
Applied Neural
Networks with
TensorFlow 2

API Oriented Deep Learning
with Python
—
Orhan Gazi Yalçın

Applied Neural
Networks with
TensorFlow 2

API Oriented Deep Learning
with Python

Orhan Gazi Yalçın

Applied Neural Networks with TensorFlow 2: API Oriented Deep
Learning with Python

ISBN-13 (pbk): 978-1-4842-6512-3 ISBN-13 (electronic): 978-1-4842-6513-0
https://doi.org/10.1007/978-1-4842-6513-0

Copyright © 2021 by Orhan Gazi Yalçın

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,1
NY Plazar, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6512-3. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Orhan Gazi Yalçın
Istanbul, Turkey

https://doi.org/10.1007/978-1-4842-6513-0

I dedicate this book to my overcurious dad, Lutfi – who kept
sneaking into the study room to see how far I was into the
book – and to my mom, Ayşe, for always supporting and

encouraging me.

I would also like to thank my friend, Enes, for encouraging
me to write this book in the first place.

Finally, I would like to thank my sister and brother, Merve
and Kürşat, and all my friends who supported me

throughout the whole process – all the way – till the last word.

v

Table of Contents

Chapter 1: Introduction���1

Python as Programming Language ���3

Timeline of Python ���3

Python 2 vs� Python 3 ��4

Why Python? ��5

TensorFlow As Deep Learning Framework ��7

Timeline of TensorFlow ��8

Why TensorFlow? ���10

What’s New in TensorFlow 2�x ���10

TensorFlow Competitors ��15

Installation and Environment Setup ��20

Interactive Programming Environments: IPython, Jupyter Notebook,
and Google Colab ���21

IPython ���22

Jupyter Notebook ��23

Google Colab ��30

Hardware Options and Requirements ���32

About the Author ��xv

About the Technical Reviewer ��xvii

Acknowledgments ���xix

vi

Chapter 2: Introduction to Machine Learning �������������������������������������33

What Is Machine Learning?���33

Scope of Machine Learning and Its Relation to Adjacent Fields �������������������������37

Artificial Intelligence ��37

Deep Learning ���38

Data Science ���39

Big Data ���39

The Taxonomy Diagram ���39

Machine Learning Approaches and Models ��40

Supervised Learning ��41

Unsupervised Learning ��44

Semi-supervised Learning ��46

Reinforcement Learning ��47

Evaluation of Different Approaches ���48

Steps of Machine Learning ���49

Gathering Data ���50

Preparing Data ���50

Model Selection ���51

Training ��51

Evaluation ��52

Hyperparameter Tuning ���54

Prediction ��55

Final Evaluations ���55

Chapter 3: Deep Learning and Neural Networks Overview �����������������57

Timeline of Neural Networks and Deep Learning Studies ����������������������������������59

Structure of Artificial Neural Networks ���63

McCulloch-Pitts Neuron ���63

Linear Threshold Unit (LTU) ��64

Table of ConTenTs

vii

Perceptron ���64

A Modern Deep Neural Network ��65

Activation Functions ��66

Loss (Cost or Error) Functions ���69

Optimization in Deep Learning ��70

Backpropagation ���71

Optimization Algorithms ��72

Optimization Challenges ��75

Overfitting and Regularization ��77

Overfitting ��77

Regularization��78

Feature Scaling ���79

Final Evaluations ���80

Chapter 4: Complementary Libraries to TensorFlow 2�x ���������������������81

Installation with Pip ��82

NumPy – Array Processing ��85

SciPy – Scientific Computing ��86

Pandas – Array Processing and Data Analysis ��88

Matplotlib and Seaborn – Data Visualization ��89

Scikit-learn – Machine Learning ���91

Flask – Deployment ��93

Final Evaluations ���94

Chapter 5: A Guide to TensorFlow 2�0 and Deep Learning Pipeline ����95

TensorFlow Basics ��96

Eager Execution ���96

Tensor ��97

Variable ��99

Table of ConTenTs

viii

TensorFlow Deep Learning Pipeline ��100

Data Loading and Preparation ���101

Dataset Object (tf�data�Dataset)���101

TensorFlow Datasets Catalog ��102

NumPy Array ��106

Pandas DataFrame ��106

Other Objects ���107

Model Building ��107

Keras API ���108

Estimator API ���112

Compiling, Training, and Evaluating the Model and Making Predictions �����������113

The Standard Method ��113

Custom Training ���116

Saving and Loading the Model ��118

Saving the Model ���119

Loading the Model ���120

Conclusion ��120

Chapter 6: Feedforward Neural Networks ��121

Deep and Shallow Feedforward Neural Networks ��122

Shallow Feedforward Neural Network ���122

Deep Feedforward Neural Network ���123

Feedforward Neural Network Architecture ���125

Layers in a Feedforward Neural Network ��125

Input Layer ���125

Output Layer ��126

Hidden Layer ���126

Table of ConTenTs

ix

Case Study | Fuel Economics with Auto MPG ��127

Initial Installs and Imports ���127

Downloading the Auto MPG Data ���128

Data Preparation ��129

Model Building and Training ��134

Evaluating the Results ���138

Making Predictions with a New Observation ���141

Conclusion ��143

Chapter 7: Convolutional Neural Networks ���������������������������������������145

Why Convolutional Neural Networks? ���146

CNN Architecture ���147

Layers in a CNN ���147

A Full CNN Model ���151

Case Study | Image Classification with MNIST��152

Downloading the MNIST Data ��152

Reshaping and Normalizing the Images ��154

Building the Convolutional Neural Network ���155

Compiling and Fitting the Model ��156

Evaluating the Model ���157

Saving the Trained Model ��159

Conclusion ��160

Chapter 8: Recurrent Neural Networks ���161

Sequence Data and Time-Series Data ��161

RNNs and Sequential Data ��163

The Basics of RNNs ���164

The History of RNNs ��164

Applications of RNNs ���165

Mechanism of RNNs ��166

Table of ConTenTs

x

RNN Types ���167

Simple RNNs ��168

Long Short-Term Memory (LSTM) ���169

Gated Recurrent Units (GRUs) ��170

Case Study | Sentiment Analysis with IMDB Reviews ���������������������������������������171

Preparing Our Colab for GPU Accelerated Training ��������������������������������������172

IMDB Reviews��173

Preparing the Dataset ��175

Building the Recurrent Neural Network ���176

Compiling and Fitting the Model ��178

Evaluating the Model ���179

Making New Predictions ��181

Saving and Loading the Model ��182

Conclusion ��185

Chapter 9: Natural Language Processing ���187

History of NLP ���187

Early Ideas ���188

Rule-Based NLP ���188

Statistical NLP and Supervised Learning ��189

Unsupervised and Semi-supervised NLP ��190

Real-World Applications of NLP ��190

Major Evaluations, Techniques, Methods, and Tasks ��191

Morphosyntax ��192

Semantics ��193

Discourse ���195

Speech ���195

Dialogue ��196

Cognition ���196

Table of ConTenTs

xi

Natural Language Toolkit (NLTK) ���196

Case Study | Text Generation with Deep NLP ��198

The Goal of the Case Study��198

Shakespeare Corpus ���199

Initial Imports ��200

Loading the Corpus��201

Vectorize the Text ��202

Creating the Dataset ��203

Building the Model���205

Compiling and Training the Model ���207

Generating Text with the Trained Model ��209

Conclusion ��213

Chapter 10: Recommender Systems ��215

Popular Approaches ��216

Collaborative Filtering��216

Data Collection ��217

Content-Based Filtering (Personality-Based Approach) ������������������������������219

Other Recommender System Approaches ���220

Case Study | Deep Collaborative Filtering with MovieLens Dataset ������������������221

MovieLens Dataset ��222

Initial Imports ��222

Loading the Data ���223

Processing the Data ��225

Splitting the Dataset ��227

Building the Model���228

Compile and Train the Model ���231

Make Recommendations ���232

Conclusion ��236

Table of ConTenTs

xii

Chapter 11: Autoencoders ��237

Advantages and Disadvantages of Autoencoders ���238

Autoencoder Architecture ���239

Layers Used in an Autoencoder ���240

Advantages of Depth ���241

Variations of Autoencoders ���241

Undercomplete Autoencoders ���242

Regularized Autoencoders ���242

Variational Autoencoder (VAE) ���244

Use Cases of Autoencoders���245

Case Study | Image Denoising with Fashion MNIST ��246

Fashion MNIST Dataset ���247

Initial Imports ��247

Loading and Processing the Data ��248

Adding Noise to Images ���251

Building the Model���253

Denoising Noisy Images ��255

Conclusion ��257

Chapter 12: Generative Adversarial Network �����������������������������������259

Method ��259

Architecture ��260

GAN Components ���261

A Known Issue: Mode Collapse ��262

Final Notes on Architecture ���262

Applications of GANs ���263

Art and Fashion ���263

Manufacturing, Research, and R&D ���263

Table of ConTenTs

xiii

Video Games ��264

Malicious Applications and Deep Fake ��264

Miscellaneous Applications ���264

Case Study | Digit Generation with MNIST ��265

Initial Imports ��265

Load and Process the MNIST Dataset ���266

Build the GAN Model ��267

Train the GAN Model ��275

Animate Generated Digits During the Training���281

Conclusion ��284

Index ���285

Table of ConTenTs

xv

About the Author

Orhan Gazi Yalçın is a joint PhD candidate at

the University of Bologna and the Polytechnic

University of Madrid. After completing

his double major in business and law, he

began his career in Istanbul, working for a

city law firm, Allen & Overy, and a global

entrepreneurship network, Endeavor. During

his academic and professional career, he

taught himself programming and excelled

in machine learning. He currently conducts

research on hotly debated law and AI topics

such as explainable artificial intelligence

and the right to explanation by combining his technical and legal skills.

In his spare time, he enjoys free diving, swimming, exercising, as well as

discovering new countries, cultures, and cuisines.

• You can visit Orhan’s personal web page at

www.orhangaziyalcin.com

• Also feel free to connect with Orhan on Linkedin at

www.linkedin.com/in/orhangaziyalcin

http://www.orhangaziyalcin.com
http://www.linkedin.com/in/orhangaziyalcin

xvii

About the Technical Reviewer

Vishwesh Ravi Shrimali graduated from BITS Pilani in 2018, where

he studied mechanical engineering. Since then, he has worked with

BigVision LLC on deep learning and computer vision and was involved in

creating official OpenCV AI courses. Currently, he is working at Mercedes

Benz Research and Development India Pvt. Ltd. He has a keen interest

in programming and AI and has applied that interest in mechanical

engineering projects. He has also written multiple blogs on OpenCV and

deep learning on LearnOpenCV, a leading blog on computer vision. He has

also coauthored Machine Learning for OpenCV4 (second edition) by Packt.

When he is not writing blogs or working on projects, he likes to go on long

walks or play his acoustic guitar.

xix

Acknowledgments

This book was written during a global lockdown due to the Covid-19

pandemic, which created a new normal that I have never experienced

before. Writing a book in the middle of a global crisis was a very intense

experience, and I was uncertain about taking this responsibility for a

long time. Thanks to my family and friends, I was able to complete the

book even earlier than scheduled. Now I am glad that I accepted Aaron’s

invitation, who guided me throughout the whole process. Thank you very

much for reaching out to me in the first place and making it possible to

have this book written.

I would like to thank Jessica Vakili for coordinating the entire project

and for being there whenever I needed. I would also like to thank Vishwesh

Ravi Shrimali for reviewing every single line of the book and providing me

with all the valuable comments, which helped to improve the quality of the

book tremendously.

Being surrounded with people who all have a positive attitude made

this experience very fruitful, and I am looking forward to working with

them in the future. Thank you all very much!

1© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0_1

CHAPTER 1

Introduction
In this book, we dive into the realms of deep learning (DL) and cover

several deep learning concepts along with several case studies. These case

studies range from image recognition to recommender systems, from art

generation to object clustering. Deep learning is part of a broader family

of machine learning (ML) methods based on artificial neural networks
(ANNs) with representation learning. These neural networks mimic the

human brain cells, or neurons, for algorithmic learning, and their learning

speed is much faster than human learning speed. Several deep learning

methods offer solutions to different types of machine learning problems:

(i) supervised learning, (ii) unsupervised learning, (iii) semi-supervised

learning, and (iv) reinforcement learning.

This book is structured in a way to also include an introduction to

the discipline of machine learning so that the reader may be acquainted

with the general rules and concepts of machine learning. Then, a detailed

introduction to deep learning is provided to familiarize the reader with the

sub-discipline of deep learning.

After covering the fundamentals of deep learning, the book covers

different types of artificial neural networks with their potential real-life

applications (i.e., case studies). Therefore, at each chapter, this book (i)

introduces the concept of a particular neural network architecture with

details on its components and then (ii) provides a tutorial on how to

apply this network structure to solve a particular artificial intelligence

(AI) problem.

https://doi.org/10.1007/978-1-4842-6513-0_1#DOI

2

Since the goal of this book is to provide case studies for deep learning

applications, the competency in several technologies and libraries is

sought for a satisfactory learning experience.

Before diving into machine learning and deep learning, we start with

the introduction to the technologies used in this book. This introduction

includes the latest developments and the reasoning as to why these

technologies are selected. Finally, this chapter also covers how to install

these technologies and prepare your environment with a minimum

amount of hassle. The technologies that are in the center of this book are

as follows:

• Our Selected Programming Language: Python 3.x

• Our Selected Deep Learning Framework: TensorFlow 2.x

• Our Development Environment: Google Colab (with

Jupyter Notebook alternative)

Note A TensorFlow Pipeline Guide showing how to use TensorFlow
can be found in Chapter 5, whereas the relevant libraries used with
TensorFlow are covered in Chapter 4.

Please note that this book assumes that you use Google Colab, which

requires almost no environment setup. The chapter also includes a local

Jupyter Notebook installation guide if you prefer a local environment. You

may skip the Jupyter Notebook installation section if you decide to use

Google Colab.

Note When learning a new programming discipline or technology,
one of the most demoralizing tasks is the environment setup process.
Therefore, it is important to simplify this process as much as possible.
Therefore, this chapter is designed with this principle in mind.

ChAPTer 1 InTroduCTIon

3

 Python as Programming Language
Python is a programming language created by Guido van Rossum as a side

project and was initially released in 1991. Python supports object-oriented

programming (OOP), a paradigm based on the concept of objects, which

can contain data, in the form of fields. Python prioritizes the programmer’s

experience. Therefore, programmers can write clear and logical code

for both small and large projects. It also contains support for functional

programming. Python is dynamically typed and garbage collected.

Python is also considered as an interpreted language because it goes

through an interpreter, which turns code you write into the language

understood by your computer’s processor. An interpreter executes

the statements of code “one by one.” On the other hand, in compiled

languages, a compiler executes the code entirely and lists all possible

errors at a time. The compiled code is more efficient than the interpreted

code in terms of speed and performance. However, scripted languages

such as Python show only one error message even though your code has

multiple errors. This feature helps the programmer to clear errors quickly,

and it increases the development speed.

 Timeline of Python
Let’s take a look at the timeline of Python:

• In the late 1980s, Python was conceived as a successor

to the ABC language.

• In December 1989, Guido van Rossum started Python’s

implementation.

• In January 1994, Python version 1.0 was released.

The major new features included were the functional

programming tools lambda, map, filter, and reduce.

ChAPTer 1 InTroduCTIon

4

• October 2000, Python 2.0 was released with major new

features, including a cycle-detecting garbage collector

and support for Unicode.

• Python 3.0 was released on December 3, 2008. It was

a major revision of the language that is only partially

backward compatible. Many of its major features were

backported to Python 2.6.x and 2.7.x version series.

Releases of Python 3 include the 2 to 3 utility, which

automates (at least partially) the translation of Python 2

code to Python 3.

• As of January 1, 2020, no new bug reports, fixes, or

changes are made to Python 2, and Python 2 is no
longer supported.

 Python 2 vs. Python 3
One of the common questions a new deep learning programmer might

have is whether to use Python 2.x or Python 3.x since there are many

outdated blog posts and web articles comparing two major versions. As of

2020, it is safe to claim that these comparisons are not relevant. As you may

see in the preceding timeline, the delayed deprecation of Python 2.x finally

took place as of January 1, 2020. Therefore, programmers may not find

official support for Python 2.x versions anymore.

One of the essential skills for a programmer is to be up to date with

the latest technology, and therefore, this book only utilizes the use of

Python 3.x versions. For the readers who are only familiar with Python 2.x

versions, this preference should not pose a problem since the differences

between the syntax used in this book for Python 2.x and Python 3.x are

not significant. Therefore, Python 2.x programmers may immediately

familiarize themselves with the source code in this book.

ChAPTer 1 InTroduCTIon

5

 Why Python?
Compared to other programming languages, there are several reasons

for Python’s popularity among data scientists and machine learning

engineers. 2019 Kaggle Machine Learning and Data Science Survey

revealed that Python is by far the most popular programming language for

data science and machine learning; see Figure 1-1.

There are several reasons for Python’s popularity compared to

other languages. A non-exhaustive list of benefits of Python may be the

following.

Figure 1-1. 2019 Kaggle Machine Learning and Data Science Survey

ChAPTer 1 InTroduCTIon

6

 Ease of Learning

One of the main reasons for newcomers to choose Python as their primary

programming language is its ease of learning. When compared to other

programming languages, Python offers a shorter learning curve so that

programmers can achieve a good level of competency in a short amount

of time. Python’s syntax is easier to learn, and the code is more readable

compared to other popular programming languages. A common example

to show this is the amount of code required by different programming

languages to print out “Hello, World!”. For instance, to be able to print out

Hello, World! in Java, you need the following code:

Hello, World! In Java

public class Main {

 public static void main(String[] args) {

 System.out.println("Hello, World!");

 }

}

The same result may be achieved with a single line of code in Python:

Hello, World! in Python

print("Hello, World!")

 A Variety of Available Data Science Libraries

Another powerful characteristic of Python compared to other

programming languages is its wide variety of data science libraries.

The data science libraries such as Pandas, NumPy, SciPy, and scikit-

learn reduce the time to prepare the data for model training with their

standardized functions and modules for logical and mathematical

operations. Furthermore, thanks to the vibrant community of Python

developers, as soon as the developers detect a common problem, a new

library is immediately designed and released to address this problem.

ChAPTer 1 InTroduCTIon

7

 Community Support

The powerful community support is another advantage of Python over

other programming languages. More and more volunteers are releasing

Python libraries, and this practice made Python the language with modern

and powerful libraries. Besides, a high number of seasoned Python

programmers are always ready to help other programmers with their

problems on online community channels such as Stack Overflow.

 Visualization Options

Data visualization is an important discipline to extract insights from raw

data, and Python offers several useful visualization options. The good old

Matplotlib is always there with the most customizable options. In addition,

Seaborn and Pandas Plot API are powerful libraries that streamline the

most common visualization tasks used by data scientists. Additionally,

libraries like Plotly and Dash allow users to create interactive plots and

sophisticated dashboards to be served on the Web. With these libraries,

data scientists may easily create charts, draw graphical plots, and facilitate

feature extraction.

Now that we covered why favorite language of data scientists is Python,

we can move on to why we use TensorFlow as our machine learning

framework.

 TensorFlow As Deep Learning Framework

 TensorFlow is an open source machine

learning platform with a particular focus on neural networks, developed by

the Google Brain team. Despite initially being used for internal purposes,

ChAPTer 1 InTroduCTIon

8

Google released the library under the Apache License 2.0 in November

2015, which made it an open source library.1 Although the use cases of

TensorFlow are not limited to machine learning applications, machine

learning is the field where we see TensorFlow’s strength.

The two programming languages with stable and official

TensorFlow APIs are Python and C. Also, C++, Java, JavaScript, Go, and

Swift are other programming languages where developers may find

limited-to-extensive TensorFlow compatibility. Finally, there are third-

party TensorFlow APIs for C#, Haskell, Julia, MATLAB, R, Scala, Rust,

OCaml, and Crystal.

 Timeline of TensorFlow
Although this book focuses on TensorFlow 2.x with Python API, there

are several complementary TensorFlow libraries released by Google.

Understanding the development of the TensorFlow platform is essential to

see the full picture. The timeline of the milestones achieved by Google as

part of the TensorFlow project may be summarized as follows:

• In 2011, Google Brain built a machine learning system

called DistBelief using deep learning neural networks.

• November 2015, Google released the TensorFlow

library under the Apache License 2.0 and made it

open source to accelerate the advancements in

artificial intelligence.

1 Google Just Open Sourced TensorFlow, Its Artificial Intelligence Engine
| WIRED, www.wired.com/2015/11/google-open-sources-its-artificial-
intelligence-engine/ (last visited Jun 5, 2020)

ChAPTer 1 InTroduCTIon

http://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/
http://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/

9

• In May 2016, Google announced an application-

specific integrated circuit (an ASIC) built for machine

learning and tailored for TensorFlow, called Tensor
Processing Unit (TPU).

• In February 2017, Google released TensorFlow 1.0.0.

• In May 2017, Google announced TensorFlow Lite, a

library for machine learning development in mobile

devices.

• In December 2017, Google introduced Kubeflow,

which allows operation and deployment of TensorFlow

on Kubernetes.

• In March 2018, Google announced TensorFlow.js

version 1.0 for machine learning with JavaScript.

• In July 2018, Google announced the Edge TPU. Edge

TPU is Google’s purpose-built ASIC chip designed to

run TensorFlow Lite machine learning (ML) models on

smartphones.

• In January 2019, Google announced TensorFlow 2.0 to

be officially available in September 2019.

• In May 2019, Google announced TensorFlow Graphics

for deep learning in computer graphics.

• In September 2019, TensorFlow Team released

TensorFlow 2.0, a new major version of the library.

This timeline shows that the TensorFlow platform is maturing.

Especially with the release of TensorFlow 2.0, Google has improved the

user-friendliness of TensorFlow APIs significantly. Besides, the TensorFlow

team announced that they don’t intend to introduce any other significant

changes. Therefore, it is safe to assume that the methods and syntax

included in this book are to keep their relevance for a long time.

ChAPTer 1 InTroduCTIon

10

 Why TensorFlow?
There are more than two dozens of deep learning libraries developed by

tech giants, tech foundations, and academic institutions that are available

to the public. While each framework has its advantage in a particular sub-

discipline of deep learning, this book focuses on TensorFlow with Keras

API. The main reason for choosing TensorFlow over other deep learning

frameworks is its popularity. On the other hand, this statement does not

indicate that the other frameworks are better – yet, less popular – than

TensorFlow. Especially with the introduction of version 2.0, TensorFlow

strengthened its power by addressing the issues raised by the deep

learning community. Today, TensorFlow may be seen as the most popular

deep learning framework, which is very powerful and easy to use and has

excellent community support.

 What’s New in TensorFlow 2.x
Since its introduction in 2015, TensorFlow has grown into one of the

most advanced machine learning platforms in the market. Researchers,

developers, and companies widely adopted the technologies introduced by

the TensorFlow team. Around its 4th birthday, TensorFlow 2.0 was released

in September 2019. The TensorFlow team put a lot of effort into simplifying

the APIs by cleaning up deprecated APIs and reducing duplication. The

TensorFlow team introduced several updates to achieve simplicity and ease

of use in TensorFlow 2.0. These updates may be listed as follows:

 1. Easy model building with Keras and eager execution

 2. Robust model deployment in production level on

any platform

 3. Robust experimentation for research

 4. Simplified API thanks to cleanups and duplication

reduction

ChAPTer 1 InTroduCTIon

11

 Easy Model Building with Keras and Eager Execution

The TensorFlow team further streamlined the model building experience

to respond to expectations with the new or improved modules such as

tf.data, tf.keras, and tf.estimators and the Distribution Strategy

API.

Load Your Data Using tf.data

In TensorFlow 2.0, training data is read using input pipelines created with

the tf.data module. tf.feature_column module is used to define feature

characteristics. What is useful for newcomers is the new DataSets module.

TensorFlow 2.0 offers a separate DataSets module which offers a range of

popular datasets and allows developers to experiment with these datasets.

Build, Train, and Validate Your Model with tf.keras, or Use
Premade Estimators

In TensorFlow 1.x, developers could use the previous versions of tf.

contrib, tf.layers, tf.keras, and tf.estimators to build models.

Offering four different options to the same problem confused the

newcomers and drove some of them away, especially to PyTorch.

TensorFlow 2.0 simplified the model building by limiting the options

to two improved modules: tf.keras (TensorFlow Keras API) and tf.

estimators (Estimator API). TensorFlow Keras API offers a high-level

interface that makes model building easy, which is especially useful

for proof of concepts (POC). On the other hand, Estimator API is better

suited for production-level models that require scaled serving and

increased customization capability.

ChAPTer 1 InTroduCTIon

12

Run and Debug with Eager Execution, Then Use AutoGraph API
for the Benefits of Graphs

TensorFlow 1.x versions were prioritizing TensorFlow graphs, which is not

friendly to newcomers. Even though this complicated methodology was

kept in TensorFlow 2.0, eager execution – the contrast concept – was made

default. Google explained the initial reasoning for this change with the

following statement:

Eager execution is an imperative, define-by-run interface where
operations are executed immediately as they are called from
Python. This makes it easier to get started with TensorFlow, and
can make research and development more intuitive.2

Eager execution makes the model building easier. It offers fast

debugging capability with immediate runtime errors and integration

with Python tools, which makes TensorFlow more beginner friendly. On

the other hand, graph execution has advantages for distributed training,

performance optimizations, and production deployment. To fill this gap,

TensorFlow introduced AutoGraph API called via tf.function decorator.

This book prioritizes eager execution over graph execution to achieve a

steep learning curve for the reader.

Use Distribution Strategies for Distributed Training

Model training with large datasets necessitates distributed training with

multiple processors such as CPU, GPU, or TPU. Even though TensorFlow

1.x has support for distributed training, Distribution Strategy API optimizes

and streamlines the distributed training across multiple GPUs, multiple

2 Google AI Blog: Eager Execution: An imperative, define-by-run interface
to TensorFlow, https://ai.googleblog.com/2017/10/eager-execution-
imperative-define-by.html (last visited Jun 8, 2020)

ChAPTer 1 InTroduCTIon

https://ai.googleblog.com/2017/10/eager-execution-imperative-define-by.html
https://ai.googleblog.com/2017/10/eager-execution-imperative-define-by.html

13

machines, or TPUs. TensorFlow also provides templates to deploy training

on Kubernetes clusters in on-prem or cloud environments, which makes

the training more cost-effective.

Export to SavedModel

After training a model, developers may export to SavedModel. tf.saved_

model API may be used to build a complete TensorFlow program with

weights and computations. This standardized SavedModel can be used

interchangeably across different TensorFlow deployment libraries such as

(i) TensorFlow Serving, (ii) TensorFlow Lite, (iii) TensorFlow.js, and (iv)

TensorFlow Hub.

 Robust Model Deployment in Production on Any
Platform

TensorFlow has always made efforts to provide a direct path to production

on different devices. There are already several libraries which may be used

to serve the trained models on dedicated environments.

TensorFlow Serving

TensorFlow Serving is a flexible and high-performance TensorFlow library

that allows models to be served over HTTP/REST or gRPC/Protocol

Buffers. This platform is platform and language-neutral as you may make

an HTTP call using any programming language.

TensorFlow Lite

TensorFlow Lite is a lightweight deep learning framework to deploy models

to mobile devices (iOS and Android) or embedded devices (Raspberry Pi

or Edge TPUs). Developers may pick a trained model, convert the model

into a compressed fat buffer, and deploy to a mobile or embedded device

with TensorFlow Lite.

ChAPTer 1 InTroduCTIon

14

TensorFlow.js

TensorFlow.js enables developers to deploy their models to web browsers

or Node.js environments. Developers can also build and train models in

JavaScript in the browser using a Keras-like API.

With TensorFlow 2.0, the capability and parity across platforms and

components are greatly improved with standardized exchange formats and

aligning APIs. The new simplified architecture of TensorFlow 2.0 is shown

by the TensorFlow team in Figure 1-2.

 Improved Experimentation Experience for Researchers

Researchers often need an easy-to-use tool to take their research ideas

from concept to code. A proof of concept may only be achieved after

several iterations and the concept may be published after several

Figure 1-2. A Simplified Diagram for the TensorFlow 2.0 Architecture3

3 What’s coming in TensorFlow 2.0 - TensorFlow - Medium, https://medium.
com/tensorflow/whats-coming-in-tensorflow-2-0-d3663832e9b8 (last visited
Jun 8, 2020)

ChAPTer 1 InTroduCTIon

https://medium.com/tensorflow/whats-coming-in-tensorflow-2-0-d3663832e9b8
https://medium.com/tensorflow/whats-coming-in-tensorflow-2-0-d3663832e9b8

15

experiments. TensorFlow 2.0 aims to make it easier to achieve this process.

Keras Functional API – paired with Model Subclassing API – offers enough

capability to build complex models. tf.GradientTape and tf.custom_

gradient are essential to generate a custom training logic.

Any machine learning project starts with a proof of concept (POC).

Developers need to adopt an agile methodology and use easy-to-use

tools to take new ideas from concept to evidence-backed publication.

Finally, TensorFlow 2.0 offers powerful extensions such as Ragged Tensors,

TensorFlow Probability, and Tensor2Tensor to ensure flexibility and

increased experimentation capability.

 TensorFlow Competitors
Even though this book uses TensorFlow as the primary deep learning

framework, it is essential to provide a brief introduction to competing

deep learning frameworks and libraries. Although the total number of

deep learning frameworks is more than 20, many of them are not currently

maintained by their designers. Therefore, we can only talk about a handful

of active and reliable deep learning frameworks, which are covered as

follows.

 Keras

 Keras is an open source neural network library written in Python

which can run on top of TensorFlow, Microsoft Cognitive Toolkit (CNTK),

Theano, R, and PlaidML. François Chollet, a Google engineer, designed

Keras to enable fast experimentation with neural networks. It is very

user-friendly, modular, and extensible. Keras also takes pride in being

simple, flexible, and powerful. Due to these features, Keras is viewed as the

go-to deep learning library by newcomers.

ChAPTer 1 InTroduCTIon

16

Keras should be regarded as a complementary option to TensorFlow

rather than a rival library since it relies on the existing deep learning

frameworks. In 2017, Google’s TensorFlow team agreed to support Keras

in its core library. With TensorFlow 2.0, the Keras API has become more

streamlined and integrated. This book takes advantage of TensorFlow

Keras API, which makes it much easier to create neural networks.

Keras official Website: www.keras.io

 PyTorch

 PyTorch is an open source neural network library primarily

developed and maintained by Facebook’s AI Research Lab (FAIR) and

initially released in October 2016. FAIR built PyTorch on top of Torch

library, another open source machine learning library, a scientific

computing framework, and a scripting language based on the Lua

programming language, initially designed by Ronan Collobert, Samy

Bengio, and Johnny Mariéthoz.

Since PyTorch is developed by Facebook and offers an easy-to-

use interface, its popularity has gained momentum in recent years,

particularly in academia. PyTorch is the main competitor of TensorFlow.

Prior to TensorFlow 2.0, despite the issues on the ease of use of its

APIs, TensorFlow has kept its popularity due to its community support,

production performance, and additional use-case solutions. Besides, the

latest improvements with TensorFlow 2.0 have introduced remedies to the

shortcomings of TensorFlow 1.x. Therefore, TensorFlow will most likely

keep its place despite the rising popularity of PyTorch.

PyTorch official Website: www.pytorch.org

ChAPTer 1 InTroduCTIon

http://www.keras.io
http://www.pytorch.org

17

 Apache MXNet

 MXNet is an open source deep learning framework

introduced by Apache Foundation. It is a flexible, scalable, and fast deep

learning framework. It has support in multiple programming languages

(including C++, Python, Java, Julia, MATLAB, JavaScript, Go, R, Scala, Perl,

and Wolfram Language).

MXNet is used and supported by Amazon, Intel, Baidu, Microsoft,

Wolfram Research, Carnegie Mellon, MIT, and the University of

Washington. Although several respected institutions and tech companies

support MXNet, the community support of MXNet is limited. Therefore, it

remains less popular compared to TensorFlow, Keras, and PyTorch.

MXnet official Website: mxnet.apache.org

 CNTK (Microsoft Cognitive Toolkit)

 Microsoft released CNTK as its open source deep learning

framework in January 2016. CNTK, also called the Microsoft Cognitive

Toolkit, has support in popular programming languages such as Python,

C++, C#, and Java. Microsoft utilized the use of CNTK in its popular

application and products such as Skype, Xbox, and Cortana, particularly

for voice, handwriting, and image recognition. However, as of January

2019, Microsoft stopped releasing new updates to the Microsoft Cognitive

Toolkit. Therefore, CNTK is considered deprecated.

Microsoft Cognitive Toolkit official Website: www.cntk.ai

ChAPTer 1 InTroduCTIon

http://www.cntk.ai

18

 Final Evaluation

The designers and the maintainers of the abovementioned deep learning

frameworks evidently show a shift in the deep learning framework

development. Deep learning started as an academic research field in

the universities with little to no real-life applications. However, this has

changed with the increasing computing power with lower processing costs

and with the rise of the Internet. An increasing number of real-life use

cases of deep learning applications have been feeding the appetites of the

large tech companies. The earlier academic projects such as Torch, Caffe,

and Theano have paved the way for the development of deep learning

libraries such as TensorFlow, Keras, and PyTorch. The industry players

such as Google, Amazon, and Facebook have hired the maintainers of

these earlier projects for their own open source deep learning frameworks.

Therefore, the support for the earlier projects is nonexistent to very

limited, while the new generation frameworks are becoming increasingly

more powerful.

As of 2020, it is safe to state that the real competition is taking place

between TensorFlow and PyTorch. Due to its maturity, extensive support

in multiple programming languages, popularity in the job market,

extensive community support, and supporting technologies, TensorFlow

has the upper hand. In 2018, Jeff Hale developed a power ranking for the

deep learning frameworks in the market. He weighs the mentions found

in the online job listings, the relevant articles and the blog posts, and on

GitHub. His results also support the preceding evaluation; see Figure 1-3.

ChAPTer 1 InTroduCTIon

19

Therefore, due to its technological advancement and its popularity in

the tech community, TensorFlow is the single deep learning framework

used in this book. In the next section, we take a look at the new features

introduced with TensorFlow 2.0.

 Final Considerations

The rising popularity of rival libraries offering easy-to-use modules such

as PyTorch was an indication that TensorFlow 1.x was not on the right

track. The rise of Keras library with its sole purpose to facilitate the use

of TensorFlow – along with a few others – was another indication that

TensorFlow must streamline its workflow to keep its existing user base.

TensorFlow 2.0 was introduced to mitigate this problem, and it seems that

most of the criticism was addressed with both newly introduced APIs and

improved existing APIs.

Figure 1-3. Deep Learning Framework Power Scores 2018 by Jeff Hale4

4 Deep Learning Framework Power Scores 2018 Towards Data Science,
https://towardsdatascience.com/deep-learning-framework-power-scores-
2018-23607ddf297a (last visited Jun 6, 2020)

ChAPTer 1 InTroduCTIon

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

20

 Installation and Environment Setup
Since we addressed the question of why TensorFlow is the selected

deep learning framework for this book and why Python is the selected

programming language, it is time to set up a programming environment

for deep learning.

Machine learning tasks require continuous testing and proof of

concept work. Traditional Python running environments may hinder the

speed of testing. Therefore, developers usually resort to interactive running

environments for data cleaning, model building, and training. There are

several advantages to using interactive environments:

• With interactive running environments, developers can

run the part of code, and the outputs are still kept in the

memory.

• The next part of the code may still use the output from

the previous part of the code.

• Errors given in one part of the code may be fixed, and

the rest of the code may still be run.

• A large code file may be broken into pieces, which

makes debugging extremely simple.

We can pretty much say that using an interactive programming

environment has become an industry standard for deep learning studies.

Therefore, we will also follow this practice for the deep learning projects

throughout this book.

There are several viable options to build and train models on

interactive programming environments for Python TensorFlow

programmers. However, we will dive into the most popular options which

offer different benefits for their users: (i) Jupyter Notebook and (ii) Google
Colab.

ChAPTer 1 InTroduCTIon

21

 Interactive Programming Environments: IPython,
Jupyter Notebook, and Google Colab
There are several tools used in Python interactive programming

environments. The central technology making interaction possible is

IPython. IPython is an improved shell and read–eval–print loop (REPL) for

Python. “IPython Notebook” is a product developed with IPython accessed

as a “notebook” via a web browser. IPython handles two fundamental

roles:

• The Terminal IPython as a REPL

• The IPython kernel that provides computation and

communication with the front-end interfaces such as

IPython Notebook

Developers can write codes, take notes, and upload media to their

IPython Notebook. The growth of the IPython Notebook project led to

the creation of Project Jupyter, which contains the notebook tool and

the other interactive tools for multiple languages (Julia, Python, and R).

Jupyter Notebook and its flexible interface extend the notebook beyond

code to visualization, multimedia, collaboration, and many other features,

which creates a comfortable environment for data scientists and machine

learning experts.

If you want your development experience to the next step, Google

Cloud, which is a cloud-based Jupyter Notebook environment, is the

ultimate tool. Google Colab, additionally, offers collaboration options,

access to Google’s computing power, and cloud-based hosting features.

The relationship between IPython, Jupyter Notebook, and Google Colab is

shown in Figure 1-4.

ChAPTer 1 InTroduCTIon

22

In the next sections, we dive into the details of IPython, Jupyter

Notebook, and Google Colab. We will also (i) install Jupyter Notebook with

Anaconda distribution and (ii) setup Google Colab.

 IPython
IPython is a command shell and a kernel, which powers interactive Python

notebooks. IPython allows programmers to run their code in a notebook

environment quickly. IPython provides several features:

• Interactive shells (Terminal and Qt Console)

• A web-based notebook interface with support for code,

text, and media

• Support for interactive data visualization and GUI

toolkits

Read–eval–print loop Terminal,
Kernel with the frontend interfaces

Running code,
Taking notes

Show multimedia
Interactivity

Collaboration
Additional Hardware

Cloud Based

iP
yt

ho
n

Ju
py

te
r N

ot
eb

oo
k

Go
og

le
Co

lab

Figure 1-4. The Relation Between IPython, Jupyter Notebook, and
Google Colab

ChAPTer 1 InTroduCTIon

23

• Flexible and embeddable interpreters to load into

projects

• Parallel computing toolkits

IPython Project has grown beyond running Python scripts and is on its

way to becoming a language-agnostic tool. As of IPython 4.0, the language-

agnostic parts are gathered under a new project, named Project Jupyter.

The name Jupyter is a reference to core programming languages supported

by Jupyter, which are Julia, Python, and R. As of the implementation of this

spin-off decision, IPython, now, only focuses on interactive Python, and

Jupyter focuses on tools like the notebook format, message protocol, QT

Console, and notebook web application.

 Jupyter Notebook

 Project Jupyter is a spin-off open source project born out of

IPython Project in 2014. Jupyter is forever free for all to use, and it is

developed through the consensus of the Jupyter community. There are

several useful tools released as part of Jupyter Project, such as Jupyter

Notebook, JupyterLab, Jupyter Hub, and Voilà. While all these tools may be

used simultaneously for accompanying purposes, installing Jupyter

Notebook suffices the environment requirements of this book.

On the other hand, as an open source project, Jupyter tools may be

integrated into different toolsets and bundles. Instead of going through

installing Jupyter Notebook through Terminal (for macOS and Linux) or

Command Prompt (for Windows), we will use Anaconda distribution,

which will make the environment installation on local machines.

ChAPTer 1 InTroduCTIon

24

 Anaconda Distribution

 “Anaconda is a free and open source distribution of the
Python and r programming languages for scientific computing, that
aims to simplify package management and deployment.”

Environment setup is one of the cumbersome tasks for programming.

Developers often encounter unique problems, mainly due to their

operating system and its version. With Anaconda distribution, one can

easily install Jupyter Notebook and other useful data science libraries.

 Installing on Windows

 1. Download Anaconda Installer at www.anaconda.

com/products/individual by selecting the 64-Bit

Graphical Installer for Python 3.x; see Figure 1-5.

 2. Double-click the installer to launch.

 3. Click the “Next” button.

Figure 1-5. Anaconda Installer Page

ChAPTer 1 InTroduCTIon

http://www.anaconda.com/products/individual
http://www.anaconda.com/products/individual

25

 4. Read the licensing agreement, and click “I agree.”

 5. Select an install for “Just Me,” and click the “Next”

button.

 6. Select a destination folder to install Anaconda

and click the “Next” button (make sure that your

destination path does not contain spaces or Unicode

characters).

 7. Make sure (i) “Add Anaconda3 to your PATH

environment variable” option is unchecked and

(ii) “Register Anaconda3 as my default Python 3.x”

option is checked, as shown in Figure 1-6.

Figure 1-6. Anaconda Installation Window for Windows OS

ChAPTer 1 InTroduCTIon

26

 8. Click the “Install” button, and wait for the

installation to complete.

 9. Click the “Next” button.

 10. Click the “Next” button to skip installing PyCharm

IDE.

 11. After a successful installation, you will see the

“Thank you for installing Anaconda Individual

Edition” message. Click the “Finish” button.

 12. You can now open Jupyter Notebook by finding the

“Anaconda- Navigator” app on your Start menu. Just

open the app, and click the “Launch” button in the

Jupyter Notebook card. This step will prompt a web

browser on localhost:8888.

 Installing on Mac

 1. Download Anaconda Installer at www.anaconda.

com/products/individual by selecting the 64-Bit

Graphical Installer for Python 3.x; see Figure 1-7.

Figure 1-7. Anaconda Installer Page

ChAPTer 1 InTroduCTIon

http://www.anaconda.com/products/individual
http://www.anaconda.com/products/individual

27

 2. Double-click the downloaded file, and click the

“Continue” button to start the installation.

 3. Click the “Continue” buttons on the Introduction,

Read Me, and License screens.

 4. Click the “Agree” button on the prompt window to

agree to the terms of the software license agreement.

 5. Make sure “Install for me only” option is selected

in the Destination Select screen, and click the

“Continue” button.

 6. Click the Install button to install Anaconda, and wait

until the installation is completed.

 7. Click the “Continue” button to skip installing the

PyCharm IDE.

 8. Click the “Close” button, as shown in Figure 1-8, to

close the installer.

Figure 1-8. Anaconda Installation Window for macOS

ChAPTer 1 InTroduCTIon

28

 9. You can now open Jupyter Notebook by finding the

“Anaconda- Navigator” app under your Launchpad.

Just open the app and click the “Launch” button in

the Jupyter Notebook card. This step will prompt a

Terminal and a web browser on localhost:8888.

 10. You can create a new IPython Notebook by clicking

New ➤ Python3, as shown in Figure 1-9.

Jupyter Notebook comes with important data science libraries

such as Pandas, NumPy, and Matplotlib. However, if you decide to use

Jupyter Notebook for deep learning, you still have to install TensorFlow.

TensorFlow installation can be achieved with Python’s “pip” package

manager since we already installed Python with Anaconda distribution.

You may follow one of the following methods to install TensorFlow to your

local machine.

Figure 1-9. Create a New Jupyter Notebook

ChAPTer 1 InTroduCTIon

29

Operating
System

Alternative Methods to Install TensorFlow

macoS For Mac, just open a Terminal window from Launchpad under other

folder and paste the following script:

pip install --upgrade tensorflow

Windows For Windows, go to the “Start” menu on your Windows machine,

search for “cmd,” right-click it and choose “run as administrator,”

and paste the same script mentioned earlier:

pip install --upgrade tensorflow

macoS/

Windows

For both macoS and Windows, create a new IPython notebook, as

shown earlier. Copy and paste the following code to an empty cell and

click the “run” button, located on the top of the page:

!pip install --upgrade tensorflow

Note Beware of the exclamation point!

On the other hand, if you would like to use Google Colab, you don’t

have to install TensorFlow since Google Colab Notebooks come with

preinstalled TensorFlow.

ChAPTer 1 InTroduCTIon

30

 Google Colab
Colaboratory, or Colab for short, is a Google product, which allows

developers to write and execute Python code through a browser. Google

Colab is an excellent tool for deep learning tasks. Google Colab is a hosted

Jupyter Notebook that requires no setup and has an excellent free version,

which gives free access to Google computing resources such as GPUs.

As in Anaconda distribution, Google Colab comes with important

data science libraries such as Pandas, NumPy, Matplotlib, and – more

importantly – TensorFlow. Colab also allows sharing the notebooks with

other developers and saves your file to Google Drive. You can access and

run your code in the Colab Notebook from anywhere.

In summary, Colab is just a specialized version of the Jupyter

Notebook, which runs on the cloud and offers free computing resources.

Caution As a reader, you may opt to use a local device and install
Anaconda distribution shown earlier. using Jupyter notebook will not
cause any problem as long as you are familiar with Jupyter notebook.
on the other hand, to be able to keep this book and the code up to
date, I will deliberately use Google Colab so that I can revisit the
code and make updates. Therefore, you will always have access to
the latest version of the code. Therefore, I recommend you to use
Google Colab for this book.

 Google Colab Setup

The Google Setup process is relatively easy and can be completed with the

following steps across all devices:

ChAPTer 1 InTroduCTIon

31

 1. Visit colab.research.google.com, which will direct

you to the Google Colaboratory Welcome Page;

see Figure 1-10.

 2. Click the “Sign in” button on the right top.

 3. Sign in with your Gmail account. Create one if you

don’t have a Gmail account; see Figure 1-11.

Figure 1-10. A Screenshot of Google Colab Welcome Notebook

Figure 1-11. Google Sign in Page

ChAPTer 1 InTroduCTIon

32

 4. As soon as you complete the sign-in process, you are

ready to use Google Colab.

 5. You may easily create a new Colab Notebook on this

page by clicking File ➤ New notebook. You can see

an example Colab notebook in Figure 1-12.

 Hardware Options and Requirements
Deep learning is computationally very intensive, and large deep learning

projects require multiple machines working simultaneously with distributed

computing. Processing units such as CPUs, GPUs, and TPUs, RAM, hard

drives such as HDD and SSD, and, finally, power supply units are important

hardware units affecting the overall training performance of a computer.

For projects using enormous datasets for training, having an abundant

computing power along with the right set of hardware is extremely crucial.

The most critical component for model training with large datasets is the

processing unit. Developers often use GPUs and TPUs when the task is too

big, whereas CPUs may be sufficient for small to medium-size training tasks.

This book does not contain computationally hungry projects since

such projects may discourage and demotivate the reader. Therefore,

the average computer suffices the computational power requirements

for this book. Besides, if you follow the tutorials with Google Colab, as

recommended, the sources offered in Google Colab – which include GPUs,

as well – are more than enough for the projects in this book. Therefore, you

do not have to worry about your hardware at all.

Figure 1-12. A Screenshot of Empty Google Colab Notebook

ChAPTer 1 InTroduCTIon

33© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0_2

CHAPTER 2

Introduction to
Machine Learning
This chapter aims to make an introduction to the field of machine learning

and to clarify the scope of similar domains, particularly deep learning. It

also aims to compare different machine learning approaches, introduce

some of the popular machine learning models, mention significant

machine learning concepts, and walk you through the steps of machine

learning. This chapter is a very significant one since deep learning is a

subsection of machine learning, and therefore, most explanations are also

valid for deep learning.

 What Is Machine Learning?
As we all know, computers do not have cognitive abilities, and they cannot

reason on their own. However, they are perfect at processing data, and

they can complete difficult calculation tasks in a small amount of time.

They can process anything so long as we provide them with detailed,

step-by-step logical and mathematical instructions. So, if we can represent

the cognitive abilities of a human with logical operations, computers can

develop cognitive skills.

https://doi.org/10.1007/978-1-4842-6513-0_2#DOI

34

Consciousness is one of the hotly debated topics in artificial

intelligence: Can computers become conscious? While the scope of this

discussion is on if machines can mimic human consciousness altogether

(general AI), in this book, we focus on mimicking particular human skills

for specific tasks (narrow AI). That’s where machine learning comes in.

The term “machine learning” was first coined in 1959 by Arthur

Samuel, an IBM scientist and pioneer in the field of computer gaming

and artificial intelligence. Throughout the 1950s, 1960s, and 1970s, the

early work on the neural networks was conducted with the goal to mimic

human brain. However, real-life applications of neural networks were

unfeasible for a long time due to the limitations of computer technology.

The fundamental machine learning research on other ML techniques (i.e.,

non-deep learning techniques which require fewer computer resources)

was popularized in the 1980s and 1990s. The advancements in computer

technology during this period partially allowed the adoption of machine

learning applications in real life. As the years passed, the limitations due

to immature computer technology were mostly eliminated, particularly,

in recent years. Although we always strive for better and more efficient

computing power and storage, now, we can at least quickly build

models, test them, and even deploy on the Internet for the whole world

to use. Today, the field of machine learning is very vibrant thanks to the

abundance of data, efficient data storage technologies, and faster and

cheaper processing power. Figure 2-1 summarizes timeline of artificial

intelligence.

Chapter 2 IntroduCtIon to MaChIne LearnIng

35

Machine learning is considered as a sub-discipline under the field of

artificial intelligence. Machine learning (ML) studies aim to automatically

improve the performance of the computer algorithms designed for

particular tasks with experience. In a machine learning study, the

experience is derived from the training data, which may be defined as

the sample data collected on previously recorded observations. Through

this experience, machine learning algorithms can learn and build

mathematical models to make predictions and decisions. The learning

process starts with feeding training data (e.g., examples, direct experience,

basic instructions), which contains implicit patterns, into the model. Since

computers have more processing power than humans, they can find these

valuable patterns in the data within a short amount of time. These patterns

are – then – used to make predictions and decisions on relevant events.

The learning may continue even after deployment if the developer builds a

suitable machine learning system which allows continuous training.

Previously, we might use machine learning in a few sub-
components of a system. Now we actually use machine
learning to replace entire sets of systems, rather than trying to
make a better machine learning model for each of the pieces.

—Jeff Dean

Figure 2-1. Timeline of Artificial Intelligence

Chapter 2 IntroduCtIon to MaChIne LearnIng

36

There is an ever-increasing use of machine learning applications in

different fields. These real-life applications vary to a great extent. Some use

cases may be listed as follows:

• Healthcare: Medical diagnosis given the patient’s

symptoms

• Ecommerce: Predicting the expected demand

• Law: Reviewing legal documents and alerting lawyers

about problematic provisions

• Social Network: Finding a good match given the user’s

preferences on a dating app

• Finance: Predicting the future price of a stock given the

historical data

This is obviously a non-exhaustive list, and there are hundreds, if not

thousands, of potential machine learning use cases. Depending on what

your goal is, there are many different methods to create a machine learning

model. These methods are usually grouped under four main approaches:

(i) supervised learning, (ii) semi-supervised learning, (iii) unsupervised

learning, and (iv) reinforcement learning.

Each method contains distinct differences in their design, but they all

follow the same underlying principles and conform to the same theoretical

background. In the upcoming sections, we will cover these different

approaches in more detail. But first, we will briefly talk about the scope of

adjacent fields: (i) artificial intelligence, (ii) deep learning, (iii) big data,

and (iv) data science.

Chapter 2 IntroduCtIon to MaChIne LearnIng

37

 Scope of Machine Learning and Its Relation
to Adjacent Fields
Once you start consuming machine learning contents such as books,

articles, video courses, and blog posts, you will often see terms such as

artificial intelligence, machine learning, deep learning, big data, and

data science. There is a slight level of ambiguity about the differences

between these terms. In this section, we clarify this ambiguity and state the

differences.

 Artificial Intelligence
Artificial intelligence (AI) is a broad umbrella term, and its definition

varies across different textbooks. The term AI is often used to describe

computers that simulate human intelligence and mimic “cognitive”

abilities that humans associate with the human mind. Problem-solving

and learning are examples of these cognitive abilities. The field of AI

contains machine learning studies since AI systems are capable of learning

from experiences. Generally speaking, machines with artificial intelligence

are capable of

• Understanding and interpreting data

• Learning from data

• Making “intelligent” decisions based on insights and

patterns extracted from data

These terms are highly associated with machine learning. Thanks

to machine learning, AI systems can learn and excel at their level of

consciousness. Machine learning is used to train AI systems and make

them smarter.

Chapter 2 IntroduCtIon to MaChIne LearnIng

38

 Deep Learning
Deep learning (DL) is a subfield of machine learning that exclusively uses

multiple layers of neurons to extract patterns and features from raw data.

These multiple layers of interconnected neurons create artificial neural

networks (ANNs); see Figure 2-2. An ANN is a special machine learning

algorithm designed to simulate the working mechanism of the human

brain. There are many different types of artificial neural networks intended

for several purposes. In summary, deep learning algorithms are a subset of

machine learning algorithms.

Just as in machine learning, all four approaches (supervised, semi-

supervised, unsupervised, and reinforcement learning) can be utilized in

deep learning. When there is an abundance of data and enough computing

power, deep learning almost always outperforms the other machine

learning algorithms. Deep learning algorithms are especially useful in

image processing, voice recognition, and machine translation.

Figure 2-2. An Artificial Neural Network

Chapter 2 IntroduCtIon to MaChIne LearnIng

39

 Data Science
Data science is an interdisciplinary field that sits at the intersection of

artificial intelligence, particular domain knowledge, information science,

and statistics. Data scientists use various scientific methods, processes,

and algorithms to obtain knowledge and draw insights from observed data.

In contrast with machine learning, the goal of a data science study

does not have to be model training. Data science studies often aim to

extract knowledge and insight to support the human decision-making

process without creating an AI system. Therefore, although there is an

intersection between data science and the other adjacent fields, the field

of data science differs from them since it does not have to deliver an

intelligent system or a trained model.

 Big Data
Big data is a field that aims to efficiently analyze a large amount of data

that cannot be processed with traditional data processing methods and

applications. Data with more observation usually brings more accuracy,

while high complexity may increase false discovery rates. The field of big

data studies on how to efficiently capture, store, analyze, search, share,

visualize, and update data when the size of a dataset is very large. Big

data studies can be used both in artificial intelligence (and its subfields)

and in data science. Big data sits at the intersection of all the other fields

mentioned earlier since its methods are crucial for all of them.

 The Taxonomy Diagram
The relationship between these adjacent terms may be visualized in the

following taxonomy diagram, as shown in Figure 2-3.

Chapter 2 IntroduCtIon to MaChIne LearnIng

40

This taxonomy is almost a clear evidence for the reasons behind the

ambiguity. Whenever we are talking about deep learning, we are also

talking about machine learning and artificial intelligence. When we are

working on a deep learning project, some might call it a data science

project or a big data project. These naming practices are not necessarily

incorrect, but they are confusing. Therefore, it is vital to know the

intersections and subtractions of these fields.

 Machine Learning Approaches and Models
Top machine learning approaches are categorized depending on the

nature of their feedback mechanism for learning. These different

approaches may be listed as follows:

• Supervised learning

• Unsupervised learning

Figure 2-3. The Taxonomy of Artificial Intelligence and Data Science

Chapter 2 IntroduCtIon to MaChIne LearnIng

41

• Semi-supervised learning

• Reinforcement learning

Most of the machine learning problems may be addressed by adopting

one of these approaches. Yet, we may still encounter complex machine

learning solutions that do not fit into one of these approaches. In this

section, we will briefly cover the scope of these four main machine

learning approaches, along with their application examples. This

taxonomy is crucial in the sense that it will help you to quickly uncover

the nature of a problem you may encounter in the future, analyze your

resources, and develop a suitable solution. Let’s start with the supervised

learning approach.

 Supervised Learning
The supervised learning approach can be adopted when there is a

dataset containing the records of the response variable values (or labels).

Depending on the context, this data with labels is usually referred to as

“labeled data” and “training data.” For example, when we try to predict a

person’s height using their weight, age, and gender, we need the training

data that contains people’s weight, age, and gender info along with their

real heights. This data allows the machine learning algorithm to discover

the relationship between height and the other variables. Then, using this

knowledge, the model can predict the height of a given person.

For example, we can mark emails as “spam” or “not spam” based on

the differentiating features of the previously seen spam and not-spam

emails such as the lengths of the emails and use of particular keywords

in the emails. Learning from training data continues until the machine

learning model achieves a high level of accuracy on the training data.

There are two main supervised learning problems: (i) classification

problems and (ii) regression problems. In classification problems, the

models learn to classify an observation based on their variable values.

Chapter 2 IntroduCtIon to MaChIne LearnIng

42

During the learning process, the model is exposed to a lot of observations

with their labels. For example, after seeing thousands of customers with

their shopping habits and gender information, a model may successfully

predict the gender of a new customer based on their shopping habits.

Binary classification is the term used for grouping under two labels such

as male and female. Another binary classification example might be

predicting whether the animal in a picture is a “cat” or “not cat,” as shown

in Figure 2-4.

On the other hand, multilabel classification is used when there are

more than two labels. Identifying and predicting handwritten letters and

number on an image would be an example of multilabel classification.

In regression problems, the goal is to calculate a value by taking

advantage of the relationship between the other variables (i.e.,

independent variables, explanatory variables, or features) and the target

variable (i.e., dependent variable, response variable, or label). The strength

of the relationship between our target variable and the other variables

TRAINING“cat”

“cat”

“cat”

“cat”

“not cat”

“cat”

PREDICTING

Figure 2-4. Classification Problem in Supervised Learning1

1 Icons made by Freepik, Those icons, Eucalyp from www.flaticon.com

Chapter 2 IntroduCtIon to MaChIne LearnIng

http://www.flaticon.com

43

is a critical determinant of the prediction value, along with the values

of the explanatory variables for the observation. Predicting how much a

customer would spend based on its historical data is a regression problem.

There are dozens of different machine learning algorithms suitable for

supervised learning. Since the focus of this book is on deep learning, we

only cover some of the more popular ones without going into their details.

• Linear and Logistic Regression: Linear regression is

a linear approach to model the relationship between

a numerical response variable (Y) and one or more

explanatory variables (Xs). Logistic regression, on the

other hand, is a slightly different method to model the

probability of a particular class or event to exist, such

as male/female for gender. Therefore, linear regression

is used for regression problems, whereas logistic

regression is mostly used for classification problems.

• Decision Trees and Ensemble Methods: A decision

tree is a flowchart-like structure and a decision

support tool that connects the potential decisions

and uncertain events with their probabilities to

create a model that predicts possible outcomes. We

can also ensemble multiple decision trees to create

more advanced machine learning algorithms such as

random forest algorithm.

• Support Vector Machines: A support vector machine

constructs a hyperplane to separate a space which

can be used for classification, regression, or outlier

detection. For example, a three-dimensional space

(e.g., a cube) can be separated into smaller pieces

with a two-dimensional hyperplane (e.g., a square).

This will help to group observations into two different

Chapter 2 IntroduCtIon to MaChIne LearnIng

44

classes. The potential applications can be much

more complicated than this example. Support vector

machine is a popular machine learning algorithm due

to its high accuracy performance and relatively low-

level computing source requirements.

• K-Nearest Neighbors: The k-nearest neighbors

algorithm is a machine learning algorithm that may

be used for classification and regression problems.

k is a user-defined constant, which represents the

number of neighbor observations to be included in the

algorithm. In classification problems, the neighbors of

a new unlabeled observation are used to predict the

label of this new observation based on the labels of the

neighbors.

• Neural Networks (Multilayer Perceptron, MLP):

Feedforward only neural networks, convolutional

neural networks (CNNs), and recurrent neural

networks (RNNs) are often used in supervised learning

problems, which will be covered in the upcoming

chapters.

 Unsupervised Learning
Unsupervised learning is an approach used in machine learning

algorithms to draw inferences from the datasets which do not contain

labels. Unsupervised learning is mainly used in clustering analysis.

Clustering analysis is a grouping effort in which the members of a group

(i.e., a cluster) are more similar to each other than the members of the

other clusters. There are many different clustering methods available.

They usually utilize a type of similarity measure based on selected

Chapter 2 IntroduCtIon to MaChIne LearnIng

45

metrics such as Euclidean or probabilistic distance. Bioinformatic

sequence analysis, genetic clustering, pattern mining, and object

recognition are some of the clustering problems which may be tackled

with the unsupervised learning approach.

Another use case of unsupervised learning is dimensionality

reduction. Dimensionality is equivalent to the number of features used in

a dataset. In some datasets, you may find hundreds of potential features

stored in individual columns. In most of these datasets, several of these

columns are highly correlated. Therefore, we should either select the best

ones, feature selection, or extract new features combining the existing

ones, feature extraction. This is where unsupervised learning comes into

play. Dimensionality reduction methods help us create neater and cleaner

models that are free of noise and unnecessary features.

Unsupervised learning may also be used in anomaly detection

problems and generative systems. I will briefly mention some of the

popular unsupervised machine learning models as follows:

• Hierarchical Clustering: Hierarchical clustering is

an unsupervised machine learning algorithm used

to group the unlabeled observations having similar

characteristics incrementally. Hierarchical clustering

can be agglomerative (bottom-up approach) or divisive

(top-down approach). The hierarchy of the clusters is

represented as a tree or a dendrogram.

• K-Means Clustering: K-means clustering is a popular

unsupervised machine learning algorithm. K is a user-

assigned constant representing the number of clusters

to be created. K-means clustering groups observations

into k distinct clusters based on the distance to the

center of a cluster.

Chapter 2 IntroduCtIon to MaChIne LearnIng

46

• Principal Component Analysis (PCA): PCA is widely

used for dimensionality reduction. PCA finds a linear

combination of two or more variables, which are

called principal components. This procedure reduces

the dimensional complexity of the model so that the

problem may be visualized and analyzed more quickly

as the model is trained more easily as well.

• Neural Networks: Autoencoders, deep belief nets,

Hebbian learning, generative adversarial networks

(GANs), and self-organizing maps are some of the

neural networks used for unsupervised learning. The

details and the applications of some of these network

structures will be covered in the upcoming chapters.

 Semi-supervised Learning
Semi-supervised learning is a machine learning approach that combines

the characteristics of supervised learning and unsupervised learning.

A semi-supervised learning approach is particularly useful when we

have a small amount of labeled data with a large amount of unlabeled

data available for training. Supervised learning characteristics help take

advantage of the small amount of label data. In contrast, unsupervised

learning characteristics are useful to take advantage of a large amount of

unlabeled data.

Well, you might think that if there are useful real-life applications for

semi-supervised learning. Although supervised learning is a powerful

approach, labeling data – to be used in supervised learning – is a costly

and time-consuming process. On the other hand, a large amount of data

can also be beneficial even though they are not labeled. So, in real life, the

semi-supervised learning may shine out as the most suitable and the most

fruitful machine learning approach if done correctly.

Chapter 2 IntroduCtIon to MaChIne LearnIng

47

In semi-supervised learning, we usually start by clustering the

unlabeled data. Then, we use the labeled data to label the clustered

unlabeled data. Finally, a significant amount of now-labeled data is used to

train machine learning models. Semi-supervised learning models can be

very powerful since they can take advantage of a high volume of data.

Semi-supervised learning models are usually a combination of

transformed and adjusted versions of the existing machine learning

algorithms used in supervised and unsupervised learning. This approach

is successfully used in areas like speech analysis, content classification,

and protein sequence classification. The similarity of these fields is that

they offer abundant unlabeled data and only a small amount of labeled

data.

 Reinforcement Learning
Reinforcement learning is one of the primary approaches to machine

learning concerned with finding optimal agent actions that maximize

the reward within a particular environment. The agent learns to perfect

its actions to gain the highest possible cumulative reward. There are four

main elements in reinforcement learning:

• Agent: The trainable program which exercises the tasks

assigned to it

• Environment: The real or virtual universe where the

agent completes its tasks

• Action: A move of the agent which results in a change

of status in the environment

• Reward: A negative or positive remuneration based on

the action

Chapter 2 IntroduCtIon to MaChIne LearnIng

48

Reinforcement learning may be used in both the real world and in

the virtual world. For instance, you may create an evolving ad placement

system deciding how many ads to place to a website based on the ad

revenue generated in different setups. The ad placement system would be

an excellent example of real-world applications. On the other hand, you

can train an agent in a video game with reinforcement learning to compete

against other players, which are usually referred to as bots. Finally, virtual

and real training of robots in terms of their movements are done with the

reinforcement learning approach. Some of the popular reinforcement

learning models may be listed as follows:

• Q-Learning

• State-Action-Reward-State-Action (SARSA)

• Deep Q network (DQN)

• Deep Deterministic Policy Gradient (DDPG)

One of the disadvantages of the existing deep learning frameworks is

that they lack comprehensive module support for reinforcement learning,

and TensorFlow is no exception. Deep reinforcement learning can only

be done with extension libraries built on top of existing deep learning

libraries such as Keras-RL, TF.Agents, and Tensorforce or dedicated

reinforcement learning libraries such as Open AI Baselines and Stable

Baselines. Therefore, we will not be able to dive deep into reinforcement

learning in this book.

 Evaluation of Different Approaches
We briefly covered the four main machine learning approaches: (i)

supervised learning, (ii) unsupervised learning, (iii) semi-supervised

learning, and (v) reinforcement learning. These approaches are applied

to machine learning problems with several potential algorithms. While

supervised learning solves classification and regression problems,

Chapter 2 IntroduCtIon to MaChIne LearnIng

49

unsupervised learning deals with dimensionality reduction and clustering.

Semi-supervised learning combines supervised learning and unsupervised

learning approaches to take advantage of unlabeled data for classification

tasks, whereas reinforcement learning is used to find the perfect set of

actions for the highest reward. A summary of the characteristics of these

approaches may be found in Figure 2-5.

 Steps of Machine Learning
Thanks to the years of machine learning studies, we – now – perfected a

machine learning process flow where we can accurately build and train

models. Although you might see slightly altered process flows in other

sources, the fundamentals remain the same. The steps of a machine

learning process may be listed as follows:

• Gathering data

• Preparing data

• Model selection

Figure 2-5. A Summary of the Characteristics of the Machine
Learning Approaches

Chapter 2 IntroduCtIon to MaChIne LearnIng

50

• Training

• Evaluation

• Hyperparameter tuning

• Prediction

Let’s dive into each individual step to see what’s happening inside them.

 Gathering Data
Data is the fuel of machine learning models. Without proper data, we

cannot reach our expected destination: high accuracy. This data must

be of high quality as well as in large volumes. Therefore, both the quality

and quantity of the gathered data are significant for a successful machine

learning project. In fact, gathering data is one of the most challenging parts

of machine learning projects. But do not be afraid. Thanks to platforms

such as Kaggle and UC Irvine’s Repository, we can skip the “gathering

data” step, at least for educational purposes. The outcome of this step is a

representation of data such as a table saved as a CSV (comma-separated

values) file.

 Preparing Data
Now that we have gathered data, we need to prepare our data for model

building and training.

First of all, we make initial cleaning and transformations to our data.

This part may include several tasks, including – but not limited to – dealing

with missing values, removing duplicates, correcting errors, converting

strings to floats, normalizing the data, and generating dummy variables.

Then, we randomize the data to eliminate any unwanted correlation

due to the timing of data gathering. After cleaning and randomizing our

data, we use data visualization tools to discover relationships between

Chapter 2 IntroduCtIon to MaChIne LearnIng

51

variables that may help us during the model building process. We can also

detect class imbalances and outliers with data visualization.

Finally, we split the prepared dataset into training and evaluation

(i.e., test) datasets.

 Model Selection
Depending on our problem, we try different machine learning algorithms

to find the best performing model. Without machine learning and deep

learning libraries, coding the entire model algorithms would be extremely

time-consuming. But thanks to these libraries, we can quickly build our

models in several machine learning models and find the best performing

one after training with ease.

 Training
Now that we have selected an algorithm (or algorithms), built our model

(or models), and prepared our data, we can feed this data into the model(s)

and watch it (them) optimize the equation variables. The goal of training is

to make the highest number of correct predictions or the lowest amount of

error. For example, if we are using linear regression, the equation we work

on is the following:

y = m*x + b

Notation:

y: response variable

x: explanatory variable

m: slope

b: intercept

Chapter 2 IntroduCtIon to MaChIne LearnIng

52

Our linear regression model tries to find the perfect slope (m) and

intercept (b) values so that we might end up with the lowest amount

of difference in the actual y values and y predictions. The process for

perfecting our model is done iteratively over several training steps until no

further performance increase on the selected performance metric can be

observed.

 Evaluation
Immediately after training our model with training data, we should test

our trained model with an evaluation dataset that our model has never

seen before. This previously unseen data provides us with an objective

performance score. The ideal training/test split ratios for datasets are

usually 80/20, 90/10, or 70/30, depending on the domain. In some cases,

data scientist also set aside a validation dataset.

Especially when we have limited data, one of the useful evaluation

techniques used by data scientists is cross-validation. Keep in mind that

we will often apply cross-validation for evaluation.

Cross-Validation is an alternative resampling technique used for
evaluation. In k-fold cross-validation, the dataset is split into k
number of groups. one group is kept as testing data, and this group
is switched k times. So, each group is used for testing once. In the
end, we have a much more reliable performance evaluation.

Evaluation is a particularly important step to check for overfitting.

Machine learning models are overly eager when it comes to optimization.

They tend to create a very complex set of variable values to capture all the

variance in our data. However, this may lead to problems when we deploy

the model in real life since perfecting a model using a limited amount of

training data creates a short sighting effect.

Chapter 2 IntroduCtIon to MaChIne LearnIng

53

Overfitting is a machine learning problem that occurs when the
model is too closely fit the observations. When the model has an
overfitting problem, it tends to perform well for training data but
performs poorly for testing data and in the real world.

Our model should be highly accurate but also flexible. In machine

learning studies, we always observe the bias and variance trade-off. There

has to be a balance between the level of bias introduced to the system and

the level of the variance observed so that our model provides meaningful

and reliable predictions in real life.

Bias and Variance Trade-Off is a property of machine learning models.
Bias is the assumptions made by the model to simplify the optimization
process. Variance is a measure for the spread of the values that a target
function can output. While bias brings simplicity to the model, you
may be way off to have reliable predictions. on the other hand, a high
variance can damage the ability to obtain meaningful results.

These are some of the properties to look out for when evaluating a

machine learning model. Let’s say we were careful about bias and variance

trade-off and overfitting, and we used cross-validation for training our

model. But how are we going to measure the success of our model? This is

where we choose performance terms, depending on our problem.

Performance Terms for Classification We usually refer to the
Confusion matrix (see Figure 2-6) to understand how our model
performed. Confusion matrix does not only allow us to calculate the
accuracy of the model but also recall, precision, and F1-score of
the model performance.

Chapter 2 IntroduCtIon to MaChIne LearnIng

54

Performance Terms for Regression We usually use error-based
metrics to measure model performance. the difference between
real observation and prediction is called an error. With an aggregative
calculation, we might find metrics such as root mean squared
error (RMSE), mean absolute error (MSE), and other metrics.
these metric values are useful to measure the model’s success for a
particular regression.

 Hyperparameter Tuning
Now that we have our performance metric results on both training

and test datasets, we can tune our model hyperparameters to increase

our performance even further. Learning rate, number of training

steps, initialization values, epoch size, batch size, and distribution

type are some of the hyperparameters that can be played around with.

Hyperparameter tuning is usually referred to as an artwork rather than a

science. Data scientists use their intuition to try different combinations of

hyperparameters to achieve the highest performance.

Positive

Negative

Positive Negative

Prediction

Ob
se

rv
at

io
n

True Positives

False Positives

False Negatives

True Negatives

Figure 2-6. Confusion Matrix for Classification Problems

Chapter 2 IntroduCtIon to MaChIne LearnIng

55

 Prediction
At this point, we have now completed our initial training with tuned

hyperparameters. Now, we can make predictions with our trained model.

The prediction step should not be seen as the end of the learning process.

After receiving real-world feedbacks, we can go back and train, evaluate,

and tune our model further to address the ever-changing nature of the data

science problems.

 Final Evaluations
In this chapter, we made an introduction to machine learning, which

also includes the subfield of deep learning. We compared and contrasted

the fields of artificial intelligence, machine learning, deep learning, data

science, and big data.

We visited the main machine learning approaches, (i) supervised

learning, (ii) unsupervised learning, (iii) semi-supervised learning, and

(iv) reinforcement learning, and introduced some of the popular machine

learning models used with these approaches.

Then, we covered the steps of machine learning. This section

explained the necessary steps to successfully build and train a machine

learning model with the data that we gathered and cleaned.

In the next chapter, we will make an introduction to deep learning. The

introduction to machine learning will help you to grasp the concepts we

will see in the next chapter.

Chapter 2 IntroduCtIon to MaChIne LearnIng

57© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0_3

CHAPTER 3

Deep Learning
and Neural Networks
Overview
Since you are reading this book, it is safe to assume that you know how

deep learning has gained popularity in recent years. There is a very good

reason for deep learning’s increasing popularity: its uncanny accuracy
performance. Especially when there are abundant data and available

processing power, deep learning is the choice of machine learning experts.

The performance comparison between deep learning and traditional

machine learning algorithms is shown in Figure 3-1.

Accuracy

Amount
of Data

Deep Learning
Traditional ML

Figure 3-1. Deep Learning vs. Traditional ML Comparison on
Accuracy

https://doi.org/10.1007/978-1-4842-6513-0_3#DOI

58

Deep learning is a subfield of machine learning which imitates data

processing and pattern generation capabilities of the human brain for

automated decision-making. The distinct accuracy curve of deep learning

compared to the other machine learning algorithms contributed to its

widespread use and adoption by machine learning experts. Deep learning

is made possible thanks to artificial neural networks. Artificial neural

network is the network structure that simulates the neurons in human

brains so that deep learning can take place. In Figure 3-2, you may find

an example of an artificial neural network (ANN) with deep learning

capability.

You might think that deep learning is a newly invented field that

recently overthrown the other machine learning algorithms. Lots of people

think this way. However, the field of artificial neural networks and deep

learning dates back to the 1940s. The recent rise of deep learning is mainly

due to a high amount of available data and – more importantly – due to

cheap and abundant processing power.

Figure 3-2. A Depiction of Artificial Neural Networks with Two
Hidden Layers

Chapter 3 Deep Learning anD neuraL networks overview

59

This is an overview chapter for deep learning. We will take a look at the

critical concepts that we often use in deep learning, including (i) activation

functions, (ii) loss functions, (iii) optimizers and backpropagation, (iv)

regularization, and (v) feature scaling. But, first, we will dive into the

history of artificial neural networks and deep learning so that you will have

an idea about the roots of the deep learning concepts which you will often

see in this book.

 Timeline of Neural Networks and Deep
Learning Studies
The timeline of neural networks and deep learning studies does not

consist of a series of uninterrupted advancements. In fact, the field of

artificial intelligence experienced a few downfalls, which are referred to as

AI winters. Let’s dive into the history of neural networks and deep learning,

which started in 1943.

Development of Artificial Neurons – In 1943, the pioneer academics

Walter Pitts and Warren McCulloch published the paper “A Logical

Calculus of the Ideas Immanent in Nervous Activity,” where they presented

a mathematical model of a biological neuron, called McCulloch-Pitts
Neuron. Capabilities of McCulloch Pitts Neuron are minimal, and it does

not have a learning mechanism. The importance of McCulloch Pitts

Neuron is that it lays the foundation for deep learning. In 1957, Frank

Rosenblatt published another paper, titled “The Perceptron: A Perceiving

and Recognizing Automaton,” where he introduces the perceptron

with learning and binary classification capabilities. The revolutionary

perceptron model – risen to its place after Mcculloch Pitts Neuron – has

inspired many researchers working on artificial neural networks.

Chapter 3 Deep Learning anD neuraL networks overview

60

Backpropagation – In 1960, Henry J. Kelley published a paper titled

“Gradient Theory of Optimal Flight Paths,” where he demonstrates an

example of continuous backpropagation. Backpropagation is an important

deep learning concept that we will cover under this chapter. In 1962, Stuart

Dreyfus improved backpropagation with chain rule in his paper, “The

Numerical Solution of Variational Problems.” The term backpropagation

was coined in 1986 by Rumelhart, Hinton, and Williams, and these

researchers have popularized its use in artificial neural networks.

Training and Computerization – In 1965, Alexey Ivakhnenko,

usually referred to as “Father of Deep Learning,” built a hierarchical

representation of neural networks and successfully trained this model by

using a polynomial activation function. In 1970, Seppo Linnainmaa found

automatic differentiation for backpropagation and was able to write the

first backpropagation program. This development may be marked as the

beginning of the computerization of deep learning. In 1971, Ivakhnenko

created an eight-layer neural network, which is considered a deep learning

network due to its multilayer structure.

AI Winter – In 1969, Marvin Minsky and Seymour Papert wrote the

book Perceptrons in which he fiercely attacks the work of Frank Rosenblatt,

the Perceptron. This book caused devastating damage to AI project funds,

which triggered an AI winter that lasted from 1974 until 1980.

Convolutional Neural Networks – In 1980, Kunihiko Fukushima

introduced the neocognitron, the first convolutional neural networks

(CNNs), which can recognize visual patterns. In 1982, Paul Werbos

proposed the use of backpropagation in neural networks for error

minimization, and the AI community has adopted this proposal widely.

In 1989, Yann LeCun used backpropagation to train CNNs to recognize

handwritten digits in the MNIST (Modified National Institute of Standards

and Technology) dataset. In this book, we have a similar case study in

Chapter 7.

Chapter 3 Deep Learning anD neuraL networks overview

61

Recurrent Neural Networks – In 1982, John Hopfield introduced

Hopfield network, which is an early implementation of recurrent neural

networks (RNNs). Recurrent neural networks are revolutionary algorithms

that work best for sequential data. In 1985, Geoffrey Hinton, David

H. Ackley, and Terrence Sejnowski proposed Boltzmann Machine, which

is a stochastic RNN without an output layer. In 1986, Paul Smolensky

developed a new variation of Boltzmann Machine, which does not

have intralayer connections in input and hidden layers, which is called

a Restricted Boltzmann Machine. Restricted Boltzmann Machines are

particularly successful in recommender systems. In 1997, Sepp Hochreiter

and Jürgen Schmidhuber published a paper on an improved RNN model,

long short-term memory (LSTM), which we will also cover in Chapter 8.

In 2006, Geoffrey Hinton, Simon Osindero, and Yee Whye Teh combined

several Restricted Boltzmann Machines (RBMs) and created deep belief

networks, which improved the capabilities of RBMs.

Capabilities of Deep Learning – In 1986, Terry Sejnowski developed

NETtalk, a neural network-based text-to-speech system which can

pronounce English text. In 1989, George Cybenko showed in his paper

“Approximation by Superpositions of a Sigmoidal Function” that a

feedforward neural network with a single hidden layer can solve any
continuous function.

Vanishing Gradient Problem – In 1991, Sepp Hochreiter discovered

and proved the vanishing gradient problem, which slows down the deep

learning process and makes it impractical. After 20 years, in 2011, Yoshua

Bengio, Antoine Bordes, and Xavier Glorot showed that using Rectified

Linear Unit (ReLU) as the activation function can prevent vanishing

gradient problem.

GPU for Deep Learning – In 2009, Andrew Ng, Rajat Raina, and Anand

Madhavan, with their paper “Large-Scale Deep Unsupervised Learning

Using Graphics Processors,” recommended the use of GPUs for deep

learning since the number of cores found in GPUs is a lot more than the

ones in CPUs. This switch reduces the training time of neural networks and

Chapter 3 Deep Learning anD neuraL networks overview

62

makes their applications more feasible. Increasing use of GPUs for deep

learning has led to the development of specialized ASICS for deep learning

(e.g., Google’s TPU) along with official parallel computing platforms

introduced by GPU manufacturers (e.g., Nvidia’s CUDA and AMD’s

ROCm).

ImageNet and AlexNet – In 2009, Fei-Fei Li launched a database with

14 million labeled images, called ImageNet. The creation of the ImageNet

database has contributed to the development of neural networks for

image processing since one of the essential components of deep learning

is abundant data. Ever since the creation of the ImageNet database, yearly

competitions were held to improve the image processing studies. In 2012,

Alex Krizhevsky designed a GPU-trained CNN, AlexNet, which increased

the model accuracy by 75% compared to earlier models.

Generative Adversarial Networks – In 2014, Ian Goodfellow came

up with the idea of a new neural network model while he was talking

with his friends at a local bar. This revolutionary model, which was

designed overnight, is now known as generative adversarial neural

networks (GANs), which is capable of generating art, text, and poems, and

it can complete many other creative tasks. We have a case study for the

implementation of GANs in Chapter 12.

Power of Reinforcement Learning – In 2016, DeepMind trained a

deep reinforcement learning model, AlphaGo, which can play the game

of Go, which is considered a much more complicated game compared to

Chess. AlphaGo beat the World Champion Ke Jie in Go in 2017.

Turing Award to the Pioneers of Deep Learning – In 2019, the three

pioneers in AI, Yann LeCun, Geoffrey Hinton, and Yoshua Bengio, shared

the Turing Award. This award is proof that shows the significance of deep

learning for the computer science community.

Chapter 3 Deep Learning anD neuraL networks overview

63

 Structure of Artificial Neural Networks
Before diving into essential deep learning concepts, let’s take a look at the

journey on the development of today’s modern deep neural networks.

Today, we can easily find examples of neural networks with hundreds of

layers and thousands of neurons, but before the mid twentieth century, the

term artificial neural network did not even exist. It all started in 1943 with

a simple artificial neuron – McCulloch Pitts Neuron – which can only do

simple mathematical calculations with no learning capability.

 McCulloch-Pitts Neuron
The McCulloch Pitts Neuron was introduced in 1943, and it is capable of

doing only basic mathematical operations. Each event is given a Boolean

value (0 or 1), and if the sum of the event outcomes (0s and 1s) surpasses

a threshold, then the artificial neuron fires. A visual example for OR and

AND operations with McCulloch Pitts Neuron is shown in Figure 3-3.

Since the inputs from the events in McCulloch Pitts Neuron can only

be Boolean values (0 or 1), its capabilities were minimal. This limitation

was addressed with the development of Linear Threshold Unit (LTU).

McCulloch-Pitts Neuron should fire when
(i) at least 1 connection is active for OR operation
(i) 2 connections is active for onnections is active for AND operation

McCulloch
itts

Neuron

Event A

Event B

 = 1 if Event occurs
 = 0 if Event does not occur

nx
nxAx

Bx

Figure 3-3. McCulloch Pitts Neuron for OR and AND
Operations

Chapter 3 Deep Learning anD neuraL networks overview

64

 Linear Threshold Unit (LTU)
In a McCulloch Pitts Neuron, the significance of each event is equal,

which is problematic since most real-world events do not conform to this

simplistic setting. To address this issue, Linear Threshold Unit (LTU) was

introduced in 1957. In an LTU, weights are assigned to each event, and

these weights can be negative or positive. The outcome of each even is still

given a Boolean value (0 or 1), but then is multiplied with the assigned

weight. The LTU is only activated if the sum of these weighted event

outcomes is positive. In Figure 3-4, you may find a visualization of LTU,

which is the basis for today’s artificial neural networks.

 Perceptron
Perceptron is a binary classification algorithm for supervised learning

and consists of a layer of LTUs. In a perceptron, LTUs use the same event

outputs as input. The perceptron algorithm can adjust the weights to

correct the behavior of the trained neural network. In addition, a bias term

may be added to increase the accuracy performance of the network.

When there is only one layer of perceptron, it is called a single-layer

perceptron. There is one layer for outputs along with a single input layer

that receives the inputs. When hidden layers are added to a single-layer

perceptron, we end up with a multilayer perceptron (MLP). An MLP is

Linear Threshold Unit (LTU) activates if
the sum of the weighted event outcomes
are positive
LTU’s outcome is 1 if the SUM >= 0

∑
 = 1 if Event occurs
 = 0 if Event does not occur

nx
nx

Ax

Bx

AWeight

BWeight

Figure 3-4. Linear Threshold Unit (LTU) Visualization

Chapter 3 Deep Learning anD neuraL networks overview

65

considered as a type of deep neural network, and the artificial neural

networks we build for everyday problems are examples of MLP. In Figure 3- 5,

you may find an example visualization of single-layer perceptron.

 A Modern Deep Neural Network
The deep neural networks we come across today are improved versions

of multilayer perceptrons (MLP). We often use a more complex activation

function than a step function (0 or 1) such as ReLU, Sigmoid, Tanh, and

Softmax. Modern deep neural networks usually take advantage of one of

the gradient descent methods for optimization. An example modern deep

neural network is shown in Figure 3-6.

∑AWeight
Ax

∑BWeight
Bx

∑
(0 or 1)

Bias

In
pu

ts

Ou
tp

ut
s

Figure 3-5. An Example of a Single-Layer Perceptron Diagram

Chapter 3 Deep Learning anD neuraL networks overview

66

Now that you know more about the journey to develop today’s modern

deep neural networks, which started with the McCulloch Pitts Neurons,

we can dive into essential deep learning concepts that we use in our

applications.

 Activation Functions
Activation function is a function used to help artificial neural networks

to learn complex patterns from the data. An activation function is usually

added to the end of each neuron, which affects what to fire to the next

neuron. In other words, as shown in Figure 3-7, the activation function of a

neuron gives the output of that neuron after being given an input or set of

inputs.

∑AWeight
Ax

∑BWeight
Bx

∑
(0 or 1)

Bias

In
pu

ts

Ou
tp

ut
s

∑

∑

∑

(0 or 1)

Bias

So
ftm

ax

Figure 3-6. A Modern Deep Neural Network Example

Chapter 3 Deep Learning anD neuraL networks overview

67

Activation functions introduce a final calculation step that adds

additional complexity to artificial neural networks. Therefore, they

increase the required training time and processing power. So, why would

we use activation functions in neural networks? The answer is simple:

Activation functions increase the capabilities of the neural networks to

use relevant information and suppress the irrelevant data points. Without

activation functions, our neural networks would only be performing a

linear transformation. Although avoiding activation functions makes a

neural network model simpler, the model will be less powerful and will

not be able to converge on complex pattern structures. A neural network

without an activation function is essentially just a linear regression model.

There are a number of different activation functions we can use in

our neural networks. A non-exhaustive list of activation functions may be

found here:

• Binary Step

• Linear

• Sigmoid (Logistic Activation Function)

• Tanh (Hyperbolic Tangent)

∑
Ax

Bx

AWeight

BWeight

This represents an activation function in the end
In this example Linear Threshold Unit

Figure 3-7. An Example LTU Diagram with Activation Function in
the End

Chapter 3 Deep Learning anD neuraL networks overview

68

• ReLU (Rectified Linear Unit)

• Softmax

• Leaky ReLU

• Parameterized ReLU

• Exponential Linear Unit

• Swish

Among these activation functions, Tanh, ReLU, and Sigmoid activation

functions are widely used for single neuron activation. Also, the Softmax

function is widely used after layers. You may find the X-Y plots for Tanh,

ReLU, and Sigmoid functions in Figure 3-8.

Depending on the nature of the problem, one activation function may

perform better than the other. Even though ReLU, Tanh, and Sigmoid

functions usually converge well in deep learning, we should try all possible

functions and optimize our training to achieve the highest accuracy

performance possible. A straightforward comparison between ReLU, Tanh,

and Sigmoid can be made with the following bullet points:

• ReLU function is a widely used general-purpose

activation function. It should be used in hidden layers.

In case there are dead neurons, Leaky ReLU may fix

potential problems.

y

x0
ReLU

y

x0
Sigmoid

y

x0

TanH

Figure 3-8. Plots for Tanh, ReLU, and Sigmoid Functions

Chapter 3 Deep Learning anD neuraL networks overview

69

• The Sigmoid function works best in classification tasks.

• Sigmoid and Tanh functions may cause vanishing

gradient problem.

The best strategy for an optimized training practice is to start with

ReLU and try the other activation functions to see if the performance

improves.

 Loss (Cost or Error) Functions
Loss functions are functions that are used to measure the performance of

a deep learning model for given data. It is usually based on error terms,

which is calculated as the distance between the real (measured) value and

the prediction of the trained model.

 e yi i i= - ŷ

Error = Measured Value - Predicted Value

Therefore, we end up with an error term for each prediction we make.

Imagine you are working with millions of data points. To be able to derive

insights from these individual error terms, we need an aggregative function

so that we can come up with a single value for performance evaluation.

This function is referred to as loss function, cost function, or error
function, depending on the context.

Several loss functions are used for performance evaluation, and

choosing the right function is an integral part of model building. This

selection must be based on the nature of the problem. While Root Mean

Squared Error (RMSE) function is the right loss function for regression

problems in which we would like to penalize large errors, multi-class

crossentropy should be selected for multi-class classification problems.

Chapter 3 Deep Learning anD neuraL networks overview

70

In addition, to be used to generate a single value for aggregated error

terms, the loss function may also be used for rewards in reinforcement

learning. In this book, we will mostly use loss functions with error terms,

but beware that it is possible to use loss functions as a reward measure.

Several loss functions are used in deep learning tasks. Root mean

squared error (RMSE), mean squared error (MSE), mean absolute error

(MAE), and mean absolute percentage error (MAPE) are some of the

appropriate loss functions for regression problems. For binary and multi-

class classification problems, we can use variations of crossentropy (i.e.,

logarithmic) function.

 Optimization in Deep Learning
Now that we covered activation and loss functions, it is time to move on to

weight and bias optimization. Activation functions used in neurons and

layers make final adjustments on the linear results derived from weights

and bias terms. We can make predictions using these parameters (weights

and biases). The distances between the actual values and the predicted

values are recorded as error terms. These error terms are aggregated into

a single value with loss functions. In addition to this process, optimization

functions make small changes to the weights and biases and measure the

effects of these changes with loss functions. This process helps to find

the optimal weight and bias values to minimize errors and maximize the

accuracy of the model. This training cycle is shown in Figure 3-9.

Chapter 3 Deep Learning anD neuraL networks overview

71

There are several optimization algorithms and challenges encountered

during the optimization process. In this section, we will briefly introduce

these functions and challenges. But first, let’s take a look at an essential

optimization concept: backpropagation.

 Backpropagation
The backpropagation algorithm is an essential component in neural

network architecture used for iteration in parallel with optimizer. It serves

as a central mechanism by which neural networks learn. The name

explains itself since the word propagate means to transmit something.

Therefore, the word backpropagation means “transmitting information

back.” This is what the backpropagation algorithm precisely does: it takes

the calculated loss back to the system, which is used by the optimizer to

adjust the weights and biases. This process may be explained step by step,

as shown here:

• Step 1: The trained neural network makes a prediction

with the current weights and biases.

Figure 3-9. Deep Learning Model Training with Cost Function,
Activation Function, and Optimizer

Chapter 3 Deep Learning anD neuraL networks overview

72

• Step 2: The performance of the neural network

is measured with a loss function as a single error

measure.

• Step 3: This error measure is backpropagated to

optimizer so that it can readjust the weights and biases.

• Repeat

By using the information provided by the backpropagation algorithm,

optimization algorithms can perfect the weights and biases used in

the neural network. Let’s take a look at the optimization algorithms

(i.e., optimizers), which are used in parallel with the backpropagation

mechanism.

 Optimization Algorithms
An optimization algorithm may be defined as an algorithm helping

another algorithm to maximize its performance without delay. Deep

learning is one field where optimization algorithms are widely used. The

most common optimization algorithms used in deep learning tasks are

listed as follows:

• Adam

• Stochastic gradient descent (SGD)

• Adadelta

• Rmsprop

• Adamax

• Adagrad

• Nadam

Chapter 3 Deep Learning anD neuraL networks overview

73

Note that all of these optimizers are readily available in TensorFlow as

well as the loss and activation functions, which are previously mentioned.

The most common ones used in real applications are Adam optimizer

and Stochastic gradient descent (SGD) optimizer. Let’s take a look at

the mother of all optimizers, gradient descent and SGD, to have a better

understanding of how an optimization algorithm works.

Gradient Descent and Stochastic Gradient Descent (SGD) –

Stochastic gradient descent is a variation of gradient descent methods.

SGD is widely used as an iterative optimization method in deep learning.

The roots of SGD date back to the 1950s, and it is one of the oldest – yet

successful – optimization algorithms.

Gradient descent methods are a family of optimization algorithms

used to minimize the total loss (or cost) in the neural networks. There are

several gradient descent implementations: The original gradient descent –

or batch gradient descent – algorithm uses the whole training data per

epoch. Stochastic (Random) gradient descent (SGD) selects a random

observation to measure the changes in total loss (or cost) as a result of the

changes in weights and biases. Finally, mini-batch gradient descent uses a

small batch so that training may still be fast as well as reliable.

Epoch is the hyperparameter that represents the number of times
that the values of a neural network are to be adjusted using the
training dataset.

Chapter 3 Deep Learning anD neuraL networks overview

74

Figure 3-10 shows how gradient descent algorithm works. Larger

incremental steps are taken when the machine learning expert selects a

faster learning rate.

Learning Rate is the parameter in optimization algorithms which
regulates the step size taken at each iteration while moving forward
a minimum of a loss/cost function. with a fast learning rate, the
model converges around the minimum faster, yet it may overshoot
the actual minimum point. with a slow learning rate, optimization
may take too much time. therefore, a machine learning expert must
choose the optimal learning rate, which allows the model to find the
desired minimum point in a reasonable time.

Adam Optimizer – What Is Adam?

I will not dive into the details of the other optimization algorithms

since they are mostly altered or improved implementations of gradient

descent methods. Therefore, understanding the gradient descent

algorithm will be enough for the time being.

Loss/Cost

Weight

Minimum Loss/Cost

Initial Weight

Incremental Step

Figure 3-10. A Weight-Loss Plot Showing Gradient Descent

Chapter 3 Deep Learning anD neuraL networks overview

75

In the next section, we see the optimization challenges which

negatively affect the optimization process during training. Some of the

optimization algorithms, as mentioned earlier, were developed to mitigate

these challenges.

 Optimization Challenges
There are three optimization challenges we often encounter in deep

learning. These challenges are (i) local minima, (ii) saddle points, and (iii)

vanishing gradients. Let’s briefly discuss what they are.

Local Minima – In neural network training, a simple loss-weight

plot with a single minimum might be useful to visualize the relationship

between the weight and the calculated loss for educational purposes.

However, in real-world problems, this plot might contain many local

minima, and our optimization algorithm may converge on one local

minimum rather than the global minimum point. Figure 3-11 shows how

our model can be stuck at a local minimum.

Loss/Cost

Weight

Local
Minimum

Local
Minimum

Global
Minimum

Figure 3-11. A Weight-Loss Plot with Two Local Minima and a
Global Minimum

Chapter 3 Deep Learning anD neuraL networks overview

76

Saddle Points – Saddle points are stable points in the graphs that

the algorithm cannot figure out whether it is a local minimum or a local

maximum. Both sides of a saddle point have zero slopes. Optimizers using

more than one observation for loss calculation may be stuck in a saddle

point. Therefore, Stochastic gradient descent is a suitable solution for

saddle points. A simplified graph with saddle point is shown in Figure 3-12.

Vanishing Gradients – Excessive use of certain activation functions

(e.g., Sigmoid) may negatively affect the optimization algorithm. It

becomes difficult to reduce the output of the loss function since the

gradient of the loss function approaches zero. An effective solution to

the vanishing gradient problem is to use ReLU as the activation function

in hidden layers. Sigmoid activation function – the main reason for the

vanishing gradient problem – and its derivative are shown in Figure 3-13.

Loss/Cost

Weight

Saddle Point

Figure 3-12. A Weight-Loss Plot with Two Local Minima and a
Global Minimum

Chapter 3 Deep Learning anD neuraL networks overview

77

To be able to solve this common optimization challenges, we should

try and find the best combination of activation functions and optimization

functions so that our model correctly converges and finds an ideal

minimum point.

 Overfitting and Regularization
Another important concept in deep learning and machine learning is

overfitting. In this section, we cover the overfitting problem and how to

address overfitting with regularization methods.

 Overfitting
In Chapter 2, we already explained the concept of overfitting briefly for

machine learning. Overfitting is also a challenge in deep learning. We

don’t want our neural network to fit a limited set of data points too tightly,

which jeopardizes its performance in the real world. We also don’t want

our model to underfit since it would not give us a good accuracy level.

Underfitting and overfitting problems are shown in Figure 3-14.

y

x
0

Sigmoid

Sigmoid Function
Derivative of Sigmoid

Figure 3-13. The Sigmoid Function and Its Derivative

Chapter 3 Deep Learning anD neuraL networks overview

78

The solution to the underfitting problem is building a good model with

meaningful features, feeding enough data, and training enough. On the

other hand, more data, removing excessive features, and cross-validation

are proper methods to fight the overfitting problem. In addition, we have a

group of sophisticated methods to overcome overfitting problems, namely,

regularization methods.

 Regularization
Regularization is a technique to fight overfitting. There are a number of

possible methods used for regularization, which may be listed as follows:

• Early stopping

• Dropout

• L1 and L2 regularization

• Data augmentation

Early Stopping – Early stopping is a very simple – yet effective –

strategy to prevent overfitting. Setting a sufficient number of epochs

(training steps) is crucial to achieving a good level of accuracy. However,

you may easily go overboard and train your model to fit too tightly to your

training data. With early stopping, the learning algorithm is stopped if the

model does not show a significant performance improvement for a certain

number of epochs.

Underfitting

Y

X
Properly Fitted

Y

X
Overfitting

Y

X

Figure 3-14. Underfitting and Overfitting in X-Y Plot

Chapter 3 Deep Learning anD neuraL networks overview

79

Dropout – Dropout is another simple – yet effective – regularization

method. With dropout enabled, our model temporarily removes some of

the neurons or layers from the network, which adds additional noise to the

neural network. This noise prevents the model from fitting to the training

data too closely and makes the model more flexible.

L1 and L2 Regularization – These two methods add an additional

penalty term to the loss function, which penalizes the errors even more.

For L1 regularization, this term is a lasso regression, whereas it is ridge

regression for L2 regularization. L1 and L2 regularizations are particularly

helpful when dealing with a large set of features.

Data Augmentation – Data augmentation is a method to increase the

amount of training data. By making small transformations on the existing

data, we can generate more observations and add them to the original

dataset. Data augmentation increases the total amount of training data,

which helps preventing the overfitting problem.

 Feature Scaling
Another crucial concept in deep learning is feature scaling. Feature scaling

is a method to normalize the range of features so that neural networks

perform more accurately. When the range of the values of a feature varies

considerably, some objective functions may not work correctly in machine

learning models. For instance, classifiers usually calculate the distance

between two data points. When the variance of the values of a feature

is large, this feature dictates this calculated distance, which means an
inflated influence of this particular feature on the outcome. Scaling the

value ranges of each feature helps to eliminate this problem. There are

several feature scaling methods which are listed as follows:

• Standardization: It adjusts the values of each feature to

have zero mean and unit variance.

• Min-Max Normalization (Rescaling): It scales the

values of each feature between [0, 1] and [-1, 1].

Chapter 3 Deep Learning anD neuraL networks overview

80

• Mean Normalization: It deducts the mean from

each data point and divides the result to max-min

differential. It is a slightly altered and less popular

version of min-max normalization.

• Scaling to Unit Length: It divides each component of

a feature by the Euclidian length of the vector of this

feature.

Using feature scaling has two benefits in deep learning:

• It ensures that each feature contributes to the

prediction algorithm proportionately.

• It speeds up the convergence of the gradient

descent algorithm, which reduces the time required for

training a model.

 Final Evaluations
In this chapter, we covered the timeline of artificial neural networks and

deep learning. It helped us to understand how the concepts we use in our

professional lives came to life after many years of research. The good news

is that thanks to TensorFlow, we are able to add these components in our

neural networks in a matter of seconds.

Following the deep learning timeline, we analyzed the structure of

neural networks and the artificial neurons in detail. Also, we covered

the fundamental deep learning concepts, including (i) optimization

functions, (ii) activation functions, (iii) loss functions, (iv) overfitting and

regularization, and (v) feature scaling.

This chapter serves as a continuation of the previous chapter where we

cover the machine learning basics. In the next chapter, we learn about the

most popular complementary technologies used in deep learning studies: (i)

NumPy, (ii) SciPy, (iii) Matplotlib, (iii) Pandas, (iv) scikit-learn, and (v) Flask.

Chapter 3 Deep Learning anD neuraL networks overview

81© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0_4

CHAPTER 4

Complementary
Libraries
to TensorFlow 2.x
Now that we covered the basics of machine learning and deep learning,

we can slowly move on to the applied side of deep learning. As you know,

every machine learning application, including deep learning applications,

has a pipeline consisting of several steps. TensorFlow offers us several

modules for all these steps. Even though TensorFlow is very powerful

for model building, training, evaluation, and making predictions, we

still need other complementary libraries for certain tasks, especially

for data preparation. Although the potential libraries you may use in

a deep learning pipeline may vary to a great extent, the most popular

complementary libraries are as follows:

 • NumPy

 • SciPy

 • Pandas

• Matplotlib

• Scikit-learn

• Flask

https://doi.org/10.1007/978-1-4842-6513-0_4#DOI

82

Especially after TensorFlow 2.x, we started to see more and more

data preparation, visualization, and other relevant capabilities added to

TensorFlow. However, these capabilities cannot yet be compared to what

these dedicated libraries have to offer. Table 4-1 lists these libraries with

their core capabilities.

Let’s take a look at how to install them all together using pip, our

package installer for Python.

 Installation with Pip
Pip is the de facto standard package-management system for Python, and

it is already included in the Python installation package. You can easily

install and manage Python libraries with pip.

The original environments to use pip are Terminal for macOS and

Command Prompt for Windows OS. However, you can also use pip

inside Jupyter Notebook and Google Colab with a small adjustment. The

difference between these two options is only an exclamation mark (!).

Table 4-1. The Libraries Complementary to TensorFlow and Their

Main Use Cases

Library Core Capability

NumPy Array processing

SciPy Scientific computing

Pandas Array processing and data analysis including data

visualization

Matplotlib Data visualization

Scikit-learn Machine learning

Flask Web framework for deployment

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

83

Terminal and Command Prompt Jupyter Notebook and Google Colab

pip install package-name !pip install package-name

If you decide to follow this book with your local Jupyter Notebook

installation, we have to make sure that you have pip installed on your

system.

Use of Pip in Google Colab if you are using Google Colab as
recommended, you don’t have to worry about whether you have pip
on your system. you can use pip inside your Google Colab Notebook
with an exclamation mark.

Pip installation, or its confirmation, can be achieved in three steps:

 1. Open Terminal for macOS/Command Prompt for

Windows OS:

 a. You can open a Terminal window from Launchpad under

Others folder.

 b. You can open a Command Line window by (i) pressing

Windows+X to open the Power Users menu and then

(ii) clicking “Command Prompt” or “Command Prompt

(Admin).”

 2. Check if pip installed and view the current version

installed on your system with the following script:

pip --version

 3. If Terminal/Command Line does not return version

info, install pip with the following command:

python -m pip install -U pip

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

84

If it returns version info, then you confirm that you

have pip installed on your system.

 4. Close the Terminal/Command Line window.

Installation of the Libraries – Now that we confirmed you have pip on

your system, you can install all the aforementioned libraries in this chapter

with the following scripts in Table 4-2.

Table 4-2. The Complementary Libraries with

Pip Installation Scripts

Library Installation Script

NumPy pip install numpy

SciPy pip install scipy

Pandas pip install pandas

Matplotlib pip install matplotlib

Scikit-learn pip install scikit-learn

Flask pip install flask

Beware of Already Installed Packages both Google Colab
Notebooks and Jupyter Notebooks already come with most of these
libraries preinstalled. Just run the scripts mentioned earlier once to
make sure you have them installed so that you won’t be bothered
during case studies in case some of them are missing.

Now that we are sure that you have these libraries installed in your

system (either Google Colab or Jupyter Notebook), we can dive into details

of these libraries.

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

85

 NumPy – Array Processing
 NumPy (Numerical Python) is a very popular

open- source numerical Python library, created by

Travis Oliphant. NumPy provides multidimensional

arrays along with a significant number of useful

functions for mathematical operations.

NumPy acts as a wrapper around the

corresponding library implemented in C. Therefore, it offers the best

of two worlds: (i) efficiency of C and (ii) ease of use of Python. NumPy

arrays are easy-to-create and efficient objects for (i) storing data and (ii)

fast matrix operations. With NumPy, you can quickly generate arrays with

random numbers, which is perfect for an enhanced learning experience

and proof of concept tasks. Also, the Pandas library, which we will cover

later on, heavily relies on NumPy objects and almost works as a NumPy

extension.

Thanks to NumPy arrays, we can process data in large volumes and

do advanced mathematical operations with ease. Compared to built-in

Python sequences, NumPy’s ndarray object executes much faster and

more efficient with less code. There are a growing number of libraries

that rely on NumPy arrays for processing data, which shows the power of

NumPy. Since deep learning models are usually trained with millions of

data points, size and speed superiority of NumPy arrays are essential for

the machine learning experts.

Useful Information About NumPy

• Website: www.numpy.org/

• Documentation URL: https://numpy.org/doc/

• Installation Command: pip install numpy

• Preferred Alias for Importing: import numpy as np

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

http://www.numpy.org/
https://numpy.org/doc/

86

 SciPy – Scientific Computing
 SciPy is an open-source Python library that contains a

collection of functions used for mathematical,

scientific, and engineering studies. SciPy functions are

built on the NumPy library. SciPy allows users to

manipulate and visualize their data with an easy-to-use

syntax. SciPy is a library that boosts developers’ data

processing and system-prototyping capabilities and makes Python as

effective as the rival systems such as MATLAB, IDL, Octave, R-Lab, and

SciLab. Therefore, SciPy’s collection of data processing and prototyping

functions strengthens Python’s already established superiority as a

general-purpose programming language even further.

SciPy’s vast collection of functions is organized into domain-based

sub-packages. SciPy sub-packages must be called separately from the

mother SciPy library such as

from scipy import stats, special

In Table 4-3, you may find a list of SciPy sub-packages.

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

87

Useful Information About SciPy

• Website: https://www.scipy.org/scipylib/

• Documentation URL: https://docs.scipy.org/doc/

• Installation Command: pip install scipy

• Preferred Alias for Importing: from scipy import

 sub- package- name

Table 4-3. SciPy Sub-packages

Sub-
package

Description Sub-
package

Description

stats Statistical functions and

distributions

linalg linear algebra

special Special functions io input and output

spatial Spatial data structures and

algorithms

interpolate interpolation and

smoothing splines

sparse Sparse matrices and

associated routines

integrate integration and equation

solving

signal Signal processing fftpack Fast Fourier transform

routines

optimize optimization and root-

finding routines

constants Physical and

mathematical constants

odr orthogonal distance

regression

cluster Clustering algorithms

ndimage N-dimensional image

processing

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

https://www.scipy.org/scipylib/
https://docs.scipy.org/doc/

88

 Pandas – Array Processing and Data
Analysis

 Pandas is a Python library that offers

flexible and expressive data structures

suitable for performing fast mathematical

operations. Python is a comprehensive

and easy-to-use data analysis library, and it aims to become the leading

open-source language-neutral data analysis tool.

One-dimensional Series and two-dimensional DataFrames are the two

main data structures in pandas. Since it extends the capabilities of NumPy

and it is built on top of NumPy, Pandas almost operates as a NumPy

extension. Pandas also offers several data visualization methods, which are

very useful to derive insights from the datasets.

You can analyze your data and perform several calculation tasks with

Pandas. Here is a non-exhaustive list of the things you can do with Pandas:

• Handling missing data by filling and dropping

• Data insertion and deletion thanks to allowed

mutability

• Automatic and explicit data alignment

• Group-by and order-by functionality

• Easily converting unorganized objects to DataFrames

• Slice, index, and subset operations

• Merge, concatenate, and join operations

• Reshape and pivot operations

• Hierarchical and multiple labeling

• Specific operations for time-series and sequence data

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

89

• Robust input and output operations with extensive file

format support (including CSV, XLSX, HTML, HDF5)

Since Pandas is a de facto extension of NumPy, which improves its

capabilities, we take advantage of Pandas more often than NumPy. But

there are cases where we have to rely on NumPy due to limitations of other

complementary libraries.

Useful Information About Pandas

• Website: https://pandas.pydata.org/

• Documentation URL: https://pandas.pydata.org/

docs/

• Installation Command: pip install pandas

• Preferred Alias for Importing: import pandas as pd

 Matplotlib and Seaborn – Data Visualization
 Matplotlib is a Python data

visualization library for creating

static, animated, and interactive

 graphs and plots. You can produce

high-quality plots for academic publications, blogs, and books, and you

can also derive insights from large datasets using Matplotlib.

In addition to deriving insights with your Google Colab Notebook, you

can also use the object-oriented API of Matplotlib for embedding plots into

applications. The three main functionalities of Matplotlib can be listed as

follows:

• Create: With Matplotlib, you can create high-quality plots

with a minimal amount of code. The total number of graph

types offered by Matplotlib exceeds hundreds – from

histograms to heat plots, from bar charts to surface plots.

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

https://pandas.pydata.org/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/

90

• Customize: Matplotlib plots are flexible in the sense

that you can customize line styles, font properties,

colors, and axes information. You can export from your

plot and embed data into your plot.

• Extend: You can take advantage of numerous third-

party libraries extending Matplotlib. Some of these

libraries are also extremely useful, such as Seaborn.

The things you can do with Matplotlib may be listed as follows:

• Use PyPlot module and create interactive plots.

• Create hundreds of different graphs and plots using

lines, bars, markers, and other objects.

• Create unique plots such as surface and contours plots.

• Add images and fields to your plots.

• Create multiple subplots under a single figure.

• Flexibly edit text, axes, colors, labels, and annotations

in a plot.

• Create one or more shapes with Matplotlib.

• Create showcase figures.

• Take advantage of the animation support.

Useful Information About Matplotlib

• Website: https://matplotlib.org/

• Documentation URL: https://matplotlib.org/3.2.1/

contents.html (make sure you enter the latest version)

• Installation Command: pip install matplotlib

• Preferred Alias for Importing: import matplotlib.
pyplot as plt

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

https://matplotlib.org/
https://matplotlib.org/3.2.1/contents.html
https://matplotlib.org/3.2.1/contents.html

91

 Besides vanilla Matplotlib, third-party

packages are widely used for increasing

the capabilities of Matplotlib. One of the

useful data visualization libraries built on top of Matplotlib is Seaborn.

Seaborn is a data visualization library based on Matplotlib. It provides a

high-level interface for extending the capabilities of Matplotlib. You can

reduce the time required to generate insightful graphs with Seaborn.

Useful Information About Seaborn

• Website: https://seaborn.pydata.org/

• Gallery: https://seaborn.pydata.org/examples/

• Installation Command: pip install seaborn

• Preferred Alias for Importing: import seaborn as sns

 Scikit-learn – Machine Learning
 Scikit-learn is a powerful open-source machine

learning library for Python, initially developed by

David Cournapeau as a Google Summer of Code

project. You can use scikit-learn as a stand-alone

machine learning library and successfully build a wide range of traditional

machine learning models. Besides being able to create machine learning

models, scikit-learn, which is built on top of NumPy, SciPy, and Matplotlib,

provides simple and efficient tools for predictive data analysis. There are

six main functionalities of scikit-learn, which are listed as follows:

• Classification: Scikit-learn offers several algorithms to

identify which category an object belongs to, such as

support vector machines, logistic regression, k-nearest

neighbors, decision trees, and many more.

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

https://seaborn.pydata.org/
https://seaborn.pydata.org/examples/

92

• Regression: Several algorithms offered by scikit-learn

can predict a continuous-valued response variable

associated with an object such as linear regression,

gradient boosting, random forest, decision trees, and

many more.

• Clustering: Scikit-learn also offers clustering

algorithms, which are used for automated grouping

of similar objects into clusters, such as k-means

clustering, spectral clustering, mean shift, and many

more.

• Dimensionality Reduction: Scikit-learn provides

several algorithms to reduce the number of explanatory

variables to consider, such as PCA, feature selection,

nonnegative matrix factorization, and many more.

• Model Selection: Scikit-learn can help with model

validation and comparison, and also it can help

choose parameters and models. You can compare

your TensorFlow models with scikit-learn’s traditional

machine learning models. Grid search, cross-

validation, and metrics are some of the tools used for

model selection and validation functionality.

• Preprocessing: With preprocessing, feature extraction,

and feature scaling options, you can transform your

data where TensorFlow falls short.

Scikit-learn is especially useful when we want to compare our deep

learning models with other machine learning algorithms. In addition, with

scikit-learn, we can preprocess our data before feeding it into our deep

learning pipeline.

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

93

Useful Information About Scikit-learn

• Website: https://scikit-learn.org/

• User Guide: https://scikit-learn.org/stable/

user_guide.html

• Installation Command: pip install scikit-learn

• Preferred Alias for Importing: from scikit-learn
import *

 Flask – Deployment
 As opposed to the libraries mentioned earlier, Flask

is not a data science library, but it is a micro web

framework for Python. It is considered as a

microframework because it is not packaged with

the components that the other web frameworks deem essential such as

database abstraction layer and form validation. These components can be

embedded in a Flask application with powerful third-party extensions.

This characteristic makes Flask simple and lightweighted and reduces

development time. Flask is a perfect option if you want to serve your

trained deep learning models, and you don’t want to spend too much time

on web programming.

Flask is easy to learn and to implement as opposed to Django. Django

is a very well-documented and a popular web framework for Python. But

due to its large size with a lot of built-in extension packages, Django would

be a better choice for large projects. Currently, Flask has more stars on its

GitHub repo than any other web framework for Python and voted the most

popular web framework in the Python Developers Survey 2018.

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

https://scikit-learn.org/
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html

94

Useful Information About Flask

• Website: https://palletsprojects.com/p/flask/

• Documentation URL: https://flask.

palletsprojects.com/

• Installation Command: pip install flask

• Preferred Alias for Importing: from flask import

Flask, *

 Final Evaluations
In this chapter, we make an introduction to the most commonly

used libraries complementary to TensorFlow. We predominantly use

TensorFlow thanks to its growing number of modules addressing the needs

of developers at every step of the pipeline. However, there are still some

operations we have to rely on these libraries.

While NumPy and Pandas are very powerful data processing libraries,

Matplotlib and Seaborn are useful for data visualization. While SciPy helps

us with complex mathematical operations, scikit-learn is particularly

useful for advanced preprocessing operations and validation tasks. Finally,

Flask is the web framework of our choice to serve our trained models

quickly.

In the next chapter, we dive into TensorFlow modules with actual code

examples.

ChAPter 4 CoMPleMeNtAry librArieS to teNSorFloW 2.x

https://palletsprojects.com/p/flask/
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/

95© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0_5

CHAPTER 5

A Guide to
TensorFlow 2.0
and Deep Learning
Pipeline
In the previous chapters, we cover the fundamentals before diving into

deep learning applications.

• Chapter 1 is useful to understand the reasons

behind the selection of technologies such as Python

and TensorFlow. It also helped us setting up our

environments.

• Chapter 2 makes a brief introduction to machine

learning since deep learning is a subfield of machine

learning.

• In Chapter 3, we finally cover the basics of deep

learning. These three chapters were conceptual and

introductory chapters.

• Chapter 4 summarizes all the technologies we use in

our deep learning pipeline, except for one: TensorFlow.

https://doi.org/10.1007/978-1-4842-6513-0_5#DOI

96

In this chapter, we cover the basics of TensorFlow and the API

references that we use in this book.

 TensorFlow Basics
The main focus of this chapter is how we can use TensorFlow for neural

networks and model training, but first, we need to cover a few topics under

TensorFlow Basics, which are

• Eager execution vs. graph execution

• TensorFlow constants

• TensorFlow variables

 Eager Execution
One of the novelties brought with TensorFlow 2.0 was to make the eager

execution the default option. With eager execution, TensorFlow calculates

the values of tensors as they occur in your code. Eager execution simplifies

the model building experience in TensorFlow, and you can see the result of

a TensorFlow operation instantly.

The main motivation behind this change of heart was PyTorch’s

dynamic computational graph capability. With the dynamic computational

graph capability, PyTorch users were able to follow define-by-run

approach, in which you can see the result of an operation instantly.

However, with graph execution, TensorFlow 1.x followed a define-and-

run approach, in which evaluation happens only after we’ve wrapped our

code with tf.Session. Graph execution has advantages for distributed

training, performance optimizations, and production deployment. But

graph execution also drove the newcomers away to PyTorch due to the

difficulty of implementation. Therefore, this difficulty for newcomers led

the TensorFlow team to adopt eager execution, TensorFlow’s define-by-run

approach, as the default execution method.

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

97

In this book, we only use the default eager execution for model

building and training.

 Tensor
Tensors are TensorFlow’s built-in multidimensional arrays with uniform

type. They are very similar to NumPy arrays, and they are immutable,

which means that once created, they cannot be altered, and you can only

create a new copy with the edits.

Tensors are categorized based on the number of dimensions they have:

• Rank-0 (Scalar) Tensor: A tensor containing a single

value and no axes

• Rank-1 Tensor: A tensor containing a list of values in a

single axis

• Rank-2 Tensor: A tensor containing two axes

• Rank-N Tensor: A tensor containing N-axis

For example, a Rank-3 Tensor can be created and printed out with the

following lines:

rank_3_tensor = tf.constant([

 [[0, 1, 2, 3, 4],

 [5, 6, 7, 8, 9]],

 [[10, 11, 12, 13, 14],

 [15, 16, 17, 18, 19]],

 [[20, 21, 22, 23, 24],

 [25, 26, 27, 28, 29]],])

print(rank_3_tensor)

You can access detailed information about the tf.Tensor object with

the following functions:

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

98

print("Type of every element:", rank_3_tensor.dtype)

print("Number of dimensions:", rank_3_tensor.ndim)

print("Shape of tensor:", rank_3_tensor.shape)

print("Elements along axis 0 of tensor:", rank_3_tensor.

shape[0])

print("Elements along the last axis of tensor:", rank_3_tensor.

shape[-1])

print("Total number of elements (3*2*5): ", tf.size(rank_3_

tensor).numpy())

Output:

Type of every element: <dtype: 'int32'>

Number of dimensions: 3

Shape of tensor: (3, 2, 5)

Elements along axis 0 of tensor: 3

Elements along the last axis of tensor: 5

Total number of elements (3*2*5): 30

There are several functions that create a Tensor object. Other than tf.

Constant(), we often use tf.ones() and tf.zeros() functions to create

tensors with only ones or zeros of given size. The following lines provide

example for both:

zeros = tf.zeros(shape=[2,3])

print(zeros)

Output:

tf.Tensor(

[[0. 0. 0.]

 [0. 0. 0.]], shape=(2, 3), dtype=float32)

ones = tf.ones(shape=[2,3])

print(ones)

Output:

tf.Tensor(

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

99

[[1. 1. 1.]

 [1. 1. 1.]], shape=(2, 3), dtype=float32)

The base tf.Tensor class requires tensors to be in a rectangular shape,

which means along each axis, every element has the same size. However,

there are specialized types of tensors that can handle different shapes:

• Ragged Tensors: A tensor with variable numbers of

elements along some axis

• Sparse Tensors: A tensor where our data is sparse, like

a very wide embedding space

 Variable
A TensorFlow variable is the recommended way to represent a shared,

persistent state that you can manipulate with a model. TensorFlow

variables are recorded as a tf.Variable object. A tf.Variable object

represents a tensor whose values can be changed, as opposed to plain

TensorFlow constants. tf.Variable objects are used to store model

parameters.

TensorFlow variables are very similar to TensorFlow constants, with

one significant difference: variables are mutable. So, the values of a

variable object can be altered (e.g., with assign() function) as well as the

shape of the variable object (e.g., with reshape() function).

You can create a basic variable with the following code:

a = tf.Variable([2.0, 3.0])

You can also use an existing constant to create a variable:

my_tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]])

my_variable = tf.Variable(my_tensor)

print(my_variable)

Output:

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

100

<tf.Variable 'Variable:0' shape=(2, 2) dtype=float32, numpy=

array([[1., 2.],

 [3., 4.]], dtype=float32)>

You can convert a TensorFlow variable object or a TensorFlow tensor

object to a NumPy array with the tensor.numpy() function, as shown here:

my_variable.numpy()

my_tensor.numpy()

These are some of the fundamental concepts in TensorFlow. Now we

can move on to the model building and data processing with TensorFlow.

 TensorFlow Deep Learning Pipeline
In the last section of Chapter 2, we listed the steps of a complete machine

learning pipeline (i.e., steps to obtain a trained machine learning model).

In deep learning models, we almost exclusively use the same pipeline, in

which there is a great deal of work for TensorFlow. Figure 5-1 shows how

our pipeline works (please note that you may encounter slight alterations

in different sources).

In the next sections, we cover these steps with code examples. Please

note that the data gathering step will be omitted since it is usually regarded

as a separate task and not usually performed by machine learning experts.

Figure 5-1. Deep Learning Pipeline Built with TensorFlow

th
is

 fi
gu

re
 w

ill
 b

e
pr

in
te

d
in

 b
/w

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

101

 Data Loading and Preparation
Before building and training a neural network, the first step to deep

learning is to load your data, process it, and feed it to the neural network.

All the neural networks we cover in the next chapters require data, and for

this, we need to feed the data in the right format. Our TensorFlow model

accepts several object types, which can be listed as follows:

• TensorFlow Dataset object

• TensorFlow Datasets catalog

• NumPy array object

• Pandas DataFrame object

Let’s dive into how we can use them.

 Dataset Object (tf.data.Dataset)
TensorFlow Dataset object represents a large set of elements (i.e., a

dataset). tf.data.Dataset API is one of the objects TensorFlow accepts as

model input used for training and specifically designed for input pipelines.

You can use the Dataset API with the following purposes:

• Create a dataset from the given data.

• Transform the dataset with collective functions such as

map.

• Iterate over the dataset and process individual

elements.

Dataset API supports various file formats and Python objects, which

can be used to create tf.data.Dataset objects. Let’s take a look at some of

these supported file formats and objects:

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

102

• Dataset from a Python list, NumPy array, Pandas

DataFrame with from_tensor_slices function

ds = tf.data.Dataset.from_tensor_slices([1, 2, 3])
ds = tf.data.Dataset.from_tensor_slices(numpy_array)
ds = tf.data.Dataset.from_tensor_slices(df.values)

• Dataset from a text file with TextLineDataset function

ds = tf.data.TextLineDataset("file.txt")

• Dataset from TensorFlow’s TFRecord format with
TFRecordDataset function

ds = tf.data.TFRecordDataset("file.tfrecord")

• Dataset from CSV file with

ds = tf.data.experimental.make_csv_dataset
("file.csv", batch_size=5)

• Dataset from TensorFlow Datasets catalog: This will be
covered in the next section.

 TensorFlow Datasets Catalog
TensorFlow Datasets is a collection of popular datasets that are maintained
by TensorFlow. They are usually clean and ready to use.

 Installation
TensorFlow Datasets exists in two packages:

• tensorflow-datasets: The stable version, updated
every few months

• tfds-nightly: The nightly released version, which

contains the latest versions of the datasets

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

103

As you can understand from the names, you may use either the

stable version, which updates less frequently but is more reliable, or the

nightly released version, which gives access to the latest versions of the

dataset. But beware that because of the frequent releases, tfds-nightly

is more prone to breaking and, thus, is not recommended to be used in

production-level projects.

In case you don’t have it on your systems, you may install these

packages with the following command-line scripts:

pip install tensorflow_datasets

pip install tfds-nightly

 Importing

These packages are loaded via tensorflow_datasets, which is usually

abbreviated as tfds. To be able to import these packages, all you have to

do is to run a single line, as shown here:

import tensorflow_datasets as tfds

 Datasets Catalog

After the main library is imported, we can use load function to import one

of the popular libraries listed in the TensorFlow Datasets catalog page,

which is accessible on

www.tensorflow.org/datasets/catalog/overview

Under this catalog, you may find dozens of datasets, which belong to

one of these listed groups:

• Audio

• Image

• Image classification

• Object detection

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

http://www.tensorflow.org/datasets/catalog/overview

104

• Question answering

• Structured

• Summarization

• Text

• Translate

• Video

 Loading a Dataset

The easiest way to load a dataset from TensorFlow Datasets catalog is to

use the load function. This function will

• Download the dataset.

• Save it as TFRecord files.

• Load the TFRecord files to your notebook.

• Create a tf.data.Dataset object, which can be used to

train a model.

The following example shows how to load a dataset with the load

function:

mnist_dataset = tfds.load(‘mnist’, split=‘train’)

You can customize your loading process by setting particular

arguments of your load function:

• split: Controls which part of the dataset to load

• shuffle_files: Controls whether to shuffle the files

between each epoch

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

105

• data_dir: Controls the location where the dataset is

saved

• with_info: Controls whether the DatasetInfo object

will be loaded or not

In our upcoming sections, we take advantage of this catalog to a great

extent.

 Keras Datasets

In addition to the TensorFlow Datasets catalog, Keras also provides access

to a limited number of datasets that are listed in their catalog, accessible

on https://keras.io/api/datasets/. The datasets accessible under this

catalog are

• MNIST

• CIFAR10

• CIFAR100

• IMDB Movie Reviews

• Reuters Newswire

• Fashion MNIST

• Boston Housing

As you can see, this catalog is very limited, but come in handy in your

research projects.

You can load a dataset from Keras API with the load_data() function,

as shown here:

(x_train, y_train), (x_test, y_test)= tf.keras.datasets.mnist.

load_data(path="mnist.npz")

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

https://keras.io/api/datasets/

106

One important difference of Keras’s datasets from TensorFlow’s

datasets is that they are imported as NumPy array objects.

 NumPy Array
One of the data types which are accepted by TensorFlow as input data

is NumPy arrays. As mentioned in the previous chapter, you can import

NumPy library with the following line:

import numpy as np

You can create a NumPy array with np.array() function, which can

be fed into the TensorFlow model. You can also use a function such as np.

genfromtxt() to load a dataset from a CSV file.

In reality, we rarely use a NumPy function to load data. For this task,

we often take advantage of the Pandas library, which acts almost as a

NumPy extension.

 Pandas DataFrame
Pandas DataFrame and Series objects are also accepted by TensorFlow

as well as NumPy arrays. There is a strong connection between Pandas

and NumPy. To process and clean our data, Pandas often provides more

powerful functionalities. However, NumPy arrays are usually more efficient

and recognized by other libraries to a greater extent. For example, you

may need to use scikit-learn to preprocess your data. Scikit-learn would

accept a Pandas DataFrame as well as a NumPy array, but only returns a

NumPy array. Therefore, a machine learning expert must learn to use both

libraries.

You may import the Pandas libraries, as shown here:

import pandas as pd

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

107

You can easily load datasets from the files in different formats such as

CSV, Excel, and text, as shown here:

• CSV Files: pd.read_csv("path/xyz.csv")

• Excel Files: pd.read_excel("path/xyz.xlsx")

• Text Files: pd.read_csv("path/xyz.txt")

• HTML Files: pd.read_html("path/xyz.html") or pd.

read_html('URL')

After loading your dataset from these different file formats, Pandas

gives you an impressive number of different functionalities, and you can

also check the result of your data processing operation with pandas.

DataFrame.head() or pandas.DataFrame.tail() functions.

 Other Objects
The number of supported file formats is increasing with the new versions

of TensorFlow. In addition, TensorFlow I/O is an extension library

that extends the number of supported libraries even further with its

API. Although the supported objects and file formats we covered earlier

are more than enough, if you are interested in other formats, you may visit

TensorFlow I/O’s official GitHub repository at

TensorFlow I/O: https://github.com/tensorflow/io#tensorflow-io

 Model Building
After loading and processing the dataset, the next step is to build a deep

learning model to train. We have two major options to build models:

• Keras API

• Estimator API

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

https://github.com/tensorflow/io#tensorflow-io

108

In this book, we only use Keras API and, therefore, focus on the

different ways of building models with Keras API.

 Keras API
As mentioned in the earlier chapters, Keras acts as a complementary

library to TensorFlow. Also, TensorFlow – with version 2.0 – adopted Keras

as a built-in API to build models and for additional functionalities.

Keras API under TensorFlow 2.x provides three different methods to

implement neural network models:

• Sequential API

• Functional API

• Model Subclassing

Let’s take a look at each method in the following.

 Sequential API

The Keras Sequential API allows you to build a neural network step-by-

step fashion. You can create a Sequential() model object, and you can

add a layer at each line.

Using the Keras Sequential API is the easiest method to build models

which comes at a cost: limited customization. Although you can build a

Sequential model within seconds, Sequential models do not provide some

of the functionalities such as (i) layer sharing, (ii) multiple branches, (iii)

multiple inputs, and (iv) multiple outputs. A Sequential model is the best

option when we have a plain stack of layers with one input tensor and one

output tensor.

Using the Keras Sequential API is the most basic method to build

neural networks, which is sufficient for many of the upcoming chapters.

But, to build more complex models, we need to use Keras Functional API

and Model Subclassing options.

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

109

Building a basic feedforward neural network with the Keras Sequential

API can be achieved with the following lines:

model = Sequential()

model.add(Flatten(input_shape=(28, 28)))

model.add(Dense(128,'relu'))

model.add(Dense(10, "softmax"))

Alternatively, we may just pass a list of layers to the Sequential

constructor:

model = Sequential([

 Flatten(input_shape=(28, 28)),

 Dense(128,'relu'),

 Dense(10, "softmax"),

])

Once a Sequential model is built, it behaves like a Functional API

model, which provides an input attribute and an output attribute for each

layer.

During our case studies, we take advantage of other attributes and

functions such as model.layers and model.summary() to understand the

structure of our neural network.

 Functional API

The Keras Functional API is a more robust and slightly more complex API

to build powerful neural networks with TensorFlow. The models we create

with the Keras Functional API is inherently more flexible than the models

we create with the Keras Sequential API. They can handle nonlinear

topology, share layers, and can have multiple branches, inputs, and

outputs.

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

110

The Keras Functional API methodology stems from the fact that most

neural networks are directed acyclic graph (DAG) of layers. Therefore, the

Keras team develops Keras Functional API to design this structure. The

Keras Functional API is a good way to build graphs of layers.

To create a neural network with the Keras Functional API, we create an

input layer and connect it to the first layer. The next layer is connected to

the previous one and so on and so forth. Finally, a Model object takes the

input and the connected stack of layers as parameters.

The example model in the Keras Sequential API may be constructed

using the Keras Functional API as follows:

inputs = tf.keras.Input(shape=(28, 28))

x = Flatten()(inputs)

x = Dense(128, "relu")(x)

outputs = Dense(10, "softmax")(x)

model = tf.keras.Model(inputs=inputs,

 outputs=outputs,

 name="mnist_model")

Just as in the Keras Sequential API, we can use layers attribute,

summary() function. In addition, we may also plot the model as a graph

with the following line:

tf.keras.utils.plot_model(model)

 Model and Layer Subclassing

Model Subclassing is the most advanced Keras method, which gives us

unlimited flexibility to build a neural network from scratch. You can also

use Layer Subclassing to build custom layers (i.e., the building blocks of a

model) which you can use in a neural network model.

With Model Subclassing, we can build custom-made neural networks

to train. Inside of Keras Model class is the root class used to define a model

architecture.

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

111

The upside of the Model Subclassing is that it’s fully customizable,
whereas its downside is the difficulty of implementation. Therefore, if you
are trying to build exotic neural networks or conducting research-level
studies, the Model Subclassing method is the way to go. However, if you
can do your project with the Keras Sequential API or the Keras Functional
API, you should not bother yourself with the Model Subclassing.

The preceding example you see can be rewritten with Model
Subclassing as follows:

class CustomModel(tf.keras.Model):
 def __init__(self, **kwargs):
 super(CustomModel, self).__init__(**kwargs)
 self.layer_1 = Flatten()
 self.layer_2 = Dense(128, "relu")
 self.layer_3 = Dense(10, "softmax")

 def call(self, inputs):
 x = self.layer_1(inputs)
 x = self.layer_2(x)
 x = self.layer_3(x)
 return x

model = CustomModel(name=' mnist_model')

There are two crucial functions in Model Subclassing:

• the __init__ function acts as a constructor. Thanks to
__init__, we can initialize the attributes (e.g., layers) of
our model.

• the super function is used to call the parent constructor
(tf.keras.Model).

• the self object is used to refer to instance attributes
(e.g., layers).

• the call function is where the operations are defined

after the layers are defined in the __init__ function.

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

112

In the preceding example, we defined our Dense layers under the

__init__ function, then created them as objects, and built our model similar

to how we build a neural network using the Keras Functional API. But note

that you can build your model in Model Subclassing however you want.

We can complete our model building by generating an object using our

custom class (custom model) as follows:

model = CustomModel(name='mnist_model')

We use Model Subclassing in Chapters 10 and 11.

 Estimator API
Estimator API is a high-level TensorFlow API, which encapsulates the

following functionalities:

• Training

• Evaluation

• Prediction

• Export for serving

We can take advantage of various premade Estimators as well as we

can write our own model with the Estimator API. Estimator API has a few

advantages over Keras APIs, such as parameter server-based training and

full TFX integration. However, Keras APIs will soon become capable of

these functionalities, which makes Estimator API optional.

This book does not cover the Estimator API in case studies. Therefore,

we don’t go into the details. But, if you are interested in learning more

about the Estimator API, please visit the TensorFlow’s Guide on Estimator

API at www.tensorflow.org/guide/estimator.

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

http://www.tensorflow.org/guide/estimator

113

 Compiling, Training, and Evaluating
the Model and Making Predictions
Compiling is an import part of the deep learning model training where

we define our (i) optimizer, (ii) loss function, and other parameters such

as (iii) callbacks. Training, on the other hand, is the step we start feeding

input data into our model so that the model can learn to infer patterns

hidden in our dataset. Evaluating is the step where we check our model for

common deep learning issues such as overfitting.

There are two methods to compile, train, and evaluate our model:

• Using the standard method

• Writing a custom training loop

 The Standard Method
When we follow the standard training method, we can benefit from the

following functions:

• model.compile()

• model.fit()

• model.evaluate()

• model.predict()

 model.compile()

model.compile() is the function we set our optimizer, loss function, and

performance metrics before training. It is a very straightforward step that

can be achieved with a single line of code. Also, note that there are two

ways to pass loss function and optimizer arguments within the model.

compile() function, which may be exemplified as follows:

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

114

• Option 1: Passing arguments as a string

model.compile(

optimizer='adam',

loss=mse,

metrics=['accuracy'])

• Option 2: Passing arguments as a TensorFlow object

model.compile(

optimizer=tf.keras.optimizers.Adam() ,

loss=tf.keras.losses.MSE(),

metrics=[tf.keras.metrics.Accuracy()])

Passing loss function, metrics, and optimizer as object offers more

flexibility than Option 1 since we can also set arguments within the object.

Optimizer

The optimizer algorithms supported by TensorFlow are as follows:

• Adadelta

• Adagrad

• Adam

• Adamax

• Ftrl

• Nadam

• RMSProp

• SGD

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

115

The up-to-date list can be found at this URL:

www.tensorflow.org/api_docs/python/tf/keras/optimizers

You may select an optimizer via tf.keras.optimizers module.

Loss Function

Another important argument, which must be set, before starting the

training is the loss function. tf.keras.losses module supports a number

of loss functions suitable for classification and regression tasks. The entire

list can be found at this URL:

www.tensorflow.org/api_docs/python/tf/keras/losses

 model.fit()

model.fit() trains the model for a fixed number of epochs (iterations

on a dataset). It takes several arguments such as epochs, callbacks, and

shuffle, but it must also take another argument: our data. Depending on

the problem, this data might be (i) features only or (ii) features and labels.

An example usage of the model.fit() function is as follows:

model.fit(train_x, train_y, epochs=50)

 model.evaluate()

The model.evaluate() function returns the loss value and metrics

values for the model using test dataset. What it returns and the accepted

arguments are similar to the model.fit() function, but it does not train

the model any further.

model.evaluate(test_x, test_y)

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

http://www.tensorflow.org/api_docs/python/tf/keras/optimizers
http://www.tensorflow.org/api_docs/python/tf/keras/losses

116

 model.predict()

model.predict() is the function we use to make single predictions. While

the model.evaluate() function requires labels, the model.predict()

function does not require labels. It just makes predictions using the trained

model, as shown here:

model.evaluate(sample_x)

 Custom Training
Instead of following standard training options which allows you to use

functions such as model.compile(), model.fit(), model.evaluate(), and

model.predict(), you can fully customize this process.

To be able to define a custom training loop, you have to use a

tf.GradientTape(). tf.GradientTape() records operations for automatic

differentiation, which is very useful for implementing machine learning

algorithms such as backpropagation during training. In other words,

tf.GradientTape() allows us to track TensorFlow computations and

calculate gradients.

For custom training, we follow these steps:

• Set optimizer, loss function, and metrics.

• Run a for loop for the number of epochs.

• Run a nested loop for each batch of each epoch:

• Work with tf.GradientTape() to calculate and

record loss and to conduct backpropagation.

• Run the optimizer.

• Calculate, record, and print out metric results.

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

117

The following lines show an example of the standard method for

training. Just in two lines, you can configure and train your model.

model.compile(optimizer=Adam(), loss=SCC(from_logits=True),

metrics=[SCA()])

model.fit(x_train, y_train, epochs=epochs)

The following lines, on the other hand, show how you can achieve the

same results with a custom training loop.

Instantiate optimizer, loss, and metric

optimizer, loss_fn, accuracy = Adam(), SCC(from_logits=True),

SCA()

Convert NumPy to TF Dataset object

train_dataset = (Dataset.from_tensor_slices((x_train, y_

train)).shuffle(buffer_size=1024).batch(batch_size=64))

for epoch in range(epochs):

 # Iterate over the batches of the dataset.

 for step, (x_batch_train, y_batch_train) in

enumerate(train_dataset):

 # Open a GradientTape to record the operations, which

enables auto-differentiation.

 with tf.GradientTape() as tape:

 # The operations that the layer applies to its

inputs are going to be recorded

 logits = model(x_batch_train, training=True)

 loss_value = loss_fn(y_batch_train, logits)

 # Use the tape to automatically retrieve the gradients

of the trainable variables

 grads = tape.gradient(loss_value, model.trainable_weights)

 # Run one step of gradient descent by updating

 # the value of the variables to minimize the loss.

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

118

 optimizer.apply_gradients(zip(grads, model.trainable_

weights))

 # Metrics related part

 accuracy.update_state(y_batch_train, logits)

 if step % int(len(train_dataset)/5) == 0: #Print out

 print(step, "/", len(train_dataset)," | ",end="")

 print("\rFor Epoch %.0f, Accuracy: %.4f" % (epoch+1,

float(accuracy.result()),))

 accuracy.reset_states()

As you can see, it is much more complicated, and therefore, you should

only use custom training when it is absolutely necessary. You may also

customize the individual training step, model.evaluate() function, and

even model.predict() function. Therefore, TensorFlow almost always

provide enough flexibility for researchers and custom model developers.

In this book, we take advantage of custom training in Chapter 12.

 Saving and Loading the Model
We just learned how to build a neural network, and this information will

be crucial for the case studies in the upcoming chapters. But we also would

like to use the models we trained in real-world applications. Therefore, we

need to save our model so that it can be reused.

We can save an entire model to a single artifact. When we saved the

entire model, it contains

• The model’s architecture and configuration data

• The model’s optimized weights

• The model’s compilation information (model.

compile() info)

• The optimizer and its latest state

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

119

TensorFlow provides two formats to save models:

• TensorFlow SavedModel Format

• Keras HDF5 (or H5) Format

Although the old HDF5 format was quite popular previously,

SavedModel has become the recommended format to save models

in TensorFlow. The key difference between HDF5 and SavedModel is

that HDF5 uses object configs to save the model architecture, while

SavedModel saves the execution graph. The practical consequence of

this difference is significant. SavedModels can save custom objects such

as models that are built with Model Subclassing or custom-built layers

without the original code. To be able to save the custom objects in HDF5

format, there are extra steps involved, which makes HDF5 less appealing.

 Saving the Model
Saving the model in one of these formats is very easy. The desired format

can be selected with an argument (save_format) passed in the model.

save() function.

To save a model in the SavedModel format, we can use the following line:

model.save("My_SavedModel")

If you’d like to save your model in the HDF5 format, we can simply use

the same function with the save_format argument:

model.save("My_H5Model", save_format="h5")

For the HDF5 format, you can alternatively use Keras’s save_model()

function, as shown here:

tf.keras.models.save_model("My_H5Model")

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

120

After saving the model, the files containing the model can be found in

your temporary Google Colab directory.

 Loading the Model
After you saved the model files, you can easily load and reconstruct the

model you saved before. To load our model, we make use of the load_

model() function offered by Keras API. The following lines can be used to

load a model saved in either format:

import tensorflow as tf

reconstructed_model = tf.keras.models.load_model

('My_SavedModel')

You can use the loaded model just like you use a model you trained.

The following lines are the exact copy of the model.evaluate() function

used for the freshly trained model:

test_loss, test_acc = reconstructed_model.evaluate

(x_test, y_test, verbose=2)

print('\nTest accuracy:', test_acc)

 Conclusion
Now that we covered how we can use TensorFlow for our deep learning

pipeline along with some TensorFlow basics, we can start covering

different types of neural network concepts along with their corresponding

case studies. Our first neural network type is feedforward neural networks

or, in other words, multilayer perceptron.

Chapter 5 a Guide to tensorFlow 2.0 and deep learninG pipeline

121© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0_6

CHAPTER 6

Feedforward Neural
Networks
In this chapter, we will cover the most generic version of neural networks,

feedforward neural networks. Feedforward neural networks are a group

of artificial neural networks in which the connections between neurons

do not form a cycle. Connections between neurons are unidirectional and

move in only forward direction from input layer through hidden layers

and to output later. In other words, the reason these networks are called

feedforward is that the flow of information takes place in the forward

direction.

Recurrent Neural Networks, which we will cover in Chapter 8,
are improved versions of feedforward neural networks in which
bidirectionality is added. Therefore, they are not considered
feedforward anymore.

Feedforward neural networks are mainly used for supervised learning

tasks. They are especially useful in analytical applications and quantitative

studies where traditional machine learning algorithms are also used.

Feedforward neural networks are very easy to build, but they are

not scalable in computer vision and natural language processing (NLP)

problems. Also, feedforward neural networks do not have a memory

https://doi.org/10.1007/978-1-4842-6513-0_6#DOI

122

structure which is useful in sequence data. To address the scalability and

memory issues, alternative artificial neural networks such as convolutional

neural networks and recurrent neural networks are developed, which will

be covered in the next chapters.

You may run into different names for feedforward neural networks

such as artificial neural networks, regular neural networks, regular

nets, multilayer perceptron, and some others. There is unfortunately an

ambiguity, but in this book, we always use the term feedforward neural

network.

 Deep and Shallow Feedforward Neural
Networks
Every feedforward neural network must have two layers: (i) an input layer

and (ii) an output layer. The main goal of a feedforward neural network

is to approximate a function using (i) the input values fed from the input

layer and (ii) the final output values in the output layer by comparing them

with the label values.

 Shallow Feedforward Neural Network
When a model only has an input and an output layer for function

approximation, it is considered as a shallow feedforward neural network. It

is also referred to as single-layer perceptron, shown in Figure 6-1.

ChapTer 6 FeedForward Neural NeTworks

123

The output values in a shallow feedforward neural network are

computed directly from the sum of the product of its weights with the

corresponding input values and some bias. Shallow feedforward neural

networks are not useful to approximate nonlinear functions. To address

this issue, we embed hidden layers between input and output layers.

 Deep Feedforward Neural Network
When a feedforward neural network has one or more hidden layers which

enable it to approximate more complex function, this model is considered

as a deep feedforward neural network. It is also referred to as multilayer

perceptron, shown in Figure 6-2.

Figure 6-1. Shallow Feedforward Neural Network or Single-Layer
Perceptron

ChapTer 6 FeedForward Neural NeTworks

124

Every neuron in a layer is connected to the neurons in the next layer

and utilizes an activation function.

Universal Approximation Theory indicates that a feedforward
neural network can approximate any real-valued continuous
functions on compact subsets of euclidean space. The theory also
implies that when given appropriate weights, neural networks can
represent all the potential functions.

Since deep feedforward neural networks can approximate any linear or

nonlinear function, they are widely used in real-world applications, both

for classification and regression problems. In the case study of this chapter,

we also build a deep feedforward neural network to have acceptable

results.

Figure 6-2. Deep Feedforward Neural Network or Multilayer
Perceptron

ChapTer 6 FeedForward Neural NeTworks

125

 Feedforward Neural Network Architecture
In a feedforward neural network, the leftmost layer is called the input

layer, consisting of input neurons. The rightmost layer is called the output

layer, consisting of a set of output neurons or a single output neuron. The

layers in the middle are called hidden layers with several neurons ensuring

nonlinear approximation.

In a feedforward neural network, we take advantage of an optimizer

with backpropagation, activation functions, and cost functions as well

as additional bias on top of weights. These terms are already explained

in Chapter 3 and, therefore, omitted here. Please refer to Chapter 3 for

more detail. Let’s take a deeper look at the layers of feedforward neural

networks.

 Layers in a Feedforward Neural Network
As mentioned earlier, our generic feedforward neural network architecture

consists of three types of layers:

• An input layer

• An output layer

• A number of hidden layers

 Input Layer
Input layer is the very first layer of feedforward neural network, which

is used to feed data into the network. Input layer does not utilize an

activation function and its sole purpose to get the data into the system.

The number of neurons in an input layer must be equal to the number of

features (i.e., explanatory variables) fed into the system. For instance, if

we are using five different explanatory variables to predict one response

variable, our model’s input layer must have five neurons.

ChapTer 6 FeedForward Neural NeTworks

126

 Output Layer
Output layer is the very last layer of the feedforward neural network, which is

used to output the prediction. The number of neurons in the output layer is

decided based on the nature of the problem. For regression problems, we aim

to predict a single value, and therefore, we set a single neuron in our output

layer. For classification problems, the number of neurons is equal to the

number of classes. For example, for binary classification, we need two neurons

in the output layer, whereas for multi- class classification with five different

classes, we need five neurons in the output layer. Output layers also take

advantage of an activation function depending on the nature of the problem

(e.g., a linear activation for regression and softmax for classification problems).

 Hidden Layer
Hidden layers are created to ensure the approximation of the nonlinear

functions. We can add as many hidden layers as we desire, and the number

of neurons at each layer can be changed. Therefore, as opposed to input

and output layers, we are much more flexible with hidden layers. Hidden

layers are appropriate layers to introduce bias terms, which are not

neurons, but constants added to the calculations that affect each neuron

in the next layer. Hidden layers also take advantage of activation functions

such as Sigmoid, Tanh, and ReLU.

In the next section, we will build a deep feedforward neural network to

show all these layers in action. Thanks to Keras Sequential API, the process

will be very easy.

ChapTer 6 FeedForward Neural NeTworks

127

 Case Study | Fuel Economics with Auto MPG
Now that we covered the basics of feedforward neural networks, we can

build a deep feedforward neural network to predict how many miles can

a car travel with one gallon of gas. This term is usually referred to as miles

per gallon (MPG). For this case study, we use one of the classic datasets:

Auto MPG dataset. Auto MPG was initially used in the 1983 American

Statistical Association Exposition. The data concerns prediction of city-

cycle fuel consumption in miles per gallon in terms of three multivalued

discrete and five continuous attributes. For this case study, we benefit from

a tutorial written by François Chollet, the creator of Keras library.1

Let’s dive into the code. Please create a new Colab Notebook via

https://colab.research.google.com.

 Initial Installs and Imports
We will take advantage of the TensorFlow Docs library which is not

included in the Google Colab Notebook initially. So, we start the case study

with a library installation with the following code:

Install tensorflow_docs

1 Copyright (c) 2017 François Chollet
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and

associated documentation files (the “Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
ies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

ChapTer 6 FeedForward Neural NeTworks

https://colab.research.google.com

128

!pip install -q git+https://github.com/tensorflow/docs

There are a number of libraries we will utilize in this case study. Let’s

import the ones we will use in the beginning:

Import the initial libraries to be used

import tensorflow as tf

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Please note that there will be some other imports, which will be shared

in their corresponding sections.

 Downloading the Auto MPG Data
Even though Auto MPG is a very popular dataset, we still cannot access

the dataset via TensorFlow’s dataset module. However, there is a very

straightforward way (thanks to the get_file() function of tf.keras.

utils module) to load external data into our Google Colab Notebook with

the following lines of code:

autompg = tf.keras.utils.get_file(

 fname='auto-mpg', #filename for local directory

 origin='http://archive.ics.uci.edu/ml/machine-learning-

databases/auto-mpg/auto-mpg.data',#URL address to retrieve the

dataset

 Note that we retrieve the dataset from uCI Machine learning
repository. uC Irvine provides an essential repository, along with
kaggle, in which you can access to a vast number of popular
datasets.

ChapTer 6 FeedForward Neural NeTworks

129

 Data Preparation
When we look at the UC Irvine’s Auto MPG page, we can see a list of

attributes which represents all the variables in the Auto MPG dataset,

which is shared here:

Attribute Information:

• mpg: Continuous (response variable)

• cylinders: Multivalued discrete

• displacement: Continuous

• horsepower: Continuous

• weight: Continuous

• acceleration: Continuous

• model year: Multivalued discrete

• origin: Multivalued discrete

• car name: String (unique for each instance)

 DataFrame Creation

As a best practice, we will name our dataset columns with these attribute

names and import from our Google Colab directory since we already saved

it in the previous section:

column_names = ['mpg', 'cylinders', 'displacement', 'HP',

'weight', 'acceleration', 'modelyear', 'origin']

df = pd.read_csv(autompg, # name of the csv file

 sep=" ", # separator in the csv file

 comment='\t', #remove car name sep. with '\t'

 names=column_names,

 na_values = '?', #NA values are coded as '?'

ChapTer 6 FeedForward Neural NeTworks

130

 skipinitialspace=True)

df.head(2) #list the first two row of the dataset

Here is the result of df.head(2), shown in Figure 6-3.

 Dropping Null Values

We can check the number of null values with the following code:

df.isna().sum()

The output we get is shown in Figure 6-4.

We have six null values in the HP column. There are several ways to

deal with the null values. Firstly, we can drop them. Secondly, we can

fill them using a method such as (a) filling with the mean value of other

observations or (b) use a regression method to interpolate their value. For

the sake of simplicity, we will drop them with the following code:

Figure 6-4. Null Value Counts in the Auto MPG Dataset

Figure 6-3. The First Two Lines of the Auto MPG Dataset

ChapTer 6 FeedForward Neural NeTworks

131

df = df.dropna() # Drop null values

df = df.reset_index(drop=True) # Reset index to tidy up the

dataset

df.show()

 Handling Categorical Variables

Let’s review our dataset with the info attribute of Pandas DataFrame

object:

df.info() # Get an overview of the dataset

As shown in Figure 6-5, We can see that Auto MPG dataset has 392

car observations with no null values. The variables cylinders, modelyear,

and origin are the categorical variables we should consider using dummy

variables.

Figure 6-5. Overview of the Auto MPG Dataset

ChapTer 6 FeedForward Neural NeTworks

132

Dummy Variable is a special variable type that takes only the
value 0 or 1 to indicate the absence or presence of a categorical
effect. In machine learning studies, every category of a categorical
variable is encoded as a dummy variable. But, omitting one of these
categories as a dummy variable is a good practice, which prevents
multicollinearity problem.

Using dummy variables is especially important if the values of a

categorical variable do not indicate a mathematical relationship. This is

absolutely valid for origin variable since the values 1, 2, and 3 represent

the United States, Europe, and Japan. Therefore, we need to generate

dummies for origin variable, drop the first one to prevent multicollinearity,

and drop the initial origin variable (origin variable is now represented

with the generated dummy variables). We can achieve these tasks with the

following lines of code:

def one_hot_origin_encoder(df):

 df_copy = df.copy()

 df_copy['EU']=df_copy['origin'].map({1:0,2:1,3:0})

 df_copy['Japan']=df_copy['origin'].map({1:0,2:0,3:1})

 df_copy = df_copy.drop('origin',axis=1)

 return df_copy

df_clean = one_hot_origin_encoder(df)

Here is the result of df_clean.head(2), shown in Figure 6-6.

Figure 6-6. The First Two Lines of the Auto MPG Dataset with
Dummy Variables

ChapTer 6 FeedForward Neural NeTworks

133

 Splitting Auto MPG for Training and Testing

Now that we cleaned our dataset, it is time to split them into train and test

sets. Train set is used to train our neural network (i.e., optimize the neuron

weights) to minimize the errors. Test set is used as the never-been-seen

observations to test the performance of our trained neural network.

Since our dataset is in the form of a Pandas DataFrame object, we can

use sample attribute. We keep the 80% of the observations for training and

20% for testing. Additionally, we also split the label from the features so

that we can feed the features as input. Then, check the results with labels.

These tasks can be achieved with the following lines of codes:

Training Dataset and X&Y Split

Test Dataset and X&Y Split

For Training

train = df_clean.sample(frac=0.8,random_state=0)

train_x = train.drop('mpg',axis=1)

train_y = train['mpg']

For Testing

test = df_clean.drop(train.index)

test_x = test.drop('mpg',axis=1)

test_y = test['mpg']

Now that we split our dataset into train and test sets, it is time to

normalize our data. As mentioned in Chapter 3, feature scaling is an

important part of the data preparation. Without feature scaling, a feature

can adversely affect our model.

We need to extract the means and standard deviations to manually

apply normalization to our data. We can generate this dataset with ease,

using the following code:

train_stats = train_x.describe().transpose()

You can obtain the following output in Figure 6-7 by running train_stats.

ChapTer 6 FeedForward Neural NeTworks

134

Now that we have the mean and standard deviation values for training

set features, it is time to normalize the train and test sets. The custom

normalizer(x) function can be used for train, test, and new observation

sets.

Feature scaling with the mean

and std. dev. values in train_stats

def normalizer(x):

 return (x-train_stats['mean'])/train_stats['std']

train_x_scaled = normalizer(train_x)

test_x_scaled = normalizer(test_x)

Note that we do not normalize the label (y) values since their wide

range doesn’t pose a threat for our model.

 Model Building and Training
Now, our data is cleaned and prepared for our feedforward neural network

pipeline. Let’s build our model and train it.

Figure 6-7. train_stats DataFrame for Train Set Statistics

ChapTer 6 FeedForward Neural NeTworks

135

 Tensorflow Imports
We already had some initial imports. In this part, we will import the

remaining modules and libraries to build, train, and evaluate our

feedforward neural network.

Remaining imports consist of the following libraries:

Importing the required Keras modules containing model and

layers

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

TensorFlow Docs Imports for Evaluation

import tensorflow_docs as tfdocs

import tensorflow_docs.plots

import tensorflow_docs.modeling

Sequential() is our API for model building, whereas Dense() is the

layer we will use in our feedforward neural network. tf.docs module will

be used for model evaluation.

 Model with Sequential API

After creating a model object with Sequential API and naming it model,

we can shape our empty model by adding Dense() layers. Each dense

layer – except the last one – requires an activation function. We will use

ReLU for this case study, but feel free to set other activation functions such

as Tanh or Sigmoid. Our input_shape parameter must be equal to the

number of features, and our output layer must have only one neuron since

this is a regression case.

Creating a Sequential Model and adding the layers

model = Sequential()

model.add(Dense(8,activation=tf.nn.relu, input_shape= [train_x.

shape[1]])),

ChapTer 6 FeedForward Neural NeTworks

136

model.add(Dense(32,activation=tf.nn.relu)),

model.add(Dense(16,activation=tf.nn.relu)),

model.add(Dense(1))

We can see the flowchart of model with a single line of code; see

Figure 6-8:

tf.keras.utils.plot_model(model, show_shapes=True)

Figure 6-8. The Flowchart of the Feedforward Neural Network for
Auto MPG

ChapTer 6 FeedForward Neural NeTworks

137

 Model Configuration

Now that we build the main network structure of our neural network,

we need to configure our optimizer, cost function, and metrics before

initiating the training. We will use Adam optimizer and mean squared

error (MSE) in our neural network. Additionally, TensorFlow will provide

us mean absolute error (MAE) values as well as MSE values. We can

configure our model with the following code:

Optimizer, Cost, and Metric Configuration

model.compile(optimizer='adam',

 loss='mse',

 metrics=['mse','mae']

)

As mentioned in Chapter 3, one of the powerful methods to fight

overfitting is early stopping. With the following lines of code, we will set an

early stopper if we do not see a valuable improvement for 50 epochs.

Early Stop Configuration

early_stop=tf.keras.callbacks.EarlyStopping(monitor=

'val_loss', patience=50)

Now that we configured our model, we can train our model with the

fit attribute of our model object:

Fitting the Model and Saving the Callback Histories

history=model.fit(

 x=train_x_scaled,

 y=train_y,

 epochs=1000,

 validation_split = 0.2,

ChapTer 6 FeedForward Neural NeTworks

138

 verbose=0,

 callbacks=[early_stop,

 tfdocs.modeling.EpochDots()

])

We set aside 20% of our train set for validation. Therefore, our neural

network will evaluate the model even before the test set. We set the

epoch value to 1000, but it will stop early if it cannot observe a valuable

improvement on the validation loss/cost. Finally, callbacks parameter

will save valuable information for us to evaluate our model with plots and

other useful tools.

 Evaluating the Results
Now that we trained our model, we can evaluate the results. Our

TensorFlow Docs library allows us to plot the loss values at each epoch.

We can create a new object using HistoryPlotter to create the object with

following code:

plot_obj=tfdocs.plots.HistoryPlotter(smoothing_std=2)

After creating the object, we can use the plot attribute to create the

plot, and we can set the ylim and ylabel values just as in Matplotlib with

the following code:

plot_obj.plot({'Auto MPG': history}, metric = "mae")

plt.ylim([0, 10])

plt.ylabel('MAE [mpg]')

Figure 6-9 shows the overview of our loss values at each epoch.

ChapTer 6 FeedForward Neural NeTworks

139

With the evaluate attribute of the model, we can also evaluate our

model using test set. The following lines will generate loss, MAE, and MSE

values using our test set as shown in Figure 6-10:

loss,mae,mse=model.evaluate(test_x_scaled,

 test_y,

 verbose=2)

print("Testing set Mean Abs Error: {:5.2f} MPG".format(mae))

We can generate predictions using the test set labels with a single line

of code:

test_preds = model.predict(test_x_scaled).flatten()

Figure 6-9. The Line Plot Showing Mean Absolute Error Values at
Each Epoch

Figure 6-10. Evaluation Results for the Trained Model for Auto MPG

ChapTer 6 FeedForward Neural NeTworks

140

Finally, we can plot the test set labels (actual values) against the

predictions generated with the test set features (see Figure 6-11) with the

following lines of code:

evaluation_plot = plt.axes(aspect='equal')

plt.scatter(test_y, test_preds)#Scatter Plot

plt.ylabel('Predictions [mpg]')#Y for Predictions

plt.xlabel('Actual Values [mpg]')#X for Actual Values

plt.xlim([0, 50])

plt.ylim([0, 50])

plt.plot([0, 50], [0, 50]) #line plot for comparison

We can also generate a histogram showing the distribution of error

terms around zero (see Figure 6-12), which is an important indication of

bias in our model. The following lines of code generate the said histogram:

Figure 6-11. The Scatter Plot for Actual Test Labels vs. Their
Prediction Values

ChapTer 6 FeedForward Neural NeTworks

141

error = test_preds - test_y

plt.hist(error, bins = 25)

plt.xlabel("Prediction Error [mpg]")

plt.ylabel("Count")

 Making Predictions with a New Observation
Both the scatter plot and the histogram we generated earlier show that

our model is healthy, and our loss values are also in an acceptable range.

Therefore, we can use our trained model to make new predictions, using

our own dummy observation.

I will create a dummy car with the following lines of code:

Prediction for Single Observation

What is the MPG of a car with the following info:

new_car = pd.DataFrame([[8, #cylinders

 307.0, #displacement

 130.0, #HP

 5504.0, #weight

 12.0, #acceleration

Figure 6-12. The Histogram Showing the Error Distribution of the
Model Around Zero

ChapTer 6 FeedForward Neural NeTworks

142

 70, #modelyear

 1 #origin

]], columns=column_names[1:])

This code will create the following Pandas DataFrame with single

observation, shown in Figure 6-13.

We need to create dummy variables and normalize the observation

before feeding into the trained model. After these operations, we can

simply use the predict attribute of our model. We can complete these

operations with these lines:

new_car = normalizer(one_hot_origin_encoder(new_car))

new_car_mpg = model.predict(new_car).flatten()

print('The predicted miles per gallon value for this car is:',

new_car_mpg)

The preceding code gives this output:

The prediction miles per gallon value for this car is:

[14.727904]

Figure 6-13. A Pandas DataFrame with Single Observation

ChapTer 6 FeedForward Neural NeTworks

143

 Conclusion
Feedforward neural networks are artificial neural networks that are widely

used in analytical applications and quantitative studies. They are the

oldest artificial neural networks and often named as multilayer perceptron.

They are considered as the backbone of the artificial neural network

family. You can find them embedded at the end of a convolutional neural

network. Recurrent neural networks are developed from feedforward

neural networks, with added bidirectionality.

In the next chapter, we will dive into convolutional neural networks, a

group of neural network family which are widely used in computer vision,

image and video processing, and many alike.

ChapTer 6 FeedForward Neural NeTworks

145© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0_7

CHAPTER 7

Convolutional Neural
Networks
It is safe to say that one of the most powerful supervised deep learning

models is convolutional neural networks (abbreviated as CNN or

ConvNet). CNN is a class of deep learning networks, mostly applied

to image data. However, CNN structures can be used in a variety of

real-world problems including, but not limited to, image recognition,

natural language processing, video analysis, anomaly detection, drug

discovery, health risk assessment, recommender systems, and time-series

forecasting.

CNNs achieve a high level of accuracy by assembling complex patterns

using the more basic patterns found in the training data. For instance, from

lines to an eyebrow, from two eyebrows to a human face, and then to a full

human figure, CNNs can correctly detect humans in an image by using

mere lines. To assemble these patterns, CNNs require a small amount

of data preparation since their algorithm automatically performs these

operations. This characteristic of CNNs offers an advantage compared to

the other models used for image processing.

https://doi.org/10.1007/978-1-4842-6513-0_7#DOI

146

Today, the overall architecture of the CNNs is already streamlined.

The final part of CNNs is very similar to feedforward neural networks

(RegularNets, multilayer perceptron), where there are fully connected

layers of neurons with weights and biases. Just like in feedforward neural

networks, there is a loss function (e.g., crossentropy, MSE), a number of

activation functions, and an optimizer (e.g., SGD, Adam optimizer) in

CNNs. Additionally, though, in CNNs, there are also Convolutional layers,

Pooling layers, and Flatten layers.

In the next section, we will take a look at why using CNN for image

processing is such a good idea.

Note I will usually refer to image data to exemplify the CNN
concepts. But, please note that these examples are still relevant for
different types of data such as audio waves or stock prices.

 Why Convolutional Neural Networks?
The main architectural characteristic of feedforward neural networks is

the intralayer connectedness of all the neurons. For example, when we

have grayscale images with 28 x 28 pixels, we end up having 784 (28 x 28

x 1) neurons in a layer that seems manageable. However, most images

have way more pixels, and they are not in grayscale. Therefore, when we

have a set of color images in 4K ultra HD, we end up with 26,542,080 (4096

x 2160 x 3) different neurons in the input layer that are connected to the

neurons in the next layer, which is not manageable. Therefore, we can say

that feedforward neural networks are not scalable for image classification.

However, especially when it comes to images, there seems to be little

correlation or relation between two individual pixels unless they are close

to each other. This important discovery led to the idea of Convolutional

layers and Pooling layers found in every CNN architecture.

Chapter 7 CoNvolutIoNal Neural Networks

147

 CNN Architecture
Usually, in a CNN architecture, there are several convolutional layers and

pooling layers at the beginning, which are mainly used to simplify the

image data complexity and reduce their sizes. In addition, they are very

useful to extract complex patterns from the basic patterns observed in

images. After using several convolutional and pooling layers (supported

with activation functions), we reshape our data from two-dimensional or

three-dimensional arrays into a one-dimensional array with a Flatten layer.

After the flatten layer, a set of fully connected layers take the flattened one-

dimensional array as input and complete the classification or regression

task. Let’s take a look at these layers individually.

 Layers in a CNN
We are capable of using many different layers in a convolutional neural

network. However, convolutional, pooling, and fully connected layers are

the most important ones. Therefore, let’s quickly cover these layers before

we implement them in our case studies.

 Convolutional Layers

A convolutional layer is the very first layer where we extract features from

the images in our datasets. Since pixels are only related to the adjacent

and other close pixels, convolution allows us to preserve the relationship

between different parts of an image. The task of a convolutional layer

merely is filtering the image with a smaller pixel filter to decrease the size

of the image without losing the relationship between pixels. When we

apply convolution to a 5 x 5 pixel image by using a 3 x 3 pixel filter with a 1

x 1 stride (1-pixel shift at each step), we end up having a 3 x 3 pixel output

(64% decrease in complexity) as shown in Figure 7-1.

Chapter 7 CoNvolutIoNal Neural Networks

148

Filtering

Filtering is performed by multiplying each value in a part of the image data

with the corresponding filter value. In Figure 7-2, the very first operation is

as follows. (Please refer to Table 7-1 for all convolution operations shown

in Figure 7-1).

Figure 7-1. Convolution of 5 x 5 Pixel Image with 3 x 3 Pixel Filter
(Stride = 1 x 1 pixel)

Figure 7-2. The Very First Filtering Operation for the Convolution
Shown in Figure 7-1

Chapter 7 CoNvolutIoNal Neural Networks

149

Using a too large filter would reduce the complexity more, but also

cause the loss of important patterns. Therefore, we should set an optimal

filter size to keep the patterns and adequately reduce the complexity of our

data.

Strides

Stride is a parameter to set how many pixels will the filter shift after each

operation. For the example earlier

• If we select a 1 x 1 pixel stride, we end up shifting the

filter 9 times to process all the data.

• If we select a 2 x 2 pixel stride, we can process the entire

5 x 5 pixel image in 4 filter operations.

Using a large stride value would decrease the number of filter

calculations. A large stride value would significantly reduce the complexity

of the model, yet we might lose some of the patterns along the process.

Therefore, we should always set an optimal stride value – not too large, not

too small.

Table 7-1. The Table of Calculations for Figure 7-2

Rows Calculations Result

1st row (1x0) + (0x0) + (0x0) +

2nd row (0x0) + (1x1) + (1x1) + = 5

3rd row (1x1) + (0x0) + (1x1)

Chapter 7 CoNvolutIoNal Neural Networks

150

 Pooling Layer

When constructing CNNs, it is almost standard practice to insert pooling

layers after each convolutional layer to reduce the spatial size of the

representation to reduce the parameter counts, which reduces the

computational complexity. In addition, pooling layers also help with the

overfitting problem.

For pooling operation, we select a pooling size to reduce the amount of

the parameters by selecting the maximum, average, or sum values inside

these pixels. Max pooling, one of the most common pooling techniques,

may be demonstrated as follows.

In pooling layers, after setting a pooling size of N x N pixels, we divide

the image data into N x N pixel portions to choose the maximum, average,

or sum value of these divided portions.

For the example in Figure 7-3, we split our 4 x 4 pixel image into 2 x 2

pixel portions, which gives us 4 portions in total. Since we are using max

pooling, we select the maximum value inside these portions and create a

reduced image that still contains the patterns in the original image data.

Selecting an optimal value for N x N is also crucial to keep the patterns

in the data while achieving an adequate level of complexity reduction.

Figure 7-3. Max Pooling by 2 x 2

Chapter 7 CoNvolutIoNal Neural Networks

151

 A Set of Fully Connected Layers

Fully connected network in a CNN is an embedded feedforward neural

network, where each neuron in a layer is linked to the neurons in the

next layer to determine the true relation and effect of each parameter

on the labels. Since our time-space complexity is vastly reduced thanks

to convolution and pooling layers, we can construct a fully connected

network at the end of our CNN to classify our images. A set of

fully connected layers looks like as shown in Figure 7-4:

 A Full CNN Model
Now that you have some idea about the individual layers of CNNs, it is time

to share an overview look of a complete convolutional neural network in

Figure 7-5:

Figure 7-4. A Fully Connected Layer with Two Hidden Layers

Chapter 7 CoNvolutIoNal Neural Networks

152

While the feature learning phase is performed with the help of

convolution and pooling layers, classification is performed with the set of

fully connected layers.

 Case Study | Image Classification
with MNIST
Now that we covered the basics of convolutional neural networks, we can

build a CNN for image classification. For this case study, we use the most

cliché dataset used for image classification: MNIST dataset, which stands

for Modified National Institute of Standards and Technology database. It

is an extensive database of handwritten digits that is commonly used for

training various image processing systems.

 Downloading the MNIST Data
The MNIST dataset is one of the most common datasets used for image

classification and accessible from many different sources. Tensorflow

allows us to import and download the MNIST dataset directly from its

API. Therefore, we start with the following two lines to import TensorFlow

and MNIST dataset under the Keras API.

∑

∑Weight

∑

In
pu

ts

Ou
tp

ut
s

∑

∑

∑

Bias

So
ftm

ax

FEATURE LEARNING CLASSIFICATION

Figure 7-5. A Convolutional Neural Network Example

Chapter 7 CoNvolutIoNal Neural Networks

153

import tensorflow as tf

import tensorflow_datasets as tfds

(x_train,y_train),(x_test,y_test)=tfds.as_numpy(tfds.

load('mnist', #name of the dataset

 split=['train', 'test'], #both train & test sets

 batch_size=-1, #all data in single batch

 as_supervised=True, #only input and label

 shuffle_files=True #shuffle data to randomize

))

The MNIST database contains 60,000 training images and 10,000

testing images taken from American Census Bureau employees and

American high school students. Therefore, in the second line, we separate

these two groups as train and test and also separate the labels and the

images. x_train and x_test parts contain grayscale RGB codes (from 0

to 255), while y_train and y_test parts contain labels from 0 to 9, which

represents which number they actually are. To visualize these numbers, we

can get help from Matplotlib.

import matplotlib.pyplot as plt

img_index = 7777 #You may pick a number up to 60,000

print("The digit in the image:", y_train[img_index])

plt.imshow(x_train[img_index].reshape(28,28),cmap='Greys')

When we run the preceding code, we will get the grayscale

visualization of the image as shown in Figure 7-6.

Chapter 7 CoNvolutIoNal Neural Networks

154

We also need to know the shape of the dataset to channel it to the

convolutional neural network. Therefore, we use the shape attribute of the

NumPy array with the following code:

x_train.shape

The output we get is (60000, 28, 28, 1). As you might have guessed,

60000 represents the number of images in the training dataset; (28, 28)

represents the size of the image, 28 x 28 pixels; and 1 shows that our

images are not colored.

 Reshaping and Normalizing the Images
With TensorFlow’s dataset API, we already created a four-dimensional

NumPy array for training, which is the required array dimension. On the

other hand, we must normalize our data as it is a best practice in neural

network models. We can achieve this by dividing the grayscale RGB codes

to 255 (which is the maximum grayscale RGB code minus the minimum

grayscale RGB code). This can be done with the following code:

Figure 7-6. A Visualization of the Sample Image and Its Label

Chapter 7 CoNvolutIoNal Neural Networks

155

Making sure that the values are float so that we can get

decimal points after division

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

Normalizing the grayscale RGB codes by dividing it to the

"max minus min grayscale RGB value".

x_train /= 255

x_test /= 255

print('x_train shape:', x_train.shape)

print('Number of images in x_train', x_train.shape[0])

print('Number of images in x_test', x_test.shape[0])

 Building the Convolutional Neural Network
We build our model by using high-level Keras Sequential API to simplify

the development process. I would like to mention that there are other

high-level TensorFlow APIs such as Estimators, Keras Functional API,

and another Keras Sequential API method, which helps us create neural

networks with high-level knowledge. These different options may lead to

confusion since they all vary in their implementation structure. Therefore,

if you see entirely different codes for the same neural network, although

they all use TensorFlow, this is why.

We use the most straightforward TensorFlow API – Keras Sequential

API – since we don’t need much flexibility. Therefore, we import the

Sequential model object from Keras and add Conv2D, MaxPooling,

Flatten, Dropout, and Dense layers. We already covered Conv2D,

MaxPooling, and Dense layers. In addition, Dropout layers fight with

the overfitting by disregarding some of the neurons while training, while

Flatten layers flatten two-dimensional arrays to a one-dimensional array

before building the fully connected layers.

Chapter 7 CoNvolutIoNal Neural Networks

156

#Importing the required Keras modules containing model and

layers

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense,Conv2D,

Dropout,Flatten,MaxPooling2D

#Creating a Sequential Model and adding the layers

model = Sequential()

model.add(Conv2D(28,kernel_size=(3,3), input_shape=(28,28,1)))

model.add(MaxPooling2D(pool_size=(2,2))

model.add(Flatten()) #Flattening the 2D arrays for fully

connected layers

model.add(Dense(128,activation=tf.nn.relu))

model.add(Dropout(0.2))

model.add(Dense(10,activation=tf.nn.softmax))

We may experiment with any number for the first Dense layer;

however, the final Dense layer must have 10 neurons since we have 10

number classes (0, 1, 2, …, 9). You may always experiment with kernel size,

pool size, activation functions, dropout rate, and the number of neurons in

the first Dense layer to get a better result.

 Compiling and Fitting the Model
With the preceding code, we created a non-optimized empty CNN. Now

it is time to set an optimizer with a given loss function which uses a

metric. Then, we can fit the model by using our train data. We will use the

following code for these tasks and see the outputs shown in Figure 7-7:

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

model.fit(x=x_train,y=y_train, epochs=10)

Chapter 7 CoNvolutIoNal Neural Networks

157

Output:

You can experiment with the optimizer, loss function, metrics, and

epochs. However, even though Adam optimizer, categorical crossentropy,

and accuracy are the appropriate metrics, feel free to experiment.

Epoch number might seem a bit small. However, you can easily reach to

98–99% test accuracy. Since the MNIST dataset does not require substantial

computing power, you may also experiment with the epoch number.

 Evaluating the Model
Finally, you may evaluate the trained model with x_test and y_test using

a single line of code:

model.evaluate(x_test, y_test)

The results in Figure 7-8 show the evaluation results for 10 epochs,

calculated based on the test set performance.

Figure 7-7. Epoch Stats for Our CNN Training on MNIST Dataset

Figure 7-8. Evaluation Results for Our MNIST-Trained CNN Model
with 98.5% Accuracy

Chapter 7 CoNvolutIoNal Neural Networks

158

We achieved 98.5% accuracy with such a basic model. To be frank, in

most image classification cases (e.g., for autonomous cars), we cannot

even tolerate a 0.1% error. As an analogy, a 0.1% error can easily mean

1 accident in 1000 cases if we build an autonomous driving system.

However, for our very first model, we can say that this result is outstanding.

We can also make individual predictions with the following code:

img_pred_index = 1000

plt.imshow(x_test[img_pred_index].reshape(28,28),

 cmap='Greys')

pred = model.predict(

 x_test[img_pred_index].reshape(1,28,28,1))

print("Our CNN model predicts that the digit in the image is:",

pred.argmax())

Our trained CNN model will classify the image as the digit “5” (five),

and here is the visual of the image in Figure 7-9.

Figure 7-9. Our Model Correctly Classifies This Image as the Digit 5
(Five)

Chapter 7 CoNvolutIoNal Neural Networks

159

please note that since we shuffle our dataset, you may see a different
image for index 1000. But your model still predicts the digit with
around 98% accuracy.

Although the image does not have good handwriting of the digit 5

(five), our model was able to classify it correctly.

 Saving the Trained Model
In this case study, we built our first convolutional neural network to

classify handwritten digits with Tensorflow’s Keras Sequential API. We

achieved an accuracy level of over 98%, and now we can even save this

model with the following lines of code:

Save the entire model as a SavedModel.

Create a 'saved_model' folder under the 'content' folder of

your Google Colab Directory.

!mkdir -p saved_model

Save the full model with its variables, weights, and biases.

model.save('saved_model/digit_classifier')

With the SavedModel, you can rebuild the trained CNN and use it to

create different apps such as a digit-classifier game or an image-to-number

converter!

Note there are two types of saving options – the new and fancy
“savedModel” and the old “h5” format. If you would like to learn
more about the differences between these formats, please take a
look at the save and load section of the tensorFlow Guide:

www.tensorflow.org/tutorials/keras/save_and_load

Chapter 7 CoNvolutIoNal Neural Networks

http://www.tensorflow.org/tutorials/keras/save_and_load

160

 Conclusion
Convolutional neural networks are very important and useful neural

network models used mainly in image processing and classification. You

can detect and classify objects in images, which may be used in many

different fields such as anomaly detection in manufacturing, autonomous

driving in transportation, and stock management in retail. CNNs are also

useful to process audio and video as well as financial data. Therefore, the

types of applications that take advantage of CNNs are even broader than

the ones mentioned earlier.

CNNs consist of convolutional and pooling layers for feature learning

and a set of fully connected layers for prediction and classification. CNNs

reduce the complexity of the data, something that feedforward neural

networks are not solely capable of.

In the next section, we will cover another essential neural network

architecture: recurrent neural networks (RNNs), which are particularly

useful for sequence data such as audio, video, text, and time-series data.

Chapter 7 CoNvolutIoNal Neural Networks

161© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0_8

CHAPTER 8

Recurrent Neural
Networks
In Chapter 6, we covered feedforward neural networks, which are the

most basic artificial neural network types. Then, we covered convolutional

neural networks in Chapter 7 as the type of artificial neural network

architecture, which performs exceptionally good on image data. Now,

it is time to cover another type of artificial neural network architecture,

recurrent neural network, or RNN, designed particularly to deal with

sequential data.

 Sequence Data and Time-Series Data
RNNs are extremely useful for sequence data. If you are familiar with

predictive analytics, you might know that forecasting with time-series data

requires different methods compared to cross-sectional data.

Cross-sectional data refers to a set of observations recorded at a single

point in time. The percentage returns of a number of different stocks for

this year-end would be an example of cross-sectional data.

Time-series data refers to a set of observations recorded over a given

period of time at equally spaced time intervals. The percentage returns of

a single stock per year in the last 10 years would be an example of time-

series data.

https://doi.org/10.1007/978-1-4842-6513-0_8#DOI

162

In time-series datasets, observations are recorded based on a

timestamp, but this cannot be generalized to sequence data. Sequence

data refers to a broader term. Sequence data is any data where the order of

observations matters. So, time series is a particular type of sequence data

ordered by timestamps. For example, the order of a sentence (consisting

of several words) is essential for its meaning. We cannot just randomly

change the order of words and expect it to mean something. However,

words in a sentence are not timestamped, so they do not carry any

information on time. Therefore, they are only sequence data, not time-

series data. Another example of sequence data (but not time-series data)

would be a DNA sequence. The order of a DNA sequence is essential, and

they are not ordered based on a timestamp. The relationship between

sequence data and time-series data is shown in Figure 8-1.

Now that you know the relationship between time-series data and –

the broader term – sequence data, you also know that when we refer to

sequence data, we also refer to time-series data, unless stated otherwise.

RNNs usually do a better job in sequence data problems compared

to the alternative neural network architectures. Therefore, it is important

to know how to implement recurrent neural networks for sequence data

problems such as stock price prediction, sales prediction, DNA sequence

modeling, and machine translation.

Figure 8-1. The Relationship Between Sequence Data and Time-
Series Data

Chapter 8 reCurrent neural networks

163

 RNNs and Sequential Data
There are three main limitations of feedforward neural networks which

makes them unsuitable for sequence data:

• A feedforward neural network cannot take the order

into account.

• A feedforward neural network requires a fixed input

size.

• A feedforward neural network cannot output

predictions in different lengths.

One of the fundamental characteristics of sequence data is the

significance of its order. Rearranging the order of monthly sales can lead

us from an increasing trend to a decreasing trend, and our prediction

for the next month’s sales would change dramatically. This is where the

feedforward neural network’s limitation surfaces. In a feedforward neural

network, the order of the data cannot be taken into account due to this

limitation. Rearranging the order of monthly sales would give the exact

same result, which proves that they cannot make use of the order of the

inputs.

In sequence data studies, the nature of the problems varies, as shown

in Figure 8-2. While a machine translation task is a many-to-many

problem in nature, sentiment analysis is a many-to-one task. Especially

in tasks where many inputs are possible, we often need a variable input

size. However, feedforward neural networks require models to be with

fixed input size, which makes them unsuitable for many sequence data

problems. If the model is trained to make predictions using the last 7 days,

you cannot use the 8th day.

Chapter 8 reCurrent neural networks

164

Finally, a feedforward neural network cannot output different length

predictions. Especially in machine translation problems, we cannot

predict the size of the output. For instance, a long sentence in English can

easily be expressed with a three-word sentence in a different language.

This flexibility cannot be provided with a feedforward neural network. But,

RNNs provide this capability, and therefore, they are widely used for tasks

like machine translation.

 The Basics of RNNs
Let’s take a quick look at the history of RNNs and then briefly cover the

real-world use cases of RNNs and their operating mechanism.

 The History of RNNs
We already covered some of the RNNs’ history in the previous chapters.

The primary motivation to develop RNNs is to eliminate the issues

mentioned in the previous section. Over the years, researchers developed

different RNN architectures based on their particular research areas. RNNs

have many variants, and the total number of different RNN architectures

can be expressed in dozens. The first RNN was the Hopfield networks

developed by John Hopfield in 1982. In 1997, Hochreiter and Schmidhuber

Figure 8-2. Potential Sequence Data Tasks in Deep Learning

Chapter 8 reCurrent neural networks

165

invented long short-term memory (LSTM) networks to address the

issues of existing RNNs at the time. LSTM networks perform very well on

sequence data tasks, and they are very popular RNN architectures, which

are widely used today. In 2014, Kyunghyun Cho introduced recurrent gated

units (GRUs) to simplify the LSTM networks. GRUs also perform very well

on many tasks, and its inner structure is more straightforward than LSTMs.

In this chapter, we will cover simple RNNs, LSTMs, and GRUs in more

detail.

 Applications of RNNs
There are a significant number of real-world applications of RNNs, and

some of these applications can only be built with RNNs. Without RNNs,

we would not have competent solutions in many areas, such as machine

translation or sentiment analysis. The following is a non-exhaustive list of

potential use cases of RNN:

• Grammar learning

• Handwriting recognition

• Human action recognition

• Machine translation

• Music composition

• Predicting subcellular localization of proteins

• Prediction in medical care pathways

• Protein homology detection

• Rhythm learning

• Robotics

• Sentiment analysis

Chapter 8 reCurrent neural networks

166

• Speech recognition and synthesis

• Time-series anomaly detection

• Time-series prediction

 Mechanism of RNNs
RNNs make use of previous information by keeping them in memory,

which is saved as “state” within an RNN neuron.

Before diving into the internal structure of LSTMs and GRUs, let’s

understand the memory structure with a basic weather forecasting

example. We would like to guess if it will rain by using the information

provided in a sequence. This sequence of data may be derived from

text, speech, or video. After each new information, we slowly update

the probability of rainfall and reach a conclusion in the end. Here is the

visualization of this task in Figure 8-3.

In Figure 8-3, we first record that there is cloudy weather. This single

information might be an indication of rain, which calculates into a 50%

(or 0.5) probability of rainfall. Then, we receive the following input: crowded

street. A crowded street means that people are outside, which means less

Figure 8-3. A Simple Weather Forecasting Task: Will It Rain?

Chapter 8 reCurrent neural networks

167

likelihood of rainfall, and, therefore, our estimation drops to 30% (or 0.3).

Then, we are provided with more information: knee pain. It is believed

that people with rheumatism feel knee pain before it rains. Therefore, my

estimation rises to 70% (or 0.7). Finally, when our model takes lightning

as the latest information, the collective estimation increases to 90% (or

0.9). At each time interval, our neuron uses its memory – containing

the previous information – and adds the new information on top of this

memory to calculate the likelihood of rainfall. The memory structure

can be set at the layer level as well as at the cell level. Figure 8-4 shows a

cell-level RNN mechanism, (i) folded version on the left and (ii) unfolded

version on the right.

 RNN Types
As mentioned earlier, there are many different variants of RNNs. In this

section, we will cover three RNN types we encounter often:

• Simple (Simple) RNN

• Long short-term memory (LSTM) networks

• Gated recurrent unit (GRU) networks

You can find the visualization of these alternative RNN cells in

Figure 8-5.

Figure 8-4. A Cell-Based Recurrent Neural Network Activity

Chapter 8 reCurrent neural networks

168

As you can see in Figure 8-5, all these three alternatives have common

RNN characteristics:

• They all take a t-1 state (memory) into the calculation

as a representation of the previous values.

• They all apply some sort of activation functions and do

matrix operations.

• They all calculate a current state at time t.

• They repeat this process to perfect their weights and

bias values.

Let’s examine these three alternatives in detail.

 Simple RNNs
Simple RNNs are a network of neuron nodes, which are designed in

connected layers. The inner structure of a simple RNN unit is shown in

Figure 8-6.

Figure 8-5. Simple RNN, Gated Recurrent Unit, and Long Short-Term
Memory Cells

Chapter 8 reCurrent neural networks

169

In a simple RNN cell, there are two inputs: (i) the state from the

previous time step (t-1) and (ii) the observation at the time t. After an

activation function (usually Tanh), the output is passed as the state at the

time t to the next cell. Therefore, the effect of the previous information is

passed to the next cell at each step.

Simple RNNs can solve many sequence data problems, and they are

not computationally intensive. Therefore, it might be the best choice in

cases where the resources are limited. It is essential to be aware of simple

RNNs; however, it is prone to several technical issues such as vanishing

gradient problem. Therefore, we tend to use more complex RNN variants

such as long short-term memory (LSTM) and gated recurrent unit (GRU).

 Long Short-Term Memory (LSTM)
Long short-term memory (LSTM) networks are invented by Hochreiter

and Schmidhuber in 1997 and improved the highest accuracy

performances in many different applications, which are designed to solve

sequence data problems.

An LSTM unit consists of a cell state, an input gate, an output gate, and

a forget gate, as shown in Figure 8-7. These three gates regulate the flow of

information into and out of the LSTM unit. In addition, LSTM units have

both a cell state and a hidden state.

Figure 8-6. A Simple RNN Unit Structure

Chapter 8 reCurrent neural networks

170

LSTM networks are well suited for sequence data problems in any

format, and they are less prone to vanishing gradient problems, which

are common in simple RNN networks. On the other hand, we might still

encounter with exploding gradient problem, where the gradients go to

the infinity. Another downside of LSTM networks is their computationally

intensive nature. Training a model using LSTM might take a lot of time and

processing power, which is the main reason why GRUs are developed.

 Gated Recurrent Units (GRUs)
Gated recurrent units are introduced in 2014 by Kyunghyun Cho. Just as

LSTMs, GRUs are also gating mechanism in RNNs to deal with sequence

data. However, to simplify the calculation process, GRUs use two gates:

(i) reset gate and (ii) update gate. GRUs also use the same values for

hidden state and cell state. Figure 8-8 shows the inner structure of a gated

recurrent unit.

Figure 8-7. A Long Short-Term Memory Unit Structure

Chapter 8 reCurrent neural networks

171

GRUs are useful when computational resources are limited. Even

though GRUs outperform LSTMs in some applications, LSTMs usually

outperform GRUs. A good strategy when dealing with sequence data to

train two models with LSTM and GRU and select the best performing one

since the performance of these two alternative gating mechanisms can

change case by case.

 Case Study | Sentiment Analysis with IMDB
Reviews
Now that we covered the conceptual part of recurrent neural networks, it

is time for a case study. In general, you don’t have to memorize the inner

working structure for simple RNNs, LSTMs, and GRUs to build recurrent

neural networks. TensorFlow APIs make it very easy to build RNNs that

do well on several tasks. In this section, we will conduct a sentiment

analysis case study with the IMDB reviews database, which is inspired by

TensorFlow’s official tutorial, titled “Text Classification with an RNN”.1

1 Text classification with an RNN, TensorFlow, available at www.tensorflow.org/
tutorials/text/text_classification_rnn

Figure 8-8. A Gated Recurrent Unit Structure

Chapter 8 reCurrent neural networks

172

 Preparing Our Colab for GPU Accelerated
Training
Before diving into exploring our data, there is one crucial environment

adjustment: we need to activate GPU training in our Google Colab

Notebook. Activating GPU training is a fairly straightforward task, but

failure to do it will keep you in CPU training mode forever.

Please go to your Google Colab Notebook, and select the Runtime ➤

“Change runtime type” menu to enable a GPU accelerator, as shown in

Figure 8-9.

As mentioned in earlier chapters, using a GPU or TPU – instead of a

CPU – for training usually speeds up the training. Now that we enabled

GPU use in our model, we can confirm whether a GPU is activated for

training with the following code:

import tensorflow as tf

print("Num GPUs Available: ", len(tf.config.experimental.list_

physical_devices('GPU')))

Output: Num GPUs Available: 1

Figure 8-9. Enabling GPU Acceleration in Google Colab

Chapter 8 reCurrent neural networks

173

 IMDB Reviews
IMDB reviews dataset is a large movie review dataset collected and

prepared by Andrew L. Maas from the popular movie rating service,

IMDB.2 IMDB reviews is used for binary sentiment classification, whether

a review is positive or negative. IMDB reviews contains 25,000 movie

reviews for training and 25,000 for testing. All these 50,000 reviews are

labeled data that may be used for supervised deep learning. Besides, there

is an additional 50,000 unlabeled reviews that we will not use in this case

study.

Lucky for us, TensorFlow already processed the raw text data and

prepared us a bag-of-words format. In addition, we also have access to the

raw text. Preparing the bag of words is a natural language processing (NLP)

task, which we will cover in the upcoming Chapter 9. Therefore, in this

example, we will barely use any NLP technique. Instead, we will use the

processed bag-of-words version so that we can easily build our RNN model

to predict whether a review is positive or negative.

 TensorFlow Imports for Dataset Downloading

We start with two initial imports that are the main TensorFlow import and

the TensorFlow datasets import to load the data:

import tensorflow as tf

import tensorflow_datasets as tfds

2 Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. (2011). Learning Word Vectors for Sentiment Analysis. The
49th Annual Meeting of the Association for Computational Linguistics
(ACL 2011).

Chapter 8 reCurrent neural networks

174

 Loading the Dataset from TensorFlow

TensorFlow offers several popular datasets, which can directly be

loaded from the tensorflow_datasets API. The load() function of the

tensorflow_datasets API returns two objects: (i) a dictionary containing

train, test, and unlabeled sets and (ii) information and other relevant

objects regarding the IMDB reviews dataset. We can save them as variables

with the following code:

Dataset is a dictionary containing train, test, and unlabeled

datasets

Info contains relevant information about the dataset

dataset, info = tfds.load('imdb_reviews/subwords8k',

 with_info=True,

 as_supervised=True)

 Understanding the Bag-of-Word Concept: Text
Encoding and Decoding

A bag of words is a representation of text that describes the occurrence

of words within a document. This representation is created based on

a vocabulary of words. In our dataset, reviews are encoded using a

vocabulary of 8185 words. We can access the encoder via the “info” object

that we created earlier.

Using info we can load the encoder which converts text to bag

of words

encoder = info.features['text'].encoder

print('Vocabulary size: {}'.format(encoder.vocab_size))

output: Vocabulary size: 8185

By using this encoder, we can encode new reviews:

You can also encode a brand new comment with encode function

Chapter 8 reCurrent neural networks

175

review = 'Terrible Movie!.'

encoded_review = encoder.encode(review)

print('Encoded review is {}'.format(encoded_review))

output: Encoded review is [3585, 3194, 7785, 7962, 7975]

We can also decode an encoded review as follows:

You can easily decode an encoded review with decode function

original_review = encoder.decode(encoded_review)

print('The original review is "{}"'.format(original_review))

output: The original review is "Terrible Movie!."

 Preparing the Dataset
We already saved our reviews in the “dataset” object, which is a dictionary

with three keys: (i) train, (ii) test, and (iii) unlabeled. By using these keys,

we will split our train and test sets with the following code:

We can easily split our dataset dictionary with the relevant

keys

train_dataset, test_dataset = dataset['train'], dataset['test']

We also need to shuffle our dataset to avoid any bias and pad our

reviews so that all of them are in the same length. We need to select a large

buffer size so that we can have a well-mixed train dataset. In addition, to

avoid the excessive computational burden, we will limit our sequence

length to 64.

BUFFER_SIZE = 10000

BATCH_SIZE = 64

train_dataset = train_dataset.shuffle(BUFFER_SIZE)

train_dataset = train_dataset.padded_batch(BATCH_SIZE)

test_dataset = test_dataset.padded_batch(BATCH_SIZE)

Chapter 8 reCurrent neural networks

176

Padding padding is a useful method to encode sequence data into
contiguous batches. to be able to fit all the sequences to a defined
length, we must pad or truncate some sequences in our dataset.

 Building the Recurrent Neural Network
Now that our train and test datasets are ready to be fed into the model, we

can start building our RNN model with LSTM units.

 Imports for Model Building
We use Keras Sequential API to build our models. We also need Dense,

Embedding, Bidirectional, LSTM, and Dropout layers to build our RNN

model. We also need to import Binary Crossentropy as our loss function

since we use binary classification to predict whether a comment is

negative or positive. Finally, we use Adam optimizer to optimize our

weights with backpropagation. These components are imported with the

following lines of code:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import (Dense,

 Embedding,

 Bidirectional,

 Dropout,

 LSTM)

from tensorflow.keras.losses import BinaryCrossentropy

from tensorflow.keras.optimizers import Adam

 Create the Model and Fill It with Layers
We use an Encoding layer, two LSTM layers wrapped in Bidirectional layers,

two Dense layers, and a Dropout layer. We start with an embedding layer,

which converts the sequences of word indices to sequences of vectors.

Chapter 8 reCurrent neural networks

177

An embedding layer stores one vector per word. Then, we add two LSTM layers
wrapped in Bidirectional layers. Bidirectional layers propagate the input back
and forth through the LSTM layers and then concatenate the output, which
is useful to learn long-range dependencies. Then, we add to one Dense layer
with 64 neurons to increase the complexity, a Dropout layer to fight overfitting.
Finally, we add a final Dense layer to make a binary prediction. The following
lines of code create a Sequential model and add all the mentioned layers:

model = Sequential([
 Embedding(encoder.vocab_size, 64),
 Bidirectional(LSTM(64, return_sequences=True)),
 Bidirectional(LSTM(32)),
 Dense(64, activation='relu'),
 Dropout(0.5),
 Dense(1)
])

As shown in Figure 8-10, we can also see the overview of the model

with model.summary().

Figure 8-10. The Summary of the RNN Model

Chapter 8 reCurrent neural networks

178

We can also create a flowchart of our RNN model, as you can see in

Figure 8-11, with the following line:

tf.keras.utils.plot_model(model)

 Compiling and Fitting the Model
Now that we build an empty model, it is time to configure the loss function,

optimizer, and performance metrics with the following code:

Figure 8-11. The Flowchart of the RNN Model

Chapter 8 reCurrent neural networks

179

model.compile(
loss=BinaryCrossentropy(from_logits=True),
 optimizer=Adam(1e-4),
 metrics=['accuracy'])

Our data and model are ready for training. We can use model.fit()

function to train our model. Around 10 epochs would be more than

enough for training our sentiment analysis model, which may take around

30 minutes. We also save our training process as a variable to access the

performance of the model over time.

history = model.fit(train_dataset, epochs=10,
 validation_data=test_dataset,
 validation_steps=30)

Figure 8-12 shows the main performance measures at each epoch.

 Evaluating the Model
After seeing an accuracy performance of around 85%, we can safely move

on to evaluating our model. We use test_dataset to calculate our final

loss and accuracy values:

test_loss, test_acc = model.evaluate(test_dataset)

print('Test Loss: {}'.format(test_loss))
print('Test Accuracy: {}'.format(test_acc))

Figure 8-12. Model Training Performance at Each Epoch

Chapter 8 reCurrent neural networks

180

After running the code above, we get the output shown below in
Figure 8-13:

We can also use our history object to plot the performance measures
over time with the following code:

import matplotlib.pyplot as plt

def plot_graphs(history, metric):
 plt.plot(history.history[metric])
 plt.plot(history.history['val_'+metric], '')
 plt.xlabel("Epochs")
 plt.ylabel(metric)
 plt.legend([metric, 'val_'+metric])
 plt.show()
plot_graphs(history, 'accuracy')

Figure 8-14 shows the plot outputted.

Figure 8-14. Accuracy vs. Epoch Plot for Sentiment Analysis LSTM Model

Figure 8-13. Model Evaluation After Training

Chapter 8 reCurrent neural networks

181

 Making New Predictions
Now that we trained our RNN model, we can make new sentiment

predictions from the reviews our model has never seen before. Since we

encoded and pad our train and test set, we have to process new reviews

the same way. Therefore, we need a padder and an encoder. The following

code is our custom padding function:

def review_padding(encoded_review, padding_size):

 zeros = [0] * (padding_size - len(encoded_review))

 encoded_review.extend(zeros)

 return encoded_review

We also need an encoder function that would encode and process our

review to feed into our trained model. The following function completes

these tasks:

def review_encoder(review):

 encoded_review = review_padding(encoder.encode(review),

64)

 encoded_review = tf.cast(encoded_review, tf.float32)

 return tf.expand_dims(encoded_review, 0)

Now we can easily make predictions from previously unseen reviews.

For this task, I visited the page IMDB reviews on the movie Fight Club and

selected the following comment:

fight_club_review = 'It has some cliched moments, even for its

time, but FIGHT CLUB is an awesome film. I have watched it

about 100 times in the past 20 years. It never gets old. It

is hard to discuss this film without giving things away but

suffice it to say, it is a great thriller with some intriguing

twists.'

Chapter 8 reCurrent neural networks

182

The reviewer gave 8-star and wrote this comment for Fight Club.

Therefore, it is clearly a positive comment. Thanks to the custom functions

we defined earlier, making a new prediction is very easy, as shown in the

following line:

model.predict(review_encoder(fight_club_review))

output: array([[1.5780725]], dtype=float32)

When the output is larger than 0.5, our model classifies the review

as positive, whereas negative if below 0.5. Since our output is 1.57, we

confirm that our model successfully predicts the sentiment of the review.

Although our model has more than 85% accuracy, one bias I

recognized is with regard to the length of the review. When we select a very

short review, no matter how positive it is, we always get a negative result.

This issue can be addressed with fine-tuning. Even though we will not

conduct fine-tuning in this case study, feel free to work on it to improve the

model even further.

 Saving and Loading the Model
You have successfully trained an RNN model, and you can finish this

chapter. But I would like to cover one more topic: saving and loading the

trained model. As you experienced, training this model took about 30

minutes, and Google Colab deletes everything you have done after some

time of inactivity. So, you have to save your trained model for later use.

Besides, you cannot simply save it to a Google Colab directory because it is

also deleted after a while. The solution is to save it to your Google Drive. To

be able to use our model at any time over the cloud, we should

• Give Colab access to save files to our Google Drive

• Save the trained model to the designated path

Chapter 8 reCurrent neural networks

183

• Load the trained model from Google Drive at any time

• Make predictions with the SavedModel object

 Give Colab Access to Google Drive

To be able to give access to Colab, we need to run the following code inside

our Colab Notebook:

from google.colab import drive

drive.mount('/content/gdrive')

Follow the instructions in the output cell to complete this task.

 Save Trained Model to Google Drive

Now that we can access our Google Drive files from Colab Notebooks, we

can create a new folder called saved_models and save our SavedModel

object to this folder with the following lines of code:

This will create a 'saved_model' folder under the 'content'

folder.

!mkdir -p "/content/gdrive/My Drive/saved_model"

This will save the full model with its variables, weights,

and biases.

model.save('/content/gdrive/My Drive/saved_model/sentiment_

analysis')

Also save the encoder for later use

 encoder.save_to_file('/content/gdrive/My Drive/saved_model/

sa_vocab')

After this code, we can load our trained model as long as we keep the

saved files in our Google Drive. You can also view the folders and files

under the sentiment_analysis folder with the following code:

Chapter 8 reCurrent neural networks

184

import os

os.listdir("/content/gdrive/My Drive/saved_model/sentiment_

analysis")

output: ['variables', 'assets', 'saved_model.pb']

 Load the Trained Model and Make Predictions

To be able to load the saved_model, we can use the load attribute of the

saved_model object. We just need to pass the exact path that our model is

located (make sure Colab has access to your Google Drive), and as soon as

we run the code, our model is ready for use:

import tensorflow as tf

loaded = tf.keras.models.load_model("/content/gdrive/My Drive/

saved_model/sentiment_analysis/")

We also load our previously saved vocabulary list for encoding and

decoding with the following code:

import tensorflow_datasets as tfds

vocab_path = '/content/gdrive/My Drive/saved_model/sa_vocab'

encoder = tfds.features.text.SubwordTextEncoder.load_from_

file(vocab_path)

Also, make sure you run the cells where review_padding() and

review_encoder() functions (shared earlier) are defined once more if you

restart your runtime.

Note that the loaded model object is exactly the same as our previous

model, and it has the standard model functions like as fit(), evaluate(),

and predict(). To be able to make predictions, we need to use the

predict() function of our loaded model object. We also need to pass our

processed review as the embedding_input argument. The following line of

code completes these tasks:

Chapter 8 reCurrent neural networks

185

fight_club_review = 'It has some cliched moments, even for its

time, but FIGHT CLUB is an awesome film. I have watched it

about 100 times in the past 20 years. It never gets old. It

is hard to discuss this film without giving things away but

suffice it to say, it is a great thriller with some intriguing

twists.'

loaded.predict(review_encoder(rev))

output: array([[1.5780725]], dtype=float32)

As expected, we get the same output. Therefore, we successfully saved

our model, load it, and make predictions. Now you can embed this trained

model to a web app, REST API, or mobile app to serve to the world!

 Conclusion
In this chapter, we covered recurrent neural networks, a type of artificial

neural network, which is designed particularly to deal with sequential

data. We covered the basics of RNNs and different types of RNNs (basic

RNN, LSTM, GRU neurons). Then, we conducted a case study using the

IMDB reviews dataset. Our RNN learned to predict whether a review is

positive or negative (i.e., sentiment analysis) by using more than 50,000

reviews.

In the next chapter, we will cover natural language processing, a

subfield of artificial intelligence, which deals with text data. In addition,

we will build another RNN model in the next chapter, but this time, it will

generate text data.

Chapter 8 reCurrent neural networks

187© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0_9

CHAPTER 9

Natural Language
Processing
Natural language processing (NLP) is an interdisciplinary subfield, which

has components from major fields such as linguistics, computer science, and

artificial intelligence. NLP is mainly concerned with the interaction between

humans and computers. The scope of NLP ranges from computational

understanding and generation of human languages to processing and

analyzing large amounts of natural language data. The scope of NLP also

contains text, speech, cognition, and their interactions. In this chapter, we

briefly cover the history of NLP, the differences between rule-based NLP

and statistical NLP, and the major NLP methods and techniques. We finally

conduct a case study on NLP to prepare you for real- world problems.

 History of NLP
The history of NLP can be split into four major eras:

• Early ideas era

• Rule-based NLP era

• Statistical NLP with supervised learning era

• Unsupervised and semi-supervised learning era

https://doi.org/10.1007/978-1-4842-6513-0_9#DOI

188

Note that these eras are complementary, rather than disruptive.

Therefore, we still take advantage of the rules and methods introduced

since the early eras.

 Early Ideas
The history of natural language processing starts in the 17th century with

the philosophical proposals by Leibniz and Descartes to introduce special

codes that would connect words between different languages. Even though

these proposals always remain in the theoretical side, they influence the

scientists in the upcoming centuries to realize the idea of automated

machine translation.

 Rule-Based NLP
The common nature of this era is the heavy use of complex handwritten

rules to cover potential outcomes of NLP tasks. The very early NLP-related

innovations were first observed with the patents for “translating machines”

in the 1930s. These early patents contain automated bilingual dictionaries

and methods to deal with the grammatical rules between languages.

During World War II, machine translating devices were developed to

translate communications between enemy lines. However, these machines

were mostly unsuccessful.

As in all the other fields of artificial intelligence, in 1950, Turing

Test sets the criteria for intelligence, which include understanding

conversations in natural languages.

In 1957, Noam Chomsky announced Syntactic Structures, a rule-based

system, which revolutionized linguistic studies with a universal grammar rule.

In 1954, with the Georgetown experiment, 60 sentences in Russian

were automatically translated into English. This successful experiment

encouraged the authors to claim that the machine translation between

Chapter 9 Natural laNguage proCessiNg

189

these two languages would be accomplished within 3 to 5 years. This

positive approach was in line with the other artificial intelligence subfields,

where most of these optimistic promises were failed to be realized.

Therefore, the funds were cut for NLP studies in the late 1960s and the

early 1970s, during the era of the AI winter.

Despite limited funding, some successful NLP systems were developed

in the 1960s, working in restricted environments. The 1970s were the years

when many programmers began to write “conceptual ontologies,” which

structure, group, and sort real-world objects into binary data.

 Statistical NLP and Supervised Learning
Around the 1980s, the steady increase in computing power and the

popularization of corpus linguistics that prioritizes the machine learning

approach to language processing made it possible to use statistical models

in NLP. Although the early studies in statistical NLPs were not much

different than the rule-based NLP studies, with the introduction of more

complex methods, statistical NLP has become more probabilistic. This

shift from ruled-based models to statistical models increased the accuracy

performance, especially for unusual observations.

In this era, IBM Research has taken the lead and developed several

successful NLP solutions such as IBM Watson. Also, the multilingual

official documents produced by the European Union, the United Nations,

and the Parliament of Canada have contributed to the development of

successful machine translation systems.

On the other hand, smaller players with limited access to these large

text corpora focused on developing methods that can effectively learn from

a limited amount of data.

Chapter 9 Natural laNguage proCessiNg

190

 Unsupervised and Semi-supervised NLP
Today, the real-world applications of NLP problems are becoming more

and more successful. However, finding enough labeled data is one of

the major problems observed in modern NLP research. Therefore, using

unsupervised and semi-supervised learning algorithms for common

NLP tasks has become increasingly more popular. Generally speaking,

predictions made with unsupervised learning algorithms are less accurate

than their supervised counterparts. However, with unsupervised models,

researchers can infer results from enormously large sizes of data, which are

very useful for discovering more complex patterns.

 Real-World Applications of NLP
The number of NLP real-world applications is increasing with

advancements in the field of machine learning. With the increased

computing power, a number of available machine learning models, and

the availability of a vast amount of text corpora, a new use case for NLP is

discovered every day. Here is a list of the most popular NLP applications:

• Machine Translation: The task of translating text from

one language to text in another language (e.g., Google

Translate)

• Speech Recognition: The task of recognizing human

voice to take actions or to convert into text

• Sentiment Analysis: The task of understanding the

emotion in a text piece, such as a review

• Question Answering: The task of developing systems

that can accurately deliver an answer to a given

question (e.g., Siri)

Chapter 9 Natural laNguage proCessiNg

191

• Automatic Summarization: The task of deriving a

short summary from a full text without losing the

significant points

• Chatbots: The task of developing special systems

capable of several NLP tasks such as question

answering, speech recognition, and more

• Market Intelligence: The task of analyzing customer

behavior by taking advantage of several NLP and other

statistical methods

• Text Classification: The task of classifying texts into

given classes by analyzing their contents, structures,

and other relevant features

• Optical Character Recognition (OCR): The task of

analyzing image data and converting it to text with the

help of computer vision and image processing methods

• Spell Checking: The task of identifying and correcting

spelling mistakes in a text (e.g., Grammarly)

To be able to develop these real-world applications, researchers have

to use several NLP methods that are covered in the next section.

 Major Evaluations, Techniques, Methods,
and Tasks
Processing of natural language data consists of several small tasks which

may be grouped into the following groups:

• Morphosyntax

• Semantics

Chapter 9 Natural laNguage proCessiNg

192

• Discourse

• Speech

• Dialogue

• Cognition

In the following section, we will cover these tasks under their

corresponding groups.

 Morphosyntax
Morphosyntax is the study of grammatical categories and linguistic units

created based on morphological and syntactic properties. In the field of

NLP, there are a number of essential morphosyntactic tasks which are

listed as follows:

• Base Form Extraction: There are two popular
methods to extract the base form of words.

• Lemmatization: Removing the insignificant

endings of words and returning their base

dictionary form (i.e., lemma) by using an actual

dictionary (e.g., converting swimming to swim by

removing the -ing suffix).

• Stemming: A method to reduce inflected or derived

words to their root form. Although stemming is

similar to lemmatization, the root form generated

using stemming does not have to be a real word

(e.g., the words trouble, troubling, and troubled are

stemmed into troubl).

• Grammar Induction: Generating a language-wide

formal grammar that describes its syntax.

Chapter 9 Natural laNguage proCessiNg

193

• Morphological Segmentation: Separating words into

the smallest meaningful units (i.e., morphemes) and

identifying the classes of these units.

• Part-of-Speech (POS) Tagging: Determining the

POS type for each word. The common POS types are

noun, verb, adjective, adverb, pronoun, preposition,

conjunction, interjection, numeral, article, or

determiner.

• Parsing: Determining the parse tree of a given string

(e.g., a sentence). A parse tree is an ordered, rooted

tree, which represents the syntactic structure of a

string.

• Sentence Breaking: Finding the sentence boundaries.

Several punctuation marks such as periods or

exclamation points are useful for this task.

• Word Segmentation: Separating a given text into

separate words. This process is often used to create a

bag of words (BOW) and text vectorization.

• Terminology Extraction: Extracting relevant terms

from a given corpus.

 Semantics
Semantics is an interdisciplinary field in the intersection of linguistics and

logic concerned with meaning. While logical semantics is concerned with

sense, reference, and implication, lexical semantics is concerned with

the analysis of word meanings and relations between them. The main

problems, methods, and tasks related to semantics are as follows:

Chapter 9 Natural laNguage proCessiNg

194

• Machine Translation: As explained earlier, an

automatic translation of text from one human language

to another.

• Named Entity Recognition (NER): Finding the people

and place names in a given string. While capitalization

is useful for NER, there is certainly much more work

involved.

• Natural Language Generation: Generating text in

natural languages using word representations and

statistical models.

• Optical Character Recognition: As explained earlier,

identifying the text data from an image containing

printed text.

• Question Answering: As explained previously, given a

question in a natural language, providing an answer.

• Recognizing Textual Entailment: Identifying a

directional relation between text fragments, which is

more relaxed than rigid logical entailment.

an example of positive textual entailment between two strings is as
follows:

Text: if you work hard, you will be successful.

Hypothesis: hardworking has good consequences.

• Relationship Extraction: Identifying real-world

relations from a given text (e.g., Person A works for

Company X).

Chapter 9 Natural laNguage proCessiNg

195

• Sentiment Analysis: As explained previously,

extracting subjective information (i.e., emotions) from

a set of documents.

• Topic Segmentation and Recognition: Classifying a

set of documents or text into separate topics. While

the topic boundaries may be apparent in some cases,

usually it requires more evaluation.

• Word Sense Disambiguation: Determining the

meaning of a word with more than one meaning based

on the context.

 Discourse
• Automatic Summarization: As explained earlier,

producing a readable summary of a large text.

• Coreference Resolution: Determining which words

refer to the same objects, which include nouns as well

as pronouns. Coreference occurs when more than one

expression in a text refer to the same object.

• Discourse Analysis: The study of written or spoken

language in relation to its social context, which aims to

understand how language is used in real-life situations.

 Speech
• Speech Recognition: As explained earlier, converting a

given sound clip of a person speaking into the text

• Speech Segmentation: A subtask of speech

recognition, separating the recognized text into words

Chapter 9 Natural laNguage proCessiNg

196

• Text-to-Speech: Converting a given text to its audio

representation

 Dialogue
Initiating and continuing a meaningful written or spoken conversational

exchange with a human or a machine. Dialogue requires simultaneous

completion of several tasks such as answering questions, text-to-speech,

speech recognition, sentiment analysis, and more.

 Cognition
Acquiring knowledge and understanding through thought, experience,

and senses. It is regarded as the most complex evaluation of NLP and

usually referred to as natural language understanding (NLU).

 Natural Language Toolkit (NLTK)
NLTK is an essential Python library designated for NLP tasks. NLTK

supports essential NLP tasks such as text classification, stemming and

lemmatization, tagging, parsing, tokenization, and even reasoning.

After being developed by Steven Bird and Edward Loper at the

University of Pennsylvania, NLTK is regarded as the main NLP library for

Python.

Even though you can take advantage of data science libraries such as

Pandas, scikit-learn, TensorFlow, and NumPy, the methods available in

these libraries cannot even be compared with what NLTK offers.

Chapter 9 Natural laNguage proCessiNg

197

Available NLTK Modules are listed here.

app parse

ccg probability

chat sem

chunk sentiment

classify stem

cluster tag

collections tbl

corpus test

data text

downloader tokenize

draw toolbox

featstruct translate

grammar tree

help treetransform

inference twitter

lm util

metrics wsd

misc

Useful Information About NLTK

• Website: www.nltk.org/

• Documentation URL for Modules: www.nltk.org/py-

modindex

• Installation command: pip install --user -U nltk

• Preferred Alias for Importing: import nltk

Chapter 9 Natural laNguage proCessiNg

http://www.nltk.org/
http://www.nltk.org/py-modindex
http://www.nltk.org/py-modindex

198

 Case Study | Text Generation with Deep NLP
Note that the topic of NLP is an expertise area by itself. Someone can

spend an entire life working on NLP studies. In this chapter, we only make

an introduction, and now that we covered the main topics in natural

language processing, we can move on to our case study: text generation

with deep natural language processing.

One of the most important topics in NLP projects is text vectorization.

In this case study, we will refer to Andrej Karpathy’s blog post, “The

Unreasonable Effectiveness of Recurrent Neural Networks”1, and

TensorFlow Team’s take on this post2.

The research has shown that one of the most effective artificial neural

network types for NLP is recurrent neural networks (RNNs). RNNs are

widely used in NLP tasks such as machine translation, text generation, and

image captioning. In NLP tasks, generally, a developer uses NLP tools and

methods to process the text data into vectors and then feed them into a

selected artificial neural network such as RNN, CNN, or even feedforward

neural network to complete a task. In our case study, we also follow these

two standardized steps: (i) process the text into vectors and (ii) train a

neural network with these vectors.

 The Goal of the Case Study
It is crucial to fully understand the goal of the case study. In this case study,

our goal is to train an RNN, which is capable of generating meaningful

text using characters. An RNN can generate text from words as well as

from characters, and we select to use characters to generate text for this

1 The Unreasonable Effectiveness of Recurrent Neural Networks, available on
http://karpathy.github.io/2015/05/21/rnn-effectiveness

2 Text generation with an RNN | TensorFlow Core TensorFlow, available on
www.tensorflow.org/tutorials/text/text_generation

Chapter 9 Natural laNguage proCessiNg

http://karpathy.github.io/2015/05/21/rnn-effectiveness
https://www.tensorflow.org/tutorials/text/text_generation

199

case study. The problem is when we build a new RNN with no training,

it combines a bunch of meaningless characters, which does not mean

anything. However, if we feed our RNN with a lot of text data, it starts

to imitate the style of these texts and generate meaningful text using

characters. So, if we feed the model a lot of didactic text, our model would

generate educational materials. If we feed our model with lots of poems,

our model will start generating poems, so we would end up having an

artificial poet. These are all viable options, but we will feed our model

with something else: a long text dataset containing Shakespeare’s writings.

Therefore, we will create an artificial Shakespeare.

 Shakespeare Corpus
Shakespeare Corpus is a text file containing 40,000 lines of Shakespeare's

writing, which is cleaned and prepared by Karpathy and hosted by

TensorFlow team on this URL:

https://storage.googleapis.com/download.tensorflow.org/data/

shakespeare.txt

I strongly recommend you take a look at the .txt file to understand

the text we are dealing with. The file contains the conversational content

where each character’s name is placed before the corresponding part, as

shown in Figure 9-1.

Chapter 9 Natural laNguage proCessiNg

https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt
https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt

200

 Initial Imports
In this case study, the required libraries are TensorFlow, NumPy, and os,

which we can import them with the following code:

import tensorflow as tf

import numpy as np

import os

Did you notice that I did not mention the NLTK library? The reason for

this is that TensorFlow also offers limited support for NLP tasks, and in this

case study, coupled with NumPy operations, we are capable of vectorizing

our dataset with TensorFlow. The main reason for this is that our corpus is

pretty much standardized and cleaned. If we needed a more complex NLP

method, we would have had to rely on NLTK, Pandas, and NumPy libraries

to a greater extent.

Figure 9-1. A Part from the Shakespeare Corpus

Chapter 9 Natural laNguage proCessiNg

201

 Loading the Corpus
To be able to load a dataset from an online directory, we can use the util

module of the Keras API in TensorFlow. For this task, we will use the get_

file() function, which downloads a file from a URL if it not already in the

cache, with the following code:

path_to_file = tf.keras.utils.get_file('shakespeare.txt',

'https://storage.googleapis.com/download.tensorflow.org/data/

shakespeare.txt')

After downloading our file, we can open the file from the cache with

the following Python code:

text = open(path_to_file, 'rb').read()

text = text.decode(encoding='utf-8')

Now, we successfully saved the entire corpus in the Colab notebook’s

memory as a variable. Let’s see how many characters there in the corpus

are and what’s the first 100 characters, with the following code:

print ('Total number of characters in the corpus is:',

len(text))

print('The first 100 characters of the corpus are as

follows:\n', text[:100])

Output:

Total number of characters in the corpus is: 1115394

The first 100 characters of the corpus are as follows:

 First Citizen:

Before we proceed any further, hear me speak.

All:

Speak, speak.

First Citizen:

You

Chapter 9 Natural laNguage proCessiNg

202

Our entire corpus is accessible via a Python variable, named text, and

now we can start vectorizing it.

 Vectorize the Text
Text vectorization is a fundamental NLP method to transform text data into

a meaningful vector of numbers so that a machine can understand. There

are various approaches to text vectorization. In this case study, step by

step, this is how we go about this:

• Give an index number to each unique character.

• Run a for loop in the corpus, and index every character

in the whole text.

To assign an index number to each unique character, we first have to

create a list containing only a single copies of all the unique characters in

the text. This is very easy with the built-in set() function, which converts a

list object to a set object only with unique values.

The difference between set and list data structures is that lists are

ordered and allow duplicates, while sets are unordered and don’t allow

duplicate elements. So, when we run the set() function, as shown in the

following code, it returns a set of unique characters in the text file:

vocab = sorted(set(text))

print ('The number of unique characters in the corpus is',

len(vocab))

print('A slice of the unique characters set:\n', vocab[:10])

Output:

The number of unique characters in the corpus is 65

A slice of the unique characters set:

 ['\n', ' ', '!', '$', '&', "'", ',', '-', '.', '3']

Chapter 9 Natural laNguage proCessiNg

203

We also need to give each character an index number. The following

code assigns a number to each set item and then creates a dictionary of the

set items with their given numbers with the following code:

char2idx = {u:i for i, u in enumerate(vocab)}

We also make a copy of the unique set elements in NumPy array format

for later use in decoding the predictions:

idx2char = np.array(vocab)

Now we can vectorize our text with a simple for loop where we go

through each character in the text and assign their corresponding index

value and save all the index values as a new list, with the following code:

text_as_int = np.array([char2idx[c] for c in text])

 Creating the Dataset
At this point, we have our char2idx dictionary to vectorize the text and

idx2char to de-vectorize (i.e., decode) the vectorized text. Finally, we have

our text_as_int as our vectorized NumPy array. We can now create our

dataset.

Firstly, we will use from_tensor_slices method from Dataset module

to create a TensorFlow Dataset object from our text_as_int object, and we

will split them into batches. The length of each input of the dataset is limited

to 100 characters. We can achieve all of them with the following code:

char_dataset = tf.data.Dataset.from_tensor_slices(text_as_int)

seq_length = 100 # The max. length for single input

sequences = char_dataset.batch(seq_length+1, drop_

remainder=True)

Chapter 9 Natural laNguage proCessiNg

204

Our sequences object contains sequences of characters, but we have to

create a tuple of these sequences simply to feed into the RNN model. We

can achieve this with the custom mapping function as follows:

def split_input_target(chunk):

 input_text = chunk[:-1]

 target_text = chunk[1:]

 return input_text, target_text

dataset = sequences.map(split_input_target)

The reason that we generated these tuples is that for RNN to work, we

need to create a pipeline, as shown in Figure 9-2.

Finally, we shuffle our dataset and split into 64 sentence batches with

the following lines:

BUFFER_SIZE = 10000 # TF shuffles the data only within buffers

BATCH_SIZE = 64 # Batch size

dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_

remainder=True)

print(dataset)

Figure 9-2. An Example of RNN with Four-Dimensional Input and
Output Layers. Note the Lag Between Input and Output Characters

Chapter 9 Natural laNguage proCessiNg

205

Output:

<BatchDataset shapes: ((64, 100), (64, 100)), types: (tf.int64,

tf.int64)

 Building the Model
Our data is ready to be fed into our model pipeline. Let’s create our model.

We would like to train our model and then make new predictions. What is

important about this is that our training pipeline will feed 64 sentences at

each batch. Therefore, we need to build our model in a way to accept 64

input sentences at a time. However, after we trained our model, we would

like to input single sentences to generate new tasks. So, we need different

batch sizes for pre-training and post-training models. To achieve this,

we need to create a function, which allows us to reproduce models for

different batch sizes. The following code does this:

def build_model(vocab_size, embedding_dim, rnn_units, batch_size):

 model = tf.keras.Sequential([

 tf.keras.layers.Embedding(

 vocab_size,

 embedding_dim,

 batch_input_shape=[batch_size, None]),

 tf.keras.layers.GRU(

 rnn_units,

 return_sequences=True,

 stateful=True,

 recurrent_initializer='glorot_uniform'),

 tf.keras.layers.Dense(vocab_size)

])

 return model

Chapter 9 Natural laNguage proCessiNg

206

There are three layers in our model:

• An Embedding Layer: This layer serves as the input

layer, accepting input values (in number format) and

convert them into vectors.

• A GRU Layer: An RNN layer filled with 1024 gradient

descent units

• A Dense Layer: To output the result, with vocab_size

outputs.

Now we can create our model for training, with the following code:

model = build_model(

 vocab_size = len(vocab), # no. of unique characters

 embedding_dim=embedding_dim, # 256

 rnn_units=rnn_units, # 1024

 batch_size=BATCH_SIZE) # 64 for the training

Here is the summary of our model in Figure 9-3.

Figure 9-3. The Summary View of the Training Model. Note the 64 in
the Output Shapes, Which Must Be 1 for Individual Predictions After
Training

Chapter 9 Natural laNguage proCessiNg

207

 Compiling and Training the Model
To compile our model, we need to configure our optimizer and loss

function. For this task, we select “Adam” as our optimizer and sparse

categorical crossentropy function as our loss function.

Since our output is always one of the 65 characters, this is a multiclass

categorization problem. Therefore, we have to choose a categorical

crossentropy function. However, in this example, we select a variant of

categorical crossentropy: sparse categorical crossentropy. The reason that

we are using sparse categorical crossentropy is that even though they use

the same loss function, their output formats are different. Remember we

vectorized our text as integers (e.g., [0], [2], [1]), not in one-hot encoded

format (e.g., [0,0,0], [0,1,], [1,0,0]). To be able to output integers, we must

use a sparse categorical crossentropy function.

To be able to set our customized loss function, let's create a basic

Python function containing sparse categorical crossentropy loss:

def loss(labels, logits):

 return tf.keras.losses.sparse_categorical_crossentropy(

labels, logits, from_logits=True)

Now we can set our loss function and optimizer with the following

code:

model.compile(optimizer='adam', loss=loss)

To able to load our weights and save our training performance, we

need to set and configure a checkpoint directory with the following code:

Directory where the checkpoints will be saved

checkpoint_dir = './training_checkpoints'

Name of the checkpoint files

checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_

{epoch}")

Chapter 9 Natural laNguage proCessiNg

208

checkpoint_callback=tf.keras.callbacks.ModelCheckpoint(

 filepath=checkpoint_prefix,

 save_weights_only=True)

Our model and checkpoint directory are configured. We will train

our model for 30 epochs and save the training history to a variable called

history, with the following code:

EPOCHS = 30

history = model.fit(dataset, epochs=EPOCHS,

callbacks=[checkpoint_callback])

While training the model we get the following output shown in

Figure 9-4:

Thanks to the simplicity of the model and the way we encode our

model, our training does not take too long (around 3–4 minutes). Now we

can use the saved weights and build a custom model that accepts single

input to generate text.

Figure 9-4. The Last Eight Epochs of the Model Training

Chapter 9 Natural laNguage proCessiNg

209

 Generating Text with the Trained Model
To be able to view the location of our latest checkpoint, we need to run the

following code:

tf.train.latest_checkpoint(checkpoint_dir)
Output:
./training_checkpoints/ckpt_30

Now we can use the custom build_model() function we created earlier to

build a new model with batch_size=1, load weights using the weights saved

in the latest_checkpoint, and use the build() function to build the model

based on input shapes received (i.e., [1, None]). We can achieve all of these

and summarize() the information on our new model with the following code:

model = build_model(vocab_size, embedding_dim, rnn_units,
batch_size=1)
model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))
model.build(tf.TensorShape([1, None]))

model.summary()

The output is shown in Figure 9-5:

Output:

Figure 9-5. The Summary View of the Newly Created Model. Now It
Accepts Single Inputs

Chapter 9 Natural laNguage proCessiNg

210

Our model is ready to make predictions, and all we need is a custom

function to prepare our input for the model. We have to set the following:

• The number of characters to generate

• Vectorizing the input (from string to numbers)

• An empty variable to store the result

• A temperature value to manually adjust variability of

the predictions

• Devectorizing the output and also feeding the output to

the model again for the next prediction

• Joining all the generated characters to have a final

string

The following custom function does all of these:

def generate_text(model, num_generate, temperature, start_

string):

 input_eval = [char2idx[s] for s in start_string] # string to

numbers

(vectorizing)

 input_eval = tf.expand_dims(input_eval, 0) # dimension

expansion

 text_generated = [] # Empty string to store our results

 model.reset_states() # Clears the hidden states in the RNN

 for i in range(num_generate): # Run a loop for number of

characters to generate

 predictions = model(input_eval) # prediction for single

character

 predictions = tf.squeeze(predictions, 0) # remove the batch

dimension

Chapter 9 Natural laNguage proCessiNg

211

 # using a categorical distribution to predict the character

returned by the model

 # higher temperature increases the probability of selecting

a less likely character

 # lower --> more predictable

 predictions = predictions / temperature

 predicted_id = tf.random.categorical(predictions, num_

samples=1)[-1,0].numpy()

 # The predicted character as the next input to the model

 # along with the previous hidden state

 # So the model makes the next prediction based on the

previous character

 input_eval = tf.expand_dims([predicted_id], 0)

 # Also devectorize the number and add to the generated text

 text_generated.append(idx2char[predicted_id])

 return (start_string + ''.join(text_generated))

It returns our final prediction value, and we can easily generate a text

using the following line:

generated_text = generate_text(

 model,

 num_generate=500,

 temperature=1,

 start_string=u"ROMEO")

And we can print it out with the built-in print function:

print(generated_text)

Chapter 9 Natural laNguage proCessiNg

212

Output:

ROMEO:

Third Servingman:

This attemptue never long to smile

under garlands grass and enterhoand of death.

GREMIO:

Have I not fought for such a joy? can come to Spilet O, thy

husband!

Go, sirs, confusion's cut off? princely Noboth, my any thing

thee;

Whereto we will kiss thy lips.

ANTIGONUS:

It is your office: you have ta'en her relatants so many friends

as they

or no man upon the market-play with thee!

GRUMIO:

First, know, my lord.

KING RICHARD II:

Then why.

CORIOLANUS:

How like a tinker? Was e

As you can see, our model is capable of generating text in any length.

Please note this: Our model uses characters, so the miracle of the model is

that it learned to create meaningful words from characters. So, do not think

that it adds a bunch of unrelated words together. It goes over thousands

of words and learns the relationship between different characters and

how they are used to create meaningful words. Then it replicates this and

returns us sentences with meaningful words.

Chapter 9 Natural laNguage proCessiNg

213

Please play around with temperature to see how you can change

the output from more proper words to more distorted words. A higher

temperature value would increase the chances of our function to choose

less likely characters. When we add them all up, we would have less

meaningful results. A low temperature, on the other hand, would cause the

function to generate text that is simpler and more of a copy of the original

corpus.

 Conclusion
In this chapter, we covered natural language processing, a subfield of

artificial intelligence, which deals with text data. We covered the major

methods and techniques used in NLP studies. We also briefly visited the

timeline of NLP. We finally conducted a case study, where we use recurrent

neural networks to generate Shakespeare-like text.

In the next chapter, we will cover the recommender systems, which are

the backbone of the many services provided by the large tech companies

we know today.

Chapter 9 Natural laNguage proCessiNg

215© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0_10

CHAPTER 10

Recommender
Systems
Recommender systems (RSs) are powerful information filtering systems

that rank items and recommend them to a user based on the preferences

of the user and the features of the items. These recommendations can vary

from which movies to watch to what products to purchase, from which

songs to listen to which services to receive. The goal of recommender

systems is to suggest the right items to the user to build a trust relationship

to achieve long-term business objectives. Most of the large tech companies

such as Amazon, Netflix, Spotify, YouTube, and Google benefit from

recommender systems to a great extent; see Figure 10-1 for Amazon

example.

Figure 10-1. A Recommender System for Gift Ideas on amazon.com

https://doi.org/10.1007/978-1-4842-6513-0_10#DOI

216

Let’s take a look at the popular approaches to recommender systems in

the next section.

 Popular Approaches
There are several approaches to create a powerful recommender system,

but the two most popular approaches which are widely used are (i)

collaborative filtering and (ii) content-based filtering. In this section, we

will briefly cover these filtering approaches.

 Collaborative Filtering
Collaborative filtering is a recommendation approach based on filtering

out items that a user might prefer on the basis of the reactions of users with

similar characteristics. It is based on grouping users into smaller sets of

groups with similar preferences and recommending them the items that

the other members of the group are satisfied with.

The primary assumption of the collaborative filtering is that the users

who have agreed in the past tend to agree in the future. Therefore, pure

collaborative filtering systems only need data on the historical preferences

of the users on a given set of items. Figure 10-2 shows a visual explanation

of the Collaborative Filtering approach.

Chapter 10 reCommender SyStemS

217

 Collaborative Filtering Sub-approaches

There are also sub-approaches within the collaborative filtering approach.

Collaborative filtering can be (i) memory based or (ii) model based.

The memory-based approach is based on finding similar users using

a selected measure (e.g., cosine similarity or Pearson correlation) and

taking a weighted average of ratings. Although it is easy to build and

more interpretable, it does not perform well when the data is limited. On

the other hand, the model-based approach utilizes machine learning to

predict expected user ratings of unrated items. Although this approach

hinders the interpretability of the model, it is much more effective when

the available data is limited.

 Data Collection
Since collaborative filtering is based on users’ historical data, one of the

essential steps of recommender system development with a collaborative

approach is to collect data about the users’ feedbacks and preferences.

This data can be explicit feedback or implicit behavior of the user.

Figure 10-2. A Depiction of Collaborative Recommender Systems

Chapter 10 reCommender SyStemS

218

 Explicit Data Collection

Explicit data collection comprises of all the data that the user directly

provides to the system. This includes

• A user’s rate on an item on a sliding scale

• A user’s item ranking inside a collection from most

favorite to least favorite

• A user’s selection between two or more items

• A user’s list of favorite items

 Implicit Data Collection

Implicit data collection is based on a user’s observable behaviors. These

observations can be made within the system as well outside of the systems

with tools such as cookies and third-party solutions. Implicit data includes

• A user’s viewed items list

• Record of the items that a user purchased online

• The websites that a user visited

• A user’s social network engagements

 Issues With Regard to Collaborative Filtering

Even though collaborative filtering works very well, there are three

common issues that a recommender system might experience:

• Cold start

• Scalability

• Sparsity

Chapter 10 reCommender SyStemS

219

Cold Start

When a recommender system is first deployed, it is very common that the

size of the available data about users and items are minimal. In addition,

even when the recommender system matures, sufficient information on the

newly added user or product is probably much less than the desired amount,

which is crucial to make valuable recommendations. Therefore, when there

is not enough information, recommender systems often fail to provide a

useful recommendation, which is referred to as the “cold start” problem.

Scalability

Another issue with regard to recommender systems based on collaborative

filtering is the scalability. Especially when the memory-based approach is

adopted for systems with millions of users, calculating the similarity measures

might become a very time-consuming and resource-intensive task.

Sparsity

Finally, collecting sufficient information regarding items might be another

issue to build successful recommender systems. This is due to the low

percentage of feedbacks based on the items watched, sold, or listened to.

Therefore, the low level of the feedback ratio might reduce the significance

of the results and provide an incorrect ranking of items.

 Content-Based Filtering (Personality-Based
Approach)
Content-based filtering is another popular approach to recommender

systems. Content refers to the content or attributes of the items that

the user engages with. In the content-based filtering approach, items

are categorized, and based on the user’s limited feedback, the system

recommends new items belonging to the categories the user likes.

Chapter 10 reCommender SyStemS

220

For example, when you give positive ratings to action movies and negative

ratings to children movies, the recommender system with the content-

based filtering would recommend you another action movie.

For content-based filtering, both items and users are tagged with

keywords to categorize them. Items are tagged based on their attributes,

whereas to tag users, a dedicated model is designed to create user profiles

based on their interaction with the recommender system. A vector space

representation algorithm (e.g., tf-idf) is used to abstract the features of the

items. Then, the system makes recommendations based on the algorithm.

In recent years, the recommendation systems that are solely based

on content-based filtering have lost its popularity. More often than not,

content-based filtering is used with other filtering methods to create

hybrid models.

 Other Recommender System Approaches
Apart from collaborative and content-based recommender systems, there

are other kinds of recommender systems that are increasingly used.

• Multi-criteria Recommender Systems: These

recommender systems use more than a single criterion

to make a recommendation. Generally speaking,

recommendation systems collect a single preference

rating for an item. But a more complex user rating

system can help to create a more accurate and

advanced recommending system. For instance, in a

movie recommendation system, instead of collecting

an overall rating for a given movie, collecting ratings

for specific movie aspects (e.g., acting, visual effect,

cast members) can improve the recommendation

performance.

Chapter 10 reCommender SyStemS

221

• Risk-Aware Recommender Systems: Recommender

systems with integrated risk measures are called

risk-aware recommender systems. For example, the

frequency (e.g., 30 times/day) and timing (e.g., during

business hours) of the recommendations might affect

the experience of the user, and these recommender

systems take these features into account to enhance the

user experience.

• Mobile Recommender Systems: Mobile recommender

systems take advantage of the data collected by mobile

devices. These recommender systems often operate

in real time with momentary updates based on the

changing status of the user (e.g., the location of the user).

• Hybrid Recommender Systems: Hybrid recommender

systems combine multiple approaches such as

content-based filtering, collaborative filtering, and

risk assessment. They choose from, mix, or weight

the outputs of each approach and deliver a final

recommendation output.

Please note that the preceding list is a non-exhaustive list that grows

with the advancements in the computer and data sciences.

 Case Study | Deep Collaborative Filtering
with MovieLens Dataset
We will build a custom neural network using Model Subclassing to

implement collaborative filtering. Remember that the primary assumption

of the collaborative filtering is that the users who have agreed in the past

tend to agree in the future. Therefore, pure collaborative filtering systems

only need the historical preferences of the users on a set of items.

Chapter 10 reCommender SyStemS

222

 MovieLens Dataset
In this case study, we use a popular movie rating dataset, MovieLens,

which is designed and maintained by GroupLens. GroupLens is a

research lab in the Department of Computer Science and Engineering at

the University of Minnesota, and they maintain a number of datasets on

their web page at https://grouplens.org/datasets/movielens/. On

this page, you may access a number of datasets with different numbers of

observations.

We prefer rather a small dataset: MovieLens Latest Small Dataset

consisting of 100,000 ratings and 3,600 tag applications applied to 9,000

movies by 600 users. The approximate size of the dataset is only 1 MB,

which makes our network training process very quick. The dataset is

available at http://files.grouplens.org/datasets/movielens/ml-

latest- small.zip .

During the case study, we will dive into the meaning of the columns

(namely, userId, movieId, rating, timestamp) of our dataset. Let’s start

with the initial imports

 Initial Imports
There are six initial imports we need for this case study, and they are

imported for the following functionalities:

• TensorFlow: To build and train our model and to make

predictions

• ZipFile: To unzip the MovieLens dataset, which is

saved as a zip file

• Pandas: To create DataFrames and conduct basic data

processing tasks

Chapter 10 reCommender SyStemS

https://grouplens.org/datasets/movielens/
http://files.grouplens.org/datasets/movielens/ml-latest-small.zip
http://files.grouplens.org/datasets/movielens/ml-latest-small.zip

223

• NumPy: To generate NumPy arrays and conduct data

processing tasks

• train_test_split from scikit-learn: To make a train

and test split operation

• Embedding from TensorFlow: To import the

Embedding layer from TensorFlow

• get_file from TensorFlow: To download the dataset

from an external URL

The following lines import all the relevant libraries and functions:

import tensorflow as tf

from zipfile import ZipFile

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from tensorflow.keras.layers import Embedding

from tensorflow.keras.utils import get_file

 Loading the Data
Now that we completed our initial imports, we can focus on data

processing and model building. We will download and load our data

from the official releaser’s website, GroupLens.org. Then, we will use the

get_file() function from TensorFlow to download the dataset, with the

following code:

URL = "http://files.grouplens.org/datasets/movielens/ml-latest-

small.zip"

movielens_path = get_file("movielens.zip", URL, extract=True)

Chapter 10 reCommender SyStemS

224

Colab will temporarily download and save the zip file containing

multiple CSV files. To be able to open one of these CSV files, we need the

ZipFile() function, which works as follows:

with ZipFile(movielens_path) as z:

 with z.open("ml-latest-small/ratings.csv") as f:

 df = pd.read_csv(f)

With the preceding code, we save the ratings table as a Pandas

DataFrame, which is shown in Figure 10-3.

Ratings DataFrame has four columns:

• userId: An ID number for each user

• movieId: An ID number for each movie

• rating: The rating for the movie given by a particular

user

• timestamp: Shows when the movie was rated by the

user

Now that we know our dataset, it is time to process our columns and

prepare them for the deep learning model.

Figure 10-3. The First Five Rows of the Rating Dataset

Chapter 10 reCommender SyStemS

225

 Processing the Data
In our MovieLens dataset, the user IDs start from 1, and the movie IDs

are not consecutive. This is not very healthy for computational efficiency

during the training. Therefore, we will give them new ID numbers, which

can be mapped back to their originals later.

 Processing User IDs

We first need to enumerate the unique user IDs and create a dictionary

from the enumerated user IDs. Then, we also create a reverse dictionary

(keys and values are reversed) with these enumerated IDs. Then, we create

a new column for the new user IDs, named user. Finally, we save the

unique user count as num_users, with the following code:

user_ids = df["userId"].unique().tolist()

user2user_encoded = {x: i for i, x in enumerate(user_ids)}

user_encoded2user = {i: x for i, x in enumerate(user_ids)}

df["user"] = df["userId"].map(user2user_encoded)

num_users = len(user_encoded2user)

 Processing Movie IDs

For the movie IDs, we also follow a similar path with the user IDs. This

step is even more important for movie IDs, since these IDs are not given

consecutively in our dataset. The following code process the movie IDs,

create a new column with new IDs, and save the unique movie count as

num_movies:

movie_ids = df["movieId"].unique().tolist()

movie2movie_encoded = {x: i for i, x in enumerate(movie_ids)}

movie_encoded2movie = {i: x for i, x in enumerate(movie_ids)}

df["movie"] = df["movieId"].map(movie2movie_encoded)

num_movies = len(movie_encoded2movie)

Chapter 10 reCommender SyStemS

226

Now we can view how many users and movies are there in the dataset

with the following code:

print("Number of users: ", num_users,

 "\nNumber of Movies: ", num_movies)

Output:

Number of users: 610

Number of Movies: 9724

 Processing the Ratings

For the ratings, all we should do is to normalize them for computational

efficiency and the reliability of the model. We need to detect the min and

max ratings and then apply a lambda function for Minmax normalization.

The following code successfully does that:

min, max = df["rating"].min(), df["rating"].max()

df["rating"] = df["rating"].apply(lambda x:(x-min)/(max-min))

Let’s take a final look at our processed df DataFrame with Figure 10-4:

Figure 10-4. The First Five Rows of the Processed Rating Dataset

Chapter 10 reCommender SyStemS

227

 Splitting the Dataset
Since this is a supervised learning task, we need to split our data as (i)

features (Xs) and labels (Y) and as (ii) training and validation sets.

For the features and labels split, we can just choose the columns and

save it as new variables, as shown here:

X = df[["user", "movie"]].values

y = df["rating"].values

New user and movie columns are our features, which we will use to

predict user ratings for an unseen movie.

For the train and validation split, we can use train_test_split()

function from scikit-learn, which splits and shuffles our dataset. The

following code is enough to split our dataset:

(x_train, x_val, y_train, y_val) = train_test_split(

 X, y,

 test_size=0.1,

 random_state=42)

Let’s take a look at the shape of our four new datasets:

print("Shape of the x_train: ", x_train.shape)

print("Shape of the y_train: ", y_train.shape)

print("Shape of the x_val: ", x_val.shape)

print("Shape of the x_val: ", y_val.shape)

Output:

Shape of the x_train: (90752, 2)

Shape of the y_train: (90752,)

Shape of the x_val: (10084, 2)

Shape of the x_val: (10084,)

Chapter 10 reCommender SyStemS

228

 Building the Model
In TensorFlow, apart from Sequential API and Functional API, there is a

third option to build models: Model Subclassing. In Model Subclassing, we

are free to implement everything from scratch. Model Subclassing is fully

customizable and enables us to implement our own custom model. It is

a very powerful method since we can build any type of model. However,

it requires a basic level of object-oriented programming knowledge. Our

custom class would subclass the tf.keras.Model object. It also requires

declaring several variables and functions. However, it is nothing to be

afraid of. To build a model, we simply need to complete the following

tasks:

• Create a class extending keras.Model object.

• Create an __init__ function to declare seven variables

that we use in our model:

• embedding_size

• num_users

• user_embedding

• user_bias

• num_movies

• movie_embedding

• movie_bias

• Create a call function to tell the model how to process

the inputs using the initialized variables with __init__

function.

• Return the output in the end after a Sigmoid activation

layer.

Chapter 10 reCommender SyStemS

229

The following code does all of them (please note that most of the code

is comment):

class RecommenderNet(tf.keras.Model):

 # __init function is to initialize the values of

 # instance members for the new object

 def __init__(self, num_users, num_movies, embedding_size,

**kwargs):

 super(RecommenderNet, self).__init__(**kwargs)

 # Variable for embedding size

 self.embedding_size = embedding_size

 # Variables for user count, and related weights and biases

 self.num_users = num_users

 self.user_embedding = Embedding(

 num_users,

 embedding_size,

 embeddings_initializer="he_normal",

 embeddings_regularizer=tf.keras.regularizers.

l2(1e-6),

)

 self.user_bias = Embedding(num_users, 1)

 # Variables for movie count, and related weights and

biases

 self.num_movies = num_movies

 self.movie_embedding = Embedding(

 num_movies,

 embedding_size,

 embeddings_initializer="he_normal",

 embeddings_regularizer=tf.keras.regularizers.

l2(1e-6),

)

Chapter 10 reCommender SyStemS

230

 self.movie_bias = Embedding(num_movies, 1)

 def call(self, inputs):

 # call function is for the dot products

 # of user and movie vectors

 # It also accepts the inputs, feeds them into the

layers,

 # and feed into the final sigmoid layer

 # User vector and bias values with input values

 user_vector = self.user_embedding(inputs[:, 0])

 user_bias = self.user_bias(inputs[:, 0])

 # Movie vector and bias values with input values

 movie_vector = self.movie_embedding(inputs[:, 1])

 movie_bias = self.movie_bias(inputs[:, 1])

 # tf.tensordot calculcates the dot product

 dot_user_movie = tf.tensordot(user_vector, movie_

vector, 2)

 # Add all the components (including bias)

 x = dot_user_movie + user_bias + movie_bias

 # The sigmoid activation forces the rating to between 0

and 1

 return tf.nn.sigmoid(x)

After declaring the RecommenderNet class, we can create an instance of

this custom class to build our custom RecommenderNet model:

model = RecommenderNet(num_users, num_movies, embedding_

size=50)

Chapter 10 reCommender SyStemS

231

 Compile and Train the Model
After creating our model, we can configure it. Since we are working on

to predict the rating of an unseen movie, it is more of a regression task.

Therefore, using the mean squared error (MSE) measure – instead of a

crossentropy measure – would be a better choice. In addition, we also

choose Adam optimizer as our optimizer. The following code does all of

them:

model.compile(

 loss='mse',

 optimizer=tf.keras.optimizers.Adam(lr=0.001)

)

We will train our custom model for 5 epochs with the following code:

history = model.fit(

 x=x_train,

 y=y_train,

 batch_size=64,

 epochs=5,

 verbose=1,

 validation_data=(x_val, y_val),

)

Figure 10-5 shows the MSE loss values at each epoch.

Figure 10-5. The Epoch Stats During Our Custom Model Training

Chapter 10 reCommender SyStemS

232

 Make Recommendations
Now our model is trained and ready to make recommendations with

collaborative filtering. We can randomly pick a user ID with the following

code:

user_id = df.userId.sample(1).iloc[0]

print("The selected user ID is: ", user_id)

Output: The selected user ID is: 414

Next step is to filter out the movies that the user watched before. The

following code makes a list of the movies that the user has not seen before:

movies_watched = df[df.userId == user_id]

not_watched = df[~df['movieId'].isin(movies_watched.movieId.

values)]['movieId'].unique()

not_watched = [[movie2movie_encoded.get(x)] for x in not_

watched]

print('The number of movies the user has not seen before: ',

len(not_watched))

Output: The number of movies the user has not seen before is

7026

With the following code, we get the user’s new ID number that we gave

them during the initial data processing step, then create a NumPy array

with np.hstack() function, and use the model.predict() function to

generate the predicted movie ratings:

user_encoder = user2user_encoded.get(user_id)

user_movie_array = np.hstack(

 ([[user_encoder]] * len(not_watched), not_watched)

)

ratings = model.predict(user_movie_array).flatten()

Chapter 10 reCommender SyStemS

233

The preceding code gives us a NumPy array, which includes a
normalized rating value for all the movies. But we don’t need all of them.
We only need the top 10 movies with the highest ratings. In addition, we
need their ID numbers so that we can map them to understand which
titles they have.

NumPy argsort() function sorts all the items and returns their indices
(IDs). Finally, we need to reverse them since it works in ascending order.
The following code completes all these tasks:

top10_indices = ratings.argsort()[-10:][::-1]

The following code converts our assigned movie IDs to their original
movie IDs given in the dataset:

recommended_movie_ids = [
 movie_encoded2movie.get(not_watched[x][0]) for x in top10_
indices
]

Now we have the original IDs of the top 10 movies. But we cannot just
show users movie IDs. Instead, we would want to show them movie titles with
their genre information. Therefore, we need to make use of another CSV file
in our zip file: movies.csv. The following code will load the dataset and create
a Pandas DataFrame, named movie_df (see Figure 10-6 for the output):

Create a DataFrame from Movies.csv file
with ZipFile(movielens_path) as z:
 with z.open("ml-latest-small/movies.csv") as f:
 movie_df = pd.read_csv(f)

movie_df.head(2)

Figure 10-6. The First Two Rows of the Movies Dataset

Chapter 10 reCommender SyStemS

234

Let’s check the movies that the user already watched and gave a high

rating by filtering their top 10 movies watched:

top_movies_user = (

 movies_watched.sort_values(by="rating", ascending=False)

 .head(10)

 .movieId.values

)

movie_df_rows = movie_df[movie_df["movieId"].isin(top_movies_

user)]

We can view them by running the following code, as shown in

Figure 10-7:

print("Movies with high ratings from user")

movie_df_rows[['title','genres']]

Figure 10-7. List of the Movies with High Ratings from the User

Chapter 10 reCommender SyStemS

235

Now we can also view the top 10 movies our collaborative filtering

model would recommend the user with the following code and in

Figure 10-8.

recommended_movies = movie_df[movie_df["movieId"].

isin(recommended_movie_ids)]

print("Top 10 movie recommendations")

recommended_movies[['title','genres']]

As you can see, most of the movies the user watched are classics, and

our recommender system also recommended the user movies from the

1940s throughout to the 1970s. Besides, the genres are also similar to a

great extent between watched and recommended movies.

Figure 10-8. The Top 10 Movie Recommendation for the User

Chapter 10 reCommender SyStemS

236

In this case study, we successfully built a working recommender

system based on a pure collaborative filtering approach. You can easily

change the userId and make recommendations for other users to test the

success of the model. In addition, you can use a different and, possibly,

larger MovieLens dataset to increase the accuracy of the model. Try to play

around the variables and test your model.

 Conclusion
In this chapter, we covered recommender systems, which can be built

using neural networks. We covered different approaches to recommender

systems and built a recommender system using MovieLens dataset based

on deep collaborative filtering. This recommender system was capable of

suggesting the unseen movies that the user most likely to enjoy.

In the next chapter, we will cover the autoencoder networks, which are

mainly used for unsupervised learning tasks.

Chapter 10 reCommender SyStemS

237© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0_11

CHAPTER 11

Autoencoders
In the previous chapters, we covered feedforward NNs, CNNs, and RNNs.

These networks are predominantly used for supervised learning tasks. In

this chapter, we focus on autoencoders (see Figure 11-1), a neural network

architecture which is mainly used for unsupervised learning tasks.

The main promise of the autoencoders is to learn an encoding

structure and a decoding structure for a given set of data. Autoencoders

are mainly used for dimensionality reduction, noise reduction, and several

generative tasks. There are several variants of autoencoders designated for

particular tasks, but first, let’s dive into the architecture of autoencoders.

Figure 11-1. A Rough Visualization of Autoencoder Architecture

https://doi.org/10.1007/978-1-4842-6513-0_11#DOI

238

 Advantages and Disadvantages of
Autoencoders
Autoencoders are very promising neural network architectures that are

regarded as powerful alternatives to other unsupervised machine learning

models such as principal component analysis.

In reality, autoencoders can do everything that a PCA model does

and more. A pure linear autoencoder would give the same results with

PCA. But, in a nonlinear feature extraction problem, an autoencoder can

do much more than a PCA model. In most cases, these problems have a

nonlinear nature, and therefore, they are sure to outperform PCA models.

But not everything is black and white. Just like other neural network

architectures, autoencoders require a lot of data and computing power

compared to a PCA model. In addition, a poorly structured training dataset

used in autoencoder training can even further obscure the features that

we are trying to extract because autoencoders focus on extracting all the

information instead of extracting the relevant information. Therefore, poorly

structured datasets can be harmful to solve machine learning the task.

In semi-supervised learning tasks, autoencoders may be coupled

with different neural network architectures such as feedforward NNs,

CNNs, and RNNs. These combinations may provide successful results in

several machine learning tasks. But it may also harm the interpretability

of the model even further. Despite its disadvantages, autoencoders offer

many benefits and can be used both (i) in combination with other neural

networks and (ii) independently in unsupervised and semi-supervised

learning tasks.

Chapter 11 autoenCoders

239

 Autoencoder Architecture
Autoencoders were first introduced in the 1980s by Hinton and the PDP

group. The main purpose of this proposal was to address the unsupervised

backpropagation problem (a.k.a. “backpropagation without a teacher”

problem).

The most important structural feature of an autoencoder network is its

ability to encode an input, only to decode to its original form. Therefore,

the input and output ends of an autoencoder are almost exclusively fed

with the same data. This would eliminate the necessity of label data for

supervision. Hence, there is an encoder network and a decoder network

within each autoencoder network. These encoder and decoder networks

are connected via a narrow latent space, as shown in Figure 11-2.

Since the main task of autoencoders is to ensure the equivalency of

input and output values, autoencoder networks are forced to preserve the

most relevant information within the network to reconstruct the input values

in the end. This nature makes autoencoders very suitable for dimensionality

reduction, feature learning, and noise reduction (i.e., denoising).

Figure 11-2. An Example of Autoencoder Networks

Chapter 11 autoenCoders

240

The most basic form of an autoencoder consists of three main

components: (i) an input layer, (ii) a latent space layer, and (iii) an output

layer. The input layer, together with the latent space, comprises the

encoder network, whereas the output layer, together with the latent space,

comprises the decoder network. The simple multilayer perceptron, which

brings together the encoder and the decoder, is an example of the basic

autoencoder, shown in Figure 11-3.

The goal is to adjust weights in an optimized way to minimize the

differences between the input layer and output layer values. This is

achieved through the backpropagation of the error terms, similar to

feedforward neural networks.

 Layers Used in an Autoencoder
The layers that can be used in an autoencoder might vary based on

the problem. Every autoencoder must have an encoder and a decoder

network, which are connected via a layer, namely, latent space. This is

the promise of the autoencoder, and you can add any type of layer inside

these networks, including but not limited to, dense, convolution, pooling,

LSTM, GRU layers. In fact, encoder and decoder networks can be designed

as standalone feedforward, CNN, or RNN networks based on the nature

Figure 11-3. An Example of the Basic Autoencoder Network

Chapter 11 autoenCoders

241

of the task at hand. On the other hand, in most autoencoder applications,
decoder networks are designed as the reversed version of encoder
networks to ensure the convergence of the model. For example, when you
build a CNN-based encoder with convolution layers, the decoder network
must consist of transpose convolution layers.

 Advantages of Depth
In Figure 11-3, you can see the basic version of autoencoders. But, in
most real-world applications, multiple layers are inserted in encoder and
decoder networks for three reasons:

• A Better Compression Compared to Shallow
Autoencoders: Multilayer autoencoders do a better
job in compressing the important information to latent
space compared to shallow autoencoders.

• Lower Cost (Error) Measures: Generally speaking,
multilayer networks are better at converging on
complex functions, which reduces the cost measures
such as MSE.

• A Lower Amount of Training Data Needed: Multilayer
autoencoders can converge better than shallow
autoencoders when the amount of available data is
limited.

In the next section, let’s take a look at the autoencoder variations.

 Variations of Autoencoders
All the autoencoder types have an encoder-decoder architecture, but there
are several variations of autoencoders to address specific machine learning
tasks. There are three main groups: (i) undercomplete autoencoders, (ii)

regularized autoencoders, and (iii) variational autoencoders (VAEs).

Chapter 11 autoenCoders

242

 Undercomplete Autoencoders
Undercomplete autoencoders are the basic autoencoders, which

constrains the number of neurons in latent space to have a smaller

dimension than the input layer. An autoencoder with a smaller neuron

count in its latent space compared to the neuron count in the input layer is

called an undercomplete autoencoder.

Undercomplete autoencoders copy the input to output, and it may

seem pointless. But, the useful part of the autoencoder is its latent space,

and the output of the decoder is rarely used. The goal of an autoencoder is

to extract features by summarizing them in the latent space located in the

intersection of encoder and decoder networks.

However, in some cases, autoencoder only copies the task from the

encoder to the decoder (i.e., input to output) without learning anything

significant. To be able to eliminate this possibility, the capacity of the

autoencoders is limited with regularization methods. These autoencoders,

whose capacities are limited, comprise the family of regularized

autoencoders.

 Regularized Autoencoders
One of the main issues encountered in autoencoders is the tendency to

make a symmetric copy of the encoder structure for the decoder. This issue

damages the autoencoder’s ability to derive meaningful features from the

model. There are several methods to prevent autoencoders from making

a copy of its encoder network for the decoder, which is crucial to capture

information. The variations of regularized autoencoders are configured

with specialized cost functions that encourage these autoencoders to

discover meaningful features and prevent them from uselessly copying

the input to the output. There are three popular variations of regularized

autoencoders:

Chapter 11 autoenCoders

243

• Sparse autoencoder (SAE)

• Denoising autoencoder (DAE)

• Contractive autoencoder (CAE)

 Sparse Autoencoder (SAE)

Sparse autoencoders (SAEs) are autoencoders that rely on the sparsity

of the active neurons inside the latent space. Generally, the number of

neurons in latent space is less than the number of neurons in input and

output layers, which makes them undercomplete. On the other hand, there

are autoencoders which have more neurons in the latent space than in the

input layer, which are called overcomplete.

Both undercomplete and overcomplete autoencoders may fail to learn

meaningful features in particular cases, and sparse autoencoders address

this issue by introducing sparsity to the latent space. During the training,

some of the neurons are deliberately inactivated, which forces the model

to learn meaningful features from the data. Therefore, the autoencoders

must respond to unique statistical features of the dataset rather than

merely acting as an identity function with the sole purpose of satisfying the

equation. Sparse autoencoders are generally used to extract features that

are used for another task, such as classification.

 Denoising Autoencoder (DAE)

Denoising autoencoders (DAEs) are special autoencoders, which are

designed to minimize the error between the original input and a corrupted

copy of the input by making accurate approximations. Therefore,

denoising autoencoders must find ways to measure the differences

between corrupted copy and the original copy. After they learned the

difference between the corrupted copy and the original copy and how

to eliminate this difference, they can be used to clean noisy data. For

example, we can use a dataset of images with their noise-added copies to

Chapter 11 autoenCoders

244

train a denoising autoencoder network. Then, this trained model can be

used in the real world to clean noisy image files.

 Contractive Autoencoder (CAE)

Contractive autoencoders (CAEs) are mainly used in parallel with other

autoencoder types. Since they are less sensitive to small variations in

the training dataset, they are very handy in dimensionality reduction

and generative tasks, especially when other autoencoder types fail to

learn meaningful features. This learning is achieved by adding a specific

regularizer to the cost function that the optimizer algorithm tries to

minimize. This specific regularizer corresponds with the Frobenius norm

of the Jacobian matrix (the matrix of all the first-order partial derivatives of

a function) of the encoder activations regarding the input data.

While the regularizing strategy for the contractive autoencoder is

similar to sparse autoencoders, its resistance to small changes – although

with different means – shows resemblances to the resistance of denoising

autoencoders. As mentioned earlier, they are often used together with

other autoencoders as a last resort when the other autoencoders fail to

learn meaningful features.

 Variational Autoencoder (VAE)
Variational autoencoders (VAEs) are mainly used for generative tasks,

unlike other autoencoders, such as sparse and denoising autoencoders.

Their functionality is more similar to generative adversarial networks,

and they are regarded as a variant of autoencoders due to their network

architecture (consisting of an encoder network and a decoder network).

For generative tasks, we need random variations from continuous

functions. However, plain autoencoders do not provide continuous space.

Therefore, what makes VAEs different compared to the other autoencoders

is its continuous space, placed in the latent space.

Chapter 11 autoenCoders

245

Continuous space is created with two neurons, a mean and a variance

neuron. These two neurons are used to get a sampled encoding, which

is passed to the decoder, as shown in Figure 11-4. As encodings are

generated from a distribution with the same mean and variance as those

of the inputs, the decoder learns from all nearby points referred to the

same latent space, which enables the model to generate similar, but not

identical, outputs using the input data.

 Use Cases of Autoencoders
Although the traditional use case of autoencoders is dimensionality

reduction, as the research around autoencoders matures, new use cases

for autoencoders has been observed. A non-exhaustive list of autoencoder

use cases is as follows:

Figure 11-4. A Visualization of Variational Autoencoders

Chapter 11 autoenCoders

246

• Dimensionality Reduction: By mapping a high

feature space in the input layer to the lower feature

space in the latent space, autoencoders can reduce the

dimensionality. A very basic autoencoder with a linear

activation function would render the same result with

the principal component analysis (PCA) method.

• Noise Reduction: Especially denoising autoencoders

can successfully remove the noise in images, videos,

sounds, and other types of data.

• Image Processing: Autoencoders may be used for

image compression as well as image denoising.

• Drug Discovery: Variational encoders can be used for

drug discovery due to their generative nature.

• Machine Translation: By feeding the text in the source

language as input and the target language text as

output, autoencoders can learn the significant features

required for neural machine translation.

• Additionally, autoencoders are used in many other

tasks such as information retrieval, anomaly detection,

population synthesis, and popularity prediction.

 Case Study | Image Denoising with Fashion
MNIST
Now that we covered the conceptual part of autoencoders, we can move

on to the case study. For this case study, we do our own take on one of

TensorFlow’s official tutorials, Intro to Autoencoders.1

1 Intro to Autoencoders, TensorFlow, available on www.tensorflow.org/
tutorials/generative/autoencoder

Chapter 11 autoenCoders

http://www.tensorflow.org/tutorials/generative/autoencoder
http://www.tensorflow.org/tutorials/generative/autoencoder

247

The goal of the case study is to denoise (cleaning the noise) images.

For this task, we apply our entire dataset with random noise. Then, we feed

this dataset consisting of noisy images to one end of the autoencoder while

feeding the clean version to the other end. After the training steps, our

autoencoder learns how to clean image noise.

 Fashion MNIST Dataset
In this case study, we use yet another popular dataset for the AI

community: Fashion MNIST. Fashion MNIST is designed and maintained

by Zalando, a European ecommerce company based in Berlin, Germany.

Fashion MNIST consists of a training set of 60,000 images and a test set of

10,000 images. Each example is a 28 x 28 grayscale image, associated with

a label from 10 classes. Fashion MNIST, which contains images of clothing

items (as shown in Figure 11-5), is designed as an alternative dataset to

MNIST dataset, which contains handwritten digits.

 Initial Imports
There are seven initial imports we need for this case study, and they are

imported for the following functionalities:

• TensorFlow: To build and train our model and to make

predictions

• Matplotlib: To discover our dataset and visualize our

results

• NumPy: To generate NumPy arrays and conduct data

processing tasks

• Pandas: To create DataFrames and conduct basic data

processing tasks

Chapter 11 autoenCoders

248

• fashion_mnist from TensorFlow: To directly load the
Fashion MNIST dataset to Colab notebook

• train_test_split from scikit-learn: To make a train
and test split operation

• Conv2DTranspose, Conv2D, and Input layers from
TensorFlow: To build an autoencoder model with
these layers

The following lines import all the relevant libraries and methods:

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from tensorflow.keras.datasets import fashion_mnist
from sklearn.model_selection import train_test_split
from tensorflow.keras.layers import Conv2DTranspose, Conv2D,
Input

 Loading and Processing the Data
After the initial imports, we can easily download and load the Fashion
MNIST dataset with the following code:

We don't need y_train and y_test
(x_train, _), (x_test, _) = fashion_mnist.load_data()
print('Max value in the x_train is', x_train[0].max())
print('Min value in the x_train is', x_train[0].min())
Output:
Max value in the x_train is 255
Min value in the x_train is 0

Now we have two datasets containing arrays that represent the pixel
values of images. Note that we will not use the labels, so we did not even

save y values.

Chapter 11 autoenCoders

249

Let's take a sample of the dataset and plot the images with the

following Matplotlib code:

fig, axs = plt.subplots(5, 10)
plt.figure(figsize=(5, 10))
fig.tight_layout(pad=-1)
a = 0
for i in range(5):
 for j in range(10):
 axs[i, j].imshow(tf.squeeze(x_test[a]))
 axs[i, j].xaxis.set_visible(False)
 axs[i, j].yaxis.set_visible(False)
 a = a + 1

 plt.gray()

Figure 11-5 shows the output, a grid of selected apparel items:

Output:

Figure 11-5. Examples from Fashion MNIST Dataset

Chapter 11 autoenCoders

250

For computational efficiency and model reliability, we have to

apply Minmax normalization to our image data, limiting the value

range between 0 and 1. Since our data is in RGB format, our minimum

value is 0 and maximum value is 255, and we can conduct the Minmax

normalization operation with the following lines:

x_train = x_train.astype('float32') / 255.

x_test = x_test.astype('float32') / 255.

We also have to reshape our NumPy array as the current shape of

the datasets is (60000, 28, 28) and (10000, 28, 28). We just need to add a

fourth dimension with a single value (e.g., from (60000, 28, 28) to (60000,

28, 28, 1)). The fourth dimension acts pretty much as a proof that our data

is in grayscale format with a single value representing color information

ranging from white to black. If we’d have colored images, then we would

need three values in our fourth dimension. But all we need is a fourth

dimension containing a single value since we use grayscale images. The

following lines do this:

x_train = x_train[..., tf.newaxis]

x_test = x_test[..., tf.newaxis]

Let's take a look at the shape of our NumPy arrays with the following

lines:

print(x_train.shape)

print(x_test.shape)

Output:

(60000, 28, 28, 1)

(10000, 28, 28, 1)

Chapter 11 autoenCoders

251

 Adding Noise to Images
Remember, our goal is to create a denoising autoencoder. For this task, we

need clean and noisy copies of the image files. The autoencoder’s task is

to adjust its weights to replicate the noising process and become able to

denoise noisy images as well. In other words, we deliberately add random

noise to our images to distort them so that our autoencoder may learn how

they became noisy and how they can be denoised. Therefore, we need to

add noise to our existing images.

We add a randomly generated value to each array item by using tf.

random.normal method. Then, we multiply the random value with a

noise_factor, which you can play around with. The following code adds

noise to images:

noise_factor = 0.6

x_train_noisy = x_train + noise_factor * tf.random.

normal(shape=x_train.shape)

x_test_noisy = x_test + noise_factor * tf.random.

normal(shape=x_test.shape)

We also need to make sure that our array item values are within the

range of 0 to 1. For this, we may use tf.clip_by_value method. clip_by_

value is a TensorFlow method which clips the values outside of the Min-

Max range and replace them with the designated min or max value. The

following code clips the values out of range:

x_train_noisy = tf.clip_by_value(x_train_noisy, clip_value_

min=0., clip_value_max=1.)

x_test_noisy = tf.clip_by_value(x_test_noisy, clip_value_

min=0., clip_value_max=1.)

Now that we have our noisy and clean images, let’s see the effect of our

random noise with the following code:

Chapter 11 autoenCoders

252

n = 5

plt.figure(figsize=(20, 8))

for i in range(n):

 ax = plt.subplot(2, n, i + 1)

 plt.title("original", size=20)

 plt.imshow(tf.squeeze(x_test[i]))

 plt.gray()

 bx = plt.subplot(2, n, n+ i + 1)

 plt.title("original + noise", size=20)

 plt.imshow(tf.squeeze(x_test_noisy[i]))

 plt.gray()

plt.show()

Figure 11-6 shows the original images with their noisy versions:

Output:

As you can see, we applied a heavy noise to our images, and no one

can tell that there are apparel items in the images at the bottom. But, with

our autoencoder, we will be able to denoise these extremely noisy images.

Figure 11-6. Fashion MNIST Clean vs. Noisy Image Examples

Chapter 11 autoenCoders

253

 Building the Model
As we did in Chapter 10, we again make use of Model Subclassing. In

Model Subclassing, we are free to implement everything from scratch. It is

a very powerful method since we can build any type of model. Our custom

class would extend tf.keras.Model object. It also requires declaring

several variables and functions. However, it is nothing to be afraid of. To

build a model, we simply need to complete the following tasks:

• Create a class extending the keras.Model object.

• Create an __init__ function to declare two separate

models built with Sequential API.

• Within them, we need to declare layers that would

reverse each other. Conv2D layer for encoder

model, whereas Conv2DTranspose layer for

decoder model.

• Create a call function to tell the model how to process

the inputs using the initialized variables with __init__

method:

• We need to call the initialized encoder model

which takes the images as input.

• We also need to call the initialized decoder model

which takes the output of the encoder model

(encoded) as input.

• Return the output of the decoder.

The following code does all of them:

class Denoise(tf.keras.Model):

 def __init__(self):

 super(Denoise, self).__init__()

Chapter 11 autoenCoders

254

 self.encoder = tf.keras.Sequential([

 Input(shape=(28, 28, 1)),

 Conv2D(16, (3,3), activation='relu', padding='same',

strides=2),

 Conv2D(8, (3,3), activation='relu', padding='same',

strides=2)])

 self.decoder = tf.keras.Sequential([

 C onv2DTranspose(8, kernel_size=3, strides=2,

activation='relu', padding='same'),

 Conv2DTranspose(16, kernel_size=3, strides=2,

activation='relu', padding='same'),

 Conv2D(1, kernel_size=(3,3), activation='sigmoid',

padding='same')])

 def call(self, x):

 encoded = self.encoder(x)

 decoded = self.decoder(encoded)

 return decoded

Let’s create a model object with the following code:

autoencoder = Denoise()

We use Adam optimizer as our optimization algorithm and mean

squared error (MSE) as our loss function. The following code sets these

configurations:

autoencoder.compile(optimizer='adam', loss='mse')

Finally, we can run our model for 10 epochs by feeding the noisy and

the clean images, which will take about 1 minute to train. We also use test

datasets for validation. The following code is for training the model:

autoencoder.fit(x_train_noisy, x_train,

Chapter 11 autoenCoders

255

Figure 11-7 shows the training process outputs for each epoch:

 epochs=10,

 shuffle=True,

 validation_data=(x_test_noisy, x_test))

 Denoising Noisy Images
Now that we trained our model, we can easily do denoising tasks. For the

simplicity of the prediction process, we use the test dataset. But, feel free to

process and try other images such as digits in the MNIST dataset.

For now, we run the following lines to denoise the noisy test images:

encoded_imgs=autoencoder.encoder(x_test).numpy()

decoded_imgs=autoencoder.decoder(encoded_imgs.numpy()

As you can see here, we can use the encoder and the decoder networks

separately with their corresponding attributes. Therefore, we first use

the encoder network to encode our images (x_test). Then, we use these

encoded images (encoded_imgs) in the decoder network to generate the

clean versions (decoded_imgs) of the images that we used in the beginning.

Figure 11-7. The Epoch Stats During Our Custom Model Training

Chapter 11 autoenCoders

256

We can compare the noisy, reconstructed (denoised), and original

versions of the first ten images of the test dataset with the following code:

n = 10

plt.figure(figsize=(20, 6))

for i in range(n):

 # display original + noise

 bx = plt.subplot(3, n, i + 1)

 plt.title("original + noise")

 plt.imshow(tf.squeeze(x_test_noisy[i]))

 plt.gray()

 ax.get_xaxis().set_visible(False)

 ax.get_yaxis().set_visible(False)

 # display reconstruction

 cx = plt.subplot(3, n, i + n + 1)

 plt.title("reconstructed")

 plt.imshow(tf.squeeze(decoded_imgs[i]))

 plt.gray()

 bx.get_xaxis().set_visible(False)

 bx.get_yaxis().set_visible(False)

 # display original

 ax = plt.subplot(3, n, i + 2*n + 1)

 plt.title("original")

 plt.imshow(tf.squeeze(x_test[i]))

 plt.gray()

 ax.get_xaxis().set_visible(False)

 ax.get_yaxis().set_visible(False)

plt.show()

Figure 11-8 shows the noisy, reconstructed, and original versions of

selected images:

Output:

Chapter 11 autoenCoders

257

As you can see previously, our model can successfully denoise very

noisy photos, which it has never seen before (we used the test dataset).

There are obviously some non-recovered distortions, such as the missing

bottom of the slippers in the second image from the right. Yet, if you

consider how deformed the noisy images, we can say that our model is

pretty successful in recovering the distorted images.

Off the top of my head, you can – for instance – consider extending

this autoencoder and embed it into a photo enhancement app, which can

increase the clarity and crispiness of the photos.

 Conclusion
In this chapter, we covered a neural network architecture, autoencoders,

which are mainly used for unsupervised learning tasks. We also conducted

a case study, in which we trained an autoencoder model which is capable

of denoising distorted images.

In the next chapter, we will dive into the generative adversarial

networks, which revolutionize the generative side of deep learning.

Figure 11-8. Fashion MNIST Test Dataset Sample Images with Noisy,
Reconstructed (Denoised), and Original Versions

Chapter 11 autoenCoders

259© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0_12

CHAPTER 12

Generative
Adversarial Network
Generative adversarial networks (GANs) are a type of deep learning model

designed by Ian Goodfellow and his colleagues in 2014.

The invention of GANs has occurred pretty unexpectedly. The

famous researcher, then, a PhD fellow at the University of Montreal,

Ian Goodfellow, landed on the idea when he was discussing with his

friends – at a friend's going away party – about the flaws of the other

generative algorithms. After the party, he came home with high hopes and

implemented the concept he had in mind. Surprisingly, everything went

as he hoped in the first trial, and he successfully created the generative

adversarial networks (shortly, GANs).

According to Yann LeCun, the director of AI research at Facebook and

a professor at New York University, GANs are “the most interesting idea in

the last 10 years in machine learning.”

 Method
In a GAN architecture, there are two neural networks (a generator and a

discriminator) competing with each other in a game. After being exposed

to a training set, the generator learns to generate new samples with similar

characteristics. The discriminator, on the other hand, tries to figure out

https://doi.org/10.1007/978-1-4842-6513-0_12#DOI

260

if the generated data is authentic or manufactured. Through training,

the generator is forced to generate near-authentic samples so that the

discriminator cannot differentiate them from the training data. After this

training, we can use the generator to generate very realistic samples such

as images, sounds, and text.

GANs are initially designed to address unsupervised learning tasks.

However, recent studies showed that GANs show promising results in

supervised, semi-supervised, and reinforcement learning tasks as well.

 Architecture
As mentioned earlier, there are two networks forming a generative

adversarial network: a generator network and a discriminator network.

These two networks are connected to each other with a latent space where

all the magic happens. In other words, we use the output of the generator

network as the input in the discriminator network. Let’s take an in-depth

look at the generative and discriminative networks to truly understand

how GANs function; see Figure 12-1:

Figure 12-1. A Visualization of a Generative Adversarial Network

Chapter 12 Generative adversarial network

261

 GAN Components
 Generative Network

A generator network takes a fixed-length random vector (starting with

random noise) and generates a new sample. It uses a Gaussian distribution

to generate new samples and usually starts with a one-dimensional layer,

which is reshaped into the shape of the training data samples in the end.

For example, if we use the MNIST dataset to generate images, the output

layer of the generator network must correspond to the image dimensions

(e.g., 28 x 28 x 1). This final layer is also referred to as latent space or vector

space.

 Discriminator Network

A discriminator network works in a relatively reversed order. The output

of the generative network is used as input data in the discriminator

network (e.g., 28 x 28 x 1). The main task of a discriminator network is to

decide if the generated sample is authentic or not. Therefore, the output

of a discriminator network is provided by a single neuron dense layer

outputting the probability (e.g., 0.6475) of the authenticity of the generated

sample.

 Latent Space

Latent space (i.e.,vector space) functions as the generator network's output

and the discriminator network's input. The latent space in a generative

adversarial model usually has the shape of the original training dataset

samples. Latent Space tries to catch the characteristic features of the

training dataset so that the generator may successfully generate close to

authentic samples.

Chapter 12 Generative adversarial network

262

 A Known Issue: Mode Collapse
During the training of the generative adversarial networks, we often

encounter with the “mode collapse” issue. Mode collapse basically refers

to the failure to generalize correctly or, in other words, failure to learn

the meaningful characteristics for successful sample generation. Mode

collapse may be in the form of failure to learn altogether or failure to learn

partial features. For example, when we work with the MNIST dataset

(handwritten digits from 0 to 9), due to mode collapse issue, our GAN

may never learn to generate some of the digits. There are two potential

explanations for mode collapse:

• Weak discriminative network

• Wrong choice of objective function

Therefore, playing around with the size and depth of our network, as

well as with objective function, may fix the issue.

 Final Notes on Architecture
It is essential to maintain healthy competition between generator and

discriminator networks to build useful GAN models. As long as these two

networks work against each other to perfect their performances, you can

freely design the internal structure of these networks, depending on the

problem. For example, when you are dealing with sequence data, you can

build two networks with LSTM and GRU layers as long as one of them acts

as a generator network, whereas the other acts as a discriminator network.

Another example would be our case study. When to generate images with

GANS, we add our networks a number of Convolution or Transposed

Convolution layers since they decrease the computational complexity of

the image data.

Chapter 12 Generative adversarial network

263

 Applications of GANs
There are a number of areas where the GANs are currently in use which

may be listed as follows:

• Fashion, art, and advertising

• Manufacturing and R&D

• Video games

• Malicious applications and deep fake

• Other applications

 Art and Fashion
Generative adversarial networks are capable of “generating” samples. So,

they are inherently creative. That’s why one of the most promising fields

for generative adversarial networks is art and fashion. With well-trained

GANs, you can generate paintings, songs, apparels, and even poems. In

fact, a painting generated by Nvidia’s StyleGAN network, “Edmond de

Belamy, from La Famille de Belamy,” was sold in New York for $432,500.

Therefore, you may clearly see how GAN has the potential to be used in the

art world.

 Manufacturing, Research, and R&D
GANs can be used to predict computational bottlenecks in scientific

research projects as well as in industrial applications.

GAN networks can also be used to increase the definition of images

based on statistical distributions. In other words, GANs can predict the

missing pieces using statistical distributions and generate suitable pixel

values, which would increase the quality of the images taken by telescopes

or microscopes.

Chapter 12 Generative adversarial network

264

 Video Games
GANs may be used to obtain more precise and sharper images using

small definition images. This ability may be used to make old games more

appealing to new generations.

 Malicious Applications and Deep Fake
GANs may be used to generate close-to-authentic fake social profiles or

fake videos of celebrities. For example, a GAN algorithm may be used to

fabricate fake evidence to frame someone. Therefore, there are a number

of malicious GAN applications and also a number of GANs to detect the

samples generated by the malicious GANs and label them as fake.

 Miscellaneous Applications
Apart from the preceding use cases, GANs are used with the following

purposes:

• For early diagnosis in the medical industry

• To generate photorealistic images in architecture and

internal design industries

• To reconstruct three-dimensional models of objects

from images

• For image manipulation such as aging

• To generate protein sequences which may be used in

cancer studies

• To reconstruct a person’s face by using their voice.

The generative adversarial network applications are vast and limitless,

and it is a very hot topic in the artificial intelligence community. Now that

Chapter 12 Generative adversarial network

265

we covered the basics of generative adversarial networks, we can start

working on our case study. Note that we will do our own take from deep

convolutional GAN tutorial released by the TensorFlow team.1

 Case Study | Digit Generation with MNIST
In this case study, step by step, we build a generative adversarial network

(GAN), which is capable of generating handwritten digits (0 to 9). To be

able to complete this task, we need to build a generator network as well

as a discriminator network so that our generative model can learn to trick

the discriminator model, which inspects what the generator network

manufactures. Let’s start with our initial imports.

 Initial Imports
As we always do in our case studies, we make some initial imports, which

are used throughout different cells of our Colab notebook. The following

lines import TensorFlow, relevant TensorFlow layer objects, and Matplotlib:

import tensorflow as tf

from tensorflow.keras.layers import(Dense,

 BatchNormalization,

 LeakyReLU,

 Reshape,

 Conv2DTranspose,

 Conv2D,

 Dropout,

 Flatten)

import matplotlib.pyplot as plt

1 Deep Convolutional Generative Adversarial Network, TensorFlow, available at
www.tensorflow.org/tutorials/generative/dcgan

Chapter 12 Generative adversarial network

https://www.tensorflow.org/tutorials/generative/dcgan

266

In the upcoming parts, we also use other libraries such as os, time,

IPython.display, PIL, glob, and imageio, but to keep them relevant with the

context, we only import them when we will use them.

 Load and Process the MNIST Dataset
We already covered the details of the MNIST dataset a few times. It is a

dataset of handwritten digits with 60,000 training and 10,000 test samples.

If you want to know more about the MNIST dataset, please refer to Chapter 7.

Since this is an unsupervised learning task, we only need the features,

and therefore we don’t save the label arrays. Let’s import the dataset with

the following lines:

underscore to omit the label arrays

(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.

load_data()

Then, we reshape our train_images to have a fourth dimension and

normalize it (in range of -1 to 1) with the following code:

train_images = train_images.reshape(train_images.shape[0], 28,

28, 1).astype('float32')

train_images = (train_images - 127.5) / 127.5 # Normalize the

images to [-1, 1]

Then, we set a BUFFER_SIZE for shuffling and a BATCH_SIZE for

processing the data in batches. Then, we call the following function to

convert our NumPy array into a TensorFlow Dataset object:

Batch and shuffle the data

train_dataset = tf.data.Dataset.from_tensor_slices(train_

images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

Now our data is processed and cleaned. We can move on to the model-

building part.

Chapter 12 Generative adversarial network

267

 Build the GAN Model
As opposed to the other case studies, the model-building part of this case

study is slightly more advanced. We need to define custom loss, training

step, and training loop functions. It may be a bit more challenging to grasp

what is happening. But I try to add as much comment as possible to make

it easier for you. Also, consider this case study as a path to becoming an

advanced machine learning expert. Besides, if you really pay attention to

the comments, it is much easier than how it looks.

 Generator Network

As part of our GAN network, we first build a generator with Sequential

API. The generator would accept a one-dimensional input with 100 data

points and slowly converts it into an image data of 28 x 28 pixels. Since

we use this model to generate images from one-dimensional input, using

Transposed Convolution layers is the best option. Transposed Convolution

layers work just the opposite of the Convolution layer. They increase the

definition of image data. We also take advantage of Batch Normalization

and Leaky ReLU layers after using Transposed Convolution layers. The

following code defines this network for us:

def make_generator_model():

 model = tf.keras.Sequential()

 model.add(Dense(7*7*256, use_bias=False, input_shape=(100,)))

 model.add(BatchNormalization())

 model.add(LeakyReLU())

 model.add(Reshape((7, 7, 256)))

 assert model.output_shape == (None, 7, 7, 256) # Note: None

is the batch size

 model.add(Conv2DTranspose(128, (5, 5), strides=(1, 1),

padding="same", use_bias=False))

Chapter 12 Generative adversarial network

268

 assert model.output_shape == (None, 7, 7, 128)

 model.add(BatchNormalization())

 model.add(LeakyReLU())

 model.add(Conv2DTranspose(64, (5, 5), strides=(2, 2),

padding="same", use_bias=False))

 assert model.output_shape == (None, 14, 14, 64)

 model.add(BatchNormalization())

 model.add(LeakyReLU())

 model.add(Conv2DTranspose(1, (5, 5), strides=(2, 2),

padding="same", use_bias=False, activation="tanh"))

 assert model.output_shape == (None, 28, 28, 1)

 return model

We can declare our network with the following code:

generator = make_generator_model()

Let’s take a look at the summary of our generator network in Figure 12-2:

generator.summary()

Output:

Chapter 12 Generative adversarial network

269

And generate and plot a sample using our untrained generator

network with the following code:

Create a random noise and generate a sample

noise = tf.random.normal([1, 100])

generated_image = generator(noise, training=False)

Visualize the generated sample

plt.imshow(generated_image[0, :, :, 0], cmap="gray")

Output is shown in Figure 12-3:

Figure 12-2. The Summary of Our Generator Network

Chapter 12 Generative adversarial network

270

 Discriminator Network

After the generator network, we should build a discriminator network

to inspect the samples generated by the generator. Our discriminator

network must decide on the probability of the fakeness of the generated

images. Therefore, it takes the generated image data (28 x 28) and outputs

a single value. For this task, we use Convolution layers supported by Leaky

ReLU and Dropout layers. Flatten layers convert two-dimensional data into

one-dimensional data, and Dense layer is used to convert the output into a

single value. The following lines define the function for our discriminator

network:

def make_discriminator_model():

 model = tf.keras.Sequential()

Figure 12-3. An Example of the Randomly Generated Sample
Without Training

Chapter 12 Generative adversarial network

271

 model.add(Conv2D(64, (5, 5), strides=(2, 2), padding="same",

input_shape=[28, 28, 1]))

 model.add(LeakyReLU())

 model.add(Dropout(0.3))

 model.add(Conv2D(128, (5, 5), strides=(2, 2),

padding="same"))

 model.add(LeakyReLU())

 model.add(Dropout(0.3))

 model.add(Flatten())

 model.add(Dense(1))

 return model

We can create the discriminator network by calling the function:

discriminator = make_discriminator_model()

And we can see the summary of our discriminator network with the

following code (see Figure 12-4 for the output):

discriminator.summary()

Output:

Chapter 12 Generative adversarial network

272

If we use the discriminator network, we can actually decide if our

randomly generated image is authentic enough or not:

decision = discriminator(generated_image)

print (decision)

Output:

tf.Tensor([[-0.00108097]], shape=(1, 1), dtype=float32)

As you can see, our output is less than zero, and we can conclude that

this particular sample generated by the untrained generator network is

fake.

Figure 12-4. The Summary of Our Discriminator Network

Chapter 12 Generative adversarial network

273

 Configure the GAN Network

As part of our model configuration, we need to set loss functions for both

the generator and the discriminator. In addition, we need to set separate

optimizers for both of them as well.

Loss Function

We start by creating a Binary Crossentropy object from tf.keras.losses

module. We also set from_logits parameter to true. After creating the

object, we fill them with custom discriminator and generator loss functions.

Our discriminator loss is calculated as a combination of (i) the

discriminator’s predictions on real images to an array of ones and (ii) its

predictions on generated images to an array of zeros.

Our generator loss is calculated by measuring how well it was able to

trick the discriminator. Therefore, we need to compare the discriminator’s

decisions on the generated images to an array of ones.

The following lines do all of these:

This method returns a helper function to compute cross

entropy loss

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_

logits=True)

def discriminator_loss(real_output, fake_output):

 real_loss = cross_entropy(tf.ones_like(real_output), real_

output)

 fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_

output)

 total_loss = real_loss + fake_loss

 return total_loss

def generator_loss(fake_output):

 return cross_entropy(tf.ones_like(fake_output), fake_output)

Chapter 12 Generative adversarial network

274

Optimizer

We also set two optimizers separately for generator and discriminator

networks. We can use the Adam object from tf.keras.optimizers

module. The following lines set the optimizers:

generator_optimizer=tf.keras.optimizers.Adam(1e-4)

discriminator_optimizer=tf.keras.optimizers.Adam(1e-4)

 Set the Checkpoint

Training the GAN network takes longer than other networks due to the

complexity of the network. We have to run the training for at least 50–60

epochs to generate meaningful images. Therefore, setting checkpoints is

very useful to use our model later on.

By using the os library, we set a path to save all the training steps with

the following lines:

import os

checkpoint_dir = './training_checkpoints'

checkpoint_prefix=os.path.join(checkpoint_dir, "ckpt")

checkpoint = tf.train.Checkpoint(

 generator_optimizer=generator_optimizer,

 discriminator_optimizer=discriminator_optimizer,

 generator=generator,

 discriminator=discriminator)

Chapter 12 Generative adversarial network

275

 Train the GAN Model
Let’s create some of the variables with the following lines:

EPOCHS = 60

We will reuse this seed overtime (so it's easier)

to visualize progress in the animated GIF)

noise_dim = 100

num_examples_to_generate = 16

seed = tf.random.normal([num_examples_to_generate, noise_dim])

Our seed is the noise that we use to generate images on top of. The

following code generates a random array with normal distribution with the

shape (16, 100).

 The Training Step

This is the most unusual part of our model: We are setting a custom

training step. After defining the custom train_step() function by

annotating the tf.function module, our model will be trained based on

the custom train_step() function we defined.

The following code with excessive comments are for the training step.

Please read the comments carefully.

tf.function annotation causes the function

to be "compiled" as part of the training

@tf.function

def train_step(images):

 # 1 - Create a random noise to feed it into the model

 # for the image generation

 noise = tf.random.normal([BATCH_SIZE, noise_dim])

 # 2 - Generate images and calculate loss values

 # GradientTape method records operations for automatic

differentiation.

Chapter 12 Generative adversarial network

276

 with tf.GradientTape() as gen_tape, tf.GradientTape() as

disc_tape:

 generated_images = generator(noise, training=True)

 real_output = discriminator(images, training=True)

 fake_output = discriminator(generated_images,

training=True)

 gen_loss = generator_loss(fake_output)

 disc_loss = discriminator_loss(real_output, fake_output)

 # 3 - Calculate gradients using loss values and model

variables

 # "gradient" method computes the gradient using

 # operations recorded in context of this tape (gen_tape and

disc_tape).

 # It accepts a target (e.g., gen_loss) variable and

 # a source variable (e.g.,generator.trainable_variables)

 # target --> a list or nested structure of Tensors or

Variables to be differentiated.

 # source --> a list or nested structure of Tensors or

Variables.

 # target will be differentiated against elements in sources.

 # "gradient" method returns a list or nested structure of Tensors

 # (or IndexedSlices, or None), one for each element in

sources.

 # Returned structure is the same as the structure of sources.

 gradients_of_generator = gen_tape.gradient(gen_loss,

generator.trainable_variables)

 gradients_of_discriminator = disc_tape.gradient(disc_loss,

discriminator.trainable_variables)

 # 4 - Process Gradients and Run the Optimizer

 # "apply_gradients" method processes aggregated gradients.

 # ex: optimizer.apply_gradients(zip(grads, vars))

 """

Chapter 12 Generative adversarial network

277

 Example use of apply_gradients:

 grads = tape.gradient(loss, vars)

 grads = tf.distribute.get_replica_context().all_reduce('sum',

grads)

 # Processing aggregated gradients.

 optimizer.apply_gradients(zip(grads, vars), experimental_

aggregate_gradients=False)

 """

 generator_optimizer.apply_gradients(zip(gradients_of_

generator, generator.trainable_variables))

 discriminator_optimizer.apply_gradients(zip(gradients_of_

discriminator, discriminator.trainable_variables))

Now that we defined our custom training step with tf.function

annotation, we can define our train function for the training loop.

 The Training Loop

We define a function, named train, for our training loop. Not only we run

a for loop to iterate our custom training step over the MNIST, but also do

the following with a single function:

• During the training

• Start recording time spent at the beginning of each

epoch

• Produce GIF images and display them

• Save the model every 5 epochs as a checkpoint

• Print out the completed epoch time

• Generate a final image in the end after the training is

completed

Chapter 12 Generative adversarial network

278

The following lines with detailed comments do all these tasks:

import time

from IPython import display # A command shell for interactive

computing in Python.

def train(dataset, epochs):

 # A. For each epoch, do the following:

 for epoch in range(epochs):

 start = time.time()

 # 1 - For each batch of the epoch,

 for image_batch in dataset:

 # 1.a - run the custom "train_step" function

 # we just declared above

 train_step(image_batch)

 # 2 - Produce images for the GIF as we go

 display.clear_output(wait=True)

 generate_and_save_images(generator,

 epoch + 1,

 seed)

 # 3 - Save the model every 5 epochs as

 # a checkpoint, which we will use later

 if (epoch + 1) % 5 == 0:

 checkpoint.save(file_prefix = checkpoint_prefix)

 # 4 - Print out the completed epoch no. and the time spent

 print ('Time for epoch {} is {} sec'.format(epoch + 1, time.

time()-start))

 # B. Generate a final image after the training is completed

 display.clear_output(wait=True)

 generate_and_save_images(generator,

 epochs,

 seed)

Chapter 12 Generative adversarial network

279

 Image Generation Function

In the train function, there is a custom image generation function that we

haven’t defined yet. Our image generation function does the following

tasks:

• Generate images by using the model.

• Display the generated images in a 4 x 4 grid layout

using Matplotlib.

• Save the final figure in the end.

The following lines are in charge of these tasks:

def generate_and_save_images(model, epoch, test_input):

 # Notice `training` is set to False.

 # This is so all layers run in inference mode (batchnorm).

 # 1 - Generate images

 predictions = model(test_input, training=False)

 # 2 - Plot the generated images

 fig = plt.figure(figsize=(4,4))

 for i in range(predictions.shape[0]):

 plt.subplot(4, 4, i+1)

 plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5,

cmap="gray")

 plt.axis('off')

 # 3 - Save the generated images

 plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))

 plt.show()

Now that we defined our custom image generation function, we can

safely call our train function in the next part.

Chapter 12 Generative adversarial network

280

 Start the Training

Starting the training loop is very easy. The single line of the following

code would start training with the train function, which loops over the

train_step() function and generates images using generate_and_save_

images() function. We also receive stats and info during the process, as

well as the generated images on a 4 x 4 grid layout.

train(train_dataset, EPOCHS)

Output:

As you can see in Figure 12-5, after 60 epochs, the generated images

are very close to proper handwritten digits. The only digit I cannot spot is

the digit two (2), which could just be a coincidence.

Figure 12-5. The Generated Images After 60 Epochs in 4 x 4 Grid
Layout

Chapter 12 Generative adversarial network

281

Now that we trained our model and saved our checkpoints, we can

restore the trained model with the following line:

checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))

 Animate Generated Digits During the Training
During the training, our generate_and_save_images() function

successfully saved a 4 x 4 generated image grid layout at each epoch. Let’s

see how our model’s generative abilities evolve over time with a simple

exercise.

To be able to open the images, we can use PIL (Python Image Library),

which supports many different image formats, including PNG. We can

define a custom function to open images with the following lines:

PIL is a library which may open different image file formats

import PIL

Display a single image using the epoch number

def display_image(epoch_no):

 return PIL.Image.open('image_at_epoch_{:04d}.png'.format(

epoch_no))

Now test the function with the following line, which would

display the latest PNG file generated by our model:

display_image(EPOCHS)

Output is shown in Figure 12-6:

Chapter 12 Generative adversarial network

282

With display_images() function, we may display any image we want.

On top of this option, wouldn’t it be cool to generate an animated GIF

image showing how our model evolved over time? We can achieve this

using glob and imageio libraries, which would pile up all the PNG files to

create an animated GIF file. The following lines do this task:

import glob # The glob module is used for Unix style pathname

pattern expansion.

import imageio # The library that provides an easy interface to

read and write a wide range of image data

anim_file = 'dcgan.gif'

Figure 12-6. The Display of the Latest PNG File Generated by the
GAN Model. Note That They Are Identical to Samples Shown in
Figure 12-5. Since We Restored the Model from the Last Checkpoint

Chapter 12 Generative adversarial network

283

with imageio.get_writer(anim_file, mode="I") as writer:

 filenames = glob.glob('image*.png')

 filenames = sorted(filenames)

 for filename in filenames:

 image = imageio.imread(filename)

 writer.append_data(image)

 image = imageio.imread(filename)

 writer.append_data(image)

Click the Files icon on the left side of your Google Colab Notebook to

view all the files, including ‘dcgan.gif’. You can simply download it to view

an animated version of the images our model generated at each epoch. To

be able to view the GIF image within your Google Colab Notebook, you

can use the following line:

display.Image(open('dcgan.gif','rb').read())

Figure 12-7 shows several frames from the GIF image we created:

Chapter 12 Generative adversarial network

284

 Conclusion
In this chapter, we covered our last neural network architecture, generative

adversarial networks, which are mainly used for generative tasks in fields

such as art, manufacturing, research, and gaming. We also conducted

a case study, in which we trained a GAN model which is capable of

generating handwritten digits.

Figure 12-7. Generated Digit Examples from the Different Epochs.
See How the GAN Model Learns to Generate Digits Over Time

Chapter 12 Generative adversarial network

285© Orhan Gazi Yalçın 2021
O. G. Yalçın, Applied Neural Networks with TensorFlow 2,
https://doi.org/10.1007/978-1-4842-6513-0

Index
A
Accuracy performance

bias term, 64
deep learning vs.

traditional ML, 57
optimal weight and

bias values, 70
Activation functions, 59, 66–70
Adam optimizer, 73, 74, 137, 231, 254
Aggregated error terms, 70
AlexNet, 62
Anaconda, 24
Anomaly detection, 145
Artificial intelligence (AI), 37

problem, 1
taxonomy, 40
timeline, 35

Artificial neural
networks (ANNs), 1, 38, 122

activation function, 66–69
deep neural networks, 65, 66
hidden layers, 58
LTU, 64
McCulloch-Pitts Neuron, 63
perceptron, 64, 65

Artificial neurons, 59

Autoencoders, 46
advantages and

disadvantages, 238, 241
architecture, 237, 239, 240
encoding and decoding

structure, 237
fashion MNIST (see Image

denoising with fashion
MNIST (case study))

layers, 240, 241
use cases, 245, 246
variations

regularized (see Regularized
autoencoders)

undercomplete, 242
visualization, 245

Automatic summarization, 191, 195
Auto MPG dataset (case study)

attributes, 129
data preparation

categorical variables, 131, 132
DataFrame creation, 129
dropping null values, 130
training and testing, 133, 134

downloading, 128
library installation, 127

https://doi.org/10.1007/978-1-4842-6513-0#DOI

286

model building and training
configuration, 137, 138
sequential API, 135, 136
Tensorflow imports, 135

observation, 142
overview, 131
predictions, 141, 142
results, evaluating, 138–141
TensorFlow Docs library, 127

B
Backpropagation, 60, 71, 72
Bag of words, 174
Basic autoencoder network, 240
Bias and variance trade-off, 53
Bidirectional layers, 177
Big data, 39
Binary classification, 42
Bioinformatic sequence

analysis, 45

C
Capabilities of deep learning, 61
Cell-based recurrent neural

network activity, 167
Chatbots, 191
Classification problems, 54
Cliché dataset, 152
Clustering analysis, 44
Cognitive skills, 33

Collaborative filtering
depiction, 217
issues, 218
memory-based approach, 217
model-based approach, 217
MovieLens dataset (case study)

build models, 228–230
custom model training, 231
data processing, 225, 226
initial imports, 222, 223
load data, 223
model Subclassing, 228
ratings dataframe, 224
recommendations, 232–235
splitting dataset, 227

primary assumption, 216
Confusion matrix, 53
Content-based filtering, 219, 220
Continuous training, 35
Contractive autoencoders

(CAEs), 244
Convolutional layer, 147–149
Convolutional neural networks

(CNNs), 44, 60
accuracy, 145
architecture

convolutional layer, 147–149
fully connected layer, 151
pooling layers, 150

deep learning networks, 145
feedforward neural networks, 146
MNIST dataset (see Image

classification with MNIST
(case study))

Auto MPG dataset
(case study) (cont.)

INDEX

287

Cost function, 69
Crossentropy function, 70
Cross-sectional data, 161
Cross-validation, 52
Custom training, 116–118

D
Data augmentation, 79
Data science, 39

libraries, 6
taxonomy, 40

Dataset API, 101
Dataset object

(tf.data.Dataset), 101, 102
Datasets catalog, TensorFlow

importing, 103
installation, 102
Keras, 105, 106
load function, 104

DataSets module, 11
Decision tree, 43
Deep belief nets, 46
Deep deterministic policy

gradient (DDPG), 48
Deep feedforward neural

networks, 123, 124
Deep Learning (DL), 1, 38, 58, see

also Machine learning
activation function, 71
cost function, 71
distinct accuracy curve, 58
framework, power scores, 19
history, 59–62

loss functions, 70
optimizer, 71

Deep neural networks, 65, 66
Deep Q Network (DQN), 48
Deep reinforcement learning, 48
Define-by-run approach, 96
Denoising autoencoders (DAEs), 243
Digit generation with MNIST

(case study)
animate, 281, 283
display_images() function, 282
GAN model, building

checkpoint set, 274
discriminator

network, 270, 272
generator network, 267–269
loss function, 273
optimizers, 274

initial imports, 265, 266
load and process, 266
train, GAN model

image generation
function, 279

starting training loop, 280, 281
training loop, 277, 278
train_step() function, 275, 277

Dimensionality reduction
methods, 45, 246

Directed acyclic graph (DAG), 110
Discriminator

network, 260, 261, 270, 272
display_images() function, 282
DistBelief, 8
Dummy variable, 132

INDEX

288

E
Eager execution, 12, 96, 97
Edge TPU, 9
Error function, 69
Estimator API, 112
Explicit data collection, 218

F
Facebook’s AI Research

Lab (FAIR), 16
Fashion MNIST dataset, 247
Feature scaling, 79, 80
Feedforward neural networks

Auto MPG (see Auto MPG
dataset (case study))

deep, 123, 124
hidden layers, 126
input layer, 125
layers, 122
limitations, 163
output layer, 125, 126
shallow, 123
supervised learning tasks, 121

Filtering, 148
Fully connected network, 151

G
Gated recurrent

units (GRUs), 168, 170
Generative adversarial

networks (GANs), 46, 62

applications
art and fashion, 263
malicious applications

and deep fake, 264
manufacturing, research,

and R&D, 263
miscellaneous

applications, 264
video games, 264

architecture
components, 261
generator and discriminator

networks, 262
“mode collapse” issue, 262

invention, 259
method, 259
visualization, 260

Generator network, 261, 267–269
Genetic clustering, 45
get_file() function, 201
Google Colab, 21, 22

Anaconda distribution, 30
Pip, 83
setup process, 30–32

GPU for deep learning, 61
Gradient descent algorithm, 73, 74
Grammar induction, 192
Graph execution, 96

H
Hardware options, 32
Hebbian learning, 46
Hierarchical clustering, 45

INDEX

289

Hybrid recommender systems, 221
Hyperparameter tuning, 54

I
Image classification with MNIST

(case study)
building, CNN, 155, 156
compiling and fitting,

model, 156, 157
downloading, 152, 154
evaluate, trained

model, 157, 158
reshaping and normalizing, 154
trained model, saving, 159

Image denoising with fashion
MNIST (case study)

adding noise to images, 251, 252
data loading and data

processing, 248, 250
denoising noisy

images, 255, 257
initial imports, 247
model, building, 253, 255

ImageNet, 62
Image processing, 246
Image recognition, 145
Implicit data collection, 218
__init__ function, 112, 228
Interactive programming

environments
advantages, 20
build and train models,

options, 20

Google Colab, 21
IPython, 21–23
Jupyter Notebook, 21

Interpreter, 3
IPython, 21–23

J
Jupyter Notebook, 22

Anaconda distribution, 24
installation

Mac, 26–29
Windows, 24–26

K
Keras, 15, 16
Keras datasets, 105
Keras Functional API, 109, 110
Keras Sequential API, 108, 109
K-means clustering, 45
k-nearest neighbors algorithm, 44
Kubeflow, 9

L
Latent space, 261
Layer subclassing, 110
Learning rate, 74
Libraries, TensorFlow

Flask, 93
Matplotlib, 89–91
NumPy, 85
Pandas, 88, 89

INDEX

290

Scikit-learn, 91, 92
SciPy, 86, 87
use cases, 82

Limited customization, 108
Linear regression, 43, 52
Linear Threshold Unit (LTU), 64
load() function, 174
load_data() function, 105
load_model() function, 120
Local minima, 75
Logistic regression, 43
Long short-term memory (LSTM)

networks, 61, 165, 168, 169
Loss functions, 59, 69, 70, 115

M
Machine learning (ML), 1

AI, 37
algorithms, 35
applications, 36
big data, 39
characteristics, approaches, 49
data science, 39
description, 33
DL, 38
evaluations, 55
history, 34
model, 36
process flow

evaluation, 52–54
gathering data, 50
hyperparameter tuning, 54

model selection, 51
prediction, 55
preparing data, 50
training, 51, 52

reinforcement learning, 47, 48
semi-supervised learning

approach, 46, 47
supervised learning

approach, 41–44
unsupervised learning, 44–46

Machine translation, 190, 194
Market intelligence, 191
Matplotlib, 89–91
McCulloch-Pitts Neuron, 59, 63
Mean absolute error

(MAE), 54, 70, 137
Mean absolute percentage

error (MAPE), 70
Mean squared error

(MSE), 70, 137, 231, 254
Memory-based approach, 217
Microsoft cognitive

toolkit (CNTK), 17
Miles per gallon (MPG), 127
Mobile recommender systems, 221
Mode collapse, 262
Model-based approach, 217
Model building

estimator API, 112
keras API, 108–112

model.compile(), 113, 114
model.evaluate()

function, 115, 118, 120
model.fit() function, 115, 179

Libraries, TensorFlow (cont.)

INDEX

291

model.predict()
function, 116, 118, 232

Model selection, 51
Model subclassing, 110, 111
Model training performance, 179
Morphological segmentation, 193
Morphosyntax, 192, 193
Multi-criteria recommender

systems, 220
Multilayer perceptron

(MLP), 64, 65, 122, 124
MXNet, 17

N
Named entity

recognition (NER), 194
Natural language generation, 194
Natural language

processing (NLP), 145
history

early ideas, 188
rule-based NLP, 188, 189
statistical NLP and

supervised learning, 189
unsupervised and

semi- supervised NLP, 190
problems, 121
real-world applications, 190, 191
scope, 187
tasks, 173

cognition, 196
dialogue, 196
discourse, 195

morphosyntax, 192, 193
semantics, 193, 195
speech, 195

Natural language
toolkit (NLTK), 196, 197

Neural networks, 44
activation functions, 67
history, 59–62
loss functions, 69, 70

Noise reduction, 246
np.hstack() function, 232
NumPy arrays, 106
NumPy (Numerical Python), 85

O
Object-oriented

programming (OOP), 3
Object recognition, 45
Open source, 8
Optical character

recognition (OCR), 191, 194
Optimization algorithm, 72–74
Optimization in deep learning

backpropagation
algorithm, 71, 72

challenges
local minima, 75
saddle points, 76
vanishing gradients, 76, 77

optimization algorithm, 72–74
Optimizer algorithms, 114
Origin variable, 132
Overfitting, 53, 77, 78

INDEX

292

P
Pandas, 88, 89
Pandas DataFrame, 106
Part-of-speech (POS) tagging, 193
Pattern mining, 45
Perceptron, 59, 64, 65
Pip installation

complementary libraries, 84
confirmation, 83
libraries, 84

Pooling layers, 150
Potential sequence

data tasks, 164
predict() function, 184
Principal component

analysis (PCA), 46
proof of concept (POC), 11, 14
Python

benefits
community support, 7
data science libraries, 6
ease of learning, 6
visualization options, 7

interpreted language, 3
object-oriented

programming (OOP), 3
Python 2 vs. Python 3, 4
timeline, 3, 4

PyTorch, 16, 96

Q
Q-Learning, 48

R
Ragged tensors, 99
Random forest algorithm, 43
Read–eval–print loop (REPL), 21
RecommenderNet model, 230
Recommender systems (RSs)

approach
collaborative filtering (see

Collaborative filtering)
content-based

filtering, 219, 220
mobile recommender

systems, 221
multi-criteria recommender

systems, 220
risk-aware recommender

systems, 221
cold start, 219
scalability, 219
sparsity, 219

Recurrent gated units (GRUs), 165
Recurrent neural networks (RNNs),

44, 61, 121, 198
applications, 165
characteristics, 168
GRUs, 170
history, 164, 165
LSTM, 169, 170
mechanism, 166, 167
sequence data, 161, 162
simple RNNs, 168, 169
time-series data, 161, 162

Regression, 54

INDEX

293

Regularization, 78, 79
Regularized autoencoders

CAEs, 244
DAEs, 243
SAEs, 243
VAEs, 244
variations, 242

Regular neural networks, 122
Reinforcement learning

action, 47
agent, 47
comprehensive module

support, 48
deep learning, 48
environment, 47
models, 48
power, 62
reward, 47

Restricted Boltzmann
Machines (RBMs), 61

Risk-Aware recommender
systems, 221

Root mean squared
error (RMSE), 54, 69, 70

Rule-based NLP, 188, 189

S
Saddle points, 76
SavedModel, 13, 119
save_model() function, 119
Scaling methods, 79
Scikit-learn, 91, 92
SciPy, 86, 87

Seaborn, 91
Semantics, 193, 195
Semi-supervised learning

approach, 46, 47
Sentence breaking, 193
Sentiment analysis (case study)

compiling and fitting,
model, 178, 179

dataset preparation, 175
Google Drive

Colab access, 183
trained model, 183

GPU Acceleration in
Google Colab, 172

IMDB reviews
load() function, tensorflow_

datasets API, 174
TensorFlow import, dataset

downloading, 173
text encoding and

decoding, 174
loaded model object, 184
model evaluation, 180
predictions, 181, 182
RNN model, building

bidirectional layers, 177
encoding layer, 176
flowchart, 178
Keras Sequential API, 176

saved_model, 184
saving and loading,

model, 182–184
Sequence data, 161–163
Sequential(), 135

INDEX

294

Sequential() model object, 108
Shakespeare Corpus, 199, 200
Shallow feedforward neural

network, 123
Sigmoid functions, 68
Simple RNNs, 168, 169
Single-layer perceptron, 64
Softmax function, 68
Sparse autoencoders (SAEs), 243
Sparse tensors, 99
Speech recognition, 190
Spell checking, 191
Standard training method

model.compile(), 113, 114
model.evaluate(), 115
model.fit(), 115
model.predict(), 116

State-action-reward-state-action
(SARSA), 48

Stochastic gradient descent (SGD)
optimizer, 73

summary() function, 110
Supervised learning

classification problems, 41, 42
decision trees and ensemble

methods, 43
k-nearest neighbors

algorithm, 44
linear and logistic

regression, 43
neural networks, 44
regression problems, 42
support vector machines, 43

Support vector machine, 43

T
TensorFlow

competitors
CNTK, 17
Keras, 15, 16
MXNet, 17
PyTorch, 16

dataset object, 101, 102
deep learning pipeline, 100
eager execution, 96, 97
objects, 107
open-source machine learning

platform, 7
Python and C, 8
tensors, 97, 99
timeline, 8, 9
variable, 99, 100

TensorFlow 1.0.0, 9
TensorFlow 2.0

architecture, 14
experimentation experience

for researchers, 14, 15
model building with Keras and

eager execution
AutoGraph API, 12
build, train, and validate, 11
data loading, tf.data, 11
distributed training, 12, 13
SavedModel, 13

robust model deployment in
production, 13, 14

TensorFlow 2.0, 9
TensorFlow docs, 138
tensorflow_datasets API, 174

INDEX

295

TensorFlow Graphics, 9
TensorFlow.js, 9, 14
TensorFlow pipeline guide, 2
TensorFlow serving, 13
tensor.numpy() function, 100
Tensor processing unit (TPU), 9
Tensors, 97, 99
test_dataset, 179
Text classification, 191
Text generation with deep

NLP (case study)
compiling and training

model, 207, 208
Corpus loading, 201, 202
dataset creation, 203–205
goal, 198
model, building, 205, 206
required libraries, import, 200
Shakespeare Corpus, 199, 200
text vectorization, 202, 203
trained model, 209–213

Text vectorization, 198, 202, 203
tf.Constant(), 98
tf.data module, 11
tf.estimators (Estimator API), 11
tf.feature_column module, 11
tf.function decorator, 12
tf.GradientTape(), 116
tf.keras (TensorFlow Keras API), 11
tf.Tensor class, 99
tf.zeros() functions, 98
Time-series data, 161
Training data, 41, 51, 52
train_step() function, 275, 277

U
Undercomplete autoencoders, 242
Universal approximation

theory, 124
Unsupervised learning

anomaly detection problems
and generative systems, 45

clustering analysis, 44
dimensionality reduction, 45
hierarchical clustering, 45
K-means clustering, 45
machine learning

algorithms, 44
neural networks, 46
PCA, 46

util module, 201

V
Vanishing gradients, 61, 76, 77
Variable, 99, 100
Variational autoencoders

(VAEs), 244
Vector space, 261
Video analysis, 145

W, X, Y
Word segmentation, 193
Word sense disambiguation, 195

Z
ZipFile() function, 224

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	Python as Programming Language
	Timeline of Python
	Python 2 vs. Python 3
	Why Python?
	Ease of Learning
	A Variety of Available Data Science Libraries
	Community Support
	Visualization Options

	TensorFlow As Deep Learning Framework
	Timeline of TensorFlow
	Why TensorFlow?
	What’s New in TensorFlow 2.x
	Easy Model Building with Keras and Eager Execution
	Load Your Data Using tf.data
	Build, Train, and Validate Your Model with tf.keras, or Use Premade Estimators
	Run and Debug with Eager Execution, Then Use AutoGraph API for the Benefits of Graphs
	Use Distribution Strategies for Distributed Training
	Export to SavedModel

	Robust Model Deployment in Production on Any Platform
	TensorFlow Serving
	TensorFlow Lite
	TensorFlow.js

	Improved Experimentation Experience for Researchers

	TensorFlow Competitors
	Keras
	PyTorch
	Apache MXNet
	CNTK (Microsoft Cognitive Toolkit)
	Final Evaluation
	Final Considerations

	Installation and Environment Setup
	Interactive Programming Environments: IPython, Jupyter Notebook, and Google Colab
	IPython
	Jupyter Notebook
	Anaconda Distribution
	Installing on Windows
	Installing on Mac

	Google Colab
	Google Colab Setup

	Hardware Options and Requirements

	Chapter 2: Introduction to Machine Learning
	What Is Machine Learning?
	Scope of Machine Learning and Its Relation to Adjacent Fields
	Artificial Intelligence
	Deep Learning
	Data Science
	Big Data
	The Taxonomy Diagram

	Machine Learning Approaches and Models
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning
	Reinforcement Learning
	Evaluation of Different Approaches

	Steps of Machine Learning
	Gathering Data
	Preparing Data
	Model Selection
	Training
	Evaluation
	Hyperparameter Tuning
	Prediction

	Final Evaluations

	Chapter 3: Deep Learning and Neural Networks Overview
	Timeline of Neural Networks and Deep Learning Studies
	Structure of Artificial Neural Networks
	McCulloch-Pitts Neuron
	Linear Threshold Unit (LTU)
	Perceptron
	A Modern Deep Neural Network

	Activation Functions
	Loss (Cost or Error) Functions
	Optimization in Deep Learning
	Backpropagation
	Optimization Algorithms
	Optimization Challenges

	Overfitting and Regularization
	Overfitting
	Regularization

	Feature Scaling
	Final Evaluations

	Chapter 4: Complementary Libraries to TensorFlow 2.x
	Installation with Pip
	NumPy – Array Processing
	SciPy – Scientific Computing
	Pandas – Array Processing and Data Analysis
	Matplotlib and Seaborn – Data Visualization
	Scikit-learn – Machine Learning
	Flask – Deployment
	Final Evaluations

	Chapter 5: A Guide to TensorFlow 2.0 and Deep Learning Pipeline
	TensorFlow Basics
	Eager Execution
	Tensor
	Variable

	TensorFlow Deep Learning Pipeline
	Data Loading and Preparation
	Dataset Object (tf.data.Dataset)
	TensorFlow Datasets Catalog
	Installation
	Importing
	Datasets Catalog
	Loading a Dataset
	Keras Datasets

	NumPy Array
	Pandas DataFrame
	Other Objects

	Model Building
	Keras API
	Sequential API
	Functional API
	Model and Layer Subclassing

	Estimator API

	Compiling, Training, and Evaluating the Model and Making Predictions
	The Standard Method
	model.compile()
	Optimizer
	Loss Function

	model.fit()
	model.evaluate()
	model.predict()

	Custom Training

	Saving and Loading the Model
	Saving the Model
	Loading the Model

	Conclusion

	Chapter 6: Feedforward Neural Networks
	Deep and Shallow Feedforward Neural Networks
	Shallow Feedforward Neural Network
	Deep Feedforward Neural Network

	Feedforward Neural Network Architecture
	Layers in a Feedforward Neural Network
	Input Layer
	Output Layer
	Hidden Layer

	Case Study | Fuel Economics with Auto MPG
	Initial Installs and Imports
	Downloading the Auto MPG Data
	Data Preparation
	DataFrame Creation
	Dropping Null Values
	Handling Categorical Variables
	Splitting Auto MPG for Training and Testing

	Model Building and Training
	Tensorflow Imports
	Model with Sequential API
	Model Configuration

	Evaluating the Results
	Making Predictions with a New Observation

	Conclusion

	Chapter 7: Convolutional Neural Networks
	Why Convolutional Neural Networks?
	CNN Architecture
	Layers in a CNN
	Convolutional Layers
	Filtering
	Strides

	Pooling Layer
	A Set of Fully Connected Layers

	A Full CNN Model

	Case Study | Image Classification with MNIST
	Downloading the MNIST Data
	Reshaping and Normalizing the Images
	Building the Convolutional Neural Network
	Compiling and Fitting the Model
	Evaluating the Model
	Saving the Trained Model

	Conclusion

	Chapter 8: Recurrent Neural Networks
	Sequence Data and Time-Series Data
	RNNs and Sequential Data
	The Basics of RNNs
	The History of RNNs
	Applications of RNNs
	Mechanism of RNNs

	RNN Types
	Simple RNNs
	Long Short-Term Memory (LSTM)
	Gated Recurrent Units (GRUs)

	Case Study | Sentiment Analysis with IMDB Reviews
	Preparing Our Colab for GPU Accelerated Training
	IMDB Reviews
	TensorFlow Imports for Dataset Downloading
	Loading the Dataset from TensorFlow
	Understanding the Bag-of-Word Concept: Text Encoding and Decoding

	Preparing the Dataset
	Building the Recurrent Neural Network
	Imports for Model Building
	Create the Model and Fill It with Layers

	Compiling and Fitting the Model
	Evaluating the Model
	Making New Predictions
	Saving and Loading the Model
	Give Colab Access to Google Drive
	Save Trained Model to Google Drive
	Load the Trained Model and Make Predictions

	Conclusion

	Chapter 9: Natural Language Processing
	History of NLP
	Early Ideas
	Rule-Based NLP
	Statistical NLP and Supervised Learning
	Unsupervised and Semi-supervised NLP

	Real-World Applications of NLP
	Major Evaluations, Techniques, Methods, and Tasks
	Morphosyntax
	Semantics
	Discourse
	Speech
	Dialogue
	Cognition

	Natural Language Toolkit (NLTK)
	Case Study | Text Generation with Deep NLP
	The Goal of the Case Study
	Shakespeare Corpus
	Initial Imports
	Loading the Corpus
	Vectorize the Text
	Creating the Dataset
	Building the Model
	Compiling and Training the Model
	Generating Text with the Trained Model

	Conclusion

	Chapter 10: Recommender Systems
	Popular Approaches
	Collaborative Filtering
	Collaborative Filtering Sub-approaches

	Data Collection
	Explicit Data Collection
	Implicit Data Collection
	Issues With Regard to Collaborative Filtering
	Cold Start
	Scalability
	Sparsity

	Content-Based Filtering (Personality-Based Approach)
	Other Recommender System Approaches

	Case Study | Deep Collaborative Filtering with MovieLens Dataset
	MovieLens Dataset
	Initial Imports
	Loading the Data
	Processing the Data
	Processing User IDs
	Processing Movie IDs
	Processing the Ratings

	Splitting the Dataset
	Building the Model
	Compile and Train the Model
	Make Recommendations

	Conclusion

	Chapter 11: Autoencoders
	Advantages and Disadvantages of Autoencoders
	Autoencoder Architecture
	Layers Used in an Autoencoder
	Advantages of Depth

	Variations of Autoencoders
	Undercomplete Autoencoders
	Regularized Autoencoders
	Sparse Autoencoder (SAE)
	Denoising Autoencoder (DAE)
	Contractive Autoencoder (CAE)

	Variational Autoencoder (VAE)

	Use Cases of Autoencoders
	Case Study | Image Denoising with Fashion MNIST
	Fashion MNIST Dataset
	Initial Imports
	Loading and Processing the Data
	Adding Noise to Images
	Building the Model
	Denoising Noisy Images

	Conclusion

	Chapter 12: Generative Adversarial Network
	Method
	Architecture
	GAN Components
	Generative Network
	Discriminator Network
	Latent Space

	A Known Issue: Mode Collapse
	Final Notes on Architecture

	Applications of GANs
	Art and Fashion
	Manufacturing, Research, and R&D
	Video Games
	Malicious Applications and Deep Fake
	Miscellaneous Applications

	Case Study | Digit Generation with MNIST
	Initial Imports
	Load and Process the MNIST Dataset
	Build the GAN Model
	Generator Network
	Discriminator Network
	Configure the GAN Network
	Loss Function
	Optimizer

	Set the Checkpoint

	Train the GAN Model
	The Training Step
	The Training Loop
	Image Generation Function
	Start the Training

	Animate Generated Digits During the Training

	Conclusion

	Index

