Practical
Machine Learning

with AWS

Process, Build, Deploy, and Productionize
Your Models Using AWS

Himanshu Singh

Apress:

Practical Machine
Learning with AWS

Process, Build, Deploy,
and Productionize Your Models
Using AWS

Himanshu Singh

Apress’

Practical Machine Learning with AWS

Himanshu Singh
ALLAHABAD, Uttar Pradesh, India

ISBN-13 (pbk): 978-1-4842-6221-4 ISBN-13 (electronic): 978-1-4842-6222-1
https://doi.org/10.1007/978-1-4842-6222-1

Copyright © 2021 by Himanshu Singh

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson

Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6221-4. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6222-1

Table of Contents

About the AUthor ... ———————————— Xi
About the Technical REVIEWETccusssssmsssmssmsssmsssmsssssssssssssssssssssssssssssssnsssnsssnsnes Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
INtroductioncvimiemismisme s —————————————— Xvii

Part I: Introduction to Amazon Web Services......ccccuureemssmrenmsssssnnnsssnnnens 1

Chapter 1: Cloud Computing and AWS.......cccccuusmmmmmmmsssmmmmssssssmmsssssssnmssssssssssssssssnssss 3
What IS the ClOUA?coeeeeeeeeereer s 3
Control Of CloUd SYSIEMS......cccviierrerrresire e e 4

PUDIC CIOU......coceeieicicictrerereseeee st bbbt 5
PrIVate ClOUdooeeeeeeereer e 5
COMMUNITY ClOUM ... s nr s 5
HYDIFA ClOUMovicectcicee e 5
ClOUT SEIVICESvvveerreerrnsesessesessesesssessssesesse e srs s sse e e s e b se s e be e e e e e e s e R e e e e e nrnnnnnes 5
INfrastrUCIUIE @S @ SEIVICEcucerirerrrirere e 6
Platform @S @ SEIVICEccviverircserese s s 6
SOftWAIE @S @ SEIVICEcccvvreeerresersse s r s 6
ANYthiNg @S @ SEIVICE......ccvicerriseriresirese s 6
Introduction to Amazon WED SErVICES ... 7
AWS Management CONSOIEcvurverrerrererserserersesessessessessssessessessessssessessessssessessesssssssessessessssessesses 8
AWS Command-Line INTEITACEccocrererrrneeise s esens 11
AWS SEOrage SEIVICES......cvieiirriirsiie s st sb s b e e b e ne e s p e e e e nne 12
FN L1 0] T TR 13
Amazon Elastic File SYSIBM ... 14
AWS ST0rage GALBWAYccceccvrrererererinierine s se e et s et se s e st s e e sannens 15

iii

TABLE OF CONTENTS

AWS COMPULE SEIVICES...eererrerrerersersersessrsessessessessssessessessssessessesssssssessessssssssssessesssssssessessessssessens 18
FN 1 1F= V0] 8 = TS 19
OthEr SEIVICES ... 22

Amazon Elastic Container REGISIIYc.cvvreererernmnnnssisesessssssese s sssssesessssssssssnens 22

AWS Networking and Content Delivery SErviCeScoumvmrinnnnsnens s sesessens 23
L1 0] Y TSR 23
AmAzZon APl GALEWAYccccvriierrirerierinire s s s e s e e e 25
AMAZON CIOUAFIONTcceeeeeeeeee s se e 26

0] T S 28

Chapter 2: AWS Pricing and Cost Management..........cccccuneemmmnnsssnnnmnssssssnmsssssssnsnns 29

Understanding the Pricing 0f AWS ..o s 29

L (=T T P 31

Factors Affecting Pricing in AWS..........ocnrsssss s s sessssssas 3

AWS Cost OptimIzation..........cccvrererinrnirne e e e 32
RIgGNE-SIZING ...vieeiicerre e e bR s 32
Using Reserved INSTANCESccccvveierverier s s e sn e s s sa e s 36
USING SPOL INSTANCESevveererere st rere s s se s sa e sa e e e saesr e e e e naennens 37
USiNg the COST EXPIOTET ..o 38

AWS TrUSTEA AQVISOFceeeereecreeeeesee s se e s e se e se e se e e e se s e e se e se e e sesss e nenns 41

Pricing Of AWS SEIVICES......ccovrererrecrrrcrersenesresesesesessese s sesse e s ses e sessesessssesessssesssssssssessnsssenns 43

(0] 0 e 11 o OSSPSR 44

Chapter 3: Security in Amazon Web Services.........ccvusmmmmmmsssmssssssssssssssssssssssssansas 45

The SSR MOEl 0F AWS ... 45
0] 10 T RS 47
Physical and Environmental SECUKLYocvvrvrerernreriene e see s ses s ssssessesse s 48
Business Continuity Management..........cccvvrrvrerienennensenessssesse s ssssessessessessssessessessssessesseses 48
NEIWOIK SECUKILYveerereeriererrerere st se st se e sre st sae e e s ae s b e e e s s s ae s e e e s e naees 49

AWS Account SECUNILY FEATUIES.....ccvierirerrriererirsersere e ses s s s e sse s ss e e s e ssesaesassessessessssessessens 50
Passwords for AUthentiCation............ccccvrnennn s 51
Multifactor AUthentication ... ————— 51

iv

TABLE OF CONTENTS

Access Keys for APl Authenticationc.ccccvvrininn e 51
X.509 COrtifICALEScovrerrrrersereresrssesese s 52
AWS Identity and Access Management.........cocovcrvvnnernnnneninse s st seenes 52
Federation of USErs in AWS ... e sssssesessssssnns 54
How Access Management IS DONe iN AWScoccovvrrrierenessensesesssssssessessessssessessessssessessenes 55
Attribute-Based ACCESS CONIOL........c.corurueeresereresrnessesesss e sss e sssssnens 57
AWS Web Application FIreWall.........cccoeiiinininnsinsnc s sssssssessessessssessessens 59
AWS SRIBIH......cucviveeirrrerrererereresesese s s s s s s e e e e e e nnas 60
AWS FireWall MANAGETccoeeererirerreesrssesesesessssessssessssesssanes 61
CONCIUSION ..ottt e e b e e e e R e e b e e n e e Re e b e e nr e e nnre e 62

Part lI: Machine Learning in AWS...........cccimnemmmmmmssssmmsssssnsssssssssnnnssss 63

Chapter 4: Introduction to Machine Learning.......cccuseessesssssnsssssssnsssssssssssssssssssssess 65
Introduction to Machine Learning and Artificial Intelligence ... 65
SUPEIVISEU LEAINMING......coveerereereecrereseesese e sesese e s se e sse e e s se e e sae e s s e ssssesessesenas 66
UNSUPErViSEd LEArNING.......ccccviereriniirienesie st sse st e s sse s ssesaesressssensesnens 67
Reinforcement LEarningccucvevinniniennsnsene s s sse s sss e s 68
DLTT ol =T 71 T S 70
Machine Learning in AWS ..o s ss e s s ssssessssssesssssssns 71
AMAZON SAGEIMAKETccvecerererreririere s s s s e s e sae e s e sae e s e s s b e b e e e e aesae e s e e aesae s e e e naenaees 72
Understanding How SageMaker WOIKSccccvvererennensenennsensesessessssessessessssessessesssssssessessens 74
Preprocessing of Data in SAGEMAKETcccccvvrerrnenenene s s ssanes 76
Model Training in SAGEMAEKETccouvevrrienrriernesrne e srans 77
Model Deployment in SAGEMAKET..........ccceeererernnesrnesesese e s ssanes 79
Built-in SageMaker AlgOrthms..........cccoveininrninne s ssanes 81
Custom Algorithms in SAGEMAKEcccvvevrrenerirerrnesire e 84
Other Machine Learning Services by AWS. ... sse e sssssssesseens 85
Amazon COMPIENENGcc.evvierierere e r e e r e e s ae e e e nnen 85
AMAZON POIIY ...t e n e s 85
AmaAzon REKOGNILION.......ccceviiiriererr s et p e e 86
AMAzon TraNSIALE ... —————————————— 87

TABLE OF CONTENTS

AMAzZON TrANSCIIDEcveeiercrc e 87
AMAZON TEXIFACT ..o 88
(00411 L1 88
Chapter 5: Data Processing in AWS........ccccccmmmsmmmssssmmsssssmssssssssssssssssssssssssssssnssssanss 89
Preprocessing in Jupyter NOTEDOOKcccoveecrmrcrmrererrcrr e 89
Preprocessing Using SageMaker’s Scikit-Learn Container..........c.cccvvevnvnininnsnsensesesensensenns 98
Creating Your Own Preprocessing Code Using SCriptProCESSOrcccvvvverienensensesessesessenenas 105
Creating a DOCKEr CONTAINET.........cccueevrererreserrnsesesese s s s se s ssanis 105
Building and Pushing the Image..........coucvrirrinrnsnnessese s sennes 106
Using @ SCHPIPrOCESSOr ClaSS......ciiueerriererriserinsesessesesss s sesssss s s s sssss s s srssssssssssssans 107
Using Boto3 to RUn Processing JODSccvevvrenienernninsensessssssesesessssessessessssessessessesssssssesaens 108
INSTAIlNG BOL03.......ccerereir e b e e e s s p e e s 109
INILIAlIZING BOT03.......ce e e 110
Making Dockerfile Changes and Pushing the Image..........ccccoovernrnnnenninsesnsessesessssenennes 110
Creating @ Processing JOD.........cccovvvnenninnnsssessns s s ssans 111
Monitoring Processing Jobs Using CloudWatch............cccccvverevnsnieniennninsesiesesessesessesessesesaens 115
0] T 11T (0] o P 117
Chapter 6: Building and Deploying Models in SageMakercccusmmrmssnnssssansessas 119
Exploring the Linear Learner AIGOrithimcccoeorrirnncnrese e 119
Overview Of Linear REGreSSION.ccvvererererrsererese e ses e s e s se s ses e sneessenis 119
Overview 0of LOgiStiC REGreSSIONccccevvviririeri s 120
SageMaker Application of Linear LEArnerccoccvvviennnnsniennsnsessesnessssessesesssssssessessens 121
Exploring the XGB0OOSt AIGOFTNM ... 126
Gradient Boosting AlgOrithm............ccoveirerrers s 126
XGBOOSE AIGOITENM......covicececerec e s e s e nne s 127
SageMaker Application 0f XGBOOSLccccucririnnnniniesn e ssssessessens 128
Exploring the Blazing Text AIgOFthM.........ccoueeirinernsesnesese s s 133
Skip Gram Architecture of Word Vectors Generationcccccvevvererierserseeseersessesseessessenens 133
Continuous Bag of Words Architecture of Word Vectors Generation............cccoervervienicnnenn 134
SageMaker Application of Blazing TEXL..........ccovrermrnsmrrsenmsssesssmsesesess s sessssessssesessssenns 135

TABLE OF CONTENTS

Exploring the Image Classification AIgorithmc.ccocvvvvnininnsnr e 137
RESNEL ... s 138
SageMaker Application of Image Classificationcccvvrrvrieriennnnseriesssessesesesessessensens 140

Exploring the SeqToSeq Algorithm............coriiicnnir e 145
Recurrent Neural NEtWOrKS ... 145
Encoder-Decoder ArChiteCIUre...........cc i s 146
SageMaker Application 0f SEQTOSEQ......cvrrrerrerrrerrerrererererrere e sessere e ssesessessesaessssessessens 147

{0 0 e 11 0 T 154

Chapter 7: Using CloudWatch with SageMakerccccrmsssnmmnmssssssnnsssssssnssssssnnnnss 155

AmAzon CIOUAWALCH ..o s nrs s 155

ClOUAWALCH LOUS ..cviveeerreerinscsesee s se s e ss e s s sn s sss s e s sssssssssssnsssssnsnsssnns 157
TrainiNg JODScoveeriicerresr e R 157
ProCeSSiNG JODSccvvvierriirrscssnese s 160

CloudWatCh MELIICScoureirirrisire s 162

0] T 111 (0] o 165

Chapter 8: Running a Custom Algorithm in SageMakercccusseenrrnssssnnsesssssnnns 167

The Problem STatement ... s 167

RUNNING The MOEL.......eoeeeceeeee e 168

Transforming Code to Use SageMaker RESOUICEScuccoerrererennesesesmsssesessessssssessssesessssessenens 169
Creating the Training SCrPL.......cccveerrnrres e 169
Creating the INfErence SCrPL........c.vovrrerrererr s 173
Configuring the Endpoint Generation Filesc.cocoverrnsnnesesesc s 175
Setting Up the DOCKEITIlE.........coveiereerrcrerese e 176
Pushing the Docker Image t0 ECR..........cccovvivnninnnn e snes 179

Training the MOUELcceicerrerresr e sr e nne e 182

Deploying the MOGEIccviirieieree e e 183

Doing Real-Time INFEIENCEcccvveriererirrereresis s s s s s e se s e s e s ss e s e s saeses e saesnesassessesnens 183

Doing Batch Transformation..........c.ccucevrininniininsis s ss s 184

0] T 1T (0] o TR 188

vii

TABLE OF CONTENTS

Chapter 9: Making an End-to-End Pipeline in SageMaker........c.uoccurrmssssnnsssssssnnnss 189
Overview of Step FUNCHIONS ..o se e 189
Upgrading Step FUNCHIONS.........ccociiirrcrr et 190
Defining the Required Parameters............ccoverrerrnsnnnenese s 191
Setting Up the Required ROIEScocuvivriirinnninene e sss s s sse s s snes 192

Adding a Policy to the Existing SageMaker ROIEcooveervienerenernsesnsesesesessesesessesessenens 192

Creating a New IAM Role for Step FUNCHIONS..........ccoveeernsenncsesse e 193
Setting Up the Training SEP ..cvcvererriri s 196
Setting Up the Endpoint Configuration StEpP........cccvivvrrnininnsnsnse s sseenes 198
Setting Up the ENdPoint STEPccveveverrriererirserere s ssere e se s e sessesse e sessessessssessesaessssessesnesees 198
Creating a Chain of the STEPS ... s 199
Defining the Workflow and Starting Operation............coeovenrnrrnsennseser e 199
Exploring the Jobs in Step FUNCHIONS.......cccoi i 200
Exploring the JSON File That Can Be Passed as INPUt...........ccouevnennenenesennsesssseses e sessesenns 203
0] T 111 (0] o 203

Part lll: Other AWS Servicescccumsssmmmmmmmmssssssassssnnssssssssssssssssesssss 209

Chapter 10: Machine Learning Use Cases in AWSccccuseemmmmsssssnnmsssssssssssssnnnnss 207
Use Case 1: Natural Language Processing Using Amazon Comprehend............cccenievniniennens 207

ANAIYSIS OF TEXE....cereeerererere e sr e s e nne s 207
Custom ClasSifiCatioN........c.ccoevererererneserese s 210
Use Case 2: Sales Forecasting Using Amazon FOrecast..........cccocvvvevnenerssennsessssssesssesensenenns 215
Creating @ DAtaSet GrOUDcccccervrerrnreseresersse s 216
Defining Column ALFHDULES........cocoereserr e 216
IMPOFEING DALA......ccviecereerrese e ne e nr s 217
MaKing PrediCtionsS........coovcceieernenereserssesese s s s se s s sss e s s ssssesennes 218
Use Case 3: Image Text Extraction Using Amazon Textract..........ccueevvrenernsernsesnssesesssesensenenns 222
Extracting Tabular INformation ..o s 222
Extracting FOrm Data..........cooucevreneninennsesrsesese e ss s s s snssessnns 224
0] T 111 (0] o 225

viii

TABLE OF CONTENTS

Appendix A: Creating a Root User Account to Access the

Amazon Management Consolecccuunmmmmmmmmmmrmmmsmsssssssnmmmmmmssssssssssnseesnsssnnns 227
Appendix B: Creating an IAM RoI€.......cuuurummmmmmmmrmmsssssssssssnssssssssssssssssssssssssssssssnnnns 229
Appendix C: Creating an IAM USEeruurssmmmmmmmmmsmsssssssssssnssssssssssssssssssssssssssssnsnnnns 231
Appendix D: Creating an S3 BUCKEt.........ccuseemmmssssnmnmmssssnsnmsssssssnssssssssnsssssssnnssssnnns 233
Appendix E: Creating a SageMaker Notebook Instance...........ccccussennnnnssssnnnssssanns 235
INA@X.eiiieiiesriesnsn s s s s ————————————— 237

ix

About the Author

Himanshu Singh is a technology lead and senior NLP

engineer at Legato Healthcare (an Anthem company). He
has seven years of experience in the Al industry, primarily

| in computer vision and natural language processing. He has

authored three books on machine learning. He has an MBA

from Narsee Monjee Institute of Management Studies, and a

postgraduate diploma in applied statistics.

About the Technical Reviewer

Anindita Basak is a cloud architect and DevOps engineer.
With more than a decade of experience, she helps
enterprises to enable their digital transformation journey
empowered with multicloud, DevOps, advanced analytics,
and Al She co-authored the books Stream Analytics with
Microsoft Azure and Hands-on Azure Machine Learning and
was a technical reviewer of seven books on Azure along

with two video courses on Azure data analytics. She has also
worked extensively with AWS Infra, DevOps, and analytics.

xiii

Acknowledgments

I'd like to thank my parents and brother for their unbounded support and the
Apress-Springer team.

Introduction

This book is structured into three parts. The first part of the book covers the concepts of
cloud computing and gives an overview of how AWS works. The second part of the book
takes on AWS in detail and covers SageMaker, Step Functions, S3 buckets, ECR, etc. The
last part talks about the use cases for AWS services. Different services such as Amazon
Comprehend and Extract are discussed here.

Specifically, Part I starts by covering cloud terminologies. It helps you understand
the cloud concepts required to use AWS. Then the book discusses the various AWS
services that Amazon provides and how they help users in different ways. It discusses
the different functionalities of AWS that are categorized under storage-based, compute-
based, security-based, etc. By end of the chapters in this part, you will have an overview
of how AWS works.

Part II discusses SageMaker in detail. The part starts by running a basic
preprocessing script in SageMaker and ends with building a complete end-to-end
pipeline of machine learning in it. It covers how SageMaker talks with different services
such as ECR, S3, Step Functions, etc., to build the final model.

Part III discusses three use cases of machine learning using some of the other
services of AWS. The book discusses how to extract text using Amazon Textract, how
to use Amazon Comprehend, and how to make a time-series model using Amazon
Forecast.

This book was written to give people who know Python and machine learning some
experience with AWS. It teaches you how to use the power of AWS to build your heavy
models and how AWS provides you with services to make super models or deploy your
custom code with the same AWS support.

xvii

PART |

Introduction to Amazon
Web Services

CHAPTER 1

Cloud Computing
and AWS

This chapter covers the different components of cloud computing and of Amazon Web
Services (AWS). After reading the chapter, you'll understand the different important
components of AWS, which will make it easier to understand the machine learning
components of AWS.

What Is the Cloud?

So, what is the cloud? If you look at memes shared across the internet, you might think
the cloud is nothing but someone else’s computer that you can use from your own
computing device, for your own personal use. Then the question arises, why do we
need the other computer when we have our own? It’s because our computer may not
have things that the other system has. Maybe your budget when buying a system was
less than the other person’s, and he therefore has more computational power to use. So,
instead of buying a new system with more computational power, you can just access the
other system for some amount of time and then return to your own system. This is the
benefit that the cloud provides. And, by the way, we all know the other system is not just
any normal system. Cloud systems are provided by big companies such as Amazon and
Google. So even if you are trying to buy a new system with as much computational power
as cloud systems, you will not be able to afford it.

Formally speaking, the cloud is a particular computing service that is present at a
different remote location that we can access using networking or the internet. Cloud
services may include storage services, infrastructure services, software services, or
any other specific services that you need. Figure 1-1 shows how different devices are
connected to cloud systems at a remote location.

© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_1

https://doi.org/10.1007/978-1-4842-6222-1_1#DOI

CHAPTER 1 CLOUD COMPUTING AND AWS

Cloud Services

- <>
Q@éﬁ‘
-

e
i1 61 L1

'
[Requesting }

Devices

Figure 1-1. How different devices are connected to cloud systems at a remote
location

If we are able to access any of the services present at the remote location using the
internet or networking, then we call this cloud computing.

Control of Cloud Systems

Obviously, if someone is allowing access to use their personal system over the internet,
then they may want to restrict access in some ways. Or, they may want one group of
people to have full access, but another group to have limited access. This is done to avoid
security issues and not expose the vulnerabilities present in the system. To solve this
problem, cloud computing comes in four types.

e Public cloud
e Private cloud
e Hybrid cloud

e Community cloud

CHAPTER 1 CLOUD COMPUTING AND AWS

Public Cloud

When the entire cloud infrastructure is open for public consumption, then it is called a
public cloud. Examples are the email services provided by Google or Yahoo.

Private Cloud

When only a specific group of people can access the services provided by a cloud, then
itis called a private cloud. An example is when people in an organization can access the
resources present in the organization’s cloud, but no one from outside the organization
can access the same resources.

Community Cloud

When a cloud service is accessible to a group of organizations, then it is called a
commupnity cloud. For example, different organizations can access the services of AWS
or the Google Cloud Platform by registering. So, the same services are available to all the
organizations that have paid for it, but not to anyone else.

Hybrid Cloud

When a cloud service provides both options (i.e., services of a public and private cloud),
then it is termed a hybrid cloud. An example is using two services of AWS. When we train
a model using SageMaker training, it is a private task for specific organizations because
it contains sensitive data and other things, but when we train a model and then share
the endpoint publicly, it is a public cloud because whoever has the link can access that
endpoint. (You'll learn more about SageMaker in later chapters.)

Cloud Services

Now that you have learned about the different ways of accessing a cloud, let’s dive
deeper and look at the services that a cloud platform may provide. We can group these
services into four domains.

o Infrastructure as a service (IaaS)
e Platform as a service (PaaS)
o Software as a service (SaaS)

o Anything as a service (XaaS)

CHAPTER 1 CLOUD COMPUTING AND AWS

Infrastructure as a Service

As the name suggests, when a cloud service provider gives access to users to the
infrastructure that it has built, it is considered an IaaS. For example, a cloud provider
may give access to virtual machines, physical machines, storage devices, etc. For
example, we can use Google Drive to store information on the cloud, since Google is
providing its hard drives as a service. AWS also provides machines called EC2 instances
that individuals can use to do operations that require higher computational power.

Platform as a Service

Sometimes, instead of requiring an entire infrastructure, we want only a specific
development runtime where we can write our code or make games or websites. This
way the cost of building an entire infrastructure can be reduced. This type of service is
a PaaS. For example, we can use Google Colaboratory for writing Python or R code. In
addition, we can use AWS SageMaker to train and put a machine learning model into
production. There are other service providers as well such as Microsoft Azure, Google
Cloud Platform, IBM Cloud, etc.

Software as a Service

When we don’t want the runtime, but we want to use a specific software application
with its built-in runtime, we don’t need a Paa$S, which would give us the runtime as well
as dependencies and software we'd need to install. Hence, there are cloud services that
provide specific software for specific uses, called SaaS. Examples of SaaS are Amazon
Ground Truth, which is used for data management, and Office 365 by Microsoft.

Anything as a Service

The first three types of services have been on the market for quite some time, but now,
because of the advancement in technology, cloud service providers are providing almost
anything as a cloud service. For example, we can now draw sketches of web pages and
give them to Azure, which converts them into HTML pages. In addition, you can play
online songs by just talking to Alexa, which is connected to AWS. All this comes under
the umbrella of XaaS.

CHAPTER 1 CLOUD COMPUTING AND AWS

Let’s now dive deeper into a specific cloud service provider, called Amazon Web
Services (AWS).

Introduction to Amazon Web Services

AWS provides global cloud computing services across many countries and is currently
responsible for handling the infrastructure of many companies, including small and
large enterprises. According to the AWS documentation, currently AWS caters to
hundreds of thousands of businesses in 190 countries.

AWS provides more than 150 services that can be used on demand and can be paid
for based on the time used. Currently, AWS has data servers in a lot of regions, and you
can choose to use only one region’s server that is closest to your users. The following is
the list of data servers across the globe:

e North America
¢ Ohio (US East)
e Oregon (US West)
¢ Northern California (US West)
e Northern Virginia (US West)
¢ Gov Cloud (US East and US West)
¢ Canada (Central)
e South America
e Sao Paulo
o Europe/Middle East/Africa
e London (Europe)
e Stockholm (Europe)
e Frankfurt (Europe)
e Paris (Europe)
¢ Bahrain (Middle East)

e Ireland (Europe)

CHAPTER 1 CLOUD COMPUTING AND AWS

o Asia Pacific
« Singapore (Asia Pacific)
¢ Beijing (Mainland China)
e Sydney (Asia Pacific)
o Tokyo (Asia Pacific)
¢ Seoul (Asia Pacific)
o Ningxia (Mainland China)
¢ Osaka (Asia Pacific)
¢ Mumbai (Asia Pacific)
« Hong Kong (Asia Pacific)

As I mentioned, AWS has more than 150 services. The question is, how do you access
them? Is there a single centralized place from where they can be accessed? Well, yes!
This place is called the AWS Management Console. Let’s look at some of the features of
this console and how it is really helpful to users.

AWS Management Console

With the AWS Management Console (AMC), not only can you access the services, but it
provides some other cool features as well. Some of them are as follows:

e Once you have created an account on AWS and logged in to AMS,
then your session remains active only for 12 hours. After that, you
need to log in again. Obviously, this time limit is customizable. This
feature is provided for security reasons.

e Notonly can you access AMS from the Web, but you can use the
mobile app as well. The AMS app is present both on I0OS and on
Android devices.

CHAPTER 1 CLOUD COMPUTING AND AWS

o AMS provides access to different learning resources, articles,
documentation, videos, etc., which help us in understanding the
different services of AWS.

e You can even customize and personalize AMS based on your usage
and needs.

After logging in to AWS, you will see the following features:
e Search button to find specific services
» Recently visited services by a user
o Listofall the services
e Links to automated workflows
e Link to learning resources

Figures 1-2, 1-3, 1-4, and 1-5 show the different screens of AMS.

E!E_S Services ~ Resource Groups ~ *

AWS Management Console

AWS services

Find Services

You can enter names, keywords or acronyms.

Q

¥ Recently visited services
B step Functions 'Q Amazon SageMaker ‘: CloudWatch

fit ECR =4 53

Figure 1-2. Find Services feature and recently visited services on AMS

CHAPTER 1 CLOUD COMPUTING AND AWS

Learn to build

Learn to deploy your solutions through step-by-step guides, labs, and videos. See all [

Websites and Web Apps
3 videos, 3 tutorials, 3 labs

ao

=03

DevOps
3 videos, 3 tutorials, 3 labs

Build with SDKs [4

Storage
3 videos, 3 tutorials, 3 labs

=t

Machine Learning
12 tuterials, 6 trainings

Databases
3 videos, 3 tutorials, 3 labs

Big Data
3 videos, 1 lab

AL

S

Figure 1-3. Learning resources on AMS

Build a solution

Get started with simple wizards and automated workflows.

Launch a virtual machine
With EC2
2-3 minutes

L

Register a domain
With Route 53
2 minutes

P See more

Build a web app
With Elastic Beanstalk
6 minutes

@

Connect an loT device
With AWS loT
5 minutes

Build using virtual servers
With Lightsail
1-2 minutes

Start migrating to AWS
With CloudEndure Migration
1-2 minutes

)

Figure 1-4. Automation on AMS

10

¥ All services

CHAPTER 1

CLOUD COMPUTING AND AWS

{C} Compute #£% Quantum Technologies () Security, Identity, & Compliance
EC2 Amazon Braket [2 1AM
Lightsail [Resource Access Manager
Lambda {1 Containers Cognito
Batch ECR Secrets Manager
Elastic Beanstalk ECS GuardDuty
Serverless Application Repository EKS Inspector

AWS Outposts
EC2 Image Builder

Database Migration Service
Server Migration Service
AWS Transfer for SFTP

|| Management & Governance
AWS Organizations

MediaConnect
MediaConvert
MedialLive

Amazon Macie [§

AWS Single Sign-On
Certificate Manager

Key Management Service

= Stavage CloudWatch ol
2:5 AWS Auto 5“_’""9 Directory Service
e CloudFormation WAF & Shield
$3 Glacier CloudTrail AWS Firewall Manager
Storage Gateway ;o":? K Artiact
AWS Backup : psl O7iS Security Hub
ervice Catalog Detective
Systems Manager
! Database AWS AppConfig =

RDS Trusted Advisor il AWS Cost Management
DynamoDB Control Tower AWS Cost Bxplorer
ElastiCache AWS License Manager AWS Budgets
Neptune AWS Well-Architected Tool AWS Marketplace Subscriptions
Amazon Redshift Personal Health Dashboard [4
Amazon QLDB AWS Chatbot (1] Mobile
Amazon DocumentDB Launch Wizard AWS Amplify
Managed Cassandra Service AWS Compute Optimizer Mabile Hub

AWS AppSync

%> Migration & Transfer [=31 Media Services Device Farm

AWS Migration Hub Elastic Transcoder
Application Discovery Service Kinesis Video Streams % AR & VR

Amazon Sumerian

Annliratian Intenratinn

Figure 1-5. List of all services on AMS

We will look at how to log in to AWS and visit AMS in detail in the next section about
machine learning. Now, let’s move to the next feature of AWS called the AWS Command-Line
Interface (AWS CLI).

AWS Command-Line Interface

If AMC gives you a visual interface to access the AWS services, the CLI gives you some
advanced power to access the same services through the console. It is used by advanced
developers who have spent some time with AWS. You just need to download a single
tool, and then you can use it to control different services, write scripts, and have control
over the automation of services.

11

CHAPTER 1 CLOUD COMPUTING AND AWS

AWS provides a lot of resources such as reference documents, GitHub repositories,
forums, etc., for understanding AWS CLI. Though one can use AWS CLI from the default
console such as the command prompt of Windows or terminals of Linux and Mac, there
is a dedicated AWS shell that provides some advanced functionalities. Some of them are
as follows:

e Autocompletion support
¢ Inline documentation of commands
e OS shell commands, which can also be executed from the same shell

We will be using the CLI a lot when we will cover machine learning in detail.
Therefore, we will look at its practical aspects directly in that section.

Because AWS provides so many services, covering all of them is not possible in
one book. Moreover, this book is about machine learning, so it doesn’t make any sense
to cover every service here. But, we will discuss three services that I think are really
important and commonly used. The following are the services that we are going to
discuss here:

o AWS Storage Services
¢ AWS Compute Services
e AWS Networking and Content Delivery Services

Let’s start the discussion with the first one, Storage Services.

AWS Storage Services

When we work on a cloud platform and use its services, obviously we’ll have a lot of
data depending on the requirements. For example, if we are building a website, then we
will have images, videos, and lots of other things to store. If we have a machine learning
model, then we will have terabytes of data to handle. This data can be both structured
and unstructured. Similarly, for business purposes, we can have multiple Excel sheets
or presentations. All these data types must be stored somewhere in the cloud, and the
cloud platform should provide this facility.

12

CHAPTER 1 CLOUD COMPUTING AND AWS

AWS provides a lot of options for data storage, and we’ll discuss three of them in this
section.

e Amazon S3
e Amazon Elastic File System (EFS)

e AWS Storage Gateway

Amazon S3

One of the most used services of AWS is Amazon Simple Storage System (S3). It provides
you with an interface where you can store your data in a similar way to how you store it
in your local file system. You can create folders and multiple subdirectories to organize
your data. The following are some of the basic features Amazon S3 provides:

o It provides scalability, which is currently leading in the industry.
o It provides real-time data availability.

o It provides security and optimized performance.

e Ithas a durability of 99.9999999... percent (11 nines).

S3 is really simple to use. First let’s understand some of the naming conventions used
by Amazon S3.

Buckets

A bucket is just like a folder in your local file system. It is a container used for storing
your files.

Objects

The files that you store in S3 are termed objects. All the objects are stored inside the
buckets.

Keys

Every object that you store will be given a unique identifier called a key. Also, not only
objects but buckets are provided with unique keys.

13

CHAPTER 1 CLOUD COMPUTING AND AWS

Does S3 only provide simple storage, as its name suggests? I will say yes and no. Yes,
because its main use is storage only, and it is really simple. No, because it has lots of
other features revolving around the storage feature that make it a go-to service for every
customer. Let’s see what those features are that make S3 so powerful.

e Based on how frequently data is being used, S3 provides different
types of storage classes.

o S3 STANDARD: Data that needs to be frequently accessed
o S3 STANDARD_IA: Data that needs to be less frequently accessed
e S3 GLACIER: Data that we want to archive

o Storage without security is nothing. AWS provides access control to
the buckets that you have created. You can accomplish this using
policies. The following are the three levels of control based on policies
that we can apply:

o Who can access which bucket?
« From which network can the buckets be accessed?
o Atwhat time should the buckets be accessed?

e You can also create versions of your objects. For example, if the
same Excel sheet is updated five times, then five versions of it can be
created.

In this entire book, Amazon S3 is the service that we will be using continuously with
machine learning services. We will discuss the services in detail in the next section.

Amazon Elastic File System

Amazon Elastic File System (EFS) is an elastic network file system that most of the
AWS cloud services are compatible with. It is called elastic because it is scalable as
well as shrinkable. If you upload a smaller amount of data, then it shrinks its size to
accommodate that data. But if you upload a larger amount of data, then it can scale up
its size. Scaling up can be in the petabytes as well. EFS works with the latest version of
NFS, which is NFSv4.1. Hence, it is compatible with almost everything that you want to
develop.

14

CHAPTER 1 CLOUD COMPUTING AND AWS

Tip Using Network File System (NFS), you can store, edit, delete, and perform
other operations similar to how you perform them in your local system. It is a
kind of distributed file system that uses network-attached storage (NAS). The
current version of NFS provides advanced features such as strong authentication,
file caching, and support for Windows File System. NFS can be accessed now on
global WANS.

Just like S3, EFS provides two kinds of file storage.
o Standard Access
o Infrequent Access

When we want to access data frequently, we use Standard Access, while infrequently
used data can be stored in Infrequent Access EFS. Also, just like S3, you can authenticate
and authorize data in EFS and encrypt it further. Finally, you can add policies, just like
§3, for maintaining access control.

AWS Storage Gateway

AWS Storage Gateway is a hybrid infrastructure provided by AWS. If you want to use your
on-premise infrastructure for all your storage needs but still you want some functionality
by which you can use the cloud storage services of AWS, then Storage Gateway is the best
solution.

Storage Gateway provides three kinds of solutions.

o File Gateway
e Volume Gateway

o Tape Gateway

File Gateway

Using this service, all the files are stored in S3. It gives you a virtual application with
which you can manage all your files in S3. Retrieving/storing files is done using protocols
such as Network File System or Server Message Block. The virtual software that we are
talking about is nothing but a virtual machine with which you manage your files. This
can be with VMware ESXi or Microsoft Hyper-V.

15

CHAPTER 1 CLOUD COMPUTING AND AWS

Volume Gateway

Instead of files, you can directly store volumes in the cloud that you can later mount as
Internet Small Computer System Interface (iSCSI). Again, the software that is deployed
on-premise is a virtual machine. The following kinds of volumes are supported:

e Cached volumes
¢ Stored volumes

Having cached volumes means storing the data entirely in S3, and then the
frequently used data is cached in the local system. Figure 1-6 shows the cached volume
gateway architecture provided by AWS.

Your Data Center

Amazon 53

Gateway VM

== ||| =5—m
Storage Buffer :

Volume Storage Snapshots

A
0
[TARGET |

INITIATOR

Client

Application Hypervisor
Server
Host

!

=

Storage Area Network, Network
Attached, or Direct Attached Storage

L

Figure 1-6. Cached volumes, Storage Gateway architecture

Figure 1-6 is divided into three parts. The left part shows the actual users using the
local architecture. The middle component is the local infrastructure of an organization.
The right component has an S3 connection for the data backup.

When you store your entire data locally and then back up the snapshot versions of
this data on the cloud, then it is the stored volume support of Volume Gateway. We can
use this in the case of disaster recovery. For example, if you lose your local data, you can
download the latest snapshot from the cloud. Again, we use S3 as the storage service
here. Figure 1-7 shows the architecture of a storage volume.

16

CHAPTER1 CLOUD COMPUTING AND AWS

e : R
I Gateway VM | : .
[L : »
Volume Upload :

Amazon 53

INITIATOR
TARGE

Client

Storage Buffer Snapshots
Application Hypervisar
Server
Host

!

e

Storage Area Network, Network
Attached, or Direct Attached Storage

Figure 1-7. Stored volumes, Storage Gateway architecture

The architecture in Figure 1-7 is almost the same as Figure 1-6, but instead of storing
the entire data, we are storing only snapshots of the locally saved data.

Tape Gateway

This is used for archiving data. For this we can use Amazon S3 Glacier or Deep Archive
as the storage service. This can also be deployed locally using virtual machines. The
architecture given in Figure 1-8 shows how tape gateway works.

17

CHAPTER 1 CLOUD COMPUTING AND AWS

. Your Data Center A
-

-

ﬁ. [, L[rape o, GatewayVm ‘

Client ﬁ% s | e '-| . .

AL el W

Client RO ‘ Sowe e |
HOS[

\

Storage Area Network, Network

i | Virtual Tape bacmw
{ Amazon

L . or Diroct Attach g
.
(
ﬁ [Tape Gateway VM
£ “iscsi | | Orive
Client = T T
ﬁ Sji— | Media . .
e 1 | |Changer
Backup iSCS {Chang
Cache Upload
Client GRS Storage Buffer
L Host

\

\ /_@ .
%%

! Virtual ‘fnpl blc!(od by

Virtual Tape Shelf

B

By | T

Figure 1-8. Tape gateway, Storage Gateway architecture

You can see in the architecture that different infrastructures are storing the data in
their respective S3 buckets. Later, the data of all the S3 buckets is combined and then
stored in the Amazon S3 Glacier. Virtual tapes are nothing but a means of storing data.
Just like how physical tapes were empty and then filled at the time when they were used,
similarly virtual tapes can also be blank and can be filled with data as per your needs.

Now that we have seen how Storage Services of AWS operates and looked at different

services, let’s move on and explore the compute services.

AWS Compute Services

In the previous section, you learned how to store data using AWS services. In this section,
we will look at some compute services provided by AWS. When we run an application,

play games, or develop something, we require the computational power of the system.
We measure this in terms of the RAM, processor, graphics card, etc. Sometimes we may
have a big system requirement but not be able to get it due to lack of money or lack of

18

CHAPTER 1 CLOUD COMPUTING AND AWS

resources. That is the reason why Amazon provides different kinds of services for all
computational requirements. In this section, we will discuss the following AWS compute

services:
¢ Amazon EC2

e Amazon ECR

Amazon EC2

Elastic Component Cloud (EC2) reduces the burden for a user to invest in hardware
requirements. Whatever the requirement, EC2 allows you to create that many virtual
servers where immediately the work can be processed. In addition, instead of having
a static infrastructure, it is dynamic. This means that if a sudden surge in computation
requirements occurs, EC2 automatically scales itself up, without disrupting the ongoing
processes.

The following are some of the features that EC2 gives its users:

o It provides an environment where we can do our computation-heavy
work. This is done in a virtual computing environment with what
AWS calls instances.

e Whatever your software or hardware needs, you can configured them
using the service Amazon Machine Images (AMIs).

o It provides security to all the instances you spin up. It also provides
security groups that help the user configure firewalls, ports, IP ranges,
etc.

In addition, there are a lot of other services that help the users in their day-to-day
coding and development life.
The instance types that EC2 provides can be grouped into the following categories:

e General purpose

o Compute optimized
e Memory optimized
e Storage optimized

e Accelerated computing

19

CHAPTER 1 CLOUD COMPUTING AND AWS

General-Purpose Types

These types provide a balance of computational power, storage, and networking. They
are further divided into the following groups:

e Al

e T3

o T2

. Még
e M5

e Mba
e Mbn
e M4

Compute Optimized

When the work requires high computational usage and requires heavy processors, you
can use compute-optimized instances. They can be used for media tasks, scientific tasks,
fast web servers, or even game servers. They can be grouped into the following types:

e C5
e (Cbn
e (C4

You can find more information about these groups at https://aws.amazon.com/
ec2/instance-types/.

Memory Optimized

If the work requires working with large datasets, you need memory-optimized instances.
They are grouped into the following types:

e R
¢ Rba
¢ Rb5n

20

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

CHAPTER 1 CLOUD COMPUTING AND AWS

e R4
o Xle
¢ Xl

o High Memory

o zI1d

Accelerated Computing

For all machine learning and deep learning applications, these kinds of instances are
preferred. These systems are really fast, and their precision is also very high. They can be
grouped into the following types:

e P3
e P2
o Infl
e G4
e G3
e F1
Storage Optimized

This type is best if you want to work on huge datasets and want less latency with faster
read and write operations. They can be grouped into the following types:

e I3

e I3en
e D2

e HI1

You can find detailed information about every instance types at https://aws.
amazon.com/ec2/instance-types/.

21

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

CHAPTER 1 CLOUD COMPUTING AND AWS

Other Services

AWS also provides other services with most of the previous instance types. This is done
to give you financial benefits based on your usage. These services include the following:

¢ On-demand instances
¢ Reserved instances
e Spotinstances

If you think your work is not going to take a lot of time, like for days or months, then
you can go for on-demand instances. These instances are charged on a per-hour basis.
Whatever compute or memory and storage size you want, you can use that, but the
payment will be based on the hours used.

Reserved instances are for longer-term usage, and hence the discount that a person
receives is up to 75 percent of the on-demand instances. This also provides options to
change types.

There are times when a lot of EC2 instances get unused. Spot instances let you take
advantage of those instances, and you can get up to a 90 percent discount as compared
to on-demand instances when using spot instances.

Amazon Elastic Container Registry

In recent times, Docker has taken the industry by storm. It allows companies to separate
their infrastructure from their coding. In simple words, Docker provides you with a
platform where you can develop and ship code efficiently without worrying about the
underlying architecture. Amazon ECR is a repository for all the Docker images that you
want to run in AWS.

Once you spin up an EC2 instance, you have an option to run any Docker image on
that instance. AWS has its own prebuilt Docker images that you can import, or you can
have your own custom-made Docker images uploaded on ECR and then imported inside
the EC2 instance.

22

CHAPTER 1 CLOUD COMPUTING AND AWS
Amazon ECR has the following components:
o Registry

¢ Authentication token

o Repository
e Policy
e Image

The registry is like a normal register, where you want to make an entry to every image
that you upload to ECR. To make sure that only the right person is able to access the ECR
for uploading images, authentication tokens are used. The repository is the place that
actually stores your Docker images. Images are your actual Docker files. These are the
files that you have created containing all your dependencies. You use the image to store
them in ECR and import them in EC2.

You will understand the operations of ECR in detail when we cover SageMaker in
later chapters.

AWS Networking and Content Delivery Services

In this section, we will discuss three important services of AWS in this domain.
e Amazon VPC
¢ Amazon API Gateway

¢ Amazon CloudFront

Amazon VPC

Amazon Virtual Private Cloud (VPC) is a virtual network that we create so that we can
segregate certain things from the entire user domain. It acts just like a normal cloud,

but instead of having separate infrastructures, there is only one cloud infrastructure but
multiple virtual clouds made over it. For example, we can make a separate virtual cloud
for the marketing, finance, and operations departments. Only its own set of users know
what is happening in each cloud, but actually all the files that are being stored are on the
same storage, which is being shared by all the departments. Therefore, each cloud can
have its own security policies, access levels, etc.

23

CHAPTER 1 CLOUD COMPUTING AND AWS

Amazon VPC is the same, except it also provides a scalable AWS architecture.
Amazon VPC has the following components:

e Subnet: Each virtual private cloud can be accessed only by a set of IP
addresses. Any request coming from an address outside the list is not
given access. This list is called a subnet.

e Route table: As 1 said, a virtual private cloud has the same underlying
infrastructure as local cloud. But AWS provides its own features as
well. One of the features is load balancing, meaning if the load of
the server becomes very high, then we can divert the traffic to an
alternate server. Once we are working in VPC, we must know the
routes to where the traffic needs to be directed. These routes are
stored in route tables.

o Internet gateway: Through the Internet gateway, all of your virtual
private clouds are able to contact the underlying EC2 instances.

e Endpoint: If we want to connect our virtual private cloud to any of the
services provided by AWS, we can just use the VPC endpoint service
provided by Amazon VPC.

Figure 1-9 shows an architecture where the Internet is used for VPC usage.

24

CHAPTER 1 CLOUD COMPUTING AND AWS

te IPv4: 172.31.0.5
Public IPv4: 203.0.113.17
EC2 instance \

Default subnet 1 \\
172.31.0.0/20 \

Availability Zone A _
e ______________________q;_ N
a Router \ teway

Private IPv4: 172.31.16.5
Public IPv4: 203.0.113.23
EC2 instance . \\ Main route table
™ — \ Destination Target
Default subnet 2 ~—__\
172.31.16.0/20 172.31.0.016 local
0.0.0.0/0 igw-id

Availability Zone B y

Default VPC
172.31.0.0/16

Region
N\ J

Figure 1-9. Amazon VPC architecture

If you look at the architecture in Figure 1-9, you can see that inside VPC we have
two EC2 instances, each with a public IP address and a private IP address. The public IP
address is used if you want to access the services from outside the VPC, while the private
one is used to access the same services from the inside of VPC. You can see that there is a
router that uses route tables to know different routes and then uses an Internet gateway
for the access. You also have an IP address and a port number for the VPC (172.31.0.0 is
the IP address and 16 is the port number in Figure 1-9).

Amazon API Gateway

Before understanding API Gateway, I will give a brief introduction about application
programming interfaces (APIs). An APl is a service that we use to make two or more
applications talk with each other. For example, when we use Facebook to upload an
image or a video, we are using the upload API of Facebook, and whenever we are liking,
commenting, or sharing, we are using another API of Facebook. Therefore, in the current
development scenario, each small service is developed and then converted into an

25

CHAPTER 1 CLOUD COMPUTING AND AWS

API (the REST API is one of the types of API that is most used) and then can be used
using the networking protocols. Amazon API Gateway provides you with the services to
efficiently manage these APIs.

Amazon API Gateway can be used to create, publish, maintain, monitor, and secure
different kinds of APIs such as REST, HTTP, or the WebSocket API. These APIs can be made not
only to have their own applications, but they can also access and use different AWS services.

Figure 1-10 shows the architecture of API Gateway.

Connected Users and
Streaming Dashboards

& AWS Lambda [Cr'j] Amazon EC2

e —_ Amazon
_7;2! Amazon Kinesis

-] i
: - " DynamoDB
| lers ‘ APl Gateway
= 'y cache Other AWS Publicly accessible
[(.\5 SOrVices
——

f'_‘i\

(=

Web and Mobile ¢ =) endpoints
Applications

Amazon APl Gateway

Create, publish, maintain, C\'\) et ==
* A maonitor, and secure APIs Q ~1 |"_"'[;';',’
WS at any scale O| |UE':;|
(@ OeS J =

(8]

@ B Amazon =
10T Devices CloudWatch Private Applications Data Center
VPC and On-Premises

Private Applications:
VPCand On-Premises

Figure 1-10. Architecture of API Gateway

In Figure 1-10, Amazon CloudWatch is used for monitoring the logs of any services
provided by AWS and API Gateway in the current state. API Gateway Cache provides you
with an option to reduce the latency by storing the most used components. All the APIs
can be connected to different services of AWS as well like AWS Lambda, EC2, Kinesis
(Used for Live Data Analytics), DynamoDB (Cloud Database), etc. It can be used by any
third-party applications as well.

Amazon CloudFront

There are a lot of services present on the Web that provide us with a lot of options to build
websites and serve them to the end users. AWS can be counted as one of them, but it
provides features that the others don’t provide. AWS gives the option of less latency. To
understand latency in a little detail, imagine you are opening a website whose servers are

26

CHAPTER 1 CLOUD COMPUTING AND AWS

in India, but you are in North Korea (assuming that the Internet is provided to its citizens).
Now, since the servers are pretty far away, it will take a lot of time to use any service
provided by the website. But if, instead, the website was deployed in AWS, then instead

of using the servers present in India, a person would be able to use the servers present in
South Korea. Because the server is closer to the country, the pages will open faster.

How does AWS do it? The answer is its service called CloudFront. How does
CloudFront do that? It does that by using the edge locations provided by AWS. When you
make a website, it has both static and dynamic content such as HTML pages, CSS and
JavaScript, etc. So, if a request to use the website comes from the location where your
server is not present, CloudFront distributes all the contents of the website to the Edge
Location nearest to the place from where the request was made. Therefore, now opening
the website becomes faster as the content is being delivered from a nearest server.

To know more about edge locations, please visit this link: https://aws.amazon.com/
cloudfront/features/.

In Figure 1-11, you can see how CloudFront is used for this distribution. Let’s see
what each step represents in the image.

1. All the files that your website is going to use are stored in an AWS
service like S3, or it can be your own HTTP server. (Steps 1 and 2.)

2. Now you initiate the CloudFront distribution by providing the link
to your S3 or HTTP server. (Step 3.)

3. A domain name, specific to CloudFront, is provided to your
distribution. It can be changed as well. (Step 4.)

4. CloudFront sends the configuration of the distribution it has just
created to all the edge locations present across the world. Here the
cache of your files is created. (Step 5.)

27

https://aws.amazon.com/cloudfront/features/
https://aws.amazon.com/cloudfront/features/

CHAPTER 1 CLOUD COMPUTING AND AWS

Developer
* Edge Locations
3 4 5

http://
dllllllabcdefs8.
cloudfront.net/

" Web
Objects Distribution

Your
Distribution's
Configuration

s
Y

Amazon

o)

Amazon S3 Bucket or HTTP Server CloudFront

Figure 1-11. Amazon CloudFront service

Conclusion

This finishes the basic introduction about cloud computing and the Amazon version of
the cloud: AWS. In this chapter, you saw different concepts related to cloud computing
and learned about different components of AWS. We have not seen all the services of
AWS, as there are more than 150 of them. They all cannot be covered in a single book,
but we have covered all the important ones as far as this book is concerned.

In the next chapter, we will be looking at the security aspects of AWS and different
types of services provided to make our applications secure.

28

CHAPTER 2

AWS Pricing and Cost
Management

In the previous chapter, we looked at some concepts of cloud computing and explored a
few of the important services provided by AWS. In this chapter, we will look at how AWS
charges us for the services it provides and how we can get the best out of AWS with the
least amount of burden on our pocketbooks as possible.

Understanding the Pricing of AWS

As per the documentation, AWS tries to make our lives simpler by charging us the same
way as we get charged for using electricity or water. This means we pay only for whatever
we are going to use. When we have an infrastructure present on our premises, we have
to pay for everything, even if we are not using it. In AWS, it is not the same. This is called
pay-as-you-go.

In Figures 2-1 and 2-2, AWS tries to show the difference in pricing between two
architectures. When we look at Figure 2-1, we see that even when we are not using
the infrastructure, the part denoted by the red shaded region, we are still paying for it.
Hence, in the end, you see that every month the charges keep increasing, and by the end
of the year you end up paying a lot.

29
© Himanshu Singh 2021

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_2

https://doi.org/10.1007/978-1-4842-6222-1_2#DOI

CHAPTER 2 AWS PRICING AND COST MANAGEMENT

S

0 1/2 1

Figure 2-1. Pricing in on-premise infrastructure

Instead, Figure 2-2 shows that one pays more if it uses more, while in the remaining
days it is much less. Hence, the cost savings in the case of AWS is much more. Another
way that AWS helps us to save money is by using the reserve functionality provided.

;

0 1/2 1
Figure 2-2. Pricing in AWS infrastructure

By reserved instances, AWS means that you pay for a service of AWS up front, for
alonger time of usage. This means the resources and infrastructure required for that
service at a later time are reserved, and hence no one else can use those reserved
services and infrastructure. As you are asking to use an entire service for a longer amount
of time, this means AWS will keep on earning from those services. The infrastructure
will never be idle in terms of money. Therefore, to make things easier for the companies
opting for reserved instances, AWS charges them less. It is sometimes less than 70
percent of the on-demand instances that we talked about in the previous chapter.

Now, before going into the details of AWS pricing, let’s first look at the AWS Free Tier,
including what services we can use for free and for how much time.

30

CHAPTER2 AWS PRICING AND COST MANAGEMENT

AWS Free Tier

AWS offers free services in three areas.
o Services that are always free
o Services that are free for around 12 months
o Services that are available on a trial basis
The following are some of the services that are always free:
e DynamoDB is free for 25 GB storage.

e AWS Lambda is always free for 1 million requests per month, and up
to 3.2 million of compute time.

o 1 million objects can be stored in Amazon Glue for free.
The following are some of the services that are free for about 12 months:
e 5GB of Amazon S3

e 750 hours of EC2 instances per month, supporting t2.micro and
t3.micro

e 50 Kunits of text in Amazon Comprehend
The following are the services that are available on a trial basis:

e 250 hours/month of Amazon SageMaker using t2.medium for two
months

e 50 hours/month of Amazon SageMaker using m4.xlarge for two
months

e 125 hours/month of hosting in Amazon SageMaker for two months

Factors Affecting Pricing in AWS

AWS calculates pricing based upon these three elements:
e Computation
o Storage

e Data transfer

31

CHAPTER 2 AWS PRICING AND COST MANAGEMENT

AWS doesn’t charge you for the incoming transmission of data or data transmission
between two or more services of AWS only. But, whatever data goes outside the AWS
network (an outbound data transmission), it does charge you for that. It depends upon
the amount of data transferred. The more data, the lower the price per gigabyte.

As mentioned, for computations the charge is calculated on an hourly basis, and for
storage it is calculated in gigabytes. Now that we know which factors affect AWS pricing,
we must know how we can optimize the cost in AWS.

AWS Cost Optimization

We can create a cost-effective AWS architecture by following the four simple steps given
here:

¢ Right-sizing your services
e Using reserved instances
e Using a spot market

e Using the Cost Explorer

Right-Sizing

The term right-sizing means that you only use a service that you need. This means you
only use the compute power that you require or only use the storage that you need. You
must not over-provision it and neither should you compromise on the capacity. AWS
provides you with services that help you in right-sizing through autoscaling, which
includes up scaling, down scaling, scaling out, and scaling in based on the usage.

To right-size, the organization should perfectly know the needs and usage pattern
required and then take advantage of AWS’s elasticity to right-size. Through this, the
organization can save up to 70 percent of the total cost. Also, one must remember that it
is not a one-time affair. This means the companies have to periodically plan their needs
and pattern and make changes accordingly. Therefore, one can say that right-sizing is an

ongoing process.

32

CHAPTER2 AWS PRICING AND COST MANAGEMENT

How do you decide when it is the perfect time to perform right sizing again? For this,

AWS has given us some tools that can be used for making these sorts of decisions.

Amazon CloudWatch: You can know about the amount of CPU
utilized, the throughput of the network, the disk I/O operations, etc.,
and then use this information to decide whether revised right-sizing
is required.

AWS Cost Optimization: This provides you with the
recommendations about the right-sizing based on the current
utilization. We will discuss this more in the upcoming section.

AWS Cost Explorer: You can use the Cost Explorer to understand what
are the prime drivers of the cost incurred to the company. Based on
that, the right decisions can be made.

AWS Trusted Advisor: This helps you know more about idle or
underutilized resources.

The following are some of the factors that can be taken into consideration while

deciding about the optimal right-sizing. These factors can be grouped into the following

categories:

Right-sizing based upon performance data

Right-sizing based upon usage needs

Right-sizing by stopping instances

Right-sizing based upon selection of right instance family

Right-sizing based upon selection of database instances

When it comes to the analysis of performance data, one should identify the instances

that are idle or are underutilized. For this, one can look at the CPU and memory usage of

the instances. This can be done using CloudWatch or any other tools mentioned earlier.

Amazon recommends that those instances with a maximum CPU or memory usage of

less than 40 percent for a four-week period can be right-sized.

33

CHAPTER 2 AWS PRICING AND COST MANAGEMENT

When it comes to analyzing the usage needs, one must take into consideration the
following:

o Iftheload remains constant for a longer period of time, we can opt
for reserved instances, instead of on-demand or spot instances. We
will talk about reserved instances in detail in the next section.

o Iftheload is not constant, but we can say that in approximately equal
intervals or during specific scenarios the load increases or decreases,

then we can use the autoscaling features of AWS EC2 instances.

o Allloads that are considered to be flexible, which means they are
used only when required and then can be turned off, can use on-
demand or spot instances.

When we run our normal systems such as laptops or desktops, we turn them off
when not in use. The same thing can be done with AWS. All those instances that have
been idle for more than two weeks can be stopped or terminated. Once an instance is
stopped, the company stops paying for the EC2 instance. But remember, for every EC2
instance there is an EBS volume associated with it. The volume remains alive, and you
still keep paying for it. If you want to terminate the instance, the attached EBS volume
gets deleted as well; hence, there is no cost for EBS. But, if you want to rerun that
instance, then some re-provisioning should be done to get back the EBS volume. One
of the best ways can be to store the snapshot of EBS volumes so that during termination
or even during deletion, the EBS volumes can be stored in the form of snapshots as a
backup.

What Is an EBS Volume?

Before understanding Amazon Elastic Block Storage (EBS), we must know what a
block device is. A block device, in simple terms, is a device that is used to store your
information. Therefore, all the disk drives like HDD or SSD are the block devices. They
are platform independent, which means you can give them any operating system, and
a block device will work. Inside a block device all your files are stored and which can be
accessed using any instance and operating system.

Now, when we talk about EBS, it allows this block storage in Amazon EC2 instances.
It provides you with the feature to attach multiple EBS volumes in one single EC2
instance or one EBS volume to multiple EC2 instances.

34

CHAPTER2 AWS PRICING AND COST MANAGEMENT

We can decide to select the perfect instance for our workloads, and we can also
change it based on two options: changing the instance in the same family and changing
the instance to a different family. We can change the instance to another instance in the
same family based on the following metrics:

e Count of vCPUs

o Looking at the memory

o Looking at network throughput
o Looking at the attached storage

But, when we change the instance to another instance in a different family, we
consider the following metrics:

o Selecting the right virtualization type

o Selecting whether you need VPC support

e Selecting the right platform

e Selecting whether to upgrade hardware requirements or not

For the first three points, we must be sure that the configuration before the upgrade
is the same as after the upgrade. For the last point, it must require efforts to move the
entire architecture to an upgraded EC2 instance. We talked about different families of
EC2 instances in the previous chapter.

What Are Virtualization Types?

Linux machines in AWS support two types of virtualization: paravirtual (PV) and
hardware virtual machine (HVM). The difference between these two instances is in how
the operating system boots and how it takes advantage of additional configurations like
CPUs, storage, etc.

Right-Sizing Database Instances

Last but not the least, we can right-size the database instances. For this, the following
metrics must be kept in mind:

o Either you scale up or you scale down your database instances, or the
storage size remains the same.

o We can separately change the storage size of the database instance.

35

CHAPTER 2 AWS PRICING AND COST MANAGEMENT
o AWS takes licenses seriously. Therefore, whatever database a person

is using, the right licenses must be there.

e You can select the right-sizing time of your database instances. It
can be done immediately or at a specific window like during the
maintenance time.

This concludes our discussion about right-sizing in AWS. Next, we must learn more
about reserved instances.

Using Reserved Instances

Reserved instances are all about commitment. While you are purchasing the reserve
compatible services of AWS, at that time only must you decide whether you want to go
for a long-term commitment or your requirements will change periodically. If it is long-
term, then you can opt for reserved services, and this can lead to a reduction in hourly
cost of that service. The following are the services provided by AWS that offer a reserve
facility:

e Amazon EC2

e Amazon RDS

e Amazon ElastiCache
¢ Amazon RedShift

e Amazon DynamoDB

One must be absolutely sure to use reserved instances, as the lock-in period is either
one year or three years. That means you must pay for either the entire one year or three
years beforehand. After the payment is done, no matter how much you use the instance,
you will not get any money back, like on-demand instances. Therefore, once you pay for
the lock-in period, you can get a discount up to 75% of that of on-demand instances, but
then you will not get dynamic pricing for the usage patterns.

Reserved instances come up with the following payment options:

e No up-front payment
o Partial up-front payment

e All up-front payment

36

CHAPTER2 AWS PRICING AND COST MANAGEMENT

As the names suggest, no up-front payment means you don’t pay any amount at the
start. Partial up-front payment means you may pay some amount at the start, while all
up-front payment means that you pay the complete amount at the start. For the no up-
front scenario, the customers are charged at the discounted hourly rate. But, since AWS
is not sure whether customers are going to pay, it requires a contractual agreement with
them, and it also looks at the past relationship of those customers with AWS. For partial
up-front payment, the same thing is followed. The remaining amount is charged at a
discounted hourly rate.

Reserved instances come under two offerings.

o Standard reserved instances
o Convertible reserved instances

With standard reserved instances, the instances can be increased in size or
availability zones can be modified, or they can also be sold in the reserved instances
marketplace. Convertible reserved instances, on the other hand, can be exchanged
with other convertible instances that may have new attributes such as instance family,
instance type, platform, etc. They cannot be sold in the marketplace.

There is also a limit on the number of reserved instances that can be purchased in
a month. For a particular region, 20 regional instances and 20 zonal instances can be
purchased in a month. A regional instance is an instance that is available for a complete

region, while a zonal instance is an instance available to a specific availability zone.

Using Spot Instances

As already discussed in the previous chapter, spot instances are those instances that are
running idle and currently AWS is not generating any money from it. These instances can
be taken by companies and can achieve discounts up to 90 percent of the on-demand
instances. Remember, as these are the instances that are currently idle, that doesn’t
mean they will always be idle. This means that whenever the use of them goes up again,
EC2 gives you a two-minute notice and then interrupts the session of your spot instance.
Obviously, every great thing has disadvantages. Another way by which your spot instance
can be terminated is when the cost incurred by you increases the threshold defined.

37

CHAPTER 2 AWS PRICING AND COST MANAGEMENT

We must know about the scenarios in which one must use the spot instances.
Amazon recommends using the spot instances for the following scenarios:

e Making fault-tolerant and flexible applications
o Web servers
o APIback ends
¢ CI/CD pipeline (DevOps)
e Hadoop data processing
o Imagerendering
o Stateless web services
o Bigdata analytics
o Parallel computations

Once you have an on-demand instance, you can ask for spot instances to handle
some extra functionalities that your application has. For this you can request spot
instances by launching a wizard in EC2. You just need to tell the number of instances, the
type of instances, the availability zone, and the maximum price that you're willing to pay
for the same.

Using the Cost Explorer

Once you have decided on the type of service to use, whether reserved, on-demand, or
spot, you can analyze your usage and costs incurred using a tool provided by AWS called
the Cost Explorer. There are three types of reports that the Cost Explorer provides to help
you: reporting on the usage and cost incurred in the past 12 months, forecasting how
much you are going to spend in the next three months based on your past usage, and
getting recommendations as well on the type of instances to use.

If you open the Cost Explorer dashboard, it will come with a default view, as shown
in Figure 2-3.

38

CHAPTER 2

@ AWS Cost Management

e
B soearosons Current month costs & Foecasted month end costs

B suagors (} C/
® mecommandatons Cakcidating your lorcasted cost
& savngs Puns Dy unblenged costs (S) 6

Overvew

Ievertary

Recommondatons

Purchase Sawsgs P

LRkzaticn Repert

Cowerage Report
= Resenators

v

Recommendatons

Lrizaicn Report

B Recently accessed reports

B. iy Biing Dasrtcard

AWS PRICING AND COST MANAGEMENT

o, Settings @7

Figure 2-3. AWS Cost Explorer dashboard

Looking at the dashboard, we can say that a Cost Explorer consists of the following

components:
¢ Cost Explorer Costs
o Cost Explorer Trends
e Daily Unblended Costs
e Monthly Unblended Costs
e NetUnblended Costs
e Recent Cost Explorer Reports

¢ Amortized Costs

Cost Explorer Costs

This component tells you about two metrics: current cost comparison with the previous

month’s cost and current forecast comparison with the actuals of the previous month.

The Cost Explorer shows the current cost of the month, until a certain date, as a chart

and then compares that with the cost incurred for the same period in the previous

month. It also forecasts for the remaining days of the month and then compares that

with how much cost was actually incurred in the previous month. This helps the user

decide on various factors, such as right-sizing, reducing the usage, etc.

39

CHAPTER 2 AWS PRICING AND COST MANAGEMENT

Cost Explorer Trends

This section tells you about the cost trend of different services that a user is using. It
shows the top trends in the dashboard, but the user can drill down to look at the trends
of all the services and can further drill down to a particular service and look at the
different costs that have accounted for that trend.

Daily Unblended Cost

First we must understand what an unblended cost is. It is the cost charged by AWS to

a user, at a particular moment of time. For example, if AWS charged me $100 for using
an EC2 instance at 10:45 a.m., then it will contribute to my Daily Unblended Cost.
Generally, it is considered the most important cost data, as it tells you about the cost at
the time it occurred. Obviously, you can use different filters to change the view of your
Cost Explorer’s unblended cost section. You can download the information as well in
the form of a CSV. One thing should be clear: unblended cost does not show the refund
amount that a user has received in a specific period.

Monthly Unblended Cost

As the name suggests, instead of looking at the Daily Unblended Cost information, you
can change the granularity to a monthly level. This can give you an overall picture for
the months, and you can then proceed to look at the Daily Unblended Cost of a specific
month where you may find anomalies or you want to investigate further.

Net Unblended Cost

Net cost considers the total cost that has been incurred to you, adjusts for the discounts
that have been given to you for the same period, and then presents you with the
information. If a user wants, they can actually include or exclude any other adjustments
such as refunds or credits given by AWS.

Recent Cost Explorer Reports

This metric includes a list of all the reports that a user has accessed in the past, with
timestamps and links to each. You can just click the link and view the report again.

40

CHAPTER2 AWS PRICING AND COST MANAGEMENT

Amortized Costs

Generally amortized cost is a kind of normalized cost information. For example, if we
consider a month, different service usage costs will be charged daily, and we can take
alook at that in the unblended cost section. But, if we have taken a reserved instance,
for example, then probably every first day of the month the entire month’s cost will be
charged. You will see a sudden spike there in the chart. Therefore, instead of dealing
with all these sorts of spikes, the information can be normalized and distributed, and
then it can give us a better overall picture. Figure 2-4 shows us the difference between
unblended cost and amortized cost perfectly.

Before | Unblended Costs After | Amortized Costs
Laat] Montha v Dally + e Black - Last 3 Months * Duly = e SRack -
arous by: [N] Fegon wiwcsTyps UssgeType Tag = AP Opemtior Groun by: [0

Costa § o Pousands) Costs 8

i il

.
[Reistons Dutstse Serves [ECHeatrces [EIECHOFe 10 Bupets [Lgrtasl [Octers [l Ftstons Dutatosss Service [ECT-wtwrces EEECI-Oer [0 Busgets [Ugssd [Overy

2 & 8 8 & § B

o MR R
o et Mgl Vel el e el ek 0L e A el

i

T v o

il

a1 e

Figure 2-4. Difference between unblended and amortized costs

Now that we have looked at how AWS Cost Explorer works, let’s explore how AWS
Trusted Advisor works as well.

AWS Trusted Advisor

As we already know, AWS is the market leader when it comes to cloud computing
services. Since it has a lot of clients, it knows the usage pattern statistics of everyone.
Based on that, there are some best practices that AWS has come up with. They fall into
the following categories:

e Cost optimization
o Security

o Faulttolerance

¢ Performance

e Service limits

41

CHAPTER 2 AWS PRICING AND COST MANAGEMENT

We have already seen some of the factors that influence cost optimization in this
chapter. We will be talking about the remaining factors in the next chapter. But, keeping
all these factors in mind, a user can be charged a minimum cost with the maximum
performance. AWS Trusted Advisor takes into consideration all these factors and
provides its own recommendations that would help users to attain the minimum cost
possible. How Trusted Advisor works is perfectly represented in Figure 2-5.

s, Cost
b | Optimization

— \2r Performance
[I:-" /
L] A secur
e =) urity
| O CI) 0
AWS Trusted Advisor
Trusted Advisor scans your === Fault Tolerance
AWS infrastructure, compares
As an AWS customer, you it to AWS best practices in
want the most value from five categories, and provides
your investment. Trusted recommended actions -7 Service limits

Advisor can help.

Figure 2-5. AWS Trusted Advisor

. Investigation
\, recommended

.\ no problem
</ detected

(| action
_*_J/ recommended

"y no problem
/ detected

(2 no problem
/ detected

Recommendations &
action links

It works just like the antivirus protection software in your personal systems, which
provide you with the malware and other related insights. Here, instead of malware
insights, you get insights on the five categories that I specified earlier. The insights can

look like Figure 2-6.

Cost Optimization Performance Security

A © o

Fault Tolerance Service Limits

T &

083 94A 00 3@ 7A 00 2@ 44 11O 083 154 50 377G 0A 10

$7,516.85
Potential monthly savings

Figure 2-6. AWS Trusted Advisor insights

42

CHAPTER2 AWS PRICING AND COST MANAGEMENT

A green check mark specifies things we are doing in the right way. Yellow

exclamation points are the warnings that need to be catered to or they may lead to

problems. Red exclamation points mean that the recommendations should be looked at

immediately as they are already affecting the cost, performance, security, etc.

The following are some of the benefits of using AWS Trusted Advisor:

o Trusted Advisor provides you with live notifications once you log

in to your AWS account. If you enable it, then it can also send you

periodic notifications via email.

o Ifyouwant, then you can make changes in the reports generated by

Trusted Advisor. You can include or exclude items.

¢ When the Trusted Advisor makes a recommendation, it provides a

link that takes you to the AWS Management Console where you can

sort out the warnings.

Pricing of AWS Services

Now that we have looked at different ways of finding out the cost incurred for using

AWS services and how to optimize them, let’s look at where to find more information;

see Table 2-1.

Table 2-1. Cost Links

AWS Service

AWS Pricing Page

On Demand EC2 Instances
Spot EC2 Instances

Reserved EC2 Instances

Amazon S3

Amazon VPC
Amazon SageMaker
Amazon RDS

https://aws.amazon.
https://aws.amazon.

https://aws.amazon.
instances/pricing/

https://aws.amazon.
https://aws.amazon.
https://aws.amazon.

https://aws.amazon.

com/ec2/pricing/on-demand/
com/ec2/spot/pricing/

com/ec2/pricing/reserved-

com/s3/pricing/
com/vpc/pricing/
com/sagemaker/pricing/

com/rds/pricing/

43

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/vpc/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/rds/pricing/

CHAPTER 2 AWS PRICING AND COST MANAGEMENT

For information about other services, you can log in to the AWS Management
Console and then switch to the service of your choice and look at its pricing section.

Conclusion

In this chapter, you learned how AWS charges for its services and how you can effectively
use some of the AWS services to minimize your costs. This chapter helps you decide
which services to opt for according to your budget and needs.

In the next chapter, you will be looking at the security aspects of AWS in detail. You
will also look at how AWS handles fault tolerance and how you can effectively make an
architecture that will serve the AWS services based on organizational hierarchy.

44

CHAPTER 3

Security in Amazon
Web Services

In this chapter, we will look at the security aspects of AWS. As you know, AWS has
hundreds of services serving thousands of customers, so a small compromise in its
security could lead to a huge loss for a particular company and therefore even for AWS
itself. That’s why AWS has some concrete security practices, along with dedicated
security services that take care of the entire umbrella of AWS features.

This chapter is dedicated to some of the most important parts of these services. By
the end of this chapter, you will understand the underlying security of AWS and will also
be able to implement different security features in the products you are using.

The SSR Model of AWS

When it comes to security, AWS follows the shared security responsibility (SSR) model.
This model is simple: the responsibility should be shared between the customer and
AWS. Specifically, AWS is responsible for the security of the entire infrastructure that it
lends to its customers. The customer, on the other hand, is responsible for whatever it
keeps in that infrastructure. Figure 3-1 shows the SSR model of AWS.

45
© Himanshu Singh 2021

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_3

https://doi.org/10.1007/978-1-4842-6222-1_3#DOI

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

RESPONSIBILITY FOR
SECURITY ‘IN° THE CLOUD OPERATING SYSTEM, NETWORK & FIREWALL CONFIGURATION

AWS

RESPONSIBILITY FOR
SECURITY "OF THE CLOUD

Figure 3-1. Shared security model of AWS

The following are some of the responsibilities of AWS:

o AWS takes care of the entire infrastructure, which includes the
hardware, software, networking, and other facilities that AWS uses to
run its services.

e AWS provides reports about its operations regularly by organizing
third-party audits. Its compliances, security standards, and
regulations are all verified.

o For most of the services, basic security tasks are also done by AWS,
such as installing guest operating systems, patching databases,
configuring firewalls, and doing disaster recovery.

The following are some of the responsibilities of customers and users:

o After the services have been booked and the basic security has been
taken care of by AWS, it is the customer's responsibility to perform
all the necessary security configuration and management tasks. This
may include updating the OS, installing security patches, configuring
the firewall, etc.

46

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

The customer must set up user accounts using the Amazon Identity
and Access Management (IAM) service. This will allow the customer
to give each of its users different credentials and hence access to

different services.

The customer must set up multifactor authentication for each
account.

We will discuss Amazon IAM and multifactor authentication in more depth later in

this chapter.

AWS provides high-level security to its customers, which can be grouped into these

categories:

Compliance requirements
Physical and environmental security
Business continuity management

Network security

Compliance

AWS'’s infrastructure is based on several IT security standards, including the following:

SOC 1/SSAE 16/ISAE 3402 (formerly SAS 70)
SOC2

SOC3

FISMA, DIACAP, and FedRAMP

DOD CSM Levels 1-5

PCIDSS Level 1

ISO 9001/1SO 27001/1SO 27017/1SO 27018

In addition, AWS follows some industry-specific standards.

Criminal Justice Information Services (CJIS)
Cloud Security Alliance (CSA)

Family Educational Rights and Privacy Act (FERPA)

47

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

e Health Insurance Portability and Accountability Act (HIPAA)

e Motion Picture Association of America (MPAA)

Physical and Environmental Security

For the physical and environment safety of the infrastructure, AWS follows these
standards:

e Only authorized people are allowed inside the premises of AWS data
centers, even if they are employees of AWS or Amazon.

o Automatic fire detection sensors and suppressants are installed in the
facility.

o Notonly do AWS data centers have a consistent electrical power
supply, but they also have a powerful UPS so that in case of a power
failure, the operations never stop.

o There are temperature control devices installed and continuously
monitored by personnel so that the optimal temperature is
maintained inside the data center.

e AWS decommissions any hardware following strict norms so that the
data is never compromised.

Business Continuity Management

Lots of companies are moving to cloud platforms, and they do not their business
operations interrupted because of AWS. When companies move their entire business
infrastructure to AWS, all of their data resides there. Even a few hours of interruption
can cause huge losses to companies. Therefore, AWS needs to be stringent in devising
its infrastructure plan so that this does not happen. To ensure business continuity
management, AWS has taken a lot of measures.

¢ All the data centers of AWS are live 24/7/365. So, if a particular data
center fails, then the first thing AWS does is to move the data traffic
away from the affected area.

e Using AWS, customers can put their data into multiple geographic
regions, and inside each region the data can be put into multiple

48

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

availability zones. The availability zones are made in such a way that
they are independent from all the other availability zones in the same
region. So, if one of the areas where the availability zone is present
has a chance of being affected by floods in a specific season, for
example, then all the remaining availability zones in the same region
are put in locations that will never be affected by the same flood.

o Each data center is backed up by UPS and on-site backup generation
facilities. Also, to further improve the security, power from different
gridlines is provided inside the facility so that if one fails, the other
remains effective.

Network Security

As we saw in the previous section, AWS has made its data centers resilient to calamities.
But, a threat bigger than that is intrusion on the network. As technology advances, so
do the skills of hackers. So, how does AWS tackle its network security? Well, let’s explore
some of the measures that AWS has taken to make its network secure.

o There is a firewall that secures your incoming and outgoing traffic.
This is the most basic yet most powerful first step for network
security.

e AWS has access control lists (ACLs) that contain a set of policies that
decides who can access what services of AWS and what information
goes to which service. These ACLs are regularly updated, and they
are automatically pushed using the AWS tool called ACLManage.

e There can be a lot of entry points from where the information can
flow into AWS servers, and the same is true with the exit points.
Therefore, in such a scenario, managing those entry and exit points
can become really difficult. Therefore, to deal with this issue, AWS
has secure access points. Using them, AWS has only a limited number
of access points through which comprehensive monitoring of all
incoming and outgoing transmission takes place. These access points
are called API endpoints, and only HTTPS access is allowed to have a
secure connection.

49

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

o AWS provides the option of additional security to its customers
through Amazon VPC. We discussed VPC in Chapter 1.

o For AWS there are two types of clients. One is its regular customers,
while the other is its own corporate network. AWS doesn’t give any
special privileges to its corporate network while accessing the AWS
services. For AWS employees, if they want to access any AWS service
first, they have to raise a ticket, and if it gets approved, then they can
get access. Also, for security purposes, everything that the employee
does is logged securely.

e There are many automated monitoring tools that AWS has so that
it can monitor the server and network usage, scanning the ports
for inbound and outbound transmission, detecting unauthorized
intrusion attempts, etc.

AWS Account Security Features

In the previous sections, we saw how AWS has made its infrastructure secure. In this
section, we will look at how AWS makes its customers’ AWS accounts secure. The first
thing that AWS does is to secure every account with credentials. There are different ways
in which AWS uses credentials for authentication.

o Passwords

o Cryptographic keys

» Digital signatures

¢ Certificates

¢ Multifactor authentication

Once you have created the credentials for your account, it is easy to download
the report of credentials from the Security Credentials page. The information that is
included in the report tell us about whether the account uses a password, whether the
password is retirable, when was the password last changed, when the keys were last
rotated, and whether multifactor authentication is enabled.

50

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

In AWS we can create multiple access keys and define multiple certificates as well.
This is done to rotate them continuously for security reasons. When they are being
rotated and we want business continuity to not be affected, we can use concurrent keys
and certificates. We can use AWS IAM to rotate the keys. We will learn about the keys and
certificates in more detail in the next section.

Passwords for Authentication

If you want to access AWS services, passwords are really important. They grant you the
first level of access inside AWS. Passwords are created at the time of account creation and
can be changed any time through the Security Credentials page. AWS allows passwords
of up to 128 characters, and they must have special character combinations to be strong
enough.

If your organization’s infrastructure is entirely hosted on AWS, you can create
password policies so that new passwords must follow your security policy. This assures
that the strongest of passwords are created.

Multifactor Authentication

This is an additional level of security that a customer may opt for. Multifactor
authentication requires that after the customer has successfully entered the username
and password, the user will have to provide a specific and unique six-digit code for
authentication. If that is successful, then the person will be allowed to enter the account.
This six-digit code is received by the customer to one of its authenticated devices. It can
be a smartphone, email, or phone number. As the person logs in, a code is received that
should be entered, and then successful login takes place.

Access Keys for APl Authentication

An API is a feature where a request is sent to a piece of code encapsulated behind the
API and the person receives the output. Now, the coding logic inside an API may be
allowing the user to access sensitive information. So, the request that is sent to these
APIs must be authenticated as well, which means only the right user must get the access
to the API. This is done through a digital signature. This digital signature is generated
by passing the request text and secret access key to a hash function responsible for the

51

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

cryptography. This hash function encrypts the message and then sends it to the APIL.
This in turn gets decrypted at the API end; the secret key is checked, and then the entry
is provided.

Currently, digital signatures use a protocol named HMAC-SHA256 that is in its fourth
version. One more level of security in digital signature verification is that a timestamp
is added to the request. If the timestamps of the digital signature being generated and
being received by the API are different by greater than 15 minutes, the request is denied.

X.509 Certificates

When we want two or more web services to talk to each other, we use SOAP-based
requests. To make these sorts of requests secure, we use X.509 certificates. These
certificates consist of three parts.

e A public key
e Anprivate key
¢ Additional metadata

The first step is to generate the digital signature by using the process that we looked
at in the previous section. Now, we use this digital signature and the certificate to send
the request. First, AWS tries to verify that the authenticated user is sending the request
by decrypting the digital signature and verifying it. After that, the certificate that has
been sent is matched by AWS with the certificate uploaded by the authenticated user in
their own AWS account. If everything is green, the request is sent forward; otherwise, it’s
denied.

AWS lIdentity and Access Management

Just like we have the Amazon Management Console to access all the AWS services,
similarly for all the security requirements we have AWS Identity and Access
Management. All authentication or authorization can be managed from IAM. We can
make users, define roles, give permissions, assign policies, and do a lot of other things,
all from IAM. Hence, this is a service that everyone who is using AWS, either for machine
learning or for web development, must know about.

52

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

The first thing that a person looking to use AWS services has to do is to create a root
user account. This account can be accessed through a username and password, and it
gives the users indefinite access to all the services that it has been registered to. But, AWS
discourages us from always logging in using the root user account as it can compromise
the security of the organization. That’s why, instead of using the root user, we can
create different users using the IAM service. These are called JAM users. The admin can
give permissions to all these users, ask them for their own passwords, assign different
policies, and hence make the entire infrastructure simple yet secure.

To understand this in a much better way, let’s look at an example. Suppose there
is an organization with 5,000 employees. There will be a board of directors, CEO, CTO,
presidents, managers, architects, engineers, and other employees. First, we cannot give
everyone root access, which should not require any explanation. So, the organization
can create [AM users. But, the permissions given to the top-level management will be
different from the permissions to the employees lower in the hierarchy. Even in the top
management, maybe the people on the board of directors have only read-only access
to specific services that have dashboards or visualization supports (for example Splunk
Dashboard), but a CTO has a kind of root access. Similarly, the engineers will have
access to the services that they have been hired for. Machine learning engineers may
have access to SageMaker, data engineers may have access to EMR or DynamoDB, and
so on. Hence, we can conclude with this example that different users require different
permissions, and all of this can be done using AWS IAM.

Once an IAM user is defined, it will have its own password. Once the person logs in,
the user will see only those services they have permission to use. Other services will ask
for credentials or deny the access. Note that an IAM user may not be an actual person.
It could be a software service. For example, say a company has made a website hosted
on a different platform, but uses certain AWS services like S3 or DynamoDB. Hence,
the website should continuously be talking to these services. To authenticate that the
right software talks to the AWS services, an IAM user is made for these services, and the
website accesses the respective services with its own credentials.

But, organizations do already have their own infrastructure, and each employee
from any hierarchy of management has an email ID and password. When the employee
has to use AWS, they will have a new ID and password. That means the person will have
to remember and secure two accounts: the corporate account and the AWS account.
Wouldn't it be awesome if AWS provided a way so that an employee just needs to log in

53

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

to the corporate account and automatically get logged in to the AWS account? AWS does
have a solution for this called federated users.

Federation of Users in AWS

If an employee has an account in the corporate network and a corporation has an
account in the AWS network, then once the employee logs in to the corporate network,
the user identity can be federated by the organization to the AWS network. This way, it
eases the login hassles for corporate employees inside AWS. See Figure 3-2.

Outside organization AWS Account

—
1AM

@& 20

—

! ' - —
External - - __E)—’ ' ﬁ . m

directory User

b

AWS resources

Figure 3-2. Federation of users

The following are some features of federation:

o Corporate networks use single sign-on (SSO) that makes the
federation possible. After this, the automated login happens, and the
employee reaches the Amazon Management Console without having

to log in again.

o Evenifa person has accounts in platforms such as Gmail, Facebook,
Amazon, etc., they can be used for SSO.

54

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

How Access Management Is Done in AWS

In common terminology, access management can also be called authorization. A person
or a service that logs in to the AWS account is called a principal entity. The principal
entity is authenticated using IAM (it is used to authenticate an IAM role or a user).

Once the authentication is done, the policies attached to the particular user or role are
checked. These policies help determine what permissions are given to the principal
entity. They are created and attached to different IAM identities such as users, roles, or
groups. Now, if the principal entity sends a request for a service but the permission for
the usage of that service is not defined in the policies, then the access will be denied.
This is how access management is done in AWS.

Policies can be applied based on IAM roles, resources, or access control lists. An
example of a role is a data engineer. All the IAM users with the role of data engineer will
be assigned the same policy. This means everyone in that role will be able to access the
same resources with the same level of permissions. Policies that are applied on resources
put restrictions on the usage of a specific resource. For example, we can create a policy
that gives users the permission to read a DynamoDB table but not create one. ACLs are
used when we want to apply cross-platform policies.

An example of a role-based policy is given here. We have defined a JSON file that
shows the policy defined on DynamoDB.

{
"Version": "2012-10-17",
"Statement": {
"Effect": "Allow",
"Action": "dynamodb:*",
"Resource": "arn:aws:dynamodb:us-east-2:123456789012:table/Books"
}
}

This gives the user permission to use the Books table present in DynamoDB. This
makes it clear that to assign policies, JSON files must be created, and these files must be
attached to respective entities. Policies not only can be attached to specific entities, but
to a group of entities as well. These are called JAM groups; see Figure 3-3.

55

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

Account =
Gro;lp: | Group: Grt;up:
Admins Devel_opors Tgst
Bob |¢= Nate |¢= | Cathy | &=
Susan &= Brad | €= | Allen |&=
DevAppl | === | TestAppl | &=

Figure 3-3. IAM groups

Figure 3-3 defines multiple IAM users and groups them into three IAM groups:
Admins, Developers, and Test. Now, the policies can be applied on the entire group,
which gets automatically applied to its members. But, one thing to notice here is that if
a specific member has not been given permission for a service, then even though the
group has access to that service, the member will still not have permission to access that
service.

Where can we find a summary of all the policies defined? There are three tables in
the IAM console that give us detailed information about policies. These tables are as
follows:

e Policy summary
e Service summary
e Action summary

When we open the policy summary, we will see a list of services on which the
policies have been defined. We can click any of the services to go to that particular
service’s summary table. The summary table tells all the actions that can be performed
on that particular service and the permissions attached to those actions. You can
click any of the actions, and then you can come to the action summary that gives the
permissions that have been granted to that particular action. Figure 3-4 sums these
tables up for you.

56

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

Policy
summary Service _
summary Action
summary
Actions Resources

Figure 3-4. Policy, service, and action summaries

Policies can be divided into two kinds: identity- and resource-based policies. As
the names suggest, when the policies are attached to IAM roles, users, or groups, they
are called identity-based policies, whereas when we attach them to resources such as S3
buckets or DynamoDB, they are called resource-based policies.

Attribute-Based Access Control

Before talking about attribute-based access control (ABAC), we must understand AWS
tags. These are some attributes that are attached to IAM users, roles, groups, or even
AWS resources. These tags are useful when we have a big organization and we want to
make policies for the employees. How are tags useful? Let’s look at an example.

A company making machine learning products has shifted its entire architecture
to AWS. Now it is making models on Amazon SageMaker, doing data engineering
using Amazon EMR, making websites, APIs, and doing database management using
DynamoDB and CloudFormation, and for security using various other AWS services
such as CloudWatch, TrustedAdvisor, etc. Now, let’s also assume that the company
has about 5,000 employees. Providing IAM roles and then attaching policies to every
employee would be a tedious task. So, what do we do? That’s when tags and ABAC
come into the picture.

57

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

Imagine two machine learning engineers; one only uses SageMaker and S3 buckets,
while the other one uses EMR in addition to the services that the other engineer uses.
The organization can create two tags for different usages. Suppose one tag is called
basic-machine-learning, and the other one is called advanced-machine-learning. All the
machine learning engineers and junior data scientists can be given the first tag while
defining their IAM role. Senior data scientists and solution architects can be given the
second tag. Now when a junior data scientist tries to access EMR, the tag is checked, and
its respective policies are looked at. Immediately the permission will be denied, as the
policies are not enough to provide this access. But if a solution architect tries to access
the same tag which junior data scientist accessed, he will be granted the access as the
associated policies with the tag give the appropriate permission to the person. These
tags are also called as attributes, and hence this process is called attribute-based access
control (ABAC).

How can we say that the ABAC process is better than the traditional process? Let’s
look at some of the differences between them. The traditional process is also called
role-based access control (RBAC).

o The first difference is that in RBAC every time a new resource is
added, the policies attached to a role or user must be updated—not
only for one role, but for all the roles. Instead, in ABAC, only the tag
needs to be updated.

e Because of these tags, ABAC has much fewer policies compared to
RBAC and hence is easier to manage.

In the second part of this book, we will look at the entire process of creating the
root credentials and then defining roles, users, groups, etc., using IAM. In this section,
we have covered the theoretical aspects of it. Practically we will be looking at the
applications in the next section.

There are some other services that AWS provides to increase the security of the
applications.

o AWSWAF
e AWS Shield
e AWS Firewall Manager

Let’s discuss each service one by one.

58

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

AWS Web Application Firewall

All the HTTP or HTTPS requests that are sent to specific AWS services like Amazon API
Gateway, Amazon CloudFront, or Application Load Balancer are monitored by AWS Web
Application Firewall (WAF). WAF allows you to control the access to the content. It does
this based on certain conditions and rules. Some of these rules are listed here:

o Allow every HTTP/HTTPS request except the ones that are explicitly
specified.

o Block every HTTP/HTTPS request except the ones that are explicitly
specified.

e Count the requests and match the properties defined in the requests
with the properties mentioned in WAF. If the count of the properties
that are the same matches, then allow the requests; otherwise, block
them.

The conditions that are matched to allow or block the requests follow some
characteristics. The following are some of those characteristics:

e Monitor the IP address to see where the request originated.

Look at the country from where the request originated.
o Analyze the values present in the request headers.

e Regular expressions can be made that search for specific patterns in
the string and then make the decision of acceptance or rejection.

e Checkwhether SQL code is present, which can be malicious.
e Check whether scripts are present, which can be malicious.

WAF can also be used to protect the applications that are hosted inside ECR. ECR
allows you to efficiently manage Docker containers inside clusters. To define the rules
and conditions in WAF, the following features can be used:

¢ Web ACLs
e Rules

e Rule groups

59

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

First, an ACL can be created that monitors the access to specific AWS resources.
Then rules can be assigned to these ACLs that will act as a firewall and monitor the
requests. Each rule is a kind of a statement with a condition, which is termed the
inspection criteria. If the condition is met, then either the requests are allowed or they
are blocked. We can also use rule groups, which are groups of statements containing
conditions that can be attached to your ACL and hence indirectly to AWS resources.

AWS Shield

Before looking at the AWS Shield service, we must first understand a cyberattack called a
distributed denial of service (DDoS), as AWS Shield helps to mitigate it.

Every web service or server has some bandwidth to serve as much of its current
user base as possible, while handling more traffic during peak times. To conduct a
DDoS attack, cybercriminals flood the service or server with so much traffic that either
it becomes difficult for the users to operate or the entire service or server crashes. If
the traffic is generated from a single system, the attack will not be that effective. That’s
why the traffic is generated from multiple systems in parallel, and the target is attacked.
Figure 3-5 shows a visual representation of a DDoS attack.

Client

Figure 3-5. DDosS attack

AWS WAF can be used to block these sorts of attacks, but for advanced security we
can also use AWS Shield Standard and AWS Shield Advanced. By default all the services
that we use in AWS come with AWS Standard Shield, at no extra cost. To use AWS
Advanced Shield, users need to pay a little extra.

There are two specific layers in a network that get compromised with cyberattacks:
the network and transport layers. AWS Standard Shield monitors both these layers

60

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

and provides protection. If AWS Standard Shield is used with Amazon CloudFront or
Route53, then it provides some additional benefits as well.

For additional protection, for example, if you want to protect applications running
in EC2 or Elastic Load Balancer, a user can opt for AWS Advanced Shield. Advanced
Shield provides security not only for the network and transport layers but also for the
application layer. Figure 3-6 shows the different layers inside a network, using the Open
Source Interconnection (OSI) model of networking.

End Layer for opening whatever is received and
creating whalever needs lo be senl

& Presentation Layer Syntax Layer used for Encryplion and Decryption

Establishment of Sessions using Ports

S

Contains packets of IP Addresses

Includes Frames like NIC Cards, Swilches, elc

Includes Physical infrastructure hike Cable and Hubs

Figure 3-6. OSI seven-layer model

AWS Firewall Manager

To ensure AWS WAF and AWS Shield operate smoothly and efficiently, AWS Firewall
Manager can be used. AWS Firewall Manager is responsible for automatically applying
all the rules defined on the resources and services. This holds true even when new
resources are added in AWS. Because of this automatic capability, AWS Firewall Manager
provides lots of advantages.

o Ifagroup of resources is following a specific tag, AWS Firewall
Manager can automatically apply some custom rules.

61

CHAPTER 3 SECURITY IN AMAZON WEB SERVICES

o AWS Firewall Manager allows you to create and manage your own
rules or the rules bought from the marketplace.

o Itis generally beneficial to use AWS Firewall Manager if you have
many users in an organization.

Conclusion

In this chapter, you learned about various security aspects of AWS. This finishes our first
part of this book, where we covered all the basics related to AWS. Now, we will move

on to the second part of the book where we will look at how to make machine learning
models using AWS. In the next chapter, we will look at the concepts from this chapter
more practically and become experts not only in making the machine learning models
but in using various other services such as S3 buckets, DynamoDB, the security tools

of AWS, etc. You will also learn how to make the models efficient and how they can be
automated.

62

PART I

Machine Learning in AWS

CHAPTER 4

Introduction to Machine
Learning

This chapter covers two main topics. First, you'll be introduced to machine learning and
its components, and then, you'll look at the different services that AWS provides to help
you make machine learning models.

Introduction to Machine Learning and Artificial
Intelligence

Machine learning and artificial intelligence are two terms that are used a lot in the
industry nowadays. Most of the time people think they are synonyms of each other with
no major differences. However, they are different. Artificial intelligence is the field of
computer science and mathematics that tries to mimic human-like behavior and make
decisions similar to humans. Machine learning can be considered a subset of artificial
intelligence where we make a machine learn through the historical data provided and
then use the learned behavior to predict an outcome if we get similar information in
the future. So, machine learning is all about prediction and recommendations, while
anything where we enable a machine to think like a human is artificial intelligence.

For example, we converse with Alexa just like it is a human. The Alpha Zero robot
can defeat chess champions as if it was a super-intelligent human being. Cars can now
drive automatically without the help of humans, making their own decisions live on
the road. All these are the examples of artificial intelligence agents, because they are
behaving just like humans.

When we try to forecast sales for the next six months, predict whether a stock is going
to move upward or downward in the coming days, or guess whether a machine is able
to understand the context of a paragraph and classify whether it is talking negatively or

65
© Himanshu Singh 2021

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_4

https://doi.org/10.1007/978-1-4842-6222-1_4#DOI

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

positively about certain things, we are talking about machine learning. Here we have
trained the models by giving past data, and then the machine predicts the outcome of
the future incoming data.

Why exactly do we want machines to learn and assist us in our day-to-day lives? The
following are some of the compelling reasons:

¢ We as humans make decisions by learning from our surroundings.
But we are limited to this exposure to information. Also, the chances
of making mistakes as a human for new scenarios are high. That’s
why we have the saying, “After all, I am only human.” Machines, on
the other hand, can be given as much information as possible. They
can be given as much complex information as possible. Hence, after
getting trained, they can make their own decisions based on the
surroundings. Of course, we cannot have a machine make decisions
independently, but they can assist humans in decision-making.

e Inthe past, people were making systems that were rule-based. This
means if a certain scenario occurs, then do this; otherwise, do that.
But, today, data is becoming complex, and all four Vs of data—
volume, veracity, velocity, and variety—are at their peak. Therefore,
making rule-based systems is next to impossible. Machine learning
systems help us to understand this complex unstructured data and
make decisions.

Machine learning solves these problems with three types of learning.
o Supervised learning
e Unsupervised learning

¢ Reinforcement learning

Supervised Learning

Supervised learning is a branch of machine learning where we know exactly what has
happened in the past, and then we try to predict if the same result will occur if some
mix of the situation that happened in the past occurs again. For example, for the past
six years we have collected the rain and snow data for some villages. Specifically, we
collected different information about humidity, pressure, temperature, etc., whenever it

66

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

rained or snowed. We trained a machine learning model based on that data. Now, if we
know the humidity, pressure, and temperature information for the upcoming days, can
we predict that it’s going to rain or snow? This is supervised learning.

In supervised learning terminology, the factors of humidity, pressure, temperature,
etc., are called the independent variables. The factor that we are trying to predict, that is,
whether it is going to rain or snow, is called the dependent variable.

Figure 4-1 shows a supervised learning framework. You can see that there is a
supervisor who checks whether the predicted output is the same as the expected output.
Based on that, an adjustment is made, and this adjustment is different for different
machine learning algorithms. Finally, we get our predicted output.

4 - N

| Supervisor
. Input Raw Data ‘ Output
Training Desired |
® A Data set output | 3
A .
*xae @ | /908"
- > PR = »|)
‘.ﬁ * * \. /
A A® A l N o
N g
® * e P -
. :' y { \ . AAA
A * A% o | | > (@] > | AAA
ot Lx e \ / N vy vy
i ‘-_‘_-'
X A : ° \“-_ e :
® x x o [|
Ag *

\ | Algorithm Processing | - —»@)/

Figure 4-1. Supervised learning

Unsupervised Learning

In this branch of machine learning, we don’t have a guiding variable, which means that
the dependent variable is not present. Hence, the main aim of unsupervised learning is
to first understand the patterns present inside the data and then put the data that follows
a similar pattern in the same group. Therefore, we can have clusters with similar features,
or we can have similar products that are bought together, etc. Let’s understand this with
the help of an example.

67

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

When we go to a retail shop, such as Ikea, we can see a lot of products. We have gone
there with the intention of buying a specific item. We also buy some other items. At the
time of billing, the cashier will ask us for our mobile number through which they can
identify unique customers. Now, since we liked the product, we went to the shop again
and bought other necessary things. This shop has become our favorite one, and all our
shopping is done there for three years. Using unsupervised machine learning, now the
shop can utilize our purchase history and can start recommending different products.
For example, if we recently bought curtains, it may suggest some other decorative items.

Figure 4-2 shows the unsupervised learning framework. In this diagram you can see
that in the Interpretation section a hidden pattern of similarity is found, and based on
that, similar items are put in the same place, as we can see in the output.

fos N

Input Data Algorithm Output
® *_A Unknown Qutput » a
* A .‘ *. No Traing Data Set \ !
A * *
‘: A® A
* @ * [1Y ..' — -"
® x : = ___};(' lj: | AAA
e x e “ 0 > : 5 i
A * * Lk ey
o** Ax ® !
o k. 0 =
*
® x x : [
A] sk

\ Interpretation Processing /

Figure 4-2. Unsupervised learning

You can find this sort of example not only in physical shops but also on e-commerce
websites.

Reinforcement Learning

Reinforcement learning is a unique domain of machine learning where a machine tries
to learn by itself by analyzing different scenarios. This is done by giving the machine

68

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

rewards for every successful task it does and giving a penalty if it fails to do a task. The
machine has the aim of getting as many rewards as possible. With this model, machines
learn to operate in different scenarios automatically. Let’s look at an example.

A robot wants to learn to walk. First the environment provided to it is a plain road.
For every successful step, maybe 50 reward points are given, but for every fall, 100
penalty points are taken. The robot takes the first step and falls, so it receives the penalty.
It does this multiple times and keeps on falling. Finally, it takes a step and doesn’t fall.
Hence, it receives reward points. This time, the robot knows what it has done to get its
first reward. Now, it will try not to fall every time so that it can get the maximum number
of rewards. Once it has trained itself to learn to walk, the environment can be changed,
and multiple obstacles can be introduced. Again, the robot will start exploring different
options to get the maximum rewards. This is how reinforcement learning takes place.

In reinforcement learning, there is a combination of two approaches: exploration
and exploitation. Exploration means that the robot should look at multiple options in
the environment so that it can learn every difficulty present. Exploitation means that
whatever the robot does, it has to keep getting the maximum number of reward points.
The robot explores and maximizes the reward points, and hence it learns how to operate
in tough situations. Reinforcement learning is out of the scope of this book, but we will
be covering other aspects of machine learning in detail in this book.

Figure 4-3 shows what a reinforcement learning process looks like.

/ Environmenh

agent

Actions

Rewards

Observations

Figure 4-3. Reinforcement learning

69

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

There is one more type of machine learning that requires a dedicated discussion:
deep learning.

Deep Learning

What do we humans exactly think? How do we make decisions? Obviously, it is the brain
that is responsible, but it is not entirely responsible for making decisions. The brain will
only perform when some information reaches it, but to make this information reach the
brain, there are some other very small yet important components responsible. These are
called neurons. They are the first ones that receive the information, and then through a
series of neurons, this information is transferred to the brain, which in return makes a
decision. This chain of neurons is called a neural network or biological neural network.
Figure 4-4 shows a simple biological neuron and its components.

Dendrite

Axon terminal

Outputs

Myelin sheat

Myelinated axon

Inputs

Figure 4-4. Biological neuron

Mathematical and computer experts researched whether it is possible to mimic this
human behavior of receiving information and then making decisions. This research led
to the field artificial neural networks, which constitutes a major part of deep learning.
These neural networks perform in a similar way to how a biological neural network
performs. They receive the information, and then through a series of mathematical
equations, like forward and backward propagation, gradient descent, activation
functions, etc., they make the decisions. We will be discussing this later in the book.

Figure 4-5 shows an artificial neural network consisting of multiple artificial neurons
present inside hidden layers.

70

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

Hidden

Links caarry signal from one

node to another boosting or

damping them according to
eac?\ links 'weight'.

Figure 4-5. Artificial neural networks

Now that we have seen a general introduction to machine learning, let’s explore the

different services of AWS that help users to build machine learning models.

Machine Learning in AWS

We will be discussing the following AWS services in this section:

Amazon SageMaker
Amazon Comprehend
Amazon Polly
Amazon Rekognition
Amazon Ground Truth
Amazon Textract
Amazon Translate
Amazon Transcribe
Amazon Lex

71

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

Let’s start by exploring the first, and the most important service, Amazon SageMaker.

Amazon SageMaker

Amazon SageMaker is one of the most important services used across industries.
Therefore, it is the base of all the chapters in this book, and understanding the service is
imperative, so I will be giving a detailed explanation of it compared to the other machine
learning services of Amazon.

Machine learning is not about only building a model; in fact, in my experience,
a minimum amount of time is given to model building as compared to feature
engineering, data preparation, or model serving. SageMaker makes the life of a data
scientist much easier by providing services that you can use to prepare data, build
models, test them, and then deploy them into production environments. It provides
most of the common algorithms for building your machine learning models, and if you
want to make any custom model not supported by SageMaker, then it has a facility to do
so by using a bring-your-own container service. It also provides a distributed training
option that can make your models run faster, as compared to a single-node run.

Amazon SageMaker comes with following features:

e SageMaker Studio

This is an application where you can build, train, validate, process,
and deploy the models. It’s a single place to do everything.

e SageMaker Ground Truth
This is used to create a labeled dataset.
¢ Studio Notebooks

This is one of the latest features of SageMaker that includes the
single sign-on feature, faster startup time, and one-click file
sharing.

o Preprocessing

This is used for analyzing and exploring data. It does feature
engineering and transformation of data, as well as all the other
things required to prepare the data for machine learning.

72

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

Debugger

This has different debugging usages, such as tracking the
hyperparameters whose values keep changing during the model
training. It can even alert if something abnormal happens with the
parameters or with the data.

Auto-pilot

Without writing a single line of code, if you want SageMaker to
take care of your model building, either regression or classification
problems, auto-pilot is the feature to use. It is generally for users
who have less coding experience.

Reinforcement Learning

This provides an interface to run a reinforcement learning
algorithm, which runs on a reward and penalty architecture.

Batch Transform

After building the model, if you want to get predictions on a subset
of data or you want to preprocess a subset of data, you can use the
batch transform feature of SageMaker.

Model Monitor

This is used to check whether the model quality is persistent or
deviates from the standard model.

73

CHAPTER 4

INTRODUCTION TO MACHINE LEARNING

— Generate example
data
Monitor [
collect data / Clean
evaluate |
Deploy the
model
Deploy to Prepare
Evaluate Train
model . model

Train a model

Figure 4-6. SageMalker process

Understanding How SageMaker Works

Figure 4-6 shows the stepwise process of how SageMaker works.

This diagram is valid not only for SageMaker, but for any machine learning models

that we make. They all undergo the same process. These are the main steps that the

process follows:

1.

74

Fetch data

This is the first step for building any machine learning model.
Once we have decided on the problem statement that we have to
solve, we have to accumulate all the data related to it. The data
can be in the format of a database table, Excel sheets, text files,
Word documents, images, etc. Once we know about all the data
sources, these files need to be put inside a single repository so that
the model knows about the location.

Clean the data

Our data can have null values, outliers, misspelled words,
corrupted files, etc. All these things need to be explored and
sorted out before the data is being given to the model. There are a
lot of statistical methods as well that are used for data cleaning,

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

Prepare data

Once we have made our data clean, it is time to prepare our data.
This includes all the transformations done on the data, scaling
and normalization processes, combination of features or splitting
of features, etc. After all these things are done, it has to be stored at
a specific place so that the model knows the reference to the clean
and prepared data files.

The first three steps that we have seen, all these things can be
done inside the SageMaker Jupyter Notebook, and after that, the
cleaned data can be stored inside an S3 bucket.

Train the model

Once the data is prepared, we need to train the model. The first
thing is to select the model that needs to be applied. The models
can be chosen from the list of built-in algorithms that SageMaker
provides, or custom models can also be used by making your own
containers and uploading them to AWS or buying them from the
AWS marketplace.

Also, for training the model, we must decide on what kind of
computation is required. Selection can be made based on the
RAM size or number of GPU counts, etc. It is decided based on
how big the dataset is or how complex the model is.

Evaluate the trained model

Once the model is successfully trained on the dataset, it needs to
be evaluated before deploying it for production. For this, multiple
metrics can be used. For regression models, RMSE scores can be
used, while for classification models precision and recall can be
used. Once the metric crosses the decided threshold, only then
can it be moved toward production.

75

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

6. Deploy the model to production

It is easy to deploy the model in SageMaker. Generally, in normal
scenarios one has to make APIs and then serve the model through
an endpoint. For all this, coding requirements are necessary.

But, in SageMaker, with minimal coding efforts the model can be
converted into an API endpoint, and after that live or batch model
inference can be started. Also, to deploy the model, another
computational instance can be chosen, which generally takes less
RAM or GPUs as compared to the training model instance.

7. Monitor the model

Once the model starts serving in production, we can keep
monitoring the model’s performance. We can measure for which
data points the model is performing well, as well as the areas it is
not. This process is called knowing the ground truth.

8. Repeat the process when more data comes (retraining)

Finally, as and when new data comes, the model can be retrained,
and all the previous steps can be repeated. All this can be done
with zero downtime. This means that the old model keeps serving
until the new model is put into production.

Preprocessing of Data in SageMaker

As we talked about in the previous section, before we give the data to any model, we first
clean it and preprocess it. We can do this in SageMaker in multiple ways.

o Using SageMaker Jupyter Notebook to write Python scripts for
processing data

e Using a SageMaker batch transform script to process data before
getting the inference

e Using Script Processor to write processing script on the data

Using one of these approaches, the data can be processed, and then any of the
SageMaker training models can be called to do the training on this processed data. We
can use popular Python libraries such as Scikit-Learn or TensorFlow for this purpose. If

76

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

your script involves some other libraries, then you can upload your own script inside a
Docker container. You'll learn more about this in later chapters.

Model Training in SageMaker

Figure 4-7 shows how exactly model training happens as well as how the model
deployment happens. In this section, we will talk about the training part, while in the
next section we will cover the deployment part.

Client
] /| application

Ground truth

(request)

(response)

Input data I Inference

TIRITHIET
(LI
N QRN

::? "“.:....;; = =
: s =
ﬁ Helper code Inference code - e
3 bucket Deployment / hosting
Mode artifacts \ on ML compute instances

Training data Helper code Training code Training code image

Model training
on ML compute instances

Amazon SageMaker EC2 Container Registry

Figure 4-7. SageMaker training and deployment process

77

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

To understand how model training in SageMaker works, we will look at the bottom
part of the image. We can see that there are five sections contributing to it.

e S3 bucket for training data

o Helper code

e Training code

e Training code image

oS3 bucket for model artifacts

Training a model in SageMaker is called a training job. Any algorithm that is
executed in SageMaker requires the training data to be present in an S3 bucket. This
is because the compute instances that are used for training the model are called
dynamically during model execution, and they are not persistent. This means the data
that is stored there will be deleted once the job is done. Hence, we can save the data in
S3, and the model will always know from where to fetch the data, by means of an S3 URL.

The coding part, which is written in Python, consists of two sections. The first
section, the helper code, helps you in processing the data, fetching the data, storing the
output, etc. The second section, the training code, actually does the model training for
you by applying the selected algorithm on the data.

The training code image is a Docker container image that is stored in the ECR of
AWS. Tt contains all the packages and software required for executing your code. It also
contains your training and deployment scripts that you write. We package everything
required inside one container and push it to ECR. Then, we just pass the URL of the
image to the algorithm selected, and automatically the training script runs. We need
to understand that SageMaker works based on Docker containers, and hence it is
imperative for users to understand Docker before learning SageMaker.

Finally, once the model training is done, the model-related parameter values should
be stored in S3; as mentioned, once the training job is done, compute instances are
deleted, and hence we will lose all our learned parameters. That’s why S3 becomes the
common point to store all the information.

One thing to notice here is that the Docker image is built by you, but still we have not
selected the hardware requirements. Therefore, when we call the SageMaker algorithm and
when we pass the parameters such as the S3 URL and Docker Image URL, then only can we
pass the type of instance that we have to choose. These instances are the EC2 instances that

78

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

we saw in Chapter 1. Once we have chosen the instance, the Docker image is downloaded
on that instance, along with the training data. Finally, the model training starts.

We will look at all these aspects of training the model in SageMaker in the upcoming
chapters.

Model Deployment in SageMaker

Once the model training is done, all the learned parameters are stored in the S3 bucket and
called model artifacts. These model artifacts will be used during inference (or predictions).
In Figure 4-7 the bottom part was the model training part; now we will discuss the upper
part, which is the model deployment part. It consists of the following sections:

o URLreference to model artifacts in S3 bucket
e Helper and inference code

e Inference code image

e Endpoint

e C(lient

The helper and inference code consists of processing scripts and prediction scripts.
Also, it includes the format in which the predictions need to be sent or saved. For the
predictions, the model artifacts generated during the training part are used.

SageMaker removes the training compute requirements with the deployment
compute requirements. This is because training may require big instances with stronger
computational power, but for predictions we do not require that many big instances.
Hence, the predictions can be done with smaller instances as well. This helps save a lot
of cost.

We can use the same Docker image that we built for training a model for the
inference by just adding a few extra Python scripts that help in deployment. That may
include using packages such as Flask, Gunicorn, etc. To start the deployment, we need
to pass the model artifacts the URL, the ECR image URL, and the compute instance that
we need. By giving these three parameters, the deployment is made, and an endpoint is
created.

The endpoint is a place where we send requests in a particular format, maybe CSV
or JSON, and get the response from the model. This is called a RESTful API. The model
that is created is served through this API, and the data on which we want predictions is

79

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

sent as a CSV, row by row, and we get the predictions in the same way. These are POST
and GET requests. We can expose this endpoint to any client objects. It can be a website,
a mobile app, an IOT device, or anything else. We just need some records sent to the
endpoint and to get the predictions.

Endpoints are used when we make live predictions. Hence, they keep running until
and unless we manually stop them or add a timeout condition. But suppose we want the
predictions for a subset of data, maybe 5,000 rows, and we don’t want a live endpoint.
Then SageMaker supports something called a batch transform. Using this approach,
we provide the same parameters that we provided to deployment code, but one extra
parameter is provided. It is the link to the data on which inference is needed. This data
is again stored in S3 and hence downloaded to the instance when prediction is required.
After the prediction is done, predictions are stored in S3, and then the compute instance
is stopped immediately. Figure 4-8 shows the process of batch transform in SageMaker.

v A

L Instance node 1 Instance node n

Cluster

Figure 4-8. Batch processing

We will look at both the approaches, endpoint generation and batch transform, in

the upcoming chapters.

80

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

Built-in SageMaker Algorithms

The following are all the algorithms that SageMaker provides:

Blazing text

This algorithm is used for problem statements involving text
classification. It is an optimized version of the Word2Vec
algorithm and can be used for multiple tasks such as sentiment
analysis, named entity recognition, etc.

DeepAR forecasting

This algorithm is used in the domain of univariate time-series
forecasting using RNNs. It can be used to train on multiple similar
time-series data, and it outperforms the ARIMA or exponential
smoothing methods in most of the scenarios.

Factorization machines

This is a general-purpose algorithm that can be used both for
regression and for classification tasks. For classification, it only
supports binary classification problems.

Image classification

This is built on ResNet (CNN model) for multilabel classification
of images. It can be trained from scratch if the dataset available is
big; otherwise, transfer learning can be applied if the size of the
dataset is small.

IP insights

This algorithm is used for a special use case—finding the usage
patterns for IPv4 addresses. It can be used to find out whether the
IP address from which a user is sending a request is anomalous.

K-means

This algorithm is used to find clusters of data that are following
similar patterns. It is an optimized version of the statistical
k-means clustering algorithm.

81

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

¢ K-nearest neighbor

Itis used for the classification of data by using an approach
finding the nearest neighbors. It is an optimized version of the
k-nearest neighbor statistical algorithm.

¢ Latent Dirichlet allocation

This is an algorithm used to find out topics present inside
documents, and hence the domain of application is also called
topic modeling. It is an unsupervised learning approach used to
find out categories from a bunch of documents.

¢ Linear learner

The is a normal simple and multiple linear regression algorithm
having the capacity to perform logistic regression as well on the
classification problems.

¢ Neural topic model

This is again a topic modeling approach, where the topics

are extracted from a bunch of documents by finding out their
statistical distributions. This algorithm can be used in the domain
on text summarization or recommendations.

¢ Object2Vec

This is used for generating the vectors for the objects, and it is
similar to the Word2Vec algorithm. The only thing is thatitis a
generalized version of it. Using this approach, a lot of optimized
and efficient classification and regression can be made giving us

better performance.
¢ Object detection

Finding and recognizing objects present in an image is the main
task of this algorithm. It contains a single deep neural network

to perform this operation. The framework used in this model is
single-shot multibox detector (SSD) and uses VGGNet and ResNet
as a base.

82

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

Principal component analysis

This is based on finding the importance of variables and then
combining variables based on the similarity. It is used for the
dimensionality reduction of data so that the number of variables
can be reduced based on combining their importance using the
concept of eigenvalues and eigenvectors.

Random cut forest

This algorithm is used to find patterns present inside the datasets
and then find those patterns that deviate from all the general
patterns present in the dataset. For example, why is there an
unnecessary spike in time-series data? Why is a particular data
point not being able to be classified? These are a few of the
multiple uses of the random cut forest method.

Semantic segmentation

This is used for developing computer vision applications. It is a
pixel-level approach algorithm where each pixel is labeled based
on the data. It can be used in the domain of self-driving cars,
medical imaging, etc.

SeqtoSeq modeling

This is used when we have a sequence of input and we have

to generate a sequence of outputs. For example, we can have
sequences of input in German and need to translate the sequence
into English. Similarly, it can be used for time-series data, images,
and other text applications. This algorithm uses RNNs and CNNs
with an attention-based approach.

XGBoost

This is one of the highly optimized versions of ensemble trees that
uses the concept of gradient boosting approach as well as takes
the power of multithreading and multiprocessing to give awesome
inference on the datasets. It is one of the most used algorithms,
not only in SageMaker but elsewhere.

83

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

We will be seeing most of these algorithms and their practical implementations in
the upcoming chapters.

Custom Algorithms in SageMaker

In the previous section, we saw the different algorithms that SageMaker supports. But
what if you want to use a different algorithm that SageMaker doesn’t support? For
example, instead of blazing text, what if you want to use BERT models? In that scenario,
we can use custom Docker images, and in SageMaker terms this is called bring-your-
own-models. As you saw earlier, all we need is a Docker image for training and inference,
training files in S3 bucket, output S3 bucket location, etc. So, to make your custom
models run in SageMaker, you'll have to follow these steps:

1. Write the training script.

2. Test the training script inside the Docker container after installing
all the important packages in Docker.

3. Edit the inference script inside Docker. This will be a script written
probably in Python and Flask.

4. Test the inference script.

5. Once everything works fine, push the Docker image along with the
training and inference script onto ECR.

6. You can now call this algorithm by passing the URL of ECR.

We will look at how to make a custom algorithm in SageMaker in the upcoming
chapters.

There are a lot of other features in SageMaker that we will keep discussing throughout
this book. But, for now, this introduction suffices. In the upcoming chapters we will be
delving deeper into SageMaker and how to execute the code and algorithms in it.

Let’s now explore some other machine learning services that AWS provides beyond
SageMaker.

84

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

Other Machine Learning Services by AWS

Let’s start this section by looking at Amazon Comprehend, a service dedicated to text
analytics in AWS.

Amazon Comprehend

Amazon Comprehend is a service provided by AWS for NLP-related tasks. If a company
has a group of documents and some extraction from them is needed so that a specific
insight can be drawn out, then Amazon Comprehend is the service to use. Same tasks
can be done in SageMaker as well, but Comprehend requires the least amount of coding.
This is an ideal solution for people with less coding experience. The following are key
elements that can be extracted from the documents:

» Entities such as organizations, places, names, etc.
e Key phrases in the documents

o Thelanguage and the sentiments of the sentences
o The syntax and syntactical structure of sentences

In addition to these features, custom classifiers can be built that can sort the
document into categories based on similarity. Also, in addition to the default entities
that can be extracted, custom entities can be extracted from documents. This can be
done by training the base model of Amazon Comprehend. All the NLP tasks of Amazon
Comprehend have a base of neural networks. That means all the tasks performed are
deep learning based and can be customized as well.

Also, we can do topic modeling using Amazon Comprehend when we can find key
topics present in all the documents based on the frequency and distribution of words.
For this task, Amazon recommends a minimum of 1,000 documents.

Amazon Polly

Amazon Polly is the service provided by AWS for speech synthesis. Whatever text that
you give to Polly, it will be converted into lifelike speech. It supports multiple languages
and can be customized to the voice of our choice. The base of Amazon Polly is neural
networks, just like Comprehend. It is called a neural text-to-speech (NTTS) model. This is
the reason why Polly has the most human-like voice as compared to its competitors.

85

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

The pronouncing accuracy of Polly is super high, and it includes abbreviations,
acronym expansions, and date/time interpretations; it also supports homograph
disambiguation. This means that the words that have the same spellings but different
meanings based on the sentence in which they are used can also be understood by Polly.
This process is called context-aware analysis.

Polly offers both male and female voices and supports three British English voices
and eight US English voices. Polly even supports voices that can sound like newscasters.

Amazon Rekognition

Amazon Rekognition is used for understanding the objects present inside an image or a
video and then extracting them. The objects may include people, text, scenes, activities,
inappropriate content, etc. It has a capability for facial analysis, facial comparison, and
face searching. Like other services, Amazon Rekognition has a back end of deep learning
with neural networks used to understand the patterns.

Amazon Rekognition’s development is ongoing, which means the data is
continuously updated and given to the model, with an increased number of labels. This
means that the accuracy of the model keeps getting better for different categories. Some
of the common use cases of Amazon Rekognition are as follows:

e Searching an image or a video for the presence of an object
o Using facial feature-based authentication

e Understanding emotional expressions such as happy, sad,
enthusiastic, etc.

» Using demographic information such as gender, place, type, etc.
e Detecting adult and violent content present in videos or images
» Recognizing and extracting textual content from the images

We can also train Amazon Rekognition on custom labels, if required for a specific
dataset related to a problem statement.

86

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

Amazon Translate

Machine translation is one of the applications of NLP where we translate one language to
another language. Amazon has made a service totally dedicated to this use case wherein
it supports neural machine translation from multiple languages to multiple languages. It
is called Amazon Translate.

This service is based on an encoder-decoder architecture similar to BERT and
other language models. Here, first the input language is understood using encoder
architecture, and then the task of translation is done using the decoder architecture. It
also uses something called an attention layer that tries to understand the context of a
sentence by understanding the relationship between the words. Combining all these
things with a neural network like long short-term memory (LSTM), the process of
translation is achieved.

Amazon Transcribe

When we have multiple audio files and we want to convert whatever is spoken in a
clip into text, we can use Amazon Transcribe. It has multiple applications including a

combination of some other Amazon services. Here are some examples:

e Anews clip can be first converted from speech to text using
Transcribe, then it can be converted to your language of choice using
Translate, and finally it can be read out aloud using Polly.

o Customer service calls can be recorded and transcribed. Finally,
Comprehend can be used to understand different aspects of the
transcribed text.

o Itcan be used to provide real-time subtitles.

Amazon Transcribe can be used to identify speakers based on the voice. It can
be used to tell the difference between the one asking the question and the answerer,
supposedly in a recorded press conference. Also, if you feel like Transcribe is not able
to understand a few words, then you can increase the vocabulary of Transcribe by
providing a custom vocabulary.

87

CHAPTER 4 INTRODUCTION TO MACHINE LEARNING

Amazon Textract

Amazon Textract is used to detect text present inside a document that can be in PDF
format or image format. It can also extract information from tabular data, or other types
of document formats that can include applications such as financial reports extraction,
medical records extraction, etc. Like other services, Textract is also built on a deep neural
network architecture, where the weights are updated almost daily by having access to
more than a billion images and videos. Textract can also be used to extract data from
forms, CSV sheets, websites, etc.

Conclusion

In this chapter, you got a machine learning-specific overview of AWS. In the next chapter,
we will be looking at data processing using SageMaker and explore other services as well,
which will help us in data processing.

88

CHAPTER 5

Data Processing in AWS

Data processing is one of the first steps of the machine learning pipeline. As different
sources of data have different formats, it becomes almost impossible to handle all the
formats inside the model. Hence, we give the data a synchronous structure, and then we
try to process different unwanted sections of it. These sections include the null values,
outliers, dummification of categorical columns, standardization of numerical columns,
etc. We can use SageMaker effectively to process the data in all these domains. This
chapter assumes that you have knowledge about different data processing techniques
and their implementation in Python. This chapter will be dedicated to using SageMaker
to do this.

Preprocessing in Jupyter Notebook

In between receiving the raw data and feeding the data to the model, there are a lot of
steps the data goes through. These steps are the data processing steps. Data processing
includes feature selection, feature transformation, feature imputation, feature
normalization, etc. Once all these steps are done, we proceed to splitting the data into a
training set and a validation set, which are finally given to the model.

In this section, we will be looking at some of the basic data processing steps that we
can follow.

1. Loading the raw data

2. Imputing the null values, which means how to replace the null
values with some actual values.

3. Splitting the data into categorical and numerical data frames
4. “Dummifying” categorical data
5. Imputing the remaining null values

89
© Himanshu Singh 2021

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_5

https://doi.org/10.1007/978-1-4842-6222-1_5#DOI

CHAPTER 5 DATA PROCESSING IN AWS

6. Concatenating the categorical and numerical data frames
7. Normalizing the final data frame
8. Splitting the data into train and validation sets

This chapter assumes that you have hands-on knowledge of Pandas, Numpy, and
Scikit-Learn. These packages are required for the data processing steps. If not, then it is
recommended that you explore these packages to get some hands-on experience before
moving on to learning SageMaker.

The dataset that we will be using for processing is the Big Mart sales dataset, which
can be downloaded from Kaggle at waw.kaggle.com/devashish0507/big-mart-sales-
prediction.

This dataset contains a lot of information related to the sales of items in a retail shop.
The task is to predict the sales of items. We will not be looking at the prediction part in
this chapter. Rather, we’ll be exploring only the data processing part of the process. Let’s
start by reading the train file using the Pandas framework.

import pandas as pd
data = pd.read csv("Train.csv")

Now the entire CSV sheet’s columns are saved in a data frame object named data.
Next, let’s explore the top five rows of the dataset.

data.head()

This is going to give us the output shown in Figure 5-1.

Item_|dentifier Item_Weight Item_Fat_Content Item_Visibility hem_Type Item_MRP Outlet_ldentifi Outlet_Establisk t_Year Outlet_Size Outlet_Los
0 FDA15 9.30 Low Fat 0.016047 Dairy 249.8092 QUTO49 1999 Medium
1 CRCO1 592 Regular 0.018278 Soft Drinks 48 2662 ouToi8 2009 Medium
2 FDN15 17.50 Low Fat 0.016760 Meat 1416180 ouTo48 1999 Medium
3 FDXO7 19.20 Regular 0.000000 VZ;L:E?;Z‘; 182.0950 ouUTo10 1998 NaN
4 NCD18 893 Low Fat 0.000000 Household 53.8614 ouTo13 1987 High

Figure 5-1. Top five rows of data

90

http://www.kaggle.com/devashish0507/big-mart-sales-prediction
http://www.kaggle.com/devashish0507/big-mart-sales-prediction

CHAPTER 5 DATA PROCESSING IN AWS

As you can see, there are a lot of other columns as well that are not shown in
Figure 5-1. So, let’s look at the shape of the data as well as the list of all the columns.

print(data.shape)
pl’int (T3k 3k sk ok Sk sk sk 3k sk ok Sk sk sk sk skok ok sk sk sk >k sk koo sk sk sk sk skke sk ok sk sk sk sk ske sk sk sk sk sk skokeok sk sk sk sk koskoke sk skosk sk kokeoke sk sk sk sk k 1)

print(data .columns)

This gives us the output shown in Figure 5-2.

(8523, 12)

R R R R R R R R R R R R R R AR R AR R R AR R AR R R R AR AR R R R R AR R R R AR AR R R R R RN R R R R

Index(['Item_Identifier', 'Item Weight', 'Item_Fat_cContent', 'Item_visibility',
‘Item_Type', 'Item_MRP', 'Outlet_Identifier',
‘outlet Establishment Year', 'Outlet Size', 'Outlet Location Type',
‘Ooutlet Type', 'Item Outlet Sales'],
dtype='object")

Figure 5-2. Shape of data and columns

As we can see, there are 8,523 rows and 12 columns. Also, we can see the names of all
the columns in the list given.

As we have seen in the steps of processing, the next step is to impute the null values.
So, let’s take a look at all the columns that have null values.

data.isna().sum()

This code gives us the output shown in Figure 5-3.

Item_Identifier 9
Ttem_Weight 1463
Item_Fat_Content]
Item_Visibility 0
Item Type (5]
Item MRP)
Outlet_Identifier 0
Outlet Establishment Year 9
Outlet_Size 2410
Outlet Location_Type]
Outlet_Type]
Item_Outlet_Sales 0

dtype: inte4

Figure 5-3. Null values exploration

91

CHAPTER 5 DATA PROCESSING IN AWS

So, there are two columns with null values: Item Weight and Outlet Size. We can use
the normal imputation methods provided by Scikit-Learn to impute these null values. But,
instead, we will be using the help of nearby columns to fill in these null values. Let’s look at
the data types of these columns, as that is going to help us in making imputation strategies.

print(data['Item Weight'].dtype)
print(data['Outlet Size'].dtype)

The output shows that the Item Weight column is a float, while the Outlet_Size
column is categorical (or an object). We will first impute the Item weight column. If we
find the mean of Item_Weight and group it by Item Type, then we can see that different
item types have different means. See Figure 5-4.

data.groupby(['Item Type']).mean()['Item Weight']

Item_Type

Baking Goods 12.440901
Breads 11.698562
Breakfast 12.855365
Canned 12.461479
Dairy 13.391830
Frozen Foods 12.924729
Fruits and vegetables 13.224769
Hard Drinks 11.664616
Health and Hygiene 13.156585
Household 13.358193
Meat 12.901785
Others 13.734276
seafood 12.689328
Snack Foods 13.029730
Soft Drinks 12.067210
Sstarchy Foods 13.634060

Name: Item Weight, dtype: floates

Figure 5-4. Mean of item weight based on item type

Looking at the output, what we can do is to impute all the null values of Item Weight
using the mean, respective of the Item_Type. This we can do by executing the following
lines of code:

for i in data.Item Type.value counts().index:
data.loc[(data['Item Weight'].isna()) & (data['Item Type'] == i),
['Item Weight']] = \
data.loc[data['Item Type'] == 'Fruits and Vegetables', ['Item_
Weight']].mean()[0]

92

CHAPTER 5 DATA PROCESSING IN AWS

Now, if we check the null values again, we get Figure 5-5.

Item Identifier
Item_Weight
Item_Fat_cContent
Ttem Visibility
Item_Type
Item_MRP

Outlet Identifier

Outlet_Establishment_Year

Outlet size
Outlet_Location_Type
Ooutlet_Type
Item_Outlet_Sales
dtype: inte4

Figure 5-5. Removed numerical null values

241

o I I o o T T v I v o I o I o)

So, we successfully imputed the null values of the Item Weight column. For Outlet

Size, what we will do next is to first split the data into numerical and categorical data

frames and then impute the null values.

import numpy as np
cat_data = data.select dtypes(object)
num_data = data.select dtypes(np.number)

Now we have all the categorical columns in cat_data. We can check for the presence

of null values again. See Figure 5-6.

cat_data.isna().sum()

Item Identifier
Item Fat Content
Item Type

Outlet Identifier
outlet Size

Outlet Location Type
Outlet_Type

dtype: inte4

Figure 5-6. Categorical data null values

OO0 0.

2410

93

CHAPTER 5 DATA PROCESSING IN AWS

So, the null value still exists. If we look at the categories present in the Outlet Size
columns, we will see there are three. See Figure 5-7.

cat_data.Outlet Size.value counts()

Medium 2793
Small 2388
High 932
Name: Outlet Size, dtype: inté64

Figure 5-7. Categories and their counts

But, if we look at the count of these categories based on the Outlet Type, then it
looks like Figure 5-8.

cat_data.groupby(['Outlet Type','Outlet Size']).count()

Item_ldentifier Item_Fat_Content Item_Type Outlet_ldentifier Outlet_Location_Type

Outlet_Type Outlet_Size

Grocery Store Small 528 528 528 528 528
Supermarket Type1 High 932 932 932 932 932
Medium 930 930 930 930 930

Small 18560 1860 1860 1860 1860

Supermarket Type2 Medium 928 923 9238 928 928
Supermarket Typed Medium 935 935 935 935 935

Figure 5-8. Grouping outlet size with type

In this figure, we can see that the maximum Small outlet size is for Grocery Store,
Small for Supermarket Typel, and Medium for Supermarket Type2 and Supermarket
Type3. So, we will impute the null values accordingly, based on the outlet type.

cat_data.loc[(cat _data['Outlet Size'].isna()) & (cat_data['Outlet Type'] ==
"Grocery Store'), ['Outlet Size']] = 'Small’

cat_data.loc[(cat data['Outlet Size'].isna()) & (cat data['Outlet Type'] ==
'Supermarket Type1l'), ['Outlet Size']] = 'Small'

cat_data.loc[(cat data['Outlet Size'].isna()) & (cat data['Outlet Type'] ==
"Supermarket Type2'), ['Outlet Size']] = 'Medium'

cat_data.loc[(cat _data['Outlet Size'].isna()) & (cat_data['Outlet Type'] ==
[

"Supermarket Type3'), ['Outlet Size']] = 'Medium'

94

CHAPTER 5 DATA PROCESSING IN AWS

We can now check the null values for confirmation. See Figure 5-9.

Item Identifier
Item_Fat_Content
Item_Type
Outlet_Identifier
Outlet_Size
Outlet_Location_Type
Outlet Type

dtype: int64

OO0 00O

Figure 5-9. All null values removed

Finally, all the null values have been successfully removed. Remember, we can use
the fillna() method of Pandas to do the same thing. Also, we can impute values using
different other approaches such as backward fill, forward fill, interpolation, etc. You can
experiment with all those approaches on your own.

Now that we have taken care of all the null values, we will do one last thing before
moving on to dummification. If we look at the categories of the Item Fat Content column,
we will see that there are the same values present in different ways. See Figure 5-10.

cat_data.Item Fat Content.value counts()

Low Fat 5089
Regular 2889

LF 316
reg 117
low fat 112

Name: Item_Fat_Content, dtype: inté4

Figure 5-10. Duplicates

LF means Low Fat, reg means Regular, and low fat is just the lowercase version of
Low Fat. Let’s rectify all of this.

cat_data.loc[cat data['Item Fat Content'] == 'LF' , ['Item Fat Content']] =
"Low Fat'

cat_data.loc[cat data['Item Fat Content'] == 'reg' , ['Item Fat Content']] =
‘Regular’

cat data.loc[cat data['Item Fat Content'] == 'low fat' , ['Item Fat_
Content']] = 'Low Fat'

95

CHAPTER 5 DATA PROCESSING IN AWS

Now, we will see the values shown in Figure 5-11.

Low Fat 5517
Regular 3006
Name: Item_Fat_Content, dtype: int64

Figure 5-11. Duplicates removed

So, this task was done successfully. Next, let’s apply label encoding on the categorical
data frame. We will use the Scikit-Learn package for this.

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
cat_data = cat_data.apply(le.fit transform)

The output results in the data frame shown in Figure 5-12.

cat_data.head()

Item_ldentifier Item_Fat_Content Item_Type Outlet_ldentifier Outlet_Size Outlet_Location_Type Outlet_Type

0 156 0 4 9 1 0 1
1 8 1 14 3 1 2 2
2 662 0 10 9 1 0 1
3 1121 1 6 0 2 2 0
4 1297 0 9 1 0 2 1

Figure 5-12. Label encoding output

We will concatenate the two data frames, categorical and numerical, and then
normalize the columns. Also, we will remove two of the columns before that, one in
Item Identifier and the secondin Item Sales.Item Identifier is notreally an
important column, while Item Sales will be our dependent variable; hence, it cannot be
in the independent variables list. See Figure 5-13.

from sklearn.preprocessing import StandardScaler
ss = StandardScaler()

num data = pd.DataFrame(ss.fit transform(num_data.drop(['Item Outlet Sales'],
axis=1)), columns = num_data.drop(['Item Outlet Sales'],axis=1).columns)

cat_data = pd.DataFrame(ss.fit transform(cat data.drop(['Item Identifier'],
axis=1)), columns = cat data.drop(['Item Identifier'], axis=1).columns)

96

CHAPTER 5 DATA PROCESSING IN AWS

final data = pd.concat([num_data,cat data],axis=1)
final data.head()

ltem_Weight Item_Visikility hem_MRP OQutlet_Establishment_Year Item_Fat_Content [tem_Type OCutlet_ldentifier Outlet_Size Quilet_Location_Type Outler_

-0.856325 0870732 1747454 0.138541 0738147 0766478 1.507813 -0.664080 -1.368334 025
-1.655730 0908111 -1.489023 1.334103 1354743 1.608963 -0.607071 -0.664080 1.081568 1.00
1.083061 -0.656817 0.010040 0.138541 -0.738147 0658786 1.507813 -0.664080 -1.366334 -0.25
1.485129 -1.281758 0.660050 0.020085 1354743 0291391 -1.664513 0. 795654 1.091569 -150
-0.943834 -1.281758 -1.399220 -1.283934 -0.738147 0421242 -1.312032 -2.128115 1.091568 025

Figure 5-13. Standard scaling output

Now, we have our final data ready. We have used a standard scaler class to normalize
all the numerical values to their z-scores. We will be using final data as independent
variables, while we will extract Item Sales as dependent variables.

final data
data['Item Outlet Sales']

The last step is to get our training and validation sets. For this we will use the class
model selection provided by Scikit-Learn. We will take 10 percent of our data as a
validation set while remaining as a test set.

from sklearn.model selection import train test split
X _train, X test, y train, y test = train test split(X, y, test size = 0.1,
random_state=5)

This marks the last step of data processing. Now we can use it to train any kind of
model that we want. The code lines that I have shown can be executed in any Jupyter
Notebook, either in the localhost or in the cloud. The only requirement is that the
necessary packages must be installed.

In the next section, I will show you how to run the same code in SageMaker using the
Scikit-Learn container provided by the SageMaker service. The script remains the same,
but the process changes, as we have to continuously talk with the S3 bucket and define
the instances as well. We will explore this in detail in the next section.

97

CHAPTER 5 DATA PROCESSING IN AWS

Preprocessing Using SageMaker’s Scikit-Learn
Container

We use SageMaker to take advantage of multiple things, especially the computation
power, API generation, and ease of storage. Therefore, to achieve these things, the

code must be written in a specific format. We will use the same code that we saw in the
previous section, but we'll make some changes in the overall structure so that it becomes
compatible with SageMaker.

First, the data should be in the S3 bucket. We have already put our Train.csv file in
the bucket, in the first section of this chapter. Once that is done, we can start writing our
code. First, we will define the role of the user and the region in which we are using the
SageMaker service.

import boto3
import sagemaker
from sagemaker import get execution_role

region = boto3.session.Session().region name
role = get execution_role()

The Boot3 package tries to extract the region name automatically if we are using the
SageMaker notebook. If we are working from the localhost notebook, then it needs to be
custom defined. We will look at that part in the last part of this book. get_execution_
role() extracts the current role with which the user has signed in. It can be the root user
or IJAM role.

Now that we have defined the region and role, the next step will be to define our
Scikit-Learn container. As mentioned in the first part of the book, SageMaker operates
on Docker containers. All the built-in algorithms are nothing but Docker containers,
and even the custom algorithm must be put inside the Docker container and uploaded
to ECR. Since we will be using Scikit-Learn to process our data, already SageMaker has a
processing container for that. We just need to instantiate it and then use it.

from sagemaker.sklearn.processing import SKLearnProcessor
sklearn processor = SKLearnProcessor(framework version='0.20.0",
role=role,
instance _type='ml.m5.xlarge’,
instance_count=1)

98

CHAPTER 5 DATA PROCESSING IN AWS

In the previous code, we created an object called SKLearnProcessor. The parameters
passed tell about the version of Scikit-Learn to use, the IAM role to be passed to the
instance, the type of compute instance to be used, and finally the number of compute
instances to be spinned up. Once this is done, any Python script that we write and that
uses Scikit-Learn can be used inside this container.

Now, let’s check whether our data is accessible from SageMaker.

import pandas as pd

input_data = 's3://slytherins-test/Train.csv'
df = pd.read csv(input data)

df.head()

slytherins-test is the name of the S3 bucket that we created earlier in the chapter.
Train.csv is the data that we uploaded. If everything works perfectly, you'll get the
output shown in Figure 5-14.

Item_ldentifier Item_Weight Item_Fat_Content Item_Visibility Item_Type Item_MRP Outlet_| i Outlet_| i _Year Outlet_Size Outlet_Lov
0 FDA15 9.300 Low Fat 0.016047 Dairy 2498092 QUTD49 1999 Medium
1 DRCOT 5020 Regular 0019278 Soft Drinks 482692 ouTo18 2009 Madium
2 FDN15 17.500 Low Fat 0.016T60 Meat 1416180 OuT049 1999 Medium
3 FDX07 19,200 Regular 0000000 FrUisand 445 gg5q QUT010 1998 MaN
- Vegetables -
4 NCD19 8.930 Low Fat 0.000000 Household 53.8614 ouTo13 1987 High

Figure 5-14. Data overview

If you are getting any error, make sure that the bucket as well as the data has been
given public access. We have talked about this in the previous part of the book.

Now, it’s time to define our processing script that will be run inside the container. We
have already written this script in the previous part. We will just restructure the code and
save it inside a file named preprocessing.py.

import argparse

import os

import warnings

import pandas as pd

import numpy as np

from sklearn.model selection import train test split

from sklearn.preprocessing import StandardScaler, LabelEncoder

99

CHAPTER 5 DATA PROCESSING IN AWS

from sklearn.exceptions import DataConversionWarning
warnings.filterwarnings(action="ignore', category=DataConversionWarning)

Here we have defined all the columns that are present in our data
columns = ['Item Identifier', 'Item Weight', 'Item Fat Content',
'‘Item Visibility','Item Type', 'Item MRP', 'Outlet Identifier',
'Outlet Establishment Year', 'Outlet Size', 'Outlet Location Type',
'Outlet Type', 'Item Outlet Sales']

This method will help us in printing the shape of our data
def print_shape(df):
print('Data shape: {}'.format(df.shape))

if name_ =="'_ main_':
At the time of container execution we will use this parser to define
our train validation split. Default kept is 10%
parser = argparse.ArgumentParser()
parser.add argument('--train-test-split-ratio', type=float,
default=0.1)
args, _ = parser.parse_known args()

print('Received arguments {}'.format(args))

This is the data path inside the container where the Train.csv will
be downloaded and saved
input_data_path = os.path.join('/opt/ml/processing/input’, 'Train.csv')

print('Reading input data from {}'.format(input data path))

data = pd.read csv(input_data_path)

data = pd.DataFrame(data=data, columns=columns)

for i in data.Item Type.value counts().index:
data.loc[(data['Item Weight'].isna()) & (data['Item Type'] == i),
['Item Weight']] = \
data.loc[data['Item Type'] == 'Fruits and Vegetables', ['Item_
Weight']].mean()[0]

cat_data = data.select dtypes(object)
num_data = data.select dtypes(np.number)

100

CHAPTER 5 DATA PROCESSING IN AWS

cat_data.loc[(cat data['Outlet Size'].isna()) & (cat data['Outlet
Type'] == 'Grocery Store'), ['Outlet Size']] = 'Small’
cat_data.loc[(cat_data['Outlet Size'].isna()) & (cat _data['Outlet
Type'] == 'Supermarket Type1'), ['Outlet Size']] = 'Small’
cat_data.loc[(cat data['Outlet Size'].isna()) & (cat data['Outlet
Type'] == 'Supermarket Type2'), ['Outlet Size']] = 'Medium’
cat_data.loc[(cat_data['Outlet Size'].isna()) & (cat _data['Outlet
Type'] == 'Supermarket Type3'), ['Outlet Size']] = 'Medium'

cat _data.loc[cat data['Item Fat Content'] == 'LF' , ['Item Fat
Content']] = 'Low Fat'

cat_data.loc[cat data['Item Fat Content'] == 'reg' , ['Item Fat
Content']] = 'Regular’

cat_data.loc[cat data['Item Fat Content'] == 'low fat' , ['Item Fat_
Content']] = 'Low Fat'

le = LabelEncoder()
cat_data = cat_data.apply(le.fit transform)
ss = StandardScaler()

num_data = pd.DataFrame(ss.fit transform(num data), columns = num_data.
columns)
cat _data = pd.DataFrame(ss.fit transform(cat data), columns = cat data.

columns)
final data = pd.concat([num_data,cat data],axis=1)

print('Data after cleaning: {}'.format(final data.shape))

X
y

final data.drop(['Item Outlet Sales'], axis=1)
data['Item Outlet Sales']

split_ratio = args.train_test split ratio

print('Splitting data into train and test sets with ratio {}'.
format(split ratio))

X train, X test, y train, y test = train test split(X, y, test_
size=split ratio, random state=0)

101

CHAPTER 5 DATA PROCESSING IN AWS

This defines the output path inside the container from where all the
csv sheets will be taken and uploaded to S3 Bucket
train_features output _path = os.path.join('/opt/ml/processing/train’,
"train_features.csv')

train_labels output_path = os.path.join('/opt/ml/processing/train’,
"train labels.csv')

test features output path = os.path.join('/opt/ml/processing/test"’,
"test features.csv')

test _labels output_path = os.path.join('/opt/ml/processing/test’,
"test _labels.csv')

print('Saving training features to {}'.format(train_features output_
path))

pd.DataFrame(X train).to csv(train features output path, header=False,
index=False)

print('Saving test features to {}'.format(test features output path))
pd.DataFrame(X_test).to csv(test features output path, header=False,
index=False)

print('Saving training labels to {}'.format(train_labels output path))
y train.to csv(train labels output path, header=False, index=False)
print('Saving test labels to {}'.format(test labels output path))

y test.to csv(test labels output path, header=False, index=False)

As we can see, the previous code is the same as the code in the previous part of the
book; all we have done is defined the place where the data will be stored inside the
container and the place where the output will be stored and then uploaded to the S3
bucket from there. Once this script is defined, we are good to go now. All we have to
do is spin up the instantiated container, pass this script as a parameter, pass the data
as a parameter, pass the directory where output files will be stored, and finally pass the
destination S3 bucket.

from sagemaker.processing import ProcessingInput, ProcessingOutput
sklearn processor.run(code="preprocessing.py’,
inputs=[ProcessingInput(
source=input_data,
destination="/opt/ml/processing/input’)],

102

CHAPTER 5 DATA PROCESSING IN AWS

outputs=[ProcessingOutput(output name="train data’,
source="/opt/ml/processing/train’,
destination="s3://slytherins-test/"),
ProcessingOutput(output name="test data',
source="/opt/ml/processing/test’,
destination="s3://slytherins-test/")],

arguments=['--train-test-split-ratio', '0.1']

)

In the previous code, we have passed all the parameters. Also, we have defined the
argument that tells about the split percentage. Inside the preprocessing.py script, we
have code that parses this argument.

Figure 5-15 shows what will happen next.

&
Docker Container
<> Dsta dovnloaded to
Container i Data Qutput Directory,
—_—h MW loptml/processing/train
foptimliprocessing/input JopUmliprocessin t

$3 Bucket
preprocessing.py

Train and Test data
uploaded back to S3

Figure 5-15. How the processing job works

The processing job will take some time to finish. It first launches an instance (which
is similar to booting up an operating system), and then it downloads the sklearn image
on the instance. Then data is downloaded to the instance. Then the processing job starts.
When the job finishes, the training and test data is stored back to S3. Then the entire
operation finishes. Once the job is finished, we can get detailed information about the
job by using the following script:

preprocessing job description = sklearn processor.jobs[-1].describe()

103

CHAPTER 5 DATA PROCESSING IN AWS
Let’s use this script to get the S3 bucket location of the training and test datasets:

output_config = preprocessing job description['ProcessingOutputConfig']
for output in output config['Outputs']:
if output['OutputName'] == 'train data':
preprocessed training data = output['S30utput’]['S3Uri"]
if output['OutputName'] == 'test data':
preprocessed test data = output['S30utput']['S3Uri']

Now, we can check the output by reading the data using Pandas.

training features = pd.read _csv(preprocessed training data + 'train_
features.csv', nrows=10, header=None)

print('Training features shape: {}'.format(training_features.shape))
training_ features.head(10)

This gives us the output shown in Figure 5-16.

Training features shape: (1@, 11)

0 1 2 3 4 5 6 7 8 9 10

0 0071924 4223850 -0.568970 -1.532846 0047385 -0.738147 1.371418 -0.254590 0.799954 -1.369334 -1.508289
1 -0619814 0075491 1.969280 0.736822 0886662 -0.738147 -0.766479 0450371 0.799954 -0.138882 -0.252658
2 0751946 -0.350031 -0.232154 1.095180 -1.366252 1.354743 -0.528935 -0.959551 0.799954 -0.138882 -0.252658
3 0071924 -0.335116 -1.224896 -1.532846 -1.695729 -0.738147 1.608963 0.097891 -0.664080 1.091569 2.258603
4 0964806 1.359713 0.480442 1.334103 -1.145858 -0.738147 -0.291391 -0.607071 -0.664080 1.091569 1.002972
5 1803384 -0.2486802 -1.329860 (0.139541 -1.339537 -0.738147 -0.291381 1.507813 .0.664080 -1.369334 -0.252658
6 1.165840 1.553906 -0.752339 -1.293934 -0.164104 -0.738147 -1.479112 -1.312032 -2.128115 1.091569 -0.252658
7 1558082 -0.977235 0656289 -1.293934 1447664 -0.738147 0421242 -1.312032 -2.128115 1.091569 -0.252658
8 1.319572 -0.075335 0.077869 0.736822 -0.633832 1.354743 -0.528935 0.450371 0.799954 -0.138882 -0.252658
9 -1623801 -0.786506 0281015 1095180 1.064758 -0.738147 -0.291391 -0.958551 0.799954 -0.138882 -0.252658

Figure 5-16. Processed data

This finishes the entire processing job that can be done using SklearnProcessor.
The next step will always be to define the algorithm for machine learning. We will look at
that in the next chapters.

But suppose instead of using a predefined container by SageMaker, like
ScriptProcessor, we want to make our own container and run a script on that. In that
case, we can use a class of SageMaker called ScriptProcessor. Let’s explore that in the
next section.

104

CHAPTER 5 DATA PROCESSING IN AWS

Creating Your Own Preprocessing Code Using
ScriptProcessor

In the previous section, we used SkLearnProcessor, which is a built-in container
provided by SageMaker. But, many times, we have to write some code that cannot only
be executed in a SageMaker’s predefined containers. For that we have to make our own
containers. We will be looking at making our own containers while training a machine
learning model as well. In this section, we will make a container that performs the same
tasks as the SKlearnProcessor container. The only difference is that it’s not prebuilt; we
will build it from scratch.

To use custom containers for processing jobs, we use a class provided by SageMaker
named ScriptProcessor. Before giving inputs to ScriptProcessor, the first task is to
create our Docker container and push it to ECR.

Creating a Docker Container

For this we will be creating a file named Dockerfile with no extension. Inside this
we will be downloading an image of a minimal operating system and then install our
packages inside it. So, our minimal operating system will be Linux based, and we will
have Python, Scikit-Learn, and Pandas installed inside it.

FROM python:3.7-slim-buster

RUN pip3 install pandas==0.25.3 scikit-learn==0.21.3
ENV PYTHONUNBUFFERED=TRUE

ENTRYPOINT ["python3"]

The previous script must be present inside the Dockerfile. The first line, FROM
python:3.7-slim-buster, tells about the minimal operating system that needs to be
downloaded from Docker Hub. This only contains Python 3.7 and the minimal packages
required to run Python. But, we need to install other packages as well. That’s why we will
use the nextline, RUN pip3 install pandas==0.25.3 scikit-learn==0.21.3. This will
install Pandas, Scikit-Learn, Numpy, and other important packages. The next line, ENV
PYTHONUNBUFFERED=TRUE, is an advanced instruction that tells Python to log messages
immediately. This helps in debugging purposes. Finally, the last line, ENTRYPOINT
["python3"], tells about how our preprocessing.py file should execute.

105

CHAPTER 5 DATA PROCESSING IN AWS

Building and Pushing the Image

Now that our Docker file is ready, we need to build this image and then push it to
Amazon ECR, which is a Docker image repository service. To build and push this image,
the following information will be required:

e AccountID

¢ Repository name

e Region

e Taggiven to the image

All this information can be initialized using the following script:
import boto3

account_id = boto3.client('sts').get caller identity().get('Account")
ecr_repository = 'sagemaker-processing-container'

tag = ':latest’

region = boto3.session.Session().region name

Once we have this information, we can start the process by first defining the ECR
repository address and then executing some command-line scripts.

processing repository uri = '{}.dkr.ecr.{}.amazonaws.com/{}".
format(account_id, region, ecr repository + tag)

Create ECR repository and push docker image

I docker build -t $ecr repository docker # This builds the image

I $(aws ecr get-login --region $region --registry-ids $account id --no-
include-email) # Logs in to AWS

I aws ecr create-repository --repository-name $ecr repository # Creates ECR
Repository

I docker tag {ecr repository + tag} $processing repository uri # Tags the
image to differentiate it from other images

I docker push $processing repository uri # Pushes image to ECR

If everything works fine, then your image will successfully be pushed to ECR. You can
go to the ECR service and check the repository. You can see the view in Figure 5-17.

106

CHAPTER 5 DATA PROCESSING IN AWS

ECR > Repesitories

Repositories | | IS, | P — ekt E ey
Q, Find 4]
Repository name s URI Created at - Tag Scan on
posEory. Immutability push
<ag9.‘|;|ak9.'-prr:cpssing- BDSS'IZ_SM?Q?!‘IRWH east-2 c L 05/02/20, Disabled Disabled
container processing-container 12:05.52 FM

Figure 5-17. Image pushed to ECR

Using a ScriptProcessor Class

Now that our image is ready, we can start using the ScriptProcessor class. We will
execute the same code, preprocessing.py, inside this container. Just like how we did in
SKLearnProcessor, we will create an object of the class first.

from sagemaker.processing import ScriptProcessor, ProcessingInput,
ProcessingOutput
from sagemaker import get execution role

role = get execution role()

script processor = ScriptProcessor(command=['python3'],
image uri=processing repository uri,
role=role,
instance count=1,
instance type='ml.m5.xlarge")

Once the object is created, we can use it to run our preprocessing.py file.
input_data = 's3://slytherins-test/Train.csv'

script _processor.run(code="'preprocessing.py’,

inputs=[ProcessingInput(
source=input_data,
destination="/opt/ml/processing/input’)],

outputs=[ProcessingOutput(source="/opt/ml/processing/train’,

destination="s3://slytherins-test/"),
ProcessingOutput(source="'/opt/ml/processing/test"’,
destination="s3://slytherins-test/"')])

107

CHAPTER 5 DATA PROCESSING IN AWS

You will find the code to be almost the same as the SKLearnProcessor code. It will
give the same output as well. Finally, once the processing job is done, we can check the
output again in the same way.

preprocessing job description = script processor.jobs[-1].describe()

output_config = preprocessing job description['ProcessingOutputConfig']
for output in output config['Outputs']:
if output['OutputName'] == 'output-1':
preprocessed training data = output['S30utput’]['S3Uri"]
if output['OutputName'] == 'output-2':
preprocessed test data = output['S30utput’]['S3Uri']

import pandas as pd

training features = pd.read csv(preprocessed training data + 'train_
features.csv', nrows=10, header=None)

print('Training features shape: {}'.format(training features.shape))
training features.head(n=10)

The output that you'll get will be the same as shown in Figure 5-16.

In this section, we saw how we can create our own containers and run processing
scripts. This becomes important in many situations. For example, if we want to use
BERT-based preprocessing on an NLP task, we will have to create a container for that,
as SageMaker doesn’t provide us with BERT-based services. We will be exploring more
about custom containers while creating training and inference jobs in later chapters.

In the past two sections, we have worked on the Jupyter Notebook inside the
SageMaker container. But, most of the time, especially during production, we have to
run the code in a different system. For that we will have to use the Boto3 API for the
authentication and execution. In the next section, we will see how to use Boto3 for
running our custom script.

Using Boto3 to Run Processing Jobs

As mentioned, we use the Boto3 package to access the services of AWS from any other
computer, including your localhost. So, in this section, we will be running the custom
Docker container script that we saw in the previous section, using Boto3.

108

CHAPTER 5 DATA PROCESSING IN AWS

Installing Boto3

The first step for using Boto3 is to install it inside the localhost environment. Along with
Boto3, we have to install awscli, which will help us in authentication with AWS and s3fs,
which in turn will help us in talking with the S3 bucket. To install it, we will be using pip,

as shown here:

pip install boto3
pip install awscli
pip install s3fs

Once the installation finishes, we need to configure the credentials of AWS. For this,

we will run the following command:
aws configure
This will ask you for the following four inputs:
e AWS access key
e AWS secret access key
e Defaultregion name
e Default output format

Once we provide this information, we can easily use Boto3 to connect with the AWS
services. I have already shown you how to get the access key and secret access key when
creating the IAM roles. The default region name will be us-east-2, but you can recheck
this by looking at the top-right corner of your AWS management console. It will tell you
the location. As you can see in Figure 5-18, I have passed in the required information.

(Python_Simple) C:\Users\himan>aws configure

AWS Access Key ID [None]: AKIOZ N D307Q

AWS Secret Access Key [None]: JbgcuUrdREDEEDININN L 9 2sEuG
Default region name [None]: us-east-2

Default output format [None]: json

Figure 5-18. Setting AWS credentials

Once this part is done, we can start our Jupyter Notebook (local system notebook)
and create a notebook using the same environment inside which we have installed all
the packages and configured AWS.

109

CHAPTER 5 DATA PROCESSING IN AWS

Initializing Boto3

Inside the notebook, the first step will be to initialize Boto3. For this we will use the
following script:

import boto3

import s3fs
boto3.session.Session().region name
boto3.client('sagemaker")

region
client

In the previous step, the region was set up by you. The same region will be
extracted and stored inside the variable region. Next is to set up Boto3. Boto3 can be
set up for all the services of AWS. Currently, we will be using SageMaker; hence, we
will call the class client of Boto3 and initialize it with SageMaker (client = boto3.
client('sagemaker")).

Making Dockerfile Changes and Pushing the Image

Now, we will use the Boto3 API to call the processing job method. This will create the
same processing job that we saw in the previous section. But, minor changes will be
required, and we will explore them one by one.

We will use the method create processing job to run the data processing job.
To learn more about this method, or all the methods related to SageMaker provided by
Boto3, you can visit https://boto3.amazonaws.com/v1/documentation/api/latest/
reference/services/sagemaker.html.

But, before that, we have to make some changes in our Docker container and
our processing Python file. For the Docker container, we will need to copy our
preprocessing.py scriptinside it so that the Boto3 method can run the script directly.
For this we will make the following changes to our Dockerfile:

FROM python:3.7-slim-buster

RUN pip3 install pandas==0.25.3 scikit-learn==0.21.3
ENV PYTHONUNBUFFERED=TRUE

ENV PATH="/opt/ml/code:${PATH}"

COPY preprocessing.py /opt/ml/code/preprocessing.py
WORKDIR /opt/ml/code

110

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html

CHAPTER 5 DATA PROCESSING IN AWS

We have added three new lines to our existing Dockerfile. The line ENV PATH="/opt/
ml/code:${PATH}" sets up the environment path to /opt/ml/code. We will be placing
our script, preprocessing.py, inside it with COPY preprocessing.py /opt/ml/code/
preprocessing.py. Finally, we will be making our working directory the same folder:
WORKDIR /opt/ml/code. This is required so that the Docker container will know where
the script file is present, and it will help in its execution.

Once we have made changes in the Dockerfile, we will make changes to the script
that builds the image and pushes it to the ECR. The only change that we need to do is
add a line that gives the permission to the container to play with the preprocessing.py
script. Otherwise, Docker may not have the permission to open and look at its contents.

Create ECR repository and push docker image

I chmod +x docker/preprocessing.py # This line gives read and write access
to the preprocessing script

I docker build -t $ecr repository docker # This builds the image

I $(aws ecr get-login --region $region --registry-ids $account id --no-
include-email) # Logs in to AWS

I aws ecr create-repository --repository-name $ecr repository # Creates ECR
Repository

I docker tag {ecr repository + tag} $processing repository uri # Tags the
image to differentiate it from other images

I docker push $processing repository uri # Pushes image to ECR

Once this step is done, we will be ready to run our Boto3 processing job.

Creating a Processing Job

In a nutshell, we need information about four sections to create a processing job using
Boto3.

o Input data information (ProcessingInput)
e Output data information (ProcessingOutput)
o Resource information (ProcessingResources)

o Container information (AppSpecification)

111

CHAPTER 5 DATA PROCESSING IN AWS

As you can see in the following code, all the previous information is provided. The

code is again similar to the code we saw in the previous section; it is just that Boto3

needs information that should be manually put inside it as parameters, while when we

run the code from inside SageMaker, most of the information is automatically extracted.

response = client.create processing job(# Initialize the method
ProcessingInputs=[
{
"InputName': "Training Input", # Give Input Job a name
'S3Input’: {
'S3Uri': input_data, # URL from where the data
needs to be taken
"LocalPath': '/opt/ml/processing/input’,
Local directory where the data will be downloaded
'S3DataType': 'S3Prefix’, # What kind of Data is it?
'S3InputMode’: 'File’ # Is it a file or a
continuous stream of data?
}
}’
1,
ProcessingOutputConfig={
"Outputs’: [
{
'OutputName': 'Training', # Giving Output Name
'S30utput’: {

112

'S3Uri': 's3://slytherins-test/’,
Where the output needs to be stored
"LocalPath’: '/opt/ml/processing/train’,
Local directory where output needs to be searched
'S3UploadMode': 'EndOfJob' # Upload is done when
the job finishes
})
"OutputName': 'Testing',
'S30utput’: {
'S3Uri': 's3://slytherins-test/’,
"LocalPath': '/opt/ml/processing/test’,

CHAPTER 5 DATA PROCESSING IN AWS

'S3UploadMode': 'EndOfJob'

}
}J
])
b
ProcessingJobName="'preprocessing-job-test’, # Giving a name to the
entire job. It should
be unique
ProcessingResources={
"ClusterConfig': {
'InstanceCount': 1, # How many instances are
required?
'InstanceType': 'ml.m5.xlarge’, # What's the instance
type?
'VolumeSizeInGB': 5 # What should be the
instance size?
}
b
Appsp {

"ImageUri': '809912564797.dkr.ecr.us-east-2.amazonaws.com/
sagemaker-processing-container:latest’,
Docker Image URL
"ContainerEntrypoint': [
"Python3', 'preprocessing.py’ # How to run the script

1

RoleArn="arn:aws:iam::809912564797:role/sagemaker-full-accss’,
IAM role definition

RoleArn defines the IAM role that will be needed to run the code. We have already
made this role in the activity section. I also explained how to copy the ARN during IAM
role creation.

113

CHAPTER 5 DATA PROCESSING IN AWS

The previous code will start the processing job. But, you will not see any output. To
know the status of the job, you can use CloudWatch, which I will talk about in the next
section. For now, we will get help from the Boto3 method describe processing_job to
get the information. We can do this by writing the following code:

client.describe processing job(
ProcessingJobName="processing-job-test'

This will give us detailed information about the job, as shown in Figure 5-19.

{"ProcessingInputs’: [{'InputName': 'Training_Input',
'S3Input': {'s3uri': 's3://slytherins-test/Train.csv',
"Localpath': ‘/opt/ml/processing/input’,
'S3DataType’: 'S3prefix’,
'S3InputMode’: ‘File’,
'sipatabistributionType’: 'FullyReplicated’}}],
‘ProcessingOutputConfig’: {'Outputs’: [{'OutputName’: 'Testing',
'S30output’: {'S3uri': 's3://slytherins-test/’,
‘LocalPath’: 'fopt/ml/processing/test’,
'S3uploadMode’: 'Endoflob'}}]},
‘Processinglobiame’: ‘preprocessing-14°,
‘ProcessingResources’: {'Clusterconfig': {'InstanceCount’: 1,
"InstanceType': ‘ml.mS.xlarge’,
'WolumeSizeInGB': 5}},
'StoppingCondition’: {'MaxRuntimeInSeconds': 8648},
‘Appspecification’: {'ImageUri’: '8@9912564797.dkr.ecr.us-east-2.amazonaws.com/sagemaker-processing-container:latest’,
‘ContainerEntrypoint’: ['python3’, ‘preprocessing.py’l},
‘RoleArn’: ‘arn:aws:iam::809912564797:role/sagemaker-full-accss’,
'ProcessinglobArn’: 'arn:aws:sagemaker:us-east-2:8@9912564797:processing-job/preprocessing-14",
"ProcessinglobStatus’: "Completed’,
'ProcessingEndTime’: datetime.datetime(2@20, 5, 3, 18, 13, 43, tzinfo=tzlocal()),
‘ProcessingStartTime': datetime.datetime(2020, 5, 3, 18, 13, 26, tzinfo=tzlocal()),
"LastModifiedTime': datetime.datetime(2020, 5, 3, 18, 13, 43, 462008, tzinfo=tzlocal()),
"CreationTime’: datetime.datetime(202e, 5, 3, 18, 10, 53, 273090, tzinfo=tzlocal()),
"ResponseMetadata’: {'RequestId’: 'abcladed-fec3-456b-986a-8714153¢9a81",
'HTTPStatusCode': 200,
'"HTTPHeaders': {'x-amzn-requestid’': 'abc2aded-fec3-456b-986a-8714153¢9a81",
'content-type': 'application/x-amz-json-1.1",
‘content-length’: "1184°,
‘date’: 'Sun, 93 May 2020 12:44:19 GMT'},
‘Retryattempts': e}}

Figure 5-19. Processing job description
You will find the key ProcessingJobStatus, which tells about the status, and if the
job fails, you will get a reason for the failure key as well. So, now we have seen the three

ways of data processing provided by SageMaker. Let’s explore how we can monitor these
jobs in the next section.

114

CHAPTER 5 DATA PROCESSING IN AWS

Monitoring Processing Jobs Using CloudWatch

CloudWatch is an amazing service provided by Amazon that helps you monitor almost
every job, be it training, inference, or processing jobs. In this section, we will be looking
at the usage of CloudWatch to monitor processing Jobs. In later chapters, we will explore
it for other machine learning techniques as well.

First, once we log in to the AWS Management Console, we must go to Services and
then search for CloudWatch and open it. Then look for the Logs section in the panel on
the right and click it. See Figure 5-20.

| CloudWatch
Dashboards
Alarms

Billing

Log groups

Insights
Metrics

Events

Rules

Event Buses
ServicelLens

Service Map
Traces

Synthetics (E3

Canaries
Contributor Insights
Settings

Favorites

Figure 5-20. CloudWatch menu

115

CHAPTER 5 DATA PROCESSING IN AWS

Here you can see all the log groups, depending upon the AWS services that we have
used. Since we have used only two services so far, SageMaker and Processing, you'll
easily find the information, as shown in Figure 5-21.

CloudWatch Log Groups

Actions ~ o & @9

Fitter:| |Log Group Name Prefix ® 14 « LogGroups12 3
Log Groups Insights Expire Evenls After Metric Filters Subseriptions
aws/sagemakenMNotebookinstances Explore Mever Expire 0 fiters Mone
faws/sagemaker/ProcessingJobs Explore Mever Expire 0 filters MNone

Figure 5-21. Jobs information in CloudWatch

We will click the ProcessingJobs section and search for the processing job name that
we gave to our job. Once we find it, click the link. It will give us some output similar to
Figure 5-22.

Expanaan @ kHow e | & | W | W
Filter evenls all 2020-05-02 (12:43:36) -
Time (UTC +00:00) Message
2020-05-03
» o 12:43:38 Avalue is lrying 1o be sel on a copy of a skice from a DalaFrame -
b 12:43:36 See the caveals in the documentation: hitp-/ipandas.pydata.ong/p juser_guide/indexing hmi#netuming-a-iew-versu py cal_data.loefcat_datafitem_Fat
v 124336 preprocessing py:48: SettingWithCopyWaming:
1 35 Avalue is trying to be set on a copy of a skce from a DataFrame
» See the caveals in the documentation: hitp:/ipandas. pydala. p guidei ing himi#returning-a-view-versus-a-copy cal_dataloc[cal_data[ltem_Fat
v 120 preprocessing py:48: SettingWithCopyWaming:
P 12:43:38 Avalue is trying 1o be set on a copy of a slice from a DataFrame
b 12:43:36 See the caveals in the documentation: http:/ipandas.pydata.org/p d - guidei ing_htmi#retuming py cat_dataloc[cat_data[ltem_Fat
Po1243:38 Data after cleaning; (8523, 12)
Po1243:36 Splitting data into train And test sets with rabio 0.1
124336 Saving training features to strainirain_features.csv
P 124338 Saving test features to foptmlprocessingtestiles!_features.cev
Po12:43:36 Saving training labe!s to foptmliprocassing rainirain_labeis.csv
v 12:43:36 Saving test Iabels to foptimiprocessing lestiest_labels.csy
Ne mrwer events found &l the moment. Relry. L

Figure 5-22. Job logs in CloudWatch

If you have any errors, you can find them listed here as well, based on the processing
job’s name. That’s why I mentioned before that the name should be unique. There are a
lot of other sections as well in CloudWatch, but for now they are not important. We will
explore them when the need arises.

One thing to remember here is that inside the SageMaker console, you won't find
the logs of the processing jobs. That’s why you have to come to CloudWatch to find the
job. For most training jobs, transformation jobs, etc., you'll find the logs directly in the
console of SageMaker—but not for processing jobs.

116

CHAPTER 5 DATA PROCESSING IN AWS

Conclusion

This chapter was all about the processing of raw data using SageMaker. In the next
chapter, we will look at most of the built-in algorithms of SageMaker in detail. We will
start with the processing of raw data and then move on to training the model and saving

the model artifacts to an S3 bucket.

117

CHAPTER 6

Building and Deploying
Models in SageMaker

In this chapter, we will be exploring some of SageMaker’s built-in algorithms that
are widely used in the industry. We will be exploring the algorithms from the general
domain, natural language processing domain, computer vision domain, and forecasting

domain.

Exploring the Linear Learner Algorithm

The linear learner algorithm of SageMaker is similar to the regression algorithms in the
machine learning domain. We can make multiple linear regression, logistic regression,
and multinomial logistic regression models using the linear learner algorithm. In this
section, we will look at how this algorithm can be used for linear regression and logistic
regression. We will use the Big Mart dataset that we used in the previous chapter to apply
this algorithm. Before delving into how to apply linear learner in SageMaker, let’s take a
brieflook at linear and logistic regression.

Overview of Linear Regression

Linear regression is one of the most basic yet most important algorithms in machine
learning. It is used to fit a line (or a curve in the case of nonlinear regression) on the
observations and then interpolate the fitted line to get the predictions. To fit the line, we
use an approach that is called least squares estimations, which gives us our coefficient
values. These coefficient values are determined in such a way that the mean of the errors
is approximately zero. Errors are the Euclidean distance of each observation from the
fitted line. Figure 6-1 shows simple linear regression used to fit a line.

119
© Himanshu Singh 2021

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_6

https://doi.org/10.1007/978-1-4842-6222-1_6#DOI

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

-20

=10

10 20 30 40 50 60

Figure 6-1. Simple linear regression

Linear regression is used to predict numerical values. There are various versions of

regression, namely, ridge regression, lasso regression, elastic net regression, Gaussian

regression, etc.

Overview of Logistic Regression

Logistic regression is the transformation of linear regression in such a way that the range

of prediction is from 0 to 1. This is done by passing the equation of linear regression

to a sigmoid function. Therefore, the straight line that we saw in linear regression gets

converted into an S-shaped curve with an upper limit of 1 and a lower limit of 0, as

shown in Figure 6-2.

1.00
0.75
0.50

0.25

0.00-

Figure 6-2. Logistic regression

120

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

Once logistic regression predicts a value, it is taken as a probability of prediction for
binary classification use cases. As a default, if prediction exceeds 0.5, then a success class
is predicted; otherwise, a failure class is predicted. The threshold of 0.5 is customizable
so that we can attain better precision and recall (which will be discussed in detail in
the next chapter). Logistic regression for multiclass classification is called multinomial
logistic regression, and instead of using sigmoid, it uses the softmax function.

SageMaker Application of Linear Learner

The first step will be to read the dataset from the S3 bucket, preprocess the columns

to remove the null values, and apply scaling and encoding. We saw how to preprocess
the dataset and get to the dependent and independent variables in the previous
chapter. Therefore, we will start this section directly by applying the algorithm on the
preprocessed dataset. We will define the role and buckets so that SageMaker can talk to
different services properly.

import boto3

from sagemaker import get execution role
bucket = 'slytherins-test'

prefix = 'linear-learner’

role = get execution role()

Now, we need to decide what algorithm needs to be applied, that is, linear or logistic
regression. We will start with logistic regression. To make a logistic regression model,
we need a categorical column. We know that our target variable is Sales, and itis a
numerical column; hence, logistic regression cannot be applied. So, we will bin the
Sales columns into four categories, and then we can start applying algorithms.

y binned = pd.cut(y['Item Outlet Sales'], 4, labels=['A', 'B', 'C', 'D'])

121

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

The previous code bins y into the four categories of A, B, C, and D, each having an
equal range. You can see the output here:

5] B
1 A
2 A
3 A
4 A
8518 A
8519 A
8520 A
8521 A
8522 A

Name: Item_Outlet Sales, Length: 8523, dtype: category
Categories (4, object): [A < B < C < D]

Now that we have our categorical column as a target variable, we will apply label
encoding on it so that each category can be represented by an integer.

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

temp = le.fit(y_binned)

y final = temp.transform(y binned)

Now that we have our final target variable defined and stored iny_final, we will
use it to train the model. As mentioned in the previous chapter, SageMaker runs the
algorithm inside Docker containers, and hence the data should be stored in an S3 bucket
so that the containers can access them. Our next step will be to store the data in S3. For
our linear learner algorithm, we will use a data format called the Record1O-Protobuf
format. Using this data format helps you with a faster training time, and you can train
models in live data mode (called pipe mode). We can convert our independent and target
variables to RecordIO format using the following lines of code:

import io
import numpy as np
import sagemaker.amazon.common as smac

vectors = np.array(X.values, dtype='float32")
labels = np.array(y final, dtype='float32")

buf = io.BytesIO()
smac.write numpy to dense tensor(buf, vectors, labels)
buf.seek(0)

122

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

The previous lines convert the data into RecordIO format and then open the
temporary file so that it can be directly inserted into S3. A RecordIO file is used by
breaking a big file into chunks and then using these chunks for analysis. This file helps us
create streaming jobs in SageMaker, which makes the training fast. To send it, we will use
the next lines of code:

key = 'recordio-pb-data’
boto3.resource('s3").Bucket(bucket).0Object(os.path.join(prefix, 'train’,
key)).upload fileobj(buf)

s3_train data = 's3://{}/{}/train/{}'.format(bucket, prefix, key)
print('uploaded training data location: {}'.format(s3_train data))

This will upload the data to S3 and close the buffer that we created. Now, our basic
steps are done. All we need to do is to make the connection and train the model. The first

step will be to initialize our linear learner algorithm Docker container.

from sagemaker.amazon.amazon_estimator import get image uri
container = get_image uri(boto3.Session().region name, 'linear-learner")

After initializing, let’s pass the required parameters for linear learner and initialize
the algorithm.

sess = sagemaker.Session()

linear = sagemaker.estimator.Estimator(container,
role,
train_instance count=1,
train_instance type='ml.m4.xlarge',
output_path=output location,
sagemaker session=sess)

As we know, the regression algorithms have a few hyperparameters that need to be
defined, such as the number of variables, batch size, etc. We will next define these values.

linear.set_hyperparameters(feature dim=11,
predictor type='multiclass classifier’,
mini_batch_size=100,
num_classes=4)

123

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

As everything is defined now, next we will start the training.
linear.fit({'train': s3 train data})

You will see the output given next at the start, and then the training will start.

2020-05-16 17:35:45 Starting - Starting the training job...

2020-85-16 17:35:47 Starting - Launching requested ML instances......

2020-85-16 17:36:48 Starting - Preparing the instances for training...

2020-85-16 17:37:23 Downloading - Downloading input data...

2020-05-16 17:38:02 Training - Training image download completed. Training in progress.Docker entrypoint called with argu
ment(s): train

rRunning default environment configuration script

It will take some time for the model to be trained. Once the model is trained, we can
deploy the model as an endpoint, and then we can start the testing. To deploy the model,
we will use the deploy function.

linear predictor = linear.deploy(initial instance count=1,
instance_type='ml.m4.xlarge")

It will take some time to deploy the model and then create the endpoint. Once done,
we can start the prediction. To start the prediction, we have to first tell what kind of data
the endpoint will be receiving. Then we will have to serialize the data. This format helps
to efficiently transfer and store the data, regaining the original data perfectly. We can
serialize our test data by using the following code:

from sagemaker.predictor import csv_serializer, json deserializer
linear predictor.content_type = 'text/csv'
linear_predictor.serializer = csv_serializer

linear predictor.deserializer = json_deserializer

Now, whatever data we will be sending to the endpoint, it will be serialized and sent
to the model. A prediction will come in a serialized manner, and then we will see the
data in its original structure. To predict, we will be using the test data.

result = linear predictor.predict(test vectors[o])
print(result)

124

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

The previous line gives us the prediction for a single row. But if we want predictions
for multiple rows, we can use the following code:

import numpy as np

predictions = []
for array in np.array split(test vectors, 100):
result = linear predictor.predict(array)
predictions += [r['predicted label'] for r in result['predictions']]

predictions = np.array(predictions)

The previous code takes 100 rows at a time and then stores the predictions for
them in the variable predictions. We can now look at the model metrics using the
following code:

from sklearn.metrics import precision score, recall score, f1_score

print(precision score(labels, predictions, average='weighted'))
print(recall score(labels, predictions, average='weighted'))
print(f1_score(labels, predictions, average='weighted'))

This will give us the following results:

0.7768463434210643
©.8108647189956588
0.7903353401644903

We can use Cloud Metrics as well to visualize different metrics for the model, but we
will explore that in the next chapter.

Remember that once the endpoints are created, they will always run, until we stop
them manually or through a script. After running all the previous code, our endpoint is
still running. So, we’ll stop it so that it will not incur us any cost.

sagemaker.Session().delete_endpoint(linear_ predictor.endpoint)

125

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

The previous line stops the endpoint and deletes it. We have performed multinomial
logistic regression in the previous example. We can use linear regression as well to predict
numerical values. For that we will make the following changes in the previous code:

linear.set hyperparameters(feature dim=11,
predictor type='regression’,
mini_batch_size=100)

Also, don't forget to use the original target variable in the Big Mart dataset (the
Sales column) and not the binned one. In the next section, we will apply the XGBoost
algorithm on the same dataset and compare its performance with logistic regression.

Exploring the XGBoost Algorithm

XGBoost stands for extreme gradient boosting. In this section, we will first understand
how a normal gradient descent algorithm works and how XGBoost makes it much more
efficient. We will apply this algorithm on the multiclass classification of the Big Mart
dataset. Let’s start this section by taking a look at the two algorithms.

Gradient Boosting Algorithm

Boostingis a technique that comes inside the domain of ensemble trees in machine
learning. In this algorithm, multiple decision trees are combined to give the final
predictions. Other approaches in ensemble trees include bagging and random forests.
Boosting differs from the other approaches by the way it combines multiple trees.

When the first decision tree is made (generally its CART decision tree), then all the
observations are given equal weight. The model, once trained, is applied on the same
dataset. Then the second decision tree is made. In this decision tree, all the observations
that were wrongly classified in the first decision tree are given more weight, while others
are given less weight. This is done by increasing the weights of the observations that are
difficult to classify while reducing the weights of all other observations. This process is
repeated, and then finally the last decision tree gives us the final predictions. Therefore,
it is said that each decision tree is boosted by the previous decision trees, which is why
it's called boosting. There are different kinds of boosting approaches such as AdaBoost,
gradient boost, light GBM, XGBoost, etc. See Figure 6-3.

126

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

Tree » Tree | » Tree i Tree
Waight Waight 3 " eight
1 2 N

> PREDICTIONS

Figure 6-3. Gradient boosting

In gradient boosting, the weights given to the parameters are learned using the
gradient descent approach. First the loss function is defined, which can be mean
squared error in case of regression problems, or a logit function in the case of
classification problems. This loss function is minimized after every decision tree is
made and added to the next decision tree. The final aim is to minimize the overall loss
function, which in return gives the best weight values for all the observations.

XGBoost Algorithm

The XGBoost algorithm is based upon the gradient boosting framework. XGBoost
is a super-optimized version of gradient boosting, as it harnesses the power of
computational resources so well that for small to medium size datasets, it majorly
outperforms neural networks. The following are some of the major benefits of using
XGBoost:

e Multithreaded operations are supported, and therefore the multiple
trees that are built use a parallelization concept, and hence we can
utilize large numbers of decision trees less often to give us more
accurate predictions.

e Hardware performance can be maximized using approaches such as
cache and buffers, out-of-core computations, etc.

e XGBoost attaches regularization factors in decision trees, and
hence the problem of overfitting and underfitting is taken care of. It
supports both L1 and L2 regularization.

o XGBoost automatically learns the missing values by understanding
the neighborhood.

127

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

e Optimal split points are found using an approach called the weighted
quantile sketch algorithm.

o Cross-validation is performed at each step, automatically, to find the
best values of the hyperparameters. Therefore, there is no need to
write custom code.

You can find a detailed overview of the XGBoost algorithm at https://arxiv.org/
pdf/1603.02754. pdf.

SageMaker Application of XGBoost

Just like in the previous algorithm, the first step will be defining the bucket and setting up
the path.

import os

import boto3

import re

import sagemaker

role = sagemaker.get execution role()

region = boto3.Session().region_name
bucket = 'slytherins-test'
prefix = 'xgboost'

bucket path = "https://s3-{}.amazonaws.com/{}".format(region, bucket)

We will now follow the same steps of preprocessing the dataset, the steps that we saw
in the previous section and the previous chapter. We will proceed from the part where
we have the binned target variable. In the XGBoost algorithm, we will be using the CSV
dataset, as compared to the previous one where we used RecordIO-Protobuf. We will
save our data and store it in S3.

data_final.to csv('train.csv', header=None, index=False)
boto3.Session(region name=region).resource('s3").Bucket(bucket).
Object(prefix + '/train.csv').upload file('train.csv')

128

https://arxiv.org/pdf/1603.02754.pdf
https://arxiv.org/pdf/1603.02754.pdf

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER
The next step will be to initialize the Docker image of XGBoost.

from sagemaker.amazon.amazon_estimator import get image uri
container = get image uri(region, 'xgboost', '1.0-1")

Once the container is initialized, we will initialize the algorithm and run the model.

import boto3
from time import gmtime, strftime

job_name = 'xgboost-classification-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime())

create_training params = \
{

"AlgorithmSpecification": {
"TrainingImage": container,
"TrainingInputMode": "File"

})

"RoleArn": role,

"OutputDataConfig": {
"S30utputPath": bucket_path + "/" + prefix + "/xgboost"

}s

"ResourceConfig": {
"InstanceCount": 1,
"InstanceType": "ml.m4.xlarge",
"VolumeSizeInGB": 5

})

"TrainingJobName": job_name,

"HyperParameters": {
"max_depth":"5",
"eta":"0.2",

"gamma":"4",

"min_child weight":"6",
"subsample":"0.7",
"silent":"0",

"objective":"multi:softmax",

129

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

"num_round":"50",
"num_class":"4"

})

"StoppingCondition": {
"MaxRuntimeInSeconds": 3600

1
"InputDataConfig": [

{
"ChannelName": "train",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": bucket path + "/" + prefix + '/',
"S3DataDistributionType": "FullyReplicated"

1

"ContentType": "csv",
"CompressionType": "None"

"ChannelName": "validation",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": bucket path + "/" + prefix + '/',
"S3DataDistributionType": "FullyReplicated"

1

"ContentType": "csv",
"CompressionType": "None"

}

client = boto3.client('sagemaker', region name=region)
client.create_training_job(**create_training params)

130

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

Let’s understand the previous code.

1. Inthe algorithm specification, we will pass the initialized Docker
container and the type of data. Here we are using a CSV file;
hence, the data type will be file.

2. InRoleArn, we will be passing the IAM role. It is mandatory to
pass this because it will define what resources we have the access
to. We can go to the IAM roles section and note the ARN of the
roles that we have created there.

3. S30utputPath defines where in S3 our model files will be stored.

4. Next, we have to configure our resources. We will specify the
resource count, resource type, and storage. Remember, the bigger
the resource you choose, the more the cost you bear. Before
deciding on this, visit the Cost Explorer and look at the cost of the
resource that you want to choose.

5. Hyperparameters of the XGBoost algorithm need to be set in the
next section.

6. The next section talks about the maximum time you want the
resource to run. If the running time exceeds that time, the job will
automatically stop.

7. Finally, we pass the input data configuration and type in the last
section.

This JSON format, once filled, spins up the container, and the training starts. We can
get to know the metrics and logs for the model using Cloud Metrics and CloudWatch,
which we will look at in the next chapter. Here we will write a script that will keep telling
us whether the training is in progress. Once the training finishes or some error happens,
the script informs us.

import time

status = client.describe_training_job(TrainingJobName=job_name)
['TrainingJobStatus']

print(status)
while status !='Completed' and status!='Failed':
time.sleep(60)

131

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

status = client.describe_training_job(TrainingJobName=job_name)
['TrainingJobStatus']
print(status)

Once the training finishes, we get the output shown here:

Training job DEMO-xgboost-classification-2020-05-17-85-51-05
InProgress

InProgress

InProgress

InProgress

Completed

CPU times: user 92.2 ms, sys: 691 ps, total: 92.9 ms

Wwall time: 4min

Just like in the previous section, once the model is trained, we can prepare and
expose an endpoint that the predictions can use. To expose the endpoint, the following
script for XGBoost algorithm can be used:

create endpoint_response = client.create endpoint(
EndpointName="xgboost-bigmart-endpoint",
EndpointConfigName="xgboost-bigmart-config")

This will spin up the endpoint, and later the predictions can be made using it. Next,
we can test the model by using the invoke _endpoint() method.

runtime_client = boto3.client('runtime.sagemaker', region name=region)
response = runtime client.invoke endpoint(EndpointName=endpoint name,
ContentType="text/csv',
Body=test data)

To read the predictions, we can use following script:

result = response['Body'].read()

result = result.decode("utf-8")

result = result.split(',")

result = [math.ceil(float(i)) for i in result]

label = payload.strip(' ").split()[o]
print ('Label: ',label,'\nPrediction: ', result[o0])

132

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

We can do batch predictions as well, just like the linear learner. You can find the code
for batch predictions in the GitHub repository. Don’t forget to delete the endpoint after
the predictions.

client.delete_endpoint(EndpointName=endpoint name)

Exploring the Blazing Text Algorithm

The blazing text algorithm is used for generating word embeddings for the textual
data. Later these embeddings can be given to any machine learning model to do any
classification tasks. In this section, we will first understand the blazing text algorithm
and then apply it on the text8 dataset.

The blazing text algorithm is a highly optimized version of the word2vec algorithm
that allows faster training and inference and supports distributed training as well. Once
the vectors are generated using this algorithm, we can use them for different tasks such
as text classification, summarization, translation, etc. It supports two architectures,
similar to that of word2vec.

o Skip gram architecture
e Continuous bag of words architecture

Let’s briefly discuss these architectures.

Skip Gram Architecture of Word Vectors Generation

The skip gram algorithm is used to generate word vectors by finding words that are
most similar to each other. This algorithm tries to understand the context of a sentence.
To do that, it takes a word as input and then tries to predict all the words that have
similar context. Figure 6-4 shows the architecture, taken from the research paper at
https://arxiv.org/pdf/1301.3781.pdf (Mikolov el al.)

133

https://arxiv.org/pdf/1301.3781.pdf

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER
INPUT PROJECTION QUTPUT

wil-2)

wil-1)

wit+1)

wit+2)

Skip-gram

Figure 6-4. Skip gram algorithm

To understand the context and generate word vectors, a small neural network
architecture is used with hidden layers that have no activation functions. In the
beginning, each word is encoded using the one-hot encoding algorithm and then fed to
the network. A weight is assigned to the hidden layer, whose value is learned through a
loss function. Once the model is trained, it can be used for generating word vectors or
directly used for text classification models.

Continuous Bag of Words Architecture of Word Vectors
Generation

The continuous bag of words (CBOW) method, you could say, is the reverse of skip

gram. It understands the context and then tries to predict the word in that context. For
example, if the sentence is “Delhi is the capital of India” and we then write “Delhi is the
capital,” then it should predict India. The architecture is again the same, where we have a
hidden layer and an output layer. Each word passed to the network is one-hot encoded.
See Figure 6-5.

134

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

Input Projection Output
w(t-2)
wi(t-1)
.\ SUM
- _—_"-;. W(l)
w(t+1)
w(t+2)
CBOwW

Figure 6-5. CBOW algorithm

SageMaker Application of Blazing Text

Before starting the coding, we must understand the dataset for which we will be
generating the word vectors using the blazing text algorithm. The dataset that we’ll be
using is called the text8 dataset. It is a small, cleaned version of the entire Wikipedia text.
The entire Wikipedia dump is called wiki9, which is then cleaned and converted into fil9.
A subset (100 MB) of this cleaned dataset is taken and called text8. We can download the
dataset from http://mattmahoney.net/dc/text8.zip.

As you may already know by now, the data downloaded must be sent to the S3
bucket so that our resources and the algorithm container can access it. We can upload
the data using the following script:

train_channel = prefix + '/train'
sess.upload_data(path="text8"', bucket=bucket, key prefix=train_channel)

Let’s store the path to this dataset in a variable.

s3_train data = 's3://{}/{}'.format(bucket, train channel)

135

http://mattmahoney.net/dc/text8.zip

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

Remember to define all the required fields before executing this code, namely,
bucket, role, etc. We have already seen how to define them in the previous sections. We
can also look at the GitHub repo to understand the complete code.

Now that we have stored the data and defined the path, the next step will be to
initialize the blazing text Docker container.

container = sagemaker.amazon.amazon estimator.get image uri(region_name,
"blazingtext", "latest")

Once the container is ready, we have to initialize the instance/resource.

bt model = sagemaker.estimator.Estimator(container,
role,
train_instance_count=1,
train_instance_type='ml.m4.xlarge’,
train_volume size = 5,
train_max_run = 360000,
input mode= 'File’,
output_path=s3 output location,
sagemaker session=sess)

Don’t forget to define the S3 output location before running this code.
s3_output_location = 's3://{}/{}/output’.format(bucket, prefix)

All the parameters are self-explanatory, and we already looked at them in the
previous section. Remember, the ml.m4.xlarge instance comes under the free tier. So if
you want to play around with different algorithms, always use this instance. Next, we will
set up the algorithm hyperparameters.

bt model.set hyperparameters(mode="batch skipgram”,
epochs=5,
min_count=5,
sampling threshold=0.0001,
learning_rate=0.05,
window size=5,
vector dim=100,
negative samples=5,
batch size=11,

136

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

evaluation=True,
subwords=False)

We have already looked at these parts of the algorithm at the start of this section.
Now we will pass the data as a JSON file to train the algorithm. Before doing that, we
must tell the algorithm that the data is coming from S3. This information was passed in
the previous algorithm using JSON. Here we will pass it using the following script:

train_data = sagemaker.session.s3 input(s3_train data, content type="text/
plain', s3 data type='S3Prefix')

data_channels = {'train': train data}

bt _model.fit(inputs=data_channels, logs=True)

The logs parameter will not only train the model but will also show the model
output in the same Jupyter Notebook. Otherwise, we would have to look at the output in
the CloudWatch. The next steps will be the same as before. Deploy the model and test it.

bt _endpoint = bt model.deploy(initial instance count = 1,instance type =
‘ml.m4.xlarge")

words = ["awesome", "blazing"]

payload = {"instances" : words}

response = bt _endpoint.predict(json.dumps(payload))
vecs = json.loads(response)

print(vecs)

Here we will get the output, which will be the word vectors generated for the words
awesome and blazing. Finally, we will delete the model endpoint.

sess.delete _endpoint(bt_endpoint.endpoint)

In the next section, we will look at the image classification algorithm in SageMaker.

Exploring the Image Classification Algorithm

SageMaker’s image classification algorithm is based upon a special convolutional neural
network architecture called a ResNet. Before looking at the application of this algorithm,
let’s first explore and understand the ResNet architecture used for image classification.

137

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

ResNet

A ResNet is an architecture that is based on the framework of convolutional neural

networks and used for problem statements such as image classification. To understand

a ResNet, we must first look at the operation of convolutional neural networks. See
Figure 6-6.

REPRESENTATION

a 4 (L3 '3
Colate Flockhart 0002 jog Frontaksanon Bl lellnd Il 16aa9ui? 16x9%u 16 ahutalé peacSaSalf
Detection & Localzancn @1520150a3 e Tl [30 3] #5555 @255 s

-

Figure 6-6. Convolutional neural network, 10.1109/
ICEngTechnol.2017.8308186

A typical CNN consists of the following operations:

1. The first operation is the convolution operation, which is also
considered an application of filters. We apply different filters on
the image so that we can get different versions of the same image,
which helps us understand the image perfectly. But, instead of
hard-coding the filters, the values of these filters are learned using
the backpropagation approach.

2. The next step is called pooling or subsampling. Here, we reduce
the size of the image so that the training time becomes faster.
There are different types of pooling approaches such as max-
pooling, average-pooling, etc.

3. The previous two processes are repeated multiple times, and then
the final pooling operation’s output is given to a fully connected
neural network layer. Here the major learning happens, and finally
the classification task is done.

138

SFC labels

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

A problem with the previous architecture is when the network is made too deep;
that’s when the backpropagation process suffers. Inside the backpropagation process
the gradients turn to zero, and hence the learning stops. This phenomenon is called
vanishing gradients. Therefore, to solve this issue during a deep CNN training, ResNets
come into picture. Figure 6-7 shows the architecture of a ResNet.

34-layer residual

Figure 6-7. Source: https://arxiv.orqg/pdf/1512.03385. pdf

ResNet’s major key is that it allows the flow of gradients in the backward direction.
Also, the inputs are bypassed every two convolutions. These two workarounds in CNNs
solve the problem of vanishing gradients. To learn more about ResNet, please visit

https://arxiv.org/pdf/1512.03385.pdf. Covered next is the 34-layered residual
network.

139

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

SageMaker Application of Image Classification

For this algorithm, we will be using a dataset called Caltech256. It contains about 30,000
images of 256 object categories. These categories include ak47, grasshopper, bathtub,
etc. We can explore more about this dataset or download the dataset from http://www.
vision.caltech.edu/Image Datasets/Caltech256/.

So, in this section, our task is to create a machine learning algorithm that classifies
the image into these 256 categories. We will start by defining our roles, regions, etc., that
we have already seen in the previous sections. Next, let’s initialize the Docker container
of the image classification algorithm.

training_image = get image uri(boto3.Session().region _name, 'image-
classification')

Already we have these images categorized into train and validation sets. We can use
these images directly. We can download the images from here:

http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec

Let’s move these images to our S3 bucket. These images are in RecordIO-Protobuf
format, as the algorithm expects them in that format only. Let’s create a function this
time that uploads files to S3.

def upload to s3(channel, file):
s3 = boto3.resource('s3")
data = open(file, "rb")
key = channel + '/' + file
s3.Bucket(bucket).put_object(Key=key, Body=data)

We will now define the folders inside the bucket where we will save the data.

s3_train_key = "image-classification/train”
s3 validation key = "image-classification/validation"

All that is left is to store the image files in S3.

upload to s3(s3_train key, 'caltech-256-60-train.rec")
upload to s3(s3_validation key, 'caltech-256-60-val.rec")

140

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER
Let’s define the parameters related to the algorithm, which we will use to train the model.

num_layers = "18"

image shape = "3,224,224"
num_training samples = "15420"
num_classes = "257"

mini _batch size = "64"

epochs = "2"

learning rate = "0.01"

The number of layers define the depth of the network. The image shape is 224x224
with three channels (RGB). The total number of images in the training dataset is 15,420.
We have a total of 257 classes, 256 objects, and one extra class for others. We define the
batch size of 64, which tells that in one go how many images will enter the network. We
define the epochs as 2, which means the model will be trained on the whole training
dataset two times. Finally, the learning rate is chosen as 0.1, which will decide the
number of steps taken to converge and reach the local minima.

We can now define the algorithm. We have already initialized the container.

s3 = boto3.client('s3")
job_name_prefix = 'imageclassification'

job_name = job _name prefix + '-' + time.strftime('-%Y-%m-%d-%H-%M-%S",
time.gmtime())

training params = \
{

"AlgorithmSpecification": {
"TrainingImage": training image,
"TrainingInputMode": "File"

1

"RoleArn": role,

"OutputDataConfig": {
"S30utputPath”: 's3://{}/{}/output’.format(bucket, job name prefix)

1

"ResourceConfig": {

"InstanceCount": 1,

141

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

"InstanceType": "ml.p2.xlarge",
"VolumeSizeInGB": 50

})

"TrainingJobName": job_name,

"HyperParameters": {
"image shape": image shape,
"num_layers": str(num_layers),
"num_training_samples": str(num_training samples),
"num _classes": str(num classes),
"mini_batch_size": str(mini_batch_size),
"epochs": str(epochs),
"learning rate": str(learning rate)

})

"StoppingCondition": {
"MaxRuntimeInSeconds": 360000

})
"InputDataConfig": [
{
"ChannelName": "train",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": s3_train,
"S3DataDistributionType": "FullyReplicated"
}
}J
"ContentType": "application/x-recordio”,
"CompressionType": "None"
}’
{

"ChannelName": "validation",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": s3 validation,

142

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

"S3DataDistributionType": "FullyReplicated"

}s

"ContentType": "application/x-recordio"”,
"CompressionType": "None"

We already know most of the parameters in the previous JSON, as we have covered
them in the XGBoost algorithm. The following are some of the unique parameters in this

algorithm:

o ContentTypeisapplication/x-recordio. AsIalready mentioned,
image classification expects only the RecordIO-Protobuf data format.

o S3DataDistributionType is fully replicated, which means if we
use multiple instances for parallel training, then the dataset will be
replicated in all the instances.

o The instance type we are using is p2.xlarge as image classification
expects an instance having a graphics card. Be aware that the p2 and
p3 instances are not at all free, and they are chargeable.

Once we are done with algorithm specifications, we will start the training process.

sagemaker = boto3.client(service name='sagemaker")
sagemaker.create training job(**training_params)

status = sagemaker.describe training job(TrainingJobName=job_name)
['TrainingJobStatus']

print(status)
while status !='Completed' and status!='Failed':
time.sleep(60)

status = client.describe_training_job(TrainingJobName=job_name)
['TrainingJobStatus"]
print(status)

As shown, this code will start the training and then inform us whether the training
successfully finished. Once the training is finished, we will deploy the model and then do

143

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

the predictions. Again, the process will be the same as the ones we saw in the previous
algorithms.

endpoint_response= sagemaker.create endpoint(
EndpointName="1image-classification-caltech-endpoint”,
EndpointConfigName="image-classification-caltech-config")

This will take some time and spin up the resource required for the endpoint
generation. Once the endpoint is generated, we can start the predictions.

Let’s download an image and use it for testing our model. We can download a
bathtub image and check whether the model predicts it perfectly.

I wget -0 /tmp/test.jpg http://www.vision.caltech.edu/Image Datasets/
Caltech256/images/008.bathtub/008_0007. jpg

The previous line will directly download the image to your system. If your system is
not Linux, then you can directly go to the link and download the image. Next, we need to
read the image and then pass it to the endpoint.

with open('/tmp/test.jpg', 'rb') as f:
payload = f.read()
payload = bytearray(payload)

response = runtime.invoke endpoint(EndpointName=endpoint name,
ContentType="application/x-image’,
Body=payload)

result = response['Body'].read()

result = json.loads(result)

The variable result consists of probabilities of prediction for all the classes. We
need to find the class that has the maximum probability. That means if we can get the
argument that has the maximum probability, that will be our predicted class. For this we
can use the np.argmax() function.

index = np.argmax(result)

Now, we can use this index to extract the label. We can create a list of all the labels in
the same sequence as they are present in the dataset, and then we can pass the index to
predict the label. Suppose we save all the classes in the variable object classes. Next
we can print the prediction.

144

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

print("Result: label - " + object categories[index] + ", probability - " +

str(result[index]))

You can find the entire code in the GitHub repository. Also, don’t forget to delete the

endpoint once all the operations are done.

sage.delete_endpoint(EndpointName=endpoint name)

Exploring the SeqToSeq Algorithm

Amazon’s sequence-to-sequence algorithm is based upon recurrent neural networks,
convolutional neural networks, and an encoder-decoder architecture to understand the
context more efficiently. The next section is a brief overview of the RNN and encoder-

decoder architectures.

Recurrent Neural Networks

When we deal with sequential data or time-based data, it becomes necessary to
remember a few things from the past and understand how it can be used to predict
the outcome. This is not possible with using normal artificial neural networks or
convolutional neural networks. Therefore, a new architecture called RNN is used
whenever we deal with sequential data. Figure 6-8 shows a simple RNN architecture.

¥q Yo Y3 Yt
R oY F S [
- = - 4 - = =
ho hy ho h3 Pt-1 Ny
X4) R Xp ¥ ; X3 Xt

Figure 6-8. Recurrent neural networks

145

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

For example, in text classification, each word of the text is taken, some neural
network-based computations are applied, and important aspects are stored and then
passed to the next RNN layer. Storage happens in h, words are sent through x, while the
output is received through y. The words are not directly passed, but they are converted
into vectors and then passed. We can use algorithms such as word2vec, glove, or blazing
text in SageMaker to generate these word vectors.

There are various modifications to RNNs that solve the shortcomings present in the
original versions. Two of the most used are long short-term memory (LSTM) and gated
recurrent units (GRU).

Encoder-Decoder Architecture

Figure 6-9 shows a typical encoder and decoder architecture.

Encoder

10108, J8poousg

Decoder

Figure 6-9. Encoders and decoders

An encoder is mostly used to not only memorize the past and give accurate
predictions but also to understand the context of the text passed. We can use normal
RNNs or LSTMS and GRUs. Once the encoders look at all the word vectors, they generate
the encoder vectors and pass them to the decoder. The encoder vector suffices all the
information that the encoder has received, and the decoder uses it to make efficient
predictions.

The decoder takes these encoder vectors, feeds them to RNNs of its own, and then
applies a softmax activation function to give the output. The best advantage of this
architecture, apart from understanding the context, is its ability to take variable-length
input and give variable-length output.

146

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

SageMaker Application of SeqToSeq

Let’s understand the algorithm in more detail by applying it to the machine translation
use case; that is, let’s translate something from English to German. The first few steps will
remain the same, as we saw in the previous algorithms.

from time import gmtime, strftime

import time

import numpy as np

import os

import json

import boto3

import re

from sagemaker import get execution_role
region _name = boto3.Session().region_name

bucket = 'slytherins-test'
prefix = 'seq2seq-E2G'
role = get execution_role()

from sagemaker.amazon.amazon estimator import get image uri
container = get image uri(region name, 'seq2seq’)

So, in the previous steps we have defined the container of the algorithm and defined
our bucket and the folder inside where the entire model-related files will be saved. The
next step will be to have a dataset. The Seq2Seq algorithm has two approaches. In the
first, you can use the pretrained model available for the predictions. So, for our example,
amodel already exists that is trained on English to German machine translation. Or, we
can train the model on our own corpus and then use it for the predictions. This process
may take a lot of time, but it is the best when used for domain-specific translation tasks.

We will first see how to train the model on a corpus, and then we will use the
pretrained model for predictions. The data that we will be using is news data. We will
have files that contain news commentary in English and its translation in German. We
can get these files from http://data.statmt.org/wmt17/translation-task/.

147

http://data.statmt.org/wmt17/translation-task/

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

Let’s download the data from inside the notebook and create our training and
validation sets.

I wget http://data.statmt.org/wmti7/translation-task/preprocessed/de-en/
corpus.tc.de.gz

I wget http://data.statmt.org/wmti7/translation-task/preprocessed/de-en/
corpus.tc.en.gz

I gunzip corpus.tc.de.gz
I gunzip corpus.tc.en.gz
I mkdir validation

I curl http://data.statmt.org/wmt17/translation-task/preprocessed/de-en/
dev.tgz | tar xvzf - -C validation

The previous files that we have downloaded are big, around 250 MB each. So, if we
train the model on the entire dataset, it may take days to finish. Therefore, we can take a
subset of the entire data and use it for training.

I head -n 10000 corpus.tc.en > corpus.tc.en.small
I head -n 10000 corpus.tc.de > corpus.tc.de.small

The previous subset created has 10,000 rows. We will use this small dataset for
training. The next step will be to generate English and German vocabulary from the
previous files. This will use the tokenization and other NLP components to generate the
vocabulary.

%%bash

python3 create vocab_proto.py \
--train-source corpus.tc.en.small \
--train-target corpus.tc.de.small \
--val-source validation/newstest2014.tc.en \
--val-target validation/newstest2014.tc.de

The previous Python script takes as input the source English text and target German
text. It applies the preprocessing to generate the vocabulary. Finally, it saves the English
and German vocabulary in the validation folder. We use %%bash to run any command-
line scripts inside the notebook. This is a Jupyter magic function.

148

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER
Now that our dataset has been created, we need to send it to our S3 bucket.

def upload to s3(bucket, prefix, channel, file):
s3 = boto3.resource('s3")
data = open(file, "rb")
key = prefix + "/" + channel + '/' + file
s3.Bucket(bucket).put_object(Key=key, Body=data)

upload to s3(bucket, prefix, 'train', 'train.rec')
upload to s3(bucket, prefix, 'validation', 'val.rec')
upload to s3(bucket, prefix, 'vocab', 'vocab.src.json')
upload to s3(bucket, prefix, 'vocab', 'vocab.trg.json')

The code that we just executed generates two files. One is the vocabulary that is
generated, and the second is the RecordIO-Protobuf version of the data. We will upload
both of these files to S3 using the previous code.

All the basic steps are complete now, and we want to now initialize the algorithm. We
will do that using the code shown here:

job_name = 'seq2seq-E2G'
print("Training job", job name)

create_training params = \
{
"AlgorithmSpecification": {
"TrainingImage": container,
"TrainingInputMode": "File"
1
"RoleArn": role,
"OutputDataConfig": {
"S30utputPath": "s3://{}/{}/".format(bucket, prefix)
b
"ResourceConfig": {
Seq2Seq does not support multiple machines. Currently, it only
supports single machine, multiple GPUs
"InstanceCount": 1,
"InstanceType": "ml.m4.xlarge", # We suggest one of ["ml.
p2.16xlarge", "ml.p2.8xlarge", "ml.p2.xlarge"]

149

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

"VolumeSizeInGB": 5
b
"TrainingJobName": job_name,
"HyperParameters”: {
Please refer to the documentation for complete list of parameters
"max_seq_len source": "60",
"max_seq_len target": "60",
"optimized metric": "bleu",
"batch_size": "64", # Please use a larger batch size (256 or 512)
if using ml.p2.8xlarge or ml.p2.16xlarge
"checkpoint frequency num batches": "1000",
"rnn_num_hidden": "512",
"num_layers encoder": "1",
"num_layers_decoder": "1",
"num_embed source": "512",
"num_embed target": "512"
1
"StoppingCondition": {
"MaxRuntimeInSeconds": 48 * 3600

})
"InputDataConfig": [
{
"ChannelName": "train",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": "s3://{}/{}/train/".format(bucket, prefix),
"S3DataDistributionType": "FullyReplicated"
}
})
})
{

"ChannelName": "vocab",
"DataSource": {
"S3DataSource": {

150

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

"S3DataType": "S3Prefix",
"S3Uri": "s3://{}/{}/vocab/".format(bucket, prefix),
"S3DataDistributionType": "FullyReplicated"

}
})
}J
{
"ChannelName": "validation",
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": "s3://{}/{}/validation/".format(bucket, prefix),
"S3DataDistributionType": "FullyReplicated"
}
})
}

}

sagemaker client = boto3.Session().client(service name="sagemaker")
sagemaker client.create training job(**create training params)

You can see that the format is the same as that of the XGBoost algorithm and
image classification algorithm. All the parameters are the same as the algorithms that
we discussed in the previous sections. Only the hyperparameters are specific to this

algorithm. Let’s discuss these parameters:

o The max sequence length of the original text and the target text is the
number of characters to take as a sequence and pass to the neural

network architecture.

o The batch size is the number of rows to be passed to the algorithm in

one go.

o The checkpoint frequency saves the model after every batch of 1,000 rows.

151

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

e The number of hidden layers of a neural network is defined as 512
with one encoder architecture unit and one decoder architecture
unit. Remember, these units are used for understanding the context
of the sentences.

o The embedding source and target defines the word vector size of
each sentence in the dataset. Itis set to 512.

This code will start the execution of the training and will take a lot of hours to finish.
Remember, this algorithm requires a GPU instance for execution. So, whatever instance
you select will be chargeable. Choose wisely.

Now, let’s look at how we can use the pretrained model that already exists and do
the inference on the test dataset by exposing the endpoint. When we train the previous
model, we will get three files:

e Model.tar.gz
e Vocab.src.json
e Vocab.trg.json

So, once you train the model, you can use these files directly. But, for using the
pretrained model, we will download these files. We can download them from here:

model name = "DEMO-pretrained-en-de-model"

I' curl https://s3-us-west-2.amazonaws.com/seq2seq-data/model.tar.gz >
model.tar.gz

I curl https://s3-us-west-2.amazonaws.com/seq2seq-data/vocab.src.json >
vocab.src.json

I curl https://s3-us-west-2.amazonaws.com/seq2seq-data/vocab.trg.json >
vocab.trg.json

We will have to upload the model files to S3 so that our endpoint can use it.

upload to s3(bucket, prefix, 'pretrained model', 'model.tar.gz')
model data = "s3://{}/{}/pretrained model/model.tar.gz".format(bucket, prefix)

model data stores the address of the model file uploaded. Next, we will have to
update this model in the algorithm so that we can use it for prediction. For this we will
use the create_model() function.

152

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

sage = boto3.client('sagemaker")
primary container = {
'Image’: container,
'ModelDataUrl': model data
}

create model response = sage.create_model(
ModelName = model name,
ExecutionRoleArn = role,
PrimaryContainer = primary container)

The next step will be to define the resources that will be used by the endpoint.
from time import gmtime, strftime

endpoint_config name = 'DEMO-Seq2SeqEndpointConfig-' + strftime("%Y-%m-%d-
%H-%M-%S", gmtime())
print(endpoint_config name)
create_endpoint_config response = sage.create endpoint config(
EndpointConfigName = endpoint config name,
ProductionVariants=[{
"InstanceType':'ml.m4.xlarge’,
'InitialInstanceCount':1,
'ModelName' :model name,
"VariantName':'AllTraffic'}])

Now we can expose the endpoint by using the previous configurations.
endpoint_name = 'DEMO-Seq2SegEndpoint-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime())

create _endpoint_response = sage.create endpoint(
EndpointName=endpoint_name,
EndpointConfigName=endpoint_config name)

After some time, our endpoint will be ready for inference. Let’s see how we can make
predictions, in this case converting text in English to German.

runtime = boto3.client(service name='runtime.sagemaker")
sentences = ["you are so good !",

153

CHAPTER 6 BUILDING AND DEPLOYING MODELS IN SAGEMAKER

“can you drive a car ?",

"1 want to watch a movie .

]

payload = {"instances" : []}
for sent in sentences:
payload["instances"].append({"data" : sent})

response = runtime.invoke endpoint(EndpointName=endpoint name,
ContentType="application/json’,
Body=json.dumps(payload))

response = response["Body"].read().decode("utf-8")
response = json.loads(response)
print(response)

You will get the output as given next:

{"predictions': [{'target': 'sie sind so gut 1"}, {'target’: 'Kdnnen Sie ein Autoc fahren ?'}, {"target’: 'i want to watch a
movie .'}]}

Asyou can see, the predictions have been successfully made.

Conclusion

In this chapter, you learned about the various built-in algorithms of SageMaker. These
are the optimized versions of the algorithms already present in the machine learning
domain. In the next chapter, we will explore different metrics with which we can evaluate
these models using Cloud Metrics, look at the logs when the container is running using
CloudWatch, and explore endpoint configurations in detail with connectivity with
lambda functions. Also, we will do batch transformations on the algorithms that we have
already seen in this chapter.

154

CHAPTER 7

Using CloudWatch
with SageMaker

In this chapter, we will explore CloudWatch functionality in AWS in detail. Specifically,
we will look at two components of CloudWatch, CloudWatch Logs and CloudWatch
Metrics, that we will use a lot while using SageMaker.

Amazon CloudWatch

Amazon CloudWatch is a service provided by Amazon that tracks the resource activities
of AWS and provides metrics related to it. It also stores the logs that are provided by every
resource used. Through these logs and metrics, a user can explore the performance of an
AWS resource being used and what can be done to improve it.

When it comes to machine learning, especially with SageMaker, CloudWatch Logs
gives us the output of containers in which the code is running. As we have already seen
in the previous chapters, machine learning algorithms run inside a Docker container
attached to an EC2 instance. So, the output that originates from these containers is not
directly visible. To look at this output, we must make some adjustments to our code,
and then the status can be seen directly in the Jupyter Notebook in use, or we can use
CloudWatch Logs to get this output in a step-by-step manner. The output can include
your model outputs, the reason why your model failed, insights into the step-by-step
execution, etc. Containers are required for three jobs, and hence we have three log

groups in machine learning.
e Processing Jobs log group
o Training Jobs log group
e Transform Jobs log group

155
© Himanshu Singh 2021

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_7

https://doi.org/10.1007/978-1-4842-6222-1_7#DOI

CHAPTER 7 USING CLOUDWATCH WITH SAGEMAKER

We will look at these log groups in detail in the coming sections.

CloudWatch Metrics provides us with information in the form of values to variables.
For example, when it comes to machine learning, CloudWatch Metrics can provide
values such as the accuracy of a model, precision, error, etc. It can also provide metrics
related to resources, such as GPU utilization, memory utilization etc. We will look at

CloudWatch Metrics in detail in the coming sections. Figure 7-1 shows the architecture
of how CloudWatch works.

"'"v e

Actions
Amazon .
CloudWatch I I I P
Resources that : —_— > :
use CloudWatch Amazon —
CloudWatch SNS email
Alarm notification
7.7
Your custom > ’ ‘
data |I
Available -
Statistics Auto Scaling

| -~

D he——
= et
AWS Statistics
Management Console Consumer

Figure 7-1. Amazon CloudWatch architecture

By looking at this architecture, we can see that in addition to accessing the services
through the Amazon Management Console, we can integrate alarms through Amazon
SNS, which can be connected to your email. We can also set custom rules based on
certain criteria. This includes starting, stopping, and terminating a process or using
features such as autoscaling. Let’s dive deeper into CloudWatch Logs in the next section.

156

CHAPTER 7 USING CLOUDWATCH WITH SAGEMAKER

CloudWatch Logs

In the SageMaker console, on the left side, we have a sidebar that guides us through the
different operations that are possible in it. We can create notebook instances, look at
different algorithms that we ran, and analyze the endpoints. We can look at the logs of
all the services that we have used by viewing the log details. Let’s start with the training
job-related logs.

Training Jobs

In the previous chapter, we ran an XGBoost model on the Big Mart dataset. Inside the
SageMaker console, if we go to the Training drop-down and select “Training jobs”
(Figure 7-2), we will get a list of all the algorithms that we have run (Figure 7-3).

v Ground Truth
Labeling jobs
Labeling datasets

Labeling workforces

v Notebook
Notebook instances
Lifecycle configurations

Git repositories

v Training

Algorithms

Hyperparameter tuning jobs

v Inference
Compilation jobs

Model packages

Figure 7-2. Selecting the training job

157

CHAPTER 7 USING CLOUDWATCH WITH SAGEMAKER

blazingtext-2020- May 17, 6

05-17-13-52-23- 2020 13:52 ! ® Completed
minutes

324 uTC

DEMO-xgboost- May 17, 4

classification-2020- 2020 05:51 e ® Completed

05-17-05-51-05 uTC

Figure 7-3. Selecting the job for which the logs need to be analyzed

We can select the algorithm that we want more details for; in our case, it is XGBoost.
When we click the algorithm, a new page opens with a lot of information about the
model we ran. For example, it tells about the algorithm specifications that we provided
while running the model. If we scroll down the page, we will come to a section called
Monitor (Figure 7-4). From there we can jump to CloudWatch Logs.

Monitor

Access logs for debugging and progress reporting. Learn more

View algorithm metrics [£}
View logs [4

View instance metrics [

Figure 7-4. Monitor section

158

CHAPTER 7 USING CLOUDWATCH WITH SAGEMAKER

Click the “View logs” link, and you will see the CloudWatch page open. See Figure 7-5.

faws/sagemaker/TrainingJobs veieis | [actions ¥ | [View im Logs o | [T

* Log group details

15 cys s VRTEED

Log streams (9) c Create log strea m Search all

O DEMO-wghoost-clstiention: HI20-05-17-05-51.08 ¥ | 1 manch 1 @

Ly vtream ¥ Last et time

Figure 7-5. Selecting the algorithm for the logs
As you can see in Figure 7-5, a lot of options are available in the CloudWatch console.

We are looking at the log groups. As you know, because we have selected the training job,
this information is present at the top of the console (see Figure 7-6).

/aws/sagemaker/TrainingJobs

Figure 7-6. Path

When we scroll down, at the bottom we can see the name of the algorithm. We must

click it to get to the logs (see Figure 7-7).

159

CHAPTER 7 USING CLOUDWATCH WITH SAGEMAKER

> Timestamp Message

There are older events to 1oad. Lood mare.
020-05-17T10: 242 305405 0
050-08

NFO:sapensiver-contalners:Ieoorted fromework sagenaker_xgbocst_container.tradning

23:32.034-03: 32 itagenpuec-containers:failed to perse Pyperparameter abjective velue multliscftrax to Joos.

2020-9%5-17T11:24:12.055+05: 32 g the value itsels

enaker - contalners:Ne GPUS detected (aormal if no gous Enstelled)

15agensier_ngboost_centainer.trainingizuaning X0Boost Segewsier dn algoritrm mode
of G5V input &5,
of 5V inpat s °,*
r of (S input &5 .
of G5V input &1 7,
of CSV inpet fs)
of €SV lnput &5 7,
24:32.088-00: 0 of O3V dnput i3 °,°

29132.055-051 32

n matric has 29589 rows

fworkisace/sr/ Learner. cas328:

Paraseterss ([num_round, silest) might not e uted. T

miy Pet B¢ accurate Coe To some parameters are only wsed in langusge bingings but passed Sows To NGBoSSt core.
[0]011craln -mrror: 0. 17915500
(118812 traln-mer ror i 8, 17620001 1vad idat lon-merror :0. 17822
[2]9011¢rale -merror10. 1772800 validation-nerror 10, 17728
131 7738
2020-08- 177111241 32, 085008130 [£]2011¢raln -merror:d. 17688801 1validat lon-merror 0. 17658

HT-85-1IT

Lon-mer

L I
-
H
]

Figure 7-7. Visualizing the logs

You can see that the complete logs related to your algorithm will be present there.
We get the step-by-step results, which in this case includes the train and validation error.
You can keep scrolling down until the end of the page to reach the last output of the
algorithm. This is how you can look at the logs of any training algorithm that you have
executed.

Remember, the logs will start appearing only once the container has successfully
started and the algorithms have started running. If there is a problem with your
Docker script, then you will not find any logs generated. But, if your code related to the
algorithm has an error, then you will find the information in the logs section, as the
container had successfully started, and hence the logs have started generating. So, if
your model is not running, you can come to the logs to check the error in the code. With
custom containers, if the logs don’t start running, in general the error is probably in the
Docker script. We will explore the custom containers in the next chapter. Let’s now look
at the logs for processing jobs.

Processing Jobs

In Chapter 5, we saw how to process data using the processing script. We used both
Sklearn containers, and I also showed you how to use a custom container for processing.
Let’s look at the logs generated by our processing script. To do this, we will first open

the CloudWatch console from the services list. Once we are there, click the Log Groups
section, the one that we used in the previous section. Here, you will find a list of different
log groups, as you can see in Figure 7-8.

160

Log groups (5)

l C ' | Actions ¥ View in Logs Insig

Q

Log group

CHAPTER 7 USING CLOUDWATCH WITH SAGEMAKER

A

[aws/sagemaker/Endpoints/DEMO-Seq2SeqEndpoint-...

[aws/sagemaker/Endpoints/linear-learner-2020-05-1...

[aws/sagemaker/Notebookinstances
[aws/sagemaker/ProcessingJobs

faws/sagemaker/TrainingJobs

its Create log group

Retention v
Never expire
Never expire
Never expire
Never expire

Never expire

Exact
match

@

Metric filte

Figure 7-8. Log groups

You can see that in addition to the training job, you will find processing jobs,

notebook instances, and endpoint logs. Let’s click the processing jobs. You will find a list

of all the processing jobs that you ran. If you remember the name of the job, then it will

be easier to find it. That’s why it is always recommended to use unique identifiers for all

kinds of jobs. Click the latest processing job that we ran. Once you click it, you'll find a

list of all the steps output that the processing container gave, as shown in Figure 7-9.

TTYTTETETTYTTITRYTYRYTYEYY Y

Timestamp

TEO-05-OITIE 133600005 30
2020-05-0XTLE 13106, 561051 32

Message

There are older events to load Load more
Rsceived sopemorts Nemesseceltrain test_solit reticsd.l)

Rasslng daput deta from foptieliprocessing/inpat/Traln. cxv

020-05 B61405 130
2030-08-05T18:13: 38 881085: 30
020-05-9XT1E 13106, 5610061 30
2020-05-03T18:13:15_861-05: 30
TH20-05-0ETLE: 18 36 BEL-ES 1 52
2020-05-00T18:13136. 6614051 30

Trsize o -0yt 3961

31lee from & Detafrane

See The cawests in the

srescosessing. oy el SertingdltaCogybiaraing:

A valus ie Srying £5 Be e4T o0 4 copy oF & glite drom b Detafrane

mLeretanning

See the cavests in the

2 g.oyren: atngs

13235, 861008 50
BO-0E-0TIE L0 06 061N
2020-05-0XTLET 13136, B Le0S 1 32
2020-05-03T18:13:36.861+05: 30
2030-09-03T1E:13: V6. B61-00: 30
2020-05-0FT1E113136. 5610051 30
H30-05-03T18: 13: 46_B61e85: 30
T020-05-0NTIN LN D6 WL 52
2020-05-03718:13136.B61+851 30

Avaler 3 tryieg to B Mt o0 8 cooy of o slite from s Detefrane

i-a-cogy 5elf._setitem with_ingever|incexer, value}

htnleretarning-a-vies-verses-a-cosy cat_date.loc[{cet_sata['Outlet_Size'].lssa)} &

See Tne coveats dn the i i B

£-ovidde

& value 18 tryleg to be tet on & copy of B sllce

drom & DataPra

- nEmlereerning

See The caveats in the 1 mEtan) asta.ang/p

presracessing. apid8: SestingdlthCooyilaraing:

A value it trying 5 be £a% o0 8 copy o 8 slice drom a Cetafrane

opy cat_deta.loc[{cet_ssta['Outles_Size'l.isma()) &

cogy cat_data.loc[{cat_data['Outlet_Size'].issa()} &

Sse the cavests In the

B61eg8: 50

g oy raT Lng:

Figure 7-9. Output of a container

htaléreturning:

ogy caf_dete.loc[{cat_data["Outlet_Size'].isaal}}

161

CHAPTER 7 USING CLOUDWATCH WITH SAGEMAKER

This is how you can use CloudWatch to get insights about the processing jobs. Let’s
see what output we get if we click the endpoints that we created. Let’s explore the linear
learner endpoint (Figure 7-10).

Log events ?‘ Actions ¥

. Timestamp Mestage

There are older events 10 koad. Lood more.

2020-08-14T20:20: 24,4108 30

DHEES 161131102 24, 3 1S3

2020-95-16T23119: 24, 42205

2020-95-16T231 191 14, 42205130

v "ieecotisns.counts (%)

2028-95-16T101 195 14, 42205230

» “Lwocaticns. cou
102805 14T13: 19274, 4338529

2020-08-16T20:00: 34, 43205300

2020-95-16T20:00:24, 43205230

2030-03:14729:19: 04, 3370092 90

1020-9-16723:10: 34, 337092 90

02095161231 10: 24, 422852 30

2020-95-16T23:10: 14, 42205230

»
3
3
.
.
.
.
v
3 TR0 6TINI HI 4, 4306300
.
b
.
3
.
.
.

TH2E-95-16T2Y119: 14, 42305230

Figure 7-10. Exploring the linear learning endpoint

You can see all the test data that we sent for the predictions, and it is giving us JSON
format output for that. This is how we can use CloudWatch Logs for our jobs. One more
section under Logs is Transform Jobs, which we will look at in the next chapter once we
discuss the batch transform job.

CloudWatch Metrics

Similar to how we can use CloudWatch Logs to view the logs of our jobs, we can get

the metrics related to the algorithms or resources. Let’s start with understanding the
metrics related to the training jobs. We will log in to our SageMaker console and go to
the training jobs page. We will explore the linear learner metrics for the classification
task that we did on the Big Mart dataset. We will follow the same procedure to go to the
algorithm page as we saw in CloudWatch Logs. Once on that page, instead of clicking to
view the logs, we will click to view the metrics, as you can see in Figure 7-11.

162

CHAPTER 7 USING CLOUDWATCH WITH SAGEMAKER

Monitor

Access logs for debugging and progress reporting. Learn more

View algorithm metrics A

View logs £

View instance metrics [

Figure 7-11. Selecting metrics

Once you click “View Algorithm Metrics,” on the new screen you'll find different
metrics available for that algorithm and a graph canvas. It will look like Figure 7-12.

Untitled graph 1h 3h 120 1d 3d 1w custom -+ Line - Actions ~ o o~ e
1
L]
5ib Your CloudWatch graph is empty.
Sel yme metrics to appear here
04
02
[
05.45 07:00 o715 07:30 745 03.00 0815 08:30 08:45 09.00 0915 0930
All metrics Graphed metrics Graph options Source
Chio ~ All > faws/sagemakesTrainingJobs » TrainingJobMame | linear-learner-2020-06-06-07-00-30-649 @ Q Search for any metnc, dimensicn or resource | Graph search
TralningJobName (4) Metric Name
lineardeamer-2020-06-06-07-00-20-645 train:objective_loss:final
linearleamer-2020-06-06-07-00-30-648 trainprogress
lineardleamer-2020-06-06-07-00-20-648 frain:throughput
lineardearmer-2020-06-06-07-00-30-648 lrainobjective_loss

Figure 7-12. Selecting the objective metrics

In the linear learner algorithm, the metrics that we can see are the loss function, the
training progress, and the throughput. Let’s look at the loss function final value once the
training stopped. We can click the “objective_loss” and then click “Add to graph.” Next we
can move to the “Graphed metrics” option and change the period to the time when you
finished the training. You can change the graph type to Number. You will get the output,
as shown in Figure 7-13.

163

CHAPTER 7 USING CLOUDWATCH WITH SAGEMAKER

Untitled graph

0.42

train objective_losa fnal

Figure 7-13. Visualizing objective loss

ih 3h 12h

id 3a

T ocustom - Number - Actions ~ wr | T 1]

Similarly, based upon the dataset, we can access a lot of metrics, as shown in

Figure 7-14.

train:objective_loss

validat ero_precision

validation:dcg
testimse
validationcbinary_f_beta

validationcobjective_loss
valldationoobjective_lossfinal
tesumacro_recall
testiabsolute loss

trainirecall

trainimse

trainiprecision
train:objective_lossfinal
validaticncrecall
test:multiclass_accuracy
validation precision
validationomulticlass_accuracy
trainbinary_f_beta

testiracall
testmacro_precision
testmacro_f_beta
testiobjective_loss
testprecision
validatisn:multiclass_top_k_securacy
train:binary_classification_accuracy
validationomse
test:multiclass_top_k_securacy

validation binary_classification_accuracy

train:absolute_loss

testbinary_classification_accuracy
validation:absolute_loss

validationemacro_f_beta

Figure 7-14. Different kinds of metrics available

Aquality_metric: host=\S+,
e hast=\5,

squality_rm
#quality_matric: host=\5+,
#quality_metric host=\5+,
wguality_metr

squality_met
Aguallty_me
quality_me

Aguality_me
fquality_me
mquality_me:
#quality_me!
aquality_mes
weuality_met
#quality_rm
squality_m
wquality_m

host=\5+,
host=\5+,
ic: host=\Se,
host=\5+,
host=\5+,

sguality_m
Aquality_ma:
Aquality_me

rguality_me! host=\Ss,
fquality_metric: host=\5+,
Aguality_metric: host=\5+,

rquality_metric: host=\5¢+,

#quality_me! host=\5+,

Aquality_metric: host=\5+,
Wquality_metric: host=\5+,
#quality_metric: host=\S+,

#quality_metric: host=\5+,
Hguality_metric host=\S»,
etric: host=
host=\5+,
ric: host=\S+,

#throughput_

#quality_met
mguality_me
rquality_mesric hast=\S+,

+ traiin recall <score>

+ train \5+_objective <loss>=\5

epoch=\5+, train \5+_objective <loss>=(\5+)
walidation macro_presison <worer=(\5+)
validation deg <scare=={\5+)

test mse <loss==(\5+)

+, validation binary_f_\S+ <score>=(\S+}

, epach=8+, validation \5+_sbjoctive <lass>=(15+)
. validation Y5+ _objective <loss>=[\5+)

. test macro_recall <seore>={45+)

. test absolute_loss <loss>=(\5+)

*

, train mse <lass>=(\5+)

. traiin precision <scare>=(\5+)

J

. validation recall <score>=(\5+)

 test multiclass_accuracy <score={\Se)

walidation precision <score=={\5+)

wvalidation multiclass_accuracy <score==(\5+)

train binary_f_\5+ cscore==(\5+)

st recall <score>=(\5+)

test macro_precision <score>=(\5+)

est macro_f S+ <seore>=(15+)

test Y5+ _objective <loss>=(\5+)

est precision <score>=\5+]

walidation multiclass_top_k_dccurscy_\5+ <score==[\5+]

train binary_classification_accuracy <score>=(\5+)

walidation mse <loss>={\5+)

test multiclass_top_k_accuracy_\5+ <score>=(\5+)
validation binary_classification_sccuracy escore==(15+)
train absolute_loss <loss>=(15+)

walidation macro_recall <scener=({Se)

5+, tr

in throughput=(\5+) recards fsecand
test binary_classification_accuraty <score>={\5+)
validation absolute_loss <loss>=(\5+)
walidation macro_f S+ <score>=(15+)

The same procedure can be adopted to get the metrics for any algorithm that has

been run. Let’s look at some aspects of instance metrics as well. In the instance metrics,

we can look at the CPU utilization, memory utilization, and disk utilization, as shown in

Figure 7-15.

164

CHAPTER 7 USING CLOUDWATCH WITH SAGEMAKER

[¢]
]

Untitlied gragh th 3h 12n 1d 32 tw cuslom - mumber v Adtions =

125« 0.33. 0.16.

Allmetics | Graphed memnce (3) | Graphopticer | Source

Math sxpression w @ Dynamic labels v Satstc: Average v Period: 103y v Remaveall

Detasls Statistic Pericd ¥ Axs Actions

B ~o@e
B: ~oee
B: ~o20

v Label

-
-
-

Figure 7-15. Visualizing metrics

You can see the metrics changing live if you open CloudWatch during the

training session.

Conclusion

In this chapter, you learned how to use CloudWatch to get the logs and metrics of
different algorithms and resources. In the next chapter, we will look at how we can train a
custom algorithm and also look at some of the other aspects of SageMaker.

165

CHAPTER 8

Running a Custom
Algorithm in SageMaker

In this chapter, you will see how to run an algorithm of your own, instead of using
SageMaker’s built-in algorithms. Although SageMaker provides built-in algorithms for
almost any kind of problem statement, many times we want to run our own custom
model utilizing the power of SageMaker. We can do so effectively if we have working
knowledge of Docker and hands-on knowledge of Python. In this chapter, we will create
a custom random forest model for our Big Mart dataset. We will deploy the container in
ECR and then train the model using SageMaker. Then we will use the model to do real-
time inference as well as understand how batch transformation is done.

The Problem Statement

The problem statement is that we will try to predict the sales of an e-commerce firm
using the random forest algorithm (one of the supervised learning ensemble tree
algorithms). As it is a regression problem, we will be using the RandomForestRegressor
class of the Scikit-Learn package. We have already explored the dataset in the previous
chapters; it’s the Big Mart dataset. Figure 8-1 shows the first few rows of the dataset.

167
© Himanshu Singh 2021

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_8

https://doi.org/10.1007/978-1-4842-6222-1_8#DOI

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

Item_ldentifier Item_Weight Item_Fat_Content Item_Visibility Item_Type Item_MRP Outlet_ldentifier Outlet_Establishment_Year Outlet_Size

0 FDA15 9.30 Low Fal 0.016047 Dairy 2498002 0UT049 1999 Medium
1 DRCO1 592 Regular 0019278 SoftDrinks 48.2692 ouUTo18 2008 Medium
2 FDN15 17.50 Low Fat 0.016760 Meat 141.6180 oUTO49 1999 Medium
3 FDX07 19.20 Reqular 0.000000 bi;“;[a:;f 182.0950 oUTo10 1998 NaN
4 NCD19 893 Low Fat 0.000000 Household 533514 ouTD12 1987 High

Figure 8-1. Start of the dataset

Review Chapter 5 if you want to understand the dataset. We already processed the
data in that chapter and created the training and validate dataset, so we will not be
repeating that process here. We will continue developing the algorithm after the train
and test split is done. Please go through Chapter 5 to revise the entire process.

Running the Model

Before moving to the application of the model inside the SageMaker environment, let’s
first run the algorithm, locally, on the dataset that we have prepared and check the total
loss that was incurred.

from sklearn.ensemble import RandomForestRegressor
rfc = RandomForestRegressor(n_estimators=500)

In the previous code, we initialized the RandomForestRegressor algorithm and
asked to merge the outputs of 500 individual decision trees. Once we have initialized the
algorithm, we can start training the model.

rfc.fit(X _train, y train)

The previous code will start the training of the model. Now we can use the trained
model to make predictions on the test set.

predictions = rfc.predict(X test)

All the predictions are not stored in the variable predictions. Let’s calculate the roto
mean squared error of the model that we have created.

from sklearn.metrics import mean_squared error
np.sqrt(mean_squared error(predictions, y test))

168

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

This will give a value for the final error. In my case, it’s 1054 approximately. Different
systems may have different outputs due to sampling.

Transforming Code to Use SageMaker Resources

Now that we have successfully run the code in the local environment, we will next
transform it so that it can be run inside the SageMaker environment. The following are
the steps to run a custom model in SageMaker:

1. Store the data in S3.
2. Create a training script and name it train.

3. Create an inference script that will help in predictions. We will call
itpredictor.py.

4. Setup files so that it will help in endpoint generation.

5. Create a Dockerfile that will help in building an image inside
which the entire code will run.

6. Build a script to push the Docker image to Amazon Elastic
Container Registry (ECR).

7. Use the SageMaker and Boto3 APIs to train and test the model.

We already have our training data inside S3, so we will start by creating a training

script.

Creating the Training Script

We have already created a training notebook. This training script will be similar to
the notebook, but we have a few extra considerations. The first thing that should be
kept in mind is that the script is going to run inside a container. So, there can be a
synchronization issue as the script is inside while the data is coming from S3 bucket,
which is outside the container. Also, the results of the algorithm should also be saved in
the S3 bucket. We need to keep all this in mind as we create a training script.

The first thing that we should know is that inside the container, no matter what the
data is that is coming in, it gets stored inside the folder /opt/ml. Therefore, data from

169

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

S3 will be downloaded from that folder. So, in this folder we have to create three folders:
one to store the input, one to store the output, and one to store the models. This can be
defined by using the following script:

prefix = '/opt/ml/'

input_path = prefix + 'input/data’
output_path = os.path.join(prefix, 'output')
model path = os.path.join(prefix, 'model")

Inside the data folder, we can have multiple files such as training, validation, or
testing. We can also have separate files contributing to a single training file. Hence, we
can make this kind of segregation as well. For us, we have only one file: the training file.
So, we will be using only one channel.

channel _name='training'
training path = os.path.join(input_path, channel name)

This prepares our training script to handle data. Next is the training script itself. The
data will come from S3. First we have to read it and then apply all the steps that we saw in
Chapter 5. To read the file, we can use the following script:

input_files = [os.path.join(training path, file) for file in
os.listdir(training path)]

raw_data = [pd.read csv(file) for file in input files]

data = pd.concat(raw_data)

This script also helps if you have multiple CSV sheets to read. But, in that case
remember to keep the parameter header=None. Now that we have read the data, we can
start the training process. The following is the entire script for the training:

def train():
print('Starting the training.')
try:

Take the set of files and read them all into a single pandas
dataframe

input_files = [os.path.join(training path, file) for file in
os.listdir(training path)]

170

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

if len(input_files) == 0:
raise ValueError(('There are no files in {}.\n' +
'This usually indicates that the channel ({}) was
incorrectly specified,\n' +
"the data specification in S3 was incorrectly specified or
the role specified\n' +
"does not have permission to access the data.').
format(training_path, channel name))
raw data = [pd.read csv(file) for file in input files]
data = pd.concat(raw_data)
data = data.sample(frac=1)

for i in data.Item Type.value counts().index:
data.loc[(data['Item Weight'].isna()) & (data['Item Type'] == i),
['Item Weight']] = \
data.loc[data['Item Type'] == 'Fruits and Vegetables',
['Item Weight']].mean()[0]

cat_data
num_data

data.select dtypes(object)
data.select dtypes(np.number)

cat_data.loc[(cat _data['Outlet Size'].isna()) & (cat data['Outlet
Type'] == 'Grocery Store'), ['Outlet Size']] = 'Small'
cat_data.loc[(cat data['Outlet Size'].isna()) & (cat data['Outlet
Type'] == 'Supermarket Typel'), ['Outlet Size']] = 'Small’
cat_data.loc[(cat _data['Outlet Size'].isna()) & (cat data['Outlet
Type'] == 'Supermarket Type2'), ['Outlet Size']] = 'Medium’
cat_data.loc[(cat data['Outlet Size'].isna()) & (cat data['Outlet
Type'] == 'Supermarket Type3'), ['Outlet Size']] = 'Medium’

cat _data.loc[cat data['Item Fat Content'] == 'LF' , ['Item Fat_
Content']] = 'Low Fat'

cat _data.loc[cat data['Item Fat Content'] == 'reg' , ['Item Fat_
Content']] = 'Regular’

cat data.loc[cat data['Item Fat Content'] == 'low fat' , ['Item_
Fat_Content']] = 'Low Fat'

171

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

le = LabelEncoder()
cat_data = cat data.apply(le.fit transform)

ss = StandardScaler()

num_data = pd.DataFrame(ss.fit transform(num data.drop(['Item
Outlet Sales'], axis=1)), columns = num data.drop(['Item Outlet
Sales'],axis=1).columns)

cat_data = pd.DataFrame(ss.fit transform(cat data.drop(['Item
Identifier'], axis=1)), columns = cat data.drop(['Item_
Identifier'], axis=1).columns)

final data = pd.concat([num_data,cat data],axis=1)

X
y

final data
data['Item Outlet Sales']

from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, vy,
test size = 0.1, random state=5)

from sklearn.ensemble import RandomForestRegressor

rfc = RandomForestRegressor(n_estimators=500)

clf = rfc.fit(X_train, y train)

save the model

with open(os.path.join(model path, 'randomForest-tree-model.pkl'),

'w') as out:
pickle.dump(clf, out)

print('Training complete.")

except Exception as e:

trc = traceback.format _exc()

with open(os.path.join(output_path, 'failure'), 'w') as s:
s.write('Exception during training: ' + str(e) + '\n' + trc)

print('Exception during training: ' + str(e) + "\n' + trc,

file=sys.stderr)
sys.exit(255)

172

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

We will keep the entire script inside a function called train(). After reading the
CSV sheet, we will follow the same procedure we saw in Chapter 5. Later we will fit the
random forest model on the data, which we ran in the previous section.

After all this, we have to save this model because later we will have to make
predictions using the model. To save the model, we will first serialize it using pickle and
then save it in the model location. Later, this model will be saved in S3.

Finally, we can run the entire script.

if name_ ==" main_ "':
train()
sys.exit(0)

We have to use sys.exit(0) as it sends the message to SageMaker that the training
has successfully completed. Save the file with the name train and no extension.

Creating the Inference Script

The training script is used to train the model. But, once the model is trained, we need to
make predictions, whether with real-time inference as we saw in Chapter 6 or with the
batch transformation that we will see in this chapter. We will save the inference script in
afile named predictor. py.

The predictor file consists of the following components:

o ScoringService() class

o ping() method

o transformation() method

e Any other helper function required

The ScoringService() class consists of two functions. The first function, get_model(),
loads and deserializes the model, while the second method, predict(), is responsible
for making the predictions. Remember, the inference script also uses the same folder
as the base that the training script uses, /opt/ml. The following is the script for the
ScoringService() class:

prefix = "/opt/ml/'
model path = os.path.join(prefix, 'model")

173

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

class ScoringService(object):
model = None

@classmethod
def get model(cls):
if cls.model == None:
with open(os.path.join(model path, 'randomForest-tree-model.
pkl'), 'r') as inp:
cls.model = pickle.load(inp)
return cls.model

@classmethod

def predict(cls, input):
clf = cls.get model()
return clf.predict(input)

The ping() method is just used to check whether the Docker container that the code
is running in is healthy. If it’s not healthy, then it gives a 404 error, else 202.

@app.route('/ping', methods=["'GET'])

def ping():
status = 200 if health else 404
return flask.Response(response="\n", status=status,
mimetype="application/json")

transformation() is the method that is responsible for reading the test file and
calling the required methods and classes. One thing to understand here is that this
entire endpoint generation process is nothing but the creation of an API. Once the
APT s created, the data is sent as a POST request, and then we get the predictions as a
response. This entire architecture is built using the Flask framework.

The data is sent using the POST method, so to read it, we need the StringIO()
method to decode the data. Once the data is decoded, we can read it with our normal
Pandas method. The transformation() function sends the data to the predict()
function of class ScoringService(). The method sends the output back to the
transformation() function. This prediction output is sent back to the host from where
the API is called, with help from the StringIO0() function. This finishes the entire cycle of
endpoints. The following is the code of transformation():

174

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

@app.route('/invocations', methods=['POST'])
def transformation():
data = None

if flask.request.content type == "text/csv':
data = flask.request.data.decode('utf-8")
s = StringI0.StringIO(data)
data = pd.read csv(s, header=None)
else:
return flask.Response(response='This predictor only supports CSV
data', status=415, mimetype='text/plain")

print('Invoked with {} records'.format(data.shape[0]))

Do the prediction
predictions = ScoringService.predict(data)

Convert from numpy back to CSV

out = StringIO0.StringIO()
pd.DataFrame({'results':predictions}).to csv(out, header=False,
index=False)

result = out.getvalue()

return flask.Response(response=result, status=200, mimetype='text/csv')

We will use this Python file for making the predictions, but to run the server
efficiently, we need some configuration files. Let’s explore them in the next section.

Configuring the Endpoint Generation Files

To run the inference server successfully, we need to configure the following files:
e nginx.conf file
o servefile
o wsgi.pyfile

Generally we don’t make changes in these files. We create them and then use them
as is for our predictions. We will not go into the line-by-line details of these files, but let’s
understand the purpose of each one.

175

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

The Nginx file is used to spin up the server and make the connection between
the Docker containers deployed on EC2 instances and the client outside or inside the
SageMaker network possible. Nginx uses a Python framework called Gunicorn that helps
to set up the HTTP server.

Serve uses the running Gunicorn server to make the connection between the
different resources feasible. Specifically, it is used for the following purposes:

o Efficiently using the number of CPUs for running the model
o Defining the server timeout

e Generating logs

o Starting the server using Nginx and Gunicorn

o Stopping the server if something doesn’t go as expected

Lastly, the wsgi.py file is used to tell the server about our predictor.py file. We can
explore the code in each file in the GitHub repository of this book. Remember, these files
are really important as without them the server will never run; hence, you won'’t be able
to make predictions. Don’t make changes to these files, unless you are pretty sure about

what you're doing.

Setting Up the Dockerfile

Now that all our script files are ready, we have to create a Docker image so that it can be
uploaded to ECR and then SageMaker can access the code present in it and run it in an EC2
instance attached. Let’s first see how to give a structure to the files that we created. Figure 8-2
depicts the structure that we should give to the directory, before creating the image.

——Data nginx.conf
serve
wWsgi.py
predictor.py
train

—— Dockerfile
——build_and_push.sh

Figure 8-2. Directory structure

176

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

We have already created all the files that are present in the Data directory. Now, we
have to create a Dockerfile script, which will be run to build the image. Then we will use
the build_and_push.sh file to push the image to ECR.

These are the steps that we will follow in the Dockerfile:

1. Download an image from DockerHub that will have our operating
system. We will download a minimal version of Ubuntu so that our
code can run inside it. For this, we will use the following script:

FROM ubuntu:16.04

2. Name the person, or the organization, who is maintaining and
creating this image. I have given my name here. You can use any
name you'd like.

MAINTAINER Himanshu Singh

3. Run some Ubuntu commands so that we can set up the Python
environment and update the operating system files. We will also
download the server files that will be used to run the inference
endpoints. You must be familiar with Linux commands to
understand the script.

RUN apt-get -y update && apt-get install -y --no-install-
recommends \
wget \
python \
nginx \
ca-certificates \
&% rm -rf /var/lib/apt/lists/*

4. Once the setup is done, we can use pip from Python to install the
important Python packages.

RUN wget https://bootstrap.pypa.io/get-pip.py && python
get-pip.py && \
pip install numpy==1.16.2 scipy==1.2.1 scikit-learn==0.20.2
pandas flask gevent gunicorn && \
(cd /usr/local/lib/python2.7/dist-packages/scipy/.libs;
rm *; In ../../numpy/.libs/* .) 8& \

rm -xf /root/.cache
177

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

5. Setthe environment variables so that Python knows what the
default folder is that will contain the code. Also, we will set some
features of Python. We first make sure that timely log messages
should be received from the container, and then we make sure
that once any module is imported in Python, its . pyc file is not
created. This is done using the variables pythonunbuffered and
pythondontwritebytecode, respectively.

ENV PYTHONUNBUFFERED=TRUE
ENV PYTHONDONTWRITEBYTECODE=TRUE
ENV PATH="/opt/program:${PATH}"

6. Finally, the instance will instruct to copy our Data directory files
to the default work directory, and then we will change the default
work directory.

COPY Data /opt/program
WORKDIR /opt/program

This finishes our Dockerfile creation. Here is the entire code:
FROM ubuntu:16.04
MAINTAINER Himanshu Singh

RUN apt-get -y update && apt-get install -y --no-install-recommends \
wget \
python \
nginx \
ca-certificates \
8& rm -rf /var/lib/apt/lists/*

RUN wget https://bootstrap.pypa.io/get-pip.py && python get-pip.py && \
pip install numpy==1.16.2 scipy==1.2.1 scikit-learn==0.20.2 pandas
flask gevent gunicorn && \

(cd /usr/local/lib/python2.7/dist-packages/scipy/.1libs; rm *;
In ../../numpy/.libs/* .) && \
rm -xrf /root/.cache

178

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

ENV PYTHONUNBUFFERED=TRUE
ENV PYTHONDONTWRITEBYTECODE=TRUE
ENV PATH="/opt/program:${PATH}"

COPY Data /opt/program
WORKDIR /opt/program

Now, let’s look at the script that we will use to push this image to ECR.

Pushing the Docker Image to ECR

We will create a shell script file, which will be used first to build the image from the
Dockerfile that we created in the previous section and then to push the image to
ECR. Let’s look at the step-by-step procedure for this:

1. Name the image. We will save the name in a variable.
algorithm_name=sagemaker-random-forest

2. Give full read and write permission to the train and serve files
so that once the container is started, there are no access denied
errors.

chmod +x Data/train
chmod +x Data/serve

3. Get AWS configurations so that there is no stoppage when the
image is being pushed. We will define the account and the region
of our AWS. Remember, since we will be running this code from
inside SageMaker, the information can be automatically fetched. If
we are running this from your local system or anywhere outside of
AWS, then we will have to give the custom values.

account=$(aws sts get-caller-identity --query Account
--output text)

region=$(aws configure get region)
region=${region:-us-east-2}

179

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

4. Give the path and name to the container. We will use the same
name that was given in the first step. We will use this path later to
push the image.

fullname="${account}.dkr.ecr.${region}.amazonaws.com/${algorithm_
name}:latest”

5. Check whether the image already exists. If it doesn’t, then a new
image will be created; otherwise, the same image will be updated.

aws ecr describe-repositories --repository-names "${algorithm_
name}" > /dev/null 2>8&1

if [$? -ne 0]

then
aws ecr create-repository --repository-name "${algorithm_
name}" > /dev/null

fi

6. Getthe login credentials of the AWS account.

$(aws ecr get-login --region ${region} --no-include-email)

7. Build the image with the name already decided, rename it with
the full name we decided on that contains the ECR address, and
then finally push the code.

docker build -t ${algorithm name} .
docker tag ${algorithm name} ${fullname}
docker push ${fullname}

The following is the entire script that should be saved in the file build_and_push.sh.

algorithm_name=sagemaker-random-forest

chmod +x Container/train

chmod +x Container/serve

account=$(aws sts get-caller-identity --query Account --output text)
region=$(aws configure get region)

region=${region:-us-east-2}
fullname="${account}.dkr.ecr.${region}.amazonaws.com/${algorithm name}:latest"

180

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

aws ecr describe-repositories --repository-names "${algorithm name}" >

/dev/null 2>&1

if [$? -ne 0]

then
aws ecr create-repository --repository-name "${algorithm_name}" >
/dev/null

fi

$(aws ecr get-login --region ${region} --no-include-email)

docker build -t ${algorithm name} .

docker tag ${algorithm name} ${fullname}

docker push ${fullname}

Once this step is done, we have to go to the terminal, go inside the directory where
your Dockerfile is present, and then type the following:

sh build and push.sh

This will start running the script and will successfully upload the image to ECR. You
can then go to ECR and check whether the image exists. Figure 8-3 shows our image in
ECR.

ECR Repositories

Repositories C v Create repository
Q ! @
Ri itory name Y URI Created at L4 Tag S o0
lepository immutability push
sagemaker-processing I 309912564?9J'.d.kr.ecr.us-eas{-Z.szunnwscomfsagcmaher- 05/03/20, Disabled Disabled
container processing-container 04:31:14 PM

809912564797 dkr.ecr.us-east-2. amazonaws.com/sagemaker- 06/07/20, - :
sag or-ra fores!
agemaker-random-forest BT, 134519 PM Disabled Disabled

Figure 8-3. Container image in ECR

This finishes the process of creating the Docker . Now we will see in the next section
how we can use this image to train the model in a SageMaker notebook.

181

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

Training the Model

Now we will use a SageMaker notebook to execute a classification model on the Big Mart
dataset, using the random forest container we just created. Like the models that we saw
in Chapter 6, we have to first define the role, then create a SageMaker session, and finally
define the account and the region in which SageMaker is running.

import boto3

import re

import os

import numpy as np

import pandas as pd

from sagemaker import get execution_role
import sagemaker as sage

role = get execution role()

sess = sage.Session()

account = sess.boto session.client('sts').get caller identity()['Account’]
region = sess.boto session.region name

The next step will be to get our data location. We have already uploaded our dataset
in S3 in the previous chapters. Let’s define the path.

data_location = 's3://slytherins-test/Train.csv'

Next, we will need to define the path of the custom Docker image that we just created
and pushed to ECR.

image = '{}.dkr.ecr.{}.amazonaws.com/sagemaker-random-forest:latest".
format(account, region)

Now that all the initial steps are done, we can start training our model. We will first
initialize the container with the EC2 instance, image, role, and output S3 path, and then
we will fit the model.

tree = sage.estimator.Estimator(image,
role, 1, 'ml.m4.xlarge’,
output_path="s3://{}/output”.format(“slytherins-test”),
sagemaker session=sess)

tree.fit(data_location)
182

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

This will start the training job, and then once the job is finished, this will tell you the
billable time as well. Figure 8-4 shows the output of the training job.

2020-06-07 ©7:27:23 Starting - Starting the training job...

2020-06-07 ©7:27:25 Starting - Launching requested ML instances.........

2020-06-07 07:28:57 Starting - Preparing the instances for training...

2020-06-07 ©7:29:44 Downloading - Downloading input data...

2020-06-07 ©7:29:56 Training - Downloading the training image..Starting the training.

2020-06-07 07:30:27 Training - Training image download completed. Training in progress.
2020-06-07 ©7:31:13 Uploading - Uploading generated training modelTraining complete.

2020-06-07 ©7:32:39 Completed - Training job completed
Training seconds: 175
Billable seconds: 175

Figure 8-4. Output of the training job

This finishes our training job. We can always look at the detailed logs of the
algorithm using CloudWatch.

Deploying the Model

Now that we have successfully trained the model, we can deploy it using the following
line of script:

from sagemaker.predictor import csv_serializer
predictor = tree.deploy(1, 'ml.m4.xlarge', serializer=csv_serializer)

It will take some time to spin up an instance, and then it will be time to start our
inference.

Doing Real-Time Inference

Let’s use the test dataset of the Big Mart dataset and make predictions using the live
endpoint we just deployed the model on.

predictions = predictor.predict(test data.values).decode('utf-8")

183

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

Remember, to make these predictions, we need to have an endpoint up and running.
This means when the endpoint is running, we will have to pay Amazon. But, if we
want to start the endpoint only to make predictions and then automatically delete the
endpoint, then we can use the Batch Transformation service in SageMaker. Let’s look at
this in the next section.

Doing Batch Transformation

To do the batch transformation, the first thing we need to do is to create a model that
contains the model files that were generated when we trained the model and the image
of the algorithm. The following is the code using that we can use to achieve this:

import boto3
client = boto3.client('sagemaker")
image = '{}.dkr.ecr.{}.amazonaws.com/sagemaker-random-forest:latest’.
format(account, region)
role = get execution role()
primary container = {
'Image': image,
'ModelDatalrl': 's3://sagemaker-us-east-2-809912564797/output/
sagemaker-random-forest-2020-06-07-07-27-23-190/output/model.tar.gz’

}

create _model response = client.create model(
ModelName = 'Random-Forest-BigMart',
ExecutionRoleArn = role,
PrimaryContainer = primary container)

This will package everything, and then we can pass it to the batch transform script
so that we can start the predictions. To start a batch transform, first we need to store the
test file in S3. Once we have stored the file, then we need to provide its location
and the location in S3 where the predictions will be saved. We must give a unique name
to the job.

184

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER
The following is the script that will be used to run the batch transform job:

import time
from time import gmtime, strftime

batch_job _name = 'RF-Batch-Transform-' + strftime("%Y-%m-%d-%H-%M-%S",
gmtime())

input_location = 's3://slytherins-test/test data.csv'

output_location = 's3://{}/{}/output/{}".format('slytherins-test"’,

'RF-Batch-Transform', batch job name)

request = \
{
"TransformJobName": 'Random-Forest-BigMart-1',
"ModelName": 'Random-Forest-BigMart',
"TransformOutput”: {
"S30utputPath": output location,
"Accept": "text/csv",
"AssembleWith": "Line"
})
"TransformInput": {
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": input location

b
"ContentType": "text/csv",

"SplitType": "Line",
"CompressionType": "None"
}s
"TransformResources": {
"InstanceType": "ml.m4.xlarge",
"InstanceCount": 1

185

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

client.create_transform job(**request)
print("Created Transform job with name: ", batch job name)

Some of the keys used in the previous code are explained here:

o ContentType tells about the data type of our test dataset. It’s a CSV in
our case

o SplitType tells how different rows are split in our dataset. It is split by
line in our case.

o CompressionType tells whether our data is raw or it is a compressed
file like a TAR file. For us it is a raw CSV file.

Once we execute the previous code, we can monitor the job progress in the
SageMaker console. But, if we want to monitor the progress directly in the notebook, we
can use the following script:

try: client.get waiter('transform job completed or stopped').
wait(TransformJobName="'Random-Forest-BigMart-1")
finally:
response = client.describe transform_job(TransformJobName='Random-
Forest-BigMart-1")
status = response['TransformJobStatus']

print("Transform job ended with status: " + status)

if status == 'Failed':
message =response['FailureReason']
print('Transform failed with the following error: {}'.
format(message))

raise Exception('Transform job failed')

To look at the job in the SageMaker console, we need to select the batch transform

option. See Figure 8-5.

186

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

v Notebook
Notebook instances
Lifecycle configurations

Git repositories

v Training
Algorithms
Training jobs

Hyperparameter tuning jobs

v Inference
Compilation jobs
Model packages
Models
Endpoint configurations

Endpoints N

Batch transform jobs

Figure 8-5. Batch transform job

You can use CloudWatch for getting the logs and the metrics. We can find out
whether the job is completed successfully by looking at the status. See Figure 8-6.

Job summary

Job name Status Approx. batch transform duration
Random-Forest-BigMart-1 @ Completed 2 minute(s)

Job ARN Creation time

arnaws:sagemakerius-east- Jun 07, 2020 14:00 UTC

2:809912564797:transfarm-job/random-forest-

bigmart-1

Figure 8-6. Status of the job

Once the job is completed, we can go to the S3 output location and look at the
predictions.

187

CHAPTER 8 RUNNING A CUSTOM ALGORITHM IN SAGEMAKER

Conclusion

In this chapter, you learned how to create custom containers to run the code and
algorithms that are not present in SageMaker, while using the computational power of
AWS and services of SageMaker. We can run any kind of custom code by following the
same procedure.

In the next chapter, you will learn how we can create an end-to-end pipeline using
Step Functions.

188

CHAPTER 9

Making an End-to-End
Pipeline in SageMaker

In this chapter, we will see how we can make an end-to-end pipeline of an entire
machine learning process. We can use a combination of AWS services to automate the
entire process of machine learning. All the processes that we have seen in the previous
chapters, from the data processing steps to the endpoint generation, can be automated
and then be run directly with a click of a button. The only thing we need to change is the
dataset, but the process remains the same. Let’s see how we can automate what we did
on the Big Mart dataset in the previous chapters.

Let’s start by looking at AWS Step Functions.

Overview of Step Functions

AWS Step Functions is the service provided by Amazon that you can use to create
workflows and automate them. These workflows consist of AWS resources, algorithms,
and processing. They may also include resources that are outside AWS. We can use Step
Functions to create an end-to-end automation framework that helps us in building an
effective continuous integration and continuous development (CI/CD) DevOps pipeline.

Each component in a step function is called a state machine. In this chapter, we will
be creating multiple state machines, as follows:

o State machine for training a model
o State machine for saving the model
o State machine for configuring endpoints

o State machine for model deployment

189
© Himanshu Singh 2021

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_9

https://doi.org/10.1007/978-1-4842-6222-1_9#DOI

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

Then we will combine all the state machines in a sequential format so that the entire
process can be automated. Figure 9-1 is a small workflow that shows how these state
machines will be connected.

_ Start |

" End |

Figure 9-1. Steps involved in creating a state machine

Let’s start the process of creating the previous workflow. The first step will be to
upgrade the Step Functions package so that we can make sure we are using the latest
version of the module.

Upgrading Step Functions

We will simply use pip from Python to upgrade the Step Functions package and all the
dependent packages.

python -m pip install --upgrade stepfunctions

You can run this either from the terminal or from the Jupyter Notebook as well by
adding a prefix of exclamation mark (!).

190

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

Defining the Required Parameters

Let’s now define the required objects that we will use to run our code. This includes the
roles, region, bucket, etc.

import boto3

import sagemaker

import time

import random

import uuid

import logging

import stepfunctions

import io

import random

from sagemaker.amazon.amazon_estimator import get image uri

from stepfunctions import steps

from stepfunctions.steps import TrainingStep, ModelStep, TransformStep
from stepfunctions.inputs import ExecutionInput

from stepfunctions.workflow import Workflow

from stepfunctions.template import TrainingPipeline

from stepfunctions.template.utils import replace parameters with jsonpath

sagemaker execution role = sagemaker.get execution role()

workflow execution role = "arn:aws:iam::809912564797:role/himanshu-step-
functions”

session = sagemaker.Session()
stepfunctions.set stream logger(level=logging.INFO)

region = boto3.Session().region name

prefix = 'sagemaker/big-mart-pipeline’

bucket path = "https://s3-{}.amazonaws.com/{}".format(region, "slytherins-
test")

As you can see in the code, we require two roles. One is the SageMaker execution
role, and the second is the workflow execution role. In the next section, we will see how
to define the role for workflow execution. In addition, we have created a SageMaker
session and defined the region and S3 bucket location. We have also set the Step
Functions logger so that whatever important messages are there, we will not miss them.

Now let’s see how we can create the required IAM role for workflow execution.

191

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

Setting Up the Required Roles

We need to set up two things to be able to execute the workflow:
1. We need to add a policy on the already existing SageMaker role.

2. We need to create a new Step Functions IAM role.

Adding a Policy to the Existing SageMaker Role

For the current SageMaker role that we are using to run all the models in this entire
book, it’s easy to update the policy so that it can access the features of Step Functions.
In the SageMaker console, we need to click the name of the notebook instance that we
are using. This will lead us to a page showing the properties of the notebook instance.
In that page there will be a section named “Permissions and encryption.” There you will
find your ARN role mentioned for the instance. See Figure 9-2.

Permissions and encryption

Figure 9-2. Selecting the ARN role

Once you click that role, you'll move to the IAM role for that ARN. On that page,
you'll need to click Attach Policies and search for AWSStepFunctionsFullAccess. Attach
this policy, and now your SageMaker instance is ready to use Step Functions. See
Figure 9-3.

AR AR USRI AU | IR S
Purmissions | Tustrelatonships | Tags | ACCOSSACYISOr | Revoke Sessions
» Permissions policies (3 policies applied)

Attach policies © Add Inline palicy

Policy name = Palicy type

Show 1 mare

Figure 9-3. Attaching policies

192

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

Creating a New IAM Role for Step Functions

Once we are done with enabling the instance to execute a Step Functions job, we need

to create an execution role so that Step Functions is able to execute the jobs that are

created. For this, again we need to go to the IAM console and create this role.

Go to the IAM console, go to the Roles section, and then click “Create role.”

See Figure 9-4.

Q eart

Role name

Figure 9-4. Creating roles

Trusted entities

Last activity =

o 8 @

Showing B results

Select the Step Functions service. You may need to search for the service.

See Figure 9-5.

Common use cases

EC2

Allows EC2 instances to call AWS services on your behalf

Lambda

Allows Lambda functions to call AWS services on your behalf

Or select a service to view its use cases

APl Gateway

AWS Backup

AWS Chatbot

AWS Support

Amplify

AppStream 2.0
AppSync

Application Auto Scaling

Application Discovery
Service

Batch

Chime
CloudFormation
CloudHSM
CloudTrail

CloudWatch Application
Insights

CloudWatch Evenis
CodeBuild

CodgeDeploy

Figure 9-5. Selecting the Step Functions service

CodeGuru

CodeStar Motifications
Comprehend

Config

Connect

DMS

Data Lifecycle Manager
Data Pipeline
DataSync

Deeplens

Directory Service
DynamoDB

EC2

ECZ - Fleet

EC2 Auto Scaling

ECZ2 Image Bullder
EKS

EMR

ElastiCache
Elastic Beanstalk
Elastic Container Service

Elastic Transcoder

ElasticLoadBalancing
Forecast

GameLift

Global Accelerator
Gilue

Greengrass

GuardDuty

Health Organl?a:lonal View

IAM Access Analyzer
Inspector

loT

IoT Things Graph

KMS

Kinesis

Lake Formation
Lambda

Lex

License Manager
Machine Leaming
Macie
MediaConvert
Migration Hub
OpsWorks
Personalize
Purchase Orders
QLDB

RAM

RDS

Redshift

Rekognition

RoboMaker

SageMaker
Security Hub

Service Catalog

Storage Gateway
Systems Manager
Textract

Transfer

Trusted Advisor
VPC

WorkLink

WorkhMail

193

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

Now, continue the process and keep clicking Next until you arrive at the section
where you need to provide the role name. Give any role name you want and then click
“Create role.” Next, once we have created the role, we need to attach a policy to it. Here
we will list all the services that the Step Functions service is allowed to do. We provide
this list in JSON format.

Click the role that you have just created, and then in the Permissions section click
“Add inline policy.” See Figure 9-6.

Permizsions Trust relaticnships Togs Access Advisor Reveke sessions

= Permissions policles (2 policies applied)

=== CY—

Figure 9-6. Adding inline policies

Here, you need to add a JSON file on the JSON tab. The file contents are shown here:

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"sagemaker:CreateTransformJob",
"sagemaker:DescribeTransformJob",
"sagemaker:StopTransformJob"”,
"sagemaker:CreateTrainingJob",
"sagemaker:DescribeTrainingJob",
"sagemaker:StopTrainingJob"”,
"sagemaker:CreateHyperParameterTuningJob",
"sagemaker:DescribeHyperParameterTuningJob",
"sagemaker:StopHyperParameterTuningJob",
"sagemaker:CreateModel”,
"sagemaker:CreateEndpointConfig",
"sagemaker:CreateEndpoint”,
"sagemaker:DeleteEndpointConfig",
"sagemaker:DeleteEndpoint”,

194

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

"sagemaker:UpdateEndpoint",

"sagemaker:ListTags",
"lambda:InvokeFunction",
"sqs:SendMessage",
"sns:Publish"”,
"ecs:RunTask",
"ecs:StopTask",
"ecs:DescribeTasks",
"dynamodb:GetItem",
"dynamodb:PutItem",
"dynamodb:UpdateItem",
"dynamodb:DeleteItem",
"batch:SubmitJob",
"batch:DescribeJobs",
"batch:TerminateJob",
"glue:StartJobRun",
"glue:GetJobRun",
"glue:GetJobRuns",
"glue:BatchStopJobRun"

"iam:PassedToService": "sagemaker.amazonaws.

]J
"Resource": "*"
b
{
"Effect": "Allow",
"Action": [
"iam:PassRole"
1,
"Resource": "*",
"Condition": {
"StringEquals": {
}
}
b

com

195

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

{
"Effect": "Allow",

"Action": [
"events:PutTargets",
"events:PutRule",
"events:DescribeRule”
]J
"Resource": |
"arn:aws:events:*:*:rule/StepFunctionsGetEventsForSageMaker
TrainingJobsRule",
"arn:aws:events:*:*:rule/StepFunctionsGetEventsForSageMaker
TransformJobsRule",
"arn:aws:events:*:*:rule/StepFunctionsGetEventsForSageMaker
TuningJobsRule",
"arn:aws:events:*:*:rule/StepFunctionsGetEventsForECSTaskRule",
"arn:aws:events:*:*:rule/StepFunctionsGetEventsForBatchJobsRule"

Once that’s done, you can review the policy, give it a name, and then create the
policy. Don’t forget to copy the ARN number of the policy you just created. This will help
you when creating code in SageMaker.

Setting Up the Training Step

In the previous section, we completed all the necessary configuration steps to run our

code to create a pipeline. In this section, we will create the first step: TrainingStep. The
first thing that we will do is to create a dictionary that will auto-initialize the training job
name, the model name, and the endpoint name. We can do so using the following code:

names = {
'JobName': str,
'ModelName': str,

196

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

'EndpointName': str

}

execution input = ExecutionInput(schema=names)

Next, we will create a training step by using the XGBoost container that we already
learned about in the previous chapters. The first step will be to initialize the container.

tree = sage.estimator.Estimator(image,
sagemaker execution role, 1, 'ml.m4.xlarge’,
output_path="s3://{}/output”.format("slytherins-test"),
sagemaker session=sess)

Next, we need to create the training step. This is done by providing the path to the
input training and validation data.

training step = steps.TrainingStep(

'Train Step',

estimator=tree,

data={
"train': sagemaker.s3_input("s3://slytherins-test/Train.csv",
content_type="text/csv'),
'validation': sagemaker.s3 input("s3://slytherins-test/test data.
csv", content type="text/csv')

b

job_name=execution_input['JobName']

Remember, this will not execute the model. Only a step is created here. First, we will
create all the steps and then combine them and run them sequentially. Let’s now decide
on the step for saving the model. Once in the pipeline, the previous training is finished,
and the model artifacts that are generated should be saved. That is done using the

following code:

model step = steps.ModelStep(
'Save model"’,
model=training step.get expected model(),
model name=execution input['ModelName']

197

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

The next step after the model is created is to define the configuration of the endpoint.
Let’s see that in the next section.

Setting Up the Endpoint Configuration Step

In this step, we will define what kind of resources are required to deploy the endpoint.
We have already seen how an endpoint is deployed, so the step that we will create here
will be self-explanatory.

endpoint config step = steps.EndpointConfigStep(
"Create Endpoint Config",
endpoint_config name=execution_input['ModelName'],
model name=execution_input['ModelName'],
initial instance_count=1,
instance_type='ml.m4.xlarge’

Once our configuration is done, we will create the step that will actually deploy the
endpoint. Let’s see that in the next section.

Setting Up the Endpoint Step

The following code creates a step that is used for the endpoint deployment:

endpoint_step = steps.EndpointStep(
"Create Endpoint",
endpoint_name=execution_input['EndpointName'],
endpoint_config name=execution_input['ModelName']

Once the endpoint is deployed, we can start the inference as we saw in the previous
sections. Now that we have successfully created all the steps, let’s join them together and
create a sequence in the next section.

198

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

Creating a Chain of the Steps

To create a chain, we will start with the training step, then move on to the model
saving step, then configure the endpoint, and finally deploy the model on the endpoint
configured. We can create this chain using the following code:

workflow definition = steps.Chain([
training step,
model step,
endpoint_config step,
endpoint_step

D)

Defining the Workflow and Starting Operation

Now that the components are connected in the previous step, we need to provide all the
necessary configurations so that this workflow can be executed. This can be done using

the following code:

workflow = Workflow(
name='Big-Mart_Workflow-vi',
definition=workflow definition,
role=workflow_execution role,
execution_input=execution_ input

Once this is done, all we need to do is execute the workflow created. This can be
done by using the following code:

workflow.create()
execution = workflow.execute(
inputs={
"JobName': 'regression-{}'.format(uuid.uuid1().hex),
"ModelName': 'regression-{}'.format(uuid.uuid1().hex),
"EndpointName': 'regression-{}'.format(uuid.uuid1().hex)

}

199

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

Now, as you execute the previous code, the entire pipeline starts running. To see how
the pipeline looks, you can use the render_graph() function.

workflow.render graph()

You will see the pipeline shown in Figure 9-7.

. Start —* Train Step —* Save model % Create Endpoint Config [~ Create Endpoint] End |

Figure 9-7. Rendering the graph

You can also check the current progress of the process executed, by using the
render_progress() function. See Figure 9-8.

execution.render progress()

M Success M Failed Cancelled ™ In Progress ™ Caught Error

() [() [-
Figure 9-8. Checking the progress

As mentioned in the image, if any step is failed, it will be shown in red, otherwise
green. We will explore more about this process by going to the Step Functions console.
Let’s see that in the next section.

Exploring the Jobs in Step Functions

Let’s see how the workflow that we have created in this chapter looks in the Step
Functions console. Search for Step Functions in the services list and click it. This will
open your console. You can find the step function that has been created in this chapter,
mentioned there. See Figure 9-9.

200

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

Step F
State machines Q| [view deraits tdit | [copytonew | [Detere
Q Ay Ty v 1 (o]
Mame v Type L4 Creation date v St Logs Running Succeeded Failed Timed out Aborted
| -] Big-Mart Workflow-v1 Standard Jun 13, 2020 08:50:40.341 PM Active o 1 1 L]

Figure 9-9. Selecting the state machine

Click the name of your pipeline and then click the latest job that ran or is running.
See Figure 9-10.

Big-Mart_Workflow-v1 [Cean | [strtescewtion | [etete | [ctions v

Details

4.2 80991 2564797 1eateMachine flag-Mart_Work flaw-v1 Standaid

Crastion date

crioen [Jur 13, 2020 08:50:40.341 PM
E Legging Deefinitio Tags
Executions C Start evecution
v 1 @
Stat ¥ Started ¥ EndTime v
© Succeeded Jun 13, 2020 09:1257.200 PM Jun 13, 2020091711083 PM
@}-._— Jun 15, 2020 0£:5101.085 PM Jun 15, 2020 08:55:48.506 PM

Figure 9-10. Selecting the latest job

Here, you can see the pipeline that you have created. It will show all the steps
beautifully in the dashboard. You can click the individual components and look at their
progress as well. See Figure 9-11.

201

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

Execution details
Excoution Status Started
@ Sucoeeded Jun 13, 2020 05:12:37.200 PV
Excoution AN End Time
Srncaustatetus-eant-1 50991256479 T erortion Big- Mart_Workflow.v:et5bled2-23¢5-443.8390. Jun 13, 2020 0%17:11.083 PM
47926674486
» Output

> input
visual workflow [expore v | Code | Step detaits

+ Select o saep o view its details

@

=

| start
'
End

Figure 9-11. Visualizing the progress

If you click the train step, you can see its own process. See Figure 9-12.

Code Step details
Name Type
Train Step Task

Status
® Succeeded

Resource

arn:aws:sagemaker:us-east-2:809912564797:training-job/regression-81b7a0e6ad8c1 1ea87b0795818ef2dce
[

» Input

» Output

» Exception

Figure 9-12. Checking the progress state
202

CHAPTER9 MAKING AN END-TO-END PIPELINE IN SAGEMAKER

Exploring the JSON File That Can Be Passed
as Input

There is one more option that we can use to create the flow in Step Functions if we want
to avoid the Python code. You can pass a JSON directly and then decide on the sequence.
Let’s see the JSON that was generated by Step Functions for our code. To look at the
JSON code, we have to click the Edit State Machine option. You can look at the entire
JSON format, as shown in Figure 9-13.

Edit Big-Mart_Workflow-v1 [seee |

Changes will everweite provisus values. Running excutions will centinug 1o wis tha defintion they won startod with,

Definition Kxport ¥ || Layout v

Garnirate code 1 pret v Foreut JSON |

@ |+ Q

Ereate Endpoin: Corifiy
Craane Endpoie

End

Figure 9-13. Looking at the JSON structure

Conclusion

In this chapter, you learned how to create an end-to-end pipeline using Step Functions.
This is useful when creating the entire training and deployment process and when
retraining models with the new data or with some new configuration. This also helps in
creating a CI/CD pipeline where we can push the code to Git and then use tools such
as Jenkins or Bamboo to create these step functions and start the execution. Hence, as
you push to code to Git, immediately the process of training starts. That’s the power of
creating a pipeline.

This finishes our discussion on SageMaker and its services. In the next chapter of this
book, we will look at some of the use cases of machine learning that can be done using
other AWS services.

203

PART Il

Other AWS Services

CHAPTER 10

Machine Learning Use
Cases in AWS

In this chapter, we will explore three use cases in which AWS can be used to solve typical
machine learning problems, without writing too much code. We will use some of the
AWS services besides SageMaker.

Use Case 1: Natural Language Processing Using
Amazon Comprehend

Amazon Comprehend is a service in AWS that can perform various NLP tasks such as
key entities extraction from text, sentiment analysis, phrases extraction, syntax check,
language detection, topic modeling, and document classification. Amazon Comprehend
provides a Ul that we can use to train a model without writing any code. We can also use
the API provided by Comprehend to connect it to the scripting language of your choice
and then train the model directly from the code.

In this section, we will explore how we can use Comprehend to analyze the text, and
then we will create a custom sentiment analysis model using it.

Analysis of Text

From the Amazon Management Console, we can select the Amazon Comprehend
service and then click Launch Amazon Comprehend. Then we will see a section called
“Real-time analysis.” Let’s use this section to analyze some text in real time. The text
that I have used for analysis is an excerpt from a Game of Thrones review: https://www.
polygon.com/tv/2019/6/3/18634311/game-of-thrones-review-full-tv-series-hbo.

207
© Himanshu Singh 2021

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1_10

https://doi.org/10.1007/978-1-4842-6222-1_10#DOI
https://www.polygon.com/tv/2019/6/3/18634311/game-of-thrones-review-full-tv-series-hbo
https://www.polygon.com/tv/2019/6/3/18634311/game-of-thrones-review-full-tv-series-hbo

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

The excerpt that we will analyze is as follows:

“The series’ ending unleashed a seemingly bottomless geyser

of fan discontent ranging from mile-long Twitter threads to an
honest-to-God petition for HBO to remake the eighth season
from scratch. The complaints, by and large, feel typical to the
“Peak TV” era: the uproar you'd expect from the sort of people
who've interpreted Emilia Clarke’s traumatized, brutal Daenerys
Targaryen as a one-dimensional message about girl power; anger
that such and such a character “deserved” some specific ending
they didn’t receive. Much of it boils down to viewers interpreting
their own discomfort over the show’s failures.”

Figure 10-1 shows an “Input text” box. Just paste the previous excerpt there and click

Analyze.

Input text
Supported languages [A

Analysis type
© Built-in

View real-time insights based on AWS built-in models

Custom

View real-time insights based on custom models from an endpoint you've created

Input text

The series’ ending unleashed a seemingly bottomless geyser of fan discontent ranging from mile-long Twitter threads to an honest-to-God petition
for HBO to remake the eighth season from scratch. The complaints, by and large, feel typical to the “Peak TV era: the uproar you'd expect from the
sort of people wheo've interpreted Emilia Clarke's traumatized, brutal Daenerys Targaryen as a one-dimensional message about girl power; anger
that such and such a character “deserved” some specific ending they didn't receive. Much of it beils down to viewers interpreting their own
discomfort over the show's failures.

611 of 5000 characters used,

Clear text

Figure 10-1. Inputting text into Comprehend

Now, let’s see what Comprehend has given us after its analysis. The first thing is the
list of entities that it has extracted, along with the confidence level. See Figure 10-2.

208

Analyzed text

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

The series' ending unleashed a seemingly bottomless geyser of fan discontent ranging from mile-long Twitter threads to an honest-to-God
petition for HBO to remake the eighth season from scratch. The complaints, by and large, feel typical to the *Peak TV" era: the uproar you'd
expect from the sort of people who've interpreted Emilia Clarke's traumatized, brutal Daenerys Tafgarzen as a one-dimensional message about
girl power; anger that such and such a character “deserved"” some specific ending they didn't receive. Much of it boils down to viewers

interpreting their own discomfort over the show’s failures.

¥ Results
Q s
Entity v
Twitter
HBO
eighth season

Emilia Clarke

Daenerys Targaryen

Figure 10-2. Result of analysis

v Confidence v

Organization 0.54

Organization 0.95+

0.98

0.99+

0.99+

In Figure 10-2, you can see that most of the entities extracted are correct. Now let’s
see what the key phrases are in the text that Comprehend feels are important. Click the

“Key phrases” tab. Figure 10-3 shows the output.

¥ Results

Q,

Key phrases

The series

a seemingly bottomless geyser
fan discontent

mile-long Twitter threads

an honest-to-God petition
HEO

the eighth season

scratch

The complaints

the “Peak TV" era

v Confidence v

0.99+

0.99+

0.99+

0.99+

0.99+

1.00

1.00

0.99+

0.99+

0.99+

Figure 10-3. Key phrases present in the text

209

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Some of the phrases are really important, as by reading them we can tell what the
paragraph is about, as well as its tone. Talking about the tone, let’s look at the sentiment
of the entire paragraph. For this we will click the Sentiment tab. Figure 10-4 shows the
sentiment analysis of the paragraph.

¥ Results

Sentiment

Neutral Positive Negative Mixed
0.59 confidence 0.17 confidence 0.23 confidence 0.00 confidence

Figure 10-4. Sentiment analysis output

Here you can see that Comprehend is telling us that the author is mostly neutral
about Game of Thrones. If you read the paragraph, you'll see the author is actually telling
about fans who didn't like the final season, rather than the author not liking it. Hence, in
this section, Comprehend was able to give us the correct picture.

If you want to empower your scripts with Comprehend, you can use the API that it
provides. It is beyond the scope of this chapter, but it's worth trying. You can read the
Comprehend API documentation to try it.

Next, let’s see how we can make a custom classification model using Comprehend.
Here, we will be finding the toxicity level of a bunch of text. The dataset is taken from
Kaggle, and you can download it from www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge/data.

Custom Classification

The dataset contains a total of eight columns. I have kept only two columns and deleted
the rest of them, as multiclass classification in Comprehend expects only two columns,
one of the text and the other of the classes.

In the Comprehend console, we will click “Custom classification.” Then click “Train
classifier” Figure 10-5 shows the steps.

210

http://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
http://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Amazon Comprehend X Custom classification w.

Classify documents using custom created categories.
Feal-time analysis

Analysis jols
¥ Overview
¥ Customization

¥ Amazon Comprehend

Medical Custom classification Batch analysis Endpoint Custom real-time analysis
Feal-time analysis Build and train models to classify Create asynchronous custom Create one er more endpaints for Select an endpoint 1o use your

- your documents with custom classification [obs to classify your model to enable synchronous model to analyze your decument in
Analysis jobs categories or labels. documents using custom analysis requests. real-time.

categornies o labels.

Classifiers (2) Actions ¥ @
Q, Sear < T 0 &

Status: All v

Mame v Training started - Training ended v Mode Endpeints ¥ Status. v

Figure 10-5. Training a custom classifier

The first step is to give your training job a name. Follow the instruction for the
naming convention that Comprehend expects. See Figure 10-6.

Classifier settings

Name

Sentiment-Analysis-2

The name can be from 1 to 64 characters. Valid characters are a-z, A-Z, 0-9 and hyphen (-).

Language

English v
(P Classifier encryption Info

Figure 10-6. Naming the classifier

Next, you have to select a classification mode. Multiclass classification is where we
have only one column of categories, while multilabel classification is where each class
can have subcategories as well. We will select the first one, as shown in Figure 10-7.

211

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Training data fo

Classifier mode

© Using multi-class mode () Using multi-label mode

Training document file must have one class and document
per line.

Example
COMEDY document text 1
COMEDY document text 2
DRAMA document text 3

File format: ¢csv. Must be at least 10 documents per class.

Training document file must have one or more classes per
line, and one document per line,

Example
COMEDY document text 1
DRAMA document text 2

COMEDY | DRAMA document text 3

File format: csv. Must be at least 10 documents per class.

S3 location Info
Paste the URL of an input data file in 53, or select a bucket or folder location in 53

s3://slytherins-test/dataset.csv

Figure 10-7. Multiclass Comprehend classification

Next, we have to upload the dataset to an S3 bucket and provide the path.
Remember, only two columns must be present. See Figure 10-8.

Access permissions info

IAM role
© Use an existing IAM role
) Create an |1AM role

Role name
A role that grants access to the 53 input and output locations.

AmazonComprehendServiceRole-Comprehend v

» VPC settings - optional

Use a VPC to restrict the data that can be uploaded to, or downloaded from, an S3 bucket that you use with Amazon Comprehend.

» Tags - optional info

A tag is a label that you can add to a resource as metadata to help you organize, search, or filter your data. Each tag consists of a key
and an optional value,

Cancel Train classifier

Figure 10-8. Defining the IAM role
212

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Once you have provided the path, select your IAM role and then click “Train
classifier” This will start the training of the model. Once your model is trained, you will
see information similar to Figure 10-9.

Sentiment-Analysis-2 . copy |[petete || createjob

Classifier details

Name Document classifier arn Number of labels Input data location

Sentiment-Analysis-2 arn:aws:comprehend:us-east- 3 s3:/fslytherins-test/dataset.csv
2:809912564797:document- 4

Status classifier/Sentiment-Analysis-2 Mumber of trained documents

@ Trained 90007 Language
Training started English

Mode 6/28/2020,12:01:11 PM Number of test documents

Multi-class 9999 Classifier encryption

Training ended i
6/28/2020, 12:13:21 PM

Figure 10-9. Model training output

You can next find the metrics of the trained model under “Classifier performance,” as

shown in Figure 10-10.

Classifier performance info

Accuracy Precision Recall F1 score
0.9575 0.9054 0.8356 0.86
Hamming loss Micro precision Micro recall Micro F1 score
0.0425 0.9575 09575 09575

Figure 10-10. Performance of the Comprehend classifier

You can see that it gives a pretty good result, in terms of accuracy, precision, and
recall. Next, to use this model, we can create an endpoint and then start the inference.
Just click the “Create endpoint” button and give it a name to start the process.

See Figure 10-11.

213

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Endpoints (1) Py let E in real-t ysis [Create endpoint |
Use endpoints to gain real-time insights, e
Q Status: Al w 1 > &
Name v Creation time v Inference units v Status v
test-sentiment 6/28/2020, 12:17:48 PM 1 © Creating

Figure 10-11. Creation of endpoint

Once the endpoint is ready, we can go to the real-time analysis section, and this
time instead of clicking the built-in analysis type, click Custom and select your endpoint.
Next, give any text and it will predict its class, as you can see in Figures 10-12 and 10-13.

Input text
Supported languages [

Analysis type

Built-in
View real-time insights based on AWS built-in models

© Custom
View real-time insights based on custom models from an endpoint you've created

Endpoint

test-sentiment
Custom classifier: Sentiment-Analysis-2

Input text

Locking this page would also violate WP:NEWBIES. Whether you like it or not, conservatives are Wikipedians too.

-

112 of S000 characters used.

Figure 10-12. Inference using the Custom classifier

214

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

In5|ghts Info

Analyzed text

Locking this page would also viclate WP:NEWBIES. Whether you like it or not, conservatives are Wikipedians too.

¥ Results

Classes

0 1 toxic
0.99 confidence 0.00 confidence 0.00 confidence

» Application integration

Figure 10-13. Insights from the inference

Don’t forget to delete the endpoint once the analysis is done, because it’s chargeable.
This finishes our discussion about the first use case. Next, let’s look at a sales forecast
model that can be built using another Amazon service called Amazon Forecast.

Use Case 2: Sales Forecasting Using Amazon
Forecast

In this section, we will be predicting the sales forecast for a company. For this we will

be using a forecast dataset from Kaggle called Store Item Demand Forecast. You can
download the dataset from https://www.kaggle.com/c/demand-forecasting-kernels-
only/data?select=train.csv.

Once we have downloaded the dataset, we have to do some formatting on it. The
first thing is that we will add an ID column to it. This should be the first column of the
dataset. Next, make sure that the date field is in the format of YYYY-MM-DD; otherwise,
Amazon Forecast will not accept it. Once that done, upload the dataset to S3 and then
note its path.

215

https://www.kaggle.com/c/demand-forecasting-kernels-only/data?select=train.csv
https://www.kaggle.com/c/demand-forecasting-kernels-only/data?select=train.csv

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Creating a Dataset Group

Now, open the Amazon Management Console and then search for Amazon Forecast
Service. Click Create Dataset Group. The first step will be to give the dataset group a
name and then choose the domain of forecasting. For our analysis, we have chosen a
custom domain. See Figure 10-14.

Create dataset group i

Dataset groups are containers for all your datasets.

Dataset group details

Dataset group name
The name can help you distinguish this dataset group from other dataset groups on the dataset groups dashboard.

sales_forecasting

The dataset group name must have 1 to 63 characters. Valid characters: a-z, A-Z, 0-9, and _

Forecasting domain Info
A forecasting domain defines a forecasting use case. You can choose a predefined domain, or you can create your own
domain.

Custom
Choose this domain if none of the other domains are applicable to your forecas...

Figure 10-14. Creating a dataset group name

Defining Column Attributes

The next step is to give your dataset a name. Then, you have to define the column
attributes. See Figure 10-15.

216

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Create target time series dataset i

Dataset details

Dataset name
The name can help you distinguish this dataset from other datasets on your Datasets dashboard.

sales_forecast_dataset

The dataset name must have 1 to 63 characters. Valid characters: a-z, A-Z, 0-9, and _

Frequency of your data
This is the frequency at which entries are registered into your data file.

Your data entries have a time interval of 1 day v

Data schema Info
To help Amazon Forecast understand the fields in your data, you must define the schema. Specify the attributes in the
same order as they appear in your CSV file. The pre-populated attributes below are required for the chosen domain.
1~ { -
2= "Attributes™: [

"AttributeName": “item id",
"AttributeType": "string"

3

{
"AttributeName": "timestamp",

"AttributeType": "timestamp"

})
11 -
"AttributeName": “"store",
"AttributeType": "string”
})

"AttributeName": "quantity",
"AttributeType": "string/

18 1,
190 {

Cancel Previous m

Figure 10-15. Defining column attributes

Remember, the attributes should be in the same sequence as in the dataset. Also, all
the attributes besides the attributes that were already present in the JSON schema must
be strings. That’s why the store and quantity are mentioned as strings. You can define the
interval as well. For us, it is a daily interval, so that’s how it is set. Click Next.

Importing Data

The last step will be to start importing the data. Here you will provide the S3 path and the
name to the dataset import. See Figure 10-16.

217

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Import target time series data .

Dataset import details

Dataset import name
The name can help you distinguish this dataset import from other imports on your dataset detail page.

sales_forecast_import
The dataset import name must have 1 to 63 characters. Valid characters: a-z, A-Z, 0-9, and _
Timestamp format Info
This is the format of the timestamp in your dataset. The format that you enter here must match the format in your data
file.
yyyy-MM-dd

IAM Role Info

Dataset groups require permissions from IAM to read your dataset files in 53. Choose or create a role using this control.

AmazonForecast-ExecutionRole-1593328446038 v

Data location Info
The location is the path to the file in your 53 bucket that contains your data.

s3://slytherins-test/train.csv

Your files must be in CSV format.

Figure 10-16. Configuring the dataset path

Making Predictions

Now, click “Start import.” Once the import is done, we have to click “Start predictor
training.” Here we will inform Amazon Forecast about the type of forecast that we have to
make and the horizon of forecasts. Figure 10-17 shows the inputs that we have to make.

218

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Predictor details

Predictor name
The name can help you distinguish this predictor from your other predictors.

sales_forecast_predictor

The predictor name must have 1 to 63 characters. Valid characters: a-z, A-Z, 0-9, and _

Forecast horizon Info
This number tells Amazon Forecast how far into the future to predict your data at the specified forecast frequency.

| 30

Forecast frequency
This is the frequency at which your forecasts are generated.

Your forecast frequencyis 1 v day v

Algorithm selection Info
An algorithm is used to train your predictor.

© Automatic (AutoML)
Let Amazon Forecast choose the right algorithm for your dataset.

0 Manual
Explore the algorithms and choose one.

Forecast dimensions - optional
Item id is used in training by default. Select additional keys you would like to use to generate a forecast. These keys are
fields in your dataset.

v

Choose a forecast din
Country for holidays - optional
The holiday calendar you want to include for model training
Number of backtest windows - optional Info Backtest window offset - optional Info
This is the number of times that the algorithm splits the This is the point in the dataset where you want to split the
input data for use in training and evaluation. data for model training and evaluation.

1 30

» Advanced configurations
Set advanced configurations for your predictor and forecasts.

Cancel Train predictor

Figure 10-17. Inputs for starting the training job

The training will start after this. Wait until the training finishes, and if you feel that
AutoML is taking too much time, you can select any of the custom predictors. Go with
the manual algorithms.

219

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Once our training is done, we have to click “Create a forecast” Here you need to
give your forecast a name and the predictor that you have just created. Click “Create a
forecast.” See Figure 10-18.

Create a forecast i

Use a predictor to create forecasts based on your datasets.
Forecast details

Forecast name
The name can help you distinguish this forecast from your other forecasts.

sales_forecast
The forecast name must have 1 to 63 characters. Valid characters: a-z, A-Z, 0-9, and _
Predictor Info
The predictor that you want to use to create forecasts.

prophet_predictor v

Forecast types - optional info
Enter up to 5 quantile values between .01 to .99 including 'mean’. By default, Amazon Forecast will generate forecasts for
.10, .50 and .90 quantiles.

10,

.50, .90, .99, mean

Separate forecast types with commas.

Cancel Create a forecast

Figure 10-18. Generating forecasts

Once the forecast is done, you can click “Forecast Lookup” and view it. See
Figure 10-19.

220

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Forecast lookup

When you create a forecast, Amazon Forecast generates forecasts for each unique item in your target time-series dataset. Use the forecast lookup to find your forecasts,
Forecast details

Forecast Start date Info End date Info

Choose the forecast whose forecasts you want Lo view. This is the start date fer the historical demand you want toview. This is the end date for the forecast that you want to view.
v A v
00:00:00 00:00:00
Use 24-hour format, Use 24-hour format.

Figure 10-19. Forecast lookup

Just give the horizon for forecasts and you will get a very nice visualization, as shown
in Figure 10-20.

Item_id: 1

O Target value

(1]
Dec 25 Dec 25 Dec 26 Dec 26 Dec 27 Dec 27 Dec 28 Dec 28 Dec 29 Dec 29 Dec 30 Dec 30 Dec 31

12AM 12PM 12AM 12PM 12AM 12PM 12aM 12PM 12AM 12PM 12AM 12PM 12AM

Figure 10-20. Generated forecasts

This finishes our discussion of using Amazon Forecast for making sales forecasts.
As mentioned before, we can create different types of forecasts for different datasets.
Let’s now look at the last use case where we will use Amazon Textract to extract textual
information from different file formats.

221

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Use Case 3: Image Text Extraction Using Amazon
Textract

Using Amazon Textract, not only can we extract the text from the images, PDFs, Word
files, etc., but we can also extract the tabular and form-based data as well. Again, like
with all the previous services, the process is simple. We just need to upload the image
containing information, and the data will be extracted. Let’s start the process by first
going to the Amazon Management Console and searching for Amazon Textract service.
Next, click “try Amazon Textract.” Finally, click the upload document.

Extracting Tabular Information

First, let’s apply Textract on some tabular data. For this we will be using Figure 10-21.

Sales Forecast

When are current deals closing?
https:/medium.com/pipedrive-analytics/sales-forecast-report-cb56cdae0af5#.dw35bggul

Deals Closing Expected Total Weighted Total
January 34 $100,455 $24,109
February 30 $89,440 $21,466
March 35 $98,655 $23,677
April 28 $45,000 $10,800
May 24 $55,689 $13,365
June 25 $104,555 $25,093

Figure 10-21. Table of importance

Once you upload the image, you will get the results, as shown in Figure 10-22. The
first extraction is of the raw text, while the second extraction is of the table. We can see
that Textract worked perfectly, as shown in Figure 10-23.

222

Raw text Forms Tables

Q

Sales Forecast

tosiinedconareenissesOeMseRECHSNEEOQAISHOISsgL

Expected Total Weighted Total

30 $89,440 $21,466

$45,000 $10,800 May

$25,093

Figure 10-22. Extracted keywords

Raw text Forms Tables
Q
Column1 ¥ Column 2

Deals Closing

January 34
February 30
March 35
April 28
May 24
June 25

24

March

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

When are current deals closing?

Human review @
Lines v
Deals Closing
January 34 $100,455 324,109 February
35 $98655 $23,677 April 28
$55,689 $13,365 June 25 $104,555
Human review m
v Column 3 v Column 4 v
Expected Total Weighted Total
$100,455 $24,109
$89,440 $21,466
$98,655 $23,677
$45,000 $10,800
$55,689 $13,365
$104,555 $25,093

Figure 10-23. Tabular keywords extracted

223

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Extracting Form Data

Now, let’s see how Textract works on the form data. Figure 10-24 shows the image we

will use.

Google

Create your Google Account

First name
[| | Last name

Username @gmail.com

You can use letters, numbers & periods

Use my current email address instead e @ b
- ®
Password Confirm @
Use & or more characters with a mix of letters, numbers & One account. All of Google
symbols working for you.
Sign in instead Next

Figure 10-24. Form data test image

When we upload this image and analyze the form results, we get the results shown in
Figure 10-25.

224

CHAPTER 10 MACHINE LEARNING USE CASES IN AWS

Raw text Forms Tables Human review)
Q
Last name You can use letters, numbers & periods
Username
First name

Figure 10-25. Form data extracted

You can see that most of the fields of the form are successfully extracted by Textract.
Similarly, we can give PDF files and other supported formats to Textract, to get the
required fields. We can connect to the Textract API as well so that directly the results can
be absorbed by a scripting language like Python and further analysis can be made.

Conclusion

In this chapter, you learned about different Amazon services in the domain of machine
learning. They are the ready-made solutions provided by Amazon that minimize the
coding knowledge so that people with deep mathematics/statistical backgrounds can
conduct their analysis. This concludes the last chapter of this book.

225

APPENDIX A

Creating a Root User

Account to Access the

Amazon Management
Console

Follow these steps to create a root account to access the Amazon Management Console:

1.

2.

Now you are ready to use the Amazon Management Console interface.

Go to https://aws.amazon.com/console/.

Click Create Free Account.

Enter an email, password, and name for your AWS account.
Select the type of account: Professional or Personal.

Fill in the details.

Give your credit/debit card details. Once you've done that, the

account will be created. (You may have to verify your email
address.)

Log in to the Amazon Management Console with the username
and password you just created.

© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1

227

https://doi.org/10.1007/978-1-4842-6222-1#DOI
https://aws.amazon.com/console/

APPENDIX B

Creating an IAM Role

Follow these steps to create an IAM role:

1. Login to the Amazon Management Console and search for JAM
service.
2. Click the Roles section.
3. Click Create Role.
4. Search for Go for SageMaker.
5. Search for Full Access permission and then keep clicking Next.
6. Click Create Role.
© Himanshu Singh 2021

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1

229

https://doi.org/10.1007/978-1-4842-6222-1#DOI

APPENDIX C

Creating an IAM User

Follow these steps to create an IAM user:

1. Login tothe Amazon Management Console and search for JAM

service.
2. Click the Users section.
3. Click Add User.
4. Enter a username and select AWS Management Console Access.
5. Enter a password.

6. Click Next and search for a policy that the user can use.
You can go for Admin or any particular policy. Let’s select
AmazonSageMakerFullAccess.

7. Keep clicking Next and then click Create User.

The user will be successfully created, and the next time you can log in to the Amazon
Management Console using this username and password instead of the root user.

231
© Himanshu Singh 2021

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1

https://doi.org/10.1007/978-1-4842-6222-1#DOI

APPENDIX D

Creating an S3 Bucket

Follow these steps to create an S3 bucket:

1.

6.

Now you can access the S3 bucket at the URL you have just written down.

Log in to the Amazon Management Console and search for S3

service.
Click Create Bucket.

Give your bucket a name. Follow the rules (it should be DNS
compliant).

Select the region of your choice.

Now click Next until you reach the permissions. Give the bucket
public access so that you can use S3 buckets with other services.
(Do not give public access if you have confidential information. In
that case, you should go with policies.)

Create the S3 bucket and note the path.

© Himanshu Singh 2021
H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1

233

https://doi.org/10.1007/978-1-4842-6222-1#DOI

APPENDIX E

Creating a SageMaker
Notebook Instance

Follow these steps to create a SageMaker notebook instance:

1. Login tothe Amazon Management Console and search for
SageMalker.

2. Go to the Notebook Instances section.

3. Click Create Notebook Instance.

4. Give the instance a name and select the type. If you want to use
the free version, select ml.t2.medium; otherwise, you can select a
paid version.

5. Select the SageMaker IAM role that you defined.

6. Click Create Notebook Instance. In a few minutes your instance
will be ready.

7. Always remember to stop the instance when your code is done.

© Himanshu Singh 2021

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1

235

https://doi.org/10.1007/978-1-4842-6222-1#DOI

Index

A

Access control lists (ACLs), 49
Account security, authentication
digital signature, 51
multifactor, 51
password, 51
X.509 certificates, 52
Amazon Comprehend, 85
Amazon Elastic File System (EFS), 14
Amazon Polly, 85
Amazon Rekognition, 86
Amazon SageMaker
batch deployment, 80
batch transform, 73
built-in algorithm, 81, 83
custom algorithm, 84
data preprocessing, 76
features, 72
model deployment, 79
model training, 77, 78
process, 74-76
production environments, 72
Amazon Simple Storage System (S3), 13
Amazon Textract, 88, 221, 222
Amazon Transcribe, 87
Amazon web services (AWS)
account security (see Account
security, authentication)
CLIL 12

© Himanshu Singh 2021

computer services
EC2, 19-22
elastic container registry, 22, 23
data servers, 7
firewall manager, 61
networking/content delivery
API gateway, 25, 26
cloudfront, 26-28
VPC, 23-25
OSI model, 61
shield service, 60, 61
SSR (see Shared security responsibility
(SSR) model)
storage devices
Amazon S3, 13, 14
gateway, 15, 17, 18
WAE 59
Anything as a service (XaaS), 5
Application programming interfaces
(APIs), 25
Artificial intelligence, 65
Attention layer, 87
Attribute-based access control (ABAC), 57
AWS cost optimization
reserved instances, 36
right-sizing, 32-36
spot instances, 37
AWS Management Console (AMC), 8, 11
AWS trusted advisor, 41, 43

237

H. Singh, Practical Machine Learning with AWS, https://doi.org/10.1007/978-1-4842-6222-1

https://doi.org/10.1007/978-1-4842-6222-1#DOI

INDEX

B

Batch transform, 80
Big Mart dataset, 189
Blazing text algorithm
CBOW mwthod, 134, 135
SageMaker application, 135-137
skip gram architecture, 133, 134
word embeddings, 133
Boosting, 126, 127
Boto3 package
dockerfile, 110, 111
installation, 109
initialization, 110
processing job, 111-114

C

CI/CD pipeline, 203
Cloud computing
community, 5
hybrid, 5
JaaS, 6
PaasS, 6
private, 5
public, 5
SaaS, 6
systems, 3, 4
Xaas, 6
Cloud Security Alliance (CSA), 47
CloudWatch
Amazon Management Console, 156
architecture, 156
autoscaling, 156
Docker container, 155
error, 116
job information, 116
machine learning, 155
menu, 115

238

metrics, 162-165
monitor processing jobs, 115
processing jobs, 160, 162
resource activities, AWS, 155
training jobs, 157-160
Context-aware analysis, 86
Continuous bag of words (CBOW)
method, 134
Cost Explorer
amortized cost, 41
costs, 39
dashboard, 38
definition, 38
unblended cost, 40
Criminal Justice Information Services
(CJ1S), 47
Custom model, SageMaker
creating inference script, 173, 174
docker image to ECR, 179-181
ECR, 169
endpoint generation files, 175
setting up, dockerfile, 176-179
training script, 169-171, 173
transforming code, 169

D

Data processing
Jupyter notebook (see Jupyter
notebook)
machine learning pipeline, 89
Deep Learning
artificial neural networks, 71
biological neurons, 70
Dependent variable, 67, 96, 97, 121
Digital signature, 51
Distributed denial of
service (DDoS), 60

E

Elastic Block Storage (EBS), 34
Elastic Component Cloud (EC2), 19
Elastic Container Registry (ECR), 169
Encoder-decoder architecture, 146
End-to-end pipeline, 189

F

Family Educational Rights and Privacy Act
(FERPA), 47

G

Gated recurrent units (GRU), 146
Gradient boosting algorithm, 126

H

Hardware virtual machine (HVM), 35
Health Insurance Portability and
Accountability Act (HIPAA), 48

Identity and Access Management (IAM),
AWS
ABAC, 57, 58
EMR/DynamoDB, 53
policies, 56, 57
principal entity, 55
root user account, 53
top-level management, 53
user federation, 54
Identity-based policies, 57
Image classification algorithm
ResNet, 138, 139

INDEX

SageMaker application, 140-144
Image text extraction, Amazon Textract
form data, 224, 225
tabular data, 222, 223
Independent variables, 67
Infrastructure as a service (IaaS), 5
Internet Small Computer System Interface
(iSCSI), 16

J

Jupyter notebook
categories/columns, 94
data/columns, 91
data processing steps, 89
duplicates, 95
fillna() method, 95
item type, 92
label encoding output, 96
null value exploration, 91
Pandas framework, 90
removed numerical null values, 93
standard scaling output, 97

K

Kaggle, 90, 210, 215

L

Least squares estimations, 119
Linear learner algorithm
linear regression, 119, 120
logistic regression, 120, 121
SageMaker
application, 121-125
Long short-term memory (LSTM), 87, 146

239

INDEX

Machine learning
AWS, 71, 72
reinforcement, 68, 70
supervised, 66
translation, 87
unsupervised, 67, 68
Model artifacts, 79

Multinomial logistic regression, 119, 121, 126

N

Natural Language Processing (NLP),
Amazon Comprehend
custom classification, 210, 211,

213-215
text analysis, 207-210
Network-attached storage (NAS), 15
Network File System (NFS), 15
Neural/biological neural network, 70
Neural text-to-speech (NTTS), 85

O

Open Source Interconnection (OSI)
model, 61

P, Q
Paravirtual (PV), 35

Platform as a service (PaaS), 5
Pooling or subsampling, 138

R

Random forest algorithm
batch transformation, 184-187
classification model, 182, 183

240

dataset, 168

deploying model, 183

mean squared error, 168

real-time inference, 183, 184

Scikit-Learn package, 167
RandomPForestRegressor class, 167
Recurrent Neural Networks(RNN)

architecture, 145

GRU, 146

LSTM, 146
Reinforcement learning, 68, 70
render_progress() function, 200
Resource-based policies, 57
Role-based access control (RBAC), 58

S

S3 buckets, 62
SageMaker’s Scikit-learn container
computation power, 98
csv sheets, 102
data overview, 99
data path, 100
preprocessing.py script, 103
reading data, Pandas, 104
S3 bucket, 98, 102
SKLearnProcessor, 99
slytherins-test, 99
Sales forecasting
column attributes, 216, 217
dataset group, 216
importing data, 217
predictions, 218-221
store item demand forecast, 215
ScriptProcessor
BERT-based services, 108
building/pushing image, 106, 107
creating object, 107, 108

Dockerfile, 105
Sequence-to-sequence algorithm

converting text, 153

create_model() function, 152

encoder and decoder architecture, 146

hyperparameters, 151

machine translation, 147

output, 154

pretrained model, 152

RecordIO-Protobuf version, 149-151

RNN, 145

tokenization, 148

training/validation sets, 148
Shared security responsibility (SSR)

model

AWS, 46

business continuity management, 48

compliance, 47, 48

customer responsibilities, 46

high-level security, 47

1AM, 47

infrastructure, 45

network security, 49, 50

physical/environment safety, 48
Single sign-on (SSO), 54
SKLearnProcessor container, 105
Software as a service (SaaS), 5
Step functions

adding policy, 192

creating chain, 199

deployment, 198

INDEX

endpoint configuration, 198

IAM role, 193-195

JSON file, 203

parameters, 191

state machine, 189, 190, 200, 202

training, 197, 198

upgrading, 190

workflow, 189, 199, 200

XGBoost container, 197
StringIO() method, 174
Supervised learning, 66, 67

T

Topic modeling, 82, 207

U

Unsupervised learning, 67, 68, 82

\"

Virtual Private Cloud (VPC), 23, 24

W

Web Application Firewall (WAF), 59

XY, Z
XGBoost algorithm, SageMaker
application, 127-133

241

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Introduction to Amazon Web Services
	Chapter 1: Cloud Computing and AWS
	What Is the Cloud?
	Control of Cloud Systems
	Public Cloud
	Private Cloud
	Community Cloud
	Hybrid Cloud

	Cloud Services
	Infrastructure as a Service
	Platform as a Service
	Software as a Service
	Anything as a Service

	Introduction to Amazon Web Services
	AWS Management Console
	AWS Command-Line Interface
	AWS Storage Services
	Amazon S3
	Buckets
	Objects
	Keys

	Amazon Elastic File System
	AWS Storage Gateway
	File Gateway
	Volume Gateway
	Tape Gateway

	AWS Compute Services
	Amazon EC2
	General-Purpose Types
	Compute Optimized
	Memory Optimized
	Accelerated Computing
	Storage Optimized

	Other Services

	Amazon Elastic Container Registry
	AWS Networking and Content Delivery Services
	Amazon VPC
	Amazon API Gateway
	Amazon CloudFront

	Conclusion

	Chapter 2: AWS Pricing and Cost Management
	Understanding the Pricing of AWS
	AWS Free Tier
	Factors Affecting Pricing in AWS
	AWS Cost Optimization
	Right-Sizing
	What Is an EBS Volume?
	What Are Virtualization Types?
	Right-Sizing Database Instances

	Using Reserved Instances
	Using Spot Instances
	Using the Cost Explorer
	Cost Explorer Costs
	Cost Explorer Trends
	Daily Unblended Cost
	Monthly Unblended Cost
	Net Unblended Cost
	Recent Cost Explorer Reports
	Amortized Costs

	AWS Trusted Advisor
	Pricing of AWS Services
	Conclusion

	Chapter 3: Security in Amazon Web Services
	The SSR Model of AWS
	Compliance
	Physical and Environmental Security
	Business Continuity Management
	Network Security

	AWS Account Security Features
	Passwords for Authentication
	Multifactor Authentication
	Access Keys for API Authentication
	X.509 Certificates

	AWS Identity and Access Management
	Federation of Users in AWS
	How Access Management Is Done in AWS
	Attribute-Based Access Control

	AWS Web Application Firewall
	AWS Shield
	AWS Firewall Manager
	Conclusion

	Part II: Machine Learning in AWS
	Chapter 4: Introduction to Machine Learning
	Introduction to Machine Learning and Artificial Intelligence
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Deep Learning
	Machine Learning in AWS
	Amazon SageMaker
	Understanding How SageMaker Works
	Preprocessing of Data in SageMaker
	Model Training in SageMaker
	Model Deployment in SageMaker
	Built-in SageMaker Algorithms
	Custom Algorithms in SageMaker

	Other Machine Learning Services by AWS
	Amazon Comprehend
	Amazon Polly
	Amazon Rekognition
	Amazon Translate
	Amazon Transcribe
	Amazon Textract

	Conclusion

	Chapter 5: Data Processing in AWS
	Preprocessing in Jupyter Notebook
	Preprocessing Using SageMaker’s Scikit-Learn Container
	Creating Your Own Preprocessing Code Using ScriptProcessor
	Creating a Docker Container
	Building and Pushing the Image
	Using a ScriptProcessor Class

	Using Boto3 to Run Processing Jobs
	Installing Boto3
	Initializing Boto3
	Making Dockerfile Changes and Pushing the Image
	Creating a Processing Job

	Monitoring Processing Jobs Using CloudWatch
	Conclusion

	Chapter 6: Building and Deploying Models in SageMaker
	Exploring the Linear Learner Algorithm
	Overview of Linear Regression
	Overview of Logistic Regression
	SageMaker Application of Linear Learner

	Exploring the XGBoost Algorithm
	Gradient Boosting Algorithm
	XGBoost Algorithm
	SageMaker Application of XGBoost

	Exploring the Blazing Text Algorithm
	Skip Gram Architecture of Word Vectors Generation
	Continuous Bag of Words Architecture of Word Vectors Generation
	SageMaker Application of Blazing Text

	Exploring the Image Classification Algorithm
	ResNet
	SageMaker Application of Image Classification

	Exploring the SeqToSeq Algorithm
	Recurrent Neural Networks
	Encoder-Decoder Architecture
	SageMaker Application of SeqToSeq

	Conclusion

	Chapter 7: Using CloudWatch with SageMaker
	Amazon CloudWatch
	CloudWatch Logs
	Training Jobs
	Processing Jobs

	CloudWatch Metrics
	Conclusion

	Chapter 8: Running a Custom Algorithm in SageMaker
	The Problem Statement
	Running the Model
	Transforming Code to Use SageMaker Resources
	Creating the Training Script
	Creating the Inference Script
	Configuring the Endpoint Generation Files
	Setting Up the Dockerfile
	Pushing the Docker Image to ECR

	Training the Model
	Deploying the Model
	Doing Real-Time Inference
	Doing Batch Transformation
	Conclusion

	Chapter 9: Making an End-to-End Pipeline in SageMaker
	Overview of Step Functions
	Upgrading Step Functions
	Defining the Required Parameters
	Setting Up the Required Roles
	Adding a Policy to the Existing SageMaker Role
	Creating a New IAM Role for Step Functions

	Setting Up the Training Step
	Setting Up the Endpoint Configuration Step
	Setting Up the Endpoint Step
	Creating a Chain of the Steps
	Defining the Workflow and Starting Operation
	Exploring the Jobs in Step Functions
	Exploring the JSON File That Can Be Passed as Input
	Conclusion

	Part III: Other AWS Services
	Chapter 10: Machine Learning Use Cases in AWS
	Use Case 1: Natural Language Processing Using Amazon Comprehend
	Analysis of Text
	Custom Classification

	Use Case 2: Sales Forecasting Using Amazon Forecast
	Creating a Dataset Group
	Defining Column Attributes
	Importing Data
	Making Predictions

	Use Case 3: Image Text Extraction Using Amazon Textract
	Extracting Tabular Information
	Extracting Form Data

	Conclusion

	Appendix A: Creating a Root User Account to Access the Amazon Management Console
	Appendix B: Creating an IAM Role
	Appendix C: Creating an IAM User
	Appendix D: Creating an S3 Bucket
	Appendix E: Creating a SageMaker Notebook Instance
	Index

