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Introduction

According to industry estimates, more than 80% of the data being
generated is in an unstructured format, maybe in the form of text, image,
audio, video, etc. Data is getting generated as we speak, as we write, as we
tweet, as we use social media platforms, as we send messages on various
messaging platforms, as we use e-commerce for shopping and in various
other activities. The majority of this data exists in the textual form.

80%
of data generated is unstructured in
nature, and growing exponentially

40%
of business executives complain
that they have too much
unstructured text data and are
unable to interpret them

Use of Text Analytics can help
extract Insights from unstructured

text

' ®%:
Imagine being able to extract O" N
insights from Unstructured text and =, .$ ‘f

use it to make business decisions. It %
can be a huge differentiator in this \‘
competitive environment

So, what is unstructured data? Unstructured data is the information
that doesn't reside in a traditional relational database. Examples include
documents, blogs, social media feeds, pictures, and videos.

Most of the insight is locked within different types of unstructured
data. Unlocking all these unstructured data plays a vital role in every
organization to make improved and better decisions. In this book, let us
unlock the potential of text data.

Xix



INTRODUCTION

Text data is most common and covers more than 50% of the
unstructured data. A few examples include - tweets/posts on social media,
chat conversations, news, blogs and articles, product or services reviews,
and patient records in the health care sector. A few more recent ones
include voice-driven bots like Siri, Alexa, etc.

In order to produce significant and actionable insights from text data,
to unlock the potential of text data, we use Natural Language Processing
coupled with machine learning and deep learning.

But what is Natural Language Processing - popularly known as NLP? We
all know that machines/algorithms cannot understand texts or characters, so
itis very important to convert these text data into machine understandable
format (like numbers or binary) to perform any kind of analysis on text data.
The ability to make machines understand and interpret the human language
(text data) is termed as natural language processing.

So, if you want to use the power of unstructured text, this book is the
right starting point. This book unearths the concepts and implementation
of natural language processing and its applications in the real world.
Natural Language Processing (NLP) offers unbounded opportunities for
solving interesting problems in artificial intelligence, making it the latest
frontier for developing intelligent, deep learning-based applications.

What This Book Covers

Natural Language Processing Recipes is your handy problem-solution
reference for learning and implementing NLP solutions using Python. The
book is packed with thousands of code and approaches that help you to
quickly learn and implement the basic and advanced Natural Language
Processing techniques. You will learn how to efficiently use a wide range of
NLP packages and implement text classification, identify parts of speech,
topic modeling, text summarization, text generation, sentiment analysis,
and many more applications of NLP.



INTRODUCTION

This book starts off by ways of extracting text data along with web
scraping. You will also learn how to clean and preprocess text data and
ways to analyze them with advanced algorithms. During the course of
the book, you will explore the semantic as well as syntactic analysis of
the text. We will be covering complex NLP solutions that will involve text
normalization, various advanced preprocessing methods, POS tagging,
text similarity, text summarization, sentiment analysis, topic modeling,
NER, word2vec, seq2seq, and much more. In this book, we will cover the
various fundamentals necessary for applications of machine learning and
deep learning in natural language processing, and the other state-of-the-
art techniques. Finally, we close it with some of the advanced industrial
applications of NLP with the solution approach and implementation, also
leveraging the power of deep learning techniques for Natural Language
Processing and Natural Language Generation problems. Employing state-
of-the-art advanced RNNs, like long short-term memory, to solve complex
text generation tasks. Also, we explore word embeddings.

Each chapter includes several code examples and illustrations.

By the end of the book, the reader will have a clear understanding
of implementing natural language processing and will have worked on
multiple examples that implement NLP techniques in the real world.

The reader will be comfortable with various NLP techniques coupled
with machine learning and deep learning and its industrial applications,
which make the NLP journey much more interesting and will definitely
help improve Python coding skills as well. You will learn about all the
ingredients that you need to, to become successful in the NLP space.

Who This Book Is For

Fundamental Python skills are assumed, as well as some knowledge of
machine learning. If you are an NLP or machine learning enthusiast and
an intermediate Python programmer who wants to quickly master natural
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language processing, then this learning path will do you a lot of good. All
you need are the basics of machine learning and Python to enjoy this book.

What you will learn:

1)

2)

3)

4)

5)

Core concepts implementation of NLP and various
approaches to natural language processing, NLP
using Python libraries such as NLTK, TextBlob,
SpaCy, Stanford CoreNLP, and so on.

Learn about implementing text preprocessing

and feature engineering in NLP, along with
advanced methods of feature engineering like word
embeddings.

Understand and implement the concepts of
information retrieval, text summarization,
sentiment analysis, text classification, text
generation, and other advanced NLP techniques
solved by leveraging machine learning and deep

learning.

After reading this book, the reader should get a good
hold of the problems faced by different industries
and how to implement them using NLP techniques.

Implementing an end-to-end pipeline of the NLP
life cycle, which includes framing the problem,
finding the data, collecting, preprocessing the data,
and solving it using state-of-the-art techniques.

What You Need For This Book

To perform all the recipes of this book successfully, you will need Python
3.x or higher running on any Windows- or Unix-based operating system
with a processor of 2.0 GHz or higher and a minimum of 4 GB RAM. You

xxii



INTRODUCTION

can download Python from Anaconda and leverage Jupyter notebook for
all coding purposes. This book assumes you know Keras's basics and how
to install the basic libraries of machine learning and deep learning.

Please make sure you upgrade or install the latest version of all the
libraries.

Python is the most popular and widely used tool for building NLP
applications. It has a huge number of sophisticated libraries to perform
NLP tasks starting from basic preprocessing to advanced techniques.

Il, ”

To install any library in Python Jupyter notebook. use “!” before the pip
install.

NLTK: Natural language toolkit and commonly called the mother of all
NLP libraries. It is one of the mature primary resources when it comes to

Python and NLP.

I'pip install nltk
nltk.download()

SpaCy: SpaCy is recently a trending library, as it comes with the added
flavors of a deep learning framework. While SpaCy doesn’t cover all of the
NLP functionalities, the things that it does do, it does really well.

I'pip install spacy

#if above doesn't work, try this in your terminal/ command
prompt

conda install spacy

python -m spacy.en.download all

#then load model via

spacy.load('en")

TextBlob: This is one of the data scientist’s favorite library when it
comes to implementing NLP tasks. It is based on both NLTK and Pattern.
However, TextBlob certainly isn’t the fastest or most complete library.

Ipip install textblob

xxiii
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CoreNLP: It is a Python wrapper for Stanford CoreNLP. The toolkit
provides very robust, accurate, and optimized techniques for tagging,
parsing, and analyzing text in various languages.

I'pip install CoreNLP

These are not the only ones; there are hundreds of NLP libraries. But
we have covered widely used and important ones.

Motivation: There is an immense number of industrial applications
of NLP that are leveraged to uncover insights. By the end of the book,
you will have implemented most of these use cases end to end, right
from framing the business problem to building applications and drawing
business insights.

e Sentiment analysis: Customer’s emotions toward
products offered by the business.

o Topic modeling: Extract the unique topics from the
group of documents.

¢ Complaint classifications/Email classifications/
E-commerce product classification, etc.

o Document categorization/management using different
clustering techniques.

e Resume shortlisting and job description matching
using similarity methods.

e Advanced feature engineering techniques (word2vec
and fastText) to capture context.

o Information/Document Retrieval Systems, for example,

search engine.

e Chatbot, Q & A, and Voice-to-Text applications like Siri
and Alexa.

XXiv
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Language detection and translation using neural
networks.

Text summarization using graph methods and
advanced techniques.

Text generation/predicting the next sequence of words
using deep learning algorithms.



CHAPTER 1

Extracting the Data

In this chapter, we are going to cover various sources of text data and ways
to extract it, which can act as information or insights for businesses.

Recipe 1. Text data collection using APIs

Recipe 2. Reading PDF file in Python

Recipe 3. Reading word document

Recipe 4. Reading JSON object

Recipe 5. Reading HTML page and HTML parsing
Recipe 6. Regular expressions

Recipe 7. String handling

Recipe 8. Web scraping

Introduction

Before getting into details of the book, let’s see the different possible data
sources available in general. We need to identify potential data sources for
a business’s benefit.

© Akshay Kulkarni and Adarsha Shivananda 2019
A. Kulkarni and A. Shivananda, Natural Language Processing Recipes,
https://doi.org/10.1007/978-1-4842-4267-4_1



CHAPTER 1 EXTRACTING THE DATA

Client Data For any problem statement, one of the sources is their
own data that is already present. But it depends on the business
where they store it. Data storage depends on the type of business,
amount of data, and cost associated with different sources.

¢ SQL databases
e Hadoop clusters
e Cloud storage

o TFlatfiles

Free source A huge amount of data is freely available over the
internet. We just need to streamline the problem and start exploring
multiple free data sources.

o Free APIs like Twitter

e Wikipedia

o Government data (e.g. http://data.gov)

o Censusdata (e.g. http://www.census.gov/data.html)

o Health care claim data (e.g. https://www.healthdata.gov/)

Web scraping Extracting the content/data from websites, blogs,
forums, and retail websites for reviews with the permission from the
respective sources using web scraping packages in Python.

There are a lot of other sources like crime data, accident data, and
economic data that can also be leveraged for analysis based on the
problem statement.


http://data.gov
http://www.census.gov/data.html
https://www.healthdata.gov/

CHAPTER 1  EXTRACTING THE DATA

Recipe 1-1. Collecting Data

As discussed, there are a lot of free APIs through which we can collect data
and use it to solve problems. We will discuss the Twitter API in particular
(it can be used in other scenarios as well).

Problem

You want to collect text data using Twitter APIs.

Solution

Twitter has a gigantic amount of data with a lot of value in it. Social media
marketers are making their living from it. There is an enormous amount
of tweets every day, and every tweet has some story to tell. When all of this
data is collected and analyzed, it gives a tremendous amount of insights to
a business about their company, product, service, etc.

Let’s see how to pull the data in this recipe and then explore how to
leverage it in coming chapters.

How It Works
Step 1-1 Log in to the Twitter developer portal

Create your own app in the Twitter developer portal, and get the keys
mentioned below. Once you have these credentials, you can start pulling

data. Keys needed:

o consumer key: Key associated with the application
(Twitter, Facebook, etc.).

e consumer secret: Password used to authenticate with
the authentication server (Twitter, Facebook, etc.).
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o access token: Key given to the client after successful
authentication of above keys.

e access token secret: Password for the access key.

Step 1-2 Execute below query in Python
Once all the credentials are in place, use the code below to fetch the data.

# Install tweepy
Ipip install tweepy

# Import the libraries

import numpy as np

import tweepy

import json

import pandas as pd

from tweepy import OAuthHandler

# credentials

consumer_key = "adjbiejfaaoeh”
consumer_secret = "had73haf78af"
access_token = "jnsfby5u4yuawhafjeh"”
access_token secret = "jhdfgay7684761r"

# calling API

auth = tweepy.OAuthHandler(consumer key, consumer_ secret)
auth.set_access token(access token, access token secret)
api = tweepy.API(auth)

# Provide the query you want to pull the data. For example,
pulling data for the mobile phone ABC

query ="ABC"
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# Fetching tweets

Tweets = api.search(query, count = 10,lang="en',
exclude="retweets',tweet mode="extended")

The query above will pull the top 10 tweets when the product ABC is
searched. The API will pull English tweets since the language given is ‘en’
and it will exclude retweets.

Recipe 1-2. Collecting Data from PDFs

Most of the time your data will be stored as PDF files. We need to extract
text from these files and store it for further analysis.

Problem

You want to read a PDF file.

Solution

The simplest way to do this is by using the PyPDF2 library.

How It Works

Let’s follow the steps in this section to extract data from PDF files.

Step 2-1 Install and import all the necessary libraries

Here are the first lines of code:

Ipip install PyPDF2
import PyPDF2
from PyPDF2 import PdfFileReader
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Note You can download any PDF file from the web and place it in
the location where you are running this Jupyter notebook or Python
script.

Step 2-2 Extracting text from PDF file

Now we extract the text.

#Creating a pdf file object

pdf = open("file.pdf","rb")

f#ficreating pdf reader object

pdf reader = PyPDF2.PdfFileReader(pdf)
#ichecking number of pages in a pdf file
print(pdf reader.numPages)

f#icreating a page object

page = pdf reader.getPage(0)

#finally extracting text from the page
print(page.extractText())

#iclosing the pdf file

pdf.close()

Please note that the function above doesn’t work for scanned PDFs.
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Recipe 1-3. Collecting Data from Word Files

Next, let us look at another small recipe by reading Word files in Python.

Problem

You want to read Word files.

Solution

The simplest way to do this is by using the docx library.

How It Works

Let’s follow the steps in this section to extract data from the Word file.

Step 3-1 Install and import all the necessary libraries
Here are the first lines of code:

#Install docx
I'pip install docx

#Import library
from docx import Document

Note You can download any Word file from the web and place it in
the location where you are running this Jupyter notebook or Python
script.
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Step 3-2 Extracting text from word file
Now we get the text:

#Creating a word file object

doc = open("file.docx","rb")

#icreating word reader object

document = docx.Document(doc)

# create an empty string and call this document. This document
variable store each paragraph in the Word document.We then
create a for loop that goes through each paragraph in the Word
document and appends the paragraph.

docu=
for para in document.paragraphs:
docu += para.text

#to see the output call docu
print(docu)

Recipe 1-4. Collecting Data from JSON

Reading a JSON file/object.

Problem

You want to read a JSON file/object.

Solution

The simplest way to do this is by using requests and the JSON library.
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How It Works

Let’s follow the steps in this section to extract data from the JSON.

Step 4-1 Install and import all the necessary libraries

Here is the code for importing the libraries.
import requests

import json

Step 4-2 Extracting text from JSON file

Now we extract the text.

#json from "https://quotes.rest/qod.json"

r = requests.get("https://quotes.rest/qod.json")
res = r.json()

print(json.dumps(res, indent = 4))

#output
{
"success": {
"total": 1
b
"contents": {
"quotes": [
{

"quote”: "Where there is ruin, there is hope
for a treasure.",
"length": "50",
"author": "Rumi",
"tags": [
"failure",
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"inspire",

"learning-from-failure"
])
"category": "inspire",
"date": "2018-09-29",
"permalink": "https://theysaidso.com/quote/
dPKsui4sOnQqgMnXHLKtfweF/rumi-where-there-is-
ruin-there-is-hope-for-a-treasure",
"title": "Inspiring Quote of the day",
"background": "https://theysaidso.com/img/bgs/
man_on_the _mountain.jpg",
"id": "dPKsui4sQnQqgMnXHLKtfweF"

1,

"copyright": "2017-19 theysaidso.com"

}

#extract contents
q = res['contents'][ 'quotes'][0]

q
#output

{"author': 'Rumi',

"background’: 'https://theysaidso.com/img/bgs/man_on_the_
mountain.jpg',

‘category': 'inspire',

"date': '2018-09-29',

'id"': 'dPKsui4sQnQggMnXHLKtfweF',

‘length': '50',

10
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‘permalink': "https://theysaidso.com/quote/
dPKsui4sOnQqggMnXHLKtfweF/rumi-where-there-is-ruin-there-is-
hope-for-a-treasure’,

‘quote': 'Where there is ruin, there is hope for a treasure.',
"tags': ['failure', 'inspire', 'learning-from-failure'],
"title': 'Inspiring Quote of the day'}

#extract only quote
print(q['quote'], '"\n--', qg['author'])

#output
It wasn't raining when Noah built the ark....
-- Howard Ruff

Recipe 1-5. Collecting Data from HTML

In this recipe, let us look at reading HTML pages.

Problem

You want to read parse/read HTML pages.

Solution

The simplest way to do this is by using the bs4 library.

How It Works

Let’s follow the steps in this section to extract data from the web.

11
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Step 5-1 Install and import all the necessary libraries
Let’s import the libraries:

I'pip install bs4
import urllib.request as urllib2
from bs4 import BeautifulSoup

Step 5-2 Fetch the HTML file

Pick any website from the web that you want to extract. Let’s pick
Wikipedia for this example.

response = urllib2.urlopen('https://en.wikipedia.org/wiki/
Natural language processing')
html doc = response.read()

Step 5-3 Parse the HTML file

Now we get the data:

#Parsing

soup = BeautifulSoup(html doc, 'html.parser')
# Formating the parsed html file

strhtm = soup.prettify()

# Print few lines
print (strhtm[:1000])

#output

<!DOCTYPE html>
<html class="client-nojs" dir="1tr" lang="en">
<head>

<meta charset="utf-8"/>

<title>

12
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Natural language processing - Wikipedia

</title>

<script>

document.documentElement.className = document.
documentElement.className.replace( /("|\s)client-nojs(\
s|$)/, "$1client-js$2" );

</script>

<script>
(window.RLQ=window.RLQ||[]).push(function(){mw.config.

set({"wgCanonicalNamespace":"", "wgCanonicalSpecialPageName" :

false, "wgNamespaceNumber":0, "wgPageName": "Natural language
processing”,"wgTitle":"Natural language processing",
"wgCurRevisionId":860741853, "wgRevisionId":860741853, "wgArticle
Id":21652, "wglsArticle":true, "wgIsRedirect":false, "wgAction":

"view","wgUserName":null, "wgUserGroups":["*"], "wgCategories":
[ "Webarchive template wayback links","All accuracy disputes”,
"Articles with disputed statements from June 2018",

"Wikipedia articles with NDL identifiers","Natural language

processing”,"Computational linguistics","Speech recognition"”,
"Computational fields of stud

Step 5-4 Extracting tag value

We can extract a tag value from the first instance of the tag using the
following code.

print(soup.title)
print(soup.title.string)
print(soup.a.string)
print(soup.b.string)

13
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#output
<title>Natural language processing - Wikipedia</title>
Natural language processing - Wikipedia
None
Natural language processing

Step 5-5 Extracting all instances of a particular tag

Here we get all the instances of a tag that we are interested in:
for x in soup.find all('a'): print(x.string)

#sample output
None
Jump to navigation
Jump to search
Language processing in the brain
None
None
automated online assistant
customer service
[1]
computer science
artificial intelligence
natural language
speech recognition
natural language understanding
natural language generation

14
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Step 5-6 Extracting all text of a particular tag
Finally, we get the text:
for x in soup.find all('p'): print(x.text)

#sample output

Natural language processing (NLP) is an area of computer
science and artificial intelligence concerned with the
interactions between computers and human (natural) languages,
in particular how to program computers to process and analyze
large amounts of natural language data.

Challenges in natural language processing frequently involve
speech recognition, natural language understanding, and natural
language generation.

The history of natural language processing generally started in
the 1950s, although work can be found from earlier periods.

In 1950, Alan Turing published an article titled "Intelligence"
which proposed what is now called the Turing test as a
criterion of intelligence.

If you observe here, using the ‘p’ tag extracted most of the text present
in the page.

Recipe 1-6. Parsing Text Using Regular
Expressions

In this recipe, we are going to discuss how regular expressions are helpful
when dealing with text data. This is very much required when dealing with
raw data from the web, which would contain HTML tags, long text, and
repeated text. During the process of developing your application, as well as
in output, we don’t need such data.

15
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We can do all sort of basic and advanced data cleaning using regular
expressions.

Problem

You want to parse text data using regular expressions.

Solution

The best way to do this is by using the “re” library in Python.

How It Works

Let’s look at some of the ways we can use regular expressions for our tasks.
Basic flags: the basic flags are [, L, M, S, U, X:

e re.I:This flagis used for ignoring casing.
o re.L:This flagis used to find a local dependent.

e re.M: This flag is useful if you want to find patterns
throughout multiple lines.

o re.S: This flag is used to find dot matches.
o re.U: This flag is used to work for unicode data.

e re.X: This flag is used for writing regex in a more
readable format.

Regular expressions’ functionality:

o Find the single occurrence of character a and b:
Regex: [ab]
o Find characters except for a and b:

Regex: ["ab]

16
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Find the character range of a to z:
Regex: [a-Zz]
Find a range except to z:

Regex: ["a-z]

Find all the characters a to z as well as A to Z:

Regex: [a-zA-Z]

Any single character:
Regex:

Any whitespace character:
Regex: \s

Any non-whitespace character:

Regex: \S
Any digit:
Regex: \d

Any non-digit:
Regex: \D

Any non-words:

Regex: \W
Any words:
Regex: \w

EXTRACTING THE DATA
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o Either match a or b:
Regex: (al|b)
¢ The occurrence of a is either zero or one:

¢ Matches zero or one occurrence but not more than
one occurrence

Regex: a? ; ?
¢ The occurrence of a is zero times or more than that:

Regex: a* ; * matches zero or more than that

¢ The occurrence of a is one time or more than that:

Regex: a+ ; + matches occurrences one or more that
one time

o Exactly match three occurrences of a:
Regex: a{3}

e« Match simultaneous occurrences of a with 3 or more
than 3:

Regex: a{3,}

e Match simultaneous occurrences of a between 3 to 6:
Regex: a{3,6}

o Starting of the string:
Regex: *

» Ending of the string:

Regex: $

18



CHAPTER 1 EXTRACTING THE DATA
e Match word boundary:
Regex: \b
e Non-word boundary:
Regex: \B

re.match() and re.search() functions are used to find the patterns
and then can be processed according to the requirements of the application.
Let’s look at the differences between re.match() and re.search():

o re.match(): This checks for a match of the string only
at the beginning of the string. So, if it finds the pattern
at the beginning of the input string, then it returns the
matched pattern; otherwise; it returns a noun.

o re.search(): This checks for a match of the string
anywhere in the string. It finds all the occurrences of
the pattern in the given input string or data.

Now let’s look at a few of the examples using these regular expressions.

Tokenizing

You want to split the sentence into words - tokenize. One of the ways to do
this is by using re.split.
# Import library

import re

#irun the split query
re.split('\s+','I like this book.")
['I", 'like', '"this', 'book."]

For an explanation of regex, please refer to the main recipe.
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Extracing email IDs

The simplest way to do this is by using re.findall.

1.

Read/create the document or sentences

doc = "For more details please mail us at: xyz@abc.com,
pqr@mno.com"

Execute the re.findall function

addresses = re.findall(r'[\w\.-]+@[\w\.-]+", doc)
for address in addresses:
print(address)

#Output
Xyz@abc.com
pqr@mno.com

Replacing email IDs

Here we replace email ids from the sentences or documents with another

email id. The simplest way to do this is by using re. sub.

1.

Read/create the document or sentences

doc = "For more details please mail us at xyz@abc.com"

Execute the re.sub function

new email address = re.sub(r'([\w\.-]+)@([\w\.-]+)",
r'pqr@mno.com’, doc)
print(new_email address)

#Output
For more details please mail us at pqr@mno.com

For an explanation of regex, please refer to Recipe 1-6.

20
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Extract data from the ebook and perform regex

Let’s solve this case study by using the techniques learned so far.

1.

Extract the content from the book

# Import library

import re
import requests

#url you want to extract
url = "https://www.gutenberg.org/files/2638/2638-0.txt’

#function to extract

def get book(url):

# Sends a http request to get the text from project
Gutenberg

raw = requests.get(url).text

# Discards the metadata from the beginning of the book
start = re.search(r"\*\*\* START OF THIS PROJECT
GUTENBERG EBOOK .* \*\*\*" raw ).end()

# Discards the metadata from the end of the book
stop = re.search(r"II", raw).start()

# Keeps the relevant text

text = raw[start:stop]

return text

# processing
def preprocess(sentence):
return re.sub('["A-Za-z0-9.]+' ,

', sentence).lower()
#calling the above function

book = get book(url)
processed book = preprocess(book)
print(processed book)
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# Output
produced by martin adamson david widger with
corrections by andrew sly the idiot by fyodor
dostoyevsky translated by eva martin part i i. towards
the end of november during a thaw at nine o clock one
morning a train on the warsaw and petersburg railway
was approaching the latter city at full speed. the
morning was so damp and misty that it was only with
great difficulty that the day succeeded in breaking
and it was impossible to distinguish anything more
than a few yards away from the carriage windows.
some of the passengers by this particular train were
returning from abroad but the third class carriages
were the best filled chiefly with insignificant
persons of various occupations and degrees picked up
at the different stations nearer town. all of them
seemed weary and most of them had sleepy eyes and a
shivering expression while their complexions generally
appeared to have taken on the colour of the fog
outside. when da

Perform some exploratory data analysis on this data
using regex

# Count number of times "the" is appeared in the book

len(re.findall(r'the', processed book))

#Output
302

#Replace "i" with "I"
processed_book = re.sub(r'\si\s',
print(processed book)

I ", processed book)
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#output
produced by martin adamson david widger with
corrections by andrew sly the idiot by fyodor
dostoyevsky translated by eva martin part I i. towards
the end of november during a thaw at nine o clock one
morning a train on the warsaw and petersburg railway
was approaching the latter city at full speed. the
morning was so damp and misty that it was only with
great difficulty that the day succeeded in breaking
and it was impossible to distinguish anything more
than a few yards away from the carriage windows.
some of the passengers by this particular train were
returning from abroad but the third class carriages
were the best filled chiefly with insignificant
persons of various occupations and degrees picked up
at the different stations nearer town. all of them
seemed weary and most of them had sleepy eyes and a
shivering expression while their complexions generally
appeared to have taken on the colour of the fog
outside. when da

#find all occurance of text in the format "abc--xyz"
re.findall(r'[a-zA-Z0-9]*--[a-zA-Z0-9]*", book)

#output
['ironical--it',
'malicious--smile',

"fur--or',
'astrachan--overcoat',
"it--the',
'Ttaly--was',
'malady--a’,
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'money--and’,
'little--to’',
"No--Mr',
'is--where',
'I--1',

oot
'--though',
'crime--we',
'or--judge',
'gaiters--still’,
'--if',
"through--well’,
'say--through',
"however--and',
"Epanchin--oh',
"too--at’,
'was--and',
'Andreevitch--that',
'everyone--that’,
'reduce--or',
'raise--to',
'listen--and',
"history--but’,
"individual--one’,
'yes--1",
"but--',
"t--not’,
'me--then',
'perhaps--',
'Yes--those',
'me--is’,
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'servility--if',
'Rogojin--hereditary’,
'citizen--who',
'least--goodness"',
"'memory--but',
'latter--since’,
'Rogojin--hung',

"him--I",
"anything--she',
'old--and',

'you--scarecrow',
'certainly--certainly’,
'father--1',
'Barashkoff--I',
'see--and',
"everything--Lebedeff’,
"about--he',

"now--I",

'Lihachof--",
'Zaleshoff--looking',
'old--fifty',
'so--and’,

"this--do',

'day--not’,

"that--',

"do--by"',

"know--my",
'illness--1",
'well--here',
"fellow--you']

EXTRACTING THE DATA
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Recipe 1-7. Handling Strings

In this recipe, we are going to discuss how to handle strings and dealing
with text data.
We can do all sort of basic text explorations using string operations.

Problem

You want to explore handling strings.

Solution

The simplest way to do this is by using the below string functionality.
.find(t) index of first instance of string t inside s (-1 if not found)

%]

.rfind(t) index of last instance of string t inside s (-1 if not found)

s
s.index(t) like s.find(t) except it raises ValueError if not found
s.rindex(t) like s.rfind(t) except it raises ValueError if not found
s.join(text) combine the words of the text into a string

using s as the glue

s.split(t) splitsinto alist wherever a t is found

(whitespace by default)

.splitlines() splits into a list of strings, one per line

.lower () alowercased version of the string s

.upper () an uppercased version of the string s

.title() atitlecased version of the string s

.strip() a copy of s without leading or trailing whitespace

n nu nu unu nu n

.replace(t, u) replace instances of t with u inside s
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How It Works

Now let us look at a few of the examples.

Replacing content

Create a string and replace the content. Creating Strings is easy, and it

is done by enclosing the characters in single or double quotes. And to

replace, you can use the replace function.

1.

Creating a string
String vi = "I am exploring NLP"

#To extract particular character or range of characters
from string

print(String vi[o])

#output
IIIII

#To extract exploring

print(String vi[5:14])

#output

exploring

Replace “exploring” with “learning” in the above string

String v2 = String vi.replace("exploring", "learning")
print(String v2)

#Output
I am learning NLP
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Concatenating two strings

Here’s the simple code:
s1 = "nlp
s2 = "machine learning"
S3 = Sl1+s2

print(s3)

#output
‘nlpmachine learning'

Searching for a substring in a string

Use the find function to fetch the starting index value of the substring in
the whole string.

var="I am learning NLP"
f= "learn"
var.find(f)

#output
5

Recipe 1-8. Scraping Text from the Web

In this recipe, we are going to discuss how to scrape data from the web.

Caution Before scraping any websites, blogs, or e-commerce
websites, please make sure you read the terms and conditions of the
websites on whether it gives permissions for data scraping.

So, what is web scraping, also called web harvesting or web data
extraction?
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Itis a technique to extract a large amount of data from websites and
save it in a database or locally. You can use this data to extract information
related to your customers/users/products for the business’s benefit.

Prerequisite: Basic understanding of HTML structure.

Problem

You want to extract data from the web by scraping. Here we have taken the
example of the IMDB website for scraping top movies.

Solution

The simplest way to do this is by using beautiful soup or scrapy library
from Python. Let’s use beautiful soup in this recipe.

How It Works

Let’s follow the steps in this section to extract data from the web.

Step 8-1 Install all the necessary libraries

'pip install bs4
Ipip install requests

Step 8-2 Import the libraries

from bs4 import BeautifulSoup

import requests

import pandas as pd

from pandas import Series, DataFrame
from ipywidgets import FloatProgress
from time import sleep

from IPython.display import display
import re

import pickle
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Step 8-3 Identify the url to extract the data

url = "http://www.imdb.com/chart/top?ref =nv_mv_250 6'

Step 8-4 Request the url and download the content
using beautiful soup

result = requests.get(url)
c = result.content
soup = BeautifulSoup(c,"1lxml")

Step 8-5 Understand the website page structure
to extract the required information

Go to the website and right-click on the page content to inspect the html
structure of the website.

Identify the data and fields you want to extract. Say, for example, we
want the Movie name and IMDB rating from this page.

So, we will have to check under which div or class the movie names are
present in the HTML and parse the beautiful soup accordingly.

In the below example, to extract the movie name, we can parse
our soup through <table class ="chart full-width"> and <td
class="titleColumn">.

Similarly, we can fetch the other details. For more details, please refer
to the code in step 8-6.

v<table class='""chart full-width" data-caller-name="chart-
top25@movie” =
» <colgroup=>..</colgroup=>
» <thead>..</thead>
v<tbody class="lister-list">
v<tr>
» <td class="posterColumn'>..</td>
» <td class="ratingColumn imdbRating">..</td>
» <td class="ratingColumn">..</td>
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Step 8-6 Use beautiful soup to extract and parse
the data from HTML tags

summary = soup.find('div',{'class':'article'})
# Create empty lists to append the extracted data.

moviename = []
cast = []
description
rating = []
ratingoutof
year = []
genre = []
movielength

[]

[]

[]

rot_audscore = []
rot_avgrating = []
rot users = []

# Extracting the required data from the html soup.

rgx = re.compile('[%s]" % "()")
f = FloatProgress(min=0, max=250)
display(f)
for row,i in zip(summary.find('table').
findA11('tr'),range(len(summary.find('table"').findA11l("tr"')))):
for sitem in row.findAll('span',{'class':'secondaryInfo'}):
s = sitem.find(text=True)
year.append(rgx.sub(", s))
for ritem in row.findAll('td',{'class’:'ratingColumn
imdbRating'}):
for iget in ritem.findAll('strong'):
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rating.append(iget.find(text=True))
ratingoutof.append(iget.get('title").split(" ', 4)[3])
for item in row.findAll('td',{'class':'titleColumn'}):
for href in item.findAll('a',href=True):

moviename.append(href.find(text=True))

rurl = "https://www.rottentomatoes.com/m/'+ href.

find(text=True)

try:
rresult = requests.get(rurl)

except requests.exceptions.ConnectionError:
status_code = "Connection refused"

rc = rresult.content

rsoup = BeautifulSoup(rc)

try:
rot_audscore.append(rsoup.find('div’,
{'class':"'meter-value'}).find('span’,
{'class':'superPageFontColor'}).text)
rot_avgrating.append(rsoup.find('div’,
{'class':"audience-info hidden-xs
superPageFontColor'}).find('div').contents[2].
strip())
rot_users.append(rsoup.find('div’,
{'class':"audience-info hidden-xs
superPageFontColor'}).contents[3].contents[2].
strip())

except AttributeError:
rot_audscore.append("")
rot_avgrating.append("")
rot_users.append("")

cast.append(href.get('title"))
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imdb = "http://www.imdb.com" + href.get('href")
try:
iresult = requests.get(imdb)
ic = iresult.content
isoup = BeautifulSoup(ic)
description.append(isoup.find('div’,
{'class":'summary text'}).find(text=True).strip())
genre.append(isoup.find('span’,{'class’:"itempr
op'}).find(text=True))
movielength.append(isoup.find('time",
{'itemprop':'duration'}).find(text=True).strip())
except requests.exceptions.ConnectionError:
description.append("")
genre.append("")
movielength.append("")

sleep(.1)
f.value = i

Note that there is a high chance that you might encounter an error

while executing the above script because of the following reasons:

Your request to the URL has failed, so maybe you need
to try again after some time. This is common in web
scraping.

Web pages are dynamic. The HTML tags of websites
keep changing. Understand the tags and make small
changes in the code in accordance with HTML, and
you are good to go.
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Step 8-7 Convert lists to data frame and you can
perform the analysis that meets the business
requirements

# List to pandas series

moviename = Series(moviename)

cast = Series(cast)

description = Series(description)
rating = Series(rating)

ratingoutof = Series(ratingoutof)
year = Series(year)

genre = Series(genre)

movielength = Series(movielength)
rot_audscore = Series(rot audscore)
rot_avgrating = Series(rot_avgrating)
rot_users = Series(rot users)

# creating dataframe and doing analysis

imdb_df = pd.concat([moviename,year,description,genre,
movielength,cast,rating,ratingoutof,
rot_audscore,rot_avgrating,rot users],axis=1)
imdb_df.columns = ['moviename','year','description’,'genre’,
'movielength','cast', 'imdb_rating’,

"imdb_ratingbasedon', 'tomatoes_audscore',
"tomatoes rating','tomatoes ratingbasedon']
imdb_df.index + 1

imdb_df['rank']
imdb_df.head(1)
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#output

moviename | year | description | genre movielength | cast imdb_rating | imdb_ratingbasedon
Two Frank
imprisoned Darabont

The men bond | wrongful (dir.), Tim

0| Shawshank |1994 . .g NaN 9.2 1,994,354
. over a imprisonment Raobbins,

Redemption
number of Morgan
years... Fre...

Step 8-8 Download the data frame
# Saving the file as CSV.
imdb_df.to _csv("imdbdataexport.csv")

We have implemented most of the ways and techniques to extract text
data from possible sources. In the coming chapters, we will look at how to
explore, process, and clean this data, followed by feature engineering and
building NLP applications.
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Exploring and
Processing Text Data

In this chapter, we are going to cover various methods and techniques to
preprocess the text data along with exploratory data analysis.

We are going to discuss the following recipes under text preprocessing
and exploratory data analysis.

Recipe 1. Lowercasing

Recipe 2. Punctuation removal
Recipe 3. Stop words removal
Recipe 4. Text standardization
Recipe 5. Spelling correction
Recipe 6. Tokenization

Recipe 7. Stemming

Recipe 8. Lemmatization

Recipe 9. Exploratory data analysis

Recipe 10. End-to-end processing pipeline
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Before directly jumping into the recipes, let us first understand the
need for preprocessing the text data. As we all know, around 90% of the
world’s data is unstructured and may be present in the form of an image,
text, audio, and video. Text can come in a variety of forms from a list
of individual words, to sentences to multiple paragraphs with special
characters (like tweets and other punctuations). It also may be present
in the form of web, HTML, documents, etc. And this data is never clean
and consists of a lot of noise. It needs to be treated and then perform a
few of the preprocessing functions to make sure we have the right input
data for the feature engineering and model building. Suppose if we don’t
preprocess the data, any algorithms that are built on top of such data will
not add any value for the business. This reminds me of a very popular
phrase in the Data Science world “Garbage in - Garbage out.”

Preprocessing involves transforming raw text data into an
understandable format. Real-world data is very often incomplete,
inconsistent, and filled with a lot of noise and is likely to contain many
errors. Preprocessing is a proven method of resolving such issues. Data
preprocessing prepares raw text data for further processing.

Recipe 2-1. Converting Text Data
to Lowercase

In this recipe, we are going to discuss how to lowercase the text data in
order to have all the data in a uniform format and to make sure “NLP” and
“nlp” are treated as the same.

Problem

How to lowercase the text data?
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Solution

The simplest way to do this is by using the default lower () function in
Python.

The lower () method converts all uppercase characters in a string into
lowercase characters and returns them.

How It Works

Let’s follow the steps in this section to lowercase a given text or document.
Here, we are going to use Python.

Step 1-1 Read/create the text data

Let’s create a list of strings and assign it to a variable.

text=['This is introduction to NLP','It is likely to be useful,
to people ', 'Machine learning is the new electrcity', 'There
would be less hype around AI and more action going

forward', 'python is the best tool!','R is good langauage','I

like this book','I want more books like this']

#convert list to data frame
import pandas as pd
df = pd.DataFrame({ tweet':text})

print(df)
#output

tweet
0 This is introduction to NLP
1 It is likely to be useful, to people
2 Machine learning is the new electrcity
3 There would be less hype around AI and more ac...
4 python is the best tool!

39



CHAPTER 2  EXPLORING AND PROCESSING TEXT DATA

5 R is good langauage
I like this book
I want more books like this

Step 1-2 Execute lower() function on the text data

When there is just the string, apply the lower () function directly as shown
below:

x = 'Testing'
x2 = x.lower()
print(x2)

#output
"testing’

When you want to perform lowercasing on a data frame, use the apply

a function as shown below:

df['tweet'] = df['tweet'].apply(lambda x: " ".join(x.lower()
for x in x.split()))

df[ ' tweet']

#output

0 this is introduction to nlp
1 it is likely to be useful, to people
2 machine learning is the new electrcity
3 there would be less hype around ai and more ac...
4 python is the best tool!
5 T is good langauage
6 i like this book
7 i want more books like this

That’s all. We have converted the whole tweet column into lowercase.
Let’s see what else we can do in the next recipes.
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Recipe 2-2. Removing Punctuation

In this recipe, we are going to discuss how to remove punctuation from the
text data. This step is very important as punctuation doesn’t add any extra

information or value. Hence removal of all such instances will help reduce
the size of the data and increase computational efficiency.

Problem

You want to remove punctuation from the text data.

Solution

The simplest way to do this is by using the regex and replace() function in
Python.

How It Works

Let’s follow the steps in this section to remove punctuation from the text data.

Step 2-1 Read/create the text data

Let’s create a list of strings and assign it to a variable.

text=['This is introduction to NLP','It is likely to be useful,
to people ', 'Machine learning is the new electrcity',

‘There would be less hype around AI and more action going
forward', 'python is the best tool!','R is good langauage',

'I like this book','I want more books like this']

#convert list to dataframe

import pandas as pd

df = pd.DataFrame({ tweet':text})

print(df)
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#output

tweet

0 This is introduction to NLP

1 It is likely to be useful, to people

2 Machine learning is the new electrcity

3 There would be less hype around AI and more ac...
4 python is the best tool!

5 R is good langauage

6 I like this book

7 I want more books like this

Step 2-2 Execute below function on the text data

Using the regex and replace() function, we can remove the punctuation
as shown below:

import re

s = "I. like. This book!"
s1 = re.sub(r'[*\w\s]',",s)
sl

#output
'I like This book'

Or:

df[ "tweet'] = df['tweet'].str.replace('[*\w\s]',"
df[ 'tweet']

#output

0 this is introduction to nlp
1 it is likely to be useful to people
2 machine learning is the new electrcity
3 there would be less hype around ai and more ac...
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python is the best tool

T is good langauage

i like this book

i want more books like this

~N o v N

Or:
import string
s = "I. like. This book!"

for c in string.punctuation:
s= s.replace(c,"")
s

#output
'T like This book'

Recipe 2-3. Removing Stop Words

In this recipe, we are going to discuss how to remove stop words. Stop words
are very common words that carry no meaning or less meaning compared
to other keywords. If we remove the words that are less commonly used,

we can focus on the important keywords instead. Say, for example, in the
context of a search engine, if your search query is “How to develop chatbot
using python,” if the search engine tries to find web pages that contained the

” o«

terms “how,” “to,” “develop,” “chatbot,” “using,” “python,” the search engine
is going to find a lot more pages that contain the terms “how” and “to” than
pages that contain information about developing chatbot because the terms
“how” and “to” are so commonly used in the English language. So, if we
remove such terms, the search engine can actually focus on retrieving pages
that contain the keywords: “develop,” “chatbot,” “python” - which would
more closely bring up pages that are of real interest. Similarly we can remove

more common words and rare words as well.
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Problem

You want to remove stop words.

Solution

The simplest way to do this by using the NLTK library, or you can build
your own stop words file.

How It Works

Let’s follow the steps in this section to remove stop words from the text data.

Step 3-1 Read/create the text data

Let’s create a list of strings and assign it to a variable.

text=['This is introduction to NLP','It is likely to be useful,
to people ','Machine learning is the new electrcity’,

'There would be less hype around AI and more action going
forward', 'python is the best tool!','R is good langauage','I like
this book','I want more books like this']

#iconvert list to data frame
import pandas as pd

df = pd.DataFrame({'tweet':text})
print(df)

#output

tweet

0 This is introduction to NLP

1 It is likely to be useful, to people

2 Machine learning is the new electrcity

3 There would be less hype around AI and more ac...
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4 python is the best tool!

5 R is good langauage

6 I like this book

7 I want more books like this

Step 3-2 Execute below commands on the text data

Using the NLTK library, we can remove the punctuation as shown below.
#install and import libraries

I'pip install nltk

import nltk

nltk.download()

from nltk.corpus import stopwords

#iremove stop words

stop = stopwords.words('english")
df['tweet'] = df['tweet'].apply(lambda x: "
".join(x for x in x.split() if x not in stop))

df["tweet']

#output

0 introduction nlp
1 likely useful people
2 machine learning new electrcity
3 would less hype around ai action going forward
4 python best tool
5 r good langauage
6 like book
7 want books like

There are no stop words now. Everything has been removed in this step.
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Recipe 2-4. Standardizing Text

In this recipe, we are going to discuss how to standardize the text. But before
that, let’s understand what is text standardization and why we need to do it.
Most of the text data is in the form of either customer reviews, blogs, or tweets,
where there is a high chance of people using short words and abbreviations to
represent the same meaning. This may help the downstream process to easily
understand and resolve the semantics of the text.

Problem

You want to standardize text.

Solution

We can write our own custom dictionary to look for short words and
abbreviations.

How It Works

Let’s follow the steps in this section to perform text standardization.

Step 4-1 Create a custom lookup dictionary
The dictionary will be for text standardization based on your data.

lookup dict = {'nlp':'natural language processing’,

ur':'your', "wbu" : "what about you"}

import re
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Step 4-2 Create a custom function for text
standardization

Here is the code:

def text std(input text):
words = input_text.split()
new words = []
for word in words:
word = re.sub(r'[*\w\s]',",word)
if word.lower() in lookup dict:
word = lookup dict[word.lower()]
new_words.append(word)
.join(new_words)

new_text =
return new_text

Step 4-3 Run the text_std function
We also need to check the output:
text std("I like nlp it's ur choice")

#output
"natural language processing your'

Here, nlp has standardised to 'natural language processing' and
ur to 'your'.

Recipe 2-5. Correcting Spelling

In this recipe, we are going to discuss how to do spelling correction. But
before that, let’s understand why this spelling correction is important.
Most of the text data is in the form of either customer reviews, blogs, or
tweets, where there is a high chance of people using short words and
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making typo errors. This will help us in reducing multiple copies of words,
which represents the same meaning. For example, “proccessing” and
“processing” will be treated as different words even if they are used in the
same sense.

Note that abbreviations should be handled before this step, or else
the corrector would fail at times. Say, for example, “ur” (actually means
“your”) would be corrected to “or”

Problem

You want to do spelling correction.

Solution

The simplest way to do this by using the TextBlob library.

How It Works

Let’s follow the steps in this section to do spelling correction.

Step 5-1 Read/create the text data

Let’s create a list of strings and assign it to a variable.

text=['Introduction to NLP','It is likely to be useful, to
people ','Machine learning is the new electrcity', 'R is good
langauage','I like this book','I want more books like this']

#convert list to dataframe
import pandas as pd

df = pd.DataFrame({ tweet':text})
print(df)
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#output
tweet
Introduction to NLP
It is likely to be useful, to people
Machine learning is the new electrcity
R is good langauage
I like this book
I want more books like this

Ui W N B O

Step 5-2 Execute below code on the text data

Using TextBlob, we can do spelling correction as shown below:

#Install textblob library
Ipip install textblob

#import libraries and use 'correct' function
from textblob import TextBlob

df[ "tweet'].apply(lambda x: str(TextBlob(x).correct()))

#output

0 Introduction to NLP
1 It is likely to be useful, to people

2 Machine learning is the new electricity
3 R is good language
4 I like this book
5 I want more books like this

If you clearly observe this, it corrected the spelling of electricity and
language.
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#You can also use autocorrect library as shown below
#install autocorrect

Ipip install autocorrect

from autocorrect import spell
print(spell(u'mussage’))
print(spell(u'sirvice'))

#output
'message’
'service'

Recipe 2-6. Tokenizing Text

In this recipe, we would look at the ways to tokenize. Tokenization refers to
splitting text into minimal meaningful units. There is a sentence tokenizer
and word tokenizer. We will see a word tokenizer in this recipe, which is

a mandatory step in text preprocessing for any kind of analysis. There are
many libraries to perform tokenization like NLTK, SpaCy, and TextBlob.
Here are a few ways to achieve it.

Problem

You want to do tokenization.

Solution

The simplest way to do this is by using the TextBlob library.
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How It Works

Let’s follow the steps in this section to perform tokenization.

Step 6-1 Read/create the text data

Let’s create a list of strings and assign it to a variable.

text=['This is introduction to NLP','It is likely to be useful,
to people ', 'Machine learning is the new electrcity',

'There would be less hype around AI and more action going
forward', 'python is the best tool!','R is good langauage',

'I like this book','I want more books like this']

#convert list to dataframe
import pandas as pd
df = pd.DataFrame({'tweet':text})

print(df)

#output

tweet

0 This is introduction to NLP

1 It is likely to be useful, to people

2 Machine learning is the new electrcity
3 There would be less hype around AI and more ac...
4 python is the best tool!

5 R is good langauage

6 I like this book

7 I want more books like this
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Step 6-2 Execute below code on the text data

The result of tokenization is a list of tokens:

#Using textblob
from textblob import TextBlob
TextBlob(df[ "tweet'][3]).words

#output
WordList([ 'would', 'less', ‘hype', 'around', 'ai', 'action’,
‘going', 'forward'])

#using NLTK
import nltk

#create data
mystring = "My favorite animal is cat”

nltk.word tokenize(mystring)

#output

['My', 'favorite', 'animal', 'is', 'cat']
#using split function from python
mystring.split()

#output
['My', 'favorite', 'animal', 'is', 'cat']

Recipe 2-7. Stemming

In this recipe, we will discuss stemming. Stemming is a process of
extracting a root word. For example, “fish,” “fishes,” and “fishing” are
stemmed into fish.
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Problem

You want to do stemming.

Solution

The simplest way to do this by using NLTK or a TextBlob library.

How It Works

Let’s follow the steps in this section to perform stemming.

Step 7-1 Read the text data

Let’s create a list of strings and assign it to a variable.
text=['I like fishing','I eat fish','There are many fishes in pound']

#convert list to dataframe
import pandas as pd
df = pd.DataFrame({ 'tweet':text})

print(df)
#output

tweet
0 I like fishing
1 I eat fish

2 There are many fishes in pound

Step 7-2 Stemming the text
Execute the below code on the text data:

#Import library
from nltk.stem import PorterStemmer
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st = PorterStemmer()

df['tweet'][:5].apply(lambda x: " ".join([st.stem(word) for
word in x.split()]))

#output
0 I like fish
1 I eat fish

2 there are mani fish in pound

If you observe this, you will notice that fish, fishing, and fishes have
been stemmed to fish.

Recipe 2-8. Lemmatizing

In this recipe, we will discuss lemmatization. Lemmatization is a process of
extracting a root word by considering the vocabulary. For example, “good,”
“better,” or “best” is lemmatized into good.

The part of speech of a word is determined in lemmatization. It will
return the dictionary form of a word, which must be a valid word while
stemming just extracts the root word.

o Lemmatization handles matching “car” to “cars” along
with matching “car” to “automobile.”

e Stemming handles matching “car” to “cars.”
Lemmatization can get better results.

¢ The stemmed form of leafs is leaf.

¢ The stemmed form of leaves is leav.

¢ Thelemmatized form of leafs is leaf.

¢ Thelemmatized form of leaves is leaf.
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Problem

You want to perform lemmatization.

Solution

The simplest way to do this is by using NLTK or the TextBlob library.

How It Works

Let’s follow the steps in this section to perform lemmatization.

Step 8-1 Read the text data

Let’s create a list of strings and assign it to a variable.

text=['I like fishing','I eat fish','There are many fishes in
pound', 'leaves and leaf']

#convert list to dataframe
import pandas as pd
df = pd.DataFrame({ 'tweet':text})

print(df)

tweet
0 I like fishing
1 I eat fish
2 There are multiple fishes in pound
3 leaves and leaf
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Step 8-2 Lemmatizing the data
Execute the below code on the text data:

#Import library
from textblob import Word

#Code for lemmatize
df['tweet'] = df['tweet'].apply(lambda x: " ".join([Word(word).
lemmatize() for word in x.split()]))

df["tweet']

#output

0 I like fishing
1 I eat fish
2 There are multiple fish in pound
3 leaf and leaf

You can observe that fish and fishes are lemmatized to fish and, as
explained, leaves and leaf are lemmatized to leaf.

Recipe 2-9. Exploring Text Data

So far, we are comfortable with data collection and text preprocessing. Let
us perform some exploratory data analysis.

Problem

You want to explore and understand the text data.

Solution

The simplest way to do this by using NLTK or the TextBlob library.
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How It Works

Let’s follow the steps in this process.

Step 9-1 Read the text data

Execute the below code to download the dataset, if you haven’t already
done so:

nltk.download().

#Importing data

import nltk

from nltk.corpus import webtext
nltk.download( 'webtext")

wt_sentences = webtext.sents('firefox.txt")
wt_words = webtext.words('firefox.txt")

Step 9-2 Import necessary libraries

Import Library for computing frequency:

from nltk.probability import FregDist
from nltk.corpus import stopwords
import string

Step 9-3 Check number of words in the data

Count the number of words:
len(wt_sentences)

#output
1142

len(wt_words)
#output
102457
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Step 9-4 Compute the frequency of all words
in the reviews

Generating frequency for all the words:

frequency dist = nltk.FregDist(wt words)
frequency dist

#showing only top few results

FreqDist({'slowing': 1,
'warnings': 6,

'rule': 1,
"Top': 2,
'XBL': 12,

"installation': 44,
'Networking': 1,
"inccorrect': 1,

'killed': 3,
1M,
"LOCKS': 1,
"limited': 2,
'cookies': 57,
"'method': 12,
‘arbitrary': 2,
'b': 3,

'titlebar': 6,

sorted frequency dist =sorted(frequency dist,key=frequency
dist. getitem , reverse=True)
sorted frequency dist

58



CHAPTER 2

EXPLORING AND PROCESSING TEXT DATA

Step 9-5 Consider words with length greater than 3

and plot

Let’s take the words only if their frequency is greater than 3.

large words =
len(k)>3])

dict([(k,v) for k,v in frequency dist.items() if

frequency dist = nltk.FreqDist(large words)
frequency dist.plot(50,cumulative=False)

#output
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Step 9-6 Build Wordcloud

Wordcloud is the pictorial representation of the most frequently repeated
words representing the size of the word.

#install library
I'pip install wordcloud

#build wordcloud

from wordcloud import WordCloud
wcloud = WordCloud().generate from frequencies(frequency dist)

#plotting the wordcloud

import matplotlib.pyplot as plt
plt.imshow(wcloud, interpolation="bilinear")
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plt.axis("off")

(-0.5, 399.5, 199.5, -0.5)
plt.show()

#output
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Readers, give this a try: Remove the stop words and then build the
word cloud. The output would look something like that below.

openz’ |9 A &

WEN

text bookmarks
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Recipe 2-10. Building a Text Preprocessing
Pipeline

So far, we have completed most of the text manipulation and processing
techniques and methods. In this recipe, let’s do something interesting.

Problem

You want to build an end-to-end text preprocessing pipeline. Whenever
you want to do preprocessing for any NLP application, you can directly
plug in data to this pipeline function and get the required clean text data as
the output.

Solution

The simplest way to do this by creating the custom function with all the
techniques learned so far.

How It Works

This works by putting all the possible processing techniques into a
wrapper function and passing the data through it.

Step 10-1 Read/create the text data

Let’s create a list of strings and assign it to a variable. Maybe a tweet sample:

tweet_sample= "How to take control of your #debt https://
personal.vanguard.com/us/insights/saving-investing/
debt-management.#Best advice for #family #financial #success
(@PrepareTolin)"

You can also use your Twitter data extracted in Chapter 1.
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Step 10-2 Process the text

Execute the below function to process the tweet:
def processRow(row):

import re

import nltk

from textblob import TextBlob

from nltk.corpus import stopwords

from nltk.stem import PorterStemmer

from textblob import Word

from nltk.util import ngrams

import re

from wordcloud import WordCloud, STOPWORDS
from nltk.tokenize import word tokenize

tweet = row

#Lower case

tweet. lower()

#Removes unicode strings like "\uoo2c" and "x96"
tweet = re.sub(r'(\\u[0-9A-Fa-f]+)',r", tweet)
tweet = re.sub(r'[*\x00-\x7f]",r",tweet)
#iconvert any url to URL

tweet = re.sub(" ((www\.[*\s]+)|(https?://["\s]+))", 'URL",tweet)
#Convert any @Username to "AT USER"

tweet = re.sub('@["\s]+', 'AT USER',tweet)
#Remove additional white spaces

tweet = re.sub('[\s]+', ' ', tweet)
tweet = re.sub('[\n]+', ' ', tweet)
#Remove not alphanumeric symbols white spaces
tweet = re.sub(r'[*\w]', " ', tweet)

#Removes hastag in front of a word """
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64

tweet = re.sub(r'#(["\s]+)', r'\1', tweet)
#Replace #word with word

tweet = re.sub(r'#(["\s]+)', r'\1', tweet)
#Remove :( or :)

tweet = tweet.replace(':)’,
tweet = tweet.replace(':(',"

#remove numbers

tweet = ".join([i for i in tweet if not i.isdigit()])
#iremove multiple exclamation

tweet = re.sub(r"(\!)\1+", " ', tweet)

#iremove multiple question marks

tweet = re.sub(r"(\?)\1+", ' ', tweet)

#iremove multistop

tweet = re.sub(r"(\.)\1+", ' ', tweet)

#lemma

from textblob import Word

tweet =" ".join([Word(word).lemmatize() for word in tweet.
split()])

#stemmer

#st = PorterStemmer()

#tweet=" ".join([st.stem(word) for word in tweet.split()])

#Removes emoticons from text

tweet = re.sub(":\)|;\)|:-\)|\(-:|:-D|=D|:P|xD|X
S AANA] 2R AV A A AN AR [V = [\
C1NCLa=NCPNS TNGT NN NG i< 2= \S ] s =< | \¥\ -
\*¥|:0|=0]|=\-0]0\.0|X0|0\ O] :-\@|=/]:/]X\-\
(I>\.<|>=\(|D:", ", tweet)

#trim

tweet = tweet.strip('\'"")
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row = tweet
return row

#call the function with your data
processRow(tweet sample)

#output
'"How to take control of your debt URL Best advice for family
financial success AT USER'
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Converting Text
to Features

In this chapter, we are going to cover basic to advanced feature
engineering (text to features) methods. By the end of this chapter, you will
be comfortable with the following recipes:

Recipe 1. One Hot encoding
Recipe 2. Count vectorizer
Recipe 3. N-grams

Recipe 4. Co-occurrence matrix
Recipe 5. Hash vectorizer

Recipe 6. Term Frequency-Inverse Document
Frequency (TF-IDF)

Recipe 7. Word embedding
Recipe 8. Implementing fastText

Now that all the text preprocessing steps are discussed, let’s explore
feature engineering, the foundation for Natural Language Processing.
As we already know, machines or algorithms cannot understand the
characters/words or sentences, they can only take numbers as input that
also includes binaries. But the inherent nature of text data is unstructured
and noisy, which makes it impossible to interact with machines.
© Akshay Kulkarni and Adarsha Shivananda 2019 67
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The procedure of converting raw text data into machine
understandable format (numbers) is called feature engineering of text
data. Machine learning and deep learning algorithms’ performance and
accuracy is fundamentally dependent on the type of feature engineering
technique used.

In this chapter, we will discuss different types of feature engineering
methods along with some state-of-the-art techniques; their functionalities,
advantages, disadvantages; and examples for each. All of these will make
you realize the importance of feature engineering.

Recipe 3-1. Converting Text to Features
Using One Hot Encoding

The traditional method used for feature engineering is One Hot encoding.
If anyone knows the basics of machine learning, One Hot encoding is
something they should have come across for sure at some point of time or
maybe most of the time. It is a process of converting categorical variables
into features or columns and coding one or zero for the presence of that
particular category. We are going to use the same logic here, and the
number of features is going to be the number of total tokens present in the
whole corpus.

Problem

You want to convert text to feature using One Hot encoding.

Solution

One Hot Encoding will basically convert characters or words into binary
numbers as shown below.
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| love NLP is future
[ love NLP 1 1 1 0 0
NLP is future 0 0 1 1 1

How It Works

There are so many functions to generate One Hot encoding. We will take
one function and discuss it in depth.

Step 1-1 Store the text in a variable

This is for a single line:

Text = "I am learning NLP"

Step 1-2 Execute below function on the text data
Below is the function from the pandas library to convert text to feature.
# Importing the library

import pandas as pd

# Generating the features

pd.get dummies(Text.split())

Result:

I NLP am learning
0 1 0 O 0
1 0 0 1 0
2 0 0O ©O 1
3 0 1 0 0

Output has 4 features since the number of distinct words present in the
input was 4.
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Recipe 3-2. Converting Text to Features
Using Count Vectorizing

The approach in Recipe 3-1 has a disadvantage. It does not take the
frequency of the word occurring into consideration. If a particular word
is appearing multiple times, there is a chance of missing the information
ifitis not included in the analysis. A count vectorizer will solve that
problem.

In this recipe, we will see the other method of converting text to

feature, which is a count vectorizer.

Problem

How do we convert text to feature using a count vectorizer?

Solution

Count vectorizer is almost similar to One Hot encoding. The only
difference is instead of checking whether the particular word is present or
not, it will count the words that are present in the document.

Observe the below example. The words “I” and “NLP” occur twice in
the first document.

I love NLP is future will learn in 2month

[ love NLP and I will 2 1 2 0 O 1 1 1 1
learn NLP in 2 months
NLP is future 0 0 1 1 1 0 0 0 0
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How It Works

Sklearn has a feature extraction function that extracts features out of the
text. Let’s discuss how to execute the same. Import the CountVectorizer
function from Sklearn as explained below.

#importing the function

from sklearn.feature extraction.text import CountVectorizer
# Text

text = ["I love NLP and I will learn NLP in 2month "]
# create the transform

vectorizer = CountVectorizer()

# tokenizing

vectorizer.fit(text)

# encode document

vector = vectorizer.transform(text)

# summarize & generating output

print(vectorizer.vocabulary )
print(vector.toarray())

Result:
{'love': 4, 'nlp': 5, 'and': 1, 'will': 6, 'learn': 3, 'in': 2,

"2month': 0}
[[1111121]]

The fifth token nlp has appeared twice in the document.
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Recipe 3-3. Generating N-grams

If you observe the above methods, each word is considered as a feature.
There is a drawback to this method.

It does not consider the previous and the next words, to see if that
would give a proper and complete meaning to the words.

For example: consider the word “not bad.” If this is split into individual
words, then it will lose out on conveying “good” - which is what this word
actually means.

As we saw, we might lose potential information or insight because a
lot of words make sense once they are put together. This problem can be
solved by N-grams.

N-grams are the fusion of multiple letters or multiple words. They are
formed in such a way that even the previous and next words are captured.

e Unigrams are the unique words present in the sentence.
e Bigram is the combination of 2 words.
o Trigram is 3 words and so on.

For example,
“I am learning NLP”

” «u

Unigrams: “I', “am’, “ learning’, “NLP”

» « ” «u

Bigrams: “I am’, “am learning’, “learning NLP”

” o«

Trigrams: “I am learning’, “am learning NLP”

Problem

Generate the N-grams for the given sentence.

Solution

There are a lot of packages that will generate the N-grams. The one that is
mostly used is TextBlob.
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How It Works

Following are the steps.

Step 3-1 Generating N-grams using TextBlob
Let us see how to generate N-grams using TextBlob.
Text = "I am learning NLP"

Use the below TextBlob function to create N-grams. Use the text that is
defined above and mention the “n” based on the requirement.

#Import textblob
from textblob import TextBlob

#For unigram : Use n = 1

TextBlob(Text).ngrams(1)
Output:

[WordList(['I']), WordList(['am']), WordList(['learning']),
WordList(['NLP'])]

#For Bigram : For bigrams, use n = 2
TextBlob(Text).ngrams(2)
[WordList(['I", 'am']),

WordList(['am', 'learning']),
WordList(['learning', 'NLP'])]

If we observe, we have 3 lists with 2 words at an instance.
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Step 3-2 Bigram-based features for a document

Just like in the last recipe, we will use count vectorizer to generate features.
Using the same function, let us generate bigram features and see what the
output looks like.

#importing the function

from sklearn.feature extraction.text import CountVectorizer
# Text

text = ["I love NLP and I will learn NLP in 2month "]

# create the transform

vectorizer = CountVectorizer(ngram range=(2,2))

# tokenizing

vectorizer.fit(text)

# encode document

vector = vectorizer.transform(text)

# summarize & generating output
print(vectorizer.vocabulary )
print(vector.toarray())

Result:

{'"love nlp': 3, 'nlp and': 4, 'and will': 0, 'will learn': 6,
‘learn nlp': 2, 'nlp in': 5, "in 2month': 1}
[[1111111]]

The output has features with bigrams, and for our example, the count
is one for all the tokens.
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Recipe 3-4. Generating Co-occurrence
Matrix

Let’s discuss one more method of feature engineering called a co-

occurrence matrix.

Problem

Understand and generate a co-occurrence matrix.

Solution

A co-occurrence matrix is like a count vectorizer where it counts the
occurrence of the words together, instead of individual words.

How It Works

Let’s see how to generate these kinds of matrixes using nltk, bigrams,
and some basic Python coding skills.

Step 4-1 Import the necessary libraries

Here is the code:

import numpy as np
import nltk

from nltk import bigrams
import itertools
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Step 4-2 Create function for co-occurrence matrix

The co_occurrence_matrix function is below.

def co occurrence matrix(corpus):

76

vocab = set(corpus)

list(vocab)

vocab_to index = { word:i for i, word in enumerate(vocab) }
# Create bigrams from all words in corpus

vocab

bi grams = list(bigrams(corpus))

# Frequency distribution of bigrams ((wordi, word2),
num_occurrences)

bigram freq = nltk.FreqDist(bi grams).most common(len(bi_

grams))

# Initialise co-occurrence matrix

# co_occurrence matrix[current][previous]

co_occurrence matrix = np.zeros((len(vocab), len(vocab)))

# Loop through the bigrams taking the current and previous word,
# and the number of occurrences of the bigram.
for bigram in bigram freq:
current = bigram[0][1]
previous = bigram[0][0]
count = bigram[1]
pos_current = vocab to index[current]
pos_previous = vocab to index[previous]
co_occurrence matrix[pos current][pos previous] = count
co_occurrence_matrix = np.matrix(co_occurrence matrix)
# return the matrix and the index
return co_occurrence_matrix,vocab_to_index
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Step 4-3 Generate co-occurrence matrix

Here are the sentences for testing:

sentences = [['I"', 'love', 'nlp'],
['T', "love','to"' 'learn'],

['nlp", 'is', 'future'],
['nlp', 'is', 'cool']]

# create one list using many lists

merged = list(itertools.chain.from iterable(sentences))
matrix = co_occurrence matrix(merged)

# generate the matrix

CoMatrixFinal = pd.DataFrame(matrix[0], index=vocab to index,
columns=vocab_to_index)

print(CoMatrixFinal)

I is love future tolearn cool nlp
I 0.0 0.0 0.0 0.0 0.0 0.0 1.0
is 0.0 0.0 0.0 0.0 0.0 0.0 2.0
love 2.0 0.0 0.0 0.0 0.0 0.0 0.0
future 0.0 1.0 0.0 0.0 0.0 0.0 0.0
tolearn 0.0 0.0 1.0 0.0 0.0 0.0 0.0
cool 0.0 1.0 0.0 0.0 0.0 0.0 0.0
nlp 0.0 0.0 1.0 1.0 1.0 0.0 0.0

If you observe, “I,” “love,” and “is,” nlp” has appeared together twice,
and a few other words appeared only once.
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Recipe 3-5. Hash Vectorizing

A count vectorizer and co-occurrence matrix have one limitation though.
In these methods, the vocabulary can become very large and cause
memory/computation issues.

One of the ways to solve this problem is a Hash Vectorizer.

Problem

Understand and generate a Hash Vectorizer.

Solution

Hash Vectorizer is memory efficient and instead of storing the tokens

as strings, the vectorizer applies the hashing trick to encode them as
numerical indexes. The downside is that it’s one way and once vectorized,
the features cannot be retrieved.

How It Works

Let’s take an example and see how to do it using sklearn.

Step 5-1 Import the necessary libraries and create
document

Here’s the code:
from sklearn.feature extraction.text import HashingVectorizer

# list of text documents
text = ["The quick brown fox jumped over the lazy dog."]
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Step 5-2 Generate hash vectorizer matrix

Let’s create the HashingVectorizer of a vector size of 10.

# transform
vectorizer = HashingVectorizer(n_ features=10)

# create the hashing vector
vector = vectorizer.transform(text)

# summarize the vector
print(vector.shape)
print(vector.toarray())

(1, 10)
[[ o. 0.57735027 O. 0. 0. 0. 0.
-0.57735027 -0.57735027 O. 1]

It created vector of size 10 and now this can be used for any
supervised/unsupervised tasks.

Recipe 3-6. Converting Text to Features
Using TF-IDF

Again, in the above-mentioned text-to-feature methods, there are few
drawbacks, hence the introduction of TF-IDFE. Below are the disadvantages
of the above methods.

e Let’s say a particular word is appearing in all the documents
of the corpus, then it will achieve higher importance in
our previous methods. That’s bad for our analysis.

o The whole idea of having TF-IDF is to reflect on how
important a word is to a document in a collection, and
hence normalizing words appeared frequently in all the

documents.
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Problem

Text to feature using TF-IDE.

Solution

Term frequency (TF): Term frequency is simply the ratio of the count of a
word present in a sentence, to the length of the sentence.

TF is basically capturing the importance of the word irrespective of the
length of the document. For example, a word with the frequency of 3 with
the length of sentence being 10 is not the same as when the word length of
sentence is 100 words. It should get more importance in the first scenario;
that is what TF does.

Inverse Document Frequency (IDF): IDF of each word is the log of
the ratio of the total number of rows to the number of rows in a particular
document in which that word is present.

IDF =1log(N/n), where N is the total number of rows and n is the
number of rows in which the word was present.

IDF will measure the rareness of a term. Words like “a,” and “the” show
up in all the documents of the corpus, but rare words will not be there
in all the documents. So, if a word is appearing in almost all documents,
then that word is of no use to us since it is not helping to classify or in
information retrieval. IDF will nullify this problem.

TE-IDF is the simple product of TF and IDF so that both of the
drawbacks are addressed, which makes predictions and information

retrieval relevant.

How It Works

Let's look at the following steps.
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Step 6-1 Read the text data

A familiar phrase:

Text = ["The quick brown fox jumped over the lazy dog.",
"The dog.",

"The fox"]

Step 6-2 Creating the Features

Execute the below code on the text data:

#Import TfidfVectorizer

from sklearn.feature extraction.text import TfidfVectorizer
#Create the transform

vectorizer = TfidfVectorizer()

#Tokenize and build vocab

vectorizer.fit(Text)

#Summarize

print(vectorizer.vocabulary )
print(vectorizer.idf )

Result:

Text = ["The quick brown fox jumped over the lazy dog.",
"The dog.",

"The fox"]

{"the': 7, 'quick': 6, 'brown': 0, 'fox': 2, 'jumped': 3,
‘over': 5, 'lazy': 4, 'dog': 1}
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[ 1.69314718 1.28768207 1.28768207 1.69314718  1.69314718
1.69314718 1.69314718 1. ]

If you observe, “the” is appearing in all the 3 documents and it does
not add much value, and hence the vector value is 1, which is less than all
the other vector representations of the tokens.

All these methods or techniques we have looked into so far are based
on frequency and hence called frequency-based embeddings or features.
And in the next recipe, let us look at prediction-based embeddings,
typically called word embeddings.

Recipe 3-7. Implementing Word
Embeddings

This recipe assumes that you have a working knowledge of how a neural

network works and the mechanisms by which weights in the neural

network are updated. If new to a Neural Network (NN), it is suggested that

you go through Chapter 6 to gain a basic understanding of how NN works.
Even though all previous methods solve most of the problems, once

we get into more complicated problems where we want to capture the

semantic relation between the words, these methods fail to perform.
Below are the challenges:

o All these techniques fail to capture the context and
meaning of the words. All the methods discussed so
far basically depend on the appearance or frequency
of the words. But we need to look at how to capture the
context or semantic relations: that is, how frequently
the words are appearing close by.
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a. ITam eating an apple.
b. Iam using apple.

If you observe the above example, Apple gives different meanings
when it is used with different (close by) adjacent words, eating and using.

e For a problem like a document classification (book
classification in the library), a document is really
huge and there are a humongous number of tokens
generated. In these scenarios, your number of features
can get out of control (wherein) thus hampering the
accuracy and performance.

A machine/algorithm can match two documents/texts and say
whether they are same or not. But how do we make machines tell you
about cricket or Virat Kohli when you search for MS Dhoni? How do you
make a machine understand that “Apple” in “Apple is a tasty fruit” is a fruit
that can be eaten and not a company?

The answer to the above questions lies in creating a representation
for words that capture their meanings, semantic relationships, and the
different types of contexts they are used in.

The above challenges are addressed by Word Embeddings.

Word embedding is the feature learning technique where words from
the vocabulary are mapped to vectors of real numbers capturing the
contextual hierarchy.

If you observe the below table, every word is represented with 4
numbers called vectors. Using the word embeddings technique, we are
going to derive those vectors for each and every word so that we can use it
in future analysis. In the below example, the dimension is 4. But we usually
use a dimension greater than 100.

83



CHAPTER 3  CONVERTING TEXT TO FEATURES

Words Vectors

text 0.36 0.36 -0.43 0.36
idea -0.56 -0.56 0.72 -0.56
word 0.35 -0.43 0.12 0.72
encode 0.19 0.19 0.19 0.43
document -0.43 0.19 -0.43 0.43
grams 0.72 -0.43 0.72 0.12
process 0.43 0.72 0.43 0.43
feature 0.12 0.45 0.12 0.87

Problem

You want to implement word embeddings.

Solution

Word embeddings are prediction based, and they use shallow neural
networks to train the model that will lead to learning the weight and using
them as a vector representation.

word2vec: word2vec is the deep learning Google framework to train
word embeddings. It will use all the words of the whole corpus and predict
the nearby words. It will create a vector for all the words present in the
corpus in a way so that the context is captured. It also outperforms any
other methodologies in the space of word similarity and word analogies.

There are mainly 2 types in word2vec.

e Skip-Gram

o Continuous Bag of Words (CBOW)
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CBOW || Skip Gram |

Input Hidden Layer Output Input Hidden Layer Output

:\ /:
01 10

How It Works

The above figure shows the architecture of the CBOW and skip-gram
algorithms used to build word embeddings. Let us see how these models
work in detail.

Skip-Gram

The skip-gram model (Mikolov et al., 2013)" is used to predict the
probabilities of a word given the context of word or words.

Let us take a small sentence and understand how it actually works.
Each sentence will generate a target word and context, which are the words
nearby. The number of words to be considered around the target variable
is called the window size. The table below shows all the possible target
and context variables for window size 2. Window size needs to be selected
based on data and the resources at your disposal. The larger the window
size, the higher the computing power.

'https://arxiv.org/abs/1310.4546
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Text = “I love NLP and I will learn NLP in 2 months”

Target word Context
| love NLP | love, NLP
[ love NLP and love love, NLP, and
[ love NLP and | will learn NLP l, love, and, |
in 2 months month in, 2

Since it takes a lot of text and computing power, let us go ahead and
take sample data and build a skip-gram model.

As mentioned in Chapter 3, import the text corpus and break it into
sentences. Perform some cleaning and preprocessing like the removal of
punctuation and digits, and split the sentences into words or tokens, etc.

#Example sentences

sentences = [['I"', 'love', 'nlp'],
['T", 'will', 'learn', 'nlp',
['nlp', 'is', 'future'],
['nlp', 'saves', 'time', 'and', 'solves’',
'lot", 'of', 'industry', 'problems'],
['nlp", 'uses', 'machine', 'learning']]

in', '2','months'],

#import library
I'pip install gensim

import gensim

from gensim.models import Word2Vec
from sklearn.decomposition import PCA
from matplotlib import pyplot
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# training the model
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skipgram = Word2Vec(sentences, size =50,

sg = 1)

print(skipgram)

# access vector for one word

print(skipgram[‘nlp'])

[ 0.00552227
0.00837146
0.00179965
-0.00499459
0.00188365
-0.007905
-0.00176814
-0.00986026
0.00312014
-0.00370761
0.0056183
0.00443816
-0.00192308
0.00170084
0.00606918
0.00512787
-0.00909613

-0.

0.

.00723104 O.

.0049786 -0.

.0093498 0.

00024082 -0.

.00821249 0.

.00859488 -0.

.00941 -0.

00848301 -0.

00683905]

00857073

00448666

00174774

00181886

00787507

00163146

00202355

00543473

CONVERTING TEXT TO FEATURES

window =

.00368054

.00182289

.00609793

.00093836

.00864689

.00928791

.00756564

.00747958

3, min_count=1,

-0.00071274

0.00857488

-0.00533857

-0.00382601

-0.00686584

0.00904601

-0.00105471

0.0003408

Since our vector size parameter was 50, the model gives a vector of size

50 for each word.

# access vector for another one word

print(skipgram[ 'deep'])

KeyError: "word 'deep' not in vocabulary"
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We get an error saying the word doesn’t exist because this word was
not there in our input training data. This is the reason we need to train the
algorithm on as much data possible so that we do not miss out on words.

There is one more way to tackle this problem. Read Recipe 3-6 in this
chapter for the answer.

# save model
skipgram.save('skipgram.bin")

# load model

skipgram = Word2Vec.load('skipgram.bin")

T - SNE plot is one of the ways to evaluate word embeddings. Let’s
generate it and see how it looks.

# T - SNE plot

X = skipgram[skipgram.wv.vocab]
pca = PCA(n_components=2)
result = pca.fit transform(X)

# create a scatter plot of the projection

pyplot.scatter(result[:, 0], result[:, 1])
words = list(skipgram.wv.vocab)
for i, word in enumerate(words):
pyplot.annotate(word, xy=(result[i, 0], result[i, 1]))
pyplot.show()
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Continuous Bag of Words (CBOW)

Now let’s see how to build CBOW model.

#import library

from gensim.models import Word2Vec

from sklearn.decomposition import PCA
from matplotlib import pyplot

#Example sentences

sentences = [['I", 'love', 'nlp'],

['I', 'will', 'learn', 'nlp', 'in', '2",'months'],
['nlp', 'is', 'future'],
['nlp', 'saves', 'time', 'and', 'solves’',

‘lot"', 'of', 'industry', 'problems'],

['nlp', 'uses', 'machine', 'learning']]
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# training the model

cbow = Word2Vec(sentences, size =50, window = 3, min count=1,sg = 1)
print(cbow)

# access vector for one word
print(cbow[ 'nlp'])

# save model
cbow.save('cbow.bin")

# load model

cbow = Word2Vec.load('cbow.bin")
# T - SNE plot

X = cbow[cbow.wv.vocab]
pca = PCA(n_components=2)
result = pca.fit transform(X)

# create a scatter plot of the projection

pyplot.scatter(result[:, 0], result[:, 1])
words = list(cbow.wv.vocab)
for i, word in enumerate(words):
pyplot.annotate(word, xy=(result[i, 0], result[i, 1]))
pyplot.show()
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Result:
0.04 |
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But to train these models, it requires a huge amount of computing
power. So, let us go ahead and use Google’s pre-trained model, which has
been trained with over 100 billion words.

Download the model from the below path and keep it in your local

storage:
https://drive.google.com/file/d/0B7XkCwpI5SKDYNINUTT1SS21pQmM/edit

Import the gensim package and follow the steps to understand
Google’s word2vec.

# import gensim package
import gensim
# load the saved model

model = gensim.models.Word2Vec.load word2vec format('C:\\
Users\\GoogleNews-vectors-negative300.bin', binary=True)

#Checking how similarity works.

print (model.similarity('this', 'is'))
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Output:
0.407970363878

#Lets check one more.
print (model.similarity('post', 'book'))

Output:
0.0572043891977

“This” and “is” have a good amount of similarity, but the similarity
between the words “post” and “book” is poor. For any given set of words,
it uses the vectors of both the words and calculates the similarity between
them.

# Finding the odd one out.

model.doesnt_match('breakfast cereal dinner lunch';.split())
Output:

'cereal’

Of 'breakfast, ‘cereal,; ‘dinner’ and ‘lunch’, only cereal is the word that is
not anywhere related to the remaining 3 words.

# It is also finding the relations between words.

word vectors.most _similar(positive=['woman', 'king'],
negative=['man'])

Output:

queen: 0.7699

If you add ‘woman’ and ‘king’ and minus man, it is predicting queen as
output with 77% confidence. Isn’t this amazing?

king == woman == man —— queen
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Let’s have a look at few of the interesting examples using T - SNE plot

for word embeddings.

L0

oL
oven  ymicrowave
o] refrigerator
Qe
0.5
® bulb
led
) ® fan [ ] ] charger
kitchen
® ity [ L .‘ight .banery
vani
- @ table
sink
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@ bathtub ® okt [ B ®
@ faucet © shower @ il
Q valve
® finish @ deck
-05 @ color ) o garden QD hose Q sprinkler
@ paint
@ concrete @ s
=10

-0.8 0.0 07

0.4 0.6 0.8

Above is the word embedding’s output representation of home

interiors and exteriors. If you clearly observe, all

the words related to

electric fittings are near to each other; similarly, words related to bathroom

fittings are near to each other, and so on. This is the beauty of word

embeddings.

Recipe 3-8 Implementing fastText

fastText is another deep learning framework developed by Facebook to

capture context and meaning.

Problem

How to implement fastText in Python.
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Solution

fastText is the improvised version of word2vec. word2vec basically
considers words to build the representation. But fastText takes each
character while computing the representation of the word.

How It Works

Let us see how to build a fastText word embedding.
# Import FastText

from gensim.models import FastText
from sklearn.decomposition import PCA
from matplotlib import pyplot

#Example sentences

sentences = [['I', 'love', 'nlp'],
['I', 'will', 'learn’, 'nlp', 'in', '2",'months'],
['nlp', 'is', 'future'],
['nlp', 'saves', 'time', 'and', 'solves',
'lot", 'of', '"industry', 'problems'],
['nlp', 'uses', 'machine', 'learning']]

fast = FastText(sentences,size=20, window=1, min_count=1,
workers=5, min_n=1, max_n=2)

# vector for word nlp

print(fast['nlp'])
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[-0.00459182 0.00607472 -0.01119007 0.00555629 -0.00781679
-0.01376211
0.00675235 -0.00840158 -0.00319737 0.00924599 0.00214165
-0.01063819
0.01226836 0.00852781 0.01361119 -0.00257012 0.00819397
-0.00410289
-0.0053979 -0.01360016]

# vector for word deep

print(fast['deep'])

[ 0.00271002 -0.00242539 -0.00771885 -0.00396854 0.0114902
-0.00640606

0.00637542 -0.01248098 -0.01207364 0.01400793 -0.00476079
-0.00230879

0.02009759 -0.01952532 0.01558956 -0.01581665 0.00510567
-0.00957186

-0.00963234 -0.02059373]

This is the advantage of using fastText. The “deep” was not present in
training of word2vec and we did not get a vector for that word. But since
fastText is building on character level, even for the word that was not
there in training, it will provide results. You can see the vector for the word
“deep,” but it's not present in the input data.

# load model
fast = Word2Vec.load('fast.bin")
# visualize

X = fast[fast.wv.vocab]
pca = PCA(n_components=2)
result = pca.fit transform(X)
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# create a scatter plot of the projection

pyplot.scatter(result[:, 0], result[:, 1])
words = list(fast.wv.vocab)
for i, word in enumerate(words):
pyplot.annotate(word, xy=(result[i, 0], result[i, 1]))
pyplot.show()
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The figure above shows the embedding representation for fastText.

If you observe closely, the words “love” and “solve” are close together in
fastText but in your skip-gram and CBOW, “love” and “learn” are near to
each other. This is an effect of character-level embeddings.

We hope that by now you are familiar and comfortable with processing
the natural language. Now that data is cleaned and features are created,
let’s jump into building some applications around it that solves the
business problem.
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CHAPTER 4

Advanced Natural
Language Processing

In this chapter, we are going to cover various advanced NLP techniques
and leverage machine learning algorithms to extract information from text
data as well as some of the advanced NLP applications with the solution
approach and implementation.

Recipe 1. Noun Phrase extraction

Recipe 2. Text similarity

Recipe 3. Parts of speech tagging

Recipe 4. Information extraction - NER - Entity recognition
Recipe 5. Topic modeling

Recipe 6. Text classification

Recipe 7. Sentiment analysis

Recipe 8. Word sense disambiguation

Recipe 9. Speech recognition and speech to text

Recipe 10. Text to speech

Recipe 11. Language detection and translation
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Before getting into recipes, let’s understand the NLP pipeline and life

cycle first. There are so many concepts we are implementing in this book,

and we might get overwhelmed by the content of it. To make it simpler

and smoother, let’s see what is the flow that we need to follow for an NLP

solution.

For example, let’s consider customer sentiment analysis and

prediction for a product or brand or service.

¢ Define the Problem: Understand the customer

sentiment across the products.

¢ Understand the depth and breadth of the problem:
Understand the customer/user sentiments across the

product; why we are doing this? What is the business

impact? Etc.

o Datarequirement brainstorming: Have a

brainstorming activity to list out all possible data

points.
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All the reviews from customers on e-commerce
platforms like Amazon, Flipkart, etc.

Emails sent by customers

Warranty claim forms

Survey data

Call center conversations using speech to text
Feedback forms

Social media data like Twitter, Facebook, and
LinkedIn
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Data collection: We learned different techniques to
collect the data in Chapter 1. Based on the data and
the problem, we might have to incorporate different
data collection methods. In this case, we can use web
scraping and Twitter APIs.

Text Preprocessing: We know that data won’t always
be clean. We need to spend a significant amount

of time to process it and extract insight out of it

using different methods that we discussed earlier in
Chapter 2.

Text to feature: As we discussed, texts are characters
and machines will have a tough time understanding
them. We have to convert them to features that
machines and algorithms can understand using any of
the methods we learned in the previous chapter.

Machine learning/Deep learning: Machine learning/
Deep learning is a part of an artificial intelligence
umbrella that will make systems automatically learn
patterns in the data without being programmed. Most
of the NLP solutions are based on this, and since we
converted text to features, we can leverage machine
learning or deep learning algorithms to achieve

the goals like text classification, natural language
generation, etc.

Insights and deployment: There is absolutely no use
for building NLP solutions without proper insights
being communicated to the business. Always take time
to connect the dots between model/analysis output
and the business, thereby creating the maximum
impact.
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Recipe 4-1. Extracting Noun Phrases

In this recipe, let us extract a noun phrase from the text data (a sentence or
the documents).

Problem

You want to extract a noun phrase.

Solution

Noun Phrase extraction is important when you want to analyze the “who”
in a sentence. Let’s see an example below using TextBlob.

How It Works

Execute the below code to extract noun phrases.

#Import libraries
import nltk
from textblob import TextBlob

#Extract noun
blob = TextBlob("John is learning natural language processing")
for np in blob.noun phrases:

print(np)
Output:

john
natural language processing
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Recipe 4-2. Finding Similarity
Between Texts

In this recipe, we are going to discuss how to find the similarity between
two documents or text. There are many similarity metrics like Euclidian,
cosine, Jaccard, etc. Applications of text similarity can be found in areas
like spelling correction and data deduplication.

Here are a few of the similarity measures:

Cosine similarity: Calculates the cosine of the angle
between the two vectors.

Jaccard similarity: The score is calculated using the
intersection or union of words.

Jaccard Index = (the number in both sets) / (the
number in either set) * 100.

Levenshtein distance: Minimal number of
insertions, deletions, and replacements required for
transforming string “a” into string “b.”

Hamming distance: Number of positions with the
same symbol in both strings. But it can be defined
only for strings with equal length.

Problem

You want to find the similarity between texts/documents.

Solution

The simplest way to do this is by using cosine similarity from the sklearn
library.
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How It Works

Let’s follow the steps in this section to compute the similarity score
between text documents.

Step 2-1 Create/read the text data

Here is the data:

documents = (

"I like NLP",

"I am exploring NLP",

"I am a beginner in NLP",
"I want to learn NLP",

"I like advanced NLP"

)
Step 2-2 Find the similarity

Execute the below code to find the similarity.

#Import libraries
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine similarity

#Compute tfidf : feature engineering(refer previous chapter -
Recipe 3-4)

tfidf vectorizer = TfidfVectorizer()
tfidf matrix = tfidf vectorizer.fit transform(documents)

tfidf matrix.shape

#output
(5, 10)
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#icompute similarity for first sentence with rest of the sentences
cosine similarity(tfidf matrix[o0:1],tfidf matrix)

#output
array([[ 1. , 0.17682765, 0.14284054, 0.13489366,
0.68374784]1)

If we clearly observe, the first sentence and last sentence have higher
similarity compared to the rest of the sentences.

Phonetic matching

The next version of similarity checking is phonetic matching, which roughly
matches the two words or sentences and also creates an alphanumeric
string as an encoded version of the text or word. It is very useful for searching
large text corpora, correcting spelling errors, and matching relevant names.
Soundex and Metaphone are two main phonetic algorithms used for this
purpose. The simplest way to do this is by using the fuzzy library.

1. Install and import the library

Ipip install fuzzy
import fuzzy

2. Run the Soundex function
soundex = fuzzy.Soundex(4)

3. Generate the phonetic form
soundex( 'natural')

#output
|N364|

soundex( 'natuaral')
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#output
|N364|

soundex( 'language")

#output
|L52|

soundex('processing")

#output
'P625"

Soundex is treating “natural” and “natuaral” as the same, and the
phonetic code for both of the strings is “N364.” And for “language” and
“processing,” it is “L52” and “P625” respectively.

Recipe 4-3. Tagging Part of Speech

Part of speech (POS) tagging is another crucial part of natural language
processing that involves labeling the words with a part of speech such as
noun, verb, adjective, etc. POS is the base for Named Entity Resolution,
Sentiment Analysis, Question Answering, and Word Sense Disambiguation.

Problem

Tagging the parts of speech for a sentence.

Solution

There are 2 ways a tagger can be built.

o Rule based - Rules created manually, which tag a word
belonging to a particular POS.
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o Stochastic based - These algorithms capture the
sequence of the words and tag the probability of the
sequence using hidden Markov models.

How It Works

Again, NLTK has the best POS tagging module. nltk.pos_tag(word) is the
function that will generate the POS tagging for any given word. Use for loop
and generate POS for all the words present in the document.

Step 3-1 Store the text in a variable

Here is the variable:

Text = "I love NLP and I will learn NLP in 2 month"

Step 3-2 NLTK for POS

Now the code:

# Importing necessary packages and stopwords

import nltk

from nltk.corpus import stopwords

from nltk.tokenize import word tokenize, sent tokenize
stop _words = set(stopwords.words('english'))

# Tokenize the text
tokens = sent_tokenize(text)

#Generate tagging for all the tokens using loop
for i in tokens:
words = nltk.word tokenize(i)
words = [w for w in words if not w in stop words]
# POS-tagger.
tags = nltk.pos_tag(words)

tags
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Results:
[("I', "PRP"),
('love', 'VBP'),
('NLP', 'NNP'),
("', 'PRP'),
('learn', 'VBP'),
('NLP', 'RB'),
('2month', 'CD")]
Below are the short forms and explanation of POS tagging. The word
“love” is VBP, which means verb, sing. present, non-3d take.
e CC coordinating conjunction
e CD cardinal digit

¢ DT determiner

o EXexistential there (like: “there is” ... think of it like
“there exists”)

o FW foreign word

o IN preposition/subordinating conjunction
e JJ adjective ‘big’

e JJR adjective, comparative ‘bigger’

o JJS adjective, superlative ‘biggest’

o LSlistmarker 1)

¢ MD modal could, will

e NN noun, singular ‘desk’

e NNS noun plural ‘desks’
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NNP proper noun, singular ‘Harrison’
NNPS proper noun, plural ‘Americans’
PDT predeterminer ‘all the kids’

POS possessive ending parent’s

PRP personal pronoun I, he, she

PRPS$ possessive pronoun my, his, hers
RB adverb very, silently

RBR adverb, comparative better

RBS adverb, superlative best

RP particle give up

TO to go ‘to’ the store

UH interjection

VB verb, base form take

VBD verb, past tense took

VBG verb, gerund/present participle taking
VBN verb, past participle taken

VBP verb, sing. present, non-3d take
VBZ verb, 3rd person sing. present takes
WDT wh-determiner which

WP wh-pronoun who, what

WP$ possessive wh-pronoun whose

WRB wh-adverb where, when
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Recipe 4-4. Extract Entities from Text

In this recipe, we are going to discuss how to identify and extract entities
from the text, called Named Entity Recognition. There are multiple
libraries to perform this task like NLTK chunker, StanfordNER, SpaCy,
opennlp, and NeuroNER; and there are a lot of APIs also like WatsonNLU,
AlchemyAPI, NERD, Google Cloud NLP API, and many more.

Problem

You want to identify and extract entities from the text.

Solution

The simplest way to do this is by using the ne_chunk from NLTK or SpaCy.

How It Works

Let’s follow the steps in this section to perform NER.

Step 4-1 Read/create the text data

Here is the text:

sent = "John is studying at Stanford University in California"

Step 4-2 Extract the entities

Execute the below code.

Using NLTK

#import libraries
import nltk
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from nltk import ne_chunk
from nltk import word tokenize

#NER
ne_chunk(nltk.pos tag(word tokenize(sent)), binary=False)

#output

Tree('S', [Tree('PERSON', [('John', 'NNP')]), ('is', 'VBZ'),
('studying', 'VBG'), (‘at', 'IN'), Tree('ORGANIZATION',
[('Stanford', 'NNP'), ('University', 'NNP')]), ('in', "IN"),
Tree('GPE', [('California', 'NNP')])])

Here "John" is tagged as "PERSON"

"Stanford" as "ORGANIZATION"

"California" as "GPE". Geopolitical entity, i.e. countries,
cities, states.

Using SpaCy

import spacy
nlp = spacy.load('en")
# Read/create a sentence

doc = nlp(u'Apple is ready to launch new phone worth $10000 in
New york time square ')

for ent in doc.ents:
print(ent.text, ent.start char, ent.end char, ent.label )

#output

Apple 0 5 ORG
10000 42 47 MONEY
New york 51 59 GPE
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According to the output, Apple is an organization, 10000 is money, and
New York is place. The results are accurate and can be used for any NLP
applications.

Recipe 4-5. Extracting Topics from Text

In this recipe, we are going to discuss how to identify topics from the
document. Say, for example, there is an online library with multiple
departments based on the kind of book. As the new book comes in,
you want to look at the unique keywords/topics and decide on which
department this book might belong to and place it accordingly. In these
kinds of situations, topic modeling would be handy.

Basically, this is document tagging and clustering.

Problem

You want to extract or identify topics from the document.

Solution

The simplest way to do this by using the gensim library.

How It Works

Let’s follow the steps in this section to identify topics within documents

using genism.

Step 5-1 Create the text data

Here is the text:

docl = "I am learning NLP, it is very interesting and exciting.
it includes machine learning and deep learning"
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doc2 = "My father is a data scientist and he is nlp expert"
doc3 = "My sister has good exposure into android development”

doc_complete = [docl, doc2, doc3]
doc_complete

#output
['I am learning NLP, it is very interesting and exciting. it
includes machine learning and deep learning’,

‘My father is a data scientist and he is nlp expert',

'‘My sister has good exposure into android development']

Step 5-2 Cleaning and preprocessing
Next, we clean it up:

# Install and import libraries

Ipip install gensim

from nltk.corpus import stopwords

from nltk.stem.wordnet import WordNetLemmatizer
import string

# Text preprocessing as discussed in chapter 2

stop = set(stopwords.words('english'))
exclude = set(string.punctuation)
lemma = WordNetLemmatizer()

def clean(doc):

stop free = " ".join([i for i in doc.lower().split()
if i not in stop])

punc_free = ".join(ch for ch in stop free if ch not in
exclude)

normalized = " ".join(lemma.lemmatize(word) for word in

punc_free.split())

111



CHAPTER 4  ADVANCED NATURAL LANGUAGE PROCESSING

return normalized
doc_clean = [clean(doc).split() for doc in doc_complete]
doc_clean

#output
[['learning’,
‘nlp’,
'interesting’,
‘exciting',
"includes',
'machine’,
‘learning’,
"deep’,
'‘learning'],
['father', 'data', 'scientist', 'nlp', 'expert'],
['sister', 'good', 'exposure', 'android', 'development']]

Step 5-3 Preparing document term matrix
The code is below:

# Importing gensim

import gensim
from gensim import corpora

# Creating the term dictionary of our corpus, where every
unique term is assigned an index.

dictionary = corpora.Dictionary(doc_clean)

# Converting a list of documents (corpus) into Document-Term
Matrix using dictionary prepared above.
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doc_term matrix = [dictionary.doc2bow(doc) for doc in doc_clean]

doc_term matrix

#output

[[(0, 1), (1, 1), (2, 1), (3, 1), (4, 3), (5, 1), (6, 1)],
[(6, 1), (7, 1), (8, 1), (9, 1), (10, 1)],

[(11, 1), (12, 1), (13, 1), (14, 1), (15, 1)]]

Step 5-4 LDA model

The final part is to create the LDA model:

# Creating the object for LDA model using gensim library
Lda = gensim.models.ldamodel.LdaModel

# Running and Training LDA model on the document term matrix
for 3 topics.

ldamodel = Lda(doc_term matrix, num topics=3, id2word =
dictionary, passes=50)

# Results
print(ldamodel.print topics())

#output

[(0, '0.063*"nlp" + 0.063*"father" + 0.063*"data" +
0.063*"scientist" + 0.063*"expert" + 0.063*"good" +
0.063*"exposure" + 0.063*"development"” + 0.063*"android" +
0.063*"sister""), (1, '0.232*"learning" + 0.093*"nlp" +
0.093*"deep" + 0.093*"includes" + 0.093*"interesting" +
0.093*"machine" + 0.093*"exciting" + 0.023*"scientist" +
0.023*"data" + 0.023*"father"'), (2, '0.087*"sister" +
0.087*"good" + 0.087*"exposure" + 0.087*"development" +
0.087*"android" + 0.087*"father" + 0.087*"scientist" +
0.087*"data" + 0.087*"expert" + 0.087*"nlp"')]
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All the weights associated with the topics from the sentence seem
almost similar. You can perform this on huge data to extract significant
topics. The whole idea to implement this on sample data is to make you
familiar with it, and you can use the same code snippet to perform on the
huge data for significant results and insights.

Recipe 4-6. Classifying Text

Text classification - The aim of text classification is to automatically classify
the text documents based on pretrained categories.
Applications:

e Sentiment Analysis

e Document classification

e Spam - ham mail classification
e Resume shortlisting

¢ Document summarization

Problem

Spam - ham classification using machine learning.

Solution

If you observe, your Gmail has a folder called “Spam.” It will basically
classify your emails into spam and ham so that you don’t have to read

unnecessary emails.
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How It Works

Let’s follow the step-by-step method to build the classifier.

Step 6-1 Data collection and understanding

Please download data from the below link and save it in your working
directory:
https://waw.kaggle.com/uciml/sms-spam-collection-dataset#fspam.csv

#Read the data
Email Data = pd.read csv("spam.csv",encoding ='latin1")

#Data undestanding
Email Data.columns

#output
Index(['va', 'v2', 'Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],
dtype="object")

Email Data = Email Data[['v1i', 'v2']]
Email Data = Email Data.rename(columns={"vi":"Target",
"v2":"Email"})

Email Data.head()

#output

Target Email
ham  Go until jurong point, crazy.. Available only ...
ham Ok lar... Joking wif u oni...
spam Free entry in 2 a wkly comp to win FA Cup fina...
ham U dun say so early hor... U c already then say...
ham  Nah I don't think he goes to usf, he lives aro...

N w N R O
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Step 6-2 Text processing and feature engineering
The code is below:

#import

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import string

from nltk.stem import SnowballStemmer

from nltk.corpus import stopwords

from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.model selection import train test split

import os

from textblob import TextBlob

from nltk.stem import PorterStemmer

from textblob import Word

from sklearn.feature extraction.text import CountVectorizer,
TfidfVectorizer

import sklearn.feature extraction.text as text

from sklearn import model selection, preprocessing, linear
model, naive bayes, metrics, svm

#ipre processing steps like lower case, stemming and
lemmatization

Email Data[ "Email'] = Email Data[ 'Email'].apply(lambda x:
" ".join(x.lower() for x in x.split()))
stop = stopwords.words('english")
Email Data['Email'] = Email Data[ 'Email'].apply(lambda x: " ".join
(x for x in x.split() if x not in stop))
st = PorterStemmer()
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Email Data['Email'] = Email Data[ 'Email'].apply(lambda x: " ".join
([st.stem(word) for word in x.split()]))

Email Data['Email'] = Email Data[ 'Email’].apply(lambda x: " ".join
([Word(word).lemmatize() for word in

x.split()]))

Email Data.head()
#output

Target Email
0 ham go jurong point, crazy.. avail bugi n great wo...
1 ham ok lar... joke wif u oni...
2 spam free entri 2 wkli comp win fa cup final tkt 21...
3 ham u dun say earli hor... u c alreadi say...
4 ham nah think goe usf, live around though

#Splitting data into train and validation

train_x, valid x, train_y, valid_ y = model_selection.train_
test split(Email Data['Email'], Email Data[ 'Target'])

# TFIDF feature generation for a maximum of 5000 features

encoder = preprocessing.LabelEncoder()
encoder.fit transform(train y)
encoder.fit transform(valid y)

train y
valid y

tfidf vect = TfidfVectorizer(analyzer="word',
token pattern=r'\w{1,}", max_features=5000)
tfidf vect.fit(Email Data['Email'])
xtrain tfidf = tfidf vect.transform(train x)
xvalid tfidf = tfidf vect.transform(valid x)

xtrain_tfidf.data
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#output
array([0.39933971, 0.36719906, 0.60411187, ..., 0.36682939,
0.30602539, 0.38290119])

Step 6-3 Model training
This is the generalized function for training any given model:

def train model(classifier, feature vector train, label,
feature vector valid, is neural net=False):
# fit the training dataset on the classifier
classifier.fit(feature vector train, label)
# predict the labels on validation dataset
predictions = classifier.predict(feature vector valid)
return metrics.accuracy score(predictions, valid y)

# Naive Bayes trainig

accuracy = train _model(naive bayes.MultinomialNB(alpha=0.2),
xtrain_tfidf, train_y, xvalid_tfidf)

print ("Accuracy: ", accuracy)

#output
Accuracy: 0.985642498205

# Linear Classifier on Word Level TF IDF Vectors
accuracy = train_model(linear model.LogisticRegression(),
xtrain tfidf, train_y, xvalid tfidf)

print ("Accuracy: ", accuracy)

#output
Accuracy: 0.970567121321

Naive Bayes is giving better results than the linear classifier. We can try
many more classifiers and then choose the best one.
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Recipe 4-7. Carrying Out Sentiment
Analysis

In this recipe, we are going to discuss how to understand the sentiment of
a particular sentence or statement. Sentiment analysis is one of the widely
used techniques across the industries to understand the sentiments of the
customers/users around the products/services. Sentiment analysis gives
the sentiment score of a sentence/statement tending toward positive or
negative.

Problem

You want to do a sentiment analysis.

Solution

The simplest way to do this by using a TextBlob or vedar library.

How It Works

Let’s follow the steps in this section to do sentiment analysis using
TextBlob. It will basically give 2 metrics.

o Polarity = Polarity lies in the range of [-1,1] where 1
means a positive statement and -1 means a negative
statement.

e Subjectivity = Subjectivity refers that mostly it is a
public opinion and not factual information [0,1].
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Step 7-1 Create the sample data
Here is the sample data:

review = "I like this phone. screen quality and camera clarity
is really good."

review2 = "This tv is not good. Bad quality, no clarity, worst
experience"

Step 7-2 Cleaning and preprocessing

Refer to Chapter 2, Recipe 2-10, for this step.

Step 7-3 Get the sentiment scores

Using a pretrained model from TextBlob to get the sentiment scores:

#import libraries
from textblob import TextBlob

#TextBlob has a pre trained sentiment prediction model
blob = TextBlob(review)
blob.sentiment

#output
Sentiment(polarity=0.7, subjectivity=0.6000000000000001)

It seems like a very positive review.

#now lets look at the sentiment of review2
blob = TextBlob(review2)
blob.sentiment
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#output
Sentiment(polarity=-0.6833333333333332,
subjectivity=0.7555555555555555)

This is a negative review, as the polarity is “-0.68.
Note: We will cover a one real-time use case on sentiment analysis with
an end-to-end implementation in the next chapter, Recipe 5-2.

Recipe 4-8. Disambiguating Text

There is ambiguity that arises due to a different meaning of words in a
different context.
For example,

Textl = 'I went to the bank to deposit my money'
Text2 = 'The river bank was full of dead fishes'

In the above texts, the word “bank” has different meanings based on
the context of the sentence.

Problem

Understanding disambiguating word sense.

Solution

The Lesk algorithm is one of the best algorithms for word sense
disambiguation. Let’s see how to solve using the package pywsd and nltk.

How It Works

Below are the steps to achieve the results.
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Step 8-1 Import libraries
First, import the libraries:
#Install pywsd

I'pip install pywsd

#Import functions

from nltk.corpus import wordnet as wn
from nltk.stem import PorterStemmer
from itertools import chain

from pywsd.lesk import simple lesk

Step 8-2 Disambiguating word sense

Now the code:
# Sentences

bank _sents = ['I went to the bank to deposit my money',
‘The river bank was full of dead fishes']

# calling the lesk function and printing results for both the
sentences

print ("Context-1:", bank sents[0])

answer = simple lesk(bank sents[0], 'bank")
print ("Sense:", answer)

print ("Definition : ", answer.definition())

print ("Context-2:", bank sents[1])

answer = simple lesk(bank sents[1], 'bank','n’
print ("Sense:", answer)

print ("Definition : ", answer.definition())

#Result:
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Context-1: I went to the bank to deposit my money

Sense: Synset('depository financial institution.n.01')
Definition : a financial institution that accepts deposits and
channels the money into lending activities

Context-2: The river bank was full of dead fishes

Sense: Synset('bank.n.01")

Definition : sloping land (especially the slope beside a body
of water)

Observe that in context-1, “bank” is a financial institution, but in
context-2, “bank” is sloping land.

Recipe 4-9. Converting Speech to Text

Converting speech to text is a very useful NLP technique.

Problem

You want to convert speech to text.

Solution

The simplest way to do this by using Speech Recognition and PyAudio.

How It Works

Let’s follow the steps in this section to implement speech to text.
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Step 9-1 Understanding/defining business problem

Interaction with machines is trending toward the voice, which is the usual
way of human communication. Popular examples are Siri, Alexa’s Google
Voice, etc.

Step 9-2 Install and import necessary libraries

Here are the libraries:

I'pip install SpeechRecognition
Ipip install PyAudio

import speech _recognition as sr

Step 9-3 Run below code

Now after you run the below code snippet, whatever you say on the
microphone (using recognize_google function) gets converted into text.

r=sr.Recognizer()

with sr.Microphone() as source:
print("Please say something")
audio = r.listen(source)
print("Time over, thanks")

try:

print("I think you said: "+r.recognize google(audio));
except:

pass;

#output

Please say something

Time over, thanks

I think you said: I am learning natural language processing
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This code works with the default language “English.” If you speak in
any other language, for example Hindi, the text is interpreted in the form of
English, like as below:

#code snippet
r=sr.Recognizer()

with sr.Microphone() as source:
print("Please say something")
audio = r.listen(source)
print("Time over, thanks")

try:

print("I think you said: "+r.recognize google(audio));
except:

pass;

#output

Please say something

Time over, thanks

I think you said: aapka naam kya hai

If you want the text in the spoken language, please run the below code
snippet. Where we have made the minor change is in the recognize
google -language(‘hi-IN; which means Hindji).

#code snippet
r=sr.Recognizer()

with sr.Microphone() as source:
print("Please say something")
audio = r.listen(source)
print("Time over, thanks")

try:
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print("I think you said: "+r.recognize google(audio,
language ="hi-IN"));
except sr.UnknownValueError:
print("Google Speech Recognition could not understand audio")
except sr.RequestError as e:
print("Could not request results from Google Speech
Recognition service; {0}".format(e))
except:
pass;

Recipe 4-10. Converting Text to Speech

Converting text to speech is another useful NLP technique.

Problem

You want to convert text to speech.

Solution

The simplest way to do this by using the gTTs library.

How It Works

Let’s follow the steps in this section to implement text to speech.

Step 10-1 Install and import necessary libraries

Here are the libraries:
I'pip install gTTS

from gtts import gTTS
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Step 10-2 Run below code, gTTS function

Now after you run the below code snippet, whatever you input in the text
parameter gets converted into audio.

#chooses the language, English('en")
convert = gTTS(text="I like this NLP book', lang="en', slow=False)

# Saving the converted audio in a mp3 file named
myobj.save("audio.mp3")

#output
Please play the audio.mp3 file saved in your local machine to
hear the audio.

Recipe 4-11. Translating Speech

Language detection and translation.

Problem

Whenever you try to analyze data from blogs that are hosted across the
globe, especially websites from countries like China, where Chinese is
used predominantly, analyzing such data or performing NLP tasks on such
data would be difficult. That’s where language translation comes to the
rescue. You want to translate one language to another.

Solution

The easiest way to do this by using the goslate library.
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How It Works

Let’s follow the steps in this section to implement language translation in
Python.

Step 11-1 Install and import necessary libraries

Here are the libraries:

I'pip install goslate
import goslate

Step 11-2 Input text

A simple phrase:

text = "Bonjour le monde"

Step 11-3 Run goslate function
The translation function:

gs = goslate.CGoslate()
translatedText = gs.translate(text,'en")

print(translatedText)

#output
Hi world

Well, it feels accomplished, isn’t it? We have implemented so many
advanced NLP applications and techniques. That is not all folks; we
have a couple more interesting chapters ahead, where we will look at the
industrial applications around NLP, their solution approach, and end-to-
end implementation.
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CHAPTER 5

Implementing
Industry Applications

In this chapter, we are going to implement end-to-end solutions for a few
of the Industry applications around NLP.

Recipe 1. Consumer complaint classification
Recipe 2. Customer reviews sentiment prediction
Recipe 3. Data stitching using record linkage
Recipe 4. Text summarization for subject notes
Recipe 5. Document clustering

Recipe 6. Search engine and learning to rank

We believe that after 4 chapters, you are comfortable with the concepts
of natural language processing and ready to solve business problems. Here
we need to keep all 4 chapters in mind and think of approaches to solve
these problems at hand. It can be one concept or a series of concepts that
will be leveraged to build applications.

So, let’s go one by one and understand end-to-end implementation.
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Recipe 5-1. Implementing Multiclass
Classification

Let’s understand how to do multiclass classification for text data in Python
through solving Consumer complaint classifications for the finance
industry.

Problem

Each week the Consumer Financial Protection Bureau sends thousands
of consumers’ complaints about financial products and services to
companies for a response. Classify those consumer complaints into the
product category it belongs to using the description of the complaint.

Solution

The goal of the project is to classify the complaint into a specific product
category. Since it has multiple categories, it becomes a multiclass
classification that can be solved through many of the machine learning
algorithms.

Once the algorithm is in place, whenever there is a new complaint,
we can easily categorize it and can then be redirected to the concerned
person. This will save a lot of time because we are minimizing the human
intervention to decide whom this complaint should go to.

How It Works

Let’s explore the data and build classification problem using many
machine learning algorithms and see which one gives better results.
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Step 1-1 Getting the data from Kaggle

Go to the below link and download the data.

https://www.kaggle.com/subhassing/exploring-consumer-complaint-
data/data

Step 1-2 Import the libraries

Here are the libraries:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import string

from nltk.stem import SnowballStemmer

from nltk.corpus import stopwords

from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.model selection import train test split
import os

from textblob import TextBlob

from nltk.stem import PorterStemmer

from textblob import Word

from sklearn.feature extraction.text import CountVectorizer,
TfidfVectorizer

import sklearn.feature_extraction.text as text

from sklearn import model selection, preprocessing,
linear model, naive bayes, metrics, svm

from sklearn.naive bayes import MultinomialNB

from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC

from sklearn.model selection import cross val score
from io import StringIO

import seaborn as sns
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Step 1-3 Importing the data
Import the data that was downloaded in the last step:

Data = pd.read_csv("/Consumer Complaints.csv",encoding="'latin-1")

Step 1-4 Data understanding
Let’s analyze the columns:

Data.dtypes

date_received object
product object
sub_product object
issue object
sub_issue object
consumer_complaint_narrative object
company public_response object
company object
state object
zipcode object
tags object
consumer_consent_provided object
submitted via object
date_sent_to_company object
company_response_to_consumer object
timely response object
consumer_disputed? object
complaint_id int64

# Selecting required columns and rows
Data = Data[[ 'product', 'consumer complaint narrative']]
Data = Data[pd.notnull(Data['consumer complaint narrative'])]
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# See top 5 rows
Data.head()

product consumer_complaint narrative

190126 Debt collection XXXX has claimed I owe them {$27.00}
for XXXX ...

190135 Consumer Loan Due to inconsistencies in the amount
owed that...

190155 Mortgage In XX/XX/XXXX my wages that I earned at
my job...

190207 Mortgage I have an open and current mortgage
with Chase...

190208 Mortgage  XXXX was submitted XX/XX/XXXX. At the
time I s...

# Factorizing the category column
Data[ 'category id'] = Data[ 'product'].factorize()[0]
Data.head()

product consumer_complaint_narrative \
190126 Debt collection XXXX has claimed I owe them {$27.00}
for XXXX ...
190135 Consumer Loan Due to inconsistencies in the amount

owed that...

category id
190126 0
190135 1

# Check the distriution of complaints by category
Data.groupby('product').consumer complaint narrative.count()

product

Bank account or service 5711
Consumer Loan 3678
Credit card 7929
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Credit reporting 12526
Debt collection 17552
Money transfers 666
Mortgage 14919
Other financial service 110
Payday loan 726
Prepaid card 861
Student loan 2128

# Lets plot it and see

fig = plt.figure(figsize=(8,6))
Data.groupby('product').consumer_complaint narrative.count().
plot.bar(ylim=0)

plt.show()
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Debt collection and Mortgage have the highest number of complaints
registered.

Step 1-5 Splitting the data
Split the data into train and validation:

train_x, valid x, train_y, valid_y = model_selection.train_
test split(Data['consumer complaint narrative'], Data['product'])

Step 1-6 Feature engineering using TF-IDF

Create TF-IDF vectors as we discussed in Chapter 3. Here we consider
maximum features to be 5000.

encoder = preprocessing.LabelEncoder()
train_ y = encoder.fit transform(train_ y)
valid y = encoder.fit transform(valid y)

tfidf vect = TfidfVectorizer(analyzer='word",

token pattern=r'\w{1,}", max_features=5000)

tfidf vect.fit(Data['consumer complaint narrative'])
xtrain tfidf = tfidf vect.transform(train x)

xvalid tfidf = tfidf vect.transform(valid x)

Step 1-7 Model building and evaluation

Suppose we are building a linear classifier on word-level TF-IDF vectors.
We are using default hyper parameters for the classifier. Parameters can be
changed like C, max_iter, or solver to obtain better results.

model = linear model.lLogisticRegression().fit(xtrain tfidf, train_ y)

# Model summary
LogisticRegression(C=1.0, class weight=None, dual=False, fit_
intercept=True,
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intercept scaling=1, max_iter=100, multi class='ovr',
n_jobs=1,
penalty="12"', random_state=None, solver='liblinear’,
t01=0.0001,
verbose=0, warm start=False)
# Checking accuracy
accuracy = metrics.accuracy score(model.predict(xvalid tfidf),
valid y)
print ("Accuracy: ", accuracy)
Accuracy: 0.845048497186
# Classification report
print(metrics.classification report(valid y, model.
predict(xvalid tfidf),target names=Data[ 'product'].unique()))

precision recall fi-score  support

Debt collection 0.81 0.79 0.80 1414
Consumer Loan 0.81 0.56 0.66 942
Mortgage 0.80 0.82 0.81 1997

Credit card 0.85 0.85 0.85 3162

Credit reporting 0.82 0.90 0.86 4367
Student loan 0.77 0.48 0.59 151

Bank account or service 0.92 0.96 0.94 3717
Payday loan 0.00 0.00 0.00 26

Money transfers 0.76 0.23 0.35 172
Other financial service 0.77 0.57 0.65 209
Prepaid card 0.92 0.76 0.83 545

avg / total 0.84 0.85 0.84 16702

#confusion matrix
conf _mat = confusion matrix(valid y, model.predict(xvalid tfidf))
# Vizualizing confusion matrix
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category id df = Data[['product', 'category id']].drop duplicates()
.sort_values('category id")
category to id = dict(category id df.values)

id to category = dict(category id df[['category id',

"product’]].values)

fig, ax

sns.heatmap(conf mat, annot=True, fmt='d', cmap="BuPu",
xticklabels=category id df[['product']].values,
yticklabels=category id df[['product']].values)
plt.ylabel('Actual’)

plt.xlabel('Predicted")

plt.show()
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The accuracy of 85% is good for a baseline model. Precision and recall
look pretty good across the categories except for “Payday loan.” If you look
for Payload loan, most of the wrong predictions are Debt collection and
Credit card, which might be because of the smaller number of samples in
that category. It also sounds like it’s a subcategory of a credit card. We can
add these samples to any other group to make the model more stable. Let’s
see what prediction looks like for one example.

# Prediction example

texts = ["This company refuses to provide me verification and
validation of debt"+ "per my right under the FDCPA.
I do not believe this debt is mine."]

text features = tfidf vect.transform(texts)

predictions = model.predict(text features)

print(texts)

print(" - Predicted as: '{}'".format(id to_

category[predictions[0]]))

Result :
['This company refuses to provide me verification and
validation of debtper my right under the FDCPA. I do not
believe this debt is mine.']

- Predicted as: 'Credit reporting'

To increase the accuracy, we can do the following things:

o Reiterate the process with different algorithms like
Random Forest, SVM, GBM, Neural Networks, Naive
Bayes.

e Deep learning techniques like RNN and LSTM (will be
discussed in next chapter) can also be used.
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e Ineach of these algorithms, there are so many
parameters to be tuned to get better results. It can be
easily done through Grid search, which will basically
try out all possible combinations and give the best out.

Recipe 5-2. Implementing Sentiment
Analysis

In this recipe, we are going to implement, end to end, one of the popular
NLP industrial applications - Sentiment Analysis. It is very important
from a business standpoint to understand how customer feedback is on
the products/services they offer to improvise on the products/service for
customer satisfaction.

Problem

We want to implement sentiment analysis.

Solution

The simplest way to do this by using the TextBlob or vaderSentiment
library. Since we have used TextBlob previously, now let us use vader.

How It Works

Let’s follow the steps in this section to implement sentiment analysis on
the business problem.
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Step 2-1 Understanding/defining business problem

Understand how products are doing in the market. How are customers
reacting to a particular product? What is the consumer’s sentiment
across products? Many more questions like these can be answered using
sentiment analysis.

Step 2-2 Identifying potential data sources, collection,
and understanding

We have a dataset for Amazon food reviews. Let’s use that data and extract
insight out of it. You can download the data from the link below:

https://www.kaggle.com/snap/amazon-fine-food-reviews

# Import necessary libraries
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
Zmatplotlib inline

#Read the data
df = pd.read csv('Reviews.csv')

# Look at the top 5 rows of the data
df.head(5)

#output
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1 | Proguetia Useria Seors | Time Summary | Text
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# Understand the data types of the columns

df.info()

# Output

Data columns (total 10 columns):

Id 5 non-null int64

ProductId 5 non-null object
UserId 5 non-null object
ProfileName 5 non-null object
HelpfulnessNumerator 5 non-null int64
5 non-null int64
5 non-null int64
5 non-null int64
Summary 5 non-null object
Text 5 non-null object
dtypes: int64(5), object(5)
# Looking at the summary of the reviews.
df.Summary.head(5)

HelpfulnessDenominator
Score
Time

# Output
0 Good Quality Dog Food
1 Not as Advertised
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2 "Delight" says it all
3 Cough Medicine
4 Great taffy

# Looking at the description of the reviews
df.Text.head(5)

#output

0 I have bought several of the Vitality canned d...
1 Product arrived labeled as Jumbo Salted Peanut...
2 This is a confection that has been around a fe...
3 If you are looking for the secret ingredient i...
4 Great taffy at a great price. There was a wid...

Step 2-3 Text preprocessing

We all know the importance of this step. Let us perform a preprocessing
task as discussed in Chapter 2.

# Import libraries

from nltk.corpus import stopwords
from textblob import TextBlob
from textblob import Word

# Lower casing and removing punctuations

df['Text'] = df['Text'].apply(lambda x: " ".join(x.lower() for
x in x.split()))

df['Text'] = df['Text'].str.replace('[*\w\s]',")
df.Text.head(5)

# Output

0 i have bought several of the vitality canned d...
1 product arrived labeled as jumbo salted peanut...
2 this is a confection that has been around a fe...
3 if you are looking for the secret ingredient i...
4 great taffy at a great price there was a wide ...
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# Removal of stop words

stop = stopwords.words('english")

df['Text'] = df['Text'].apply(lambda x: " ".join(x for x in

x.split() if x not in stop))
df.Text.head(5)
# Output

0

1
2
3
4

bought several vitality canned dog food produc...
product arrived labeled jumbo salted peanutsth...
confection around centuries light pillowy citr...
looking secret ingredient robitussin believe f...
great taffy great price wide assortment yummy ...

# Spelling correction

df['Text'] = df['Text'].apply(lambda x: str(TextBlob(x).

correct()))
df.Text.head(5)
# Output

0

1
2
3
4

bought several vitality canned dog food produc...
product arrived labelled lumbo halted peanutst...
connection around centuries light pillow citie...
looking secret ingredient robitussin believe f...
great staff great price wide assortment mummy ...

# Lemmatization
df['Text'] = df['Text'].apply(lambda x: " ".join([Word(word).
lemmatize() for word in x.split()]))
df.Text.head(5)

# Output

0

1
2
3
4

bought several vitality canned dog food produc...
product arrived labelled lumbo halted peanutst...
connection around century light pillow city ge...
looking secret ingredient robitussin believe f...
great staff great price wide assortment mummy ...
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Step 2-4 Exploratory data analysis

This step is not connected anywhere in predicting sentiments; what we are
trying to do here is to dig deeper into the data and understand it.

# Create a new data frame "reviews" to perform exploratory data
analysis upon that

reviews = df

# Dropping null values

reviews.dropna(inplace=True)

# The histogram reveals this dataset is highly unbalanced
towards high rating.
reviews.Score.hist(bins=5,grid=False)

plt.show()

print(reviews.groupby('Score').count().Id)
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# To make it balanced data, we sampled each score by the lowest
n-count from above. (i.e. 29743 reviews scored as '2")

score 1 = reviews[reviews['Score'] == 1].sample(n=29743)
score 2 = reviews[reviews['Score'] == 2].sample(n=29743)
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score 3 = reviews[reviews['Score'] == 3].sample(n=29743)

]
score 4 = reviews[reviews['Score'] == 4].sample(n=29743)
5]

score 5 = reviews[reviews['Score'] == 5].sample(n=29743)

# Here we recreate a 'balanced' dataset.

reviews_sample = pd.concat([score 1,score 2,score 3,score 4,
score 5],axis=0)

reviews_sample.reset_index(drop=True,inplace=True)

You can use this dataset if you are training your own sentiment
classifier from scratch. And to do this. you can follow the same steps as in
text classification (Recipe 5-1). Here our target variable would be positive,
negative, and neutral created using score.

o Score <= 2: Negative
e Score = 3: Neutral
e Score > =4: Positive

Having said that, let’s get back to our exploratory data analysis.

# Printing count by 'Score' to check dataset is now balanced.
print(reviews sample.groupby('Score').count().Id)

# Output
Score

1 29743
2 29743
3 29743
4 29743
5 29743

# Let's build a word cloud looking at the 'Summary' text
from wordcloud import WordCloud
from wordcloud import STOPWORDS
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# Wordcloud function's input needs to be a single string of text.
# Here I'm concatenating all Summaries into a single string.

# similarly you can build for Text column

reviews str = reviews sample.Summary.str.cat()

wordcloud = WordCloud(background color="white").
generate(reviews str)

plt.figure(figsize=(10,10))
plt.imshow(wordcloud,interpolation="bilinear")

plt.axis("off")

plt.show()
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# Now let's split the data into Negative (Score is 1 or 2) and

Positive (4 or #5) Reviews.

negative reviews = reviews sample[reviews sample['Score'].
isin([1,2]) ]

positive reviews = reviews sample[reviews sample['Score'].
isin([4,5]) ]

# Transform to single string

negative reviews str = negative reviews.Summary.str.cat()

positive reviews str = positive reviews.Summary.str.cat()

# Create wordclouds
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wordcloud negative = WordCloud(background color='white').generate
(negative reviews str)

wordcloud positive = WordCloud(background color='white').generate
(positive reviews str)

# Plot

fig = plt.figure(figsize=(10,10))

ax1 = fig.add subplot(211)

ax1.imshow(wordcloud negative,interpolation="bilinear")

axl.axis("off")

axl.set title('Reviews with Negative Scores',fontsize=20)

Reviews with Negative Scores
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ax2 = fig.add subplot(212)
ax2.imshow(wordcloud positive,interpolation="bilinear")
ax2.axis("off")

ax2.set_title('Reviews with Positive Scores',fontsize=20)
plt.show()
#output
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Reviews with Positive Scores
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Step 2-5 Feature engineering

This step is not required as we are not building the model from scratch;
rather we are using the pretrained model from the library vaderSentiment.

If you want to build the model from scratch, you can leverage the
above positive and negative classes created while exploring as a target
variable and then training the model. You can follow the same steps as text
classification explained in Recipe 5-1 to build a sentiment classifier from
scratch.

Step 2-6 Sentiment scores

Sentiment Analysis: Pretrained model takes the input from the text
description and outputs the sentiment score ranging from -1 to +1 for each
sentence.

#Importing required libraries
import pandas as pd
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import numpy as np

import matplotlib.pyplot as plt

Zmatplotlib inline
import seaborn as sns
import re

import os

import sys

import ast

plt.style.use('fivethirtyeight")

CHAPTER 5

# Function for getting the sentiment

cp = sns.color palette()

from vaderSentiment.vaderSentiment import

SentimentIntensityAnalyzer

analyzer = SentimentIntensityAnalyzer()

# Generating sentiment for all the sentence present in the

dataset
emptyline=[]
for row in df['Text']:

vs=analyzer.polarity scores(row)

emptyline.append(vs)

# Creating new dataframe with sentiments

df sentiments=pd.DataFrame(emptyline)

df_sentiments.head(5)

# Output

compound neg
0 0.9413 0.000
1 -0.5719 0.258
2 0.8031 0.133
3 0.4404 0.000
4 0.9186 0.000

neu
0.503
0.644
0.599
0.854
0.455

pos
0.497
0.099
0.268
0.146
0.545

IMPLEMENTING INDUSTRY APPLICATIONS
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# Merging the sentiments back to reviews dataframe

df ¢ = pd.concat([df.reset index(drop=True), d], axis=1)
df c.head(3)

#output sample

Help Score | Time Y | Text P d neg |neu |pos
bought

several
vitality
canned
dog food
product
arrived
Not as labelled
VESNK  [dll pa a o 1 1346876000 Advertised | lumbo -0.5719 0.258 [ 0.644 | 0.099
halted
peanutst...

Good
JHUBGW | deimartian |1 1 5 1303862400 | Quality
Dog Food

0.8413 0.000 [ 0.503 | 0.487

connection
around
century 0.8031 0.133 | 0.599 | 0.268
light pillow
city ge...

Natalia

Corres “Delight*
1
OCAIN Natalia 1 4 1218017600 it all

# Convert scores into positive and negetive sentiments using

some threshold

df c['Sentiment'] = np.where(df c['compound'] >= 0 , 'Positive’,
"Negative')

df c.head(5)

#output sample

Score | Time Text neg |meu |pos |Sentiment
bought
several
vitality
canned
dog food
proguc...

elmartian (1 1 5 1303862400 | Quality 0.8413 0.000 | 0.503 | 0.497 | Positive

Dog Food

product
arrived
Mot as labelled N
I pa [i] 0 1 1346376000 . ised | lumbo -0.5719 0.258 | 0.644 | 0.099 | Negative

halted

. connection
atalia
:;:ia 1218017600 s::!?tn;l century 0.8031 0.133 | 0.589 | 0.268 | Positive

light pillow

orres” 5
city ge...

=
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Step 2-7 Business insights
Let’s see how the overall sentiment is using the sentiment we generated.

result=df c['Sentiment'].value counts()
result.plot(kind="bar', rot=0,color="br");

1000
800
600
400

200

Positive Negative

We just took a sample of 1000 reviews and completed sentiment
analysis. If you look, more than 900 (>90%) reviews are positive, which is
really good for any business.

We can also group by-products, that is, sentiments by-products to
understand the high-level customer feedback against products.

#Sample code snippet

result=df c.groupby('ProductId')['Sentiment'].value counts().
unstack()

result[[ 'Negative', 'Positive']].plot(kind="bar",
rot=0,color="rb")

Similarly, we can analyze sentiments by month using the time column
and many other such attributes.
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Recipe 5-3. Applying Text Similarity
Functions

This recipe covers data stitching using text similarity.

Problem

We will have multiple tables in the database, and sometimes there won't
be a common “ID” or “KEY” to join them - scenarios like the following:

o Customer information scattered across multiple tables
and systems.

o No global key to link them all together.

e Alotof variations in names and addresses.

Solution

This can be solved by applying text similarity functions on the
demographic’s columns like the first name, last name, address, etc. And
based on the similarity score on a few common columns, we can decide
either the record pair is a match or not a match.

How It Works

Let’s follow the steps in this section to link the records.
Technical challenge:

e Huge records that need to be linked/stitched/
deduplicated.

o Records come from various systems with differing
schemas.
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There is no global key or customer id to merge. There are two possible
scenarios of data stitching or linking records:

e  Multiple records of the same customer at the same
table, and you want to dedupe.

e Records of same customers from multiple tables need
to be merged.

For Recipe 3-A, let’s solve scenario 1 that is deduplication and as a part
of Recipe 3-B, let’s solve scenario 2 that is record linkage from multiple tables.
Deduplication in the same table
Step 3A-1 Read and understand the data
We need the data first:

# Import package
I'pip install recordlinkage
import recordlinkage

#For this demo let us use the inbuilt dataset from
recordlinkage library

#import data set

from recordlinkage.datasets import load febrli

#create a dataframe - dfa
dfA = load febrli()
dfA.head()

#output
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given_name | surname | street_number | address_1 address_2 | suburb postcode | state | date_of_birth | soc_sec_id
rec_id
rec-223-org | MNaM waller -] tullarcop street | willaroo stjames (4011 wa 19081209 GI88048
rec-122-org | lachlan berry 89 giblin street kilarney | bittern 4814 qld | 19990219 7364009
rec-373-org | deakin sondergeld | 48 goldfinch circuit | kooltuo canterbury | 2776 vic | 19600210 2535962
rec-10-dup-0 | kayla harrington | NaM maltby circuit | coaling coolarco | 3465 nsw | 19150612 9004242
rec-227-org |luke purdon 23 ramsay place | mirani garbutt 2260 vic | 19831024 8099333
Step 3A-2 Blocking

Here we reduce the comparison window and create record pairs.
Why?

Suppose there are huge records say, 100M records

means (100M choose 2) ~ 10716 possible pairs

Need heuristic to quickly cut that 10216 down without

losing many matches

This can be accomplished by extracting a “blocking key” How?

Example:

Record: first name: John, last name: Roberts, address:
20 Main St Plainville MA 01111

Blocking key: first name - John

Will be paired with: John Ray ... 011

Won'’t be paired with: Frank Sinatra ... 07030

Generate pairs only for records in the same block

Below is the blocking example at a glance: here blocking is done on the

“Sndx-SN,” column which is nothing but the Soundex value of the surname

column as discussed in the previous chapter.
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Datab A — Blocking information Database B — Blocking information
RecID[Surname [Sndx-SN [Postcode [F3D-PC ReclD [Surname [Sndx-SN [Postcode [F3D-PC
al smith 5530 2602 260 bl meier m600 2000 200

a2 neighan [n250 2604 260 b2 meier |m600 2604 260

a3 meier m600 2050 205 b3 smith s530 2619 261

ad smithers [s536 2012 201 b4 nguyen |n250 2002 200

asS nguyen [n250 2022 202 b5 tawkner [f256 2037 203

a6 faulkner [f425 2037 203 b6 santi s530 2113 211

a’ sandy 5530 2713 271 b7 cain c500 2020 202

Candidate record pairs generated from Surname blocking

BKVs|Candidate record pairs | (al, b2)
m600 [(a3, b1), (a3, b2) (al, b3)
n250 |(a2, b4), (a5, b4) g:; t;g
s530 |(al, b3), (al, b6), (a7, b3), (a7, b6) (a2‘ b4)
(a3, bl)
(a3, b2)
Candidat . . (a5, b4)
record pairs generated from Postcode blocking (a5. b7)
BKVs|Candidate record pairs | (aﬁ. bS)
202 (a5, b7) (a7, b3)
203 (a6, b5) (a7, b6)
260 |(al, b2), (a2, b2)

There are many advanced blocking techniques, also, like the following:
o Standard blocking
o Single column
e Multiple columns
e Sorted neighborhood
e Q-gram: fuzzy blocking
e LSH
e Canopy clustering

This can be a new topic altogether, but for now, let’s build the pairs
using the first name as the blocking index.

indexer = recordlinkage.BlockIndex(on="given name")
pairs = indexer.index(dfA)

print (len(pairs))

#output

2082
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Step 3A-3 Similarity matching and scoring

Here we compute the similarity scores on the columns like given name,
surname, and address between the record pairs generated in the previous
step. For columns like date of birth, suburb, and state, we are using the
exact match as it is important for this column to possess exact records.

We are using jarowinkler, but you can use any of the other similarity
measures discussed in Chapter 4.

# This cell can take some time to compute.
compare_cl = recordlinkage.Compare()

compare cl.string('given name', 'given name',method="jarowinkler',
label="given_name")

compare_cl.string('surname’, 'surname’, method='jarowinkler’,
label="surname")

compare_cl.exact('date of birth', 'date of birth', label="date_
of birth")

compare_cl.exact('suburb', 'suburb', label='suburb')
compare_cl.exact('state', 'state', label='state')
compare_cl.string('address 1', 'address 1',method="jarowinkler',
label="address 1")

features = compare cl.compute(pairs, dfA)

features.sample(5)
#output
given_name | surname | date_of_birth | suburb | state | address_1

rec_id rec_id
rec-115-dup-0 | rec-120-dup-0 (1.0 0.458333 |0 0 0 0.548693
rec-245-dup-0 | rec-331-org 1.0 0.000000 |0 0 0 0.567617
rec-455-dup-0 | rec-95-dup-0 (1.0 0.561905 |0 0 0 0.438095
rec-462-dup-0 | rec-462-org 1.0 0.961905 |1 0 1 1.000000
rec-132-org rec-30-dup-0 (1.0 0.455556 |0 0 0 0.571429
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So here record “rec-115-dup-0” is compared with “rec-120-dup-0.”
Since their first name (blocking column) is matching, similarity scores are
calculated on the common columns for these pairs.

Step 3A-4 Predicting records match or do not match using
ECM - classifier

Here is an unsupervised learning method to calculate the probability that
the records match.

# select all the features except for given name since its our
blocking key

featuresl = features[['suburb','state’, 'surname’, 'date of
birth','address 1']]

# Unsupervised learning - probabilistic

ecm = recordlinkage.ECMClassifier()

result ecm = ecm.learn((features1).astype(int),return type =
"series')

result ecm

#output

rec_id rec_id

rec-122-org rec-183-dup-0 0

rec-248-org 0

rec-469-org 0

rec-74-org 0

rec-183-org 0

rec-360-dup-0 0

rec-248-dup-0 0

rec-469-dup-0 0

rec-183-dup-0 rec-248-org O

rec-469-org 0
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Trec-74-org O

rec-183-org 1
rec-360-dup-0 0
rec-248-dup-0 0
rec-469-dup-0 0
rec-248-org rec-469-org 0
rec-74-org O
rec-360-dup-0 0
rec-469-dup-0 0
rec-122-dup-0 rec-122-org 1
rec-183-dup-0 0
rec-248-org 0
rec-469-org 0

rec-74-org O

rec-183-org 0
rec-360-dup-0 0
rec-248-dup-0 0
rec-469-dup-0 0
rec-469-org rec-74-org 0
rec-183-org rec-248-org 0

rec-208-dup-0 rec-208-org 1
rec-363-dup-0 rec-363-org 1
rec-265-dup-0 rec-265-org 1
rec-315-dup-0 rec-315-org 1
rec-410-dup-0 rec-410-org 1
rec-290-org rec-93-org O
rec-460-dup-0 rec-460-org
rec-499-dup-0 rec-499-org
rec-11-dup-0 rec-11-org 1
rec-97-dup-0 rec-97-org 1

[N
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rec-213-dup-0
rec-349-dup-0
rec-371-dup-0
rec-129-dup-0
rec-462-dup-0
rec-328-dup-0
rec-308-dup-0

rec-421-dup-
rec-376-dup-

rec-371-org
rec-129-org
rec-462-org
rec-328-org
rec-308-org

rec-272-org rec-308-dup-0

rec-308-org O

rec-5-dup-0 rec-5-org 1

rec-407-dup-0
rec-367-dup-0
rec-103-dup-0
rec-195-dup-0
rec-184-dup-0
rec-252-dup-0

rec-407-org
rec-367-org
rec-103-org
rec-195-org
rec-184-org
rec-252-0rg

rec-48-dup-0 rec-48-org 1

rec-298-dup-0
rec-282-dup-0

rec-298-org

CHAPTER 5

00
00
1

1
1
1
1
0
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rec-282-org 1
rec-327-org rec-411-org 0

IMPLEMENTING INDUSTRY APPLICATIONS

The output clearly shows that “rec-183-dup-0” matches “rec-183-

org” and can be linked to one global_id. What we have done so far is

deduplication: identifying multiple records of the same users from the

individual table.

Records of same customers from multiple tables

Next, let us look at how we can solve this problem if records are in multiple

tables without unique ids to merge with.

159



CHAPTER 5

IMPLEMENTING INDUSTRY APPLICATIONS

Step 3B-1 Read and understand the data

Let us use the built-in dataset from the recordlinkage library:

from recordlinkage.datasets import load febrls
dfA, dfB = load febrl4()
dfA.head()

#output
given_name | surname | street_number | address_1 address_2 suburb postcode | state | date_of_birth | soc_sec_id

rec_id

:10’4"0- michaela neumnann |8 stanley streat miami winston hills 4223 nsw 19151111 5304218

rec-1018- . . - . .

org courtney painter |12 pinkerton circuit | bega flats richlands 4580 vic 19161214 40B6625

rec-4405- salkauskas

4
oy charles green 38 e kela dapto 4568 nsw | 19480930 365188
1288- roadbri

rees vanessa  |pam  |905 macaquoid place | 9 |southgraton (2135 |sa  |19e51118  |gesioe

org manor

rees mikayla malloney | 37 randwick rcad avalind ho 4552 vic | 19860208 7207688

org crossing
dfB.head()
#output

given_name |sumame | street_number | address_1 address_2 | suburb postcode | state | date_of_birth | soc_sec_id
rec_id
rec-561- . . .
dup-0 elton MNaN 3 light setreat pinehill windermens a2 wic 19651013 1551941
rec-2642- .
dup-0 miitchell maxon 47 edking streat lochaoair north ryde 3355 nsw | 19390212 8859990
dup-0 NaMN white T2 lambrigg street | kelgoola waters f 3159 vic 19620218 9731855
m'o : elki menzies |1 lyster place NaN northwood 2585 vie 19380624 4570481
rec-2886- may maxwell springettst
hi i 101 1

dup-0 MaN garanggar | NaN ot a forest hill 2342 vic (19821018 366884
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Step 3B-2 Blocking - to reduce the comparison window
and creating record pairs

This is the same as explained previously, considering the given_name as a
blocking index:

indexer = recordlinkage.BlockIndex(on="given_name")
pairs = indexer.index(dfA, dfB)

Step 3B-3 Similarity matching
The explanation remains the same.

compare_cl = recordlinkage.Compare()

compare cl.string('given name', 'given name',method="jarowinkler',
label="given_name")

compare_cl.string('surname', 'surname', method='jarowinkler’,
label="surname")

compare_cl.exact('date of birth', 'date of birth', label="date_
of_birth")

compare_cl.exact('suburb', 'suburb', label="suburb')

compare cl.exact('state', 'state', label='state')
compare_cl.string('address 1', 'address 1',method="jarowinkler',
label="address 1')

features = compare cl.compute(pairs, dfA, dfB)
features.head(10)

#output
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given_name | surname | date_of_birth | suburb | state [address_1

rec_id rec_id
rec-3024-dup-0| 1.0 0.436508 |0 0 1 0.000000
rec-2371-dup-0 (1.0 0.490079 |0 0 0 0.715873
rec-1070-org | rec-4652-dup-0| 1.0 0.480079 |0 0 0 0.645604
rec-4795-dup-0 1.0 0.000000 |0 0 1 0.552381
rec-1314-dup-0 1.0 0.000000 |0 0 1 0.618254
rec-3024-dup-0| 1.0 0.527778 |0 0 0 0.000000
rec-2371-dup-0|1.0 1.000000 |1 1 1 1.000000
rec-2371-org | rec-4652-dup-0 | 1.0 0.500000 |0 0 1 0.635684
rec-4795-dup-0| 1.0 0.527778 |0 0 0 0411111
rec-1314-dup-0| 1.0 0.527778 |0 0 0 0.672222

So here record “rec-1070-org” is compared with “rec-3024-dup-0,’
“rec-2371-dup-0,” “rec-4652-dup-0,” “rec-4795-dup-0,” and “rec-1314-
dup-0, since their first name (blocking column) is matching and similarity
scores are calculated on the common columns for these pairs.

Step 3B-4 Predicting records match or do not match using
ECM - classifier

Here is an unsupervised learning method to calculate the probability that
the record is a match.

# select all the features except for given name since its our
blocking key

features1l = features[['suburb','state’, 'surname’,'date of birth',
'address 1']]

# unsupervised learning - probablistic

ecm = recordlinkage.ECMClassifier()

result _ecm = ecm.learn((features1).astype(int),return_type =
"series')
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result_ecm

#output sample

rec_id rec_id

rec-1070-org rec-3024-dup-0
rec-2371-dup-0
rec-4652-dup-0
rec-4795-dup-0
rec-1314-dup-0

rec-2371-org rec-3024-dup-0
rec-2371-dup-0
rec-4652-dup-0
rec-4795-dup-0
rec-1314-dup-0

rec-3582-org rec-3024-dup-0
rec-2371-dup-0
rec-4652-dup-0
rec-4795-dup-0
rec-1314-dup-0

rec-3024-org rec-3024-dup-0
rec-2371-dup-0
rec-4652-dup-0
rec-4795-dup-0
rec-1314-dup-0

rec-4652-org rec-3024-dup-0
rec-2371-dup-0
rec-4652-dup-0
rec-4795-dup-0
rec-1314-dup-0

rec-4795-0org rec-3024-dup-0
rec-2371-dup-0
rec-4652-dup-0
rec-4795-dup-0

P O O O O O »r OO O 0O O O Fr OO0 O 0O O O OO0 »r O o O o o o
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rec-2820-org

rec-1984-org
rec-1662-org
Trec-4415-or1g
rec-1920-o0rg
rec-303-org

rec-1915-org
rec-4739-org

rec-681-org
rec-4603-org

rec-3122-org

rec-3711-org
rec-4912-org
rec-664-org

rec-4031-org
rec-1413-or1g
rec-735-o0rg

rec-1361-org
rec-3090-org
rec-2571-org
rec-4528-org
rec-4887-org
rec-4350-org
rec-4569-org
rec-3125-org
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rec-1314-dup-0

rec-2820-dup-0
rec-991-dup-0

rec-1984-dup-0
rec-1984-dup-0
rec-1984-dup-0
rec-1920-dup-0
rec-303-dup-0

rec-1915-dup-0
rec-4739-dup-0
rec-4865-dup-0
rec-4276-dup-0
rec-4848-dup-0
rec-4603-dup-0
rec-4848-dup-0
rec-4603-dup-0
rec-3711-dup-0
rec-4912-dup-0
rec-664-dup-0

rec-1311-dup-0
rec-4031-dup-0
rec-1413-dup-0
rec-735-dup-0

rec-1361-dup-0
rec-3090-dup-0
rec-2571-dup-0
rec-4528-dup-0
rec-4887-dup-0
rec-4350-dup-0
rec-4569-dup-0
rec-3125-dup-0

P PP P PR P, R, P, R P P OPRP PP OORPR OOORRLRERELRRLROOTLRPROLPR -
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The output clearly shows that “rec-122-dup-0” matches “rec-122-org”
and can be linked to one global_id.

In this way, you can create a data lake consisting of a unique global id and
consistent data across tables and also perform any kind of statistical analysis.

Recipe 5-4. Summarizing Text Data

If you just look around, there are lots of articles and books available. Let’s
assume you want to learn a concept in NLP and if you Google it, you will
find an article. You like the content of the article, but it’s too long to read
it one more time. You want to basically summarize the article and save it
somewhere so that you can read it later.

Well, NLP has a solution for that. Text summarization will help us do
that. You don’t have to read the full article or book every time.

Problem

Text summarization of article/document using different algorithms in
Python.

Solution

Text summarization is the process of making large documents into smaller
ones without losing the context, which eventually saves readers time. This
can be done using different techniques like the following:

o TextRank: A graph-based ranking algorithm

o Feature-based text summarization

o LexRank: TF-IDF with a graph-based algorithm
o Topic based

o Using sentence embeddings

e Encoder-Decoder Model: Deep learning techniques
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How It Works

We will explore the first 2 approaches in this recipe and see how it works.

Method 4-1 TextRank

TextRank is the graph-based ranking algorithm for NLP. It is basically
inspired by PageRank, which is used in the Google search engine but
particularly designed for text. It will extract the topics, create nodes out of
them, and capture the relation between nodes to summarize the text.

Let’s see how to do it using the Python package Gensim. “Summarize”
is the function used.

Before that, let’s import the notes. Let’s say your article is Wikipedia for
the topic of Natural language processing.

# Import BeautifulSoup and urllib libraries to fetch data from
Wikipedia.

from bs4 import BeautifulSoup

from urllib.request import urlopen

# Function to get data from Wikipedia
def get only text(url):

page = urlopen(url)
soup = BeautifulSoup(page)
text = ' '.join(map(lambda p: p.text, soup.find all('p")))

print (text)
return soup.title.text, text

# Mention the Wikipedia url
url="https://en.wikipedia.org/wiki/Natural_language_ processing"
# Call the function created above

text = get only text(url)

# Count the number of letters
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len(".join(text))

Result:

Out[74]: 8519

# Lets see first 1000 letters from the text
text[:1000]

Result :

Out[72]: "(\'Natural language processing - Wikipedia\',
\'Natural language processing (NLP) is an area of computer
science and artificial intelligence concerned with the
interactions between computers and human (natural) languages,
in particular how to program computers to process and analyze
large amounts of natural language\\xaOdata.\\n Challenges

in natural language processing frequently involve speech
recognition, natural language understanding, and natural
language generation.\\n The history of natural language
processing generally started in the 1950s, although work can be
found from earlier periods.\\nIn 1950, Alan Turing published
an article titled "Intelligence" which proposed what is now
called the Turing test as a criterion of intelligence.\\n

The Georgetown experiment in 1954 involved fully automatic
translation of more than sixty Russian sentences into English.
The authors claimed that within three or five years, machine
translation would be a solved problem.[2] However, real
progress was '

# Import summarize from gensim

from gensim.summarization.summarizer import summarize
from gensim.summarization import keywords

# Convert text to string format

text = str(text)
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#Summarize the text with ratio 0.1 (10% of the total words.)
summarize(text, ratio=0.1)

Result:

Out[77]: 'However, part-of-speech tagging introduced the use
of hidden Markov models to natural language processing, and
increasingly, research has focused on statistical models,
which make soft, probabilistic decisions based on attaching
real-valued weights to the features making up the input data.
\nSuch models are generally more robust when given unfamiliar
input, especially input that contains errors (as is very
common for real-world data), and produce more reliable results
when integrated into a larger system comprising multiple
subtasks.\\n Many of the notable early successes occurred in
the field of machine translation, due especially to work at
IBM Research, where successively more complicated statistical
models were developed.'

That’s it. The generated summary is as simple as that. If you read this
summary and whole article, it's close enough. But still, there is a lot of
room for improvement.

#tkeywords
print(keywords(text, ratio=0.1))

Result:
learning
learn
languages
process
systems
worlds
world
real
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natural language processing
research
researched
results
result
data
statistical
hand
generation
generally
generic
general
generated
tasks

task

large
human
intelligence
input
called
calling
calls
produced
produce
produces
producing
possibly
possible
corpora
base

based
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Method 4-2 Feature-based text summarization

Your feature-based text summarization methods will extract a feature from
the sentence and check the importance to rank it. Position, length, term
frequency, named entity, and many other features are used to calculate the
score.

Luhn’s Algorithm is one of the feature-based algorithms, and we will
see how to implement it using the sumy library.

# Install sumy

I'pip install sumy

# Import the packages

from sumy.parsers.html import HtmlParser

from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer

from sumy.summarizers.lsa import LsaSummarizer
from sumy.nlp.stemmers import Stemmer

from sumy.utils import get stop words

from sumy.summarizers.luhn import LuhnSummarizer

# Extracting and summarizing
LANGUAGE = "english"
SENTENCES_COUNT = 10

url="https://en.wikipedia.org/wiki/Natural_language_ processing"
parser = HtmlParser.from url(url, Tokenizer(LANGUAGE))
summarizer = LsaSummarizer()

LsaSummarizer (Stemmer (LANGUAGE))
summarizer.stop words = get stop words(LANGUAGE)

summarizer
for sentence in summarizer(parser.document, SENTENCES COUNT):

print(sentence)
Result :
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[2] However, real progress was much slower, and after the

ALPAC report in 1966, which found that ten-year-long research
had failed to fulfill the expectations, funding for machine
translation was dramatically reduced.

However, there is an enormous amount of non-annotated data
available (including, among other things, the entire content of
the World Wide Web ), which can often make up for the inferior
results if the algorithm used has a low enough time complexity
to be practical, which some such as Chinese Whispers do.

Since the so-called "statistical revolution"

in the late 1980s and mid 1990s, much natural language
processing research has relied heavily on machine learning .
Increasingly, however, research has focused on statistical
models , which make soft, probabilistic decisions based on
attaching real-valued weights to each input feature.

Natural language understanding Convert chunks of text into more
formal representations such as first-order logic structures
that are easier for computer programs to manipulate.

[18] ~ Implementing an online help desk system based on
conversational agent Authors: Alisa Kongthon, Chatchawal
Sangkeettrakarn, Sarawoot Kongyoung and Choochart
Haruechaiyasak.

[ self-published source ] * Chomskyan linguistics encourages
the investigation of " corner cases " that stress the limits of
its theoretical models (comparable to pathological phenomena

in mathematics), typically created using thought experiments ,
rather than the systematic investigation of typical phenomena
that occur in real-world data, as is the case in corpus
linguistics .
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* Antonio Di Marco - Roberto Navigili, "Clustering and
Diversifying Web Search Results with Graph Based Word Sense
Induction" , 2013 Goldberg, Yoav (2016).

Scripts, plans, goals, and understanding: An inquiry into human
knowledge structures " Kishorjit, N., Vidya Raj RK., Nirmal Y.,
and Sivaji B.

~ PASCAL Recognizing Textual Entailment Challenge (RTE-7)
https://tac.nist.gov//2011/RTE/ *~ Yi, Chucai; Tian, Yingli
(2012), "Assistive Text Reading from Complex Background for
Blind Persons" , Camera-Based Document Analysis and Recognition
, Springer Berlin Heidelberg, pp.

Problem solved. Now you don’t have to read the whole notes; just read
the summary whenever we are running low on time.

We can use many of the deep learning techniques to get better
accuracy and better results like the Encoder-Decoder Model. We will see
how to do that in the next chapter.

Recipe 5-5. Clustering Documents

Document clustering, also called text clustering, is a cluster analysis
on textual documents. One of the typical usages would be document
management.

Problem

Clustering or grouping the documents based on the patterns and
similarities.
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Solution

Document clustering yet again includes similar steps, so let’s have a look at
them:

1. Tokenization

2. Stemming and lemmatization

3. Removing stop words and punctuation
4. Computing term frequencies or TF-IDF

5. Clustering: K-means/Hierarchical; we can then use
any of the clustering algorithms to cluster different
documents based on the features we have generated

6. Evaluation and visualization: Finally, the clustering
results can be visualized by plotting the clusters into
a two-dimensional space

How It Works
Step 5-1 Import data and libraries

Here are the libraries, then the data:

I'pip install mpld3

import numpy as np

import pandas as pd

import nltk

from nltk.stem.snowball import SnowballStemmer
from bs4 import BeautifulSoup

import re

import os

import codecs
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from sklearn import feature_extraction

import mpld3

from sklearn.metrics.pairwise import cosine similarity
import os

import matplotlib.pyplot as plt

import matplotlib as mpl

from sklearn.manifold import MDS

#fiLets use the same complaint dataset we use for classification
Data = pd.read csv("/Consumer_Complaints.
csv",encoding="1atin-1")

#selecting required columns and rows

Data = Data[['consumer complaint narrative']]

Data = Data[pd.notnull(Data['consumer complaint narrative'])]

# lets do the clustering for just 200 documents. Its easier to
interpret.
Data_sample=Data.sample(200)

Step 5-2 Preprocessing and TF-IDF feature engineering

Now we preprocess it:

# Remove unwanted symbol
Data_sample[ 'consumer complaint narrative'] = Data_
sample[ 'consumer complaint narrative'].str.replace('XXXX',"
# Convert dataframe to list
complaints = Data_sample['consumer complaint narrative'].tolist()
# create the rank of documents - we will use it later
ranks = []
for i in range(1, len(complaints)+1):

ranks.append(i)
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# Stop Words

stopwords = nltk.corpus.stopwords.words('english")
# Load 'stemmer'

stemmer = SnowballStemmer("english")

# Functions for sentence tokenizer, to remove numeric tokens
and raw #punctuation
def tokenize and stem(text):
tokens = [word for sent in nltk.sent tokenize(text) for
word in nltk.word tokenize(sent)]
filtered tokens = []
for token in tokens:
if re.search('[a-zA-Z]', token):
filtered tokens.append(token)
stems = [stemmer.stem(t) for t in filtered tokens]
return stems
def tokenize only(text):
tokens = [word.lower() for sent in nltk.sent tokenize(text)
for word in nltk.word tokenize(sent)]
filtered tokens = []
for token in tokens:
if re.search('[a-zA-Z]', token):
filtered tokens.append(token)
return filtered tokens
from sklearn.feature extraction.text import TfidfVectorizer
# tfidf vectorizer
tfidf vectorizer = TfidfVectorizer(max df=0.8, max_features=200000,
min _df=0.2, stop words='english',
use_idf=True, tokenizer=tokenize
and_stem, ngram range=(1,3))
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#fit the vectorizer to data

tfidf matrix = tfidf vectorizer.fit transform(complaints)
terms = tfidf vectorizer.get feature names()

print(tfidf matrix.shape)

(200, 30)

Step 5-3 Clustering using K-means

Let’s start the clustering:

#Import Kmeans
from sklearn.cluster import KMeans

# Define number of clusters
num_clusters = 6

#Running clustering algorithm
km = KMeans(n_clusters=num clusters)
km.fit(tfidf matrix)

#final clusters

clusters = km.labels .tolist()

complaints data = { 'rank': ranks, 'complaints': complaints,
"cluster': clusters }

frame = pd.DataFrame(complaints data, index = [clusters] ,

columns = ['rank', 'cluster'])

#number of docs per cluster

frame[ 'cluster'].value counts()

0 42
1 37
5 36
3 36
2 27
4 22
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Step 5-4 Identify cluster behavior
Identify which are the top 5 words that are nearest to the cluster centroid.

totalvocab stemmed = []

totalvocab _tokenized = []

for i in complaints:
allwords stemmed = tokenize and stem(i)
totalvocab_stemmed.extend(allwords stemmed)

allwords_tokenized = tokenize only(i)
totalvocab_tokenized.extend(allwords tokenized)
vocab_frame = pd.DataFrame({'words': totalvocab tokenized},
index = totalvocab stemmed)
#sort cluster centers by proximity to centroid
order centroids = km.cluster centers .argsort()[:, ::-1]
for i in range(num clusters):
print("Cluster %d words:" % i, end=")
for ind in order centroids[i, :6]:
print("' %s' % vocab_frame.ix[terms[ind].split(" ")].
values.tolist()[0][0].encode('utf-8"', 'ignore'), end=',")
print()
Cluster 0 words: b'needs', b'time', b'bank', b'information', b'told'
Cluster 1 words: b'account', b'bank', b'credit', b'time', b'months’
Cluster 2 words: b'debt', b'collection', b'number', b'credit', b"n't"
Cluster 3 words: b'report', b'credit', b'credit', b'account’,
b'information'
Cluster 4 words: b'loan', b'payments', b'pay', b'months', b'state’
Cluster 5 words: b'payments', b'pay', b'told', b'did', b'credit’
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Step 5-5 Plot the clusters on a 2D graph
Finally, we plot the clusters:

#Similarity
similarity distance = 1 - cosine_similarity(tfidf matrix)

# Convert two components as we're plotting points in a
two-dimensional plane

mds = MDS(n_components=2, dissimilarity="precomputed",
random_state=1)
pos = mds.fit transform(similarity distance) # shape

(n_components, n_samples)
Xs, ys = pos[:, 0], pos[:, 1]
#Set up colors per clusters using a dict
cluster colors = {0: '#1b9e77', 1: '#d95f02', 2: '#7570b3",
3: '#e7298a', 4: '#66a6le', 5: '#D2691E'}
#iset up cluster names using a dict
cluster names = {0: 'property, based, assist’',
1: 'business, card',
2: 'authorized, approved, believe',
3: 'agreement, application,business’,
4: 'closed, applied, additional',
5: 'applied, card'}
# Finally plot it
%matplotlib inline

#Create data frame that has the result of the MDS and the cluster
df = pd.DataFrame(dict(x=xs, y=ys, label=clusters))

groups = df.groupby('label")

# Set up plot

fig, ax = plt.subplots(figsize=(17, 9)) # set size

for name, group in groups:
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ax.plot(group.x, group.y, marker='o', linestyle=", ms=20,
label=cluster names[name], color=cluster colors[name],
mec="none")
ax.set_aspect('auto")
ax.tick params(\
axis= 'x',
which="both",
bottom="off',
top="off",
labelbottom="off")
ax.tick params(\
axis= 'y',
which="both",
left="off",
top="off"',
labelleft="off")

ax.legend(numpoints=1)

plt.show()
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That’s it. We have clustered 200 complaints into 6 groups using
K-means clustering. It basically clusters similar kinds of complaints to 6
buckets using TE-IDE We can also use the word embeddings and solve this
to achieve better clusters. 2D graphs provide a good look into the cluster's
behavior and if we look, we will see that the same color dots (docs) are
located closer to each other.

Recipe 5-6. NLP in a Search Engine

In this recipe, we are going to discuss what it takes to build a search engine
from an NLP standpoint. Implementation of the same is beyond the scope
of this book.

Problem

You want to know the architecture and NLP pipeline to build a search engine.

Solution

Figure 5-1 shows the whole process. Each step is explained in the “How It
Works” section.

. Texture : Leather

Users : Views

"Men” : "Male’ t / Preferences Laaming &5
S [ SeerchEngine - | : r i
Guery ——
Enhancement: " Retriever # 1 o .
+ Expansion Candidates oy
. Thetaurasas Poo e
sasssasryinstasninn ' Re . Enhancement ™4
...................................... [Retriever #n | Machine Learning Model
| Preprocessing: : -
i+ Tokenization “Banana®,
i+ Lemmatization ue”, "Man”
|+ Stop-Words 2,:;\' e 7 Brand L
i+ Tyoo/Spell-check
i /| Color
| NERD (—
Banana Blue . Named Entity Size
Man Shoes | Recognition
{« Mamed Entity Blu Candidates Sorted List
| Disambiguation “Man” : Gender, Sorted Results
t 1"Shoe" : Category L -
QUERY/ TEXT CANDIDATE RANKING
UNDERSTANDING RETRIEVAL

Figure 5-1. The NLP process in a search engine
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How It Works

Let’s follow and understand the above architecture step by step in this
section to build the search engine from an NLP standpoint.

Step 6-1 Preprocessing

Whenever the user enters the search query, it is passed on to the NLP
preprocessing pipeline:

1. Removal of noise and stop words
2. Tokenization
3. Stemming
4

Lemmatization

Step 6-2 The entity extraction model

Output from the above pipeline is fed into the entity extraction model.
We can build the customized entity recognition model by using any of the
libraries like StanfordNER or NLTK.

Or you can build an entity recognition model from scratch using
conditional random fields or Markov models.

For example, suppose we are building a search engine for an
e-commerce giant. Below are entities that we can train the model on:

e Gender
¢ Color
° Brand

e Product Category
e Product Type
o Price

o Size
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Also, we can build named entity disambiguation using deep
learning frameworks like RNN and LSTM. This is very important for the
entities extractor to understand the content in which the entities are
used. For example, pink can be a color or a brand. NED helps in such
disambiguation.

NERD Model building steps:

o Data cleaning and preprocessing
o Training NER Model
o Testing and Validation
e Deployment
Ways to train/build NERD model:
o Named Entity Recognition and Disambiguation
o Stanford NER with customization

e Recurrent Neural Network (RNN) - LSTM (Long Short-
Term Memory) to use context for disambiguation

e Joint Named Entity Recognition and Disambiguation

Step 6-3 Query enhancement/expansion

It is very important to understand the possible synonyms of the entities to
make sure search results do not miss out on potential relevance. Say, for
example, men’s shoes can also be called as male shoes, men’s sports shoes,
men’s formal shoes, men’s loafers, men’s sneakers.

Use locally-trained word embedding (using Word2Vec / GloVe
Model ) to achieve this.

182



CHAPTER 5  IMPLEMENTING INDUSTRY APPLICATIONS

Step 6-4 Use a search platform

Search platforms such as Solr or Elastic Search have major features that
include full-text search hit highlighting, faceted search, real-time indexing,
dynamic clustering, and database integration. This is not related to

NLP; as an end-to-end application point of view, we have just given an
introduction of what this is.

Step 6-5 Learning to rank

Once the search results are fetched from Solr or Elastic Search, they should
be ranked based on the user preferences using the past behaviors.
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Deep Learning for NLP

In this chapter, we will implement deep learning for NLP:
Recipe 1. Information retrieval using deep learning
Recipe 2. Text classification using CNN, RNN, LSTM

Recipe 3. Predicting the next word/sequence of
words using LSTM for Emails

Introduction to Deep Learning

Deep learning is a subfield of machine learning that is inspired by the
function of the brain. Just like how neurons are interconnected in the
brain, neural networks also work the same. Each neuron takes input, does
some kind of manipulation within the neuron, and produces an output
that is closer to the expected output (in the case of labeled data).

What happens within the neuron is what we are interested in: to get to
the most accurate results. In very simple words, it’s giving weight to every
input and generating a function to accumulate all these weights and pass it
onto the next layer, which can be the output layer eventually.
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The network has 3 components:
e Inputlayer
e Hidden layer/layers

e Output layer

I

Input nodes Output nodes
Hidden nodes

Connections

The functions can be of different types based on the problem or the
data. These are also called activation functions. Below are the types.

e Linear Activation functions: A linear neuron takes a
linear combination of the weighted inputs; and the
output can take any value between -infinity to infinity.

¢ Nonlinear Activation function: These are the most used
ones, and they make the output restricted between
some range:

o Sigmoid or Logit Activation Function: Basically,
it scales down the output between 0 and 1
by applying a log function, which makes the
classification problems easier.
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e Softmax function: Softmax is almost similar to
sigmoid, but it calculates the probabilities of the
event over ‘n’ different classes, which will be useful
to determine the target in multiclass classification
problems.

e Tanh Function: The range of the tanh function is
from (-1 to 1), and the rest remains the same as
sigmoid.

o Rectified Linear Unit Activation function: ReLU
converts anything that is less than zero to zero. So,
the range becomes 0 to infinity.

We still haven’t discussed how training is carried out in neural
networks. Let’s do that by taking one of the networks as an example, which
is the convolutional neural network.

Convolutional Neural Networks

Convolutional Neural Networks (CNN) are similar to ordinary neural
networks but have multiple hidden layers and a filter called the
convolution layer. CNN is successful in identifying faces, objects, and
traffic signs and also used in self-driving cars.

Data

As we all know, algorithms work basically on numerical data. Images and
text data are unstructured data as we discussed earlier, and they need to be

converted into numerical values even before we start anything.

e Image: Computer takes an image as an array of pixel
values. Depending on the resolution and size of the
image, it will see an X Y x Z array of numbers.
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For example, there is a color image and its size is 480 x
480 pixels. The representation of the array will be 480 x
480 x 3 where 3 is the RGB value of the color. Each of
these numbers varies from 0 to 255, which describes
the pixel intensity/density at that point. The concept is
that if given the computer and this array of numbers, it
will output the probability of the image being a certain
class in case of a classification problem.

o Text: We already discussed throughout the book how to
create features out of the text. We can use any of those
techniques to convert text to features. RNN and LSTM
are suited better for text-related solutions that we will

discuss in the next sections.

[j [: — BleYeLE

/ FULLY
4/ INPUT CONVOLUTION « RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
W 2y
FEATURE LEARNING CLASSIFICATION
Architecture

CNN is a special case of a neural network with an input layer, output layer,
and multiple hidden layers. The hidden layers have 4 different procedures
to complete the network. Each one is explained in detail.
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Convolution
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The Convolution layer is the heart of a Convolutional Neural Network,
which does most of the computational operations. The name comes from
the “convolution” operator that extracts features from the input image.
These are also called filters (Orange color 3*3 matrix). The matrix formed
by sliding the filter over the full image and calculating the dot product
between these 2 matrices is called the ‘Convolved Feature’ or ‘Activation
Map’ or the ‘Feature Map’ Suppose that in table data, different types of
features are calculated like “age” from “date of birth.” The same way here
also, straight edges, simple colors, and curves are some of the features that
the filter will extract from the image.

During the training of the CNN, it learns the numbers or values present
inside the filter and uses them on testing data. The greater the number
of features, the more the image features get extracted and recognize all

patterns in unseen images.

Nonlinearity (ReLU)

10}

Output = Max(zero, Input)
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ReLU (Rectified Linear Unit) is a nonlinear function that is used after a
convolution layer in CNN architecture. It replaces all negative values in
the matrix to zero. The purpose of ReLU is to introduce nonlinearity in the
CNN to perform better.

Pooling

Max(1, 1,5,6)=6

%
1 max pool with 2x2 filters e |
8 and stride 2 8 |
0 3|4 ‘
4

Pooling or subsampling is used to decrease the dimensionality of the
feature without losing important information. It’s done to reduce the huge
number of inputs to a full connected layer and computation required to
process the model. It also helps to reduce the overfitting of the model. It
uses a 2 x 2 window and slides over the image and takes the maximum
value in each region as shown in the figure. This is how it reduces
dimensionality.

Flatten, Fully Connected, and Softmax Layers

The last layer is a dense layer that needs feature vectors as input. But

the output from the pooling layer is not a 1D feature vector. This process
of converting the output of convolution to a feature vector is called
flattening. The Fully Connected layer takes an input from the flatten layer
and gives out an N-dimensional vector where N is the number of classes.
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The function of the fully connected layer is to use these features for
classifying the input image into various classes based on the loss function
on the training dataset. The Softmax function is used at the very end to
convert these N-dimensional vectors into a probability for each class,
which will eventually classify the image into a particular class.

Backpropagation: Training the Neural Network

In normal neural networks, you basically do Forward Propagation to get
the output and check if this output is correct and calculate the error. In
Backward Propagation, we are going backward through your network that
finds the partial derivatives of the error with respect to each weight.

Let’s see how exactly it works.

The input image is fed into the network and completes forward
propagation, which is convolution, ReLU, and pooling operations with
forward propagation in the fully Connected layer and generates output
probabilities for each class. As per the feed forward rule, weights are
randomly assigned and complete the first iteration of training and also
output random probabilities. After the end of the first step, the network
calculates the error at the output layer using

Total Error = ¥, %2 (target probability - output probability)?

Now, your backpropagation starts to calculate the gradients of the
error with respect to all weights in the network and use gradient descent
to update all filter values and weights, which will eventually minimize
the output error. Parameters like the number of filters, filter sizes, and the
architecture of the network will be finalized while building your network.
The filter matrix and connection weights will get updated for each run. The
whole process is repeated for the complete training set until the error is
minimized.
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Recurrent Neural Networks

CNNs are basically used for computer vision problems but fail to solve
sequence models. Sequence models are those where even a sequence

of the entity also matters. For example, in the text, the order of the words
matters to create meaningful sentences. This is where RNNs come into the
picture and are useful with sequential data because each neuron can use
its memory to remember information about the previous step.

3

Recurrent Neural Network Feed-Forward Meural Network

It is quite complex to understand how exactly RNN is working. If you
see the above figure, the recurrent neural network is taking the output from
the hidden layer and sending it back to the same layer before giving the
prediction.

Training RNN - Backpropagation Through Time (BPTT)

We know how feed forward and backpropagation work from CNN, so let’s

o ¢
5l

see how training is done in case of RNN.
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If we just discuss the hidden layer, it’s not only taking input from
the hidden layer, but we can also add another input to the same hidden
layer. Now the backpropagation happens like any other previous training
we have seen; it’s just that now it is dependent on time. Here error is
backpropagated from the last timestamp to the first through unrolling the
hidden layers. This allows calculating the error for each timestamp and
updating the weights. Recurrent networks with recurrent connections
between hidden units read an entire sequence and then produce a
required output.

When the values of a gradient are too small and the model takes way
too long to learn, this is called Vanishing Gradients. This problem is solved
by LSTMs.

Long Short-Term Memory (LSTM)

LSTMs are a kind of RNNs with betterment in equation and
backpropagation, which makes it perform better. LSTMs work almost
similarly to RNN, but these units can learn things with very long time gaps,
and they can store information just like computers.
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The algorithm learns the importance of the word or character through
weighing methodology and decides whether to store it or not. For this, it
uses regulated structures called gates that have the ability to remove or add
information to the cell. These cells have a sigmoid layer that decides how
much information should be passed. It has three layers, namely “input,’
“forget,” and “output” to carry out this process.

Going in depth on how CNN and RNNs work is beyond the scope of
this book. We have mentioned references at the end of the book if anyone
is interested in learning about this in more depth.

Recipe 6-1. Retrieving Information

Information retrieval is one of the highly used applications of NLP and it is
quite tricky. The meaning of the words or sentences not only depends on
the exact words used but also on the context and meaning. Two sentences
may be of completely different words but can convey the same meaning.
We should be able to capture that as well.

An information retrieval (IR) system allows users to efficiently
search documents and retrieve meaningful information based on a

search text/query.

v D l
M\\_ ng” l:‘> IR System <\'—_—_‘ .
L D

$

Retrieved Results
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Problem

Information retrieval using word embeddings.

Solution

There are multiple ways to do Information retrieval. But we will see how to
do it using word embeddings, which is very effective since it takes context
also into consideration. We discussed how word embeddings are built in
Chapter 3. We will just use the pretrained word2vec in this case.

Let’s take a simple example and see how to build a document retrieval
using query input. Let’s say we have 4 documents in our database as
below. (Just showcasing how it works. We will have too many documents
in a real-world application.)

Docl = ["With the Union cabinet approving the amendments to the
Motor Vehicles Act, 2016, those caught for drunken driving will
have to have really deep pockets, as the fine payable in court

has been enhanced to Rs 10,000 for first-time offenders." ]

Doc2 = ["Natural language processing (NLP) is an area of
computer science and artificial intelligence concerned with the
interactions between computers and human (natural) languages,
in particular how to program computers to process and analyze
large amounts of natural language data."]

Doc3 = ["He points out that public transport is very good in

Mumbai and New Delhi, where there is a good network of suburban
and metro rail systems."]
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Doc4 = ["But the man behind the wickets at the other end was
watching just as keenly. With an affirmative nod from Dhoni,
India captain Rohit Sharma promptly asked for a review. Sure
enough, the ball would have clipped the top of middle and leg."]

Assume we have numerous documents like this. And you want to retrieve
the most relevant once for the query “cricket.” Let’s see how to build it.

query = "cricket"

How It Works
Step 1-1 Import the libraries

Here are the libraries:

import gensim

from gensim.models import Word2Vec

import numpy as np

import nltk

import itertools

from nltk.corpus import stopwords

from nltk.tokenize import sent tokenize, word tokenize
import scipy

from scipy import spatial

from nltk.tokenize.toktok import ToktokTokenizer
import re

tokenizer = ToktokTokenizer()

stopword list = nltk.corpus.stopwords.words('english')

196



CHAPTER 6  DEEP LEARNING FOR NLP

Step 1-2 Create/import documents
Randomly taking sentences from the internet:

Docl = ["With the Union cabinet approving the amendments to the
Motor Vehicles Act, 2016, those caught for drunken driving will
have to have really deep pockets, as the fine payable in court

has been enhanced to Rs 10,000 for first-time offenders." ]

Doc2 = ["Natural language processing (NLP) is an area of
computer science and artificial intelligence concerned with the
interactions between computers and human (natural) languages,
in particular how to program computers to process and analyze
large amounts of natural language data."]

Doc3 = ["He points out that public transport is very good in
Mumbai and New Delhi, where there is a good network of suburban
and metro rail systems."]

Doc4 = ["But the man behind the wickets at the other end was
watching just as keenly. With an affirmative nod from Dhoni,
India captain Rohit Sharma promptly asked for a review. Sure
enough, the ball would have clipped the top of middle and leg."]

# Put all the documents in one list

fin= Doc1+Doc2+Doc3+Doc4

Step 1-3 Download word2vec

As mentioned earlier, we are going to use the word embeddings to solve
this problem. Download word2vec from the below link:

https://drive.google.com/file/d/0B7XkCwpI5KDYNINUTT1SS21pQmM/edit
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#load the model

model = gensim.models.KeyedVectors.load word2vec_format
('/GoogleNews-vectors-negative300.bin’, binary=True)

Step 1-4 Create IR system
Now we build the information retrieval system:
#Preprocessing

def remove stopwords(text, is lower case=False):
pattern = r'["a-zA-z0-9\s]'
text = re.sub(pattern, ", ".join(text))
tokens = tokenizer.tokenize(text)
tokens = [token.strip() for token in tokens]
if is lower case:

filtered tokens = [token for token in tokens if token

not in stopword list]
else:

filtered tokens = [token for token in tokens if token.

lower() not in stopword list]
filtered text = ' '.join(filtered tokens)
return filtered text

# Function to get the embedding vector for n dimension, we have
used "300"

def get embedding(word):
if word in model.wv.vocab:
return model[x]
else:
return np.zeros(300)
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For every document, we will get a lot of vectors based on the number of
words present. We need to calculate the average vector for the document
through taking a mean of all the word vectors.

# Getting average vector for each document

out dict = {}

for sen in fin:
average vector = (np.mean(np.array([get_embedding(x) for x
in nltk.word tokenize(remove stopwords(sen))]), axis=0))
dict = { sen : (average vector) }
out_dict.update(dict)

# Function to calculate the similarity between the query vector
and document vector

def get sim(query embedding, average vector doc):
sim = [(1 - scipy.spatial.distance.cosine(query embedding,
average vector doc))]
return sim

# Rank all the documents based on the similarity to get
relevant docs

def Ranked documents(query):
query words = (np.mean(np.array([get _embedding(x) for x in
nltk.word tokenize(query.lower())],dtype=float), axis=0))
rank = []
for k,v in out dict.items():
rank.append((k, get sim(query words, v)))
rank = sorted(rank,key=lambda t: t[1], reverse=True)
print('Ranked Documents :')
return rank
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Step 1-5 Results and applications

Let’s see how the information retrieval system we built is working with a
couple of examples.

# Call the IR function with a query
Ranked_documents("cricket")
Result :

[('But the man behind the wickets at the other end was watching

just as keenly. With an affirmative nod from Dhoni, India

captain Rohit Sharma promptly asked for a review. Sure enough,

the ball would have clipped the top of middle and leg.',
[0.44954327116871795]),

('He points out that public transport is very good in Mumbai
and New Delhi, where there is a good network of suburban and
metro rail systems.',

[0.23973446569030055]),

('With the Union cabinet approving the amendments to the Motor
Vehicles Act, 2016, those caught for drunken driving will have
to have really deep pockets, as the fine payable in court has
been enhanced to Rs 10,000 for first-time offenders.',

[0.18323712012013349]),

('Natural language processing (NLP) is an area of computer
science and artificial intelligence concerned with the
interactions between computers and human (natural) languages,
in particular how to program computers to process and analyze
large amounts of natural language data.',

[0.17995060855459855]) ]
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If you see, doc4 (on top in result), this will be most relevant for the
query “cricket” even though the word “cricket” is not even mentioned once
with the similarity of 0.449.

Let’s take one more example as may be driving.

Ranked_documents("driving")

[("With the Union cabinet approving the amendments to the Motor

Vehicles Act, 2016, those caught for drunken driving will have

to have really deep pockets, as the fine payable in court has

been enhanced to Rs 10,000 for first-time offenders.',
[0.35947287723800669]),

('But the man behind the wickets at the other end was watching
just as keenly. With an affirmative nod from Dhoni, India
captain Rohit Sharma promptly asked for a review. Sure enough,
the ball would have clipped the top of middle and leg.',

[0.19042556935316801]),

('He points out that public transport is very good in Mumbai
and New Delhi, where there is a good network of suburban and
metro rail systems.',

[0.17066536985237601]),

('Natural language processing (NLP) is an area of computer
science and artificial intelligence concerned with the
interactions between computers and human (natural) languages,
in particular how to program computers to process and analyze
large amounts of natural language data.’,

[0.088723080005327359]) ]

Again, since driving is connected to transport and the Motor Vehicles
Act, it pulls out the most relevant documents on top. The first 2 documents
are relevant to the query.
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We can use the same approach and scale it up for as many documents
as possible. For more accuracy, we can build our own embeddings, as we
learned in Chapter 3, for specific industries since the one we are using is
generalized.

This is the fundamental approach that can be used for many
applications like the following:

e Search engines
e Document retrieval
o Passage retrieval

¢ Question and answer

result length

short 4 QA
IE
medium PR
long | DR N
short medium long query length

It's been proven that results will be good when queries are longer and
the result length is shorter. That’s the reason we don’t get great results in
search engines when the search query has lesser number of words.

Recipe 6-2. Classifying Text with Deep
Learning

In this recipe, let us build a text classifier using deep learning approaches.
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Problem

We want to build a text classification model using CNN, RNN, and LSTM.

Solution

The approach and NLP pipeline would remain the same as discussed
earlier. The only change would be that instead of using machine learning
algorithms, we would be building models using deep learning algorithms.

How It Works

Let’s follow the steps in this section to build the email classifier using the
deep learning approaches.

Step 2-1 Understanding/defining business problem

Email classification (spam or ham). We need to classify spam or ham email
based on email content.

Step 2-2 Identifying potential data sources, collection,
and understanding

Using the same data used in Recipe 4-6 from Chapter 4:

f#firead file
file content = pd.read csv('spam.csv', encoding = "IS0-8859-1")

#icheck sample content in the email
file content['v2'][1]

#output
'Ok lar... Joking wif u oni...'
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Step 2-3 Text preprocessing
Let’s preprocess the data:

#Import library

from nltk.corpus import stopwords

from nltk import *

from sklearn.feature extraction.text import TfidfVectorizer
from nltk.stem import WordNetLemmatizer

import matplotlib.pyplot as plt

from sklearn.model selection import train test split

# Remove stop words
stop = stopwords.words('english")

file content['v2'] = file content['v2'].apply(lambda x:
".join(x for x in x.split() if x not in stop))

# Delete unwanted columns
Email Data = file content[['vi', 'v2']]

# Rename column names
Email Data = Email Data.rename(columns={"v1":"Target", "v2":"Email"})
Email Data.head()

#output

Target Email
0 ham Go jurong point, crazy.. Available bugis n gre...
1 ham Ok lar... Joking wif u oni...
2 spam Free entry 2 wkly comp win FA Cup final tkts 2...
3 ham U dun say early hor... U c already say...
4 ham Nah I think goes usf, lives around though

#Delete punctuations, convert text in lower case and delete the
double space

204



CHAPTER 6  DEEP LEARNING FOR NLP

Email Data['Email’

re.sub('[!@#$:).;,?

] = Email Data[ 'Email'].apply(lambda x:

&
Email Datal' Ema11 ]

x)

1.

&]', ", x.lower()))
= Email Data['Email'].apply(lambda x:

)
head(5)

re.sub(" ' '
Email_Data[ Ema11

#output

0 go jurong point crazy available bugis n great ...
1 ok lar joking wif u oni

2 free entry 2 wkly comp win fa cup final tkts 2...
3 u dun say early hor u c already say

4 nah i think goes usf lives around though

Name: Email, dtype: object

#Separating text(input) and target classes

list sentences rawdata = Email Data["Email"].fillna(" na_").values

list classes = ["Target"]
target = Email Data[list classes].values

To Process=Email Data[['Email', 'Target']]

Step 2-4 Data preparation for model building

Now we prepare the data:

#Train and test split with 80:20 ratio
train, test = train test split(To Process, test size=0.2)

# Define the sequence lengths, max number of words and
embedding dimensions

# Sequence length of each sentence. If more, truncate. If less,

pad with zeros

MAX_SEQUENCE_LENGTH = 300

205



CHAPTER 6  DEEP LEARNING FOR NLP

# Top 20000 frequently occurring words
MAX_NB_WORDS = 20000

# Get the frequently occurring words

tokenizer = Tokenizer(num words=MAX NB_WORDS)
tokenizer.fit on_texts(train.Email)

train_sequences = tokenizer.texts to sequences(train.Email)
test sequences = tokenizer.texts to sequences(test.Email)

# dictionary containing words and their index
word_index = tokenizer.word_index

# print(tokenizer.word index)

# total words in the corpus

print('Found %s unique tokens.' % len(word index))

# get only the top frequent words on train
train data = pad_sequences(train_sequences, maxlen=MAX
SEQUENCE_LENGTH)

# get only the top frequent words on test
test data = pad_sequences(test sequences, maxlen=MAX SEQUENCE
LENGTH)

print(train_data.shape)
print(test data.shape)

#output

Found 8443 unique tokens.
(4457, 300)

(1115, 300)

train_labels = train['Target']
test labels = test['Target']

#import library
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from sklearn.preprocessing import LabelEncoder
# converts the character array to numeric array. Assigns levels
to unique labels.

le = LabelEncoder()

le.fit(train labels)

train_labels = le.transform(train_ labels)
test labels = le.transform(test labels)

print(le.classes )
print(np.unique(train_labels, return_counts=True))
print(np.unique(test labels, return counts=True))

#output

["ham' 'spam']

(array([o0, 1]), array([3889, 568]))
(array([o, 1]), array([936, 179]))

# changing data types

labels train = to_categorical(np.asarray(train labels))
labels test = to_categorical(np.asarray(test labels))
print('Shape of data tensor:', train data.shape)
print('Shape of label tensor:', labels train.shape)
print('Shape of label tensor:', labels test.shape)

#output

Shape of data tensor: (4457, 300)
Shape of label tensor: (4457, 2)
Shape of label tensor: (1115, 2)

EMBEDDING DIM = 100
print(MAX_SEQUENCE_LENGTH)

#output
300
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Step 2-5 Model building and predicting

We are building the models using different deep learning approaches
like CNN, RNN, LSTM, and Bidirectional LSTM and comparing the
performance of each model using different accuracy metrics.

We can now define our CNN model.

Here we define a single hidden layer with 128 memory units. The
network uses a dropout with a probability of 0.5. The output layer is a
dense layer using the softmax activation function to output a probability
prediction.

# Import Libraries
import sys, os, re, csv, codecs, numpy as np, pandas as pd

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences
from keras.utils import to categorical

from keras.layers import Dense, Input, LSTM, Embedding,
Dropout, Activation

from keras.layers import Bidirectional, GlobalMaxPooliD,
ConviD, SimpleRNN

from keras.models import Model

from keras.models import Sequential

from keras import initializers, regularizers, constraints,
optimizers, layers

from keras.layers import Dense, Input, Flatten, Dropout,
BatchNormalization

from keras.layers import ConviD, MaxPoolingiD, Embedding
from keras.models import Sequential

print('Training CNN 1D model.')
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model = Sequential()
model.add(Embedding(MAX_NB_WORDS,

EMBEDDING DIM,

input_length=MAX_ SEQUENCE LENGTH

)
model.add(Dropout(0.5))
model.add(ConviD(128, 5, activation="relu'))
model.add(MaxPooling1D(5))
model.add(Dropout(0.5))
model.add(BatchNormalization())
model.add(ConviD(128, 5, activation='relu'))
model.add(MaxPoolingiD(5))
model.add(Dropout(0.5))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(2, activation="softmax"'))

model.compile(loss="categorical crossentropy’,
optimizer="rmsprop',
metrics=['acc'])

We are now fitting our model to the data. Here we have 5 epochs and a

batch size of 64 patterns.

model.fit(train data, labels train,

batch size=64,

epochs=5,

validation data=(test data, labels test))
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#output

Training CKN 1D model.
Train on 4437 samples, validate on 1115 samples
Epoch 1/5

445774457 | ] - 198 4ms/step - loss: 0.3465 - ace:

0.9247
Epach 2/5

445774457 [ ] = 188 4ms/step = loss: 0.1281 = acc:

0.9731
Epoch 3/5

445774457 | 1} = 178 dms/step - loss: 0.0659 - acec:

0.9704
Epoch 4/5

445774457 | ] - 178 4ms/step - loss: 0.0453 - acec:

0.9659
Epach 5/5

445774457 [ ] = 178 dms/step - loss: 0.0379 = acc:

0.9785

<keras.callbacks.History at OxlaZdfBBRf2E>

#predictions on test data

predicted=model.predict(test data)
predicted

#output

array([[0.5426713 , 0.45732868],
[0.5431667 , 0.45683333],
[0.53082496, 0.46917507],
cee,

[0.53582424, 0.46417573],

[0.5305845 , 0.46941552],

[0.53102577, 0.46897423]], dtype=float32)

#tmodel evaluation

import sklearn

0.8634 -

0.9540 =

0.9807 -

0.9868 -

0.9912 -

val_loss: 0.3479 - val_ace:

val_loss: 0.1882 - val_acc:

val_loss: 0.5212 - val_acc:

val_loss: 0.5466 - val_acc:

val_loss: 0.5507 = val_acc:

from sklearn.metrics import precision recall fscore support as

score

precision, recall, fscore, support = score(labels test,

predicted.round())

print('precision: {}'.format(precision))
print('recall: {}'.format(recall))
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print('fscore: {}'.format(fscore))
print('support: {}'.format(support))

pTint (" HHHHHHHHHHHHHHHHHHHHHHHHHHHHE)

print(sklearn.metrics.classification report(labels test,
predicted.round()))

#output

precision: [0.98407643 0.94797688]
recall: [0.99038462 0.91620112)
fscore: [0.98722045 0.93181818]
support: [936 179]

b i

precision recall fl-score support

0 0.98 0.99 0.99 936

1 0.95 0.92 0.93 179

avg / total 0.98 0.98 0.98 1115

We can now define our RNN model.

#import library
from keras.layers.recurrent import SimpleRNN

#model training

print('Training SIMPLERNN model.")

model = Sequential()
model.add(Embedding(MAX_NB WORDS,
EMBEDDING DIM,
input_length=MAX SEQUENCE_LENGTH

)
model.add(SimpleRNN(2, input_shape=(None,1)))

model.add(Dense(2,activation="softmax"))

model.compile(loss = 'binary crossentropy',
optimizer="adam',metrics = ['accuracy'])
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model.fit(train data, labels train,

batch size=16,
epochs=5,

validation data=(test data, labels test))

#output

Training SIMPLERNN model.

Train on 4457 samples, validate on 1115 sampl
Epoch 1/5
445774457 |
0.9776
Epoch 2/5
4457744587 [
0.9785
Epoch 3/5
445774457 [
0.9794
Epoch 4/5
445774457
0.9767
Epoch 5/5
445774457 |
0.9749

# prediction on test data

] = 268 éms/step -

- 258 6ms/step -

] - 258 éms/atep -

- 258 6ma/step -

- 258 6éma/otep -

loss: 0.2514 - acc: 0.9607 -

loss: 0.0768

loss: 0.0327

loss: 0.0171

loss: 0.0108 -

predicted Srnn=model.predict(test data)

predicted Srnn

#output

array([[0.9959137 , 0.00408628],

[0.99576926, 0.00423072]
[0.99044365, 0.00955638]
cees

[0.9920791 , 0.00792089]
[0.9958105 , 0.00418955]

)

)

)

)

- acc: 0.9917 -

- acc: 0.9982 -

- acc: 0.9996 -

acer 1.0000 -

[0.99660563, 0.00339443]], dtype=float32)

#model evaluation

val_loss: 0.1508 -

val_loss: 0.1013 -

val_loss: 0.0904 -

val_loss: 0.0920 -

val_loss: 0.0926 -

val_acc:

val_acci

val_acer

val_acer

val_acci

from sklearn.metrics import precision recall fscore support as score

precision, recall, fscore, support = score(labels test,

predicted_Srnn.round())
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print('precision: {}'.format(precision))
print('recall: {}'.format(recall))
print('fscore: {}'.format(fscore))
print('support: {}'.format(support))

print ("H#HHHHHHHHHHHHHH A )

print(sklearn.metrics.classification report(labels test,
predicted Srnn.round()))

#output

precision: [0.97589099 0.9689441 )
recall: [0.99465812 0.87150838)
fscore: [0.98518519 0.91764706)
support: [936 179]
RABABHRARABHAHRB B HRAR A

precision recall fl-score support

0.98 0.99 0.99 936

1 0.97 0.87 0.92 179

avg / total 0.97 0.97 0.97 1115

And here is our Long Short-Term Memory (LSTM):
#model training

print('Training LSTM model.")

model = Sequential()
model.add(Embedding (MAX_NB_WORDS,

EMBEDDING DIM,

input_length=MAX SEQUENCE LENGTH

)
model.add(LSTM(output_dim=16, activation="relu', inner_
activation="hard sigmoid',return sequences=True))
model.add(Dropout(0.2))
model.add(BatchNormalization())
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model.add(Flatten())
model.add(Dense(2,activation="softmax"))

model.compile(loss = 'binary crossentropy’,
optimizer="adam',metrics = ['accuracy'])

model.fit(train data, labels train,

batch _size=16,

epochs=5,

validation data=(test data, labels test))

#output

Training LSTM model.

/Users/akulk7/anaccnda/lib/python3.5/site-packages/ipykernel/ main_ .py:12: UserWarning: Update your "LSTM ™ call to
the Keras 2 API: ~LETM(recurrent_activation="hard sigmoid®, return_segquences=True, units=16, activation="relu")”

Train on 4457 samples, validate on 1115 samples
Epoch 1/8

448774457 | ] - 758 1Tms/step - loss: 0.1260 - acc: 0.9587

0.55%6
Epoch 2/5

4457/4457 [ ] = 728 léms/step - loss: 0.0147 - acc: 0.9964

0.9794
Epach 3/5

4457/4457 | ] = 728 léms/step - loss: 0.0028 - acc: 0.9991

0.9812
EBpoch 4/5

4457/4457 | | = 73s léms/step - loss: 0.0018 - acc: 0.9998

0.5820
Epoch 5/5

- val_loss: 0.1605 - val_acc:

= val loss: 0.0810 - val_ace:

= val_loss: 0.0968 - val_acc:

= val_loss: 0.0892 - val_acc:

445774457 | | - 783 17ma/step - loss: 7.362%e-04 - acc: 0.9998 - val loss: 0.1045 - val_

ace: 0.9830

#prediction on text data

predicted lstm=model.predict(test data)

predicted lstm

array([[1.0000000e+00, 4.0581045e-09],
[1.0000000e+00, 8.3188789e-13],
[9.9999976e-01, 1.8647323e-07],
cee)

[9.9999976e-01, 1.8333606e-07],

[1.0000000e+00, 1.7347950e-09]

J)
[9.9999988e-01, 1.3574694e-07]], dtype=float32)
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#tmodel evaluation

from sklearn.metrics import precision recall fscore support as
score

precision, recall, fscore, support = score(labels test,
predicted 1stm.round())

print('precision: {}'.format(precision))
print('recall: {}'.format(recall))
print('fscore: {}'.format(fscore))
print('support: {}'.format(support))

pYint (" H#HHHHHHHHHHHHHHHHHHHHHHHHHHHE")

print(sklearn.metrics.classification report(labels test,
predicted lstm.round()))

#output

precision: [0.98010471 1. ]
recall: [1. 0.89385475]
fscore: [0.98995241 0.9439528 )
support: [936 179)

B e R e e e s

precision recall fl-score support

0 0.98 1.00 0.99 936

1 1.00 0.89 0.94 179

avg / total 0.98 0.98 0.98 1115

Finally, let’s see what is Bidirectional LSTM and implement the same.

As we know, LSTM preserves information from inputs using the
hidden state. In bidirectional LSTMs, inputs are fed in two ways: one
from previous to future and the other going backward from future to
past, helping in learning future representation as well. Bidirectional
LSTMs are known for producing very good results as they are capable of
understanding the context better.
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#model training
print('Training Bidirectional LSTM model.")

model = Sequential()
model.add(Embedding(MAX_NB_WORDS,

EMBEDDING DIM,

input_length=MAX_ SEQUENCE LENGTH

)
model.add(Bidirectional(LSTM(16, return_sequences=True,
dropout=0.1, recurrent dropout=0.1)))
model.add(ConviD(16, kernel size = 3, padding = "valid",
kernel initializer = "glorot uniform"))
model.add(GlobalMaxPooliD())
model.add(Dense(50, activation="relu"))
model.add(Dropout(0.1))

model.add(Dense(2,activation="softmax"))

model.compile(loss = 'binary crossentropy',
optimizer="adam',metrics = ['accuracy'])

model.fit(train data, labels train,
batch_size=16,

epochs=3,

validation data=(test data, labels test))

#output

Training Bidirectional LSTM model.

Train on 4457 samples, validate on 1115 samples

Epoch 1/3

4457/4457 [meme= ] = 1048 23ma/step - loss: 0.1401 - acc: 0.9502 - val_loss: 0.0665 - val_ac
c: 0.9821

Epoch 2/3

445774457 [===e= ] = 99s 22ma/step - loss: 0.0119 - acc: 0.9960 - val_loss: 0.0776 - val_acc:
0.9812

Epoch 3/3

445774457 [===== ] = 1008 22ma/atep - loss: 0.0020 - acc: 0.9998 - val_loss: 0.0890 - val_ac
c: 0.9857
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# prediction on test data

predicted blstm=model.predict(test data)
predicted blstm

#output

array([[9.9999976e-01, 2.6086647e-07],
[9.9999809e-01, 1.9633851e-06],
[9.9999833e-01, 1.6918856e-06],
vy

[9.9999273e-01, 7.2622524e-06],

[9.9999964e-01, 3.3541210e-07],

[9.9999964e-01, 3.5427794e-07]], dtype=float32)

#tmodel evaluation

from sklearn.metrics import precision recall fscore support as
score

precision, recall, fscore, support = score(labels test,
predicted blstm.round())

print('precision: {}'.format(precision))
print('recall: {}'.format(recall))
print('fscore: {}'.format(fscore))
print('support: {}'.format(support))

print (" HHHHHHHHHHHHHHHHHHHHHHHHHHHH)

print(sklearn.metrics.classification report(labels test,
predicted blstm.round()))
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#output

precision: [0.98421053 0.99393939]
recall: [0.99893162 0.91620112)
fscore: [0.99151644 0.9534B837]
support: [936 179]

#HAR AR R A A A A

precision recall fl-score support

0 0.98 1.00 0.99 936

1 0.99 0.92 0.95 179

avg / total 0.99 0.99 0.99 1115

We can see that Bidirectional LSTM outperforms the rest of the
algorithms.

Recipe 6-3. Next Word Prediction

Autofill/showing what could be the potential sequence of words saves a
lot of time while writing emails and makes users happy to use it in any
product.

Problem

You want to build a model to predict/suggest the next word based on a
previous sequence of words using Email Data.

Like you see in the below image, language is being suggested as the
next word.
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| am really happy to learn natural lghguage
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Solution

In this section, we will build an LSTM model to learn sequences of words

from email data. We will use this model to predict the next word.

How It Works

Let's follow the steps in this section to build the next word prediction
model using the deep learning approach.

Step 3-1 Understanding/defining business problem

Predict the next word based on the sequence of words or sentences.
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Step 3-2 Identifying potential data sources, collection,
and understanding

For this problem, let us use the same email data used in Recipe 4-6 from
Chapter 4. This has a lot less data, but still to showcase the working flow,
we are fine with this data. The more data, the better the accuracy.

file content = pd.read csv('spam.csv', encoding = "IS0-8859-1")

# Just selecting emails and connverting it into list
Email Data = file content[[ 'v2']]

list data = Email Data.values.tolist()
list data

#output
[['Go until jurong point, crazy.. Available only in bugis n
great world la e buffet... Cine there got amore wat...'],
['0Ok lar... Joking wif u oni...'],
["Free entry in 2 a wkly comp to win FA Cup final tkts 21st
May 2005. Text FA to 87121 to receive entry question(std txt
rate)T&C's apply 084528100750ver18's"],
['U dun say so early hor... U c already then say...'],
["Nah I don't think he goes to usf, he lives around here though"],
["FreeMsg Hey there darling it's been 3 week's now and no word
back! I'd like some fun you up for it still? Tb ok! XxX std
chgs to send, 3£1.50 to rcv"],
['Even my brother is not like to speak with me. They treat me
like aids patent.'],
["As per your request 'Melle Melle (Oru Minnaminunginte
Nurungu Vettam)' has been set as your callertune for all
Callers. Press *9 to copy your friends Callertune"],
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[ 'WINNER!! As a valued network customer you have been selected
to receivea a£900 prize reward! To claim call 09061701461.
Claim code KL341. Valid 12 hours only.'] ,

['Had your mobile 11 months or more? U R entitled to Update

to the latest colour mobiles with camera for Free! Call The
Mobile Update Co FREE on 08002986030'],

Step 3-3 Importing and installing necessary libraries
Here are the libraries:

import numpy as np

import random

import pandas as pd

import sys

import os

import time

import codecs

import collections

import numpy

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import LSTM

from keras.callbacks import ModelCheckpoint
from keras.utils import np utils

from nltk.tokenize import sent tokenize, word tokenize
import scipy

from scipy import spatial

from nltk.tokenize.toktok import ToktokTokenizer
import re

tokenizer = ToktokTokenizer()
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Step 3-4 Processing the data
Now we process the data:

#Converting list to string
from collections import Iterable

def flatten(items):

Yield items from any nested iterable
for x in items:
if isinstance(x, Iterable) and not isinstance(x,
(str, bytes)):

for sub x in flatten(x):

yield sub x

else:

yield x

TextData=list(flatten(list data))
TextData = ".join(TextData)

# Remove unwanted lines and converting into lower case
1 n

TextData = TextData.replace('\n',
TextData = TextData.lower()

pattern = r'["*a-zA-z0-9\s]'
TextData = re.sub(pattern, ", ".join(TextData))

# Tokenizing

tokens = tokenizer.tokenize(TextData)

[token.strip() for token in tokens]

tokens

# get the distinct words and sort it

word counts = collections.Counter(tokens)
word ¢ = len(word counts)
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print(word c)

distinct words = [x[0] for x in word counts.most common()]
distinct words sorted = list(sorted(distinct words))

# Generate indexing for all words
word index = {x: i for i, x in enumerate(distinct words sorted)}
# decide on sentence length

sentence_length = 25

Step 3-5 Data preparation for modeling

Here we are dividing the mails into sequence of words with a fixed length
of 10 words (you can choose anything based on the business problem and
computation power). We are splitting the text by words sequences. When
creating these sequences, we slide this window along the whole document
one word at a time, allowing each word to learn from its preceding one.

#fiprepare the dataset of input to output pairs encoded as integers
# Generate the data for the model

#input = the input sentence to the model with index
#output = output of the model with index

InputData = []
OutputData = []

for i in range(0, word c - sentence length, 1):
X = tokens[i:i + sentence length]
Y = tokens[i + sentence length]
InputData.append([word index[char] for char in X])
OutputData.append(word index[Y])
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print (InputData[:1])
print ("\n")
print(OutputData[:1])

#output

[[5086, 12190, 6352, 9096, 3352, 1920, 8507, 5937, 2535, 7886,
5214, 12910, 6541, 4104, 2531, 2997, 11473, 5170, 1595, 12552,
6590, 6316, 12758, 12087, 8496]]

[4292]

# Generate X
X = numpy.reshape(InputData, (len(InputData), sentence length, 1))

# One hot encode the output variable
Y = np_utils.to categorical(OutputData)

Y

#output

array([[0., 0., O., ..., O., O., O.],
[0., 0., O., , 0., 0., 0.],

[O) *) ) ) ) ) 0'])
[0., 0., O., ..., O., O., O.],
[0., 0., O., ..., O., O., 0.]])

Step 3-6 Model building

We will now define the LSTM model. Here we define a single hidden LSTM
layer with 256 memory units. This model uses dropout 0.2. The output
layer is using the softmax activation function. Here we are using the ADAM
optimizer.
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# define the LSTM model

model = Sequential()

model.add(LSTM(256, input shape=(X.shape[1], X.shape[2])))
model.add(Dropout(0.2))

model.add(Dense(Y.shape[1], activation='softmax"))
model.compile(loss="categorical crossentropy’,
optimizer="adam")

#define the checkpoint

file _name_path="weights-improvement-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(file name path, monitor='loss',
verbose=1, save best only=True, mode='min")

callbacks = [checkpoint]

We can now fit the model to the data. Here we use 5 epochs and a
batch size of 128 patterns. For better results, you can use more epochs like
50 or 100. And of course, you can use them on more data.

#fit the model
model.fit(X, Y, epochs=5, batch size=128, callbacks=callbacks)

Note We have not split the data into training and testing data.

We are not interested in the accurate model. As we all know, deep
learning models will require a lot of data for training and take a lot
of time to train, so we are using a model checkpoint to capture all of
the model weights to file. We will use the best set of weights for our
prediction.
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#output

Epoch 1/5
13312/13335

Epoch 00001:

13335/13335
Epoch 2/5
13312/13335

Epoch 00002:

13335/13335
Epoch 3/5
13312/13335

Epoch 00003:

13335/13335
Epoch 4/5
13312/13335

Epoch 00004:

13335/13335
Epoch 5/5
13312/13335

Epoch 00005:

13335/13335

DEEP LEARNING FOR NLP

loss

.] = ETA: 0s - loss: 7.9041

improved from inf to 7.90363, saving model to weights-improvement-01-7.9036.hdf5

loss

improved from

7.90363 to

>

] - 30s 2ms/step - loss: 7.9036

] - ETA: 0Os - loss: 7.1114
7.11067, saving model to weights-improvement-02-7.1107.hdfS5

loss

impreved from

7.11067 to

] - 283 2ms/step - loss: 7.1107

-] = ETA: 08 = loss: 7.0211
7.02179, saving model to weights-improvement-03-7.0218.hdf5

loss

improved from

=
7.02179 to

] - 26s Zms/step - loss: 7.0218

.] - ETA: 0s - loss: 6.9316
6.93116, saving model to weights-improvement-04-6.9312.hdfS

loss

improved from

6.93116 to

] - 265 2ms/step - loss: 6.9312

«] = ETA: 08 - loss: 6.8516
6.85182, saving model to weights-improvement-05-6.8518.hdfE

] - 288 2ms/step - loss: 6.8518

After running the above code, you will have weight checkpoint files

in your local directory. Pick the network weights file that is saved in your

working directory. For example, when we ran this example, below was the

checkpoint with the smallest loss that we achieved with 5 epochs.

# load the network weights

file name =

"weights-improvement-05-6.8213.hdf5"
model.load weights(file name)
model.compile(loss="categorical crossentropy', optimizer="adam")

Step 3-7 Predicting next word

We will randomly generate a sequence of words and input to the model

and see what it predicts.

# Generating random sequence

start = numpy.random.randint(o, len(InputData))
input_sent = InputData[start]

# Generate index of the next word of the email

X = numpy.reshape(input_sent, (1, len(input_sent), 1))
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predict word = model.predict(X, verbose=0)
index = numpy.argmax(predict word)

print(input_sent)
print ("\n")
print(index)

# Output

[9122, 1920, 8187, 5905, 6828, 9818, 1791, 5567, 1597, 7092,
11606, 7466, 10198, 6105, 1837, 4752, 7092, 3928, 10347, 5849,
8816, 7092, 8574, 7092, 1831]

5849
# Convert these indexes back to words

word index rev = dict((i, c) for i, c in enumerate(tokens))
result = word index_rev[index]
sent_in = [word index rev[value] for value in input sent]

print(sent_in)
print ("\n")
print(result)

Result :

['us', 'came', 'use', 'respecthe', 'would', 'us', 'are', 'it',
'you', 'to', 'pray', 'because', 'you', 'do', 'me', 'out', 'youre',
"thk', 'where', 'are', 'mrng', 'minutes', 'long', '500', 'per']
shut

So, given the 25 input words, it's predicting the word “shut” as the next
word. Of course, its not making much sense, since it has been trained on
much less data and epochs. Make sure you have great computation power
and train on huge data with high number of epochs.
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