
T E C H N O L O G Y I N A C T I O N ™

Beginning Robotics
with Raspberry Pi
and Arduino

Using Python and OpenCV
—
Second Edition
—
Jeff Cicolani

Beginning Robotics
with Raspberry Pi

and Arduino
Using Python and OpenCV

Second Edition

Jeff Cicolani

Beginning Robotics with Raspberry Pi and Arduino: Using Python

and OpenCV

ISBN-13 (pbk): 978-1-4842-6890-2		 ISBN-13 (electronic): 978-1-4842-6891-9
https://doi.org/10.1007/978-1-4842-6891-9

Copyright © 2021 by Jeff Cicolani

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 NY Plaza, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6890-2. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Jeff Cicolani
Pflugerville, TX, USA

https://doi.org/10.1007/978-1-4842-6891-9

For Martha, my beautiful and patient wife,
for putting up with random robot parts strewn

about the house, pretty much constantly

v

Table of Contents

Chapter 1: �Introduction to Robotics��1

Robotics Basics��2

Linux and Robotics���3

Sensors and GPIO���4

Motion and Control���5

Raspberry Pi and Arduino��5

Project Overview��7

The Robot���8

Bill of Materials (BOM)��9

Summary���14

Chapter 2: �An Introduction to Raspberry Pi���15

Downloading and Installing Raspberry Pi OS���15

Raspberry Pi OS with OpenCV��16

The “Hard” Way��17

The “Easy” Way��20

Connecting Raspberry Pi��21

About the Author��xi

About the Technical Reviewer��xiii

Introduction���xv

vi

Configuring Your Pi���23

Users��28

Going Headless��30

Remote Access���30

Summary���38

Chapter 3: �A Crash Course in Python���39

Python Overview��41

Downloading and Installing Python��41

Python Tools���42

The Python Shell���43

The Python Editor���44

The Zen of Python���47

Writing and Running a Python Program���48

Hello World���49

Basic Structure���50

Running a Program���53

Programming in Python���54

Variables���54

Data Types��55

A Final Note on Variables��66

Control Structures��67

Functions��73

Adding Functionality Through Modules��77

Classes���83

Styling��91

Summary���93

Table of Contents

vii

Chapter 4: �Raspberry Pi GPIO��95

Raspberry Pi GPIO��95

Pin Numbering��97

Connecting to the Raspberry Pi��98

Limitations of Raspberry Pi’s GPIO���99

Accessing GPIO with Python���100

Simple Output: LED Example��102

Simple Input���108

Summary���118

Chapter 5: �Raspberry Pi and Arduino��119

Raspberry Pi’s GPIO in Review���120

Real-Time or Near-Real-Time Processing��120

Analog Input���121

Analog Output���121

Arduino to the Rescue��122

Using Arduino���124

Installing the Arduino IDE���125

Connecting an Arduino���125

Programming Arduino���126

Sketches���135

A Brief Introduction to the Arduino Language��139

Including Other Files���140

Variables and Data Types��140

Control Structures��145

Working with Pins���153

Table of Contents

viii

Objects and Classes���157

Serial��158

Arduino to Pi and Back Again���162

Pinguino���172

Setting Up the Circuit���173

Summary���176

Chapter 6: �Driving Motors���179

Motors and Drivers���180

Types of Motors��180

Motor Properties���184

Motor Drivers��187

Working with Motor Controllers���187

Adafruit DC & Stepper Motor HAT���188

L298N Generic Motor Driver���208

Summary���219

Chapter 7: �Assembling the Robot��221

Assembling the Chassis���222

Choosing a Material��222

The Whippersnapper��223

Mounting the Electronics���231

Wiring���238

Mounting Sensors��241

The Finished Robot��244

Making the Robot Mobile��245

Summary���258

Table of Contents

ix

Chapter 8: �Working with Infrared Sensors��259

Infrared Sensors��259

Types of IR Sensors��260

Working with IR Sensors��264

Connecting an IR Sensor��264

Mounting the IR Sensors��267

The Code���269

Understanding PID Control���280

Control Loops���280

Implementing the PID Controller��283

Summary���287

Chapter 9: �An Introduction to OpenCV���289

Computer Vision���289

OpenCV���291

Selecting a Camera��297

Installing the Camera���298

OpenCV Basics���299

Working with Images��300

Capturing Images���302

Image Transformations���311

Working with Color���314

Blobs and Blob Detection���320

Ball-Chasing Bot��328

Summary���336

Table of Contents

x

Chapter 10: �Conclusion��337

Types of Robotics���338

Tools���338

Software���339

Hardware��345

Summary���348

�Index��349

Table of Contents

xi

About the Author

Jeff Cicolani currently lives in the Austin,

Texas, area with his wife, two dogs, and

dozen or so robots. He is currently working

as an embedded systems engineer, building

robotic and automated platforms for an AI

(artificial intelligence) company in Austin.

His journey to robotics was circuitous, taking

him through an odd career path that included

systems analysis and design and database

programming. In 2012, he joined The Robot

Group in Austin, where he joined a group of

robotics enthusiasts and began building robots as a hobby. In 2016, he

became president of The Robot Group. In this role, he leads the group in

their mission to promote STEM (science, technology, engineering, and

mathematics) education through robotics. He is currently working to

develop a better understanding of advanced robotics through ROS

(Robot Operating System) and machine learning.  

xiii

About the Technical Reviewer

Massimo Nardone has more than 22 years

of experience in security, web/mobile

development, cloud, and IT architecture. His

true IT passions are security and Android.

He has been programming and teaching

how to program with Android, Perl, PHP, Java,

VB, Python, C/C++, and MySQL for more than

20 years.

He holds a Master of Science degree in

Computing Science from the University of

Salerno, Italy.

He has worked as a project manager, software engineer, research

engineer, chief security architect, information security manager, PCI/

SCADA auditor, and senior lead IT security/cloud/SCADA architect for

many years.

xv

Introduction

Robotics does not have to be difficult. In this book, I introduce you to the

field of robotics. The journey will be challenging; it’s intended to be. But

by the end of the book, you will have hands-on exposure to many of the

fundamental—and not so fundamental—aspects of robotics. You will work

with hardware, assemble and solder a circuit board, write code in two

programming languages, install and configure a Linux environment, and

work with computer vision. Everything else you do with robots will be an

extension of the lessons learned in this book.

�Whom This Book Is For
This book is for those who are new to electronics and IoT, those who have

never used a Raspberry Pi or Arduino separately, let alone together.

This book is for the hobbyist who is interested in learning a little more

about working with robots. Perhaps you’ve built a few circuits with an

Arduino or a custom home entertainment system with a Raspberry Pi, and

now you are curious about what goes into building a robot. You will learn

how these two devices work together to provide very powerful capabilities.

This book is for the entrepreneur who needs to learn more about

technology; someone who doesn’t necessarily have the time to read

through many different books on Arduino, Raspberry Pi, electronics,

or programming; someone who is looking for a broad yet condensed

introduction to some of the fundamentals.

xvi

This book is also for the student who wants to take their robot-building

experience beyond bricks and puzzle-piece programming, someone who

wants to work with hardware and software that more closely resembles

what they might see in college or in the professional world.

No assumptions are made about experience or background in

technology. As you go through the chapters, you may find parts that you

are already familiar with and you can skip ahead. But if you are new to

these topics, I try to provide you with a quick but easy introduction.

�Chapter Overview
You start by learning about the Raspberry Pi and how to work with it.

You download and install the Raspbian operating system (OS) and then

configure the Pi for our project. The goal is to set up your system to be able

to easily access your robot and write your code directly on it.

Once you are able to access your Pi remotely, in Chapter 3, you delve

into programming with Python. I show you how to write simple programs

on the Raspberry Pi. I also take you beyond the basics and cover some

intermediate topics, such as modules and classes. This is one of the longest

chapters since there is a lot of material to cover.

From there, you learn how to interface the Raspberry Pi with external

electronics, such as sensors and LEDs, through the Pi’s GPIO (general-

purpose input/output) header. Chapter 4 discusses the different ways

of addressing the pins on the header, some of the functionality exposed

through the header, and how to use an ultrasonic rangefinder to detect

objects. This gets you ready for the next chapter, which introduces the

Arduino.

In Chapter 5, you connect the Arduino to the Raspberry Pi. I discuss

some of the reasons you want to do this. I show you how to work with the

Arduino IDE (integrated development environment) to write programs.

Introduction

xvii

I cover serial communication between the two boards and how to pass

information back and forth between them. We do this using the same

ultrasonic rangefinder used in the previous chapter.

Chapter 6 has you turning motors with your Raspberry Pi. You use a

special board called a hat, or plate, to control the motors. This is where I

introduce another skill that you will inevitably need in robotics: soldering.

The header and terminals need to be soldered onto the board that was

selected for this purpose. The nice thing about soldering headers and

terminal blocks is that it’s hard to damage anything, and you will get plenty

of practice.

Chapter 7 is where we bring it all together. You build the robot, and I

discuss some of the physical characteristics of robotics. I cover some of

the design considerations that you will need to keep in mind when you

design your own chassis. Although I am listing a specific chassis kit for this

project, you do not need to use the same one. In fact, I encourage you to

explore other options to find the one that is right for you.

In Chapter 8, I introduce another type of sensor—the IR sensor—and

I show you how to use a very common control algorithm called a PID

(proportional, integral, and derivative) controller. I talk about the various

types of IR sensors and where you want to use them. This chapter also

discusses what PID control is and why you want to use it.

Chapter 9 is about computer vision, where you see the true power of

the Raspberry Pi. In this chapter, I cover an open source package called

OpenCV. By the end of this chapter, your little robot will be chasing a ball

around the table.

I leave you with some parting thoughts in Chapter 10. I provide a few

tips that I picked up, and I give you a glimpse into my workflow and tools.

After that, you will be ready to begin your own adventures in robotics.

Introduction

xviii

�Second Edition Notes
This book has been updated for the Raspberry Pi 4. In updating the board,

I also updated to the most recent version of the OS. Since the writing of the

first edition, there were several changes in downloading the OS, now called

Raspberry Pi OS, as well as changes in the installation.

The motor controller libraries have been updated to the newer Adafruit

MotorKit libraries. This means there have been updates to the motor driver

code. These changes do make the board easier to use.

Introduction

1© Jeff Cicolani 2021
J. Cicolani, Beginning Robotics with Raspberry Pi and Arduino,
https://doi.org/10.1007/978-1-4842-6891-9_1

CHAPTER 1

Introduction
to Robotics
The word robotics can mean a lot of things. For some people, it is anything

that moves by itself; kinetic art is robotics. To other people, robotics means

something that is mobile or something that can move itself from place to

place. There is actually a field called mobile robotics; automatic vacuum

cleaners, such as a Roomba or a Neato, fall into this category. To me,

robotics falls somewhere in between kinetic art and mobile robotics.

A robot is technology that applies logic to perform a task in an

automated manner. This is a fairly broad definition, but robotics is a fairly

broad field. It can cover everything from a child’s toy to the automatic

parallel parking capabilities in some automobiles. We build a small mobile

robot in this book.

Many of the principles that you are exposed to in this book are easily

transferable to other areas. In fact, we will go through the entire process

of building a robot from beginning to end. A little later in this chapter, I go

over the project that we will build. At that time, I will provide a list of the

parts used in this book. These parts include sensors, drivers, motors, and

so forth. You are welcome to use whatever you have on hand because, for

the most part, everything we go through in this book can be applied to

other projects.

https://doi.org/10.1007/978-1-4842-6891-9_1#DOI

2

�Robotics Basics
I like to tell people who are new to robotics, or are just robotics curious,

that a robot consists of three elements:

•	 The ability to gather data

•	 The ability to process or do something with the

gathered data

•	 The ability to interact with the environment

In the following chapters, we apply this principle to build a small

mobile robot. We will use ultrasonic rangefinders and infrared sensors

to gather data about the environment. Specifically, we will identify when

there is an object to be avoided, when we are about to drive off the edge of

a table, and the contrast between the table and the line that we will follow.

Once we have this data, we will apply logic to determine the appropriate

response.

We will use Python in a Linux environment to process the information

and send commands to our motors. I chose Python as the programming

language because it is easy to learn and you don’t have to have a complex

development environment to build some pretty complex applications.

Our interaction with the environment will be simply to control the

speed and direction of motors. This will allow our robot to move about

freely on the table or floor. There really isn’t much to driving a motor.

We will look at two ways of doing it: with a motor driver made for the

Raspberry Pi and with a common motor controller.

This book is intended to be challenging. I cover some pretty complex

material and I do it quickly. There is no way that I can provide detailed

coverage on any of these topics, but I hope to get you to a functional robot

by the end of the book. In each chapter, I try to provide you with more

resources to follow up on the topics discussed. You will struggle at times;

I did and I frequently still do.

Chapter 1 Introduction to Robotics

3

Not everyone will be interested in all the subjects. The expectation is

that you will expand on the areas that interest you the most outside of this

book. Persistence pays off.

At the end of the book, I add a little more challenge. In Chapter 9, we

begin leveraging the real power of the Raspberry Pi. We look at computer

vision. Specifically, we look at an open source package called OpenCV

(CV stands for computer vision). It is a common and very powerful

collection of utilities that make working with images and video streams

very easy. It’s also a six-hour build on the most recent version of the

Raspberry Pi. To make things a little easier and a lot less time-consuming,

I have available for download a version of the operating system with

OpenCV already installed. I discuss this more in Chapter 2.

�Linux and Robotics
Linux is a Unix-based operating system. It is very popular with

programmers and computer scientists because it’s simple and

straightforward. They seem to enjoy the text-based interface of the

terminal. Yet, for many others, including me, Linux can be very

challenging. So why in the world would I choose this environment for an

introduction-to-robotics book? The answer to that question is threefold.

First, when you work with robotics, you eventually have to confront

Linux. That’s just a fact. You can do a lot without ever typing a single sudo

command, but you will have limited capabilities. The sudo command

stands for super user do in Linux. This tells the operating system that you

are about to perform a protected function that requires more than general

user access. You will learn more about this when we begin working with

the Raspberry Pi.

Second, Linux is challenging. As I stated before, this book will

challenge you. If you have worked in Linux before, then this reason

doesn’t apply to you. However, if you are new to Linux, the Raspberry Pi,

Chapter 1 Introduction to Robotics

4

or working in a command line, then some of the things that we do will be

challenging. And that’s good. You’re learning something new and it should

be a challenge.

Third, and this is by far the most important, the Raspberry Pi uses

Linux. Yes, you can install other operating systems on the Pi, but it was

designed and intended to use Linux. In fact, the Raspberry Pi has its

own flavor of Linux called Raspbian. This is the recommended operating

system, so it is what we’ll use. One of the nice things about using a prebuilt

operating system, besides its ease of use, is many of the tools are already

installed and ready to go.

Since we are using Linux, we will use command-line instructions

extensively. This is where most new users have problems. Command-line

code is entered via a terminal. Raspbian has a Windows-style interface

that we will use, but much of it uses the terminal. A terminal window

is available in the graphical user interface (GUI), so we will use that.

However, when we set up the Pi, we will set it up to boot into terminal

mode by default. Getting to the GUI is only a simple startx command.

All of this is covered in Chapter 2.

�Sensors and GPIO
GPIO stands for general-purpose input/output. It represents all the various

connections to devices. The Raspberry Pi has a lot of GPIO options: HDMI,

USB, audio, and so forth. However, when I talk about GPIO in this book, I’m

generally referring to the 40-pin GPIO header. This header provides direct

access to most of the board’s functionality. I discuss this in Chapter 2.

Arduino also has GPIO. In fact, one could argue that Arduino is all

GPIO and nothing else. This isn’t far from the truth given that all the other

connections are there to allow you to communicate with and power the

AVR chip at the heart of the Arduino.

Chapter 1 Introduction to Robotics

5

All of these headers and GPIO connections are there so we can access

sensors outside the boards themselves. A sensor is a device that gathers

data. There are many different types of sensors, and all serve a purpose.

Sensors can be used for detecting light levels, the range to an object,

temperature, speed, and so forth. In particular, we will use GPIO headers

with an ultrasonic rangefinder and an IR detector.

�Motion and Control
One thing that most definitions of a robot have in common is that it needs

to be able to move. Sure, you can have a robot that doesn’t actually move,

but this type of device generally falls under the moniker of IoT, the Internet

of Things.

There are many ways to add motion to your project. The most common

is the use of motors. But you can also use solenoids, air, or water pressure.

I discuss motors more in Chapter 6.

Although it is possible to drive a motor directly off a Raspberry Pi

or an Arduino board, it is strongly discouraged. Motors tend to draw

more current than the processors on the boards can handle. Instead,

it is recommended that you use a motor controller. Like motors, motor

controllers come in many forms. The motor control board that we will use

is accessed through the Raspberry Pi’s header. I also discuss how to drive

motors with an L298N dual motor controller.

�Raspberry Pi and Arduino
We will use a Raspberry Pi (see Figure 1-1) in conjunction with an Arduino

(see Figure 1-2) as our robot’s processing platform.

Chapter 1 Introduction to Robotics

6

The Raspberry Pi is a single-board computer that is about the size of

a credit card. Despite its small size, it is a very capable device. The Pi runs

a version of Linux that was customized to work on the ARM processor

that drives it. This puts a lot of functionality into a small device that is

easy to embed into things like robots. But, although it is a great computer,

Figure 1-1.  Raspberry Pi 3 B+

Figure 1-2.  Arduino Uno

Chapter 1 Introduction to Robotics

7

there are a few places where it does not excel. One area is interfacing with

external devices. It can work with sensors and external devices, but the

Arduino does this much better.

Arduino is another small processing device that is readily available and

easy to use. Unlike a Raspberry Pi, however, it does not have the capacity

for a full operating system. Rather than running a microprocessor like the

ARM, it uses a different type of chip called a microcontroller. The difference

is that a microcontroller is specifically designed to interact with sensors,

motors, lights, and all kinds of devices. It directly interacts with these

external devices. The Pi works through many layers of processing before it

ever reaches the pins that a device is connected to.

By combining the Raspberry Pi and the Arduino, we are able to

leverage what each does best. The Raspberry Pi offers the high-level

processing power of a full computer. Arduino provides the raw control over

external devices. The Pi allows us to process a video stream from a simple

USB camera, whereas the Arduino allows us to gather the information

from the various sensors and apply logic to make sense of all that data and

then return concise findings to the Pi.

You will learn more about the Raspberry Pi in Chapter 2. Later on, you

will connect an Arduino to the Pi and learn about programming it, as well

as how to pass information back and forth between the Arduino and the Pi.

�Project Overview
In this book, we will build a small mobile robot. The robot is designed to

demonstrate the lessons that you learn in each chapter. However, before

we can actually build the robot, we need to cover a lot of material and lay

the foundation for future lessons.

Chapter 1 Introduction to Robotics

8

�The Robot
The robot that we will build is a small two- or four-wheeled autonomous

rover. It will be able to detect obstacles and the edge of a table and to

follow a line. The chassis that I selected is a four-wheeled robot, but there

are other designs suitable for this project (see Figures 1-3 and 1-4).

Figure 1-3.  The front of our robot shows the ultrasonic sensors and Pi
T-Cobbler on a breadboard

Figure 1-4.  The back of our robot shows the Raspberry Pi and motor
control board

Chapter 1 Introduction to Robotics

9

Although I provide a list of the parts that I used for the project, you are

welcome to use whatever parts you wish. The important thing is that they

behave in a similar manner as those I have listed.

�Bill of Materials (BOM)
For the most part, I tried to keep the list of materials as generic as possible.

There are a couple of items that are vendor specific. I chose them because

they provide a lot of functionality and convenience. The DC & Stepper

motor controller and the Pi T-Cobbler are from an online retailer called

Adafruit, which is a great resource for parts, tutorials, and inspiration.

The chassis kit is from an online retailer called ServoCity, which produces

many mechanical parts for robotics.

The following are the specialty parts (shown in Figure 1-5) that we use

in this book:

•	 Junior Runt Rover robot chassis from ServoCity.com

•	 Adafruit DC & Stepper Motor HAT for Raspberry

Pi – Mini Kit, PID 2348

•	 GPIO Stacking Header for Pi A+/B+, Pi 2, Pi 3 – Extra-

long 2 × 20 pins, PID 2223 (allows the use of additional

plates and the Cobbler to attach to the breadboard)

•	 Assembled Pi T-Cobbler Plus (GPIO Breakout) – Pi A+/B+,

Pi 2, Pi 3, Pi Zero; PID 2028

Chapter 1 Introduction to Robotics

10

The following parts (shown in Figure 1-6) are fairly generic and can be

purchased from most vendors:

•	 Raspberry Pi 4 Model B – 4 G RAM

•	 Arduino Uno

•	 4 × AA battery holder with on/off switch (powers the

motors)

•	 USB battery pack – 2200 mAh capacity, 5 V 1 A output,

PID 1959 (powers the Raspberry Pi)

•	 Half-size breadboard

•	 Ultrasonic sensors – HC-SR04

Figure 1-5.  Runt Rover chassis parts and the Pi T-Cobbler, ribbon
cable, motor control hat, and extended header

Chapter 1 Introduction to Robotics

11

You may want to get a few of these. As you will discover, ultrasonic

sensors are unreliable at angles, and it is good to have an array of them.

I use at least three on most of my projects.

•	 A collection of jumper wires (see Figure 1-7)

You need both male-to-male jumpers and maleto-female jumpers.

It is a good idea to get them in a number of colors. Black and red are used

for powering your devices. A collection of other colors helps you make

sense of your circuits. Fortunately, you can get jumpers of all types made

out of a multicolored ribbon cable.

•	 USB cables for your Arduino

•	 A micro USB cable for your Raspberry Pi

•	 A common USB phone charger, preferably one for a

modern smartphone or tablet that can provide 2 amps

of power

•	 An HDMI TV or computer monitor

Most computer monitors do not have HDMI ports on them. You can

get HDMI-to-DVI converters that allow you to use your existing monitor,

however.

•	 A USB keyboard and mouse (I like the Logitech K400

wireless keyboard and touchpad combination, but

there are countless options out there)

•	 A network-connected computer

•	 Wi-Fi or Ethernet cable for the Pi

Chapter 1 Introduction to Robotics

12

Figure 1-6.  Common parts: Raspberry Pi, Arduino Uno, ultrasonic
sensor, battery holder, and breadboard

Figure 1-7.  Jumpers in ribbon cable form. Pull off what you need

Chapter 1 Introduction to Robotics

13

You don’t need to get fancy with the monitor and keyboard. Once you

read Chapter 2, where we install and configure the Raspberry Pi, you no

longer need them. I have a couple of the wireless keyboards because I

usually have several projects going at once. For a monitor, I simply use one

of my computer monitors with an HDMI-to-DVI adapter.

If you are not using a chassis kit with motors and wheels included, you

also need the following parts (see Figure 1-8):

•	 Hobby gearmotor – 200 RPM (pair)

•	 Wheel – 65 mm (rubber tire, pair)

If you do not want to use the Adafruit DC & Stepper Motor HAT, you

can also use virtually any motor controller, although each one has a

different interface and code. A common and fairly popular option is the

L298N dual motor controller (see Figure 1-9).

Figure 1-8.  DC geared motor and wheels

Chapter 1 Introduction to Robotics

14

There are a few other supplies that I keep around because they are

used in virtually every project. In Chapter 7, we assemble the robot; you’ll

also need double-sided foam mounting tape, 4-inch zip ties, and self-

adhesive Velcro. As you continue in robotics, you’ll find yourself turning to

these items a lot. In fact, you may want to stock up on various sizes of zip

ties. Trust me.

�Summary
Getting started in robotics does not need to be difficult. It is challenging,

however. This book is an introduction to a few of the skills that you need

to develop if you are to succeed in this field. The robot that we build

introduces you to the Raspberry Pi, Linux, Arduino, sensors, and computer

vision. These skills easily scale into larger robot and other similar projects.

Figure 1-9.  The L298N dual motor controller module comes in
numerous varieties, but essentially they work the same

Chapter 1 Introduction to Robotics

15© Jeff Cicolani 2021
J. Cicolani, Beginning Robotics with Raspberry Pi and Arduino,
https://doi.org/10.1007/978-1-4842-6891-9_2

CHAPTER 2

An Introduction
to Raspberry Pi
The purpose of this book is to challenge you to build a simple robot that

will be expanded over time. This book is intended to be difficult; however,

it isn’t too difficult or unnecessarily complicated. You’ll experience plenty

of complications along the way, but the installation of the operating system

on your Raspberry Pi does not need to be one of them.

�Downloading and Installing Raspberry Pi OS
There are, essentially, two methods of installing the operating system (OS)

on your Pi.

The first involves downloading the latest Raspberry Pi OS image,

writing it to an SD card, and going from there. This method requires the

installation of a third-party software package that writes a bootable image

on an SD card. The advantage is that it takes less room on your SD card.

If you’re using a minimum 8 GB SD card, this may be helpful; if you went

bigger, then this consideration is moot.

While the direct installation is not all that complicated (rather easy

actually), there’s an easier way that involves installing minimal software

on your system. Raspberry Pi Imager is designed to make the installation

and configuration of your Raspberry Pi easier. It allows you to select from

multiple operating systems and simply install.

https://doi.org/10.1007/978-1-4842-6891-9_2#DOI

16

In the end, the choice is yours. I’ll go over both options so you can choose

the installation path which works best for you. No matter which option you

choose, your journey begins on the Raspberry Pi OS download page at www.

raspberrypi.org/software/operating-systems/ (see Figure 2-1).

�Raspberry Pi OS with OpenCV
Toward the end of this book, we will work with computer vision to

show you why you should use a Raspberry Pi rather than a less capable

platform. In order to do that, however, you need to install OpenCV on your

Pi. Previously, there was no simple OpenCV installer for the Raspberry

Pi. Now there is a simple method for installing OpenCV entirely within

Python. But don’t worry about that now. We’ll be covering Python in

Chapter 3 and OpenCV in Chapter 9.

Figure 2-1.  Raspberry Pi OS download screen

Chapter 2 An Introduction to Raspberry Pi

http://www.raspberrypi.org/software/operating-systems/
http://www.raspberrypi.org/software/operating-systems/

17

�The “Hard” Way
The more difficult method installs the Raspberry Pi OS image directly on

the SD card—ready to boot up. This is the method that I use because it

really isn’t any more complicated than the other method and it allows me

to use versions that are not available through Raspberry Pi Imager.

You have two options for your Raspberry Pi OS installation. The first

option is Raspberry Pi OS with PIXEL, their optimized GUI. It is a 2.5 GB

download, and it is a 7.1 GB image once it’s been decompressed. The

second option is Raspberry Pi OS Lite, a minimal image that is a much

smaller 435 MB download (1.8 GB after decompression). However,

minimal means no GUI, so everything is done via the command line. If

you’re a fan of headless Linux, then this is the option for you. We will use

the larger install with PIXEL.

If you have a BitTorrent client installed, click Download Torrent. This is

much faster than downloading the .zip file.

	 1.	 Navigate to www.raspberrypi.org/software/

operating-systems/.

	 2.	 Select the Raspberry Pi OS version that you want to

install and click Download. I selected Raspberry Pi

OS with desktop and recommended software. This

will have the IDEs for Python and Arduino we will

need later.

	 3.	 Once the download is complete, decompress the file

somewhere you’ll easily find it.

	 4.	 Download and install Win32 Disk Imager. This

allows you to write the image file that you just

downloaded to the micro SD card. You can get

it at https://sourceforge.net/projects/

win32diskimager/.

Chapter 2 An Introduction to Raspberry Pi

http://www.raspberrypi.org/software/operating-systems/
http://www.raspberrypi.org/software/operating-systems/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/

18

	 5.	 Optionally, you may also want to download

SDFormatter to make sure that your SD card is

properly prepared. You can get it at www.sdcard.

org/downloads/formatter_4/.

	 6.	 Insert your micro SD card into the card reader

connected to your computer.

	 7.	 If you have downloaded and installed SDFormatter,

open it. You should see a dialog box similar to the

one shown in Figure 2-2.

Figure 2-2.  SD Card Formatter

Chapter 2 An Introduction to Raspberry Pi

http://www.sdcard.org/downloads/formatter_4/
http://www.sdcard.org/downloads/formatter_4/

19

	 8.	 Make sure that you select the drive representing

your SD card. You’re about to format it, so if you

select the wrong thing, it will wipe out whatever you

have on that drive. The tool usually selects the right

one by default, but double-check. It would be wise

to disconnect any other external storage devices.

	 9.	 Make sure that Format size adjustment is set to On.

This removes any other partitions on the card and

uses the whole thing. Leave all the other settings at

the default.

	 10.	 Click Start. When the process finishes, you’re ready

to install the OS.

	 11.	 To flash the image to the SD card, open Win32 Disk

Imager.

	 12.	 In the image file field, select the Raspberry Pi OS

image that you downloaded. You can click the file

folder icon to navigate to it.

	 13.	 Make sure that your SD card is selected in the device

drop-down box. Again, selecting the wrong device

can lead to a world of hurt; so pay attention.

	 14.	 Click Write.

	 15.	 Once the process has completed, remove the card

from your card reader.

	 16.	 Insert the card into the micro SD card reader on the

Raspberry Pi.

That sounds lengthy, but it is remarkably fast and easy to do. Next, let’s

walk through the NOOBS installation process.

Chapter 2 An Introduction to Raspberry Pi

20

�The “Easy” Way
I call this method the “easy” way, although the hard way is actually pretty

easy. What makes this easy is the imager does all the work for you. You will

probably want to format the card, but if it’s a new card, that may not be

necessary.

You have the same two options as the “hard” method: Raspberry Pi OS

or Raspberry Pi OS Lite.

	 1.	 Click the Raspberry Pi Imager for your operating

system on the download page. I selected the

Windows installation.

	 2.	 Optionally, you may also want to download

SDFormatter to make sure that your SD card is

properly prepared. You can get it at www.sdcard.

org/downloads/formatter_4/.

	 3.	 If you downloaded and installed SDFormatter,

open it.

	 4.	 Make sure that you select the drive representing

your SD card. You’re about to format it, so if you

select the wrong thing, it will wipe out whatever you

have on that drive. The tool usually selects the right

one by default, but double-check. It would be wise

to disconnect any other external storage devices.

	 5.	 Make sure that Format size adjustment is set to On.

This removes any other partitions on the card and

uses the whole thing. Leave all the other settings at

the default.

	 6.	 Click Start. When the process has finished, you’re

ready to install the OS.

Chapter 2 An Introduction to Raspberry Pi

http://www.sdcard.org/downloads/formatter_4/
http://www.sdcard.org/downloads/formatter_4/

21

	 7.	 Install Raspberry Pi Imager and open it.

	 8.	 Select your Raspberry Pi OS flavor, if you have.

	 9.	 Select the SD card.

	 10.	 Click “Write.”

	 11.	 Remove the card from your card reader.

	 12.	 Insert the card into the micro SD card reader on the

Raspberry Pi.

The installation should be complete.

�Connecting Raspberry Pi
Now that your micro SD card is ready to go, you need to hook up your

Raspberry Pi. If you’re using an original, first-generation Pi, this is a little

more complicated.

Every model after the original, however, includes multiple USB ports

and an HDMI connector to make things easier. Hooking up the Pi is very

simple.

	 1.	 Connect your monitor via the micro HDMI port. If

you are using a small television that is outfitted with

component hookups rather than HDMI, the audio

jack on the Pi is a four-pole component jack. You

need an RCA-to-3.5 mm converter, usually in cable

form, to do this.

	 2.	 Connect your keyboard and mouse to the USB ports.

I use a wireless keyboard/touchpad combination

because it’s compact and portable.

Chapter 2 An Introduction to Raspberry Pi

22

	 3.	 Make sure that your micro SD card with Raspberry

Pi OS is installed in the micro SD port on the Pi.

Essentially, this is the hard drive for your small

computer, so it has to be in the right place. It will not

read the OS through an SD card reader connected to

one of the USB ports.

	 4.	 If you are using an Ethernet cable, connect it to the

Ethernet port. You may also plug a Wi-Fi dongle to

the USB port. If you are using a Pi 3 or newer, as I

am, Wi-Fi is built in.

	 5.	 Connect the 5 V power to the micro USB port. This port

is only for power. You cannot access the board via USB.

That’s it. Your Raspberry Pi should look similar to what’s shown in

Figure 2-3. The Pi should be booting on your monitor.

Figure 2-3.  Raspberry Pi 3 connections

Chapter 2 An Introduction to Raspberry Pi

23

�Configuring Your Pi
The first time you boot up your Pi, it will do a couple things. First, it will

automatically expand the file system to take advantage of the entire SD

card. It will then reboot to the GUI. Once there, the OS will walk you

through a configuration wizard that will, among other things, set your

location, prompt for a new password, and connect to your Wi-Fi. Much of

the configuration used to be managed through a terminal program called

raspi-config. In the current version of the Raspberry Pi OS, this is handled

through this configuration wizard and the preferences tool, both accessed

through the GUI. Figure 2-4 shows the Raspberry Pi at initial start with the

configuration wizard.

The configuration wizard will walk you through personalizing your Pi.

Once the initial configuration is complete, we’ll be using the configuration

tool to make a few more changes. But, first, let’s get your Pi set up.

Figure 2-4.  Initial start screen

Chapter 2 An Introduction to Raspberry Pi

24

	 1.	 Set your location. Select your country, language, and

time zone. Be sure to click the two checkboxes at the

bottom and click Next.

	 2.	 Now we will change the default user password.

By default, the password is “raspberry.” Default

passwords are not safe, so you’ll want to change this.

	 3.	 Next, we set up the screen. On some setups, there

will be a thick black border around the desktop. If

you see this border, click the checkbox and then

Next.

	 4.	 The next two screens are for connecting to your

local Wi-Fi. You will select your network on this

screen and provide the password on the next.

	 5.	 The final step in this process is to update the

software. This will take a few minutes once it’s

kicked off, so it may be a good time to grab a coffee.

	 6.	 Once the software is updated, you will need to

restart for the changes to take place. It’s a good idea

to do it now, though you may choose to defer the

reboot until after the next step in configuration.

Chapter 2 An Introduction to Raspberry Pi

25

We’re not done with the configuration just yet. Now we will make a

couple changes to customize your installation and prepare it for future use.

We’ll be changing the hostname, change the boot process, and enable SSH,

VNC, and I2C.

The hostname is how your Raspberry Pi appears on the network. You’ll

want to give your Pi a unique name, especially when you consider how

many of them may be on the network at any given time. The hostname

should be both meaningful to the application and unique. This becomes

particularly important when you’re in a room with 20 other Raspberry Pis.

SSH allows us to access the Pi through a terminal window (SSH

client) from another computer. On Windows, PuTTY is a very popular,

free SSH client. SSH does not provide a GUI. All interactions are made

using terminal commands. This is helpful if you want to quickly execute a

program, install software, and so forth. As you become more familiar with

the terminal, you will likely find yourself using SSH to connect for simple

commands while reserving VNC (remote desktop) for more involved tasks

such as writing programs.

Figure 2-5.  Raspberry Pi Configuration

Chapter 2 An Introduction to Raspberry Pi

26

I2C is a serial communications protocol that is very popular in

embedded systems such as the Pi, Arduino, and so forth. It allows for

robust communication with multiple devices by using a number of pins.

The motor control board that we will use communicates via I2C. (If you

later choose to add other boards, such as a servo control board, it will also

use I2C.) As long as the devices have different addresses, you can keep

stacking them.

Because we also plan to use the Raspberry Pi headless (without a

monitor, keyboard, or mouse attached), let’s set it up to boot into the

console automatically. Don’t worry; it’s easy enough to launch the desktop

GUI when you want to, as you will see.

	 1.	 Click the Raspberry logo at the top left of the

desktop. This will open the main menu. For you

Windows users, this is essentially the Start menu.

	 2.	 Click Preferences and then Raspberry Pi

Configuration. It should open a window that looks

like Figure 2-5.

	 3.	 On the System tab, change the hostname to

something unique.

	 4.	 Next, you will click Change Password to update the

password, again. At the time of writing this book, the

changes made in the wizard did not stick, so you’ll

need to do it here as well.

	 5.	 Change the “boot” setting to CLI. This will boot the

Pi without the GUI. Since we’ll be setting up remote

desktop, we won’t want to load the GUI here.

If you need to load the GUI from the Pi, you can use

the startx command after you’ve logged in.

Chapter 2 An Introduction to Raspberry Pi

27

	 6.	 Disable auto login. This is a security concern and,

since we’re not logging on to the Pi directly, auto

login is unnecessary.

	 7.	 On the Interface tab, you will want to enable SSH,

VNC, and I2C. These three protocols are what we’ll

be using to connect remotely to the Pi and allow the

connection to the Motor HAT, later.

	 8.	 Click OK to save these changes.

At this point, your Pi reboots. This may take a few minutes, especially if

you did not install via NOOBS and the Pi has to expand your file system.

Remember, we set up the Pi to boot into the console by default. Since

the next few steps are all done via the command line, we’ll not need to load

the GUI. However, let’s do it anyway so that you can see how easy it is.

	 1.	 Type startx and press Return.

You’re now in the GUI desktop. To exit the desktop, do the following:

	 1.	 Click the programs menu (the raspberry in the

upper-left corner).

	 2.	 Click Logout. This will display the Shutdown options

dialog box (Figure 2-6).

	 3.	 Select Exit to command line.

You should now be back to the command line.

Figure 2-6.  Shutdown options

Chapter 2 An Introduction to Raspberry Pi

28

�Users
The default user on every installation of Raspberry Pi OS is pi. Earlier, we

changed the password to make it more secure. However, you probably

don’t want to always log on as the pi user.

Remember when I said we’d start using the terminal more? Well, that

starts now. The easiest way to create and manage users is through the

command line. We’re going to walk through that process now.

�Securing Root

In addition to the default user, pi, there is another default user on the Pi.

This is the root user. The root user is, essentially, an administrative user

that is used by the machine to execute low-level commands. This user has

access to everything and can do anything because, well, it’s the machine.

Unlike the default pi user, however, root does not have a default password.

It has no password.

So, while we’re configuring and securing the computer for our robot,

let’s go ahead and give the root user a password.

	 1.	 Open a terminal window.

	 2.	 Type sudo passwd root. (Note that passwd is the

proper command and not a typo.)

	 3.	 Enter the new password for the root user.

	 4.	 Enter the password again to confirm.

Your root user is now secured, which is good because you’ll need it for

the next step in the configuration.

�Change the Default Username

The first thing you’re going to do is change the default username to

something of your choosing. What this will do is replace the username pi

with your own username. This provides another layer of security on the

Chapter 2 An Introduction to Raspberry Pi

29

device; now, not only would someone need to figure out the password

but they wouldn’t even have the default username to work with. It also

preserves some of the special, undocumented permissions that the default

user is given.

	 1.	 Log out of the pi user. You can do this through the

menu system or by simply typing logout in a terminal.

	 2.	 Log on with your—now secure—root user.

	 3.	 Type

usermod -l <newname> pi

<newname> is the new username that you chose.

Do not include < or > in the command.

	 4.	 To update the home directory name, type

usermod -m -d /home/<newname> <newname>

Again, <newname> is the new username that you

used in the previous step.

	 5.	 Log out of the root user and log back in with your

new username.

At this point, you have changed the default user credentials for both

the default user and the root user. You have also changed the hostname.

This is the minimum needed to secure your Pi and your robot.

Your Raspberry Pi is now set up, configured, and ready for use. There

is one more thing we’re going to want to do before we move on to the next

chapter, and that is setting up your Pi to be headless.

Making a machine “headless” simply means configuring it so you no

longer need to connect a monitor, a keyboard, and a mouse to it to operate

it. This is generally done in two ways: with a KVM switch or by setting

up remote access. On a mobile robot, connecting a KVM is not really an

Chapter 2 An Introduction to Raspberry Pi

30

option. In fact, it would be a little different from simply having everything

connected to it. What we want to do is set up the Pi so that we can access it

remotely over the network. But first, let’s make sure that you’re connected

to your network.

�Going Headless
You’re not going to want to haul around an extra monitor, keyboard, and

mouse while working through these workshops. To make your life much,

much easier, let’s set it up so you can access the Pi headless.

�Remote Access
There are two ways to get remote access. One method is to use SSH, which

allows you to connect to a remote device using a terminal client. The other

method is to set up a remote desktop.

�Remote Desktop with xrdp

Let’s start with accessing the desktop remotely from another computer.

The following instructions are for Windows users. Most modern Windows

installations come with Remote Desktop Connection already installed,

which is what we’ll use to connect to the Pi once it’s set up.

Let’s install a couple of services on the Pi: tightVNCserver and xrdp.

Theoretically, xrdp should install the VNC server all on its own. In

actuality, it does not. At this point, you should be at the command line on

your Pi.

	 1.	 Type sudo apt-get install tightvncserver.

	 2.	 Complete the installation.

	 3.	 Type sudo apt-get install xrdp.

Chapter 2 An Introduction to Raspberry Pi

31

When the installation is complete, you should be

ready to go.

To get connected, do the following:

	 4.	 On the Pi, type sudo ifconfig.

	 5.	 Note the Internet address (inet addr) in the eth0

block if you are using an Ethernet cable or the wlan0

block for Wi-Fi.

	 6.	 On your laptop, open Remote Desktop Connection.

This displays the connection dialog box, as shown in

Figure 2-7.

	 7.	 Enter the inet addr from your Pi.

	 8.	 Click Connect.

Figure 2-7.  Windows Remote Desktop Connection

Chapter 2 An Introduction to Raspberry Pi

32

You should see the remote desktop screen with the

xrdp login form (see Figure 2-8).

	 9.	 Enter your username and password.

	 10.	 Click OK. This opens the desktop from your Pi

(see Figure 2-9).

Figure 2-8.  XRDP remote desktop login screen

Chapter 2 An Introduction to Raspberry Pi

33

As long as the IP address of your Pi doesn’t change, you no longer need

the keyboard, mouse, or monitor to use your Pi.

�SSH with PuTTY

The most common SSH client is probably PuTTY. It’s free to use and can

be downloaded from www.chiark.greenend.org.uk/~sgtatham/putty/

download.html.

Figure 2-9.  Default Raspberry Pi OS desktop viewed through a
remote desktop session

Chapter 2 An Introduction to Raspberry Pi

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

34

The file you downloaded for PuTTY is an executable, which won’t need

to be installed. Put it on your desktop or somewhere easy to find. To get

connected, do the following:

	 1.	 Open the PuTTY interface (see Figure 2-10).

	 2.	 Enter your Raspberry Pi’s IP address.

	 3.	 Click Open.

	 4.	 You will likely get a security warning, as shown in

Figure 2-11, but we know that this is the proper

connection, so click Yes.

Figure 2-10.  PuTTY configuration window

Chapter 2 An Introduction to Raspberry Pi

35

A terminal window opens, asking for your username

and password.

	 5.	 Enter your username and password. You should

now see the terminal prompt, as shown in

Figure 2-12.

Figure 2-11.  Security warning on first SSH connection with
PuTTY

Chapter 2 An Introduction to Raspberry Pi

36

That’s it. You are now connected via SSH to your Raspberry Pi. You

can have multiple connections going at once, but don’t have more than

you need to. Multiple connections are handy when you’re working with

something like the Robot Operating System (ROS). (Don’t worry; that’s

a ways away.) ROS runs multiple programs via the terminal. Each one

requires its own terminal window. With PuTTY, you’re able to have as

many remote terminal connections as you need.

�Finding Your Device on a Network

To access your Pi remotely, you need to know its IP address on the

network. Generally, a network switch retains a device’s IP from session to

session; however, this isn’t guaranteed.

Finding your device’s IP address on the network can be tricky. If you

are at home and have access to your router’s admin panel, this is probably

the most straightforward way to find your device. Simply log on to your

Figure 2-12.  Open SSH connection

Chapter 2 An Introduction to Raspberry Pi

37

router, find the list of connected devices, and scroll down until you find the

hostname of your Raspberry Pi.

If you need to find the IP address but are away from home, there are a

few ways to do it. The easiest is to use an Nmap app on your phone. I use

an app called Fing on my Android phone. Once the phone is connected to

the local Wi-Fi network, the app scans the network and lists all the other

devices on that network. You can just scroll down the list until you find

your hostname.

If the network is new to you, your Raspberry Pi will not automatically

connect to it. This situation makes it a little tricky. To make things easier,

be prepared before you go out. I am a Windows user; if you are not, you

need to look up the proper procedure for your OS. I do this operation with

the laptop I have when traveling. It allows me to remote into the Pi long

enough to connect to the local Wi-Fi and get the wlan0 IP address.

Keep in mind that the IP is assigned by the laptop. The IP you get at the

end of this operation will likely not work from any other machine.

On a Windows 7 or later machine, you can perform the following steps

to remote into your Pi directly to get its IP address. Make note of the IP

address should you ever need to connect directly to the Pi to set up a new

Wi-Fi connection. You will need a short Ethernet cable, which should be

added to your kit or toolbox.

Make sure that you are able to view your Raspberry Pi with a monitor,

keyboard, and mouse set up or through a remote connection via your Wi-

Fi network. The Pi cannot be connected to the network via Ethernet cable

because that port is needed for this operation.

	 1.	 Connect the Ethernet cable to your laptop.

	 2.	 Connect the other end to the Ethernet port on

your Pi.

	 3.	 Open a terminal window on the Pi.

	 4.	 Type sudo ifconfig.

Chapter 2 An Introduction to Raspberry Pi

38

	 5.	 Locate the inet addr in the eth0 block.

	 6.	 Open a terminal window on your laptop. You can do

this by searching cmd in the Start menu.

	 7.	 Type the following in the Windows terminal:

ping <your.Pis.IP.address>

<your.Pis.IP.address> is the eth0 IP address from

your Pi.

	 8.	 Open Remote Desktop Connection on your laptop.

	 9.	 Enter the IP address from the Pi and press Enter.

You should now have a remote connection from your laptop directly

to the Raspberry Pi. Make sure that you save this IP address where you can

find it later. Remote Desktop Connection should remember it, but it’s a

good idea to also save it somewhere else.

Now whenever you are trying to connect to a new Wi-Fi network, you

can use the Ethernet cable to remote into your Pi directly from your laptop.

Once remoted in, simply select the network from the list of available

networks and enter the passcode, if there is one.

�Summary
The Raspberry Pi was designed for the hobbyist maker. The small Linux

computer makes it very useful for a lot of different types of projects, but

this means that you need to learn a little Linux. The developers at the

Raspberry Pi Foundation provide an easy-to-use version of Debian Linux

called Raspberry Pi OS.

We took the basic installation a step further by configuring remote

access. This allows you to remotely access your robot through your

network, which means the monitor and keyboard are no longer needed.

Chapter 2 An Introduction to Raspberry Pi

39© Jeff Cicolani 2021
J. Cicolani, Beginning Robotics with Raspberry Pi and Arduino,
https://doi.org/10.1007/978-1-4842-6891-9_3

CHAPTER 3

A Crash Course
in Python
The purpose of this book is to challenge you to build a simple robot that is

expanded over time. It is intended to be difficult. It is intended to provide a

hands-on experience to help you get past the most difficult part of learning

robotics: being intimidated by the technology. I’m going to teach you some

of the basics of robotics the same way that I learned how to swim—by

being thrown into the deep end while someone more experienced watches

over to make sure that you don’t drown.

So with that, I expect you to take what you experience and add to it

through your own learning. I’ll get you going in the right direction, but

there’s not going to be a lot of handholding. You have to fill in the gaps

and learn some of the details—especially some of those for specific

applications—on your own.

This introduction to Python is no different. I am going to show you how

to install the tools, use the editor, and write some simple programs. We are

going to move quickly through program structure, syntax and formatting

issues, data types, and variables and right into control structures and some

of the object-oriented aspects of Python. Don’t worry if any of this sounds

like technobabble; you’ll understand it before the end of this chapter.

At the end of the chapter, I don’t expect you to be able to write your

own programs. What I do expect is for you to know how to write code,

to use and be comfortable with the editor, and to compile and execute

https://doi.org/10.1007/978-1-4842-6891-9_3#DOI

40

programs. Most importantly, you should be able to look at someone else’s

code and be able to read it, have a basic understanding of what they are

trying to do, and identify the building blocks. Dissecting other peoples’

code is important to learning quickly. One premise of this book is to not

reinvent the wheel. Most of what you’re going to do has been done before,

and it can be found if you do a little searching. Being able to read and

understand what you find will help you reach your goals.

In terms of resources, here’s some advice:

•	 Community support for Python is excellent. The

Python website is an invaluable source for learning

and growing in Python. In particular, be sure to check

out the beginner’s page at www.python.org/about/

gettingstarted/. We actually start here in the next

section.

•	 Get yourself a good book or two on Python. This book

gets you started, but there is a lot of detail that won’t be

covered. Look for books on design patterns in Python

and different ways to build algorithms to make your

code as efficient as possible. Find books that go in

depth about your application.

•	 Don’t think you have to learn Python, or any of the

other topics in this book, on your own. There is an

immense community out there. Find local meetups,

clubs, and classes. Find your local hackerspace. I

guarantee that you’ll find someone there who is able to

help you.

Chapter 3 A Crash Course in Python

http://www.python.org/about/gettingstarted/
http://www.python.org/about/gettingstarted/

41

�Python Overview
Python is a high-level programming language created by Guido van

Rossum in the late 1980s. It has become a very popular general-purpose

language because it’s flexible and relatively easy to learn and code. In

many ways, Python is a very forgiving language, which lends to its ease of

use. As you’ll see later in this chapter, Python manages data in a manner

that is very intuitive for people new to programming. As such, it is a very

popular tool for teaching programming fundamentals. The peculiar way

in which it uses variables to manage large data sets has also made it very

popular in the growing field of data science. Data scientists can import

volumes of data and perform operations on data sets with very little code.

Of course, Python has peculiarities that we explore more in depth as we

work through this chapter.

�Downloading and Installing Python
First, let’s discuss a little something about versions. There are essentially

two flavors of Python: Python 2.7 and Python 3. In Python 3, creator Guido

van Rossum decided to clean up the code without putting a lot of emphasis

on backward compatibility; therefore, some of the code for version 2.7

simply won’t work in version 3 and vice versa. Python 3 is the current

version, and everything will eventually move over to it. In fact, at this point,

almost everything has. In terms of robotics, the big holdout was OpenCV,

an open source library of computer vision functions, which we’ll use in

Chapter 9. There are others that haven’t fully migrated yet either, so you’ll

need to figure out what you want to do and if the packages you need have

been ported over. We will use Python 2.7 for our project because many of

the examples that you will find in your own research are in 2.7.

Chapter 3 A Crash Course in Python

42

If you are using an Ubuntu or Debian Linux system, such as the

Raspberry Pi, you’re done. The Python tools are already installed and

ready to go. Most Debian-based distributions install Python as part of the

basic image.

If you are following along in Windows or another operating system,

you need to install Python.

	 1.	 Navigate to www.python.org/about/

gettingstarted/.

	 2.	 Click Downloads.

	 3.	 If you are using Windows, click Download Python
3.9.0.

	 4.	 If you’re using another OS, select it from the list

under Looking for Python with a different OS?

This takes you to the appropriate download link.

	 5.	 If you want to use an older release of Python,

because you are using a version of Windows older

than Windows 7 (or for some other bizarre reason),

you’ll find the appropriate links by scrolling down

the page.

	 6.	 Once it’s downloaded, run the installer and follow

the directions on the screen.

�Python Tools
There are numerous tools to support your Python development. Like most

programming languages, the code is simply text that can be written with

any text editor. You can write Python code with Notepad on your Windows

machine. I wouldn’t recommend it, but you can do it. Applications like

Notepad++ recognize a Python script based on the file extension and then

highlight the code accordingly.

Chapter 3 A Crash Course in Python

http://www.python.org/about/gettingstarted/
http://www.python.org/about/gettingstarted/

43

Your options are quite extensive. However, for our exercises, we’ll use

the native tools that come with every installation of Python: the Python

shell and the Python editor.

�The Python Shell
The Python shell is an interface to the Python interpreter. Technically, if

you’re a fan of the command line, you could launch a terminal window

and invoke the Python interpreter. However, we’ll use the Python shell

interface that is installed with Python, as shown in Figure 3-1. It provides a

very clean interface for viewing and executing commands.

Figure 3-1.  The IDLE Python shell

Chapter 3 A Crash Course in Python

44

The Python shell is launched when you open the native IDLE

IDE. Depending who you ask, IDLE either stands for integrated

development environment or integrated development and learning

environment. I like the latter simply because it makes more sense to me.

But in essence, it’s a windowed interface to the Python interpreter. It offers

some features that you won’t get in a simple command line:

•	 Simple editing features, such as find, copy, and paste

•	 Syntax highlighting

•	 A text editor with syntax highlighting

•	 A debugger with stepping and breakpoints

Since we’ll use this interface a lot throughout the book, it would be

prudent to learn more about the IDLE interface and the many tools that it

provides. You can start at the IDLE documentation page at https://docs.

python.org/3/library/idle.html.

�The Python Editor
IDLE has another very important aspect: the text editor. We will use it

throughout the book to write our programs and modules. The text editor

is another aspect of IDLE and not a separate program, although it always

opens in a separate window (see Figure 3-2). You can write Python

programs in any text editor, and there are many IDEs that support Python.

As I mentioned in the previous section, however, the IDLE interface

provides a lot of advantages.

Chapter 3 A Crash Course in Python

https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html

45

As you’ll learn later, formatting is very important in Python. With other

languages, such as C and Java, white space is irrelevant to the compiler.

Spaces, tabs, new lines, and blank lines make the code more readable for

people, but are ignored by the compiler. In Python, however, indentation

denotes code blocks. IDLE manages all of this for you. It automatically

indents your code, reducing the likelihood of syntax errors due to

improper indentation.

There are also several tools to help you with your code. For instance, as

you type, IDLE presents a list of possible statements appropriate for where

you are in a line. There are a few ways to invoke this feature. Many times,

it automatically pops open while you are typing. This generally happens

while you are inside a function call and there are only a limited number

Figure 3-2.  The IDLE file editor

Chapter 3 A Crash Course in Python

46

of possibilities. You can also force it open by pressing Ctrl-Space while

typing. When you do this, you see a list of possible statements to choose

from. When you select one of these statements, it completes the word for

you and presents you with other options if they are available, such as any

appropriate parameters. These are called calltips.

Calltips display the expected values for an accessible function and

open when you type "(" after the function name. It displays the function

signature and the first line of the docstring. It remains open until the

cursor is moved outside the function or the closing ")" is typed.

Context highlighting is done through colors. As you type your code,

some of the words change color. The colors have meaning and are a quick,

visual way to verify that you are on the right track. The contexts highlighted

in this way are output, errors, user output and Python keywords, built-

in class and function names, names following class and def, strings, and

comments.

Let’s see some of this in action.

	 1.	 Open IDLE.

	 2.	 Click File ➤ New File. This opens a new text editor

window.

	 3.	 Type pr.

	 4.	 Press Ctrl-Space. This displays the completion list

with the word print highlighted.

	 5.	 Type (.

This does a few things. It selects the highlighted

text—in this case, print. It also displays the calltip

for the print function.

	 6.	 Type "Hello World".

	 7.	 The calltip closes after you type the closing).

	 8.	 Press Enter.

Chapter 3 A Crash Course in Python

47

	 9.	 Save this file as hello_world.py.

	 10.	 Press F5 or select Run ➤ Run Module from the

menu.

In the Python shell window, you should see something like this:

RESTART: D:/Projects/The Robot Group/Workshops/Raspberry Pi

Robot/hello_world.py

Hello World

If you see this, then your code was successful. If you received an error

of some sort, go back to make sure that your code looks like this:

print("Hello World")

Oh, by the way, you just wrote and ran your first Python program.

When compared to other languages, you’ll notice Python’s simplicity.

Often, a few lines of a Python operation would take several more lines in C,

C++, or Java.

�The Zen of Python
Tim Peters, a longtime contributor to Python, wrote the governing

principles behind Python development. I think it actually applies to all

code and just about everything we do in robotics and perhaps in life. They

are tucked away as an Easter egg in the Python IDE.

	 1.	 Open IDLE.

	 2.	 Type import this and press Enter.

	 3.	 It should display the text shown in Figure 3-3

(but do it anyway).

Chapter 3 A Crash Course in Python

48

�Writing and Running a Python Program
If you’re following along as you should, then you’ve just written and run

your first Python program. If you’re not following along, don’t worry; we’ll

do it again right now but with a little more programming.

Figure 3-3.  The Zen of Python

Chapter 3 A Crash Course in Python

49

�Hello World
Let’s add a simple variable call. We’ll talk about variables in the very near

future.

	 1.	 Open hello_world.py.

	 2.	 If you’re one of those rebels I mentioned earlier,

open IDLE.

	 3.	 Click File ➤ New File.

	 4.	 Save this file as hello_world.py.

Now we’re all on the same page…

	 5.	 Make the program look like this:

message = "Hello World"

print(message)

	 6.	 Save the file.

	 7.	 Press F5 or select Run ➤ Run Module from the

menu.

You should see the same output as before:

RESTART: D:/Projects/The Robot Group/Workshops/Raspberry

Pi Robot/hello_world.py

Hello World

All we did here was move the text from the print function into a

variable and then tell Python to print the contents of that variable. I’ll cover

variables shortly.

Chapter 3 A Crash Course in Python

50

�Basic Structure
Before we begin looking at program specifics, we need to be familiar with

the structure of a Python program. We’ll take a look at the different parts of

a program, how the program is formatted using indentation, and how you

will add meaningful context using comments.

�Program Parts

As you’ve seen, there aren’t many required parts for a Python program.

Most programming languages require you to create, at the very least, a

main function of some sort. For the Arduino, it is the loop() function. In

C++, it is main(). Python does not have that. It jumps right into executing

whatever commands it finds as it steps through the file. However, this does

not mean that it’s entirely linear. I discuss functions and classes later in

the workshop, but just know that the interpreter scans through the file and

builds whatever functions and classes it finds before executing the other

commands. This is one of the things that make Python so easy to learn.

It simply doesn’t have quite as rigid of a framework as you would find in

most other languages.

Oh, and for you programming language purists, Python walks the line

between a scripting language, where everything is executed through the

interpreter, and a programming language. Some of the code is compiled

into executables like C and C++. In fact, as we start to build modules, this is

exactly what happens. However, in this book, we usually run it through the

interpreter.

�Indentation

As we work through the workshop, our programs become more complex.

In particular, we’re going to start working with code blocks, which are

commands that are grouped together to execute in a function or a loop or

as part of a condition. This kind of structure is critical to writing effective

programs.

Chapter 3 A Crash Course in Python

ASUS
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!

https://avxhm.se/blogs/hill0

51

All programming languages have syntax for formatting code blocks.

C-based languages, including Java, use curly brackets {} to contain a code

block. Python does not do this. Python uses indentation. Blocks of code are

indented to indicate that they are a related block. If a line in a block is not

properly indented, you’ll get an error. This is one of the key reasons that we

use IDLE. It automatically manages indentations. That doesn’t mean that

you, as a user, can’t botch the program; it just means this type of error is

greatly reduced.

As we progress through the workshop, you’ll see the importance of

indentation. In the meantime, just know it’s important.

Finally, I want to make a brief note about indentation and editors. Text

editors use different forms of indentation. Some use tab characters, while

others use two or four spaces. You are not able to see what is being used

because these are invisible characters. This causes no end of frustration

when you move from one editor to another. The better editors allow you to

choose how you want the Tab key to work (with a tab character or with a

number of spaces, usually four). By default, IDLE uses four spaces.

�Comments

Commenting code has become more important over time. It is an area

where programmers are notoriously deficient. They use comments, but

they are frequently cryptic or make assumptions about knowledge of the

program that may not hold true for someone who picks up the code later.

This would be less of an issue if they were any better about other forms of

documentation. But, alas, they are not.

My lamentations aside, commenting is important, especially as you’re

learning. So get into the habit of using comments. Use them to explain

what you’re doing or to enter small notes regarding logic.

Chapter 3 A Crash Course in Python

52

A comment in Python is any line that begins with #. Python ignores

everything following the # to the end of the line, for example:

create a variable to hold the text

message = "Hello World"

print the text stored in the variable

print(message)

In the preceding code, I added two comment lines to our hello_

world.py program. I also added a blank line to help make the code a little

easier to read. If you were to save and run this program, you would get

exactly the same output that you did before.

You can also create a comment block using triple quotation marks,

""". The Python compiler ignores any code between sets of these marks.

You open and close the block with them. This allows you to write as much

information as you’d like over multiple lines. This notation is frequently

used for title blocks at the beginning of a file:

"""

Hello World

the simplest of all programs

By: Everyone who has written a program, ever

"""

It is a good habit to simply outline your code with comments before

you write it. Before you start writing, think about what you need your code

to do and how you will go about doing it. Create a flowchart or simply write

down the steps that you will take to accomplish your goal. Then translate

this into a series of comments in your file before you write any actual code.

This helps you structure the problem in your mind and improves your

overall flow. If you identify a step that you are repeating, you likely have a

candidate for a function. If you find that you are referencing a structured

Chapter 3 A Crash Course in Python

53

concept (like robot) that you want to imbue with special properties and

functionality, you’ve got a class. Later, I discuss functions and classes in

further detail.

�Running a Program
As you saw earlier, there are a few ways to run a Python program.

From IDLE, you can simply press F5. You’ll need to make sure that

the file is saved first, but this runs your file. If the file is not saved, you are

prompted to do so. It is the same as selecting Run ➤ Run Module from the

menu bar.

If your system is properly configured to run Python from the command

line, you can execute a program from there, as well. You’ll need to either

navigate to the location of the file or have the full file location in the call. To

execute a Python script from the command line, you type python followed

by the file to be run:

> python hello_world.py

> python c:\exercises\hello_world.py

> python exercises\hello_world.py

All three of these commands would run our Hello World program,

although two of them are operating system specific. The first command

assumes that you are executing the file from within the directory it is

stored. The second command runs the program in Windows, assuming it

is saved within a folder called exercises on the root of the C:\ drive. The

third command runs the program on a Linux machine, assuming the file is

saved in a file called exercises in your home directory.

Chapter 3 A Crash Course in Python

54

�Programming in Python
In the next few sections, we use the Python shell and enter commands

directly. A little later, we get back to writing program files. But, for now,

everything we’re doing can be demonstrated in the shell window.

�Variables
Variables are essentially a convenient container for storing information.

In Python, variables are very flexible. You don’t need to declare a type.

The type is generally determined when you assign a value to it. In fact, you

declare a variable by assigning a value to it. This is important to remember

when you start with numbers. In Python, there is a difference between 1

and 1.0. The first number is an integer, and the second number is a float.

More on that shortly.

Here are some general rules for variables:

•	 They can only contain letters, numbers, and

underscores.

•	 They are case sensitive; for example, variable is not

the same as Variable. That’s going to bite you later.

•	 Don’t use Python keywords.

In addition to these hard-and-fast rules, here are a couple of tips:

•	 Make the variable name meaningful with as few

characters as possible.

•	 Be careful when using lowercase l and uppercase

O. These characters look very similar to 1 and 0, which

can lead to confusion. I’m not saying don’t use them;

just make sure that it’s clear what you’re doing. It is

strongly discouraged to use them as single-character

variable names.

Chapter 3 A Crash Course in Python

55

�Data Types
Python is a dynamically typed language. This means that the type of data

stored in a variable is not checked until the program is being executed, not

while it is being compiled. This allows you to postpone assigning a type

until a value is assigned. However, Python is also strongly typed, and it will

fail if you try to perform an operation that is not valid for that data type.

For instance, you cannot perform mathematical operations on a variable

containing a string. As such, it is important to keep track of what type of

data your variable references.

I’m going to talk about two basic data types: strings and numbers.

Then I’ll discuss some of the more complex types: tuples, lists, and

dictionaries. Python allows you to define your own types as classes. I’ll

cover classes toward the end of the chapter, since there are a few other

concepts we need to cover first.

�Strings

A string is a collection of one or more characters contained within quotes.

Quotes are how you indicate a string. For instance, “100” is a string; 100 is

a number (an integer to be more accurate). You can use double or single

quotation marks (just remember what you used). You can nest one type

of quotes within another, but you will get an error, or, worse, unexpected

results, if you cross your quotes.

Here’s an example of double quotes:

>>>print("This is text")

This is text

Here’s an example of single quotes:

>>>print('This is text')

This is text

Chapter 3 A Crash Course in Python

56

Here’s an example of single quotes inside double quotes:

>>>print("'This is text'")

'This is text'

Here’s an example of double quotes inside single quotes:

>>>print('"This is text"')

"This is text"

Triple quotes are used to span multiple lines within a string.

Here’s an example of triple quotes:

>>>print("""this

is

text""")

this

is

text

You can use single quotes as apostrophes if you escape them first.

Escaping a character simply means you are telling the interpreter to view a

character as a string character rather than a functional one.

Here’s an example of escaping quotes:

>>>print('This won't work')

File "<stdin>", line 1

 print('this won't work')

 ^

SyntaxError: invalid syntax

>>>print('This won\'t error')

This won't error

You can do this to the entire string by making it a raw string. In this

next example, '/n' is used to move to a new line.

Chapter 3 A Crash Course in Python

57

Here’s an example of a raw string:

>>>print('something\new')

something

ew

>>>print(r'something\new')

something/new

String Manipulation

There are a lot of ways to manipulate strings. Some are fairly

straightforward, such as concatenation—adding strings together. However,

some of them are a little surprising. Strings are treated as a list of character

values. Later in this chapter, we explore lists in greater detail. However, we

are going to use some of the traits of lists to work with strings.

Because strings are lists, which are similar to arrays in other languages,

we can reference specific characters within a string. Like lists, strings are

zero indexed. This means the first character of a string is at position zero.

With strings, like lists, the first character is at index [0]:

>>>robot = 'nomad'

>>>robot[0]

n

When using a negative number, the index begins at the end of the

string and works backward.

>>>robot[-1]

t

Slicing a string allows you to extract a substring. When slicing a string,

you provide two numbers separated by a colon. The first number is the

starting index, and the second is the ending index:

>>>robot[0:3]

nom

Chapter 3 A Crash Course in Python

58

Note that when slicing, the first index is inclusive and the second index

is exclusive. In the previous example, the value at index [0] was returned,

“r,” whereas the value at index [3] was not, “o.”

When slicing, if you leave one of the indexes, the beginning or the end

of the string is assumed.

>>>robot[:3]

nom

>>>robot[3:]

ad

Adding strings together is called concatenation. With Python, you

can easily add strings together. This works with string literals and string

variables. You can also multiply strings for an interesting effect.

You can add two strings together:

>>>print("Ro" + "bot")

Robot

You can add string variables together, like this:

>>>x = "Ro"

>>>y = "bot"

>>>z = x + y

>>>print(z)

Robot

You can add a string variable and literal:

>>>print(x + "bot")

Robot

You can multiply string literals:

>>>print(2 * "ro" + "bot")

rorobot

Chapter 3 A Crash Course in Python

59

The multiplication of strings, however, only works on literals. It won’t

work on string variables.

I suggest spending some time exploring these and other string

manipulation methods. For more information, go to https://docs.

python.org/3/tutorial/introduction.html#strings and https://

docs.python.org/3.1/library/stdtypes.html#string-methods.

�Numbers

Numbers in Python come in a few flavors, the most common of which

are integers and floats. An integer is a whole number, whereas a float is a

decimal. Python also uses a Boolean type that has a value of one or zero.

These are frequently used as a flag or state, where one means “on” and

zero means “off.” A Boolean is a subclass of integers that are treated as

integers when performing operations.

As you might expect, you can perform mathematical operations

with number types. Generally, if you perform arithmetic with one type,

the result is that type. Math using integers usually results in an integer.

However, if you perform division with integers, the result is a float. Math

with floats results in a float. If you perform arithmetic with both types, the

result is a float.

Adding two integers results in an integer:

>>>2+3

5

Adding two floats results in a float:

>>>0.2+0.3

0.5

Adding a float and an integer results in a float:

>>>1+0.5

1.5

Chapter 3 A Crash Course in Python

https://docs.python.org/3/tutorial/introduction.html#strings
https://docs.python.org/3/tutorial/introduction.html#strings
https://docs.python.org/3.1/library/stdtypes.html#string-methods
https://docs.python.org/3.1/library/stdtypes.html#string-methods

60

Subtraction and multiplication work the same way:

>>>3-2

1

>>>3-1.5

1.5

>>>2*3

6

>>>2*0.8

1.6

Division always results in a float:

>>>3.2/2

1.6

>>>3/2

1.5

The ** operator results in the first number raised to the power of the

second:

>>>3**2

9

There is one catch with Python floats, however. The interpreter

sometimes produces a seemingly arbitrary number of decimal places. This

has to do with how floating-point notation is stored in Python and how

math is done within the interpreter:

>>>0.2+0.1

0.30000000000000004

For more information about this anomaly, go to https://docs.

python.org/3/tutorial/floatingpoint.html.

Chapter 3 A Crash Course in Python

https://docs.python.org/3/tutorial/floatingpoint.html
https://docs.python.org/3/tutorial/floatingpoint.html

61

�Lists

A list is a collection of items in a particular order. In other languages, they

are generally known as arrays. You can put anything you want in a list. The

values stored in a list don’t have to be of the same data type. However, if

you mix data types in a list, make sure that you know which type you are

getting when you use it.

You worked with lists when you worked with strings. A string is

essentially a list of characters. As such, indexing and slicing work with lists,

as well.

A list is created using square brackets []:

>>> robots = ["nomad","Ponginator","Alfred"]

>>> robots

['nomad', 'Ponginator', 'Alfred']

Like strings, lists are zero indexed. This means the first element in a list

is at position 0, the second is at position 1, and so forth. You can access the

individual elements of a list by calling its index or location within the list:

>>>robots[0]

'nomad'

>>>robots[-1]

'Alfred'

Lists can also be sliced. When a list is sliced, the result is a new list

containing the subset of the original list:

>>>robots[1:3]

['Ponginator','Alfred']

It is easy to add, change, and remove members of a list using slicing

and concatenation.

Chapter 3 A Crash Course in Python

62

This example adds members to a list:

>>>more_bots = robots+['Roomba','Neato','InMoov']

>>>more_bots

['nomad', 'Ponginator', 'Alfred', 'Roomba', 'Neato', 'InMoov']

This example changes members in a list:

>>>more_bots[3] = 'ASIMO'

>>>more_bots

['nomad', 'Ponginator', 'Alfred', 'ASIMO', 'Neato', 'InMoov']

This example removes the members from a list:

>>>more_bots[3:5] = []

>>>more_bots

['nomad', 'Ponginator', 'Alfred', 'InMoov']

Assign list members to variables:

>>>a,b = more_bots[0:2]

>>>a

'nomad'

>>>b

'Ponginator'

There are a number of methods automatically included in lists. For

example, you can force the first letter of a name to be capitalized:

>>> print(robots[0].title())

Nomad

As I mentioned, a list can contain any type of data, including other lists.

In fact, when we start working with computer vision, we will frequently use

lists of lists to hold image data.

Chapter 3 A Crash Course in Python

63

Lists are a very powerful and important aspect of Python. Visit

https://docs.python.org/3/tutorial/introduction.html#lists to

spend some time exploring lists.

�Tuples

You’re going to hear the term tuple a lot when working with Python. A

tuple is simply a special kind of list that cannot be changed. Think of a

tuple as a list of constants, or a constant list. You declare a tuple using

parentheses rather than square brackets.

Tuples are immutable, which means that once a tuple has been

created, it cannot be changed. To change the contents of a tuple, a new

tuple must be created. This is done using the same slicing techniques we

used for strings and lists:

>>> colors = ("red","yellow","blue")

>>> colors

('red', 'yellow', 'blue')

>>>colors2 = colors[0:2]

>>>colors2

('red','yellow')

Note that we used list notation when slicing the tuple, colors[0:2]

rather than colors(0:2). The result of the slice is still a tuple.

A tuple, however, can be replaced:

>>>colors2 = (1,2,3)

>>>colors2

(1,2,3)

They can also be replaced with an empty tuple:

>>>colors2 = ()

>>>colors2

()

Chapter 3 A Crash Course in Python

https://docs.python.org/3/tutorial/introduction.html#lists

64

�Dictionaries

A dictionary is similar to a list except that it allows you to name your items

in the list. This is done using key/value pairs. The key becomes the index

for the value. This allows you to add some meaningful structure to your

lists. They are useful for holding a list of parameters or properties.

A dictionary is declared using curly brackets rather than square

brackets:

>>> Nomad = {'type':'rover','color':'black','processor':'Jetson

TX1'}

>>> print(Nomad['type'])

Rover

You work with dictionaries in much the same way as you would an

array, except rather than providing an index number, you provide the key

to access an element.

There are a couple of things to know about dictionaries before you use

them:

•	 The key must be an immutable value, such as a number

or a string. Tuples can also be used as keys.

•	 A key cannot be defined more than once in a

dictionary. Like variables, the value of a key is the last

one assigned:

>>>BARB = {'type':'test-bed','color':'black','

type':'wheeled'}

>>>BARB

{'color':'black','type':'wheeled'}

•	 In this example, the first 'type' value was overwritten

by the second one.

Chapter 3 A Crash Course in Python

65

•	 Dictionaries can be nested as values within other

dictionaries. In the following example, I have

embedded the definition for my ongoing robotics

project, Nomad, into a dictionary of my robots:

>>>myRobots = {'BARB':'WIP','Nomad':Nomad,'Lla

mabot':'WIP'}

>>>myRobots

{'BARB': {'color':'black','type':'wheeled'},

'Nomad': {'color':'black','type':'wheeled'},

'Llamabot':'WIP'}

Of course, a dictionary wouldn’t be all that useful if you weren’t able

to update and manipulate the values contained within. Making changes to

a dictionary is similar to making changes to a list. The only real difference

is that you use the key rather than the position to access the various

elements.

To update a value, use the key to reference the value to be changed:

>>>myRobots['Llamabot'] = 'Getting to it'

>>>myRobots

{'BARB': {'color':'black','type':'wheeled'},'Nomad': {'color':'

black','type':'wheeled'},'Llamabot':'Getting to it'}

A key/value pair can be removed with the del statement:

>>>del myRobots['Llamabot']

>>>myRobots

{'BARB': {'color':'black','type':'wheeled'},'Nomad': {'color':'

black','type':'wheeled'}}

Chapter 3 A Crash Course in Python

66

A dictionary can be copied with the copy method of the dictionary

class. To access the copy method, start with the name of the dictionary and

add .copy() to the end:

>>>workingRobots = myRobots.copy()

>>>workingRobots

{'BARB': {'color':'black','type':'wheeled'},'Nomad': {'color':'

black','type':'wheeled'}}

To append one dictionary to the end of another, use the update

method:

>>>otherRobots = {'Rasbot-pi':'Pi-bot from

book','spiderbot':'broken'}

>>>myRobots.update(otherRobots)

>>>myRobots

{'BARB': {'color':'black','type':'wheeled'},'Nomad': {'co

lor':'black','type':'wheeled'},'Rasbot-pi':'Pi-bot from

book','spiderbot':'broken'}

�None Type

There is a special data type that is very important when working with classes

and objects imported from other sources. This is the none type, which is an

empty placeholder. It is used when we want to declare an object but define

it later. It is also used to empty an object. You will see the none type in action

later in this chapter, when we discuss classes. In the meantime, know that it

exists and that it is essentially an empty placeholder.

�A Final Note on Variables
As you worked through the examples in this section, you were working with

variables. Notice how a variable accepted whatever value you provided

it and happily returned exactly what you assigned. If you assign a list to a

Chapter 3 A Crash Course in Python

67

variable, it returns the list—square brackets and all. The same holds true

for tuples, dictionaries, strings, and numbers. Whatever you assign to it

is exactly what you get back. We saw this in action when we nested one

dictionary inside another. By simply adding the dictionary name into the

definition of another, we embedded all the values into the new dictionary.

Why do I point this out?

Later in the book, when we start working with functions and classes,

you will assign complex data structures to your variables. It is important to

know that whatever you assign to a variable is what the variable contains,

and you can apply any methods or functions appropriate for that data type.

>>> robots = ["nomad","Ponginator","Alfred"]

>>> robots

['nomad', 'Ponginator', 'Alfred']

>>> myRobot = robots[0]

>>> myRobot

'nomad'

>>> myRobot.capitalize()

'Nomad'

We used a method of the string class on our string variable, myRobot. A

method is functionality that we give to a class. Since a data type is a built-

in class, we can use methods from that class on our variables. I’ll discuss

methods in much more detail when we start working with classes toward

the end of this chapter.

�Control Structures
In this section, we’re going to explore how to add structure to your code.

Rather than just stepping through a program and executing each line of

code as it is encountered, you probably want more control. These control

structures allow you to execute code only when a specific condition exists

and to perform blocks of code multiple times.

Chapter 3 A Crash Course in Python

68

For the most part, it’s going to be easier to walk you through these

concepts than trying to describe them.

�if Statements

The if statement allows you to test for a condition before you execute a

block of code. The condition can be any value or equation that evaluates to

either true or false.

This next piece of code loops through the robots list and determines

whether the robot is Nomad:

>>> for robot in robots:

 if robot=="Nomad":

 print("This is Nomad")

 else:

 print(robot + " is not Nomad")

This is Nomad

Ponginator is not Nomad

Alfred is not Nomad

Again, note the indentation as you type. IDLE indents another level

after each line that ends in a colon, which should be every line that

denotes a new block, such as loop statements and conditionals.

It’s important to also note how we test for equality. A single equals sign

means assignment. Double equals signs tell the interpreter to compare for

equality:

>>> myRobot = "Nomad"

>>> myRobot == "Ponginator"

False

>>> myRobot == "Nomad"

True

Chapter 3 A Crash Course in Python

69

Here is a list of comparators:

Equals ==

Not equal !=

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

You can also use and and or to test for multiple conditions:

>>> for robot in robots:

 if robot == "Ponginator" or robot == "Alfred":

 print("These aren't the droids I'm looking for.")

These aren't the droids I'm looking for.

These aren't the droids I'm looking for.

Comparisons are also frequently used to determine if an object exists

or contains a value. Essentially, a condition evaluates to true if it does not

evaluate to false, 0, or none. This is very handy when you want to execute a

piece of code only if an object exists, such as when you initialize sensors or

connections through a serial port or network.

�Loops

When you work with robotics, there are times that you want to repeat a

block of code. Whether to perform a set of instructions on a collection of

objects or to execute a block of code for as long as a condition exists, you

need to use a loop.

Loops allow you to repeat a block of code to perform the tasks multiple

times. There are two flavors of loops: the for loop and the while loop.

Each provides a specific functionality that is crucial to writing efficient

programs.

Chapter 3 A Crash Course in Python

70

for Loop

A for loop performs a block of code for each element in a list. A collection

of values— a tuple, list, or dictionary—is provided to the for loop. It then

iterates through the list and executes the code contained in the code block.

When it runs out of elements in the collection, the loop is exited, and the

next line of code outside the for block is executed.

As with the if statement, you put the code you want to run as part of

the loop into a block indicated by indentation. It is important to make sure

that you have your indentation correct, or you will get an error.

As you enter this into the Python shell, pay attention to what it does

with indentation.

After you’ve entered the print command and pressed Enter, you need

to press Enter again so that the shell knows that you’re done:

>>> for robot in robots:

 print(robot)

Nomad

Ponginator

Alfred

The program enters the robots list and pulls the first value, Nomad,

which it then prints. Since this is the last line in the block, the interpreter

returns to the list and extracts the next value. This repeats until there are

no more values in the list. At this time, the program exits the loop.

I tend to use plural words for my list names. This allows me to use the

singular form of the name to reference items within the list for a loop. For

instance, each element in the tuple of robots is a robot.

If you want to loop through the elements in a dictionary, you want to

provide two variables to store the individual elements. You also need to

use the items method of the dictionary class. This allows you to access

each key/value pair in turn:

Chapter 3 A Crash Course in Python

71

>>>for name,data in Nomad.items():

 print(name + ': ' + data)

color: black

type: wheeled

You can use the enumerate function to add a sequential numeric value

to the output of a for loop:

>>>for num,robot in enumerate(robots):

 print(num,robot)

(0, 'Nomad')

(1, 'Ponginator')

(2, 'Alfred')

while Loop

Whereas a for loop executes a block of code for each element in a list, the

while loop executes a block of code as long as its condition evaluates to

true. It is often used to execute code a specific number of times or while

the system is in a specific state.

To loop through code a specific number of times, you use a variable to

hold an integer value. In the following example, we tell the program to run

the code for as long as the value of our count variable is less than five:

>>> count = 1

>>> while count < 5:

 print(count)

 count = count+1

1

2

3

4

Chapter 3 A Crash Course in Python

72

We start by declaring a variable, count, to hold our integer, and we

assign it the value 1. We enter the loop and the value of 1 is less than 5, so

the code prints the value to the console. We then increment the value of

count by 1. Because this is the last statement in the loop and the last value

evaluated by the while condition was less than 5, the code returns to the

while clause. The value of count, now 2, is still less than 5, so the code

executes again. This process repeats until the value of count is 5. Five is not

less than five, so the interpreter exits the loop without executing the code

in the block.

Had we forgotten to increment the count variable, it would have

resulted in an open loop. Because count is equal to 1 and we never

increment it, the value of count is always equal to 1. One is less than five,

so the code would never stop executing and we would need to press Ctrl-C

to end it.

It’s also used as a type of main loop, executing the code continuously.

You see the following in a lot of programs:

while(true):

True always evaluates to true; therefore, the code within this block

keeps executing until the program is exited. This is called an open loop

since there is no close to it. Fortunately, there is a convenient way to

exit open loops. If you find yourself in an open loop or you just want to

exit a program arbitrarily, press Ctrl-C. This causes the program to exit

immediately. You will use this frequently.

This technique can also be used to make the program wait for

a specific condition to be met. For instance, if we required a serial

connection to be available before we continued, we would first initiate the

connection command. Then we could wait for the connection to complete

before continuing by using something like this:

while(!connected):

 pass

Chapter 3 A Crash Course in Python

73

The exclamation mark, also called a bang, represents not. So, in this

case, assuming the connected variable contains the serial connection

that evaluates to true when it is established, we are telling the program

to execute the code contained in the while block as long as it is not

connected.

In this case, the code we tell it to execute is called a pass, which

is an empty command. It is used when you don’t actually want to do

anything, but you need something there. So we are telling the system this:

“While you’re not connected, don’t do anything, and loop until you are

connected.”

�Functions
Functions are predefined blocks of code that we can call from within

the program to perform a task. We’ve been using the print() function

throughout this chapter. The print() command is a built-in function

in Python. There are many predefined functions in Python and many

more that can be added using modules. For more information about the

available functions, check out the Python Standard Library at https://

docs.python.org/3/library/index.html.

There will be many times that you want to create your own functions.

Functions serve a few purposes.

Most often, you use a function to contain code that you want to execute

throughout your program. Anytime you find yourself repeating the same

set of operations throughout your code, you have a likely candidate for a

function.

Functions are also widely used as a form of housekeeping. They can be

used to move long processes somewhere other than your main program.

This can make your code much easier to read. For instance, you could

Chapter 3 A Crash Course in Python

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html

74

define actions for your robot as functions. When a condition is met in your

main code, you simply call that function. Compare these two blocks of

pseudo code:

while(true):

 if command==turnLeft:

 /*

 Lengthy list of instructions to turn left

 */

 if command==turnRight:

 /*

 Lengthy list of instructions to turn right

 */

 /* etc. */

and

while(true):

 if command==turnLeft:

 turnLeft()

 if command==turnRight:

 turnRight()

 /* etc. */

In the first block, the code to move the robot is contained in the if

statement. If it takes 30 lines of code to turn left (not likely, but bear with

me), your main code would be 30 lines longer. If turning right takes the

same amount of code, you would have another 30 lines—all of which

you have to go through to find the line you are looking for. This gets very

tedious.

In the second block, the code to turn is moved to a separate function.

This function is defined elsewhere in the program, or as you’ll learn when

we discuss libraries and modules, it could live in another file. This makes it

easier to write and to read.

Chapter 3 A Crash Course in Python

75

�Defining a Function

To define your own function, you create the name of the function and

a block of code that contains the operations you want to perform. The

definition starts with the def keyword, followed by the name of the

function, parentheses, and a colon.

Let’s create a simple function:

>>> def hello_world():

 message = "Hello World"

 print(message)

>>> hello_world()

Hello World

In this code, we created a simple function that simply prints the

message “Hello World”. Now, whenever we want to print that message, we

simply call that function:

>>> hello_world()

Hello World

To make things a little more interesting, we can provide the function

with data to use. These are called arguments.

�Passing Arguments

Frequently, we want to give information to the function to work with or on.

To provide the information, we give the function one or more variables in

which to store this information, called arguments.

Let’s create a new function that greets the user:

>>> def hello_user(first_name, last_name):

 print("Hello " + first_name + " " + last_name + "!")

>>> hello_user("Jeff","Cicolani")

Hello Jeff Cicolani!

Chapter 3 A Crash Course in Python

76

Here we created a new function called hello_user. We told it to expect

to receive two pieces of information: the user’s first name and last name.

The variable names in the function definition contain the data we want to

use. The function simply prints the greeting using the two arguments that

we provide.

�Default Values

You can create a default value for an argument by simply assigning a value

as you declare the function:

>>> def favorite_thing(favorite = "robotics"):

 print("My favorite thing in the world is "+ favorite)

>>> favorite_thing("pie")

My favorite thing in the world is pie

>>> favorite_thing()

My favorite thing in the world is robotics

Note that the second time we called the function, we did not include a

value. So the function simply used the default value we assigned when we

created the function.

�Return Values

Sometimes we don’t just want the function to do something on its own.

Sometimes we want it to give a value back to us. This is helpful to move a

common calculation to a function or if we want the function to validate

that it ran correctly. Many built-in functions and those from external

libraries return a 1 if the function succeeded and 0 if it failed.

To return a value, simply use the return keyword followed by the

value or variable that you want to return. Keep in mind that return exits

the function and provides the value to the line that called the function. So

make sure that you don’t do anything after the return statement:

Chapter 3 A Crash Course in Python

77

>>> def how_many(list_of_things):

 count = len(list_of_things)

 return count

>>> how_many(robots)

3

A return statement can return more than one value. To return more

than one value, separate each one with a comma. The function puts the

values into a tuple that can be parsed by the calling code:

>>> def how_many(list_of_things):

 count = len(list_of_things)

 return count, 1

>>> (x, y) = how_many(robots)

>>> x

3

>>> y

1

�Adding Functionality Through Modules
Modules are essentially a collection of functions in a file that you can

include in your program. There are countless modules to make your

life easier. Many modules are included as part of the standard Python

installation. Others are available for download from various developers.

If you can’t find what you’re looking for, you can create your own custom

modules.

Chapter 3 A Crash Course in Python

78

�Importing and Using Modules

Importing modules is easy. As you’ve seen, you simply use the import

keyword followed by the name of the module. This loads all the functions

of that module for your use. Now, to use one of the functions from the

module, you need to enter the module name followed by the function:

>>> import math

>>> math.sqrt(9)

3.0

Some packages are very large, and you may not want to import the

entire thing. If you know the specific function you need in your program,

you can import only that part of the module.

This imports the sqrt function from the math module. If you import

just the function, you will not need to prefix the function with the module

name:

>>> from math import sqrt

>>> sqrt(9)

3.0

Lastly, you can provide an alias for the modules and functions that you

import. This becomes very handy when you import a module with a fairly

long name. In this example, I’m just being lazy:

>>> import math as m

>>> m.sqrt(9)

3.0

>>> from math import sqrt as s

>>> s(9)

3.0

Chapter 3 A Crash Course in Python

79

�Built-In Modules

The core Python libraries provide a lot of functionality for basic programs.

However, there is a lot more functionality available, written by other

developers and researchers. But before we go off into the wonderful world

of third-party modules, let’s look at what comes with Python.

Open an IDLE instance and type the following:

>>> import sys

>>> sys.builtin_module_names

You should get output that looks something like this:

('_ast', '_bisect', '_codecs', '_codecs_cn', '_codecs_hk',

'_codecs_iso2022', '_codecs_jp', '_codecs_kr', '_codecs_tw',

'_collections', '_csv', '_datetime', '_functools', '_heapq',

'_imp', '_io', '_json', '_locale', '_lsprof', '_md5', '_

multibytecodec', '_opcode', '_operator', '_pickle', '_random',

'_sha1', '_sha256', '_sha512', '_signal', '_sre', '_stat', '_

string', '_struct', '_symtable', '_thread', '_tracemalloc', '_

warnings', '_weakref', '_winapi', 'array', 'atexit', 'audioop',

'binascii', 'builtins', 'cmath', 'errno', 'faulthandler',

'gc', 'itertools', 'marshal', 'math', 'mmap', 'msvcrt', 'nt',

'parser', 'sys', 'time', 'winreg', 'xxsubtype', 'zipimport',

'zlib')

This is a list of the modules that are built into Python and are available

for use right now.

To get more information about a module, you can use the help()

function. It lists all the modules currently installed and registered with

Python. (Note that I had to truncate the list for printing.)

Chapter 3 A Crash Course in Python

80

>>> help('modules')

Please wait a moment while I gather a list of all available

modules...

AutoComplete _random errno pyexpat

AutoCompleteWindow _sha1 faulthandler pylab

AutoExpand _sha256 filecmp pyparsing

Bindings _sha512 fileinput pytz

CallTipWindow _signal fnmatch queue

...

Enter any module name to get more help. Or, type "modules

spam" to search

for modules whose name or summary contain the string "spam".

You can also use the help() function to get information on a specific

module. First, you need to import the module. Again, the following listing

was truncated for brevity:

>>> import math

>>> help(math)

Help on built-in module math:

NAME

 math

DESCRIPTION

 This module is always available. It provides access to the

 mathematical functions defined by the C standard.

FUNCTIONS

 acos(...)

 acos(x)

Chapter 3 A Crash Course in Python

81

 Return the arc cosine (measured in radians) of x.

...

FILE

 (built-in)

You can learn a lot more about these built-in modules on the Python

documentation site at https://docs.python.org/3/py-modindex.html.

�Extended Modules

In addition to the built-in modules that you get with every Python

installation, there are countless extensions that you can add called

packages. Fortunately, the good folks at Python have provided a method

to learn about third-party packages. Visit https://pypi.python.org/pypi

for more information.

Once you’ve found the package that you want or need to install for

your application, the easiest way to install it is by using PIP. As of Python

2.7.9 and Python 3.4, the PIP binaries are included in the download.

However, since the package is constantly evolving, you will likely need to

upgrade it. If everything is installed and configured correctly, you should

be able to do this from the command line:

	 1.	 Open a terminal window.

	 2.	 In Windows, type

python -m pip install -U pip

	 3.	 In Linux or macOS, type

pip install -U pip

Once that is done, you’re ready to use PIP. Keep in mind that you’ll run

PIP from the terminal, not from within the Python shell.

Chapter 3 A Crash Course in Python

https://docs.python.org/3/py-modindex.html
https://pypi.python.org/pypi

82

For this demonstration, we’ll install a package used for plotting

mathematical formulas. matplotlib is a very popular package for

visualizing data using Python. The actual use of this package is outside the

scope of this workshop. For more information on using matplotlib, check

out their website at https://matplotlib.org.

To install a new package, type

pip install matplotlib

This installs the matplotlib library for your use.

�Custom Modules

If you have several functions that you use all the time (generally

referred to as helper functions), you might save them in a file called

myHelperFunctions.py. You can then use the import command to make

these functions available in another program.

Generally speaking, you save your custom module file to be imported

in the same file location as the program that you are working on. This is

the easiest and best way to make sure that the compiler can find the file.

It is possible to save the file elsewhere, but then you either include the full

path for the file or make changes to the system path variables. For now,

keep any module files that you create in your working directory (the same

location as the program that you are working on). This helps you avoid any

additional heartache.

Up until now, we’ve been using the IDLE shell. Let’s create a custom

module file and then import that into another program.

	 1.	 Open IDLE.

	 2.	 Click File ➤ New File. This opens a new text editor

window.

	 3.	 In the new file window, click File ➤ Save and name

it myHelperFunctions.py.

Chapter 3 A Crash Course in Python

https://matplotlib.org

83

	 4.	 Enter the following code:

def hello_helper():

 print("I'm helper. I help.")

	 5.	 Save the file.

	 6.	 Click File ➤ New File to create a new code file.

	 7.	 Type the following:

import myHelperFunctions

myHelperFunctions.hello_helper()

	 8.	 Save the file as hello_helper.py in the same

directory that you saved myHelperFunctions.py.

	 9.	 Press F5 or select Run ➤ Run Module from the

menu.

In the shell window, you should see this:

I'm helper. I help.

�Classes
Now we get to the good stuff: classes. A class is nothing more than the

logical representation of a physical or abstract entity within your code,

for instance, a robot. The robot class creates a framework that describes

a physical robot to the program. How you describe it is entirely up to you,

but it is represented in how you build the class. This representation is

abstract in much the same way the word robot represents the abstraction

of the concept of a robot. If we were standing in a room full of robots and I

said, “Hand me the robot,” your response would likely be, “Which robot?”

This is because the term robot applies to every robot in the room. But, if I

were to say, “Hand me Nomad,” you would know the specific robot that I

was talking about. Nomad is an instance of a robot.

Chapter 3 A Crash Course in Python

84

This is how a class is used. You start by defining the class. You do this

by constructing the abstraction of the entity that you want to represent—in

this case, a robot. When you want to describe a specific robot, you create

an instance of the class that applies to that robot.

There is a lot to learn about classes, but the following are the key things

that you need to know:

•	 A class is made up of functions called methods.

Methods are functions within a class that perform

work. For instance, you may have a method in the robot

class called drive_forward(). In this method, you add

the code to make the robot to drive forward.

•	 A method always requires the self parameter. This

parameter is a reference to the instance of the class.

•	 self is always the first parameter of a method.

•	 Every class must have a special method called

__init__. The __init__ method is called when an

instance is created, and it initializes that instance of the

class. In this method, you perform whatever needs to

happen for the class to function. Most often, you define

attributes for the class.

•	 The attributes of a class are variables within the class

that describe some feature. For instance, for the robot

class, we want to name some functional attributes, like

direction and speed. These are created in the __init__

method.

There are several types of methods:

•	 Mutator methods – These methods change values

within the class. For instance, setters are a type of

mutator method that set the value of an attribute.

Chapter 3 A Crash Course in Python

85

•	 Accessor methods – These methods access attributes

within a class.

•	 Helper methods – These include any number of

methods that perform work within the class. For

example, the obligatory __init__ method is a type

of helper called a constructor. Helper methods are

anything that performs work within a class, generally

for other methods, for example, a method that formats

a string prior to output.

�Creating a Class

Before you delve in and start writing code, I suggest you take a little time to

plan what you’re about to build. This doesn’t need to be an extensive plan

that flushes out every detail, but it is good to have at least a rough outline

of what you’re going to build before you build it.

Planning

The easiest way to do plan is on a sheet of paper, but if you prefer digital,

your favorite text editor may do as well. You want to make a list or an

outline of the class. Our example class is for a simulated wheeled robot,

so we want to list the attributes that describe our robot and then list the

actions the robot will perform. These are our methods.

Initial Sample Robot Class

•	 Attributes

•	 Name

•	 Description

•	 Primary color

•	 Owner

Chapter 3 A Crash Course in Python

86

•	 Methods

•	 Drive forward

•	 Drive backward

•	 Turn left

•	 Turn right

As you are writing your outline, imagine how you will use each

method. What information, if any, will you need for it? What information,

if any, will it return? If your method is expecting information in the form

of parameters, is there a default value? If so, do you want to reserve

the capability to change the default value programmatically? From my

experience, the answer to this last question is almost always yes.

So, with these questions in mind, let’s revisit the outline.

Initial Sample Robot Class

•	 Attributes

•	 Name

•	 Description

•	 Primary color

•	 Owner

•	 Default speed (default: 125)

•	 Default duration (default: 100)

•	 Methods

•	 Drive forward (parameter: speed) (return: none)

•	 Drive backward (parameter: speed) (return: none)

•	 Turn left (parameter: duration) (return: none)

Chapter 3 A Crash Course in Python

87

•	 Turn right (parameter: duration) (return: none)

•	 Set speed (parameter: new speed) (return: none)

•	 Set duration (parameter: new duration) (return:

none)

As you can see, after revisiting the outline, we added a few new attributes

and a few new methods. Default speed holds an integer value between 0

and 255. Later in the book, we use this value to set the speed of our motor

controller. The half speed is 125. Default duration is the amount of time the

robot moves in milliseconds. The value 100 is about 1/10 of a second. We

also added two methods for setting the values of these two attributes.

In most programming languages, the attributes are private, which

means that they can only be accessible from code contained in the class.

As such, you create get() and set() methods to view and change the

values. In Python, attributes are public and can be accessed or changed

with a simple class.attribute call. Python attributes cannot be made

private; however, the tradition in Python is to prefix an attribute that you

want to be private with an underscore. This indicates to other developers

that the attribute should be treated as private and not modified outside a

class’s methods.

So, strictly speaking, the set speed and set duration methods are not

strictly needed. If we want to indicate that these attributes are intended to

be private and should only be updated with the method, then we precede

the names with an underscore, like this:

_speed

_duration

You can create a class anywhere in your code. What makes classes so

useful is that they encapsulate functionality that allows you to easily port

them from one project to the next. For this reason, it is generally better to

create a class as its own module and import it into your code. That is what

we’ll be doing here.

Chapter 3 A Crash Course in Python

88

Let’s build our robot class and then use it.

	 1.	 Create a new Python file and save it as robot_

sample_class.py.

We’ll start by declaring our class and creating the

required constructor function, __init__. Right now,

all we need __init__ to do is initialize the attributes

and move the values from the parameters to the

attributes. Note that we have declared default values

for speed and duration as 125 and 100, respectively.

	 2.	 Enter the following code:

class Robot():

 """

 A simple robot class

 This multi-line comment is a good place

 to provide a description of what the class

 is.

 """

 # define the initiating function.

 # speed = value between 0 and 255

 # duration = value in milliseconds

 def __init__(self, name, desc, color, owner,

 speed = 125, duration = 100):

 # initializes our robot

 self.name = name

 self.desc = desc

 self.color = color

 self.owner = owner

 self.speed = speed

 self.duration = duration

Chapter 3 A Crash Course in Python

89

With the initialization done, let’s look at writing our methods.

As mentioned, methods are simply functions contained in

a class that perform work within the class. Since we don’t

have a robot to control at the moment, we simply print

confirmation messages to the shell to simulate our robot:

def drive_forward(self):

 # simulates driving forward

 print(self.name.title() + " is driving" +

 " forward " + str(self.duration) +

 " milliseconds")

def drive_backward(self):

 # simulates driving backward

 print(self.name.title() + " is driving" +

 " backward " + str(self.duration) +

 " milliseconds")

def turn_left(self):

simulates turning left

 print(self.name.title() + " is turning " +

 " right " + str(self.duration) +

 " milliseconds")

def turn_right(self):

 # simulates turning right

 print(self.name.title() + " is turning " +

 " left " + str(self.duration) +

 " milliseconds")

def set_speed(self, speed):

 # sets the speed of the motors

 self.speed = speed

 print("the motor speed is now " +

 str(self.speed))

Chapter 3 A Crash Course in Python

90

def set_duration(self, duration):

 # sets duration of travel

 self. duration = duration

 print("the duration is now " +

 str(self. duration))

	 3.	 Save the file.

Now that we’ve created our new Robot class, we will

use it to define Nomad as a Robot.

	 4.	 Create a new Python file and save it as robot_

sample.py.

We’ll start by importing the robot_sample_class

code and then use it to create a new robot called

Nomad.

	 5.	 Enter the following code:

import robot_sample_class

my_robot = Robot("Nomad", "Autonomous rover",

 black", "Jeff Cicolani")

Using the class definition to create a new instance of

the class is called instantiation. Note that we did not

provide values for the last two parameters, speed and

duration. Because we provided default values for these

parameters, we did not need to provide values during

instantiation. If we had not provided default values, we

would get an error when we tried to run the code.

With our new robot instance, let’s do some work with it:

print("My robot is a " + my_robot.desc + " called " +

my_robot.name)

Chapter 3 A Crash Course in Python

91

my_robot.drive_forward()

my_robot.drive_backward()

my_robot.turn_left()

my_robot.turn_right()

my_robot.set_speed(255)

my_robot.set_duration(1000)

	 6.	 Save the file.

	 7.	 Press F5 to run the program.

In the Python shell window, you should see something like this:

>>> ======================RESTART====================

>>>

My robot is an autonomous rover called Nomad

Nomad is driving forward 100 milliseconds

Nomad is driving backward 100 milliseconds

Nomad is turning left 100 milliseconds

Nomad is turning right 100 milliseconds

the motor speed is now 255

the duration is now 1000

�Styling
Before we wrap up this chapter, I want to take a moment to talk about

styling your code. We’ve already seen that indentation is important

and must meet strict guidelines to denote code blocks and so forth. But

there are a few areas where you can affect less critical styling decisions.

Of course, there are traditions within the Python community that are

recommended.

There are a few best practices suggested by the creators and primary

developers of Python. You can read all of their suggestions in the Python

Style Guide at www.python.org/dev/peps/pep-0008/. I recommend

Chapter 3 A Crash Course in Python

http://www.python.org/dev/peps/pep-0008/

92

going through the style guide and practicing their suggestions before you

develop some really bad habits (as I did). For now, let’s focus on how you

name your variables, functions, and classes.

�Blank Lines

Leaving blank lines between code blocks for logical, visual separation is

just a good idea. It makes your code easier to read.

�Commenting

Write comments in your code. Do it frequently and be verbose. When you

come back to read your code later (for debugging or to reuse it for another

project), you will want to know what you were thinking when the code was

written and what you were trying to do with it.

If your code ever makes it out into the wild, where other people read

or review it, they will need the comments too. Python is a community, and

code is shared frequently. Well-commented and described code is greatly

appreciated.

�Naming Conventions

How you name your variables, functions, and classes is a personal

decision. Do what is most comfortable for you. Python is a case-sensitive

language. Using a capital letter in one place and not another creates two

different variables and endless hours of frustration.

Common variable names are not addressed in the style guide,

although the convention is to use mixed-case naming. Mixed-case names

start with a lowercase character, but each word in the name is capitalized,

for example, myRobots.

Functions and modules should be lowercase. To make them easier

to read, use underscores between words. So our hello world function is

named hello_world.

Chapter 3 A Crash Course in Python

93

Classes should be named using CapWords. As the name implies,

CapWords capitalizes the first letter of every word, including the first

character in the name. This style is more commonly known as camel case.

Finally, lists and other collections should be pluralized. This is an

indicator that the variable represents more than one object. For instance,

robots is a list of robots. If we were addressing an individual item in the

list, it would look something like this:

robot = robots[0]

�Summary
We use Python throughout this book. It is a very simple language to learn,

and it provides a lot of powerful features. Many software developers

think that Python is slow. But where it is slow in some areas, it more than

makes up time in other areas, as you will see when we start working with

computer vision in Chapter 9.

Chapter 3 A Crash Course in Python

95© Jeff Cicolani 2021
J. Cicolani, Beginning Robotics with Raspberry Pi and Arduino,
https://doi.org/10.1007/978-1-4842-6891-9_4

CHAPTER 4

Raspberry Pi GPIO
Previous chapters introduced the Raspberry Pi hardware, and you

learned how to use Python to program it. You installed the operating

system, configured it for your use, and set up remote access so that you

can program the Pi without connecting a keyboard, mouse, and monitor

directly to it. You learned the basic structure of a Python program, syntax,

and enough about the language to start writing programs.

Next, you are going to learn how to use the Raspberry Pi’s GPIO

interface to interact with the physical world. This is crucial for robotics

because it’s how the processor detects what is happening around it and

responds to outside stimuli. Without the capability to detect and act on the

physical world, any kind of intelligent autonomy is not possible.

�Raspberry Pi GPIO
There are several ways to connect to the Raspberry Pi. By far, the simplest

is through one of the USB ports built into the board. The USB ports provide

four serial connections through which you can access outside components,

such as the keyboard and mouse we used to set up the Pi. However, the

USB port requires special hardware to convert the serial commands to the

signals needed to operate the device. The Raspberry Pi has a more direct

method of connecting to external devices: the GPIO header.

GPIO is the interface between the electronics and the rest of the world.

A header generally refers to a set of pins on a board that allows access to

certain functionalities. The GPIO header is the pair of 20-pin rows running

https://doi.org/10.1007/978-1-4842-6891-9_4#DOI

96

along one edge of the board (see Figure 4-1), which is referred to as a 40-

pin header.

It is very important to note that the header provides a direct

connection to the electronics on the board. There is neither a buffer

nor safety features built into these pins. This means that if you connect

something incorrectly or use the wrong voltage, you will likely damage

your Pi. The following are things that you need to be aware of before

working with the header:

•	 Although the Raspberry Pi is powered with a 5-volt USB

micro adapter, the electronics are 3.3 volts. This means

that you need to pay attention to the voltages that the

sensors use.

Figure 4-1.  Raspberry Pi with a 40-pin header

Chapter 4 Raspberry Pi GPIO

97

•	 There are two voltages supplied on the GPIO pins:

5 V and 3.3 V. Be careful which one you are using,

especially if attempting to power the Pi through GPIO.

•	 It is possible to power the Raspberry Pi through one

of the 5V GPIO pins; however, circuit protection and

regulation is not provided. If you supply too much

voltage or there is a current spike, the board may be

damaged. If you must use the GPIO pins to power the

board, be sure to provide an external regulator.

•	 There are two numbering schemas for the GPIO

header: board and BCM. This means that there are two

different ways to reference the pins from your code; the

one that you decide to use is generally up to you. You

just have to remember which schema you chose to go

with.

�Pin Numbering
As I mentioned, there are two numbering schemas for the 40-pin header:

board and BCM.

Board numbering simply numbers the pins sequentially. Pin 1 is the one

closest to the micro SD card, and pin 2 is the adjacent pin closest to the outer

edge of the Pi. The numbering continues this way, with odd-numbered pins

on the inside row and even-numbered pins on the outside. Pin 40 is the pin

on the edge of the board, near the USB ports.

BCM numbering is not nearly as straightforward. BCM stands for

Broadcom, the manufacturer of the SoC (system on a chip) that drives the

Pi. On the Raspberry Pi 2, the processor is the BCM2836; on the Raspberry

Pi 3, it’s the BCM2837. BCM numbering refers to the pin numbers of the

Broadcom chip, which can vary between versions. The BCM2836 and

Chapter 4 Raspberry Pi GPIO

98

BCM2837 have the same pin-out, so there is no difference between the

Pi 2 and Pi 3.

To connect electronic components to the 40-pin header, we will use

the Adafruit T-Cobbler Plus and a breadboard. The T-Cobbler has pin

information stenciled on the board for quick reference; however, the

T-Cobbler uses BCM numbering. Thus, we will use BCM numbering.

�Connecting to the Raspberry Pi
There are several ways to connect the pins from the header to other

devices. The motor controller that we will use is an example of a board

that sits directly on top of the header. In Raspberry Pi terminology, these

boards are referred to as hats or plates.

Another option is to directly connect to the pins using jumpers. For

many people, this is the preferred method during prototyping.

I prefer still another method, which is to use another board from

Adafruit called the Pi Cobbler. There are a few versions of the Cobbler,

but I prefer the Adafruit T-Cobbler Plus for Raspberry Pi (see Figure 4-2).

This board is designed to attach to a breadboard via a ribbon cable. It uses

a 40-pin header configured perpendicular to the pins that plug into the

breadboard. This moves the ribbon cable attachment off the breadboard

and allows better access to the holes.

Chapter 4 Raspberry Pi GPIO

99

One advantage of using the Cobbler is that the pin breakouts are

clearly marked. When we start building our circuits, it will be very easy to

see exactly what you are hooking up. This also makes it easier to identify

which pins are being used for your code. When you declare pin 21 as an

output pin, you will know exactly which pin it is on the board.

�Limitations of Raspberry Pi’s GPIO
There are a few things to keep in mind as you are working with GPIO.

First, the Raspberry Pi that we set up is not a real-time device. Debian

Linux is a full operating system with many layers of abstraction from the

hardware. This means that commands to the hardware are not direct.

Rather, the commands are passed through several operations before

and after the CPU sends them to the board. Python operates in another

abstraction layer. Each of these layers introduces a certain degree of lag.

Figure 4-2.  T-Cobbler mounted on the breadboard

Chapter 4 Raspberry Pi GPIO

100

It’s generally not perceivable to us, but it can make a huge difference in

robot operations. There are distributions of Debian that are more real time,

designed for industrial applications, but the standard Raspberry Pi OS

version that we are using is not one of these.

Second, there is no analog input on the Pi. Well, there is one, but it is

shared with the serial port, which we will likely use later for something

else. So it’s better to accept that there are no analog input pins. You will see

why this is important in Chapter 5.

Third, the Pi only has two PWM capable pins. PWM stands for pulse

width modulation, which is how we send a varied signal to an external

device. This means that there are only two pins on the header that can

simulate an analog output. Both of these pins are also shared with the

audio output of the Pi, which is not optimal.

The good news is there’s a simple solution for all of these issues,

which is simply to introduce an external microcontroller that is in real

time, offers multiple analog inputs, and provides more than two PWM

outputs. We will use this with the Arduino in Chapter 5. The Arduino is

basically a prototyping board for the AVR AT series of microcontrollers.

These chips are directly connected to the hardware and do not have the

layers of abstraction that you find in most SoC processors, like those on

the Pi. There are other advantages to using an Arduino, which I discuss in

Chapter 5.

�Accessing GPIO with Python
Hardware is only part of the equation. We’ll use our new Python skills to

program the behavior we want. In order to do that, we’ll use the RPi.GPIO

library. You will recall from Chapter 3 that a library is a collection of classes

and functions that provide additional functionality.

Chapter 4 Raspberry Pi GPIO

ASUS
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!

https://avxhm.se/blogs/hill0

101

In robotics, a new piece of hardware, sensor, or other component

frequently has a library to allow you to use it more easily. Sometimes the

library is generic, such as RPi.GPIO; other times, the library is made for

a specific device. For example, we will use a library specific to the motor

controller board in Chapter 7. As you add more hardware to your robot,

you frequently have to download the new libraries from the manufacturer’s

website. You will see this in action when we start working with the motor

controller.

The GPIO library provides objects and functions to access the GPIO

pins. Raspberry Pi OS comes with the library installed, so it should

be ready to go. For more information on how to use the package,

visit https://sourceforge.net/p/raspberry-gpio-python/wiki/

BasicUsage/.

To use the GPIO library, we need to do two things: import the package

and then tell it which mode we’ll use to access the pins. As I discussed

earlier, there are two modes—board and BCM—that essentially tell the

system which numbering reference to use.

Board mode references the numbering on the P1 header of the

Raspberry Pi. Since this numbering remains constant, for backward

compatibility, you won’t need to change your pin numbering in your code,

based on the board revision.

In contrast, BCM mode refers to the pin numbering from the

Broadcom SoC, which means that on newer versions of the Pi, it is possible

for the pin layout to change. Fortunately, this pin layout has not changed

between the BCM2836 used in the Pi 2 and the BCM2837 used in the Pi 3.

For our purposes, we’ll use BCM mode—simply because that is what is

illustrated on the T-Cobbler.

Every program using the GPIO header includes the following two lines

of code:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

Chapter 4 Raspberry Pi GPIO

https://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage/
https://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage/

102

�Simple Output: LED Example
The simplest example is the ubiquitous hardware version of “Hello

World”—the blinking LED. Our first GPIO project is to connect an LED

to the Pi and to use a Python script to make the LED blink. Let’s start by

hooking up the circuit. To do this, you need a breadboard, the T-Cobbler,

an LED, a 220-ohm (Ω) resistor, and two short pieces of wire to use as

jumpers.

�Hooking Up the Circuit

	 1.	 Attach the T-Cobbler as shown in Figure 4-3. One

row of pins should be on either side of the split in

the board. The placement is up to you; however, I

generally attach it such that the ribbon cable header

is off the board. This allows maximum access to the

breadboard.

Figure 4-3.  Circuit layout for the LED example

Chapter 4 Raspberry Pi GPIO

103

	 2.	 Connect the 220 Ω resistor between the ground rail

and an empty five-hole rail.

	 3.	 Connect the LED cathode to the same rail as the

resistor. The cathode is the pin closest to the flat side

of the LED. On some LEDs, this pin is shorter than

the other pin (see Figure 4-4).

	 4.	 Connect the LED anode to another empty five-pin rail.

	 5.	 Connect a jumper from the anode’s rail to the rail

connected to pin 16 on the T-Cobbler.

	 6.	 Connect a jumper from the ground rail that the LED

is connected to to a rail connected to any of the

ground pins of the T-Cobbler.

If you want to test the LED before moving on to the code, you can move

the jumper from pin 16 to one of the 3.3V pins. If your Pi is powered on, the

LED will illuminate. Make sure that you move the jumper back to pin 16

before continuing.

�Writing the Code

The code for this project is very simple. It is written in Python 3.

Although the code works in either version, one of the lines will not work in

Python 2.7. Specifically, the print line at the end uses the end parameter,

which is not compatible. If you are using Python 2.7, you will need to omit

this parameter.

Figure 4-4.  LED polarity

Chapter 4 Raspberry Pi GPIO

104

The end parameter replaces the default /n that is appended to each

printed line with a /r. The /r is a carriage return as opposed to the new

line represented by /n. This means that the cursor returns to the beginning

of the current line, and any new text overwrites the pervious characters. It

does not clear the line first, however. So we append an arbitrary number of

empty spaces to the end of the new text to ensure that all the previous text

is completely removed.

The GPIO commands access system–level memory. In earlier versions

of the Pi, all system-level commands required root access. This meant

either granting your use root access or running everything as a super user

using the sudo command. Fortunately, the newer versions of the Pi and

the Pi OS do not require this, and these commands can be executed in the

same manner we would run any other Python command.

To start, let’s create a new Python 3 file by using Thonny.

	 1.	 Open Thonny.

	 2.	 Click New.

	 3.	 Save the file as gpio_led.py in your project folder.

Once your file is created and you are in the Thonny

editor, enter the following code:

GPIO example blinking LED

Import the GPIO and time libraries

import RPi.GPIO as GPIO

import time

Set the GPIO mode to BCM and disable warnings

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

Define pins

led = 16

Chapter 4 Raspberry Pi GPIO

105

GPIO.setup(led,GPIO.OUT)

Make sure LED is off

GPIO.output(led,False)

Begin Loop

while True:

 # Turn LED on

 GPIO.output(led,True)

 # Wait 1 second

 time.sleep(1)

 # Turn LED off

 GPIO.output(led,False)

 # Wait 1 second

 time.sleep(1)

	 4.	 Save the file.

Next, we will use the terminal to make the file executable and then run it.

	 1.	 Open a new terminal window and navigate to your

project folder.

	 2.	 Type chmod +x gpio_led.py.

This makes the file executable.

	 3.	 To run the code, type python3 gpio_led.py.

There you have it: a blinking LED. Hello World.

Chapter 4 Raspberry Pi GPIO

106

�Pulse Width Modulation (PWM)

Even though there are only two PWM pins on the Pi’s GPIO header and you

likely won’t use them, it is useful to know how to control them properly.

The two PWM pins on the board are 18 and 19. For this example, we’ll set

up the LED to use pin 18 and pulse the LED.

Hooking Up the Circuit

All right, this is the complicated part. To set up this circuit, you need to

follow these directions very closely. Use the circuit we built for the LED

exercise.

	 1.	 Move the jumper from pin 16 to pin 18.

Phew. Now that we’ve gotten through all of that, let’s code.

Writing the Code

Create a new Python 3 file.

	 1.	 Open Thonny.

	 2.	 Click New.

	 3.	 Save the file as gpio_pwm_led.py in your project

folder.

	 4.	 Once your file is created and you are in the Thonny

editor, enter the following code:

GPIO example blinking LED

Import the GPIO and time libraries

import RPi.GPIO as GPIO

import time

Set the GPIO mode to BCM and disable warnings

Chapter 4 Raspberry Pi GPIO

107

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

Define pins

pwmPin = 18

GPIO.setup(pwmPin,GPIO.OUT)

pwm = GPIO.PWM(pwmPin,100)

Make sure LED is off

pwm.start(0)

Begin Loop

while True:

 count = 1

 # begin while loop to brighten LED

 while count < 100:

 # set duty cycle

 pwm.ChangeDutyCycle(count)

 # delay 1/100 of a second

 time.sleep(0.01)

 # increment count

 count = count + 1

 # begin while loop to dim LED

 while count > 1:

 pwm.ChangeDutyCycle(count)

 time.sleep(0.01)

 # set duty cycle

 pwm.ChangeDutyCycle(count)

Chapter 4 Raspberry Pi GPIO

108

 # delay 1/100 of a second

 time.sleep(0.01)

 # decrement count

 count = count – 1

	 5.	 Open a new terminal window and navigate to your

project folder.

	 6.	 Type chmod +x gpio_pwm_led.py to make the file

executable.

	 7.	 To run the code, type

python3 gpio_pwm_led.py

Your LED should now be pulsing. To change the rate at which it pulses,

change the value in the time.sleep() function calls.

�Simple Input
Now that we’ve seen how easy it is to send out a signal, it’s time to get some

information back into the Pi. We’ll do this through two examples. First

is the push-button; in this example, the Pi is set up to take input from a

simple push-button and indicate in the terminal when the button has been

pushed. The second example uses a sonic rangefinder to read the distance

to an object. The output will be displayed in the terminal.

�Push-Button Example

The simplest form of input is a push-button. You press a button, the

circuit closes, and something happens. For our first input example, we will

connect a push-button to the GPIO header.

There are essentially two ways to connect a push-button. You can set it

up to start in a low state, which means that when the button is not pushed,

Chapter 4 Raspberry Pi GPIO

109

there is no signal going to the pin and the voltage on the pin is read as

“low” by the processor. You can also connect it in a high state. In this

configuration, the pin reads as high, or on, when the button is not pushed.

When the button is pushed, the pin is brought to the low state.

You frequently hear the terms pulling high and pulling low. Pulling a

pin high or low is the method that forces the pin into a high or a low state.

In many applications, this is done by adding a resistor to the circuit.

A resistor connected between the logic pin and the voltage causes

the pin to be in a high state. The pin is pulled high. The button is then

connected to ground. When the button is pushed, the voltage flows

through the button to ground, bypassing the pin. With no voltage going to

the pin, it goes into a low state.

Conversely, connecting the resistor between the logic pin and ground

and then connecting the button between the pin and the voltage source,

the pin is pulled down. While the button is open, any residual voltage in

the pin is drawn to ground, leaving the pin in a low state. When the button

is pushed, voltage is applied to the pin, and it goes into a high state.

Pins are pulled high or low to assure that they are in the expected state

when the button is pushed. It’s a way to explicitly tell the circuit how it is

expected to behave, and it’s generally a good practice.

Fortunately, the Raspberry Pi has built-in circuitry to accommodate

pulling a pin high or low. This means that we can pull a pin to the proper

state through code and we don’t have to worry about adding extra

components.

For this exercise, let’s pull the pin high. When the button is pushed, the

pin goes low, and a message prints to the terminal window.

Chapter 4 Raspberry Pi GPIO

110

Hooking Up the Circuit

The following parts are needed for this exercise:

•	 Tactile push-button switch

•	 4 male-to-male jumpers

	 1.	 Attach the T-Cobbler as shown in Figure 4-5. One

row of pins should be on either side of the split in

the board. The placement is up to you; however, I

generally attach it so that the ribbon cable header

is off the board. This allows maximum access to the

breadboard.

	 2.	 Connect a tactile push-button so that the pins

bridge the gap in the center of the breadboard.

	 3.	 Connect a jumper between the 3.3V pin and the

voltage rail.

Figure 4-5.  Push-button example circuit layout

Chapter 4 Raspberry Pi GPIO

111

	 4.	 Connect another jumper between the ground pin

and the ground rail.

	 5.	 Use another jumper to connect one side of the

tactile switch to the ground rail.

	 6.	 Use the remaining jumper to connect the other

button pin to pin 17.

These tactile switches are double pole, single throw (DPST). This

means that when the button is pushed, the two pins on one side of the

breadboard gap are connected. The pins on the other side of the gap form

a separate circuit. Be sure that the jumpers are going to pins on the same

side of the divide.

Writing the Code

Create a new Python 3 file.

	 1.	 Open Thonny.

	 2.	 Click New.

	 3.	 Save the file as gpio_button.py in your project

folder.

	 4.	 Enter the following code:

GPIO example using an NC-SR04 ultrasonic rangefinder

import the GPIO and time libraries

import RPi.GPIO as GPIO

Set the GPIO mode to BCM mode and disable warnings

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

Define pin

Chapter 4 Raspberry Pi GPIO

112

btnPin = 20

GPIO.setup(btnPin, GPIO.IN, pull_up_down = GPIO.PUD_UP)

Begin while loop

while True:

 btnVal = GPIO.input(btnPin)

 # If the pin is low, print to terminal

 if (btnVal == false):

 print('Button pressed')

	 5.	 Open a new terminal window and navigate to your

project folder.

	 6.	 Type chmod +x gpio_button.py.

	 7.	 To run the code, type python3 gpio_button.py.

�Sonic Rangefinder Example

For this example, let’s use the HC-SR04 ultrasonic sensor to determine the

distance to an object. You’ll put the call into a loop that allows us to get

constant distance readings. You’ll use the libraries used in the previous

example to access the GPIO pins.

This exercise introduces you to one of the key factors to watch out

for with the Pi and many other devices: voltage difference between the

sensors and the pins. Many sensors are designed to work at 5 volts. The

Pi, however, uses 3.3 volts in its logic. That means all of the IO pins are

designed to work with 3.3 volts. Applying a 5 V signal to any of these pins

can cause severe damage to your Pi. The Pi does provide a few 5V source

pins, but we need to reduce the returning signal to 3.3 volts.

Chapter 4 Raspberry Pi GPIO

113

Hooking Up the Circuit

This time, the circuit is a bit more complicated. Really. Keep in mind that

the sensor works on 5 volts. The Pi’s GPIO pins work on 3.3 volts. Feeding

a 5 V return signal into a 3.3V pin can damage the Pi. To keep that from

happening, let’s add a simple voltage divider to the echo pin.

Let’s do some math.

	
V V

R

R Rout in� �
�
1

1 2 	

	
V V

R

R Rout in� �
�
2

2 1 	

	

V

V

R

R R
out

in

�
�
2

1 2 	

We have 5 volts in and want 3.3 volts out, and we are using a 1 kΩ

resistor as part of the circuit. So…

	

3 3

5

2

1000 2

.
�

�
R

R 	

	
0 66

2

1000 2
. �

�
R

R 	

	 0 66 1000 2 2. �� � �R R 	

	 660 0 66 2 2� �. R R 	

	 660 0 34 2+ . R 	

	 1941 2= R 	

The following is the parts list:

•	 HC-SR04

•	 1 kΩ resistor

•	 2 kΩ resistor

Chapter 4 Raspberry Pi GPIO

114

You can use two 1 kΩ resistors in series, or a more popular,

similar resistor is the 2.2 kΩ. That’s what we’ll use.

•	 4 male-to-female jumpers

•	 4 male-to-male jumpers

Here’s the setup.

	 1.	 Attach the T-Cobbler, as shown in Figure 4-6. One

row of pins should be on either side of the split in

the board. The placement is up to you; however, I

generally attach it so that the ribbon cable header

is off the board. This allows maximum access to the

breadboard.

Figure 4-6.  Sonic rangefinder example circuit layout

Chapter 4 Raspberry Pi GPIO

115

	 2.	 Make sure that the ground jumper is secure between

the ground pin and the ground rail.

	 3.	 Add a jumper between one of the 5V pins and the

power rail.

	 4.	 Use a male-to-female jumper to connect the ground

pin on the SR04 to the ground rail.

	 5.	 Connect the VCC or 5V pin from the SR04 to the

power rail.

	 6.	 Connect the trig pin on the SR04 to pin 20 of the

T-Cobbler.

	 7.	 Connect the 2 kΩ resistor from an empty five-pin

rail to the ground rail.

	 8.	 Connect the 1 kΩ resistor from the rail connected to

the 2 kΩ resistor to another empty five-pin rail.

	 9.	 Connect another jumper between the rail connected

to the 2 kΩ resistor and pin 21 on the T-Cobbler.

	 10.	 Connect the SR04 echo pin to the rail that the other

end of the 1 kΩ resistor is connected to.

That completes the wiring. Now let’s get the code set up.

Writing the Code

The HC-SR04 ultrasonic rangefinder works by measuring the time it takes for

an ultrasonic pulse to return to the sensor. We’ll send out a 10-microsecond

pulse and then listen for the pulse to return. By measuring the length of the

returned pulse, we can use a little math to calculate the distance in centimeters.

Distance is calculated as speed × time. It’s derived from the formula

speed = distance ÷ time. At sea level, sound travels at a rate of 343 m per

second, or 34,300 cm per second. Since we are actually measuring the time

Chapter 4 Raspberry Pi GPIO

116

it takes for the pulse to reach its target and return, we really only need half

of that value. Let’s work with the following formula:

Distance = 17,150 × time

The code simply sends out a 10 μS pulse, measures the time it takes to

return, calculates the estimated distance in centimeters, and displays it in

the terminal window.

Create a new Python 3 file.

	 1.	 Open Thonny.

	 2.	 Click New.

	 3.	 Save the file as gpio_sr04.py in your project folder.

	 4.	 Enter the following code:

GPIO example using an NC-SR04 ultrasonic rangefinder

import the GPIO and time libraries

import RPi.GPIO as GPIO

import time

Set the GPIO mode to BCM mode and disable warnings

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

Define pins

trig = 20

echo = 21

GPIO.setup(trig,GPIO.OUT)

GPIO.setup(echo,GPIO.IN)

print("Measuring distance")

Begin while loop

while True:

Chapter 4 Raspberry Pi GPIO

117

 # Set trigger pin low got 1/10 second

 GPIO.output(trig,False)

 time.sleep(0.1)

 # Send a 10uS pulse

 GPIO.output(trig,True)

 time.sleep(0.00001)

 GPIO.output(trig,False)

 # Get the start and end times of the return pulse

 while GPIO.input(echo)==0:

 pulse_start = time.time()

 while GPIO.input(echo)==1:

 pulse_end = time.time()

 pulse_duration = pulse_end - pulse_start

 # Calculate the distance in centimeters

 distance = pulse_duration * 17150

 distance = round(distance, 2)

 �# Display the results. end = '\r' forces the output to the

same line

 print("Distance: " + str(distance) + "cm ", end = '\r')

	 5.	 Open a new terminal window and navigate to your

project folder.

	 6.	 Type chmod +x gpio_sr04.py.

	 7.	 To run the code, type python3 gpio_sr04.py.

Chapter 4 Raspberry Pi GPIO

118

�Summary
One of the great things about the Raspberry Pi is the GPIO header.

The 40-pin header allows you to interface directly with sensors and other

devices. In addition to the simple GPIO we used to connect to the LED,

button, and ultrasonic sensor, there are pins with other specific functions.

I suggest exploring some of these other functions. Pins marked SCL, SDA,

MISO, and MOSI are serial connections that allow you to use advanced

sensors, such as accelerometers and GPS.

When working with the GPIO header, there are a few things that you

need to keep in mind:

•	 To run your script, first make the file executable by

using chmod +x <filename>.

•	 Pay careful attention to the voltages used by your sensors.

•	 Although the header can supply 5 volts for devices, the

logic pins are 3.3 volts. You will damage your Raspberry

Pi if you don’t reduce the signal coming from the sensor.

•	 A voltage-splitting circuit—like the one built for the

ultrasonic sensor—can be used to reduce 5 V signals

from sensors to 3.3 volts.

•	 Premade boards called logic-level shifters can be used

to reduce the voltage.

•	 The Raspberry Pi has no functionally useful analog pins.

•	 It has only two PWM channels. Each of these is

connected to two pins, so it may look like it has four

usable PWM pins, but it really doesn’t.

In the next chapter, we connect an Arduino board to our Raspberry Pi.

The Arduino is a microcontroller designed for IO. That is all it does, but it

does it well. By combining these two boards, we not only overcome the Pi’s

GPIO shortcomings but also add other benefits.

Chapter 4 Raspberry Pi GPIO

119© Jeff Cicolani 2021
J. Cicolani, Beginning Robotics with Raspberry Pi and Arduino,
https://doi.org/10.1007/978-1-4842-6891-9_5

CHAPTER 5

Raspberry Pi and
Arduino
In Chapter 4, we used the GPIO pins on the Raspberry Pi to interact with

an LED and an ultrasonic sensor. Many times, this is enough to do what

you want to do. However, I also discussed some of the shortcomings of the

Raspberry Pi GPIO and the likely need to expand the capabilities of the Pi

in order to overcome these shortcomings.

In this chapter, we introduce a microcontroller to our robot. A

microcontroller is a device, usually in chip form, designed to work directly

with other components through input and output pins. Each pin is

attached to the microcontroller’s circuitry and serves a specific purpose.

Because the pins are directly attached to the microcontroller’s sensitive

inner workings, additional circuitry is generally needed to make it safe to

work with it. Many manufacturers provide an evaluation board to allow

developers to build prototype and proof-of-concept devices quickly.

One such board was actually developed by developers, rather than the

chip manufacturer, and made available to the public. Due to its ease of

use, ample documentation, and superb community support, this device

quickly became a favorite of the hobby community. I am talking about the

Arduino, of course.

https://doi.org/10.1007/978-1-4842-6891-9_5#DOI

120

We cover a lot of information about the Arduino: how to install the

software, write programs (called sketches), and load those programs to the

Arduino board. We also cover how to get your Raspberry Pi and Arduino

boards to talk to each other. This adds exponentially more capabilities to

your robot.

But before we go into the Arduino, let’s review some of the

shortcomings of the Raspberry Pi.

�Raspberry Pi’s GPIO in Review
In particular, let’s talk about the lack of sufficient analog and pulse width

modulation (PWM) pins.

�Real-Time or Near-Real-Time Processing
Real-time processing is the system’s ability to interact directly with

GPIO and external devices. It is crucial for CNC (computer numerically

controlled) applications or other applications where immediate response

is required. In robotics terms, it is necessary for closed-loop systems where

an immediate response to stimuli is required.

A good example is an edge detector for a mobile robot. You want the

robot to stop moving before it drives itself over a cliff or off the edge of a

table. Taking the time it takes to process through the many abstraction

layers of an operating system to reach the logic to determine to stop and

then send the signal through the many layers to the motor controller could

prove catastrophic. And, if the OS delays the operation or hangs, the robot

will happily plummet to its demise, never the wiser. Instead, you want your

robot to stop immediately.

Although there are flavors of Linux that facilitate near-real-time

processing, these are specialty operating systems, and the Raspbian

installation we are using is not one of them.

Chapter 5 Raspberry Pi and Arduino

121

�Analog Input
We have seen digital input working on the Pi. In fact, we used the

ultrasonic rangefinder to detect range when a digital pin was turned on

and then off (went high and then low). With a little math, we were able

to convert that signal into useful data. That was a digital signal; it simply

detected when a pin had a high voltage and then when the same pin had a

low voltage.

There are many types of analog signals, not just high or low, white

or black, or on or off, but also a range of values—or shades of gray to use

the black/white analogy. This is very useful when you are using a sensor

that measures intensity or the level of something. A light sensor that uses

a photoresistor is one example. As the light intensity changes, so does

the resistance, and therefore the voltage, on the sensor. A device called

an analog-to-digital converter (ADC) transforms that analog signal into a

digital value the program can use.

The Raspberry Pi has a single analog pin. This is not very useful,

especially when it’s tied to another function that the board likely uses—in

this case, serial communication. If we were to dedicate the pin to analog

input, we would not be able to use that serial channel. Even if we weren’t

planning to use that particular serial channel, a single analog input has

very limited use.

�Analog Output
Analog output is similar, in nature, to analog input. With the LED exercise

we did earlier, we used a digital signal to turn an LED on and off. Analog

allows us to change the brightness or intensity of the LED. However, a

digital system, such as a computer or microprocessor, cannot create a true

analog signal.

Chapter 5 Raspberry Pi and Arduino

122

It adjusts the frequency and duration of the digital signal. The duration

of a digital signal is referred to as a pulse. Adjusting how often a pulse is

active in a given time period, and the length of that pulse, is called pulse

width modulation, or PWM. When we were measuring the signal from the

ultrasonic rangefinder, we were actually measuring the pulse returned

from the device.

The Raspberry Pi has four PWM pins available. However, those four

pins are connected to only two PWM processes. So this means we only

have two PWM channels available for use. And again, this is not as useful

as we would like. With a real-time processor, we could simulate PWM with

software. However, as discussed earlier, the Raspberry Pi is not a real-time

system. So we need to find another solution if we want more than two

PWM channels.

�Arduino to the Rescue
Fortunately, there is a class of device designed, specifically, to manage

input and output of various types, in real time. These are microprocessors.

There are many types of microprocessors out there. Some of the more

common, and easy to use, are the AVR ATTiny and the ATMega processors.

However, these are chips, and unless you’re used to working with

them, they can be difficult to access and use. To make these devices easier

to use, the manufacturers create what are known as development boards.

These boards connect the pins on the chip to headers that are easier to

access for prototyping. They also add the electronics needed to use the

pins, such as voltage regulators, pull-up resistors, filter caps, diodes, and so

forth. So, in the end, all you have to do is connect your specific electronics

to the device and prototype your product.

A few years back, a group of engineers in Italy got together and did

something a little unprecedented. They developed their own development

board around the AVR ATMega chip, made the design open to the public

Chapter 5 Raspberry Pi and Arduino

123

(open hardware), and then marketed it to hobbyists and students. They

called this board Arduino. Figure 5-1 shows a typical Arduino Uno. I’m

sure that it had the intended consequence of becoming a de facto standard

in the hobby and maker community.

We will use an Arduino Uno with our Raspberry Pi. Why? First, it is a

real-time processor. The Arduino communicates directly with the pins and

attached peripherals. There is no lag due to OS or program layer abstraction.

Second, it provides a lot more pins to work with. Among them are six analog

pins and six hardware-based PWM pins that we add. It’s “hardware based”

because the board is real-time and we can simulate PWM signals (through

software) on any of the pins (there are 20, by the way).

And that is just the Arduino Uno. There is a larger version of the

Arduino board called the Mega. The Mega has 54 digital pins and 16 analog

pins. That is a total of 70 pins of IO goodness.

Figure 5-1.  Arduino Uno

Chapter 5 Raspberry Pi and Arduino

124

Arduino is open hardware, which means that the designs are

available for anyone to build them. As such, you find many different

versions from many different manufacturers at many price points. This

is a prime example of you get what you pay for. If you’re just getting

started, I recommend spending a little more to get a more reliable board.

Later, as you develop a better understanding and a higher tolerance for

troubleshooting, you can experiment with the less expensive boards.

�Using Arduino
Arduino is remarkably easy to program and use. Many people get

intimidated by the prospect of working with electronics and programming

hardware. But there’s a reason why so many people get their start in

robotics and IoT with Arduino. Connecting devices to the Arduino is very

easy, especially with the use of add-ons called shields.

Programming the Arduino is also very easy. Arduino provides an

interface for programming the board called, simply enough, Arduino.

Or more accurately, it is the Arduino IDE (integrated development

environment). The Arduino IDE uses a flavor of C programming also

called Arduino. As you can see, the hardware, software, and development

environment are conceptually the same thing. When you talk about

programming Arduino, there is no distinction between the software and

hardware since the only purpose of the software is to interact with the

hardware.

Throughout this chapter, you need to have the Arduino IDE installed

and an Arduino connected to your computer. It’s assumed that the

installation instructions and exercises are run on your Raspberry Pi, but

in all honesty, the installation on another machine is just as easy. So, if

you are more comfortable working on something other than the Pi or you

simply don’t feel like remoting into one, you can do all the exercises on

your PC or laptop.

Chapter 5 Raspberry Pi and Arduino

125

�Installing the Arduino IDE
Before we connect the Arduino to our Raspberry Pi, we’ll want to install the

software and drivers. Fortunately, this is super easy. Installing the Arduino

IDE also installs any drivers that are needed to work with the Pi.

	 1.	 Open a terminal window.

	 2.	 Type sudo apt-get install Arduino.

	 3.	 Answer yes to any prompts.

	 4.	 Grab a drink. This may take a surprisingly long time.

When the installation process is done, it adds the Arduino IDE to your

programming menu.

�Connecting an Arduino
When I originally outlined this portion of the book, my intent was to

provide multiple ways to connect the Arduino to the Raspberry Pi.

However, to use anything but the USB port introduces another layer of

complexity and Linux detail that is beyond the scope of this introduction. It

essentially involves telling the Pi that you are activating the UART pins and

then disabling a number of native functions that use this channel. This is

an unnecessary process to go through, especially since there are four USB

ports ready to go, and if you need more, you can always add a USB hub.

So we’ll use a USB connection so that we can focus on the introduction to

Arduino as it relates to the Pi.

To connect the Arduino, all we have to do is connect the USB cable

from the Raspberry Pi to the Arduino, as depicted in Figure 5-2. Depending

on the manufacturer of the board, you may need a different USB cable.

Since I am using an original Uno, I use a USB A-to-B cable. Some people

use a USB mini cable, and others use a USB micro.

Chapter 5 Raspberry Pi and Arduino

126

That’s it. Since the Arduino board is powered by your Pi through the

USB cable, you don’t need to add external power. You’re just about ready

to start using your Arduino. Next, we’re going to test your Arduino with the

ubiquitous blink program. But first, let’s look at the interface.

�Programming Arduino
As I’ve said before, programming the Arduino is very easy. However,

since we just spent a lot of time learning Python, it’s very important to

understand some of the differences.

We’ll start by looking at the interface and some of the tricks to using

it. Then we’ll write a small program to illustrate the anatomy and syntax

of the language. All of this is to prepare you for the next section, where we

take a deeper look at the Arduino programming language.

Figure 5-2.  USB A-to-B cable connected to the Arduino Uno

Chapter 5 Raspberry Pi and Arduino

127

�The Arduino IDE

When first you open the Arduino IDE, you are presented with a remarkably

simple interface (see Figure 5-3). The developers adopted the interface of

the Programming language and IDE when they developed Arduino. If you

have done any coding in the past, this interface is going to seem lacking in

features. That is both purposeful and a bit misleading.

Figure 5-3.  Arduino IDE

Chapter 5 Raspberry Pi and Arduino

128

Despite the simple interface, the IDE is surprisingly robust. Most

importantly, it provides the cross-compiling needed to get your code,

written on a Linux, Windows, or Apple machine, to work on the much

simpler AVC processor.

Let’s walk through some of the key features and operations in the

Arduino IDE.

Icons and the Menu

Being Arduino and different, the icons in the toolbar at the top of the

interface are not what you’re likely used to. Looking at Figure 5-4 and

moving from left to right, the icons are compile, upload, new sketch, open,

and save, and way over to the right is the serial monitor.

The first two icons are very important.

Compile tells the IDE to process your code and gets it ready to load

onto the Arduino board. It runs through your code and tries to build the

final machine-level program. At this time, it identifies any errors that you

may have entered. Arduino does not provide any debugging functionality,

so you depend on the compiling function quite a bit.

Upload compiles the sketch and then uploads it to the board. Because

the upload function runs the compiler first, you get the same compilation

activities as the compile function, but, at the end of the process, it attempts

to load the compiled code to your board. Since the AVR processor can

only store and run one program at a time, every time that you upload to

the Arduino board, you overwrite whatever is currently on there. This is

not always desirable. Sometimes you compile code intermittently to check

syntax and to make sure that it’s right. You won’t always want to load these

intermediary steps to the board.

Figure 5-4.  Arduino IDE toolbar

Chapter 5 Raspberry Pi and Arduino

129

However, in the end, you need to upload your sketch to see anything

happen. Compiling the sketch assures that you have working code.

Whether or not the code is doing what you want it to do is another story.

You won’t know this until it’s uploaded.

Creating a New Sketch

You can create a new sketch by either clicking the new sketch icon in the

toolbar or clicking File ➤ New from the menu. Creating a new sketch

always opens a new instance of the IDE. Whatever you were working on in

the previous window is still there.

The first time you open the Arduino IDE, you are presented with the

framework of a new sketch. This is also what you see when you create

one later. Every Arduino sketch contains these elements. The new sketch

operation always prepopulates the IDE with this framework. You’ll see

what these elements are when we write our first sketch.

Saving a Sketch

Before you can compile or run a sketch, you need to save it. You can save a

sketch at any time; it just must be done before you can compile or upload

it. To save a sketch, click the save icon or select File ➤ Save from the menu.

When a sketch is first saved, the system automatically creates a project

folder for it. This is where the code file (with the .ino extension) is saved.

Any other files created for the project are also saved in this folder. This is

important when you work with larger, more complex programs or when

you start breaking your sketches up into different tabs in the IDE.

Opening Existing Sketches

By default, when you open the IDE, the last sketch you were working on

opens automatically. This is convenient when you are working on the same

project for a while.

Chapter 5 Raspberry Pi and Arduino

130

If you need to open another sketch, you either click the open sketch

icon in the menu bar or select File ➤ Open. Alternatively, you can also

select File ➤ Open Recent. This lists the last several sketches that you

opened. Selecting one of these files opens it in a new instance of the IDE.

Board and Port Selection

Something that is crucial to the proper compiling and loading of a sketch is

the selection of the appropriate board and port. Board and port selection is

done from the Tools menu.

Selecting the board tells the compiler which version of Arduino you are

using. As you grow in your Arduino, robotics, and/or IoT experience, you

will likely use different boards. One of the great things about the Arduino

IDE is its flexibility. You find yourself using the familiar and comfortable

environment to program a great many different boards by different

manufacturers. This lends to the adoption of Arduino as a de facto

standard in the maker community.

To select the board and port for your robot, make sure that your

Arduino is connected via USB and the Arduino IDE is installed and

opened.

	 1.	 Select Tools ➤ Board from the menu.

	 2.	 Select Arduino/Genuino Uno from the list of

available boards.

	 3.	 Select Tool ➤ Port from the menu.

There should be one entry in the list that says

something like Arduino/Genuino Uno on
TTYAMA0.

	 4.	 Select this entry.

At this point, the Arduino IDE should be ready to compile and load

sketches to your board. We will write our first sketch to put it to the test shortly.

Chapter 5 Raspberry Pi and Arduino

131

Cheating with Examples

When you install the Arduino IDE, you also install a collection of example

sketches (see Figure 5-5). These are excellent references for learning

your way around Arduino coding. As you’re learning, look through

these sketches for functionality that is similar to what you are trying to

accomplish.

Figure 5-5.  List of example code included with the base install

Chapter 5 Raspberry Pi and Arduino

132

To view a list of examples or to open one, click File ➤ Examples. As you

add more libraries (such as those for sensors and other devices), you add

to this list of examples. So as you expand your own capabilities, as well as

those of your robot, be sure to revisit the examples.

Using Tabs and Multiple Files

When I discussed saving a sketch earlier, it may have seemed a little

odd that a project folder was created for a single file. The reason for this

is a project can consist of more than one file. You can create multiple

Arduino files for a project, or you may want to keep your included files

together with your project. Figure 5-6 shows the Arduino IDE with three

tabs open.

Chapter 5 Raspberry Pi and Arduino

133

When you have multiple code files in a project folder, each one appears

as a tab in the Arduino IDE when you open a file in that project. This allows

you to easily navigate between the files while you are working.

When working with tabs and multiple files, there are a few things to

keep in mind. Code in tabs created through the IDE and saved as INO

files is appended to the end of the main INO file. This means any

functions you create in these tabs are available to use in any of these

tabs. However, tabs for files not created in the IDE, like those for included

Figure 5-6.  Arduino IDE with multiple tabs

Chapter 5 Raspberry Pi and Arduino

134

files, are not available until you include the file in your code. This can be

both convenient and frustrating since you need to track from which file a

particular function comes.

I touch a little more on including files later in this chapter when we

review coding in Arduino.

Figure 5-7 shows the tab management menu.

You can create a new tab to help organize your code. When you create

a new tab, that tab is saved as a new file within your project folder.

	 1.	 Open the Arduino IDE and start a new file.

	 2.	 Save the file to create a new project file.

Figure 5-7.  Tab management menu

Chapter 5 Raspberry Pi and Arduino

135

	 3.	 Click the arrow in the tab bar of the IDE.

	 4.	 Click New Tab.

	 5.	 In the dialog that opens, enter a name for your tab.

Keep in mind that this is the name of the new file in

your project folder.

	 6.	 Save the file. All unsaved tabs are also saved.

Once the tab is saved, Arduino automatically creates a new file to store

the code in the tab.

�Sketches
Programs for the Arduino are called sketches. The idea is that you are

simply sketching code—as you would sketch an idea on a restaurant

napkin. And, in all honesty, it does feel that way sometimes.

You are writing Arduino sketches in a language called Programming. It

is a thin version of the C programming language designed to make coding

easier. Arduino actually uses a modified version of Programming made for

the Arduino board. It is essentially a reduced set of instructions that the

AVR processor is able to run.

Like Python, you can add libraries as you add functionality and

complexity. In C, we use the include directive. It serves the same purpose

as the import command in Python. We’ll see that in a little while when we

do some communication between the two boards.

�Hello, Arduino

To understand the difference between programming Arduino and Python,

we’ll write a simple program. As with Chapter 4, the first program is the

hardware version of Hello World—a blinking LED. After you’ve loaded the

program, you’ll learn more about programming, its structure, and how to

work with it.

Chapter 5 Raspberry Pi and Arduino

136

In Chapter 4, we built a small circuit with an LED. The Arduino,

however, has an LED built into the board that is available for our use, so we

won’t need to break out the breadboard just yet. The LED is attached to pin

13 on the Uno; it may differ on other versions.

	 1.	 Open the Arduino IDE from your programming

menu.

	 2.	 Verify the board is connected and detected.

	 3.	 On the Arduino IDE menu, go to Tools and hover

over Board. You should see Arduino Uno selected.

	 4.	 Now hover over Serial Port. It should say something

like /dev/ttyUSB0. Yours may be different if your Pi

assigned a different port. The point is that there’s

something there and it’s checked.

	 5.	 Close the Tools menu by clicking somewhere

outside the menu.

	 6.	 Enter the following code:

int ledPin = 13;

void setup() {

 pinMode(ledPin, OUTPUT);

}

void loop() {

 digitalWrite(ledPin, HIGH);

 delay(1000);

 digitalWrite(ledPin, LOW);

 delay(1000);

}

	 7.	 Save the file as blink_test.

Chapter 5 Raspberry Pi and Arduino

137

	 8.	 Click the checkbox icon to compile the sketch.

	 9.	 If you get any errors, make sure that you’ve entered

the code correctly. Remember, unlike Python, you

have to end each line with a semicolon. And like

Python, capitalization matters.

	 10.	 When everything compiles correctly, click the arrow

icon (pointing right). This uploads the sketch to the

Arduino.

Wait a few seconds while it uploads. Afterward, you should see the LED

connected to pin 13 blinking.

Congratulations! You just finished your first Arduino program. In

addition, you did it from your Pi.

�Anatomy of a Sketch

The sketch we just wrote is not the most complex, but it does illustrate the

basic structure of an Arduino sketch.

int ledPin = 13;

We start by creating an integer variable, called ledPin, and assign it

the number 13. It’s a good habit to give variables meaningful names, even

when the program is short and only has one variable.

void setup() {

We then create a function called setup(). This function and the loop()

function exist in every Arduino sketch. The setup function is where you

put preparatory code, such as opening serial ports or, as we did in this

sketch, defining how we use pins. The setup function runs once, at the

beginning of the program.

pinMode(ledPin, OUTPUT);

Chapter 5 Raspberry Pi and Arduino

138

In the setup function, we have a single command. The pinMode

function tells the compiler how a pin is used. In this case, we are declaring

ledPin (with a value of 13) as an output pin. This tells the compiler that we

are sending out signals and we are not expecting to receive signals through

this pin.

We then close the setup function with the closing parenthesis before

starting our loop function.

void loop() {

The loop function is the only other required element of an Arduino

sketch. As the name suggests, loop is run continuously and repeatedly

until power is removed from the board or the board is reset. It is the

equivalent of the while true: command in Python. Any code in the loop

function is repeated as quickly as the processor can manage.

digitalWrite(ledPin, HIGH);

Within the loop function, we have the code to blink our LED. We start

by setting the pin to a high state with the digitalWrite function. Again, we

pass it ledPin and the state we want to set—in this case, HIGH.

delay(1000);

The next line adds a 1,000-millisecond, or one-second, delay before

executing the next command.

digitalWrite(ledPin, LOW);

After the one-second delay, we set the pin to a low state using the same

command used to set it high, digitalWrite. This time, however, we pass it

the constant LOW.

delay(1000);

Chapter 5 Raspberry Pi and Arduino

139

Again, we introduce a one-second delay. Because this is the last

command in the loop function, after the delay we return to the start of

the loop function. This continues until we unplug the Arduino or upload

another sketch.

�A Brief Introduction to the Arduino
Language
As discussed earlier, the Arduino programming language is derived from

the Programming language. Programming, in turn, has its roots in C. If you

are familiar with coding in C, the Arduino is easy to work with. Many of the

functions, syntax, and shortcuts work as well in Arduino as in C.

For the rest, you catch on pretty quickly. Keep in mind Arduino is not

Python and behaves much differently when you are working with it.

For instance, Arduino is much less concerned with white space and

formatting than Python, where indentation is used to denote blocks of

code. In C, blocks of code are defined using curly braces {}. That being said,

you cannot ignore white space all together. An extra space at the beginning

of a line can cause no end of frustration.

Another key difference that frustrates beginners and seasoned

programmers, alike, is line termination. In Python, you simply move to

the next line, no terminator needed. However, in Arduino and C, lines

are terminated with a semicolon. If a semicolon is not present where the

compiler expects it, you get an error. This is the single most common error

beginners make. If your code won’t compile, the first thing to look for is a

missing semicolon.

One thing shared between Python and Arduino is case sensitivity. It

is important to remember case matters. intPin is not the same as intpin.

This is the second thing to look for if your code doesn’t compile properly or

behave as expected.

Chapter 5 Raspberry Pi and Arduino

140

�Including Other Files
Much like Python, there are times when you need to include other files

or libraries. This is most likely when you add sensors, motors, or other

devices to the Arduino and need to add the device’s library to your code.

Arduino uses the C and C++ method of adding code from external files

through the #include directive. The following line includes the standard

Servo library:

#include <Servo.h>

Like all directives, include has a slightly different syntax. Note that

there is no semicolon at the end of this line. A semicolon causes an error,

and the code will not compile. Also, the include keyword is preceded by a

(hash).

�Variables and Data Types
Like Python, Arduino has all the common data types, although they may

act a little bit different. One of the biggest differences between Python and

Arduino is that you must declare your variable before you use it. A good

example is the for loop. In Python, you could do something like this:

for i in range (0, 3):

In C and Arduino, the loop looks like this:

for (int i = 0; i < 3; i++) {... }

These are wildly different statements. I explain the for loop syntax

later in this chapter.

Chapter 5 Raspberry Pi and Arduino

141

The key thing to observe here is that in Python, the i variable is created

without a type and becomes an integer when the first value, 0, is assigned

to it. In Arduino, you have to tell the compiler what the variable is before

you assign a value to it; otherwise, you receive an error similar to this:

Error: variable i not defined in this scope

The rules for declaring variables are the same as for Python, and the

best practices are also the same:

•	 Variables can only contain letters, numbers, and

underscores.

•	 They are case sensitive; variable is not the same as

Variable. That’s going to bite you later.

•	 Don’t use Python keywords.

•	 Make the variable name meaningful with as few

characters as possible.

•	 Be careful when using lowercase l and uppercase

O, which look very similar to 1 and 0 and can lead

to confusion. I’m not saying don’t use them; just

make sure that it’s clear what you’re doing. Using

them as single-character variable names is strongly

discouraged.

�Characters and Strings

Strings come in three flavors: characters, strings as arrays of characters, and

strings as objects. Each of these is handled in distinctly different manners.

A character (char) is a single alphanumeric character stored as an

ASCII numeric value. Remember, computers work on 1s and 0s, and

everything eventually gets broken down into numbers stored as 1s

and 0s. ASCII codes are the numeric values that represent individual

Chapter 5 Raspberry Pi and Arduino

142

alphanumeric characters. For instance, the letter a is actually ASCII code 97.

Even invisible characters have ASCII representation. The ASCII code for

carriage return is 13. You frequently see these written using the same

notation as the char function, such as char(13).

A string of characters can be handled in two different ways. The native

method for handling strings inherited from C is the array of chars. You

declare this type of string like this:

string someWord[7];

or

string someWord[] = "Arduino";

This creates a string consisting of ten characters stored as an array.

We’ll learn more about arrays shortly, but they are roughly the equivalent

of Python lists. To access a character in a string of this type, you use its

position in the array. The someWord[0] example returns the character A.

The String Object

Although there may be times that you want to manipulate characters and

character strings in the way that I just explained, Arduino provides a much

more convenient way of working with strings: the String object. Note the

capital S.

The String object provides a number of built-in methods for working

with text and converting other values into a string. Many of these functions

are easily recreated using simple array manipulation. The String object

simply makes it easier; however, if you are not planning to do a lot of string

manipulation, this may be overkill.

Examples of functions useful for string manipulation are trim(),

toUpperCase(), and toLowerCase().

Chapter 5 Raspberry Pi and Arduino

143

There are several ways to create a String object. Because it is an

object, you have to create an instance of the String object. An object is

generally instantiated the same way you declare any other variable. In

fact, since all data types are essentially objects, it is exactly the same. For

instance, this is how you initiate an instance of a String object called

myString:

String myString;

or

String myString = "Arduino";

�Numbers

Like Python, there are several number formats available. The most

common are the integer (int) and the decimal (float). You occasionally

use Boolean types and a few others.

An integer represents a 16-bit number between –32,768 and

32,767. An unsigned integer can hold a positive value between 0 and

65,535. A long integer (long) is a 32-bit number from –2,147,483,648 to

2,147,483,647. So depending on the size of the number that you need,

you have a few options.

Decimals, or non-whole numbers, are stored as float types. A float is

32-bit number from –3.4028235E+38 to 3.4028235E+38. Like Python, floats

in Arduino are not native and are only approximate. But they are more

precise in Arduino than in Python.

The following code illustrates how to create number variables in

Arduino:

int myNumber;

int myNumber = 10;

long myLongInt;

Chapter 5 Raspberry Pi and Arduino

144

long myLongInt = 123456;

float myFloat;

float myFloat = 10.1;

Be sure to note the semicolon at the end of each line. Every line

of code, with the exception of code blocks, must be terminated with a

semicolon.

�Arrays

As mentioned earlier, an array is essentially the same as a list in Python.

They are denoted with brackets ([]). Addressing a value within an array

works exactly as it does in Python. Arduino arrays are also zero based,

which means the first value in the array is at position 0.

The following example creates an array, iterates through them, and

then outputs some of the values to the serial port.

	 1.	 Create a new sketch in the Arduino IDE.

	 2.	 Save the sketch as array_example.

	 3.	 Update the code to look like this:

int numbers[5];

int moreNumbers[5] = {1,2,3,4,5};

void setup() {

 // put your setup code here, to run once:

Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly:

for(int i = 0; i < 5; i++){

 Serial.println(numbers[i]);

 }

Chapter 5 Raspberry Pi and Arduino

145

for(int i = 0; i < 5; i++){

 numbers[i] = moreNumbers[i];

}

for(int i = 0; i < 5; i++){

 Serial.println(numbers[i]);

 }

numbers[1] = 12;

for(int i = 0; i < 5; i++){

 Serial.println(numbers[i]);

 }

}

	 4.	 Save the file.

	 5.	 Upload the sketch to your Arduino.

	 6.	 Click Tools ➤ Serial Monitor.

�Control Structures
Like Python, Arduino provides several structures to add some control to

your code. These should be fairly familiar since they are very similar to

their counterparts in Python. Of course, syntax is different, and you’ll need

to pay attention to your semicolons and brackets.

Chapter 5 Raspberry Pi and Arduino

146

�if and else

This is generally considered the most basic construct. It simply allows

you to execute code based on the results of a Boolean condition. If the

condition evaluates to true, then the code executes; otherwise, the

program skips the code and executes the next command. Here is an

example of an if statement:

if(val == 1){doSomething();}

In this example, we are simply evaluating the contents of the val

variable. If val contains the integer 1, then the code within the brackets is

executed; otherwise, the program skips the code and continues with the

next line.

The entire clause does not need to be and most frequently is not

confined to a single line. Generally, even if the code within the brackets

consists of a single line, I expand the statement to use multiple lines. I just

find this easier to read. This code is functionally identical to the previous

example:

if(val == 1){

 doSomething();

 }

You can evaluate for multiple values using the else statement, which

works exactly as you would expect it to. You are simply telling the compiler

to evaluate each consecutive condition if the previous condition evaluates

to false:

if(val == 1){

 doSomething();

}

else if(val == 2){

 doSomethingElse();

}

Chapter 5 Raspberry Pi and Arduino

147

else if(otherVal == 3){

 doAnotherThing();

}

else {

 doAlternateThing();

}

The first part of this code is the same as the earlier examples. If the

value of val is 1, then do something. If this condition is false or val is not

1, then check to see if it is 2. If so, do something else. If that is also not true,

then check the value of otherVal. If that is 3, then do another thing. Lastly,

if none of the previous conditions is true, then execute this code.

The final else statement is not necessary. You could leave this

statement out, and the code would just continue running whatever code

follows. The final else statement is for code you only want to run if all the

other conditions are not true.

Also, take note of the second else/if statement. You do not have

to evaluate the same variable for another condition. Any operation that

evaluates to true or false is valid.

�while Loops

while loops repeatedly execute a block of code as long as a condition is

true. In Python, we used this to create a continuous loop to execute our

programming constantly. That practice is not necessary in Arduino since

the standard loop() function provides that functionality.

Like the if statement, while evaluates a condition. If the condition

evaluates to true, the code block is executed. Once the code block

executes, it evaluates the condition again. If the condition still evaluates to

true, the code block is executed again. This continues until the condition

evaluates to false. Because of this, it is very important to make sure that the

value evaluated in the condition is updated in the code block.

Chapter 5 Raspberry Pi and Arduino

148

This is an example of a while loop:

int i = 0;

while(i < 3){

 doSomething();

 i++;

}

In this example, we create an integer with the value 0 before we enter

the while loop. The while statement evaluates the value i. Since it is

currently 0, which is less than 3, it executes the code block. Within the code

block, we increment the value of i. The while statement evaluates the value

again. This time it is 1, which is still less than 3, so the code block is again

executed. This continues until the value of i is incremented to 3. Since 3 is

not less than 3, the while loop exits without executing the code block.

Like all the other loops, the while loop is blocking. This means as long

as the condition evaluates to true, the code block executes, preventing any

other code from being executed.

This feature is commonly used to prevent code from running until a

condition is present in order to prevent errors or unexpected results later.

For instance, if your code requires a serial connection to be present before

it can continue, you might add this code to your program:

Serial.begin(9600);

while(!Serial){}

The Serial function is part of the standard Arduino library. It simply

checks to see if a serial connection is available. If a serial connection has

been established, Serial evaluates to true. However, the exclamation

point (!) preceding it means not. So we are saying, “As long as there is no

serial connection, execute this code.” The code block is empty, so there is

no code to run. The result is that the code stops until a serial connection is

available.

Chapter 5 Raspberry Pi and Arduino

149

�for Loops

Like the while loop, the for loop executes a code block repeatedly until the

condition evaluates to true. The difference between the two is that a for loop

also defines and transforms the variable being evaluated. Generally, this is

simply setting up an integer to serve as a counter, evaluating the value against

a set threshold, and incrementing the value. With each increment, the code

block is executed until the condition no longer evaluates to true, for example:

for(int i = 0; i < 3; i++){

 doSomething();

}

In this example, we declare an integer called i. We want to continue

to loop the code block as long as i is less than 3. Every time we execute the

code, we increment the value of i by 1 until the value of i is 3. Since 3 is not

less than 3, the loop exits without executing the code block.

This is useful for when you want to execute a piece of code a specific

number of times. You can also use the value being incremented. For

instance, if we wanted an LED on pin 13 to fade on rather than simply

turning on, we could use this code:

pinMode(11, OUTPUT);

for(int i = 0; i < 255; i++){

 analogWrite(11, i);

}

First, we tell the Arduino that we want to use pin 13 as an output pin.

You learn more about working with pins shortly. Then we set up our

for loop to increment the value of i from 0 to 254. The value of i is then

written to pin 13, setting the PWM value. If you recall from the previous

chapter, the PWM value controls the brightness of the LED by determining

how often the pin is high in a given cycle. Thus, we have an LED that

increases to its maximum brightness.

Chapter 5 Raspberry Pi and Arduino

150

We actually write the LED fading code when we start working with pins.

�Functions

Like Python, the Arduino allows you to break your code up into smaller

parts through functions. An Arduino function is very similar to one in

Python. The syntax, of course, is different. But, with both, you declare the

function name, list any parameters needed, and provide a block of code to

execute when the function is called.

You are already familiar with the syntax of an Arduino function. Both

the setup and loop blocks in an Arduino sketch are functions. The only

difference is that these are system functions that are automatically called

as appropriate during runtime. If you are familiar with C or C++, they are

similar to the main() function at the root of those languages.

You use a function anytime you have a block of code that you may

want to use in more than one place. This way, you write it only once, and it

always performs the same regardless of where you call it from.

The general syntax of a function looks like this:

returnType functionName(parameterType parameterName){

 doSomething();

}

It’s probably better and easier to walk you through the creation and use

of a function.

In this exercise, we create a simple function that adds two numbers

together. It’s not a particularly practical function, but it provides an

example of how to go about creating a function.

	 1.	 Create a new sketch in the Arduino IDE.

	 2.	 Save the sketch as function_example.

Chapter 5 Raspberry Pi and Arduino

ASUS
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!

https://avxhm.se/blogs/hill0

151

	 3.	 Update the code to this:

int a = 1;

int b = 2;

int val;

int answer;

int add_vars(){

 val = a+b;

 return val;

}

int add_params(int p1, int p2){

 val = p1+p2;

 return val;

}

void printVal(){

 Serial.println(val);

}

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly:

 add_vars();

 printVal();

 add_params(a,b);

 printVal();

Chapter 5 Raspberry Pi and Arduino

152

 answer = add_vars();

 Serial.println(answer);

 a++;

 b++;

}

	 4.	 Upload the sketch to your Arduino.

	 5.	 Open the serial monitor from the Tools menu.

In this exercise, we created three functions. The first two functions

return a value of type int. As such, we precede the function’s name with

the data type int. The third function does not return data; it simply

performs a task, so it is preceded with void.

The first function, add_vars(), adds two global variables together.

This emphasizes both the benefit and danger of global variables. A global

variable can be manipulated by any code in your program. This is an easy

method to perform tasks on the same data and then pass that data from

one function to another. However, you must be aware that any changes you

make to the variable apply everywhere that variable is used.

A safer alternative to this is to use parameters in your function. In this

way, you have more control since you are providing the values. The second

function, add_params(), demonstrates this. The parameters are created

as part of the function declaration. We provide the data type for each one

and the variable name to be used within the function. So it is exactly like

declaring a variable, except the value is assigned at runtime when the

function is called.

The last function returns no data and requires no parameters. In this

particular case, we are printing the value of the global variable val to the

serial port.

Chapter 5 Raspberry Pi and Arduino

153

�Working with Pins
The primary purpose of the Arduino is to interface with other components,

sensors, or other devices. To do this, we’ll need to know how to interact

with the pins. The pins of the Arduino connect directly to the AVR

processor at its heart.

The Arduino provides access to 14 digital pins, 6 analog pins, 6

hardware PWM pins, TTL serial, SPI, and two-wire serial. I put emphasis

on hardware PWM because any of the digital or analog pins can be used

for software PWM. I don’t cover all of these capabilities in this book, but I

recommend that you take the time to learn about them.

We are going to look at your basic digital and analog inputs and

outputs. These are the functions that you use most often.

Before you can use any of the pins as input or output, you must first

declare how you use it. This is done using the pinMode() function. To

do this, all you have to do is provide the pin number and the mode. For

example, this code sets pin 13 as an output pin:

pinMode(13, OUTPUT);

I frequently use a variable for the pin number. This makes it easier to

identify what you’re doing in the code, for example:

int servoPin = 11;

int LEDPin = 13;

Now, when I need to reference a pin, it’s easier to understand:

pinMode(LEDPin, OUTPUT);

�Digital Operations

Now that we have the pin defined, we can start using it.

Chapter 5 Raspberry Pi and Arduino

154

As with Python, you can turn a pin on or off by setting it either high

or low. This is done using the digitalWrite() function, with which you

supply the pin number and either high or low, for example:

digitalWrite(LEDPin, HIGH);

Using the pinMode() example, this turns pin 13 high, or on.

Likewise, you can turn a pin off by setting it low.

On the other side, you can read the current state of a pin with

digitalRead(). To do this, you first have to set the mode to input:

int buttonPin = 3;

int val;

pinMode(buttonPin, INPUT);

val = digitalRead(buttonPin);

This code snippet assigns the value 3 to the buttonPin variable, and

we create a variable to store the results. It then sets the pin’s mode to

input so that we can read it. Finally, we read the value of pin 13 into the

val variable.

�Analog Input

Analog input works a little different; although you can use any IO pin for

digital operations, you can only use designated analog pins for analog input.

As I discussed in Chapter 3, microcontrollers cannot truly do analog. One

way or another, the signal must be converted between analog and digital.

With analog output, this is done via pulse width modulation (PWM). For

analog input, we use an analog-to-digital converter, or ADC converter, to

convert an analog signal into a digital one. This is a hardware function, and

so it must be performed on specific pins. In the case of the Arduino Uno,

these pins are A0–A5.

Chapter 5 Raspberry Pi and Arduino

155

Since these pins are dedicated to analog input, declaring them as input

is not strictly necessary. I still recommend doing so because it serves as an

indication that these pins are in use.

The analogRead() function is used to read the pins, for example:

val = analogRead(A0);

This assigns the value of A0 to the variable val. This is an integer value

between 0 and 1023.

�Analog Output (PWM)

PWM works much the same as it does in Python. On designated pins, you

can provide a value between 0 and 255 to vary the output of the pin. A

value of 0 is the analog equivalent of digital low, or off, whereas a value of

255 is analogous to digital high, or on. As such, a value of 127 provides a

50% duty cycle, roughly the same as half power.

With the Arduino, you use analogWrite() to set the PWM signal of a

pin. On the Arduino Uno, the PWM pins are 5, 11, 12, 15, 16, and 17. The

following code snippet sets the output of pin 11 to approximately 25%:

int PWMPin = 11;

pinMode(PWMPin, OUTPUT);

analogWrite(PWMPin, 64);

�Pulsing LED

In this exercise, we are going make an LED pulse. Pin 13 is not a PWM pin,

so we won’t be able to use the built-in LED this time, which means that it’s

time to break out the breadboard and a few jumpers.

Chapter 5 Raspberry Pi and Arduino

156

The Circuit

To connect the circuit, we need a 220-ohm resistor, a 5 V LED, your Arduino,

a breadboard, and a few jumpers. See Figure 5-8 to wire up this exercise.

	 1.	 Connect the LED to the breadboard.

	 2.	 Connect the resistor such that one end is connected

to the channel shared with the long pin of the LED.

	 3.	 Connect a jumper from the other pin of the diode to

the GND pin on the Arduino.

	 4.	 Connect a jumper from the other end of the resistor

to pin 11 on the Arduino.

The Code

Earlier we used analogWrite() in a for loop example. Now we write the

code to implement the example on the Arduino.

	 1.	 Create a new sketch in the Arduino IDE.

	 2.	 Save the sketch as PWM_Example.

Figure 5-8.  LED fade exercise circuit layout

Chapter 5 Raspberry Pi and Arduino

157

	 3.	 Update the code to this:

int PWMPin = 11;

void setup() {

 // put your setup code here, to run once:

 pinMode(PWMPin, OUTPUT);

}

void loop() {

 // put your main code here, to run repeatedly:

 for(int i = 0; i < 255; i++){

 analogWrite(PWMPin, i);

 }

 for(int i = 255; i >= 0; i--){

 analogWrite(PWMPin, i);

 }

 delay(100);

}

	 4.	 Save and upload the sketch to your Arduino.

The LED on the breadboard should now pulse. To change the rate of

the pulse, change the value in the delay function.

�Objects and Classes
Creating objects and classes is beyond the scope of this book. You very

rarely, if ever, need to create one within Arduino. You frequently use

objects or classes from other libraries, however.

Chapter 5 Raspberry Pi and Arduino

158

An object is generally instantiated the same way that you declare any

other variable; you tell the compiler the type of object followed by the

name of the variable referring to it:

ObjectType variableName;

Once declared, you have access to all the properties and methods

of this class. A good example of this is the Servo class. This is a standard

library with Arduino. The following code snippet creates a servo object and

attaches it to pin 12:

#include <Servo.h>

Servo myServo;

myServo.attach(12);

First, we include the Servo library. Once the Servo library is included,

we can easily create an instance of the Servo class. In this case, we create

a servo object called myServo. Once the object is created, we can use the

attach() method to assign pin 12 to control the servo.

�Serial
There are a couple of serial channels on the Arduino. We use the USB

connection between the Raspberry Pi and the Arduino. This is by far the

simplest way to communicate between the two.

�Connecting to Serial

To use serial communication, you must first initiate it. To do this, use

Serial.begin(baudRate). For example, this line initiates the serial

connection with a baud rate of 9600 bps:

Serial.begin(9600);

Chapter 5 Raspberry Pi and Arduino

159

The baud rate you choose is entirely up to you and your needs. The

important thing is that it matches the baud reate of the computer it is

connected to. So, when you initialize the serial connection on the Pi,

you’ll need to make sure that they match. I’ll discuss establishing that

connection shortly.

To verify the serial connection was successful, you can query the

Serial keyword. Serial is a Boolean object that indicates whether or not

a serial connection is available. If a connection is available, it is true;

otherwise, it’s false. There are actually a few ways to use Serial. You can

use it as the Boolean condition for an if statement and put the dependent

code in the if statement’s code block. Alternatively, you can use it as the

Boolean condition of a while loop.

Here are two methods to check for a serial connection. Only run the

code if one is available:

if(Serial){

 doSomething();

}

while(Serial){

 doSomething();

}

The first block executes the code if a serial connection is available

and then moves on to the code following the if statement. The second

block runs the code continuously, as long as a connection is available. Any

code following the while loop will not run until the serial connection is

terminated and the loop is exited.

A third alternative is to halt the running of all code while a connection

is not available. This is another while loop that we’ve seen before:

while(!Serial){}

Chapter 5 Raspberry Pi and Arduino

160

This uses the “not” operator, or exclamation mark (!). In order for the

condition to evaluate to true, it must not meet the criteria. In this case, as

long as a connection is not available, execute the code in the block. But,

since there is no code, it simply halts the program until one is available.

�Sending Serial Data

Much of what we’ll do is simply printing to the serial port. In fact,

that’s what we’ve been doing in earlier examples. The method Serial.

println() sends the data within the parentheses to the serial port. The

serial monitor in the Arduino IDE allows you to see this output.

To write data to the serial stream, you generally use one of the serial

print methods. Serial.print() prints the contents of the parentheses

to the serial stream without a new line terminator. This means that

everything you print using this method appears on the same line in the

serial monitor.

The Serial.println() method includes the new line terminator. So

everything printed with this method is followed by a new line.

�Receiving Serial Data

Of course, the serial port works the other way too. You can read the serial

stream from the Pi using several methods of the Serial object. Many of the

methods to read data from Serial are for working with the individual bytes.

This can be confusing and cumbersome if you’re just getting started. If

you are familiar and comfortable working with individual bytes of data,

Serial.read(), Serial.readByte(), and others are probably useful.

However, that is not what we’ll use. To make things a little bit easier,

we’ll use the Serial.parseInt() and Serial.readString() methods.

Both of these methods do the lion’s share of the work when reading from

the serial stream.

Chapter 5 Raspberry Pi and Arduino

161

Serial.parseInt() reads through the incoming serial stream and

returns; however, it does not parse the integers all at once. When you first

call it, it returns the first integer it encounters. The next call returns the

next integer. Each iteration returns the next integer found until it reaches

the end of the line.

Let’s take a look at how parseInt() works. In the following code,

the Arduino waits to receive input from the serial stream. It then iterates

through the input and parses out the integers, printing each one on a new

line.

	 1.	 Open a new sketch in the Arduino IDE.

	 2.	 Save the sketch as parseInt_example.

	 3.	 Enter the this code:

int val;

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly:

 while(Serial.available() > 0){

 val = Serial.parseInt();

 Serial.println(val);

 }

}

	 4.	 Upload the sketch to your Arduino.

	 5.	 Open the serial monitor.

Chapter 5 Raspberry Pi and Arduino

162

	 6.	 In the data entry field at the top of the serial

monitor, enter 1,2,3,4. Be sure to separate each

value with a comma.

	 7.	 Click Send.

The serial monitor writes each integer on a new line. If you enter an

alpha character, it prints a 0 since it is an alphanumeric character but not

an integer.

Serial.readString() reads the entire line from the serial stream as a

string. This can be assigned to a String variable for later use. This method

works well if you are sending text information to the Arduino. However, it

is slow, and you notice significant lag between the time that a line is sent

and the time that it is received, processed, and available.

�Arduino to Pi and Back Again
You need to know a bit about serial communication because it is how we

communicate between the Raspberry Pi and the Arduino. Both the Pi and

Arduino work with serial communications differently.

I did not cover Serial in Chapter 3 because it is important that this

discussion occur in conjunction with the Arduino. As such, you may want

to jump back to Chapter 3 for a quick review of Python after all of that

Arduino coding.

I have talked about how to open a serial connection on the Arduino.

The Raspberry Pi is just a touch more complicated. First, serial

communication is not part of the default framework. So we need to install

it. Once installed, our code needs to import the serial library. Once that is

done, we create an instance of the serial class, which gives us access to the

methods that we need.

Chapter 5 Raspberry Pi and Arduino

163

�Installing PySerial

Serial functionality is provided by the PySerial package. To use it, you first

need to make sure that it is installed in your Python implementation.

	 1.	 On your Raspberry Pi, open a terminal window.

	 2.	 Type python –m pip install pyserial.

This installs the PySerial package if it is not already

installed.

	 3.	 Type python.

This begins a new Python session within the

terminal.

	 4.	 Type import serial.

This verifies your version of PySerial.

Now that PySerial is installed, we can use it in our programs.

To use Serial in Python, we need to import the library and create a

connection. The following code snippet is likely in most of the scripts that

interact with the Arduino:

import serial

ser = serial.Serial('/dev/ttyAMA0', 9600)

Creating a serial connection in Python is similar to what we did with

the Arduino. The biggest difference is we assigned the serial object to a

variable, in this case, ser. In the initiation call, we provide the port the

Arduino is on as well as the baud rate at which we are connecting. Again,

make sure that this matches the baud rate you set on the Arduino. If these

don’t match, you get odd characters and unexpected results—if you get

anything at all.

Chapter 5 Raspberry Pi and Arduino

164

�Sending Data to the Raspberry Pi

It is not so much about sending data to the Pi as much as it is about how

the Pi receives the data and then what it does with it.

The simplest approach to receiving serial data on the Pi is to use the

readLine() method of the serial object. This reads the bytes from the

serial stream until it reaches the new line character. The bytes are then

converted to a string. All the data sent on the line is stored in a single

string. Depending on how you are sending your data from the Arduino,

you may then need to use the split() method to parse the data into a

tuple.

It is important to note that the readLine() method continues to read

the serial stream until a new line character is received. If you do not send

one from the Arduino, the Pi continues to try to read the data. To help

prevent locking your program, you may want to set the timeout interval

prior to attempting the readLine(). This can be accomplished by adding

the timeout parameter when you create the connection. The following line

of code creates the serial connection with a one-second timeout:

ser = serial.Serial('/dev/ttyAMA0', 9600, timeout=1)

My preferred method of sending data between the Pi and the

Arduino is through a series of comma-separated values. Depending on

the complexity of the project, I may either do a direct read, where each

value passed corresponds to a specific variable. This has the benefit of

being pretty straightforward. All I have to do is parse the serial stream into

integers and assign each integer, in order, to their respective variable for

later use.

On more complex projects, I may send values in pairs or sets of

integers. When parsed, the first integer usually indicates the function

or the device the message is for; the second is the value to assign to the

variable.

Chapter 5 Raspberry Pi and Arduino

165

From the Arduino, I simply write the values and their comma

separators in a number of Serial.print() commands terminated with a

Serial.println() to make sure that the line is properly terminated.

On the Pi, I use the readLine() method to capture the entire line as

a single string and then use the split() method to parse the string into

a tuple. The tuple could be further parsed into individual variables as

needed.

To illustrate this, let’s create a simple program that sends a sequence

of numbers from the Arduino to the Raspberry Pi every 500 milliseconds.

This is frequent enough to not time out.

On the Pi, we parse those values and assign them to individual

variables. This is a common use case to send sensor readings from the

Arduino to the Pi.

To do this, we have to write two programs: one for the Arduino and one

for the Pi. Let’s start on the Arduino.

	 1.	 Create a new sketch in the Arduino IDE.

	 2.	 Save the sketch as Arduino_to_Pi_example.

	 3.	 Enter the following code:

int a = 1;

int b = 2;

int c = 3;

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

}

void loop() {

 // put your main code here, to run repeatedly:

 while(!Serial){};

 Serial.print(a); Serial.print(",");

Chapter 5 Raspberry Pi and Arduino

166

 Serial.print(b); Serial.print(",");

 Serial.println(c);

 delay(500);

 a++;

 b++;

 c++;

}

	 4.	 Save and upload the sketch to your Arduino.

	 5.	 Open a new Python file in Thonny.

	 6.	 Save the file as Arduino_to_pi_example.py.

	 7.	 Enter the following code:

import serial

ser = serial.Serial('/dev/ttyACM0',9600,timeout=1)

while 1:

 val = ser.readline().decode('utf-8')

 parsed = val.split(',')

 parsed = [x.rstrip() for x in parsed]

 if(len(parsed) > 2):

 print(parsed)

 a = int(int(parsed[0]+'0')/10)

 b = int(int(parsed[1]+'0')/10)

 c = int(int(parsed[2]+'0')/10)

 print(a)

 print(b)

 print(c)

 print(a+b+c)

	 8.	 Save and run the file.

Chapter 5 Raspberry Pi and Arduino

167

In the Thonny shell window, you should see output similar to this:

['1','2','3']

1

2

3

6

We did some Python magic in here that we need to review.

First, we imported the serial library and opened a serial connection.

Once the connection was opened, we entered the perpetual while loop.

After that, I introduced a few new elements that I want to walk through.

val = ser.readline().decode('utf-8')

We read the next line coming from the serial stream. However, this

string is retrieved as a byte string, which works differently than a standard

string. To make it easier to use, we used the decode() method to convert

the string from a byte string to a standard string. This allows us to use

methods of the string class to work with the line.

parsed = val.split(',')

Next, we parsed the string into a list. Since we used commas to

separate our numbers from the Arduino, provide that to the split()

method. However, now the last element in the list includes the end-of-line

characters /n/r. We don’t want those characters.

parsed = [x.rstrip() for x in parsed]

This line rebuilds the parsed list without the extra characters. The

rstrip() method removes any white space from the string. So what this

line does is loop through each member of the list and applies the rstrip()

method. We are left with a list of numbers as strings.

if(len(parsed) > 2):

Chapter 5 Raspberry Pi and Arduino

168

One of the challenges we are going to face with serial communications

between the two boards is packet loss. This is particularly prevalent

when we reset Arduino, which occurs every time we make a new serial

connection. This loss results in missing characters in the serial string.

To overcome this challenge in this script, we test the length of the list.

The len() function returns the number of members in a list. Since we

know our list needs to contain, at least, three numbers, we only want to run

the remaining code if this condition is true.

print(parsed)

This line simply prints the parsed list to the shell window.

a = int(int(parsed[0]+'0')/10)

b = int(int(parsed[1]+'0')/10)

c = int(int(parsed[2]+'0')/10)

The last piece of Python magic was done when we assigned the values

to their respective variables. These lines include both string and numeric

manipulation.

To read what’s going on here, we have to start in the middle where we

add the '0' character to the end of each list member. We did this because,

despite our earlier efforts, there may still be empty strings in the list. Empty

strings cannot be converted to an integer, and the code will not compile.

By adding the 0, we are assured that there is an actual value there.

We then convert that string to an integer. However, that integer now

has a 0 appended to the end, making 1 read as 10 and so forth. To adjust

for this, we divide that number by 10, which results in a float. Since we are

looking for an integer, we have to convert the final results to an int.

The last part of the code is simply printing the value of each variable to

the shell window. The last line is included to prove that we are operating

with integers and not strings.

Chapter 5 Raspberry Pi and Arduino

169

�Sending Data to the Arduino

To send data to the Arduino is a fairly simple matter, on the Arduino side.

Python is a touch more involved, however. Using the same scenario as

earlier, we need to put the values into a tuple and then use the join()

method to merge the values in the tuple into a single string. That string is

then written to the serial connection.

On the Arduino, all we have to do is use parseInt() to break the string

into the three independent integers, once again.

In this exercise, we are going to send three integers to the Arduino.

In a real-world scenario, these numbers might represent the color or

brightness of an LED or an angle for a servo. However, it is going to be

difficult to verify what is happening on the Arduino side because we can’t

use the serial monitor. To overcome this, we are going to ask the Arduino to

sum the integers together and return the result to the Pi. This means that

both boards are reading and writing to the serial stream.

Again, let’s start on the Arduino side.

	 1.	 Open a new sketch in the Arduino IDE.

	 2.	 Save the sketch as roundtrip_example.

	 3.	 Enter the following code:

int a = 0;

int b = 0;

int c = 0;

int d = 0;

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

}

Chapter 5 Raspberry Pi and Arduino

170

void loop() {

 // put your main code here, to run repeatedly:

 while(!Serial){}

 if(Serial.available()>0){

 a = Serial.parseInt();

 b = Serial.parseInt();

 c = Serial.parseInt();

 }

 d = a+b+c;

 Serial.print(a); Serial.print(",");

 Serial.print(b); Serial.print(",");

 Serial.print(c); Serial.print(",");

 Serial.println(d);

 //delay(500);

}

	 4.	 Save the sketch and upload it to your Arduino.

	 5.	 Open a new Python file in Thonny.

	 6.	 Save the file as roundtrip_example.py.

	 7.	 Enter the following code:

import serial

import time

ser = serial.Serial('/dev/ttyACM0',9600,timeout=1)

a = 1

b = 2

c = 3

while 1:

 valList = [str(a),str(b),str(c)]

 sendStr = ','.join(valList)

Chapter 5 Raspberry Pi and Arduino

171

 print(sendStr)

 ser.write(sendStr.encode('utf-8'))

 time.sleep(0.1)

 recStr = ser.readline().decode('utf-8')

 print(recStr)

 a = a+1

 b = b+1

 c = c+1

	 8.	 Save and run the file.

In the Python shell window, you should see output like this:

1,2,3

1,2,3,6

The output continues to increment until you stop the program.

There are a few new elements here, but, for the most part, it’s not that

different than we’ve done before. Let’s look at some of the new elements.

The first difference is we imported the time library. This library

provides a lot of time-related functionality. In this exercise, we are

interested in the sleep() function. The sleep() function pauses

processing for the number of seconds provided. As you can see in our

code, we wanted to pause processing for 0.5 second. This gives both sides

of the serial stream time to process their buffers. If you comment out that

line and run the program again, you’ll get some interesting results. Try it.

valList = [str(a),str(b),str(c)]

Here we took our variables and put them in a list. In the next step,

when we joined the elements into a single string, the integers need be

strings. So we went ahead and did the conversion here.

sendStr = ','.join(valList)

Chapter 5 Raspberry Pi and Arduino

172

Next, we used the join() method of the string class to convert the list

into a string. Notice how the join() method is attached to the ',' string.

join is a method of the string class, not the list class, so you have to call

it from a string. Since the operation is actually working on a list, not a

string, you have to provide a string for it to work. In this case, the provided

string is the separator that you want between each member of the list. It

can be any character, but for parseInt() to work on the Arduino side, the

character has to be non-alphanumeric.

ser.write(sendStr.encode('utf-8'))

The other difference of note is where we send the data to the Arduino

using the write() method. This works like the Serial.println() method

in Arduino. The biggest difference is you have to encode the string before

you can send it over.

�Pinguino
This is a common use case for attaching one or more sensors to detect

the world around the robot. For the next exercise, we are going to set

up our HC-SR04 ultrasonic rangefinder on the Arduino and send the

distance information back to the Pi as a serial string. To do this, we

need to open up a serial connection between the two boards. The

Arduino triggers the sensor and, as in our previous workshop, reads the

pulse returned. We’ll calculate the distance and then send the result to

the Pi.

On the Pi side, we’ll simply have a program that listens to the serial

port and then prints whatever it reads from the Arduino.

Chapter 5 Raspberry Pi and Arduino

173

�Setting Up the Circuit
Setting up the circuit couldn’t be easier. In fact, we don’t use the

breadboard. We’re going to connect the sensor directly to the Arduino

headers (see Figure 5-9).

	 1.	 Connect VCC to the 5V pin on the Arduino.

	 2.	 Connect GND to one of the GND pins on the

Arduino. It doesn’t matter which one, but there are

two adjacent to the 5V pin.

	 3.	 Connect trig to pin 7 on the Arduino.

	 4.	 Connect echo to pin 8 on the Arduino.

Figure 5-9.  Pinguino exercise circuit layout

Chapter 5 Raspberry Pi and Arduino

174

�The Code

We need to write code for both boards in order for this to work. On the

Arduino, we trigger the ultrasonic sensor and capture the return signal.

We’ll then convert it to centimeters and print the value to the serial port.

The Pi reads the line from the serial port and prints the results to the

Python shell window.

Arduino

	 1.	 Open a new sketch window and save it as serial_

test.

	 2.	 Enter the following code:

int trig = 7;

int echo = 8;

int duration = 0;

int distance = 0;

void setup() {

 Serial.begin(9600);

 pinMode(trig, OUTPUT);

 pinMode(echo, INPUT);

 digitalWrite(trig,LOW);

}

void loop() {

 digitalWrite(trig, HIGH);

 delayMicroseconds(10);

 digitalWrite(trig, LOW);

Chapter 5 Raspberry Pi and Arduino

175

 duration = pulseIn(echo, HIGH);

 distance = duration/58.2;

 Serial.write(distance);

 delay(500);

}

Save and upload the sketch to the Arduino.

Raspberry Pi

	 1.	 Open a new Thonny file and save it as serial_test.py.

	 2.	 Enter the following code:

import serial

import time

ser = serial.Serial('/dev/ttyAMA0', 9600)

while 1:

 recSer = ser.readline().decode('utf-8')

 recSer.rstrip()

 distance = int(recSer + '0')/10

 �print("Distance: " + str(distance) +

"cm ", end = '\r')

 time.sleep(0.5)

	 3.	 Save and run the file.

You should now see text in the Python shell window with the distance

in centimeters.

Chapter 5 Raspberry Pi and Arduino

176

This code outputs the results from a single ultrasonic sensor. In reality,

your robot should have three or more of these sensors pointing forward at

different angles. The reason is ultrasonic sensors work great as long as the

obstacle is directly in front of the robot. If the robot approaches a wall or

other obstacle at an oblique angle, the sound does not bounce back to the

sensor. Having more than one sensor at different angles allows the robot to

detect obstacles that are not directly in front of it.

�Summary
Adding an Arduino to a Raspberry Pi provides you with much broader

possibilities. You’ll be able to add a lot more sensors and LEDs than you’re

able to with Pi by itself. Among the benefits are an increased number of

analog inputs, more PWM outputs, and many more digital outputs.

Arduino is very easy to program. If you’re already familiar with C or

C++, writing for the Arduino should be very familiar. However, it’s very

important to remember the differences between Arduino and Python.

Python does not use a character at the end of a line, but Arduino ends each

line with a semicolon. There is a little bit more syntax involved with writing

conditionals and loops. And code blocks are contained in curly braces.

Indentation is not important in Arduino, but Python will not compile if

your indentation is off.

Despite these differences, there are some things Arduino makes easier.

Serial communication does not take as much to set up, and the serial

commands are part of the core Arduino library. In Python, you have to

import the serial library. Both make writing to the serial port fairly simple.

Python, however, requires encoding and decoding to utf-8 to be useful.

Also, Arduino makes parsing numbers in a line from the serial stream easy

with the parseInt() method. Getting a number out of a string in Python

requires a little gentle manipulation.

Chapter 5 Raspberry Pi and Arduino

177

As you’re working with Arduino, don’t forget the community

support is superb. There is very little that others have not already done

and documented. Also remember that you have a great resource right

in the IDE in the form of example code. Take advantage of that. And as

you add more libraries for more devices, you find more example

sketches to help you.

Chapter 5 Raspberry Pi and Arduino

179© Jeff Cicolani 2021
J. Cicolani, Beginning Robotics with Raspberry Pi and Arduino,
https://doi.org/10.1007/978-1-4842-6891-9_6

CHAPTER 6

Driving Motors
In Chapter 4, we used the Raspberry Pi’s GPIO pins to control an LED and

to receive information from an ultrasonic sensor. In Chapter 5, we looked

at the Arduino and discussed why it is a better option for general GPIO

functions. We connected the ultrasonic rangefinder and an LED to the

Arduino and learned how to pass data between the two boards.

But that doesn’t mean we’re done with the Raspberry Pi’s GPIO header.

In this chapter, we’ll use the GPIO pins to connect to a board called a

motor driver, which is designed to interact with DC motors and steppers.

I’ll cover some of the different types of motors and discuss what a motor

driver is and why it’s important in what we do.

We will connect DC motors to the motor controller and write a small

program to make them turn. As part of the sample program, we’ll look at

how to control the speed and direction of the motors. We will also look

at some of the properties of the specific motor controller selected for the

workshop.

You may choose not to go with the suggested motor controller, so

we’ll also look at a common alternative: the L298N motor driver. The

driver board, which is available from many manufacturers, is designed to

connect to the L298N H-bridge controller chip at its heart. But because

these boards rely on PWM signals for setting speed, we’ll have to connect it

through the Arduino. I’ll go over all of that toward the end of the chapter.

https://doi.org/10.1007/978-1-4842-6891-9_6#DOI

180

By the end of this workshop, you will have the final component needed

to start building robots: motion. In Chapter 7, we’ll bring everything

together with the chassis kit to get your robot moving.

�Motors and Drivers
Before moving on to the motor controllers, let’s take a moment to look at

what we are controlling. The drivers we use are designed for a simple DC

motor, although they could also be used to drive steppers. Let’s take a look

at drivers and motors in this section.

�Types of Motors
Motors convert electrical energy into rotational energy. They come in

many different types, and they power virtually everything that moves. The

most common type of motor is the simple DC motor, which is even used in

many of the other types of motors. For example, a servomotor is a device

that incorporates a DC motor with a potentiometer, or other feedback

device, and gearing to control precise motion, be it angular or directional.

Other types of motors include the stepper, which uses electrical impulses

to control very precise movement, and coreless motors, which rearrange

the typical parts of a DC motor to improve efficiency.

�DC Motors

DC motors consist of a series of coils within a magnetic field. When

an electrical charge is placed on the coils, it causes the coils to spin on

their shared axis. Simple motors have the coils arranged and attached

around a central shaft. As the shaft and coils spin, electrical connectivity

is maintained with brushes that make contact with the shaft. The shaft, in

turn, protrudes from the assembly to use the rotational force to perform

work. Figure 6-1 shows a typical DC motor.

Chapter 6 Driving Motors

181

You usually find these motors attached to gearboxes, belts, or chains

that serve to amplify the torque of the motor at the cost of rotational speed.

This is done because a bare DC motor can produce a lot of speed, but raw

speed is rarely useful.

The motors that we are using are of this type. They are simple DC

motors attached to gearboxes.

�Brushless Motors

Another type of motor moves the mechanical connection to the magnets.

The coils remain static. When an electrical charge is applied, the magnets

spin around the coils on a common axis (see Figure 6-2). This eliminates

the need for brushes, so they are called brushless motors.

In the hobby world, brushless motors are most commonly associated

with multirotor aircraft. They are also used extensively in other areas

where high speed and efficiency are required, such as in CNC (computer

numerically controlled) spindles. You are probably familiar with Dremel

tools or routers; both of these devices are types of spindles and use

brushless motors.

Figure 6-1.  DC motor operation

Chapter 6 Driving Motors

182

�Stepper Motors

All the motors that I discussed so far have one or more coils working off a

single electrical charge. That charge can be positive or negative, changing

the direction of the motor.

Stepper motors are different. Steppers use multiple coils with distinct

charges (see Figure 6-3), which breaks a full rotation into multiple steps.

By manipulating these charges, we can cause the motor to move to and

hold position at one of the steps. This makes these motors extremely

useful for finite control in applications such as CNC machines, 3D

printers, and robotics.

Figure 6-2.  Brushless motor operation

Chapter 6 Driving Motors

183

Servos

A servo is a motor that moves to a specific angle and holds that position.

They generally have a maximum rotation of 45–90 degrees in either

direction. They do this by connecting a potentiometer to the final output

gear. The potentiometer provides feedback to the internal control board.

When the servo receives a signal, usually in the form of PWM, the motor

rotates until the potentiometer and the signal balance.

Figure 6-4 shows a typical hobby servo.

Figure 6-3.  Stepper motor operation

Chapter 6 Driving Motors

184

Servos with the limiters and potentiometers removed are called

continuous rotation servos. They are used in applications where torque is

required. Many robots are driven by continuous rotation servos.

This is an example where one hobby greatly benefited another. The

common hobby servo was originally used for hobby RC aircraft. Since most

hobbyists could not afford expensive devices to control their crafts, they

figured out how to bring the price down significantly. This, of course, helps

us hobby roboticists.

�Motor Properties
There are a few things to keep in mind about motors in our projects. The

most important is the motor’s electrical properties—specifically, voltage

and current.

Figure 6-4.  Common servomotor

Chapter 6 Driving Motors

185

�Voltage

You’re already somewhat familiar with voltage, which is a measure of the

electricity needed to operate a device. The Pi is powered by 5 volts but runs

on 3.3 volts. The Arduino runs on 5 volts, supplied by the USB port of the

Pi. The motors we are using run on 6 volts. It is important to keep these

voltages straight. If you were to put 5 volts on a device that runs on 3.3

volts, you could damage your device.

There are devices specifically designed to help manage the voltages

in your project. Voltage regulators (step-up or step-down) maintain a

constant voltage. The common 7805 5 V regulator takes 6–12 volts and

converts it to 5 volts. The excess energy is dissipated as heat, and they can

get quite hot.

Voltage regulators are great for voltage supplies, but are of little use

for translating 5 volts and 3.3 volts in devices. For this, we use a logic-level

converter, which requires a reference voltage from both devices, but safely

translates the voltage between devices.

So now you are aware of the differences in the voltage needs of your

devices. Next, we look at amperage.

�Amperage

Amperage is a measure of current, or the electrical pressure that our

devices require to operate. The most common analogy is water through a

pipe, where voltage is the size of the pipe and amperage is the amount of

water flowing through it. I actually like to change the analogy to use rubber

tubing. If you try to push too much water through a rubber tube, bad

things happen.

In the electronics world, this is frequently measured in the smaller

unit of milliamps, usually noted as mA. For instance, the USB port of

most devices is limited to 800 mA of power. This happens to be the same

amount of power used by the motors we selected; however, it does not take

power spikes into account.

Chapter 6 Driving Motors

186

Voltage on a device is somewhat passive. The device uses the voltage

that you provide it, never trying to draw more. Amperage is quite the

opposite. A device is hungry for amperage and continues to draw what it

needs until it is satisfied to do its work or exceeds the available supply.

Components and devices have a certain amount of power that they

need to work. They also have a maximum amount of power that they can

withstand. Since extra electrical power is converted to heat, if you exceed

the maximum tolerable amperage of a device, it gets hot and dies—

sometimes spectacularly.

The moral of the story is to “always pay attention to the current you are

drawing.” And this does not only apply to motors. LEDs are notorious for

drawing a lot of current.

Motors and Amps

Motors are notoriously power-hungry devices. They are constantly trying

to fulfil their purpose: to spin. When there is no load, weight, or resistance

on a motor, it spins happily at its minimum current draw. Start to add

resistance, however, and the motor draws more and more current until

it reaches the maximum it can draw, which is called the stall current.

The stall current is essentially the amperage of a motor when the shaft is

physically restrained from moving.

When a motor starts, rapidly changes direction, or encounters too

much resistance to spin, the power that it consumes increases drastically.

If this sudden draw is too much for the supply, something is damaged.

Let’s take an 800 mA source, such as a USB jack; if the motor suddenly

draws 1 amp or greater, the USB jack will probably be damaged.

Chapter 6 Driving Motors

187

�Motor Drivers
Most microcontrollers, microprocessors, and electronics can only handle

a small amount of current. If one pulls too much current, it starts to burn

out. Because motors usually easily exceed this maximum current, you

generally don’t want to connect a motor of any significant size directly to

your processor. So we will use a device called a motor driver or a motor

controller.

A motor controller is designed for this specific purpose. It uses the low

power signal from your microcontroller to control a much larger current

and/or voltage. In our case, we are using a motor controller to control 6

volts with 3.3 volts from the GPIO pins. We are doing this through a series

of components that have a much larger 1.2 A (1,200 mA) current tolerance

and can handle brief spikes up to 3.0 A (3,000 mA).

�Working with Motor Controllers
Let’s look at two motor controllers. The first is the DC & Stepper Motor

HAT by Adafruit. This controller board is designed specifically to mount

onto the Raspberry Pi. The combination of utility and convenience makes

it my preferred choice for projects like ours.

The other motor controller is the L298N, which is an H-bridge

IC. Although the L298N is actually a discreet component—a chip—there

are many manufacturers that have built it onto a convenient breakout

board. This type of board is typically being referred to when someone

mentions an L298N motor controller. The one used in this book is a

generic version that I found on Amazon for $5. Some of my friends said

that I paid too much for it.

Chapter 6 Driving Motors

188

�Adafruit DC & Stepper Motor HAT
The motor driver in this project is one from Adafruit available at

www.adafruit.com/products/2348. Information on how to use it is at

https://learn.adafruit.com/adafruit-dc-and-stepper-motor-hat-

for-raspberry-pi. In fact, much of what we’ll be going over came from

this Adafruit website.

There are several reasons why this device was selected for our robot,

not the least of which is that it mounts directly to the Raspberry Pi, thus

limiting the area needed for mounting electronics on the robot. As you’ll

quickly learn, mounting space is at a premium on most robots, especially if

you’re trying to keep it rather compact. The following are some of the other

reasons to use this board:

•	 It can control up to four DC motors or two stepper

motors.

•	 Communication is handled via the I2C serial channel,

which allows multiple devices to be stacked (this is why

we used the longer pins on the header).

•	 Because it is using I2C, it has its own dedicated PWM

module for controlling the motors, so we don’t have to

rely on the PWM on the Pi proper.

•	 It has four H-bridge motor control circuits with 1.2 A

current, 3.0 A peak current, thermal shutdown, and

internal protection diodes to protect your board.

•	 There are four bidirectional motor controls with 8-bit

speed control (0–255).

•	 There is an easy connection with the use of terminal

blocks.

•	 There are ready-made Python libraries.

Chapter 6 Driving Motors

http://www.adafruit.com/products/2348
https://learn.adafruit.com/adafruit-dc-and-stepper-motor-hat-for-­raspberry-­pi
https://learn.adafruit.com/adafruit-dc-and-stepper-motor-hat-for-­raspberry-­pi

189

�Some Assembly Required

The board comes in a kit and requires soldering. If you haven’t already

done so, you need to assemble it before proceeding with the project.

Remember, we specified longer pins for the header, so don’t use the one

that came with the kit.

It’s time for soldering practice.

There are a lot of small pins (40 of them) that need to be soldered. If

you’re not familiar with soldering, you need to take a moment to learn

how. Although it is remarkably easy, soldering instruction is beyond

the scope of this book. There are many helpful videos available on the

Internet. I also strongly suggest that you find your local makerspace. There

is certainly someone there who can give you a quick lesson. Figure 6-5

shows my simple soldering setup.

Figure 6-5.  Preparing to assemble the Motor HAT

Chapter 6 Driving Motors

190

Assembling the Motor HAT is very easy, although there is soldering

involved. You can find detailed instructions for assembly on the Adafruit

website at https://learn.adafruit.com/adafruit-dc-and-stepper-

motor-hat-for-raspberry-pi/assembly.

For this exercise, you need a soldering iron and solder. I recommend

having some flux handy, as well as something to keep the soldering tip

clean. Back in school, we used a wet sponge to clean the tip, but there are

better things made for the job now. Your Raspberry Pi will help too.

	 1.	 Mount the extended header onto the Raspberry Pi’s

40-pin header (see Figure 6-6). This helps stabilize

things as you solder.

Figure 6-6.  Extended stacking header on the Pi’s 40-pin GPIO

Chapter 6 Driving Motors

https://learn.adafruit.com/adafruit-dc-and-stepper-motor-hat-for-raspberry-pi/assembly
https://learn.adafruit.com/adafruit-dc-and-stepper-motor-hat-for-raspberry-pi/assembly

191

	 2.	 Mount the Motor HAT circuit board onto the

headers (see Figure 6-7). To help hold the board at

a better angle for soldering, you may want to put

something to support the other side. One of the

terminal blocks works well for this.

	 3.	 Solder the first pin.

	 4.	 Once the first pin is soldered, heat it up again and

adjust the board so that it sits properly (see Figure 6-8).

When the solder for the pin cools, it will hold the board

at the right angle while you solder the rest of the pins.

If you supported the board with a terminal block or

something else so that the board is sitting straight, you

may be able to skip this step.

Figure 6-7.  Circuit board mounted on the header

Chapter 6 Driving Motors

192

	 5.	 Solder the rest of the first row (see Figure 6-9). You

want a nice, clean, shiny joint.

Figure 6-8.  Adjusting the placement and angle of the board

Figure 6-9.  Solder the first row of pins

Chapter 6 Driving Motors

193

	 6.	 Rotate the board 180 degrees and solder the second

row (see Figure 6-10).

	 7.	 Remove the HAT from the Pi.

	 8.	 Mount the screw terminals onto the board (see

Figure 6-11).

Figure 6-10.  Rotate the Pi and solder the remaining pins

Chapter 6 Driving Motors

194

	 9.	 Use tape to hold the terminals in place while you flip

the board over (see Figure 6-12).

Figure 6-11.  Adding the terminal blocks to the circuit board

Chapter 6 Driving Motors

195

	 10.	 Solder the terminals in place (see Figure 6-13).

Figure 6-12.  Tape helps hold the terminal blocks on the board while
you turn it over to solder them into place

Figure 6-13.  Soldering the terminal pins

Chapter 6 Driving Motors

196

Once you’ve removed the tape, you are done. The Motor HAT is ready

for use. Mount the HAT onto the Pi. You want to support the side with the

terminals so that it doesn’t short across the HDMI housing (see Figure 6-14).

�Hooking Up the Motor Controller

Connecting the Motor HAT is pretty straightforward. Simply mount

the board on the GPIO header of the Pi. There are a couple of things to

note, however. First, be careful not to bend any of the pins on either the

Raspberry Pi or the HAT. It is remarkably easy to do. The header pins on

the Motor HAT are particularly susceptible to bending.

You also want to be careful not to short the terminal blocks. You’ll

notice that when mounted, the solder joints are precariously close to

the metal housing of the HDMI connection (see Figure 6-15). There are

two easy solutions for this. The first fix (and this is what we’ll do in the

Figure 6-14.  The completed board mounted on the Raspberry Pi. The
orange support piece is 3D printed

Chapter 6 Driving Motors

197

workshop until you can apply the second solution) is to simply place a

piece of electrical tape over the metal housings of the micro USB and

HDMI connectors of the Pi. The second fix (recommended) is to get some

offsets to support that side of the HAT. Spacers and screws will also do the

job. The point is that you don’t want the board to sag and make contact

with the housing, which would probably result in a brief light show and the

destruction of both the Motor HAT and the Pi.

Once the board is mounted and safely insulated from shorting, it’s time

to connect the motors. For the first tutorial, we’re only going to use one

motor. The second piece of code controls two, so we might as well get them

connected now.

But before we can do that, we have to prep our motors. Now, if your

motors came with the leads attached, then you’re ahead of the game. If

not, you’ll need to solder leads to your motor, as shown in Figure 6-16.

I tend to use black and red wires of appropriate size for the motors in

question. I also like to make sure that the leads on each of the motors

Figure 6-15.  Adafruit Motor HAT mounted on a Raspberry Pi

Chapter 6 Driving Motors

198

match (the black wire goes to the same pole on each of the motors and

the red to the same pole on each motor). This way I don’t have to second-

guess how things are connected later.

In this case, I’m using 26 AWG-stranded wire. There are generally two

types of lead wire: stranded and solid. Solid is more rigid and excellent

for jumpers or situations where there isn’t going to be a lot of movement.

Stranded wire consists of multiple thinner wires housed in a single

sheathing. It is more flexible and ideal for applications where there will

likely be movement. Stranded wire is a little harder to work with, and the

ends going into the terminal blocks should be tinned or coated in solder

(see Figure 6-17). This makes that end rigid, and it connects better in the

terminal block.

Figure 6-16.  Leads soldered to motor terminals

Chapter 6 Driving Motors

199

The next steps connect the motors to the terminal block.

	 1.	 Make sure that the terminal blocks are open with the

screw inside the block all the way to the top. Be sure

not to remove the screw. You’ll need to use a pretty

fine Phillips head screwdriver.

	 2.	 Insert one of the tinned leads into the hole on the side

of the terminal block marked M1 (see Figure 6-18).

It doesn’t matter which wire goes to which port, as

long as both wires go to different ports for the same

driver (in this case, M1).

	 3.	 Tighten the screw corresponding to the hole you

inserted the wire into.

	 4.	 Repeat the procedure for the second lead from

the motor.

Figure 6-17.  Tinned lead

Chapter 6 Driving Motors

200

At this point, if you are so inclined, you can connect the second motor

as well. I tend to reverse the order of the leads since they are destined for

opposite sides of the robot. You want a forward command to turn the left

motor in one direction and the right motor in the other direction. If they

both turn in the same direction electrically, then the robot just spins in

place.

You’ll repeat the procedure for the four–AA battery pack to the power

terminals. Make sure that the red lead goes to the positive (+) side and the

black goes to the negative (–) side (see Figure 6-19).

Figure 6-18.  Motor connected to the Motor HAT

Chapter 6 Driving Motors

201

Figure 6-19.  External battery pack connected to the Motor HAT

Your board and motors should look similar to Figure 6-20. With both

motors and the battery pack connected, you are ready to start coding!

Figure 6-20.  Completed connections to the Motor HAT

Chapter 6 Driving Motors

202

�Using the Motor HAT

With the Motor HAT mounted and your motors and motor power supply

connected, it’s time to boot up the Pi and log on.

The Adafruit Motor HAT uses a protocol called I2C to communicate

with your Raspberry Pi. I2C is a serial protocol designed to use a minimum

number of pins for sending and receiving data. Generally the protocol

uses a total of four pins to connect with other devices: SCL, SDA, VCC, and

GND. The particulars of I2C are beyond the scope of this book, but if you

want to learn more about it, check out https://learn.adafruit.com/

circuitpython-on-raspberrypi-linux/i2c-sensors-and-devices.

There are a couple of steps to get the Motor HAT working on your Pi.

First, we will need to enable I2C. This and most other communications

protocols are disabled by default on the Pi. Once this is done, we will

install the necessary library.

Enabling I2C

To enable I2C on your Raspberry Pi, we will be using Raspberry Pi

Configuration.

	 1.	 In the upper-left corner of the Raspberry Pi OS

screen, click the raspberry logo.

	 2.	 Click Preferences and then Raspberry Pi

Configuration. This will open the Raspberry Pi

Configuration panel.

	 3.	 Select the Interfaces tab.

	 4.	 Click Enable for I2C.

	 5.	 Click OK.

Chapter 6 Driving Motors

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-sensors-and-devices
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-sensors-and-devices

203

Installing the Library

Once you’ve started up and connected to your Pi, you need to install

the Python libraries for the Motor HAT. The Motor HAT Library has a

dependency on the Adafruit_Blinka library. These are available from

Adafruit, and the Adafruit_Blinka library will be installed when the HAT

library is installed. For this, we’ll be using Python’s PIP function.

	 1.	 Open a terminal window.

	 2.	 Type sudo pip3 install adafruit-

circuitpython-motorkit and press Enter.

At this point, your Pi is updated with the necessary libraries, and it’s

time to get started with the code.

The Code

We will start with simply turning a single motor. The speed of the motor is

denoted as a decimal value between 0 and 1. Zero is a dead stop, one is full

speed, and half speed would be 0.5.

Turning multiple motors is a simple expansion of this, as you will see

in the second sample.

Turning a Single Motor

	 1.	 In the Thonny IDE, create a new file and save it as

motors.py.

	 2.	 Enter the following code:

import time

from adafruit_motorkit import MotorKit

create motor object

kit = MotorKit()

Chapter 6 Driving Motors

204

run motor forward 1 second

kit.motor1.throttle = 1.0

time.sleep(1.0)

stop motor

kit.motor1.throttle = 0.0

time.sleep(0.25)

run motor reverse 1 second

kit.motor1.throttle = -1.0

time.sleep(1.0)

stop motor

kit.motor1.throttle = 0.0

	 3.	 Save the file.

	 4.	 Press F5 to run the program.

Let’s go through the code.

We start by importing the objects we need from the Adafruit_MotorKit

library and assign them aliases so we don’t have to write the whole name

each time we use them. We also import the time library for our delays later

in the code:

import time

from adafruit_motorkit import MotorKit

Next, we create an instance of the motor object. This lets us access the

MotorKit’s methods and properties:

kit = MotorKit()

Now we wrap the remainder of the motor drive code in a while loop.

As long as the value is true, this code will keep executing:

while True:

Chapter 6 Driving Motors

205

The code to drive the motor is very simple. We drive the motor

forward for 1 second, stop the motor for 250 milliseconds, drive the

motor backward for 1 second, and then stop the motor, again, for 250

milliseconds. The program keeps doing this until we stop it:

run motor forward 1 second

kit.motor1.throttle = 1.0

time.sleep(1.0)

stop motor

kit.motor1.throttle = 0.0

time.sleep(0.25)

run motor reverse 1 second

kit.motor1.throttle = -1.0

time.sleep(1.0)

stop motor

kit.motor1.throttle = 0.0

time.sleep(0.25)

To stop the program, press Ctrl-C on the keyboard.

Note that the program ended, but the motor continues to turn. That’s

because the Motor HAT is freely running. This means that the controller

continues with the last command received from the Pi. If we don’t tell it to

stop, it won’t.

Now we are going to do something interesting, something we haven’t

done before. We’ll wrap the motor drive code into a try/except block. It

is a piece of code that allows us to capture any errors that occur and then

gracefully handle them.

In this particular case, we are going to use the try/except block to

capture the KeyboardInterrupt event. This event is triggered when we use

Ctrl-C to exit a program.

Chapter 6 Driving Motors

206

	 1.	 Change the code for the while loop to read as

follows:

try:

 while True:

 # run motor forward 1 second

 kit.motor1.throttle = 1.0

 time.sleep(1.0)

 # stop motor

 kit.motor1.throttle = 0.0

 time.sleep(0.25)

 # run motor reverse 1 second

 kit.motor1.throttle = -1.0

 time.sleep(1.0)

 # stop motor

 kit.motor1.throttle = 0.0

 time.sleep(0.25)

except KeyboardInterrupt:

 kit.motor1.throttle = 0.0

	 2.	 Run the program.

	 3.	 Let it run for a moment, and then press Ctrl-C.

The motor will now stop when the program exits.

Python captures the KeyboardInterrupt event and executes that

last line of code before exiting. The code releases the motor and simply

turns it off.

Chapter 6 Driving Motors

207

Turning Two Motors

Turning a single motor is great and dandy, but our robot is going to have

two motors, and we want them to operate independently. We also want

them to be able to change speed and direction.

To operate multiple motors, you simply need to create a different

instance of the motor object for each motor. Assuming that you connected

both of your motors earlier, we are creating two motors and giving

commands to each. We are also changing both the speed and direction of

the motors.

	 1.	 Create a new Python file from Thonny.

	 2.	 Save the file as two_motors.py.

	 3.	 Enter the following code:

import time

from adafruit_motorkit import MotorKit

create motor object

kit = MotorKit()

try:

 while True:

 # ramp up speed from 1 to 255

 for i in range(100):

 j = 100-i

 # run motors forward 1 second

 kit.motor1.throttle = i/100

 kit.motor2.throttle = j/100

 # stop motor

 kit.motor1.throttle = 0.0

 kit.motor2.throttle = 0.0

 time.sleep(0.25)

Chapter 6 Driving Motors

208

 for i in reversed(range(100)):

 j = 100-i

 # run motors reverse 1 second

 kit.motor1.throttle = i/100

 kit.motor2.throttle = j/100

 # stop motor

 kit.motor1.throttle = 0.0

 kit.motor2.throttle = 0.0

 time.sleep(0.25)

except KeyboardInterrupt:

 kit.motor1.throttle = 0.0

 kit.motor2.throttle = 0.0

	 4.	 Save the file.

	 5.	 Press F5 to run the program.

For the most part, the code is the same. We added a few for loops to

count up to 100 and back down again. We created two variables to hold

this value; the second one inverts the value by subtracting it from 100.

Since the throttle is a decimal value between 0 and 1, we divide the speed

variable by 100. Once both motors have sped up and down again, we

change direction and do it again. We use the same exit code as we did

before.

�L298N Generic Motor Driver
The L298N is a common H-bridge motor controller chip. Several

manufacturers have mounted the chip on a board and added all the

necessary support electronics. The end result is a popular, generic motor

controller.

Chapter 6 Driving Motors

209

�H-Bridge Motor Controller

The H-bridge motor controller is the most common motor controller that

you will encounter. It gets its name from the distinctive H shape seen in

the schematic. An H-bridge essentially consists of four gates that control

current flow through the motor. Depending on how the gates are opened

and closed, you can control the direction in which the motor spins.

On the L298N, there are two enable pins (one for each motor) and four

input pins. The in1 and in2 pins control motor 1, while in3 and in4 control

motor 2. Figure 6-21 shows how the gates are arranged; in1 controls S1 and

S4, and in2 controls S3 and S2. When in1 or in2 is high, their respective

gates are closed. When they are low, the gates are open.

When in1 is high and in2 is low, the current flows so that the

motor spins clockwise. If in1 is low and in2 is high, the motor spins

counterclockwise. If both pins are high, the motor does not spin,

essentially putting on a brake. If both pins are low, no current is flowing

through the motor, and it is spinning freely.

That leaves the enable pins, enA and enB, which are used for setting

the speeds of the motors. This is why we use PWM on these pins. PWM

allows us to vary the speed of each motor. If we used a standard digital pin,

we could start and stop the motor, but it would be either full power or no

power. PWM allows us to have more control over our motors.

Figure 6-21.  H-bridge motor controller operation

Chapter 6 Driving Motors

210

�Using the L298N

There are a few ways to use the L298N; each has its benefits and faults. One

method is to connect the pins to the Raspberry Pi, which has the virtue of

being directly controlled by the Pi. The drawbacks are that you may have

to use a logic-level converter since the Pi’s pins are 3.3 volts and the

controller is 5 volts. Also, you lose the ability to control the speed. Speed

control requires PWM, and as I discussed in earlier chapters, that is one

area where the Pi is wanting.

My preferred method for connecting to the L298N is through the

Arduino. In this way, you have speed control through PWM. Also, since the

Arduino and the controller are both 5 volts, there is no need to use a logic-

level converter. Of course, the drawback here is that you have to pass the

motor instructions via Serial to the Arduino.

Arduino Code

For this exercise, the Arduino is simply going to act as a pass-through for

the motor controller. We will read the instructions from the serial stream

and pass those values onto the motor controller. The Arduino will perform

no logic. If you implement this in a real-world scenario, you may want

the sensors to act as an interrupt. By allowing the sensors to interrupt the

normal operation, you can build some safeties into the project.

	 1.	 Open a new sketch in the Arduino IDE.

	 2.	 Save the sketch as L298N_passthrough.

	 3.	 Enter the following code:

int enA = 9;

int in1 = 8;

int in2 = 7;

int in3 = 5;

Chapter 6 Driving Motors

211

int in4 = 4;

int enB = 3;

int enAVal, in1Val, in2Val, in3Val, in4Val, enBVal;

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

 pinMode(enA, OUTPUT);

 pinMode(in1, OUTPUT);

 pinMode(in2, OUTPUT);

 pinMode(in3, OUTPUT);

 pinMode(in4, OUTPUT);

 pinMode(enB, OUTPUT);

}

void loop() {

 // Only work if there is data in the serial buffer

 while(Serial.available() > 0){

 // Read the ints from the serial port

 enAVal = Serial.parseInt();

 in1Val = Serial.parseInt();

 in2Val = Serial.parseInt();

 // Only read the next three if there is data

 if(Serial.available() > 0){

 in3Val = Serial.parseInt();

 in4Val = Serial.parseInt();

 enBVal = Serial.parseInt();

 }

 // Write the values to the L298N

 analogWrite(enA, enAVal);

 digitalWrite(in1, in1Val);

Chapter 6 Driving Motors

212

 digitalWrite(in2, in2Val);

 digitalWrite(in3, in3Val);

 digitalWrite(in4, in4Val);

 analogWrite(enB, enBVal);

 // �Purge any remaining data because we don't need it

 while(Serial.available() > 0){

 char x = Serial.read();

 }

 }

}

	 4.	 Save the sketch and upload it to the Arduino.

You won’t see anything happening on the Arduino. What we’ve done is

load the Arduino with code that simply reads the serial port and passes the

values read to the L298N.

We did a few things in this code that you want to take note of.

if(Serial.available() > 2){

The first thing to note is the if statement after we read in the value

for in2Val. This code is used in both of the upcoming exercises. The first

exercise will only pass three values. The second will pass six values. We

only read the second three values if they exist; otherwise, we’ll get an

error. To assure that we avoid the error, we only want to read the next three

values if there are three or more values to read.

while(Serial.available() > 0){

 char x = Serial.read();

}

Chapter 6 Driving Motors

213

At the end of the sketch, we added a small while loop. If we have

anything left in the serial buffer after reading all six values, we need to clear

it out so that there is no straggling data in the buffer for the next cycle. This

block simply reads all the remaining bytes and removes them from the

buffer.

Hooking Up the L298N

Hooking up the motor controller is a little more complicated than just

plugging it into the header. We’ll connect through the Arduino to take

advantage of the PWM pins. As with the Motor HAT, we’ll provide the

motor controller with external power from the four–AA battery pack. This

provides the 6 volts that the motors want, without frying the Arduino.

Turning One Motor

In the first exercise with L298N, you learn how to turn a single motor. We

set the motor’s speed and direction, change the direction, and vary the

speed. Figure 6-22 shows the circuit for this exercise.

	 1.	 Connect enA on the motor controller to pin 9 on the

Arduino. You may need to remove a jumper.

	 2.	 Connect in1 to pin 8.

	 3.	 Connect in2 to pin 7.

	 4.	 Connect a ground pin on the Arduino to the ground

post on the screw terminal. This is likely the middle

post.

	 5.	 Connect a motor to the motor controller by

connecting one lead to out1 and the other to out2.

At the moment, it doesn’t matter which lead goes to

which output post.

Chapter 6 Driving Motors

214

	 6.	 Connect the black lead from the battery pack to the

ground terminal on the L298N.

	 7.	 Connect the red lead from the battery pack to the

positive terminal. It is usually labeled + or VCC.

	 8.	 Open a new file in Thonny.

	 9.	 Save the file as L298N_1_motor_example.py.

	 10.	 Enter the following code:

import serial

import time

direction = 1

Figure 6-22.  L298N single-motor wiring

Chapter 6 Driving Motors

215

ser = serial.Serial("/dev/ttyACM0",9600,timeout=1)

def driveMotor(int speed, int drct):

 enA = speed

 # determine direction

 if drct == 1:

 in1 = 1

 in2 = 0

 else if drct == -1:

 in1 = 0

 in2 = 1

 else:

 in1 = 0

 in2 = 0

 �valList = str(enA) + ',' + str(in1) + ',' +

str(in2)

 serString = ','.join(valList)

 ser.write(serString)

 time.sleep(0.1)

while 1:

 # ramp up speed

 while motSpeed < 256:

 driveMotor(motSpeed, direction)

 motSpeed = motSpeed + 1

 # ramp down speed

 while motSpeed > 0:

 driveMotor(motSpeed, direction)

 motSpeed = motSpeed – 1

Chapter 6 Driving Motors

216

 # reverse direction

 direction = -direction

	 11.	 Save and run the file

The motor should begin spinning, getting faster until it reaches its top

speed. At that time, it slows to a stop, reverses direction, and repeats. This

continues until you press Ctrl-C to stop the program.

Turning Two Motors

Next, we spin two motors. The setup and code are very similar to what we

just did, with an additional motor. You should already have the first motor

connected. If not, complete steps 1–7 from the previous exercise. Let’s pick

up with the addition of the second motor (see Figure 6-23).

	 1.	 Connect a lead from pin 5 on the Arduino to in3 on

the motor controller.

	 2.	 Connect a lead from pin 4 to in4.

	 3.	 Connect a lead from pin 3 to enB.

	 4.	 Connect the leads from the second motor to the

out2 terminals. Again, it matters very little in this

exercise which lead goes to which terminal. Later,

when you are mounting the motors onto the

robot, you want to make sure that the motors are

connected so that they turn opposite to each other.

For now, however, we only care that they actually

turn.

Chapter 6 Driving Motors

217

Figure 6-23.  L298N two-motor wiring

	 5.	 Open a new file in Thonny.

	 6.	 Save the file as L298N_2_motor_example.py.

	 7.	 Enter the following code:

import serial

import time

directon = 1

ser = serial.Serial("/dev/ttyACM0",9600,timeout=1)

def driveMotor(int motor, int speed, int drct):

 enA = speed

Chapter 6 Driving Motors

218

 # determine direction

 if drct == 1:

 in1 = 1

 in2 = 0

 in3 = 1

 in4 = 0

 else if drct == -1:

 in1 = 0

 in2 = 1

 in3 = 0

 in4 = 1

 else:

 in1 = 0

 in2 = 0

 in3 = 0

 in4 = 0

 �valList = str(enA) + ',' + str(in1) + ',' +

str(in2) + ',' + str(in3) + ',' + str(in4) + ',' +

str(enB)

 serString = ','.join(valList)

 ser.write(serString)

 time.sleep(0.1)

while 1:

 # ramp up speed

 while motSpeed < 256:

 driveMotor(motSpeed, direction)

 motSpeed = motSpeed + 1

Chapter 6 Driving Motors

219

 # ramp down speed

 while motSpeed > 0:

 driveMotor(motSpeed, direction)

 motSpeed = motSpeed - 1

 # reverse direction

 direction = -direction

This code was not much different from the previous exercise. All that

we did was add the enable and input variables for the second motor. Both

motors should be spinning at the same speed. They speed up, slow down,

and then reverse direction. Take a look at the code and determine how to

get the motors to spin independently of each other.

�Summary
In this chapter, we looked at the common types of motors: DC, coreless,

stepper, and servo. We assembled the Adafruit DC & Stepper Motor HAT.

(You should now be pretty comfortable with the soldering iron.) Then, you

learned how to connect your motors to it and made them spin.

We also looked at a common, generic motor controller. The L298N

works a little differently in that the direction is set by altering the state

of two pins. We connected the L298N through the Arduino to take

advantage of the PWM pins to control the speed of the motors, as well as

the direction. We could have just as easily connected the enable pins to

digital out pins on the Raspberry Pi GPIO header. However, having discrete

control of the motors’ speed is important. In an upcoming chapter, you see

why this is important.

Chapter 6 Driving Motors

220

At this point, you have all the information that you need to build a

simple little robot. You’ve learned about programming in both Python

and Arduino. You’ve worked with sensors to allow your robot to detect

its surroundings. And finally, you got your motors to spin, so you have

motion. Logic, sensing, and movement are the essence of every robot.

Everything else is a more advanced version of these elements.

Now that you know everything you need to know about robots, we’re

going to assemble the chassis kit and build a robot. After that, we jump into

making our robot more capable and smarter. We will start with IR sensors,

move on to control algorithms, and then give the robot eyes—well, an eye.

Chapter 6 Driving Motors

221© Jeff Cicolani 2021
J. Cicolani, Beginning Robotics with Raspberry Pi and Arduino,
https://doi.org/10.1007/978-1-4842-6891-9_7

CHAPTER 7

Assembling the Robot
In the last chapter, we built the Adafruit Motor HAT, an electronic device

that allows you to control up to four DC motors with your Raspberry Pi. We

also looked at a generic motor controller that we ran through the Arduino

board. Now that you know how to get your robot to move, let’s start

building it.

In this chapter, we will build our robot. Along the way, I’ll give some

tips and pointers I’ve picked up in my builds. There are a lot of little

things to consider when assembling a robot. You’ll encounter some odd

scenarios that you hadn’t considered. The most overlooked is wiring

and wire management. Things like order of operations and component

placement are very important. Decisions made early in a build can cause

complications later. Being mindful of these things can help keep you from

having to disassemble your robot to correct an error that you made early on.

The build is broken into four separate exercises. We’ll start by building

the Whippersnapper chassis kit. Then we’ll mount the electronics, which

is followed by the wiring. Finally, we’ll look at mounting the ultrasonic

sensors. In each exercise, I’ll point out some of the things to consider when

working on your own build.

https://doi.org/10.1007/978-1-4842-6891-9_7#DOI

222

�Assembling the Chassis
For this build, I chose to use a commercially available kit. The nice thing

about kits is that a good kit has everything you need to get started. There

are many options at many different price points and from many different

manufacturers. Many of the low-cost kits, generally found online from

foreign sellers, are less complete than others. Often, these are kits for

popular devices but are assembled with little thought on how the parts

go together. So, if you’re going to buy a kit, make sure that it’s got all the

hardware and that the parts are designed to work together.

�Choosing a Material
The materials are another thing to consider when selecting a chassis. A

metal chassis is good. It tends to be more costly than a plastic chassis, but

it also tends to be a lot more durable. In terms of plastic kits, remember

that not all plastics are the same.

Acrylic is an inexpensive and convenient material to use; however, it is

not the right material for most applications. Acrylic is brittle and inflexible

and scratches easily. When it breaks, it usually does so in sharp pieces.

It is also wise to remember not to use acrylic in any kind of high-friction

application because it tends to break down into course granules that

amplify the friction.

If you’re going to use plastics, ABS is a better material to use. Like

acrylic, ABS comes in sheets and is fairly inexpensive. Unlike acrylic, it

is much more durable. It doesn’t crack or break as easily, and it is more

scratch resistant. ABS is drillable and easier to work with than acrylic is.

Another option is polystyrene. Styrene is the material used for plastic

model kits. So, if you’re familiar with working with these kits, then styrene

is an easy choice. It is more flexible than either acrylic or ABS. It tends to be

a little more expensive than the others are, but it is easy to work with.

Chapter 7 Assembling the Robot

223

�The Whippersnapper
The Whippersnapper is a commercial kit made with laser-cut ABS

sheets. It is part of the Runt Rover line from Actobotics, manufactured by

ServoCity. I have worked with several kits from the Actobotics line, and I

know them to be well-designed, quality products. In addition to the robot

kits, they produce a broad line of parts that are designed to work together.

All of these things contributed to the selection of the Whippersnapper

(see Figure 7-1) for the base of this project. It doesn’t hurt that it’s a good-

looking chassis with space to hold all the electronics and leave some room

to grow.

For the sake of clarification, the Raspberry Pi will be mounted at the

back of the robot. The Arduino will be at the front. This will make the

wiring a little easier.

Figure 7-1.  All the Whippersnapper parts

Chapter 7 Assembling the Robot

224

To begin, I like to lay out the parts. This helps you make sure that

everything is there and gets you familiar with all the parts. This kit snaps

together. In fact, the only tools that you need are a Philips screwdriver and

needle-nose pliers. When snapping the parts together, be aware that the fit

is tight and that it takes some force to get everything to go together. As long

as you keep the parts straight, they won’t break. Keep a firm grip on the

part and apply even pressure.

	 1.	 Attach the center support to one of the sides. Make

sure that the course side is facing out. Take note of

the tabs on the center support. The single pair of

tabs attaches to the bottom plate (see Figure 7-2).

	 2.	 Attach the other side plate to the center support.

Again, make sure that the course side is on the

outside of the robot.

Figure 7-2.  Center support attached to an outer plate

Chapter 7 Assembling the Robot

225

	 3.	 Snap the top plate to the assembly. There are six sets

of tabs that snap to the top plate (see Figure 7-3).

In the next steps, we attach the motors. On one side of the motor is

a small peg (see Figure 7-4), which helps align the motor and keeps it in

place.

Figure 7-3.  Top plate added

Chapter 7 Assembling the Robot

226

	 1.	 Mount the motor so that the shaft goes through the

lower hole and the peg goes into the other one.

	 2.	 Use two screws and nuts to hold the motor in place

(see Figure 7-5). Although not included in the kit,

some #4 split lock washers would be good to use

here. If you don’t have any, use Loctite Threadlocker

Blue on the nuts. Without something to lock them

into place, the nuts will rattle off.

Figure 7-4.  Motor with tab

Chapter 7 Assembling the Robot

227

	 3.	 Repeat the process for each of the three remaining

motors (see Figure 7-6).

Figure 7-5.  Mounted motor

Chapter 7 Assembling the Robot

228

	 4.	 Flip the chassis over and attach the bottom plate.

There are five sets of tabs holding the bottom plate

on (see Figure 7-7).

Figure 7-6.  All motors mounted

Chapter 7 Assembling the Robot

229

	 5.	 Feed the wires for each motor into the chassis through

the hole behind the motor (see Figure 7-8). This bit of

housekeeping keeps the wires from getting tangled

in the wheels or caught onto something.

Figure 7-7.  Bottom plate added

Chapter 7 Assembling the Robot

230

	 6.	 Attach the electronics clips to the top plate. These

clips will be used for holding the Raspberry Pi.

	 7.	 Feed the wires for the front motors through the hole

in the center support plate.

The chassis is now ready to have the electronics mounted to it. Your

robot chassis should look like what’s shown in Figure 7-9.

Figure 7-8.  Motor wires fed through the hole behind the motor

Chapter 7 Assembling the Robot

231

�Mounting the Electronics
Next, we’ll mount the electronics to the chassis. Starting with the

Raspberry Pi, we’ll attach each component, with the Arduino and the

breadboard mounted toward the front.

During this part of the build, mounting tape and zip ties are used

frequently. The placement of the boards is up to you. Some people

mount some of the electronics inside the chassis. However, I’ve found the

following arrangement to work the best for me. It allows easier access to

the electronics and saves space inside for additional components.

	 1.	 Snap the Raspberry Pi into the clips on the top plate

(see Figure 7-10). The Pi should be held firmly in

place by the top barbs.

Figure 7-9.  The completed Whippersnapper

Chapter 7 Assembling the Robot

232

The tabs that hold the chassis together (see Figure 7-11) make

mounting the Arduino and breadboard a challenge. This is one reason I

like to use foam mounting tape—it provides some padding. To clear the

tabs, we’ll need to double up on the tape.

Figure 7-10.  Raspberry Pi mounted in the clips

Chapter 7 Assembling the Robot

233

	 2.	 Stack two pieces of foam tape on top of each other

and place them on the top plate. Use a second set of

stacked foam tape to form a T (see Figure 7-12). This

adds stability.

Figure 7-11.  Clip protruding from the top plate

Chapter 7 Assembling the Robot

234

	 3.	 Remove the protective paper from the bottom of the

breadboard and press the breadboard firmly into

the T-shaped tape on the top plate (see Figure 7-13).

Figure 7-12.  Double layer of mounting tape for the breadboard

Chapter 7 Assembling the Robot

235

	 4.	 Repeat the procedure for the Arduino (see Figure 7-14).

Figure 7-13.  Mounted breadboard. Note that the T-Cobbler has been
moved forward to allow room for the power pack

Chapter 7 Assembling the Robot

236

When mounting the Arduino, remember to leave room for the USB

cable. I offset the Arduino from the center so that the USB plug is clear of

the Raspberry Pi (see Figure 7-15).

Figure 7-14.  Arduino mounted on a double layer of mounting tape

Chapter 7 Assembling the Robot

237

	 5.	 Mount the four–AA battery holder inside the chassis

in the back. Be sure to mount it in such a way that it

allows access to the batteries and the power switch,

if applicable. I used foam mounting tape to hold

mine in place.

	 6.	 Find a place to securely mount the 5 V power bank. I

find that the space between the breadboard and the

Raspberry Pi works well for the small power banks

that I use. Your placement will be determined by the

form factor of your power bank.

With the electronics in place, it’s time to start wiring the parts together.

Figure 7-15.  Leaving clearance for the USB cable

Chapter 7 Assembling the Robot

238

�Wiring
It would be inappropriate to try to write this part as step-by-step

instructions. How you wire your robot is entirely up to you. Each robot is

different. Wiring is determined by component placement, the cables that

you use, and personal preference. Instead, I’ll walk you through how I

wired my robot and the thought process behind my decisions and include

considerations for your project.

I prefer to keep my cables as tidy as possible. Some people put little

thought into how they run the wires. I’ve seen some tangled messes under

the covers of some robots. It’s important to me to be able to access the

parts easily, and this includes the wires and cables.

The USB cables for powering the Pi and connecting to the Arduino are

a little longer than I prefer for most projects. There are numerous types

of cables available, including those with right-angle plugs, which make

cabling fairly easy. Because the cables are a little long, I use zip ties to

bundle them into something smaller. The heavier cable for the Arduino

is then bound to the mounting clips for the Pi. The cable from the power

bank to the Pi is tucked underneath the Pi (see Figure 7-16).

Chapter 7 Assembling the Robot

239

Next, I connect the wires from the motors to the Motor HAT. The Motor

HAT has four outputs for DC motors. There are four motors. I could attach

the motors in pairs to two different outputs, one for the left side and one

for the right; however, the small, inexpensive motors tend not to be very

consistent in speed. Even though two motors receive the same signal, there

is no guarantee that they will turn at the same rate. Being able to adjust the

speed of each motor independently is a nice feature that I take advantage

of. So each motor has its own output (see Figure 7-17).

Figure 7-16.  USB cables bundled for tidiness

Chapter 7 Assembling the Robot

240

I include a multiplier to the speed of each motor. With a little fine-

tuning of the multiplier, I can get the motors to turn more consistently.

Once the motors are connected, I connect the power. When you

connect yours, pay attention to the polarity. As a standard, red is positive

and black is negative. Since my battery pack is modified, the wires are not

red and black. I used a voltmeter to determine the polarity of the wires and

connect them appropriately.

The last cable to connect is the ribbon cable for the T-Cobbler (see

Figure 7-18). There is only one way to attach the ribbon cable to the

T-Cobbler. A tab on the plug aligns to a gap on the plug. On the Pi, make

sure that the wire with the white stripe goes to pin 1. For the Pi, this is the

pin closest to the corner.

Figure 7-17.  Motor and external battery pack wires connected to the
Motor HAT

Chapter 7 Assembling the Robot

241

�Mounting Sensors
This is where assembling the robot takes the most creativity. Most chassis

do not come with mounting hardware for sensors. If they do, they are for

specific sensors that you may not use.

There are a lot of different approaches for mounting sensors. I find

simply being prepared with a number of different materials tends to work

well for me.

When I was growing up, I had an Erector Set. If you’re not familiar

with Erector, they produce a construction toy that includes a number of

metal parts: beams, brackets, screws, nuts, pulleys, belts, and so forth. I

spent hours building trucks, tractors, planes, and, yes, even in the 1980s,

robots. Imagine my delight when looking for some generic parts for use in

Figure 7-18.  Ribbon cable attaches the T-Cobbler to the Pi. Note the
white stripe

Chapter 7 Assembling the Robot

242

a project, I came across an Erector Set in my local hobby store. I was even

more delighted when I discovered that one of the local big-box hardware

stores sells individual parts in their miscellaneous parts bins.

Erector Sets are great sources for the small miscellaneous parts needed

in many projects. In this case, I use one of the beams and a bracket to

mount the ultrasonic rangefinders (see Figure 7-19).

With the brackets in place, I use mounting tape to attach the sensors

(see Figure 7-20). In this particular case, the tape serves two purposes.

First, it holds the sensors to the metal. The second purpose is insulation.

The electronics on the back of the sensor are exposed; attaching them to

a metal part risks causing a short. The foam mounting tape makes a good

insulator.

Figure 7-19.  A bracket and beam from the Erector Set. The beam is
bent to provide angles for the sensors

Chapter 7 Assembling the Robot

243

One thing I have learned is not to trust mounting tape alone for

holding sensors, especially to metal. In the past, the tape has come loose,

leading to a faulty sensor. The solution is my other favorite go-to: zip ties.

The tape holds the sensor in place and provides insulation; however, the

zip ties add security and strength. At this point, I’m pretty sure that things

aren’t going anywhere.

With the sensors firmly mounted, the last thing to do is connect them

to the Arduino. I use female-to-female jumpers from the sensor to the

Arduino (see Figure 7-21). On the Arduino, I mount a sensor shield. The

sensor shield adds a 5V and ground pin to each of the digital analog pins.

Some of them even have specialty header for serial or wireless devices.

I’m using a very simple one without a lot of specialty headers. The sensor

shield makes it easier to attach sensors and other devices.

Figure 7-20.  Ultrasonic sensors mounted

Chapter 7 Assembling the Robot

244

�The Finished Robot
With the sensors attached, I have a complete robot. The only thing left to

do is write the code to make it move. Figure 7-22 shows my completed

robot.

Figure 7-21.  Ultrasonic rangefinders secured with zip ties and wired
to Arduino

Chapter 7 Assembling the Robot

245

�Making the Robot Mobile
At the moment, we have a very nice collection of parts. Without the proper

software, we don’t really have a robot. Next, I outline what we want the

robot to do. We’ll turn that into behaviors and those, in turn, into the code

needed to bring the little robot to life.

�The Plan

In previous chapters, we worked with examples that illustrated various

topics. Since this is our first application for the working robot, let’s take a

moment to outline what we want the robot to do.

This plan is based on the robot that I built earlier in this chapter. It

assumes that there are three ultrasonic sensors and four motors that

operate independently. The motors are controlled through the Motor HAT

mounted on the Pi. The sensors are operated through the Arduino.

Figure 7-22.  The finished Whippersnapper with electronics

Chapter 7 Assembling the Robot

246

Sensors

As mentioned, we will operate three ultrasonic sensors. The sensors are

connected to the Arduino through a sensor shield. Since we are using

Serial to communicate with the Pi, we cannot use pins 0 and 1. These are

the pins used by the serial port. So our first sensor, the middle, is on pins

2 and 3; the left sensor is on pins 4 and 5; and the right sensor is on pins 6

and 7.

The sensors are triggered in sequence, starting with the middle,

followed by the left and then the right. Each sensor waits until the previous

one is done before triggering. The results are sent back to the Pi in half-

second intervals as a string of floats representing the distance from each

sensor in centimeters.

Motors

The motors are connected to the Motor HAT on the Raspberry Pi. Each

motor is connected to one of the four motor channels on the controller.

Motor 1, the front-left motor, is connected to M1. Motor 2, the back-left

motor, is connected to M2. Motor 3, the front-right motor, is on M3. And,

Motor 4, the back-right motor, is on M4.

The robot drives using differential steering, also called tank drive

or skid steering. To do this, the left motors drive together, and the right

ones drive together. I refer to them as left and right channels. So the same

commands are sent to M1 and M2. Likewise, M3 and M4 receive shared

commands.

The code has multipliers for each motor. The multipliers are applied

to each respective motor to compensate for differences in speed. The

implication is that we need to allow a buffer to accommodate this

difference. So the top speed is set to a value of 200 out of 255. Initially, the

multipliers are set to 1. You need to adjust your multipliers to fit your robot.

Chapter 7 Assembling the Robot

247

Behavior

The robot is a simple random roamer. It drives in a straight line until it

detects an obstacle. It then adjusts its course to avoid striking the obstacle.

This is not intended to be a particularly sophisticated solution, but it

illustrates some basics in robot operation.

Here are the rules for the robot’s behavior:

•	 It drives forward.

•	 If it detects an object to its left, it turns right.

•	 If it detects an object to its right, it turns left.

•	 If it detects an object directly in front of it, it stops and

turns in the direction with the largest distance available.

•	 If both directions have an equal distance or both side

sensors are beyond the cutoff value, the robot turns in

a random direction for a predetermined time before

continuing.

This behavior is somewhat basic, but it should provide a robot that

wanders about the house autonomously.

�The Code

The code is broken into two parts: for the Arduino and for the Pi. On

the Arduino, all we care about is operating the sensors and relaying the

readings back to the Pi at a predetermined interval—in this case, every 500

milliseconds, or half a second.

The Raspberry Pi uses the incoming data to execute the behavior.

It reads from the serial port and parses the data into variables. These

variables are used by the Pi to determine the next course of action. This

action is translated into instructions for the motors, which are then sent to

the motor controller to execute.

Chapter 7 Assembling the Robot

248

Arduino Code

This program simply operates the three ultrasonic sensors on the front of

the robot. It then returns these values as a string of floats to the Raspberry

Pi via the serial connection. The code is essentially the same as the

Pinguino example in Chapter 5. The difference is that we are using three

sensors instead of the one.

	 1.	 Open a new sketch in the Arduino IDE.

	 2.	 Save the sketch as robot_sensors.

	 3.	 Enter the following code:

int trigMid = 2;

int echoMid = 3;

int trigLeft = 4;

int echoLeft = 5;

int trigRight = 6;

int echoRight = 7;

float distMid = 0.0;

float distLeft = 0.0;

float distRight = 0.0;

String serialString;

void setup() {

 // set the pinModes for the sensors

 pinMode(trigMid, OUTPUT);

 pinMode(echoMid, INPUT);

 pinMode(trigLeft, OUTPUT);

 pinMode(echoLeft, INPUT);

 pinMode(trigRight, OUTPUT);

 pinMode(echoRight, INPUT);

Chapter 7 Assembling the Robot

249

 // set trig pins to low;

 digitalWrite(trigMid,LOW);

 digitalWrite(trigLeft,LOW);

 digitalWrite(trigRight,LOW);

 // starting serial

 Serial.begin(115200);

}

// function to operate the sensors

// returns distance in centimeters

float ping(int trigPin, int echoPin){

 // Private variables, not available

 // outside the function

 int duration = 0;

 float distance = 0.0;

 // operate sensor

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 // get results and calculate distance

 duration = pulseIn(echoPin, HIGH);

 distance = duration/58.2;

 // return the results

 return distance;

}

void loop() {

 // get the distance for each sensor

 distMid = ping(trigMid, echoMid);

 distLeft = ping(trigLeft, echoLeft);

 distRight = ping(trigRight, echoRight);

Chapter 7 Assembling the Robot

250

 // write the results to the serial port

 Serial.print(distMid); Serial.print(",");

 Serial.print(distLeft); Serial.print(",");

 Serial.println(distRight);

 // wait 500 milliseconds before looping

 delay(500);

}

	 4.	 Save the sketch and upload it to the Arduino.

The Arduino should now be pinging away, but since there is nothing

listening, we don’t really know yet. Next, we’ll write the code for the

Raspberry Pi.

Raspberry Pi Code

It’s now time to write the code that runs on the Raspberry Pi. This is a

fairly lengthy program, so I’ll break it down as we go. The vast majority

of this should look very familiar. There are a few changes here and there

to accommodate the logic, but for the most part, we’ve done this before.

Whenever we do something new, I’ll take the time to walk you through it.

	 1.	 Open IDLE for Python 2.7. Remember, the Adafruit

library does not work yet in Python 3.

	 2.	 Create a new file.

	 3.	 Save it as pi_roamer_01.py.

	 4.	 Enter the following code. I step through each

portion to make sure that you have a solid idea of

what is happening along the way.

Chapter 7 Assembling the Robot

251

	 5.	 Import the libraries that you need:

import serial

import time

import random

from adafruit_motorkit import MotorKit

	 6.	 Create the motor variables and open the serial port.

The Arduino is set up to run at a higher baud rate, so

the Pi also needs to run at a higher baud:

create motor object

kit = MotorKit()

open serial port

ser = serial.Serial('/dev/ttyACM0', 115200)

	 7.	 Create the variables needed. Many of them are floats

because we are working with decimals:

create variables

sensors

distMid = 0.0

distLeft = 0.0

distRight = 0.0

motor multipliers

m1Mult = 1.0

m2Mult = 1.0

m3Mult = 1.0

m4Mult = 1.0

distance threshold

distThresh = 12.0

distCutOff = 30.0

Chapter 7 Assembling the Robot

252

	 8.	 Set up the variables needed to manage the motors.

You’ll note that I have created a number of default

values and then assigned those values to other

variables. The leftSpeed, rightSpeed, and driveTime

variables should be the only ones that we actually

change in code. The rest are to provide consistency

throughout the program. If you want to change the

default speed, you can simply change speedDef, and

the change is applied everywhere:

speeds

speedDef = 0.5

leftSpeed = speedDef

rightSpeed = speedDef

turnTime = 0.25

defTime = 0.1

driveTime = defTime

	 9.	 Create the drive function. It is called from two

places within the main body of the program.

Because there is a lot of work involved, it is better to

break out the code into a separate function block:

def driveMotors(leftChnl = speedDef, rightChnl =

speedDef, duration = defTime):

 # determine the speed of each motor by multiplying

 # the channel by the motors multiplier

 m1Speed = leftChnl * m1Mult

 m2Speed = leftChnl * m2Mult

 m3Speed = rightChnl * m3Mult

 m4Speed = rightChnl * m4Mult

Chapter 7 Assembling the Robot

253

 # run the motors. if the channel is negative, run

 # reverse. else run forward

 if(leftChnl < 0):

 motors[0].throttle(-motorSpeed[0])

 motors[1].throttle(-motorSpeed[1])

 else:

 motors[0].throttle(motorSpeed[0])

 motors[1].throttle(motorSpeed[1])

 if (rightChnl < 0):

 motors[2].throttle(motorSpeed[2])

 motors[3].throttle(motorSpeed[3])

 else:

 motors[2].throttle(-motorSpeed[2])

 motors[3].throttle(-motorSpeed[3])

 # wait for duration

 time.sleep(duration)

	 10.	 Begin the main block of the program by wrapping

the code in a try block. This allows us to cleanly

exit the program. Without it and the corresponding

except block, the motors would continue to execute

the last command they received:

try:

 while 1:

	 11.	 Continue the main block by reading the serial port

and parsing the received string:

read the serial port

val = ser.readline().decode('utf=8')

print val

Chapter 7 Assembling the Robot

254

parse the serial string

parsed = val.split(',')

parsed = [x.rstrip() for x in parsed]

only assign new values if there are

three or more available

if(len(parsed)>2):

 distMid = float(parsed[0] + str(0))

 distLeft = float(parsed[1] + str(0))

 distRight = float(parsed[2] + str(0))

	 12.	 Enter the logic code. This is the code that executes

the behavior outlined earlier.

Note that the midsensor block (the one that executes

a stop and turn) is written outside the left and right

obstacle avoidance code.

This is done because we want this logic to be evaluated

regardless of the outcome of the left and right code.

By including it after the other code, the midcode

overwrites any of the values that the left/right code

created:

apply cutoff distance

if(distMid > distCutOff):

 distMid = distCutOff

if(distLeft > distCutOff):

 distLeft = distCutOff

if(distRight > distCutOff):

 distRight = distCutOff

reset driveTime

driveTime = defTime

Chapter 7 Assembling the Robot

255

if obstacle to left, steer right by

increasing

leftSpeed and running rightSpeed negative

defSpeed

if obstacle to right, steer to left by

increasing

rightSpeed and running leftSpeed negative

if(distLeft <= distThresh):

 leftSpeed = speedDef

 rightSpeed = -speedDef

elif (distRight <= distThresh):

 leftSpeed = -speedDef

 rightSpeed = speedDef

else:

 leftSpeed = speedDef

 rightSpeed = speedDef

if obstacle dead ahead, stop then turn toward

most

open direction. if both directions open, turn

random

if(distMid <= distThresh):

 # stop

 leftSpeed = 0

 rightSpeed = 0

 driveMotors(leftSpeed, rightSpeed, 1)

 time.sleep(1)

 leftSpeed = -150

 rightSpeed = -150

 driveMotors(leftSpeed, rightSpeed, 1)

Chapter 7 Assembling the Robot

256

 # determine preferred direction. if distLeft >

 # distRight, turn left. if distRight > distLeft,

 # turn right. if equal, turn random

 dirPref = distRight - distLeft

 if(dirPref == 0):

 dirPref = random.random()

 if(dirPref < 0):

 leftSpeed = -speedDef

 rightSpeed = speedDef

 elif(dirPref > 0):

 leftSpeed = speedDef

 rightSpeed = -speedDef

 driveTime = turnTime

	 13.	 Call the driveMotors function that we created

earlier:

drive the motors

driveMotors(leftSpeed, rightSpeed, driveTime)

	 14.	 Flush any bytes still in the serial buffer:

ser.flushInput()

	 15.	 Enter the except block. It allows us to shut off the

motors when we press Ctrl-C before we exit the

program:

except KeyboardInterrupt:

 kit.motor1.throttle(0)

 kit.motor2.throttle(0)

 kit.motor3.throttle(0)

 kit.motor4.throttle(0)

Chapter 7 Assembling the Robot

257

	 16.	 Save the file.

	 17.	 Press F5 to run the program.

When you’re done watching your little robot roam around the room,

press Ctrl-C to end the program.

Congratulations! You’ve just built and programmed your first

Raspberry Pi–powered robot.

We did a lot in this program—although there was really nothing that

you hadn’t seen before. In the first part of the program, we imported the

libraries that we need and created the motor objects. In the next section,

we defined all of our variables. An important part of the program is the

function that we created after the variables. In this function, we drive the

motors. The motor speeds and drive time are passed as parameters of the

function which are used to set the speed of each motor. We use the sign of

the speed to determine the motor direction. After that, we started our main

block by wrapping it in a try block. We then entered the while loop, which

allows the program to repeat indefinitely.

Within the while loop, we started by reading the serial string, and then

we parsed it to extract the three float values. The algorithm for converting

the string to a float is a little different from what we used to convert to

an integer. More specifically, we did not have to divide the result by 10.

Adding a 0 to the end of a decimal does not change the value, so we can

use it as it is converted.

The distance measurements determine the robot’s next action. The

if/elsif/else block evaluates the sensor values. If either the left or the

right sensor detects an obstacle within the predefined threshold, the robot

turns in the opposite direction. If there is no obstacle detected, the robot

continues forward. A separate if block determines if an obstacle is directly

in front of the robot. If there is an obstacle, the robot stops and then turns.

It uses the left and right sensor values to determine which way to go. If a

direction cannot be determined, the robot turns in a random direction.

Chapter 7 Assembling the Robot

258

All of this takes time, during which the Arduino is happily sending

serial strings and filling the Pi’s buffer. These strings must be purged before

continuing. We use the flushInput() method of the serial object to do

this. This way, we are working with only the most recent information.

Finally, we use the except block to capture the keyboard interrupt

command. When it is received, the motors are released, stopping them.

Then the program exits.

�Summary
This chapter was about bringing together everything we learned so far

into a working robot. We assembled the robot chassis kit and mounted all

the electronics. Once everything was mounted to the robot, we wrote a

program to run the robot. It was a fairly simple roaming program. When

you run it, your new robot should wander about the room with varied

success, depending on how crowded with furniture the room is.

In the next chapters, we work on improving the robot—adding more

sensors, improving the logic, and adding some higher-level functionality.

Specifically, we’ll be adding a camera and learning how to use OpenCV to

track colors and chase a ball.

Chapter 7 Assembling the Robot

259© Jeff Cicolani 2021
J. Cicolani, Beginning Robotics with Raspberry Pi and Arduino,
https://doi.org/10.1007/978-1-4842-6891-9_8

CHAPTER 8

Working with Infrared
Sensors
By this point in the series, you should have a working robot. In previous

chapters, I covered everything you need to know to install and program

your robot. You’ve worked with motors, sensors, and communication

between the Raspberry Pi and the Arduino. In Chapters 3 and 5, you

learned to work with ultrasonic rangefinders using both Python and

Arduino. The remainder of the book introduces new sensors, processing

algorithms, and computer vision.

In this chapter, we work with infrared (IR) sensors. We look at different

types of sensors. At the end of the chapter, we use a series of IR sensors to

detect the edge of a surface and a line.

�Infrared Sensors
An infrared (IR) sensor is any sensor that uses a light detector, tuned for

the IR spectrum, to detect an IR signal. Generally, the IR sensor is paired

with IR-emitting LED to provide the IR signal. The emissions from the LED

are measured for intensity or presence.

https://doi.org/10.1007/978-1-4842-6891-9_8#DOI

260

�Types of IR Sensors
Infrared is fairly easy to use. As such, we have found many different ways
of using it. There is a broad range of IR sensors available. Many are used
in applications that you may not expect. Automatic doors, like those
seen at retail stores, use a type of sensor called PIR, or passive infrared,
to detect motion. This type of sensor is used for automatic lights and
security systems. Inkjet printers use an IR sensor and an IR-emitting LED
to measure the precise movement of the print head. Your entertainment
system’s remote control likely uses an infrared LED to transmit encoded
pulses to an IR receiver. IR-sensitive cameras are used for quality
assurance in manufacturing. The list goes on. Let’s take a look at some of
the different types of IR sensors.

�Reflectance Sensors
Reflectance sensors include any sensor designed to detect a signal
reflected off a target. Ultrasonic rangefinders are reflectance sensors
because they detect the wavelength of sound that is bounced off objects in
front of them. IR reflectance sensors work in a similar fashion in that they

read the intensity of IR radiation reflected off an object (see Figure 8-1).

Figure 8-1.  Reflectance sensors measure the IR light returned from an
IR diode

Chapter 8 Working with Infrared Sensors

261

A variant of this type of sensor is designed to detect the presence of

an IR signal. The sensor uses a threshold of IR intensity to determine

whether or not an object is nearby. The sensor returns a low signal until

the threshold is exceeded, at which point it returns a high signal. These

sensors are generally paired with an emitting LED, either in a reflected or

direct configuration.

Line and Edge Detection

Infrared detectors are frequently used for build devices that detect edges

on a line or a ledge. These sensors are used for line detection when the

contrast between the surface and the line is high, for instance, a black line

on a white table. When the sensor is over the white surface, most of the IR

signal is returned to the sensor. When the sensor is over the dark line, less

of the IR signal is returned. These sensors usually return an analog signal

representing the amount of light returned.

In much the same way, the sensor can detect the edge of a surface.

When the sensor is over the surface, the sensor receives more IR signal.

When the sensor is over an edge, the signal is greatly reduced, resulting in

a low value (see Figure 8-2).

Figure 8-2.  Lines and edges can be detected by the difference in
reflected light

Chapter 8 Working with Infrared Sensors

262

Some sensors have an adjustable threshold, allowing them to provide a

digital signal. When the reflectance is above the threshold, the sensor is in

a high state. When the reflectance is below the threshold, the sensor is low.

The challenge with this type of sensor is that it can be difficult to dial

in the exact threshold to get consistent results. Then, even if you do get

them dialed in for one environment, as soon as the conditions change or

you try to demo it at an event, they have to be recalibrated. (Not that this

has happened to me repeatedly.) Because of this, I prefer to use analog

sensors, which allow me to include an autocalibration procedure so that

the program can set its own thresholds.

Rangefinders

Much like proximity sensors, rangefinders measure the distance to an

object. Rangefinders use a stronger LED with a narrower beam, which is

used to determine the approximate range to an object. Unlike ultrasonic

rangefinders, IR rangefinders are designed to detect a specific range. It is

important to match the sensor to the application.

�Interrupt Sensors

Interrupt sensors are used to detect the presence of an IR signal. They are

usually paired with an emitting diode and configured to allow an object to

pass between the emitter and the detector. When the object is present and

blocking the emitter, the receiver returns a low signal. When the object is not

present and the receiver is allowed to detect the emitter, the signal is high.

These sensors are frequently used in devices known as encoders.

An encoder generally consists of a disc or tape with translucent and

transparent sections. As the disc or tape moves past the sensor, the

signal continuously goes from high to low. A microcontroller, or other

electronics, can then use this alternating signal to count the pulses.

Because the number of transparent sections is known, the movement can

Chapter 8 Working with Infrared Sensors

263

be calculated with high confidence. In their simplest form, these sensors

can only provide a pulse for the microcontroller to count. Some encoders

use a number of sensors to provide precise information about movement,

including direction.

�PIR Motion Detectors

Another, very common sensor is known as a PIR motion detector (see

Figure 8-3). These sensors have a faceted lens that reflects and refracts the

IR radiation emitted or reflected by an object onto IR sensors within it.

When a change is detected by these sensors, a high signal is produced.

These sensors control the automatic doors at your local grocery store

and operate the automatic lights in your home or office.

Figure 8-3.  Common PIR sensor

Chapter 8 Working with Infrared Sensors

264

�Working with IR Sensors
As I discussed earlier, there are a few ways to work with IR sensors,

depending on the type you’re using. For our project, we’ll use five IR line

sensors like those shown in Figure 8-4. The sensors I prefer working with

are the analog type. The particular sensor that we use can actually do

both analog and digital readings. It has a small potentiometer that sets

the threshold; however, as I discussed earlier in this chapter, these are

notoriously difficult to dial in. I much prefer using the analog readings,

directly, and calculating the thresholds in software.

�Connecting an IR Sensor
The sensor that I used for my robot is a four-pin variant of the common

three-pin IR sensor. The three-pin sensors are digital and apply a threshold

to the analog signal of the sensor to return a high or a low signal. The four-pin

version uses the same threshold setting to return a digital signal, but it also

has an additional pin that provides the analog reading. Let’s walk through

using both signals.

Figure 8-4.  IR sensors for line following

Chapter 8 Working with Infrared Sensors

265

The sensors I use are a little different than most. They were specifically

designed for use in line-following applications. As such, the return values

are inverted. This means that rather than providing high numbers when

the reflectance is high, it returns low numbers. In the same vein, the digital

signal is also inverted. A high value indicates the presence of a line, and a

low value indicates white space. When you run the next exercise, don’t be

surprised if your results are different. We are looking for fairly consistent

behavior.

We will connect the four-pin sensor to the Arduino and use the serial

monitor to see the output of the sensor. We could use a digital pin for the

high/low signal and an analog pin for the analog sensor, but to make the

wiring easier, we use two of the analog pins. The analog pin connected to the

digital output is used in digital mode, so it acts exactly like the other pins.

Since the Arduino is now mounted on the robot, let’s use the sensor

shield for the connections. Also, I’m not going to disconnect the ultrasonic

rangefinders. The sketch for the IR sensors doesn’t use those pins, so there

is no reason to disconnect them.

For this exercise, you also need a test surface. A white sheet of paper with

a large black area or a thick black line works best. Since most line-following

contests use 3/4-inch black electrical tape for the line, putting a strip of this

tape on a sheet of paper, white poster board, or foam core board is ideal.

	 1.	 Using a female-to-female jumper, connect the

ground pin of the sensor to the ground pin of the A0

three-pin header.

	 2.	 Connect the VCC pin of the sensor to the voltage pin

of the three-pin header A0. This is the middle pin.

	 3.	 Connect the analog pin to the signal pin for A0. (On

my sensor, the analog pin is labeled A0.)

	 4.	 Connect the sensor’s digital pin to A1’s signal pin.

(On my sensor, it is labeled D0.)

Chapter 8 Working with Infrared Sensors

266

	 5.	 Create a new sketch in the Arduino IDE.

	 6.	 Save the sketch as IR_test.

	 7.	 Enter the following code:

int analogPin = A0;

int digitalPin = A1;

float analogVal = 0.0;

int digitalVal = 0;

void setup() {

 pinMode(analogPin, INPUT);

 pinMode(digitalPin, INPUT);

 Serial.begin(9600);

}

void loop() {

 analogVal = analogRead(analogPin);

 digitalVal = digitalRead(digitalPin);

 Serial.print("analogVal: "); Serial.print(analogVal);

 Serial.print(" - digitalVal: "); Serial.

println(digitalVal);

 delay(500);

}

	 8.	 Move the sensor over the white area of your surface.

The sensor needs to be very close to the surface

without touching it.

	 9.	 Note the values being returned. (I got analog values

in the 3045 range. My digital value was 0.)

Chapter 8 Working with Infrared Sensors

267

	 10.	 Move the sensor over the line or another black area

on the surface.

	 11.	 Note the values. (I got analog values in the 700900

range. The digital value was 1.)

You should have received very different values between the light and

dark areas of your surface. You can see how this is easily translated into

very useful functionality.

�Mounting the IR Sensors
Next, we’re going to mount the sensors onto the robot to do something

useful. Again, since your build may vary greatly from mine, I will walk

through what I did to connect the sensors. If you’ve been faithfully

following along, then you should replicate what I’ve done. If not, then

this is where robotics starts to get creative. You need to determine how to

mount the sensors onto your robot. Take a look at my solution to get an

idea of what you’re looking for.

To mount the sensors, I turned (once again) to the parts in the Erector

Set. These parts are incredibly convenient and easy to use. In this case,

I used one of the bars and the same angle bracket used to mount the

ultrasonic rangefinders. In fact, by using the angle bracket, I extended that

assembly to bring the IR sensors closer to the ground.

In attempting to then mount the IR sensors, I encountered an issue.

The hole for mounting the sensor is between two surface mount resistors.

This means a metal standoff would likely cause a short. The nylon

standoffs in my inventory are too large to lay flat in that space. I can use

spacers and a long screw, but the spacers are too narrow and won’t sit

straight against the holes in the mounting bar. Adding washers brings the

sensors too close to the ground.

Chapter 8 Working with Infrared Sensors

268

The solution was to mount the IR sensors on top of the bar. The

challenge was that the solder joints of the pins would definitely short

against the metal bar. But that was easily resolved by putting a piece of

electrical tape on the back of the sensor and poking a hole for the mount

screw (see Figure 8-5).

Once the sensors were mounted, I needed to run the leads from the

sensors to the Arduino board. I only used the analog pin of the sensors, so

I needed to use one logic pin on the Arduino for each. If I used both the

analog and digital pins, I would need corresponding analog and digital

pins on the Arduino. So I used pins A0A4. To make sure that the leads

reached properly, without putting undue strain on the connections, I used

shorter male-to-female jumpers to extend them. A little tape around the

connections and the sensors were ready to go (see Figure 8-6).

Figure 8-5.  Mounting the IR sensors on a bar. Electrical tape protects
the leads from shorting

Chapter 8 Working with Infrared Sensors

269

�The Code
This project, like the last, uses the Arduino as the GPIO device. The

majority of the logic is performed by the Raspberry Pi. We will read the IR

sensors in 10-millisecond intervals, 100 times per second. These values are

passed to the Raspberry Pi to work with. As you saw in an earlier exercise,

reading the sensors is very easy, so the Arduino code is pretty light.

The Pi side is significantly more complex. First, we have to calibrate

the sensors. Then, once calibrated, we have to write an algorithm that

uses the readings from the sensors to keep the robot on a line. This may be

more complicated than you expect. Later in this chapter, we look at a good

solution, but for now, we’ll use a more direct approach.

Figure 8-6.  The completed robot with IR sensors mounted and wired

Chapter 8 Working with Infrared Sensors

270

�Arduino Code

The Arduino code is very simple for this application. We will read each

of the sensors and send the results to the Pi via the serial connection,

100 times per second. However, since we need the sensor readings more

frequently during calibration, we need to know when the calibration is

being run because we want the updates to occur 100 times per second to

make sure that we get good results.

	 1.	 Start a new sketch in the Arduino IDE.

	 2.	 Save the sketch as line_follow1.

	 3.	 Enter the following code:

int ir1Pin = A0;

int ir2Pin = A1;

int ir3Pin = A2;

int ir4Pin = A3;

int ir5Pin = A4;

int ir1Val = 0;

int ir2Val = 0;

int ir3Val = 0;

int ir4Val = 0;

int ir5Val = 0;

void setup() {

 pinMode(ir1Pin, INPUT);

 pinMode(ir2Pin, INPUT);

 pinMode(ir3Pin, INPUT);

 pinMode(ir4Pin, INPUT);

 pinMode(ir5Pin, INPUT);

 Serial.begin(9600);

}

Chapter 8 Working with Infrared Sensors

271

void loop() {

 ir1Val = analogRead(ir1Pin);

 ir2Val = analogRead(ir2Pin);

 ir3Val = analogRead(ir3Pin);

 ir4Val = analogRead(ir4Pin);

 ir5Val = analogRead(ir5Pin);

 Serial.print(ir1Val); Serial.print(",");

 Serial.print(ir2Val); Serial.print(",");

 Serial.print(ir3Val); Serial.print(",");

 Serial.print(ir4Val); Serial.print(",");

 Serial.println(ir5Val);

 delay(100);

}

	 4.	 Save and upload the sketch.

This sketch is very straightforward. All we are doing is reading each of

the five sensors and printing the results to the serial port.

�Python Code

Most of the processing is done on the Pi. The first thing we need to do is

calibrate the sensors to get the high and low values. To do that, we need to

sweep the sensors back and forth over the line while we read the values from

each sensor. We are looking for the highest and lowest values. Once we’ve

done a few passes over the line, we should have good values to work with.

With the sensors calibrated, it’s time to start moving. Drive the robot

forward. As long as the line is detected by the middle sensor, just keep

driving forward. If one of the sensors to the left or right reads the line,

make a slight correction the opposite direction to realign. If one of the

outside sensors reads the line, make a more dramatic correction. This

keeps the robot following along the line and handling easy turns.

Chapter 8 Working with Infrared Sensors

272

To run this code properly, make a line for it to follow. There are several

ways to do this. If you happen to have a white tile floor, then you can

put electrical tape directly on it. Electrical tape lifts from the tile without

damaging it. Otherwise, you can use sheets of paper, poster board, or foam

core board like those used for science fair displays. Again, use electrical

tape to mark the line. Be sure to add some curves.

As with the roamer code, we’ll walk through this in parts. The code that

we are writing is getting lengthier.

	 1.	 Open a new file in the Thonny IDE.

	 2.	 Save the file as line_follower1.py.

	 3.	 Import the necessary libraries:

import serial

import time

from adafruit_motorkit import MotorKit

	 4.	 Create the motor objects as a list of motors:

create motor object

kit = MotorKit()

create motor list

motors = [kit.motor1, kit.motor2, kit.motor3, kit.

motor4]

	 5.	 Define the variables needed to control the motors.

Again, let’s create lists:

motor multipliers

motorMultiplier = [1.0, 1.0, 1.0, 1.0, 1.0]

motor speeds

motorSpeed = [0,0,0,0]

Chapter 8 Working with Infrared Sensors

273

	 6.	 Open the serial port:

open serial port

ser = serial.Serial('/dev/ttyAMA0', 9600)

	 7.	 Define the necessary variables. As with the motors,

define some of the variables as lists. (This pays off

later in the code. I promise.)

create variables

sensors

irSensors = [0,0,0,0,0]

irMins = [0,0,0,0,0]

irMaxs = [0,0,0,0,0]

irThesh = 50

speeds

speedDef = 1.0

leftSpeed = speedDef

rightSpeed = speedDef

corMinor = 0.25

corMajor = 0.5

turnTime = 0.5

defTime = 0.01

driveTime = defTime

sweepTime = 1000 #duration of a sweep in milliseconds

	 8.	 Define the function to drive the motors. Though

similar, this code is different from the roamer

function:

def driveMotors(leftChnl = speedDef, rightChnl =

speedDef,

 duration = defTime):

Chapter 8 Working with Infrared Sensors

274

 # determine the speed of each motor by multiplying
 # the channel by the motors multiplier
 motorSpeed[0] = leftChnl * motorMultiplier[0]
 motorSpeed[1] = leftChnl * motorMultiplier[1]
 motorSpeed[2] = rightChnl * motorMultiplier[2]
 motorSpeed[3] = rightChnl * motorMultiplier[3]

	 9.	 Iterate the motor list to set the speed. Also, iterate
the motorSpeed list:

set each motor speed. Since the speed can be a
negative number, we take the absolute value
for x in range(4):
 motors[x].setSpeed(abs(int(motorSpeed[x])))

	 10.	 Run the motors:

run the motors. if the channel is negative, run
reverse. else run forward
if(leftChnl < 0):
 motors[0].throttle(-motorSpeed[0])
 motors[1].throttle(-motorSpeed[1])
else:
 motors[0].throttle(motorSpeed[0])
 motors[1].throttle(motorSpeed[1])

if (rightChnl < 0):
 motors[2].throttle(motorSpeed[2])
 motors[3].throttle(motorSpeed[3])
else:
 motors[2].throttle(-motorSpeed[2])
 motors[3].throttle(-motorSpeed[3])

wait for duration

time.sleep(duration)

Chapter 8 Working with Infrared Sensors

275

	 11.	 Define the function to read the IR sensor values

from the serial stream and parse them:

def getIR():

 # read the serial port

 val = ser.readline().decode('utf-8')

 # parse the serial string

 parsed = val.split(',')

 parsed = [x.rstrip() for x in parsed]

	 12.	 Iterate the irSensors list to assign the parsed values,

and then flush any remaining bytes from the serial

stream:

if(len(parsed)==5):

 for x in range(5):

 irSensors[x] = int(parsed[x]+str(0))/10

flush the serial buffer of any extra bytes

ser.flushInput()

	 13.	 Define the function to calibrate the sensors. The

calibration goes through four complete cycles to

read the minimum and maximum values from the

sensor:

def calibrate():

 # set up cycle count loop

 direction = 1

 cycle = 0

 # get initial values for each sensor

 # and set initial min/max values

 getIR()

Chapter 8 Working with Infrared Sensors

276

 for x in range(5):

 irMins[x] = irSensors[x]

 irMaxs[x] = irSensors[x]

	 14.	 Loop through the cycle five times to assure that you

get four full-cycle readings:

while cycle < 5:

 #set up sweep loop

 millisOld = int(round(time.time()*1000))

 millisNew = millisOld

	 15.	 For the duration of sweepTime, drive the motors

and read the IR sensors:

while((millisNew-millisOld)<sweepTime):

 leftSpeed = speedDef * direction

 rightSpeed = speedDef * -direction

 # drive the motors

 driveMotors(leftSpeed, rightSpeed, driveTime)

 # read sensors

 getIR()

	 16.	 Update irMins and irMaxs if the sensor values are

below or above the current irMins or irMaxs values:

set min and max values for each sensor

for x in range(5):

 if(irSensors[x] < irMins[x]):

 irMins[x] = irSensors[x]

 elif(irSensors[x] > irMaxs[x]):

 irMaxs[x] = irSensors[x]

millisNew = int(round(time.time()*1000))

Chapter 8 Working with Infrared Sensors

277

	 17.	 After one cycle, change motor directions and

increment the cycle value:

reverse direction

direction = -direction

increment cycles

cycle += 1

	 18.	 When the cycles have completed, drive the robot

forward:

drive forward

driveMotors(speedDef, speedDef, driveTime)

	 19.	 Define the followLine function:

def followLine():

 leftSpeed = speedDef

 rightSpeed = speedDef

 getIR()

	 20.	 Define the behavior based on the sensor readings.

If the line is detected by the far-right or far-left

sensor, do a major correction in the other direction.

If the inner-right or inner-left sensor detects the line,

do a minor correction in the other direction; else,

drive straight:

 # find line and correct if necessary

 if(irMaxs[0]-irThresh <= irSensors[0]

<= irMaxs[0]+irThresh):

 leftSpeed = speedDef-corMajor

 elif(irMaxs[1]-irThresh <= irSensors[1]

Chapter 8 Working with Infrared Sensors

278

<= irMaxs[1]+irThresh):

 leftSpeed = speedDef-corMinor

 elif(irMaxs[3]-irThresh <= irSensors[3]

<= irMaxs[3]+irThresh):

 rightSpeed = speedDef-corMinor

 elif(irMaxs[4]-irThresh <= irSensors[4]

<= irMaxs[4]+irThresh):

 rightSpeed = speedDef-corMajor

 else:

 leftSpeed = speedDef

 rightSpeed = speedDef

 # drive the motors

 driveMotors(leftSpeed, rightSpeed, driveTime)

	 21.	 Enter the code to run the program:

execute program

try:

 calibrate()

 while 1:

 followLine()

 time.sleep(0.01)

except KeyboardInterrupt:

 kit.motor1.throttle(0)

 kit.motor2.throttle(0)

 kit.motor3.throttle(0)

 kit.motor4.throttle(0)

	 22.	 Save the code.

Chapter 8 Working with Infrared Sensors

279

	 23.	 Place the robot on the line. The robot should be

aligned so that the line runs between the left and

right wheels and the center sensor is directly over it.

	 24.	 Run the program.

Your robot should now follow along the line, making corrections if it

starts to wander off the line. You probably need to play with the corMinor

and corMajor variables to fine-tune the behavior.

What we executed here is known as proportional control. This is the

simplest form of control algorithm. The basic logic behind it is that if your

robot is a little off course, apply a little correction. If the robot is a lot off

course, apply a lot more correction. The amount of correction applied to

the robot is determined by how big the error is.

With proportional control alone, the robot tries really hard to follow

the line. It may even succeed; however, you will note how it zigzags along

the line. This behavior may be reduced over time and become smooth;

however, when you introduce a curve, the erratic behavior starts all over

again. More likely, your robot overcorrected and wandered off in a random

direction, leaving the line far behind.

There is a better way to control the robot. In fact, there are several

better ways, all from a field of study called control loops. Control loops

are algorithms to improve the response of a machine or program. Most of

them use the difference between the current state and a desired state to

control the machine. This difference is called the error.

Let’s look at once such control system next.

Chapter 8 Working with Infrared Sensors

280

�Understanding PID Control
To better control the robot, you are going to learn about PID control, and

I’ll try to discuss it without getting math heavy. The PID controller is one of

the most widely used control loops because of its versatility and simplicity.

We’ve actually already used part of a PID controller: proportional control.

The remaining parts help smooth the reaction and provide a better

response.

�Control Loops
The PID controller is a member of a group of algorithms called control

loops. The purpose of a control loop is to use input from a measured

process to make changes to a control, or controls, to compensate for

differences between the current state and a desired state. There are many

different types of control loops. In fact, control loops are a whole area of

study called control theory. For our purposes, we really only care about

one: proportional, integral, and derivative—or PID.

�Proportional, Integral, and Derivative Control
According to Wikipedia, a “PID controller continuously calculates an error

value (e(t)) as the difference between a desired setpoint and a measured

process variable and applies a correction based on proportional, integral,

and derivative terms. PID is an initialism for Proportional-Integral-

Derivative, referring to the three terms operating on the error signal to

produce a control signal.”

The purpose of the controller is to apply incremental adjustments to

some output to achieve the desired result. In our application, we use the

feedback from IR sensors to apply changes to our motors. The desired

behavior is a robot that keeps centered on a line as it moves forward. This

process can be used with any sensors and outputs, however; for instance,

PID is used in multirotor platforms to remain level and maintain stability.

Chapter 8 Working with Infrared Sensors

281

As the name implies, the PID algorithm actually consists of three

parts: proportional, integral, and derivative. Each part is a type of control;

however, if used independently, the resulting behavior would be erratic

and difficult to predict.

Proportional Control

In proportional control, the amount of change is set based entirely on the

size of the error. The larger the error, the more change is applied. A purely

proportional control would reach a zero-error state, but has difficulty

dealing with drastic changes, which results in heavy oscillation.

Integral Control

Integral control considers not only the error but also the time that it has

persisted. The amount of change applied to compensate for the error

increases over time. A purely integral control could bring the device to

a zero-error state, but it reacts slowly and tends to overcompensate and

oscillate.

Derivative Control

Derivative control does not consider the error, and therefore it can never

bring the device to a zero-error state. It does try to reduce the change in

error to zero, however. If too much compensation is applied, the algorithm

overshoots and then applies another correction. The process continues in

this manner, producing a pattern of constantly increasing or decreasing

corrections. Although a state of decreasing oscillation is considered

“stable,” the algorithm never reaches a truly zero-error state.

Chapter 8 Working with Infrared Sensors

282

�Bringing Them Together

The PID controller is simply the sum of the three methods. By bringing

them together, the algorithm aims to produce a smooth correcting process

that brings the error to zero. Time for a little bit of math.

Let’s start by defining some variables.

e(t) is the error in time, where (t) is time, or the present.

Kp is a parameter representing the proportional gain. When we start

coding, this is the proportional variable.

Ki is the integral gain parameter. It is also a variable.

Kd is the derivative gain parameter. And you guessed it, yet another

variable.

τ represents integrated values over time. I’ll get to that.

The proportional term is basically the current error multiplied by the

Kp value:

	
P K e tout p� � � 	

The integral portion is a bit more complicated because it takes into

account all the errors that have happened. It is the sum of the errors over

time and the accumulated correction:

	
I K e dout i

t

� � ��
0

� �
	

The derivative term is the difference between the original error and the

current errors over time, then multiplied by the derivative parameter:

	
D K

de t

dtout d�
� �

	

Chapter 8 Working with Infrared Sensors

283

To bring it all together, our PID equation looks like this:

	
u t K e t K e d K

de t

dtp i

t

d� � � � �� � � � �
�

�
�

�

�
� �

� ��

�
�

�

�
��

0

� �
	

That’s it for the math. Fortunately, we don’t have to solve it ourselves.

Python makes it very easy. However, it is important to understand what

is happening inside the equation. There are three parameters to adjust to

fine-tune the PID controller. By understanding how these parameters are

used, you will be able to determine which ones need adjusting and when.

�Implementing the PID Controller
To implement the controller, we need to know a few things. What is our

desired outcome? What are our inputs? What are our outputs?

The goal is to improve the performance of our line-following robot.

So our desired outcome is that the line remains in the center of the robot

while it drives forward.

Our inputs are the IR sensors. When an outer sensor is over a dark

area (the line), the error is twice that of the inner sensors. In this way, we’ll

know whether the robot is a little off-center or a lot off-center. Also, the

two left sensors will have a negative value, and the right sensors will have a

positive value, so we will know which direction is off.

Finally, our outputs are the motors. More accurately, our output is the

difference in speed between the left and right motor channels.

�The Code

The code for this exercise is a modification of the earlier code. In fact,

the Arduino code does not need to change at all. It’s the logic we are

implementing on the Raspberry Pi that is updated.

Chapter 8 Working with Infrared Sensors

284

Raspberry Pi Code

We will modify the line_follower1 code to use PID rather than the

proportional algorithm. To do that, we need to update the getIR function

to update a new variable called sensorErr. We will then replace the code

inside the followLine function with our PID code.

	 1.	 Open the file line_follower1 in the Thonny IDE.

	 2.	 Create a new file and save the file as line_

follower2.py.

	 3.	 Copy the code from line_follower1 and paste it to

line_follower2.

	 4.	 In the variables section, under #sensors, add the

following code:

PID

sensorErr = 0

lastTime = int(round(time.time()*1000))

lastError = 0

target = 0

kp = 0.5

ki = 0.5

kd = 1

	 5.	 Create the PID function:

def PID(err):

 # check if variables are defined before use

 # �the first time the PID is called these variables

will

 # not have been defined

 try: lastTime

Chapter 8 Working with Infrared Sensors

285

 �except NameError: lastTime = int(round(

time.time()*1000)-1)

 try: sumError

 except NameError: sumError = 0

 try: lastError

 except NameError: lastError = 0

 # get the current time

 now = int(round(time.time()*1000))

 duration = now-lastTime

 # calculate the error

 error = target - err

 sumError += (error * duration)

 dError = (error - lastError)/duration

 # calculate PID

 output = kp * error + ki * sumError + kd * dError

 # update variables

 lastError = error

 lastTime = now

 # return the output value

 return output

	 6.	 Replace the followLine function with this:

def followLine():

 leftSpeed = speedDef

 rightSpeed = speedDef

 getIR()

 prString = ''

Chapter 8 Working with Infrared Sensors

286

 for x in range(5):
 �prString += ('IR' + str(x) + ': ' +

str(irSensors[x]) + ' ')
 print prString

 # find line and correct if necessary
 if(irMaxs[0]-irThresh <= irSensors[0]
<= irMaxs[0]+irThresh):
 sensorErr = 2
 elif(irMaxs[1]-irThresh <= irSensors[1]
<= irMaxs[1]+irThresh):
 sensorErr = 1
 elif(irMaxs[3]-irThresh <= irSensors[3]
<= irMaxs[3]+irThresh):
 sensorErr = -1
 elif(irMaxs[4]-irThresh <= irSensors[4]
<= irMaxs[4]+irThresh):
 sensorErr = -1
 else:
 sensorErr = 0

 # get PID results
 ratio = PID(sensorErr)

 # apply ratio
 leftSpeed = speedDef * ratio
 rightSpeed = speedDef * -ratio

 # drive the motors
 driveMotors(leftSpeed, rightSpeed, driveTime)

	 7.	 Save the file.

	 8.	 Place the robot on the line.

	 9.	 Run the code.

Chapter 8 Working with Infrared Sensors

287

Once again, your robot should be trying to follow the line. If it is having

problems doing so, start working with the Kp, Ki, and Kd variables. These

variables need to be fine-tuned for the best results. Every robot is different.

�Summary
In this chapter, we added some new sensors to the robot. The IR sensors

were applied in a line-following application. They can also be used to

detect the edge of a surface. This functionality is useful if you want to

prevent your robot from driving off a table or downstairs.

Our first implementation of line following used a basic proportional

control to steer the robot. This was functional, but barely. A much better

way of doing this was the use of a control loop called the PID controller,

which uses several factors, including error over time, to make the

corrections smoother. You learned that you can adjust the ID settings by

using the PID parameters represented in our code, with the Kp, Ki, and

Kd variables. With the proper values, the oscillation can be eliminated

completely, causing the robot to follow the line smoothly.

Chapter 8 Working with Infrared Sensors

289© Jeff Cicolani 2021
J. Cicolani, Beginning Robotics with Raspberry Pi and Arduino,
https://doi.org/10.1007/978-1-4842-6891-9_9

CHAPTER 9

An Introduction
to OpenCV
We’ve come a long way since the first chapters introducing the Raspberry

Pi. At this point, you have learned about the Pi and the Arduino. You’ve

learned how to program both boards. You’ve worked with sensors and

motors. You’ve built your robot and programmed it to roam around and to

follow a line.

However, to be completely honest, you haven’t really needed the

power of the Raspberry Pi. In fact, it’s been a bit of hindrance. Everything

you’ve done with the robot—roaming and line following—you could do

just well with the Arduino and without the Pi. It’s now time to show the real

power of the Pi and to learn why you want to use it in your robot.

In this chapter, we’re going to do something you can’t do with the

Arduino alone. We are going to connect a simple web camera and start

working with what is commonly known as computer vision.

�Computer Vision
Computer vision is a collection of algorithms that allow a computer

to analyze an image and extract useful information. It is used in many

applications, and it is rapidly becoming a part of everyday life. If you

have a smartphone, chances are you have at least one app that uses

https://doi.org/10.1007/978-1-4842-6891-9_9#DOI

290

computer vision. Most new moderate to high-end cameras have facial

detection built in. Facebook uses computer vision for facial detection.

Computer vision is used by shipping companies to track packages in their

warehouses. And, of course, it’s used in robotics for navigation, object

detection, object avoidance, and many other behaviors.

It all starts with an image. The computer analyzes an image to identify

lines, corners, and a broad area of color. This process is called feature

extraction, and it is the first step in virtually all computer vision algorithms.

Once the features are extracted, the computer can use this information for

many different tasks.

Facial recognition is accomplished by comparing the features against

XML files containing feature data for faces. These XML files are called

cascades. They are available for many different types of objects, not just

faces. This same technique can be used for object recognition. You simply

provide the application with feature information for the objects that

interest you.

Computer vision also incorporates video. Motion tracking is a common

application for computer vision. To detect motion, the computer compares

individual frames from a stationary camera. If there is no motion, the

features will not change between frames. So, if the computer identifies

differences between frames, there is most likely motion. Computer vision–

based motion tracking is more reliable than IR sensors, such as the PIR

sensor discussed in Chapter 8.

An exciting, recent application of computer vision is augmented

reality. The extracted features from a video stream can be used to

identify a unique pattern on a surface. Because the computer knows the

pattern, it can easily calculate the angle of the surface. A 3D model is

then superimposed over the pattern. This 3D model could be something

physical, like a building, or it could be a planar object with two-

dimensional text. Architects use this technique to show clients what a

building would look like against a skyline. Museums use it to provide more

information about an exhibit or an artist.

Chapter 9 An Introduction to OpenCV

291

All of these are examples of computer vision in modern settings. But

the list of applications is too large to discuss in depth here, and it keeps

growing.

�OpenCV
Just a few years ago, computer vision was not really accessible to the

hobbyist. It required a lot of heavy math and even heavier processing.

Computer vision projects were generally done using laptops, which limited

its application.

OpenCV has been around for a while. In 1999, Intel Research

established an open standard for promoting the development of computer

vision. In 2012, it was taken over by the nonprofit OpenCV Foundation.

You can download the latest version at their website. It takes a little extra

effort to get it running on the Raspberry Pi, however. We’ll get to that

shortly.

OpenCV is written natively in C++; however, it can be used in C, Java,

and Python. We are interested in the Python implementation.

�Installing OpenCV

As with the Raspberry Pi OS, there are two methods to install OpenCV: the

easy way, using Python’s pip install method, and the hard way, compiling

the packages from source code. Unlike Raspberry Pi OS, the hard way for

OpenCV is significantly more complicated and, frankly, difficult. I will

present both, but strongly suggest using the easy way.

Installing the Prerequisites

There are some things we will need to install before we begin the process.

These are known as prerequisites and help to assure you have everything

needed for a successful installation.

Chapter 9 An Introduction to OpenCV

292

	 1.	 Log on to your Raspberry Pi.

	 2.	 Open a terminal window on the Pi.

	 3.	 Make sure that the Raspberry Pi is updated:

sudo apt-get update

sudo apt-get upgrade

	 4.	 These commands install the prerequisites for

building OpenCV. Because we are doing this on a

fresh installation of Raspberry Pi OS, it is likely some

of these may already be installed and using the most

recent version:

sudo apt-get install build-essential git cmake

pkg-config

sudo apt-get install libjpeg-dev libtiff5-dev

libjasper-dev libpng12-dev

sudo apt-get install libavcodec-dev

libavformat-dev libswscale-dev libv4l-dev

sudo apt-get install libxvidcore-dev libx264-dev

sudo apt-get install libfontconfig1-dev

libcairo2-dev

sudo apt-get install libgdk-pixbuf2.0-dev

libpango1.0-dev

sudo apt-get install libgtk2.0-dev

sudo apt-get install libatlas-base-dev gfortran

sudo apt-get install libhdf5-dev libhdf5-

serial-dev libhdf5-103

sudo apt-get install libqtgui4 libqtwebkit4

libqt4-test python3-pyqt5

Chapter 9 An Introduction to OpenCV

293

Installing OpenCV with pip install

Python has a built-in system for installing packages for use in Python

called the preferred installer program, or pip. In order to use it, however,

you will need to use the command line. This is, by far, the easiest and

fastest method to complete the installation. However, the version tends

to lag behind the most current version. It also does not contain the full

library.

You are certainly welcome to use this method as it will meet our needs

for this book and likely most of your needs should you choose to expand

on this. However, I tend to prefer the much lengthier, more complex

process of compiling from source code.

	 1.	 Log on to your Raspberry Pi.

	 2.	 Open a terminal window on the Pi.

	 3.	 Install OpenCV:

sudo pip install opencv-contrib-python

	 4.	 Celebrate the successful installation of OpenCV on

your Pi.

Compiling OpenCV from Source Code

We will install OpenCV on the Raspberry Pi by compiling the package from

scratch. This method will give you the most complete installation. You

want to make sure that your Raspberry Pi is plugged into a charger rather

than the battery pack and give yourself plenty of time for the installation.

We will compile OpenCV from source, which means that we will

download the source code from the Internet and build it directly on the Pi.

Be warned that although the process is not difficult, it does take a long time

Chapter 9 An Introduction to OpenCV

294

and involves entering many Linux commands. I usually begin the process

in the evening and let the final build run overnight.

	 1.	 Log on to your Raspberry Pi.

	 2.	 Open a terminal window on the Pi.

	 3.	 Download the OpenCV source code and the

OpenCV contributed files. The contributed files

contain a lot of functionality not yet rolled into the

main OpenCV distribution:

cd ~

wget -O opencv.zip https://github.com/opencv/opencv/

archive/4.4.0.zip

wget -O opencv_contrib.zip https://github.com/opencv/

opencv_contrib/archive/4.4.0.zip

unzip opencv.zip

unzip opencv_contrib.zip

mv opencv-4.4.0 opencv

mv opencv_contrib-4.4.0 opencv_contrib

	 4.	 Install the Python development libraries and pip:

sudo apt-get install python3-dev

wget https://bootstrap.pypa.io/get-pip.py

sudo python get-pip.py

	 5.	 Make sure that NumPy is installed:

pip install numpy

Chapter 9 An Introduction to OpenCV

295

	 6.	 Increase the memory allocated for swap. The

compilation of these libraries is very memory

intensive. The likelihood of your Pi hanging due

to memory issues is greatly reduced by doing this.

Open the file /etc/dphys-swapfile:

sudo nano /etc/dphys-swapfile

	 7.	 Use the arrow keys to navigate the text and update

the line:

CONF_SWAPSIZE=100

to

CONF_SWAPSIZE=2048

	 8.	 Save and exit the file by pressing Ctrl-X, followed by

Y and then Enter.

	 9.	 Restart the swap service:

sudo /etc/init.d/dphys-swapfile stop

sudo /etc/init.d/dphys-swapfile start

	 10.	 Prepare the source code for compiling:

cd ~/opencv

mkdir build

cd build

cmake -D CMAKE_BUILD_TYPE=RELEASE \

 -D CMAKE_INSTALL_PREFIX=/usr/local \

 -�D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/

modules \

 -D ENABLE_NEON=ON \

 -D ENABLE_VFPV3=ON \

Chapter 9 An Introduction to OpenCV

296

 -D BUILD_TESTS=OFF \

 -D INSTALL_PYTHON_EXAMPLES=OFF \

 -D OPENCV_ENABLE_NONFREE=ON \

 -D CMAKE_SHARED_LINKER_FLAGS=-latomic \

 -D BUILD_EXAMPLES=OFF ..

	 11.	 Now let’s compile the source code. This part is going

to take a while:

make -j4

	 12.	 If you attempted the –j4 switch and it failed,

somewhere around hour 4, enter the following lines:

make clean

make

	 13.	 With the source code compiled, you can now install it:

sudo make install

sudo ldconfig

	 14.	 Set your swap memory back to its default value:

sudo nano /etc/dphys-swapfile

	 15.	 Use the arrow keys to navigate the text and update

the line:

CONF_SWAPSIZE=2048

to

CONF_SWAPSIZE=100

	 16.	 Save and exit the file by pressing Ctrl-X, followed by

Y and then Enter.

Chapter 9 An Introduction to OpenCV

297

	 17.	 Test the installation by opening a Python command

line:

python

	 18.	 Import OpenCV:

>>>import cv2

You should now have an operating version of OpenCV installed

on your Raspberry Pi. If the import command did not work, you need

to determine why it did not install. The Internet is your guide for

troubleshooting.

�Selecting a Camera
Before we can really put OpenCV to work on our robot, we need to install a

camera. There are a couple of options with the Raspberry Pi: the Pi Camera

or a USB web camera.

The Pi Camera connects directly to a port designed specifically for

it. Once connected, you need to go into raspi-config and enable it. The

advantage of the Pi Camera is that it is a little bit faster than a USB camera

because it is connected directly to the board. It does not go through the

USB. This gives it a slight advantage.

Most of the Pi Cameras come with a short, 6-inch ribbon cable. Due

to the placement of the Raspberry Pi on our robot, this is insufficient. It is

possible to order longer cables. Adafruit has a couple of options. But, for

this project, we will use a simple web camera.

USB cameras are readily available at any electronics retailer. There are

many options online, as well. For this basic application, we won’t need

anything particularly robust. Any camera that can provide a decent image

will do. Having a high resolution is not a concern, either. Since we are

running the camera with the limited resources of the Raspberry Pi, a lower

Chapter 9 An Introduction to OpenCV

298

resolution would actually help performance. Remember, OpenCV analyzes

each frame pixel by pixel. The more pixels there are in an image, the more

processing it has to do.

For my robot, I chose the Live! Cam Sync HD by Creative (see Figure 9-1), a

basic HD web cam with a built-in microphone that operates via a standard

USB 2 port. We won’t need the microphone for this project, but there may

be a need in the future. It captures 720 p HD video, which may be a little

much for our robot, but if there is a performance hit, I always reduce the

resolution in software.

�Installing the Camera
Most web cams are mounted on top of a monitor. They usually have a

folding clamp to provide support for the camera when on the monitor.

Unfortunately, these clamps are usually molded as part of the camera’s

body and can’t be removed without damaging it. This certainly holds true

with the Live! Cam Sync. So, once again, a little creativity comes into play.

Figure 9-1.  Creative Live! Cam Sync HD

Chapter 9 An Introduction to OpenCV

299

The bracket I use to mount the sensors comes off the front of the robot

at a 45-degree angle. To make things a little easier on myself, I choose not

to drill holes in the camera’s mount. Rather, I use my trusty mounting tape

and a couple of brackets from the Erector Set. When I mount it, I want to

get it up fairly high and pointing slightly downward. The idea is to give

it the best view forward and of any objects directly in front of it. I also

want the lens to be as close to the center axis as possible to keep things

simpler on the software side. Figure 9-2 shows the robot after the camera is

mounted.

�OpenCV Basics
OpenCV has many capabilities. It boasts more than 500 libraries and

thousands of functions. It is a very big subject—too large a subject to cover

in one chapter. I’ll discuss the basics needed to perform some simple tasks

on your robot.

Figure 9-2.  Camera mounted on the robot

Chapter 9 An Introduction to OpenCV

300

I said simple tasks. These tasks are only simple because OpenCV

abstracts the monumental amount of math that is happening in the

background. When I consider the state of hobby robotics a few short years

ago, I find it amazing to be able to easily access even the basics.

The goal is to build a robot that can identify a ball and move toward it

by the end of this chapter. The functions I cover will help us achieve that

goal. I strongly suggest spending time going through some of the tutorials

at the OpenCV website (https://opencv.org).

To work with OpenCV in your Python code, you need to import it. And,

while you’re at it, you likely need to import the NumPy library as well.

NumPy adds a lot of mathematical and number handling functionality that

makes working with OpenCV much easier. All of your image-related code

should start with this:

import cv2

import numpy as np

In the code discussions in this chapter, I assume this has been done.

A function prefixed with cv2 is an OpenCV function. If it’s prefixed with

np, it is a NumPy function. It’s important to make this distinction in the

event that you want to expand on what you read in this book. OpenCV and

NumPy are two separate libraries, but OpenCV frequently uses NumPy.

�Working with Images
In this section, you learn how to open images from a file and how to

capture live video from the camera. We’ll then take a look at how to

manipulate and analyze the images to get usable information out of them.

Specifically, we’ll work on how to identify a ball of a particular color and

track its position in the frame.

But first, we have a bit of a chicken-or-egg issue. We need to see the

results of our image manipulation in all the exercises. To do that, we

Chapter 9 An Introduction to OpenCV

https://opencv.org

301

need to start with how to display an image. It is something that we’ll use

extensively, and it’s very easy to use. But I want to make sure that I cover it

first, before you learn how to capture an image.

�Displaying an Image

It’s actually very easy to display an image in OpenCV. The imshow()

function provides this functionality. This function is used with both still

and video images, and the implementation does not change between

them. The imshow() function opens a new window to display the image.

When you call it, you have to provide a name for the window as well as the

image or frame that you want to display.

This is an important point about how OpenCV works with video.

Because OpenCV treats a video as a series of individual frames, virtually

all the functions used to modify or analyze an image apply to a video. This

obviously includes imshow().

If we want to display an image that we loaded into the img variable, it

would look something like this:

cv2.imshow('img', img)

In this example, the first parameter is the name of the window. It

appears in the title bar of the window. The second parameter is the

variable holding our image. The format for displaying a video is exactly the

same. I usually use the variable cap for video capture, so the code would

look like this:

cv2.imshow('cap', cap)

As you can see, the code is the same. Again, this is because OpenCV

treats video as a series of individual frames. In fact, video capture depends

on a loop to continuously capture the next frame. So in essence, displaying

a still image from a file and an individual frame from the camera is exactly

the same thing.

Chapter 9 An Introduction to OpenCV

302

There is one element remaining for an image to display. To actually

display the image, the imshow() function requires that waitKey() also

be called. The waitKey() function waits for the specified number of

milliseconds for a keyboard key to be pressed. Many people use this to

capture a Quit key. I generally pass it zero unless I need the key press.

cv2.waitKey(0)

We use imshow() and waitKey() extensively throughout this chapter.

�Capturing Images
There are several sources for the images needed to work with OpenCV, all

of which are a variation of two factors: file or camera and still or video. For

the most part, we are only concerned with video from a camera since we

are using OpenCV for navigation purposes. But there are advantages to all

the methods.

Opening a still image file is an excellent way to learn new techniques,

especially when you are working with specific aspects of computer vision.

For example, if you are learning how to use filters to identify a ball of a

certain color, using a still image that consists of three different colored balls

(and nothing else) allows you to focus on that specific goal without having

to worry about the underlying framework for capturing a live video stream.

Oh, and that was a bit of foreshadowing, if you hadn’t picked up on that.

The techniques learned from capturing a still image with a camera can

be applied to a live environment. It allows you to hone or fine-tune the

code by using an image that contains elements of the real world.

Obviously, capturing live video is what we’re after for use in the robot.

The live video stream is what we’ll use to identify our target object and

then navigate to it. As your computer vision experience grows, you will

probably add motion detection or other methods to your repertoire.

Since the purpose of the camera on the robot is to gather environmental

information in real time, live video is required.

Chapter 9 An Introduction to OpenCV

303

Video from a file is also very useful for the learning process. You may

want to capture live video from your robot and save it to a file for later

analysis. Let’s say that you are working on your robot project in whatever

spare time you are able to find throughout the day. You can port your

laptop with you, but carting a robot around is a different story. So, if you

record the video from your robot, you can work on your computer vision

algorithms without having the robot with you.

Remember, one of the great things about Python and OpenCV is that

they’re abstracted and platform independent, for the most part. So the

code you write on your Windows machine ports to your Raspberry Pi.

Going on a business trip and expecting some downtime in the hotel?

Heading to the family’s place for the holidays and needing to get away every

once in a while? Slipping in a little robot programming during your lunch

hour or between classes? Use the recorded video with a local instance of

Python and OpenCV, and work on your detection algorithm. When you get

home, you can transfer that code to your robot and test it live.

In this section, we use the first three techniques. I show you how to

save and open video files, but for the most part, we’ll use stills to learn the

detection algorithm and the live video to learn tracking.

�Opening an Image File

OpenCV makes working with images and files remarkably easy, especially

considering what is happening in the background to make these

operations possible. Opening an image file is no different. We use the

imread() function to open image files from local storage. The imread()

function takes two parameters: file name and color type flag. The file

name is obviously required to open the file. The color type flag determines

whether to open the image in color or grayscale.

Chapter 9 An Introduction to OpenCV

304

Let’s open and display an image. I will use an image of three colored

balls that is also used later in the chapter to learn how to detect colors.

This exercise can be done on the Pi or on your computer if you’ve installed

Python and OpenCV on it.

	 1.	 Open the Thonny IDE and create a new file.

	 2.	 Save the file as open_image.py.

	 3.	 Enter the following code:

import cv2

img = cv2.imread('color_balls_small.jpg')

cv2.imshow('image',img)

cv2.waitKey(0)

	 4.	 Save the file.

	 5.	 Open a terminal window.

	 6.	 Navigate to the folder in which you saved the file.

	 7.	 Enter python open_image.py and press Return.

A window opens to show an image of three colored balls on a white

background (see Figure 9-3). Press any key to close it.

Chapter 9 An Introduction to OpenCV

305

Due to the way Thonny interacts with the GUI system on Linux-based

machines, the image window will not close properly if you were to run

the code directly from Thonny. However, by running the code from the

terminal, we do not have this issue.

�Capturing Video

Capturing video with your camera is a little different from opening a file.

There are a few more steps to use video. One change is that we have to use

a loop to get multiple frames; otherwise, the OpenCV will only capture a

single frame, which is not what we want. An open while loop is generally

used. This captures the video until we actively stop it.

To make things easier for testing, I placed the ball directly in front of

the camera (see Figure 9-4). Right now, we just want to capture the image.

Figure 9-3.  Three colored balls

Chapter 9 An Introduction to OpenCV

306

To capture the video from the camera, we will create a videoCapture()

object and then use the read() method in a loop to capture the frames.

The read() method returns two objects: a return value and an image

frame. The return value is simply an integer verifying the success or failure

of the read. If the read is successful, the value is 1; otherwise, the read

failed and it returns 0. To prevent errors that cause your code to error, you

can test to see if the read is successful.

We care about the image frame. If the read is successful, an image is

returned. If it was not, then a null object is returned in its place. Since a

null object cannot access OpenCV methods, the instant you try to modify

or manipulate the image, your code will crash. This is why it’s a good idea

to test for the success of the read operation.

Figure 9-4.  Ball positioned in front of the robot for testing

Chapter 9 An Introduction to OpenCV

307

Viewing the Camera

In this next exercise, we turn on the video camera mounted earlier to view

the video.

	 1.	 Open the Thonny IDE and create a new file.

	 2.	 Save the file as view_camera.py.

	 3.	 Enter the following code:

import cv2

import numpy as np

cap = cv2.VideoCapture(0)

while(True):

 ret,frame = cap.read()

 cv2.imshow('video', frame)

 if cv2.waitKey(1) & 0xff == ord('q'):

 break

cap.release()

cv2.destroyAllWindows()

	 4.	 Save the file.

	 5.	 Open a terminal window.

	 6.	 Navigate to your working folder where the script is

saved.

	 7.	 Type sudo python view_camera.py.

This opens a window displaying what your camera sees. If you are

using a remote desktop session to work on the Pi, you may see this warning

message: Xlib: extension RANR missing on display :10. This message

means that the system is looking for functionality not included in VNC

server. It can be ignored.

Chapter 9 An Introduction to OpenCV

308

If you are concerned about the refresh rate of the video image, keep

in mind that we are asking an awful lot of the Raspberry Pi when we

run several windows through a remote desktop session. If you connect

a monitor and keyboard to access the Pi, it runs much faster. The video

capture works faster if you run it with no visualization.

Recording Video

Recording a video is an extension of viewing the camera. To record, you

have to declare the video codec that you will use and then set up the

VideoWriter object that writes the incoming video to the SD card.

OpenCV uses the FOURCC code to designate the codec. FOURCC is

a four-character code for a video codec. You can find more information

about FOURCC at www.fourcc.org.

When creating the VideoWriter object, we need to provide some

information. First, we have to provide the name of the file to save the video.

Next, we provide the codec, followed by the frame rate and the resolution.

Once the VideoWriter object is created, we simply have to write each

frame to the file using the write() method of the VideoWriter object.

Let’s record some of our robot’s video feed. We will use the XVID codec

to write to a file called test_video.avi. Rather than starting from scratch,

we’ll use the video capture code from the previous exercise.

	 1.	 Open the view_camera.py file in the Thonny IDE.

	 2.	 Select File ➤ Save as and save the file as

record_camera.py.

	 3.	 Update the code. In the following, the new lines are

in bold:

import cv2

import numpy as np

Chapter 9 An Introduction to OpenCV

http://www.fourcc.org

309

cap = cv2.VideoCapture(0)

fourcc = cv2.VideoWriter_fourcc(*'XVID')

vidWrite = cv2.VideoWriter('test_video.avi', \

 fourcc, 20, (640,480))

while(True):

 ret,frame = cap.read()

 vidWrite.write(frame)

 cv2.imshow('video', frame)

 if cv2.waitKey(1) & 0xff == ord('q'):

 break

cap.release()

vidWrite.release()

cv2.destroyAllWindows()

	 4.	 Save the file.

	 5.	 Open a terminal window.

	 6.	 Navigate to your working folder where the script is

saved.

	 7.	 Type sudo python record_camera.py.

	 8.	 Let the video run for a few seconds, and then press

Q to end the program and close the window.

You should now have a video file in your working directory. Next, we’ll

look at reading a video from a file.

There are a couple items to note in the code. When we created the

VideoWriter object, we supplied the video resolution as a tuple. This is

a very common practice throughout OpenCV. Also, we had to release the

VideoWriter object. This closed the file from writing.

Chapter 9 An Introduction to OpenCV

310

Reading Video from a File

Playing a video back from a file is exactly the same as viewing a video from

a camera. The only difference is that rather than providing the index to a

video device, we provide the name of the file to play. We will use the ret

variable to test for the end of the video file; otherwise, we would get an

error when there is no more video to play.

In this exercise, we are simply going to play back the video that we

recorded in the previous exercise. The code should look remarkably

familiar.

	 1.	 Open the Thonny IDE and create a new file.

	 2.	 Save the file as view_video.py.

	 3.	 Enter the following code:

import cv2

import numpy as np

cap = cv2.VideoCapture('test_video.avi')

while(True):

 ret,frame = cap.read()

 if ret:

 cv2.imshow('video', frame)

 if cv2.waitKey(1) & 0xff == ord('q'):

 break

cap.release()

cv2.destroyAllWindows()

	 4.	 Save the file.

	 5.	 Open a terminal window.

Chapter 9 An Introduction to OpenCV

311

	 6.	 Navigate to your working folder where the script is

saved.

	 7.	 Type sudo python view_video.py.

A new window opens. It displays the video file that we recorded in

the previous exercise. When the end of the file is reached, the video stops.

Press Q to end the program and close the window.

�Image Transformations
Now that you know more about how to get an image, let’s take a look at

some of the things that we can do with it. We will look at a few very basic

operations. These operations were selected because they will help us reach

our goal of tracking a ball. OpenCV is very powerful, and it has a lot more

capabilities than I present here.

�Flipping

Many times, the placement of the camera in a project is not ideal.

Frequently, I’ve had to mount the camera upside down, or I’ve needed to

flip the image for one reason or another.

Fortunately, OpenCV makes this very simple with the flip() method.

The flip() method takes three parameters: the image to be flipped, the

code indicating how to flip it, and the destination of the flipped image.

The last parameter is only used if you want to assign the flipped image to

another variable, but you can flip the image in place.

An image can be flipped horizontally, vertically, or both by providing

the flipCode. The flipCode is positive, negative, or zero. Zero flips the

image horizontally, a positive value flips it vertically, and a negative

number flips it on both axes. More often than not, you will flip the image

on both axes to effectively rotate it 180 degrees.

Chapter 9 An Introduction to OpenCV

312

Let’s use the image of the three balls that we used earlier to illustrate

flipping a frame.

	 1.	 Open the Thonny IDE and create a new file.

	 2.	 Save the file as flip_image.py.

	 3.	 Enter the following code:

import cv2

img = cv2.imread('color_balls_small.jpg')

h_img = cv2.flip(img, 0)

v_img = cv2.flip(img, 1)

b_img = cv2.flip(img, -1)

cv2.imshow('image', img)

cv2.imshow('horizontal', h_img)

cv2.imshow('vertical', v_img)

cv2.imshow('both', b_img)

cv2.waitKey(0)

	 4.	 Save the file.

	 5.	 Open a terminal window.

	 6.	 Navigate to the folder in which you saved the file.

	 7.	 Enter python flip_image.py and press Return.

Four windows open, each with a different version of the image file.

Press any key to exit.

�Resizing

You can resize an image. This is useful for reducing the resources needed

to process an image. The larger the image, the more memory and CPU

resources needed. To resize an image, we use the resize() method.

Chapter 9 An Introduction to OpenCV

313

The parameters are the image you are scaling, the desired dimensions as a

tuple, and the interpolation.

Interpolation is the mathematical method used for determining how to

handle the removal or addition of pixels. Remember, when working with

images, you are really working with a multidimensional array that contains

information for each point, or pixel, that makes up the image. When you

reduce an image, you are removing pixels. When you enlarge an image,

you are adding pixels. Interpolation is the method by which this occurs.

There are three interpolation options. INTER_AREA is best used

for reduction. INTER_CUBIC and INTER_LINEAR are both good for

enlarging an image, with INTER_LINEAR being the faster of the two. If an

interpolation is not provided, OpenCV uses INTER_LINEAR as the default

for both reducing and enlarging.

The image of the three balls is currently 800 × 533 pixels. Although it

isn’t a large size, we will make it a little smaller. Let’s make it half its current

size for both axes. To do this, we will use the INTER_AREA interpolation.

	 1.	 Open the Thonny IDE and create a new file.

	 2.	 Save the file as resize_image.py.

	 3.	 Enter the following code:

import cv2

img = cv2.imread('color_balls_small.jpg')

x,y = img.shape[:2]

resImg = cv2.resize(img, (y/2, x/2), interpolation =

cv2.INTER_AREA)

cv2.imshow('image', img)

cv2.imshow('resized', resImg)

cv2.waitKey(0)

Chapter 9 An Introduction to OpenCV

314

	 4.	 Save the file.

	 5.	 Open a terminal window.

	 6.	 Navigate to the folder in which you saved the file.

	 7.	 Enter python resize_image.py and press Return.

Two windows should have opened. The first has the original image.

The second displays the reduced image. Press any key to close the

windows.

�Working with Color
Color is obviously a very important part of working with images. As such,

it is a very prominent part of OpenCV. There is a lot that can be done

with color. We are going to focus on a few of the key elements needed to

accomplish our end goal of identifying and chasing a ball with the robot.

�Color Spaces

One of the key elements of working with color is color space, which

describes how OpenCV expresses color. Within OpenCV, color is

represented by a series of numbers. The color space determines the

meaning of those numbers.

The default color space for OpenCV is BGR. This means every color is

described by three integers between 0 and 255, which correspond to the

three color channels—blue, green, and red, in that order. A color expressed

as (255,0,0) has a maximum value in the blue channel, and both green

and red are zero. This represents pure blue. Given this, (0,255,0) is green

and (0,0,255) is red. The values (0,0,0) represent black, the absence of any

color, and (255,255,255) is white.

If you’ve worked with graphics in the past, BGR is the opposite of what

you’re likely used to. Most digital graphics are described in terms of RGB—

red, green, and blue. So this may take a little getting used to.

Chapter 9 An Introduction to OpenCV

315

There are many color spaces. The ones that we care about are BGR,

RGB, HSV, and grayscale. We’ve already discussed the default color space,

BGR, and the common RGB color space. HSV is hue, saturation, and value.

Hue represents the color on a scale of 0–180. Saturation represents how far

white the color is from 0 to 255. Value is a measure of how far from black

the color is from 0 to 255. If both saturation and value are 0, the color is

gray. A saturation and value of 255 is the brightest version of the hue.

Hue is a little trickier. It is on a scale of 0–180, where 0 and 180 are both

red. This is where remembering the color wheel is important. If 0 and 180

meet at the top of the wheel in the middle of the red space, as you move

clockwise around the wheel, hue = 30 is yellow, hue = 60 is green, hue = 90

is teal, hue = 120 is blue, hue = 150 is purple, and hue = 180 brings us back

to red.

The one that you most frequently encounter is grayscale. Grayscale is

exactly what it sounds like: the black-and-white version of an image. It is

used by feature detection algorithms to create masks. We use it when we

filter for objects.

To convert an image to a different color space, you use the cvtColor

method. It takes two parameters: the image and the color space constant.

The color space constants are built into OpenCV. They are COLOR_

BGR2RGB, COLOR_BGR2HSV, and COLOR_BGR2GRAY. Do you see the

pattern there? If you wanted to convert from the RGB color space to the

HSV color space, the constant would be COLOR_RGB2HSV.

Let’s convert our image of the three colored balls to a grayscale image.

	 1.	 Open the Thonny IDE and create a new file.

	 2.	 Save the file as gray_image.py.

Chapter 9 An Introduction to OpenCV

316

	 3.	 Enter the following code:

import cv2

img = cv2.imread('color_balls_small.jpg')

grayImg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

cv2.imshow('img', img)

cv2.imshow('gray', grayImg)

cv2.waitKey(0)

	 4.	 Save the file.

	 5.	 Open a terminal window.

	 6.	 Navigate to the folder in which you saved the file.

	 7.	 Enter python gray_image.py and press Return.

This opens two windows: one with the original color image and one

with the grayscale version. Click any key to exit the program and close the

windows.

�Color Filters

Filtering for a color takes remarkably little code, but at the same time, it

can be a little frustrating because you’re generally not looking for a specific

color but a color range. Colors are very rarely pure and of one value. This is

why we want to be able to shift between color spaces. Sure, we could look

for a red color in BGR. But to do that, we would need the specific range for

each of the three values. And where that’s going to hold true with all color

spaces, it’s generally easier to dial in the range you need in the HSV space.

The strategy used for filtering for a specific color is fairly

straightforward, but there are a few steps involved and a couple things to

keep in mind as you go.

Chapter 9 An Introduction to OpenCV

317

First, we’ll make a copy of the image in the HSV color space. Then we

apply our filter range and make that its own image. For this, we use the

inRange() method. It takes three parameters: the image we are applying

the filter to, the lower range, and the upper range of values. The inRange

method scans all the pixels in the provided image to determine if they are

within the specified range. It returns true, or 1, if so; otherwise, it returns 0.

What this leaves us with is a black-and-white image that we can use as a

mask.

Next, we apply the mask using the bitwise_and() method. This

method takes two images and returns the area where the pixels match.

Since that’s not quite what we are looking for, we need to do a little

trickery. For our purpose, bitwise_and requires three parameters: image 1,

image 2, and a mask. Since we want to return everything that is revealed

by the mask, image 1 and image 2 both use our original image. Then we

apply our mask by designating the mask parameter. Since we are leaving

out a few optional parameters, we need to designate the mask parameter

explicitly, like this: mask = mask_image. The result is an image that only

shows the color we are filtering for.

The easiest way to demonstrate this is by walking through it. The code

is actually quite simple once you know what’s going on.

	 1.	 Open the Thonny IDE and create a new file.

	 2.	 Save the file as blue_filter.py.

	 3.	 Enter the following code:

import cv2

img = cv2.imread("color_balls_small.jpg")

imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

lower_blue = np.array([80,120,120])

upper_blue = np.array([130,255,255])

blueMask = cv2.inRange(imgHSV,lower_blue,upper_blue)

Chapter 9 An Introduction to OpenCV

318

res = cv2.bitwise_and(img, img, mask=blueMask)

cv2.imshow('img', img)

cv2.imshow('mask', blueMask)

cv2.imshow('blue', res)

cv2.waitKey(0)

	 4.	 Save the file.

	 5.	 Open a terminal window.

	 6.	 Navigate to the folder in which you saved the file.

	 7.	 Enter python blue_filter.py and press Return.

Three windows open with different versions of our image. The first is

the regular image. The second is a black-and-white image that acts as our

mask. The third is the final masked image. Only the pixels under the white

area of the mask are displayed.

Let’s take a moment to walk through the code to make it clear what

we’re doing and why.

We start like we do all of our scripts, with the importing of OpenCV and

NumPy and then loading of the image:

import cv2

import numpy as np

img = cv2.imread("color_balls_small.jpg")

Next, we make a copy of the image and convert it to the HSV color

space:

imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

Once in the HSV color space, it is easier to filter for the blue ball. As

I discussed, we know pure blue has a hue value of 120. Since it’s unlikely

the object that we are filtering for is pure blue, we need to give it a range of

Chapter 9 An Introduction to OpenCV

319

colors. In this case, we are looking for everything from 80, which is halfway

between green and blue, to 130. We also want to filter for colors that are

not nearly white or nearly black, so we use the values 120 and 255 for

the saturation and value ranges. To make sure that the filter range is in a

format that OpenCV understands, we create them as NumPy arrays:

lower_blue = np.array([80,120,120])

upper_blue = np.array([130,255,255])

With the filter range specified, we can use them with the inRange()

method to determine if the pixels in the HSV version of our image are

in the blue range that we are looking for. This creates the mask image to

exclude all non-blue pixels:

blueMask = cv2.inRange(imgHSV,lower_blue,upper_blue)

Next, we use bitwise_and() to apply our mask. Because we want to

return all pixels from our image within our mask, we pass the original

image as both image 1 and image 2. This compares the image against itself

and returns the entire image, since every pixel in the image matches itself:

res = cv2.bitwise_and(img, img, mask=blueMask)

Finally, we display the original image, mask, and filtered image. Then

we wait for a key to be pressed before we close the windows and exit the

program:

cv2.imshow('img', img)

cv2.imshow('mask', blueMask)

cv2.imshow('blue', res)

cv2.waitKey(0)

Chapter 9 An Introduction to OpenCV

320

As you can see, once you know how it works, filtering for a color is very

easy. It gets a little more complicated when you are filtering for red. Red

occurs at both the low and high ends of the hue spectrum, so you have to

create two filters and combine the resulting masks. This can easily be done

with OpenCV’s add() method, and it looks something like this:

combinedMask = cv2.add(redMask1, redMask2)

In the end, you’re left with an image with only the pixels that you are

looking for. To the human eye, it is easily recognized as related groups.

For the computer, it is not so. Natively, a computer does not recognize

the difference between the black pixels and the blue. That’s where blob

detection comes into play.

�Blobs and Blob Detection
A blob is a collection of similar pixels. They could be anything from a

monotone circle to a jpeg image. To a computer, a pixel is a pixel, and it

cannot distinguish between an image of a ball and an image of a plane.

This is what makes computer vision so challenging. We have developed

many different techniques to try to extrapolate information about an

image; each has trade-offs in terms of speed and accuracy.

Most techniques use a process called feature extraction, which is

a general term for a collection of algorithms that catalog outstanding

features in an image, such as lines, edges, broad areas of color, and so

forth. Once these features are extracted, they can be analyzed or compared

with other features to make determinations about the image. This is how

functions like face detection and motion detection work.

We are going to use a simpler method for tracking an object. Rather

than extracting detailed features and analyzing them, we will use the color

filtering techniques from the previous section to identify a large area of

color. We will then use built-in functions to gather information about the

group of pixels. This simpler technique is called blob detection.

Chapter 9 An Introduction to OpenCV

321

�Finding a Blob

OpenCV makes blob detection fairly easy, especially after we’ve done the

heavy lifting of filtering out everything we don’t want. Once the image

has been filtered, we can use the mask for clean blob detection. The

SimpleBlobDetector class from OpenCV identifies the location and the

size of the blob.

The SimpleBlobDetector class is not quite as simple as you might

think. There are a number of parameters built into it that need to be

enabled or disabled. If enabled, you need to make sure that the values

work for your application.

The method for setting the parameters is SimpleBlobDetector_

Params(). The method for creating the detector is SimpleBlobDetector_

create(). You pass the parameters to the create method to ensure

everything is set properly.

Once the parameters are set and the detector is properly created,

you use the detect() method to identify the keypoints. In the case of the

simple blob detector, the keypoints represent the center and size of any

detected blobs.

Finally, we use the drawKeyPoints() method to draw a circle around

our blob. By default, this draws a small circle at the center of the blob.

However, a flag can be passed that causes the size of the circle relative to

the size of the blob.

Let’s walk through an example. We’ll use the filter code from the

previous exercise and add blob detection. In this exercise, we filter for the

blue ball in our image. Then we use the mask to find the center of the ball

and draw a circle around it.

	 1.	 Open the Thonny IDE and create a new file.

	 2.	 Save the file as simple_blob_detect.py.

Chapter 9 An Introduction to OpenCV

322

	 3.	 Enter the following code:

import cv2

import numpy as np

img = cv2.imread("color_balls_small.jpg")

imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

setup parameters

params = cv2.SimpleBlobDetector_Params()

params.filterByColor = False

params.filterByArea = False

params.filterByInertia = False

params.filterByConvexity = False

params.filterByCircularity = False

create blob detector

det = cv2.SimpleBlobDetector_create(params)

lower_blue = np.array([80,120,120])

upper_blue = np.array([130,255,255])

blueMask = cv2.inRange(imgHSV,lower_blue,upper_blue)

res = cv2.bitwise_and(img, img, mask=blueMask)

get keypoints

keypnts = det.detect(blueMask)

draw keypoints

cv2.drawKeypoints(img, keypnts, img, (0,0,255),

 cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow('img', img)

cv2.imshow('mask', blueMask)

cv2.imshow('blue', res)

Chapter 9 An Introduction to OpenCV

323

print the coordinates and size of keypoints to

terminal

for k in keypnts:

 print k.pt[0]

 print k.pt[1]

 print k.size

cv2.waitKey(0)

	 4.	 Save the file.

	 5.	 Open a terminal window.

	 6.	 Navigate to the folder in which you saved the file.

	 7.	 Enter python simple_blob_detect.py and press

Return.

This opens the three versions of the image. However, the original

image now has a red circle drawn around the blue ball. In the terminal

window, we’ve printed the coordinates of the center of the ball as well as

its size. The center of the ball is used later in this chapter when we start to

track the ball.

The Parameters

The SimpleBlobDetector class takes several parameters to work properly.

It is strongly suggested that all the filter options are explicitly enabled

or disabled by setting the corresponding parameter to true or false. If a

filter is enabled, you need to set the parameters for it as well. The default

parameters are configured to extract dark circular blobs.

In the previous exercise, we simply disabled all the filters. Since we are

working with a filtered image of a ball and we only have the one blob in

the image, we don’t need to add other filters. While you could technically

use the parameters of the SimpleBlobDetector alone without masking out

Chapter 9 An Introduction to OpenCV

324

everything else, this can be a bit more challenging in dialing in all of the

parameters to get the results we want. Also, the method we used allows

you a little more insight as to what OpenCV is doing in the background.

It is important to understand how the SimpleBlobDetector works to

have a better idea of how the filters are used. There are several parameters

that can be used to fine-tune the results.

The first thing that happens is the image is converted into several

binary images by applying thresholds. The minThreshold and

maxThreshold determine the overall range, while the thresholdStep

determines the distance between thresholds.

Each binary image is then processed for contours using

findContours(). This allows the system to calculate the center of each

blob. With the centers known, several blobs are combined into one group

using the minDistanceBetweenBlobs parameter.

The center of the groups is returned as a keypoint, as is the overall

diameter of the group. The parameters for each of the filters are calculated

and the filters applied.

The Filters

The following lists the filters and their corresponding parameters.

filterByColor

This filters for the relative intensity of each binary image. It measures the

intensity value at the center of the blobs and compares it to the parameter,

blobColor. If they don’t match, the blob does not qualify. The intensity is

measured from 0 to 255; 0 is dark and 255 is light.

filterByArea

When the individual blobs are grouped, their overall area is calculated.

This filter looks for blobs between minArea and maxArea.

Chapter 9 An Introduction to OpenCV

325

filterByCircularity

Circularity is calculated by the formula

	

4� �
�

� Area

perimeter perimeter 	

This returns a ratio between 0 and 1, which is compared to

minCircularity and maxCircularity. If the value is between these

parameters, the blob is included in the results.

filterByInertia

Inertia is an estimation of how elongated the blob is. It is a ratio between 0

and 1. If the value is between minInertiaRatio and maxInertiaRatio, the

blob is returned in the keypoint results.

filterByConvexity

Convexity is a ratio with a value between 0 and 1. It measures the ratio

between convex and concave curves in a blob. The parameters for

convexity are minConvexity and maxConvexity.

�Blob Tracking

We saw in the previous section that the x and y coordinates of the center

of a blob are returned as part of the keypoints, which are used to track

the blob. To track the blob, you need to use the live video stream from the

robot’s camera and then define what tracking means for your project. The

simplest form of tracking is simply moving the generated circle with the

blob.

	 1.	 Open the Thonny IDE and create a new file.

	 2.	 Save the file as blob_tracker.py.

Chapter 9 An Introduction to OpenCV

326

	 3.	 Enter the following code:

import cv2

import numpy as np

cap = cv2.VideoCapture(0)

setup detector and parameters

params = cv2.SimpleBlobDetector_Params()

params.filterByColor = False

params.filterByArea = True

params.minArea = 20000

params.maxArea = 30000

params.filterByInertia = False

params.filterByConvexity = False

params.filterByCircularity = True

params.minCircularity = 0.5

params.maxCircularity = 1

det = cv2.SimpleBlobDetector_create(params)

define blue

lower_blue = np.array([80,60,20])

upper_blue = np.array([130,255,255])

while True:

 ret, frame = cap.read()

 imgHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 �blueMask = cv2.inRange(imgHSV,lower_blue,

upper_blue)

 blur= cv2.blur(blueMask, (10,10))

 res = cv2.bitwise_and(frame, frame, mask=blueMask)

Chapter 9 An Introduction to OpenCV

327

 # get and draw keypoint

 keypnts = det.detect(blur)

 cv2.drawKeypoints(frame, keypnts, frame, (0,0,255),

 �cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_

KEYPOINTS)

 cv2.imshow('frame', frame)

 cv2.imshow('mask', blur)

 for k in keypnts:

 print k.size

 if cv2.waitKey(1) & 0xff == ord('q'):

 break

cap.release()

cv2.destroyAllWindows()

	 4.	 Save the file.

	 5.	 Open a terminal window.

	 6.	 Navigate to the folder in which you saved the file.

	 7.	 Enter sudo python blob_tracker.py and press

Return.

Two windows open: one showing the mask used for filtering the color

and one with the video stream. A circle should be drawn around the blob.

I enabled filterByArea and filterByCircularity to make sure that

I am only getting the ball. You will likely need to make adjustments to the

detector’s parameters to fine-tune your filter.

Chapter 9 An Introduction to OpenCV

328

�Ball-Chasing Bot
You now know how to track a blob with the web cam mounted on the

robot. In Chapter 8, you learned about an algorithm to follow a line called

a PID controller. What happens when we combine the PID controller with

our ball-tracking program?

Next, let’s program the little robot to chase that blue ball that it’s been

tracking. To do this, you will use what you just learned about blob tracking

and what you learned in Chapter 8.

The PID controller is expecting input in the form of deviation from the

desired result. So we need to start by defining the desired result. In this

case, the goal is simply to keep the ball in the middle of the frame. So our

error values will be the variance from the center, which also means that we

need to define the center of the frame. Once we have the center defined,

the deviation is a matter of subtracting the x location of the ball from the x

location of the center. We will also subtract the y location of the ball from

the y location of the center.

Now we can use two PID controllers to keep the ball centered in the

frame. The first controller steers the robot. As the ball moves on the x axis,

the deviation is either negative or positive. If it’s positive, steer to the left.

If it’s negative, steer to the right. In the same manner, we can use the y axis

to control the velocity of the robot. A positive y variance drives the robot

forward, whereas a negative variance drives it backward.

	 1.	 Open the Thonny IDE and create a new file.

	 2.	 Save the file as ball_chaser.py.

	 3.	 Enter the following code:

import cv2

import numpy as np

import time

Chapter 9 An Introduction to OpenCV

329

from adafruit_motorkit import MotorKit

create motor objects

kit = MotorKit()

create motor list

motors = [kit.motor1, kit.motor2, kit.motor3,

kit.motor4]

motor multipliers

motorMultiplier = [1.0, 1.0, 1.0, 1.0, 1.0]

motor speeds

motorSpeed = [0,0,0,0]

speeds

speedDef = 1.0

leftSpeed = speedDef

rightSpeed = speedDef

diff= 0

maxDiff = 0.5

turnTime = 0.5

create camera object

cap = cv2.VideoCapture(0)

time.sleep(1)

PID

kp = 1.0

ki = 1.0

kd = 1.0

ballX = 0.0

ballY = 0.0

Chapter 9 An Introduction to OpenCV

330

x = {'axis':'X',

 'lastTime':int(round(time.time()*1000)),

 'lastError':0.0,

 'error':0.0,

 'duration':0.0,

 'sumError':0.0,

 'dError':0.0,

 'PID':0.0}

y = {'axis':'Y',

 'lastTime':int(round(time.time()*1000)),

 'lastError':0.0,

 'error':0.0,

 'duration':0.0,

 'sumError':0.0,

 'dError':0.0,

 'PID':0.0}

setup detector

params = cv2.SimpleBlobDetector_Params()

define detector parameters

params.filterByColor = False

params.filterByArea = True

params.minArea = 15000

params.maxArea = 40000

params.filterByInertia = False

params.filterByConvexity = False

params.filterByCircularity = True

params.minCircularity = 0.5

params.maxCircularity = 1

create blob detector object

det = cv2.SimpleBlobDetector_create(params)

Chapter 9 An Introduction to OpenCV

331

define blue

lower_blue = np.array([80,60,20])

upper_blue = np.array([130,255,255])

def driveMotors(leftChnl = speedDef, rightChnl

= speedDef,

 duration = defTime):

 # determine the speed of each motor by

multiplying

 # the channel by the motors multiplier

 motorSpeed[0] = leftChnl *

motorMultiplier[0]

 motorSpeed[1] = leftChnl *

motorMultiplier[1]

 motorSpeed[2] = rightChnl *

motorMultiplier[2]

 motorSpeed[3] = rightChnl *

motorMultiplier[3]

 # run the motors. if the channel is

negative, run

 # reverse. else run forward

if(leftChnl < 0):

 motors[0].throttle(-motorSpeed[0])

 motors[1].throttle(-motorSpeed[1])

else:

 motors[0].throttle(motorSpeed[0])

 motors[1].throttle(motorSpeed[1])

if (rightChnl < 0):

 motors[2].throttle(motorSpeed[2])

 motors[3].throttle(motorSpeed[3])

Chapter 9 An Introduction to OpenCV

332

else:

 motors[2].throttle(-motorSpeed[2])

 motors[3].throttle(-motorSpeed[3])

def PID(axis):

 lastTime = axis['lastTime']

 lastError = axis['lastError']

 # get the current time

 now = int(round(time.time()*1000))

 duration = now-lastTime

 # calculate the error

 �axis['sumError'] += axis['error'] *

duration

 �axis['dError'] = (axis['error'] -

lastError)/duration

 # prevent runaway values

 �if axis['sumError'] > 1:axis['sumError'] =

1

 if axis['sumError'] < -1: axis['sumError'] = -1

 # calculate PID

 �axis['PID'] = kp * axis['error'] + ki *

axis['sumError'] + kd * axis['dError']

 # update variables

 axis['lastError'] = axis['error']

 axis['lastTime'] = now

 # return the output value

 return axis

Chapter 9 An Introduction to OpenCV

333

def killMotors():

 motors[0].throttle(0)

 motors[1].throttle(0)

 motors[2].throttle(0)

 motors[3].throttle(0)

main program

try:

 while True:

 # capture video frame

 ret, frame = cap.read()

 # calculate center of frame

 height, width, chan = np.shape(frame)

 xMid = width/2 * 1.0

 yMid = height/2 * 1.0

 # filter image for blue ball

 �imgHSV = cv2.cvtColor(frame, cv2.COLOR_

BGR2HSV)

 �blueMask = cv2.inRange(imgHSV, lower_

blue, upper_blue)

 blur = cv2.blur(blueMask, (10,10))

 �res = cv2.bitwise_and(frame,frame,

mask=blur)

 # get keypoints

 keypoints = det.detect(blur)

 try:

 ballX = int(keypoints[0].pt[0])

 ballY = int(keypoints[0].pt[1])

Chapter 9 An Introduction to OpenCV

334

 except:

 pass

 # draw keypoints

 �cv2.drawKeypoints(frame, keypoints,

frame, (0,0,255),

 �cv2.DRAW_MATCHES_FLAGS_

DRAW_RICH_KEYPOINTS)

 # calculate error and get PID ratio

 xVariance = (ballX - xMid) / xMid

 yVariance = (yMid - ballY) / yMid

 x['error'] = xVariance/xMid

 y['error'] = yVariance/yMid

 x = PID(x)

 y = PID(y)

 # calculate left and right speeds

 �leftSpeed = (speedDef * y['PID']) +

(maxDiff * x['PID'])

 �rightSpeed = (speedDef * y['PID']) -

(maxDiff * x['PID'])

 # another safety check for runaway values

 �if leftSpeed > (speedDef + maxDiff):

leftSpeed = (speedDef + maxDiff)

 �if leftSpeed < -(speedDef + maxDiff):

leftSpeed = -(speedDef + maxDiff)

 �if rightSpeed > (speedDef + maxDiff):

rightSpeed = (speedDef + maxDiff)

 �if rightSpeed < -(speedDef + maxDiff):

rightSpeed = -(speedDef + maxDiff)

Chapter 9 An Introduction to OpenCV

335

 # drive motors

 �driveMotors(leftSpeed, rightSpeed, driveTime)

 # show frame

cv2.imshow('frame', frame)

cv2.waitKey(1)

except KeyboardInterrupt:

 killMotors()

 cap.release()

 cv2.destroyAllWindows()

	 4.	 Save the file.

	 5.	 Open a terminal window.

	 6.	 Navigate to the folder in which you saved the file.

	 7.	 Enter sudo python ball_chaser.py and press

Return.

After a couple seconds, your robot should start moving forward. If

there is a blue ball within the frame, it should turn toward it. The robot is

trying to keep the ball in the center of the frame.

A few things in this code are a little different from the way we’ve done

things in the past. Most notably, we put the values for the x and y axes

into dictionaries. We did this to keep the values together when we passed

them to the PID controller, which is another change that was made. The

PID function was updated to accept a single parameter. However, the

parameter it is expecting is a dictionary. It is assigned to the axis variable

in the function. All the variable references are then updated to use the

dictionary. The results are updated within the axis dictionary and are then

assigned to the appropriate dictionary in the main program.

Chapter 9 An Introduction to OpenCV

336

I also made sure to remove any delays that would affect the main

loop or the camera’s refresh rate. Because this entire program is running

in a single process, it is not as fast as it would be if we were to break the

processes into different threads. As such, the robot may miss the ball and

wander off.

�Summary
In this chapter, we started to harness some of the exciting capabilities that

the Raspberry Pi offers. Computer vision allows us to perform much more

complex tasks than we can with microcontrollers alone.

To prepare for working with vision, we installed a basic web cam on

the robot. This took special consideration since these web cams are not

designed to be mounted. Of course, your solution is likely different than

mine, so you were able to exercise some creativity in mounting the camera.

After that, we were ready to install OpenCV.

OpenCV is an open source community-developed computer vision

platform that makes many vision functions very simple. Installing the

software on the Raspberry Pi takes quite a while, mostly because we have

to compile it from source code, and despite its impressive capabilities, the

Raspberry Pi doesn’t have the processing power of a laptop or a PC, so it

takes a while to compile the code. But once compiled and installed, we are

able to do some fun things.

We worked through some exercises using a still image. This allowed

us to learn some of the fundamentals of OpenCV without the overhead of

processing video. Once we learned some of the basics, we learned to pull

live video from the camera and apply the lessons we learned using still

images. Using the color filtering and blob tracking techniques we picked

up in this chapter, we gave our robot the capability to see and follow a ball.

Chapter 9 An Introduction to OpenCV

337© Jeff Cicolani 2021
J. Cicolani, Beginning Robotics with Raspberry Pi and Arduino,
https://doi.org/10.1007/978-1-4842-6891-9_10

CHAPTER 10

Conclusion
You’ve come a long way since Chapter 1. If you were new to robotics and

programming, then this was probably a challenging book. It was intended

to be, so congratulations on making it through. Hopefully, you followed

along and built your own robot in the process.

To recap, in Chapter 1, I introduced some of the basic concepts of

robots and discussed the purpose of the book. In Chapter 2, we began

working with the Raspberry Pi by installing the Raspbian operating system

and configuring it for remote access. Chapter 3 introduced you to the

Python programming language. In Chapter 4, we started working with

sensors using Raspberry Pi’s GPIO header. In the process, we learned a bit

about digital processing and discussed some of the limitations.

The solution to the Pi’s limitations was introduced in Chapter 5 when I

presented you with the Arduino. We learned how to program the Arduino

and how to pass data back and forth between it and the Pi. In Chapter 6,

we assembled the Motor HAT and learned how to drive motors with it and

with a generic motor controller. In Chapter 7, we finally assembled the

robot. In Chapter 8, we attached IR sensors and programmed the robot to

follow a line. And in Chapter 9, we unleashed the power of the Raspberry

Pi to use computer vision to filter for a color and track a ball.

https://doi.org/10.1007/978-1-4842-6891-9_10#DOI

338

�Types of Robotics
As I discussed in Chapter 1, robotics can mean a lot of different things.

It really depends on how you want to define it. To help obfuscate the

definition even further, many of the technologies used in robotics are

easily transferable to the Internet of Things (IoT). The hardware, software,

sensors, communication channels, and so forth are the same in your

automated home as in your robot. The programming is similar, and the

results usually affect the physical world. So, in essence, IoT turns your

home, office, or factory into a robot.

Due to this broad definition, your interest in robotics may differ greatly

than mine. For instance, are you interested in little table bots or in larger

robots? Are you primarily interested in terrestrial robots that drive along

the ground, or do you want your automated apparatus to take flight? Or

maybe you’re interested in exploring the depths of the sea with a robotic

submersible. Do you want to experiment with autonomous cars, or is

home automation and IoT your thing?

Knowing the fields that you will likely pursue determines the tools

that you use. If you’re building little tabletop robots, you likely won’t need

a welder. The field also determines some of the design tools that you will

use. For instance, most small robots like the one we built in this book can

be designed on the fly or with pen and paper. However, if you’re building

something more complex, like a quadruped, you may need CAD software.

�Tools
Tools come in two flavors in robotics: hardware and software. I didn’t go

into the physical hardware tools that you will likely use because the types

of tools you’ll use depend on the type of robotics that interests you. I will

get to hardware in a moment.

Chapter 10 Conclusion

339

First, I want to talk a little bit about software. Software is one area that

is shared across all areas of robotics. Like most things in robotics, your

choice of tools is entirely up to you. Use what you’re comfortable with and

gets the job done.

�Software
The topics covered in this book were far from comprehensive. There is a lot

more to learn about Linux, Python, Arduino, and especially OpenCV. The

intent was to introduce you to some of the concepts of robotics and to get

you familiar and comfortable with some of the tools.

�Choosing an IDE

The IDE, or integrated development environment, that you use is up to you.

This is one of the areas shared across all the various fields. There are many

to choose from. The software tools we used are native to the Raspberry Pi

and the Arduino. And by “native” I mean that these are tools built into the

OS or are the recommended tools for the hardware.

In all actuality, outside of writing this book, I do not use the IDLE IDE

any longer. My general workflow starts on my Windows machine. When

the code is working the way I like, I transfer it over to the Raspberry Pi for

the finishing touches.

My preferred tool for programming Python is PyCharm (www.

jetbrains.com/pycharm). The Community Edition offers all the features I

need for almost all of my projects. It is a professional-level IDE that makes

working with Python much easier (see Figure 10-1). It is available for both

Windows and Linux. So, when I transfer the files to the Pi, I can use the

same tools to update the code, as needed.

Chapter 10 Conclusion

http://www.jetbrains.com/pycharm
http://www.jetbrains.com/pycharm

340

Spyder is another excellent IDE for working with Python. It is included

with the Anaconda distribution of Python, which makes installation a little

easier. It offers many tools aimed at the scientific and academic communities.

Anaconda is very popular with many of the data scientists I work with.

If you are interested in checking out Anaconda, you can find it at www.

anaconda.com. Or, if you want to try the Spyder IDE, you can download it at

https://pythonhosted.org/spyder/.

Also, Microsoft’s Visual Studio is a very powerful and increasingly

accessible product. Again, their Community Edition is available for

download from their website (www.visualstudio.com). Once upon a time,

Visual Studio was for professional developers only. Even when Microsoft

started releasing the free Community Edition, it was difficult for beginners

and hobbyists to use. However, the last few releases are more user-friendly.

One of the nice things about Visual Studio is that it can be used for most of

your development needs.

Figure 10-1.  PyCharm IDE

Chapter 10 Conclusion

http://www.anaconda.com
http://www.anaconda.com
https://pythonhosted.org/spyder/
http://www.visualstudio.com

341

It does have its drawbacks, though. For instance, it is only available

for Windows. It still has a bit of a learning curve too, but there are plenty

of resources available to help. As a Windows-based IDE, it compiles for

Windows. Fortunately, Python is cross-platform. So once you’ve written

your code, you can transfer the Python files to the Raspberry Pi, make any

adjustments you need for the serial port and so forth, and then run it from

there.

I still use the Arduino IDE for most of my Arduino work. This is simply

because I have not found a better independent environment on which to

work. Visual Studio has an extension that allows you to develop Arduino

code and cross-compile to the Arduino, although it does the compilation

through the Arduino IDE. So, if you’re looking for a single environment to

develop your robotics projects, Visual Studio may be a good choice.

�Design Software

Many of you may not use design software with any frequency. As with

everything else, the software used to design the various parts of your robot

will vary depending on your project. It will also vary depending on your

budget and the tools that you use to build your robot. Some projects, such

as kits or someone else’s design, won’t require design software at all. Many

projects and building styles get away with simple pencil and paper. If you

are using modular parts, you may be able to get away with lists or simple

sketches. For anything custom, however, you will probably need a way to

design the system.

2D Drawing

The simplest and easiest to use software is for 2D—or flat—designs. These

tools are good for designing projects that can be built using sheet materials

such as MDF, cardboard, plywood, or acrylic sheets. Don’t underestimate

what you can do with flat material. My Nomad project is designed and

built using 1/4-inch plywood.

Chapter 10 Conclusion

342

Keep in mind that these tools are designed for artists and illustrators,

not for precision CAD work. So some of the features you might expect are

simply not there. For instance, precise measurements are difficult. Using

grids and rulers helps considerably, but if you need a precise angle or

length, these tools may not be the best for the job.

One of the most popular 2D design tools is an open source project

called Inkscape (https://inkscape.org/en/). Inkscape is remarkably

easy to use, and it has a very large community of users. It is free to

download and use, and it is rich with features. There are also many

community-developed plugins. One of my favorites is the tabbed box

maker. Since I have access to a laser cutter, I use the tabbed box maker to

design simple boxes that I can cut and snap together. Figure 10-2 shows

the Inkscape interface.

There are also commercial programs available. Adobe Illustrator

(www.adobe.com/products/illustrator.html) and CorelDRAW (www.

coreldraw.com/en/pages/ppc/coreldraw/) are the two leaders in this area.

Figure 10-2.  Inkscape

Chapter 10 Conclusion

https://inkscape.org/en/
http://www.adobe.com/products/illustrator.html
http://www.coreldraw.com/en/pages/ppc/coreldraw/
http://www.coreldraw.com/en/pages/ppc/coreldraw/

343

Circuit Board Design

At some point, you may find yourself needing to design your own circuit

boards or shield. This isn’t as complex or difficult as you may think. As

you work more and more with robotics, you will find recommendations

for specific chips or circuits. Often, simply searching online provides links

to example circuits. Recreating these circuits in a tool designed for them

allows you to order the board.

There are many programs designed for circuit boards. In fact, almost

every circuit board manufacturer has one available.

One of the most popular in the hobby community is Fritzing (http://

fritzing.org/home/). It was developed at the University of Applied

Sciences in Potsdam, Germany. Its popularity has led it to be spun off into

its own organization: the Friends-of-Fritzing Foundation. I used Fritzing

software to create the circuit diagrams in this book (see Figure 10-3).

Figure 10-3.  Fritzing

Chapter 10 Conclusion

http://fritzing.org/home/
http://fritzing.org/home/

344

There are also commercial products available; many of them have

free-to-use community editions. The leading industry standard is Eagle,

which is now owned by Autodesk (www.autodesk.com/products/eagle/

overview). Most other programs import and/or export final designs in the

popular Eagle format.

3D Design

If you have a custom chassis and parts or if you like 3D printing, you need

3D CAD software. Again, there are many available. But I have not found

a free or open source package that matches the commercial solutions.

That being said, many of the commercial solutions have student versions

offered for free or at a reduced price.

SketchUp (www.sketchup.com) offers a free version of software

designed for makers. If you have never used a CAD program before, it

may be the easiest to learn. The controls are pretty intuitive, and there are

plenty of tutorials to help you learn how to use it. If you have used CAD

before, then this probably isn’t for you. Most of the people I’ve worked with

who have CAD experience find this tool less than intuitive. That’s because

it wasn’t designed as a standard CAD program.

For those of you more familiar with CAD, Autodesk offers Fusion 360

(www.autodesk.com/products/fusion-360/overview) for a moderate

fee. The company also provides free licenses to students for most of their

products, such as Fusion 360, Inventor, and a number of others. Fusion

360 and Inventor are professional, commercial-grade CAD programs with

a number of features, including simulation. It is what I use when I need to

design something for my robots or other projects (see Figure 10-4).

Chapter 10 Conclusion

http://www.autodesk.com/products/eagle/overview
http://www.autodesk.com/products/eagle/overview
http://www.sketchup.com
http://www.autodesk.com/products/fusion-360/overview

345

�Hardware
In addition to the software tools that I described, you need some actual

tools. Your choice of tools is probably most dependent on the type of

robotics that interests you, but there are some basics that every toolbox

should have.

�Basic Tools

In this section, I cover the tools that you will likely need, regardless of the

form your robot or project takes, and the tools that are in my base kit.

First, a good set of pliers is a must. You need different sizes and types.

The ones I use the most are the set of jeweler’s pliers. I also frequently use

slip-joint pliers. Make sure that the set includes a pair of diagonal cutters.

Next in your kit, you want to have a good set of fine screwdrivers. Many

of the screws you use are small and fit in tight places. Make sure that there

are a variety of hex heads in your set. Frequently, I find that the hex screw

Figure 10-4.  Autodesk Inventor

Chapter 10 Conclusion

346

I am trying to insert or remove is between two sizes in my set. The star

heads usually fit these. Be careful, though, as there is a chance that you

can strip the teeth off them.

From here, there are a lot of miscellaneous tools that are good to

have: a utility knife, an array of files, a crimping tool, a flush wire cutter, a

multimeter, calipers, and so forth. You’ll gather a good selection of tools.

I strongly suggest that you buy the tools that you need, rather than try

to make do with what you have on hand. Using the right tool for the job

always bears better results. And, if you take the time to acquire the proper

tool, you’ll have it the next time you need it.

You also need a soldering station. It doesn’t have to be elaborate.

A good soldering iron, a place for your flux and tip cleaner, and a set of

helping hands are the extent of what you need.

Make sure that you have a good place to keep the tools, and try to

always put them back. This saves you countless hours from searching

through the inevitable clutter in your workspace. I have several sets of

tools. One set lives on my workbench. I bought a compact pegboard

system on which to hang most of my tools. What doesn’t fit on the

pegboard goes into specific drawers on the bench.

Another set is in a toolbox that I leave with Nomad. Since Nomad is

frequently taken to shows and soon competitions, I want to make sure that

I always have what I need on hand. More often than not, I end up helping

the other presenters at the shows since they are frequently ill prepared.

My third set of tools is a floating set. I keep them in a toolbox that is

easily ported from room to room or to the car when I venture out without

Nomad. I’m active in the local hobby robotics scene in Austin, and it’s

good to be prepared when someone needs a hand or a tool.

I try to make sure to always put my tools back where they belong when

I’m done using them. This assures that the next time I reach for a tool, it’s

there. Admittedly, I’m not as consistent as I’d like to be, but it is a really

good habit to get into.

Chapter 10 Conclusion

347

�Specialty Tools

Having some of the larger, specialty tools always makes my larger builds

easier. A band saw and a drill press are invaluable. Unless you are planning

to build some very large robots, the benchtop version of both of these tools

will usually suffice. A benchtop belt/disk sander combination helps clean

up your edges or shape your parts.

In addition to all of these tools, I make use of more specialized tools.

For the most part, I don’t have these tools at home. But 3D printers

are fairly easy to get these days; if possible, having one or two in your

workshop is a good idea. I also make use of a 120 W laser cutter, CNC

routers, and CNC mills. They are not tools that I have in my shop, however.

�Makerspaces

I don’t have laser cutters and CNC mills in my home shop, as I imagine

most of you don’t either. These tools are bulky and expensive. But I

am a member of the local makerspace in Austin: the ATX Hackerspace

(http://atxhs.org). The Hackerspace is a co-op workshop where we have

been able to pull together our resources to purchase some of the larger

machines. What the Hackerspace doesn’t own is frequently hosted by a

member for other members to use.

What makes the space particularly valuable is the community.

Makerspaces are full of people who like to create things. These people

come from every walk of life and have individual skills. This is a very

valuable resource when you are trying to do something you’ve never done

before or you want to learn a new skill or you want a different perspective

on a problem or you are just plain stuck.

These days, almost every community has one or more makerspaces.

The resources available vary from space to space. Some operate in

commercial parks, some at schools, and some out of someone’s garage.

The one thing that remains constant is the community. If you haven’t

already, find your local makerspace and join it. You won’t regret it.

Chapter 10 Conclusion

http://atxhs.org

348

�Summary
You now have all the basics that you need to get started in hobby robotics.

There is obviously a lot more to learn in many topics. But the Raspberry

Pi and the Arduino will take you a long way. Remember, you don’t need to

learn everything in a vacuum. There is a huge community out there, and

it is growing every day. Reach out to your local makerspace to find like-

minded builders. Don’t be afraid to ask questions. Don’t be afraid to look

at other people’s projects for inspiration. Take advantage of sample code

whenever possible. Eventually, you will write your own code, but until

then, learn from those who have already done it.

The field of robotics is exciting. The fact that we can enter into it,

experiment, and learn is phenomenal. Take advantage of this time. Most

importantly, have fun.

Good luck and happy building.

Chapter 10 Conclusion

349© Jeff Cicolani 2021
J. Cicolani, Beginning Robotics with Raspberry Pi and Arduino,
https://doi.org/10.1007/978-1-4842-6891-9

Index

A
Accessor methods, 85
Acrylic, 222
Adafruit Motor HAT

assembling, 190–197
coding, 203–208
enabling I2C, 202
external battery pack, 201
library, 203
motor connection, 200
Raspberry Pi, 197

Amperage, 185, 186
analogRead() function, 155
Analog-to-digital

converter (ADC), 121, 154
analogWrite(), 155, 156
Arduino, 5, 7

IDE installation, 125
programming, 124, 127
Raspberry Pi connection, 125
shields, 124
sketches

anatomy, 137, 138
Hello, Arduino, 135–137

USB A-to-B cable connection, 126
Arduino IDE

board and port selection, 130

example sketches, 131, 132
icons and menu, 128, 129
sketch

creation, 129
opening existing, 129
saving, 129

tabs and multiple files, 132–135
toolbar, 128

Arduino programming language
Arduino to Pi

PySerial installation, 163
sending data, Arduino,

169–172
sending data, Raspberry Pi,

164–168
control structures

for loop, 149
functions, 150, 152
if and else, 146, 147
while loops, 147, 148

file/libraries, 140
objects/classes, 157, 158
pins

analog input, 154
analog output, 155
digital operations, 153, 154
LED pulse, 155–157

https://doi.org/10.1007/978-1-4842-6891-9#DOI

350

serial channels
communication, 158–160
receiving data, 160, 162
sending data, 160

variables and data types
arrays, 144, 145
characters and strings,

141, 142
numbers, 143, 144

Arduino Uno, 6, 10, 12, 123, 126,
154, 155

Arrays, 61, 141, 144, 145
Assembling, robot

materials, choosing, 222
mounting electronics, 231–237
mounting sensors, 241–244
Whippersnapper, 223–231
wiring, 238–241

attach() method, 158
Autodesk inventor, 345
Automatic vacuum cleaners, 1

B
Ball-chasing bot, 328–336
BCM numbering, 97, 98
Bill of materials (BOM), 9–14
Blobs

detection, 320, 321
filters, 324, 325
parameters, 323, 324
tracking, 325–327

Board numbering, 97
Brushless motors, 181, 182
Built-in modules, 79–81

C
Calltips, 46
Cascades, 290
Color filters, 316–320
Color spaces, 314–316
Computer vision

camera installation,
298, 299

camera selection, 297, 298
collection of algorithms, 289
OpenCV installation

compiling, source code,
293–297

pip install, 293
prerequisites, 291, 292

Control loops, 279, 280, 287
Control structures

for loop, 70, 71
if statement, 68, 69
while Loop, 71–73

Control theory, 280
Custom modules, 82, 83

D
Data types

dictionary, 64–66
list, 61, 62
none type, 66

Arduino programming
language (cont.)

INDEX

351

numbers, 59, 60
string, 55–59
tuples, 63

DC motors, 180, 181
Debian-based distributions, 42
Debian Linux system, 42
decode() method, 167
Derivative control, 280, 281
detect() method, 321
Development boards, 122
Dictionary, 64–66
digitalWrite() function, 138, 154
Double pole, single

throw (DPST), 111
drawKeyPoints() method, 321

E
Encoders, 262, 263
Erector set, 242
Extended modules, 81, 82

F
Facial recognition, 290
Feature extraction, 290, 320
findContours(), 324
flip() method, 311
flushInput() method, 258
for loop, 70, 71, 149
Fritzing, 343
Functions

default values, 76
defining, 75

passing arguments, 75
pseudo code, 74
return values, 76, 77

G
General-purpose input/output

(GPIO), 4
commands access system–level

memory, 104
header, 108

Graphical user interface (GUI), 4

H
H-bridge motor controller,

208, 209
help() function, 79, 80
Helper methods, 85

I
I2C, 25–27, 188, 202
IDLE file editor, 45
IDLE Python shell, 43
if statement, 68–70, 74, 146, 147,

159, 212
Image transformations

flipping, 311, 312
resizing, 312–314

imread() function, 303
imshow() function, 301
Indentation, 45, 50, 51
Infrared detectors, 261

INDEX

352

Infrared (IR) sensor
Arduino code, 270, 271
connection, 264–267
line following, 264
mounting, 267–269
Python code, 271–277, 279
reflectance sensors, 260–262

Infrared sensors, 2, 259
Inkscape, 342
Instantiation, 90
Integral control, 281
Integrated development

environment (IDE),
44, 124, 339

Internet of Things (IoT), 5, 338
Interpolation, 313
Interrupt sensors, 262, 263

J, K
join() method, 169, 172

L
LED pulse, 155–157
len() function, 168
Linux, 3, 4
List, 61, 62
loop() function, 50, 137, 138, 147

M
main() function, 150
Makerspaces, 189, 347, 348

Microcontroller, 7, 100, 118, 119, 187
Microprocessors, 7, 121, 122, 187
Mobile robotics, 1
Motion tracking, 290
Motor controllers, 5, 9

Adafruit DC & Stepper Motor
HAT

assembly required, 189–193,
195, 196

code, 203–208
connections, 201
enabling I2C, 202
external battery pack, 201
leads soldered to motor

terminals, 198
library installation, 203
motor connection, 200
Raspberry Pi, 197
terminal block, 199
tinned lead, 199

L298N generic motor driver
Arduino code, 210–213
H-bridge motor

controller, 209
hooking up, 213
single-motor wiring, 214
turning two motors, 216,

217, 219
Motors

Brushless Motors, 181, 182
DC motors, 180, 181
drivers, 187
properties

amperage, 185, 186

INDEX

353

voltage, 185
Stepper motors, 182–184

Mounting sensors, 241–244
Mutator methods, 84
myHelperFunctions.py, 82

N
Naming conventions, 92, 93
Near-real-time processing, 120
Numbers, 59, 60

O
OpenCV, 3

blob (see Blobs)
capturing images, 302, 303
capturing video

reading video from file,
310, 311

recording video, 308, 309
viewing camera, 307, 308

color filters, 316–320
color spaces, 314–316
display image, 301, 302
image file, 303, 305
image transformations, 311–314

Open SSH connection, 36
Operating system (OS), 15

P, Q
Passive infrared (PIR), 260
Pi Camera, 297

PID control
controller implementation,

283–287
control loops

derivative control, 281
integral control, 281
proportional control, 281

Pinguino
circuit layout, 173
code

Arduino, 174
Raspberry Pi, 175, 176

pinMode() function, 138, 153, 154
Pin numbering, 97, 98, 101
PIR motion detectors, 263
Pi T-Cobbler, 9
print() function, 73
Programming in Python

classes
attributes, 84
creation, 85
initial sample robot class,

85–87, 89–91
methods, 84
overview, 84
planning, 85

control structures, 67–73
data types (see Data types)
functions (see Functions)
modules

built-in, 79–81
custom, 82, 83
extended, 81, 82
importing, 78

INDEX

354

styling
blank lines, 92
commenting, 92
naming conventions, 92, 93

variables, 54, 66, 67
Proportional control, 279, 281, 287
Pulse width modulation (PWM),

100, 106, 108, 154
Push-button, 108–112
PuTTY configuration

window, 34
PyCharm IDE, 340
PySerial installation, 163
Python

downloading and
installing, 41, 42

high-level programming
language, 41

overview, 41
program

comments, 51–53
Hello World, 49
indentation, 50, 51
running, 53
structure, 50

resources, 40
tools

Python editor, 44, 46, 47
Python shell, 43, 44
Zen of Python, 47, 48

Python Editor, 44, 46, 47
Python shell, 43, 44

R
Rangefinders, 121, 122, 179, 262
Raspberry Pi, 5–7, 12

Arduino Uno, 123
configuration

raspi-config, 23
shutdown options, 27
tool, 23, 25
wizard, 23

connections, 21, 22
default user

change username, 28–30
securing root, 28

OS
desktop, 33
download screen, 16
easy way, 20, 21
hard way, 17–19
with OpenCV, 16

40-pin header, 96
Raspberry Pi GPIO

accessing GPIO with Python,
100, 101

analog input, 121
analog output, 121, 122
connections, 95
LED example

circuit layout, 102
code writing, 103, 105
polarity, 103
PWM, 106, 108

limitations, 99, 100
near-real-time processing, 120

Programming in Python (cont.)

INDEX

355

pin numbering, 97, 98
push-button example

circuit layout, 110
code writing, 111, 112

Raspberry Pi connection,
98, 99

real-time processing, 120
sonic rangefinder example

circuit, 113–115
code writing, 115, 117

Raw string, 56, 57
readLine() method, 164, 165
Real-time processing, 120
Reflectance sensors

interrupt sensors, 262, 263
line and edge detection,

261, 262
PIR sensor, 263
rangefinders, 262

Remote access
device finding, 36–38
SSH with PuTTY, 33–36
xrdp, 30–33

resize() method, 312
Robotics

camera mounted, 299
Linux, 3, 4
motion and control, 5
Raspberry Pi and motor control

board, 8
sensors and GPIO, 4, 5
ultrasonic sensors and Pi

T-Cobbler, 8

Robot mobile
Arduino code, 248–250
behavior, 247
motors, 246
Raspberry Pi code, 250–257
sensors, 246

Robot Operating System (ROS), 36
rstrip() method, 167

S
SD card formatter, 18
Sensor, 2, 4, 5, 118
Serial function, 148
Serial.parseInt(), 160, 161
Serial.println(), 160, 172
Serial.readString() methods, 160
Servomotor, 184
setup function, 137
SimpleBlobDetector class,

321, 323
Sketches

anatomy, 137, 138
Hello, Arduino, 135–137

Skid steering, 246
sleep() function, 171
Sonic Rangefinder, 112–117
split() method, 164, 165, 167
Spyder, 340
Stepper motors, 182–184
String object, 142
String, 55–57
String manipulation, 57–59

INDEX

356

Styling
blank lines, 92
comments, 92
naming conventions,

92, 93

T
Tab management menu, 134
Tank drive, 246
T-Cobbler, 99
time.sleep() function, 108
Tools

hardware
basic tools, 345, 346
makerspaces, 347
specialty tools, 347

software
circuit board design,

343, 344
3D design, 344, 345
2D drawing design, 341, 342
IDE choosing, 339–341

Tuples, 63

U
Ultrasonic rangefinder, 2, 121
Ultrasonic sensor, 12, 243
USB cameras, 297

V
Variables, 54, 66, 67
videoCapture() object, 306
Voltage, 185

W, X, Y
waitKey() function, 302
while loops, 71–73, 147, 148, 167
Whippersnapper, 223–231
Windows remote desktop

connection, 31
Wiring, 238–241
write() method, 172, 308

Z
Zen of Python, 48

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to Robotics
	Robotics Basics
	Linux and Robotics
	Sensors and GPIO
	Motion and Control

	Raspberry Pi and Arduino
	Project Overview
	The Robot
	Bill of Materials (BOM)

	Summary

	Chapter 2: An Introduction to Raspberry Pi
	Downloading and Installing Raspberry Pi OS
	Raspberry Pi OS with OpenCV
	The “Hard” Way
	The “Easy” Way

	Connecting Raspberry Pi
	Configuring Your Pi
	Users
	Securing Root
	Change the Default Username

	Going Headless
	Remote Access
	Remote Desktop with xrdp
	SSH with PuTTY
	Finding Your Device on a Network

	Summary

	Chapter 3: A Crash Course in Python
	Python Overview
	Downloading and Installing Python
	Python Tools
	The Python Shell
	The Python Editor
	The Zen of Python

	Writing and Running a Python Program
	Hello World
	Basic Structure
	Program Parts
	Indentation
	Comments

	Running a Program

	Programming in Python
	Variables
	Data Types
	Strings
	String Manipulation

	Numbers
	Lists
	Tuples
	Dictionaries
	None Type

	A Final Note on Variables
	Control Structures
	if Statements
	Loops
	for Loop
	while Loop

	Functions
	Defining a Function
	Passing Arguments
	Default Values
	Return Values

	Adding Functionality Through Modules
	Importing and Using Modules
	Built-In Modules
	Extended Modules
	Custom Modules

	Classes
	Creating a Class
	Planning
	Initial Sample Robot Class
	Initial Sample Robot Class

	Styling
	Blank Lines
	Commenting
	Naming Conventions

	Summary

	Chapter 4: Raspberry Pi GPIO
	Raspberry Pi GPIO
	Pin Numbering
	Connecting to the Raspberry Pi
	Limitations of Raspberry Pi’s GPIO
	Accessing GPIO with Python
	Simple Output: LED Example
	Hooking Up the Circuit
	Writing the Code
	Pulse Width Modulation (PWM)
	Hooking Up the Circuit
	Writing the Code

	Simple Input
	Push-Button Example
	Hooking Up the Circuit
	Writing the Code

	Sonic Rangefinder Example
	Hooking Up the Circuit
	Writing the Code

	Summary

	Chapter 5: Raspberry Pi and Arduino
	Raspberry Pi’s GPIO in Review
	Real-Time or Near-Real-Time Processing
	Analog Input
	Analog Output

	Arduino to the Rescue
	Using Arduino
	Installing the Arduino IDE
	Connecting an Arduino
	Programming Arduino
	The Arduino IDE
	Icons and the Menu
	Creating a New Sketch
	Saving a Sketch
	Opening Existing Sketches
	Board and Port Selection
	Cheating with Examples
	Using Tabs and Multiple Files

	Sketches
	Hello, Arduino
	Anatomy of a Sketch

	A Brief Introduction to the Arduino Language
	Including Other Files
	Variables and Data Types
	Characters and Strings
	The String Object

	Numbers
	Arrays

	Control Structures
	if and else
	while Loops
	for Loops
	Functions

	Working with Pins
	Digital Operations
	Analog Input
	Analog Output (PWM)
	Pulsing LED
	The Circuit
	The Code

	Objects and Classes
	Serial
	Connecting to Serial
	Sending Serial Data
	Receiving Serial Data

	Arduino to Pi and Back Again
	Installing PySerial
	Sending Data to the Raspberry Pi
	Sending Data to the Arduino

	Pinguino
	Setting Up the Circuit
	The Code
	Arduino
	Raspberry Pi

	Summary

	Chapter 6: Driving Motors
	Motors and Drivers
	Types of Motors
	DC Motors
	Brushless Motors
	Stepper Motors
	Servos

	Motor Properties
	Voltage
	Amperage
	Motors and Amps

	Motor Drivers

	Working with Motor Controllers
	Adafruit DC & Stepper Motor HAT
	Some Assembly Required
	Hooking Up the Motor Controller
	Using the Motor HAT
	Enabling I2C
	Installing the Library
	The Code
	Turning a Single Motor
	Turning Two Motors

	L298N Generic Motor Driver
	H-Bridge Motor Controller
	Using the L298N
	Arduino Code
	Hooking Up the L298N
	Turning One Motor
	Turning Two Motors

	Summary

	Chapter 7: Assembling the Robot
	Assembling the Chassis
	Choosing a Material
	The Whippersnapper

	Mounting the Electronics
	Wiring
	Mounting Sensors
	The Finished Robot
	Making the Robot Mobile
	The Plan
	Sensors
	Motors
	Behavior

	The Code
	Arduino Code
	Raspberry Pi Code

	Summary

	Chapter 8: Working with Infrared Sensors
	Infrared Sensors
	Types of IR Sensors
	Reflectance Sensors
	Line and Edge Detection
	Rangefinders

	Interrupt Sensors
	PIR Motion Detectors

	Working with IR Sensors
	Connecting an IR Sensor
	Mounting the IR Sensors
	The Code
	Arduino Code
	Python Code

	Understanding PID Control
	Control Loops
	Proportional, Integral, and Derivative Control
	Proportional Control
	Integral Control
	Derivative Control

	Bringing Them Together

	Implementing the PID Controller
	The Code
	Raspberry Pi Code

	Summary

	Chapter 9: An Introduction to OpenCV
	Computer Vision
	OpenCV
	Installing OpenCV
	Installing the Prerequisites
	Installing OpenCV with pip install
	Compiling OpenCV from Source Code

	Selecting a Camera
	Installing the Camera

	OpenCV Basics
	Working with Images
	Displaying an Image

	Capturing Images
	Opening an Image File
	Capturing Video
	Viewing the Camera
	Recording Video
	Reading Video from a File

	Image Transformations
	Flipping
	Resizing

	Working with Color
	Color Spaces
	Color Filters

	Blobs and Blob Detection
	Finding a Blob
	The Parameters
	The Filters
	filterByColor
	filterByArea
	filterByCircularity
	filterByInertia
	filterByConvexity

	Blob Tracking

	Ball-Chasing Bot
	Summary

	Chapter 10: Conclusion
	Types of Robotics
	Tools
	Software
	Choosing an IDE
	Design Software
	2D Drawing
	Circuit Board Design
	3D Design

	Hardware
	Basic Tools
	Specialty Tools
	Makerspaces

	Summary

	Index

