Deployment and Challenges

63

�Changing Behavior of the Data

We would typically train the model on historical data with the

necessary features and after a satisfied performance level (after all the

hyperparameter tuning and testing) put the model into the production.

However, the simple fact is that data can change in different ways, with

time bringing new variations and dimensionality that were previously

unseen by the model (during training). This impacts the performance of

the model in real time or in production. An example is if machine learning

was used to predict the likelihood or propensity for a user to convert or not

(buy the product or not) based on the training using the previous two years

of historical data that captured the online behavior (how the user navigates

on a website before making a buying decision). At the start, the model is

performing really well and able to decide among all the online visitors

who were potentially serious buyers and who were casual visitors, but

over a period of time, the buying pattern and behavior of the users change,

and there are different outcomes than what the machine learning model

suggested. Perhaps the model learned different decision boundaries to

separate buyers from nonbuyers and now needs to be realigned per the

new underlying patterns. This is known as model drift due to the dynamic

nature of the incoming data on which the predictions are made.

�Changing Interpretation of the New Data

In another case, the interpretation of the class or label might change over

a period of time. For example, if earlier a given set of customers belonged

to class A but due to a change in understanding and the business case, the

category is either altered or combined with other category (let’s say class C),

that would impact the model’s overall performance. We need to retrain the

model with the new set of labels (for historical data) before putting it in

production again. This is also known as concept drift in machine learning.

Chapter 2 Model Deployment and Challenges

64

�Challenge 4: On-Prem vs. Cloud-Based
Deployment
Many businesses find it challenging to decide whether they need to go

with model deployment using on-premise resources or to opt for cloud

services. Both of these decisions can have a different impact in the long

run based on the number of application users. The DS team and the

infrastructure team should consider all the pros and cons before deciding

on a productionization strategy.

�Challenge 5: Clear Ownership
Ownership can sometimes become confusing as there needs to be clearly

defined roles and responsibilities of each team member when it comes

to model deployment. Data scientists assume their job is done once the

model is built, whereas DevOps/developers have little clue of what’s going

on in the model and hence need more inputs to properly integrate the

model in the application. At the end of the day, it’s a joint responsibility of

the entire team working on the deployment to ensure that the right model

gets deployed into production and to avoid unnecessary delays.

�Challenge 6: Model Performance Monitoring
Although monitoring comes after the model deployment stage, it still

needs to be planned before the actual deployment. The framework needs

to be in place to track the performance of the model on a consistent basis.

This helps to formulate the strategy around the following questions:

•	 When to retrain the model again?

•	 How much data to use to retrain the model?

•	 What is the performance benchmark for the model?

Chapter 2 Model Deployment and Challenges

65

Over a period of time, the data from this framework helps to come up

with benchmark figures for the acceptable performance of the model in

production.

�Challenge 7: Release/Version Management
There are lots of back-and-forth activities when it comes to machine

learning deployment, and version tracking becomes an important part of

the overall successful process of deployment. Hence, version control helps

to track which model is the best model, the different file dependencies,

and the data resource pointers. There are multiple ways in which version

control can be handled; Git is the most widely used one to track different

versions and staged deployment.

�Challenge 8: Privacy Preserving and Secure
Model
Another challenge in model deployment is to safeguard the models

from any adversarial attacks and expose the model data to third-party

infiltrations. This becomes paramount to assure the model is not being

exposed to any unauthorized user operating in a secure mode.

There are multiple other challenges as well such as scalability,

exposing services, etc., and we are going to keep coming back to these

challenges in the upcoming chapters. In the next chapter, we are going

to look at different modes of model deployment. We can break model

deployment into four different approaches.

•	 Deploying a model locally

•	 Saving the model on a production server

•	 Deploying the model as a REST service

•	 Managed services

Chapter 2 Model Deployment and Challenges

66

�Conclusion
In this chapter, we went over the fundamentals of model deployment and

its associated challenges.

Chapter 2 Model Deployment and Challenges

67© Pramod Singh 2021
P. Singh, Deploy Machine Learning Models to Production,
https://doi.org/10.1007/978-1-4842-6546-8_3

CHAPTER 3

Machine Learning
Deployment as a Web
Service
In this chapter, we are going to go over how to use different web

frameworks for deploying machine learning and deep learning models as

web services hosted on the local system. This chapter covers three main

topics.

The chapter first introduces the Flask framework and how to deploy

an ML model using it. Then the chapter shows how to build a standard

machine learning model and deploy it using another web framework,

Streamlit. Finally, the chapter covers how to deploy a trained deep learning

model using the Streamlit platform again. If you are already comfortable

with Flask basics, feel free to skip to the deployment part of the first

section to understand the process of deploying machine learning models

using Flask. As mentioned in the previous chapter, we mainly use Jupyter

notebooks to develop and test the models locally, but when we want to

connect our ML model to an app or a web service, we essentially need to

deploy it using a web server. This web server can be hosted locally or in the

cloud. There are many different ways in which a machine learning model

can be deployed, but in this chapter, we are going to explore two methods:

Flask and Streamlit.

https://doi.org/10.1007/978-1-4842-6546-8_3#DOI

68

�Introduction to Flask
In simple words, Flask is an open source lightweight web framework built
in Python to deploy web applications. When we say web framework, we
mean a group of resources needed to run a web application. This might
include different modules, libraries, and tools that can be used by the web
developer to successfully build and run the application. Unfortunately,
this book does not do a deep dive into Flask, but for those of you who have
never used it before, the following code snippet gives a quick introduction
to Flask. To use Flask, we first need to install it on the local machine. We
can simply use pip install flask to install Flask.

[In]: from flask import Flask

[In]: app = Flask(__name__)

[In]: @app.route("/")
[In]: def hello():
 return "Hello World!"

[In]: if __name__ == '__main__':
 app.run(debug=True)

�route Function
The route function is a decorator that tells which URL is associated with a
particular function. It has two parameters.

•	 rule

•	 options

The rule indicates the URL path and its binding with the given
function. It renders the current output of the function when the URL
is opened in the browser. The options let you pass different sets of

parameters.

Chapter 3 Machine Learning Deployment as a Web Service

69

�run Method
The run method executes the application to run on the particular web
server. It has four parameters that can be passed during execution. All
of these are optional parameters, and app.run can be executed without
passing any of them as well.

•	 host

•	 port

•	 debug

•	 options

By default, the application runs on localhost (127.0.0.1). The debug
option is set to false by default and can be set to true to see the debug
information.

�Deploying a Machine Learning Model
as a REST Service
Now that we know how the Flask framework works, we are going to build
a simple linear regression model and deploy it using the Flask server. We
start by importing the required libraries.

[In]: import pandas as pd
[In]: import numpy as np
[In]: from sklearn.linear_model import LinearRegression
[In]: import joblib

We load the dataset into pandas, and as we can see, our dataset
contains five input columns and a target column.

[In]: �df=pd.read_csv('Linear_regression_dataset.
csv',header='infer')

[In]: df.sample(5)

[Out]:

Chapter 3 Machine Learning Deployment as a Web Service

70

Since the idea is not to build a super-powerful model but rather deploy
an ML model, we need not split this data into train and test sets. We fit a
linear regression model and get a decent r-square value.

[In]: X=df.loc[:,df.columns !='output']
[In]: y=df['output']
[In]: lr = LinearRegression().fit(X, y)
[In]: lr.score(X,y)
[Out]: 0.8692670151914198

The next step is to save the trained model that can be loaded back while
serving it as a web service. We make use of the joblib library that serializes
the model (saves coefficient values for input variables as a dictionary).

[In]: joblib.dump(lr,'inear_regression_model.pkl')

Now that we have saved the model, we can create the main app.py file,
which will spin up the Flask server to run the ML model as a web app.

[In]: import pandas as pd
[In]: import numpy as np
[In]: import sklearn
[In]: import joblib
[In]: from flask import Flask,render_template,request
[In]: app=Flask(__name__)

[In]: @app.route('/')

Chapter 3 Machine Learning Deployment as a Web Service

71

[In]: def home():
 return render_template('home.html')

[In]: @app.route('/predict',methods=['GET','POST'])

[In]: def predict():
 if request.method =='POST':
 print(request.form.get('var_1'))
 print(request.form.get('var_2'))
 print(request.form.get('var_3'))
 print(request.form.get('var_4'))
 print(request.form.get('var_5'))
 try:
 var_1=float(request.form['var_1'])
 var_2=float(request.form['var_2'])
 var_3=float(request.form['var_3'])
 var_4=float(request.form['var_4'])
 var_5=float(request.form['var_5'])
 pred_args=[var_1,var_2,var_3,var_4,var_5]
 pred_arr=np.array(pred_args)
 preds=pred_arr.reshape(1,-1)
 �model=open("linear_regression_model.

pkl","rb")
 lr_model=joblib.load(model)
 model_prediction=lr_model.predict(preds)
 �model_prediction=round(float(model_

prediction),2)
 except ValueError:
 return "Please Enter valid values"
 �return render_template('predict.html',prediction=model_

prediction)
[In]: if __name__=='__main__':

 app.run(host='0.0.0.0')

Chapter 3 Machine Learning Deployment as a Web Service

72

Let’s go over the steps to understand the details of the app.py file.

First, we import all the required libraries from Python. Next, we create our

first function, which is the home page that renders the HTML template

to allow the users to fill input values. The next function is publishing the

predictions by the model on those input values provided by the user. We

save the input values into five different variables coming from the user

and create a list (pred_args). We then convert that into a numpy array. We

reshape it into the desired form to be able to make a prediction on it. The

next step is to load the trained model (linear_regression_model.pkl)

and make the predictions. We save the final output into a variable (model_

prediction). We then publish these results via another HTML template,

predict.html. If we run the main file (app.py) now in the terminal, we

would see the page come up asking the user to fill the values, as shown in

Figure 3-1.

Figure 3-1.  Input for ML prediction

Chapter 3 Machine Learning Deployment as a Web Service

73

�Templates
There are two web pages that we have to design to post requests to the
server and receive the response message that is the prediction by the ML
model for that particular request. Since this book doesn’t focus on HTML,
you can simply use these files as is without making any changes to them,
as shown in Figure 3-2. But for curious readers, we are creating a form to
request five values in five different variables. We are using a standard CSS
template with some basic fields. Users with prior knowledge of HTML can

feel free to redesign the home page as per their requirements.

Figure 3-2.  Input request HTML form

Chapter 3 Machine Learning Deployment as a Web Service

74

The next template is to publish the model prediction to the user. This

is less complicated compared to the first template as there is just one value

that we have to post back to the user, as shown in Figure 3-3.

Let’s go ahead and input values for the model prediction, as shown in

Figure 3-4. As we can observe in Figure 3-5, the model prediction result is a

continuous variable since we have trained a regression model.

Figure 3-3.  Model prediction HTML form

Chapter 3 Machine Learning Deployment as a Web Service

75

As we saw, Flask makes it easy to deploy the machine learning app

as a web service. One disadvantage of using Flask is that since it is a

lightweight web framework, it has a limited capacity to handle complex

applications. Another disadvantage is that most data scientists are not

comfortable with using HTML and JavaScript to create the front end for

the application. Hence, in the next section, we are going to look at a much

simpler alternative of deploying a machine learning app using Streamlit.

This makes it easier to develop a simple UI for the app compared to Flask.

Figure 3-4.  User inputs page

Figure 3-5.  Model prediction

Chapter 3 Machine Learning Deployment as a Web Service

76

�Deploying a Machine Learning Model Using
Streamlit
Streamlit is an alternative to Flask for deploying the machine learning

model as a web service. The biggest advantage of using Streamlit is that it

allows you to use HTML code within the application Python file. It doesn’t

essentially require separate templates and CSS formatting for the front-end

UI. However, it is suggested that you create separate folders for templates

and style guides for a more complex application. To install Streamlit, we

can simply use pip to install Streamlit in our terminal.

We are going to use the same dataset that we used when building the

Flask app model. The only content that is going to change is in the app.py

file. The first set of commands is to import the required libraries such as

joblib and streamlit.

[In]: import pandas as pd

[In]: import numpy as np

[In]: import joblib

[In]: import streamlit

In the next step, we import the trained linear regression model to be

able to predict on the test data.

[In]: model=open("linear_regression_model.pkl","rb")

[In]: lr_model=joblib.load(model)

The next step is to define a function to make predictions using the

trained model. We pass the five input parameters in the function and do

a bit of reshaping and data casting to ensure consistency for predictions.

Then we create a variable to save the model predictions result and return it

to the user.

[In]: def lr_prediction(var_1,var_2,var_3,var_4,var_5):

 pred_arr=np.array([var_1,var_2,var_3,var_4,var_5])

Chapter 3 Machine Learning Deployment as a Web Service

77

 preds=pred_arr.reshape(1,-1)

 preds=preds.astype(int)

 model_prediction=lr_model.predict(preds)

 return model_prediction

In the next step, we create the most important function. We accept the

user input from the browser and render the model’s final predictions on

the web page. We can name this function anything. For example, I have

used run (since it does the same thing as Flask’s app.run). In this function,

we include the front-end code as well such as defining the title, theme,

color, background, etc. For simplicity purposes, I have kept it basic, but this

can have multiple levels of enhancements. For more details, you can visit

the Streamlit website. Next, we create five input variables to accept the user

input values from the browser. This is done using Streamlit’s text_input

capability. The final part contains the model prediction, which gets the

input from our lr_prediction function defined earlier and gets rendered

in the browser through streamlit.button.

[In]: def run():

 streamlit.title("Linear Regression Model")

 html_temp="""

 """

 streamlit.markdown(html_temp)

 var_1=streamlit.text_input("Variable 1")

 var_2=streamlit.text_input("Variable 2")

 var_3=streamlit.text_input("Variable 3")

 var_4=streamlit.text_input("Variable 4")

 var_5=streamlit.text_input("Variable 5")

Chapter 3 Machine Learning Deployment as a Web Service

78

 prediction=""

 if streamlit.button("Predict"):

 �prediction=lr_prediction(var_1,var_2,var_3,

var_4,var_5)

 �streamlit.success("The prediction by Model : {}".

format(prediction))

Now that we have all the steps mentioned in the application file, we

can call the main function (run in our case) and use the streamlit run

command to run the app.

[In]: if __name__=='__main__':

 run()

[In]: streamlit run app.py

Once we run the previous command, we will soon see the app up and

running on port 8501, as shown in Figure 3-6. We can simply click the link

and access the app.

Once we are at http://localhost:8501/, we will see the screen shown

in Figure 3-7.

Figure 3-6.  Access running app

Chapter 3 Machine Learning Deployment as a Web Service

79

As you can see, we have nothing fancy here in the UI, but it serves the

overall purpose for us to be able to interact with the model/app behind the

scenes. It is similar to what we had built using Flask, but it needed much

less HTML and CSS code. We can now go ahead and fill in the values, as

shown in Figure 3-8, and get the model prediction. For comparison sake,

we fill in the same values that we filled in the Flask-based app.

Figure 3-7.  User input page

Chapter 3 Machine Learning Deployment as a Web Service

80

After filling in the values, we need to click the Predict button to fetch

the model prediction result and voilà—it’s the same number that we got in

the Flask-based app, as shown in Figure 3-9.

Figure 3-8.  Providing input values for the model

Chapter 3 Machine Learning Deployment as a Web Service

81

Now that we have seen how to deploy a traditional machine learning model

using Flask and Streamlit, we can move on to the last topic of this chapter, which

focuses on deploying a deep learning model (LSTM) as a web service.

�Deploying a Deep Learning Model
In the previous sections of the chapter, we covered the process to build and

deploy a machine learning model (linear regression) using two different

frameworks.

•	 Flask

•	 Streamlit

Figure 3-9.  Model prediction

Chapter 3 Machine Learning Deployment as a Web Service

82

In this section, we will see how to build a deep learning model and

deploy it using Streamlit. In particular, we build an LSTM-based neural

network to predict the sentiment of a given review. LSTM/RNNs are known

to be a powerful way to build sequential models and capture the order of

the input for predictions. We will use an open source reviews dataset and

train an LSTM model to predict the sentiment of the review. We then serve

this model as a web service using Streamlit. Again, in the previous cases,

the focus is not to train a perfect model, rather a decent model, and deploy

it. The underlying principles remain the same as previously except for

some of the additional components such as text processing and a tokenizer

to handle the incoming data (user review). We are making use of Streamlit

to avoid a whole lot of template, HTML, and CSS stuff and make it easy to

deploy the deep learning model.

�Training the LSTM Model
For those of you who are new to RNN/LSTMs, I recommend you read more

about them to understand how they work and when they can be used for

predictions. The first step is to import all the required libraries.

[In]: import numpy as np

[In]: import pandas as pd

[In]: from tensorflow.keras.models import Sequential

[In]: from tensorflow.keras.layers import LSTM,Embedding

[In]: from tensorflow.keras.layers import Dense

[In]: from tensorflow.keras.preprocessing.text import Tokenizer

[In]: �from tensorflow.keras.preprocessing.sequence import pad_

sequences

[In]: from sklearn.model_selection import train_test_split

[In]: from keras.utils.np_utils import to_categorical

[In]: import re

[In]: import pickle

Chapter 3 Machine Learning Deployment as a Web Service

83

The next step is to load the data and check the size of the data.

[In]: df = pd.read_csv('reviews_dataset.tsv.zip',header=0,

delimiter="\t", quoting=3)

[In]: df = df[['review','sentiment']]

As we can see, we have 25,000 records in our dataset and two equal

categories of sentiments.

[In]: df.shape

[Out]: (25000, 2)

[In]: df.sentiment.value_counts()

[Out]:

1 12500

0 12500

Next, we apply bit of text preprocessing to clean the reviews using

regular expressions.

[In]: df['review'] = df['review'].apply(lambda x: x.lower())

[In]: df['review'] = df['review'].apply((lambda x: re.sub('[^a-

zA-z0-9\s]','',x)))

We restrict the number of features to 1,000 and tokenize the reviews

and add padding to make each review the same size.

[In]: max_features = 1000

[In]: tokenizer = Tokenizer(num_words=max_features, split=' ')

[In]: tokenizer.fit_on_texts(df['review'].values)

[In]: X = tokenizer.texts_to_sequences(df['review'].values)

[In]: X = pad_sequences(X)

[In]: X.shape

(25000, 1473)

Chapter 3 Machine Learning Deployment as a Web Service

84

We then keep the embedding layer size as 50.

[In]: embed_dim = 50

[In]: model = Sequential()

[In]: �model.add(Embedding(max_features, embed_dim,

input_length = X.shape[1]))

[In]: model.add(LSTM(10))

[In]: model.add(Dense(2,activation='softmax'))

[In]: �model.compile(loss = 'categorical_crossentropy',

optimizer='adam',metrics = ['accuracy'])

[In]: print(model.summary())

[Out]:

[In]: y = pd.get_dummies(df['sentiment']).values

[In]: �X_train, X_test, y_train, y_test = train_test_split

(X,y, test_size = 0.25, random_state = 99)

[In]: print(X_train.shape,y_train.shape)

[In]: print(X_test.shape,y_test.shape)

[Out]:

(18750, 1473) (18750, 2)

(6250, 1473) (6250, 2)

Chapter 3 Machine Learning Deployment as a Web Service

85

[In]: model.fit(X_train, y_train, epochs = 5, verbose = 1)

Now that we have trained the LSTM model, let’s try to pass a test

review to see the predictions by the model.

[In]: test = ['Movie was pathetic']

[In]: test = tokenizer.texts_to_sequences(test)

[In]: �test = pad_sequences(test, maxlen=X.shape[1],

dtype='int32', value=0)

[In]: print(test.shape)

[In]: sentiment = model.predict(test)[0]

 if(np.argmax(sentiment) == 0):

 print("Negative")

 elif (np.argmax(sentiment) == 1):

 print("Positive")

[Out]: Negative

As we can see, the model is able to predict well on the test review. The

next step is to save the model and tokenizer using pickle and load it later

for making predictions on user input reviews.

[In]: with open('tokenizer.pickle', 'wb') as tk:

 �pickle.dump(tokenizer, tk, protocol=pickle.HIGHEST_

PROTOCOL)

[In]: model_json = model.to_json()

 with open("model.json", "w") as js:

js.write(model_json)

Chapter 3 Machine Learning Deployment as a Web Service

86

[In]: model.save_weights("model.h5")

Now that we have saved the trained model and tokenizer, we can create

the application script similar to the earlier app.py script.

[In]: import os

[In]: import numpy as np

[In]: import pandas as pd

[In]: import pickle

[In]: import tensorflow

[In]: from tensorflow.keras.preprocessing.text import Tokenizer

[In]: �from tensorflow.keras.preprocessing.sequence import pad_

sequences

[In]: import tensorflow.keras.models

[In]: from tensorflow.keras.models import model_from_json

[In]: import streamlit

[In]: import re

[In]: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

The step after importing the required libraries is to load the tokenizer

and deep learning model.

[In]: with open('tokenizer.pickle', 'rb') as tk:

 tokenizer = pickle.load(tk)

[In]: json_file = open('model.json','r')

[In]: loaded_model_json = json_file.read()

[In]: json_file.close()

[In]: lstm_model = model_from_json(loaded_model_json)

[In]: lstm_model.load_weights("model.h5")

Next, we create a helper function to clean the input review, tokenize

it, and pad the sequence. Once it’s converted into numerical form, we will

use the loaded LSTM model to make the sentiment prediction.

Chapter 3 Machine Learning Deployment as a Web Service

87

[In]: def sentiment_prediction(review):

 sentiment=[]

input_review = [review]

input_review = [x.lower() for x in input_review]

input_review = [re.sub('[^a-zA-z0-9\s]','',x) for x in input_

review]

input_feature = tokenizer.texts_to_sequences(input_review)

input_feature = pad_sequences(input_feature,1473,

padding='pre')

 sentiment = lstm_model.predict(input_feature)[0]

 if(np.argmax(sentiment) == 0):

pred="Negative"

 else:

pred= "Positive"

 return pred

At the end, we create the run function to load the HTML page and

accept the user input using Streamlit functionality (similar to the earlier

model deployment). The only difference is that instead of loading multiple

inputs, this time we load just a single review. We then pass this review to

the sentiment prediction function created earlier.

[In]: def run():

streamlit.title("Sentiment Analysis - LSTM Model")

html_temp="""

 """

streamlit.markdown(html_temp)

 review=streamlit.text_input("Enter the Review ")

 prediction=""

Chapter 3 Machine Learning Deployment as a Web Service

88

 if streamlit.button("Predict Sentiment"):

 prediction=sentiment_prediction(review)

streamlit.success("The sentiment predicted by Model : {}".

format(prediction))

[In]: if __name__=='__main__':

 run()

Once we run the app.py file using the streamlit run command in the

terminal, we can see the web service is running on localhost port 8501, as

shown in Figure 3-10.

[In]: streamlit run app.py

We can access the ML service on port 8501 and can see the ML app

running successfully. The page contains three things.

•	 Placeholder to provide a user review

•	 A Predict Sentiment button (to make a prediction using

the model)

•	 The final result by the model

Let’s provide a review in the input box and check the model

predictions, as shown in Figure 3-11. First, we provide a positive review

and click the Predict Sentiment button, as shown in Figure 3-12.

Figure 3-10.  Accessing the ML app

Chapter 3 Machine Learning Deployment as a Web Service

89

As we can observe, the outcome of the model prediction seems

correct as it also predicts it to be a positive review. We try with another

review—negative this time—and test for the model prediction, as shown in

Figure 3-13. For the second review as well, we get a correct prediction by

the model. We can replace the existing model with a much more powerful,

well-trained, and optimized model to have better predictions.

Figure 3-12.  Positive review prediction

Figure 3-11.  User input page

Chapter 3 Machine Learning Deployment as a Web Service

90

�Conclusion
In this chapter, we went over the fundamentals of Flask and its different

components. We also saw the process of building and deploying a machine

learning model using Flask. In the end, we explored another platform to

deploy ML models called Streamlit and its advantages over Flask.

Figure 3-13.  Negative review prediction

Chapter 3 Machine Learning Deployment as a Web Service

91© Pramod Singh 2021
P. Singh, Deploy Machine Learning Models to Production,
https://doi.org/10.1007/978-1-4842-6546-8_4

CHAPTER 4

Machine Learning
Deployment Using
Docker
Over the last few years, Docker has changed the way applications are

deployed in production. Application architectures have moved from

monolithic to microservices, with more control of continuous (ongoing)

deployments that don’t impact a large of part of the running applications.

Docker has proved to be instrumental in allowing applications to run at

scale and to be available all the time. Though it’s been more than seven

years since Docker was released, it’s gotten a lot of attention from the

developer community recently (especially by DevOps and MLOps teams).

Companies large and small are using Docker in applications.

In this chapter, we will go over the Docker ecosystem and look at the

different components of Docker. This chapter covers three main topics.

First, the chapter covers what Docker is and why it is useful. Second, the

chapter covers different components such as Docker images, the Docker

server, Docker Hub, and containers. Finally, the chapter covers how

to “Dockerize” an entire ML app and run it using a Docker container.

Docker has grown hugely popular over the years, and there are many

books dedicated to this subject only. We will cover the topics that are most

relevant for us from a machine learning standpoint.

https://doi.org/10.1007/978-1-4842-6546-8_4#DOI

92

�What Is Docker, and Why Do We Need It?
Scenario 1: Imagine we want to install a new application on our laptop or

host system. It is a straightforward process. We would typically download

the installer file from the source of the application and run it in our system.

Sometimes it installs perfectly on the first attempt; however, other times,

we might run into different issues (dependencies, compatibility errors,

etc.), as shown in Figure 4-1.

Scenario 2: Imagine we have written some code on our machine using

certain libraries within a particular environment. Everything runs perfectly

when we execute it locally, but the moment we share it with someone else

for testing, it breaks. This happens because of the change in the underlying

configuration. It might be because of missing dependencies, different OSs,

or some other reason.

Docker can handle both of the previous scenarios well as Docker

ensures the same environment everywhere to run the application. If we are

able to run an application or certain code on a particular machine, we can

easily run it anywhere else as well. That’s the beauty of Docker.

Figure 4-1.  Typical application installation

Chapter 4 Machine Learning Deployment Using Docker

93

It makes it easy to install and run any application or program without

having to worry about a set of dependencies and files on the underlying

system. To elaborate with an example, if we have to install Redis (an in-

memory database) on our system, we have to go to the Redis website and

follow certain instructions.

From the output, it seems pretty straightforward, but at every stage we

might run into an error because of missing dependencies to install Redis.

Docker makes this super easy and fast. With a single line of code, we are

able to install Redis on our system (within Docker).

docker container run redis

�Introduction to Docker
“Docker is a computer program that performs operating-
system-level virtualization, also known as containerization.”

Containers allow us to package all the required files that our application

needs such as libraries, binaries, and other dependencies within a

single package. In this way, our application can be run on any machine

and have the same behavior. The core idea is to be able to replicate the

behavior of the application irrespective of the host on which it’s running.

For example, when we build any application, we typically write the

code in the dev environment and later test it in the test environment.

These environments generally vary from each other with respect to the

production environment, and hence developers run into multiple issues

Chapter 4 Machine Learning Deployment Using Docker

94

due to different operating platforms. Docker ensures that if the application

is successfully running in the dev environment, it can be safely deployed in

the production environment as well, as shown in Figure 4-2.

�Docker vs. Virtual Machines
It’s likely that you have used a virtual machine at some point. Virtual

machines are powerful when we want to create a different environment

and run separate applications using a different OS. There is a hypervisor

that enables the virtualization layer to create VMs. Once virtual machines

are created on the host system, each VM would have its own set of OSs,

libraries, binaries, and apps. The VM would consume a certain amount

of memory and hardware resources that it can’t share with other VMs, as

shown in Figure 4-3.

Figure 4-2.  Application deployment stages

Chapter 4 Machine Learning Deployment Using Docker

95

In Docker there is no hypervisor; instead, there is a Docker server that
isolates each app running in individual containers, as shown in Figure 4-4.
Docker apps at the end of the day are lightweight virtual machines with
the Linux OS; the advantage of this is that Docker only makes use of the
memory and hardware resources as per the requirements, whereas in
VMs we have to dedicate resources prior to the creation of the VM, and the
resources can’t be shared between VMs. This is a waste of resources and
increases the cost (on the cloud).

Figure 4-3.  Hypervisor-based virtualization

Figure 4-4.  Docker-based virtualization

Chapter 4 Machine Learning Deployment Using Docker

96

�Docker Components and Useful Commands
Now that we have introduced Docker and its uses, we can look at the other

components of the Docker ecosystem. Docker in reality is a platform with

multiple components such as Docker images, the Docker CLI, the Docker

server, and Docker Hub, as shown in Figure 4-5. We will look at each of

these in detail to understand the overall Docker ecosystem and how the

components interact with each other.

�Docker Image
Before getting into Docker images, which essentially act as a blueprint for

Docker containers, it makes sense to cover Dockerfiles. A Dockerfile is the

initialization point of the Docker container lifecycle. We first need to have

a Dockerfile to build a Docker image and subsequently run a container

based on that image.

Figure 4-5.  Docker ecosystem

Chapter 4 Machine Learning Deployment Using Docker

97

�Dockerfile

There are two types of scenarios that can arise when we work with Docker

images.

•	 Using public Docker images

•	 Building customer Docker images

In the first case, we might not need to create a Dockerfile as we can

simply pull the image from Docker Hub and create/run a container out of

it without making any changes to the image. For example, if we want to run

Nginx (a web server) using Docker, we simply pull the Nginx Docker image

and run it without any changes. However, in the second case, where we

want to customize the image as per our specific requirements, we need to

create a Dockerfile.

A Dockerfile is a simple text file without any extension with the fixed

name Dockerfile. It contains a bunch of commands (which can vary from

file to file depending on the requirements) that get executed to build the

Docker image. The process to create a Dockerfile is pretty straightforward,

as shown in Figure 4-6. We will look at a Dockerfile to understand these

commands.

We start with a base image that we want to leverage instead of starting

from scratch. After that, we have additional commands related to files,

dependencies, and environment variables. At the end, the Dockerfile

contains the startup command that should be executed first upon running

the container.

Figure 4-6.  Dockerfile process

Chapter 4 Machine Learning Deployment Using Docker

98

�Dockerfile Commands

Although there are many commands (https://kapeli.com/cheat_

sheets/Dockerfile.docset/Contents/Resources/Documents/index)

that can be used inside the Dockerfile, most of the time the following

commands will suffice for the basic requirements. The idea is to start with

a base image for the new image and add dependencies and requirements

to the new image.

The following commands are used to create a Dockerfile. We will go

over these with the help of an example where we create a Dockerfile to run

a Node.js application.

•	 FROM

•	 COPY

•	 WORKDIR

•	 EXPOSE

•	 RUN

•	 CMD OR ENTRYPOINT

The following command provides the base image for the Dockerfile

that needs to be the starting point for rest of the image:

FROM node:alpine

In the case of the Node.js application, we mention the official Node.js

base image. FROM is always the first command in the Dockerfile because it

becomes the base layer for the entire container later.

The next command is to add or copy the contents of the working

directory or project folder from the host system to the Docker container

folder:

COPY . /app/usr/nodejs

Chapter 4 Machine Learning Deployment Using Docker

https://kapeli.com/cheat_sheets/Dockerfile.docset/Contents/Resources/Documents/index
https://kapeli.com/cheat_sheets/Dockerfile.docset/Contents/Resources/Documents/index

99

We can use the COPY command to either create a new folder inside

Docker or copy all the files and scripts inside the same working folder

as well. In the previous case, we are copying all the application files to

a new folder called nodejs inside the Docker container. The core idea

is to provide all the application files inside Docker to be available while

runtime.

Now that we have copied all the content in the Docker folder, it makes

sense to run the application from that particular folder: nodejs. Hence,

we change the working directory to the nodejs folder inside the Docker

container. We make use of WORKDIR to set the directory of the app.

WORKDIR /app/usr/nodejs

The Docker container has its own set of network ports, and hence to

respond to the incoming request, we need to expose the app on a port. The

EXPOSE command allows us to make the app accessible on a given port to

the external requests.

EXPOSE 5000

The RUN command helps us to install a set of dependencies and

libraries to run the app inside the container. Instead of installing each

dependency separately, we make use of a requirement.txt file containing

all the required files with particular versions.

RUN pip install -r requirement.txt

The last command in Dockerfile is CMD, which is the startup command

for the container.

CMD ["yarn", "start"]

Chapter 4 Machine Learning Deployment Using Docker

100

�Docker Hub
Docker Hub (https://hub.docker.com/) is for images what GitHub is

for code repositories. It’s a collection of public and private images. It

contains official images as well as customized public images for different

applications. For example, we get official images of Postgres, Spark,

Ubuntu, and other such applications. It allows users to directly run a

container using an official image and use the application. We need to have

an account to access Docker Hub. It also allows us to pull and push Docker

images from the local system. Once saved on Docker Hub, we can use a

particular image at any point of time in any given environment. Now that

the Dockerfile is created and we have seen Docker Hub as well, we can

look into the details of the Docker client and server and use them to create

a Docker image from the Dockerfile that we created earlier.

�Docker Client and Docker Server
Docker has many components in its ecosystem; two of the most important

are as follows:

•	 Docker client (CLI)

•	 Docker server (daemon)

Docker CLI is the gateway to interact with Docker on any system.

We can issue instruction or commands to a Docker server through

the CLI, and it communicates with them over the Docker server with

slight changes. Docker CLI is also where we can see the output from the

container or log in to the running container. To see more information

about the Docker client and server, we can simply run docker version in

our terminal, as shown in Figure 4-7.

Chapter 4 Machine Learning Deployment Using Docker

https://hub.docker.com/

101

On the other hand, docker server does all the images, network,

volume, and container-related tasks. Basically, it does all the heavy lifting

behind the scenes. It looks at the images if present locally; otherwise, it

downloads them from Docker Hub. To understand this more, let’s look

at an example. If we need to run the Nginx server, the command that we

would run is docker container run nginx.

Figure 4-7.  Docker server info

Chapter 4 Machine Learning Deployment Using Docker

102

A series of steps is followed in order to run the Nginx server using

Docker. The moment we issue the command to Docker using the CLI, it

gets communicated to the Docker server, which looks for that particular

image on the local system. If the image is available locally, it initializes

and runs the container with that particular image or else it reaches out to

Docker Hub and pulls the particular image (in this case the Nginx image),

as shown in Figure 4-8.

It doesn’t have to pull the same image twice as once the image gets

saved in the local image cache, it gets reused the next time a container

is run using that image. In the example to run node.js, we simply have to

build the image from Dockerfile, as shown in Figure 4-9.

Figure 4-8.  Docker image pull

Chapter 4 Machine Learning Deployment Using Docker

103

We saw the process to build a Docker image from the Dockerfile.

It essentially contains the information in which the container should

operate. Docker images are like a snapshot of the file system—a set of

directories and files that the application needs to run. They also contain

the initialization command to be executed, while containers’ instances

run using the image. This might be optional as well because we can also

override the default startup command by providing a new command

during runtime. So, the image is the core file that contains all the key

requirements and configuration information pertaining to the application

that needs to be run.

Figure 4-9.  Docker image from Dockerfile

Chapter 4 Machine Learning Deployment Using Docker

104

Needless to say, it uses the minimum set of configurations required

to make the application run, and this makes Docker fast and easy to use,

but sometimes the application can be quite complicated in nature, and we

end up creating different Docker images for respective components of the

application to make them talk to each other for successful execution. As

mentioned earlier, the image acts like a source of all the required files and

directories to run the specific application. If the image doesn’t contain the

relevant configuration file or dependencies properly, we cannot run the

application using Docker as it depends on these files being executed. For

example, say we try to override the default command of the Nginx Docker

container and run the ls command instead. As shown in Figure 4-10,

we see a bunch of folders already present in this container. These folders

are the default configuration files and dependencies required to run the

Nginx server. These are part of the Nginx Docker base image to ensure a

successful run of an instance of this image anywhere.

Chapter 4 Machine Learning Deployment Using Docker

105

�Docker Container
Now that we understand what an image is and what Docker Image all

contains, we can move on to containers. The image is used to spin up the

containers that are nothing but the running instances of specific images.

There can be multiple containers created from the same image to have

multiple instances running of the same application, as shown in Figure 4-11.

Figure 4-10.  Accessing the running container

Chapter 4 Machine Learning Deployment Using Docker

106

In reality, containers are these packaged applications that run within
the specified environment. Docker containers get started up with that
environment. The way it does this is by getting a few resources allocated
from the host resources. As we already know, the Docker image acts as a
file system snapshot and also contains the startup command. Once we
pass this image to the Docker CLI, it communicates to the Docker server
to initiate the container with this particular image. As a result, the Docker
server ensures the similar file system is created inside the container within
the resources allocated (RAM, CPU, hard drive, network), as shown in
Figure 4-12. Once initialized, the particular application runs inside the

container like any other application on the host system.

Figure 4-11.  Multiple containers using the same Docker image

Figure 4-12.  Image to container

Chapter 4 Machine Learning Deployment Using Docker

107

As mentioned, the container is a process or set of processes that

makes use of a particular set of resources assigned to it to run the specific

application. There are actually two parts to running a container.

•	 Creating a container

•	 Running a container

For the first part, we take the base image and get the different resources

allocated to the container based upon the default file system and config

files of the image. Remember, we don’t execute any sort of startup or

override command to run the container, as shown in Figure 4-13.

In the second part, once the resources are allocated, running the

container includes the execution of the startup command or override

command to successfully run the application. The -a indicates the

attaching of the container ID to see the output after execution, as shown in

Figure 4-14.

Figure 4-13.  Docker container initialization

Chapter 4 Machine Learning Deployment Using Docker

108

The docker run command executes the previous two stages in

sequence.

�Some Useful Container-Related Commands

We can list all the running containers by using the following command:

[In]: docker container ps

If we want to see all the containers used so far, we can add –all to the

previous command:

[In]: docker container ps –all

If we want to pull a particular image from Docker Hub and use it to

customize something based on our specific requirements, we can use the

pull command.

[In]: docker pull redis

To run the container using a particular image, we make use of the

docker run command.

[In]: docker run

As we have already seen in this example, we can use the build

command to create a Docker image from the Dockerfile.

Figure 4-14.  Running a Docker container

Chapter 4 Machine Learning Deployment Using Docker

109

[In]: docker build

If we want to push the Docker image to the Docker Hub platform, we

can use the docker push command with the unique name of the image.

[In]: docker push

If we want to stop a running container, we can use the docker stop

command. If a container doesn’t stop within ten seconds, the docker

kill command would be activated and the container would be removed

instantly.

[In]: docker stop

If we want to remove a container, we can use the rm command to

remove the specific container using a container ID.

[In]: docker rm

If we want to remove a specific Docker image, we can use the rmi

command. Sometimes, we might have to use docker rmi –force to

forcefully delete the image.

[In]: docker rmi

The exec command helps us to get inside a running container.

[In]: docker exec

The system prune command cleans up your system by removing all

the stopped containers and dangling images and frees up a lot of space.

[In]: docker system prune

Chapter 4 Machine Learning Deployment Using Docker

110

�Machine Learning Using Docker
In this section, we will build a classification model from scratch and try to

deploy it using a Flask app. The only difference from the previous chapter

will be to Dockerize the entire application and run it on any platform. We

will also make use of the library Flasgger to handle the UI part of the app

to make it more intuitive to consume the results. To start with, let’s create a

new folder in the local system called docker_app.

We will execute this process by following these steps:

	 1.	 Train the ML model.

	 2.	 Save and export the ML model.

	 3.	 Create a Flask app including the UI layer.

	 4.	 Build a custom Docker image for the app.

	 5.	 Run the app using a Docker container.

	 6.	 Stop the container.

�Step 1: Training the Machine Learning Model
This is the first stage where we will train the machine learning model on a

particular dataset. Since the overall idea is to deploy the ML app, the focus

is on the containerizing the app instead of improving the accuracy of the

model. Hence, we will not cover too much of the feature engineering or

complex ML model. Rather, a simple logistic regression or random forest

model will suffice for this exercise. Having said that, we can always replace

the given model with a different and better model without impacting the

rest of the flow.

The dataset that we have in this case is from an online platform about

the historical transactions of customers. It contains the data points such

as age, total pages viewed, and whether the customer is a new or repeat

Chapter 4 Machine Learning Deployment Using Docker

111

customer. The output variable contains whether the customer bought the

product online or not. So, we are going to train a simple logistic regression

model to make the predictions on the test data and later export it for

deployment purposes.

We start by importing the two basic libraries numpy and pandas and

later explore the dataset.

[In]: import numpy as np

[In]: import pandas as pd

[In]: df = pd.read_csv('online_sales.csv')

[In]: df.shape

[Out]:(316200, 4)

We have around 0.3 million records in the dataset with 4 columns in

total. Let’s see how the data looks and the class balance.

[In]:df.head()

[Out]:

[In]: df.converted.value_counts()

[Out]:

0 306000

1 10200

Chapter 4 Machine Learning Deployment Using Docker

112

We can clearly see there is a skewed target class in this dataset that

typically needs to be treated by some undersampling/oversampling

technique. However, we are not looking to find the best model accuracy for

this exercise, so we will use all the data that we have to build the model. We

can also check whether the data contains any missing values to be treated

before the model training.

[In]: df.info()

[Out]:

As we don’t have any missing values in the dataset for any of the

columns, we can proceed with splitting the data into training and test sets.

[In]: �input_columns = [column for column in df.columns if

column != 'converted']

[In]: print (input_columns)

[Out]: ['age', 'new_user', 'total_pages_visited']

[In]: output_column = 'converted'

[In]:print (output_column)

[Out]: converted

[In]: X = df.loc[:,input_columns].values

[In]: y = df.loc[:,output_column]

Chapter 4 Machine Learning Deployment Using Docker

113

[In]: print (X.shape, y.shape)

[Out]: (316200, 3) (316200,)

[In]: from sklearn.model_selection import train_test_split

[In]: from sklearn.linear_model import LogisticRegression

[In]:�X_train,X_test,y_train,y_test=train_test_split(X,y,test_

size=0.3, random_state=555, stratify=y)

[In]: print(np.sum(y_train))

[In]: 7140

[In]: print(np.sum(y_test))

[Out]: 3060

Now that we have our train and test datasets formed, we can move

ahead with model training.

Note I n ideal ML scenarios, proper data exploration and feature
engineering are advised before model training.

[In]:�logreg=LogisticRegression(class_weight='balanced').fit(X_

train,y_train)

[In]: logreg.score(X_test, y_test)

[Out]: 0.93

[In]: predictions=logreg.predict(X_test)

[In]: from sklearn.metrics import confusion_matrix

[In]: from sklearn.metrics import classification_report

Chapter 4 Machine Learning Deployment Using Docker

114

[In]:�print(classification_report(y_test,predictions,target_

names=["Non Converted", "Converted"]))

[Out]:

As we can observe, the overall accuracy of the model is not that

bad, and the recall is also good. The precision can be improved further

depending on the specific needs. This concludes step 1 for us in the overall

process of running ML using Docker.

�Step 2: Exporting the Trained Model
Now that we have our model trained, we need to save it using pickle/joblib

in order to reuse it later during predictions. In this exercise, we are going to

see two kinds of predictions using the ML model.

•	 Single-customer prediction

•	 Group prediction (multiple customers)

We have a separate test dataset that can predict for a group of

customers instead of only a single customer. Let’s see how the results look

when we run the app for predictions using Docker.

[In]: import pickle

[In]: pickle_out = open("logreg.pkl","wb")

[In]: pickle.dump(logreg, pickle_out)

Chapter 4 Machine Learning Deployment Using Docker

115

[In]: pickle_out.close()

Let’s load the trained model to see whether it is predicting well on the

test data as well as on single-customer values.

[In]: pickle_in = open("logreg.pkl","rb")

[In]: model=pickle.load(pickle_in)

Here is the prediction for a single customer:

[In]: model.predict([[45,0,5]])[0]

[Out]: 0

Here is the prediction on a group of customers:

[In]: df_test=pd.read_csv('test_data.csv')

[In]: predictions=model.predict(df_test)

[In]: print(list(predictions))

[Out]: [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0,

0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

As we can observe, the model seems to be making predictions for a

single customer as well as a group of customers. Now we can move on to

the next step of building a Flask app to run this model.

�Step 3: Creating a Flask App Including UI
In the previous chapter, we covered how we can use the Flask framework

to deploy an ML model easily. Similarly, in this case, we will build a Flask

app along with Flasgger. We start by importing the required libraries to run

the Flask app.

[In]: from flask import Flask, request

[In]: import numpy as np

Chapter 4 Machine Learning Deployment Using Docker

116

[In]: import pickle

[In]: import pandas as pd

[In]: import flasgger

[In]: from flasgger import Swagger

We create the Flask app and wrap it around Swagger. It does all the

heavy lifting to represent the result in a well-laid-out manner. This saves a

lot of time and effort that might go into writing HTML and CSS.

[In]: app=Flask(__name__)

[In]: Swagger(app)

Next, we load the trained model for the predictions. Since we are going

to make two types of predictions (single customer as well as group of

customers), we will need to create two separate functions in our app using

a get request as well as a post request. For single-customer predictions,

we will use a get request since we will fetch the input values from users,

whereas for group prediction, we will use a post request to be able to post

a test dataset for predictions. One key thing to remember here is to provide

the parameter information to the app regarding the features used in the

model to make the predictions properly. The final part is to provide the

localhost IP address to run this app.

[In]: pickle_in = open("logreg.pkl","rb")

[In]: model=pickle.load(pickle_in)

[In]: @app.route('/predict',methods=["Get"])

[In]: def predict_class():

 """Predict if Customer would buy the product or not.

 parameters:

 - name: age

 in: query

Chapter 4 Machine Learning Deployment Using Docker

117

 type: number

 required: true

 - name: new_user

 in: query

 type: number

 required: true

 - name: total_pages_visited

 in: query

 type: number

 required: true

 responses:

 500:

 description: Prediction

 """

 age=int(request.args.get("age"))

new_user=int(request.args.get("new_user"))

total_pages_visited=int(request.args.get("total_pages_

visited"))

 prediction=model.predict([[age,new_user,total_pages_

visited]])

print(prediction[0])

return "Model prediction is"+str(prediction)

[In]: @app.route('/predict_file',methods=["POST"])

[In]: def prediction_test_file():

 """Prediction on multiple input test file.

 parameters:

 - name: file

 in: formData

Chapter 4 Machine Learning Deployment Using Docker

118

 type: file

 required: true

 responses:

 500:

 description: Test file Prediction

 """

df_test=pd.read_csv(request.files.get("file"))

 prediction=model.predict(df_test)

 return str(list(prediction))

[In]: if __name__=='__main__':

 app.run(debug=True,host='0.0.0.0')

This concludes step 3 of creating a Flask app along with the UI layer.

We are now ready to get into Docker and build an image to run this app.

�Step 4: Building the Docker Image
We are now going to create a Dockerfile and mention all the steps to run

this app using Docker. We start with providing the base image first to the

Docker server that needs to be pulled from Docker Hub (if not present

locally already).

FROM continuumio/anaconda3:4.4.0

In the next step, we copy all the files and content from the local

directory (where we build our ML model and Flask app) to the Docker

directory (we can create a new or current Docker directory as well). In this

case, we create a new directory called usr/ML/app.

COPY . /usr/ML/app

Chapter 4 Machine Learning Deployment Using Docker

119

The next command is to expose port 5000 of Docker to run this
application. Basically, when the request comes from the user, the host
system will route this request to port 5000 of Docker where the app will be
running. We will also have to do explicit port mapping between the host
system and the Docker container while running the container to route the
requests properly and access the predictions.

EXPOSE 5000

The next command is to change Docker’s current working directory
to the directory where we have copied all the files from the local system
(Flask/ML model/data, etc.).

WORKDIR /usr/ML/app

The next step is to install all the dependencies and required libraries
in order to run the app successfully. We have a requirement.txt file that
contains the required libraries along with versions.

RUN pip install -r requirements.txt

The last command in the Dockerfile is always the startup command,
and in this case, we want Docker to run the Flask app that we built in the
previous step.

CMD python flask_api.py

This list of commands completes our Dockerfile, and it’s now ready to be
converted into a Docker image and run as a container, which is the next step.

�Step 5: Running the Docker Container
In this step of the process, we build the Docker custom image from the
Dockerfile created in the previous step and run the container. We have
to go to the terminal in the same directory where all the files are present.
In the terminal, we run the docker build command to build the Docker

image from Dockerfile.

[In]: docker build -t ml_app_docker .

Chapter 4 Machine Learning Deployment Using Docker

120

The image can be tagged to a specific name to help in running the
container. In this case, we tag it to ml_app_docker. Once the Docker
image starts to build, there would be a series of steps taking place inside
Docker. The first step is that the Docker server would look for the base
image. If the base image is not available in the local system, the Docker
server would pull it from Docker Hub and might take some time based
on the image size. As shown in Figure 4-15, the base image is getting
pulled from Docker Hub.

Once the base image gets pulled completely, Docker creates a temporary
container with that base image. The reason that it’s a temporary container
is that Docker applies the next step and builds a new container to meet the
next requirement. As shown in Figure 4-16, we can observe that at the end of
every stage, Docker shows us a new container ID, and after running the last

command in the Dockerfile, it provides us with the final container ID.

Figure 4-15.  Building the Docker image from the Dockerfile

Figure 4-16.  Docker server info

Chapter 4 Machine Learning Deployment Using Docker

121

The requirements.txt file contains all the dependencies and libraries,

and hence Docker installs all those as well, as shown in Figure 4-17.

Once all the commands in the Dockerfile get executed and we have

the final image built from the Dockerfile, as shown in Figure 4-18, we can

initiate the container to run our ML app.

The key thing to remember here is to do the explicit port mapping in

order to route the requests from the host to the Docker port. We make use

of -p and map host port 5000 to the Docker container port 5000.

Figure 4-18.  Final Docker image

Figure 4-17.  Installing dependencies

Chapter 4 Machine Learning Deployment Using Docker

122

[In]: docker container run -p 5000:5000 ml_app_docker

[Out]:

As shown in Figure 4-19, the app starts up successfully, and everything

is running inside a Docker container. To access the app, we simply have to

go to http://localhost://5000/apidocs to load the Swagger UI page, as

shown in Figure 4-20.

Two tabs are present in the app.

•	 Get

•	 Post

Figure 4-20.  Swagger API to access ml-app

Figure 4-19.  Access the running ml-app

Chapter 4 Machine Learning Deployment Using Docker

123

The prediction based on get requests is applicable for single-customer

predictions, whereas the Post tab is for the test data prediction (customer

group). Once we click the Get tab, we can see the options to provide input

parameters on which the prediction needs to be made. These are the same

parameters that we used in the model training as well as called in the Flask

app code. The top-right corner contains a “Try it out” tab that allows us to

fill in the values for the input parameters, as shown in Figure 4-21.

We can fill in the values for all three parameters for a test customer, as

shown in Figure 4-21, and click the Execute tab. Upon the execution call,

the request goes to the app, and predictions are made by the model. The

result of the model prediction is displayed in the Prediction section of the

page. It also provides alternative ways to access the result such as using a

curl command or URL, as shown in Figure 4-22.

Figure 4-21.  Get request

Chapter 4 Machine Learning Deployment Using Docker

124

The next prediction that can be done is for a group of customers (test

data) via a post request. We need to upload the test data file (which must

be in a similar format) containing the same parameters in a similar order

as shown in Figure 4-23. The model would make the prediction, and the

results would be displayed upon execute, as shown in Figure 4-24.

Figure 4-22.  Model prediction

Chapter 4 Machine Learning Deployment Using Docker

125

Figure 4-23.  Uploading test data

Figure 4-24.  Multiple predictions

Chapter 4 Machine Learning Deployment Using Docker

126

�Step 6: Stopping/Killing the Running Container
The last step left after running the application is to stop the running

container. This can be done using the docker stop or kill command on

the running container. We can see the list of running containers using the

docker ps command and can select the running container ID to stop it.

[In]: docker ps

[In]:docker kill <Container_ID>

�Conclusion
In this chapter, we went over the fundamentals of Docker and its

ecosystem. We also covered different Docker commands along with the

process to build custom Docker images. We also deployed a machine

learning app using Docker and hosted it on a Flask app.

Chapter 4 Machine Learning Deployment Using Docker

127© Pramod Singh 2021
P. Singh, Deploy Machine Learning Models to Production,
https://doi.org/10.1007/978-1-4842-6546-8_5

CHAPTER 5

Machine Learning
Deployment Using
Kubernetes
In the previous chapter, we saw how we can containerize an app and

deploy it using Flask. In this chapter, we will deploy the same ML app

using an orchestration platform (Kubernetes). This chapter covers two

main topics. It first covers the basics of the Kubernetes platform and how it

handles deployments. Then the chapter covers how to deploy the ML app

using Kubernetes. More specifically, the chapter covers the following:

•	 What is Kubernetes

•	 Google Cloud Platform

•	 ML model deployment using Kubernetes

Kubernetes is an open source container orchestration engine to deploy

and manage large containers. It comes with multiple levers to manage

scheduling, clusters, deployments, and load balancing, and it has many

more capabilities in terms of running microservices using containers.

Kubernetes was created at Google originally and later donated to the Cloud

Native Computing Foundation (CNCF). It is now managed and maintained

by CNCF and has strong community support and users around the globe.

https://doi.org/10.1007/978-1-4842-6546-8_5#DOI

128

The prime advantage of using Kubernetes is to be able run a huge number

of containers without worrying about the deployments and cluster

management details. To give you an example, Google runs roughly 2.5

billion containers using Kubernetes to run its services for users. Although

there are other container orchestration platforms such as Docker Swarm

and Marathon from Apache Mesos, Kubernetes has quickly become the

default COE for users because of a couple of reasons. First, it has been tried

and tested for extreme cases (since it was developed at Google). Second, it

has a rich set of features and an underlying sophisticated architecture that

allows it to run highly scalable services.

Kubernetes is available on different cloud platforms such as Google

Cloud Platform’s Google Kubernetes Engine (GKE), AWS EC2 Container

Service, and Microsoft Azure Container. In this chapter, we are going to

make use of GKE to deploy the ML app. A similar approach can be used to

deploy it on AWS and Azure, but Google provides its users with some free

credits that can be easily utilized to complete this deployment.

�Kubernetes Architecture
Kubernetes under the hood works like any other distributed applications.

It works on the master-worker node principle. The master node issues

the commands/instructions to the worker nodes that are responsible for

computing and executing the tasks. In the case of Kubernetes, there can

be more than a single master as well. The worker nodes are typically the

virtual machines that are used to compute and store the data. If we look at

the architecture of Kubernetes, as shown in Figure 5-1, we can observe that

there are two main parts to it.

•	 Master

•	 Worker

Chapter 5 Machine Learning Deployment Using Kubernetes

129

The CLI tool that is used to interact with the Kubernetes object is

known as kubectl.

�Kubernetes Master
A Kubernetes master is responsible for running the entire cluster and

ensuring the scheduling and provisioning of the pods (see the “Worker

Nodes” section). Like any other master of a distributed application, it’s

responsible for communicating and tracking the status of worker nodes

and provisioning a healthy node in the case of worker node failure. Inside

the Kubernetes master, there are four main components.

•	 API server: This component allows us to interact with

different Kubernetes objects. It validates and configures

the API for different objects such as pods, deployments,

load balancers, etc. It allows us to add, delete, update,

and display the information regarding the Kubernetes

Figure 5-1.  Kubernetes architecture

Chapter 5 Machine Learning Deployment Using Kubernetes

130

objects. As mentioned, we use kubectl to interact
with the API server. This is somewhat similar to what
we have seen in Docker (the relationship between the
Docker CLI and Docker server).

•	 Scheduler: The other important component inside
the master is the Scheduler. As the name suggests, it
is responsible for scheduling pods inside the cluster
(worker nodes) based on the declared configurations
such as memory size, CPU cores, etc.

•	 Control Manager: This component is responsible
for ensuring the cluster is healthy and the required
number of worker nodes are in a healthy state with
specific pods running inside them.

•	 etcd: This component captures the current state of the
cluster in the form of a key value. It is a distributed
lightweight key-value database.

�Worker Nodes
The worker nodes are the typical virtual machines in the cloud or the
physical servers in a data center. They are responsible for computing
and for storing the data of the running application. Each worker node
must have a container runtime (Docker/rkt) to be able to run containers
inside them. Each worker node is capable of running one or more
pods inside them. A pod is the most basic unit in Kubernetes. Pods are
essentially the scheduling units in Kubernetes and contain one or more
containers. Ideally, each pod should contain one container, but in the
case of dependent containers, they can be run inside the same pod. The
pod acts as a wrapper around containers that allows us to interact with
the containers inside them. There are two additional components inside a

worker node that help to communicate with the Kubernetes master.

Chapter 5 Machine Learning Deployment Using Kubernetes

131

•	 kubelet: This is the primary node agent that runs

on each worker node. It ensures that the containers

running inside the pods are according to the specs

submitted to the API server. If any changes are

observed or any of the pods are down, it starts a new

pod on the same node with new containers as per the

configuration information.

•	 kube-proxy: This component is responsible for

maintaining the distributed networking configuration

of the cluster. It manages the network configuration

for the nodes, pods, and containers running inside the

pods and ensures the running services are accessible to

the outside world.

�ML App Using Kubernetes
Now that we have a basic understanding of the Kubernetes platform,

we can move into the second part of this chapter and deploy an ML app

using Kubernetes. To deploy our app using Kubernetes, the first step is to

push the local code into a Git repo so that we can clone it later. In an ideal

scenario, the data is usually stored in a Google storage bucket, but for

simplicity purposes we have packaged everything inside a Docker image

because we don’t have a large dataset. As mentioned, we are going to use

GCP to avail of the free credits provided by Google to use cloud resources

such as Google Kubernetes Engine.

Chapter 5 Machine Learning Deployment Using Kubernetes

132

�Google Cloud Platform
Google Cloud Platform is a huge platform containing lots of tools and

services for a variety of requirements. It is impossible to cover all the

aspects of GCP, and hence we are going to focus on certain services

to deploy the ML app. We are going to use a few components such as

GKE and Google Container Registry (GCR) for our deployment. The

prerequisite to using GCP is to create a Google account and log in to the

Google Cloud Platform by visiting https://console.cloud.google.com/.

Note T here is a cost associated with every tool and service used
in GCP, and hence readers are encouraged to learn more about the
billing rates on the Google Console details page. However, for this
deployment, the free credits provided by Google will be enough.

Once we log in, the first step is to create a new project in the Google

Console. This is how we allocate separate resources for this particular

project. We can name this project as per our preference as shown in

Figure 5-2. For example, in this case, I have named this new project

ml-model, as shown in Figure 5-3.

Chapter 5 Machine Learning Deployment Using Kubernetes

https://console.cloud.google.com/

133

Figure 5-2.  GCP project

Chapter 5 Machine Learning Deployment Using Kubernetes

134

Once the new project is created, it will be reflected on the home page

on the Project Info tab, as shown in Figure 5-4. It will contain a project

name and a project ID. There is also an option to add more people to the

project if there are more people working on it.

Figure 5-3.  New project in GCP

Chapter 5 Machine Learning Deployment Using Kubernetes

135

Once the project is created successfully, we need to enable other services

that are required to deploy the app. The first service that we need to select is the

Container Registry API. GCP’s Container Registry allows us to access Docker

images inside the Google project to deploy them on Kubernetes. To do so, we

go to the GCP menu tab and select Container Registry, as shown in Figure 5-5.

There are two options under Container Registry.

•	 Images

•	 Settings

We need to select Images, and by default, if we look inside Images, it

should show an empty pane, as shown in Figure 5-6. This is because we have

yet to push any image in the Container Registry. You might have previous

images present if you have used Container Registry before for some other

application, but for new users it should not contain any prior images.

Figure 5-4.  Project info in GCP

Chapter 5 Machine Learning Deployment Using Kubernetes

136

To use and push Docker images to the Container Registry, we should

enable the Container Registry API by selecting the enable option, as shown

in Figure 5-7.

Figure 5-5.  Container Registry menu item in GCP

Figure 5-6.  Images in Container Registry

Chapter 5 Machine Learning Deployment Using Kubernetes

137

The next API that we have to enable is for the Kubernetes Engine

itself. Select the APIs & Services option on the main menu tab and select

Dashboard, as shown in Figure 5-8.

Figure 5-7.  Enabling the Container Registry API

Figure 5-8.  Enabling the APIs & Services item

Chapter 5 Machine Learning Deployment Using Kubernetes

138

The dashboard will give access to the entire API library on GCP, and we

can now search for Kubernetes-specific APIs, as shown in Figure 5-9.

Once we search for the Kubernetes API, we get the option to enable the

Kubernetes Engine API, as shown in Figure 5-10. Go ahead and click the

enable option; it might take a couple of minutes to completely enable it.

Figure 5-9.  API Library

Figure 5-10.  Kubernetes Engine API

Chapter 5 Machine Learning Deployment Using Kubernetes

139

Now that we have created a new project and enabled the required

services, we can start the configuration steps inside Google Cloudshell. We

can open Google Cloudshell by clicking the terminal icon at the top-right

corner of the window, as shown in Figure 5-11.

Once the terminal opens, the first step is to clone the Git repo where

the source code/data is available. In this case, we clone the docker_flask_

gke.git repo, as shown in Figure 5-12.

To confirm everything has been set up properly, we go inside the

new cloned folder and run a quick ls command and see whether the

files and code are available in the Google Cloudshell folder. The next step

is to create some of the environment variables to keep the deployment

consistent. We declare the project ID variable, which is the project ID that

we created at the start. The next step is to build a Docker image using the

Dockerfile inside our directory. Since the format is the same as what we

used on our local system, we can make use of the same Dockerfile to build

Figure 5-11.  Enabling Google Cloudshell

Figure 5-12.  Cloning the app files

Chapter 5 Machine Learning Deployment Using Kubernetes

140

a new Docker image. We use the docker build command and tag it with

the name that includes the project ID. The build process will take some

amount of time (depending upon the Internet bandwidth). It will run the

same steps to build the Docker image that we saw in the previous chapter,

as shown in Figure 5-13.

[In]: export PROJECT_ID=ml-model-123456

[In]: docker build -t gcr.io/${PROJECT_ID}/ml_app:v1 .

During the build process, it will go over all the necessary steps to install

the dependencies that are mentioned in the requirement.txt file, such as

setting the working directory, as shown in Figure 5-14.

Figure 5-14.  Executing Dockerfile commands

Figure 5-13.  Building a Docker image

Chapter 5 Machine Learning Deployment Using Kubernetes

141

We can confirm that the image was successfully built by using the

docker images command to list the Docker images; the newly built image

should show up, as shown in Figure 5-15 (as there are no previous Docker

images for this project).

[In]: docker images

[Out]:

The next step is to provide Google authentication by using the

gcloudauth command and pushing the Docker image created earlier to

the Google Container registry. We make use of the docker push command

and provide the location of it in the Google Container registry to upload

the Docker image, as shown in Figure 5-16.

[In]: gcloudauth configure-docker

[In]: docker push gcr.io/${PROJECT_ID}/ml_app:v1

It might take some time based on the image size to push to the Google

Container Registry. Once that’s completed, we can open the images under

the Container Registry, and the Docker image that we uploaded should be

present under the ml_app folder, as shown in Figure 5-17.

Figure 5-15.  Docker images

Figure 5-16.  Pushing the Docker image to GCR

Chapter 5 Machine Learning Deployment Using Kubernetes

142

Now that we have pushed the Docker image to the Container Registry,

we can set up other configurations. We set the project to the project ID,

we set the compute zone to us-central1, and we create a small two-node

cluster called ml-cluster (going for a higher configuration cluster might

cost you more).

[In]: gcloud config set project $PROJECT_ID

[In]: gcloud config set compute/zone us-central1

[In]: gcloud container clusters create ml-cluster --num-nodes=2

If we go to the Kubernetes Engine option and select Clusters, we will

soon see a new cluster starting up (ml-cluster) with one master node and

two worker nodes, as shown in Figure 5-18.

Figure 5-17.  Docker image in GCR

Figure 5-18.  Kubernetes cluster

Chapter 5 Machine Learning Deployment Using Kubernetes

143

Now that the cluster is up and running, we can deploy Docker
containers to run the ML app using the base Docker image that we built
earlier. We make use of the create deployment command and pass the
specific image location as input. The other thing that we need to do is
to expose the deployed app on port 5000. Once the deployments are
complete, we can access the running services by using the get service
command, as shown in Figure 5-19.

[In]: �kubectl create deployment ml-app --image=gcr.
io/${PROJECT_ID}/ml_app:v1

[In]: �kubectl expose deployment ml-app --type=LoadBalancer
 --port 80 --target-port 5000

Kubernetes shows the external IP address through which the running
app can be accessed. We can simply go to that external IP address and add

apidocs to it (to access the Swagger API), as shown in Figure 5-20.

Figure 5-19.  Docker image in GCR

Figure 5-20.  Accessing the app from outside

Chapter 5 Machine Learning Deployment Using Kubernetes

144

We can test whether the app is functioning properly by passing some

dummy values as input to the model and clicking the Execute button, as

shown in Figure 5-21.

As we can see, we have the model predictions, and the app is

successfully deployed using Kubernetes on Google Cloud Platform. There

are various components such as model management, load balancing,

security, and others that come into the picture while deploying an app, but

the core idea is to present a framework so you can understand the process

and add more levers to this approach based on the complexity of the app.

Finally, we can also look into the deployment details by using a few of the

kubectl commands. For example, we can get active pods by using the get

deployment command, as shown in Figure 5-22. The same information can

be viewed on the Workloads tab inside the Kubernetes Engine option, as

shown in Figure 5-23.

Figure 5-21.  ML app prediction

Chapter 5 Machine Learning Deployment Using Kubernetes

145

If required, the number of replicas of the running application can

be scaled up or scaled down using the scale deployment command in

Kubernetes; however, you also need to increase the number of nodes in

the cluster to meet the minimum requirements to run that many replicas

of the application. In this case, since we are using small clusters with just

two nodes, we can go up to three to four replicas.

[In]: kubectl scale deployment ml-app --replicas=3

As mentioned previously, all these resources have an associated cost,

and hence it’s important for us to delete these used resources to avoid any

costs. To delete the active cluster and remove all the resources, we need to

use the following commands:

[In]: gcloud container clusters delete ml-cluster

Figure 5-23.  Status of deployed app

Figure 5-22.  Active pods in Kubernetes

Chapter 5 Machine Learning Deployment Using Kubernetes

146

It is also advisable to delete the project and related files (image,

data, etc.) as well once the process is complete to avoid any charges for

continued usage of GCP resources.

�Conclusion
In this chapter, we covered the basic architecture of Kubernetes and

deployed a machine learning app on Google Cloud Platform using

Kubernetes.

Chapter 5 Machine Learning Deployment Using Kubernetes

147© Pramod Singh 2021
P. Singh, Deploy Machine Learning Models to Production,
https://doi.org/10.1007/978-1-4842-6546-8

Index

A, B
AI winters, 2

C
Cloud Native Computing

Foundation (CNCF), 127
Concept drift, 63
Convolutional neural networks

(CNNs), 37–39
COPY command, 99

D
Databricks, 1, 17, 18, 41
Deep learning, 35

activation functions, 26
bias, neural networks, 35, 36
challenges, 22
CNN, 37–39
human brain neuron vs.

artificial neuron, 23–25
model, 81, 82
neuron computation, 28–30
neuron network, 30, 31
RNN, 39–43, 45–48
training process, 32, 33

Docker
building Image, 118, 119
client/server, 100–105
commands, 98, 99
container, 93, 105–108, 119–124
container related

commands, 108, 109
definition, 93
deployment stage, 94
ecosystem, 96
exporting trained

model, 114, 115
Flask app, UI, 115–117
hub, 100
Image, 96, 97
install Redis, 93
machine learning model,

110–114
stopping/killing, container, 126
typical application

installation, 92
vs. virtual machines, 94, 95

docker push command, 109, 141

E
EXPOSE command, 99

https://doi.org/10.1007/978-1-4842-6546-8#DOI

148

F
Flask, 68

disadvantage, 75
installation, 68
route function, 68
run method, 69

G
Google Cloud Platform (GCP)

API, 137, 138
app files, 139
cluster, 142
definition, 132
deploy app, 145
execxuting Dockerfile

commands, 140
execxuting Dockerfile Image,

141, 142
GCR, 135, 136
ML app prediction, 144
project, 135

Google Container Registry
(GCR), 132, 141

Google Kubernetes Engine
(GKE), 128, 131

Gradient recurring unit (GRU), 40

H
Hidden layer, 31, 32
Hyperbolic tangent activation

function, 26

I, J
Industrial applications

challenges, 52
finance, 50
healthcare, 49
manufacturing/automobile, 51
media/marketing, 51
requirements, 53
retail, 48
social media, 52
travel/hospitality, 50

K
K-means clustering, 10
Kubernetes

architecture, 128, 129
definition, 127
master, 129, 130
ML app, 131
worker nodes, 130

L
LSTM model

accessing ML app, 88
app.py script, 86
embedding layer, 84
libraries, 82, 86
load data, 83
negative review

prediction, 89, 90
positive review

prediction, 88, 89

Index

149

predictions, 85
records/sentiments, 83
reviews, 83
run function, 87
save, 85
sentiment prediction, 86, 87
size of data, 83
streamlit run command, 88
tokenize/padding, 83, 85
user input page, 88, 89

M, N, O
Machine learning (ML)

analogy, 58
bias vs. variance, 15
challenges

behavior of data, 63
coordination between

stakeholders, 61
interpretation of new

data, 63
Model drift, 62
On-Prem vs. cloud-based

deployment, 64
ownership, 64
performance monitoring, 64
privacy preserving/secure

model, 65
programming language

discrepancy, 62
release/version

management, 65
components, 60

cross validation, 16
data handling, 59
drift, 59
gradient descent, 13–15
history, 2–6
importance, 60
performance metrics, 17–21
propensity, 58
reinforcement, 12, 13
role, 60, 61
semi-supervised, 11
stand-alone model, 58
supervised, 7, 9
unsupervised, 10

Model deployment
integrating, 57
ML, 56
mobile applications, 57
model management phase, 57
stakeholders, 57
stand-alone predictor, 57

Model drift, 62, 63

P, Q
Padding function, 45
Pseudo-labeling, 11

R
Rectified linear unit (relu), 27
Recurrent neural networks

(RNNs), 37, 39
Reinforcement learning, 12

Index

150

REST Service
app.py file, 70, 72
columns, 69
joblib library, 70
libraries, 69
linear regression model, 70
ML prediction, 72
templates

HTML, 73
input request, 73
model prediction, 74, 75
user input page, 74, 75

R-square, root mean squared error
(RMSE), 17

S, T
Sigmoid function, 26, 29
Stochastic gradient descent

(SGD), 15

Streamlit, 76
accessing running

app, 78
advantage, 76
app.py file, 76
create variable, 76
input values, 79, 80
installation, 76
linear regression model, 76
lr_prediction function, 77
model prediction, 80, 81
run function, 77
streamlit run command, 78
user input page, 78, 79

Supervised machine learning, 7
system prune command, 109

U, V, W, X, Y, Z
Unsupervised learning, 10, 11

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Machine Learning
	History
	The Last Decade
	Rise in Data
	Increased Computational Efficiency
	Improved ML Algorithms
	Availability of Data Scientists

	Machine Learning
	Supervised Machine Learning
	Unsupervised Learning
	Semi-supervised Learning
	Reinforcement Learning
	Gradient Descent
	Bias vs. Variance
	Cross Validation and Hyperparameters
	Performance Metrics

	Deep Learning
	Human Brain Neuron vs. Artificial Neuron
	Activation Functions
	Sigmoid Activation Function
	Hyperbolic Tangent
	Rectified Linear Unit

	Neuron Computation Example
	Neural Network
	Training Process
	Role of Bias in Neural Networks
	CNN
	RNN

	Industrial Applications and Challenges
	Retail
	Healthcare
	Finance
	Travel and Hospitality
	Media and Marketing
	Manufacturing and Automobile
	Social Media
	Others
	Challenges

	Requirements
	Conclusion

	Chapter 2: Model Deployment and Challenges
	Model Deployment
	Why Do We Need Machine Learning Deployment?
	Challenges
	Challenge 1: Coordination Between Stakeholders
	Challenge 2: Programming Language Discrepancy
	Challenge 3: Model Drift
	Changing Behavior of the Data
	Changing Interpretation of the New Data

	Challenge 4: On-Prem vs. Cloud-Based Deployment
	Challenge 5: Clear Ownership
	Challenge 6: Model Performance Monitoring
	Challenge 7: Release/Version Management
	Challenge 8: Privacy Preserving and Secure Model

	Conclusion

	Chapter 3: Machine Learning Deployment as a Web Service
	Introduction to Flask
	route Function
	run Method

	Deploying a Machine Learning Model as a REST Service
	Templates

	Deploying a Machine Learning Model Using Streamlit
	Deploying a Deep Learning Model
	Training the LSTM Model
	Conclusion

	Chapter 4: Machine Learning Deployment Using Docker
	What Is Docker, and Why Do We Need It?
	Introduction to Docker
	Docker vs. Virtual Machines

	Docker Components and Useful Commands
	Docker Image
	Dockerfile
	Dockerfile Commands

	Docker Hub
	Docker Client and Docker Server
	Docker Container
	Some Useful Container-Related Commands

	Machine Learning Using Docker
	Step 1: Training the Machine Learning Model
	Step 2: Exporting the Trained Model
	Step 3: Creating a Flask App Including UI
	Step 4: Building the Docker Image
	Step 5: Running the Docker Container
	Step 6: Stopping/Killing the Running Container

	Conclusion

	Chapter 5: Machine Learning Deployment Using Kubernetes
	Kubernetes Architecture
	Kubernetes Master
	Worker Nodes
	ML App Using Kubernetes
	Google Cloud Platform
	Conclusion

	Index

