
T E C H N O L O G Y I N A C T I O N ™

Electronics Projects
with the ESP8266
and ESP32

Building Web Pages, Applications,
and WiFi Enabled Devices
—
Neil Cameron

Electronics Projects
with the ESP8266 and

ESP32
Building Web Pages,

Applications, and
WiFi Enabled Devices

Neil Cameron

Electronics Projects with the ESP8266 and ESP32: Building Web Pages,
Applications, and WiFi Enabled Devices

ISBN-13 (pbk): 978-1-4842-6335-8 ISBN-13 (electronic): 978-1-4842-6336-5
https://doi.org/10.1007/978-1-4842-6336-5

Copyright © 2021 by Neil Cameron

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
NY Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6335-8. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Neil Cameron
Edinburgh, UK

https://doi.org/10.1007/978-1-4842-6336-5

iii

Table of Contents

Chapter 1: Internet radio ��1

Station display and selection ��9

Minimal Internet radio ���24

Summary���25

Components List ���25

Chapter 2: Intranet camera ��27

Save images to the SD card ��30

Load images on a web page ���36

Stream images to a web page ��40

PIR trigger to stream images to a web page ��45

Summary���49

Components List ���50

Chapter 3: International weather station ���51

ILI9341 SPI TFT LCD touch screen ��52

Touch screen calibration ���57

Painting on-screen ��60

ESP8266-specific touch screen calibration and paint ��62

Weather data for several cities ���69

About the Author ���xi

About the Technical Reviewer ���xiii

Preface ���xv

iv

Summary���84

Components List ���84

Chapter 4: Internet clock ��85

WS2812 RGB LEDs responsive to sound ���90

ESP8266 and multiplexer ��94

LED rings clock ���99

Network Time Protocol ��105

ESP32 and Internet clock ��109

Summary���110

Components List ���111

Chapter 5: MP3 player ��113

Control command for the MP3 player ���115

MP3 player control with a microcontroller ��117

Infrared remote control of an MP3 player ���126

Creating sound tracks and two alarm systems ���132

Movement detection alarm ���138

Speaking clock ��141

Voice recorder ���147

Summary���149

Components List ���150

Chapter 6: Bluetooth speaker ���151

Summary���157

Components List ���157

Chapter 7: Wireless local area network ���159

HTTP request ���162

HTML code ��168

Table of ConTenTs

v

XML HTTP requests, JavaScript, and AJAX ���171

Summary���180

Components List ���180

Chapter 8: Updating a web page ��181

XML HTTP requests, JavaScript, and AJAX ���188

JSON ���192

Accessing WWW data��196

MQTT broker and IFTTT ���202

Parsing text ���216

Console log ���219

Wi-Fi connection ���220

Access information file ���221

Summary���222

Components List ���222

Chapter 9: WebSocket ��223

Remote control and WebSocket communication ��229

WebSocket and AJAX ��237

Access images, time, and sensor data over the Internet ����������������������������������243

Summary���255

Components List ���255

Chapter 10: Build an app ��257

Control and feedback app ���259

Install the app ���271

Servo-robot control app ��271

Speech recognition app ��281

Summary���286

Components List ���287

Table of ConTenTs

vi

Chapter 11: App database and Google Maps ������������������������������������289

MIT App Inventor database ���289

MIT App Inventor and Google Maps ��296

Summary���303

Components List ���303

Chapter 12: GPS tracking app with Google Maps �����������������������������305

GPS position transmit ���315

GPS position receive ���321

Validate transmission of GPS position ��323

Improve GPS position signal ���336

Summary���344

Components List ���345

Chapter 13: USB OTG communication ���347

App receive ���348

App transmit ���354

App receive and transmit ��360

Summary���363

Components List ���363

Chapter 14: ESP-NOW and LoRa communication ������������������������������365

ESP-NOW ��365

LoRa communication ��382

Summary���396

Components ��397

Chapter 15: Radio frequency communication ����������������������������������399

Transmitting and receiving text���403

Decode remote control signals ���410

Table of ConTenTs

vii

Control pan-tilt servos with RF communication ��415

Control relay with RF communication ���423

Relays ���428

Solid-state relay ��433

Summary���435

Components List ���436

Chapter 16: Signal generation ��437

Signal generation ��441

Digital to analog converter ��444

Generating waves ���451

ESP32 8-bit DAC ���457

12 -bit DAC ���458

Summary���465

Components List ���466

Chapter 17: Signal generation with 555 timer IC �����������������������������467

555 timer IC ��468

Monostable mode ���471

Bistable mode ���474

Astable mode ��475

Variable duty cycle ��480

50 % duty cycle ���483

PWM mode ��486

Function generator ��488

Square wave to sine wave ��493

Bipolar junction transistor as a switch ���495

MP3 player and PIR sensor application���498

Table of ConTenTs

viii

Summary���502

Components List ���502

Chapter 18: Measuring electricity ��505

Voltage divider ��505

Analog to digital converter ��507

Voltage meter ��509

Voltage meter with a load ���513

Resistance meter (ohmmeter) ��519

Capacitance meter ��522

Current meter (ammeter) ��527

Current sensor ��534

Current and voltage sensor ���536

Solar panel and battery meter ��540

Inductance meter ��551

Summary���557

Components List ���558

Chapter 19: Rotary encoder control ���559

Debouncing ���564

Interrupts ��564

Square wave states ��567

State switching ���575

Incrementing a value ��577

Summary���583

Components List ���583

Table of ConTenTs

ix

Chapter 20: OTA and saving data to EEPROM, SPIFFS, and Excel �����585

OTA updating ���586

Saving data ���589

Saving to EEPROM ��591

Saving to SPIFFS ���596

Downloading SPIFFS files ���602

Saving data directly to Excel ���605

Summary���609

Components List ���610

Chapter 21: Microcontrollers ��611

Arduino Uno ��617

Arduino Nano ��618

Arduino Pro Micro ���619

ESP8266 development board ��621

ESP8266 analog input ���624

ESP8266 interrupts ���625

ESP8266 watchdog timer ��628

ESP32 development board ��629

ESP32 digital input ��632

ESP32 analog input ���632

ESP32 pulse width modulation ���634

ESP32 serial input ���635

Wi-Fi communication and web server ��636

ESP8266 and ESP32 interrupts ���637

Table of ConTenTs

x

ESP8266 and ESP32 and an OLED screen ��637

ESP32 and servo motors ���638

Summary���639

Components List ���639

Chapter 22: ESP32 microcontroller features ������������������������������������641

Microcontroller CPU and memory ���642

ESP32 cores ��643

Bluetooth communication ���653

Bluetooth Low Energy communication ���656

Timers ���672

Real-time clock and sleep mode ��675

Digital to analog converter ��678

Capacitive touch sensor ��679

Hall effect sensor ��680

Summary���681

Components List ���682

 Appendix: Libraries���683

Index ���689

Table of ConTenTs

xi

About the Author

Neil Cameron is an experienced analyst and programmer with a deep

interest in understanding the application of electronics. Neil wrote the

book Arduino Applied: Comprehensive Projects for Everyday Electronics

by Apress. He was a research scientist and has previously taught at the

University of Edinburgh and Cornell University.

xiii

About the Technical Reviewer

Mike McRoberts is the author of Beginning Arduino by Apress. He is

winner of Pi Wars 2018 and member of Medway Makers. He is an Arduino

and Raspberry Pi enthusiast.

C/C++, Arduino, Python, Processing, JS, Node-Red, NodeJS, Lua.

xv

Preface

It's never been so easy and practical to access information over the

Internet, develop web pages to update sensor information, build mobile

apps to remotely control devices with speech recognition, or incorporate

Google Maps in a GPS route tracking app. The combination of Wi-Fi

functionality, high computing power, and low cost of the ESP8266 and

ESP32 development boards extends the range of opportunities for

microcontrollers. Communicating with devices and accessing information

over the Internet with the ESP8266 and ESP32 microcontrollers is the focus

of Electronics Projects with the ESP8266 and ESP32.

The first section (Chapters 1 to 6) of the book demonstrates the ease

of use and the power of the ESP8266 and ESP32 microcontrollers to access

and display information on the Internet. Projects include building an

Internet radio, an Internet-based clock, and an international weather

station and a project with the ESP32-CAM camera to upload pictures to a

web page.

The book's second section (Chapters 7 to 9) covers web page design

projects for updating your web page with sensor information using real-

time graphics or controlling a remote device through a web page. You'll

learn about AJAX (Asynchronous JavaScript and XML), which combines

XML (eXtensible Markup Language) HTTP (Hypertext Transfer Protocol)

requests for updating a web page with JavaScript to manage those

requests, JSON (JavaScript Object Notation) to combine information

transmitted by a server to the client, the two-way fast communication

WebSocket protocol, MQTT brokers, and IFTTT (If This, Then That) for

communication between devices on different networks. The practical

projects include uploading information to the Internet and controlling

xvi

devices from anywhere in the world with the ESP8266 and ESP32

microcontrollers.

Mobile apps are now ubiquitous, making the app build projects in the

book's third section (Chapters 10 to 13) very relevant. An app to control

remotely located motors connected to an ESP8266 or ESP32 development

board mimics robotics used in the automotive industry; a speech

recognition app controls devices; and a GPS tracking app, incorporating

Google Maps, displays the current position and route information. Each

project with the ESP8266 and ESP32 microcontrollers is fully described, as

no previous experience in mobile app design and build is required.

Communication between ESP8266 and ESP32 microcontrollers

is described in the fourth section (Chapters 14 to 18) of the book.

The built-in ESP-NOW communication system, LoRa (long range),

and RF (Radio Frequency) communication are applied to controlling

remotely located devices with the device information updated on a

web page by the ESP8266 and ESP32 microcontrollers. Communication

protocols are extended to signal generation with the ESP8266 and

ESP32 microcontrollers transmitting alphanumeric text or signals to

produce sounds, as used in electronic music. Signal generation without

a microcontroller is illustrated with an electronic piano, a motor control

project, and an alarm system including an MP3 player with a movement

detector. The book’s fourth section spans the built-in communication

protocol of the ESP8266 and ESP32 microcontrollers to communication

with back-to-basics electronics. A chapter on measuring electricity with

an ESP8266 or ESP32 microcontroller, applied to a solar panel project,

continues the electronics theme to understand the methodology behind

sensors.

The ESP32 microcontroller is more powerful than the ESP8266

microcontroller and also includes Bluetooth and Bluetooth Low Energy

(BLE) communication. Chapters on practical differences between the

ESP8266 and ESP32 microcontrollers and on specific features of the ESP32

microcontroller form the last section (Chapters 21 and 22) of the book.

PrefaCe

xvii

Throughout the book, all differences in libraries or instructions for the

ESP8266 and ESP32 microcontrollers are described, as each project is

compatible with both microcontrollers.

All sections of the book are stand-alone, so you can delve into a section

of the book rather than having to start from the beginning. Several chapters

build on information from earlier chapters. For example, Chapter 12 (GPS

tracking app with Google Maps) incorporates mobile app design, Bluetooth

communication, sourcing information from the Internet, and updating a

web page. Some programming experience with the Arduino IDE is assumed,

although all sketches are completely described and comprehensively

commented. The book Arduino Applied: Comprehensive Projects for

Everyday Electronics is recommended as an introduction to microcontrollers

ranging from blinking an LED to building a robot car. Schematic diagrams

were produced with Fritzing software (www.fritzing.org), with an

emphasis on maximizing the clarity of component layout and minimizing

overlapping connections. Authors of libraries used in the book are

acknowledged in each chapter, with library details included in the Appendix.

All the Arduino IDE sketches and MIT App Inventor source code for the apps

are available to download at GitHub (github.com/Apress/ESP8266-and-

ESP32). The Arduino programming environment and libraries are constantly

being updated, so information on consequences of the updates is also

available on the GitHub website.

PrefaCe

http://www.fritzing.org
https://github.com/Apress/ESP8266-and-ESP32﻿
https://github.com/Apress/ESP8266-and-ESP32﻿

1© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_1

CHAPTER 1

Internet radio
Internet radio is the continuous streaming of digital audio over the

Internet. Digital audio, in MP3 format, is received by the ESP8266 or

ESP32 microcontroller through a Wi-Fi connection. The ESP8266 or

ESP32 microcontroller communicates with a VS1053 audio decoder by

Serial Peripheral Interface (SPI), and the MP3-formatted data is decoded

by an 18-bit digital to analog converter (DAC) to an audio signal that is

amplified for a loudspeaker. ESP8266 and ESP32 microcontrollers have

Wi-Fi functionality and sufficient processor speed for an Internet radio.

Connection to the wireless local area network (WLAN) requires the Wi-Fi

network SSID (Service Set Identifier) and password.

https://doi.org/10.1007/978-1-4842-6336-5_1#DOI

2

Connections for the ESP8266 development board and the VS1053

audio decoder are shown in Figure 1-1, with a detail in Figure 1-2, and

listed in Table 1-1. Connections for SPI communication are indicated in

green, with data connections in blue. Two switches, attached to interrupts,

control the volume and Internet radio station selection. For the ESP8266

development board, the volume and station switches on pins D4 and D8

are connected to GND and 5V, as pins D4 and D8 are connected to internal

pull-up and pull-down resistors, respectively. Connections for an ESP32

development board are also given in Table 1-1. When using an ESP32

development board, the volume and station switches are both

connected to GND.

An amplifier and loudspeaker, or a mini-loudspeaker

as used with a mobile phone, are connected to the VS1053

audio decoder by plugging into the audio jack socket of

the VS1053 audio decoder.

Figure 1-1. Internet radio with volume and station switches and a
LOLIN (WeMos) D1 mini

Chapter 1 Internet radIo

3

Figure 1-2. VS1053 connections

Table 1-1. Internet radio and switches

Component Connect to ESP8266 Connect to ESP32

VS1053 5V 5V VIn or V5

VS1053 dGnd Gnd Gnd

VS1053 MoSI (MoSI) d7 (MoSI) GpIo 23

VS1053 dreQ (data request) d1 GpIo 4

VS1053 XCS (chip select) d2 GpIo 0

VS1053 MISo (MISo) d6 (MISo) GpIo 19

VS1053 SCK (SCK) d5 (CLK) GpIo 18

VS1053 XrSt (reset) rSt GpIo en

VS1053 XdCS (data chip select) d3 GpIo 2

Switch volume left Gnd Gnd

Switch volume right d4 GpIo 26

Switch station left 5V Gnd

Switch station right d8 GpIo 27

Chapter 1 Internet radIo

4

The URL (Uniform Resource Locator) or web address of an Internet

radio station is obtained from the website www.radio.de. Search for the

required station, click the play button, and select View Page Source. In the

displayed HTML (HyperText Markup Language) file, search for streams,

which precedes the radio station URL. The URL is formatted as host:port/

path. For example, The UK 1940s Radio Station has URL 1940sradio1.

co.uk:8100/stream/1/ with host equal to the text before the first

backslash: 1940sradio1.co.uk – and path equal to the remaining text:

stream/1/. If the port is not equal to default value of 80, which is the web

browsing port, then it follows the colon after host, such as 8100.

The sketch for an Internet radio with an ESP8266 development

board (see Listing 1-1) uses the VS1053 library by Ed Smallenburg and

James Coliz that is downloaded as a .zip file from github.com/baldram/

ESP_VS1053_Library. The first section of the sketch defines the number of

Internet radio stations and URLs, initializes the audio decoder, establishes

a Wi-Fi connection, and defines the interrupts. The variables newStation

and newVolume are defined as volatile, as they are accessed by both

the main sketch and the interrupts. With an ESP32 development board,

the station change switch pin is set HIGH with an internal pull-up resistor

using the instruction pinMode(statPin, INPUT_PULLUP), and the interrupt

attached to the station switch is set to FALLING. The ESP8266 and ESP32

microcontrollers store compiled code in internal RAM (IRAM), rather

than in the slower flash memory, by prefixing code with the IRAM_ATTR

attribute. The interrupt ISR (Interrupt Service Routine) is defined as

IRAM_ATTR void ISR() rather than void ISR().

In the loop function, a connection is made to an Internet radio station

website, and the VS1053 audio decoder processes data in 32-byte batches.

The two interrupt service routines, chan and vol, move to the next radio

station and increase the volume, respectively. The volume scale is from 0

to 100%. The VS1053 library references the SPI library, and the #include

<SPI.h> instruction is not required.

Chapter 1 Internet radIo

http://www.radio.de

5

Connection to the Internet radio station server with the instruction

connect(host[station], port[station]) is followed by an HTTP

(Hypertext Transfer Protocol) request. The VS1053 library uses HTTP for

communication between the client, which is the web browser, and the

Internet radio station server. The client submits an HTTP request to the

server for audio data, and the server sends a response to the client with the

required data. The HTTP request instructions "GET pathname HTTP/1.1"

and "Host: hostname" are followed by an instruction to close the

connection "Connection: close". Using the example of “The UK 1940s

Radio Station,” the request instructions are

GET stream/1/HTTP/1.1

Host: 1940sradio1.co.uk

Connection: close

<\r\n>

Note that the fourth instruction of carriage return, \r, and new line, \n,

is required, which is equivalent to a println() instruction.

Listing 1-1. Internet radio with volume and station switches and an

ESP8266 board

#include <VS1053.h> // include VS1053 library

#include <ESP8266WiFi.h> // include ESP8266WiFi library

int CS = D2;

int DCS = D3; // define VS1053 decoder pins

int DREQ = D1;

VS1053 decoder(CS, DCS, DREQ); // associate decoder with VS1053

int statPin = D8; // define switch pins for

int volPin = D4; // station and volume

WiFiClient client; // associate client and library

char ssid[] = "xxxx"; // change xxxx to Wi-Fi ssid

char password[] = "xxxx"; // change xxxx to Wi-Fi password

Chapter 1 Internet radIo

6

const int maxStat = 4; // number of radio stations

String stationName[] = {"1940 UK", "Bayern3", "ClassicFM", "BBC4"};

char * host[maxStat] = {"1940sradio1.co.uk", // station host

 "streams.br.de",

 "media-ice.musicradio.com",

 "bbcmedia.ic.llnwd.net"};

char * path[maxStat] = {"/stream/1/", // station path

 "/bayern3_2.m3u",

 "/ClassicFMMP3",

 "/stream/bbcmedia_radio4fm_mf_q"};

int port[] = {8100,80,80,80}; // default station port is 80

unsigned char mp3buff[32]; // VS1053 loads data in 32 bytes

int station = 0;

int volume = 0; // volume level 0-100

volatile int newStation = 2; // station number at start up

volatile int newVolume = 80; // volume at start up

void setup ()

{

 Serial.begin(115200); // Serial Monitor baud rate

 SPI.begin(); // initialise SPI bus

 decoder.begin(); // initialise VS1053 decoder

 decoder.switchToMp3Mode(); // MP3 format mode

 decoder.setVolume(volume); // set decoder volume

 WiFi.begin(ssid, password); // initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500);

 Serial.println("WiFi connected"); // wait for Wi-Fi connection

 pinMode(volPin, INPUT_PULLUP); // switch pin uses internal

// pull-up resistor

 attachInterrupt(digitalPinToInterrupt(statPin), chan, RISING);

 attachInterrupt(digitalPinToInterrupt(volPin), vol, FALLING);

} // define interrupts for changing station and volume

Chapter 1 Internet radIo

7

void loop()

{

 if(station != newStation) // new station selected

 {

 station = newStation; // display updated station name

 Serial.print("connecting to CH"); Serial.print(station);

 Serial.print(" ");Serial.println(stationName[station]);

 if(client.connect(host[station], port[station]))

 { // connect to radio station URL

 client.println(String("GET ")+ path[station] + " HTTP/1.1");

 client.println(String("Host: ") + host[station]);

 client.println("Connection: close");

 client.println(); // new line is required

 }

 }

 if(volume != newVolume) // change volume selected

 {

 volume = newVolume; // display updated volume

 Serial.print("volume ");Serial.println(volume);

 decoder.setVolume(volume); // set decoder volume

 }

 if(client.available() > 0) // when audio data available

 { // decode data 32 bytes at a time

 uint8_t bytesread = client.read(mp3buff, 32);

 decoder.playChunk(mp3buff, bytesread);

 }

}

Chapter 1 Internet radIo

8

IRAM_ATTR void chan() // ISR to increment station number

{

 newStation++;

 if(newStation > maxStat-1) newStation = 0;

} // stations numbered 0, 1, 2...

IRAM_ATTR void vol() // ISR to increase volume

{

 newVolume = newVolume + 5;

 if(newVolume > 101) newVolume = 50;

} // maximum volume is 100

Connections for the ESP32 development board and to the VS1053

audio decoder are shown in Figures 1-3 and 1-2, respectively, and given

in Table 1-1. Both switch pins are connected to internal pull-up resistors,

so both interrupts are activated by a FALLING signal. The only changes to

Listing 1-1, other than defining the decoder, station, and volume control

pins, are inclusion of the WiFi library rather than the ESP8266WiFi library

and the instruction pinMode(statPin, INPUT_PULLUP) to change the

interrupt on the station switch pin from RISING to FALLING.

Chapter 1 Internet radIo

9

 Station display and selection
In Listing 1-1, station selection and volume control are activated by

switches, with station and volume information displayed on the Serial

Monitor. For a portable Internet radio, station and volume information

is displayed on an ST7735 TFT LCD (Thin-Film Transistor Liquid Crystal

Display) screen, and a station is selected or the volume is controlled with a

rotary encoder (see Figures 1-4 and 1-5 with connections in Table 1- 2).

Note that both the rotary encoder and ST7735 TFT LCD screen are

connected to 3.3V, with only the VS1053 audio decoder connected to

5V. The ESP32 microcontroller communicates with both the VS1053 audio

decoder and ST7735 TFT LCD screen by SPI, so the microcontroller has the

same MOSI (Main-Out Secondary-In) and SCK (Serial Clock) connections

to the audio decoder and screen, but the CS (Chip Select) connections are

device specific.

Figure 1-3. Internet radio with volume and station switches and an
ESP32 board

Chapter 1 Internet radIo

10

The sketch uses the ESP32 vs1053_ext library by Wolle that is downloaded

as a .zip file from github.com/schreibfaul1/ESP32-vs1053_ext. The

ESP32 vs1053_ext library is for the ESP32 microcontroller, while the

VS1053 library by Ed Smallenburg and James Coliz is compatible

with both the ESP8266 and ESP32 microcontrollers. The ESP32

vs1053_ext library provides station and track information, such as the

streamed track title. The instruction to connect to an Internet radio

station server is connecttohost("host:port/stream"), for example,

connecttohost("1940sradio1.co.uk:8100/stream/1/"). The port

number is only required when it does not equal the default value of 80. The

functions vs1053_showstation, vs1053_icyurl, vs1053_bitrate, and vs1053_

showstreamtitle hold the Internet radio station name and homepage URL,

the bit rate, and the streamed track title. When a new track is streamed,

the vs1053_showstreamtitle function is automatically updated. The volume

variable has 22 levels of 0,50,60,65,70,75,80,82…90,91…100%, with volume

level 10 equal to 88%, as volume level 0 has value 0%.

Listing 1-2 demonstrates the output of the ESP32 vs1053_ext library

functions that are used in Listing 1-3 to display information about the

Internet radio station and the streamed track.

Figure 1-4. Internet radio screenshots

Chapter 1 Internet radIo

11

Listing 1-2. ESP32 vs1053_ext library functions

#include <vs1053_ext.h> // include ESP32 VS1053_ext lib

#include <WiFi.h> // include Wi-Fi library

int CS = 0;

int DCS = 2; // define VS1053 decoder pins

int DREQ = 4;

VS1053 decoder(CS, DCS, DREQ); // associate decoder with VS1053

char ssid[] = "xxxx"; // change xxxx to Wi-Fi ssid

char password[] = "xxxx"; // change xxxx to Wi-Fi password

int volume = 10; // volume level

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 SPI.begin(); // initialise SPI bus

 WiFi.begin(ssid, password); // initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500);

 decoder.begin(); // initialise VS0153 decoder

 decoder.setVolume(volume); // set decoder volume level

 decoder.connecttohost

("media-ice.musicradio.com:80/ClassicFMMP3");

}

void loop()

{

 decoder.loop();

}

void vs1053_showstation(const char * info)

{ // display radio station name

 Serial.print("Station: ");

 Serial.println(info);

}

Chapter 1 Internet radIo

12

void vs1053_bitrate(const char * info)

{ // display streaming bit rate

 Serial.print("Bit rate: ");

 Serial.println(String(info)+"kBit/s");

}

void vs1053_icyurl(const char * info)

{ // display radio station URL

 Serial.print("Homepage: ");

 Serial.println(info);

}

void vs1053_showstreamtitle(const char * info)

{ // title of streamed track

 Serial.print("Stream title: ");

 Serial.println(info);

}

Figure 1-5. Internet radio with screen and rotary encoder and an
ESP32 board

Chapter 1 Internet radIo

13

The sketch for a portable Internet radio is given in Listing 1-3. Pressing

the rotary encoder switch once displays the menu of available radio

stations, with volume control as the first menu item. Turning the rotary

encoder moves the menu of radio stations up or down the ST7735 TFT

LCD screen. The mid-screen station, which is highlighted in RED, is

selected by pressing the rotary encoder for a second time; and an HTTP

request is made to the Internet radio station server for audio data. When

Volume is selected on the menu, the current volume level is displayed

Table 1-2. Internet radio with screen

and rotary encoder and an ESP32 board

Component Connect to ESP32

VS1053 audio decoder See table 1-1

rotary encoder CLK GpIo 25

rotary encoder dt GpIo 26

rotary encoder SW GpIo 27

rotary encoder VCC 3V3

rotary encoder Gnd Gnd

St7735 tFt LCd Gnd Gnd

St7735 tFt LCd CS GpIo 22

St7735 tFt LCd reSet GpIo 1

St7735 tFt LCd dC or a0 GpIo 3

St7735 tFt LCd Sda GpIo 23

St7735 tFt LCd SCK GpIo 18

St7735 tFt LCd Led 3V3

Chapter 1 Internet radIo

14

and turning the rotary encoder decreases or increases the volume level,

which is selected by pressing the rotary encoder switch. The ST7735 TFT

LCD screen is refreshed with the current radio station information and the

updated volume level displayed, but the station menu is still positioned at

the current radio station.

The sketch in Listing 1-3 consists of several functions to

compartmentalize the instructions. The lengthy first section of the sketch

defines the libraries, the Internet radio station URLs, pin numbers for

the VS1053 audio decoder, the ST7735 TFT LCD screen, and the rotary

encoder, with initial values for the station and volume level and the

rotary encoder parameters. The Adafruit ST7735 library is available in

the Arduino IDE. The ESP32 vs1053_ext and Adafruit ST7735 libraries

reference the SPI and Adafruit GFX libraries, so the #include <SPI.

h> and #include <Adafruit_GFX.h> instructions are not required. The

setup function establishes the Wi-Fi connection, initializes the VS1053

audio decoder and the ST7735 TFT LCD screen, attaches internal pull-

up resistors to the rotary encoder, and defines interrupts for the rotary

encoder. The direction and number of turns of the rotary encoder are

determined by the change interrupt, as described in Chapter 19 (Rotary

encoder control).

On pressing the rotary encoder switch, the loop function calls the

screen function to display the volume and station menu, the readMenu

function to determine the selected radio station or the readValue

function function to obtain the new volume level, and then the radio

function. The radio function either connects to the selected radio

station server or changes the volume on the VS1053 audio decoder. The

readMenu and readValue functions determine the selected row number

of the menu, which is a list of stations, and the selected volume level,

when the rotary encoder is turned. The vs1053_icyurl function obtains a

string, starting with https:// and followed by the station URL, and extracts

a substring starting two positions after the location of the first backslash.

The vs1053_showstation and vs1053_showstreamtitle functions obtain

Chapter 1 Internet radIo

15

the radio station name and the title of the streamed track and then call

the showStation function, which displays the station name, streamed

track title, volume value, and station URL information on the ST7735 TFT

LCD screen. Some text, such as the station name or title of the streamed

track, will be longer than the width of the ST7735 TFT LCD screen, so the

lines function splits the station name or title into screen-sized substrings

for display. The encoder and swPress functions count the direction and

number of turns of the rotary encoder and the number of presses of the

rotary encoder switch.

Listing 1-3. Internet radio with screen and rotary encoder and an

ESP32 board

#include <vs1053_ext.h> // include ESP32 VS1053_ext,

#include <WiFi.h> // WiFi and

#include <Adafruit_ST7735.h> // Adafruit_ST7735 libraries

int CS = 0;

int DCS = 2; // define VS1053 decoder pins

int DREQ = 4;

VS1053 decoder(CS, DCS, DREQ); // associate decoder with VS1053

char ssid[] = "xxxx"; // change xxxx to Wi-Fi ssid

char password[] = "xxxx"; // change xxxx to Wi-Fi password

const int maxStation = 11; // number of radio stations

String stationName[] = {"Volume", // first item on menu

"1940 UK", "Berlin", "Bayern3", "Classic", "BBC4",

"Vermont", "Ketchikan", "Kathmandu", "Ithaca", "Trondeim",

"Virgin"};

char * URL[maxStation] = { // radio station URLs

"1940sradio1.co.uk:8100/1",

"streambbr.ir-media-tec.com/berlin/mp3-128/vtuner_web_mp3/",

"streams.br.de/bayern3_2.m3u",

"media-ice.musicradio.com:80/ClassicFMMP3",

Chapter 1 Internet radIo

16

"bbcmedia.ic.llnwd.net/stream/bbcmedia_radio4fm_mf_q",

"vpr.streamguys.net/vpr64.mp3",

"96.31.83.94:8082/stream",

"streaming.softnep.net:8037/stream.nsv",

"17993.live.streamtheworld.com/WITHFM.mp3",

"stream.radiometro.no/metro128.mp3",

"radio.virginradio.co.uk/stream"

};

int TFT_CS = 22;

int DCpin = 3; // define ST7735 TFT screen pins

int RSTpin = 1; // associate tft with Adafruit ST7735

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, DCpin, RSTpin);

int CLKpin = 25;

int DTpin = 26;

int SWpin = 27; // define rotary encoder pins

int oldRow = 0;

int newRow = 1;

int menuItem, val, upLimit;

int displayVol[] = // define volume values for 22 levels

{0,50,60,65,70,75,80,82,84,86,88,90,91,92,93,94,95,96,97,98,

99,100};

int volume = 0;

int newVolume = 10; // volume level at start up

int station = 0;

int newStation = 3; // station level at start up

int textlen, textrows;

String showstatn, showtitle, showurl, text, text1, text2;

volatile int change = 0; // rotary encoder variables

volatile int pressed = 0;

volatile int vals[] = {0,-1,1,0,1,0,0,-1,-1,0,0,1,0,1,0,-1,0};

volatile int score = 0;

Chapter 1 Internet radIo

17

volatile int oldState = 0;

volatile int turn;

void setup()

{

 SPI.begin(); // initialise SPI bus

 WiFi.begin(ssid, password); // initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500);

 decoder.begin(); // initialise VS0153 decoder

 decoder.setVolume(volume); // set decoder volume level

 tft.initR(INITR_BLACKTAB); // initialise screen

 tft.fillScreen(ST7735_BLACK); // clear screen

 tft.setRotation(1); // orientate ST7735 screen

 tft.setTextSize(2); // set screen text size

 tft.drawRect(0,0,158,126,ST7735_WHITE); // draw white frame line

 tft.drawRect(2,2,154,122,ST7735_RED); // and second frame line

 pinMode(CLKpin, INPUT_PULLUP);

 pinMode(DTpin, INPUT_PULLUP); // rotary encoder uses

 pinMode(SWpin, INPUT_PULLUP); // internal pull-up resistors

 attachInterrupt(CLKpin, encoder, CHANGE);

 attachInterrupt(DTpin, encoder, CHANGE);

 // attach rotary encoder interrupts

 attachInterrupt(SWpin, swPress, CHANGE);

}

void loop()

{

 if(pressed == 1) // switch pin pressed first time

 { // to change station or volume

 clearScreen(); // call clearScreen function

Chapter 1 Internet radIo

18

 screen(); // call screen function

 menuItem = readMenu(maxStation); // selected row in menu

 }

 else if (pressed == 2) // switch pin pressed second time

 { // to select station

 if(menuItem > 0) // station selected

 {

 newStation = menuItem-1; // selected station in menu

 clearScreen(); // call clearScreen function

 showStation(volume, showstatn, showtitle);

 // call showStation function

 if(newStation == station) showStation(volume, showstatn,

showtitle);

 } // volume change selected

 else if(menuItem== 0) newVolume = readValue("volume: ",

volume, 21, 1);

 pressed = 0; // reset variable

 }

 else if(pressed > 2) pressed = 0; // volume changed

 radio(); // call radio function

}

void radio() // function to connect to

{ // selected radio station server

 if(station != newStation) // new station selected

 {

 clearScreen(); // call clearScreen function

 station = newStation;

 showurl = "";

 decoder.connecttohost(URL[station]);

 } // connect to radio station server

Chapter 1 Internet radIo

19

 if(volume != newVolume) // new volume level selected

 {

 volume = newVolume;

 newRow = station+1; // retain station number on menu

 decoder.setVolume(volume); // update VS1053 volume

 clearScreen(); // call clearScreen function

 showStation(volume, showstatn, showtitle);

 } // call showStation function

 decoder.loop();

}

int readMenu (int rows) // function to obtain station

{ // number on menu

 while(pressed < 2) // while station not selected

 {

 if(change != 0) // rotary encoder turned

 {

 newRow = oldRow + change; // retain row number on menu

 newRow = constrain(newRow, 0, rows);

 clearScreen(); // call clearScreen function

 screen(); // call screen function

 oldRow = newRow;

 change = 0;

 }

 delay(10);

 }

 return newRow; // return row number on menu

}

 // function to obtain volume level

Chapter 1 Internet radIo

20

int readValue(String text, int current, int upLimit, int gain)

{

 val = current; // current volume level

 clearScreen(); // call clearScreen function

 tft.setTextColor(ST7735_WHITE);

 tft.setTextSize(2);

 tft.setCursor(10, 50);

 tft.print(text); // display text and

 tft.print(displayVol[val]); // current volume value

 while(pressed < 3) // while switch pin is not pressed

 {

 if(change != 0) // rotary encoded turned

 {

 val = val + change * gain; // increment volume level

 val = constrain(val, 0, upLimit);

 // constrain volume level

 clearScreen(); // call clearScreen function

 tft.setCursor(10, 50);

 tft.print(text); // display text and

 tft.print(displayVol[val]); // new volume value

 change = 0;

 }

 delay(10);

 }

 return val; // return new volume level

}

void vs1053_showstation(const char * info)

{ // function to obtain station name

 showstatn = String(info); // station name

 showtitle = "";

Chapter 1 Internet radIo

21

 if(showstatn == "No Name") showstatn = stationName[station+1];

 clearScreen();

 showStation(volume, showstatn, showtitle);

} // call showStation function

void vs1053_showstreamtitle(const char * info)

{ // function to obtain streamed title

 showtitle = String(info);

 clearScreen();

 showStation(volume, showstatn, showtitle);

}

void vs1053_icyurl(const char * info)

{ // function to obtain station URL

 showurl = String(info);

 int i = showurl.indexOf("/"); // position of first / in string

 showurl = showurl.substring(i+2); // station URL as substring

 clearScreen();

 showStation(volume, showstatn, showtitle);

}

void showStation(int volume, String showstatn, String showtitle)

{ // function to display station name, streamed title

// and station URL on screen

 tft.setTextColor(ST7735_GREEN);

 tft.setTextSize(1);

 lines(showstatn, 10); // lines function to display station

 tft.setTextColor(ST7735_YELLOW);

 lines(showtitle, 40); // lines function to display title

 tft.setTextColor(ST7735_GREEN);

Chapter 1 Internet radIo

22

 tft.setCursor(80, 100); // display volume value

 tft.print("volume: ");tft.print(displayVol[volume]);

 tft.setCursor(5, 110);

 tft.print(showurl); // display URL

}

void lines(String text, int line)

{ // function to split string into screen sized substrings

 textlen = text.length(); // get string length

 textrows = 1+textlen/23; // required number of screen rows

 for(int i=0; i<textrows; i++)

 {

 tft.setCursor(10, line + i*10); // move cursor to next row

 tft.println(text.substring(i*23, (i+1)*23));

 } // display substring

}

void screen() // function to display station menu

{

 tft.setTextSize(2);

 tft.setTextColor(ST7735_RED); // selected station in RED

 tft.setCursor(20, 55);

 tft.print

(stationName[newRow]); // display station name

 tft.setTextSize(1);

 tft.setTextColor(ST7735_WHITE); // all other stations in WHITE

 for (int i=1; i<4; i++) // display other station names

 {

 tft.setCursor(30, 50 - i*12); // above selected station

 if(newRow-i >=0) tft.print(stationName[newRow-i]);

 tft.setCursor(30, 65 + i*12); // below selected station

Chapter 1 Internet radIo

23

 if(newRow+i < maxStation+1) tft.print(stationName

[newRow+i]);

 }

}

void clearScreen() // function to clear screen

{ // by displaying a BLACK rectangle

 tft.fillRect(3,3,152,120,ST7735_BLACK);

}

IRAM_ATTR void encoder() // function to count rotary

{ // encoder turns

 int newState = (oldState<<2)+(digitalRead(CLKpin)<<1)

+digitalRead(DTpin);

 score = score + vals[newState]; // allocate score from array

 oldState = newState % 4; // remainder to leave new CLK and DT

 if(score == 2 || score == -2) // 2 steps for complete rotation

 {

 change = score/2; // unit change per two steps

 score = 0; // reset score

 }

}

IRAM_ATTR void swPress() // function to count switch presses

{ // pressed = 1, 2, 3 to change station,

// station selected, volume changed

 if(digitalRead(SWpin) == HIGH) pressed = pressed + 1;

}

Chapter 1 Internet radIo

24

 Minimal Internet radio
The sketch in Listing 1-3 that included an ST7735 TFT LCD screen to

display radio station name and URL, streamed track title, and volume level

with a rotary encoder for station selection and volume control consisted

of 250 lines of code. In contrast, Listing 1-4 for a minimal Internet radio

preset to one radio station with one volume value has only 21 lines of code.

Just change the Internet radio station URL to the required URL!

Listing 1-4. Minimal Internet radio

#include <vs1053_ext.h> // include ESP32 VS1053_ext

#include <WiFi.h> // and WiFi libraries

int CS = 0;

int DCS = 2; // define VS1053 decoder pins

int DREQ = 4;

VS1053 decoder(CS, DCS, DREQ); // associate decoder with VS1053

char ssid[] = "xxxx"; // change xxxx to Wi-Fi ssid

char password[] = "xxxx"; // change xxxx to Wi-Fi password

void setup()

{

 SPI.begin(); // initialise SPI bus

 WiFi.begin(ssid, password); // initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500);

 decoder.begin(); // initialise VS0153 decoder

 decoder.setVolume(10); // pre-set decoder volume level

 decoder.connecttohost

("media-ice.musicradio.com:80/ClassicFMMP3");

} // connect to pre-set radio station server

Chapter 1 Internet radIo

25

void loop()

{

 decoder.loop();

}

 Summary
An Internet radio was built with a VS1053 audio decoder and an ESP8266

or ESP32 microcontroller, with radio station selection and volume

controlled using tactile switches. A portable Internet radio consisted of the

VS1053 audio decoder, an ESP32 development board, and an ST7735 TFT

LCD screen to display the radio station details, the title of the streamed

track, and the volume level, with a rotary encoder to control station

selection and volume. The sketch for a minimal Internet radio consisted of

only 21 lines of code.

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: ESP32 DEVKIT DOIT or

NodeMCU board

• VS1053 audio decoder module

• Mini-loudspeaker

• Tactile switch: 2×

• Rotary encoder: KY-040

• TFT LCD screen: ST7735, 1.8 inches

Chapter 1 Internet radIo

27© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_2

CHAPTER 2

Intranet camera
The ESP32-CAM module is based

on the ESP32-S microcontroller

and includes a 2M-pixel OV2640

camera and a micro-SD (Secure

Digital) card slot. JPEG files

of images are stored on the

micro-SD card or loaded to a

web page or streamed to a web page on a computer, Android tablet, or

mobile phone.

The ESP32-CAM module (see Figure 2-1) contains serial TX and RX

pins, six pins associated with the micro-SD card, and a COB (Chip on

Board) LED, which flashes when taking a photo, and a red LED, which is

active LOW, accessed with GPIO (General-Purpose Input-Output) 4 and 33

pins, respectively. A COB LED includes many LED chips bonded directly

to a substrate to form a single module. There are three GND pins, a 3.3V

and a 5V input pin, and the VCC pin outputs 3.3V or 5V with the jumper

closed. GPIO 0 pin determines the flashing mode of the ESP32-CAM

microcontroller, with the pin connected to GND when loading a sketch as

the pin has a built-in pull-up resistor. GPIO pins 2, 4, 12, 13, 14, and 15 are

associated with the micro-SD card functionality. When the micro-SD card

is not in use, the GPIO pins are available as output pins. The pin layout of

the ESP32-CAM module is shown in Figure 2-1 with Rup indicating the

built-in pull-up resistor.

https://doi.org/10.1007/978-1-4842-6336-5_2#DOI

28

The ESP32-CAM module does not

have a USB connector, and the module

is connected to a computer or laptop

with a USB to serial UART (Universal

Asynchronous Receiver-Transmitter)

interface, such as an FT232RL FTDI USB

to TTL Serial converter module. The Serial

communication voltage of the USB to serial UART interface must be set

at 3.3 V, with USB to serial UART interface RX and TX pins connected

to the ESP32-CAM module TX and RX pins, respectively (see Figure 2-2

with connections in Table 2-1). The USB to serial UART interface 5V pin

is connected to the ESP32-CAM module 5V pin. Details on installing the

CP210x USB to UART Bridge driver for the ESP32 microcontroller, with

the additional Boards Manager URLs and libraries for ESP32, are included

in Chapter 21 (Microcontrollers). The camera module is attached to the

ESP32-CAM module by lifting the black tab on the ESP32-CAM module,

sliding the camera module into the connector, and closing the black tab.

Figure 2-1. ESP32-CAM module pins

Chapter 2 Intranet Camera

29

In the Arduino IDE, from the Tools ➤ Board drop-down list, select ESP32

Wrover Module; in Tools ➤ Partition Scheme, select Huge APP (3MB no

OTA/1MB SPIFFS); and in Tools ➤ Port, select the appropriate COM port.

Prior to loading a sketch onto the ESP32-CAM module, the module

GPIO 0 pin is connected to the module GND pin, and then the module

RESET button is pressed. After the sketch is uploaded, the GPIO 0 pin of

the ESP32-CAM module is disconnected from the module GND pin, and

then the module RESET button is pressed.

Figure 2-2. USB to serial UART interface with the ESP32-CAM module

Table 2-1. USB to serial UART interface with the ESP32-CAM module

Component Connect to

USB to serial Uart rXD eSp32-Cam tX pin

USB to serial Uart tXD eSp32-Cam rX pin

USB to serial Uart VCC eSp32-Cam 5V

USB to serial Uart GnD eSp32-Cam GnD eSp32-Cam GpIO 0 pin

Chapter 2 Intranet Camera

30

 Save images to the SD card
With the sketch in Listing 2-1, the ESP32-CAM module takes a photo every

two seconds, and the resulting JPEG file is stored on the micro-SD card.

The number of photos taken is held in EEPROM (Electrically Erasable

Programmable Read-Only Memory) to sequentially number the JPEG files

as /pictureN.jpg for the Nth photo. When the sketch is rerun, JPEG files

of images are numbered from with the last JPEG file stored, rather than

from /picture0.jpg, which would overwrite existing JPEG files stored in the

micro-SD card. Saving data on EEPROM is described in Chapter 20 (OTA

and saving data to EEPROM, SPIFFS, and Excel). Pressing the ESP32-CAM

module RESET button, after uploading a sketch, causes vibration to the

camera module, so a two-second delay allows the camera module time to

stabilize. The number of photos to take is entered on the Serial Monitor,

and after the camera and micro-SD card are initialized, the camera takes

the required number of photos. The Arduino IDE built-in SD-MMC library

uses the faster ESP32 SDMMC hardware bus instead of SPI, as used by

the SD library. Note that the ESP32-CAM module supports a baud rate of

115200 Bd.

The JPEG files, in UXGA format with 1200 × 1600 pixels, have an

average size of 100 kB; and a 4 GB micro-SD card, in FAT32 format, stores

thousands of images. A 16 GB micro-SD card was used in this chapter.

Time-lapse photography is possible with the ESP32-CAM module by

storing JPEG images on the micro-SD card with intervals of 2–30 s between

photographs. In Listing 2-1, setting the variable maxPhoto to 3000 will

generate sufficient images for a two-minute video with a 25 FPS (frames

per second) frame rate, which only requires 300 MB of the micro-SD card

storage.

Chapter 2 Intranet Camera

31

The ESP32-CAM camera configuration instructions are included in the

config_pins.h tab rather than in the main sketch, to make the sketch easier

to interpret. The additional tab is created in the Arduino IDE by selecting

the triangle below the Serial Monitor button, on the right side of the IDE,

and choosing New Tab from the drop-down menu. The New Tab is titled

config_pins.h.

The sketch in Listing 2-1 loads the libraries for the ESP32-CAM, with the

config_pins.h tab (see Listing 2-2) including instructions to configure the

ESP32-CAM camera with the configCamera function. The micro-SD card is

initialized with the initSDcard function, which determines the SD card type.

After the required time interval between photos has elapsed, the takePhoto

function is called. A JPEG file of the image is saved to the micro-SD card

with the file name incremented after each photo and the image number

written to EEPROM. The takePhoto function uses the ampersand, &, and

asterisk, *, characters to relate to the memory address of a variable, with

spacing to emphasize the characters. In Chapter 14 (ESP-NOW and LoRa

communication), Listing 14-3 illustrates use of a memory address pointer.

Listing 2-1. Taking a photo and saving to the micro-SD card

#include <esp_camera.h> // include esp_camera library

#include <SD_MMC.h> // include SD_MMC library

#include <EEPROM.h> // include EEPROM

#include "config_pins.h" // configure instructions tab

uint8_t SDtype;

int SDpics; // number of pictures on SD card

int maxPhoto = 0; // maximum number of photos

int Nphoto = 0; // number of photos taken

int photoTime = 2000; // delay (ms) between photos

Chapter 2 Intranet Camera

32

String filename;

unsigned long nowTime, lastTime = 0;

void setup()

{

 Serial.begin(115200); // baud rate for Serial Monitor

 Serial.println("\n\nenter number of required photos");

 Serial.println("\n\nsettling down for 2s");

 // time to settle vibration

 delay(2000);

 Serial.println("initialising camera, then take photos");

 configCamera(); // functions to configure camera

 initSDcard(); // and to initialise micro-SD card

 EEPROM.begin(1); // EEPROM with one record

 SDpics = EEPROM.read(0); // number of saved pictures

}

void loop()

{

 while (Serial.available()>0)

 { // maximum photo number

 maxPhoto = Serial.parseInt(); // parsed from Serial buffer

 Nphoto = 0;

 } // if photo number < maximum

// photo number

 nowTime = millis(); // take photo after photoTime ms

 if((nowTime - lastTime > photoTime) && (Nphoto < maxPhoto))

 {

 Nphoto++; // increment photo number

 takePhoto(); // call function to take photo

Chapter 2 Intranet Camera

33

 lastTime = millis(); // update time of photo

 }

}

void initSDcard() // function to initialise SD card

{

 if(!SD_MMC.begin()) // check SD card in position

 {

 Serial.println("error loading SD card");

 return;

 }

 SDtype = SD_MMC.cardType(); // obtain SD card type

 if(SDtype == CARD_NONE)

 {

 Serial.println("insert SD Card");

 return;

 }

 Serial.print("SD card type: ");

 if(SDtype == CARD_MMC) Serial.println("MMC");

 else if(SDtype == CARD_SD) Serial.println("SDSC");

 else if(SDtype == CARD_SDHC) Serial.println("SDHC");

 else Serial.println("UNKNOWN");

}

void takePhoto() // function to take and save photo

{

 camera_fb_t * frame = NULL; // associate fb with esp_camera

 frame = esp_camera_fb_get(); // take photo with camera

Chapter 2 Intranet Camera

34

 if(!frame)

 {

 Serial.println("photo capture error");

 return;

 }

 SDpics ++; // increase picture number

 filename = "/picture" + String(SDpics) +".jpg";

 // generate JPEG filename

 fs::FS & fs = SD_MMC;

 File file = fs.open(filename.c_str(), FILE_WRITE);

 // access SD card

 if(!file) Serial.println("file save error");

 else

 {

 file.write(frame->buf, frame->len); // save file to SD card

 Serial.print("Picture filename: ");

 Serial.println(filename);

 EEPROM.write(0, SDpics); // update EEPROM

 EEPROM.commit(); // with picture number

 }

 file.close(); // close file on SD card

 esp_camera_fb_return(frame); // return frame buffer to driver for

} // reuse

The ESP32-CAM camera configuration instructions are included

in the config_pins.h tab rather than in the main sketch (see Listing 2-2).

The JPEG pixel format is selected from the available options of YUV422,

GRAYSCALE, RGB565, and JPEG. If a microcontroller does not support

PSRAM (pseudostatic RAM), which is dynamic RAM that behaves like

static RAM, then a lower picture frame size; lower JPEG quality, with a

value between to either 0 and 63; and lower frame count must be set.

Chapter 2 Intranet Camera

35

Listing 2-2. Camera configuration instructions tab

camera_config_t config; // store camera configuration parameters

void configCamera()

{

 config.ledc_channel = LEDC_CHANNEL_0;

 config.ledc_timer = LEDC_TIMER_0;

 config.pin_d0 = 5;

 config.pin_d1 = 18;

 config.pin_d2 = 19; // GPIO pin numbers

 config.pin_d3 = 21;

 config.pin_d4 = 36;

 config.pin_d5 = 39;

 config.pin_d6 = 34;

 config.pin_d7 = 35;

 config.pin_xclk = 0;

 config.pin_pclk = 22;

 config.pin_vsync = 25;

 config.pin_href = 23;

 config.pin_sscb_sda = 26;

 config.pin_sscb_scl = 27;

 config.pin_pwdn = 32;

 config.pin_reset = -1;

 config.xclk_freq_hz = 20000000; // clock speed of 20MHz

 config.pixel_format = PIXFORMAT_JPEG; // JPEG file format

 config.frame_size = FRAMESIZE_SVGA; // 800x600 pixels

 config.jpeg_quality = 10; // image quality index

 config.fb_count = 1; // frame buffer count

 esp_err_t err = esp_camera_init(&config); // initialize camera

Chapter 2 Intranet Camera

36

 if (err != ESP_OK)

 {

 Serial.print("Camera initialise failed with error");

 Serial.println(err);

 return;

 }

}

 Load images on a web page
A photo taken by the ESP32-CAM

module is uploaded to a web page

using an HTTP request. Once the

Wi-Fi connection is made and the

WLAN web page loaded, clicking

the New photo button calls the

newPhoto function, which initiates

a client HTTP request with the

/photoURL URL for the server camera to take a photo and send the JPEG

image to the client. The web page is reloaded with the location.reload()

instruction to update the web page with the new photo. Clicking the

Rotate button rotates the image on the web page through 90°. Rotating

the image covers the buttons, so the button positions are redefined if the

image is portrait (rotation of 90° or 270°) or landscape. Loading an

ESP32-CAM image directly to a webpage is based on the method of Nuno

Santos (techtutorialsx.com).

The sketch in Listing 2-3 includes HTTP GET requests, with

corresponding URLs, and references the buildpage.h tab containing the

HTML code for the web page (see Listing 2-4). The underscore P in the

instruction request->send_P identifies that the JPG image is stored in

PROGMEM, as flash (or program) memory has more capacity than RAM.

Chapter 2 Intranet Camera

http://techtutorialsx.com

37

The photo size is displayed on the Serial Monitor, for information only.

The ESPAsyncWebServer and AsyncTCP libraries by Hristo Gochkov are

required, and .zip files containing the libraries are downloaded from

github.com/me-no-dev/ESPAsyncWebServer and github.com/me-no-dev/

AsyncTCP, respectively. The ESPAsyncWebServer library references the

AsyncTCP and WiFi libraries, so the instructions #include <AsyncTCP.h>

and #include <WiFi.h> are not required. The WiFi library is included in

the Arduino IDE when the ESP32 driver is installed. There is no change to

the content of the config_pins.h tab (see Listing 2-2).

Listing 2-3. Taking a photo and loading to a web page

#include <esp_camera.h> // include esp_camera,

#include <ESPAsyncWebServer.h> // ESPAsyncWebServer libraries

AsyncWebServer server(80); // associate server with library

#include "config_pins.h" // configure instructions tab

#include "buildpage.h" // HTML code for webpage

char ssid[] = "xxxx"; // change xxxx to Wi-Fi ssid

char password[] = "xxxx"; // change xxxx to Wi-Fi password

String pSize; // photo size (bytes)

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 Serial.println("\n\nsettling down for 2s");

 // time to settle vibration

 delay(2000);

 Serial.println("initialising camera, then take photos");

 configCamera(); // function to configure camera

 WiFi.begin(ssid, password); // initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500);

 Serial.print("IP Address: ");

Chapter 2 Intranet Camera

http://github.com/me-no-dev/ESPAsyncWebServer
http://github.com/me-no-dev/AsyncTCP
http://github.com/me-no-dev/AsyncTCP

38

 Serial.println(WiFi.localIP()); // display WLAN IP address

 server.begin(); // initialise server

 server.on("/", HTTP_GET, [](AsyncWebServerRequest * request)

 { request->send_P(200, "text/html", page);});

 server.on("/photoURL", HTTP_GET, [](AsyncWebServerRequest *

request)

 {

 camera_fb_t * frame = NULL;

 frame = esp_camera_fb_get(); // take photo as JPEG

 request->send_P(200, "image/jpeg", // send JPEG image to client

 (const uint8_t *)frame->buf, frame->len);

 esp_camera_fb_return(frame); // clear photo buffer

 pSize = String(frame->len); // display photo size

 Serial.print("pSize ");Serial.println(pSize);

 });

}

void loop() // nothing in loop function

{}

The HTML code for the web page, stored as a string literal, is contained

in the buildpage.h tab (see Listing 2-4). HTML instructions for XML HTTP

requests are described in Chapter 8 (Updating a web page). The location.

reload() instruction reloads the web page, exactly as the reload button

in a browser. An image is rotated through N degrees with the instruction

rotate(Ndeg) with the transform attribute.

The HTML code displays the two buttons in a table row and allocates

functions to each button. In the AJAX code, the newPhoto function makes

an XML HTTP request with the /photoURL URL to initiate taking a photo

and then reloading the web page.

Chapter 2 Intranet Camera

39

Listing 2-4. AJAX code for the web page with a ESP32-CAM photo

char page[] PROGMEM = R"(

<!DOCTYPE HTML><html><head>

<title>ESP32-CAM</title>

<style>

body {text-align:center; font-size: 25px;}

.vert {margin-bottom: 10%}

.hori {margin-bottom: 0%}

.btn {background-color:White; font-size: 25px}

table {margin: auto}

td {padding: 10px}

</style></head>

<body>

<h2>ESP32-CAM</h2>

<div id='buttons'>

<table><tr>

<td><button onclick='newPhoto()' class='btn'>New photo

</button></td>

<td><button onclick='turn()' class='btn'>Rotate</button></td>

</tr></table></div>

<script>

function newPhoto()

{

 var xhr = new XMLHttpRequest();

 xhr.open('GET', '/photoURL', true);

 xhr.send();

 location.reload();

}

var deg = 0;

function turn()

Chapter 2 Intranet Camera

40

{

 deg = deg + 90;

 var img = document.getElementById('photo');

 img.style.transform = 'rotate(' + deg + 'deg)';

 if((deg/90)%2 == 1)

 document.getElementById('buttons').className = 'vert';

 else document.getElementById('buttons').className = 'hori';

}

</script>

</body></html>

)";

Including the instruction var rpt = setInterval(newPhoto, 5000)

in the <script> section of Listing 2-4 calls the newPhoto function every

five seconds, which is a very basic form of streaming images. The next

section streams images to a web page.

 Stream images to a web page
The ESP32-CAM module streams images to a web page, and the streaming

frame rate ranges from 3 FPS (frames per second) with UXGA (1600 ×

1200 pixels) format to 30 FPS with QQVGA (160 × 120 pixels) format.

Several image formats are shown in Table 2-2. The smaller the image

size, the faster the frame rate. The CameraWebServer sketch, accessed

in the Arduino IDE by File ➤ Examples ➤ ESP32 ➤ Camera, includes

face recognition and face detection functions, with options to change

numerous image characteristics.

Chapter 2 Intranet Camera

41

The sketch in Listing 2-5 manages streaming of images to a web page.

The sketch loads the required libraries, which are available in the ESP32

Arduino IDE, establishes a Wi-Fi connection, configures the camera in

the config_pins.h tab (see Listing 2-2), and calls the startCameraServer

function, which accesses the stream_handler function (see Listing 2-6) in

the stream_handler tab. The delay() instruction in the loop function may

be required to prevent the watchdog timer from initiating a software reset.

Listing 2-5. Real-time viewing on a web page

#include <esp_http_server.h> // include esp http_server,

#include <esp_camera.h> // camera and Wi-Fi libraries

#include <WiFi.h>

#include "config_pins.h" // configure instructions tab

#include "stream_handler.h" // code to stream images

char ssid[] = "xxxx"; // change xxxx to Wi-Fi ssid

char password[] = "xxxx"; // change xxxx to Wi-Fi password

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 Serial.setDebugOutput(false); // no debug information

 WiFi.begin(ssid, password); // initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500);

 Serial.print("IP Address: ");

 Serial.println(WiFi.localIP()); // display WLAN IP address

 configCamera();

Table 2-2. Image pixel size options

Frame UXGA SXGA XGA SVGA VGA CIF QVGA HQVGA QQVGA

Width 1600 1280 1024 800 640 400 320 240 160

Height 1200 1024 768 600 480 296 240 176 120

Chapter 2 Intranet Camera

42

 sensor_t * s = esp_camera_sensor_get(); // reduce frame size

 s->set_framesize(s, FRAMESIZE_VGA); // to 640x480 pixels

 startCameraServer();

}

void startCameraServer() // function to start camera server

{

 httpd_handle_t stream_httpd = NULL;

 httpd_config_t config = HTTPD_DEFAULT_CONFIG();

 config.server_port = 80;

 httpd_uri_t index_uri = {.uri="/", .method=HTTP_GET,

 .handler=stream_handler,

.user_ctx=NULL};

 if (httpd_start(&stream_httpd, &config) == ESP_OK)

 httpd_register_uri_handler(stream_httpd, &index_uri);

}

void loop() // nothing in loop function

{}

Listing 2-6 is derived from sections of the CameraWebServer

sketch which specifically manage streaming images to a web page. The

instruction httpd_resp_send_chunk() returns the JPEG buffer as 64- bit

sections in response to the client HTTP request, with the instruction

snprintf((char *)part_buf, 64,...) generating the 64-bit sections

of the JPEG buffer. The static keyword creates a variable specific to a

function, and the value of the variable is maintained between repeated

calls to the function. Several instructions in Listing 2-6 are identical

to those in the takePhoto function of Listing 2-1, as indicated by the

comments for Listing 2-6.

Chapter 2 Intranet Camera

43

Listing 2-6. Streaming real-time images

#define Boundary "123456789000000000000987654321"

static const char* ContentType =

"multipart/x-mixed-replace;boundary=" Boundary;

static const char* StreamBound = "\r\n--" Boundary "\r\n";

static const char* StreamContent =

"Content-Type: image/jpeg\r\nContent-Length: %u\r\n\r\n";

static esp_err_t stream_handler(httpd_req_t *req)

{

 camera_fb_t * frame = NULL; // as in Listing 2-1

 esp_err_t res = ESP_OK; // error status

 uint8_t * jpgBuffer = NULL; // JPEG buffer

 size_t jpgLength = 0; // length of JPEG buffer

 char * part_buf[64];

 res = httpd_resp_set_type(req, ContentType);

 if(res != ESP_OK) return res;

 while(true)

 {

 frame = esp_camera_fb_get(); // as in Listing 2-1

 if (!frame) // as in Listing 2-1

 {

 Serial.println("Camera capture failed");

 // as in Listing 2-1

 res = ESP_FAIL;

 } else {

 if(frame->width > 400)

 {

 jpgLength = frame->len; // set JPEG buffer length

 jpgBuffer = frame->buf; // set JPEG buffer

 }

 }

Chapter 2 Intranet Camera

44

 if(res == ESP_OK) // no error, stream image

 {

 size_t hlen = snprintf((char *)part_buf, 64,

StreamContent, jpgLength);

 res = httpd_resp_send_chunk(req, (const char *)

part_buf, hlen);

 }

 if(res == ESP_OK) res =

 httpd_resp_send_chunk(req, (const char *)jpgBuffer,

jpgLength);

 if(res == ESP_OK) res =

 httpd_resp_send_chunk(req, StreamBound,

strlen (StreamBound));

 if(frame)

 {

 esp_camera_fb_return(frame); // as in Listing 2-1

 frame = NULL;

 jpgBuffer = NULL; // reset to NULL value

 } else

 if(jpgBuffer)

 {

 free(jpgBuffer); // reset to NULL value

 jpgBuffer = NULL;

 }

 if(res != ESP_OK) break;

 }

 return res;

}

Chapter 2 Intranet Camera

45

 PIR trigger to stream images to a web page
The ESP32-CAM module requires 130 mA to stream images to a web page,

which rapidly drains a battery. If the ESP32-CAM module is in sleep mode,

when not streaming images, and a PIR (passive infrared) sensor on the

HC-SR501 PIR module triggers the ESP32-CAM module from sleep mode

to start taking photos and stream images to a web page, then a battery-

powered module is feasible (see Figure 2-3 with connections in Table 2- 3).

The ESP32 sleep mode is described in Chapter 22 (ESP32 microcontroller

features); and a HIGH or LOW signal on a GPIO pin wakes the

microcontroller from sleep mode, with the instruction esp_sleep_enable_

ext0_wakeup(pin, state), when the state of pin is equal to state. When

no movement is detected by the PIR sensor, the value of state is zero, as the

PIR pin is pulled down by an ESP32 microcontroller pull-down resistor.

ESP32 microcontroller pull-down resistors are disabled during sleep, so

the instruction rtc_gpio_pulldown_en(pin) enables a pull-down resistor

on the GPIO pin connected to the PIR sensor pin. When the PIR sensor is

activated by infrared radiation, such as a person moving in the range of the

sensor, the signal pin of the PIR sensor module is set HIGH, which wakes

the microcontroller from sleep mode. After the ESP32-CAM module has

streamed images to a web page for the required time, the microcontroller

is moved to sleep mode, with the instruction esp_deep_sleep_start().

An HC-SR501 or HC-SR505 PIR module requires up to 50 s to stabilize,

particularly the HC-SR505 module. If the PIR module triggers with no

movement after the stabilization period, then the PIR module should be

powered independently from the ESP32-CAM, but with a common GND.

Chapter 2 Intranet Camera

46

In the sketch in Listing 2-7, the ESP32-CAM is triggered by the PIR

sensor, the LED is flashed to indicate detected movement, the Wi-Fi

connection is established, and the ESP32-CAM camera is configured.

The LED is again flashed to indicate the start of image streaming, images

are streamed to the web page for camTime seconds, and the LED is again

flashed to indicate the end of image streaming. The sketch in Listing 2-7

is based on Listing 2-5, with only the addition of the real-time clock (RTC)

input-output (rtc_io) library, the flash function to flash the LED, the

esp_sleep instructions, and the loop function, which determines the

Figure 2-3. PIR trigger to stream ESP32-CAM images to a web page

Table 2-3. PIR trigger to stream images

to a web page

Component Connect to And to

eSp32-Cam 5V hC-Sr501 5V

eSp32-Cam GnD hC-Sr501 GnD

eSp32-Cam GpIO 12 LeD long leg

eSp32-Cam GpIO 13 hC-Sr501 OUt

LeD short leg 220 Ω resistor GnD

Chapter 2 Intranet Camera

47

elapsed time since image streaming started. There is no change to the

content of the config_pins.h and stream_handler.h tabs. Only the additional

instructions to Listing 2-5 are annotated in Listing 2-7, to emphasize the

few changes required to the sketch.

Listing 2-7. PIR trigger to stream images to a web page

#include <esp_http_server.h>

#include <esp_camera.h>

#include <WiFi.h>

#include "config_pins.h"

#include "stream_handler.h"

#include <driver/rtc_io.h> // include rtc input-output library

int PIRpin = 13; // define PIR and LED pins

int LEDpin = 12;

unsigned long startTime,

lastTime = 0; // timer variables

int camTime = 10; // define image streaming time (s)

int count = 0; // counter for steaming time

char ssid[] = "xxxx";

char password[] = "xxxx";

void setup()

{

 pinMode(LEDpin, OUTPUT); // LED pin as output

 flash(); // call function to flash LEDs

 Serial.begin(115200);

 Serial.setDebugOutput(false);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) delay(500);

 Serial.print("IP Address: ");

 Serial.println(WiFi.localIP());

 configCamera();

Chapter 2 Intranet Camera

48

 sensor_t * s = esp_camera_sensor_get();

 s->set_framesize(s, FRAMESIZE_VGA);

 startCameraServer();

 rtc_gpio_pulldown_en

((gpio_num_t)PIRpin); // pull-down PIR pin

 esp_sleep_enable_ext0_wakeup((gpio_num_t)PIRpin, 1);

} // wakeup on PIR pin with state 1

void startCameraServer()

{

 httpd_handle_t stream_httpd = NULL;

 httpd_config_t config = HTTPD_DEFAULT_CONFIG();

 config.server_port = 80;

 httpd_uri_t index_uri = {.uri="/", .method=HTTP_GET,

 .handler=stream_handler,

.user_ctx=NULL};

 if (httpd_start(&stream_httpd, &config) == ESP_OK)

 httpd_register_uri_handler(stream_httpd, &index_uri);

}

void loop()

{

 if(count < 1) flash(); // call function to flash LEDs

 startTime = millis(); // start of image streaming time

 if(startTime - lastTime > 1000 && count < camTime)

 { // display seconds elapsed

 Serial.print("camera ");Serial.println(count);

 count++; // update counter

 lastTime = startTime; // reset image streaming time

 }

 if(count == camTime) // defined streaming time elapsed

Chapter 2 Intranet Camera

49

 {

 flash();

 Serial.print("sleep mode on PIR pin ");

Serial.println(PIRpin);

 esp_deep_sleep_start(); // ESP32 in sleep mode

 }

}

void flash() // function to flash LEDs

{

 for (int i=0; i<3; i++) // flash LED three times

 {

 digitalWrite(LEDpin, HIGH); // turn on LED

 delay(200);

 digitalWrite(LEDpin, LOW); // turn off LED

 delay(100);

 }

}

When the sketches in Listings 2-1 and 2-7 are combined, the ESP32-

CAM is triggered by the PIR sensor to take photos and store the image

JPEG files on the micro-SD card.

 Summary
The ESP32-CAM module includes an ESP32-S microcontroller, a 2M-pixel

OV2640 camera, and a micro-SD card slot. Images are stored on the

micro-SD card, loaded to a web page, or streamed to a web page on a

computer, Android tablet, or mobile phone. Images are stored on the

micro-SD card at timed intervals, for use with time-lapse photography.

Chapter 2 Intranet Camera

50

Images are remotely uploaded to a web page on an Android tablet or

mobile phone, where the image is rotated and also saved to the Android

tablet or mobile phone. Real-time images are streamed from the ESP32-

CAM module to a web page, with frame rates of up to 30 FPS. A PIR sensor

is used to wake the microcontroller from sleep mode, which then streams

images to a web page for a defined time period. The ESP32-CAM module is

then returned to the energy-saving sleep mode.

 Components List
• ESP32-CAM module

• USB to serial UART interface: FT232RL FTDI USB to

TTL Serial converter module

• Passive infrared (PIR) sensor: HC-SR501 or HC-SR505

• LED

• Resistor: 220 Ω

Chapter 2 Intranet Camera

51© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_3

CHAPTER 3

International
weather station
International weather information is displayed on a touch screen where

the user selects weather information for different cities and chooses

between two screens of displayed information. Initially, this chapter

describes displaying text and shapes on the screen, calibrating the touch

function of the screen, and creating images by pressing the touch screen.

Once sketches are developed to display information and utilize the touch

function of the touch screen, the focus shifts to accessing international

weather data from OpenWeatherMap.org and the reformatting of the

OpenWeatherMap data to display on a touch screen.

Displaying text and shapes on a touch screen or creating images by

pressing the touch screen does not require Internet access. An Arduino

Uno or Nano is sufficient to run the sketches, but a logic-level converter is

required to reduce the voltage to the touch screen to 3.3 V, as the Arduino

Uno and Nano operate at 5 V. Accessing OpenWeatherMap data requires

connection to the local Wi-Fi network, which is provided by an ESP8266 or

ESP32 microcontroller.

https://doi.org/10.1007/978-1-4842-6336-5_3#DOI
https://OpenWeatherMap.org

52

 ILI9341 SPI TFT LCD touch screen
The 2.4-inch ILI9341 SPI TFT LCD touch screen with

240 × 320 pixels has touch screen functionality for

displaying text and drawing shapes with different colors

on the screen. The acronyms SPI, TFT, and LCD represent

Serial Peripheral Interface, Thin-Film Transistor, and

Liquid Crystal Display, respectively. The ILI9341 SPI TFT

LCD screen and the ESP8266 and ESP32 microcontrollers

operate at 3.3 V, so a logic-level converter is not required. Connections for

the ILI9341 SPI TFT LCD screen with the ESP8266 and ESP32 development

boards are shown in Figures 3-1 and 3-2 and given in Table 3-1. Note that

the microcontroller SPI MOSI, MISO (Main-In Secondary-Out), and serial

clock (SCL) pins are connected to both the display and the touch function

pins of the ILI9341 SPI TFT LCD screen.

Figure 3-1. ILI9341 SPI TFT LCD screen and the LOLIN (WeMos) D1
mini development board

Chapter 3 InternatIonal weather statIon

53

Figure 3-2. ILI9341 SPI TFT LCD screen and the ESP32 DEVKIT
DOIT development board

Table 3-1. ILI9341 SPI TFT LCD screen and ESP8266 and ESP32

development boards

Component Pin Function ESP8266 Pin ESP32 Pin

IlI9341 tFt screen VCC 3.3V 3V3 3V3

IlI9341 tFt screen GnD GnD GnD

IlI9341 tFt screen Cs Chip select D8 GpIo 5

IlI9341 tFt screen reset D0 GpIo 25

IlI9341 tFt screen DC Data command D4 GpIo 26

IlI9341 tFt screen sDa (MosI) serial data in (DI) D7 GpIo 23

IlI9341 tFt screen sCl (ClK) serial clock D5 GpIo 18

IlI9341 tFt screen leD 3V3 3V3

IlI9341 tFt screen sDo (MIso) serial data out D6 GpIo 19

"touch"

IlI9341 tFt screen t_ClK serial clock D5 GpIo 18

IlI9341 tFt screen t_Cs Chip select D1 GpIo 27

(continued)

Chapter 3 InternatIonal weather statIon

54

Listing 3-1 demonstrates displaying text and drawing shapes on the

ILI9341 SPI TFT LCD screen. The Adafruit ILI9341 and Adafruit GFX

libraries are installed within the Arduino IDE. The Adafruit GFX and SPI

libraries are referenced by the Adafruit ILI9341 library, so are not explicitly

included in the sketch. Color codes are available within the Adafruit

ILI9341 library, so HEX codes for colors are not defined in the sketch.

The screen orientation is set as portrait or landscape with the instruction

setRotation(N) with value of 0 or 1, respectively, or the value of 2 or 3

to rotate the screen image by 180° for portrait or landscape, respectively.

For example, portrait orientation with pin connections at the top of the

ILI9341 SPI TFT LCS screen is set with setRotation(2). The default font

size is 5 × 8 pixels per character that is increased to 5N × 8N pixels with the

setTextSize(N) instruction.

Listing 3-1. Display text and shapes

#include <Adafruit_ILI9341.h> // include ILI9341 library

int tftCS = D8; // screen chip select pin

int tftDC = D4; // data command select pin

int tftRST = D0; // reset pin

 // associate tft with ILI9341 lib

Adafruit_ILI9341 tft = Adafruit_ILI9341(tftCS, tftDC, tftRST);

String texts[] = // color names

 {"BLUE","RED","GREEN","CYAN","MAGENTA","YELLOW","WHITE","GREY"};

Component Pin Function ESP8266 Pin ESP32 Pin

IlI9341 tFt screen t_DIn Data input D7 GpIo 23

IlI9341 tFt screen t_Do Data output D6 GpIo 19

IlI9341 tFt screen t_IrQ Interrupt D2 GpIo 13

Table 3-1. (continued)

Chapter 3 InternatIonal weather statIon

55

unsigned int colors[] = // color codes

 {ILI9341_BLUE, ILI9341_RED, ILI9341_GREEN, ILI9341_CYAN,

 ILI9341_MAGENTA, ILI9341_YELLOW, ILI9341_WHITE,

ILI9341_LIGHTGREY};

String text;

unsigned int color, chkTime;

void setup()

{

 tft.begin(); // initialise screen

 tft.setRotation(2); // portrait, connections at top

 tft.fillScreen(ILI9341_BLACK); // fill screen in black

 tft.drawRect(0,0,239,319,ILI9341_WHITE); // draw white frame line

 tft.drawRect(1,1,237,317,ILI9341_WHITE); // and second frame line

 tft.setTextSize(4); // set text size

}

void loop()

{ // clear screen apart from frame

 tft.fillRect(2,2,235,314,ILI9341_ BLACK);

 for (int i=0; i<8; i++) // for each color

 {

 color = colors[i]; // set color

 text = texts[i]; // set text for color

 tft.setTextColor(color); // set text color

 tft.setCursor(20,40*i+2); // position cursor

 tft.print(text); // print color text (name)

 delay(250); // delay 250ms between colors

 }

Chapter 3 InternatIonal weather statIon

56

 for (int i=0; i<8; i++) // for each color

 {

 color = colors[i];

 text = texts[i];

 tft.fillRect(2,2,235,314,ILI9341_BLACK);

 tft.setCursor(20,25); // cursor to position (20, 25)

 tft.setTextColor(color);

 tft.print(text); // draw filled- in triangle

 if ((i+1) % 3 == 0) tft.fillTriangle(20,134,64,55,107,134,color);

 // draw open rectangle

 else if ((i+1) % 2 == 0) tft.drawRect(20,55,88,80,color);

 else tft.fillCircle(64,95,39,color); // draw filled- in circle

 delay(250);

 }

 tft.fillRect(2,2,235,314,ILI9341_BLACK);

 tft.drawLine(2,158,236,158,ILI9341_RED);

// draw horizontal RED line

 delay(250);

}

In Listing 3-1, SPI pins are defined for an ESP8266 development board,

which must be changed for an ESP32 development board. Alternatively,

the instructions in Listing 3-2 can be included at the start of a sketch. See

Chapter 21 (Microcontrollers) for more information.

Listing 3-2. Pin definitions for ESP8266 and ESP32 development

boards

#ifdef ESP32

 int tftCS = 5; // screen chip select pin

 int tftDC = 26; // data command select pin

 int tftRST = 25; // reset pin

Chapter 3 InternatIonal weather statIon

57

#elif ESP8266

 int tftCS = D8;

 int tftDC = D4;

 int tftRST = D0;

#else // Arduino IDE error message

 #error "ESP8266 or ESP32 microcontroller only"

#endif

 Touch screen calibration
A library for the touch screen function with the ESP8266 and ESP32

microcontrollers, TFT_eSPI by Bodmer, is available within the Arduino

IDE. Prior to using the TFT_eSPI library in sketches, the touch screen

driver, pin connections to the ESP8266 or ESP32 development board, and

SPI frequencies must be defined in the file User_Setup.h, which is located

in the TFT-eSPI library folder. Listing 3-3 includes the settings used in this

chapter for ESP8266 and ESP32 microcontrollers, with the settings for the

ESP32 microcontroller commented out. Note that default pin connections

for the ESP8266 SPI MOSI, MISO, and CLK are not required, but pin

numbers for the ESP8266 development board are preceded with PIN_,

while the ESP32 microcontroller GPIO numbers are sufficient.

Listing 3-3. TFT-eSPI library User_Setup settings for ESP8266 and

ESP32 development boards

#define TFT_CS PIN_D8 // ESP8266 SPI and touch screen

#define TFT_DC PIN_D4

#define TFT_RST PIN_D0

#define TOUCH_CS PIN_D1

/* // lines between /* and */ are commented out

#define TFT_MISO 19 // ESP32 SPI and touch screen

Chapter 3 InternatIonal weather statIon

58

#define TFT_MOSI 23

#define TFT_SCLK 18

#define TFT_CS 5

#define TFT_DC 26

#define TFT_RST 25

#define TOUCH_CS 27

*/

#define ILI9341_DRIVER // ILI9341 SPI TFT LCD screen

#define TFT_RGB_ORDER TFT_BGR // color order Blue- Green- Red

#define LOAD_GLCD // font 1: Adafruit 8-pixel high

#define LOAD_FONT2 // font 2: small 16-pixel high

#define LOAD_FONT4 // font 4: medium 26-pixel high

#define SPI_FREQUENCY 40000000 // SPI 40MHz

#define SPI_READ_FREQUENCY 20000000 // SPI read 20MHz

#define SPI_TOUCH_FREQUENCY 2500000 // SPI touch 2.5MHz

Before using the touch screen facility of the ILI9341 SPI TFT LCD

screen, the screen must be calibrated (see Listing 3-4). Arrows are displayed

on the ILI9341 SPI TFT LCD screen, which the user presses with a screen

pen. Five calibration parameters are displayed on the ILI9341 SPI TFT LCD

screen, which are included in the calData array of subsequent sketches.

The SPI library is referenced by the TFT_eSPI library, so is not explicitly

included in the sketch. Listing 3-4 is adapted from the Touch_calibrate

sketch in the TFT-eSPI ➤ Generic library.

Listing 3-4. Calibration of the ILI9341 SPI TFT LCD screen

#include <TFT_eSPI.h> // include TFT_eSPI library

TFT_eSPI tft = TFT_eSPI(); // associate tft with TFT-eSPI lib

uint16_t calData[5]; // calibration parameters

String str;

Chapter 3 InternatIonal weather statIon

59

void setup()

{

 tft.init(); // initialise ILI9341 TFT screen

 tft.setRotation(1); // landscape, connections on right

 tft.setTextFont(1); // set text font and size

 tft.setTextSize(1);

 calibrate(); // call calibration function

}

void calibrate() // function to calibrate ILI9341 TFT screen

{

 tft.fillScreen(TFT_BLACK); // fill screen in black

 tft.setTextColor(TFT_WHITE, TFT_B LACK);

// set text color, white on black

 tft.setCursor(30, 0); // move cursor to position (0, 30)

 tft.println("Touch corners as indicated");

 tft.calibrateTouch(calData, TFT_RED, TFT_ BLACK, 15);

// calibrate screen

 tft.fillScreen(TFT_BLACK);

 tft.setCursor(0, 50);

 tft.setTextSize(2);

 tft.print("Calibration parameters");

 str = ""; // display calibration parameters

 for (int i=0; i<4; i++) str = str + String(calData[i])+",";

 str = str + String(calData[4]);

 tft.setCursor(0, 90);

 tft.print(str);

}

void loop() // nothing in loop function

{}

Chapter 3 InternatIonal weather statIon

60

For example, the calibration parameters for the ILI9341 SPI TFT

LCD screen used in this chapter of 450, 3400, 390, 3320, and 3 are copied

into the calDat array of the instruction uint16_t calData[] = {450,

3400, 390, 3320, 3} of subsequent sketches. However, the calibration

parameters for your ILI9341 SPI TFT LCD screen would be included in the

sketches.

 Painting on-screen
The sketch in Listing 3-5 draws images on the

ILI9341 SPI TFT LCD screen when the screen is

pressed with a screen pen, with colors selected

from a color palette. The first section of the sketch

installs libraries and defines the touch screen pins

and the paintbrush size. The setup function sets the

touch screen orientation and incorporates the touch screen calibration

parameters obtained in Listing 3-4. When a screen press is detected, the

touch position is identified; and if the x co-ordinate is less than 20, then

the screen was pressed on the color palette and the selected color, mapped

to the y co-ordinate, is subsequently used for drawing on the screen. Color

codes are available in the file TFT_eSPI.h of the TFT_eSPI library. The clear

function resets the screen, displays the title, and redraws the color palette.

Have fun painting!

Listing 3-5. Paintpot with TFT-eSPI library

#include <TFT_eSPI.h> // include TFT-eSPI library

TFT_eSPI tft = TFT_eSPI(); // associate tft with TFT-eSPI lib

uint16_t calData[] = {450, 3400, 390, 3320, 3};

// calibration parameters

Chapter 3 InternatIonal weather statIon

61

uint16_t x = 0, y = 0;

int radius = 2; // define paintbrush radius

unsigned int color;

void setup()

{

 tft.init(); // initialise ILI9341 TFT screen

 tft.setRotation(1); // landscape, connections on right

 tft.setTouch(calData); // include calibration parameters

 clear(); // call function to reset screen

}

void loop()

{

 if (tft.getTouch(&x, &y)>0) // if screen pressed

 {

 if(x>20) tft.fillCircle(x, y, radius, color); // draw point

 if(x>0 && x<20) // select color from color palette

 {

 if(y>75 && y<95) color = TFT_RED;

 else if(y>100 && y<120) color = TFT_YELLOW;

 else if(y>125 && y<145) color = TFT_GREEN;

 else if(y>150 && y<170) color = TFT_BLUE;

 else if(y>175 && y<195) color = TFT_WHITE;

 // display selected color

 if(y>75 && y<195) tft.fillCircle(10, 50, 10, color);

 else if(y>215) clear(); // clear screen

 }

 }

}

Chapter 3 InternatIonal weather statIon

62

void clear() // function to reset screen

{

 tft.fillScreen(TFT_BLACK); // fill screen

 tft.setTextColor(TFT_GREEN); // set text color

 tft.setTextSize(2); // set text size

 tft.setCursor(110,5); // position cursor

 tft.print("Paintpot"); // screen title

 tft.fillRect(0,75,20,20, TFT_RED);

 tft.fillRect(0,100,20,20,TFT_YELLOW);

 tft.fillRect(0,125,20,20,TFT_GREEN); // build color palette

 tft.fillRect(0,150,20,20, TFT_BLUE);

 tft.fillRect(0,175,20,20, TFT_WHITE);

 tft.drawCircle(10,225,10, TFT_WHITE); // select to clear screen

 tft.setCursor(25,217);

 tft.setTextColor(TFT_WHITE);

 tft.print("clear");

 color = TFT_WHITE;

}

 ESP8266-specific touch screen calibration
and paint
The advantage of the TFT-eSPI library is that one library incorporates screen

display and touch functionality, with the applicability to both ESP8266

and ESP32 microcontrollers in conjunction with the ILI9341 SPI TFT

LCD screen. The Adafruit_ILI9341esp library, adapted specifically for the

ESP8266 microcontroller, has an excellent touch screen painting function.

The Adafruit_ILI9341esp library by NailBuster Software is contained in the

tft28esp.zip file that is downloaded from nailbuster.com/?page_id=341.

The Adafruit_ILI9341esp library requires the XPT2046 library by Spiros

Papadimitriou, which is downloaded from github.com/spapadim/XPT2046.

Chapter 3 InternatIonal weather statIon

https://nailbuster.com/?page_id=341
https://github.com/spapadim/XPT2046

63

Calibration for the ILI9341 SPI TFT LCD screen with the XPT2046

library differs from calibration with the TFT-eSPI library. In the calibration

sketch (see Listing 3-6), two crosses, at 20-pixel margins from the screen

edges, are displayed on the ILI9341 SPI TFT LCD screen, which the

user presses with a screen pen. Four calibration parameters are then

displayed on the ILI9341 SPI TFT LCD screen, that are included in the

touch.setCalibration instruction of subsequent sketches.

The getPoints function determines the touched screen position,

with the & parameter referencing a pointer to a whole array, rather than

a pointer to the first element of the array. A touched position, (p, q), is

mapped to a display position, (np, nq), of the 240 × 320–pixel ILI9341

SPI TFT LCD screen. For the screen used in this chapter, the regression

equations, np = (150 - p) × 240/145 and nq = (115 - q) × 320/100, were

determined from a series of marked positions on the ILI9341 SPI TFT LCD

screen and the corresponding touched positions identified by the XPT2046

library.

Listing 3-6. Calibration of the ILI9341 SPI TFT LCD screen for the

XPT2046 library

#include <Adafruit_ILI9341esp.h> // include ILI9341esp and

#include <XPT2046.h> // XPT2046 libraries

int tftCS = D8;

int tftDC = D4;

int tftRST = D0; // define screen and touch pins

int touchCS = D1;

int touchIRQ = D2; // associate tft with ILI9341 lib

Adafruit_ILI9341 tft = Adafruit_ILI9341(tftCS, tftDC, tftRST);

XPT2046 touch(touchCS, touchIRQ); // associate touch with XPT2046

uint16_t p,q, np, nq; // co-ordinates of touched point

String str;

Chapter 3 InternatIonal weather statIon

64

void setup()

{

 tft.begin(); // initialise ILI9341 screen

 tft.setRotation(0); // portrait connections at bottom

 touch.begin(tft.height(), tft.width()) ;

// XPT2046 orientated y, x

 touch.setRotation(XPT2046::ROT0); // no screen rotation

 tft.fillScreen(ILI9341_BLACK); // fill screen

 tft.setTextColor(ILI9341_WHITE); // set text color

 tft.setTextSize(1); // set text size

 tft.setCursor(0, 100); // position cursor

 str = "width: "+String(tft.width())+", height:"

+String(tft.height());

 tft.print(str);

 calibrate(); // calibrate touch screen

}

void calibrate() // function to calibrate screen

{

 uint16_t x1,y1,x2,y2,i1,j1,i2,j2; // uint16_t is unsigned integer

 tft.setCursor(0, 50); // position cursor

 tft.print("press screen on crosses");

 touch.getCalibrationPoints(x1, y1, x2, y2);

// values pre-set in library at 20

 getPoints(x1, y1, i1, j1); // function to get touch position

 delay(500);

 getPoints(x2, y2, i2, j2); // get second touch position

 touch.setCalibration(i1, j1, i2, j2); // string with parameters

 str = String(i1)+","+String(j1)+","+String(i2)+","+String(j2);

 tft.setTextColor(ILI9341_WHITE);

 tft.setCursor(0, 175);

Chapter 3 InternatIonal weather statIon

65

 tft.print("calibration parameters");

 tft.setCursor(0, 200);

 tft.setTextSize(2); // reset text size

 tft.print(str); // display calibration parameters

}

void getPoints(uint16_t x, uint16_t y, uint16_t &i, uint16_t &j)

{

 marker(y, x, ILI9341_WHITE); // draw white cross on screen

 while (!touch.isTouching()>0) delay(10); // wait for screen touch

 touch.getRaw(i, j);

 marker(y, x, ILI9341_BLACK); // over-write cross

 touch.getPosition(p, q); // get position of screen touch

 np = (150.0-p)*240.0/145.0; // transform from touch to tft

 nq = (115.0-q)*320.0/100.0;

 tft.fillCircle(np, nq, 2, ILI9341_ GREEN);

} // indicated touch position

void marker(unsigned short x, uint16_t y, int col)

{

 tft.setTextColor(col); // set marker color

 tft.drawLine(x-8, y, x+8, y, col); // draw horizontal line

 tft.drawLine(x, y-8, x, y+8, col); // draw vertical line

}

void loop() // nothing in loop function

{}

The sketch in Listing 3-7 has the same structure as Listing 3-5, which

uses the TFT_eSPI library. The differences between the sketches are

that screen pins, touch pins, and rotation parameters are defined in the

sketch, rather than in an external file with the TFT_eSPI library, and that

Chapter 3 InternatIonal weather statIon

66

colors are referenced to the Adafruit_ILI9341 and TFT_eSPI libraries. The

paint function with the XPT2046 library is more responsive than with the

TFT-eSPI library, which is more suited for a screen pointer. The sketch in

Listing 3-7 operates with any screen rotation position, but either landscape

orientation is recommended.

Listing 3-7. Paintpot with the XPT2046 library

#include <Adafruit_ILI9341esp.h> // include ILI9341esp and

#include <XPT2046.h> // XPT2046 libraries

int tftCS = D8;

int tftDC = D4;

int tftRST = D0; // define screen and touch pins

int touchCS = D1;

int touchIRQ = D2; // associate tft with ILI9341 lib

Adafruit_ILI9341 tft = Adafruit_ILI9341(tftCS, tftDC, tftRST);

XPT2046 touch(touchCS, touchIRQ); // associate touch with XPT2046

String str;

uint16_t x, y;

int radius = 2; // define paintbrush radius

unsigned int color; // rotation: 0, 1, 2 or 3 refers to

int rotate = 1; // rotation of 0, 90, 180 or 270°

void setup()

{

 tft.begin(); // initialise ILI9341 screen

 setRotation(); // function for rotation parameters

 touch.setCalibration(1850,1800,3 20,300);

// calibration parameters

 clear(); // call function to reset screen

}

Chapter 3 InternatIonal weather statIon

67

void loop()

{

 if (touch.isTouching()>0) // if screen pressed

 {

 touch.getPosition(x, y);

 if(x>20) tft.fillCircle(x, y, radius, color); // draw point

 if(x>0 && x<20) // select color from color palette

 {

 if(y>75 && y<95) color = ILI9341_RED;

 else if(y>100 && y<120) color = ILI9341_YELLOW;

 else if(y>125 && y<145) color = ILI9341_GREEN;

 else if(y>150 && y<170) color = ILI9341_BLUE;

 else if(y>175 && y<195) color = ILI9341_WHITE;

 // display selected color

 if(y>75 && y<195) tft.fillCircle(10, 50, 10, color);

 else if(y>215) clear(); // clear screen

 }

 }

}

void clear() // function to reset screen

{

 tft.fillScreen(ILI9341_BLACK); // fill screen

 tft.setTextColor(ILI9341_GREEN); // set text color

 tft.setTextSize(2); // set text size

 tft.setCursor(110,5); // position cursor

 tft.print("Paintpot"); // screen title

 tft.fillRect(0,75,20,20, ILI9341_RED);

 tft.fillRect(0,100,20,20,ILI9341_YELLOW);

 tft.fillRect(0,125,20,20,ILI9341_GREEN); // build color palette

 tft.fillRect(0,150,20,20, ILI9341_BLUE);

 tft.fillRect(0,175,20,20, ILI9341_WHITE);

Chapter 3 InternatIonal weather statIon

68

 tft.drawCircle(10,225,10, ILI9341_WHITE); // select to clear screen

 tft.setCursor(25,217);

 tft.setTextColor(ILI9341_WHITE);

 tft.print("clear");

 color = ILI9341_WHITE;

}

void setRotation() // function to set rotation parameters

{

 tft.setRotation(rotate);

 switch (rotate)

 {

 case 0: // no rotation

 touch.begin(tft.width(), tft.height()); // portrait

 touch.setRotation(XPT2046::ROT0); // connections at bottom

 break;

 case 1: // rotation through 90°

 touch.begin(tft.height(), tft.width()); // landscape

 touch.setRotation(XPT2046::ROT90); // connections on right

 break;

 case 2: // rotation through 180°

 touch.begin(tft.width(), tft.height()); // portrait

 touch.setRotation(XPT2046 ::ROT180); // connections at top

 break;

 case 3: // rotation through 270°

 touch.begin(tft.height(), tft.width()); // landscape

 touch.setRotation(XPT2046::ROT270); // connections on left

 break;

 }

}

Chapter 3 InternatIonal weather statIon

69

 Weather data for several cities
Another example of using

the ILI9341 SPI TFT LCD

touch screen displays detailed

weather information for several

cities, with weather data

from OpenWeatherMap.org.

OpenWeatherMap data is free to

access within limits defined on

the website. The OpenWeatherMap data requires a username, a password, an

API (Application Programming Interface) key, and the city identity (ID) code.

Details on opening an account and obtaining an API key for OpenWeatherMap

are available at openweathermap.org/appid. The API key identifies the client

to the web server. The city ID is obtained, from the OpenWeatherMap.org

website, by entering the city name in the Your city name search box. Select the

relevant city, and the city ID is the number at the end of the URL. For example,

the Berlin URL is openweathermap.org/city/2950159.

The ESP8266WiFi or WiFi, ArduinoJson, and Time libraries are required

for Wi-Fi communication, interpreting JSON (JavaScript Object Notation)

formatted data, and calculating the date and time. Both the ArduinoJson

library by Benoît Blanchon and the TimeLib library by Michael Margolis

are available in the Arduino IDE, with the latter listed under Time. Several

data providers format the date and time as the number of seconds since

January 1, 1970, the Unix epoch time. The Time library converts the Unix

epoch time to the corresponding minute, hour, day, month, and so on.

An example sketch (see Listing 3-8) obtains and displays the ultraviolet

(UV) index for Edinburgh from OpenWeatherMap data. If there are

problems with the Wi-Fi connection, HTTP request, or data receipt,

then a message is displayed. The message instructions are optional and

not incorporated in the connect function of Listing 3-9, but the client

instructions in bold must be retained. If the instructions

Chapter 3 InternatIonal weather statIon

https://OpenWeatherMap.org
https://﻿openweathermap.org/appid﻿
https://OpenWeatherMap.org
https://openweathermap.org/city/2950159

70

if (!client.find("\r\n\r\n"))

{

 Serial.println("Received data not complete");

 return;

}

regarding a data error are deleted, then they must be replaced with the

instruction client.find("\r\n\r\n").

The URL is api.openweathermap.org/data/2.5/uvi?lat=55.95&

lon=-3.19&appid="+APIkey which displays the following data:

lat 55.95 // latitude

lon - 3.19 // longitude

date_iso "2020-06-13T12:00:00Z" // date

date 1592049600 // Unix epoch time

value 6.94 // UV index

The JSON formatted data consists of the name and value pairs, such

as lat and 55.95, that form the JSON document, which is defined as

the character array, jsonDoc[], in the sketch. The value of a name and

value pair is identified by the name and extracted with the instruction

jsonDoc['name'].as<x>(), where x refers to float, long, or char* for a

real number, an integer, or a string, respectively. For example, latitude =

jsonDoc['lat'].as<float>().

In Listing 3-8, the libraries are installed, a Wi-Fi connection is

established, and an HTTP request is sent to the OpenWeatherMap server

for the Edinburgh UV index. The latitude, longitude, date, and UV index

are extracted from the JSON document, received in response to the

HTTP request. A comprehensive set of error checks are made regarding

establishing the Wi-Fi connection, the HTTP request, the response to the

HTTP request, the receipt of the JSON document in the HTTP response,

and the extraction of the JSON document.

Chapter 3 InternatIonal weather statIon

https://api.openweathermap.org/data/2.5/uvi?

71

Listing 3-8. OpenWeatherMap data example

#include <ESP8266WiFi.h> // library to connect to Wi-Fi network

#include <ArduinoJson.h>

WiFiClient client; // create client to connect to IP address

char ssid[] = "xxxx"; // change xxxx to your Wi-Fi SSID

char password[] = "xxxx"; // change xxxx to your Wi-Fi password

String APIkey = "xxxx"; // and xxx to openweathermap API key

char server[]="api.openweathermap.org";

String output;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 WiFi.begin(ssid, password); // initialise Wi-Fi and wait

 while (WiFi.status() != WL_CONNECTED) delay(500);

 // for Wi- Fi connection

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // Wi-Fi network IP address

 Serial.println("Connecting...");

 client.connect(server, 80); // connect to server on port 80

 if (!client.connect(server, 80)) // connection error message

 {

 Serial.println("Connection failed");

 return;

 }

 Serial.println("Connected!");

 client.println("GET /data/2.5/uvi?lat=55.95&lon=-3.19&"

 "appid="+APIkey+" HTTP/1.1"); // send HTTP request

 client.println("Host: api.openweathermap.org");

 client.println("User-Agent: ESP8266/0.1");

 client.println("Connection: close");

Chapter 3 InternatIonal weather statIon

72

 client.println();

 if (client.println() == 0) // HTTP request error message

 {

 Serial.println("HTTP request failed");

 return;

 }

 char status[32] = {0};

 client.readBytesUntil('\r', status, sizeof(status));

 if (strcmp(status, "HTTP/1.1 200 OK") != 0)

 { // HTTP status error message

 Serial.print("Response not valid: ");

 Serial.println(status);

 return;

 }

 else Serial.println("HTTP status OK");

 if (!client.find("\r\n\r\n")) // received data error request

 {

 Serial.println("Received data not complete");

 return;

 }

// client.find("\r\n\r\n");

 DynamicJsonDocument jsonDoc(1024);

 DeserializationError error =

deserializeJson(jsonDoc, client);

 if (error)

 { // JSON error message

 Serial.print("deserializeJson() failed: ");

 Serial.println(error.c_str());

 return;

 }

Chapter 3 InternatIonal weather statIon

73

 serializeJson(jsonDoc, output); // display all data

 Serial.print("data length: ");Serial.println(output.length());

 Serial.println(output);

 Serial.println("extracted text");

 Serial.println(jsonDoc["lon"].as<float>(), 2);

// display specific data

 Serial.println(jsonDoc["lat"].as<float>(), 2);

 Serial.println(jsonDoc["date_iso"].as<char*>());

 Serial.println(jsonDoc["date"].as<long>());

 Serial.print("UV ");

 Serial.println(jsonDoc["value"].as<float>(), 2);

}

void loop() // nothing in loop function

{}

Listing 3-9 displays OpenWeatherMap data for a selected city with

weather information displayed on different screens. The first screen

displays the current minimum and maximum temperature and the

forecasted weather, with the current humidity and pressure. The second

screen displays cloud cover, the wind speed and direction, and more

details on forecasted weather, with sunrise and sunset times. A city is

selected from the city abbreviations on the right of the screen, and the

screen displays are alternated by touching the ⊕ symbol on the left of

the screen. The sketch is lengthy, due to processing the comprehensive

weather data, and is split into functions to make the sketch more readily

interpretable. The weather information is reduced by deleting the

secondScreen function and the reference to it in the getWeather function.

The first section of the sketch includes the libraries and defines the

screen and touch pins, OpenWeatherMap API key, and city identity codes.

The first element of the days and mths arrays is a blank, so that days[1]

and mths[1] correspond to Sunday and January, respectively. The setup

function establishes the Wi-Fi connection, initializes the touch screen,

Chapter 3 InternatIonal weather statIon

74

and incorporates the touch screen calibration parameters obtained in

Listing 3-4. The loop function calls the checkTime function to determine

if the required time has elapsed since the screen was last refreshed and

the selected city. The connect function sends a GET HTTP request to the

OpenWeatherMap server, incorporating the API key, and downloads the

JSON-formatted data for display on the ILI9341 SPI TFT LCD screen.

The JSON-formatted data from OpenWeatherMap is displayed with the

following instructions:

String output

serializeJson(jsonDoc, output)

Serial.println(output.length())

Serial.println(output)

An example of OpenWeatherMap JSON-formatted data is

{“coord”:{“lon”:-3.2,“lat”:55.95},

“weather”:[{“id”:803,“main”:“Clouds”, “description”:“broken

clouds”, “icon”:“04d”}],

“base”:“stations”,

“main”:{ “temp”:14.38,“feels_like”:7.99,“temp_min”:12.78,

“temp_max”:15.56, “pressure”:1024,“humidity”:62},

“visibility”:10000,“wind”:{“speed”:8.2,“deg”:80},“clouds”:{“all”:68},

“dt”:1591882710,

“sys”:{“type”:1,“id”:1442,“country”:“GB”, “sunrise”:1591846048,

“sunset”:1591909066},

“timezone”:3600,“id”:2650225,“name”:“Edinburgh”, “cod”:200}

Values are referenced according to the class outside the curly brackets,

{}, the category within the curly brackets, and the variable name, with each

term enclosed by square brackets, []. For example, the humidity value

of 62 is referenced as [“main”][“humidity”]. The weather class may have

Chapter 3 InternatIonal weather statIon

75

two levels, referenced as [0] and [1]. Times are expressed in Unix epoch

time. For example, the sunrise value of 1591846048, referenced as [“sys”]

[“sunrise”], is 04:27 GMT on June 11, 2020.

JSON-formatted data is equated to a string, float, or unsigned long, such as

String weather = jsonDoc["weather"][0]["main"]

float temp = jsonDoc["main"]["temp"]

unsigned long srise = jsonDoc["sys"]["sunrise"]

and displayed with a print instruction, for example, Serial.

println(weather). JSON-formatted data is displayed directly by including

the data reference and the output format in the print instruction, for

example

Serial.println(jsonDoc["weather"][0]["main"].as<char*>())

Serial.println(jsonDoc["main"]["temp"].as<float>(), 2) // for 2 DP

Serial.println(jsonDoc ["sys"]["sunrise"].as<long>())

The structures of the firstScreen and secondScreen functions are the

same (see Figure 3-3). The citySquare function clears the screen; displays

the list of city abbreviations, using the screen function that positions

and displays strings; and draws a rectangle around the selected city

abbreviation. The Unix epoch time for the weather update is converted

to day, date, and time and displayed on the screen. Weather data is

extracted from the JSON document, and the screen function positions and

displays the string in the required color. To maintain text positioning, text

is padded with blanks using the addb function. To make the functions

in Listing 3-9 more readily interpretable, the first part of the instruction

screen("variable" is in bold.

Chapter 3 InternatIonal weather statIon

76

Listing 3-9. OpenWeatherMap information

#include <ESP8266WiFi.h> // include ESP8266WiFi library

#include <ArduinoJson.h> // include JSON library

#include <TimeLib.h> // include TimeLib library

#include <TFT_eSPI.h> // include TFT_eSPI library

TFT_eSPI tft = TFT_eSPI(); // associate tft with TFT-eSPI lib

uint16_t calData[] = {450, 34 00, 390, 3320, 3};

// calibration parameters

uint16_t x = 0, y = 0;

WiFiClient client; // create client to connect to IP address

char ssid[] = "xxxx"; // change xxxx to your Wi-Fi SSID

char password[] = "xxxx"; // change xxxx to your Wi-Fi password

String APIkey = "xxxx"; // change xxxx to weathermap API key

String city[] = {"ED", "GZ","BR","UA"};

// Edinburgh, Günzburg, Brisbane, Ushuaia

 // openweathermap city identity codes

String cityID[] = {"2650225","2913555","2174003","3833367"};

int Ncity = 4; // number of cities

int cityNow = 0; // current city, initially set at 0

int count = 99; // run getWeather function at start

Figure 3-3. OpenWeatherMap information by screen

Chapter 3 InternatIonal weather statIon

77

char server[] = "api.openweathermap.org";

int screenFlag = 0; // flag for first or second screen

int touchFlag = 0; // to indicate screen pressed

String days[] = {"",

"Sunday","Monday","Tuesday","Wednesday","Thursday","Friday",

"Saturday"};

String mths[] = {"",

"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct",

"Nov","Dec"};

String wkdy, mth, addb, text;

int sunriseh, sunrisem, sunseth, sunsetm, dy, hr, mn;

unsigned int chkTime;

DynamicJsonDocument jsonDoc(1024); // JSON formatted data

void setup()

{

 WiFi.begin(ssid, password); // initialise Wi-Fi and wait

 while (WiFi.status() != WL_CONNECTED) delay(500);

 // for WiFi connection

 tft.init(); // initialise screen for graphics

 tft.setTouch(calData); // calibration parameters

 tft.setRotation(2); // portrait, connections on top

 tft.fillScreen(TFT_BLACK); // fill screen in black

 tft.drawRect(0,0,239,319,TFT_WHITE); // draw white frame line

 tft.drawRect(1,1,237,317,TFT_WHITE); // and second frame

}

void loop()

{

 checkTime(); // check if time to refresh screen

 if(tft.getTouch(&x, &y)>0 && touch Flag == 0)

// if screen pressed

Chapter 3 InternatIonal weather statIon

78

 {

 touchFlag = 1;

 if(y > 290) // city to be selected

 {

 screenFlag = 0; // start with first screen

 if(x > 215) cityNow = 0;

 else if(x > 195 && x<216) cityNow = 1;

 else if(x > 175 && x<196) cityNow = 2; // select city

 else if(x > 155 && x<176) cityNow = 3;

 }

 if(y < 20) screenFlag = 1-screenFlag; // change screen

 count = 99; // run getWeather function immediately

 }

}

void checkTime() // check for screen refresh

{

 if(count > 4) // update screen every 5 minutes

 {

 getWeather(); // call weather report function

 count = 0; // reset counter

 }

 else if(millis()-chkTime>60000) // increment counter after 60s

 {

 chkTime = millis(); // reset timer

 count++; // increment counter

 }

}

void getWeather() // function to get weather data

{

 connect(); // call Wi- Fi connection function

 if(screenFlag == 0) firstScreen(); // select screen to be displayed

Chapter 3 InternatIonal weather statIon

79

 else secondScreen();

 touchFlag = 0; // reset touch indicator

}

void connect() // function for Wi-Fi connection

{

 client.connect(server, 80); // connect to server on port 80

 client.println("GET /data/2.5/weather?id="+cityID[cityNow]+

 "&units=metric&appid="+APIkey+" HTTP/1.1"); // send HTTP

// request

 client.println("Host: api.openweathermap.org");

 client.println("User-Agent: ESP8266/0.1");

 client.println("Connection: close");

 client.println();

 client.find("\r\n\r\n"); // essential instruction
 DeserializationError error = deserializeJson(jsonDoc, client);

}

void firstScreen() // weather data for first screen

{

 citySquare(); // call function to display header

 String weather = jsonDoc["weather"][0]["main"];

 String weather2 = jsonDoc["weather"][1]["main"];

 String id1 = jsonDoc["weather"][1]["id"];

 float temp = jsonDoc["main"]["temp"];

 float pres = jsonDoc["main"] ["pressure"];

// convert JavaScript objects

 float humid = jsonDoc["main"]["humidity"];

// to strings or real numbers

 float tempMin = jsonDoc["main"]["temp_min"];

 float tempMax = jsonDoc["main"]["temp_max"];

 if(id1.length()<1) weather2 = " ";

Chapter 3 InternatIonal weather statIon

80

 screen("Temperature",TFT_GREEN,5, 55,3);

// display weather variable name

 text = String(temp,1); // convert value to string

 if(temp<9.95) text = " "+text; // add space if less than 10

 screen(text,TFT_WHITE,45,85,4); // display string on screen

 screen("o", TFT_WHITE,148,80,3); // add °symbol

 screen("C", TFT_WHITE,170,85,4); // add C for Celsius

 screen("min",TFT_BLUE,37,120,2); // minimum temperature

 text = String(tempMin,1);

 if(tempMin<10) text = " "+text;

 screen(text,TFT_WHITE,20,145,2);

 screen("o",TFT_WHITE,70,135,2);

 screen("C",TFT_WHITE,85,145,2);

 screen("max",TFT_RED,163,120,2); // maximum temperature

 text = String(tempMax,1);

 if(tempMax<10) text = " "+text;

 screen(text,TFT_WHITE,145,145,2);

 screen("o",TFT_WHITE,197,135,2);

 screen("C",TFT_WHITE,212,145,2);

 screen("Forecast",TFT_GREEN,50,175,3); // forecast weather

 addb = blank(weather); // add spaces after text

 weather=weather+addb;

 screen(weather,TFT_WHITE,20,205,3);

 if(weather2 == "null") weather2="";

 addb = blank(weather2);

 weather2=weather2+addb;

 screen(weather2,TFT_WHITE,20,235,3); // forecast weather detail

 screen("humidity",TFT_GREEN,20,270,2); // humidity

 text = String(humid,0)+"% ";

 screen(text,TFT_WHITE,40,295,2);

 screen("pressure",TFT_GREEN,130,270,2); // pressure

 text = String(pres,0);

Chapter 3 InternatIonal weather statIon

81

 if(pres<1000) text = " "+text;

 screen(text,TFT_WHITE,150,295,2);

}

void secondScreen() // weather data for second screen

{

 citySquare(); // call function to display header

 String desc = jsonDoc["weather"][0]["description"];

 String desc2 = jsonDoc["weather"][1]["description"];

 String id1 = jsonDoc["weath er"][1]["i d"];

// convert JavaScript objects

 float windspd = jsonDoc["wi nd"]["spee d"];

// to strings or real numbers

 float winddeg = jsonDoc["wind"]["deg"];

 float cloud = jsonDoc["clouds"]["all"];

 unsigned long srise = jsonDoc["sys"]["sunrise"];

 unsigned long sset = jsonDoc["sys"]["sunset"];

 if(id1.length()<1) desc2 = " ";

 screen("Cloud cover",TFT_GREEN,5,55,3); // cloud cover

 text = String(cloud,1)+"%";

 screen(text,TFT_WHITE,65,85,4);

 screen("wind speed",TFT_BLUE,5,120,2); // wind speed

 windspd = windspd*3.6; // convert m/s to km/h

 text = String(windspd,0)+"km/h";

 screen(text,TFT_WHITE,20,145,2);

 screen("direct",TFT_RED,140,120,2); // wind direction

 text = String(winddeg,0);

 if(winddeg<10) text = " "+text;

 if(winddeg<100) text = " "+text;

 screen(text,TFT_WHITE,152,145,2);

 screen("o",TFT_WHITE,197,135,2);

 screen("Forecast",TFT_GREEN,50,175,3); // weather forecast (2)

Chapter 3 InternatIonal weather statIon

82

 addb = blank(desc);

 desc=desc+addb;

 if(desc.length()<13) screen(desc,TFT_WHITE,20,205,3);

 else screen(desc,TFT_WHITE,20, 205,2);

// font size depends on text length

 if(desc2 == "null") desc2="";

 addb = blank(desc2);

 desc2=desc2+addb;

 if(desc.length()<13 && desc2.length()<13)

 screen(desc2,TFT_WHITE,5,235,3);

 else screen(desc2,TFT_WHITE,5,235,2);

 screen("sunrise",TFT_GREEN,20,270,2); // sunrise time

 text = String(minute(srise));

 if(minute(srise)<10) text = "0"+text;

 text = String(hour(srise)+1)+":"+text;

 screen(text,TFT_WHITE,40,295,2);

 screen("sunset",TFT_GREEN,140,270,2); // sunset time

 text = String(minute(sset));

 if(minute(sset)<10) text = "0"+text;

 text = String(hour(sset)+1)+":"+text;

 screen(text,TFT_WHITE,150,295,2);

}

void citySquare() // display header and city abbreviations

{

 tft.fillRect(2,2,235,315,TFT_BLACK);

// clear screen apart from frame

 // display city abbreviations

 for (int i=0; i<Ncity; i++) screen(city[i],

TFT_YELLOW,210,10+i*25,2);

Chapter 3 InternatIonal weather statIon

83

 for (int i=0; i<Ncity; i++) tft.drawRect(208,8+i*25,29,19,

TFT_BLACK);

 // draw rectangle for selected city

 tft.drawRect(208,8+cityNow*25,29,19,TFT_WHITE);

 screen("X",TFT_YELLOW,7,31,2); // draw X with circle

 tft.drawCircle(11,37,11,TFT_WHITE);

 unsigned long stime = jsonDoc["dt"]; // time in secs since 1 Jan 1970

 hr = hour(stime)+1;

 mn = minute(stime);

 dy = day(stime); // convert time

 wkdy = days[weekday(stime)];

 mth = mths[month(stime)];

 text = wkdy+" "+String(dy)+" "+mth; // display day, date and time

 screen(text,TFT_YELLOW,10,5,2);

 text = "at "+String(hr)+":"+String(mn);

 if(mn<10) text = "at "+String(hr)+":0"+String(mn);

 screen(text,TFT_YELLOW,60,30,2);

}

 // function to position and display strings

void screen(String text, unsigned int color, int x, int y,

int size)

{

 tft.setCursor(x, y); // position cursor

 tft.setTextColor(color,TFT_BLACK); // background color: black

 tft.setTextSize(size);

 tft.print(text);

}

Chapter 3 InternatIonal weather statIon

84

String blank(String txt) // function to add spaces to text

{

 String addb = "";

 int len = 12-txt.length(); // add up to 11 spaces

 for (int i=0;i<len;i++) addb=addb+" ";

 return addb;

}

 Summary
The Wi-Fi functionality of the ESP8266 and ESP32 microcontrollers

enabled Internet access to weather data from OpenWeatherMap. The

ILI9341 SPI TFT LCD touch screen function enabled a city to be selected

from the touch screen menu. The JSON-formatted weather data was

extracted and displayed on the ILI9341 SPI TFT LCD screen. Use of

the TFT-eSPI and XPT2046 libraries illustrated two screen calibration

processes and differences in ILI9341 SPI TFT LCD touch screen function

applied to a screen painting example.

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: DEVKIT DOIT or NodeMCU board

• SPI TFT LCD touch screen: ILI9341, 2.4 inches, 240 ×

320 pixels

Chapter 3 InternatIonal weather statIon

85© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_4

CHAPTER 4

Internet clock
Each LED (Light- Emitting

Diode) in an RGB (Red

Green Blue) LED strip

or ring is individually

addressed using only one

microcontroller pin for

all the LEDs in the strip or ring. The term WS2812 5050 RGB LED refers

to a strip or ring consisting of RGB LEDs with a WS2812 controller chip

incorporated in each LED, and 5050 refers to the LED dimensions

of 5.0 × 5.0 mm. NeoPixel is the Adafruit brand name for individually

addressable RGB LEDs.

The Adafruit NeoPixel library is applicable to WS2812 RGB LED strips

and rings as well as NeoPixel products. The number of RGB LEDs in

the strip or ring, LEDnumber, and the microcontroller pin, LEDpin, are

defined with the instruction

Adafruit_NeoPixel strip(LEDnumber, LEDpin, NEO_GRB + NEO_KHZ800)

which associates strip with the Adafruit NeoPixel library, as the WS2812

RGB LED strips and rings are wired for a GRB (Green Red Blue) 800 kHz

bit stream. Alternatively, the NEO_RGB + NEO_KHZ800 settings may

be required. RGB LED display instructions are followed with the show()

instruction to activate display instructions.

https://doi.org/10.1007/978-1-4842-6336-5_4#DOI

86

The RGB LED brightness is defined in the setup function, but not in

the loop function, by the brightness(N) instruction with the parameter

between 1 and 255, for low to full brightness. The instruction unsigned

long col = strip.Color(R, G, B) converts the three 8-bit red (R), green

(G), and blue (B) components of a color into a 32-bit number, as required

by the Adafruit NeoPixel library with RGB values for each color stored in

arrays. The RGB color is calculated as 164R + 162G + B, with the instruction

pow(16,4)*R + pow(16,2)*G + B. The RGB LEDs in a strip or ring are

numbered from zero, and the instruction strip.setPixelColor(n, col)

sets the color of the (n + 1)th RGB LED. The color of number sequential RGB

LEDs is set with the instruction strip.fill(col, n, number), starting at

the (n + 1)th RGB LED. If the number of LEDs is not included in the fill

instruction, then all RGB LEDs from the (n + 1)th RGB LED to the end of the

strip or ring are set. Likewise, if the starting RGB LED is omitted, then the

whole strip or ring is set. The instruction strip.clear() turns off all RGB

LEDs in a strip or ring.

An RGB LED uses up to 60 mA with all three LEDs at full brightness.

When an ESP8266 development board is powered by USB, the 5V pin

supplies 400 mA, so an absolute maximum of six RGB LEDs at full

brightness are powered by the ESP8266 development board 5V pin. An RGB

LED strip should be powered by an external 5V, as shown in Figure 4- 1 with

connections in Table 4-1. To protect the RGB LEDs from a current surge,

when the power supply is switched on, a 100 μF capacitor is fitted across the

power supply 5V and GND pins. Fitting a 470 Ω resistor between the data

in pin of the RGB LED strip or ring and the ESP8266 development board

data pin prevents voltage spikes on the data line that could damage the first

RGB LED on the strip or ring. Connections to the RGB LED strip should be

checked with a multimeter continuity function, as the data and GND wires

may be green and white, respectively.

Chapter 4 Internet CloCk

87

The only change to Listing 4-1 for an ESP32 microcontroller,

rather than an ESP8266 microcontroller, is the definition of the ESP32

development board data pin int LEDpin = x.

The sketch in Listing 4-1 demonstrates sweeping colors along a RGB

LED strip.

Figure 4-1. WS2812 RGB LED strip and microphone

Table 4-1. WS2812 RGB LED strip and MAX4466 microphone with

the ESP8266 development board

Component Connect to And to And to

leD strip VCC external power 5V 100 μF capacitor

positive

leD strip GnD external power GnD eSp8266 GnD 100 μF capacitor

negative

leD strip DI (data in) 470 Ω resistor eSp8266 D1

MaX4466 VCC eSp8266 3V3

MaX4466 oUt eSp8266 a0

MaX4466 GnD eSp8266 GnD

Chapter 4 Internet CloCk

88

Listing 4-1. Sweeping colors along an RGB LED strip

#include <Adafruit_NeoPixel.h> // include Adafruit NeoPixel library

int LEDpin = D1; // define data pin

int LEDnumber = 30; // number of LEDS in strip

 // associate strip with NeoPixel library

Adafruit_NeoPixel strip(LEDnumber, LEDpin, NEO_GRB + NEO_KHZ800);

// color white, red, lime, blue, yellow, cyan, magenta,

// grey, maroon, olive, green, purple, teal, navy

int R[] = {255,255, 0, 0,255, 0,255,128,128,128, 0,128, 0, 0};

int G[] = {255, 0,255, 0,255,255, 0,128, 0,128,128, 0,128, 0};

int B[] = {255, 0, 0,255, 0,255,255,128, 0, 0, 0,128,128,128};

uint32_t color; // color is 32-bit or unsigned long

void setup()

{

 strip.begin(); // initialise LED strip

 strip.setBrightness(10); // define LED brightness (1 to 255)

 strip.show(); // sets all pixels to “off” as no color set

}

void loop()

{

 for (int i=0; i<14; i++) // cycle through the RGB colors

 { // convert RGB values to 32-bit number

 color = strip.Color(R[i],G[i],B[i]);

 sweep(color, 40); // sweep color through the LED strip

 }

 rainbow(3, 10); // rainbow colors for three cycles

} // with a 10ms time lag for each color

Chapter 4 Internet CloCk

89

void sweep(uint32_t color, int lag) // color sweep function

{

 for (int i=0; i<strip.numPixels(); i++) // for each LED in strip

 {

 strip.setPixelColor(i, color); // set the LED color

// strip.setPixelColor

// (strip.numPixels()-i-1, color); // reverse direction

 strip.show(); // update LED strip

 delay(lag); // time lag between color changes

 }

}

void rainbow(int cycle, int lag)

{ // from Adafruit NeoPixel>strandtest

 for (long Pixel1Hue = 0; Pixel1Hue < cycle*65536;

Pixel1Hue += 256)

 {

 for (int i=0; i<strip.numPixels(); i++)

 {

 int pixelHue = Pixel1Hue + (i * 65536L / strip.numPixels());

 strip.setPixelColor(i,

strip.gamma32(strip.ColorHSV(pixelHue)));

 }

 strip.show(); // update LED states and colors

 delay(lag);

 }

}

Chapter 4 Internet CloCk

90

 WS2812 RGB LEDs responsive to sound
Controlling the WS2812 RGB LED strip with a MAX4466 electret

microphone amplifier module produces a light display responsive

to sounds, such as speech or music. The sound level detected by the

microphone determines the number of WS2812 RGB LEDs to turn on

with the LED color dependent on the sound level (see Figure 4-1). The

MAX4466 electret microphone amplifier module is powered with 3.3

V and not 5 V. Sound or peak-to-peak values for the MAX4466 electret

microphone amplifier module are defined as the difference between the

maximum and minimum sound values recorded during the sample time.

The MAX4466 electret microphone amplifier module, used in this

chapter, detected noise, particularly when the sketch included instructions

to control the RGB LED strip. On the left side of Figure 4-2, there was

minimal sound for the MAX4466 electret microphone amplifier module

to detect, while the right side of Figure 4-2 reflected music being played.

In both cases, the noise was obvious, and a median filter excluded the

noise values from the sound sample. The median filter selects the median

value of a sample in contrast to a circular buffer, which selects the mean

value of a sample. For example, if three sample sequences with five values

per sample are 3, 4, 5, 6, 80; 4, 5, 6, 80, 7; and 5, 6, 80, 7, 8, then the three

median values are 5, 6, and 7, respectively. Median filtering may lag behind

the actual sample sequence, but extreme values are excluded. Figure 4-2

illustrates that median filtering effectively removed the noise, both at low

and medium sound volumes. Median filtering is used in Listing 4-2, with

the RunningMedian library by Rob Tillaart, which is available within the

Arduino IDE.

Chapter 4 Internet CloCk

91

For the sketch in Listing 4-2, the MAX4466 electret microphone

amplifier module samples sound over a 50 ms time period, corresponding

to a sampling frequency of 20 Hz, to determine the number of RGB

LEDs to turn on. A median filter with sample size of seven removed

noise. The sensitivity of the electret microphone is adjusted with the

adjustVol variable, to increase or decrease the number of RGB LEDs

to turn on. Changing the sensitivity results in a number of RGB LEDs

being permanently turned on, which is adjusted to zero with the baseline

variable. The adjustVol and baseline variables are entered on the Serial

Monitor with the Serial buffer string converted to two integers by the

parseInt() instruction. For a strip containing 30 RGB LEDs, seven colors

were selected with four RGB LEDs for each color. The RGB values for each

color are stored in arrays with the RGB LED color set by the instructions

strip.color() and strip.setPixelColor().

In Listing 4-2, the ESP32 development board data and analog input

pins are defined, by updating the instructions int LEDpin = D1 and

sound = analogRead(A0). The ESP32 microcontroller has a 12-bit ADC

(analog to digital converter), in contrast to the 10-bit ADC of the ESP8266

Figure 4-2. Median filter of peak-to-peak values

Chapter 4 Internet CloCk

92

microcontroller. For the ESP32 microcontroller, the instructions soundMin =

1024 and peak2peak = soundMax - soundMin are changed to soundMin =

4096 and peak2peak = (soundMax - soundMin)/4.

The noise experienced with the ESP8266 microcontroller was not

evident with the ESP32 microcontroller, so median filtering was not

required. The number of LEDs to turn on or off was determined directly

from the peak2peak variable with the instruction LEDs = adjustVol*(pea

k2peak/1024.0)*LEDnumber-baseline.

Listing 4-2. RGB LED strip and sound

#include <Adafruit_NeoPixel.h> // include Adafruit NeoPixel lib

int LEDpin = D1; // define data pin

int LEDnumber = 30; // number of LEDS in strip

 // associate strip with NeoPixel lib

Adafruit_NeoPixel strip(LEDnumber, LEDpin, NEO_GRB + NEO_KHZ800);

 // colors red, orange, yellow, green, blue, indigo, violet

int R[] = {255, 255, 255, 0, 0, 75, 238};

int G[] = { 0, 102, 153, 255, 0, 0, 130};

int B[] = { 0, 0, 0, 0, 255, 130, 238};

uint32_t color; // color is 32- bit or unsigned long

#include <RunningMedian.h> // include Running Median lib

RunningMedian samples = RunningM edian(7);

// median filter sample size of 7

int sound, soundMax, soundMin, peak2peak, median, LEDs, val;

int adjustVol = 1; // initial volume and baseline

int baseline = 0;

int soundTime = 50; // sample sound time (ms)

unsigned long startTime;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 Serial.println("\nenter volume adjustment , baseline");

Chapter 4 Internet CloCk

93

 strip.begin(); // initialise LED strip

 strip.setBrightness(10); // define LED brightness (1 - 255)

 strip.show(); // sets all pixels to "off" as no color set

}

void loop()

{

 while(Serial.available()>0) // adjust volume and baseline

 {

 adjustVol = Serial.parseInt(); // convert Serial buffer to integers

 baseline = Serial.parseInt();

 Serial.print("\nVolume ");Serial.print(adjustVol);

 Serial.print("\tBaseline ");Serial.println(baseline);

 } // get new peak to peak value

 getSound(); // number of LEDs to turn on

 LEDs = adjustVol*(median/1024.0)*LEDnumber-baseline;

 strip.clear(); // turn all LEDs off

 delay(10); // allow time to switch off LEDs

 for (int i=0; i<LEDs; i++)

 {

 val = i/4; // four LEDs have the same color

 color = strip.Color(R[val], G[val],B[val]);

// convert RGB values to color

 strip.setPixelColor(i, color); // set the LED color

 }

 strip.show(); // update LED states and colors

}

void getSound() // function for peak to peak value

{

 soundMax = 0; // initial values for minimum and

 soundMin = 1024; // maximum sound values

 startTime = millis(); // start of sampling period

Chapter 4 Internet CloCk

94

 while(millis() - startTime < soun dTime)

// during sampling period

 { // determine minimum and

 sound = analogRead(A0); // maximum sound values

 if(sound > soundMax) soundMax = sound;

 else if(sound < soundMin) soundMin = sound;

 }

 peak2peak = soundMax - soundMin; // peak to peak value

 samples.add(peak2peak);

 median = samples.getMedian(); // median peak to peak value

}

For a portable RGB LED strip display, values of the adjustVol and

baseline variables are determined by the output voltage from two

potentiometers, instead of entering the adjustVol and baseline variables

on the Serial Monitor. The ESP32 microcontroller has several analog input

pins, but the ESP8266 microcontroller has only one analog input pin,

which is resolved by connecting a multiplexer.

 ESP8266 and multiplexer
The ESP8266 microcontroller has one analog pin, which limits the

number of analog input devices simultaneously connected to the ESP8266

development board. The 74HC4051 eight-channel analog multiplexer

enables connection, to the ESP8266 development board, of up to eight

analog input devices. Signals from analog input devices are routed through

the multiplexer output channel, which is managed by three switch pins on

the multiplexer, and the switch pin states are controlled by the ESP8266

microcontroller. Three switch pins are required to manage eight channels,

as 8 = 23.

Chapter 4 Internet CloCk

95

The 74HC4051 multiplexer pins are numbered 1–16, with the cut-out

or dot at the end of the multiplexer indicating the end with pins 1 and 16.

Connections to the 74HC4051 multiplexer are shown in Table 4-2, with

the over-line on E (input enabled) indicating that the pin is active LOW.

The 5V pin of the ESP8266 development board powers the 74HC4051

multiplexer, which has an operating voltage of 2–10 V. Voltage of the

input channel signals is between VCC and VEE, with the latter connected

to GND. Analog input devices connected to the 74HC4051 multiplexer

cannot be powered at 5 V, as the ESP8266 microcontroller pins are not

5 V tolerant. In Figure 4-3, the potentiometers are supplied by the 3.3V

output pin of the ESP8266 microcontroller, so the maximum voltage on the

microcontroller analog input pin will also be 3.3 V.

Table 4-2. 74HC4051 multiplexer and ESP8266 development board

Component Connect to

74hC4051 pin 3 output eSp8266 a0

74hC4051 pin 6 e (input enable)
eSp8266 GnD

74hC4051 pin 7 Vee

74hC4051 pin 8 GnD eSp8266 GnD

74hC4051 pin 9 switch S2 eSp8266 D2

74hC4051 pin 10 switch S1 eSp8266 D1

74hC4051 pin 11 switch S0 eSp8266 D0

74hC4051 pin 16 VCC eSp8266 5V

potentiometer left pin eSp8266 GnD

potentiometer signal pins 74hC4051 pins 13, 14, 15

potentiometer right pin eSp8266 3V3

Chapter 4 Internet CloCk

96

The three switch pins, 13, 14, and 15, of the multiplexer enable signals

of up to eight analog input devices to be routed through the multiplexer

output channel. If only two input devices are connected to the multiplexer,

then switch pins 14 and 15 are connected to GND. Similarly, if at most

four input devices are connected to the multiplexer, then switch pin 15

is connected to GND. Noise on multiplexer input channels that are not

connected to an analog input device is significantly reduced by a delay

of 10 ms between setting the multiplexer switch pins and reading the

multiplexer output channel. If the 10 ms delay is not included in the

sketch, then the multiplexer VEE pin must be connected to GND, but there

will still be substantial noise.

A multiplexer input channel is routed to the multiplexer output

channel, when the switch settings equal the binary representation of the

multiplexer input channel number. For example, an analog input signal

on multiplexer input channel 3 is output by the multiplexer with switch

settings of 011. Multiplexer input channels 0–7 correspond to multiplexer

pins 13, 14, 15, 12, 1, 5, 2, and 4, respectively.

Connection of three potentiometers to an ESP8266 development board

demonstrates use of the 74HC4051 multiplexer (see Figure 4-3). The sketch

in Listing 4-3 sets the multiplexer switch pin states to the corresponding

Figure 4-3. 74HC4051 multiplexer and LOLIN (WeMos) D1 mini

Chapter 4 Internet CloCk

97

binary representation of the multiplexer input channel for routing to the

multiplexer output channel. The bitRead(number, j) instruction reads

the jth bit of number, starting with the least significant bit (LSB), which is

bit zero. A bit value of one corresponds to a HIGH pin state. The 74HC4051

multiplexer enables the three potentiometer analog values to be read

"simultaneously" by the ESP8266 microcontroller.

Listing 4-3. 74HC4051 multiplexer and ESP8266 development

board

int Spin[] = {D0, D1, D2}; // multiplexer S0, S1 and S2

 // switch pins

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 for (int i=0; i<3; i++)

 {

 pinMode(Spin[i], OUTPUT); // multiplexer pins as OUTPUT

 digitalWrite(Spin[i], LOW); // set multiplexer pins to LOW

 }

}

void loop()

{

 for (int i=0; i<8; i++) // 8 multiplexer pin combinations

 { // set pins from bit sequence

 for (int j=0; j<3; j++) digitalWrite(Spin[j], bitRead(i, j));

 delay(10); // display readings

 Serial.print(analogRead(A0));S erial.print("\t");

 for (int j=0; j<3; j++) digitalWrite(Spin[j], LOW);

 } // reset pins

Chapter 4 Internet CloCk

98

 Serial.println();

 delay(1000); // delay between readings

}

For mobile control of the sound-based RGB LED strip display, values of

the adjustVol and baseline variables are determined by the output voltages

from two potentiometers. The MAX4466 electret microphone amplifier

module and potentiometers are accessible to the ESP8266 microcontroller,

by connecting the analog devices to a 74HC4051 multiplexer (see Figure 4- 4).

Instead of entering the adjustVol and baseline variables on the Serial Monitor,

as in Listing 4-2, the potentiometer output voltages control the sound-based

RGB LED strip display. For example, the adjustVol potentiometer connected

to multiplexer pin 13, which is multiplexer input channel 0, is read with the

instructions

for (int j=0; j<3; j++) digitalWrite(Spin[j], bitRead(0, j))

adjustVol = analogRead(A0)/50

Figure 4-4. Mobile control of RGB LED strip display with
potentiometers and microphone

The adjustVol potentiometer will result in adjustVol values between

0 and 20. Similarly, baseline values are obtained from the baseline

potentiometer connected to multiplexer pin 14, which is input channel 1.

Chapter 4 Internet CloCk

99

 LED rings clock
Two 12–RGB LED rings display the hours

and minutes on a clock, for example, at

16:40, with the clock turning on another

LED every five minutes. When the hour

changes, a Piezo transducer makes a

phone ringtone of two rings, and a rainbow display is shown on the minute

RGB LED ring. The colors of the hour and minute RGB LED rings alternate

each hour. The RGB LED rings clock is powered from the ESP8266

development board 5V pin and includes a 100 μF capacitor and 470 Ω

resistor as recommended (see Figure 4-5 with connections in Table 4-3).

Figure 4-5. LED rings clock

Chapter 4 Internet CloCk

100

If the red, green, and blue LEDs are turned on at brightness level of

1, 40, or 100, with a scale of 1–255, then the current usage of a 12–RGB

LED ring is 15, 75, or 160 mA, respectively, so two 12–RGB LED rings

with maximum brightness of 100 are safely powered by the ESP8266

development board 5V pin.

The sketch in Listing 4-4 calculates the number of hour and minute

LEDs to turn on based on the time that is initially set with the Unix epoch

time, which is the number of seconds since January 1, 1970. The Unix

epoch time is obtained from www.epochconverter.com with the GMT

option, if required, and 15 s should be allowed for the sketch to compile

and upload. For example, the Unix epoch time corresponding to May

31, 2020, 17:20:51 GMT was 1590945651s. The Time library by Michael

Margolis calculates the number of hours and minutes, based on the

elapsed Unix epoch time, with the library hour and minute functions.

The number of RGB LEDs to turn on to display hours and minutes is the

remainder when the Time library hours is divided by 12, as the clock is

not a 24-hour clock, and the Time library minutes divided by 5, as the

clock turns on another LED every five minutes. An arbitrary delay of 22 s

is included after the minute LEDs are updated, as the hour display takes

13 s to complete, so up to 35 s elapses before the Time library hours and

Table 4-3. LED rings clock

Component Connect to And to

leD ring VCC eSp8266 5V 100 μF capacitor positive

leD ring GnD eSp8266 GnD 100 μF capacitor negative

leD ring In 470 Ω resistor eSp8266 D2, D3

piezo transducer VCC eSp8266 D1

piezo transducer GnD eSp8266 GnD

Chapter 4 Internet CloCk

http://www.epochconverter.com

101

minutes are updated. The display variable prevents the hour display being

repeated during the five-minute period after the hour.

The first section of Listing 4-4 sets the Unix epoch time, includes

the libraries, and defines the RGB LED ring pins. Two instances of the

Adafruit NeoPixel library are required, one for each of the two RGB LED

rings. The setup function calls the Time library function setTime to convert

the Unix epoch time to hours and minutes and the getTime function to

convert hours and minutes to the number of RGB LEDs to turn on, with the

LEDhours and LEDminutes functions. Note that instructions for the RGB

LED rings are activated by the show() instruction. In the loop function,

the getTime function is called; and on the hour, the phonering function

is called with the playTone function generating the phone ringtone. A

ringtone consists of a 400 ms pulse, a 200 ms pause, a 400 ms pulse, and a

two-second pause, with a pulse generated by five cycles of a square wave,

with the frequency alternating between 300 Hz for 40 ms and 350 Hz for

40 ms. The Adafruit rainbow function displays a variety of colors for two

cycles on the minute RGB LED ring.

In the playTone function, the analogWriteFreq() instruction has a

default PWM (pulse with modulation) frequency of 1 kHz, which is altered

by defining the required frequency as the function parameter. The 50%

duty cycle of the square wave, used to generate sound, is obtained by

setting the variable value in the instruction analogWrite(pin, value) to

512, which is half of 1023 or 210-1, as the ESP8266 microcontroller digital to

analog converter has 10-bit resolution.

Listing 4-4. LED rings clock

#include <TimeLib.h> // include Time library

unsigned long pctime = 1590945651; // set Unix epoch time

#include <Adafruit_NeoPixel.h> // include NeoPixel library

int LEDpinM = D3; // ring to display minutes

int LEDpinH = D2; // ring to display hours

Chapter 4 Internet CloCk

102

int piezoPin = D1; // Piezo transducer pin

int LEDnumber = 12; // number of LEDs on ring

unsigned long interval = 1000; // one sec time interval

int color = 0; // color flag for hour LED ring

int display = 0; // indicator hour display completed

String text;

int minutes, hours;

 // associate ringM and ringH with Neopixel library

Adafruit_NeoPixel ringM(LEDnumber, LEDpinM, NEO_GRB + NEO_KHZ800);

Adafruit_NeoPixel ringH(LEDnumber, LEDpinH, NEO_GRB + NEO_KHZ800);

void setup()

{

 setTime(pctime); // set time to Unix epoch time

 getTime(); // get time parameters

 ringH.begin(); // initialise hours LED ring

 ringH.setBrightness(1); // set LED brightness (1 to 255)

 LEDhours(); // function to display hours

 ringH.show(); // update hours LED ring

 ringM.begin();

 ringM.setBrightness(1);

 LEDminutes();

 ringM.show(); // update minutes LED ring

}

void loop()

{

 getTime(); // calculate hours and minutes

 if(minutes == 0 && display ==0) // on the hour, run the display

 {

 display = 1; // flag to prevent repeat hour display

 phonering(); // sound of phone ringtones

 rainbow(); // rainbow of LED colors

 ringM.clear(); // clear minutes LED ring

Chapter 4 Internet CloCk

103

 ringM.show();

 color = 1 - color; // change color flag

 ringH.clear();

 ringH.show();

 LEDhours(); // update hours LED ring

 }

 if(minutes > 0) LEDminutes(); // update minutes LEDs

 for(int i=0; i<22; i++) delay(interval); // 22s delay

}

void getTime() // function to calculate hours and minutes

{

 hours = hour() % 12; // convert 24hr time to 12hr time

 minutes= int(minute()/5); // number of 5min intervals

 if(minutes > 0) display = 0; // reset hour display flag

}

void LEDminutes() // function to turn on minute LEDs

{

 for(int i=0; i<minutes; i++)

 { // set LED RGB values

 ringM.setPixelColor(i, ringM.Color(255*color,

255*(1-color), 0));

 }

 ringM.show();

}

void LEDhours() // function to turn on hour LEDs

{

 for(int i=0; i<hours; i++)

 {

 ringH.setPixelColor(i, ringH.Color(255*(1-color),

255*color, 0));

 }

Chapter 4 Internet CloCk

104

 ringH.show();

}

void rainbow() // Adafruit rainbow function

{

 int cycle = 2; // two cycles of colors

 for(long Pixel1Hue=0; Pixel1Hue<cycle*65536; Pixel1Hue += 256)

 {

 for(int i=0; i<ringM.numPixels(); i++)

 {

 int pixelHue = Pixel1Hue + (i * 65536L / ringM.

numPixels());

 ringM.setPixelColor(i, ringM.gamma32(ringM.

ColorHSV(pixelHue)));

 }

 ringM.show();

 delay(10);

 }

}

void phonering() // function for phone ringtone

{

 for(int k=0; k<2; k++) // two cycles

 {

 for(int j=0; j<2; j++) // of two rings

 {

 for(int i=0; i<5; i++) // with five repeats

 {

 playTone(300, 40); // frequency 300Hz for 40ms

 playTone(350, 40); // frequency 350Hz for 40ms

 }

Chapter 4 Internet CloCk

105

 delay(200); // 200ms delay between rings

 }

 delay(2000); // 2s delay between cycles

 }

}

void playTone(int freq, int duration)

{

 analogWriteFreq(freq); // frequency and duty cycle

 analogWrite(piezoPin, 512); // to generate square wave

 delay(duration); // for duration (ms)

 analogWrite(piezoPin, 0); // disable PWM on pin

}

 Network Time Protocol
Using the internal ESP8266 or ESP32 microcontroller clock to measure

time is convenient, but the internal clock is not consistently accurate, with

drifting over time and the extent of the drift depending on the individual

chip and the ambient temperature. The internal microcontroller clock

is updated with the Network Time Protocol (NTP) service, arbitrarily at

08:30 and 20:30, with the time information obtained from a local server

pool. Details of server pools are available at www.pool.ntp.org, and the

IP address of the local server pool is required in the sketch. The NTP

data is accessed using the NTPtimeESP library by Andreas Spiess that is

downloaded as a .zip file from github.com/SensorsIot/NTPtimeESP. The

LOLIN (WeMos) D1 mini board is smaller than an ESP32 development

board, but an ESP32 development board is an alternative (see end of this

chapter).

Chapter 4 Internet CloCk

http://www.pool.ntp.org
https://github.com/SensorsIot/NTPtimeESP

106

Listing 4-5 contains additional instructions to the first section of

Listing 4-4 for connection to a Wi-Fi network and accessing the local NTP

pool with the NTPtimeESP library. Only the additional or replacement

instructions are commented, to emphasize the few changes required to the

sketch. In the setup function, the setTime(pctime) instruction is replaced

by calling the getEpoch function, which is also called in the loop function

with the instruction if(hours == 8 && minutes == 30) getEpoch().

The getEpoch function establishes a Wi-Fi connection, accesses the

NTP service for the Unix epoch time, disconnects the Wi-Fi connection,

and resets the internal microcontroller clock. The Wi-Fi connection codes

and their values are

WL_CONNECTED 3

WL_CONNECT_FAILED 4

WL_CONNECTION_LOST 5

WL_DISCONNECTED 6

which are accessed with the instruction WiFi.status().

Listing 4-5. LED rings clock with NTP time updating for the

ESP8266 board

#include <Adafruit_NeoPixel.h>

int LEDpinL = D2; // left ring to display hours

int LEDpinR = D3; // right ring to display minutes

int piezoPin = D1; // Piezo transducer pin

int LEDnumber = 12;

unsigned long interval = 1000;

int color = 0;

String text;

Adafruit_NeoPixel ringM(LEDnumber, LEDpinR, NEO_GRB + NEO_KHZ800);

Adafruit_NeoPixel ringH(LEDnumber, LEDpinL, NEO_GRB + NEO_KHZ800);

Chapter 4 Internet CloCk

107

#include <ESP8266WiFi.h> // library to connect to Wi-Fi network

#include <ESP8266WebServer.h> // library for web server functionality

ESP8266WebServer server;

// associate server with ESP8266WebServer library

char ssid[] = "xxxx"; // replace xxxx with Wi-Fi ssid

char password[] = "xxxx"; // replace xxxx with Wi-Fi password

#include <NTPtimeESP.h> // include NTPtime library

 // associate NTP with NTPtime library

NTPtime NTP("uk.pool.ntp.org"); // UK server pool for NTPtime

strDateTime dateTime;

unsigned long epoch; // Unix epoch time

#include <TimeLib.h> // include Time library

int minutes, hours;

int display = 0;

void setup()

{

 pinMode(piezoPin, OUTPUT); // Piezo transducer pin as output

 getEpoch(); // get Epoch time from NTP

 getTime();

 ringH.begin();

 ringH.setBrightness(1);

 LEDhours();

 ringH.show();

 ringM.begin();

 ringM.setBrightness(1);

 LEDminutes();

 ringM.show();

}

Chapter 4 Internet CloCk

108

void loop()

{

 getTime();

 if(minutes == 0 && display ==0)

 {

 display = 1;

 phonering();

 rainbow();

 ringM.clear();

 ringM.show();

 color = 1 - color;

 ringH.clear();

 ringH.show();

 LEDhours();

 }

 if(minutes > 0) LEDminutes();

 if(hours == 8 && minutes == 30) getEpoch(); // update Epoch time

 delay(interval); // delay between time calculations

}

void getTime() // as in Listing 4-4

void getEpoch() // function to get NTP time

{

 WiFi.begin(ssid, password); // wait for Wi-Fi connect

 while (WiFi.status() != WL_CONNECTED) delay(500);

 epoch = 0;

 for (int i=0; i<5; i++) // five attempts to access NTP

 {

 delay(500); // delay between Wi-Fi connect

 dateTime = NTP.getNTPtime(0, 1); // and sourcing NTP data

Chapter 4 Internet CloCk

109

 if(dateTime.valid)

 {

 epoch = dateTime.epochTime; // NTP Epoch time obtained

 i = 5; // stop attempting connect to NTP

 }

 }

 WiFi.disconnect(true); // disconnect Wi-Fi connection

 WiFi.mode(WIFI_OFF); // switch off Wi-Fi connection

 setTime(epoch); // set internal clock to Epoch time

}

void LEDminutes() // as in Listing 4-4

void LEDhours() // as in Listing 4-4

void rainbow() // as in Listing 4-4

void phonering() // as in Listing 4-4

void playTone(int freq, int duration) // as in Listing 4-4

 ESP32 and Internet clock
Listing 4-5 is for an Internet clock controlled by an ESP8266 microcontroller.

For an ESP32 microcontroller, the Wi-Fi and web server library instructions

#include <ESP8266WiFi.h> // library to connect to Wi-Fi network

#include <ESP8266WebServer.h> // l ibrary for web server functionality

ESP8266WebServer server; // associate server with library

are changed to

#include <WiFi.h> // library to connect to Wi-Fi network

#include <WebServer.h> // library for web server functionality

WebServer server (80); // associate server with WebServer lib

Chapter 4 Internet CloCk

110

Sound generation with a Piezo transducer differs for the ESP8266

and ESP32 microcontrollers, so the playTone function for the ESP8266

microcontroller is replaced with the playToneESP32 function:

void playToneESP32(int freq, int duration)

{

 ledcSetup(channel, freq, 10); // 10-bit resolution

 ledcWrite(channel, 512); // square wave with 50% duty cycle

 delay(duration); // for duration (ms)

 ledcWrite(channel, 0);

}

The third parameter of the ledcSetup instruction is the resolution

level, 8, 10, 12, or 15 bits, for PWM. For consistency with Listing 4- 5, the

playToneESP32 function uses 10-bit resolution, with 1024 values, and a 50%

duty cycle obtained with a value of 512. The Piezo transducer pin is mapped

to the channel variable with the instruction ledcAttachPin(piezoPin,

channel) in the setup function, with channel defined by int channel = 0.

The Piezo transducer and LED ring pin numbers D1, D2, and D3 are changed

to ESP32 development board pins 25, 26, and 27, respectively.

 Summary
The color of each LED on a WS2812 5050 RGB LED strip was individually

defined, with a range of colors swept through the RGB LED strip.

An electret microphone amplifier module measured sound levels

to determine the number and color of RGB LEDs to turn on in the

RGB LED strip. The limitation of one analog input pin of the ESP8266

microcontroller was resolved by incorporating a 74HC4051 multiplexer

to access several analog input devices. The ESP8266 microcontroller

"simultaneously" accessed voltages from two potentiometers, to control

settings on the RGB LED strip and the electret microphone amplifier

Chapter 4 Internet CloCk

111

module. An Internet clock was built with two RGB LED rings to display

the hours and minutes. On the hour, a Piezo transducer makes a phone

ringtone of two rings, which is followed by a rainbow display on one

RGB LED ring. The Wi-Fi functionality of the ESP8266 and ESP32

microcontrollers enabled access to the Network Time Protocol (NTP)

service, twice every 24 hours, to update the internal microcontroller clock

and maintain the RGB LED clock accuracy.

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: DEVKIT DOIT or NodeMCU

board

• RGB LED ring: 2×

• RGB LED strip

• Resistor: 2× 470 Ω

• Capacitor: 100 μF

• Piezo transducer

• Electret microphone amplifier module: MAX4466

• Multiplexer: 74HC4051

Chapter 4 Internet CloCk

113© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_5

CHAPTER 5

MP3 player
The DFPlayer Mini MP3 player with built-in micro-SD card module is either

used as a battery-powered stand-alone module with push-button controls

or connected to a microcontroller for more comprehensive control features.

The MP3 player has audio output channels for earphone or amplifier

input (DAC R and DAC L) and for loudspeaker input (SPK1 and SPK2),

UART Serial communication (RX and TX), and four control pins (IO1, IO2,

ADKEY1, and ADKEY2) that are active LOW (see Figure 5- 1). The BUSY pin

is LOW when an audio file is playing, but otherwise HIGH. The MP3 has a

music equalizer with six settings.

Figure 5-1. DFPlayer Mini MP3 player

When the MP3 player is stand-alone, a short press on tactile switches

connected to the control pins, IO1 or IO2, plays the previous or next

track, respectively, while a long press decreases or increases the volume.

Pressing the ADKEY1 or ADKEY2 control pin plays the first or fifth track,

respectively.

https://doi.org/10.1007/978-1-4842-6336-5_5#DOI

114

For this chapter, mp3 audio files are stored on a micro-SD card, FAT32

formatted with up to 32 GB storage, within a folder named mp3. Folder

names of 01–99 are permitted with the audio files, within a folder, named

001.mp3 to 255.mp3.

Figure 5-2 illustrates tactile button control of a stand-alone MP3 player

with a loudspeaker, of less than 3W, connected to the SPK1 and SPK2 pins

through the audio and GND pins of an audio jack socket (connections

given in Table 5-1). Instead of controlling the MP3 player with tactile

buttons, the GND pin is directly connected to the appropriate control pin.

Note that when power is applied to the MP3 player, the red indicator LED

turns on after the IO1 or IO2 pin is connected to GND and turns off when

the track has finished playing.

Figure 5-2. Stand-alone MP3 player

Chapter 5 Mp3 player

115

 Control command for the MP3 player
The MP3 player is operated by control commands transmitted using UART

(Universal Asynchronous Receiver-Transmitter) Serial communication.

The ten components of a control command are start bit, version, number

of bytes, command, feedback, parameter[1,2], checksum[1,2], and finish bit.

The start and finish bits, in HEX format, are 0x7E and 0xEF, the number

of bytes is 0x06, feedback is 0x00, and version is 0xFF. A control command

has two parameters, but generally the value of parameter[1] is zero. The

checksum is the negative sum of all the components, omitting the start

and finish bits. The checksum is formatted as a high and a low byte. When

a control command is transmitted to the MP3 player, the response buffer

contains ten components, of which parameter[2] contains data.

For example, the control command to play the fourth track is 0x03 with

parameter[2] equal to 0x04 (see Table 5-2). The checksum is –(0xFF + 0x06 +

0x03 + 0x00+ 0x00 + 0x04) = –(255 + 6 + 3 + 0 + 0 + 4) = –268 that maps

to 216 – 268 = 65268 = 0xFEF4, with high and low bytes of 0xFE and 0xF4,

respectively. The control command components in HEX format are start

Table 5-1. Stand-alone MP3 player

Component Connect to

Mp3 player VCC Battery 5V

Mp3 player GND Battery GND

Mp3 player SpK1 audio output

Mp3 player SpK2 audio output

Mp3 player IO1 (previous track and decreases volume) Switch right pin

Mp3 player IO2 (next track and increases volume) Switch right pin

Switch left pins GND

Chapter 5 Mp3 player

116

bit, 0x7E; version, 0xFF; length, 0x06; command, 0x03; feedback, 0x00;

parameter[1], 0x00; parameter[2], 0x04; checksum[1], 0xFE; checksum[2],

0xF4; and finish bit, 0xEF.

A selection of MP3 player control commands is given in

Table 5-2, with a manual available at usermanual.wiki/Pdf/

DFPlayer20Mini20Manual.1647715389/pdf. The command 0x03 plays the

Nth track with tracks ordered by the time that they were loaded onto the

micro-SD card. The command 0x12 plays the track with file name 000N

XXX, irrespective of the time order that the audio file was loaded on the

micro-SD card. The audio file name does not need to reflect the order that

audio files were loaded on the micro-SD card. For example, four audio files

were loaded on the micro- SD card in the order of 0014 ABC, 0012 AAA,

0011 XYZ, and 0013 PQR, which the MP3 player catalogues as tracks 1, 2, 3,

and 4, respectively. The commands (0x12, 13) and (0x03, 4) will both play

the audio file 0013 PQR, which is track 4 for the MP3 player.

Table 5-2. MP3 player control commands

Command Action

0x01 Next track

0x02 previous track

0x03 play track number N

0x04 Increase volume by one level

0x05 Decrease volume by one level

0x06 Set volume level to N, between 0 and 30

0x07 equalizer (Normal, pop, rock, Jazz, Classic, Base)

0x0D play current track

0x0e pause current track

0x12 play track number N

(continued)

Chapter 5 Mp3 player

https://usermanual.wiki/Pdf/DFPlayer20Mini20Manual.1647715389/pdf
https://usermanual.wiki/Pdf/DFPlayer20Mini20Manual.1647715389/pdf

117

 MP3 player control with a microcontroller
Connecting the MP3 player to an ESP8266 or ESP32 microcontroller provides

significantly more functionality than the stand-alone MP3 player. The MP3

player is powered by the ESP8266 or ESP32 development board 3V3 pin, as

the MP3 player operates at 3.3–5 V and the transmit (TX) and receive (RX)

Serial communication functions at 3.3 V. If the MP3 player is powered by 5 V,

then a logic-level converter is required to reduce the 5 V voltage on the MP3

player TX pin to 3.3 V on the ESP8266 or ESP32 microcontroller RX pin. The

voltage is also reduced with a voltage divider consisting of a 5 kΩ resistor and

a 10 kΩ resistor, as described in Chapter 16 (Signal generation).

The ESP8266 development board RX and TX pins are required for

communication with the Serial Monitor, as information is displayed on

the Serial Monitor to ensure that the sketch is performing as expected.

The ESP8266 microcontroller communicates with the MP3 player with

software Serial, using the built-in SoftwareSerial library. The advantage

of the compact LOLIN (WeMos) D1 mini with a powerful CPU and Wi- Fi

functionality is offset, to an extent, by the constraint of available pins, as

pin D8 has a pull-down resistor and pin D0 has no interrupt function.

The ESP8266 development board pins D4, D3, D2, and D8 are defined as

control pins to play the next track, to increase the volume, to decrease the

volume, and to change the music equalizer, respectively (see Figure 5-3

Command Action

0x18 random play order, starting at track 1

0x43 Get volume level

0x46 Get software version number

0x48 Get number of files on the SD card

0x4C Get track number

Table 5-2. (continued)

Chapter 5 Mp3 player

118

with connections in Table 5-3). Pins D4, D3, and D2 are connected to GND

for the required change, while pin D8, which has a built-in pull-down

resistor, is connected to 3V3 to change the music equalizer.

Figure 5-3. MP3 player with LOLIN (WeMos) D1 mini

Table 5-3. MP3 player connections for ESP8266 and ESP32

development boards

Component ESP8266 ESP32

Mp3 player VCC 3V3 3V3

Mp3 player rX D7 tX2 (GpIO 17)

Mp3 player tX D6 rX2 (GpIO 16)

Mp3 player SpK1 audio output audio output

Mp3 player GND GND GND

Mp3 player SpK2 audio output audio output

Mp3 player BUSy D5 GpIO 34

Ir sensor OUt D1 GpIO 23

Ir sensor GND GND GND

Ir sensor VCC 3V3 3V3

Chapter 5 Mp3 player

119

In contrast, the ESP32 development board has an abundance of

GPIO pins, with the ESP32 DEVKIT DOIT 30-pin and NodeMCU 36-pin

development boards having two and three Serial communication ports,

respectively (see Chapter 21 (Microcontrollers)). The MP3 player with

an ESP32 DEVKIT DOIT development board is shown in Figure 5-4, with

connections in Table 5-3.

The sketch in Listing 5-1 is the base for a subsequent sketch (Listing 5-3)

using infrared signals to control the MP3 player. In the setup function of

the sketch, the minimum and maximum file numbers are defined. For

example, if the files titled 0009 abc.mp3 and 0013 xyz.mp3 have the lowest

and highest file numbers, then the variables fileMin and fileMax are set to 9

and 13, respectively.

The first section of the sketch defines the control pins, the music

equalizer level names, the control command template, and the audio file

names. The setup function attaches internal pull-up resistors to the control

pins and defines the interrupt activated by the MP3 player BUSY pin

changing from LOW to HIGH when a track finishes playing. The interrupt

Figure 5-4. MP3 player with the ESP32 DEVKIT DOIT development
board

Chapter 5 Mp3 player

120

service routine (ISR) sets the variable finish to the value of one, which

indicates that an audio file has finished playing. To determine if the micro-

SD card is inserted in the MP3 player, the number of files on the micro-SD

card is counted with the command 0x48; and if no audio files are present, then

a message is displayed on the Serial Monitor. The volume value is set, the first

file is played, and the timer is reset to measure the audio file play time.

The loop function monitors the control pins for activity and calls the

cmd (command) function. The four control pins use the commands 0x12

to play the next audio file and 0x4C to obtain the corresponding track

number, the command 0x04 or 0x05 to increase or decrease the volume

level, the command 0x43 to obtain the volume value, and the command

0x07 to increment the music equalizer level.

The next audio file is played when the nextPin is connected

to GND or the current file has finished with the instruction

if(digitalRead(nextPin) == LOW || finish == 1). Audio files

are checked by playing each audio file for a fixed time period, for

example, 5 s, by changing the first instruction of the loop function to

if(digitalRead(nextPin) == LOW || millis()-timed > 5000).

The cmd function builds the checksum based on the command and

parameter[2], as parameter[1] is zero, and splits the checksum into a high

byte and a low byte for transmission to the MP3 player. The highByte and

lowByte functions are functions within the Arduino IDE. The response

from the MP3 player is held in the buffer[] array, and buffer[6] contains

the data value. When the command 0x4C, to obtain the corresponding

track number, is called, both the track number and the audio file name are

displayed.

Listing 5-1 is for an ESP8266 microcontroller. The ESP32 development

board Serial ports enable Serial communication with more than

one device, without having to utilize libraries to provide the Serial

communication functionality. The instruction Serial2.begin(baud,

SERIAL_8N1, RXD2, TXD2) establishes Serial communication on the

second Serial port with the baud rate defined by the parameter baud on

Chapter 5 Mp3 player

121

pins RXD2 and TXD2. When using an ESP32 microcontroller, the following

instructions for the ESP8266 microcontroller

#include <SoftwareSerial.h> // include SoftwareSerial library

SoftwareSerial SoftSer(D6, D7); // define SoftSer RX, TX pins

SoftSer.begin(9600); // SoftwareSerial baud rate

for (int i=0; i<10; i++) SoftSer.wr ite(serialCom[i]);

// transmit to or receive from MP3

for (int i=0; i<10; i++) buffer[i] = SoftSer.read();

are replaced with the instructions

Serial2.begin(9600, SERIAL_8N1, 16, 17); // define RX2, TX2

for (int i=0; i<10; i++) Serial2.write(serialCom[i]);

 // transmit to or receive from MP3

for (int i=0; i<10; i++) buffer[i] = Serial2 .read();

and the instruction pinMode(busyPin, INPUT) is included in the setup

function. The BUSY pin, D5, and control pin definitions D4, D3, and D2

are changed to GPIO 34 and to three suitable GPIO pins, such as GPIO 27,

GPIO 26, and GPIO 25. For consistency with the sketch for an ESP8266

microcontroller, the music equalizer pin, D8, is changed to GPIO 12, which

has a built-in pull-down resistor.

Listing 5-1. MP3 player

#include<SoftwareSerial.h> // include SoftwareSerial library

SoftwareSerial SoftSer(D6, D7); // define SoftSer RX, TX pins

int nextPin = D4;

int volUp = D3;

int volDown = D2; // define control pins

int EQpin = D8;

Chapter 5 Mp3 player

122

int busyPin = D5;

int EQstate = 0; // equaliser settings

String EQ[] = {"Normal","Pop","Rock","Jazz","Classic","Bass"};

unsigned long timed = 0;

unsigned int checksum;

byte highChk, lowChk; // control command template

byte serialCom[10] = {0x7E,0xFF,0x06,0x00,0x00,0x00,0x00,0x00,

0x00,0xEF};

// start version length CMD feedback para[1, 2] checksum[high, low] end

byte buffer[10];

int fileMin = 9; // lowest and highest file number

int fileMax = 13; // on micro SD card

int file = fileMin;

String fileName[] = { // file names in order loaded on SD card

"0012 Nina Simone - My baby just cares for me",

"0011 Reamonn - Supergirl",

"0013 Spider Murphy Gang - Ich Grüsse Alle Und Den Rest Der Welt",

"0009 Proclaimers - I'm Gonna Be (500 Miles)",

"0010 Railroad Earth - The Good Life"

};

volatile int finish; // variable in loop and ISR functions

int track;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 SoftSer.begin(9600); // software Serial baud rate

 pinMode(nextPin, INPUT_PULLUP); // control pins use internal

 pinMode(volUp, INPUT_PULLUP); // pull-up resistors

 pinMode(volDown, INPUT_PULLUP);

 // interrupt finished, BUSY pin HIGH

Chapter 5 Mp3 player

123

 attachInterrupt(digitalPinToInterrupt(busyPin), finished,

RISING);

 cmd(0x48, 0); // get number of files on SD card

 cmd(0x06, 10); // set volume to 10 (range 0 - 30)

 cmd(0x43, 0); // get volume value

 cmd(0x12, file); // play first audio file

 finish = 0; // set finish variable

 cmd(0x4C, 0); // get track number

 timed = millis(); // start timer

}

void loop()

{ // next file selected or current file ended

 if(digitalRead(nextPin) == LOW || finish == 1)

 {

 file = file+1; // increment file name

 if(file > fileMax) file = f ileMin;

// constrain file name <= fileMax

 cmd(0x12, file); // play next audio file

 finish = 0; // set finish variable

 cmd(0x4C, 0); // get track number

 }

 else if(digitalRead(volUp) == LOW) // increase volume is selected

 {

 cmd(0x04, 0); // increase volume

 cmd(0x43, 0); // get volume value

 }

 else if(digitalRead(volDown) == LOW)

 { // decrease volume is selected

 cmd(0x05, 0); // decrease volume

 cmd(0x43, 0);

 }

Chapter 5 Mp3 player

124

 else if(digitalRead(EQpin) == HIGH) // change equaliser is selected

 { // when pin state is HIGH

 EQstate = EQstate+1; // increment equaliser

 if(EQstate > 5) EQstate = 0; // constrain equaliser value

 Serial.println(EQ[EQstate]);

 cmd(0x07, EQstate); // change equaliser setting

 }

}

void cmd(byte CMD, byte param2) // command function

{

 delay(100); // delay to debounce button

 checksum = -(0xFF + 0x06 + CMD + 0x0 0 + 0x00 + param2);

// build checksum

 highChk = highByte(checksum); // split checksum into

 lowChk = lowByte(checksum); // high byte and low bytes

 serialCom[3] = CMD;

 serialCom[6] = param2; // command components

 serialCom[7] = highChk;

 serialCom[8] = lowChk; // transmit command to MP3

 for (int i=0; i<10; i++) SoftSer.write(serialCom[i]);

 delay(100); // receive command from MP3

 for (int i=0; i<10; i++) buffer[i] = SoftSer.read();

 delay(100);

 if(CMD == 0x12) // play next audio file

 {

 Serial.print("finished track ");Serial.print(track);

 Serial.print("\ttime");

Serial.print((millis() - timed)/1000);

 Serial.println("s"); // display audio play time

 timed= millis(); // reset timer

 }

Chapter 5 Mp3 player

125

 else if(CMD == 0x43) // get volume

 {

 Serial.print("volume "); // display volume value

 Serial.println(buffer[6]);

 }

 else if(CMD == 0x48) // get number of files on SD card

 {

 if(buffer[6]<2) // no audio files present

 {

 Serial.println("SD card not inserted ");

 Serial.println("insert SD card and reset microcontroller");

 for(;;) delay(1000); // do nothing

 }

 }

 else if(CMD == 0x4C) // get track number

 {

 track = buffer[6]; // display track number of file

 Serial.print("playing track ");Serial.print(track);

 Serial.print("\t\t");Serial.println(fileName[track-1]);

 } // array starts at [0], but track starts at [1]

}

IRAM_ATTR void finished() // ISR

{

 finish = 1; // set finish variable

}

Chapter 5 Mp3 player

126

 Infrared remote control of an MP3 player
The MP3 player is controlled by an infrared

remote control and the VS1838B infrared sensor,

instead of connecting control pins to GND, as

in Listing 5-1. Connections for the VS1838B

infrared sensor are given in Table 5-3 and shown

in Figures 5-3 and 5-4. The IRremoteESP8266

library by David Conran, Sebastien Warin, Mark Szabo, and Ken Shirriff

is recommended and is available within the Arduino IDE. For an ESP32

microcontroller, the IRremote library by Ken Shirriff is recommended.

A .zip file containing the IRremote library is downloaded from github.

com/z3t0/Arduino-IRremote. The IRremote library that is available in

the Arduino IDE is not always the latest version. When a remote button

is pressed, the infrared sensor receives the signal, which is decoded and

mapped to the corresponding control pin. For example, the decoded 32-

bit infrared signal, 0xFF18E7, for button 2 of an infrared remote control is

shown in Figure 5-5.

Listings 5-2 and 5-3 decode infrared signals and display the received

signals in HEX format for an ESP8266 and ESP32 microcontroller,

respectively. Listing 5-3 only includes the NEC and Sony decode types, but

the library file IRremote.h includes a comprehensive list of decode types,

for inclusion in a sketch. Listing 5-4 uses the HEX codes corresponding to

pressing the next audio file, increasing volume, decreasing volume, and

the stop button on a Sony infrared remote control of 0x8D1, 0x491, 0xC91,

Figure 5-5. IR remote control signal

Chapter 5 Mp3 player

https://github.com/z3t0/Arduino-IRremote
https://github.com/z3t0/Arduino-IRremote

127

and 0x1D1, respectively. Similarly, the HEX codes for the remote control

buttons 1–5 were 0x011, 0x811, 0x411, 0xC11, and 0x211, which are used

for the command to play tracks 1–5.

Listing 5-2. Decoding infrared signals with an ESP8266

development board

#include <IRutils.h> // include IRutils library

int IRpin = D1; // IR receiver pin

int BufferSize = 1024; // longer signal length

int Timeout = 50; // block repeat signals

IRrecv irrecv(IRpin, BufferSize, Timeout, true);

decode_results reading; // IRremote reading

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 irrecv.enableIRIn(); // initialise the IR receiver

}

void loop()

{

 if (irrecv.decode(&reading)) // read pulsed signal

 Serial.print(resultToHumanReadableBasic(&reading));

} // display signal information

Listing 5-3. Decoding infrared signals with an ESP32 development

board

#include <IRremote.h> // include IRremote library

int IRpin = 23; // IR receiver pin

IRrecv irrecv(IRpin);

decode_results reading;

Chapter 5 Mp3 player

128

void setup()

{

 Serial.begin(115200);

 irrecv.enableIRIn();

}

void loop()

{

 if (irrecv.decode(&reading))

 {

 if(reading.decode_type == NEC) Serial.print("NEC: ");

 else if(reading.decode_type == SONY) Serial.print("Sony: ");

 else Serial.print("Other: ");

 Serial.print(reading.value, HEX);

 Serial.print("\tBits: "); // display signal HEX code

 Serial.println(reading.bits); // and bit number

 delay(200); // delay before next IR signal

 irrecv.resume(); // receive the next value

 }

}

The infrared signals are mapped to control pin functions using the

instructions associated with a control pin in Listing 5-1. For example, the

instruction for increasing volume if(digitalRead(volUp) == LOW) is

replaced with the instruction if(reading.value == 0x491). Mapping

a remote control button to playing a specific track uses switch case

instructions rather than if else instructions, with each case instruction

mapping an infrared signal to a track number. Instructions to replace the

control pin commands in Listing 5-1 by remote control signals are given in

Listing 5-4.

Chapter 5 Mp3 player

129

In the first section of the sketch, replace

Listing 5-4. Infrared remote control of an MP3 player

int nextPin = D4;

int volUp = D3;

int volDown = D2; // define control pins

int EQpin = D8;

with

#include <IRutils.h> // include IR library

int IRpin = D1; // IR receiver pin

int BufferSize = 1024; // longer signal length

int Timeout = 50; // block repeat signals

IRrecv irrecv(IRpin, BufferSize, Timeout, true);

decode_results reading; // IRremote reading

for an ESP8266 microcontroller, and for an ESP32 microcontroller, the new

instructions are

#include <IRremote.h>

int IRpin = 23;

IRrecv irrecv(IRpin);

decode_results reading;

For both microcontrollers, replace the instruction int track with int

track, oldTrack.

In the setup function, replace

pinMode(nextPin, INPUT_PULLUP); // control pins use internal

pinMode(volUp, INPUT_PULLUP); // pull-up resistors

pinMode(volDown, INPUT_PULLUP);

Chapter 5 Mp3 player

130

with

irrecv.enableIRIn(); // initialise the IR receiver

The complete loop function is replaced with the following instructions,

noting that the instruction irrecv.resume() is required only for the ESP32

microcontroller:

void loop()

{

 if(finish == 1) // current audio file ended

 {

 cmd(0x01, 0); // play next track

 finish = 0; // set finish variable

 cmd(0x4C, 0); // get track number

 }

 if(irrecv.decode(&reading)) // read pulsed signal

 {

 if(reading.value == 0x8D1) // next audio file is selected

 {

 file = file+1; // increment file name

 if(file > fileMax) file = fi leMin;

// constrain file name < fileMax

 cmd(0x12, file); // play next audio file

 finish = 0; // set finish variable

 cmd(0x4C, 0); // get track number

 }

 else if(reading.value == 0x491) // i ncrease volume is selected

 {

 cmd(0x04, 0); // increase volume

 cmd(0x43, 0); // get volume value

 }

Chapter 5 Mp3 player

131

 else if(reading.value == 0xC91) // decrease volume is selected

 {

 cmd(0x05, 0); // decrease volume

 cmd(0x43, 0); // get volume value

 }

 else if(reading.value == 0x1D1) // change equaliser is selected

 {

 EQstate = EQstate+1; // increment equaliser

 if(EQstate > 5) EQstate = 0; // constrain equaliser value

 Serial.println(EQ[EQstate]);

 cmd(0x07, EQstate); // change equaliser setting

 }

 else

 {

 switch(reading.value) // switch case for selected track

 { // map remote signal to play track

 case 0x011: track = 1; break;

 case 0x811: track = 2; break;

 case 0x411: track = 3; break;

 case 0xC11: track = 4; break;

 case 0x211: track = 5; break;

 }

 cmd(0x03, track); // play track

 finish = 0; // set finish variable

 cmd(0x4C, 0); // get track number

 }

// irrecv.resume(); // for ESP32, receive next value

 }

 delay(100);

}

Chapter 5 Mp3 player

132

In the cmd function, the instruction if(CMD == 0x12) to play the next

audio file is replaced with the instruction if(CMD == 0x01 ||CMD ==

0x03 || CMD == 0x12) to play the next track or the selected track or

the selected audio file. Two instructions further on, the instruction

Serial.print(track) is replaced with Serial.print(oldTrack). In the

instruction group to get the track number, the instruction oldTrack =

track is added after the instruction track = buffer[6].

 Creating sound tracks and two alarm systems
The website www.fromtexttospeech.com creates MP3 files for speech

corresponding to text entered into the online textbox, with different voices

in several languages available. The audio files are named with a number

and text combination, for example, "0001 alarm on", so that audio files are

accessed independently of the order that the audio files were loaded on

the micro-SD card. An application of user-defined sound tracks is an alarm

system with an HC-SR04 ultrasonic distance sensor or a passive infrared

(PIR) sensor to detect movement, with specific announcements from the

MP3 player when the sensor is triggered (see Figures 5-6 and 5-7).

Figure 5-6. MP3 player with alarm and LOLIN (WeMos) D1
mini

Chapter 5 Mp3 player

http://www.fromtexttospeech.com

133

The sketch in Listing 5-5 includes an HC-SR04 ultrasonic distance

sensor to detect a distance change, such as when a door is opened, and

if the alarm is on, then the MP3 player makes an announcement. The

distance, in centimeters, between the sensor and an object is half the

echo time, measured in microseconds, multiplied by 0.0343, assuming the

speed of sound of 343 m/s. The first section of the sketch defines the

HC- SR04 ultrasonic distance sensor and switch pins with the switch

activating the interrupt alarmISR, which turns on or off the alarm and the

indicator LED, with the MP3 player playing the corresponding audio file.

In the loop function, the HC-SR04 ultrasonic distance sensor measures the

distance every 2 s. When the measured distance is less than a threshold,

the play function is activated with an MP3 player announcement, and the

alarm is turned off. There is a time interval between playing the audio files,

rather than sequential tracks being played immediately, when triggered by

the MP3 player BUSY pin state changing to HIGH.

Connections for the MP3 player with alarm are given in Table 5-4.

There is no MP3 player TX nor BUSY connection to the ESP8266 or ESP32

microcontroller as the MP3 player does not transmit a signal. Listing 5-5

is for an ESP8266 microcontroller, and the NewPing8266 library is

downloaded from github.com/jshaw/NewPingESP8266. For an ESP32

microcontroller, the NewPing library by Tim Eckel is available in the

Figure 5-7. MP3 player with alarm and the ESP32 DEVKIT DOIT
development board

Chapter 5 Mp3 player

https://github.com/jshaw/NewPingESP8266

134

Arduino IDE. The focus of the layouts in Figures 5-6 and 5-7 is to minimize

overlapping connections, as in practice access is required to the MP3

player micro-SD card holder and to the ESP8266 and ESP32 development

boards to provide power.

Table 5-4. MP3 player with alarm and ESP8266 and ESP32

development boards

Component ESP8266 ESP32

Mp3 player VCC 3V3 3V3

Mp3 player rX D7 tX2 (GpIO 17)

Mp3 player SpK1 audio output audio output

Mp3 player GND GND GND

Mp3 player SpK2 audio output audio output

hC-Sr04 VCC 5V VIN

hC-Sr04 trig D1 GpIO 22

hC-Sr04 echo D2 GpIO 21

hC-Sr04 GND GND GND

leD long leg D3 GpIO 19

leD short leg 220 Ω resistor and to GND

Switch right D4 GpIO 18

Switch left GND GND

Listing 5-5 is for an ESP8266 microcontroller. When using an ESP32

microcontroller, the ESP8266 microcontroller instructions

#include<SoftwareSerial.h> // include SoftwareSerial library

SoftwareSerial SoftSer(D6, D7); // define SoftSer TX pin

#include <NewPingESP8266.h> // include NewPingESP8266 lib

Chapter 5 Mp3 player

135

NewPingESP8266 sonar (trigPin, echoPin, maxdist);

SoftSer.begin(9600); // software Serial baud rate

for (int i=0; i<10; i++) SoftSer.write(serialCom[i]);

are replaced with

#include <NewPing.h> // include NewPing library

NewPing sonar (trigPin, echoPin, maxdist);

Serial2.begin(9600, SERIAL_8N1, 16, 17); // Serial2 TX2 on GPIO 17

for (int i=0; i<10; i++) Serial2.write(serialCom[i]);

and pin definitions for the trigPin, echoPin, LEDpin, and alarmPin are

changed to GPIO 22, GPIO 21, GPIO 19, and GPIO 18, respectively.

Listing 5-5. MP3 player alarm

#include<SoftwareSerial.h> // include SoftwareSerial library

SoftwareSerial SoftSer(D6, D7); // define SoftSer TX pin

#include <NewPingESP8266.h> // include NewPingESP8266 lib

int trigPin = D1; // HC-SR04 trigger pin

int echoPin = D2; // HC-SR04 echo pin

int maxdist = 200; // set max scan distance (cm)

int echoTime;

float distance; // scanned distance (cm)

 // associate sonar with NewPing

NewPingESP8266 sonar (trigPin, echoPin, maxdist);

int LEDpin = D3; // define LED pin

int alarmPin = D4; // define alarm switch pin

unsigned int checksum;

byte highChk, lowChk; // control command template

byte serialCom[10] = {0x7E,0xFF,0x06,0x00,0x00,

0x00,0x00,0x00,0x00,0xEF};

byte buffer[10];

volatile int alarmSet = 0; // set alarm state

Chapter 5 Mp3 player

136

String fileName[] = { // file names in numerical order

"0001 alarm off",

"0002 alarm on",

"0003 someone entered the room",

"0004 close the door please",

"0005 press switch to reset the alarm"

};

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 SoftSer.begin(9600); // software Serial baud rate

 pinMode(trigPin, OUTPUT); // define trigger pin as output

 pinMode(LEDpin, OUTPUT); // define LEDpin as output

 pinMode(alarmPin, INPUT_PUL LUP);

// alarm pin uses pull-up resistor

 attachInterrupt(digitalPinToInterrupt(alarmPin), alarmISR,

FALLING);

}

void loop()

{

 echoTime = sonar.ping(); // echo time (μs)

 distance = (echoTime/2.0)*0.0343; // distance to target

 Serial.println(distance); // play audio files if

 // distance < 100 and alarm set

 if(distance < 100 && alarmSet == 1) play();

 delay(2000); // delay between readings

}

Chapter 5 Mp3 player

137

void play()

{

 cmd(0x06, 10); // volume to 10 (range 0 to 30)

 cmd(0x12, 3); // play audio file named 0003

 delay(2000); // interval between audio files

 cmd(0x12, 4); // play audio file named 0004

 delay(2000);

 cmd(0x12, 5); // play audio file named 0005

 delay(2500);

 alarmISR(); // turn alarm off

}

void cmd(byte CMD, byte param2)

{ // build checksum

 checksum = -(0xFF + 0x06 + CMD + 0x00 + 0x00 + param2);

 highChk = highByte(checksum); // split checksum into

 lowChk = lowByte(checksum); // high byte and low bytes

 serialCom[3] = CMD;

 serialCom[6] = param2; // components of command

 serialCom[7] = highChk;

 serialCom[8] = lowChk; // transmit command to MP3

 for (int i=0; i<10; i++) SoftSer.write(serialCom[i]);

}

IRAM_ATTR void alarmISR()

{

 alarmSet = 1 - alarmSet; // turn off (0) or on (1) alarm

 digitalWrite(LEDpin, alarmSet); // turn off or on LED

 cmd(0x12, alarmSet+1); // play audio file 0001 or 0002

}

Chapter 5 Mp3 player

138

 Movement detection alarm
A movement detection alarm consists of a passive infrared (PIR) sensor

detecting movement, which triggers the MP3 player to play a warning and

to turn on an LED for ten seconds (see Figures 5-8 and 5-9). The sketch

in Listing 5-6 consists of just 20 lines of code, with the ultrasonic distance

sensor replaced by a PIR sensor, but using the connections in Table 5-5.

Only the third track is played by the MP3 player, which requires the

command (0x12, 0x03). The command checksum is the negative value of

the HEX representation of the signal components (0xFF + 0x06 + 0x12 +

0x00 + 0x00 + 0x03), which is –(255 + 6 + 18 + 3) or –282 in decimal. The

HEX representation of –282 is 216 – 282 = 65256 or 0xFEE6, which has high

and low bytes of 0xFE and 0xE6, respectively.

Figure 5-8. MP3 player alarm with LOLIN (WeMos) D1 mini – short
version

Chapter 5 Mp3 player

139

Listing 5-6 is for an ESP8266 microcontroller. When using an ESP32

microcontroller, the ESP8266 microcontroller instructions

#include<SoftwareSerial.h> // include SoftwareSerial library

SoftwareSerial SoftSer(D6, D7); // define SoftSer TX pin

SoftSer.begin(9600); // software Serial baud rate

for (int i=0; i<10; i++) SoftSer.write(serialCom[i]);

Figure 5-9. MP3 player alarm with the ESP32 DEVKIT DOIT
development board – short version

Table 5-5. MP3 player alarm with ESP8266 and

ESP32 development boards – short version

Component ESP8266 ESP32

pIr sensor VCC 5V VIN

pIr sensor OUt D2 GpIO 21

pIr sensor GND GND GND

Chapter 5 Mp3 player

140

are replaced with the instructions

Serial2.begin(9600, SERIAL_8N1, 16, 17); // Serial2 TX2 on GPIO 17

for (int i=0; i<10; i++) Serial2.write(serialCom[i]);

and pin definitions for the PIRpin and LEDpin are changed to GPIO 21 and

GPIO 19, respectively.

Listing 5-6. MP3 player alarm – short version

#include<SoftwareSerial.h> // include SoftwareSerial library

SoftwareSerial SoftSer(D6, D7); // define SoftSer TX pin

int PIRpin = D2; // PIR sensor and LED pins

int LEDpin = D3;

byte serialCom[10] = {0x7E,0xFF,0x06,0x12,0x00,

0x00,0x03,0xFE,0xE6,0xEF}; // one control command

void setup()

{

 SoftSer.begin(9600); // software Serial baud rate

 pinMode(LEDpin, OUTPUT); // LED pin as OUTPUT

}

void loop()

{

 if(digitalRead(PIRpin) == HIGH) // PIR sensor triggered

 {

 digitalWrite(LEDpin, HIGH); // turn on LED and play sound

 for(int i=0; i<10; i++) SoftSer.write(serialCom[i]);

 delay(10000);

 digitalWrite(LEDpin, LOW); // turn off LED after 10s

 }

}

Chapter 5 Mp3 player

141

 Speaking clock
A speaking clock is built with a real-time clock (RTC) DS3231 and the

MP3 player module. The DS3231 RTC has a built-in temperature sensor, is

powered with 3.3 V or 5 V, and has a CR2032 lithium button-cell battery to

power the RTC when not connected to an ESP8266 or ESP32 development

board. The DS3231 RTC module uses I2C (Inter-Integrated Circuit)

communication with the two bidirectional lines: serial data (SDA)

and serial clock (SCL). The speaking clock time and temperature

announcement is activated by pressing a button switch. One scenario is for

people with a visual impairment, who can locate the large button switch,

but not easily read the time on a watch, to be able to hear the time and

temperature. Figures 5-10 and 5-11 illustrate the speaking clock with the

ESP8266 and ESP32 development boards.

Figure 5-10. Speaking clock with LOLIN (WeMos) D1 mini

Chapter 5 Mp3 player

142

Connections for the DS3231 RTC and MP3 player modules are given

in Tables 5-6 and 5-3, respectively. There is no MP3 player TX nor BUSY

connection to the ESP8266 or ESP32 microcontroller as the MP3 player

does not transmit a signal.

Figure 5-11. Speaking clock with the ESP32 DEVKIT DOIT
development board

Table 5-6. Real-time clock module with

ESP8266 and ESP32 development boards

Component ESP8266 ESP32

DS3231 GND GND GND

DS3231 VCC 5V VIN

DS3231 SDa D2 GpIO 21

DS3231 SCl D1 GpIO 22

Button switch right D4 GpIO 18

Button switch left GND GND

Chapter 5 Mp3 player

143

The MD_DS3231 library by Marco Colli is recommended, due to

the ease of accessing time components, and the library is available in

the Arduino IDE. When the sketch is first compiled and loaded, the

current date and time are included in the sketch; and then the sketch

is immediately compiled and loaded again, but with the date and time

setting instructions commented out, as in Listing 5-7. When setting the

time and date, the 24-hour time format is used without leading zeros.

Compiling and loading takes about 30 seconds, so set the time forward by

30 seconds.

A total of 28 sound files are required for the numbers and temperature,

with the files referenced as 0001 one, 0002 two … 0020 twenty, 0030 thirty,

0040 forty, 0050 fifty, 0060 zero, 0070 the time is, 0080 degrees Celsius, 0090

and, and 0100 o’clock. Sound files 21–24 correspond to the numbers 30, 40,

50, and 0; files 25–28 are for the time is, degrees Celsius, and, and o'clock.

The website www.fromtexttospeech.com creates mp3 files for speech

corresponding to text entered into the online textbox, with different voices

in several languages available.

The DS3231 RTC provides the time information, and then the track the

time is is played by the MP3 player, and the speak20 function is called to

play the track(s) for the hour (see Listing 5-7). If the minutes are less than

ten, then the zero track and the one to nine tracks are played; and if the

minutes are less than 21, then the corresponding minutes track is played.

Otherwise, the thirty, forty, or fifty track is played, which is track number

21, 22, or 23, equal to 18 plus the minutes divided by ten, followed by the

track for the units digit. If the minutes are zero, then track number 28

for o'clock is played. The getTemp function for the DS3231 RTC reads the

temperature, then the and track is played followed by the speak20 function

being called to play the track(s) for the temperature, and lastly, the track

for degrees Celsius is played. The tracks are short, so there is no need for an

interrupt to detect when a track has finished playing and the BUSY pin is

not read.

Chapter 5 Mp3 player

http://www.fromtexttospeech.com

144

Listing 5-7 is for an ESP8266 microcontroller. When using an ESP32

microcontroller, the ESP8266 microcontroller instructions

#include<SoftwareSerial.h> // include SoftwareSerial library

SoftwareSerial SoftSer(D6, D7); // define SoftSer TX pin

SoftSer.begin(9600); // software Serial baud rate

for (int i=0; i<10; i++) SoftSer.write(serialCom[i]);

are replaced with the instructions

Serial2.begin(9600, SERIAL_8N1, 16, 17); // TX2 on GPIO 17

for (int i=0; i<10; i++) Serial2.write(serialCom[i]);

and the switchPin definition is changed to GPIO 18.

Listing 5-7. Speaking clock

#include<SoftwareSerial.h> // include SoftwareSerial library

SoftwareSerial SoftSer(D6, D7); // define SoftSer TX pin

#include <MD_DS3231.h> // include MD_DS3231 library

unsigned int checksum;

byte highChk, lowChk;

byte serialCom[10] ={0x7E,0xFF,0x06,0x00,0x00,

0x00,0x00,0x00,0x00,0xEF};

byte buffer[10];

int switchPin = D4; // define switch pin

int val, deg;

void setup()

{

 SoftSer.begin(9600); // software Serial baud rate

 pinMode(switchPin, INPUT_PULLUP); // switch pin uses pull-up resistor

 cmd(0x06, 10); // set volume to 10 (range 0 - 30)

Chapter 5 Mp3 player

145

 RTC.control(DS3231_12H, DS3231_OFF); // 24 hour clock

 // RTC date of Wednesday 7 September 2020 at 20:37:50

/* // instructions to set time commented out

 RTC.yyyy = 2020; // year

 RTC.mm = 9; // month

 RTC.dd = 7; // day

 RTC.h = 20; // hour in 24 hour format

 RTC.m = 37; // minutes

 RTC.s = 50; // seconds, allow 30s to compile

 RTC.dow = 4; // day of week, Sunday = 1

 RTC.writeTime();

*/

}

void loop()

{

 if(digitalRead(switchPin) == LOW) // switch is pressed

 {

 speak(25); // MP3 play "the time is"

 RTC.readTime(); // components of date and time

 speak20(RTC.h); // MP3 play the hour

 if(RTC.m == 0) speak(28); // MP3 play "o'clock"

 else if(RTC.m <10)

 {

 speak(24); // MP3 play "zero"

 speak(RTC.m); // MP3 play minute < 10

 }

 else if(RTC.m <21) speak(RTC.m); // MP3 play minute <21

 else

 {

 speak(RTC.m/10 + 18); // MP3 play "30 40 or 50 mins"

 speak(RTC.m % 10); // MP3 play minute < 10

 } // temperature measurement

Chapter 5 Mp3 player

146

 deg = round(RTC.readTempR egister());

 speak(27); // MP3 play "and"

 speak20(deg); // MP3 play the temperature

 speak(26); // MP3 play "degrees Celsius"

 }

}

void speak(int file) // function to play MP3 file

{

 if(file == 27) delay(200); // delay before playing "and"

 cmd(0x03, file);

 delay(300); // time for short track to play

 if(file == 25 || file == 27) delay(300);

} // delay for "the time is" or "and"

void speak20(int val) // function to play combination

{ // of "20" and units

 if(val < 21) speak(val); // MP3 play number < 21

 else

 {

 speak(20); // MP3 play "20"

 speak(val % 20); // MP3 play track numbered

 } // remainder after dividing by 20

}

void cmd(byte CMD, byte param2)

{

 delay(500); // stop repeated button push

 checksum = -(0xFF + 0x06 + CMD + 0 x00 + 0x00 + param2);

// build checksum

 highChk = highByte(checksum); // split checksum into

 lowChk = lowByte(checksum); // high byte and low bytes

 serialCom[3] = CMD;

Chapter 5 Mp3 player

147

 serialCom[6] = param2; // components of command

 serialCom[7] = highChk;

 serialCom[8] = lowChk; // transmit command to MP3

 for (int i = 0; i<10; i++) SoftSer.write(serialCom[i]);

 delay(20); // time to load command

}

 Voice recorder
The ISD1820 record and playback module stores recorded sounds, up to

10 s duration, on the internal flash memory, which retains the information

when the module is not powered. Recording is activated after a HIGH

signal to the REC pin or after the REC button is pressed. The module LED

is turned on for the 10 s recording period. The P-E playback option plays

the entire recorded sound following a HIGH signal to the P-E pin or when

the PLAYE button is pressed. The P-L playback option is also initiated on a

HIGH signal, with recorded sound played back while the P-L pin is HIGH or

the PLAYL button is pressed. The ISD1820 module is powered at 3.3 V and

uses an 8 Ω 0.5 W speaker (see Figure 5-12 with connections in Table 5- 7).

Figure 5-12. ISD1820 record and playback module

Chapter 5 Mp3 player

148

Listing 5-8. ISD1820 record and playback module

int playPin = D3; // define playback pin

int recPin = D4; // define record pin

char data;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 Serial.print("Enter r to record (10 seconds) or");

 Serial.println(" p to playback");

 digitalWrite(playPin, LOW); // avoid playPin going HIGH

In Listing 5-8, the character r or p is entered on the Serial Monitor

to start recording for 10 s or to start playback, respectively. When the

instruction pinMode(playPin, OUTPUT) is called, the PLAYE pin is

automatically set LOW; and to ensure the pin is initially set LOW, the

instruction digitalWrite(playPin, LOW) precedes the pinMode(playPin,

OUTPUT) instruction. An infrared signal to an infrared sensor connected

to the ESP8266 or ESP32 development board or a door opening being

detected by a PIR sensor triggers a HIGH signal to playback the recorded

message, rather than entering a character on the Serial Monitor.

Table 5-7. ISD1820 record and playback module

Component Connect to

ISD1820 VCC eSp8266 3V3

ISD1820 GND eSp8266 GND

ISD1820 p-e eSp8266 D3

ISD1820 reC eSp8266 D4

Chapter 5 Mp3 player

149

 pinMode(playPin, OUTPUT); // define playPin and recPin

 pinMode(recPin, OUTPUT); // as OUTPUT

}

void loop()

{

 while(Serial.available() > 0) // if data available in Serial buffer

 {

 data = Serial.read(); // read Serial buffer

 if(data == 'r')

 {

 Serial.println("recording while light is on");

 digitalWrite(recPin, HIGH); // HIGH to activate recording

 delay(10000); // recording time of 10s

 digitalWrite(recPin, LOW); // reset to LOW signal

 }

 else if(data == 'p')

 {

 Serial.println("playback");

 digitalWrite(playPin, HIGH); // HIGH to activate playback

 delay(10); // short delay of 10ms

 digitalWrite(playPin, LOW); // reset to LOW signal

 }

 }

}

 Summary
The DFPlayer Mini MP3 player operated both as a stand-alone MP3 player

and when controlled by an ESP8266 or ESP32 microcontroller to play

the next track, increase or decrease the volume, and change the music

equalizer. The MP3 player was controlled with signals from an infrared

Chapter 5 Mp3 player

150

remote control, after mapping the infrared remote control buttons to the

MP3 player functions. An alarm was built with an ultrasonic distance

sensor triggering announcements made by the MP3 player. A movement

detection alarm, requiring only 20 lines of code, used a PIR sensor to

trigger an announcement by the MP3 player and turn on an indicator

LED. A button switch triggered announcements by the MP3 player of the

current time and temperature, with the time and temperature information

provided by the DS3231 real-time clock module. Controlling the ISD1820

record and playback module was also described.

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: DEVKIT DOIT or NodeMCU board

• DFPlayer Mini MP3 player

• Tactile switches: 2×

• Loudspeaker: Less than 3 W

• Audio jack socket and mini-loudspeaker

• Infrared sensor: VS1838B

• Resistor: 220 Ω

• LED

• Ultrasonic distance sensor: HC-SR04

• Passive infrared (PIR) sensor: HR-SC501 or HR-SC505

• Real-time clock module: DS3231

• Record and playback module: ISD1820

Chapter 5 Mp3 player

151© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_6

CHAPTER 6

Bluetooth speaker
A Bluetooth speaker complements the Internet radio in Chapter 1, the MP3

player in Chapter 5, and the WS2812 5050 RGB LED strip that responds to

sound in Chapter 4. The Bluetooth stereo audio receiver module with the

PAM8403 class-D audio amplifier does not require an ESP8266 or ESP32

microcontroller, but the project merits incorporation in the book because

it's fun and a straightforward build. After the Bluetooth stereo audio

receiver module is switched on with the announcement “Bluetooth mode:

the Bluetooth device is ready to pair,” the Android tablet or mobile phone

with Bluetooth communication is connected to the Bluetooth stereo audio

receiver module, followed by another announcement “The Bluetooth

device is connected successfully.”

The Bluetooth stereo audio

receiver module with the PAM8403

class-D audio amplifier powers

3 W speakers and operates at 5

V. A 18650 lithium-ion (Li-Ion)

rechargeable battery powers the

Bluetooth stereo audio receiver

module and the speakers. An MT3608 DC to DC step-up boost converter

power supply module boosts the 18650 lithium-ion battery’s 3.7 V to the

required 5 V. The MT3608 boost converter operates at 2–24 V and provides

up to 28 V output at 2 A. The output voltage is controlled by adjusting the

MT3608 potentiometer, indicated by the arrow in Figure 6-1

https://doi.org/10.1007/978-1-4842-6336-5_6#DOI

152

Lithium-ion batteries should neither be overcharged nor over-

discharged; otherwise, the 18650 lithium-ion battery can produce

substantial heat. The TP4056 battery protection module is a constant-

current and constant-voltage linear charger for single-cell lithium-ion

batteries. The TP4056 module monitors the voltage level of the lithium-

ion battery during charging and disconnects the circuit if the lithium-ion

battery voltage exceeds 4.2 V. The TP4056 module indicates when the

lithium-ion battery is charging or has fully charged with a red or a blue

LED. Figure 6-2 displays two TP4056 modules, with the supply voltage of 5

V provided on the left side through the mini-USB socket or by connecting

the +/- points or IN+/IN- points to the supply voltage of 4.5–8 V. The

TP4056 battery protection module on the right side of Figure 6-2 is only

used for charging a lithium-ion battery and must not be connected to a

load.

Figure 6-1. MT3608 DC to DC step-up boost converter

Chapter 6 Bluetooth speaker

153

The TP4056 battery protection module on the left side of Figure 6-2

includes a DW01A battery protection IC, which controls an 8205A dual

MOSFET (Metal Oxide Semiconductor Field Effect Transistor). When the

charging lithium-ion battery voltage reaches 4.2 V, the TP4056 battery

protection module switches from constant current of 1 A to a constant

voltage of 4.2 V, and the current gradually reduces to zero. When the

discharging lithium-ion battery voltage drops to 2.4 V, the MOSFET is

switched off, which disconnects the lithium-ion battery from the load.

On the TP4056 battery protection module, the B+ and OUT+ points are

connected together, but the B- and OUT- points are connected through the

MOSFET. Figure 6-3 shows connections of the TP4056 battery protection

module to the 18650 lithium-ion rechargeable battery and to the Bluetooth

stereo audio receiver module (see Table 6-1). The TP4056 battery

protection module in Figure 6-2 has a mini-USB socket for connecting

a charging cable to a USB 5 V socket for charging the 18650 lithium-ion

rechargeable battery.

Figure 6-2. TP4056 battery charging modules

Chapter 6 Bluetooth speaker

154

Table 6-1. TP4056 protection module connections

Component Connect to

tp4056 B+ 18650 battery positive

tp4056 B- 18650 battery negative

tp4056 out+ Mt3608 VIN+

tp4056 out- Mt3608 VIN-

Mt3608 Vout+ switch in

switch out Bluetooth and paM8403 module 5V

Mt3608 Vout- Bluetooth and paM8403 module GND

Figure 6-3. Bluetooth stereo audio receiver module with speakers

Chapter 6 Bluetooth speaker

155

Figure 6-3 shows the completed circuit of the 18650 lithium-ion

rechargeable battery connected to the TP4056 battery charging module,

which is connected to the MT3608 boost converter and, through a switch,

to the Bluetooth stereo audio receiver module with the PAM8403 class-D

audio amplifier and finally to the speakers.

An alternative to incorporating a TP4056 battery protection module

with a MT3608 DC to DC step-up boost converter power supply module is

to use a USB lithium-ion battery charge and boost converter module, such

as the module included in a 18650 lithium-ion battery power bank (see

Figure 6-4).

For example, the T6845 USB lithium-ion battery charge and boost

converter module boosts the battery 3.7 V voltage to the required 5 V

at 1 A maximum current and incorporates battery protection, with the

battery charged and battery discharged cut-off voltages of 4.2 V and 2.9 V,

respectively. A USB charging cable is connected to the mini-USB socket

of the T6845 USB lithium-ion battery charge and boost converter module

for charging the 18650 lithium-ion rechargeable battery. A switch is fitted

on the positive wire of a second USB charging cable that connects the USB

power socket of the T6845 module to the mini-USB socket of the Bluetooth

stereo audio receiver module (see Figure 6-5 with connections in Table 6- 2).

Figure 6-4. T6845 USB lithium-ion battery charge and boost
converter module

Chapter 6 Bluetooth speaker

156

Table 6-2. T6845 USB lithium-ion battery charge and boost

converter module connections

Component Connect to

t6845 B+ 18650 battery positive

t6845 B- 18650 battery negative

t6845 usB power socket + switch in

switch out Bluetooth and paM8403 module 5V

t6845 usB power socket - Bluetooth and paM8403 module GND

Figure 6-5. Bluetooth stereo audio receiver and T6845 USB lithium-
ion battery charge and boost converter module

Chapter 6 Bluetooth speaker

157

The 18650 lithium- ion battery and T6845

USB lithium-ion battery charge and

boost converter module, the Bluetooth

stereo audio receiver module with the

PAM8403 class-D audio amplifier, and

the speakers are easily incorporated in

a cylindrical container, such as a 40 g

Pringles box! While not an ESP8266 or ESP32 microcontroller project and not

requiring any programming, the project does require some soldering.

 Summary
A Bluetooth speaker was built with a Bluetooth stereo audio receiver

module with the PAM8403 class-D audio amplifier, powered by a lithium-

ion 18650 battery coupled with a MT3608 step-up DC-DC boost converter,

with battery charging and discharging controlled by a TP4056 battery

protection module. Alternatively, a T6845 USB lithium-ion battery charge

and boost converter module replaced the combination of a TP4056 battery

protection module with a MT3608 step-up DC-DC boost converter.

 Components List
• Bluetooth stereo audio receiver module with the

PAM8403 amplifier

• Step-up DC-DC boost converter: MT3608

• Battery protection module: TP4056 with DW01A IC

• USB lithium-ion battery charge and boost converter

module: T6845

• Lithium-ion battery: 18650

• Speaker: 2× 3 W

Chapter 6 Bluetooth speaker

159© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_7

CHAPTER 7

Wireless local
area network
A wireless local area network (WLAN) is established with an ESP8266 or

ESP32 microcontroller, with networked devices requesting information

from the microcontroller (see Figure 7-1). The WLAN does not have

Internet access. The microcontroller is the access point (AP) for the

WLAN, consisting of the microcontroller and up to four devices, and is

termed a software-enabled access point or SoftAP. If the microcontroller

is connected to an existing Wi-Fi network, then the microcontroller is

in station (STA) mode. The WLAN client is the browser on a laptop, an

Android tablet, or a mobile phone. The client connects to the WLAN by

selecting the WLAN name and the access password with the browser

opened at the URL (Uniform Resource Locator) of the WLAN-predefined

IP (Internet Protocol) address.

Figure 7-1. Wireless local area network with the ESP8266 or ESP32
microcontroller

https://doi.org/10.1007/978-1-4842-6336-5_7#DOI

160

To demonstrate establishing a WLAN with an ESP8266 or ESP32

microcontroller, the WLAN web page controls two LEDs, which are connected

to the ESP8266 or ESP32 development board, and displays the LED states and

a counter that is incremented when an LED state changes (see Figure 7- 2).

The example demonstrates using a client to remotely control devices

connected to an ESP8266 or ESP32 development board, which acts as a

server, and the client receipt of information, in the form of HTML (HyperText

Markup Language) code that is displayed on the WLAN web page.

Clicking a button on the WLAN web page turns on or off the

corresponding LED or resets the counter to zero. Schematics for the

ESP8266 and ESP32 microcontrollers functioning as the WLAN server and

connected to two LEDs are shown in Figure 7-3, with connections given in

Table 7-1.

Figure 7-2. Wireless local area network web page

Chapter 7 Wireless loCal area netWork

161

The WLAN IP address is defined in the sketch, rather than using a

generated IP address, along with the IP gateway and the IP subnet mask.

The WLAN IP address and gateway are identical. The IP subnet mask of

(255,255,255,0) for a class-C IP address, such as 192.168.2.1, indicates that

the first three elements of the IP address, 192.168.2, define the WLAN ID

and the last element defines the host ID. The WLAN password should

Figure 7-3. LOLIN (WeMos) D1 mini and ESP32 DEVKIT DOIT
boards and LEDs

Table 7-1. ESP8266 and ESP32 development boards and LEDs

Component ESP8266 Connections ESP32 Connections

leD long leg esp8266 D7 and D8 esp32 Gpio 25 and Gpio 26

leD short leg 220 Ω resistor esp8266 GnD 220 Ω resistor esp32 GnD

Chapter 7 Wireless loCal area netWork

162

contain at least eight alphanumeric characters. For example, instructions

to set the WLAN SSID (Service Set Identifier), which is the network name,

password, and IP address to ESP8266, 12345678, and 192.168.2.1 are

char ssidAP[] = "ESP8266"; // WLAN SSID

char passwordAP[] = "12345678"; // and password

IPAddress local_ip(192,168,2,1); // pre-defined IP address,

IPAddress gateway(192,168,2,1); // gateway

IPAddress subnet(255,255,255,0); // and subnet mask

In the setup function of a sketch, the WLAN is initialized in access

point (AP) mode with the instruction WiFi.mode(WIFI_AP). The default is

joint access point and station mode, with the instruction WiFi.mode(WIFI_

AP_STA), and station (STA) mode is defined by the instruction

WiFi.mode(WIFI_STA). The network IP address is defined with the

instructions

WiFi.mode(WIFI_AP); // WLAN in AP mode

WiFi.softAP(ssidAP, passwordAP); // WLAN SSID, password

WiFi.softAPConfig(local_ip, gateway, subnet); // initialise WLAN

The WLAN or host IP address is displayed with the instructions

IPAddress IP = WiFi.softAPIP();

Serial.println(IP);

 HTTP request
A client makes an HTTP request for information by sending a URL address

to the server. The server calls a function mapped to the URL and responds

to the client with HTML code for the information provided by the function.

For example, a URL is mapped to a function that changes the state of an

LED, with the LED state displayed on the WLAN web page. In Figure 7- 4,

clicking a button on the WLAN web page sends an HTTP request containing

Chapter 7 Wireless loCal area netWork

163

the URL, associated with the button, to the server, which is the ESP8266 or

ESP32 microcontroller. The server calls the function that is mapped to the

URL, to change the LED state and update the HTML code for the URL. The

server HTTP response is to send the updated HTML code to the client,

which updates the WLAN web page.

The sketch in Listing 7-1 displays, on the WLAN web page, the states

of a green LED and a red LED and the value of a counter that can be reset

to zero. The LED states are controlled by the two functions LEDGfunct

and LEDRfunct, with the function zeroFunct resetting the counter. The

corresponding three URLs, /LEDGurl, /LEDRurl, and /zeroUrl, are

mapped to the functions, by the server.on(URL, function) instruction.

The server HTTP response is made with the instruction server.

send(status code, content type, content). Status code of 200 or 404

indicates a successful HTTP request or that the requested URL could not

be found, respectively. The content type options are plain text, HTML

code, or JSON text (described in Chapter 3 (International weather station)

and Chapter 8 (Updating a web page)) as indicated by text/plain, text/

html, and text/json. When the content type is text/html, the HTML

code is referenced by a string or a function. In Listing 7-1, the HTML code

is referenced by the webcode function, which has three parameters for the

states of the green LED, the red LED, and the counter value. The webcode

function returns a string, page, which contains the HTML code for the WLAN

web page. The server sends the HTML code to the client with the instruction

server.send(200, "text/html", webcode(LEDG, LEDR, counter)).

Figure 7-4. Client HTTP request and server HTTP response

Chapter 7 Wireless loCal area netWork

164

In Listing 7-1, the WLAN SSID and password are defined with the

WLAN IP, and URLs are mapped to the functions that control the LEDs and

the counter and the HTML code for the WLAN web page is defined (see

Listing 7-3). The ESP8266WebServer library references the ESP8266WiFi

library, so the ESP8266WiFi library is not explicitly included in the sketch.

Similarly, for the ESP32 microcontroller, the WiFi library is referenced by

the WebServer library. The HTML code is contained in the buildpage.h

tab to separate the HTML code from the main sketch. The additional tab

is created in the Arduino IDE by selecting the triangle below the Serial

Monitor button, on the right side of the IDE, and choosing New Tab from

the drop-down menu. The New Tab is titled buildpage.h. Note that the loop

function only includes the instruction server.handleClient().

Listing 7-1. WLAN and LED functions

#include <ESP8266WebServer.h> // include ESP8266WebServer lib

ESP8266WebServer server; // associate server with library

char ssidAP[] = "ESP8266"; // WLAN SSID and password

char passwordAP[] = "12345678";

IPAddress local_ip(192,168,2,1); // pre-defined IP address values

IPAddress gateway(192,168,2,1);

IPAddress subnet(255,255,255,0);

#include "buildpage.h" // webpage HTML code

int LEDGpin = D7; // define LED pins

int LEDRpin = D8;

int LEDR = LOW; // default LED states

int LEDG = LOW;

int counter = 0;

void setup()

{

 WiFi.mode(WIFI_AP); // Wi-Fi AP mode

 delay(1000); // setup AP mode

Chapter 7 Wireless loCal area netWork

165

 WiFi.softAP(ssidAP, passwordAP); // initialise Wi-Fi with

 WiFi.softAPConfig(local_ip, gateway , subnet);

// predefined IP address

 server.begin(); // initialise server

 server.on("/", base); // load default webpage

 server.on("/LEDGurl", LEDGfunct); // map URLs to functions:

 server.on("/LEDRurl", LEDRfunct); // LEDGfunct, LEDRfunct

 server.on("/zeroUrl", zeroFunct); // and zeroFunct

 pinMode(LEDGpin, OUTPUT); // define LED pins as output

 pinMode(LEDRpin, OUTPUT);

}

void base() // function to load default webpage

{ // and send HTML code to client

 server.send(200, "text.html", webcode(LEDG, LEDR, counter));

}

void LEDGfunct() // function to change green LED state,

{ // increment counter and

 LEDG = !LEDG; // send HTML code to client

 digitalWrite(LEDGpin, LEDG);

 counter++;

 server.send(200, "text/html", webcode(LEDG, LEDR, counter));

}

void LEDRfunct() // function to change red LED state,

{ // increment counter and

 LEDR = !LEDR; // send HTML code to client

 digitalWrite(LEDRpin, LEDR);

 counter++;

 server.send(200, "text/html", webcode(LEDG, LEDR, counter));

}

Chapter 7 Wireless loCal area netWork

166

void zeroFunct() // function to zero counter

{ // and send HTML code to client

 counter = 0;

 server.send(200, "text/html", webcode(LEDG, LEDR, counter));

}

void loop()

{

 server.handleClient(); // manage HTTP requests

}

When the client initially loads the WLAN web page, the instruction

server.on("/", base) calls the base function, which loads the default

WLAN web page with values of LEDG, LEDR, and the counter set to LOW,

LOW, and zero, respectively. The base function defines the default setting

for the WLAN web page.

The server response to the client HTTP request is to update the

relevant LED state, the counter value, and the HTML code for the WLAN

web page. For example, if the button to turn on the red LED is clicked, then

the client HTTP request contains the URL /LEDRurl, which is displayed

at the top of the WLAN web page (see Figure 7-2). The server calls the

associated LEDRfunct function, and the state of the red LED is changed

from LOW or zero to HIGH or one, and the counter is incremented. The

webcode function then updates the HTML code to include the lines

<td>Red LED is ON now

Press to turn Red LED OFF</td>

When the server responds to the client by sending the updated HTML

code, the WLAN web page displays the text Red LED is ON now, and the

button text is updated to Press to turn Red LED OFF. On the web browser,

the web page loading indicator, located beside the web page title, moves

Chapter 7 Wireless loCal area netWork

167

across the web page as the web page loads and the URL 192.168.2.1/

LEDRurl is displayed.

Clicking the zero button sends the URL /zeroUrl to the server, and

the counter value is reset to zero by the mapped function, zeroFunct.

The webcode function updates the HTML code <p>Counter is

"+String(counter)+" now<a href='/zeroUrl' with the counter value of

zero, and the WLAN web page displays the text Counter is 0 now.

With an ESP8266 microcontroller as the WLAN access point, the

web server library instructions are

#include <ESP8266WebServer.h>

ESP8266WebServer server

and the corresponding instructions for an ESP32 microcontroller are

#include <WebServer.h>

WebServer server(80); // requires a port number

Alternatively, at the start of a sketch, instructions in Listing 7-2 are

included to accommodate both an ESP8266 and ESP32 microcontroller

with the LED pin definitions.

Listing 7-2. Pin definitions for ESP8266 and ESP32 development

boards

#ifdef ESP8266

 #include <ESP8266WebServer.h> // include ESP8266 library

 ESP8266WebServer server;

 int LEDGpin = D7; // define LED pins

 int LEDRpin = D8;

#elif ESP32

 #include <WebServer.h> // include ESP32 library

 WebServer server (80);

 int LEDGpin = 26; // define LED pins

 int LEDRpin = 25;

Chapter 7 Wireless loCal area netWork

168

#else // Arduino IDE error message

 #error "ESP8266 or ESP32 microcontroller only"

#endif

 HTML code
A detailed description of HTML (HyperText Markup Language) is outside

the scope of the book, but www.w3schools.com is recommended for

information on HTML and CSS (Cascading Style Sheets), for building and

defining the style of web pages.

Briefly, an HTML page consists of a <head> section, where the web

page title and styles are defined, and a <body> section, which contains the

web page content. The sections are bracketed with <head>...</head> and

<body>...</body>. Style defines font types and sizes, headers, and spacing

that is bracketed by <style>...</style>. A specific item on a web page is

separately formatted and bracketed by

For example (see Listing 7-3), in the <head> section, the body style

sets the top margin at 50 pixels (96 pixels per inch) and center-aligns text

of size 20 pixels in Arial font. The button style, btn, defines a button width

of 220 pixels, 30-pixel distance between buttons, and black button text of

size 30 pixels. The parameters display:block enable wrap-around of the

button text, margin:auto centers the button in the web page, and text-

decoration:none prevents underlining of an HTML link. The on, off, and

zero styles are combined with the button style to define button background

color. Color details are available from www.w3schools.com/colors/

colors_hex.asp.

The web page includes a table with the content of a table row and a

table cell bracketed by <tr>...</tr> and <td>...</td>, respectively.

A table is used to align web page objects, such as the red and green LED

buttons. The counter button is included in a paragraph, bracketed by

<p>...</p>.

Chapter 7 Wireless loCal area netWork

http://www.w3schools.com
http://www.w3schools.com/colors/colors_hex.asp
http://www.w3schools.com/colors/colors_hex.asp

169

Listing 7-3. HTML code for WLAN web page

String webcode(int LEDG, int LEDR, int counter)

{

 String page = "<!DOCTYPE html><html><head>";

 page +="<title>Local network</title>";

 page +="<style>";

 page +="body {margin-top:50px; font-family:Arial;";

 page +="font-size:20px; text-align:center}";

 page +=".btn {display:block; width:220px;";

 page += "margin:auto; padding:30px}";

 page +=".btn {font-size:30px; color:black;";

 page += "text-decoration:none}";

 page +=".on {background-color:SkyBlue}";

 page +=".off {background-color:LightSteelBlue}";

 page +=".zero {background-color:Thistle}";

 page +="td {font-size:30px; margin-top:50px;";

 page += "margin-bottom:5px}";

 page +="p {font-size:30px; margin-top:50px;";

 page += "margin-bottom:5px}";

 page +="</style></head>";

 page +="<body>";

 page +="<h1>ESP8266 local area network</h1>";

 page +="<table style='width:100%'><tr>";

 if(LEDG>0)

 {

 page +="<td>Green LED is ON now";

 page +="";

 page +="Press to turn Green LED OFF</td>";

 }

Chapter 7 Wireless loCal area netWork

170

 else

 {

 page +="<td>Green LED is OFF now";

 page +="";

 page +="Press to turn Green LED ON</td>";

 }

 if(LEDR>0)

 {

 page +="<td>Red LED is ON now";

 page +="";

 page +="Press to turn Red LED OFF</td>";

 }

 else

 {

 page +="<td>Red LED is OFF now";

 page +="";

 page +="Press to turn Red LED ON</td>";

 }

 page +="</tr></table>";

 page +="<p>Counter is "+String(counter);

 page +=" now<a href='/zeroUrl'";

 page +="class='btn zero'>Press to zero counter</p>";

 page +="</body></html>";

 return page;

}

HTML code for a web page can be included in the main sketch, but it

is included as an additional tab, for example, buildpage.h, to separate the

main sketch from the HTML code and make the sketch easier to interpret.

The additional tab is created in the Arduino IDE by selecting the triangle

below the Serial Monitor button, on the right side of the IDE, and choosing

New Tab from the drop-down menu. The New Tab is titled buildpage.h.

Chapter 7 Wireless loCal area netWork

171

The webcode function (see Listing 7-3) is contained in the buildpage.h

tab, defined by the instruction #include "buildpage.h", in the first

section of Listing 7-1. The buildpage.h tab is referenced with quotation

marks, " ", and not with angular brackets, < >, which is for a library. The

webcode function returns a string, page, containing the HTML code of the

WLAN web page. The HTML code is built up line-by-line as a string and

includes conditional statements to change the HTML code, depending on

values of the LEDG, LEDR, and counter variables.

The whole web page is reloaded even if only one data value has

changed. AJAX enables updating a web page with only the updated value,

rather than reloading the whole web page.

When running the sketch in Listings 7-1 and 7-3, the browser, such

as Google Chrome or Mozilla Firefox, on your laptop, Android tablet, or

mobile must be connected to the server listed as ESP8266. The URL to

access the web page is 192.168.2.1, as defined in Listing 7-1.

 XML HTTP requests, JavaScript, and AJAX
An XML (eXtensible Markup Language) HTTP request updates a specific

variable on a web page, rather than having to reload the whole web page.

The combination of an XML HTTP request with JavaScript commands, to

manage the XML HTTP request, is AJAX (Asynchronous JavaScript and XML).

An example AJAX code for an XML HTTP request is given in Listing 7-4.

When the response to the XML HTTP request is ready, indicated by a

readyState value of 4, and if the XML HTTP request is successful, with a

status value of 200 (see [1] in Listing 7-4), then the XML HTTP request

object sends a request to the server to update information on the variable

(see [2] in Listing 7-4) for the URL (see [3] in Listing 7-4). On the web

browser, the web page loading indicator, located beside the web page title,

is now absent. Further information on XML HTTP requests, JavaScript, and

AJAX is available at www.w3schools.com.

Chapter 7 Wireless loCal area netWork

http://www.w3schools.com

172

Listing 7-4. AJAX code for XML HTTP request

<script> // start of JavaScript

var xhr = new XMLHttpRequest(); // XMLHttpRequest object

xhr.onreadystatechange = function()

{ // [1] if request successful

 if(this.readyState == 4 && this.status == 200)

 document.getElementById(variable).innerHTML =

this.responseText; // [2] update variable

};

xhr.open('GET', URL, true); // [3] at URL

xhr.send();

</script> // end of JavaScript

The XML HTML code is included as a string literal, as there are no

variables in the code, which avoids the line-by-line build-up of a string

for the HTML code, as used in Listing 7-3. The JavaScript and XML HTTP

request instructions, stored as a string literal in PROGMEM, are bracketed

by R"(and)", which can be extended to R"str(and)str", where str is

a string of characters that does not appear in the AJAX code. An example

string is === with R"(=== and ===)" bracketing the string literal. In

JavaScript, both a single quote, ', or double quotes, ", are used to bracket a

string, with single quotes preferred in the book.

Inclusion of XML HTTP requests requires changes to the main sketch

and the HTML code. For the LEDGfunct, LEDRfunct, and zeroFunct

functions of the main sketch in Listing 7-1, the instruction server.

send(200, "text/html", webcode(LEDG, LEDR, counter)) is replaced

with server.send(200, "text/plain", str). Only the updated variable,

contained in the string str, is sent by the server to the client for updating

the web page, rather than the server sending HTML code for the whole

Chapter 7 Wireless loCal area netWork

173

web page. For example, changes to the function LEDRfunct are indicated

in bold, with the function LEDGfunct updated similarly:

void LEDRfunct() // function to change red LED state

{

 LEDR = !LEDR; // change LED state

 digitalWrite(LEDRpin, LEDR);

 counter++; // increment counter

 String str = "ON";

 if(LEDR == LOW) str = "OFF"; // map string str to LED state

 server.send(200, "text/plain", str); // send response to client

}

The function zeroFunct is also changed to only send the updated

counter value:

void zeroFunct() // function to zero counter

{

 counter = 0; // reset counter

 String str = String(counter); // convert counter to a string

 server.send(200, "text/plain", str); // send response to client

}

The base function sends the default web page HTML code to the client

with the parameter page, rather than calling the webcode function.

The HTML and AJAX code is shown in Listing 7-6. The <style> section

is identical, in content, to the <style> section in Listing 7-3. The <body>

section now includes HTML code for the web page layout and AJAX code

for the XML HTTP requests to update the web page. JavaScript scripts,

bracketed by <script> and </script>, are positioned prior to the HTML

</body> code to improve web page display speed.

Chapter 7 Wireless loCal area netWork

174

Differences between the HTML code in Listing 7-2 and the AJAX code

in Listing 7-6 are illustrated with respect to the button controlling the

green LED. In Listing 7-2, the HTML code for the table cell containing the

button for the green LED, when the green LED is on, is

<td>Green LED is ON now

 Press to turn Green LED OFF</td>

and the HTML code for when the green LED is off is

<td>Green LED is OFF now

 Press to turn Green LED ON</td>

For each state of the green LED, the HTML code specifies the text

above the button, the URL associated with the button, a href='/LEDGurl',

the button class, and the text on the button.

In Listing 7-6, the HTML code to update the web page button to

control the green LED is

<td>Green LED is OFF now</td>

<td><button class = 'btn off' id='Green LED'

 onclick = 'sendData(id)'>Press to turn Green LED ON

</button></td>

The HTML code specifies the text above the button with the green LED

state held by the variable with identity 'LEDG', which has a default value of

OFF, the button class, and the text on the button. Clicking the button, with

identity defined by id='Green LED', calls the function sendData with the

button identity parameter.

The AJAX code for the sendData function relevant to controlling the

green LED button is given in Listing 7-5. The sendData function updates

the button state to btn on or btn off and the button text to Press to turn

Green LED ON or Press to turn Green LED OFF. The sendData function sets

the values of variable for the XML HTTP request instructions and URL

Chapter 7 Wireless loCal area netWork

175

document.getElementById(variable).innerHTML = this.responseText

xhr.open('GET', URL, true)

and, finally, sends the XML HTTP response.

Listing 7-5. AJAX code for updating a variable

function sendData(butn)

{

 if(butn == 'Red LED' || butn == 'Green LED')

 {

 var state = document.getElementById(butn).className;

 state = (state == 'btn on' ? 'btn off' : 'btn on');

 text = (state == 'btn on' ? butn + ' OFF' : butn + ' ON');

 document.getElementById(butn).className = state;

 document.getElementById(butn).innerHTML = 'Press to turn '

+ text;

 }

 var URL, variab, text;

 else if(butn == 'Green LED')

 {

 URL = 'LEDGurl';

 variab = 'LEDG';

 }

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function(butn)

 {

 if (this.readyState == 4 && this.status == 200)

 document.getElementById(variab).innerHTML = this.

responseText;

 };

Chapter 7 Wireless loCal area netWork

176

 xhr.open('GET', URL, true);

 xhr.send();

}

The complete AJAX code to manage XML HTTP requests and update

the web page, when a button to control the red or green LED or to zero the

counter is clicked, is given in Listing 7-6.

Listing 7-6. AJAX code for WLAN web page

char page[] PROGMEM = R"(

<!DOCTYPE html><html><head>

<title>Local network</title>

<style>

body {margin-top:50px; font-family:Arial}

body {font-size:20px; text-align:center}

.btn {display:block; width:280px; margin:auto; padding:30px}

.btn {font-size:30px; color:black; text-decoration:none}

.on {background-color:SkyBlue}

.off {background-color:LightSteelBlue}

.zero {background-color:Thistle}

td {font-size:30px; margin-top:50px; margin-bottom:5px}

p {font-size:30px; margin-top:50px; margin-bottom:5px}

</style></head>

<body>

<h1>ESP8266 local area network</h1>

<table style='width:100%'><tr>

<td>Green LED is OFF now</td>

<td>Red LED is OFF now</td>

</tr></table>

<table style='width:100%'><tr>

<td><button class = 'btn off' id='Green LED'

 onclick = 'sendData(id)'>Press to turn Green LED ON

</button></td>

Chapter 7 Wireless loCal area netWork

177

<td><button class = 'btn off' id='Red LED'

 onclick = 'sendData(id)'>Press to turn Red LED ON

</button></td>

</tr></table>

<p>Counter is 0 now</p>

<button class = 'btn zero' id = 'zero'

 onclick = 'sendData(id)'>Press to zero counter</button>

<script>

function sendData(butn)

{

 var URL, variab, text;

 if(butn == 'Red LED') // set URL and variab values

 { // for Red LED button

 URL = 'LEDRurl';

 variab = 'LEDR';

 }

 else if(butn == 'Green LED') // or for Green LED button

 {

 URL = 'LEDGurl';

 variab = 'LEDG';

 }

 else if(butn == 'zero') // or for the zero button

 {

 URL = 'zeroUrl';

 variab = 'counter';

 }

 if(butn == 'Red LED' || butn == 'Gree n L ED')

 { // change button class and text

 var state = document.getElementById(butn).className;

 state = (state == 'btn on' ? 'btn off' : 'btn on');

Chapter 7 Wireless loCal area netWork

178

 text = (state == 'btn on' ? butn + ' OFF' : butn + ' ON');

 document.getElementById(butn).className = state;

 document.getElementById(butn).innerHTML = 'Press to turn '

+ text;

 }

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function(butn)

 {

 if (this.readyState == 4 && this.status == 200)

 document.getElementById(variab).innerHTML = this.

responseText;

 };

 xhr.open('GET', URL, true);

 xhr.send();

}

</script>

</body></html>

)";

When the buttons that control the red and green LEDs are clicked,

an XML HTTP request is made by the client to update values of the

LED states, but the counter is not automatically updated. The interval

between repeated XML HTTP requests is defined with the instruction

setInterval(reload, 1000), with the reload function making an XML

HTTP request every 1000 ms, as shown in Listing 7-7. In the main sketch,

the /countURL URL is mapped to the countFunct function with the

instruction server.on("/countUrl", countFunct) included in the setup

function. Instructions for the countFunct function are

Chapter 7 Wireless loCal area netWork

179

void countFunct() // function to update counter

{

 String str = String(counter); // convert counter to a string

 server.send(200, "text/plain", str); // send response to client

}

The AJAX code to periodically update the counter in Listing 7-7 is

incorporated between the <script> and </script> instructions in

Listing 7-6.

Listing 7-7. AJAX code to periodically update the counter

setInterval(reload, 1000);

function reload()

{

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function()

 {

 if(this.readyState == 4 && this.status == 200)

 document.getElementById('counter').innerHTML = this.

responseText;

 };

 xhr.open('GET', 'countUrl', true);

 xhr.send();

}

The two approaches, with HTML code and with AJAX code, result

in the same information being displayed on the web page, but with

HTML code, the whole web page is reloaded with every client request. In

contrast, with AJAX code, only a specific variable is updated on the web

page. The AJAX code is double the length of the HTML code and may be

more difficult to interpret. Updating only the specific item on a web page,

rather than reloading the whole web page, is advantageous for web pages

containing substantial information.

Chapter 7 Wireless loCal area netWork

180

 Summary
A wireless local area network was established with an ESP8266 or ESP32

microcontroller, as the WLAN server. The browser of an Android tablet or

mobile phone, which is the client, accessed the WLAN using an IP address

and password defined by the sketch. The WLAN web page displayed the

states of two LEDs, connected to the ESP8266 or ESP32 development

board, and a counter value. The LED states were remotely controlled

by clicking the client web page buttons. The web page HTML code was

built line-by-line as a string, and the whole web page had to be reloaded

when updated information was displayed. AJAX code consisting of XML

HTTP requests and JavaScript instructions, incorporated as a string literal,

enabled updating of only specific variables on the web page, rather than

reloading the whole web page.

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: ESP32 DEVKIT DOIT or

NodeMCU board

• LED: 2×

• Resistor: 2× 220 Ω

Chapter 7 Wireless loCal area netWork

181© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_8

CHAPTER 8

Updating a web page
Devices connect to a wireless local area network (WLAN) with Wi-Fi

communication (see Chapter 7 (Wireless local area network)). A router

connected to an Internet Service Provider (ISP), through a telephone

line using DSL (Digital Subscriber Line) technology, provides access to

the Internet (see Figure 8-1). The Internet is formed by interconnected

computer networks using the Internet Protocol suite, consisting of the

Transmission Control Protocol and the Internet Protocol (TCP/IP),

to globally link devices. The World Wide Web (WWW) identifies

information resources by URLs (Uniform Resource Locators). The client

or web browser, such as Google Chrome or Mozilla Firefox, sends an

HTTP (HyperText Transfer Protocol) request to the server device hosting

the resource to retrieve information at the web address defined by the

URL. The server responds to the client HTTP request, and the client

displays the requested web page information on the Android tablet or

mobile phone. The client must request web page information from the

server, as the server cannot impose updates on the client. The exception is

WebSocket, as discussed in Chapter 9.

https://doi.org/10.1007/978-1-4842-6336-5_8#DOI

182

In this chapter, an ESP8266 or an ESP32 microcontroller is the server.

The web server library instructions for the ESP8266 development board are

#include <ESP8266WebServer.h>

ESP8266WebServer server

and for the ESP32 development board are

#include <WebServer.h>

WebServer server(80); // requires a port number

To demonstrate the process of a client requesting information from

a server, the sketch in Listing 8-1 displays the BMP280 temperature

reading, a counter, and the state of an LED (see Figure 8-2). The web page

is automatically refreshed, and the reloading time is determined by the

web page HTML code <meta http-equiv='refresh' content='N'>,

with a refresh every N seconds. A function, BMP, updates the BMP280

temperature reading, increments the counter, and changes the LED state;

and the server then sends the updated web page HTML code to the client.

The timing of the BMP function is controlled by the Ticker library, with the

instruction timer.attach(T, BMP), and the BMP function is called every

T seconds. If the web page refresh interval, N, is substantially less than

the BMP function call interval, T, then the client will wait (T – N) seconds

before the server sends the updated HTML code. In Listing 8-1, the BMP

function call interval equals N + 1 seconds, but not N seconds as the server

and client are not synchronized.

Figure 8-1. Client, Internet Service Provider, and WWW

Chapter 8 Updating a web page

183

Figure 8-3 shows the BMP280 temperature sensor and LED with

an ESP8266 and ESP32 development board. Connections are given in

Table 8-1. The Adafruit_BMP280 library is available within the Arduino

IDE.

Figure 8-2. BMP280 and LED counter web page

Figure 8-3. BMP280 and LED with LOLIN (WeMos) D1 mini and
ESP32 DEVKIT DOIT

Chapter 8 Updating a web page

184

In the setup function of Listing 8-1, the Wi-Fi connection is established,

the server IP address is displayed on the Serial Monitor, the WLAN

web page is mapped to the webcode function, and the timing of the

BMP function is defined. The ESP8266WiFi library is referenced by the

ESP8266WebServer library, so does not need to be explicitly included in

the sketch, similarly for the ESP32 microcontroller with WebServer and

WiFi libraries. The webcode function returns a string, page, containing the

web page HTML code with updated values of the temperature, counter,

and LED state. There are no conditional statements in the HTML code, as

in Chapter 7 (Wireless local area network), so the web page URL is mapped

to the webcode function directly. A line-by-line build-up of the HTML code

incorporates the variables temp, counter, and LED, which are not constant,

so HTML code cannot be included as a string literal. Variable values in

HTML code are enclosed in single quotes, as in the instruction "<meta

http-equiv='refresh' content='9'>" with the HTML code enclosed in

double quotes to indicate a string.

Table 8-1. BMP280 and LED with ESP8266 and ESP32 development

boards

Component ESP8266 Connections ESP32 Connections

bMp280 VCC 3V3 3V3

bMp280 gnd gnd gnd

bMp280 Sda d2 gpiO 21

bMp280 SCK d1 gpiO 22

bMp280 Sd0 gnd gnd

Led long leg d3 gpiO 23

Led short leg 220 Ω resistor gnd 220 Ω resistor gnd

Chapter 8 Updating a web page

185

Listing 8-1. HTTP request with BMP280 and LED

#include <ESP8266WebServer.h> // include ESP8266WebServer lib

ESP8266WebServer server; // associate server with library

char ssid[] = "xxxx"; // change xxxx to Wi-Fi SSID

char password[] = "xxxx"; // change xxxx to Wi-Fi password

#include <Adafruit_Sensor.h> // include Unified Sensor

#include <Adafruit_BMP280.h> // and BMP280 libraries

Adafruit_BMP280 bmp; // associate bmp with BMP280

int BMPaddress = 0x76; // I2C address of BMP280

#include <Ticker.h> // include Ticker library

Ticker timer; // associate timer with Ticker lib

int lag = 10; // set timer interval at 10s

int LEDpin = D3; // LED pin on D3

String LED = "off"; // initial LED state

int count = 0;

String temp, counter;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 WiFi.begin(ssid, password); // initialise Wi-Fi

 while (WiFi.status() != WL_CON NECTED) delay(500);

 // wait for Wi-Fi connect

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display server IP address

 server.begin();

 server.on("/", webcode); // map URL to function

 bmp.begin(BMPaddress); // initialise BMP280

 timer.attach(lag, BMP); // BMP called every lag seconds

 pinMode(LEDpin, OUTPUT);

 digitalWrite(LEDpin, LOW); // turn off LED

}

Chapter 8 Updating a web page

186

void BMP() // function to get readings

{

 temp = String(bmp.readTemperature()); // update BMP280 reading

 counter = String(count++); // increment counter

 digitalWrite(LEDpin, !digitalRead(LEDpi n));

// turn on or off the LED

 if(LED == "on") LED = "off"; // update LED state

 else LED = "on";

 server.send (200, "text/html", webcode());

} // send response to client

String webcode() // return HTML code

{

 String page;

 page = "<!DOCTYPE html><html><head>"; // refresh every 9s

 page += "<meta http-equiv='refresh' con tent= '9'>";

 page += "<title>ESP8266</title></head>";

 page += "<body>";

 page += "<h2>BMP280</h2>"; // display temp

 page += "<p>Temperature: " + temp + " " + "& degC</p>";

 page += "<p>Counter: " + counter + "</p>"; // counter

 page += "<p>LED is " + LED + "<p>"; // LED state

 page += "</body></html>";

 return page;

}

void loop()

{

 server.handleClient(); // manage HTTP requests

}

Chapter 8 Updating a web page

187

The client HTTP request results in the server sending the HTML code

for the whole web page with the whole web page then reloaded. The

web page in Listing 8-1 is for example purposes only, but if the web page

contained more information and images, then the time to reload the whole

web page would be important.

Listing 8-1 is for an ESP8266 microcontroller. The only changes to the

sketch for an ESP32 microcontroller are including the WebServer library,

rather than the ESP8266WebServer library, and defining the LED pin. An

alternative to microcontroller-specific sketch instructions is to use the

compiler directive equivalent of an if..then..else group for conditional

compilation of the sketch. Instructions for both the ESP8266 and ESP32

microcontrollers are included in the sketch. If the microcontroller is not

an ESP8266 or ESP32, then an error message is displayed in the Arduino

IDE. Further details are included in Chapter 21 (Microcontrollers). For

example, Listing 8-2 contains the instructions to include at the start of

Listing 8-1.

Listing 8-2. Pin definitions for ESP8266 and ESP32 development

boards

#ifdef ESP32

 #include <WebServer.h> // include ESP32 library

 WebServer server (80); // and define LED pin

 int LEDpin = 23;

#elif ESP8266

 #include <ESP8266WebServer.h> // include ESP8266 library

 ESP8266WebServer server; // and define LED pin

 int LEDpin = D3;

#else // Arduino IDE error message

 #error "ESP8266 or ESP32 microcontroller only"

#endif

Chapter 8 Updating a web page

188

 XML HTTP requests, JavaScript, and AJAX
Chapter 7 (Wireless local area network) describes updating a specific

variable on a web page with an XML HTTP request, rather than having

to reload the whole web page. Converting the sketch in Listing 8-1 from

HTML code to AJAX code does not require the Ticker library, so the

following instructions are deleted

#include <Ticker.h>

Ticker timer

int lag = 10

timer.attach(lag, BMP)

as timing of web page updates is managed by AJAX code. The BMP

function in Listing 8-1 is no longer required and is split into three

functions, tempFunct, countFunct, and LEDfunct, to update the BMP280

temperature reading, increment the counter, and change the LED state.

Each function sends updated information for one variable to the client.

The base function replaces the webcode function, in Listing 8-1, and

sends the default web page HTML code to the client when the web

page is initially loaded. URLs are mapped to the four functions with the

instructions

server.on("/", base);

server.on("/tempUrl", tempFunct);

server.on("/countUrl", countFunct);

server.on("/LEDurl", LEDfunct);

The sketch in Listing 8-3 lists the functions to source data and instruct

the server to send the information to the client. Note that the parameters

“text/html” and page are included in the base function for the server to

return HTML code to the client, while the tempFunct, countFunct, and

LEDfunct functions include “text/plain” and the variable name.

Chapter 8 Updating a web page

189

Listing 8-3. XML HTTP requests for the BMP280 temperature,

counter, and LED state

void base() // function to load default webpage

{ // and send HTML code to client

 server.send (200, "text/html", page);

}

void tempFunct() // function to get temperature reading

{ // and send value to client

 temp = String(bmp.readTemperature());

 server.send (200, "text/plai n", temp);

} // send plain text not HTML code

void countFunct() // function to increment counter

{ // and send value to client

 counter = String(count++);

 server.send (200, "text/plain", counter);

}

void LEDfunct() // function to update LED

{ // and send LED state to client

 digitalWrite(LEDpin, !digitalRead(LEDpin));

 if(LED == "on") LED = "off";

 else LED = "on";

 server.send (200, "text/plain", LED);

}

Listing 8-4 contains the AJAX code for the web page and XML HTTP

requests, defined as a string literal. The AJAX code is contained in the

buildpage.h tab to separate the AJAX code from the main sketch with the

instruction #include "buildpage.h". The additional tab is created in the

Arduino IDE by selecting the triangle below the Serial Monitor button,

on the right side of the IDE, and choosing New Tab from the drop-down

Chapter 8 Updating a web page

190

menu. The New Tab is titled buildpage.h. Note that the loop function only

includes the instruction server.handleClient().

The <body> section contains the web page HTML code; and the

variables tempId, countId, and LEDid correspond to the XML HTTP

requests. The JavaScript instruction setInterval(function, time)

controls the time interval, in milliseconds, between the XML HTTP

requests, which is five seconds for the reload function to obtain the

temperature reading and one second for the counter and LED state.

JavaScript scripts, bracketed by <script>...</script>, are positioned

prior to the HTML </body> code to improve web page display speed.

The whole web page is no longer reloaded when the temperature or

LED state is updated, as only specific variables are renewed. On the web

browser, the web page loading indicator, located beside the web page title,

is now absent.

Listing 8-4. AJAX request with BMP280 and LED

char page[] PROGMEM = R"(

<!DOCTYPE html><html>

<head><title>ESP8266</title></head>

<body>

<h2>BMP280</h2>

<p>Temperature: 0°C</p>

<p>Counter: 0</p>

<p>LED is <p>

<script>

setInterval(reload, 5000); // time in milliseconds

function reload() // reload function called every 5s

{ // to get tempId from tempUrl

 var xhr = new XMLHttpRequest();

Chapter 8 Updating a web page

191

 xhr.onreadystatechange = function()

 {

 if(this.readyState == 4 && this.status == 200)

 document.getElementById('tempId').innerHTML =

this.responseText;

 };

 xhr.open('GET', 'tempUrl', true);

 xhr.send();

}

setInterval(LEDreload, 1000);

function LEDreload() // LEDreload function called every 1s

{ // to get countId from countUrl

 var xhr = new XMLHttpRequest(); // and LEDid from LEDurl

 xhr.onreadystatechange = function()

 {

 if(this.readyState == 4 && this.status == 200)

 document.getElementById('countId').innerHTML =

this.responseText;

 };

 xhr.open('GET', 'countUrl', true);

 xhr.send();

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function()

 {

 if(this.readyState == 4 && this.status == 200)

 document.getElementById('LEDid').innerHTML =

this.responseText;

 };

 xhr.open('GET', 'LEDurl', true);

 xhr.send();

}

Chapter 8 Updating a web page

192

</script>

</body></html>

)";

Each variable displayed on the web page is associated with an XML

HTTP request, the URL associated with the variable, and a function to obtain

the variable value. For consistency and to make the sketch more readily

interpretable, a variable named X is referenced as Xid in the web page HTML

code and XML HTTP request, and the URL is referenced as Xurl in both

the setup function of the main sketch and the XML HTTP request, with the

function sourcing the variable value referenced as Xfunct in the main sketch.

 JSON
In Listing 8-3, each variable was associated with a specific function attached

to a specific URL; and in Listing 8-4, each variable was updated by a separate

XML HTTP request. For data collected simultaneously, it is more efficient

to have one XML HTTP request for all variables and one function, attached

to one URL, to source the information. JSON (JavaScript Object Notation)

combines several variable values as text, which are sent by the server to the

client. The client parses the JSON text to the component variables when

updating the web page. JSON text consists of variable name and value pairs,

each in double quotes and separated by a colon, with variable name and

value pairs separated by a comma and the JSON text contained in curly

brackets, {}. An example JSON text with three variable name and value pairs

is {"device": "LED", "state": "off", "pin": "15"}.

In Listing 8-4, the counter and LED state are updated simultaneously,

so two XML HTTP requests, two URLs, and two functions are combined.

The combined URL, "/countLEDurl", and combined function,

countLEDfunct, are defined by the instruction server.on("/countLEDurl",

countLEDfunct) in the setup function of the main sketch. The

countLEDfunct function in the main sketch consists of the instructions

Chapter 8 Updating a web page

193

void countLEDfunct()

{

 count++; // increment count

 digitalWrite(LEDpin, !digitalRead(LEDpi n));

// turn on or off the LED

 if(LED == "on") LED = "off"; // update LED state

 else LED = "on";

 JsonConvert(count, LED); // convert to JSON text

 server.send (200, "text/json", json); // send JSON text to client

}

The string json is defined in the main sketch, with the instruction

String json. Note the server.send() instruction indicates that JSON text

is being sent. The JsonConvert function, to combine the integer count and

string LED into JSON text, consists of the instructions

String JsonConvert(int val1, String val2)

{

 json = "{\"var1\": \"" + String(val1) + "\",";

 json += " \"var2\": \"" + val2 + "\"}";

 return json;

}

which produce the JSON text of {"var1": "123", "var2": "off"}

when the counter, val1, is equal to 123 and the LED state, val2, is off. The

character pair, \", which is underlined to emphasize that the characters

are paired, is interpreted as a double quote character and not an end of a

string indicator. The \ character is termed the backslash escape character.

The HTML code to display the counter and LED state is changed to

<p>Counter: 0</p>

<p>LED is <p>

Chapter 8 Updating a web page

194

which references the JSON names of var1 and var2. The JavaScript code to

process the text sent by the server

document.getElementById('Xid').innerHTML = this.responseText

is changed to

var obj = JSON.parse(this.responseText);

document.getElementById('var1').innerHTML = obj.var1

document.getElementById('var2').innerHTML = obj.var2

which parses the JSON text into the two name and value pairs for the

counter, var1, and LED state, var2.

Listing 8-5 contains the updated AJAX code for the web page by

combining the two XML HTTP requests and two URLs for the counter

and LED state in Listing 8-4 and parsing JSON text, with the updates

highlighted in bold.

Listing 8-5. AJAX code with JSON parsing

char page[] PROGMEM = R"(

<!DOCTYPE html><html>

<head><title>ESP8266</title></head>

<body>

<h2>BMP280</h2>

<p>Temperature: 0°C</p>

<p>Counter: 0</p>

<p>LED is <p>

<script>

setInterval(reload, 5000); // time in milliseconds

function reload() // update the temperature every 5s

{

Chapter 8 Updating a web page

195

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function()

 {

 if(this.readyState == 4 && this.status == 200)

 {document.getElementById('tempId').innerHTML = this.

responseText;}

 };

 xhr.open('GET', '/tempUrl', true);

 xhr.send();

}

setInterval(countLEDreload, 1000);

function countLEDreload() // update the counter and

{ // LED state every second

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function()

 {

 if(this.readyState == 4 && this.status == 200)

 { // parse JSON text

 var obj = JSON.parse(this.responseText);

 document.getElementById('var1').innerHTML = obj.var1;

 document.getElementById('var2').innerHTML = obj.var2;

 }

 };

 xhr.open('GET', '/countLEDurl', true);

 xhr.send();

}

</script>

</body></html>

)";

Chapter 8 Updating a web page

196

 Accessing WWW data
Displaying, on a web page, data supplied by an ESP8266 or ESP32

microcontroller does not require access to the Internet, as a WLAN

to connect the client with the server can be established by the

microcontroller, acting as the server, as discussed in Chapter 7 (Wireless

local area network). To demonstrate displaying data accessed from the

World Wide Web, date and time information is accessed from the websites

www.calendardate.com/todays.htm and 24timezones.com/Edinburgh/

time, with temperature and humidity for Edinburgh, Scotland, accessed

from the website www.metoffice.gov.uk.

Information is obtained with an API (Application Programming

Interface) key, to retrieve data using HTTP requests, which is issued by

ThingSpeak (www.thingspeak.com). Under the ThingSpeak Apps menu,

the ThingHTTP option generates an API key to access a specific item on a

given web page. For example, an API key to source the current time from

the 24timezones.com/Edinburgh/time website is generated by right-

clicking the displayed time and selecting Inspect Element (Q). On the

displayed Web Console, click the three dots and select Dock to Right. The

HTML code corresponding to the selected time is highlighted in blue, and

moving the cursor over the HTML code generates a box surrounding the

selected item on the web page. Right-click the highlighted HTML code

and select Copy and XPath. On the web page thingspeak.com/apps/

thinghttp, select New ThingHTTP, and enter a name for the API and the

URL of the web page containing the data, for example, 24timezones.com/

Edinburgh/time, and in the Parse String box, paste the copied XPath and

click Save ThingHTTP. An API key is generated by ThingSpeak to access

the required information, which is tested by loading a web page with URL

api.thingspeak.com/apps/thinghttp/send_request?api_key=API key.

If the ThingSpeak API key returns the message “Error parsing

document, try a different parse string,” then an alternative data source on

the web page or a linked web page is required.

Chapter 8 Updating a web page

http://www.calendardate.com/todays.htm
https://24timezones.com/Edinburgh/time
https://24timezones.com/Edinburgh/time
http://www.metoffice.gov.uk
http://www.thingspeak.com
https://24timezones.com/Edinburgh/time
https://thingspeak.com/apps/thinghttp
https://thingspeak.com/apps/thinghttp
https://24timezones.com/Edinburgh/time
https://24timezones.com/Edinburgh/time
https://api.thingspeak.com/apps/thinghttp/send_request?api_key=API

197

Information obtained with a ThingSpeak API key will require parsing.

For example, date and time information is generated as <p>Today's Date

is Monday June 15, 2020</p> and 6:05:34 PM, Monday 15, June 2020,

respectively, while temperature and humidity are provided in HTML

code as <div data-value=“14.66”>15°</div> and <span class=“humidity”

data- type=“percentage” data-value=“90”>90%, respectively.

The date substring is generated as the text following the text is. The time

substring is text prior to the comma. Both the temperature and humidity

substrings are bracketed by the = and > characters. The toInt and toFloat

functions extract an integer and a real number, respectively, from a string,

provided the first character of the string is a digit.

The sketch in Listing 8-6 accesses the current date, time, temperature, and

humidity with ThingSpeak API keys and parses the information into a JSON

string for inclusion in the server response to the client HTTP request. Note that

the web page updates at 30 second intervals, so the initial values are all zero.

Listing 8-6. Parsing data accessed with ThingSpeak API keys

#include <ESP8266WebServer.h> // include web server library

ESP8266WebServer server; // associate server with library

WiFiClient client; // associate client with Wi-Fi library

#include "buildpage.h" // webpage AJAX code

char ssid[] = "xxxx"; // change xxxx to your Wi-Fi SSID

char password[] = "xxxx"; // change xxxx to your Wi-Fi password

char APItime[] = "xxxx";

char APIdate[] = "xxxx"; // change xxxx to ThingSpeak API key

char APItemp[] = "xxxx";

char APIhumid[] = "xxxx";

char url[] = "/apps/thinghttp/send_request?api_key=";

char host[] = "api.thingspeak.com";

int indexS, indexF, chk, humid;

float temp;

String data, ndata, text, json, mdy, tim;

Chapter 8 Updating a web page

198

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 WiFi.begin(ssid, password); // connect and initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500);

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display server IP address

 server.begin(); // initialise server

 server.on("/", base); // load default webpage

 server.on("/API", APIfunct);

}

void APIfunct()

{

 getData(APIdate, "date"); // call function to access date

 getData(APItime, "time"); // time

 getData(APItemp, "temp"); // temperature

 getData(APIhumid, "humid"); // humidity

 JsonConvert(mdy, tim, temp, humid); // convert to JSON text

 server.send (200, "text/json", json);

}

String JsonConvert(String val1, String val2, float val3, int val4)

{

 json = "{\"var1\": \"" + val1 + "\","; // start with {

 json += " \"var2\": \"" + val2 + " \",";

// end with comma

 json += " \"var3\": \"" + String(val3) + "\",";

 json += " \"var4\": \"" + String(val4) + " \"}"; // end with }

 return json;

}

Chapter 8 Updating a web page

199

void getData(String APIkey, String text) // function to access data

{

 for (int i=0; i<5; i++) // with up to five attempts

 {

 getVal(APIkey, text); // call function to get information

 if(chk > 0) i = 5; // data accessed successfully

 }

}

void getVal(String APIkey, Stri ng text)

{ // function to access information

 chk = 0;

 Serial.print("sourcing ");Serial.println(text);

 client.connect(host, 80);

 client.println(String("GET ") + url + APIkey);

 client.println(String("Host: ") + host);

 client.println("User-Agent: ESP8266/0.1");

 client.println("Connection: close");

 client.println();

 client.flush();

 delay(100);

 while(client.connected()) // while connected to ThingSpeak

 {

 if(client.available()) // if data is available

 { // read data till end of line

 data = client.readStringUnti l('\n');

 Serial.println(data);

 if(text == "humid") // parse humidity data

 {

 indexS = data.lastIndexOf("="); // position of last "=" in string

 indexF = data.indexOf("%");

 ndata = data.substring(indexS+2, indexF-2);

Chapter 8 Updating a web page

200

 humid = ndata.toInt();

 chk = data.length();

 }

 else if(text == "temp") // parse temperature data

 {

 indexS = data.indexOf("="); // position of first "=" in string

 ndata = data.substring(indexS+2);

 temp = ndata.toFloat();

 chk = data.length();

 }

 else if(text == "date") // date: day month dd, yyyy

 {

 indexS = data.indexOf("is");

 mdy = data.substring(indexS+2);

 chk = data.length();

 }

 else if(text == "time") // time: hh:mm:ss AM or PM

 {

 indexF = data.indexOf(",");

 tim = data.substring(0, indexF);

 chk = data.length();

 }

 client.stop(); // close connection after data collected

 delay(100);

 }

 }

}

void base() // function to return HTML code

{

 server.send (200, "text/html", page);

}

Chapter 8 Updating a web page

201

void loop()

{

 server.handleClient(); // handle HTTP requests

}

The parsed information is displayed on a web page at 30-second

intervals (see Listing 8-7), for example purposes only as weather doesn't

generally change that fast. Different time intervals can be selected for the

date, time, and weather parameters by defining separate reload functions

with appropriate time intervals.

Listing 8-7. AJAX code with JSON parsing

char page[] PROGMEM = R"(

<!DOCTYPE html><html>

<head><title>ESP8266</title></head>

<body>

<h2>BMP280</h2>

<p>Date: 00 000 0000</p>

<p>Time1: 00:00:00</p>

<p>Temp is 0°C<p>

<p>Humidity is 0%<p>

<script>

setInterval(APIreload, 30000); // time in milliseconds

function APIreload()

{

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function()

 {

 if(this.readyState == 4 && this.status == 200)

 {

 var obj = JSON.parse(this.responseText);

 document.getElementById('var1').innerHTML = obj.var1;

Chapter 8 Updating a web page

202

 document.getElementById('var2').innerHTML = obj.var2;

 document.getElementById('var3').innerHTML = obj.var3;

 document.getElementById('var4').innerHTML = obj.var4;

 }

 };

 xhr.open('GET', 'API', true);

 xhr.send();

}

</script>

</body></html>

)";

 MQTT broker and IFTTT
Communication between devices on different Wi-Fi networks requires a

different solution than communication between devices within a Wi-Fi

network. The MQTT (Message Queuing Telemetry Transport) protocol

enables communication between devices and an MQTT broker to pass

information between it and one device and between it and a second

device, with the two devices on different Wi-Fi networks. The MQTT

broker enables data transfer between devices without breaching firewall

safeguards. When a device on one Wi-Fi network requests information from

a second device on another network, the information is allowed through

the network firewall, as the request came from the Wi-Fi network. Provision

of information to the MQTT broker is termed publish, and subscribe is the

term to access information from the MQTT broker. There are several MQTT

brokers, and the Cayenne MQTT broker is used in this chapter.

Cayenne (see mydevices.com/cayenne/features) provides a dashboard

to display information from devices connected to an ESP8266 or ESP32

microcontroller (see Figure 8-4). The Cayenne dashboard is visible locally

Chapter 8 Updating a web page

https://mydevices.com/cayenne/features

203

or remotely on cayenne.mydevices.com/cayenne/dashboard/start.

Information from devices is displayed numerically, as a dial, or graphically,

with binary variables displayed as ON/OFF. A device is turned on or off

from the Cayenne dashboard, which provides both local and remote access

to a device.

An IFTTT (If This, Then That) function enables event triggering based

on sensors connected to an ESP8266 or ESP32 development board and

visible on the Cayenne dashboard. For example, if the incident light on a

light-dependent resistor (LDR) increases above a threshold due to a door

opening or time of day, then an IFTTT instruction is sent to the Cayenne

MQTT broker to forward an email or text message to the email address or

mobile phone number stored on the Cayenne dashboard.

Details about Cayenne are accessed at mydevices.com/cayenne/

docs/intro, and the CayenneMQTT library is available in the Arduino

IDE. Communication between the ESP8266 or ESP32 microcontroller

and Cayenne MQTT is through virtual channels, which are arbitrarily

numbered V0, V1, V2, and so on. The instruction to send data to the

Figure 8-4. Cayenne dashboard

Chapter 8 Updating a web page

https://cayenne.mydevices.com/cayenne/dashboard/start
https://mydevices.com/cayenne/docs/intro
https://mydevices.com/cayenne/docs/intro

204

Cayenne dashboard is Cayenne.virtualWrite(virtual channel,

variable, type code, unit code) where the type and unit codes

define attributes of the variable. Several type and unit codes are given in

Table 8-2, with a complete list in the library file CayenneMQTT>src>Caye

nneUtils>CayenneTypes.h. For example, if the variable light is a measure

of luminosity in lux, then the instruction to send the value of light to the

Cayenne dashboard on virtual channel V3 is Cayenne.virtualWrite(V3,

light, "lum", "lux").

Table 8-2. Variable type names and codes

Description Type Name Type Code

barometric pressure tYpe_barOMetriC_preSSUre “bp”

proximity tYpe_prOXiMitY “prox”

Luminosity tYpe_LUMinOSitY “lum”

relative humidity tYpe_reLatiVe_hUMiditY “rel_hum”

temperature tYpe_teMperatUre “temp”

Description Unit Name Unit Code

hectopascal Unit_heCtOpaSCaL “hpa”

Meter Unit_Meter “m”

Lux Unit_LUX “lux”

Fahrenheit Unit_Fahrenheit “f”

Celsius Unit_CeLSiUS “c”

Chapter 8 Updating a web page

205

Including type and unit codes in the Cayenne.virtualWrite()

instruction automatically configures the Cayenne dashboard with the

variable description, relevant icon, and unit of measurement. Note that

Cayenne.virtualWrite() instructions are limited to 60 per minute, so

Listing 8-8 has a ten-second interval between the MQTT messages.

The instruction to read an integer variable on virtual channel 3 in the

Cayenne dashboard is

CAYENNE_IN(3) // define virtual channel number 3

{

 int variable = getValue.asInt(); // read value of integer variable

}

The functions getValue.asDouble() and getValue.asString() read

a real number and a string, respectively, with the channel number not

preceded by V, as in the Cayenne.virtualWrite() instruction.

Information on declaring devices or variables, such as LED state or an

LDR reading, on the Cayenne dashboard is available at mydevices.com/

cayenne/docs/features/#features-dashboard.

An ESP8266 or ESP32 microcontroller is added as a Cayenne

dashboard device by

 1. Selecting Add new at the top left side of the

dashboard

 2. Selecting Device/Widget and selecting

Microcontrollers ➤ Generic ESP8266 or selecting

Bring Your Own Thing for an ESP8266 or ESP32

microcontroller, respectively

The corresponding MQTT username and password, Client ID, MQTT

server, and port details are generated by the Cayenne MQTT broker. Copy

the MQTT username and password and the Client ID to the sketch; then

compile and upload the sketch. The ESP8266 or ESP32 microcontroller

Chapter 8 Updating a web page

https://mydevices.com/cayenne/docs/features/#features-dashboard
https://mydevices.com/cayenne/docs/features/#features-dashboard

206

will then connect to the Cayenne MQTT broker. Adding a device name in

Cayenne differentiates between ESP8266 and ESP32 microcontrollers.

Cayenne dashboard widgets are defined by

 1. Selecting Add new at the top left side of the

dashboard

 2. Selecting Device/Widget, selecting Custom Widgets,

and selecting Button (Controller widget)

 3. Entering the chosen widget name, such as LED

 4. Entering the device name, such as ESP32-A or

ESP8266-project1

 5. Selecting Data ➤ Digital Actuator and selecting

Unit ➤ Digital (0/1)

 6. Selecting the virtual channel number to correspond

with the sketch

 7. Choosing an icon and selecting Add Widget

Figure 8-5 shows examples of defining a controller widget, LED, linked

to virtual channel 0 and formatting the count variable on virtual channel 6

to be displayed as a gauge on the Cayenne dashboard.

Chapter 8 Updating a web page

207

Listing 8-8 displays on a Cayenne dashboard or app (see Figure 8-4)

temperature and pressure measurements from a BMP280 sensor, ambient

light using a light-dependent resistor, and a counter. In the series of

Cayenne.virtualWrite instructions, the virtual channel V2 is not used to

avoid confusion with GPIO 2 for the flashPin variable. Variable headings

are defined with the variable settings option in the Cayenne dashboard,

and graphical displays are also selected for each variable. A controller

widget on virtual channel 0 is created in the Cayenne dashboard, with the

binary widget value from the CAYENNE_IN(0) function used to turn on or

off the LED attached to the ESP8266 development board.

Figure 8-5. Cayenne variables and devices

Chapter 8 Updating a web page

208

Listing 8-8. Cayenne and ESP8266 with LED, LDR, and BMP820

sensor

#include <CayenneMQTTESP8266.h> // Cayenne MQTT library

char ssid[] = "xxxx"; // change xxxx to your Wi-Fi ssid

char password[] = "xxxx"; // change xxxx to Wi-Fi password

char username[] = "xxxx"; // change xxxx to Cayenne username

char mqttpass[] = "xxxx"; // change xxxx to Cayenne password

char clientID[] = "xxxx"; // change xxxx to Cayenne client identity

#include <Adafruit_Sensor.h> // include Adafruit_Sensor library

#include <Adafruit_BMP280.h> // include Adafruit_BMP280 library

Adafruit_BMP280 bmp; // bmp with BMP280 library

int LEDpin = D3; // LED pin

int LDRpin = A0; // light dependent resistor pin

int flashPin = D4; // flashing LED pin

unsigned long count = 0;

int interval = 10000; // 10s interval between MQTT messages

unsigned long lastTime = 0;

float temp, pressure, BasePressure, altitude;

int light;

void setup()

{

 bmp.begin(0x76); // initiate bmp with I2C address

 // initiate Cayenne MQTT

 Cayenne.begin(username, mqttpass, clientID, ssid, password);

 pinMode(LEDpin, OUTPUT); // define LED pins as output

 digitalWrite(LEDpin, LOW);

 pinMode(flashPin, OUTPUT);

}

void loop()

Chapter 8 Updating a web page

209

{

 Cayenne.loop(); // Cayenne loop function

 if(millis()-lastTime > interval)

 {

 temp = bmp.readTemperature(); // BMP280 temperature

 pressure = bmp.readPressure()/100.0; // and pressure

 BasePressure = pressure + 10.0; // assumed sea level pressure

 altitude = bmp.readAltitude(BasePress ure);

// predicted altitude (m)

 light = analogRead(LDRpin); // ambient light intensity

 light = constrain(light, 0, 1023); // constrain light reading

 count++; // increment counter

 if(count>99) count = 0;

 digitalWrite(flashPin, LOW); // turn on then off flashing LED

 delay(10);

 digitalWrite(flashPin, HIGH);

 // send readings to Cayenne on virtual channels

 Cayenne.virtualWrite(V1, temp, "temp", "c");

// temperature reading

 Cayenne.virtualWrite(V3, pressure, "bp", "pa"); // pressure

 Cayenne.virtualWrite(V4, altitude, "prox", "m"); // altitude

 Cayenne.virtualWrite(V5, light, "lum", "lux"); // luminosity

 Cayenne.virtualWrite(V6, count,"prox",""); // counter

 lastTime=millis(); // update time

 }

}

CAYENNE_IN(0) // Cayenne virtual channel 0

{

 digitalWrite(LEDpin, getValue.asInt()); // turn on or off LED

}

Chapter 8 Updating a web page

210

Listing 8-9 uses the Cayenne MQTT functionality to mimic an alarm

system, which is triggered by the light intensity reading on a light-

dependent resistor, such as when a door is opened. If the light intensity

increases above a threshold of 500 and the alarm on the Cayenne

dashboard is set to ON, an email and/or text is sent to notify that the event

has occurred. If the alarm setting is set to OFF, then there is no response

to changes in light intensity. The ESP8266 or ESP32 development board

LED is flashed every two seconds to indicate that the microcontroller is

powered on.

If the alarm setting is set to ON, then the light intensity reading is

sent to the Cayenne MQTT broker on virtual channel 1, but with a value

of zero if the alarm is set to OFF. Alarm and LED controller widgets on

virtual channels 3 and 0 are created on the Cayenne dashboard to turn

on or off the alarm and to provide an indicator that the alarm has been

triggered. Attached to the ESP8266 or ESP32 development board are a blue

(alarmPin) and a red (LEDpin) LED to correspondingly indicate the alarm

state and that the alarm has been triggered. The two LEDs are turned on

or off with the CAYENNE_IN(3) and CAYENNE_IN(0) functions. Triggers

for the LED widget and for email and text notification, based on the alarm

widget, are defined in the Cayenne dashboard IFTTT function. Figure 8-6

shows the Cayenne dashboard with the alarm set to ON and a light

intensity reading of 268, which is below the threshold to trigger the alarm

and turn on the indicator LED widget. Figure 8-7 shows the schematic with

connections in Table 8-3.

Chapter 8 Updating a web page

211

Figure 8-6. Alarm, LED, and light intensity

Figure 8-7. Alarm, LED, and light intensity with LOLIN (WeMos)
D1 mini

Chapter 8 Updating a web page

212

Listing 8-9. Alarm, LED, and light intensity

#include <CayenneMQTTESP8266.h> // Cayenne MQTT library

char ssid[] = "xxxx"; // change xxxx to your Wi-Fi ssid

char password[] = "xxxx"; // change xxxx to your Wi-Fi password

char username[] = "xxxx"; // change xxxx to Cayenne username

char mqttpass[] = "xxxx"; // change xxxx to Cayenne password

char clientID[] = "xxxx"; // change xxxx to Cayenne client identity

int LEDpin = D3;

int alarmPin = D5; // define LED, alarm and LDR pins

int LDRpin = A0;

int flashPin = D4; // flashing LED

int reading, alarm, alert;

int interval = 2000; // 2s interval between LDR readings

unsigned long LDRtime = 0;

Table 8-3. Alarm, LED, and light intensity

Component ESP8266 Connections ESP32 Connections

bMp280 VCC 3V3 3V3

bMp280 gnd gnd gnd

bMp280 Sda d2 gpiO 21

bMp280 SCK d1 gpiO 22

bMp280 Sd0 gnd gnd

Ldr left 3V3 3V3

Ldr right 4.7 kΩ resistor gnd 4.7 kΩ resistor gnd

Ldr right a0 gpiO 36

Led long legs d3, d5 gpiO 23

Led short legs 220 Ω resistor gnd 220 Ω resistor gnd

Chapter 8 Updating a web page

213

void setup()

{

 Cayenne.begin(username, mqttpass, clientID, ssid, password);

 pinMode(LEDpin, OUTPUT); // define LED pins as output

 pinMode(alarmPin, OUTPUT);

 pinMode(flashPin, OUTPUT);

 alarm = 0; // set alarm to OFF

}

void loop()

{

 Cayenne.loop(); // Cayenne loop function

 if(millis() - LDRtime > interval)

 {

 LDRtime = millis();

 reading = analogRead(LDRpin);

 if (alarm == 1) Cayenne.virtualWrite(V1, reading, "lum", "lux");

 else Cayenne.virtualWrite(V1, 0, "lum", "lux");

 digitalWrite(flashPin, LOW);

 delay(10); // flash LED to indicate power on

 digitalWrite(flashPin, HIGH);

 }

}

CAYENNE_IN(0) // Cayenne virtual channel 0

{

 alert = getValue.asInt(); // get alarm triggered status

 digitalWrite(LEDpin, alert); // update alarm triggered LED

}

Chapter 8 Updating a web page

214

CAYENNE_IN(3) // Cayenne virtual channel 3

{

 alarm = getValue.asInt(); // get alarm set state

 digitalWrite(alarmPin, alarm); // update alarm set indicator LED

}

The IFTTT (If This, Then That) function to trigger an event on the

Cayenne dashboard is defined on the Cayenne dashboard and not in the

sketch. Information on the IFTTT features of the Cayenne dashboard

is available at mydevices.com/cayenne/docs/features/#features-

triggers. Three IFTTT triggers are required by the alarm system. When

the light intensity increases above a threshold of 500, with the alarm

widget set to ON, the email and text notification of the event is triggered,

and a second trigger turns on the LED widget, on virtual channel 0, to

indicate that the alarm has been triggered. The third IFTTT trigger turns

off the alarm widget, on virtual channel 3, which indicates that the alarm is

now set to OFF. The LEDs attached to the ESP8266 or ESP32 development

board are turned on or off depending on the values of the alarm and LED

widgets on the Cayenne dashboard.

Cayenne IFTTT triggers are accessed by

 1. Selecting User Menu ➤ Triggers and Alerts at the top

right side of the dashboard

 2. Selecting Trigger and naming the trigger, such as

LEDon

 3. Dragging the device, ESP8266, into the if box

 4. Selecting the trigger, such as light, and selecting the

threshold and Sensor above or Sensor below

 5. Dragging the device, ESP8266, into the then box

Chapter 8 Updating a web page

https://mydevices.com/cayenne/docs/features/#features-triggers
https://mydevices.com/cayenne/docs/features/#features-triggers

215

 6. Selecting the action, such as LED in Figure 8-8, and

selecting either On(1) or Off (0)

 7. Selecting Save

When sending a notification as a text message, include the mobile

phone number plus the +country code in the Add custom recipient box.

Figure 8-8. Cayenne IFTTT trigger

Figures 8-8 illustrates the IFTTT trigger to turn on the LED widget, on

virtual channel 0, when the light intensity, on virtual channel 1, exceeds

the threshold of 500. The second and third IFTTT triggers send the email/

text notification and turn off the alarm widget, on virtual channel 3, when

the LED widget is turned on. Figure 8-9 illustrates the corresponding email

notification triggered by IFTTT.

Chapter 8 Updating a web page

216

Listings 8-8 and 8-9 include the library for an ESP8266 microcontroller.

The library for an ESP32 microcontroller is accessed with the instruction

#include <CayenneMQTTESP32.h>, which is included in the CayenneMQTT

library. No changes, other than pin numbers for attached sensors, are

required for the sketches with an ESP32 microcontroller.

 Parsing text
Parsing text is often required, such as data from the Serial buffer or data

uploaded following an HTTP request. The instruction Serial.read()

reads the next available character in the Serial buffer, while the instruction

Serial.readStringUntil('\n') reads all the data in the Serial buffer until

end- of- line character. The content of the Serial buffer is stored as a string,

str, with the instruction str = Serial.readString() and parsed into

Figure 8-9. Cayenne IFTTT notification

Chapter 8 Updating a web page

217

an integer or a real number with the instruction Serial.parseInt() or

Serial.parseFloat(). For example, if the Serial buffer contains the text

abc25 or abc3.14, then parsing returns the integer 25 or the real number

3.14, respectively. Parsing ignores the initial non-digit characters, other

than a decimal point or a minus sign, and stops when a non-digit character

is read after the last digit character. Parsing instructions are repeated

to extract more than one number from the Serial buffer. For example, if

the Serial buffer contains abc-25de3.14, then the integer -25 and the real

number 3.14 are returned with the instructions

if(Serial.available()>0)

{

 x = Serial.parseInt();

 y = Serial.parseFloat();

}

The parseInt and parseFloat functions are blocking functions, which

prevent the microcontroller from processing other instructions until

parsing is completed.

Strings are parsed to integers or real numbers with the instructions

toInt() or toFloat(), respectively, provided the first character of the

string is a digit, a decimal point, or a minus sign. For example, if a string

str equals -25abc or 3.14abc, then the instructions str.toInt() or str.

toFloat() return the integer -25 or the real number 3.14, respectively.

Parsing stops when a non-digit character is read after a digit character or

a decimal point. Note that a real number is stored with a total number of

six or seven digits, so converting the string 2.7182818284 to a real number

results in a value of 2.718282.

A string that does not start with a digit character is parsed by extracting

a substring that does start with a digit character, a decimal point, or a

minus sign. For a string str, the instruction str.substring(x, y) creates

the substring between positions x (inclusive) and y (exclusive). For

example, comma positions of the string str = "abc,def,gh" are 4 and 8,

Chapter 8 Updating a web page

218

so the instruction str.substring(4+1, 8) creates the substring def with

characters 5, 6, and 7 of the string. If the end parameter is omitted, as in

the instruction str.substring(x), then the substring extends to the end

of the string. For example, the instruction str.substring(5) creates the

substring def,gh.

The instructions str.indexOf("x") and str.indexOf("x", y) locate

the position of the substring x within the string, by searching from the first

to the last character or from position y to the last character. Similarly, the

instructions str.lastIndexOf("x") and str.lastIndexOf("x", y) locate

the position of the substring x within the string by searching from the last

to the first character or from position y to the first character. The indexOf

and lastIndexOf functions are combined with the substring function to

create a specific substring of a string, when there are several substring

delimiters in a string.

For example, the decimal humidity value contained in the string

str = 68% is bracketed

by an = character and a > character, but there are two of each character in

the string. The toFloat function cannot extract the humidity value, as the

first character of the string is not a digit, so a substring is created to extract

the decimal value, but not the integer value. The instructions indexS =

str.lastIndexOf("=") and indexF = str.indexOf("%") locate positions

of the last = character and the % character, with the substring defined by

the instruction str.substring(indexS+2, indexF-2) containing the

characters 68.1”>, from which the decimal value is extracted with the

toFloat function.

The instruction str.length() determines the length of the string,

which does not include the null terminating character, \n, and the string

length is used to ensure that a substring position does not exceed the

length of the string. To check if a string, str, starts or ends with a substring,

abc, the instructions str.startsWith("abc") and str.endsWith("abc")

return a value one if true or value zero if false.

Chapter 8 Updating a web page

219

 Console log
When debugging a sketch or checking the progress of a sketch, information

on a variable is displayed on the Serial Monitor with the Serial.

print("text") instruction. The equivalent to displaying information

on the Serial Monitor for a web browser is the console log, when using

JavaScript code, to display the value of a variable or text, such as "button

pressed." The console log is accessed in the browser by pressing the

F12 keyboard key and selecting Console and Logs (see Figure 8-10).

To define the character set for the console log, the instruction <meta

charset='UTF-8'> must be included in the <head> section of the web

page HTML code. The instruction console.log(variable) displays

information on the console log, where variable can equal a variable,

some text, or the server response to the client. For example, in Listing 8-5,

the instruction console.log(this.responseText) is included after

document.getElementById('tempId').innerHTML = this.responseText

and the instructions

console.log("LED updated");

console.log(this.responseText);

console.log(obj.var1);

var value = document.getElementById('var2').innerHTML;

console.log(value);

are included after the instruction

document.getElementById('var2').innerHTML = obj.var2. To generate

repeated temperature readings, the reload function interval was reduced

to one second, and the countLEDreload function interval for the counter

and LED was increased to five seconds. The console log produced the

output in Figure 8-10, showing the five temperature readings, the text "LED

updated," the JSON text received by the client, the counter, and the LED

state defined as a new variable, value.

Chapter 8 Updating a web page

220

 Wi-Fi connection
The ESP8266 and ESP32 libraries are automatically installed when the

esp8266 by ESP8266 Community and esp32 by Espressif Systems are

installed in the Arduino IDE Boards Manager. Library versions 2.7.4

and 1.0.4 were used in this chapter. If the error message "Downloading

http://downloads.arduino.cc/packages/packages_index.json" is

displayed in the Arduino IDE Boards Manager, then delete all .tmp files in

user ➤ AppData ➤ Local ➤ Arduino15 folder and restart the Arduino IDE.

The Wi-Fi connection between the ESP8266 or ESP32 microcontroller

and the WLAN router is tested using the ping command given the ESP8266

or ESP32 IP address. Either right-click the Windows logo at the bottom-

left side of the screen and select Run or press the Windows key and R

key, simultaneously, to open the Command window. Type cmd and click

OK. In the C:\\WINDOWS\system32\cmd.exe window, the Command

prompt window, type ping followed by the ESP8266 or ESP32 IP address,

as shown in Figure 8-11. The ping command sends small data packets to

the ESP8266 or ESP32 IP address that are transmitted back to the sender.

In the example, four data packets were sent and received, which indicated

that the Data Link, the Wi-Fi connection, and the Internet Protocol were

functioning correctly.

Figure 8-10. Console log

Chapter 8 Updating a web page

221

 Access information file
Access to a Wi-Fi network, ThingSpeak data (see Listing 8-6), or a MQTT

broker (see Listing 8-8) requires a password, an SSID, an API key, or MQTT

broker keys. Instead of storing the access information in the sketch with

instructions like char mqttpass[] = "abcdef", the information is stored

in a library that is referenced by the sketch. A text file with the extension .h

is created to hold the access information, with the file placed in the Arduino

IDE libraries folder. To determine the location of the Arduino IDE libraries

folder, select File ➤ Preferences in the Arduino IDE; and the libraries folder is

shown in the sketchbook location, for example, C:\Users\user\Documents\

Arduino. The access information file is referenced by the sketch with the

instruction #include <access_info.h>. An example access information file,

in Listing 8-10, includes the access keys for Wi-Fi, ThingSpeak, and Cayenne.

Listing 8-10. Access information

char ssid[] = "PhoneNetwork12"; // Wi-Fi access

char password[] = "diff1cu1t";

char APItime[] = "efth1234";

char APIdate[] = "mhtd5678"; // ThingSpeak API keys

char APItemp[] = "plmf4567";

char APIhumid[] = "thkl6789";

Figure 8-11. Wi-Fi connection test

Chapter 8 Updating a web page

222

char username[] = "ABC-234"; // Cayenne access

char mqttpass[] = "XYZ-567";

char clientID[] = "GHJ-876";

 Summary
A web page displayed the temperature reading from a BMP280 module, a

counter, and the state of an LED, with the ESP8266 or ESP32 microcontroller

functioning as the server. The web page HTML code was built line-by-line

as a string, and the whole web page was reloaded to display the updated

information. AJAX code, consisting of XML HTTP requests and JavaScript

instructions, incorporated as a string literal, enabled updating the web page

with only specific variables, rather than reloading the whole web page. Data

on several variables was combined as JSON text in the server response to the

client HTTP request, and options for parsing text were described. Information

from the World Wide Web was accessed with API keys and displayed on a web

page using both AJAX and JSON code. Access to an MQTT broker allowed

uploading of sensor data to a web page, with a sensor value above a threshold

triggering an email or text message notification of the event. The console log

verified data sent by the server and received by the client.

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: ESP32 DEVKIT DOIT or

NodeMCU board

• BMP280 module

• LED: 2×

• Resistor: 2× 220 Ω

Chapter 8 Updating a web page

223© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_9

CHAPTER 9

WebSocket
The WebSocket protocol (www.websocket.org) allows a two-way real-time

conversation between the web server and client, through a standardized

connection to allow both the server and the client to send data at any time.

The client sends a request to the server to switch from an HTTP protocol to

a WebSocket protocol; and if the server can host the WebSocket protocol,

the HTTP connection is replaced with a WebSocket connection, but using

the same port as HTTP.

An example of the WebSocket protocol is transmitting and receiving text

in a conversation between the web server and the client (see Figure 9- 1). To

transmit to the server, text is entered in the web page transmit text box, and

the send text button is clicked. The transmitted text is then displayed on the

Serial Monitor connected to the server. Conversely, when text is entered on

the Serial Monitor, followed by the computer or laptop keyboard <Enter>

key, the text received by the client is displayed in the web page receive text

box. Clicking the web page receive text box clears the text received from the

server. Both the transmit text and receive text boxes are increased in size by

dragging the bottom-right corner of a box.

https://doi.org/10.1007/978-1-4842-6336-5_9#DOI
http://www.websocket.org

224

The WebSocketsServer library, listed under WebSockets, by Markus

Sattler is available in the Arduino IDE. The WebSocket is connected on

port 81, as the default HTTP COM port is 80, and the wsEvent function

displays the received message from the client. Listing 9-1 contains the

sketch for the transmit and receive text example. The Serial.write()

instruction converts ASCII code for an alphanumeric character to display

the alphanumeric character, while Serial.print() displays the ASCII

(American Standard Code for Information Interchange) code. The

loop function in Listing 9-1 still includes the server.handleClient()

instruction to manage HTTP requests, but when text is transmitted by

the server to the client, the instruction websocket.broadcastTXT

(str.c_str(), str.length()) sends the content of the Serial buffer to

the client. The text string is converted to a C-style, null-terminated string

with the instruction string.c_str(). The base function sends the default

web page AJAX code to the client, when the web page is initially loaded.

In this chapter, an ESP8266 or an ESP32 microcontroller is the server.

The web server library instructions for the ESP8266 microcontroller are

#include <ESP8266WebServer.h>

ESP8266WebServer server

and for the ESP32 microcontroller are

#include <WebServer.h>

WebServer server(80); // requires a port number

Figure 9-1. WebSocket web page

Chapter 9 WebSoCket

225

The web server library references the Wi-Fi library, so the #include

<ESP8266WiFi.h> or #include <WiFi.h> instructions are not required.

Listing 9-1. WebSocket main sketch

#include <ESP8266WebServer.h> // include web server library

ESP8266WebServer server; // associate server with library

#include <WebSocketsServer.h> // include WebSocket library

WebSocketsServer websocket = WebSoc ketsServer(81);

// set WebSocket port 81

#include "buildpage.h" // webpage AJAX code

char ssid[] = "xxxx"; // change xxxx to Wi-Fi SSID

char password[] = "xxxx"; // change xxxx to Wi-Fi password

String str;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 WiFi.begin(ssid, password); // connect and initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500);

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display web server IP address

 server.begin();

 server.on("/", base); // load default webpage

 websocket.begin(); // initialise WebSocket

 websocket.onEvent(wsEvent); // call wsEvent function

} // on WebSocket event

void wsEvent(uint8_t num, WStype_t type, uint8_t * message,

size_t length)

{

Chapter 9 WebSoCket

226

 if(type == WStype_TEXT) // when text received from client

 { // display text on Serial Monitor

 for(int i=0; i<length; i++) Serial.write(message[i]);

 Serial.println();

 }

}

void loop()

{

 server.handleClient(); // manage HTTP requests

 websocket.loop(); // handle WebSocket data

 if(Serial.available() > 0)

 { // read text in Serial buffer

 str = Serial.readString(); // and send to client

 websocket.broadcastTXT(str.c_str(), str.length());

 }

}

void base() // function to return HTML code

{

 server.send (200, "text/html", page);

}

Implementation of the WebSocket protocol is contained in the

JavaScript section of Listing 9-2, which includes the web page AJAX code.

When the web page is loaded, a table with headers is created to display

the received and transmitted text, and the init function is called to

open the WebSocket connection at ws://web server IP address:81/.

When the client transmits a message to the server, the instruction

send(document.getElementById('txText').value) in the sendText

function sends the content of the variable txText, which is then cleared.

When the client receives a message from the server, the message content is

stored in the variable rxText, which is displayed on the web page.

Chapter 9 WebSoCket

227

The transmitted message, txText, is contained in an HTML textarea,

within an HTML form, with the form action property associated with the

JavaScript sendText function. The transmitted message is not included in

an HTML input field, as an input field does not permit text wrap-around.

If an HTML input field is required, then the sendText function is called

by a carriage return at the end of the sent message with the instruction

onkeydown='if(event.keyCode == 13) sendText()', as the ASCII code

13 corresponds to a carriage return. The received message, rxText, is

included in an HTML textarea, which allows text wrap-around.

Listing 9-2. WebSocket web page AJAX code

char page[] PROGMEM = R"(

<!DOCTYPE html><html>

<head><title>ESP8266</title>

<style>

body {font-family:Arial}

td {vertical-align: top;}

textarea {font-family:Arial; width:300px; height:50px;}

input[type=submit] {background-color:yellow;}

</style></head>

<body id='initialise'>

<h2>WebSocket</h2>

<table><tr>

<td>transmit text</td>

<td>receive text (click to clear)</td>

</tr><tr>

<td><form action='javascript:sendText()'>

<textarea id='txText'></textarea>

<input type='submit' value="send text">

</form></td>

Chapter 9 WebSoCket

228

<td><textarea id='rxText'

onfocus='this.value=""'></textarea>
</td>

</tr></table>

<script>

var wskt;

document.getElementById('initialise').onload = function()

{init()};

function init() // open WebSocket

{

 wskt = new WebSocket('ws://' + window.location.hostname +

':81/');

 wskt.onmessage = function(rx)

 { // client receive message

 var obj = rx.data;

 document.getElementById('rxText').value = obj;

 };

}

function sendText() // client transmit message

{

 wskt.send(document.getElementById('txText').value);

 document.getElementById('txText').value = "";

}

</script>

</body></html>

)";

Chapter 9 WebSoCket

229

 Remote control and WebSocket
communication

 A laser, mounted on a tilt bracket with a servo motor

attached to an ESP8266 or ESP32 development board,

is remotely controlled by moving a slider on the client

web page with the slider position information

transmitted to the server, which is the ESP8266 or

ESP32 microcontroller. The client receives information

on the servo position and the laser state from the server

(see Figure 9-2). The microcontroller moves the servo

motor and turns on or off the laser according to the control information

received from the client. Information on the web page is continuously

updated, as the WebSocket protocol enables the server to transmit

information to the client, without the client requesting the information.

An application for a remotely controlled laser mounted on a tilt bracket

is measurement of vertical and horizontal distance to a point identified

by the laser. The vertical distance to the point is determined from the

angle of tilt, and the horizontal distance from the object is measured with

an ultrasonic distance sensor attached to the front of the tilt bracket. In

Figure 9-3, the hinge of the tilt bracket is 5 cm above the base, with an

Figure 9-2. Web page with laser position and state

Chapter 9 WebSoCket

230

8 cm distance between the hinge and the front of the HC-SR04 ultrasonic

distance sensor and a 2 cm height difference between the hinge and the

laser. The vertical distance (cm), above the base, to a point marked by the

laser is 5 + (8 + d)tan(x) + 2/cos(x), where x° is the angle of the tilt bracket.

Connections for an ESP8266 or ESP32 development board, with the

ultrasonic distance sensor, laser module, and servo motor are given in

Table 9-1 and shown in Figure 9-4. The HC-SR04 ultrasonic distance

sensor requires a regulated 5 V supply, which is not provided by a 5 V USB

power bank. The servo motor requires an external power supply, such

as a 5V battery or a 9V battery with the L4940V5 voltage regulator, as the

motor can use hundreds of milliamps during a few milliseconds that the

rotor is turning, which is more than the output of the ESP8266 or ESP32

development board 5V or VIN pins. A 9V battery with an L4940V5 voltage

regulator, with 100nF and 22μF capacitors (see Figure 9-3), powers the

ultrasonic distance sensor and the servo motor. The KY-008 laser operates

at 650 nm, with the red light wavelength in the 635–700 nm range.

Figure 9-3. Derivation of height and distance measurement

Chapter 9 WebSoCket

231

Table 9-1. Height and distance measurement with ESP8266 and

ESP32 microcontrollers

Component Connect to And to

Ultrasonic distance sensor VCC VCC rail

Ultrasonic distance sensor trIG eSp8266 D8 or

eSp32 GpIo 13

Ultrasonic distance sensor eCho eSp8266 D7 or

eSp32 GpIo 27

Ultrasonic distance sensor GND GND rail

Laser module S eSp8266 D6 or

eSp32 GpIo 26

Laser module - GND rail

Servo motor signal (orange or white) eSp8266 D5 or

eSp32 GpIo 25

Servo motor (red) VCC rail

Servo motor (brown or black) GND rail

eSp8266 or eSp32 GND GND rail

L4940V5 supply 9 V battery positive 100 nF capacitor positive

L4940V5 GND GND rail

L4940V5 demand VCC rail 22 μF capacitor positive

9 V battery negative GND rail

100 nF capacitor negative GND rail

22 μF capacitor negative GND rail

Chapter 9 WebSoCket

232

Listing 9-3 is for an ESP8266 microcontroller, and the NewPing8266

library is downloaded from github.com/jshaw/NewPingESP8266. For an

ESP32 microcontroller, the WebServer and NewPing libraries replace the

ESP8266WebServer and NewPing8266 libraries, with the NewPing library

available in the Arduino IDE. The instruction ESP8266WebServer server

is replaced with WebServer server (80). The ESP32 microcontroller also

requires an ESP32-specific Servo library, rather than the Arduino IDE

built- in Servo library. The ESP32Servo library by Kevin Harrington and

John K. Bennett is recommended, and the library is available in the Arduino

IDE. The ESP8266 microcontroller instructions with the Servo library

#include <Servo.h> // include Servo library

servoFB.attach(FBpin) // initialise servo motor to FBpin

are replaced with the ESP32Servo library instructions for the ESP32

microcontroller

#include <ESP32Servo.h>

servoFB.setPeriodHertz(F) // define servo frequency (F)

servoFB.attach(FBpin, min, max) // initialise servo motor to FBpin

Figure 9-4. Height and distance measurement with the LOLIN
(WeMos) D1 mini or ESP32 DEVKIT DOIT development board

Chapter 9 WebSoCket

https://github.com/jshaw/NewPingESP8266

233

The square wave frequency, F, is included in the instruction

servoFB.setPeriodHertz(F), which is generally 50 Hz. In the servoFB.

attach(FBpin, min, max) instruction, the min and max parameters refer

to the pulse width, in microseconds, of a square wave to move the servo

motor to 0° and 180°, respectively. Default values for the min and max

parameters are 1000 μs and 2000 μs, with values of 500 μs and 2500 μs for

the Tower Pro SG90 servo.

There is no change to the following instructions:

Servo servoFB // associate servoFB with Servo lib

servoFB.writeMicroseconds(T) // move to position mapped to Tμs

servoFb.write(N) // move to angle N°

In the sketch in Listing 9-3, the majority of instructions relate to including

libraries, defining variables associated with the servo motor and the

ultrasonic distance sensor, establishing the Wi-Fi connection, and loading

the default web page by calling the base function to access the AJAX code,

contained in the string literal page located in the buildpage tab. Instructions

related to WebSocket are included in the wsEvent function. When the server

receives, from the client, a message containing the servo angle and laser

state, the wsEvent function is called, which loads the received message into

a string that is parsed into the servo angle and laser state by locating the

position of the comma separating the two values. The servo angle is mapped

to the number of microseconds for a square wave pulse length to move

the servo motor to the required angle. The laser state is also updated. The

horizontal distance is measured by the ultrasonic distance sensor, and the

vertical distance is calculated from the servo angle and horizontal distance.

The two distances are converted to name and value pairs in JSON format

with the JsonConvert function, which transmits the information to the client.

The distance, in centimeters, between the ultrasonic distance sensor and an

object is half the echo time, measured in microseconds, multiplied by 0.0343,

assuming the speed of sound of 343 m/s.

Chapter 9 WebSoCket

234

Listing 9-3. Height and distance measurement

#include <ESP8266WebServer.h> // include Webserver library

ESP8266WebServer server; // associate server with library

char ssid[] = "xxxx"; // change xxxx to Wi-Fi SSID

char password[] = "xxxx"; // change xxxx to Wi-Fi password

#include <WebSocketsServer.h> // include Websocket library

WebSocketsServer websocket = WebSo cketsServer(81);

// set WebSocket port 81

#include "buildpage.h" // webpage AJAX code

#include <Servo.h>

Servo servoFB; // associate servoFB with Servo lib

int FBpin = D7; // forward-backward servo pin

int laserPin = D8;

int minMicrosec = 450; // minimum and maximum time

int maxMicrosec = 1150; // for servo motor pulse length

#include <NewPingESP8266.h> // include NewPing library

int trigPin = D5; // ultrasonic trigger and echo pins

int echoPin = D6;

float maxdist = 300; // ultrasound maximum distance

NewPingESP8266 sonar(trigPin, echoPin, maxdist);

float distance, height, temp, angle;

int microsec, laser, comma;

String text[2]; // strings in JSON text

String str, json;

unsigned long timer = 0;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 WiFi.begin(ssid, password); // connect and initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500);

Chapter 9 WebSoCket

235

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display web server IP address

 server.begin();

 server.on("/", base); // load default webpage

 websocket.begin(); // initialise WebSocket

 websocket.onEvent(wsEvent); // wsEvent on WebSocket event

 servoFB.attach(FBpin); // initialise servo motor

 servoFB.writeMicroseconds(minMic rosec);

// and move to initial position

 pinMode(laserPin, OUTPUT); // define laser pin as output

}

 // function called when message received from client

void wsEvent(uint8_t n, WStype_t type, uint8_t * message,

size_t length)

{

 if(type == WStype_TEXT)

 {

 str = ""; // convert message to string

 for (int i=0; i<length; i++) str = str + char(message[i]);

 comma = str.indexOf(","); // location of comma

 text[0] = str.substring(0, comma); // extract substrings

 text[1] = str.substring(comma+1);

 angle = text[0].toFloat(); // parse servo angle

 microsec = map(angle,20,90,minMicros ec,maxMicrosec);

// map angle to μs

 servoFB.writeMicroseconds(microsec); // move servo to angle

 delay(10); // time to move servo

 laser = text[1].toInt(); // parse laser state

 digitalWrite(laserPin, laser); // turn on or off laser

 distance = (sonar.ping_median(10)/2. 0)*0.0343;

// get horizontal distance

Chapter 9 WebSoCket

236

 angle = angle*PI/180.0; // convert angle to radians

 height = 5.0+(distance+8.0)*tan(angl e)+2.0/cos(angle);

// vertical distance

 JsonConvert(height, distance); // convert to JSON format

 websocket.broadcastTXT(json.c_str(), json.length());

 } // send JSON text

}

 // function converts variables to JSON name/value pairs

String JsonConvert(float val1, float val2)

{ // start with open bracket

 json = "{\"var1\": \"" + String(val1) + "\",";

// partition with comma

 json += " \"var2\": \"" + String(val2) + "\"}";

// end with close bracket

 return json;

}

void base() // function to return HTML code

{

 server.send(200, "text/html", page);

}

void loop()

{

 server.handleClient(); // manage HTTP requests

 websocket.loop(); // handle WebSocket data

}

Chapter 9 WebSoCket

237

 WebSocket and AJAX
On the web page (see Figure 9-5), clicking the Change laser button turns

on or off the laser, and the relevant image is displayed on the web page.

Moving the slider changes the angle of the tilt bracket, with the angle

displayed on the web page. The client transmits the servo angle and

laser state to the server, and the server responds by sending the client the

measured horizontal distance and calculated height that the client displays

on the web page.

AJAX code for the web page (see Listing 9-4) is included in the string

literal page, bracketed by the characters R"(and)", with variables

identified by single apostrophes, '. In the HTML code, the <head> section

includes two <meta> instructions that are required to format text in the

console log, which displays data received and transmitted by the client,

for example, console.log(FBVal). The <style> section centers text on

the web page and defines the slider, the size of an image, and the height of

a table row. The content of the web page is formatted in a table, with the

first row, which spans two columns, containing the Change laser button,

a bulb image, and text, laserId, describing the laser state of On or Off. The

Figure 9-5. Height and distance measurement

Chapter 9 WebSoCket

238

second table row contains a slider to select the tilt angle, ranging from 20°

to 90°, followed by text and the angle value. The slider is defined with the

instruction

<input autocomplete='on' type='range' min='20' max='90' value='20'

 class='slider' id='FBSlider' oninput='sendFB()'>

which sets autocomplete to on with the slider initial position set at value,

as setting autocomplete to off positions the slider in the default middle

position. The instruction associates the slider with the sendFB function,

which is called when the slider is moved. The third table row displays the

calculated height and measured distance.

When the web page is loaded, the init function is called to open the

WebSocket connection at ws://web server IP address:81/. When the client

receives a message, the message content is stored in the variable rx.

data, which is parsed to the variables vertical and horizontal for display

on the web page. A message is transmitted by the client with the sendFB

function, which combines the angle selected by the slider with the laser

state. When the Change laser button is clicked, the changeLaser function

is called, which changes the value of the laser state, laserVal, updates the

laser state in the web page code, and alternates the bulb image, which

is downloaded from the www.w3schools.com website. The location of an

image to download from a website is obtained by right-clicking the image

and selecting View Image Info or Copy Image Location and including the

image location in the AJAX code.

When either the slider position is changed or the Change laser

button is clicked, the angle selected by the slider and the laser state

are transmitted by the client to the server with the instruction

 wskt.send(FBVal +','+ laserVal). For sketch testing purposes, the

instructions console.log(obj.var1) and console.log(FBVal) display, in

the console log, values of the received vertical distance and the transmitted

angle by the client, respectively.

Chapter 9 WebSoCket

http://www.w3schools.com

239

Listing 9-4. AJAX code for height and distance measurement

char page[] PROGMEM = R"(

<!DOCTYPE html><html>

<head>

<meta name='viewport' content='width=device-width,

initial- scale=1.0'>

<meta charset='UTF-8'>

<title>ESP8266</title>

<style>

html {text-align: center}

.slider {-webkit-appearance: none; height: 2px;

background: DarkGrey}

img {width:25px; height:50px}

td {height:50px}

</style>

<title>WebSocket</title>

</head>

<!-- initiate WebSocket when webpage loaded-->

<body id='initialise'>

<h2>Servo control</h2>

<table align='center'><tr>

<td colspan='2'><input type='radio' id='r1'

onclick='changeLaser()'> Change laser

<img id='bulb' src='https://www.w3schools.com/jsref/

pic_bulboff.gif'>

Off</td>

</tr>

<tr>

<!--autocomplete='off': returns slider to default mid-point

position-->

Chapter 9 WebSoCket

240

<td><input autocomplete='on' type='range' min='20' max='90'

value='20' class='slider' id='FBSlider' oninput='sendFB()'></td>

<td><label id='FBId'>decrease - increase angle (20°)

</label></td>

</tr>

<tr>

<td style='width:200px'>Height: 0

cm</td>

<td>Distance: 0 cm</td>

</tr></table>

<script>

var FBVal = 20;

var laserVal = 0;

document.getElementById('initialise').onload = function()

{init()};

function init()

{

 wskt = new WebSocket('ws://' + window.location.hostname +

':81/');

 wskt.onmessage = function(rx)

 {

 var obj = JSON.parse(rx.data);

 console.log(obj.var1);

 console.log(obj.var2);

 document.getElementById('vertical').innerHTML = obj.var1;

 document.getElementById('horizontal').innerHTML = obj.var2;

 };

}

Chapter 9 WebSoCket

241

function sendFB()

{

 FBVal = document.getElementById('FBSlider').value;

 document.getElementById('FBId').innerHTML = 'decrease -

increase angle ('+FBVal.toString() + '°)';

 wskt.send(FBVal +','+ laserVal);

 console.log(FBVal);

 console.log(laserVal);

}

function changeLaser()

{

 laserVal = 1 - laserVal;

 if(laserVal == 1) {laserTag = 'On';}

 else {laserTag = 'Off';}

 document.getElementById('laserId').innerHTML = laserTag;

 document.getElementById('r1').checked=false;

 wskt.send(FBVal +',' + laserVal);

 var image = document.getElementById('bulb');

 if (image.src.match('bulboff')) {image.src =

 'https://www.w3schools.com/js/pic_bulbon.gif';}

 else {image.src = 'https://www.w3schools.com/js/

pic_bulboff.gif';}

}

</script>

</body></html>

)";

The Servo library instruction servo.write(N) moves the servo motor to an

angle of N°. An alternative instruction is servo.writeMicroseconds(microsec),

with the number of microseconds defining the pulse length of the square wave.

A standard servo motor moves to angle 0° or 180° when the square wave pulse

Chapter 9 WebSoCket

242

length is 500 μs or 2500 μs, while the pulse length for other standard servo

motors is 1000 μs or 2000 μs. For the two standard cases, the formula for the

number of required microseconds to move to a given angle is 500 + angle ×

200/18 and 1000 + angle × 100/18. The servo motor used in this chapter was

calibrated with the sketch in Listing 9-5, by entering different microsecond

values on the Serial Monitor and measuring servo motor angle. For example,

700 μs and 1150 μs were required to position the servo motor at 45° and 90°,

giving the equation microseconds = 250 + angle × 10 or 250 + angle × 180/18.

Listing 9-5. Servo motor calibration

#include <Servo.h> // include Servo library

Servo servoFB; // associate servoFB with Servo library

int FBpin = D7; // servo pin

int microsec;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 servoFB.attach(FBpin); // initialise servo motor

}

void loop()

{

 if(Serial.available() > 0) // text entered in Serial Monitor

 { // parse Serial buffer to integer

 microsec = Serial.parseInt();

 servoFB.writeMicroseconds(micros ec);

 } // move servo motor

}

Chapter 9 WebSoCket

243

 Access images, time, and sensor data over
the Internet
Another example of the WebSocket protocol is the graphic display of data

on a web page with the graph properties: Y-axis minimum and maximum

values and the X-axis time interval, changed by the user in real time.

Changing the graph Y-axis only impacts the client making the change, so

the Y-axis of the graph is client specific. In contrast, when the X-axis time

interval is transmitted to the server, the graphic display is updated at the

same time for all clients connected to the server. Figure 9-6 illustrates a

web page displaying sensor data in real time with the option to change the

minimum and maximum values of the Y-axis and the time interval for data

updates. The browser current date and time are also displayed as well as

an image downloaded from the Internet.

Figure 9-6. Real-time sensor graphics

Chapter 9 WebSoCket

244

The BMP280 sensor measures temperature and pressure,

communicates with I2C or SPI, and operates at 3.3 V. For I2C

communication, the I2C address of the BMP280 sensor is 0x76, with the

BMP280 module SD0 pin connected to GND. Connections between a

BMP280 sensor and an ESP8266 or ESP32 development board are shown

in Figure 9-7 and given in Table 9-2.

Table 9-2. BMP280 with ESP8266 and ESP32 microcontrollers

Component ESP8266 Connections ESP32 Connections

bMp280 VCC 3V3 3V3

bMp280 GND GND GND

bMp280 SDI D2 GpIo 21

bMp280 SCk D1 GpIo 22

bMp280 SD0 GND GND

Figure 9-7. BMP280 with LOLIN (WeMos) D1 mini and ESP32
DEVKIT DOIT boards

Chapter 9 WebSoCket

245

The first section and the setup function of the sketch in Listing 9-6 are

essentially the same as in Listing 9-3. The Adafruit_Sensor library, listed

under Adafruit_Unified_Sensor in the Arduino IDE, and the Adafruit_

BMP280 library are installed for the BMP280 sensor, which is initialized

with its I2C address in the setup function. The tempUrl URL is mapped to

the tempFunct function, which is attached to the Ticker library for timing

web page updates.

When the server receives, from the client, a message containing the

timing interval, the WebSocket wsEvent function is called, which loads the

received message for parsing. In Listing 9-6, the message only contains the

timing interval variable, interval, and the message string is converted to

an integer with the atoi() C++ function. The tempFunct function updates

the interval variable, for the Ticker library to control the timing of calls to

the tempFunct function, and obtains the temperature reading from the

BMP280 sensor. Both the temperature and timing interval are converted

to name and value pairs in JSON format, with the JsonConvert function,

and transmitted to the client. If several clients are connected to the server

and one client changes the timing interval, then the timing interval

displayed by each client is also updated. The base and loop functions of

Listing 9-6 are identical to those in Listing 9-3. When testing the sketch, the

instruction JsonConvert(bmp.readTemperature(), interval) is replaced

with JsonConvert(random(20, 50)*1.0, interval) to generate variation

between values.

Listings 9-1, 9-3, and 9-6 illustrate three examples of handling the

client WebSocket message. The message is displayed on the Serial Monitor

with the instruction Serial.write(message[i]), converted to a string as

str = str + char(message[i]) or converted to an integer by interval =

atoi((char *) &message[0]). The C++ equivalent of the atoi function for

a real number is the atof function.

Chapter 9 WebSoCket

246

Listing 9-6. Real-time sensor graphics

#include <ESP8266WebServer.h> // include WebServer library

ESP8266WebServer server; // associate server with library

char ssid[] = "xxxx"; // change xxxx to Wi-Fi SSID

char password[] = "xxxx"; // change xxxx to Wi-Fi password

#include <WebSocketsServer.h> // include Websocket library

WebSocketsServer websocket = WebSo cketsServer(81);

// set WebSocket port 81

#include "buildpage.h" // webpage AJAX code

String json;

#include <Ticker.h> // include Ticker library

Ticker timer; // associate timer with Ticker lib

int interval = 1;

int oldInterval = 1;

#include <Adafruit_Sensor.h> // include Adafruit Sensor

#include <Adafruit_BMP280.h> // and BMP280 libraries

Adafruit_BMP280 bmp; // associate bmp with BMP280

int BMPaddress = 0x76; // BMP280 I2C address

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 WiFi.begin(ssid, password); // connect and initialise Wi-Fi

 while(WiFi.status()!= WL_CONNECTED) delay(500);

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display web server IP address

 server.begin();

 server.on("/",base); // load default webpage

 server.on("/tempUrl", tempFunct) ;

// map URL to tempFunct

Chapter 9 WebSoCket

247

 websocket.begin(); // initialise WebSocket

 websocket.onEvent(wsEvent); // wsEvent on WebSocket event

 bmp.begin(BMPaddress); // initialise BMP280 sensor

 timer.attach(interval, tempFunct);

} // attach timer to tempFunct

 // function called when message received from client

void wsEvent(uint8_t n, WStype_t type, uint8_t * message,

size_t length)

{ // convert message to integer

 if(type == WStype_TEXT) interval = atoi((char *)

&message[0]);

}

void tempFunct()

// function to transmit temperature and update interval

{ // convert to JSON format

 JsonConvert(bmp.readTemperature(), interval);

 websocket.broadcastTXT(json.c_st r(), json.length());

// send JSON text

 if(interval != oldInterval)

 {

 timer.detach();

 timer.attach(interval, tempFun ct);

 oldInterval = interval; // update timer interval

 }

}

 // function converts variables to JSON name/value pairs

String JsonConvert(float val1, int val2)

{ // start with open bracket

 json = "{\"var1\": \"" + String (val1) + "\",";

// partition with comma

Chapter 9 WebSoCket

248

 json += " \"var2\": \"" + String (val2) + "\"}";

// end with close bracket

 return json;

}

void base() // function to return HTML code

{

 server.send(200, "text/html", page);

}

void loop()

{

 server.handleClient(); // manage HTTP requests

 websocket.loop(); // handle WebSocket data

}

AJAX code for the web page is given in Listing 9-7. The content of

the web page is formatted as a table with a header row containing the

browser current date and time, with two columns consisting of seven

rows. The first column, which spans all seven rows, with the instruction

<td rowspan='7'>, contains the image that is downloaded when the web

page is initialized. The first three rows in the second column contain the

updated temperature and time interval, both transmitted by the server,

and a <canvas> for the graph. The four sliders to control the graph Y-axis

maximum and minimum values and the buttons to increase or decrease

the time interval call the functions setMaxy, setMiny, sendadd, and

sendsub, respectively.

The graph function uses the canvas.getContext() instruction to

access functions for drawing on a canvas, with details available at

www.w3schools.com/tags/ref_canvas.asp. The clearRect and

strokeRect instructions clear a rectangular space (445 × 200 pixels) in

which the graph rectangle (400 × 160 pixels) is outlined, starting at pixel

Chapter 9 WebSoCket

http://www.w3schools.com/tags/ref_canvas.asp

249

position (25, 20) within the rectangular space with position (0, 0) being the

top-left corner. Six Y-axis labels are positioned with the instruction

ctx.fillText(Math.round(maxy-i*(maxy-miny)/5), 3, 25+31*i)

that calculates the label values from the maximum and minimum Y-axis

values. The Y-axis labels are positioned in rows that are 31 pixels apart,

starting at pixel position (3, 25). The 11 X-axis labels are continuously

updated, based on the total number of data values, Ndata, with the

instruction

ctx.fillText(String(Ndata+i-20), 27+19*i, 193)

The X-axis labels are positioned in columns that are 19 pixels apart,

starting at pixel position (27, 193). Instructions to draw a line connecting

the data points together are beginPath with the initial data point

moveTo(x,y) and subsequent data points lineTo(x,y) followed by stroke.

The graph is plotted in batches of 21 points, which are constantly updated

with the 21st point being the most recent value with the instructions

Ndata++; // increment the number of data points

if(Ndata>maxVal) datay.shift();

// remove the first element of datay[]

datay.push(obj.var1); // add new data point to end of datay[]

JavaScript array command details are available at www.w3schools.com/

jsref/jsref_obj_array.asp.

The graph Y-axis maximum and minimum values are the

corresponding slider values, and the functions setMaxy and setMiny

convert a slider value to a string for displaying on the web page to the right

of the slider. The functions sendadd and sendsub increase and decrease

the time interval between updates of the web page by one second, with the

updated value sent to the server.

Chapter 9 WebSoCket

http://www.w3schools.com/jsref/jsref_obj_array.asp
http://www.w3schools.com/jsref/jsref_obj_array.asp

250

When the first web page is loaded, the init function opens the

WebSocket connection at ws://web server IP address:81/. When the client

receives a message, the message content, stored in the variable rx.data, is

parsed to the variables temp and interval for displaying, on the web page,

the temperature and time interval between readings. The browser current

time is obtained and formatted with the instructions

var dt = new Date();

var tm = dt.toLocaleTimeString

 ('en-GB', {weekday: 'long', day: '2-digit', month: 'long'});

document.getElementById('timeNow').innerHTML = tm;

The resulting time format is Tuesday, 16 June, 10:11:47, but

if innerHTML = dt, then the display format is Tue Jun 16 2020

10:11:47 GMT+0100 (British Summer Time). If the time in hh:mm:ss

format is required, then the variable tm is defined as var tm =

dt.toLocaleTimeString ('en-GB'). Details on date formatting are

available at www.w3schools.com/Jsref/jsref_obj_date.asp.

Listing 9-7. AJAX code for real-time sensor graphics

char page[] PROGMEM = R"(

<!DOCTYPE html><html>

<head>

<meta name='viewport' content='width=device-width,

initial- scale=1.0'>

<meta charset='UTF-8'>

<!-- padding top right bottom left-->

<style>

html {text-align: center}

.slider {-webkit-appearance: none; height: 2px;

background: DarkGrey}

td {padding: 0px 0px 0px 25px}

Chapter 9 WebSoCket

http://www.w3schools.com/Jsref/jsref_obj_date.asp

251

img {width:253px; height:384px}

</style>

<title>ESP8266</title>

</head>

<body onload='javascript:init()'>

<table>

<tr><th></th><th><h2>BMP280 at

</h2></th></tr>

<tr>

<td rowspan='7'>

<img src=

'https://images.springer.com/sgw/books/medium/9781484263358.jpg'

 alt='book'></td>

<td>Temperature: 0°C</td>

</tr>

<tr><td>Interval: 1s</td></tr>

<tr><td>

<canvas id = 'myCanvas' width = '445' height = '200'

 style = 'border:1px solid DarkGrey'>

 Your browser does not support the canvas element.

</canvas>

</td></tr>

<tr><td>

<input autocomplete='off' type='range' min='1' max='100'

value='25' class='slider' id='maxySlider' oninput='setMaxy()' >

<label id='maxyId'>Maximum: 25</label>

</td></tr>

<tr><td>

<input autocomplete='off' type='range' min='0' max='100'

value='15' class='slider' id='minySlider' oninput='setMiny()' >

<label id='minyId'>Minimum: 15</label>

</td></tr>

Chapter 9 WebSoCket

252

<tr><td>

<input type='radio' id='r1' oninput='sendadd()'> Increase

interval

</td></tr>

<tr><td>

<input type='radio' id='r2' oninput='sendsub()'> Decrease

interval

</td></tr>

</table>

<script>

var canvas = document.getElementById('myCanvas');

var ctx = canvas.getContext('2d');

ctx.strokeStyle = 'red';

ctx.strokeRect(25, 20, 400, 160);

ctx.lineWidth = 1;

var y = 0;

var miny = 15;

var maxy = 25;

var timeval = 1;

var datay = [0];

var Ndata = 0;

var maxVal = 20;

var dt = 0;

var tm = 0;

function init()

{

 webSocket = new WebSocket('ws://' + window.location.hostname

+ ':81/');

 webSocket.onmessage = function(rx)

 {

 var obj = JSON.parse(rx.data);

 document.getElementById('temp').innerHTML = obj.var1;

Chapter 9 WebSoCket

253

 document.getElementById('interval').innerHTML = obj.var2;

 Ndata++;

 if(Ndata>maxVal) datay.shift();

 datay.push(obj.var1);

 dt = new Date();

 tm = dt.toLocaleTimeString

 ('en-GB', {weekday: 'long', day: '2-digit', month:

'long'});

 document.getElementById('timeNow').innerHTML = tm;

 graph()

 };

}

function graph()

{

 ctx.clearRect(0, 0, 445, 200);

 ctx.strokeStyle = 'red';

 ctx.strokeRect(25, 20, 400, 160);

 for (i=0; i<6; i++)

 ctx.fillText(Math.round(maxy-i*(maxy-miny)/5), 3, 25+31*i);

 if(Ndata<21) {for (i=0; i<21; i=i+2)

 ctx.fillText(String(i), 27+19*i, 193);}

 if(Ndata>20) {for (i=0; i<21; i=i+2)

 ctx.fillText(String(Ndata+i-20), 27+19*i, 193);}

 ctx.beginPath();

 y = 20+160*(maxy-datay[0])/(maxy-miny);

 if(y<20) y=20;

 if(y>180) y=180;

 ctx.moveTo(25, y);

 for(i=1; i<21; i++)

 {

 y = 20+160*(maxy-datay[i])/(maxy-miny);

 if(y<20) y=20;

Chapter 9 WebSoCket

254

 if(y>180) y=180;

 ctx.strokeStyle = 'blue';

 ctx.lineTo(25+20*i, y);

 }

 ctx.stroke();

}

function setMaxy()

{

 maxy = document.getElementById('maxySlider').value;

 document.getElementById('maxyId').innerHTML =

 'Maximum: ' + maxy.toString();

}

function setMiny()

{

 miny = document.getElementById('minySlider').value;

 document.getElementById('minyId').innerHTML =

 'Minimum: ' + miny.toString();

}

function sendadd()

{

 timeval = parseInt(document.getElementById('interval').

innerHTML) + 1;

 document.getElementById('interval').innerHTML = timeval;

 document.getElementById('r1').checked=false;

 webSocket.send(timeval);

}

function sendsub()

{

 timeval = parseInt(document.getElementById('interval').

innerHTML) - 1;

 if(timeval<1) timeval = 1;

 document.getElementById('interval').innerHTML = timeval;

Chapter 9 WebSoCket

255

 document.getElementById('r2').checked=false;

 webSocket.send(timeval);

}

</script>

</body></html>

)";

 Summary
Three examples illustrate the advantage of using the WebSocket protocol

for a two-way real-time conversation between the client and the web

server. In the first example, a web page enabled the client to send text to

and receive text from the server in real time. In the second example, the

client used a web page slider and button to remotely control the position

and state of a laser attached to a servo motor on a tilt bracket. The server

responded with the height and distance to an object identified by the

laser, with the horizontal distance measured by an ultrasonic sensor.

The third example demonstrated the real-time graphic display, on a

web page, of temperature sensor data transmitted by the server, with the

graph properties and the interval between temperature measurements

controlled remotely by the client using a web page slider and buttons.

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: DEVKIT DOIT or NodeMCU

board

• Temperature sensor: BMP280 module

Chapter 9 WebSoCket

256

• Ultrasonic distance sensor: HC-SR04

• Laser module: KY-008

• Servo motor: SG90

• Servo pan and tilt bracket

• Capacitor: 100 nF, 22 μF

• Voltage regulator: L4940V5

• Battery: 9 V

Chapter 9 WebSoCket

257© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_10

CHAPTER 10

Build an app
A mobile app, short for application,

is a computer program for mobile

devices, such as an Android tablet

or mobile phone. Apps are available

for mobile games, providing

information, location and route finding, playing music, and controlling

external devices. The MIT App Inventor provides the opportunity to

design your own app, rather than using an app downloaded from Google

Play Store. After completing the app design stage, the app is immediately

available to download to an Android tablet or mobile phone.

The MIT App Inventor app design website, ai2.appinventor.mit.

edu, is accessed by clicking the Create Apps button at appinventor.mit.

edu. When building an app, the option to simultaneously display the

developing app on an Android tablet or mobile phone is provided by

the MIT App Inventor Companion app (MIT AI2 Companion), which is

downloaded from Google Play Store. For example, the effect of changing

the screen position of a button or an image in MIT App Inventor is instantly

realized in the Companion app. Both the computer, on which the app is

being developed, and the Android tablet or mobile phone hosting the

MIT App Inventor Companion app must be on the same Wi-Fi local area

network. Full details are available at appinventor.mit.edu/explore/ai2/

setup-device-wifi.html.

https://doi.org/10.1007/978-1-4842-6336-5_10#DOI
https://ai2.appinventor.mit.edu
https://ai2.appinventor.mit.edu
https://appinventor.mit.edu
https://appinventor.mit.edu
https://appinventor.mit.edu/explore/ai2/setup-device-wifi.html
https://appinventor.mit.edu/explore/ai2/setup-device-wifi.html

258

After logging on to the MIT App Inventor website and selecting Start

new project, the app Designer window is displayed (see Figure 10-1).

On the left side of the Designer window, the User Interface palette adds

buttons, images, labels, and sliders to the app screen with drag and

drop. On the right side of the Designer window in the Properties section,

properties of selected items, such as the app name, screen background

color, orientation, and title, are modified. The app screen is subdivided into

different sections by inserting HorizontalArrangements from the Layout

palette on the left side of the Designer window. The choice of a meaningful

name for each item is recommended for app programming, which uses

a block-based visual language that resembles Scratch, with information

at scratch.mit.edu/about. For example, a button to control an LED is

named LEDbutton, with the font size, button height and width, and text all

defined in the Properties section on the right side of the Designer window.

Images are uploaded in the Media palette at the bottom right

side of the Designer window. MIT App Inventor tutorials are available at

appinventor.mit.edu/explore/ai2/tutorials.html.

Figure 10-1. MIT App Inventor initial window

Chapter 10 Build an app

https://scratch.mit.edu/about
https://appinventor.mit.edu/explore/ai2/tutorials.html

259

 Control and feedback app
An example app controls the brightness of an LED, attached to an ESP8266

or ESP32 microcontroller, with feedback provided by a light-dependent

resistor (LDR) (see Figure 10-2). The app includes a button to turn on or off

the LED and displays an image indicating the LED state. When the slider

on the app is moved with the LED turned on, the app transmits a signal

to the microcontroller to change the LED brightness. Every two seconds,

the microcontroller transmits the LDR reading to the app. The brighter the

LED, the higher the LDR reading. Controlling the brightness of an LED is

only an example application. In a practical application, the state and speed

of a remotely located motor would be controlled through the app, which

would indicate if the motor was running and at what speed, without the

user being able to observe the motor.

Figure 10-2. Bluetooth and LED control app

The app uses Bluetooth to communicate with the ESP8266 or

ESP32 microcontroller. ESP32 development boards have Bluetooth

functionality, but ESP8266 development boards must be connected to

an HC-05 Bluetooth module. The HC-05 Bluetooth module is powered

from 3.6 V to 6 V and is connected to the ESP8266 development board

5V pin. The HC-05 Bluetooth module transmit (TXD) and receive

(RXD) serial data function at 3.3 V, which is the operating voltage of the

Chapter 10 Build an app

260

ESP8266 microcontroller, and are directly connected to the ESP8266

development board RX and TX pins. The ESP8266 microcontroller uses

Serial communication to upload a compiled sketch. During uploading,

the ESP8266 development board RX pin is disconnected, or uploading will

fail. Connections for both the ESP8266 and ESP32 development boards are

shown in Figure 10-3 and given in Table 10-1.

Figure 10-3. Bluetooth and LED control with ESP8266 and ESP32
development boards

Table 10-1. Bluetooth and LED control with ESP8266 and ESP32

development boards

Component Connect to ESP8266 ESP32

Bluetooth hC-05 VCC 5V

Bluetooth hC-05 Gnd Gnd

Bluetooth hC-05 tX1 rX

Bluetooth hC-05 rX0 tX

led long leg d4 GpiO 27

led short leg 220 Ω resistor Gnd Gnd

ldr bottom leg a0 GpiO 33

ldr bottom leg 4.7 kΩ resistor Gnd Gnd

ldr top leg 5V 3V3

Chapter 10 Build an app

261

The sketch on the left side of Table 10-2 is for an ESP8266

microcontroller. When the ESP8266 microcontroller receives a message,

from the app, consisting of the string “C”, then the ESP8266 microcontroller

changes the LED state and transmits the string “H” for HIGH or “L” for

LOW to the app, to indicate the updated LED state. If the received message

read by the microcontroller is not “C”, then the LED brightness is set to

the message value, by parsing the message, read as a string, to an integer

with the instruction toInt(string), but only if the LED is turned on. Every

two seconds, the microcontroller transmits the LDR reading to the app.

The delay of 20 ms after the microcontroller transmits the LED state signal

blocks the transmission of a simultaneous signal with the LDR reading.

The app transmits to the microcontroller the one-letter string “C",

when the Change LED button is clicked, or the value of the brightness

slider, when the slider is moved. When the app receives the one-letter

string “H" or “L", the app displays the bulbon or the bulboff image, and

the brightness slider is moved to position 255 or 0, respectively. The app

continuously displays the updated LDR values.

The corresponding sketch for an ESP32 microcontroller, on the right

side of Table 10-2, differs from the sketch for the ESP8266 microcontroller

by the inclusion of the BluetoothSerial library, the PWM instructions,

and the ESP32 microcontroller building the message string. Differences

between the sketches, other than in pin numbers, are highlighted in bold.

The ESP32 microcontroller accumulates characters in the Serial buffer

into a string, while the ESP8266 instruction Serial.readString() reads

the whole Serial buffer as a string. If the app slider is moved rapidly, the

instruction Serial.readString() combines several slider values into

a string. The high CPU frequency of the ESP32 microcontroller enables

differentiation between slider values, when the slider is moved quickly.

The ESP32 PWM instruction ledcWrite(channel, value) is the ESP8266

equivalent of the digitalWrite and analogWrite instructions. The ESP32

instruction ledcSetup(channel, 1000, 8) sets the square wave frequency

for the LED to 1000 Hz with 8-bit resolution, resulting in a maximum

Chapter 10 Build an app

262

value of 255, for consistency with the ESP8266 sketch. Chapter 21

(Microcontrollers) includes details of PWM with an ESP32 microcontroller.

(continued)

Table 10-2. Bluetooth and LED control sketches for ESP8266 and

ESP32 microcontrollers

ESP8266 Microcontroller ESP32 Microcontroller

#include <BluetoothSerial.h>

BluetoothSerial SerialBT;

int LEDpin = D4; int LEDpin = 27;

int LDRpin = A0; int LDRpin = 33;

int bright, LDR; int bright, LDR;

int LEDstate = 0; int LEDstate = 0;

int channel = 0;

char c;

String str; String str;

unsigned int lastTime = 0; unsigned int lastTime = 0;

void setup() void setup()

{ {

 Serial.begin(9600); SerialBT.begin("ESP32 Bluetooth");

 pinMode(LEDpin, OUTPUT); pinMode(LEDpin, OUTPUT);

 ledcAttachPin(LEDpin, channel);

 ledcSetup(channel, 1000, 8);

 digitalWrite(LEDpin,

LEDstate);

 ledcWrite(channel, LEDstate);

} }

Chapter 10 Build an app

263

Table 10-2. (continued)

(continued)

ESP8266 Microcontroller ESP32 Microcontroller

void loop() void loop()

{ {

 if(Serial.available()>0) if(SerialBT.available()>0)

 { {

 str = "";

 while(SerialBT.available()>0)

 {

 str = Serial.

readString();

 c = SerialBT.read();

 str = str + String(c);

 }

 if(str == "C") if(str == "C")

 { {

 LEDstate = 1- LEDstate; LEDstate = 1 - LEDstate;

 if(LEDstate == 1)

 Serial.print("H");

 if(LEDstate == 1)

 SerialBT.print("H");

 else Serial.print("L"); else SerialBT.print("L");

 digitalWrite(LEDpin,

 LEDstate);

 ledcWrite(channel,

 LEDstate*255);

 delay(20); delay(20);

 } }

 else if(LEDstate == 1) else if(LEDstate == 1)

Chapter 10 Build an app

264

The app layout consists of several HorizontalArrangements containing

the app title, the ChangeLED button and the LEDimage image, BrightLabel

and BrightValue labels with a BrightSlider slider, LDRlabel and LDRvalue

labels, the SelectBluetooth ListPicker button, and the DisconnectBluetooth

button with the Bluetoothimage image and StatusLabel label (see

Figure 10-4). All items are listed in the User Interface palette on the left

side of the Designer window. The choice of a meaningful name for each

item is recommended for app programming. The Bluetoothimage image is

mapped to the bluetooth.png file that is uploaded in the Media palette at

the bottom right of the Designer window, by clicking the Bluetoothimage

Table 10-2. (continued)

ESP8266 Microcontroller ESP32 Microcontroller

 { {

 bright = str.toInt(); bright = str.toInt();

 analogWrite(LEDpin,

bright);

 ledcWrite(channel, bright);

 } }

 } }

 if(millis()-lastTime >

2000)

 if(millis()-lastTime > 2000)

 { {

 lastTime = millis(); lastTime = millis();

 LDR = analogRead(LDRpin); LDR = analogRead(LDRpin);

 Serial.println(LDR); SerialBT.println(LDR);

 } }

} }

Chapter 10 Build an app

265

in the Components section and selecting the image file name in the Picture

box of the Properties section, with the image height and width set to 40

and 50 pixels. When a ListPicker button is clicked, the list corresponding

to the button is displayed, which will be the list of available Bluetooth

connections. The Clock and BluetoothClient components, located in the

Sensors and Connectivity palettes on the left side of the Designer window,

are displayed below the app layout. Text for buttons is added in the

Properties section of each button. VerticalArrangements are used to insert

spaces between objects in a HorizontalArrangement.

Figure 10-4. Bluetooth and LED control app layout

Chapter 10 Build an app

266

Once the layout is finalized, the app programming is started by

clicking Blocks at the top-right side of the Designer window. The app

program defines variables and procedures, establishes a Bluetooth

communication, controls the LED, and processes the received signal from

the microcontroller (see Figures 10-5, 10-6, 10-7, and 10-8). Blocks are

color coded, and the importance of meaningful names for each item on

the app screen is apparent.

Variables and procedures are defined at the start of the block program,

just as when creating a sketch in the Arduino IDE. On the left side of the

Blocks window, clicking Variables produces a series of options including

initialize global name to, which is dragged to the Blocks window, and

name is changed to Receive, to refer to the received signal by the app. From

Text on the left side of the Blocks window, select and drag the blank “ ”

block to the Blocks window. Again, on the left side of the Blocks window,

clicking Procedures produces the option to Procedure do, which is dragged

to the Blocks window, and procedure is changed to LED, to refer to LED

control. A procedure is similar to a function in the Arduino IDE, and two

inputs to the procedure are defined by clicking the blue-and-white gear

symbol and twice dragging the input x block into the inputs block. On the

LED procedure block, change x and x2 to picture and slider, respectively

(see Figure 10-5).

Figure 10-5. Variable and procedure definition

Chapter 10 Build an app

267

The LED procedure sets the LEDimage to the appropriate image when

the LED is changed and sets the variables BrightValue and BrightSlider to

the slider position, when the slider is moved. The three LED procedure

actions are defined by

 1. Clicking LEDimage on the left side of the Blocks

window, selecting the option set LEDimage.Picture

to, and dragging it to the Blocks window

 2. Clicking BrightValue on the left side of the Blocks

window, selecting the option set BrightValue.Text to,

and dragging it to the Blocks window

 3. Clicking BrightSlider, selecting the option set

BrightSlider.ThumbPosition to, and dragging it to the

Blocks window

From Variables on the left side of the Blocks window, select the option

get three times. The nine blocks are connected together as shown in

Figure 10-5. In the first get block, select picture; and in the other two get

blocks, select slider.

For Bluetooth communication, there are three functions: display

available Bluetooth connections and connect or disconnect the Bluetooth

connection. The available Bluetooth connections are displayed as

a list, using the SelectBluetooth ListPicker button. On the left side of

the Blocks window, clicking the SelectBluetooth ListPicker button

produces options including when SelectBluetooth.BeforePicking and set

SelectBluetooth.Elements to which are dragged onto the Blocks window.

Clicking BluetoothClient1 produces options including BluetoothClient1.

AddressesAndNames, which is also dragged onto the Blocks window. The

three blocks are connected together as shown in Figure 10-6.

When the SelectBluetooth ListPicker button is clicked, the selected

Bluetooth connection is made, the text Connected is displayed in black

text, and the LED procedure is called. Blocks are added by clicking the

Chapter 10 Build an app

268

SelectBluetooth ListPicker button, BluetoothClient1, and the StatusLabel

label. The if then block is selected after clicking Control and the blank “”

block by clicking Text and then changing the blank “ ” block to Connected

or to bulbon.gif and by clicking Procedures and then selecting the LED

procedure created earlier (see Figure 10-5). The block for the value zero is

selected after clicking Math.

Blocks to disconnect the Bluetooth connection are added by clicking

the BluetoothDisconnect button and including when DisconnectBluetooth.

Click. The text color of the StatusLabel label is set by selecting a color

block from the color list in Colors. The visibility of a label is defined in

the Properties section, on the right side of the Designer window, or in the

Blocks window by clicking the label and selecting the set Label.visible to

block and adding a true or false block.

Clicking a block in the Block section and then right-clicking Duplicate

is an alternative to clicking and selecting blocks from the left side of the

Blocks window.

Figure 10-6. Bluetooth communication

Chapter 10 Build an app

269

Clicking the ChangeLED button on the app sends a message with the

string “C”, and the block is constructed as shown in Figure 10-7. When the

slider is moved, the app sends a message with the slider value, which is a

real number. The round block, located in the Math palette, rounds up or

down a real number to an integer. On the left side of the Blocks window,

clicking the BrightSlider slider produces the option when BrightSlider.

PositionChanged. To the call Bluetooth1.SendText text block, add the get

ThumbPosition block, which is obtained by hovering the mouse over

ThumbPosition in the when BrightSlider.PositionChanged block and

dragging the get ThumbPosition block into position (see Figure 10-7).

When the app receives a message, containing the string “H" or “L", the

LED procedure displays the bulbon.gif or bulboff.gif image and moves the

slider to position 225 or 0, respectively. Otherwise, the LDRvalue label is

updated.

On the left side of the Blocks window, clicking Clock1 produces the

option when Clock1.Timer do, clicking Text produces the option contains

text piece, and clicking Variables produces the get option and global

Figure 10-7. Control the LED

Chapter 10 Build an app

270

Receive is selected. The length block is obtained by clicking Text. The

greater than condition block is obtained by clicking Math and selecting the

equals condition block, which is changed to a greater than condition block.

The if then, else if then, else block is created from an if then block, clicking

the blue-and-white gear symbol and dragging an else if and an else block

into the if block. Component blocks are added as shown in Figure 10-8.

The block is number?, obtained by clicking Math, is applied to a text

variable to provide a conditional action on the received text. For example,

the else block before the set LDRvalue.Text block at the bottom of Figure 10- 8

is replaced by the else if then block and the is number? block as shown in

Figure 10-9.

Figure 10-9. Condition on numerical value

Figure 10-8. Process the received Bluetooth signal

Chapter 10 Build an app

271

 Install the app
After designing the app layout and programming the app with the block-

based visual language, the app is built by selecting App (save .apk to my

computer) from the Build menu at the top of the Designer window. The

.apk (Android Package Kit) file is then downloaded to the Android tablet

or mobile phone with the app installed using an installer. Alternatively,

a QR (Quick Response) code to download the app .apk file is created by

selecting App (provide QR code for .apk), with the QR code scanned to

initiate downloading the .apk file and the app installed using an installer.

To install the app, the Android tablet or mobile phone Security setting

Unknown sources must be set to Allow installation of app from unknown

sources. After installing the app, reset the Security setting.

The default app icon of the MIT App Inventor (see Figure 10-10) is

replaced with a user-defined image. In the Properties section of the app

Designer window for Screen1, the Icon property of None is the default. The

app icon is replaced by uploading the required JPG or PNG image, which

should be no larger than 50 × 50 pixels.

 Servo-robot control app
In Chapter 9 (WebSocket), a servo motor, attached to a microcontroller,

was controlled by moving a slider on the client web page with the slider

position transmitted to the server, which was the microcontroller, to move

the servo motor to the required angle. In this chapter, two servo motors

Figure 10-10. MIT App Inventor logo

Chapter 10 Build an app

272

are moved to required positions, with the app controlling the servo motors

connected to the ESP8266 or ESP32 development board. The servo motor

positions are saved and then played back to imitate an automated robotic

movement sequence. The app controls one servo motor for left- right (LR)

movement and the other servo motor for forward-backward (FB)

movement of the pan-tilt bracket (see Figure 10-11). Clicking the

appropriate app button moves a servo motor continuously until the Stop

button is clicked. The servo motor positions are saved by clicking the Save

position button with the app displaying the number of saved positions. The

saved sequence of movements is replayed by clicking the Playback button.

The Reset button cancels the saved servo motor positions.

Figure 10-11. Servo motor control

Chapter 10 Build an app

273

The app on the Android tablet or mobile phone communicates with

the ESP8266 or ESP32 microcontroller, connected to two servo motors,

by Bluetooth (see Figure 10-12) with connections in Table 10-3. Clicking

a button on the app transmits a command letter, which moves the

corresponding servo motor in the required direction. The servo motors are

externally powered with 5 V, as the motors can use hundreds of milliamps

during a few microseconds that the rotor is turning, which is more than the

12 mA maximum output of an ESP8266 or ESP32 development board.

The ESP32 microcontroller requires the ESP32-specific Servo library,

rather than the Arduino IDE built-in Servo library. The ESP32Servo library

by Kevin Harrington and John K. Bennett is recommended, and the library

is available in the Arduino IDE. The built-in Servo library instructions for

the ESP8266 microcontroller

#include <Servo.h> // include Servo library

servoFB.attach(FBpin) // initialise servo motor to FBpin

are replaced with the ESP32Servo library instructions for the ESP32

microcontroller

Figure 10-12. Servo motors and Bluetooth with ESP8266 and ESP32
development boards

Chapter 10 Build an app

274

#include <ESP32Servo.h>

servoFB.setPeriodHertz(F) // define servo frequency (F)

servoFB.attach(FBpin, min, max) // initialise servo motor to FBpin

The square wave frequency, F, is included in the instruction

servoFB.setPeriodHertz(F), which is generally 50 Hz. In the servoFB.

attach(FBpin, min, max) instruction, the min and max parameters refer

to the pulse width, in microseconds, of a square wave to move the servo

motor to 0° and 180°, respectively. Default values for the min and max

parameters are 1000 μs and 2000 μs, with values of 500 μs and 2500 μs for

the Tower Pro SG90 servo.

There is no change to the following instructions:

Servo servoFB // associate servoFB with servo lib

servoFB.writeMicroseconds(T) // move to position mapped to Tμs

servoFb.write(N) // move to angle N°

The ESP8266 microcontroller uses Serial communication to upload a

compiled sketch. During uploading, the ESP8266 microcontroller RX pin

must be disconnected, or uploading will fail.

Table 10-3. Servo motors and Bluetooth communication with

ESP8266 and ESP32 development boards

Component Connect to ESP8266 ESP32

Servo VCC (red) Battery 5 V

Servo Gnd (brown or black) Battery Gnd Gnd Gnd

Servo signals (orange or white) d3, d4 GpiO 25, GpiO 26

Bluetooth hC-05 VCC 5V

Bluetooth hC-05 Gnd Gnd

Bluetooth hC-05 tX1 rX

Bluetooth hC-05 rX0 tX

Chapter 10 Build an app

275

The sketch in Listing 10-1 is commented for the ESP8266 development

board. Instructions for the ESP32 development board include the

BluetoothSerial library with SerialBT replacing Serial instructions (see

Table 10-2), as the transmitted messages only contain one character.

The received command letter by the ESP8266 or ESP32 microcontroller

either increments the position of a servo motor or calls a function to save,

playback, or reset the servo motor positions. When moving servo motors,

the movement speed is determined by the delay between movements,

and a delay of 100 ms enables the servo motors to be precisely moved

to the required positions. After a servo motor position is saved, the

microcontroller transmits the position number for display on the app.

When the servo motor position sequence is played back, the delay of 15 ms

is a compromise between moving the servo motors quickly and providing

sufficient time for the servo motors to move to the saved positions. The

servo motors are moved to an initial or home position before playing back

the saved servo motor position sequence, but not after the playback, as the

end position does not have to equal the starting position.

The servo motor position sequence is saved in two arrays, one for

each servo motor, but the information is not retained in memory when the

ESP8266 or ESP32 development board is powered down. Saving the servo

motor positions in EEPROM (Electrically Erasable Programmable Read-

Only Memory) would retain the information when the ESP8266 or ESP32

development board is turned off, as described in Chapter 20 (OTA and

saving data to EEPROM, SPIFFS, and Excel).

The playServo function controls playback of the saved servo motor

position sequence. Two saved positions can differ for one servo motor

only, if the position change was only a pan (left-right) or a tilt (forward-

backward) movement. If the new position is different from the previous

position for only one servo motor, the number and direction of 5° steps to

move to the new position is determined, with no change to the other servo

motor position.

Chapter 10 Build an app

276

Listing 10-1. Servo motors and Bluetooth

#include <Servo.h> // include Servo library

Servo servoFB; // associate servos with library

Servo servoLR;

int FBpin = D3; // servo motor pins

int LRpin = D4;

int FBpos[20]; // arrays for saved servo positions

int LRpos[20];

int Nservo = 0; // number of saved positions

int FB, LR, steps, stepsize;

char c;

void setup()

{

 Serial.begin(9600); // Bluetooth module baud rate

 servoFB.attach(FBpin); // servo motor pin to Servo lib

 servoLR.attach(LRpin);

 startPosition(); // set initial servo positions

}

void loop()

{ // read character in Serial buffer

 if(Serial.available()>0) c = Se rial.read();

 if(c == 'U') FB = FB-5; // move servo forward (up)

 else if(c == 'D') FB = FB+5; // move servo backward

 else if(c == 'L') LR = LR+5; // move servo left

 else if(c == 'R') LR = LR-5; // move servo right

 else if(c == 'Z') delay(100); // stop moving both servos

 else if(c == 'S') saveServo(); // save both servo positions

 else if(c == 'P') playServo(15); // playback servo positions

 else if(c == 'E') resetServo(); // reset saved positions

 if(c != 'Z' && c !=' ') moveServo(FB, LR, 100);

} // move both servos

Chapter 10 Build an app

277

void startPosition() // function to set initial servo positions

{

 FB = 50; // arbitrary home position

 LR = 70;

 moveServo(FB, LR, 100); // move servos to initial position

}

void moveServo(int vFB, int vLR, i nt lag)

{ // function to move servos

 vFB = constrain(vFB, 5, 100); // constrain servo positions

 vLR = constrain(vLR, 5, 175);

 servoFB.write(vFB); // move forward-backward servo

 delay(lag); // time between servo movements

 servoLR.write(vLR); // move left-right servo

 delay(lag);

}

void saveServo() // function to save servo positions

{

 Nservo++; // increment number of positions

 Serial.println(Nservo); // transmit position number to app

 FBpos[Nservo] = FB; // save forward-backward position

 LRpos[Nservo] = LR; // save left-right position

 c = ' '; // reset command value

}

void playServo(int lag) // function to play back servo positions

{

 startPosition(); // move servos to initial position

 FBpos[0] = FB;

 LRpos[0] = LR;

 for (int i=1; i<Nservo+1; i++) // cycle through saved positions

Chapter 10 Build an app

278

 {

 if(FBpos[i] != FBpos[i-1]) // forward-back position change

 {

 steps = abs((FBpos[i] - FBpos [i-1])/5); // number of steps

 stepsize = 5; // magnitude of step size

 if(FBpos[i] < FBpos[i-1]) steps ize = -5;

 // change in FB from FBpos[i-1],LRpos[i-1]

 for (int j = 0; j<steps; j++)

moveServo(FBpos[i-1]+j*stepsize, LRpos[i-1], lag);

 }

 if(LRpos[i] != LRpos[i-1]) // left-right position change

 {

 steps = abs((LRpos[i] - LRpos[i-1])/5);

 stepsize = 5;

 if(LRpos[i] < LRpos[i-1]) stepsize = -5;

 // now at FBpos[i], so change in LR to LRpos[i]

 for (int j = 0; j<steps; j++)

moveServo(FBpos[i], LRpos[i-1]+j*stepsize, lag);

 }

 }

 c = ' '; // reset command value

}

void resetServo() // function to reset saved positions

{

 Nservo = 0; // reset position number to zero

 Serial.println(Nservo); // transmit position number to app

 c = ' '; // reset command value

}

Chapter 10 Build an app

279

The app layout consists of five buttons to control servo motor

movements, with the buttons positioned in a TableArrangement, which is

located in the Layout palette on the left side of the Designer window, with the

table consisting of three rows and columns (see Figure 10- 13). The second

HorizontalArrangement contains three buttons to save, playback, and reset

the servo motor positions. The app layout for Bluetooth connection is the

same as described in the app for Figure 10- 4. In the User Interface palette, an

Image logo is positioned in the first HorizontalArrangement. The image of

the pan-tilt bracket with servo motors is uploaded in the Media palette at the

bottom right of the Designer window. In the Properties section on the right

side of the Designer window, the image is selected under Picture, with the

image height and width set to Fill parent and 90 pixels, respectively.

Figure 10-13. App layout for servo motor control

Chapter 10 Build an app

280

The app blocks are all based on a button click, which transmits the

appropriate command letter to the ESP8266 or ESP32 microcontroller

connected to the two servo motors (see Figure 10-14). The command

letters are the first letter of each command, such as “L" for left, with the

exception of “Z" and “E" for stop and reset.

Figure 10-14. Servo motor commands

The block for the app to receive the transmitted number of saved servo

motor positions sets the PositionsLabel text to the transmitted message

(see Figure 10-15).

Chapter 10 Build an app

281

The SelectBluetooth.BeforePicking, SelectBluetooth.AfterPicking, and

DisconnectBluetooth blocks are identical to those in Figure 10-6.

 Speech recognition app
Speech recognition is used to control an app rather than clicking app

buttons. The app requests the user to speak and converts the spoken

sound into text using the speech recognition function of the Android

tablet or mobile phone, which may require Internet access. The app layout

consists of HorizontalArrangements containing the app title, the Speech

button, and the SpokenText textbox. An image of a person speaking, speech.

png, is uploaded in the Media palette and mapped to the Speech button in

the Properties section. The label SpokenText contains the text generated by

the speech recognition function (see Figure 10-16).

Figure 10-15. Number of saved servo motor positions

Chapter 10 Build an app

282

The Blocks window consists of just four blocks (see Figure 10-17).

When the user clicks the Speech button, the SpeechRecognizer function,

located in the Media palette on the right side of the Designer window,

clears the content of the SpokenText label, asks the user to speak, and

converts the speech to text, which is displayed in the SpokenText label.

Figure 10-16. Speech recognition app layout

Chapter 10 Build an app

283

Devices are controlled based on the content of the text, derived

from the SpeechRecognizer function. For example, if the speech and the

corresponding SpokenText label contain the phrase LED on or LED off,

then the appropriate image, indicating the LED state, is displayed on

the app (see Figure 10-18). The bulbon.png and bulboff.png images are

uploaded in the Media palette in the Designer window, with the bulboff.

png image mapped to the LEDimage in the Properties section.

Figure 10-17. Speech recognition

Figure 10-18. Speech recognition with image control

Chapter 10 Build an app

284

Figure 10-19. Speech recognition with image control and Bluetooth

The SpeechRecognizer.AfterGetting Text function in Figure 10-17 now calls

the app LED procedure with an image dependent on the app SpokenText

label containing the phrase LED on or LED off (see Figure 10- 19). The app

LED procedure in Figure 10-5 that displays an image on the app to indicate

the LED state is combined with the app Change LED procedure in Figure 10-7

that sends a message consisting of the character “C” to the ESP8266 or ESP32

microcontroller. The sketches for an ESP8266 or ESP32 microcontroller

in Table 10-2 to turn on or off the LED, when a message, consisting of the

character “C", was received from the app, are not altered, as there is no

change in the microcontroller response to messages sent by the app.

Chapter 10 Build an app

285

Note that the SelectBluetooth ListPicker button, the DisconnectBluetooth

button, and the Bluetooth image with StatusLabel label are included in

the app layout (see Figure 10-4) along with the corresponding blocks for

Bluetooth connection (see Figures 10-16 and 10- 20).

Instead of the speech recognition app turning on or off an LED, a

device is controlled through a relay attached to the ESP8266 or ESP32

development board. The sketches in Table 10-2 are not changed, but

the SpokenText label of the speech recognition app (see Figure 10-19) is

changed from LED on and LED off to Relay on and Relay off, as required.

Chapter 15 (Radio frequency communication) includes a description of

controlling a device with a relay. For example, the IRF520 MOSFET relay

module can switch up to 100 V direct current (DC) at 10 A, to provide

power for a motor, a light, or other devices (see Figure 10-21).

If the load is a DC motor, then the motor, which is partially an inductor,

will generate a voltage to maintain current when power to the motor is

switched off. Fitting a diode across the motor prevents a voltage spike

Figure 10-20. Bluetooth connection

Chapter 10 Build an app

286

and dissipates energy through the motor when power is switched off. A

Schottky diode, which is a fast switching diode with a low forward voltage

drop, is recommended.

 Summary
An app to control the brightness of an LED attached to an ESP8266

or ESP32 development board with feedback from a light-dependent

resistor was developed for an Android tablet or mobile phone. The app is

programmed with MIT App Inventor with a block-based visual language.

The ESP8266 or ESP32 development board and the Android tablet or

mobile phone communicate using Bluetooth. The ESP32 development

board has built-in Bluetooth functionality, but an HC-05 Bluetooth

module is attached to the ESP8266 development board. Two servo motors

were controlled with an app with servo motor positions saved for playback

to imitate an automated robotic movement sequence. An app based on

speech recognition controlled the state of an LED attached to an ESP8266

or ESP32 development board, with images displayed on the app on the

Android tablet or mobile phone to indicate the LED state.

Figure 10-21. IRF520 MOSFET relay module and the ESP32
development board

Chapter 10 Build an app

287

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: ESP32 DEVKIT DOIT or

NodeMCU board

• LED

• Light-dependent resistor

• Resistors: 220 Ω, 4.7 kΩ

• Bluetooth module: HC-05

• Relay: IRF520 module

Chapter 10 Build an app

289© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_11

CHAPTER 11

App database
and Google Maps
MIT App Inventor contains a database function for storing data within

an app. Google Maps is accessible with MIT App Inventor, provided the

Android tablet or mobile phone hosting the app has Internet access. This

chapter outlines a method to store route data in an app database, with the

app displaying route information using Google Maps. Building the app

database and incorporation of Google Maps are the basis for Chapter 12

(GPS tracking app with Google Maps) to develop a GPS tracking app for

the GPS module connected to an ESP8266 or ESP32 development board.

 MIT App Inventor database
The database function of MIT App

Inventor retains data when the app

is switched off. Databases store data

in a structured format, with data

referenced to an index or an MIT

App Inventor tag. The database enables addition, modification, and deletion

of data, with searching for a specific database tag using an MIT App Inventor

ListPicker and displaying the database contents with an MIT App Inventor

ListView. A database item consists of two components: the database tag

https://doi.org/10.1007/978-1-4842-6336-5_11#DOI

290

and the value associated with that tag. For example, a database item may

consist of "Longest_day, June, 21", with "Longest_day" being the database

tag and "June, 21" being the value associated with tag "Longest_day". The

value associated with a tag is a string that includes several components,

each separated by a comma, backslash, hash, or ampersand. The database

tag is alphanumeric text, so the format for an address and birthday database

item is "Alexander, 44 Scotland Street, 1 January", where "Alexander" is

the database tag that references the value consisting of two components:

address of "44 Scotland Street" and birthday of "1 January". Database

information is accessed by searching on the database tag and not on the

associated value.

In an example database, which demonstrates adding, deleting,

altering, and displaying database contents, the app consists of two screens

(see Figures 11-1 and 11-2). A database item includes the database tag,

Text1, which is case sensitive, and the database value consisting of two

text components, Text2 and Text3, which are alphanumeric. In Screen1, a

database item is entered into the corresponding three textboxes and saved

in the database by clicking the SavetoDbase button (see Figure 11-1).

A database item is searched for by entering text in the FindDbaseText1

textbox and clicking the FindTextButton button to initiate a database search

for the database tag that matches the entered text, and the database item is

then displayed in the three textboxes: Text1, Text2, and Text3. A displayed

database item is deleted from the database by clicking the DeleteDbaseItem

button. Screen1 is cleared by clicking the ClearScreen button.

Chapter 11 app database and GooGle Maps

291

Database contents are displayed by clicking the ViewDbaseContents

button, which moves to the second screen, Screen2, with the database

items displayed in a ListView as “Text1 AND Text2&Text3” (see Figure 11-2).

Clicking the ClearDbaseDisplay button clears the Screen2 display of

database items. Clicking the SelectandDisplay ListPicker button produces

a list of the database tags, Text1. When a database tag is selected, the

database item is displayed as “Text1 Text2&Text3” in the DbaseTag and

DbaseValue labels, respectively. Clicking the ClearDisplay button clears

the database item from Screen2. The effect of the GotoScreen1 button is

self-explanatory.

Figure 11-1. Database app screen 1 layout

Chapter 11 app database and GooGle Maps

292

The TinyDB1 database of MIT App Inventor is accessed from the

Storage palette on the left side of the Designer window, and the TinyDB

component is dragged onto Screen1. ListView and ListPicker are located in

the User Interface palette.

A database item is saved, with the TinyDB StoreValue function, provided

both Text1 and Text3 are not blank, with the database value components,

Text2 and Text3, joined with the ampersand, &, character (see Figure 11-3).

Figure 11-2. Database app screen 2 layout

Chapter 11 app database and GooGle Maps

293

The contents of Screen1 are cleared with the ClearText procedure,

which replaces textboxes with blank text (see Figure 11-4). A database

item is deleted from the database with the TinyDB ClearTag function,

which clears Text1 from the database, as Text2 and Text3 are subsequently

overwritten. The entire database content is deleted with the TinyDB

ClearAll function.

Figure 11-3. Save a database item

Chapter 11 app database and GooGle Maps

294

A database item is accessed by the database tag, Text1, with the

database value components indexed as list items 1, 2, and so on. If the

database tag is found, the database value is parsed into components using

the ampersand, &, partitioning character; otherwise, an error message is

displayed (see Figures 11-3 and 11-5).

Figure 11-4. Delete a database item or clear all database items

Chapter 11 app database and GooGle Maps

295

Database contents are displayed by allocating database tags to a list,

DBlist, with the TinyDB GetTags function. The corresponding database

values are added to the list, with the TinyDB GetValue function, and the

contents of the list are displayed with the ListView function (see Figure 11-6).

Figure 11-5. Locate a database item

Figure 11-6. Display database content

Chapter 11 app database and GooGle Maps

296

A database item is selected from a list with the TinyDB GetTags and

GetValue functions. The list is deleted with the TinyDB create empty list

function. The app is moved to another screen with the open another screen

control option (see Figure 11-7).

Figure 11-7. Display or clear the display of a selected database item

 MIT App Inventor and Google Maps
Google Maps is accessible with MIT App Inventor,

provided the Android tablet or mobile phone hosting the

app has Internet access. The example app demonstrates

accessing Google Maps, storing location latitude

(North-South position) and longitude (East-West

position) information in the app database, placing

markers on the map view, zooming in and zooming out of the map view,

and displaying road or aerial map views (see Figure 11-8). The map is

moved by dragging the map, a double touch zooms in the map, and the

Chapter 11 app database and GooGle Maps

297

latitude and longitude of the touched position are displayed. A location is

saved in the app database after entering the location name and clicking

the AddLocation button. The ChooseLocation button displays a list of

saved locations in the app database, with the map centered on the chosen

location. The DeleteLocation button removes a saved location from the app

database.

Figure 11-8. Location database app

Chapter 11 app database and GooGle Maps

298

The first HorizontalArrangement of the location database layout

includes the map with a marker, which is accessed from the Maps palette

(see Figure 11-9). The map is centered and the marker positioned on the

latitude-longitude defined in the CenterFromString property. The map

properties include the EnableZoom option, with a height and width of 200

pixels and Fill parent, respectively, and the ShowScale option. Latitude and

longitude labels for displaying values and buttons to zoom in and zoom

out of the map and to clear markers from the map are included in the

second and third HorizontalArrangements. In MIT App Inventor, labels are

for displaying alphanumeric text, while textboxes enable the user to enter

alphanumeric text. A textbox Hint property positions text in the textbox to

provide information to the user. The Location textbox Hint is "enter name

then click". The AddLocation, ChooseLocation, and DeleteLocation buttons

are clicked to update location information on the app database. Finally,

the RoadView and AerialView buttons change the map view format,

although high aerial-view resolution is only available for the USA.

Figure 11-9. Location database app layout

Chapter 11 app database and GooGle Maps

299

Blocks to display location latitude and longitude when the map is

tapped or double-tapped, with the latter increasing the zoom level, are

shown in Figure 11-10. The setText procedure updates the latitude and

longitude textboxes for the map position touched by the user. A global

variable zoom is defined as the map zoom level. The drawMap procedure

redraws the map with the updated zoom level and centers the map on

the touched location. Blocks to change the map zoom level are shown in

Figure 11-11, with the zoom procedure updating the zoom level.

Figure 11-10. Display location latitude and longitude on tapping
map

Chapter 11 app database and GooGle Maps

300

Location data is saved to the TinyDB1 app database with the TinyDB

StoreValue function, with the database tag equal to the location name, as

entered in the Location textbox. The database value is the location latitude

and longitude, which are joined with the ampersand character (see

Figure 11-12). A location is deleted from the app database with the TinyDB

ClearTag function.

Figure 11-11. Change map zoom level

Chapter 11 app database and GooGle Maps

301

When a location is selected from the list of locations saved in the app

database, the database tag is set to the selected location. The corresponding

database value obtained with the TinyDB GetValue function, consisting of

the location latitude and longitude joined by the ampersand character, is

split into two indexed components (see Figure 11- 13). The map type is set

one, corresponding to the road view, the map zoom level is set, and the

map is redrawn centered on the location latitude and longitude with a map

marker positioned on the map at the selected location. The ClearMarkers

button sets the Map Features to an empty list, which removes all map

markers when the map is next updated.

Figure 11-12. Save location data to the app database

Chapter 11 app database and GooGle Maps

302

Finally, for a road or an aerial map view, the map type is set to one or

two, respectively, and the road view has higher resolution than the aerial

view (see Figure 11-14). The resolution of the aerial view is only high for

the USA, so the map zoom level is set to eight before redrawing the map.

Figure 11-13. Choose a location from the app database

Chapter 11 app database and GooGle Maps

303

Figure 11-14. Map type definition

 Summary
Demonstration apps were developed to illustrate the MIT App Inventor

database functionality and use of Google Maps in a location app. An MIT

App Inventor database contains database items, consisting of a database

tag and the corresponding database value, to include several variables

separated by the ampersand character. Database items are added to,

altered in, or deleted from the database, with the option to display the

database contents or only the database value corresponding to a selected

database tag. A database app, built with MIT App Inventor, stored the

latitude and longitude data of selected locations. Markers were positioned

on the map view at the stored locations. The app had a map zoom function

with the road and aerial views provided by Google Maps.

 Components List
• Android tablet or mobile phone

• Internet access

Chapter 11 app database and GooGle Maps

305© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_12

CHAPTER 12

GPS tracking app
with Google Maps
In Chapter 11 (App database and Google Maps), an app is developed to

display map locations using Google Maps on an Android tablet or mobile

phone with Internet access. In this chapter, a GPS location app displays

the position of a remotely located GPS module or the route taken by the

GPS module using Google Maps. An nRF24L01 module, connected to

an ESP8266 or ESP32 development board attached to the GPS module,

transmits the GPS location to a receiving nRF24L01 module, attached

to an ESP32 development board. The GPS location information is

transmitted to the app on the Android tablet or mobile phone by the ESP32

microcontroller using Bluetooth communication. The GPS location is

displayed on the app using Google Maps, with the Android tablet or mobile

phone accessing Google Maps data from the World Wide Web through the

Internet Service Provider (ISP) (see Figure 12-1). The transmission range of

the nRF24L01 transceiver module of at least 1 km combined with the 10 m

range of Bluetooth provides a degree of flexibility in the distance between

the app user, the receiving nRF24L01 module, and the remotely positioned

GPS module.

https://doi.org/10.1007/978-1-4842-6336-5_12#DOI

306

The receiving nRF24L01 module could be connected to an ESP8266

development board, but an HC-05 Bluetooth module would have

to be connected to the ESP8266 development board for Bluetooth

communication with the Android tablet or mobile phone.

Alternatively, LoRa (long range) communication, between the

transmitting ESP8266 or ESP32 development board connected to the

GPS module and the receiving ESP32 microcontroller, could replace

the Radio Frequency (RF) communication of the nRF24L01 modules.

LoRa communication is described in Chapter 14 (ESP-NOW and LoRa

communication).

The app displays the current GPS location with a zoom map function

and the option to display a completed route by connecting location

tracking markers. The received GPS latitude and longitude values are

filtered to avoid erroneous marker positions, caused by transmission noise,

from being plotted on the map. An initial base position is entered on the

app, to which received GPS positions are compared (see Figure 12-2).

Figure 12-1. GPS tracking app with nRF24L01 transceiver modules

Chapter 12 GpS traCkinG app with GooGle MapS

307

After the Bluetooth connection is established between the app and the

receiving ESP32 microcontroller, the GPS position is identified on the map,

with the map automatically centered at the GPS position (see Figure 12-3 (a)).

Every two seconds, the GPS position is transmitted to the receiving

nRF24L01 module, and the map is updated with the GPS position

(see Figure 12-3 (b)). Clicking the app add lines button connects the GPS

position markers with a joining line (see Figure 12-3 (c)). Clicking the app

clear map button clears the map of the GPS markers and the joining line.

Clicking the app show route button displays the route taken as the joining

line of GPS positions (see Figure 12-3 (d)).

Figure 12-2. GPS tracking app

Chapter 12 GpS traCkinG app with GooGle MapS

308

The app layout in Figure 12-4 consists of the map with a location

marker and the LineString function, available in the Maps palette on the

left side of the MIT App Inventor Designer window. The GPS latitude and

longitude are displayed in the corresponding Latitude and Longitude

labels. The second HorizontalArrangement contains the ZoomIn,

ZoomOut, ClearMarkerLines, AddLines, and ShowRoute buttons, which

control the map zoom function, clear all markers from the map, connect

location markers with a joining line, and display the completed route using

the joining lines without the markers.

Figure 12-3. GPS tracking app position markers and route taken

Chapter 12 GpS traCkinG app with GooGle MapS

309

When the app is loaded, clicking the SelectBluetooth ListPicker button

displays a list of available Bluetooth connections, the selected Bluetooth

connection is made, and the text connected is displayed in gray text. The

DisconnectBluetooth button disconnects the Bluetooth connection, and

the text disconnected is displayed in red.

Entering the base latitude and longitude into the corresponding

BaseLatitude and BaseLongitude textboxes and then clicking the

BasePosition button displays the entered values, and the app

subsequently screens the received latitude and longitude values before

displaying location markers on the map with Google Maps. The last

HorizontalArrangement displays the signal, TransmittedLocation, as

received by the receiving nRF24L01 module. The app Clock, TinyDB,

and BluetoothClient components are located in the Sensors, Storage, and

Connectivity palettes of the Designer window.

Figure 12-4. GPS tracking app layout

Chapter 12 GpS traCkinG app with GooGle MapS

310

MIT App Inventor blocks to build the app are shown in Figures 12-5

to 12-10. Blocks to connect and disconnect to and from the Bluetooth

device, which is the ESP32 microcontroller, are shown in Figure 12-5. The

StatusLabel label displays the Bluetooth connection status. Building the

Bluetooth connection blocks was described in Chapter 10 (Build an app).

The Clock1 timer monitors, at 1000 ms intervals, the Bluetooth device

for a signal, which is analogous to the instruction if(Serial.available()

> 0) in a sketch in the Arduino IDE. The received signal is displayed at the

bottom of the app screen in the TransmittedLocation label. The received

signal should contain three comma-separated components: a counter,

the GPS latitude, and the GPS longitude. If the received signal contains

a comma, then the signal text is parsed, with each signal component

indexed 1, 2, or 3 and allocated to the components of a list, datalist. If the

datalist contains three components, then the check procedure is called

to validate the signal information (see Figure 12-6). If the received signal

does not contain a comma or does not contain three components, then the

signal is ignored.

Figure 12-5. Connect or disconnect to or from a Bluetooth device

Chapter 12 GpS traCkinG app with GooGle MapS

311

The check procedure validates the signal information by checking that

the GPS latitude and longitude are both numbers and that the absolute

deviation from the base position, which was entered on the app by the

user, is less than two degrees (see Figure 12-7). One degree of latitude

is 111 km, while a degree of longitude is 78 km at 45° North or South,

given a spherical Earth radius of 6371 km. Comparing the GPS latitude

and longitude to the base position ensures that spurious positions, due

to transmission noise, are not plotted on the map. The GPS position

is updated on the map by creating a map marker at the GPS latitude

and longitude, with the map centered on the marker location. The GPS

position is stored in the TinyDB database with the database tag equal to a

marker counter, which is only incremented for verified GPS position data,

rather than for all received GPS position data.

Figure 12-6. Receive and process Bluetooth signal

Chapter 12 GpS traCkinG app with GooGle MapS

312

The blocks to create position marker joining lines are shown in

Figure 12-8. The linetext text is essentially a series of (X, Y) co-ordinates.

When the AddLines button is clicked, the linetext text is initialized as a

blank character and incremented with each GPS position stored in the

TinyDB database to form the sequence of (X, Y) co-ordinates. When all the

GPS position data is incorporated in the linetext text, the points on a Map

LineString are generated from the linetext text, and the Map LineString is

made visible on Google Maps. The Map LineString is also made visible,

but without the map markers, when the ShowRoute button is clicked, after

clicking both the AddLines and then the ClearMarkerLines buttons.

Figure 12-7. Validate position data, plot position on the map, and
store position data

Chapter 12 GpS traCkinG app with GooGle MapS

313

Blocks to clear the map markers and/or the map marker joining line

are shown in Figure 12-9. When the ClearMarkerLines button is clicked,

the Map LineString is no longer visible, the displayed latitude and

longitude are cleared, and the Map Features, such as the map markers, are

all reset, except for the first item of Map Features.

Figure 12-8. Create marker connecting lines

Chapter 12 GpS traCkinG app with GooGle MapS

314

The blocks for the map zoom functions and incorporation of the base

position information are shown in Figure 12-10. When the ZoomIn or

ZoomOut button is clicked, the map zoom factor is increased or decreased,

and the map is redrawn with the updated zoom level and centered at

the GPS location. When the BasePosition button is clicked, the values

entered by the user in the BaseLatitude and BaseLongitude textboxes are

stored in the global baselat and baselong variables, for screening received

GPS position information, with the BaseLabel updated with values of the

baselat and baselong variables.

Figure 12-9. Clear map markers and connecting lines

Chapter 12 GpS traCkinG app with GooGle MapS

315

 GPS position transmit
GPS positional information is transmitted with an nRF24L01 transceiver

module attached to an ESP8266 or ESP32 development board. The

nRF24L01 module pins are shown in Figure 12-11, with the GND pin

indicated by a square surround. The nRF24L01 module communicates with

Serial Peripheral Interface (SPI), with the MOSI (Main-Out Secondary-In),

MISO (Main-In Secondary-Out), and SCK (serial clock) pins connected to

Figure 12-10. Map zoom function and base position values

Chapter 12 GpS traCkinG app with GooGle MapS

316

the microcontroller SPI pins. The CE (transmit/receive) and CSN (standby/

active mode) pins do not have a predefined microcontroller pin. The

nRF24L01 module operates at 3.3 V, but the logic pins are 5 V tolerant.

GPS position data, from a u-blox NEO-7M GPS module, is transmitted

by an ESP8266 or ESP32 microcontroller, powered by a 5 V power bank.

Connections for the transmitting nRF24L01 module with the u-blox

NEO-7M GPS module and an ESP8266 or ESP32 development board and

for the receiving nRF24L01 module with an ESP32 development board are

shown in Figure 12-12 and in Table 12-1. The 10 μF capacitor reduces signal

noise. Only the u-blox NEO-7M GPS module transmit pin is connected to

the microcontroller, as the module receive pin is not required.

Figure 12-12. Transmitting nRF24L01 module and u-blox NEO- 7M
GPS module with a LOLIN (WeMos) D1 mini board and a transmitting
or receiving nRF24L01 module and ESP32 DEVKIT DOIT board

Figure 12-11. nRF24L01 pin connections

Chapter 12 GpS traCkinG app with GooGle MapS

317

Instructions for the transmitting nRF24L01 module connected to the

u-blox NEO-7M GPS module and an ESP8266 development board are

given in Listing 12-1. NMEA (National Marine Electronics Association)

messages from the u-blox NEO-7M GPS module are extracted with

the NeoGPS library, which uses the AltSoftSerial library software Serial

connection. The AltSoftSerial library is not compatible with the ESP8266

microcontroller, so the SoftwareSerial library is used instead. The NeoGPS

library by Slash Devin and the RF24 library by James Coliz are available

in the Arduino IDE, and the SoftwareSerial library is built-in. The ESP32

Table 12-1. Connections for nRF24L01 and u-blox NEO-7M GPS

modules with ESP8266 and ESP32 development boards

Component Transmitting
nRF24L01

Transmitting or
Receiving nRF24L01

nrF24l01 VCC eSp8266 3V3 eSp32 3V3

nrF24l01 CSn eSp8266 D8 eSp32 Gpio 4

nrF24l01 MoSi eSp8266 D7 eSp32 Gpio 23

nrF24l01 irQ not connected not connected

nrF24l01 GnD eSp8266 GnD eSp32 GnD

nrF24l01 Ce eSp8266 D3 eSp32 Gpio 2

nrF24l01 SCk eSp8266 D5 eSp32 Gpio 18

nrF24l01 MiSo eSp8266 D6 eSp32 Gpio 19

u-blox neo-7M VCC eSp8266 3V3 eSp32 3V3

u-blox neo-7M GnD eSp8266 GnD eSp32 GnD

u-blox neo-7M tXD eSp8266 D4 eSp32 rX2 (Gpio 16)

10 μF capacitor positive leg nrF24l01 VCC nrF24l01 VCC

10 μF capacitor negative leg nrF24l01 GnD nrF24l01 GnD

Chapter 12 GpS traCkinG app with GooGle MapS

318

DEVKIT DOIT 30-pin board and the ESP32 NodeMCU 36-pin board have a

second Serial port on GPIO 16 (RX2) and GPIO 17 (TX2).

Listing 12-1 is for an ESP8266 microcontroller. When using an ESP32

microcontroller, the following instructions for the ESP8266 microcontroller

#include <SoftwareSerial.h> // include SoftwareSerial library

SoftwareSerial SoftSer(D4, D0); // associate SoftSer with SoftwareSerial

RF24 radio(D3, D8); // associate radio with RF24 library

SoftSer.begin(9600); // SoftwareSerial baud rate

while(nmea.available(SoftSer)>0) // GPS data available

are replaced with instructions for an ESP32 microcontroller

RF24 radio(2, 4); // associate radio with RF24 library

Serial2.begin(9600, SERIAL_8N1, 1 6, 17); // ESP32 RX2 on GPIO 16

while(nmea.available(Serial2)>0) // GPS data available

The u-blox NEO-7M GPS module transmits NMEA messages every

second. The RMC message, which is the recommended minimum

message, contains latitude and longitude. In the NeoGPS library folder,

open the file NMEAGPS_cfg.h in the src folder and ensure that the

instruction #define NMEAGPS_PARSE_RMC on line 38 is not commented

out. If only the RMC message is required, then the instruction on line 48

should equal #define LAST_SENTENCE_IN_INTERVAL NMEAGPS::NMEA_RMC.

Information about the structure of NMEA messages is available at github.

com/SlashDevin/NeoGPS.

GPS latitude and longitude values are transformed to strings, which are

converted to character arrays for inclusion in a data structure transmitted

by the nRF24L01 module. A GPSsend counter is incremented on receipt of

valid GPS location data, with a condition on the counter value defining the

interval between transmissions by the nRF24L01 module. Details on RF24

library instructions accompany Listing 12-2.

Chapter 12 GpS traCkinG app with GooGle MapS

https://github.com/SlashDevin/NeoGPS
https://github.com/SlashDevin/NeoGPS

319

Listing 12-1. nRF24L01 transmit signal with position data for the

ESP8266 board

#include <SoftwareSerial.h> // include SoftwareSerial library

SoftwareSerial SoftSer(D4, D 0);

// associate SoftSer with SoftwareSerial

#include <NMEAGPS.h> // include NeoGPS library

NMEAGPS nmea; // associate nmea and gps

gps_fix gps; // with NMEAGPS library

float GPSlat, GPSlong; // real numbers for GPS location

int GPSsend = 0; // GPS send counter

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(D3, D8); // associate radio with RF24 library

byte addresses[][6] = {"12" }; // data pipe address

typedef struct // define data structure to include

{

 char GPSlat[10]; // character arrays for

 char GPSlong[10]; // GPS latitude and longitude

} dataStruct;

dataStruct data; // name the data structure as data

int interval = 2; // interval (s) between GPS transmissions

void setup()

{ // Serial connection to GPS module

 SoftSer.begin(9600); // SoftwareSerial baud rate

 delay(500);

 radio.begin(); // start radio

 radio.setChannel(50); // set channel number,

 radio.setDataRate(RF24_2MBPS); // baud rate

Chapter 12 GpS traCkinG app with GooGle MapS

320

 radio.setPALevel(RF24_PA_HIGH); // and power amplifier

 radio.setAutoAck(true); // set auto- acknowledge (default)

 radio.openWritingPipe(address es[0]); // initiate data transmit pipe

 radio.stopListening(); // nRF24L01 as transmitter

}

void loop()

{

 while(nmea.available(SoftSer)>0) // GPS data available

 {

 gps = nmea.read(); // latest satellite message

 if(gps.valid.location) // validated GPS location

 {

 GPSlat = gps.latitude();

 GPSlong = gps.longitude();

 GPSsend++; // increment GPS send counter

 }

 if(GPSsend > interval) // transmit every (interval+1)s

 { // convert number to string and then to character array

 String(GPSlat,6).toCharArray(data.GPSlat,10);

 String(GPSlong,6).toCharArray(data.GPSlong,10);

 radio.write(&data, siz eof(data));

 // transmit signal as data structure

 GPSsend = 0; // reset GPS send counter

 }

 }

}

Chapter 12 GpS traCkinG app with GooGle MapS

321

 GPS position receive
Instructions for the receiving nRF24L01 module connected to an ESP32

development board are given in Listing 12-2. The RF24 library by James

Coliz is available in the Arduino IDE. Communication between nRF24L01

transceiver modules is through data pipes that require an address of a

five-letter string, such as “node1” or “12” for each data pipe, a transmission

channel number, a data rate, and a power amplifier level. The nRF24L01

module operates at frequencies of 2.4 GHz with 126 channels of bandwidth

of less than 1 MHz, resulting in a range of frequencies between 2.4 GHz

(2400 MHz) and 2525 MHz, corresponding to channel numbers 0–125.

Channel number, N, is set with the instruction setChannel(N). Data

rates, of 250 kbps, 1 Mbps, and 2 Mbps, measured in bits per second, are

available in the RF24 library using the instruction setDataRate() with

values RF24_250KBPS, RF24_1MBPS, and RF24_2MBPS. The power

amplifier levels of RF24_PA_MIN, LOW, HIGH, and MAX correspond

to -18, -12, -6, and 0 dB that equate to power outputs of approximately

1/64, 1/16, 1/4, and 1 mW, respectively, as power = 10(dB/10)mW. Power

amplifier levels are set with the instruction setPALevel().

A data structure combines several data types, but has a limit of 32

bytes with an integer, a real number, or a character requiring 2, 4, or 1 byte,

respectively. The received nRF24L01 signal, containing GPS location data,

is combined with a counter value and transmitted as a text string to the

GPS location app.

Chapter 12 GpS traCkinG app with GooGle MapS

322

Listing 12-2. nRF24L01 receive signal transmitted with Bluetooth

#include <BluetoothSerial.h> // include Bluetooth library

BluetoothSerial SerialBT; // associate SerialBT with library

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(2, 4); // associate radio with RF24 lib

byte addresses[][6] = {"12"}; // data pipe address

typedef struct // define data structure to include

{

 char GPSlat[10]; // character arrays for

 char GPSlong[10]; // GPS latitude and longitude

} dataStruct;

dataStruct data; // name the data structure as data

int count = 0; // received message counter

int textLen;

String text;

char c;

void setup()

{

 radio.begin(); // start radio

 radio.setChannel(50); // set channel number

 radio.setDataRate(RF24_2MBPS); // baud rate

 radio.setPALevel(RF24_PA_HIGH); // and power amplifier

 radio.setAutoAck(true); // set auto- acknowledge (default)

 radio.openReadingPipe(0, address es[0]);

 // initiate data receive pipe

 radio.startListening(); // nRF24L01 module as receiver

 SerialBT.begin("ESP32 Bluetooth"); // identify Bluetooth

}

Chapter 12 GpS traCkinG app with GooGle MapS

323

void loop()

{

 if(radio.available()) // if signal received

 { // received signal to data structure

 radio.read(&data, sizeof(data));

 count++; // increment counter

 text = String(count) + "," + String(data.GPSlat) + "," +

 String(data.GPSlong) + ","; // build string of position data

 textLen = text.length();

 for (int i=0; i<textLen; i++)

 {

 c = text[i]; // for each message character

 SerialBT.write(c); // transmit to Bluetooth device

 }

 }

}

The receiving nRF24L01 module is monitored by displaying the

received data on the Serial Monitor using the Serial connection with the

instructions

Serial.begin(115200); // Serial Monitor baud rate

Serial.println(text); // display GPS position data

 Validate transmission of GPS position
The Wi-Fi functionality of ESP8266 and ESP32 microcontrollers enables

data display on a web page, in addition to the Serial Monitor. When

checking the development of a tracking app, the received GPS location

data is displayed on a web page using an Android tablet or mobile phone

connected to a wireless local area network (WLAN). Transmission of GPS

Chapter 12 GpS traCkinG app with GooGle MapS

324

location data is tested by changing the GPS location within the WLAN

connection radius of several meters.

Building and updating a web page is described in Chapter 8 (Updating

a web page). Instructions to update a web page with GPS location data

are combined with Listing 12-2, as shown in Listing 12-3. The sketch

demonstrates different time intervals for updating, displaying, and

transmission of GPS location data. The u-blox Neo-7M GPS location data

is automatically updated every second, which is displayed on the Serial

Monitor. The web page updates a counter every second, but the web page

GPS location data is updated every five seconds. The nRF24L01 transceiver

module transmits GPS location data every three seconds. In Listing 12- 2,

GPS latitude and longitude were transformed to strings, converted to

character arrays, and sent as a text string to the GPS location app, with

the instruction String(GPSlat,6).toCharArray(data.GPSlat,10). In

Listing 12-3, GPS latitude and longitude are declared in a data structure,

data, and transmitted directly with the instruction radio.write(&data,

sizeof(data)). The flashLED function creates a double flash of the

LED when GPS location data is transmitted, as an indicator that the

combination of the ESP8266 or ESP32 microcontroller and u-blox NEO-7M

GPS module is functioning.

Listing 12-3 is for an ESP8266 microcontroller. If the transmitting

nRF24L01 module is connected to an ESP32 development board, then the

WiFi, WebServer and SoftwareSerial libraries, nRF24L01 CE and CSN pins,

and the LED pin definition instructions for the ESP8266 microcontroller

#include <ESP8266WiFi.h> // include ESP8266 Wi- Fi and

#include <ESP8266WebServer.h> // web server libraries

ESP8266WebServer server; // associate server with library

#include <SoftwareSerial.h> // include SoftwareSerial library

SoftwareSerial SoftSer(D4, D0) ;

// associate SoftSer with SoftwareSerial

SoftSer.begin(9600); // serial connection to GPS module

Chapter 12 GpS traCkinG app with GooGle MapS

325

while(nmea.available(SoftSer)>0) // GPS data available

RF24 radio(D3, D8); // associate radio with RF24 library

int LEDpin = D1; // define LED

are replaced with instructions for the ESP32 microcontroller

#include <WiFi.h> // include ESP8266 Wi- Fi and

#include <WebServer.h> // web server libraries

WebServer server (80); // requires a port number

Serial2.begin(9600, SERIAL_8N1, 16, 17);

// ESP32 RX2, TX2 on GPIO 16 and 17

while(nmea.available(Serial2)>0) // GPS data available

RF24 radio(2, 4); // associate radio with RF24 library

int LEDpin = D1; // define LED pin

Listing 12-3. nRF24L01 transmit signal with position data and

display on web page

#include <ESP8266WiFi.h> // include ESP8266 Wi-Fi and

#include <ESP8266WebServer.h> // web server libraries

ESP8266WebServer server; // associate server with library

char ssid[] = "xxxx"; // change xxxx to your Wi-Fi SSID

char password[] = "xxxx"; // change xxxx to your Wi-Fi password

#include "buildpage.h" // webpage HTML code

#include <SoftwareSerial.h> // include SoftwareSerial library

SoftwareSerial SoftSer(D4, D0); // associate SoftSer with SoftwareSerial

#include <NMEAGPS.h> // include NeoGPS library

NMEAGPS nmea; // associate nmea with NMEAGPS lib

gps_fix gps; // associate gps with NMEAGPS library

float GPSlat, GPSlong, GPSalt, GPSs pd;

// real numbers for GPS location

Chapter 12 GpS traCkinG app with GooGle MapS

326

int GPSsend = 0; // GPS send counter

String json;

int count = 0;

String counter; // counter increment every second

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(D3, D8); // associate radio with RF24 library

byte addresses[][6] = {"12"}; // data pipe address

typedef struct // define data structure to include

{

 float GPSlat; // GPS latitude

 float GPSlong; // GPS longitude

 float GPSalt; // GPS altitude (m)

 float GPSspd; // GPS ground speed (kmph)

 int sigCount; // signal counter

} dataStruct;

dataStruct data; // name the data structure as data

int LEDpin = D1; // define LED pin

int LED = 0; // LED turned off

int interval = 1; // (interval+1)s between transmissions

void setup()

{

 Serial.begin(115200); // define Serial output baud rate

 SoftSer.begin(9600); // serial connection to GPS module

 WiFi.begin(ssid, password); // initialise and connect Wi-Fi

 while (WiFi.status() != WL_C ONNECTED) delay(500);

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display web server IP address

 server.begin(); // initialise server

Chapter 12 GpS traCkinG app with GooGle MapS

327

 server.on("/", base); // call base function as webpage loaded

 server.on("/GPSurl", GPSfunct);

// call GPSfunct with GPSurl loaded

 server.on("/countUrl", countFunct);

 delay(500);

 radio.begin(); // start radio

 radio.setChannel(50); // set channel number,

 radio.setDataRate(RF24_2MBPS); // baud rate and

 radio.setPALevel(RF24_PA_HIG H); // power amplifier level

 radio.setAutoAck(true); // set auto-acknowledge (default is true)

 radio.openWritingPipe(addresses[0]); // initiate data transmit pipe

 radio.stopListening(); // set nRF24L01 module as transmitter

 pinMode(LEDpin, OUTPUT); // define LEDpin as OUTPUT

}

void GPSfunct() // function to transmit GPS position data

{

 while(nmea.available(SoftSer)>0) // GPS data available

 {

 gps = nmea.read(); // latest satellite message

 if(gps.valid.location) // validated GPS location

 {

 GPSlat = gps.latitude();

 GPSlong = gps.longitude();

 GPSsend++; // increment GPS send counter

 }

 if(gps.valid.altitude) GPSalt = gps.altitude(); // altitude

 if(gps.valid.speed) GPSspd = gps.speed_kph();

// ground speed

 JsonConvert(GPSlat, GPSlon g, GPSalt, GPS spd);

// convert to JSON text

Chapter 12 GpS traCkinG app with GooGle MapS

328

 server.send(200, "text/json", json); // send JSON text to client

 Serial.println(json);

 if(GPSsend > interval) // transmit every (interval+1)s

 {

 data.GPSlat = GPSlat; // convert GPS readings to data structure

 data.GPSlong = GPSlong;

 data.GPSalt = GPSalt;

 data.GPSspd = GPSspd;

 data.sigCount++; // increment signal counter

 radio.write(&data, sizeof(da ta));

// transmit signal as data structure

 GPSsend = 0; // reset GPS send counter

 flashLED();

 }

 }

}

 // function to convert data to JSON text

String JsonConvert(float val1, float val2, float val3, float val4)

{ // start with open bracket

 json = "{\"var1\": \"" + String(val1,4) + "\",";

 json += " \"var2\": \"" + String(val2, 4) + "\",";

// end with comma

 json += " \"var3\": \"" + String(val3) + "\",";

 json += " \"var4\": \"" + String(val4) + "\"}";

// end with close bracket

 return json;

}

void countFunct() // function to increment counter

{ // and send value to client

 count++;

 counter = String(count);

Chapter 12 GpS traCkinG app with GooGle MapS

329

 server.send (200, "text/plain", counter);

}

void flashLED() // function to flash LED

{

 for (int i=0; i<4; i++)

 {

 LED = 1 - LED; // alternate LED state four times

 digitalWrite(LEDpin, LED); // ON – OFF – ON - OFF

 delay(50);

 }

}

void base() // function to return HTML code

{

 server.send (200, "text/html", page);

}

void loop()

{

 GPSfunct(); // function to transmit GPS location data

 server.handleClient(); // manage HTTP requests

}

Listing 12-4 contains the AJAX code for the web page and XML HTTP

requests, which is defined as the string literal page. The first part of the

<body> section is the web page HTML code with the variables referenced

as the variable names in the XML HTTP request. The JavaScript instruction

setInterval() controls the time interval between XML HTTP requests,

which is five seconds for the reload function to obtain the GPS location data.

JavaScript scripts, bracketed by <script>...</script>, are positioned prior

to the HTML </body> code to improve web page display speed.

Chapter 12 GpS traCkinG app with GooGle MapS

330

Listing 12-4. AJAX request with GPS position data

char page[] PROGMEM = R"(

<!DOCTYPE html><html>

<head><title>ESP8266</title>

<meta charset="UTF-8">

</head>

<body>

<h2>GPS</h2>

<p>Latitude: 0</p>

<p>Longitude: 0</p>

<p>Altitude: 0 m</p>

<p>Speed: 0 kph<p>

<p>Counter: 0</p>

<script>

setInterval(reload, 5000); // reload function called every 5s

function reload()

{

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function()

 {

 if(this.readyState == 4 && this.status == 200)

 {

 var obj = JSON.parse(this.responseText);

 document.getElementById('latId').innerHTML = obj.var1;

 document.getElementById('longId').innerHTML = obj.var2;

 document.getElementById('altId').innerHTML = obj.var3;

 document.getElementById('speedId').innerHTML = obj.var4;

 console.log(obj.var3);

 }

 };

Chapter 12 GpS traCkinG app with GooGle MapS

331

 xhr.open('GET', '/GPSurl', true);

 xhr.send();

}

setInterval(reload2, 1000);

function reload2() // reload2 function called every 1s

{ // to obtain countId from /countUrl

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function()

 {

 if(this.readyState == 4 && this.status == 200)

 {document.getElementById('countId').innerHTML = this.

responseText;

 console.log(this.responseText);}

 };

 xhr.open('GET', '/countUrl', true);

 xhr.send();

}

</script>

</body></html>

)";

To complement testing the updating of transmitted GPS location data by

changing the GPS position, testing the updating of the received GPS location

data by changing the position of the receiving nRF24L01 module requires a

mobile display, such as an OLED screen. The sketch in Listing 12-5 displays

GPS location data on a 128 × 64–pixel OLED screen (see Figure 12-13).

Connections for ESP8266 development boards with transmitting and receiving

nRF24L01 modules are given in Table 12-2. The Adafruit_SSD1306 library for

the OLED screen is available in the Arduino IDE.

Chapter 12 GpS traCkinG app with GooGle MapS

332

Figure 12-13. Transmitting and receiving GPS signals with
nRF24L01 modules

Table 12-2. ESP8266 development board connections to transmitting

and receiving nRF24L01 modules with the u-blox NEO-7M GPS

module and 128 × 64–pixel OLED screen

Component ESP8266 Connect to

nrF24l01 VCC 3V3 10 μF capacitor positive leg

nrF24l01 CSn D8

nrF24l01 MoSi D7

nrF24l01 irQ not connected

nrF24l01 GnD GnD 10 μF capacitor negative leg

nrF24l01 Ce D3

(continued)

Chapter 12 GpS traCkinG app with GooGle MapS

333

Component ESP8266 Connect to

nrF24l01 SCk D5

nrF24l01 MiSo D6

u-blox neo-7M VCC 3V3

u-blox neo-7M GnD GnD

u-blox neo-7M tXD D4

128 × 64–pixel oleD GnD 3V3

128 × 64–pixel oleD VDD GnD

128 × 64–pixel oleD SCk D1

128×64 pixel oleD SDa D2

Table 12-2. (continued)

In Listing 12-5, the transmitted GPS position data from Listing 12-3,

which is displayed on a web page, is also displayed on an OLED screen to

provide a mobile test of signal transmission and reception.

Listing 12-5. nRF24L01 receive signal with position data and

display on OLED

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(D3, D8); // associate radio with RF24 lib

byte addresses[][6] = {"12"}; // data pipe address

typedef struct // define data structure to include

{

 float GPSlat; // character arrays for

Chapter 12 GpS traCkinG app with GooGle MapS

334

 float GPSlong; // GPS latitude and longitude

 float GPSalt; // GPS altitude (m)

 float GPSspd; // GPS ground speed (kmph)

 int sigCount; // signal counter

} dataStruct;

dataStruct data; // name the data structure as data

float lagTime = 0;

#include <Adafruit_SSD1306.h> // library 128×64 OLED screen

int width = 128; // OLED screen dimensions

int height = 64;

Adafruit_SSD1306 oled(width, height, &Wire, -1);

unsigned long lastTime, nowTime = 0;

void setup()

{

 radio.begin(); // start radio

 radio.setChannel(50); // set channel number

 radio.setDataRate(RF24_2MBPS); // baud rate

 radio.setPALevel(RF24_PA_HIGH); // and power amplifier

 radio.setAutoAck(true); // set auto- acknowledge (default)

 radio.openReadingPipe(0, address es[0]) ;

// initiate data receive pipe

 radio.startListening(); // nRF24L01 as receiver

 oled.begin(SSD1306_SWITCHCAPVCC, 0x3C);

 oled.clearDisplay(); // initialise OLED screen

 oled.setTextColor(WHITE);

 oled.setTextSize(1); // text size of 6×8 pixels

 oled.display();

}

Chapter 12 GpS traCkinG app with GooGle MapS

335

void loop()

{

 if(radio.available()) // if signal received

 {

 radio.read(&data, sizeof(data)); // set signal to data structure

 nowTime = millis();

 lagTime = (nowTime-lastTime)/1 00 0.0;

// time since last signal received

 lastTime = nowTime;

 screen(); // call OLED screen function

 }

}

void screen()

{

 oled.clearDisplay(); // clear display

 oled.setCursor(0,0); // position cursor

 oled.print(data.GPSlat,4); // display GPS latitude

 oled.setCursor(65,0); // and GPS longitude

 oled.print(data.GPSlong,4);

 oled.setCursor(0,10);

 oled.print("alt ");oled.print(da ta.GPSalt,1);

// display GPS altitude

 oled.setCursor(65,10); // and GPS speed

 oled.print("spd ");oled.print(data.GPSspd);

 oled.setCursor(0, 20);

 oled.print("lag ");oled.print(la gTime,2); // time since last signal

 oled.setCursor(65, 20);

Chapter 12 GpS traCkinG app with GooGle MapS

336

 oled.print("chk ");oled.print(da ta.sigCount); // signals sent

 oled.display();

}

 Improve GPS position signal
Signal transmission and reception with nRF24L01 transceivers is improved

by choosing a transmission channel with low activity, the data rate, and the

power amplifier level. In Listing 12-6, an ESP8266 microcontroller uses the

RF24 library to display, on the Serial Monitor, the carrier activity on each

of the 126 channels. If an ESP32 development board is used for channel

scanning with an nRF24L01 transceiver module, then the instruction RF24

radio(D3, D8) is replaced with RF24 radio(2, 4), for consistency with

earlier listings in the chapter.

Listing 12-6. Channel scanning

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(D3, D8); // associate radio with library

const int nChan = 126; // 126 channels available

int chan[nChan]; // store counts per channel

int nScan = 100; // number of scans per channel

int scan;

void setup()

{

 Serial.begin(115200); // define Serial output baud rate

 radio.begin(); // start radio

}

Chapter 12 GpS traCkinG app with GooGle MapS

337

void loop()

{

 for (int i=0;i<nChan;i++) // for each channel

 {

 chan[i] = 0; // reset counter

 for (scan=0; scan<nScan; scan++) // repeat scanning

 {

 radio.setChannel(i); // define channel

 radio.startListening();

 delayMicroseconds(128); // listen for 128μs

 radio.stopListening();

 if(radio.testCarrier()>0) cha n[i]=chan[i]+1;

// a carrier on the channel

 }

 delay(1); // avoid watchdog reset

 }

 for (int i=0; i<nChan; i++) // for each channel

 {

 if(i%10 == 0) Serial.print("|");

 Serial.print(chan[i], HEX); // display carrier activity

 } // format in HEX for values <16

 Serial.println(); // new line

}

Signal transmission and reception by two nRF24L01 transceiver modules

is assessed by determining the number of signals successfully received in a

second, given repeated transmission of a signal. In the sketch in Listing 12-7,

a message containing the time (minutes and seconds) and a counter value is

repeatedly transmitted, with the counter equal to the number of transmissions

in the previous second. With the default setting for signal auto-acknowledge

of true, the number of received signals would equal the number of transmitted

Chapter 12 GpS traCkinG app with GooGle MapS

338

signals, as a signal is repeatedly transmitted until acknowledged. In the sketch,

auto-acknowledge is set to false.

Listing 12-7. Signal transmission to monitor nRF24L01 transceiver

modules

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(D3, D8); // associate radio with library

byte addresses[][6] = {"12"}; // data pipe address

typedef struct // define data structure to include

{

 unsigned long counted; // counter

 unsigned long mins; // time (minute and second)

 unsigned long secs;

} dataStruct;

dataStruct data;

unsigned long lastTime, nowTime = 0;

int count = 0;

int mins = 0, secs = 0;

void setup()

{

 radio.begin(); // start radio

 radio.setChannel(50); // set channel number,

 radio.setDataRate(RF24_2MBPS); // data rate and

 radio.setPALevel(RF24_PA_HIGH); // power amplifier

 radio.setAutoAck(false); // set auto- acknowledge

 radio.openWritingPipe(addresses[0]); // initiate data transmit pipe

 radio.stopListening(); // set nRF24L01 as transmitter

Chapter 12 GpS traCkinG app with GooGle MapS

339

 mins = 0;

 secs = 0;

}

void loop()

{

 nowTime = millis();

 if(nowTime - lastTime > 1000) // determine minutes

 { // and seconds

 secs++;

 if(secs > 59) // after 60 seconds

 {

 secs = 0; // reset second variable

 mins++; // increment minute variable

 }

 data.counted = count; // convert values to data structure

 data.mins = mins;

 data.secs = secs;

 count = 0; // reset counter

 lastTime = nowTime; // update time of “second”

 }

 radio.write(&data, sizeof(data)); // transmit signal

 count++; // increment signal counter

}

The complementary sketch for an nRF24L01 transceiver module

to receive the signal is given in Listing 12-8. Signal information for the

receiving nRF24L01 module is displayed on a 128 × 64–pixel OLED

screen to determine the impact of different positions of the receiving

nRF24L01, relative to the position of the transmitting nRF24L01 module

(see Figure 12-14). The Adafruit SSD1306 library references the Adafruit

GFX and Wire libraries, so the #include <Adafruit_GFX.h> and #include

Chapter 12 GpS traCkinG app with GooGle MapS

340

<Wire.h> instructions are not required. The number of signals transmitted

and received every second is stored in an array, acting as a circular buffer,

for calculation of a moving average number of signals transmitted and

received.

Listing 12-8. Signal reception to monitor nRF24L01 transceiver

modules

#include <SPI.h> // include SPI library

#include <RF24.h> // include RF24 library

RF24 radio(D3, D8); // associate radio with library

byte addresses[][6] = {"12"}; // data pipe address

typedef struct // define data structure to include

{

 unsigned long sent; // sent signals

 unsigned long mins; // time (minute and second)

 unsigned long secs;

Figure 12-14. nRF24L01 packets (received/transmitted) per second

Chapter 12 GpS traCkinG app with GooGle MapS

341

} dataStruct;

dataStruct data;

#include <Adafruit_SSD1306.h> // library 128×64 OLED screen

int width = 128; // OLED screen dimensions

int height = 64;

Adafruit_SSD1306 oled(width, height, &Wire, -1);

const int Nval = 20; // size of circular buffer

int pkts[Nval], sents[Nval]; // arrays for circular buffer

int N = 0, pkt = 0;

unsigned long sumPkt = 0, sumSent = 0;

float avgPkt, avgSent;

unsigned long lastTime, nowTime = 0; // variables to store time values

void setup()

{

 radio.begin(); // start radio

 radio.setChannel(50); // set channel number

 radio.setDataRate(RF24_2MBPS); // data rate

 radio.setPALevel(RF24_PA_HIGH); // and power amplifier

 radio.setAutoAck(false); // set auto- acknowledge

 radio.openReadingPipe(0, addresses[0]) ;

// initiate data receive pipe

 radio.startListening(); // set nRF24L01 as transmitter

 oled.begin(SSD1306_SWITCHCAPVCC, 0x3C);

 oled.clearDisplay(); // initialise OLED screen

 oled.setTextColor(WHITE);

 oled.display();

 data.sent = 0;

 for (int i=0; i<10; i++) // set circular buffer arrays to zero

 {

 pkts[i] = 0;

Chapter 12 GpS traCkinG app with GooGle MapS

342

 sents[i] = 0;

 }

}

void loop()

{

 if(radio.available()) // signal available

 {

 radio.read(&data, sizeof(data)); // read signal and

 pkt++; // increment signal counter

 }

 nowTime = millis();

 if(nowTime - lastTime > 1000) // update values every second

 {

 sumPkt = sumPkt - pkts[N]; // subtract oldest value from sum

 sumPkt = sumPkt + pkt; // add current value to sum

 pkts[N] = pkt; // update circular buffer

 sumSent = sumSent - sents[N];

 sumSent = sumSent + data.sent;

 sents[N] = data.sent;

 N++;

 if(N > Nval-1) N = 0; // back to “start” of circular buffer

 avgPkt = 1.0*sumPkt / Nval; // calculate moving averages

 avgSent = 1.0*sumSent / Nval;

 screen(); // call OLED screen function

 pkt = 0;

 data.sent = 0;

 lastTime = nowTime; // update time of last “second”

 }

}

Chapter 12 GpS traCkinG app with GooGle MapS

343

void screen()

{

 oled.clearDisplay(); // clear display

 oled.setCursor(0,0); // position cursor

 oled.setTextSize(2); // text size of 12×16 pixels

 oled.print("PPS: ");oled.print(p kt); // signal (packets) per second

 oled.setCursor(0,16);

 oled.setTextSize(1); // text size of 6×8 pixels

 oled.setCursor(0,16);

 oled.print("avg");

 oled.setCursor(40,16);

 oled.print(avgSent,0); // average of transmitted signals

 oled.setCursor(80,16);

 oled.print(avgPkt,0); // average of received signals

 oled.setCursor(0,25);

 oled.print("sent");

 oled.setCursor(40,25);

 oled.print(data.sent); // last number of sent signals

 oled.setCursor(80,25);

 oled.print(data.mins);oled.print (":"); // signal content

 oled.print(data.secs);

 oled.display();

}

The impact of different transmission channels, data rates, and power

amplifier levels is quantified using the sketches in Listings 12-7 and 12-8

to identify optimal settings for a specific environment. Note that data

rates for the two nRF24L01 transceiver modules must be equal. For a pair

of nRF24L01 transceivers and ESP8266 microcontrollers, a transmission

rate of 2 Mbps and a RF24_PA_HIGH power amplifier level resulted in

the highest number of packets received. Although, the number of packets

Chapter 12 GpS traCkinG app with GooGle MapS

344

sent for a 2 Mbps transmission rate was lower, relative to the transmission

rate, than for the 250 kbps and 1 Mbps rates. For a 1 Mbps transmission

rate, the number of packets received declined with higher amplification

levels (see Table 12-3). Packets received rate will depend on the nRF24L01

transceivers, the transmission distance, and ambient electrical noise.

 Summary
A GPS location app, built with MIT App Inventor, displayed with Google

Maps the position of a remotely located u-blox NEO-7M GPS module or

the route taken by the GPS module. An nRF24L01 module, connected to

an ESP8266 or ESP32 development board attached to the GPS module,

transmitted the GPS location to a receiving nRF24L01 module, attached

to an ESP32 development board. The GPS location information was

transmitted to the app by the ESP32 microcontroller using Bluetooth

communication. The GPS location app displayed the GPS position

information on the Android tablet or mobile phone, by accessing Google

Maps data from the World Wide Web through the Internet Service Provider.

The tracking app included a map zoom function and the option to connect

location tracking markers and display the completed route. A web page to

display transmitted GPS data was built for testing GPS signal transmission

Table 12-3. nRF24L01 packets received/transmitted per second

Amplifier Level Transmission Rate (bps)
250 k 1 M 2 M

Min 150/250 420/1040 880/1280

low 10/250 300/1040 900/1280

hiGh - 100/1040 1030/1280

MaX - - 400/1280

Chapter 12 GpS traCkinG app with GooGle MapS

345

and reception. The impact of different transmission channels, data rates,

and power amplifier levels was quantified by the number of signals

successfully received in a second, given repeated transmission of a signal.

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: ESP32 DEVKIT DOIT or

NodeMCU board

• u-blox NEO-7M GPS module

• nRF24L01 transceiver module: 2×

• OLED display: 128 × 64 pixels

Chapter 12 GpS traCkinG app with GooGle MapS

347© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_13

CHAPTER 13

USB OTG
communication
In Chapter 12 (GPS tracking app with Google Maps), data is transmitted to an

app on an Android tablet or mobile phone by an ESP32 microcontroller with

Bluetooth communication. In Chapter 10 (Build an app), an HC-05 Bluetooth

module is connected to an ESP8266 development board to communicate

with an app. If the device to transfer data to an app does not have Bluetooth

functionality, then USB OTG (On- the- Go) communication connects the

device with the app. In this chapter, the device without Bluetooth functionality

is an Arduino Uno. An HC-05 Bluetooth module could be connected to the

Arduino Uno for Bluetooth communication with the Android tablet or mobile

phone, but this chapter focuses on USB OTG communication.

USB OTG communication enables an Android tablet

or mobile phone to transmit and receive signals to and

from a USB peripheral device. The Android tablet or

mobile phone is the OTG-A device acting as a host for

that app and providing power to the USB peripheral

or OTG-B device, which is the Arduino Uno. A USB

OTG cable connects the host to the USB peripheral device. The Easy OTG

Checker app by Kjarvel on Google Play Store determines if an Android

tablet or mobile phone supports OTG, by attaching the USB peripheral

device with a USB OTG cable (see Figure 13-1).

https://doi.org/10.1007/978-1-4842-6336-5_13#DOI

348

MIT App Inventor provides a Serial component for USB OTG

communication that is located in the Connectivity palette on the left side

of the Designer window. The Serial component communicates with the

ATmega16U2 USB to serial converter of the Arduino Uno, but not with the

CH340 chip on the Arduino Nano or ESP8266 development boards. If the

MIT App Inventor Serial component is extended to the CH340 chip, then

the framework for building USB OTG communication apps, as described

in this chapter, will be applicable to the ESP8266 microcontroller.

 App receive
To demonstrate the Android tablet or mobile phone, the OTG-A device,

receiving data from the Arduino Uno, the OTG-B device, a pair of numbers

is transmitted by the Arduino Uno. An app, hosted by the OTG-A device,

parses the number pair into components and displays both the number

pair and its components (see Figure 13-2). The number pair could be

latitude and longitude from a GPS module, temperature and humidity

from a BMP280 sensor, or voltage and current from an INA219 sensor

attached to the Arduino Uno. The app provides the framework for more

complex signal transmit and receive projects.

Figure 13-1. Easy OTG Checker app connected to Arduino Uno

Chapter 13 USB OtG COmmUniCatiOn

349

The accessUno, OnButton, and OffButton buttons enable the OTG-B

device to be connected and disconnected to and from the OTG-A device

with the connection status displayed in the StatusLabel label. When the

accessUno button is clicked, after the Arduino Uno is attached to the

Android tablet or mobile phone, a USB device access request is made (see

Figure 13-3). The access request OK is selected, and the app OnButton

button is clicked to connect the OTG-B device to the OTG-A device.

The sketch in Listing 13-1 writes to the Serial Monitor the number

pairs at one-second intervals. When the Arduino Uno is connected to

an Android tablet or mobile phone with a USB OTG cable, the Arduino

Uno and Android tablet or mobile phone communicate by USB OTG

communication, once the Serial port is opened by the app.

Figure 13-2. App to receive message from the OTG-B device

Figure 13-3. USB device access request

Chapter 13 USB OtG COmmUniCatiOn

350

Listing 13-1. Transmit number pairs

String text;

int count = 0;

unsigned long timer;

void setup()

{

 Serial.begin(9600); // define serial baud rate

}

void loop()

{

 if(millis() - timer > 1000) // after 1sec has elapsed

 {

 count++; // increment count

 if(count > 254) count = 0; // arbitrary limit on counter

 text = String(count)+ "," +Str ing(count+1);

// combine numbers into text

 Serial.println(text); // transmit text

 timer = millis(); // reset timer

 }

}

The app layout consists of the app title and two HorizontalArrangements

containing the sentText, Part1Text, and Part2Text labels to display

text and the buttons (see Figure 13-4). The accessUno, OnButton, and

OffButton buttons to connect or disconnect the OTG-B device to or from

the OTG-A device and a StatusLabel label are contained in the second

HorizontalArrangement. The Serial and Clock components are displayed

below the app layout.

Chapter 13 USB OtG COmmUniCatiOn

351

Blocks to manage the Serial connection of the OTG-B device to the

OTG-A device, read the message transmitted by the OTG-B device, and

display the message on the OTG-A device screen are shown in

Figures 13- 5, 13-6, and 13-7. The OTG-B device or Serial1 is initialized and

the baud rate defined, just as with the instruction Serial.begin(9600)

when setting the Serial Monitor baud rate in the Arduino IDE. The

StatusLabel label displays the connection status of the OTG-B device with

the OTG-A device (see Figure 13-5).

Figure 13-4. OTG-B to OTG-A app layout

Chapter 13 USB OtG COmmUniCatiOn

352

The app includes the facility to connect and disconnect the OTG-B

device (see Figure 13-6). Clicking the OnButton or OffButton button

connects or disconnects the OTG-B device using the connect or close

procedure. The connection status is displayed by the StatusLabel label,

as the connect procedure returns the value one when the Serial port is

connected and similarly for the close procedure.

Figure 13-5. Connect the OTG-B device

Chapter 13 USB OtG COmmUniCatiOn

353

The message receipt section of the app runs the Clock1 timer at 1000

ms intervals to monitor the OTG-B device for a message. The Clock1 timer

interval is set in the Properties section on the right side of the Designer

window. If the OTG-B device is connected and the received message

contains a comma, then the message is parsed to the components of a list,

indexed 1 and 2, which are displayed on the OTG-A device screen as the

text variables Part1text and Part2text (see Figures 13-2 and 13-7).

Figure 13-6. Connect and disconnect the OTG-B device

Chapter 13 USB OtG COmmUniCatiOn

354

 App transmit
The converse of the OTG-B device, which is the Arduino Uno, transmitting

to the OTG-A host device, which is the Android tablet or mobile phone,

is the OTG-A device transmitting to the USB peripheral or OTG-B device.

When the RedButton, GreenButton, or BlueButton button is clicked,

the OTG-A device transmits to the OTG-B device the number 1, 2, or 3

corresponding to the red, green, or blue LED and the associated slider

value, with the color of the updated LED indicated on the OTG-A device

(see Figure 13-8 after the RedButton was clicked).

Figure 13-7. Receive and display message from the OTG-B device

Chapter 13 USB OtG COmmUniCatiOn

355

Connections to the Arduino Uno are shown in Figure 13-9 and given

in Table 13-1. The app provides the framework for more complex signal

transmit and receive projects.

Figure 13-8. App to control LEDs attached to the OTG-B device

Figure 13-9. OTG-A to OTG-B

Chapter 13 USB OtG COmmUniCatiOn

356

The sketch in Listing 13-2 parses the Serial buffer into the number of

the LED to be updated and the PWM value. The brightness of the LED is

then updated. If the LED value is zero, then all LEDs are turned off. Note

that the LEDs are connected to Arduino Uno PWM pins.

Listing 13-2. OTG-A to OTG-B

int redLED = 9;

int greenLED = 10; // define LED PWM pins

int blueLED = 11;

int LED;

int bright[] = {0,0,0,0}; // initial PWM values

void setup()

{

 Serial.begin(9600); // set Serial baud rate

 pinMode(redLED, OUTPUT);

 pinMode(greenLED, OUTPUT); // set LED pins as output

 pinMode(blueLED, OUTPUT);

}

void loop()

{

 if(Serial.available() > 0) // wait for app message

 {

Table 13-1. OTG-A to OTG-B

Component Connect to And to

LeD long leg arduino Uno pWm pins 9, 10, 11

LeD short leg 220 Ω resistor arduino Uno GnD

Chapter 13 USB OtG COmmUniCatiOn

357

 LED = Serial.parseInt(); // parse message to LED

 bright[LED] = Serial.parseInt(); // and PWM value

 if(LED < 1) for (int i=1; i<4; i++) b right[i] = 0;

// all LEDs off

 analogWrite(redLED, bright[1]);

 analogWrite(greenLED, bright[2]); // update LED brightness

 analogWrite(blueLED, bright[3]);

 }

}

The app layout contains the app title and two HorizontalArrangements.

A TableArrangement, located in the Layout palette on the left side of

the Designer window, consists of two columns of four rows, containing

the RedButton, GreenButton, and BlueButton buttons with associated

sliders to control PWM values, with the LEDlabel and LEDcolor labels

to indicate which LED was last updated (see Figure 13-10). The second

HorizontalArrangement includes the accessUno, OnButton, and OffButton

buttons to connect or disconnect the OTG-B device to or from the OTG-A

device and a StatusLabel label. The Serial component is displayed

below the app layout. Minimum and maximum slider values, 0 and 255,

respectively, are set in the Properties section, with the left and right colors,

ColorLeft and ColorRight, for the slider and the initial slider position of 127.

Chapter 13 USB OtG COmmUniCatiOn

358

Figure 13-10. OTG-A to OTG-B app layout

Managing connection of the OTG-A device to the OTG-B device is

the same as in the OTG-B to OTG-A example (see Figures 13-5 and 13-6).

However, when the OTG-A device disconnects the OTG-B device, the LED

procedure transmits a zero LED value to the OTG-B device, which then

turns off all LEDs (see Figure 13-11).

Chapter 13 USB OtG COmmUniCatiOn

359

Clicking the RedButton button on the OTG-A device calls the LED

procedure (see Figure 13-12) to transmit, to the OTG-B device, the

value “1” and the comma-separated red LED slider position. The round

block rounds up or down the slider position, which is a real number, to

an integer. A global variable, RedValue, is initially set at the mid-slider

position of 127 and stores the current slider position. Similar blocks are

used for the green and blue LEDs, but with LED values of “2” and “3”,

respectively.

Figure 13-11. Disconnect the OTG-A to OTG-B connection

Chapter 13 USB OtG COmmUniCatiOn

360

 App receive and transmit
An app to both receive and transmit data from and to the OTG-B device

combines the previous app receive and app transmit examples. Figure 13- 13

is a screenshot of the receive and transmit app after the OTG-B device

transmitted the message containing the number pair 9, 10, which was

processed by the OTG-A device. The screenshot is also after the RedButton

was clicked on the OTG-A device for transmission of a message to the

OTG-B device to update the brightness of the red LED. The receive and

transmit app combines the screenshots of Figures 13-2 and 13-8.

Figure 13-12. Control the LEDs

Chapter 13 USB OtG COmmUniCatiOn

361

The receive and transmit app design layout in Figure 13-14 is a direct

combination of the app layouts of the receive app (see Figure 13-4) and the

transmit app (see Figure 13-10).

Figure 13-13. App to receive and transmit data

Chapter 13 USB OtG COmmUniCatiOn

362

The sketch for the app to both receive and transmit data consists of the

OTG-A to OTG-B transmit app sketch in Listing 13-2 and the contents of the

loop function from the OTG-B to OTG-A receive app sketch in Listing 13-1,

plus the variable definition instructions

String text

int count = 0

unsigned long timer

When a button is clicked on the receive and transmit app, the OTG-A

device transmits a message to the OTG-B device to control the LEDs

while processing the received messages from the OTG-B device. The two

conditional instructions if(millis() - timer > 1000) and if(Serial.

available() > 0), used in Listings 13-1 and 13-2, respectively, enable

Figure 13-14. App layout to receive and transmit data

Chapter 13 USB OtG COmmUniCatiOn

363

the OTG-B device, the Arduino Uno, to “simultaneously” receive a signal

from and transmit a signal to the OTG-A host device, the Android tablet or

mobile phone.

 Summary
USB OTG communication connected the OTG-B device, an Arduino Uno,

with an app hosted by the OTG-A device, the Android tablet or mobile

phone, and the two devices were connected by a USB OTG cable. A receive

app processed signals transmitted by the OTG-B device to the OTG-A

host device. Similarly, a transmit app sent signals to the OTG-B device

to control the brightness of several LEDs by PWM. The two apps were

combined into a receive and transmit app, with the OTG-A device both

receiving a signal from and transmitting a signal to the OTG-B device. The

MIT App Inventor Serial component communicates with the ATmega16U2

USB to serial converter of the Arduino Uno, but not with the CH340 chip

on the Arduino Nano or ESP8266 development boards.

 Components List
• Arduino Uno

• USB OTG cable: Female USB A to male micro-USB B

• RGB LED or LED: 3×

• Resistor: 3× 220 Ω

Chapter 13 USB OtG COmmUniCatiOn

365© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_14

CHAPTER 14

ESP-NOW and LoRa
communication
Communication with nRF24L01 transceivers and with Bluetooth for

transmission of GPS location data is described in Chapter 12 (GPS tracking

app with Google Maps), On-The-Go communication in Chapter 13 (USB

OTG Communication) and Wi-Fi communication for updating webpage

information in Chapter 9 (WebSocket) or for an internet radio in Chapter 1.

Two other communication protocols, ESP-NOW and LoRa, are described

in this Chapter.

ESP-NOW
Espressif Systems developed ESP-NOW to enable

ESP8266 and ESP32 microcontrollers to communicate

without requiring a Wi-Fi connection. ESP-NOW operates

at 2.4 GHz, the same frequency as Wi-Fi and Bluetooth,

with microcontrollers paired prior to communication.

A microcontroller transmits and receives messages to and from several

microcontrollers, with a network consisting of 20 microcontrollers without

message encryption, but 10 microcontrollers with encryption. If power to a

microcontroller is lost and then restored, the microcontroller

https://doi.org/10.1007/978-1-4842-6336-5_14#DOI

366

automatically reconnects to the paired microcontroller. In practice,

a transmission range of 250 m over open ground was achieved with two

ESP32 microcontrollers.

The ESP-NOW library is automatically included in the Arduino IDE,

when the ESP8266 or ESP32 Boards Manager is installed. In a sketch, the

ESP-NOW library is included with <espnow.h> or <esp_now.h> for the

ESP8266 or ESP32 microcontroller, respectively.

Pairing a microcontroller requires the MAC (Media Access Control)

address of the microcontroller, which is the address for communication

within a network. Listing 14-1 obtains the MAC address of an ESP8266

microcontroller. For an ESP32 microcontroller, the instruction #include

<ESP8266WiFi.h> is replaced with #include <WiFi.h>. The MAC address

contains six numbers in HEX format, such as 3C:71:BF:F1:CC:9C. The

MAC address is also displayed by the Arduino IDE when a sketch is

compiled and loaded (see Figure 14-1).

Figure 14-1. MAC address from Arduino IDE

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

367

Listing 14-1. MAC address

#include <ESP8266WiFi.h> // include Wi-Fi library

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 Serial.println(WiFi.macAddress()); // get MAC address

}

void loop() // nothing in loop function

{}

Information transmitted with ESP-NOW includes an integer, a real

number, and text or a data structure containing a combination of the three

data types. To provide some generality, the sketches in this chapter include

a data structure. For ESP-NOW, the maximum size of a data structure is

250 bytes, with an integer, real number, or character requiring 2, 4, or 1 byte,

respectively. In Listing 14-2, an example data structure consists of two

integers, a real number, and a character array. Note that the length of the

character array is the maximum number of characters plus one, to allow

for the end-of-line, /n, character.

Listing 14-2. Example data structure

typedef struct // define structure to include

{

 int count = 5; // two integers,

 int total;

 float value = 3.14; // a real number

 char text[12] = "text"; // and a character array

} dataStruct;

dataStruct payload; // name the structure as payload

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

368

The structure is transmitted or received with the structure name,

payload, with each component of the structure individually accessible,

such as payload.value.

The following section includes instructions for an ESP8266

microcontroller. Instruction differences between the ESP8266 and

ESP32 microcontrollers are listed in Table 14-1. An ESP8266 microcontroller

is allocated the role of transmitter (CONTROLLER), receiver (SLAVE), or

both transmitter and receiver (COMBO), with the instruction esp_now_

set_self_role(role). The terminology is, unfortunately, the current

convention for ESP-NOW with an ESP8266 microcontroller. A receiving

ESP8266 microcontroller is identified to the transmitting ESP8266

microcontroller by the MAC address, role, and communication channel

with the instruction esp_now_add_peer(receiveMAC, ESP_NOW_ROLE_

SLAVE, channel, NULL, 0), where receiveMAC is the MAC address of

the receiving ESP8266 microcontroller. The data structure, payload, is

transmitted to the receiving ESP8266 microcontroller with the instruction

esp_now_send(receiveMAC, (uint8_t *) & payload, sizeof(payload)).

If the receiver MAC address is replaced with {0xFF, 0xFF, 0xFF, 0xFF,

0xFF, 0xFF}, then the transmission will be to all the receiving ESP8266

microcontrollers. The ampersand, &, and asterisk, *, characters relate to

the memory address of the structure, payload. The address of a variable in

memory is accessed by preceding the variable with the ampersand, such

as &payload, and a pointer stores the memory address of another variable

by preceding the pointer with an asterisk, such as *pointer. The pointer is

defined with the same data type as the variable, such as float * pointer.

The value of a variable is accessed with a pointer, as illustrated in Listing 14-3.

Listing 14-3. Variable, pointer, and memory address

int sum = 25; // allocate value to variable

int * pointer; // define pointer

int number;

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

369

void setup()

{

 Serial.begin(115200);

 pointer = ∑ // set pointer to address of sum

 number = *pointer; // set number to pointer content

 Serial.print("\nnumber ");Serial.println(number);

}

void loop() // nothing in loop function

{}

The transmitting ESP8266 microcontroller registers for a callback that

the transmitted data was received by the receiving ESP8266 microcontroller

with the instruction esp_now_register_send_cb(sendData). The sendData

function returns the MAC address of the receiving ESP8266 microcontroller

and the callback value. Listing 14-4 also displays the MAC address of the

receiving ESP8266 microcontroller, using the printf function that converts

the content of the mac array to HEX format with the 0 character padding for

up to two digits, with the parameter %02. Upper- or lowercase HEX format

is printed with the parameter %X or %x.

Listing 14-4. Transmitter callback

void sendData(uint8_t * mac, uint8_t chk)

{

 for (int i=0; i<6; i++) // receiver MAC address

 {

 Serial.printf("%02x", mac[i]); // convert to HEX format

 if(i < 5) Serial.print(":"); // include colons

 }

 Serial.print("\tcallback ");

 if(chk == 0) Serial.println("OK "); // transmission received

 else Serial.println("fail"); // or not

}

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

370

The receiving ESP8266 microcontroller also registers for a callback

with the instruction esp_now_register_recv_cb(receiveData). The

receiveData function returns the MAC address of the transmitting ESP8266

microcontroller, mac; copies the received data, data, to the memory

address of the payload structure, &payload; and displays the byte number

of the received data, len, and the text character array on the Serial Monitor.

Listing 14-5. Receiver callback

void receiveData(uint8_t * mac, uint8_t * data, uint8_t len)

{ // copy received data to payload

 memcpy(&payload, data, sizeof(pay load));

 Serial.print("bytes ");Serial.print(len);Serial.print("\t");

 Serial.print("text ");Serial.println(payload.text);

}

The complete sketch for the transmitting ESP8266 microcontroller

to send an integer, a real number, and text with ESP-NOW is given in

Listing 14-6. Note that the MAC address in Listing 14-6 must be replaced

with the MAC address of your receiving ESP8266 microcontroller or use

the generic value of {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}.

Listing 14-6. ESP-NOW for a transmitting ESP8266 microcontroller

#include <espnow.h> // include ESP-NOW library

uint8_t receiveMAC[] = {0x84,0xF3,0xEB,0x0D,0xB5,0xB3};

typedef struct // receiver MAC address

{

 int count = 0; // data structure with

 float value = 3.14; // integer, real number

 char text[10] = "abcdef"; // and character array

} dataStruct;

dataStruct payload;

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

371

int channel = 1; // set transmission channel

int chk;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 if(esp_now_init() != 0) // initialise ESP-NOW

 {

 Serial.println("error initialising ESP-NOW");

 return;

 } // transmitter device

 esp_now_set_self_role(ESP_NOW_ROLE_CO NTROLLER);

 chk = esp_now_add_peer(receiveMAC, ESP_NOW_ROLE_SLAVE,

channel, NULL, 0); // add receiver device

 if(chk == 0) Serial.println("receiver added");

 else

 {

 Serial.println("error adding receiver");

 return;

 }

 esp_now_register_send_cb(sendData); // link to sendData function

}

void loop()

{

 payload.count++; // increment counter

 payload.value = payload.value + 1.0; // and real number

 if(strcmp(payload.text,"abcdef") == 0) // alternate text

strncpy(payload.text, "xyz", sizeof(payload.text));

 else strcpy(payload.text, "abcdef");

 Serial.print(payload.count);

 Serial.print(payload.value); // display transmitted data

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

372

 Serial.print(payload.text);

 chk = esp_now_send(receiveMAC, (uint8_t *) & payload,

sizeof(payload));

 Serial.print("\tsent ");

 if(chk == 0) Serial.print("OK "); // transmission sent or not

 else Serial.println("fail");

 delay(2000);

}

void sendData(uint8_t * mac, uint8_ t chk) // callback function

{

 for (int i = 0; i < 6; i++) // display receiving MAC address

 {

 Serial.printf("%02x", mac[i]);

 if (i < 5)Serial.print(":");

 }

 Serial.print("\tcallback "); // transmission received or not

 if(chk == 0) Serial.println("OK ");

 else Serial.println("fail");

}

The complementary sketch for the receiving ESP8266 microcontroller

is given in Listing 14-7, with the received message displayed on the Serial

Monitor.

Listing 14-7. ESP-NOW for a receiving ESP8266 microcontroller

#include <espnow.h> // include ESP-NOW library

typedef struct

{

 int count; // data structure with

 float value; // integer, real number

 char text[10]; // and character array

} dataStruct;

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

373

dataStruct payload;

int rcv = 0; // counter of received signals

void setup()

{

 Serial.begin(115200);

 if(esp_now_init() != 0) // initialise ESP-NOW

 {

 Serial.println("error initialising ESP-NOW");

 return;

 }

 esp_now_set_self_role(ESP_NOW_ROLE_SLAVE); // receiver device

 esp_now_register_recv_cb(receiveD ata);

} // link to receiveData function

void receiveData(uint8_t * mac, uint8_t * data, uint8_t len)

{

 rcv++; // increment signal counter

 memcpy(&payload, data, sizeof(pay load));

// copy received data to payload

 for (int i = 0; i < 6; i++)

 { // display transmitting MAC address

 Serial.printf("%02x", mac[i]);

 if (i < 5)Serial.print(":");

 } // display contents of payload

 Serial.print("\t");

 Serial.print("received ");Serial.print(rcv);Serial.print("\t");

 Serial.print("bytes ");Serial.print(len);Serial.print("\t");

 Serial.print("count ");Serial.print(payload.count);

Serial.print("\t");

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

374

 Serial.print("value ");Serial.print(payload.value);

Serial.print("\t");

 Serial.print("text ");Serial.println(payload.text);

}

void loop() // nothing in loop function

{}

The WebSocket protocol enables a server to transmit information to

the client, with the information displayed on a web page, as described in

Chapter 9 (WebSocket). Listing 14-8 automatically updates a web page

with the message and the time of receipt (see Figure 14-2). An application

is the display of sensor information.

Figure 14-2. Receiving ESP8266 microcontroller with ESP-NOW and
WebSocket

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

375

Listing 14-8. Receiving ESP8266 microcontroller with ESP-NOW

and WebSocket

#include <ESP8266WebServer.h> // include web server library

ESP8266WebServer server;

#include <WebSocketsServer.h> // include WebSocket library

WebSocketsServer websocket = WebSoc ketsServer(81);

// set WebSocket port 81

#include "buildpage.h" // webpage AJAX code

char ssid[] = "xxxx"; // change xxxx to Wi-Fi SSID

char password[] = "xxxx"; // change xxxx to Wi-Fi password

#include <espnow.h> // include ESP-NOW library

typedef struct

{

 int count; // data structure with

 float value; // integer, real number

 char text[10]; // and character array

} dataStruct;

dataStruct payload;

String strMAC, message, json;

void setup()

{

 Serial.begin(115200); // Serial.Monitor baud rate

 WiFi.begin(ssid, password); // initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500);

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display web server IP address

 Serial.print("MAC address: "); // and MAC address

 Serial.println(WiFi.macAddress());

 server.begin();

 server.on("/", base); // default webpage

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

376

 websocket.begin();

 if(esp_now_init() != 0) // initialise ESP-NOW

 {

 Serial.println("error initialising ESP-NOW");

 return;

 } // receiver device

 esp_now_set_self_role(ESP_NOW_ROLE_ SLAVE);

 esp_now_register_recv_cb(receiveDat a);

} // link to receiveData function

void receiveData(uint8_t * mac, uint8_t * data, uint8_t len)

{ // copy received data to payload

 memcpy(&payload, data, sizeof(pa yload));

 strMAC = "";

 for (int i = 0; i < 6; i++) // transmitting MAC address

 { // convert to HEX format

 strMAC = strMAC + String(mac[i], HEX);

 if (i < 5)strMAC = strMAC + ":";

 }

 strMAC.toUpperCase(); // convert to upper case

 JsonConvert(strMAC, payload.count, payload.value,

payload.text);

 websocket.broadcastTXT(json.c_str(), json.length());

}

String JsonConvert(String val1, int val2, float val3, String val4)

{ // start with open bracket

 json = "{\"var1\": \"" + val1 + "\",";

// partition with comma

 json += " \"var2\": \"" + String(val2) + "\",";

 json += " \"var3\": \"" + String(val3) + "\",";

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

377

 json += " \"var4\": \"" + String(val4) + "\"}";

// end with close bracket

 return json;

}

void base() // function to return HTML code

{

 server.send (200, "text/html", page);

}

void loop()

{

 server.handleClient(); // handle server requests

 websocket.loop(); // handle WebSocket data

}

Implementation of the WebSocket protocol is contained in the

JavaScript section of Listing 14-9, which includes the web page AJAX code

that is included as the string literal page[] in the buildpage.h tab.

Listing 14-9. WebSocket web page AJAX code

char page[] PROGMEM = R"(

<!DOCTYPE html><html>

<head>

<meta name='viewport' content='width=device-width,

initial-scale=1.0'>

<meta charset='UTF-8'>

<title>ESP-NOW</title>

<style>

body {font-family:Arial}

</style></head>

<body id='initialise'>

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

378

<h2>ESP-NOW with ESP8266</h2>

<p>last message at <span id='timeNow'</p>

<p>received from </p>

<p>counter 0</p>

<p>number 0</p>

<p>message </p>

<script>

var wskt;

document.getElementById('initialise').onload = function() {init()};

function init()

{

 wskt = new WebSocket('ws://' + window.location.hostname + ':81/');

 wskt.onmessage = function(rx)

 {

 var obj = JSON.parse(rx.data);

 document.getElementById('MAC').innerHTML = obj.var1;

 document.getElementById('count').innerHTML = obj.var2;

 document.getElementById('value').innerHTML = obj.var3;

 document.getElementById('text').innerHTML = obj.var4;

 var dt = new Date();

 var tm = dt.toLocaleTimeString ('en-GB');

 document.getElementById('timeNow').innerHTML = tm;

 };

}

</script>

</body></html>

)";

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

379

Data from several microcontrollers is received by one microcontroller

by allocating a specific channel value to each transmitting microcontroller,

with the instruction

chk = esp_now_add_peer(receiveMAC, ESP_NOW_ROLE_SLAVE, channel,

NULL, 0)

In a sketch, the MAC address of a transmitting microcontroller or an

index value included in the message is used to allocate a received message

to a specific transmitting microcontroller. For example, two ESP8266

microcontrollers, running a sketch based on Listing 14-6, transmitted

messages every two and nine seconds that were received by an ESP8266

microcontroller running the sketch in Listing 14-7. Inclusion of the

instruction if((mac[5]-0x9B)==0) Serial.print("\t\t\t\t\t\t")

offset displaying the message, from the microcontroller with MAC address

ending in 0x9B, on the Serial Monitor (see Figure 14-3).

Listings 14-4 to 14-8 are for an ESP8266 microcontroller. There are

several differences in ESP-NOW instructions between libraries for the

ESP8266 and ESP32 microcontrollers that are listed in Table 14-1 with

the detail highlighted in bold. The transmitting and receiving ESP32

microcontrollers both require the WiFi library and are defined as Wi-Fi

station mode, WIFI_STA, immediately after the Serial.begin(115200)

instruction. The function esp_now_set_self_role is not required, and

Figure 14-3. Messages from two transmitting ESP8266
microcontrollers

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

380

the function esp_now_peer_info_t to define the receiving ESP32

microcontroller replaces the esp_now_add_peer function. In the sendData

function, the send status variable is specifically defined; and in the

receiveData function, parameter types are defined as const uint8_t or

int instead of uint8_t.

If the received message is displayed on a web page, then an ESP-NOW

channel between the transmitting and receiving ESP32 microcontrollers

and a Wi-Fi channel between the receiving ESP32 microcontroller and the

WLAN are required.

Table 14-1. ESP-NOW instructions for ESP8266 and ESP32

microcontrollers

ESP8266 ESP32

#include <WiFi.h>

#include <espnow.h> #include <esp_now.h>

WiFi.mode(WiFi_Sta)

esp_now_set_self_role(eSp_NOW

_rOLe_XX)

where XX is CONTROLER or SLAVE

Not required

chk = esp_now_add_

peer(receivemaC,

eSp_NOW_rOLe_SLaVe, channel,

NuLL, 0)

esp_now_peer_info_t receiver;

memcpy(receiver.peer_addr, receivemaC, 6);

receiver.channel = channel;

receiver.encrypt = false;

chk = esp_now_add_peer(&receiver);

void senddata(uint8_t * mac,

uint8_t chk)

void senddata(const uint8_t * mac, esp_
now_send_status_t chk)

void receivedata(uint8_t *mac,

uint8_t *data, uint8_t len)

void receivedata(const uint8_t * mac,

const uint8_t * data, int len)

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

381

The transmitting ESP32 microcontroller is defined as a software-

enabled Wi-Fi access point, SoftAP, on default channel one with a default

IP address of 192.168.4.1, which is displayed with the instruction Serial.

println(WiFi.softAPIP()). The SoftAP password should contain at

least eight alphanumeric characters. Instructions to define the SoftAP

with SSID, password, and channel number for the transmitting ESP32

microcontroller are given in Table 14-2.

The receiving ESP32 microcontroller has joint access point and station

mode, with the instruction WiFi.mode(WIFI_AP_STA), to connect to the

SoftAP and to the Wi-Fi network (see Table 14-2). The Wi-Fi network SSID

Table 14-2. Web page instructions for transmitting and receiving

ESP32 microcontrollers

ESP32 Transmitter ESP32 Receiver

#include <WebServer.h>

WebServer server(80)

char ssidap[] = "abcdefg" char ssid[] = "xxxx"

char passwordap[] = "12345678" char password[] = "xxxx"

int channelap = 3

WiFi.mode(WiFi_ap) WiFi.mode(WiFi_ap_Sta)

WiFi.softap(ssidap, passwordap,

channelap)

Serial.print("Soft-ap ip address ")

Serial.println(WiFi.softapip())

WiFi.begin(ssidap, passwordap) WiFi.begin(ssid, password);

receiver.channel = channelap

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

382

and password are defined, with the xxxx in Table 14-2 replaced by the SSID

and password of your Wi-Fi router. Note that the WiFi.begin() instruction

for the transmitting ESP32 microcontroller references the generated SoftAP

SSID and password, while the receiving ESP32 microcontroller references

the Wi-Fi router SSID and password.

Further information on ESP-NOW is available at www.espressif.com/

sites/default/files/documentation/2c- esp8266_non_os_sdk_api_

reference_en.pdf, in Section 3.8, for the ESP8266 microcontroller, with

details for the ESP32 microcontroller at docs.espressif.com/projects/

esp-idf/en/latest/esp32/api-reference/network/esp_now.html.

 LoRa communication
Several communication systems are available, each

operating at different frequencies, over different

distances, and with different data rates. RFID (Radio

Frequency IDentification), Bluetooth, and Bluetooth

Low Energy (BLE) technologies have lower data rates than Wi-Fi

communication, which has lower range than the mobile

telecommunication technology standards 2G–5G (see Figure 14-4). LoRa

(long range) is a low-power wide area network (LPWAN) technology

developed by Semtech. LoRa communication operates with a form of

frequency modulation (FM), rather than amplitude modulation (AM), uses

lower frequencies than the 2.4 GHz of Wi-Fi and Bluetooth

communication, and has low power consumption. LoRaWAN (Long Range

Wide Area Network) is the protocol for creating LoRa-based networks. This

chapter describes point-to-point communication with LoRa.

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

http://www.espressif.com/sites/default/files/documentation/2c-esp8266_non_os_sdk_api_reference_en.pdf
http://www.espressif.com/sites/default/files/documentation/2c-esp8266_non_os_sdk_api_reference_en.pdf
http://www.espressif.com/sites/default/files/documentation/2c-esp8266_non_os_sdk_api_reference_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html

383

The Semtech SX1276 and SX1278 LoRa modules are powered by

1.8–3.6 V, but differ in frequency range, 137–1020 MHz and 137–525 MHz,

respectively, with the SX1278 module applicable in Europe (433 MHz),

while the SX1276 module is suitable for Europe (868 MHz), Australia and

North America (915 MHz), and Asia (923 MHz). Both the SX1276 and

SX1278 modules have LoRa spreading factors of 6–12 and a bandwidth of

8–500 kHz, giving effective bit rates of up to 37.5 kbps.

This chapter uses the SX1278 LoRa module

at 433 MHz and the LoRa library by Sandeep

Mistry that is available in the Arduino IDE

(with details available at github.com/

sandeepmistry/arduino-LoRa/blob/master/

API.md). The LoRa module communicates

with an ESP8266 or ESP32 microcontroller

using SPI (Serial Peripheral Interface), with

connections between a LoRa module and an

ESP8266 or ESP32 development board

shown in Figure 14-5 and listed in Table 14-3. The LoRa module antenna

(ANT) length is λ/4, where λ is the wavelength equal to c/f, with c equal to

the speed of light (299,792,458 m/s or approximately 300 Mm/s) and f the

LoRa transmission frequency. A LoRa transmission frequency of 433, 868,

Figure 14-4. Communication technologies

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

https://github.com/sandeepmistry/arduino-LoRa/blob/master/API.md
https://github.com/sandeepmistry/arduino-LoRa/blob/master/API.md
https://github.com/sandeepmistry/arduino-LoRa/blob/master/API.md

384

or 915 MHz requires an antenna 173, 86, or 82 mm long. The LoRa module

digital input-output pins are marked DIO.

The image of the SX1278 LoRa module in Figure 14-5 was increased in

size to match the mini-breadboard holes and illustrate the connections.

In reality, the 12 connection pins of the SX1278 LoRa module span 14 mm

rather than 30 mm on a breadboard. One solution is to bend the eight

pins of a long-pin header block to align with the SX1278 LoRa module

connections (see Figure 14-6).

Figure 14-6. Pin header block with long and normal pins

Figure 14-5. SX1278 LoRa module with LOLIN (WeMos) D1 mini
and ESP32 DEVKIT DOIT development boards

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

385

Table 14-3. SX1278 LoRa module with ESP8266 and ESP32

microcontrollers

Component ESP8266 ESP32

SX1278 GNd (pin 1)

SX1278 diO1

SX1278 diO2

SX1278 diO3

SX1278 VCC 3V3 3V3

SX1278 miSO d6 GpiO 19

SX1278 mOSi d7 GpiO 23

SX1278 SLCK d5 GpiO 18

SX1278 NSS (CSS) d8 GpiO 5

SX1278 diO0 d2 GpiO 4

SX1278 reSt rSt GpiO 2

SX1278 GNd (pin 12) GNd GNd

OLed GNd GNd GNd

OLed VCC 3V3 3V3

OLed SCK d1 GpiO 22

OLed Sda d2 GpiO 21

A sketch for LoRa communication with an ESP8266 microcontroller

is given in Listing 14-10. The LoRa transmission frequency of 433, 868, or

915 MHz is defined with the instruction LoRa.begin(NE6), with N equal to

433, 868, or 915. The LoRa module connection pins for the chip select (CSS)

and reset (RST) and an interrupt (DIO0) pin are defined in the sketch, as

the LoRa library default values are GPIO 10, GPIO 9, and GPIO 2.

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

386

When the LoRa module reset pin is connected to the ESP8266 or ESP32

microcontroller reset pin, the LoRa module reset pin is defined as -1.

The default SPI pins are defined implicitly. The LoRa spreading factor

(SF6–SF12) spreads a transmission across the available bandwidth,

with a higher SF increasing the transmission range, but decreasing the

transmission bit rate. The LoRa library has bandwidth values from 7.8 kHz

to 250 kHz, with lower bandwidth corresponding to longer transmission

range. The default signal bandwidth of 125 kHz is changed with the

instruction LoRa.setSignalBandwidth(N), for bandwidth N, with possible

values listed on the LoRa library website. For example, set N equal to

31.25E3 for a bandwidth of 31.25 kHz. The maximum LoRa transmission

size with the LoRa library is 255 bytes.

In the sketch, a message is transmitted at five-second intervals, which

is displayed on the OLED screen along with a received message from the

receiving microcontroller (see Figure 14-7). The value in the received message

is equal to the packet transmitted, assuming no messages were lost. The

feedback message confirms receipt of the transmitted message by the receiving

microcontroller. The receiving microcontroller displays the number of seconds

between received messages, the signal RSSI (received signal strength indicator)

and SNR (signal-to-noise ratio), and then the received message.

Figure 14-7. Characterizing LoRa message reception with feedback

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

387

Listing 14-10. Transmitting LoRa module with feedback

#include <SPI.h> // include SPI and

#include <LoRa.h> // LoRa libraries

int CSS = D8; // define SX1278 pins

int RST = -1; // RESET pin

int DIO0 = D2; // interrupt pin

#include <Wire.h> // include libraries for OLED

#include <Adafruit_SSD1306.h>

int width = 128; // OLED dimensions

int height = 32; // associate oled with library

Adafruit_SSD1306 oled(width, height, &Wire, -1);

int counter = 0;

unsigned long lastTime;

String packet, recv;

int packetSize; // size of received message

void setup()

{

 digitalPinToInterrupt(DIO0); // set pin as interrupt

 LoRa.setPins(CSS, RST, DIO0); // define LoRa module pins

 LoRa.setSpreadingFactor(9); // define spreading factor

 LoRa.setSignalBandwidth(62.5E3); // set bandwidth to 62.5kHz

 while (!LoRa.begin(433E6)) delay(500); // 433MHz transmission

 oled.begin(SSD1306_SWITCHCAPVCC, 0x3 C);

// OLED display I2C address

 oled.setTextColor(WHITE); // set font color

 oled.setTextSize(2); // text size 12×16 pixels

 oled.display();

}

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

388

void loop()

{

 if(millis() - lastTime > 5000) // 5s transmission interval

 {

 screen(); // OLED display function

 packet = String(counter); // create packet

 LoRa.beginPacket(); // start LoRa transmission

 LoRa.print(packet); // send packet

 LoRa.endPacket(); // close LoRa transmission

 counter++; // increment counter

 lastTime = millis(); // update transmission time

 }

 packetSize = LoRa.parsePacket(); // detect received packet

 if (packetSize > 0)

 {

 recv = ""; // read packet

 while(LoRa.available()) recv = recv + ((char)(LoRa.read()));

 screen(); // OLED display function

 }

}

void screen() // function for OLED display

{

 oled.clearDisplay();

 oled.setCursor(0,0);

 oled.print("sent ");oled.println(pac ket); // transmitted value

 oled.print(recv); // received message

 oled.display();

}

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

389

During packet reception, the LoRa module measures, in decibels (dB),

the received signal strength indicator (RSSI) and the signal-to-noise

ratio (SNR). The received signal power is 10(dB/10)mW. The RSSI ranges

from 0 dBm to -120 dBm, with a value greater than -50 dBm indicating a

strong signal, while a weak signal has a RSSI of less than -90 dBm. The SNR

is the difference between the signal and the background noise RSSI values,

with a positive SNR indicating that the received signal operates above the

noise baseline. LoRa can operate below the noise baseline, which is the

normal limit of signal sensitivity.

The sketch for characterizing LoRa message reception is given in

Listing 14-11, which displays the interval between message reception,

RSSI, SNR, and the message on an OLED display. A received message

is read as a byte, which is converted to a character with the instruction

(char)(LoRa.read()). On receiving a message, the sketch also returns

the received message to the transmitting microcontroller, as feedback.

The Adafruit SSD1306 library references the Adafruit GFX library, so the

#include <Adafruit_GFX.h> instruction is not required.

Listing 14-11. Characterizing LoRa message reception

#include <SPI.h> // include SPI and

#include <LoRa.h> // LoRa libraries

int CSS = D8; // define SX1278 pins

int RST = -1; // RESET pin

int DIO0 = D2; // interrupt pin

int width = 128; // OLED dimensions

int height = 64;

#include <Wire.h> // include libraries for OLED

#include <Adafruit_SSD1306.h>

Adafruit_SSD1306 oled(width, height, & Wire, -1);

// Reset pin not required

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

390

String packet;

int RSSI, packetSize, interval;

float SNR;

unsigned long lastTime = 0;

void setup()

{

 digitalPinToInterrupt(DIO0); // set pin as interrupt

 LoRa.setPins(CSS, RST, DIO0); // define LoRa module pins

 while (!LoRa.begin(433E6)) delay(500); // 433MHz transmission

 oled.begin(SSD1306_SWITCHCAPVCC, 0x3 C);

// OLED display I2C address

 oled.setTextColor(WHITE); // set font color

 oled.setTextSize(2); // text size 12×16 pixels

 oled.display();

}

void loop()

{

 packetSize = LoRa.parsePacket(); // detect received packet

 if (packetSize > 0)

 {

 interval = round((millis() - lastT ime)/1000); // interval (s)

 lastTime = millis(); // update message time

 packet = ""; // read packet

 while(LoRa.available()) packet = packet +

((char)(LoRa.read()));

 RSSI = LoRa.packetRssi();

 SNR = LoRa.packetSnr(); // signal : noise

 screen(); // OLED display function

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

391

 LoRa.beginPacket(); // start LoRa transmission

 LoRa.print("recv " + packet); // send packet

 LoRa.endPacket(); // close LoRa transmission

 }

}

void screen() // function for OLED display

{

 oled.clearDisplay();

 oled.setCursor(0,0);

 oled.print("lag ");oled.pr intln(interval);

// display time since last message

 oled.print("RSSI ");oled.pr intln(RSSI);

// display interval, RSSI and SNR

 oled.print("SNR ");oled.println(SNR);

 oled.print("msg ");oled.print (packet);

// display received message

 oled.display();

}

The WebSocket protocol enables a server to transmit information to

the client, with the information displayed on a web page. Listing 14-12

automatically updates a web page with the message and the time of receipt

(see Figure 14-8). An application is the display of sensor information.

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

392

Listing 14-12 is for an ESP8266 development board as the server. The

web server library instructions for the ESP8266 microcontroller of

#include <ESP8266WebServer.h>

ESP8266WebServer server

are replaced when using an ESP32 microcontroller with

#include <WebServer.h>

WebServer server(80); // requires a port number

The web server library references the Wi-Fi library, so the #include

<ESP8266WiFi.h> or #include <WiFi.h> instructions are not required.

The CSS, RST, and DIO0 pin numbers are changed to 5, 2, and 4 for an

ESP32 microcontroller.

Listing 14-12. Receiving LoRa module and WebSocket

#include <ESP8266WebServer.h> // include Webserver library

ESP8266WebServer server; // associate server with library

#include <WebSocketsServer.h> // include WebSocket library

WebSocketsServer websocket = WebSoc ketsServer(81);

// set WebSocket port 81

Figure 14-8. LoRa reception with WebSocket

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

393

#include "buildpage.h" // webpage AJAX code

char ssid[] = "xxxx"; // change xxxx to Wi-Fi SSID

char password[] = "xxxx"; // change xxxx to Wi-Fi password

String message, json;

int RSSI;

float SNR;

#include <SPI.h> // include SPI library

#include <LoRa.h> // and LoRa library

int CSS = D8; // define SX1278 pins

int RST = -1; // RESET pin

int DIO0 = D2; // interrupt pin

int packetSize;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 WiFi.begin(ssid, password); // initialise and connect Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500);

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display web server IP address

 server.begin();

 server.on("/", base); // load default webpage

 websocket.begin(); // initialise WebSocket

 digitalPinToInterrupt(DIO0); // set pin as interrupt

 LoRa.setPins(CSS, RST, DIO0); // define LoRa module pins

 while (!LoRa.begin(433E6)) delay(500) ; // 433MHz transmission

 Serial.println("LoRa connected");

}

void loop()

{

 server.handleClient(); // handle HTTP requests

 websocket.loop(); // handle WebSocket data

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

394

 packetSize = LoRa.parsePacket(); // detect received packet

 if (packetSize > 0)

 {

 message = ""; // read packet

 while(LoRa.available()) message = message +

((char)(LoRa.read()));

 RSSI = LoRa.packetRssi();

 SNR = LoRa.packetSnr(); // signal : noise

 JsonConvert(message, RSSI, SNR); // convert to JSON format

 websocket.broadcastTXT(json.c_str(), json.length());

 }

}

String JsonConvert(String val1, int val2, float val3)

{ // start with open bracket

 json = "{\"var1\": \"" + String(val1) + "\",";

// partition with comma

 json += " \"var2\": \"" + String(val2) + "\",";

 json += " \"var3\": \"" + String(val3) + "\"}";

// end with close bracket

 return json;

}

void base() // function to return HTML code

{

 server.send (200, "text/html", page);

}

The corresponding AJAX code for the web page is given in Listing 14- 13.

When the web page is loaded, the init function opens the WebSocket

connection at ws://web server IP address:81/. When the SX1278 LoRa

module receives a message, the WebSocket protocol forwards the message

to the client as the variable rx.data, which is parsed to the rxText, RSSI, and

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

395

SNR variables for display on the web page. The time of message receipt

is obtained from the JavaScript date reference, as described in Chapter 9

(WebSocket), with details available at www.w3schools.com/Jsref/jsref_

obj_date.asp.

Listing 14-13. WebSocket and AJAX code for the web page

char page[] PROGMEM = R"(

<!DOCTYPE html><html>

<head>

<meta name='viewport' content='width=device-width,

initial-scale=1.0'>

<meta charset='UTF-8'>

<title>ESP8266</title>

<style>

body {font-family:Arial}

</style></head>

<body id='initialise'>

<h2>LoRa and WebSocket</h2>

<p>last message at <span id='timeNow'</p>

<p>received </p>

<p>RSSI 0 dBm</p>

<p>SNR 0 dB</p>

<script>

var wskt;

document.getElementById('initialise').onload = function()

{init()};

function init() // open WebSocket

{

 wskt = new WebSocket('ws://' + window.location.hostname +

':81/');

 wskt.onmessage = function(rx)

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

http://www.w3schools.com/Jsref/jsref_obj_date.asp
http://www.w3schools.com/Jsref/jsref_obj_date.asp

396

 {

 var obj = JSON.parse(rx.data);

 document.getElementById('rxText').innerHTML = obj.var1;

 document.getElementById('RSSI').innerHTML = obj.var2;

 document.getElementById('SNR').innerHTML = obj.var3;

 var dt = new Date();

 var tm = dt.toLocaleTimeString ('en-GB');

 document.getElementById('timeNow').innerHTML = tm;

 };

}

</script>

</body></html>

)";

 Summary
ESP-NOW and LoRa technologies were described for communication

between ESP8266 and ESP32 microcontrollers. ESP-NOW requires no

additional components than the ESP8266 or ESP32 development board,

while LoRa requires the SX1278 module. ESP-NOW operates at 2.4 GHz,

which is higher than the 7.8–250 kHz operating frequencies of LoRa, with

the protocols having limits of 250 and 255 bytes per message, respectively.

LoRa has a greater transmission range than ESP-NOW. With ESP-NOW,

the transmitting microcontroller receives a callback that the message was

received with information displayed on the Serial Monitor or on a web

page updated with the WebSocket procedure. With LoRa communication,

the received message was either displayed on an OLED screen attached to

the ESP8266 or ESP32 development board or on a web page, also using the

WebSocket procedure.

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

397

 Components
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: DEVKIT DOIT or NodeMCU

board: 2×

• LoRa transceiver: SX1278 module 2×

• OLED display: 128 × 32 pixels, 128 × 64 pixels

Chapter 14 eSp-NOW aNd LOra COmmuNiCatiON

399© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_15

CHAPTER 15

Radio frequency
communication
In telecommunications and signal processing, information is transferred

on a radio carrier wave by either modulating the amplitude or the

frequency of a radio carrier wave. Radio waves have frequencies between

20 kHz and 300 GHz, corresponding to wavelengths of 15 km to 1 mm, and

travel at the speed of light. Radio waves with frequencies above 300 MHz

are termed microwaves. For Radio Frequency (RF) communication with

amplitude modulation (AM), the transmission amplitude is proportional

to the signal amplitude, and the transmission frequency is constant (see

Figure 15-1). Conversely, for frequency modulation (FM), the amplitude

of the transmitted signal is constant, and the transmission frequency

is proportional to the signal amplitude. AM is used for communication

between two-way radios, citizens band radios, and VHF (very-high-

frequency) aircraft radios. FM is used in telemetry and radio broadcasting

of music, as FM has a higher signal-to-noise ratio than AM at the same

transmission power.

https://doi.org/10.1007/978-1-4842-6336-5_15#DOI

400

Amplitude Shift Keying (ASK) is a form of amplitude modulation

for representing a digital signal, such as 1234, which would require four

distinct signal amplitudes. The simplest form of ASK, called On-Off

Keying (OOK), consists of a binary signal represented by either

transmitting the carrier signal or no signal. In Figure 15-1, the signal

1011010 is illustrated both as a digital signal and as an ASK signal.

The 433 MHz transmitter and receiver pairs (see Figure 15-2) are

short-range devices designed for signal transmission, usually on a

license- exempt basis, at a low power level and excluding voice. The

transmitter is the smaller of the transmitter and receiver pair in

Figure 15-2. The standard transmitter and receiver pair are often coded

MX-FS-03V and MX-05V and marked as FS1000A and MX-RM-5V,

respectively. The superheterodyne transmitter and receiver pair are often

coded WL102-341 and WL101-341. A superheterodyne transmitter uses

frequency mixing to convert the transmitted signal into a signal with

intermediate frequency that is more efficiently processed than a signal

at the original carrier frequency. Superheterodyne is a compound of

supersonic (frequencies above human hearing), hetero (different), and

dyne (unit of power).

Figure 15-1. Amplitude modulation (AM) and Amplitude Shift
Keying (ASK)

Chapter 15 radio frequenCy CommuniCation

401

The transmitter and receiver pairs in Figure 15-2 are shown with coiled

antennas, but transmission and reception is improved with uncoiled

antennas of length λ/2 or λ/4, where λ is the wavelength equal to c/f, with

c equal to the speed of light (299,792,458 m/s or approximately 300 Mm/s)

and f the carrier wave frequency. For a carrier wave frequency of 433.29

MHz, an antenna of length a quarter wavelength is 173 mm long. In

Figure 15-2, antenna connection points are indicated with red arrows.

Connections for the transmitter and receiver with ESP8266 and ESP32

development boards are shown in Figures 15-3 and 15-4, respectively, for

both the superheterodyne and standard devices. On the superheterodyne

transmitter PCB, the + and EN pins are pre-connected, as are the DO (data

out) and unmarked pins of the superheterodyne receiver PCB and the

two unmarked pins on the standard receiver PCB. The RH_ASK library by

Mike McCauley, which is downloaded from www.airspayce.com/mikem/

arduino/RadioHead, and the rc-switch library by Suat Özgür, which is

available in the Arduino IDE, are both recommended.

Figure 15-2. 433 MHz standard and superheterodyne transmitter
and receiver pairs

Chapter 15 radio frequenCy CommuniCation

http://www.airspayce.com/mikem/arduino/RadioHead
http://www.airspayce.com/mikem/arduino/RadioHead

402

For both libraries, the RF transmit and receive data pins are connected

to the ESP8266 development board D1 and D2 pins or pins 26 and 27 for

the ESP32 development board (see Table 15-1) with the receive data pin

defined as an interrupt pin for the rc-switch library. In Listings 15-1 and 15-2,

the instruction to define the ESP8266 development board pins, RH_ASK rf

(2000, D2, D1, 0), is replaced with the instruction RH_ASK rf (2000,

27, 26, 0) for an ESP32 microcontroller. The choice of transmit and

receive pins is arbitrary.

Figure 15-4. 433 MHz RF transmitter and receiver with the ESP32
DEVKIT DOIT board

Figure 15-3. 433 MHz RF transmitter and receiver with LOLIN (WeMos)
D1 mini

Chapter 15 radio frequenCy CommuniCation

403

 Transmitting and receiving text
The RH_ASK library is used to transmit messages containing character

strings. The RH_ASK driver uses a timer-driven interrupt to generate eight

interrupts per bit period, with Timer1 being the default timer. Several

libraries use Timer1, such as the Servo library, but the RH_ASK driver can

use Timer2 instead of Timer1 by uncommenting the line #define

RH_ASK_ARDUINO_USE_TIMER2 on line 32 of the file RH_ASK.cpp that is

located in the user/Arduino/libraries/RadioHead folder. The instruction

RH_ASK rf (2000, receive pin, transmit pin, 0) defines the

transmission speed in bits per second (bps) with the receive data and

transmit data pins, respectively.

For the RH-ASK library, signals are formatted with a 36-bit training

preamble consisting of 18 0-1 bit pairs, a 12-bit start symbol (0xB38), a

1-byte number for the payload length, a 4-byte header, N bytes containing

the N characters of the message with a maximum of 60 characters per

message, and 2 bytes for frame check sequences (FCS). The payload length

Table 15-1. Transmitter and receiver connections for ESP8266 and

ESP32 microcontrollers

Transmitter Receiver

Superheterodyne _ + dat en Gnd do VCC

Standard Gnd VCC data Gnd unmarked pins VCC

Connect to

eSp8266 Gnd 5V d1 Gnd d2 5V

eSp32 Gnd Vin Gpio 26 Gnd Gpio 27 Vin

Chapter 15 radio frequenCy CommuniCation

404

is the number of characters in the message plus seven (payload length,

1; header, 4; FCS, 2). Apart from the preamble and start symbol, each

byte is split into high and low 4-bit sequences, which are mapped to 6-bit

sequences and transmitted least significant bit (LSB) first. Table 15- 2

provides the mapping of the 4-bit sequences (0x0 to 0xF) to 6-bit

sequences (0xD to 0x34), formatted as HEX. The signal length is 36 + 12 +

(N + 7) × 12 bits for a message of N characters. A message of 60 characters

takes 426 ms to transmit with a transmission speed of 2 kbps.

Table 15-2. Mapping of 4-bit to 6-bit sequences in the RH_ASK

library

4-bit 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7

6-bit 0xd 0xe 0x13 0x15 0x16 0x19 0x1a 0x1C

4-bit 0x8 0x9 0xa 0xB 0xC 0xd 0xe 0xf

6-bit 0x23 0x25 0x26 0x29 0x2a 0x2C 0x32 0x34

For example, the character A has ASCII code 65 and HEX code

0x41 with high and low HEX codes (and 4-bit sequences) of 0x4 (0100)

and 0x1 (0001) that are mapped to HEX codes (and 6-bit sequences)

of 0x16 (010110) and 0xE (001110), respectively. The 6-bit sequences

are transposed from most significant bit (MSB) first to least significant

bit (LSB) first. The transposed high sequence and then low sequence

is (011010)(011100), which is equivalent to (0110)(1001)(1100), when

expressed as three 4-bit sequences, corresponding to HEX codes of

0x6, 0x9, and 0xC. The message character A is converted to a signal

corresponding to 69c, as shown in Figure 15-5.

Chapter 15 radio frequenCy CommuniCation

405

The purpose of recoding is to ensure that a 12-bit sequence contains

6 bits with value one and 6 bits with value zero, which is termed

DC- balanced. In the example of transmitting the character A, the two 4-bit

sequences corresponding to the HEX code of 0x41 are (0100)(0001), which

are not DC-balanced, but after recoding, the three 4-bit sequences of

(0110)(1001)(1100) are DC-balanced.

Analysis of the complete signal for the message ABC, as captured by

a logic analyzer with the sigrok PulseView program, using OOK decoder

type NRZ and filter length 4 with OOK visualization display Nibble-Hex

and Sync offset of -1 is illustrated in Figure 15-5. The sigrok PulseView

program and manual are available to download at sigrok.org. After

the 36-bit training preamble and the start symbol, 0xB38, the payload

length of 10, equal to the message length of three characters plus seven,

is displayed as b19, which is derived exactly as for the preceding example

with the character A. The number 10 has a HEX code of 0x0A with high

and low HEX codes (0x0 and 0xA) mapping to 0xD and 0x26, which have

transposed binary representation of (1011)(0001)(1001) corresponding to

HEX code b19. Following the signal header sequence, the HEX sequence

0x6, 0x9, 0xC for the message character A is displayed as 69c, and similarly

the message characters B and C with HEX sequences 0x6, 0xB, 0x2 and

0x6, 0xA, 0xA are displayed as 6b2 and 6aa, respectively.

Listings 15-1 and 15-2 illustrate using the RH_ASK library to transmit

and receive a message of variable length consisting of text, a real number,

and an integer, with a maximum message length of 60 characters. In

Listing 15-1, an example message is generated with the transmission

number, val, determined from the sketch elapsed time divided by the time

Figure 15-5. Logic analyzer signal analysis with RH_ASK format

Chapter 15 radio frequenCy CommuniCation

https://sigrok.org

406

interval between transmissions, timelag. A different text string for each

message is generated by the instruction text[val%3] that calculates the

remainder when the variable val is divided by three, given three strings

in the text array. The message contains text; a real number, 1.2*val; and

an integer, val, separated by commas. For example, the fifth message

transmitted is ijkl,6.0,5,. The interval between transmissions is set at 2 s,

and an LED is turned on or off after each transmitted or received message.

It may be necessary to repeat the instruction rf.send((uint8_t *)msg,

strlen(msg)) for a long message.

The instruction msg = message.c_str() uses a C++ command to

create an array, msg, equal to the message string with a terminating null

character, \0, and returns a pointer, msg, to the array. If a string is defined

with the instruction String text = "abc", then the null character, \0, is

automatically included at the end of the string. When an array string is

defined as String text[4] = {'a', 'b', 'c', '\0'}, the null character

is included as the last array element, with array elements defined as

characters using a single apostrophe rather than the double apostrophe for

a string.

Listing 15-1. Transmit message with the RH_ASK library

#include <RH_ASK.h> // include the RH_ASK library

#include <SPI.h> // SPI library required to compile

RH_ASK rf (2000, D2, D1, 0); // associate rf with RH_ASK lib

int LEDpin = D3; // define LED pin

String text[] = {"abcdef", "ijkl", "rst"};

// strings of different lengths

const char * msg; // pointer to array with message

String message;

int timelag = 2000; // interval between transmissions

int LED = 0; // initial LED state

int val, len, spd;

Chapter 15 radio frequenCy CommuniCation

407

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 rf.init(); // initialise radio transmission

 pinMode(LEDpin, OUTPUT); // define LED pin as output

 len = rf.maxMessageLength(); // get maximum message length

 spd = rf.speed(); // get transmission speed

 Serial.print("max message length: "); // display message length

 Serial.println(len);

 Serial.print("transmission speed: "); // and transmission speed

 Serial.println(spd);

}

void loop()

{

 val = millis()/timelag; // transmission number

 message = text[val%3] + "," + String(1.2*val) + "," +

String(val) + ",";

 Serial.println(message); // display transmitted string

 msg = message.c_str(); // convert string

 rf.send((uint8_t *)msg, strlen(msg)); // transmit signal

 rf.waitPacketSent(); // wait for transmission to finish

 LED = 1 - LED;

 digitalWrite(LEDpin, LED); // turn on or off LED

 delay(timelag);

}

In Listing 15-2, the number of comma-separated items within the

message is defined in the sketch. The instruction const int nItem = 3

enables the size of two arrays, text[nItem] and comma[nItem+1], to be

implicitly defined. When a new message is received, a blank string is

Chapter 15 radio frequenCy CommuniCation

408

incremented with each character of the message, and the comma positions

are determined with the instruction message.indexOf("x", y), which

locates the position of the substring x within the message string starting

from position y. The message substrings are generated with the instruction

message.substring(x, y), which is the substring of the message string

between positions x (inclusive) and y (exclusive). The instructions

string.toFloat() and string.toInt() convert a string to a real number

and an integer, respectively. Further details on parsing text to substrings are

given in Chapter 8 (Updating a web page). The variables valFlt and valInt

in Listing 15-2 are generated to demonstrate the use of converted text in

calculations.

Listing 15-2. Receive message with the RH_ASK library

#include <RH_ASK.h> // include the RH_ASK library

#include <SPI.h> // SPI library required to compile

RH_ASK rf (2000, D2, D1, 0); // associate rf with RH_ASK lib

int LEDpin = D3; // define LED pin

uint8_t msg[RH_ASK_MAX_MESSAGE_LEN] ; // maximum message length

const int nItem = 3; // number of items in message

String text[nItem]; // define text array

int comma[nItem+1]; // comma positions in message

int LED = 0; // initial LED state

String message;

float valFlt;

int valInt;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 rf.init(); // initialise radio transmission

 pinMode(LEDpin, OUTPUT); // define LED pin as output

}

Chapter 15 radio frequenCy CommuniCation

409

void loop()

{ // message length based on new message

 uint8_t msglen = sizeof(ms g);

 if (rf.recv(msg, &msglen)) // message of correct length available

 {

 message = ""; // increment message with each character

 for (int i=0; i<msglen; i++) message = message +

char(msg[i]);

 comma[0] = -1;

 for (int i=0; i<nItem; i++) // comma positions in message

 { // get substrings between commas

 comma[i+1] = message.indexOf(",", comma[i]+1);

 text[i] = message.substring(comma[i]+1, comma[i+1]);

 Serial.print(text[i]); // print message substring

 Serial.print(" ");

 }

 valFlt = text[1].toFloat(); // second substring to float

 valInt = text[2].toInt(); // third substring to integer

 Serial.print(text[0]);Serial.print("\t");

 Serial.print(valFlt + 0.05);Serial.print("\t");

 Serial.println(valInt * 2);

 LED = 1 - LED;

 digitalWrite(LEDpin, LED); // turn on or off LED

 }

}

Chapter 15 radio frequenCy CommuniCation

410

 Decode remote control signals
The rc-switch library is used to decode wireless signals from

wireless digital remote controls. The rc-switch library by Suat

Özgür is available within the Arduino IDE. The transmitted

signal is in Tri-state format, which represents (00), (11), and

(01) bit pairs with a bit of value 0, 1, or F. For example, the

decimal number 19 has binary representation of 010011;

and with the most significant bit (MSB) first, the bit pairs are

(01), (00), and (11) resulting in Tri-state format of F01. Codes

for wireless digital remote control buttons are obtained with

the sketch in Listing 15-3.

For example, the RF codes for the Power and 25% PWM buttons of an

RF wireless remote control were 3163905 and 3163913, respectively, in

decimal format. Binary representation of the 3163905 code of (00)(11)(00)

(00)(01)(00)(01)(11)(00)(00)(00)(01) has Tri-state format of 0100F0F1000F,

and similarly the 3163913 code has Tri-state format of 0100F0F100UF, with

Tri-state format U for the (10) bit pair. Analysis of the signals for 3163905

and 3163913, as captured by a logic analyzer with the sigrok PulseView

program and the RC encode decoder setting, is illustrated in Figure 15-6.

Listings 15-3 and 15-4 illustrate decoding and transmitting a RF signal

with the rc-switch library. In Listing 15-3, after receiving an RF signal, the

Serial Monitor displays the signal, in decimal format, with the signal bit

length and protocol number. An LED is also turned on or off to indicate

that a signal was received. The variable value to hold the received button

Figure 15-6. Logic analyzer signal analysis with Tri-state coding

Chapter 15 radio frequenCy CommuniCation

411

code is defined as an unsigned long with an upper limit of 232 – 1 to

accommodate RF wireless remote control codes. An unsigned int variable

has an upper limit of 216 – 1 or 65535. For the rc-switch library, the receive

data pin is defined as an interrupt pin and enabled with the instructions

digitalPinToInterrupt() and rc.enableReceive() with a pin value of

D2 or 27 for an ESP8266 or ESP32 microcontroller, respectively.

Listing 15-3. Receive and decode an RF code with the rc-switch

library

#include <RCSwitch.h> // include the rc-switch library

RCSwitch rc = RCSwitch(); // associate rc with rc-switch lib

int LEDpin = D3; // define LED pin and state

int LED = 0;

unsigned long value;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 digitalPinToInterrupt(D2); // set pin as interrupt

 rc.enableReceive(D2); // receive data on interrupt pin

 pinMode(LEDpin, OUTPUT); // define LED pin as output

}

void loop()

{

 if (rc.available()) // if a signal is received

 {

 value = rc.getReceivedValue(); // signal in decimal format

 if (value != 0) // non-zero signal value

 {

 Serial.print("Decimal ");Serial.print(value);

 Serial.print(" (");

 Serial.print(rc.getReceivedBi tlength()); // signal bit length

Chapter 15 radio frequenCy CommuniCation

412

 Serial.print("bit)\tProtocol "); // print a tab between text

 Serial.println(rc.getReceived Protocol());

// signal protocol class

 LED = 1 - LED;

 digitalWrite(LEDpin, LED); // turn on or off the LED

 }

 else Serial.println("Unknown encoding");

 rc.resetAvailable(); // ready to receive signal

 }

}

With the rc-switch library, RF codes in either decimal, binary, or Tri-state

format are transmitted with the instruction send(number, bitlength),

send(pointer), or sendTriState(pointer), respectively, where pointer is

the pointer to the array containing the string including the number in binary

or Tri-state format. The converted RF code is formatted as a string with a

terminating null character, \0 , by the instruction pointer = code.c_str().

Irrespective of the RF code format, the rc-switch library converts the RF

code to binary format for transmission. The signal is repeatedly transmitted,

with a default of ten repeats corresponding to three received signals. The

minimum number of repeat transmissions to receive a signal is four, using

the instruction setRepeatTransmit(4). Transmissions repeated four to ten

times result in the signal being received 1, 1, 2, 2, 3, 3, and 3 times.

Listing 15-4 transmits the RC codes 3163905–3163913, corresponding

to several buttons of an RF wireless remote control, with the codes

transmitted in decimal, binary, and Tri-state format. An LED is turned on

or off to indicate when a signal is transmitted.

In Listing 15-4, the functions binary and tristate convert a decimal

number to binary format and a binary number to Tri-state format,

respectively. A decimal number is converted to binary format by

repeatedly dividing the integer part of the number by two and retaining the

remainders, with the first remainder being the least significant bit (LSB) of

Chapter 15 radio frequenCy CommuniCation

413

the binary representation. For example, to convert the decimal number

19 to binary format, repeated division by two results in the remainders

1,1,0,0,1, and 0 equal to (19 – 2 × 9, 9 – 2 × 4, 4 – 2 × 2, 2 – 2 × 1, 1 – 2 ×

0). The first remainder is the LSB, so the binary representation of 19 is

010011, with the LSB last. The rc- switch library uses 24-bit format to

represent a number in binary format, so converting a decimal number to

binary format requires 24 divisions by two.

Conversion of a binary-formatted number into Tri-state format starts with

the MSB pair and finishes with the LSB pair. For the decimal number 19,

the bit pairs are (01), (00), and (11) that map to Tri-state format of F01. In

Listing 15-4, the character at position x of a string bin is identified by the

instruction bin.charAt(x). In Listing 15-4, the Tri-state format for the numbers

3163905, 3163907, 3163908, 3163909, and 3163911 is valid, but the transmitted

values are not correct for the numbers 3163906, 3163910, 316312, and 3163913,

so the term U is included in the Tri-state format for the (10) bit pair.

Listing 15-4. Transmit an RF code with the rc-switch library

#include <RCSwitch.h> // include the rc- switch library

RCSwitch rc = RCSwitch(); // associate rc with rc-switch lib

unsigned long value = 3163905; // code to be transmitted

const char * biCode; // pointers to arrays with number

const char * triCode; // in binary or Tri-state format

int LEDpin = D3; // define LED pin

int LED = 0; // initial LED state

int delTime = 1000; // delay between transmissions

String bin, tri;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 pinMode(LEDpin, OUTPUT); // define LED pin as output

 rc.enableTransmit(D1); // transmit data pin

Chapter 15 radio frequenCy CommuniCation

414

 rc.setPulseLength(351); // optional with time in ms

 rc.setProtocol(1); // default is 1

 rc.setRepeatTransmit(4); // define number of transmissions

 }

void loop()

{

 rc.send(value, 24); // send number in decimal format

 Serial.print(value);Serial.prin t("\t"); // display value

 digitalWrite(LEDpin, LED); // turn on or off LED

 LED = 1 - LED;

 delay(delTime); // interval between transmissions

 binary(value); // convert to binary format

 rc.send(biCode); // send array in binary format

 Serial.print(biCode);Serial.pri nt("\t");

// display value in binary format

 delay(delTime);

 tristate(bin); // convert to Tri-state format

 rc.sendTriState(triCode); // send array in Tri-state format

 Serial.println(triCode); // display in Tri-state format

 delay(delTime);

 value++;

 if(value > 3163913) for (;;) de lay(1000);

} // stop after sending all codes

void binary(long number) // function to convert to binary format

{

 bin = "";

 for (int i=0; i<24; i++) // 24 bits starting with LSB

 { // next bit precedes lower significant bits

 if(number%2 == 1) bin = "1" + bin;

// number is an unsigned long integer

 else bin = "0" + bin;

Chapter 15 radio frequenCy CommuniCation

415

 number = number/2;

 }

 biCode = bin.c_str(); // create pointer to array

}

void tristate(String val) // function to convert to Tri-state format

{

 tri = "";

 for (int i=0; i<12; i++) // start with MSB which is charAt(0)

 { // next bit follows higher significant bits

 if(val.charAt(2*i)=='0' && val.charAt(2*i+1)=='0')

tri = tri + "0";

 else if(val.charAt(2*i)=='1' && val.charAt(2*i+1)=='1')

tri = tri + "1";

 else if(val.charAt(2*i)=='0' && val.charAt(2*i+1)=='1')

tri = tri + "F";

 else if(val.charAt(2*i)=='1' && val.charAt(2*i+1)=='0')

tri = tri + "U";

 }

 triCode = tri.c_str(); // create pointer to array

}

 Control pan-tilt servos with RF
communication

A remotely positioned laser mounted on a pan and

tilt bracket, which is rotated by two servo motors, is

controlled by transmitting a message containing the

joystick position and the laser state. A joystick, such

as the KY-023 module, consists of two potentiometers

for controlling the left-right direction (X-axis) and the

Chapter 15 radio frequenCy CommuniCation

416

forward-backward direction (Y-axis). The joystick values range from 0 to

1023, with 0 corresponding to right and forward, while 1023 maps to left and

backward. Pressing down on the joystick activates a switch to turn on or off

the laser. The RF transmitter and joystick are connected to an Arduino Nano

or an ESP32 development board (see Figure 15-7 and Table 15-3); and the

RF receiver, two servo motors with external power, and the laser module are

attached to an ESP8266 development board (see Figure 15-8 and Table 15-4).

The KY-008 laser operates at 650 nm, within the red light wavelength range of

635–700 nm.

Two analog pins are required to read the joystick values. The ESP8266

microcontroller has only one analog pin, so either a 74HC4051 multiplexer

is connected to the ESP8266 development board to enable the ESP8266

microcontroller to access both analog input devices (see Chapter 4

(Internet clock)) or the ESP8266 development board is replaced by an

Arduino Nano or an ESP32 development board.

The default transmit and receive pins for an Arduino Nano with

the RH_ASK library are pins 12 and 11, respectively. The ESP32

microcontroller GPIO 27 is defined as the transmit pin with the instruction

RH_ASK rf (2000, 26, 27, 0). The value of GPIO 26 for the receive pin

is arbitrary, as, in the sketch, the ESP32 microcontroller does not receive

messages. The ESP32 microcontroller ADC (analog to digital converter)

has 12-bit resolution, with values from 0 to 4095, while the Arduino Nano

ADC has 10-bit resolution. Either the ESP32 microcontroller ADC values

are divided by four before transmission in Listing 15-5 or the mapping of

received joystick value to servo angle is changed to FB = map(text[0].

toInt(),0,4095,5,100) in Listing 15-6 and similarly for the LR mapping.

Chapter 15 radio frequenCy CommuniCation

417

Figure 15-7. Transmit joystick signals

The sketch in Listing 15-5 reads the joystick position and switch state

and then combines the information into a string for transmission. The

joystick switch state is HIGH when pressed. The RH_ASK library is used

to transmit and receive the RF signals. Joystick and RF transmitter pin

definitions in Listing 15-5 are for the Arduino Nano, and for an ESP32

microcontroller, the pin definitions are

Table 15-3. Joystick, RF transmitter, and Arduino Nano or ESP32

development board

Component Arduino Nano ESP32

Joystick VCC (+) 5V Vin

Joystick SeL (B) a0 Gpio 25

Joystick hor (X) a1 Gpio 32

Joystick Ver (y) a2 Gpio 33

Joystick Gnd (-) Gnd Gnd

rf transmitter VCC (+) 5V Vin

rf transmitter Gnd (-) Gnd Gnd

rf transmitter dat pin 12 Gpio 27

Chapter 15 radio frequenCy CommuniCation

418

RH_ASK rf (2000, 26, 27, 0) // associate rf with RH_ASK lib

int switchPin = 25 // joystick switch pin

int LRpin = 32 // left-right joystick pin

int FBpin = 33 // forward- backward joystick pin

pinMode(switchPin, INPUT) // define switchPin as input

Listing 15-5. Transmit joystick signal to control the servo motors

and laser

#include <RH_ASK.h> // include the RH_ASK library

#include <SPI.h> // SPI library required to compile

RH_ASK rf; // associate rf with RH_ASK lib

int timelag = 50; // interval between transmissions

int switchPin = A0; // joystick switch pin

int LRpin = A1; // left-right joystick pin

int FBpin = A2; // forward- backward joystick pin

int FB, LR, SW;

const char * msg;

String message;

void setup()

{

 rf.init(); // initialise radio transmission

}

void loop()

{ // string for joystick forward-backward, left-right and switch state

 FB = analogRead(FBpin);

 LR = analogRead(LRpin); // get joystick position

 SW = digitalRead(switchPin); // and switch state

 message = String(FB) +","+ String(LR) + "," + String(SW) + ",";

Chapter 15 radio frequenCy CommuniCation

419

 msg = message.c_str(); // convert string

 rf.send((uint8_t *)msg, strlen(msg)); // transmit message

 rf.waitPacketSent(); // wait for transmission to finish

 delay(timelag); // delay between transmissions

}

The laser and the two servos for the pan and tilt bracket are connected

to an ESP8266 development board with the RF receiver (see Figure 15-8),

with connections given in Table 15-4. The servo motors are powered from

an external 5 V battery, as the motor can use hundreds of milliamps during

a few milliseconds that the rotor is turning, which is more than the output

of the ESP8266 development board 5V pin.

Figure 15-8. Control the servo motors and laser with the received
signal

Chapter 15 radio frequenCy CommuniCation

420

Listing 15-6 contains the sketch for the RF receiver, servo motors, and

laser module. As noted at the start of this chapter, the RH_ASK driver

uses Timer1, the default timer, which is also used by the Servo library.

The RH_ASK driver uses Timer2 by uncommenting the line #define

RH_ASK_ARDUINO_USE_TIMER2 on line 32 of the file RH_ASK.cpp. The sketch

associates both servoFB and servoLR objects with the Servo library, as

there are two servo motors. The instruction const int nItem = 3 enables

the size of two arrays, text[nItem] and comma[nItem+1], to be implicitly

defined. When the RF receiver receives a message, the message substrings

are converted to integers, which are mapped to the servo forward- backward

and left-right angles between 5° and 100° and between 5° and 175°,

respectively. A HIGH state on the laser pin indicates that the joystick

switch was pressed.

The servo motors can shudder when there is no change in the servo

motor angle. To stop the shudder, the servo motor is detached and then

reattached prior to moving to the new angle. For example, the left-right

Table 15-4. Servo motors, laser, RF receiver, and ESP8266

development board

Component Connect to And to

Servo VCC (red) Battery 5V

Servo Gnd (brown or black) eSp8266 Gnd Battery Gnd

Servo signals (orange or white) eSp8266 d6 and d7

Laser signal (S) eSp8266 d0

Laser Gnd (-) eSp8266 Gnd

rf receiver VCC (+) eSp8266 5V

rf receiver Gnd (-) eSp8266 Gnd

rf receiver dat eSp8266 d2

Chapter 15 radio frequenCy CommuniCation

421

servo instruction, servoLR.write(LR), to move to angle LR, is replaced

with the instructions

servoLR.attach(LRpin)

servoLR.write(LR)

servoLR.detach()

Listing 15-6. Receive signal with joystick positions to control the

servo motors and laser

#include <RH_ASK.h> // include the RH_ASK library

#include <SPI.h> // SPI library required to compile

#include <Servo.h> // include Servo library

RH_ASK rf (2000, D2, D1, 0); // associate rf with RH_ASK lib

Servo servoFB; // associate servoFB and servoLR

Servo servoLR; // with Servo library

int FBpin = D6; // forward- backward servo pin

int LRpin = D7; // left-right servo pin

int laserPin = D0; // define laser pin

uint8_t msg[RH_ASK_MAX_MESSAGE_LEN];

const int nItem = 3; // number of items in message

String text[nItem]; // array of strings

int comma[nItem+1]; // array of comma positions

String string;

int laser, FB, LR;

void setup()

{

 rf.init(); // initialise radio transmission

 servoFB.attach(FBpin); // initialise servo motors

 servoLR.attach(LRpin);

 pinMode(laserPin, OUTPUT); // define laser pin as output

}

Chapter 15 radio frequenCy CommuniCation

422

void loop()

{ // define message length based on new message

 uint8_t msglen = siz eof(msg);

 if (rf.recv(msg, &msglen)) // message of correct length available

 {

 string = ""; // increment string by each message character

 for (int i=0; i<msglen; i++) string = string + char(msg[i]);

 comma[0] = -1;

 for (int i=0; i<nItem; i++) // get message comma positions

 { // get substrings between commas

 comma[i+1] = string.indexOf(",", comma[i]+1);

 text[i] = string.substring(comma[i]+1, comma[i+1]);

 } // map joystick signals to angles

 FB = map(text[0].toInt(),0,10 23,5,100);

 LR = map(text[1].toInt(),0,1023,5,175);

 laser = text[2].toInt(); // update laser status

 if(laser == HIGH) digitalWrite(laserPin,

!digitalRead(laserPin));

 servoFB.write(FB); // move servos to angles

 servoLR.write(LR);

 }

}

If the servo motors are attached to an ESP32 development board,

then an ESP32-specific library for the servo motor is required, rather

than the Arduino IDE built-in Servo library. The ESP32Servo library by

Kevin Harrington and John K. Bennett is recommended, and the library is

available in the Arduino IDE. The built-in Servo library instructions for the

forward-backward (FB) servo motor with an ESP8266 microcontroller

#include <Servo.h> // include Servo library

servoFB.attach(FBpin) // initialise servo motor to FBpin

Chapter 15 radio frequenCy CommuniCation

423

are replaced with the ESP32Servo library instructions for an ESP32

microcontroller

#include <ESP32Servo.h>

servoFB.setPeriodHertz(F) // define servo frequency (F)

servoFB.attach(FBpin, minPW, maxPW) // initialise servo motor to FBpin

There is no change to the following instructions:

Servo servoFB // associate servoFB with Servo lib

servoFB.writeMicroseconds(T) // move to position mapped to Tμs

servoFB.write(N) // move to angle N°

Similar changes are made for the left-right (LR) servo motor.

The square wave frequency, F, is included in the instruction servoFB.

setPeriodHertz(F), which is generally 50 Hz. In the servoFB.attach(FBpin,

minPW, maxPW) instruction, the minPW and maxPW parameters refer to the

pulse width, in microseconds, of a square wave to move the servo motor to 0°

and 180°, respectively. Default values for the minPW and maxPW parameters

are 1000 μs and 2000 μs, with values of 500 μs and 2500 μs for the Tower Pro

SG90 servo. The servo motor used in this chapter required 250 μs and 2050

μs to move to 0° and 180°, respectively. A sketch to calibrate a servo motor is

given in Chapter 9 (WebSocket). The preceding instructions for the forward-

backward servo, servoFB, are repeated for the left-right servo, servoLR.

 Control relay with RF communication
Pressing a specific button on an RF wireless remote control is used to turn

on or off an IRF520 MOSFET or KY-019 relay module, which switches the

power supply to as load, such as a motor. The IRF520 MOSFET switches 100

V direct current (DC) at 10 A, while the KY-019 relay module switches either

240 V alternating current (AC) or 30 V DC at 10 A. The rc-switch library is

used to transmit and receive the remote control button codes. Connections

Chapter 15 radio frequenCy CommuniCation

424

for the RF receiver, IRF520 MOSFET or KY-019 relay module, and a load,

such as a motor, are shown in Figure 15-9 and listed in Tables 15-5 and 15-6.

Table 15-5. IRF520 MOSFET and KY-019 relay modules, RF receiver,

and ESP8266 development board

Component Connect to And to

irf520 SiG or Ky-019 SiG eSp8266 d7

irf520 VCC not connected

Ky-019 VCC eSp8266 5V

irf520 Gnd or Ky-019 Gnd eSp8266 Gnd

Led long legs eSp8266 d3 and d0

Led short leg 220 Ω resistor eSp8266 Gnd

rf receiver VCC (+) eSp8266 5V

rf receiver Gnd (-) eSp8266 Gnd

rf receiver dat eSp8266 d2

Figure 15-9. Receiver signal to control load with the IRF520
MOSFET or KY-019 relay module

Chapter 15 radio frequenCy CommuniCation

425

The IRF520 MOSFET and KY-019 relay modules are two options for

controlling an external power supply for the load. The IRF520 MOSFET

module has two pairs of connections: one pair for the load and one pair for

the external power supply. For the KY-019 relay module, the positive and

negative of the external power supply are connected to the KY-019 module

Common (C) and to the load negative, respectively. The KY-019 relay

module Normally Open (NO) pin is connected to the load positive. The

KY-019 Normally Open (NO) is recommended rather than the Normally

Closed (NC) pin.

Table 15-6. IRF520 MOSFET and KY-019 relay module connections

to load and power

Component Connect to And to

irf520 V+ Load (motor) positive Schottky diode cathode

(stripe)

irf520 V- Load (motor) negative Schottky diode anode

irf520 Vin external power supply

irf520 Gnd external power Gnd

Ky-019 normally open (no) Load (motor) positive

Ky-019 Common (C) external power supply

external power Gnd Load (motor) negative

In Listing 15-7, when the LIGHT button on the RF wireless remote is

pressed, the LED attached to the ESP8266 development board pin D3 is

turned on or off. RF codes of buttons in Listing 15-7 are only specific to the

RF wireless remote used in this chapter. When the BRIGHT+ or BRIGHT-

button on the RF wireless remote is pressed, the IRF520 MOSFET or

KY- 019 relay module supplying power to the load is turned on or off, as is

Chapter 15 radio frequenCy CommuniCation

426

the LED attached to ESP8266 development board pin D0. The KY-019 relay

module is active when the state of the relayPin, D7, is HIGH.

Listing 15-7. Receive signal to control load

#include <RCSwitch.h> // include the rc-switch library

RCSwitch rc = RCSwitch(); // associate rc with rc-switch lib

int LEDpin = D3; // LED to change state

int LEDrelayPin = D0; // LED associated with relay

int relayPin = D7; // define MOSFET/relay pin

unsigned long value;

void setup()

{

 Serial.begin(9600); // Serial output baud rate

 digitalPinToInterrupt(D2); // set pin as interrupt

 rc.enableReceive(D2); // receive data on interrupt pin

// digitalWrite(relayPin, HIGH); // set relayPin HIGH before

 pinMode(relayPin, OUTPUT); // defining relayPin

 pinMode(LEDpin, OUTPUT);

 pinMode(LEDrelayPin, OUTPUT);

}

void loop()

{

 if (rc.available()) // if a signal is received

 {

 value = rc.getReceivedValue();

 if (value != 0) // signal value not equal to zero

 { // display signal value

 Serial.print("code ");Serial.print(value);

 if(value == 3163908) // Light button pressed

Chapter 15 radio frequenCy CommuniCation

427

 {

 Serial.print("\tchange LED"); // display action

 digitalWrite(LEDpin, !digita lRead(LEDpin));

 } // turn on or off LED

 else if(value == 3163909) // Bright+ button pressed

 {

 Serial.print("\trelay on");

 digitalWrite(LEDrelayPin, HI GH); // turn on relay LED

 digitalWrite(relayPin, HIGH); // turn on relay

 }

 else if (value == 3163910) // Bright- button pressed

 {

 Serial.print("\trelay off");

 digitalWrite(LEDrelayPin, LOW); // turn off relay LED

 digitalWrite(relayPin, LOW); // turn off relay

 }

 else Serial.print("\tno action");

 Serial.print("\tLED ");

 Serial.print(digitalRead(LEDpin));

// display LED and relay states

 Serial.print("\trelay ");

 Serial.println(digitalRead(relayPin));

 }

 else Serial.println("Unknown encoding");

 rc.resetAvailable(); // ready to receive new signal

 }

}

Chapter 15 radio frequenCy CommuniCation

428

 Relays
A relay is an electromagnetic switch,

controlled by a small current, that is used

to turn on or off a large current. When an

ESP8266 or ESP32 microcontroller pin that

controls the relay is HIGH, a small current

on the base of the relay switching transistor permits a larger current from the

ESP8266 or ESP32 development board 5V pin to flow through the transistor,

activating the relay electromagnet, and the resultant magnetic field attracts

and closes the metallic relay switch (see Figure 15-10). When the ESP8266 or

ESP32 microcontroller pin is LOW, no current flows through the transistor,

and a spring returns the metallic relay switch to the normally open position.

A relay module includes a resistor to reduce the current to the switching

transistor and a diode to short-circuit the relay coil when the current is

turned off. The energy in the coil is absorbed through the internal resistance

of the relay coil and the voltage drop of the diode. Without the diode, a

large voltage spike could arc across the switch and destroy the transistor.

Figures 15-10 to 15-16 illustrate an ESP8266 microcontroller controlling a

relay, but the discussion also applies to an ESP32 microcontroller.

Chapter 15 radio frequenCy CommuniCation

429

Figure 15-10. Relay module: schematic

To control a relay, such as the KY-019 module in Figure 15-11, a HIGH

signal on the ESP8266 development board pin D4 turns on the relay

transistor, activating the relay switch to provide the load, such as a motor,

with external power. The ESP8266 development board GND is connected

to the KY-019 module, as the module indicator LED, relay transistor, and

relay electromagnet source power from the ESP8266 development board.

Figure 15-11. Relay module and LOLIN (WeMos) D1 mini

Chapter 15 radio frequenCy CommuniCation

430

A relay module with an optocoupler extends separation of the ESP8266

microcontroller from the load with its external power supply (see Figures 15-12

and 15-13). The FOD817C optocoupler consists of a near- infrared LED and a

phototransistor, which generates a current in response to detection of light.

Both the optocoupler and the relay transistor are powered by the ESP8266

development board. A jumper between the relay module pins marked

RY-VCC or JD-VCC and VCC connects the relay transistor to the ESP8266

development board 5V pin. A relay with an optocoupler sinks current to the

ESP8266 microcontroller pin, in contrast to the KY-019 relay which sources

current, and the relay is active when the ESP8266 microcontroller pin is LOW.

The dashed connecting line between the optocoupler VCC and the relay VCC

in Figure 15-12 represents the jumper.

Figure 15-12. Relay module with optocoupler schematic

Chapter 15 radio frequenCy CommuniCation

431

The ESP8266 microcontroller is completely isolated from the load and

its external power supply by providing the relay with a separate power

supply (see Figure 15-14 with connections given in Table 15-7). The jumper

between the relay module pins marked RY-VCC or JD-VCC and VCC is

removed, and power is separately supplied to the relay RY-VCC or JD-VCC

and GND pins. The ESP8266 microcontroller GND is not connected to the

relay module, as the optocoupler and indicator LED sink current through

the ESP8266 microcontroller pin set to LOW.

Figure 15-14. Relay module with optocoupler (2)

Figure 15-13. Relay module with optocoupler (1)

Chapter 15 radio frequenCy CommuniCation

432

In Listing 15-7, the KY-019 relay is activated when the ESP8266

microcontroller pin is HIGH, with the instructions

digitalWrite(relayPin, HIGH); // turn on relay

digitalWrite(relayPin, LOW); // turn off relay

Serial.print("\trelay ");Serial.println(digitalRead(relayPin));

For a relay with an optocoupler, the ESP8266 microcontroller pin state

is inverted, with changes highlighted in bold:

digitalWrite(relayPin, LOW); // turn on relay

digitalWrite(relayPin, HIGH); // turn off relay

Serial.print("\trelay ");Serial.println(!digitalRead(relayPin));

Table 15-7. Relay module connections without and with an external

power to relay

Relay Module Component Connect to

Without external

power

relay optocoupler Jd-VCC

and VCC pins

Jumper

relay optocoupler Gnd eSp8266 Gnd

relay optocoupler SiG or L1 eSp8266 d7

relay optocoupler VCC eSp8266 5V

With external power relay optocoupler Jd-VCC external power positive

relay optocoupler Gnd external power negative

relay optocoupler SiG or L1 eSp8266 d7

relay optocoupler VCC eSp8266 5V

Chapter 15 radio frequenCy CommuniCation

433

When the instruction pinMode(relayPin, OUTPUT) is called, the relay

pin is automatically set LOW, which will activate the relay if the relay

module contains an optocoupler. To prevent a relay with an optocoupler

being inadvertently turned on, the instruction digitalWrite(relayPin,

HIGH) precedes the pinMode(relayPin, OUTPUT) instruction.

 Solid-state relay
The solid-state relay incorporates semiconductors

for high-speed switching, without mechanical

moving parts, of 240 V alternating current (AC) at 2

A. The solid-state relay phototriac coupler consists

of a near-infrared LED and a photosensitive triac,

which transfers a signal to a trigger circuit on the

output side of the relay allowing a current to flow to the load (see

Figure 15-15). The solid-state relay incorporates additional circuitry and

functions on both the infrared LED input side and the output

photosensitive side. Further information is available at

www.ia.omron.com/support/guide/18/introduction.html.

Chapter 15 radio frequenCy CommuniCation

http://www.ia.omron.com/support/guide/18/introduction.html

434

The solid-state relay is active when the ESP8266 microcontroller

pin, connected to the relay phototriac coupler, is LOW, similar to the

mechanical relay with an optocoupler. Connections for the ESP8266

development board with the solid-state relay module are shown in

Figure 15-16 and given in Table 15-8.

Figure 15-15. Simplified solid-state relay schematic

Figure 15-16. Solid-state relay and LOLIN (WeMos) D1 mini

Chapter 15 radio frequenCy CommuniCation

435

 Summary
Radio Frequency communication with Amplitude Shift Keying (ASK)

and On-Off Keying (OOK) was described. A 433 MHz superheterodyne

transmitter and receiver pair transmitted and received alphanumeric

data by ASK radio communication over distances of 150 m. Signals

from a 433 MHz wireless digital remote control were decoded with

the superheterodyne receiver. Binary and Tri-state data formatting

was discussed. The state and position of a laser attached to a pan-tilt

bracket, operated with servo motors attached to an ESP8266 or ESP32

microcontroller, was controlled by a remote joystick, with joystick position

and laser state information transmitted with ASK radio communication

by a superheterodyne transmitter connected to an ESP32 microcontroller.

Remotely powering a load, such as motors, through an electro- mechanical

relay, was controlled by transmitting control codes with an RF wireless

remote control. Electro-mechanical relays with and without an

optocoupler, for supplying DC to a load, were described, as was the solid-

state relay.

Table 15-8. Solid-state relay and

ESP8266 development board

Component Connect to ESP8266

Solid-state relay dC+ 5V

Solid-state relay dC- Gnd

Solid-state relay Ch1 d3

Chapter 15 radio frequenCy CommuniCation

436

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: ESP32 DEVKIT DOIT or

NodeMCU board

• Multiplexer: 74HC4051 or Arduino Nano

• 433 MHz transmitter: Standard, MX-FS-03V;

superheterodyne, WL102-341

• 433 MHz receiver: Standard, MX-05V;

superheterodyne, WL101-341

• Laser module: KY-008

• LED: 2×

• Resistors: 2× 220 Ω

• Joystick: KY-023

• Servo motors: 2× SG90

• Servo pan and tilt bracket

• RF wireless remote control

• Relay module without optocoupler: KY-019

• Relay module with optocoupler

• MOSFET module: IRF520

• Solid-state relay

Chapter 15 radio frequenCy CommuniCation

437© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_16

CHAPTER 16

Signal generation
Telecommunication uses digital signals to transfer information. For

example, the instruction Serial.print("12AB") transmits the ASCII

code for each character (see Figure 16-1) in binary format with the

microcontroller UART (Universal Asynchronous Receiver-Transmitter).

ASCII (American Standard Code for Information Interchange) is an 8-bit

character encoding standard for electronic communication, with the least

significant bit (LSB) transmitted first. For example, the letter A has ASCII

code of 65, which is B01000001 LSB or (1 × 26 + 1 × 20). The transmitted <S>

and <T> bits are the start and stop bits.

Figure 16-1. Serial data transmission

Note that the transmission order is important. For example,

if the ASCII code for the number 2 of 50, which is B00110010 or

(1 × 25 + 1 × 24 + 1 × 21), is transmitted with the most significant bit (MSB)

first, then the signal could be interpreted as (1 × 26 + 1 × 23 + 1 × 22) = 76,

which is the ASCII code for the letter L.

Signals, consisting of a square wave at a given frequency, are also used

to control industrial motor speed, audio amplification, and the brightness

of an alarm clock LED. Pulse width modulation (PWM) modifies the

amount of time that the square wave is HIGH, the pulse width, with a

https://doi.org/10.1007/978-1-4842-6336-5_16#DOI

438

long pulse width corresponding to a fast motor speed, even though the

power to the motor is being repeatedly turned on and off. Several ESP8266

and ESP32 microcontroller pins support PWM signals, and Figure 16-2

illustrates two square waves differing in frequency and duty cycle. For

context, the human ear can hear sounds with frequencies of 20 Hz to

20 kHz, FM radio stations broadcast at 100 MHz, and wireless networks

operate at 2.4 GHz.

The square waves in Figure 16-2 are simultaneously generated with an

ESP8266 or an ESP32 microcontroller, using the sketches in Table 16- 1.

The ESP8266 microcontroller default PWM frequency is 1 kHz with

10-bit resolution. The frequency of N Hz is set with the instruction

analogWriteFreq(N), and the duty cycle is defined as a proportion of 1023

or 210 - 1 with the instruction analogWrite(wavePin, duty).

The ESP32 microcontroller PWM has 8, 10, 12 or 15-bit resolution with

maximum frequency of 80 MHz/2resolution. A separate channel is defined for

each PWM signal, with PWM instructions for the ESP32 microcontroller of

ledcAttachPin(wavePin, channel) // attach channel to pin

ledcSetup(channel, freq, resolution) // define frequency

ledcWrite(channel, duty) // generate square wave

with the parameters PWM output channel (channel), GPIO pin to

output square wave (wavePin), square wave frequency (freq), duty

cycle (duty), and PWM resolution (resolution). The resolution of the

ESP32 microcontroller in Table 16-1 was set to 10, to equal the ESP8266

Figure 16-2. PWM signals of different frequencies and duty cycles

Chapter 16 Signal generation

439

microcontroller resolution. If LEDs, with 220 Ω resistors, are attached to

each wavePin, then the square wave with the greater duty cycle will result

in a brighter LED.

Table 16-1. PWM with ESP8266 and ESP32 microcontrollers

ESP8266 Microcontroller ESP32 Microcontroller

int wave1pin = D1, wave2pin = D2; int wave1pin = 25, wave2pin = 26;

int freq1 = 10000, freq2 = 2000; int freq1 = 10000, freq2 = 2000;

float duty1, duty2; float duty1, duty2;

int channel1 = 1, channel2 = 2;

int resolution = 10;

void setup() void setup()

{ {

 pinMode(wave1pin, oUtpUt); pinMode(wave1pin, oUtpUt);

 pinMode(wave2pin, oUtpUt); pinMode(wave2pin, oUtpUt);

ledcattachpin(wave1pin, channel1);

ledcattachpin(wave2pin, channel2);

ledcSetup(channel1, freq1, resolution);

ledcSetup(channel2, freq2, resolution);

 duty1 = 0.8*1023; duty1 = 0.8*1023;

 duty2 = 0.4*1023; duty2 = 0.4*1023;

} }

void loop() void loop()

{ {

 analogWriteFreq(freq1);

(continued)

Chapter 16 Signal generation

440

The PWM output voltage oscillating between HIGH and LOW states has

an average voltage of VIN × duty cycle, where VIN is the input voltage and duty

cycle is the percentage of time that the square wave is HIGH. For example, a

PWM 5 V supply voltage with 20% or 70% duty cycle has an average voltage

of 1 V or 3.5 V, respectively, resulting in a faster motor speed when the

motor is powered by the square wave with the 70% duty cycle.

A continuous sine wave of a given frequency generates a sound, which

is approximated by a square wave (see Figure 16-3). A Piezo transducer,

connected to an ESP8266 or ESP32 microcontroller pin producing a square

wave with frequency 440 Hz, approximates the musical note A above

middle C. Instructions for an ESP8266 microcontroller are

analogWriteFreq(440); // define square wave frequency

analogWrite(wavePin, 512); // square wave, 50% duty cycle

and the corresponding instructions, with 10-bit resolution, for an ESP32

microcontroller are

ledcSetup(channel, 440, 10)

ledcWrite(channel, 512)

A square wave with frequency 440 Hz and a 50% duty cycle is HIGH

or LOW for 1136 μs, equal to (2 × frequency)-1 = 1136 × 10-6 s. The sound

is alternatively generated with the ESP8266 and ESP32 microcontroller

instructions

Table 16-1. (continued)

ESP8266 Microcontroller ESP32 Microcontroller

 analogWrite(wave1pin, duty1); ledcWrite(channel1, duty1);

 analogWriteFreq(freq2);

 analogWrite(wave2pin, duty2); ledcWrite(channel2, duty2);

} }

Chapter 16 Signal generation

441

digitalWrite(wavePin, !digitalRead(wavePin));

delayMicroseconds(1136);

Note the exclamation mark is a logical NOT, which results in the value

false or LOW if the digitalRead(wavePin) is HIGH.

Alternatively, digital information about a sound is used to generate the

analog signal and reproduce the sound directly, rather than approximating

the sine wave of a sound with a square wave of the same frequency.

 Signal generation
One method to produce a sine or triangular wave with frequencies from

1 Hz to multiples of MHz is with an AD9833 waveform generator module

(see Figure 16-4 and Table 16-2). The MD_AD9833 library by Marco Colli

is available in the Arduino IDE. The AD9833 module has two channels

to specify two signal shapes and frequencies, but one output channel.

The AD9833 module communicates by hardware SPI (Serial Peripheral

Interface) MOSI (Main-Out Secondary-In) or DATA and clock (CLK) pins

with the instruction MD_AD9833 AD(FSYNC), where FSYNC is the data signal

synchronization pin. The AD9833 module analog (AGND) and digital

(DGND) GND pins are pre-connected. For sine and triangle waves, the

AD9833 module VCC pin is connected to 3.3 V (as in Figure 16-4).

Figure 16-3. Square wave approximating a sine wave

Chapter 16 Signal generation

442

The sketch in Listing 16-1 alternately displays, for five seconds, a sine

wave and a triangle wave with frequencies of 30 kHz and 20 kHz, respectively

(see Figure 16-5). The instruction AD.setActiveFrequency(chan) sets the

signal channel. The wave mode is defined as MODE_SINE or MODE_TRIANGLE

and set with the instruction AD.setMode(mode). Signal generation starts with

Table 16-2. AD9833 signal generator module

Component ESP8266 Connections ESP32 Connections

aD9833 VCC 3.3V 3.3V

aD9833 DgnD gnD gnD

aD9833 SData (Spi MoSi) D7 gpio 23

aD9833 SClK (Spi ClK) D5 gpio 18

aD9833 FSYnC D0 gpio 5

aD9833 agnD Signal gnD Signal gnD

aD9833 oUt Signal out Signal out

Figure 16-4. AD9833 signal generator for a sine or triangle wave

Chapter 16 Signal generation

443

the instruction AD.setFrequency(chan, freq). The data synchronization

pin in Listing 16-1 is defined for an ESP8266 microcontroller and is changed

to 5 for the ESP32 microcontroller (see Table 16-2).

Listing 16-1. AD9833 sine and triangle wave generator

#include <SPI.h> // include SPI library

#include <MD_AD9833.h> // include MD-AD9833 library

int FSYNC = D0; // define data synchronisation pin

MD_AD9833 AD(FSYNC);

MD_AD9833::channel_t chan; // library channel variable

MD_AD9833::mode_t mode; // library signal mode variable

unsigned long freq;

void setup()

{

 AD.begin(); // initialise library

 chan = MD_AD9833::CHAN_0; // set channel as 0 or 1

 AD.setActiveFrequency(chan); // activate signal generator

}

Figure 16-5. AD9833-generated sine and triangle waves

Chapter 16 Signal generation

444

void loop()

{

 wave('s', 30000, 5000); // call sine and triangle

 wave('t', 20000, 5000); // wave display function

}

void wave(char shape, unsigned long freq, int timeint)

{ // sine wave

 if(shape == 's') mode = MD_AD983 3::MODE_SINE;

 else if(shape == 't') mode = MD_ AD9833::MODE_TRIANGLE;

// triangle wave

 AD.setMode(mode); // set the wave form

 AD.setFrequency(chan, freq); // set signal frequency for channel

 delay(timeint); // time to generate signal

 clear(); // call clear function

}

void clear() // function to clear signal

{

 mode = MD_AD9833::MODE_OFF; // set wave mode to off

 AD.setMode(mode); // turn off wave generation

 delay(500); // time with no signal

}

 Digital to analog converter
A digital to analog converter (DAC) converts a digital value into an analog

signal. The DAC converts a number from decimal format to binary format

with the DAC output voltage equal to the sum of the voltages for each bit,

with the voltages reducing by half from the most significant bit (MSB) to

the least significant bit (LSB). For example, the number 50 in 8-bit binary

Chapter 16 Signal generation

445

format is B00110010, and the DAC voltage is (1 × 25 + 1 × 24 + 1 × 21) ×

VCC/28 = 50 × VCC/28 equal to 0.195 × VCC. An 8-bit DAC with a pin voltage

of VCC converts the digital value N to an analog voltage of N × VCC/28.

The ESP32 microcontroller includes two DACs, each with 8-bit resolution,

which are described later in the chapter. The ESP8266 microcontroller

does not include a DAC, and in this section, a DAC is built with an ESP8266

microcontroller.

A voltage divider is the mechanism to reduce the voltage by half for

each bit of the DAC. A voltage divider with an input voltage, VIN, and two

resistors, R1 and R2, has an output voltage, VOUT, at the junction of the two

resistors of VIN × R
R R

2

1 2+
æ
è
ç

ö
ø
÷ (see Figure 16-6). If the two resistors have equal

values, then the output voltage is half the input voltage. For illustrative

purposes, a DAC is built with a voltage divider ladder to generate voltages,

corresponding to the bit positions between the MSB and the LSB of the

binary-formatted digital value.

Figure 16-6. Voltage divider

A voltage divider ladder is built as an R-2R resistor ladder 8-bit DAC

consisting of eight pairs of R and 2R resistors, with R equal to 1 kΩ (see

Figure 16-7 and Table 16-3 for connections). The 2 kΩ resistor on the right

side represents the MSB of the R-2R ladder 8-bit DAC. The voltage divider

formed by the left pair of 2 kΩ resistors, representing the LSB, reduces

the voltage at the junction to 0.5 VIN. The left pair of 2 kΩ resistors are in

parallel when there is no voltage on either resistor. The net resistance of

two resistors, R1 and R2, in parallel is
1 1

1

1

2

1 2

1 2net R R R
R R
R R

= + =
+
´

. Therefore,

when in parallel, the left pair of 2 kΩ resistors have a net resistance of 1

Chapter 16 Signal generation

446

kΩ and are in series with resistor A, with value 1 kΩ, so the pair of 2 kΩ

resistors and the 1 kΩ resistor have a combined resistance of 2 kΩ. The

combination of the left pair of 2 kΩ resistors and resistor A with resistor

B forms a second voltage divider, which again reduces the voltage at the

junction by half. The third voltage divider is formed by grouping the left

pair of 2 kΩ resistors and resistors A, B, and C with resistor D. At each

stage, the voltage at the junction of the voltage divider is halved, so a

HIGH bit value for the LSB corresponds to a voltage of VIN/28, as there are

effectively eight voltage dividers.

Figure 16-7. R-2R digital to analog converter with LOLIN (WeMos)
D1 mini

Chapter 16 Signal generation

447

The output voltage from the R-2R ladder 8-bit DAC corresponding to

a digital value is generated by effectively using the binary format of the

digital value, to set the eight voltage divider states to HIGH or LOW. For

example, the 8-bit binary format of 156 is B10011100; and states of voltage

dividers 1, 4, 5, and 6 (numbered from right to left) are set to HIGH with the

DAC voltage equal to (1/21 + 1/24 + 1/25 + 1/26) × VCC or (1 × 27 + 1 × 24 + 1

× 23 + 1 × 22) × VCC/28 = 156 × VCC/28 = 0.6094 × VCC.

There are eight digital pins on the ESP8266 development board,

but pins D3, D4, and D8, have built-in pull-up or pull-down resistors to

maintain pin states during the ESP8266 microcontroller boot process.

Instead of setting the R-2R ladder 8-bit DAC pin states with the ESP8266

microcontroller, pin states are set with a serial-in parallel-out shift register.

A 74HC595 shift register loads a byte of data, consisting of 8 bits of data,

one bit at a time. While the shift register clock (SRCLK) state is set LOW,

data bits are loaded to the shift register through the serial input data (SER)

pin, controlled by the storage register clock (RCLK). After all 8 bits are

loaded, the shift register clock state is set HIGH. Instructions to pass data

through a shift register are

digitalWrite(latchPin, LOW); // set the latch to LOW

shiftOut(dataPin, clockPin, MSBFIRST, number)

// load number as a byte

digitalWrite(latchPin, HIGH) // set latch to HIGH

MSBFIRST indicates that the most significant bit (MSB) is loaded first,

which is the state of the voltage divider on the right side of Figure 16-7.

The 74HC595 shift register pins are numbered 1–16, with the cut-out

or dot at the end of the shift register indicating the end with pins 1 and 16.

Connections to the 74HC595 shift register are shown in Table 16- 3,

with the over-line on SRCLR (clear the register) and OE (output

enabled) indicating that the pin is active LOW. The 3.3V pin of the ESP8266

development board powers the shift register, which has an operating

voltage of 2–6 V.

Chapter 16 Signal generation

448

The ESP8266 microcontroller 10-bit analog to digital converter (ADC)

functionality converts a voltage, between 0 and 3.2 V, on analog input pin

A0, to a digital value between 0 and 1023. The instruction analogRead(A0)

reads the voltage on the analog input pin. The reference voltage of the

ESP8266 microcontroller ADC is 1 volt; and an internal voltage divider,

consisting of 220 kΩ and 100 kΩ resistors (see Figure 16-8), increases the

maximum voltage on the analog input pin to 3.2 V. Given a voltage, VIN, on

the ESP8266 development board analog input pin, the corresponding ADC

value is V k
kIN ´ +()

´
100

220 100
1024

W
W

.

Table 16-3. R-2R digital to analog converter with the ESP8266

development board

Component Connect to And to

left-hand 2 kΩ resistor (lSB) Second 2 kΩ resistor eSp8266 gnD

7 × 2 kΩ resistors 74hC595 pins 15, 1–6 Qa-Qg 1 kΩ resistors

right 2 kΩ resistor (MSB) 74hC595 pin 7 Qh

right 2 kΩ resistor (MSB) eSp8266 a0 Voltage output

74hC595 pin 8 gnD eSp8266 gnD

74hC595 pin 9 Qh' not connected

74hC595 pin 10 SRCLR
eSp8266 3V3

74hC595 pin 11 SrClK eSp8266 D7

74hC595 pin 12 rClK eSp8266 D6

74hC595 pin 13 OE
eSp8266 gnD

74hC595 pin 14 Ser eSp8266 D5

74hC595 pin 16 VCC eSp8266 3V3

Chapter 16 Signal generation

449

ADC values for input voltages between 3.2 V and 3.3 V are constrained

to 1023. A 10 kΩ resistor connected between the input voltage and the

ESP8266 development board analog input pin increases the limit of 3.2 V

on the analog input pin to 3.3 V. An input voltage, VIN, produces an ADC

reading of V k
kIN ´ + +()

´
100

10 220 100
1024

W
W

. The predicted output voltage by

the R-2R ladder 8-bit DAC corresponding to the digital value N is N × 3.3

V/28, as the ESP8266 microcontroller has an operating voltage of 3.3 V.

Listing 16-2 illustrates using an R-2R resistor ladder 8-bit DAC to

convert digital values from 0 to 255 to voltages. The 74HC595 shift register

sets the eight voltage divider states, based on the binary format of the

digital value, and the output voltage of the R-2R ladder 8-bit DAC is read

on ESP8266 development board analog pin A0.

The built-in voltage divider of the ESP8266 microcontroller and the in-

series 10 kΩ resistor reduce the input voltage to the ESP8266 development

board analog input pin, which has a maximum voltage input of 1 volt. The

output voltage from the R-2R ladder 8-bit DAC is the ADC reading of the

ESP8266 microcontroller scaled by
10 220 100

100

1

1024

+ +()
´

k
k

W
W

.

Listing 16-2. R-2R digital to analog converter

int dataPin = D5; // shift register data

int latchPin = D6; // latch and clock pins

int clockPin = D7;

int Vin; // voltage on analog pin

float voltage, predict; // voltage divider effect and

Figure 16-8. Analog to digital converter

Chapter 16 Signal generation

450

float voltDivid = 1000.0*(10+220+100)/100; // adjustment to mV

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 Serial.println();

 pinMode(dataPin, OUTPUT); // shift register pins as output

 pinMode(latchPin, OUTPUT);

 pinMode(clockPin, OUTPUT);

}

void loop()

{

 for (int i=0; i<256; i=i+50) // incremental increases

 {

 digitalWrite(latchPin, LOW); // start loading shift register

 shiftOut(dataPin, clockPin, MSBFIR ST, i);

// load 8-bit number

 digitalWrite(latchPin, HIGH); // end loading shift register

 Vin = analogRead(A0); // read R-2R ladder voltage

 voltage = Vin * voltDivid / 1024.0 ; // scaled R-2R ladder voltage

 predict = i * 3300.0 / 256; // predicted output voltage

 Serial.print(i);Serial.print("\t");

 Serial.print(Vin);Serial.print("\t "); // display results

 Serial.print(voltage,0);Serial.print("\t");

 Serial.println(predict,0);

 delay(200);

 }

}

Chapter 16 Signal generation

451

The maximum voltage of an R-2R ladder 8-bit DAC is VCC
i

i´
=
å

1

8

1 2/ =

0.996×VCC = 3.287 V that corresponds to a digital value of 255 and an

analog reading of 1020. An output voltage of 3.2999 V requires an R-2R

ladder 16-bit DAC that corresponds to an analog reading of 1023.

 Generating waves
Sine, square, triangular, and sawtooth waves are also generated with the

R-2R ladder 8-bit DAC. Values of a sine wave are not always positive, as

angles 90° and 270° are 1 and -1, respectively. Therefore, sine wave values

are scaled by 120, and a constant of 128 is added to shift the scaled range

from (-120, 120) to (8, 248) that is within the 8-bit DAC range of (0, 255). A

scalar of 128 cannot be used, as the value of 256 requires a 9-bit DAC. The

scaled value is converted to binary format, with the voltage divider states

set to the corresponding bit of the binary-formatted number. The R-2R

ladder 8-bit DAC, consisting of eight voltage dividers, generates voltages

on each rung of the ladder. The sum of voltages from each rung of the R-2R

ladder 8-bit DAC is the required analog voltage. For example, the scaled

sine wave at 45° has the value of 212 = 128 + 120 × √0.5, which has binary

format B11010100 and DAC voltage of (1 × 27 + 1 × 26 + 1 × 24 + 1 × 22) ×

VCC/28 = 0.828 × VCC.

When the R-2R ladder 8-bit DAC output is connected

to a mini-loudspeaker, the sound corresponding to

the scaled sine wave is heard. The frequency of the

sound depends on the time taken by the ESP8266

microcontroller to generate the scaled sine wave

values and convert them to binary format for the R-2R ladder 8-bit

DAC. An ESP8266 microcontroller takes 15.5 ms to generate and upload,

to the shift register, the scaled sine wave values for one cycle of 360

degrees with one-degree intervals, corresponding to a frequency of 64 Hz.

Chapter 16 Signal generation

452

Different frequencies are generated by multiplying the angle of the sine

wave by a constant, which increases the number of cycles in a time period,

but with higher values of the multiplier, the resolution of the sine wave

decreases. A potentiometer reading sets the multiplier (see Figure 16-9),

and the instruction mult = 20.0*analogRead(potPin)/1023.0 scales the

potentiometer reading to an arbitrary maximum of 20, with a resultant

maximum sine wave frequency of 1.28 kHz. Potentiometer connections are

given in Table 16-4.

Figure 16-9. R-2R ladder 8-bit DAC, shift register, and LOLIN (WeMos)
D1 mini

Chapter 16 Signal generation

453

The sketch in Listing 16-3 changes the multiplier of the sine wave

angle to change the frequency, with corresponding sound generated by

the output voltage of an R-2R ladder 8-bit DAC. In the loop function, the

multiplier for the sine wave angle is the scaled potentiometer reading. The

cycle time and the sine wave frequency are displayed every 1000 cycles.

Calculation of a sine wave requires the angle to be defined in radians, and

the angle in degrees is converted to radians with the formula radian =

angle × π/180. In Listing 16-3, the value of the PI variable is predefined as

3.14159, within the Arduino IDE.

Listing 16-3. Generating a sine wave with R-2R ladder 8-bit DAC

int dataPin = D5; // shift register data

int latchPin = D6; // latch and clock pins

int clockPin = D7;

int count = 0;

float sum, angle, Hz;

unsigned long lastTime;

int val, sign, mult, cycleTime;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 pinMode(dataPin, OUTPUT); // shift register pins as output

Table 16-4. Potentiometer connections for

wave generation

Component Connect to

potentiometer VCC eSp8266 VCC

potentiometer signal (middle) eSp8266 a0

potentiometer gnD eSp8266 gnD

Chapter 16 Signal generation

454

 pinMode(latchPin, OUTPUT);

 pinMode(clockPin, OUTPUT);

}

void loop()

{

 mult = 20.0*analogRead(A0)/1023.0; // scale potentiometer value

 for (int deg=0; deg<360; deg=deg+mul t) // cycle through 360°

 {

 angle = deg*PI/180.0; // convert degrees to radians

 sum = sin(angle);

 val = round(128+120.0*sum); // scaled sine wave value

 digitalWrite(latchPin, LOW); // start loading shift register

 shiftOut(dataPin, clockPin, MSBFIR ST, val);

// load 8-bit number

 digitalWrite(latchPin, HIGH); // end loading shift register

 }

 count ++;

 if(count > 999) // display every 1000 cycles

 {

 cycleTime = millis() - lastTime; // time (ms) for cycle

 Hz = 1000.0 * count / cycleTime; // frequency (Hz)

 Serial.print(mult);Serial.print("\t");

 Serial.print(Hz);Serial.print("Hz\t");

 Serial.print(1.0*cycleTime/count);Serial.println("ms");

 count = 0; // reset counter

 lastTime = millis(); // reset timer

 }

}

Chapter 16 Signal generation

455

In Listing 16-3, the sine wave value for an angle was calculated with the

instruction sum = sin(angle).

A square wave is constructed from six odd-integer harmonics or

component sine waves, as a Fourier series, with the instructions

sum = 0;

for (int i=1; i<12; i=i+2) sum = sum + sin(i*angle)/i;

A triangular wave is constructed with the same odd harmonics as

a square wave, but with alternating signs and a divisor of the harmonic

number squared. The instructions are

sum = 0;

sign = -1;

for (int i=1; i<12; i=i+2)

{

 sign = -sign;

 sum = sum + sign*sin(i*angle)/(i*i);

}

sum = sum/2;

A sawtooth wave is constructed with all the harmonics, but with

alternate signs. Using the first nine harmonics, the instructions are

sum = 0;

sign = -1;

for (int i=1; i<10; i++)

{

 sign = -sign;

 sum = sum + sign*sin(i*angle)/i;

}

sum = sum/2;

Chapter 16 Signal generation

456

A right-angle triangle wave is simply generated by replacing the for

(int deg=0; deg<360; deg=deg+mult) {...} instructions, with the

instructions

for (int i=0; i<256; i++)

{

 digitalWrite(latchPin, LOW);

 shiftOut(dataPin, clockPin, MSBFIRST, i);

 digitalWrite(latchPin, HIGH);

}

and a triangular wave is produced by adding the instructions

for (int i=1; i<255; i++)

{

 digitalWrite(latchPin, LOW);

 shiftOut(dataPin, clockPin, MSBFIRST, 255-i);

 digitalWrite(latchPin, HIGH);

}

The sine wave in Figure 16-10 illustrates the resolution of an R-2R

ladder 8-bit DAC. When the binary-formatted number is represented with 8

bits, an essentially continuous sine wave is obtained with a step size of one.

As the number of bits reduces, the step size increases, and the resolution

reduces. Sine wave approximations produced by an R-2R ladder DAC with

all 8 bits and with the three and two most significant bits demonstrate the

rapid improvement in resolution with increasing bit number.

Figure 16-10. Sine wave approximations with 8 bits and three and
two most significant bits

Chapter 16 Signal generation

457

 ESP32 8-bit DAC
The ESP32 microcontroller includes

two 8-bit DACs referenced as DAC1

and DAC2 on GPIO 25 and GPIO 26.

The instruction dacWrite(DACpin,

value) generates a voltage of

value × VCC/28, where VCC is the

operating voltage of the ESP32

microcontroller. The sketch in Listing 16-4 generates the sine wave of

Listing 16-3 with fewer instructions, as no R-2R ladder DAC and shift

register are required, resulting in a higher sine wave frequency. The

frequency is increased by including a multiplier, as in Listing 16-3.

Listing 16-4. Generating a sine wave with ESP32 DAC

int DACpin = DAC1; // DAC pin on GPIO 25

float angle;

int val;

void setup() // nothing in setup function

{}

void loop()

{

 for (int deg=0; deg<360; deg++) // cycle through 360°

 {

 angle = deg*PI/180.0; // convert degrees to radians

 val = round(128+120.0*sin(angle)); // scaled sine wave value

 dacWrite(DACpin, val); // output voltage

 }

}

Chapter 16 Signal generation

458

 12-bit DAC
The MCP4725 12-bit DAC module (see Figure 16-11 with connections in

Table 16-5) is an alternative to the R-2R ladder 8-bit DAC. The MCP4725

module communicates with I2C (Inter-Integrated Circuit) and has an I2C

address of 0x60 to 0x67, depending on the module version.

Table 16-5. MCP4725 12-bit DAC module

and the ESP8266 development board

Component Connect to

MCp4725 VoUt eSp8266 a0

MCp4725 gnD eSp8266 gnD

MCp4725 SCl eSp8266 D1

MCp4725 SDa eSp8266 D2

MCp4725 VCC eSp8266 3.3V

Figure 16-11. MCP4725 12-bit DAC module and LOLIN (WeMos)
D1 mini

Chapter 16 Signal generation

459

The I2C address is obtained with the I2C scanning sketch in Listing 16-5.

On transmitting to an I2C device, the device returns a 0, indicating a

successful transmission. The I2C addresses 0x00 to 0x07 and 0x78 to 0x7F

are reserved and are not scanned. I2C addresses of sensors and modules are

available at learn.adafruit.com/i2c-addresses/the-list.

Listing 16-5. I2C scanner

#include <Wire.h> // include Wire library

int device = 0; // set device counter

void setup()

{

 Serial.begin (115200); // Serial Monitor baud rate

 Serial.println();

 Wire.begin(); // start I2C bus

 for (int i=8; i<127; i++) // scan through channels 8 to 126

 {

 Wire.beginTransmission (i); // transmit to device at address i

 if (Wire.endTransmission () == 0)

 { // device response to transmission

 Serial.print("Address 0x");

 Serial.println(i, HEX); // display I2C address in HEX

 device++; // increment device count

 delay(10);

 }

 }

 Serial.print(device); // display device count

 Serial.println(" device found");

}

void loop() // nothing in loop function

{}

Chapter 16 Signal generation

https://learn.adafruit.com/i2c-addresses/the-list

460

The Adafruit MCP4725 library instruction setVoltage(value, false)

outputs a voltage of VCC × value/212, where VCC is the MCP4725 module

voltage supply of 3.3–5 V that is also the reference output voltage. The

output voltage of the MCP4725 12-bit DAC module is confirmed by

connecting the module VOUT pin to the ESP8266 microcontroller analog

input pin A0 with the output voltage equal to VCC*analogRead(A0)/1024,

where VCC is the microcontroller operating voltage.

A sketch to generate a range of voltages and a sine wave with the

MCP4725 12-bit DAC module is given in Listing 16-6. When generating

the sine wave, the angle is defined in radians, so the angle, measured in

degrees, is converted to radians by the formula radian = angle × π/180.

One is added to the sine value, to obtain a positive number to generate

the output voltage. A multiplier of 2047 for the sine value plus one is used,

rather than 2048, as the instruction dac.setVoltage(4096, false) results

in an output voltage of 0 volt. Different frequencies are generated by

multiplying the angle of the sine wave by a constant, which increases the

number of cycles in a time period, but with higher values of the multiplier,

the resolution of the sine wave reduces.

Listing 16-6. Sine wave with MCP4725 12-bit DAC module

#include <Adafruit_MCP4725.h> // include Adafruit MCP4725 lib

Adafruit_MCP4725 dac; // associate dac and MCP4725 lib

float voltDivid = 3200; // voltage divider adjustment

float VCC = 3300; // operating voltage

int flag = 0; // flag to switch to sine wave

float predict, voltage, value;

int Vin;

Chapter 16 Signal generation

461

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 dac.begin(0x60); // I2C address of MCP4725

}

void loop()

{

 if(flag < 1)

 {

 for(int i=0; i<4096; i=i+50)

 {

 dac.setVoltage(i, false); // set output voltage

 Vin = analogRead(A0); // read DAC voltage

 voltage = Vin * voltDivid /1024.0; // scaled output voltage

 predict = i * VCC / 4096.0; // predicted output voltage

 Serial.print(voltage);Serial.print("\t");

 Serial.println(predict); // display voltages

 }

 delay(2000);

 flag = 1; // switch to sine wave only

 }

 for (int deg=0; deg<360; deg++) // generate sine wave

 {

 value = 2047.0*(sin(deg*PI/180.0)+1); // scaled sine wave value

 dac.setVoltage(value, false); // set output voltage

 }

}

Chapter 16 Signal generation

462

Reading the sine wave values from a lookup table reduces processing

time, relative to calculating values of the sine wave, which increases

the number of cycles in a time period and so the frequency of the sine

wave. The ESP8266 microcontroller has 4 MB flash memory and 50 kB

SRAM (static random access memory), so the lookup table is stored in

flash or programmable memory, PROGMEM, where the sketch is stored,

rather than in SRAM, where variables are created and manipulated in a

sketch. The instruction to store an array in flash memory is const type

arrayname[] PROGMEM = {array values}, and the ith value of the array is

accessed with the instruction pgm_read_type(arrayname + i). Character

or integer data is stored in flash memory with the variable type defined

as unsigned char or uint16_t and accessed with pgm_read_byte or pgm_

read_word, respectively.

In Listing 16-7, sine wave values at intervals of 10° are stored in flash

memory. For example, the time to generate 500 sine waves is measured to

determine the frequency of the generated sine wave. The sine wave is also

generated by directly calculating values of the sine wave to compare the

gain in wave frequency by storing values in flash memory.

Listing 16-7. Storing sine wave values in flash memory

#include <Adafruit_MCP4725.h> // include Adafruit MCP4725 lib

Adafruit_MCP4725 dac; // associate dac and MCP4725 lib

const uint16_t lookup[] PROGMEM = { // sine wave in flash memory

2047,2402,2747,3071,3363,3615,3820,3971,4063,4094,

4063,3971,3820,3615,3363,3071,2747,2402,2047,1692,

1347,1024, 731, 479, 274, 123, 31, 0, 31, 123,

 274, 479, 731,1024,1347,1692 // 2047×(sin(x°×π/180) + 1)

};

Chapter 16 Signal generation

463

int value, cycle;

unsigned long lastTime = 0;

float freq;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 Serial.println();

 dac.begin(0x60); // I2C address of MCP4725

}

void loop()

{

 lastTime = millis(); // start timer

 while (cycle < 500) // sine wave for 500 cycles

 {

 for (int i=0; i<36; i++)

 {

 value = pgm_read_word(lookup+i); // values from flash memory

 dac.setVoltage(value, false); // set output voltage

 }

 cycle++;

 yield(); // required to prevent timeout

 }

 freq = 1000 * 500.0/(millis() - last Time); // wave frequency

 Serial.print("lookup ");Serial.print(freq);

 cycle = 0;

 lastTime = millis();

 while (cycle < 500)

 {

Chapter 16 Signal generation

464

 for (int deg=0; deg<360; deg=deg+10) // generate sine wave

 { // scaled sine wave value

 value = 2047.0*(sin(deg*PI/180.0)+1) ;

 dac.setVoltage(value, false); // set output voltage

 }

 cycle++;

 yield();

 }

 freq = 1000 * 500.0/(millis()-lastTime);

 Serial.print("\tcalc ");Serial.println(freq);

 cycle = 0;

}

The sine wave frequencies from different methods of generating a sine

wave, with sine values at 10° intervals, are summarized in Table 16- 6. Sine

waves were generated by the ESP32 microcontroller 8-bit DAC and by an

ESP8266 microcontroller with an R-2R resistor ladder 8-bit DAC and an

MCP4725 12-bit DAC. The frequency of the sine wave generated by the

ESP32 microcontroller was double that of the ESP8266 microcontroller with

the R-2R ladder 8-bit DAC, but 20 times greater than with the MCP4725

12-bit DAC module. The higher resolution of the 12-bit MCP4725 DAC

module compared to the R-2R ladder 8-bit DAC was offset by slower sine

wave generation. For the 12-bit MCP4725 DAC module, storing sine wave

values in flash memory produced marginally higher sine wave frequency

than when sine wave values were calculated. The AD9833 module is the

most powerful method generating a sine wave.

Chapter 16 Signal generation

465

 Summary
Square waves with variable duty cycle were produced by the ESP8266

and ESP32 microcontrollers to control external devices. The digital to

analog converter (DAC) with an R-2R resistor ladder was described for

an ESP8266 microcontroller. Sine, square, triangular, and sawtooth waves

were generated by combining harmonics as a Fourier series. A variety of

sounds were produced from the output voltage of an R-2R ladder 8-bit

DAC by changing the frequency of the sine wave. Output voltages were

also generated with the MCP4725 12-bit DAC module. The AD9833

module produced sine and triangle waves with MHz frequencies. The

ESP32 microcontroller 8-bit DAC produced sine waves with double the

frequency of the sine waves generated by the ESP8266 microcontroller.

Table 16-6. Sine wave generation methods and frequencies

Generation Method with Values at 10°
Intervals

Frequency (Hz) of Sine Wave

aD9833 module to Mhz

eSp32 8-bit DaC 1467

eSp8266 r-2r resistor ladder 8-bit DaC 647

eSp8266 MCp4725 12-bit DaC 66

With lookup table 71

Chapter 16 Signal generation

466

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: DEVKIT DOIT or NodeMCU

board

• MCP4725 12-bit DAC module

• AD9833 waveform generator module

• 74HC595 shift register

• Potentiometer: 10 kΩ

• Resistors: 7× 1 kΩ, 9× 2 kΩ

Chapter 16 Signal generation

467© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_17

CHAPTER 17

Signal generation
with 555 timer IC

In Chapter 16 (Signal generation), an ESP8266 or ESP32

microcontroller generated square wave signals with

variable duty cycle or generated sine and triangular

wave signals when combined with an AD9833 waveform

generator module. Sine waves were also generated

with the addition of an external DAC (digital to analog

converter) MCP4725 module to the ESP8266 microcontroller or with the

built-in DAC of the ESP32 microcontroller. In Chapter 5 (MP3 player),

a microcontroller signaled an MP3 player module to play a track when

movement triggered a passive infrared (PIR) sensor. Even though the

signaling sketches often contained fewer than 20 lines of code, signal

generation always required a microcontroller. Signal generation with a 555

timer integrated circuit (IC) is an alternative to requiring a microcontroller

and provides insight into combining electronic components for an

application. The 555 timer IC is incorporated in timer and signal generation

applications ranging from pulse and sound generation, clocks, timers and

alarm triggering, power control with PWM (pulse width modulation),

or any application requiring time control. This chapter describes signal

generation with the 555 timer IC to complement Chapter 16 (Signal

generation). As an illustrative application, the MP3 player and PIR sensor

example from Chapter 5 (MP3 player) is developed with the 555 timer IC.

https://doi.org/10.1007/978-1-4842-6336-5_17#DOI

468

 555 timer IC
The 555 timer IC has eight pins, with the pin labels given in Figure 17-1

(left side). However, representing the 555 timer IC as in Figure 17-2, with

the Threshold, Trigger, and Control pins grouped together and the Output

and Discharge pins grouped together, aids interpretation of schematics

with the 555 timer IC. For circuit layouts, the 555 timer IC is represented

as in Figure 17-1 (right side) to minimize overlap of connections to the 555

timer IC.

Figure 17-1. 555 timer IC pin layouts

The 555 timer IC incorporates two voltage comparators, represented by

triangles in Figure 17-2, with reference voltages of
2

3
VCC and

1

3
VCC, which

are generated by two voltage dividers, formed with three 5 kΩ resistors. The

555 timer IC is primarily controlled by voltages on the Threshold and Trigger

pins. When the voltage on the Threshold pin is greater than 2
3

VCC, the Flip-

Flop, represented by the Reset/Set box in Figure 17-2, is reset, the Output pin

state changes from HIGH to LOW, and the NPN (negative-positive-negative)

discharge transistor is turned on to create a low-impedance connection

between the Discharge pin and GND. Conversely, when the voltage on

Chapter 17 Signal generation with 555 timer iC

469

the Trigger pin is less than 1
3

VCC, the Flip-Flop is set, the Output pin state

changes from LOW to HIGH, and the NPN discharge transistor is turned off

to disconnect the Discharge pin from GND.

To control the time that voltages on the Trigger and Threshold pins

are within the range of 1
3

VCC and 2
3

VCC, a resistor-capacitor (RC)

combination is connected to the 555 timer IC. The voltage across the

capacitor at t seconds of charging or discharging is V(1 − e−t/RC) or V(e−t/RC),

where V is the supply voltage. The higher the RC value, the longer the

time interval between changes in both the Flip-Flop state and the Output

voltage. A detailed description is given in the following “Astable mode”

section. Briefly, while the capacitor charges, the Output pin is HIGH, and

the increasing capacitor voltage is the input to the Threshold pin. When the

voltage reaches 2
3

VCC, the Output pin state changes from HIGH to LOW,

and the capacitor discharges through the Discharge pin. As the capacitor

discharges, the decreasing capacitor voltage is the input to the Trigger pin;

and when the voltage reaches 1
3

VCC, the OUTPUT pin state changes from

LOW to HIGH, and the capacitor starts to charge again.

Figure 17-2. 555 timer diagram

Chapter 17 Signal generation with 555 timer iC

470

The 555 timer IC has three operating modes: monostable, bistable,

and astable. In monostable mode, triggering the 555 timer IC produces

a HIGH pulse for a fixed time, which then returns to the LOW state until

retriggered. Applications of the monostable mode include time delays.

In bistable mode, the HIGH or LOW state is triggered with a switch for

use in switch debouncing. In astable mode, the 555 timer IC generates

square waves of fixed frequency and duty cycle determined by the value

of the resistor-capacitor combination. Applications of the astable mode

include pulse width modulation control of motors or lights, tone and

sound generation, clock timing, and square waves and triangular and sine

waves when the 555 timer IC is combined with a resistor-capacitor and an

inductor-capacitor (LC), respectively.

The Reset pin is active LOW, indicated in Figure 17-2 by RESET , and

is inactivated by connecting the Reset pin to VCC. A voltage on the Control

pin replaces the voltage comparator reference voltages of 2
3

VCC and
1

3
 VCC with the Control pin voltage and half of the Control pin voltage,

respectively. The Control pin is inactivated by connecting the Control pin

to GND through a 10 nF (equal to 0.01 μF) capacitor to eliminate noise.

The CMOS (Complementary Metal Oxide Semiconductor) version

of the 555 timer IC, such as the TLC555, includes MOSFETs (Metal Oxide

Semiconductor Field Effect Transistors) for switching rather than BJTs

(bipolar junction transistors), which are included in the standard 555 timer

IC, such as the NE555. The CMOS 555 timer IC requires less power and has

no voltage spikes with changing Output pin states, but has lower output

current than the standard 555 timer IC. The CMOS 555 timer IC VCC pin

supports 2–15 V, and the Output pin sinks 100 mA, but only sources 10 mA,

while the standard 555 timer IC VCC pin supports 5–15 V with the Output

pin sinking or sourcing up to 200 mA. Voltage spikes that occur when

changing Output pin states with the standard 555 timer IC are eliminated by

fitting a 0.1 μF capacitor across the VCC and GND pins of the 555 timer IC.

Chapter 17 Signal generation with 555 timer iC

471

This chapter uses a CMOS 555 timer IC, except in the “Square wave to sine

wave” section, which uses the standard 555 timer IC.

 Monostable mode
In monostable mode for the 555 timer IC (see Figure 17-3 with connections

in Table 17-1), closing the switch results in the LED turning on for one

pulse length and then turning off. When the switch is open, the Trigger

pin is connected to VCC through the pull-up resistor R2, and the Threshold

pin is connected to GND through the Discharge pin, so the Output pin is

LOW and the LED is turned off. When the switch is momentarily closed,

the Trigger pin is connected to GND, and the voltage on the Trigger pin

is 0 V, which is less than
1

3
 VCC, so the Flip-Flop is set, the Output pin

changes from LOW to HIGH, the LED is turned on, and the NPN discharge

transistor is turned off to disconnect the Discharge pin from GND.

The capacitor C1 starts charging through resistor R1, as the capacitor

is no longer connected to GND, and the voltage on the Threshold pin

increases. When the voltage on the Threshold pin is greater than 2
3

 VCC,

the Flip-Flop is reset, the Output pin changes from HIGH to LOW, the

LED is turned off, and the NPN discharge transistor is turned on to create

a low-impedance connection between the Discharge pin and GND. The

capacitor now discharges through the Discharge pin, and the Threshold pin

is again connected to GND and the Trigger pin to VCC. The cycle repeats

only when the switch is next closed.

Chapter 17 Signal generation with 555 timer iC

472

Table 17-1. 555 monostable mode

Component Connect to Then to

555 gnD (pin 1) gnD

555 trigger (pin 2) Switch (right side)

555 output (pin 3) leD long leg

555 reset (pin 4) VCC

555 Control (pin 5) 10 nF capacitor positive gnD

555 threshold (pin 6) 555 Discharge (pin 7)

555 Discharge (pin 7) 10 kΩ resistor VCC

555 Discharge (pin 7) 100 μF capacitor positive gnD

555 VCC (pin 8) VCC

leD short leg 220 Ω resistor gnD

Switch (right side) 10 kΩ resistor VCC

Switch (left side) gnD

Figure 17-3. 555 monostable mode

Chapter 17 Signal generation with 555 timer iC

473

The time that the capacitor charges from 0 V to 2
3

VCC depends on the

value of the resistor-capacitor pair, R1 and C1, in Figure 17-3. Solving
2

3
1VCC VCC e t RC= -()- / for time t has the solution t = ln(3) × RC or

approximately 1.1 × RC. For example, the actual time of 1246 ms that the

Output pin remained HIGH after the switch was closed, with a 9.97 kΩ

resistor and a 110 μF capacitor, was comparable with the expected time of

1205 ms (see Figure 17-4).

The resistance of a light-dependent resistor (LDR) or photoresistor

decreases with increasing incident light. A night light is built by replacing

the switch and pull-up resistor, R2, in Figure 17-3, with a pull-down resistor

and an LDR, respectively. The LDR resistance is between 3 kΩ and 5 kΩ

in average daylight, so a 4.7 kΩ resistor provides a balanced resistance for

a voltage divider with the LDR. As the incident light on the LDR reduces,

the LDR resistance increases, which decreases the output voltage of the

voltage divider. The Trigger pin is connected to the voltage divider output,

and as the incident light reduces, the Trigger pin voltage decreases; and

when it is below
1

3
VCC, the Flip-Flop is set, the Output pin changes from

LOW to HIGH, and the night-light LED is turned on.

Figure 17-4. 555 monostable signal

Chapter 17 Signal generation with 555 timer iC

474

 Bistable mode
In bistable mode for the 555 timer IC (see Figure 17-5 with connections in

Table 17-2), closing the ON or OFF switch results in the LED being turned

on or off. When the ON or OFF switch is open, the Trigger and Reset pins

are connected to VCC, through pull-up resistors R1 and R2, so the Output

pin is LOW and the LED is turned off. Note that the Reset pin is active LOW.

When the ON switch is momentarily closed, the Trigger pin is connected

to GND, and the voltage on the Trigger pin is 0 V, which is less than 1
3

VCC,

so the Flip-Flop is set, the Output pin changes from LOW to HIGH, and

the LED is turned on. When the OFF switch is closed, the 555 timer IC is

reset, the Output pin is LOW, and the LED is turned off. The 555 timer IC in

bistable mode debounces the ON and OFF switches.

Figure 17-5. 555 bistable mode

Chapter 17 Signal generation with 555 timer iC

475

 Astable mode
In astable mode for the 555 timer IC (see Figure 17-6 with connections

in Table 17-3), a square wave is generated, as illustrated by the two LEDs

being turned on and off alternately. The square wave duty cycle and

frequency, which is the inverse of the length of the square wave, are

determined by the values of the charging capacitor, C1, and two resistors,

R1 and R2. The LED connected between the Output pin and GND sources

current from the Output pin, while the LED connected between VCC and

the Output pin sinks current to the Output pin. When the Output pin is

HIGH, the LED sourcing current is turned on, and the LED sinking current

is turned off. Conversely, when the Output pin is LOW, the LED sourcing

current is turned off, and the LED sinking current is turned on.

Table 17-2. 555 bistable mode

Component Connect to Then to

555 gnD (pin 1) gnD

555 trigger (pin 2) Switch on (right side)

555 output (pin 3) leD long leg

555 reset (pin 4) Switch oFF (right side)

555 Control (pin 5) 10 nF capacitor positive gnD

555 VCC (pin 8) VCC

leD short leg 220 Ω resistor gnD

Switch on or oFF (right side) 10 kΩ resistor VCC

Switch on or oFF (left side) gnD

Chapter 17 Signal generation with 555 timer iC

476

Table 17-3. 555 astable mode

Component Connect to Then to

555 gnD (pin 1) gnD

555 trigger (pin 2) 555 threshold (pin 6)

555 output (pin 3) leD2 long leg leD1 short leg

555 reset (pin 4) VCC

555 Control (pin 5) 10 nF capacitor positive gnD

555 threshold (pin 6) 2 kΩ resistor 555 Discharge (pin 7)

555 Discharge (pin 7) 1 kΩ resistor VCC

555 VCC (pin 8) VCC

leD1 long leg 220 Ω resistor VCC

leD2 short leg 220 Ω resistor gnD

100 μF capacitor positive 555 trigger (pin 2)

100 μF capacitor negative 555 trigger (pin 1)

Figure 17-6. 555 astable mode

Chapter 17 Signal generation with 555 timer iC

477

The capacitor, C1, charges through the two resistors, R1 and R2, and the

voltage on the Threshold pin increases. When the voltage on the capacitor

and the Threshold pin is greater than
2

3
VCC, the Flip-Flop is reset, the

Output pin changes from HIGH to LOW, the LED sourcing current LED2

is turned off, the LED sinking current LED1 is turned on, and the NPN

discharge transistor is turned on to create a low-impedance connection

between the Discharge pin and GND. The capacitor now discharges

through resistor R2 and the Discharge pin.

When the voltage on the discharging capacitor and the Trigger pin is

less than
1

3
VCC, the Flip-Flop is set, the Output pin changes from LOW

to HIGH, the LED sourcing current LED2 is turned on, the LED sinking

current LED1 is turned off, and the NPN discharge transistor is turned off

to disconnect the Discharge pin from GND. The capacitor now charges

through the two resistors, R1 and R2, and the cycle repeats.

Resistor values, R1 and R2, and the capacitor, C1, determine the time

that the capacitor charges from 1
3

VCC to 2
3

 VCC, but the discharge time is

defined only by resistor R1 and the capacitor. The time required to increase

capacitor voltage from 1
3

VCC to 2
3

VCC is the difference in times between

charging from 0 V to 2
3

VCC and from 0 V to 1
3

VCC. The voltage across a

capacitor at t seconds of charging is VCC(1 − e−t/RC). The two equations
2

3
1

2VCC VCC e t RC= -()- / and 1
3

1
1VCC VCC e t RC= -()- / are solved for t1 and t2, the

two charging times. The difference between the charging times, t2 − t1, is

ln(2) × (R1 + R2) × C1 or 0.693 × (R1 + R2) × C1 seconds. The equation for the

voltage across a capacitor at t seconds of discharging is Ve−t/RC. The time

that the capacitor is discharging from 2
3

 VCC to 1
3

 VCC is similarly

calculated as ln(2) × R2C1 seconds.

Chapter 17 Signal generation with 555 timer iC

478

The length of the square wave is ln(2) × (R1 + 2R2) × C1 seconds, and

the duty cycle is (R1 + R2)/(R1 + 2R2). The frequency of the square wave

is the inverse of the square wave length and is often written as 1.44/[(R1

+ 2R2) × C1], as ln(2)-1 = 1.44. For example, with resistor values of 986 Ω

and 1981 Ω and a 110 μF capacitor, the actual capacitor charging and

discharging times of 220 ms and 152 ms, respectively, with a duty cycle of

59%, a wavelength of 372 ms, and a frequency of 2.69 Hz were similar to

the expected capacitor charging and discharging times of 226 ms and 151

ms with a duty cycle of 60%, a wavelength of 377 ms, and a frequency of

2.65 Hz (see Figure 17-7).

With fixed values for resistor R1 and capacitor C, the value of resistor

R2 is chosen to generate a square wave with frequency [ln(2) × (R1 +

2R2) × C]-1 Hz. An electronic piano is built by connecting several pairs of

switches and R2 resistors to the 555 timer IC, with fixed values for the R1

resistor (1 kΩ) and capacitor (1 μF) (see Figure 17-8 with connections in

Table 17-5). Pressing a switch connects the series of R2 resistors to the

Trigger and Discharge pins, and the capacitor starts to charge and then

discharge, which produces a square wave as long as the switch is pressed.

For example, the note G4 with frequency 392 Hz requires a total resistance

of 1340 Ω. The R2 resistors are in series with the total resistance equal to

the sum of the resistors. The R2 resistors for notes C5, B4, and A4, which

precede the resistor for note G4, total 1130 Ω, so the required R2 resistor

for the note G4 is 210 Ω and a 200 Ω resistor is included, as it is a readily

Figure 17-7. 555 astable square wave signal

Chapter 17 Signal generation with 555 timer iC

479

A speaker is connected to the Output pin, through a 10 μF capacitor.

Figure 17-8. 555 timer IC and electronic piano

Table 17-4. Electronic piano resistor combinations

Note C4 D4 E4 F4 G4 A4 B4 C5

true frequency (hz) 262 294 330 349 392 440 494 523

resistor (Ω) 330 220 150 220 200 150 100 880

Cumulative resistance (Ω) 2250 1920 1700 1550 1330 1130 980 880

project frequency (hz) 262 298 328 352 394 443 487 523

available resistor value. In practice, frequencies of the generated sounds

were within 7 Hz of the true frequencies (see Table 17-4).

Chapter 17 Signal generation with 555 timer iC

480

 Variable duty cycle
The square wave duty cycle with astable mode is always greater than

50% as the capacitor charges through resistors R1 and R2, but discharges

through resistor R2 (see Figure 17-6). If two diodes, such as the IN4001, are

incorporated (see Figure 17-9 with connections in Table 17-6), then the

capacitor charges through resistor R1 only and discharges through resistor

R2 only.

Table 17-5. 555 timer IC and electronic piano

Component Connect to Then to

555 gnD (pin 1) gnD

555 trigger (pin 2) 555 threshold (pin 6)

555 output (pin 3) 10 μF capacitor positive Speaker positive

555 reset (pin 4) VCC

555 threshold (pin 6) Switches (left side)

555 Discharge (pin 7) resistors Switches (right side)

555 VCC (pin 8) VCC

1 μF capacitor positive 555 trigger (pin 2)

1 μF capacitor negative 555 trigger (pin 1)

Speaker negative gnD

Chapter 17 Signal generation with 555 timer iC

481

Figure 17-9. 555 astable mode with full duty cycle range

Table 17-6. 555 astable mode with full duty cycle range

Component Connect to Then to

555 gnD (pin 1) gnD

555 trigger (pin 2) 555 threshold (pin 6)

555 trigger (pin 2) Diode (D1) cathode (negative)

555 trigger (pin 2) Diode (D2) anode (positive) 2 kΩ resistor

555 output (pin 3) leD2 long leg leD1 short leg

555 reset (pin 4) VCC

555 Control (pin 5) 10 nF capacitor positive gnD

555 Discharge (pin 7) 1 kΩ resistor VCC

555 VCC (pin 8) VCC

leD1 long leg 220 Ω resistor VCC

leD2 short leg 220 Ω resistor gnD

100 μF capacitor positive 555 trigger (pin 2)

100 μF capacitor negative 555 trigger (pin 1)

Chapter 17 Signal generation with 555 timer iC

482

The forward voltage drop of the diodes results in longer charge and

discharge times, which are increased from ln(2) × R1C1 and ln(2) × R2C1

seconds to α × R1C1 and α × R2C1, with the constant α equal to

ln 1
3

+
-

é

ë
ê

ù

û
ú

VCC
VCC Vd

, where Vd is the forward voltage of the diode. For

example, if VCC is 5 V and the diode forward voltage is 0.6 V, then the

discharge time is ln(2.56) × R2C1 rather than ln(2) × R2C1 when no diode is

included in the circuit. The square wave duty cycle is unaffected by

inclusion of the two diodes and is less than or greater than 50% when

resistor R1 is less than or greater than resistor R2. For example, with resistor

values of 986 Ω and 1981 Ω and a 110 μF capacitor, the actual capacitor

charging and discharging times of 99 ms and 203 ms, respectively, with a

duty cycle of 33% were similar to the expected capacitor charging and

discharging times of 102 ms and 205 ms (see Figure 17-10).

The voltage across a capacitor charging or discharging through a

resistor of RΩ is Vt = VS + (V0 − VS)e−t/RC, where V0 is the initial voltage

across the capacitor with capacitance C and VS is the supply voltage. If

the capacitor is fully discharged with V0 = 0, the supply voltage is V; then

the equation reduces to the usual formula for a charging capacitor of

V(1 − e−t/RC). Similarly for a discharging capacitor with V0 = V, then the

supply voltage is Vs = 0 with the usual formula for a discharging capacitor

of Ve−t/RC.

Figure 17-10. Variable duty cycle with astable mode

Chapter 17 Signal generation with 555 timer iC

483

When a diode, with forward voltage Vd, is included in series with the

charging resistor R1 and the capacitor charges from 1
3

VCC to 2
3

 VCC, the

charging time is R1C1 × ln 1
3

+
-

é

ë
ê

ù

û
ú

VCC
VCC Vd

 for a supply voltage VS = VCC - Vd,

V0 = 1
3

VCC, and Vt = 2
3

 VCC. Likewise when a diode is included in series

with the discharging resistor R2 and the capacitor discharges from 2
3

 VCC

to 1
3

VCC, the discharging time is R2C1 × ln 1
3

+
-

é

ë
ê

ù

û
ú

VCC
VCC Vd

 for a supply

voltage VS = Vd, V0 = 2
3

 VCC, and Vt = 1
3

 VCC. Note than when the diode

forward voltage, Vd, is set to zero in the formulae, the charging and

discharging times are ln(2) × R1C1 and ln(2) × R2C1, as before.

 50% duty cycle
If the capacitor charges and discharges through the same resistor, then

the duty cycle is close to 50%, irrespective of the value of the resistor or

capacitor. The resistor is connected between the Output pin and the Trigger

and Threshold pins (see Figure 17-11 with connections in Table 17- 7).

Chapter 17 Signal generation with 555 timer iC

484

Table 17-7. 555 astable mode with full duty cycle range

Component Connect to Then to

555 gnD (pin 1) gnD

555 trigger (pin 2) 555 threshold (pin 6)

555 output (pin 3) Signal

555 output (pin 3) 1 kΩ resistor 555 threshold (pin 6)

555 reset (pin 4) VCC

555 Control (pin 5) 10 nF capacitor positive gnD

555 VCC (pin 8) VCC

10 μF capacitor positive 555 trigger (pin 2)

10 μF capacitor negative 555 trigger (pin 1)

(continued)

Figure 17-11. 555 astable mode with 50% duty cycle

Chapter 17 Signal generation with 555 timer iC

485

The capacitor charges through resistor R1, and the voltage on the

Threshold pin increases. When the voltage on the capacitor and the

Threshold pin is greater than 2
3

 VCC, the Flip-Flop is reset, the Output

pin changes from HIGH to LOW. The capacitor now discharges through

resistor R1 and the Output pin. When the voltage on the discharging

capacitor and the Trigger pin is less than
1

3

 VCC, the Flip-Flop is set,

the Output pin changes from LOW to HIGH. The capacitor now charges

through the resistor R1, and the cycle repeats.

The length of the square wave is ln(2) × 2R1C1 seconds. For example,

with resistor and capacitor values of 986 Ω and 110 μF, the square wave

frequency of 6.55 Hz was similar to the expected frequency of 6.65 Hz (see

Figure 17-12).

Component Connect to Then to

npn BJt collector 220 Ω resistor leD short leg

npn BJt base 10 kΩ resistor 555 output (pin 3)

npn BJt emitter gnD

leD long leg VCC

Table 17-7. (continued)

Figure 17-12. Square wave with 50% duty cycle

Chapter 17 Signal generation with 555 timer iC

486

When a load is applied to the Output pin, even just an LED, then the

square wave HIGH pulse length increases, the duty cycle increases, and

the frequency decreases. If a load is to be controlled, then the base of a

transistor is connected to the Output pin, with the load powered through

the transistor (see Figure 17-13 with connections in Table 17-7). A BC548

or 2N2222 transistor is suitable with a 10 kΩ resistor between the Output

and transistor base pins, to limit the current on the transistor base pin.

The square wave frequency is controlled interactively by connecting

a potentiometer in series with resistor R1. Retaining the 1 kΩ resistor

maintains a time lag for the discharging capacitor when the potentiometer

is turned to zero resistance.

 PWM mode
Pulse width modulation (PWM) of the square wave is interactively controlled

by replacing resistor R1 in Figure 17-13 with a potentiometer of resistance PΩ

and two diodes, such as the IN4001 (see Figure 17-14 with connections in

Table 17-8). The capacitor charges and discharges through the resistances on

Figure 17-13. 555 astable mode with 50% duty cycle and load

Chapter 17 Signal generation with 555 timer iC

487

each side of the potentiometer, β × PΩ and (1 – β) × PΩ, so the sum of the

charging and discharging times is constant. Inclusion of the diodes increases

the square wave length from ln(2) × 2R1C1 seconds to ln 1
3

+
-

é

ë
ê

ù

û
ú

VCC
VCC Vd

 × PC1

seconds, as described in the “Variable duty cycle” section of the chapter. For

example, a 10 kΩ potentiometer and a 100 μF capacitor result in a square wave

frequency of 1.06 Hz with a duty cycle ranging from 10% to 90%.

To control a load with PWM, the Output pin is connected to the base

of a transistor, with the load then powered through the transistor, such as

a 2N2222 (see Figure 17-14). For example, a servo motor is controlled with

the 555 timer IC by connecting the Output pin directly to the servo motor

signal pin. A servo motor rotates to angles 0° and 180° with a square wave

of 50 Hz and pulse widths of 0.5 ms and 2.5 ms. A square wave of 50.6 Hz

is produced by a 555 timer IC in astable mode with a 10 kΩ potentiometer

and a 2.1 μF capacitor (C1).

Figure 17-14. 555 astable mode with PWM

Chapter 17 Signal generation with 555 timer iC

488

 Function generator
A square wave describes a non-sinusoidal, periodic oscillation, with

instantaneous changes from a minimum to a maximum value, which

has applications in switching and signal processing. In contrast, a sine

wave describes a smooth, periodic oscillation, which has applications

in describing mechanical, electrical, and sound patterns. For example,

a sound is described as a combination of sine waves with different

frequencies and amplitudes. While the 555 timer IC produces square

waves, there are several applications that require generation of a sine wave.

Table 17-8. 555 astable mode with PWM

Component Connect to Then to

555 gnD (pin 1) gnD

555 trigger (pin 2) 555 threshold (pin 6)

555 output (pin 3) potentiometer center pin

555 reset (pin 4) VCC

555 Control (pin 5) 10 nF capacitor positive gnD

555 threshold (pin 6) Diode (D1) cathode (negative) potentiometer

555 threshold (pin 6) Diode (D2) anode (positive) potentiometer

555 VCC (pin 8) VCC

transistor collector 220 Ω resistor leD short leg

transistor base 10 kΩ resistor 555 output (pin 3)

transistor emitter gnD

leD long leg VCC

0.1 μF capacitor positive 555 trigger (pin 2)

0.1 μF capacitor negative 555 trigger (pin 1)

Chapter 17 Signal generation with 555 timer iC

489

A square wave with frequency f is represented as a Fourier series of

sine waves over time t as

x t ft ft ft() = () + ´() + ´() +¼ì

í
î

ü
ý
þ

4
2

1

3
3 2

1

5
5 2

p
p p psin sin sin

with the Fourier series consisting of odd-integer harmonics. Figure 17- 15

illustrates a sine wave with a frequency of 2 Hz and a Fourier series

approximation of a square wave by summing the first ten odd-integer

harmonics.

The base sine wave of a square wave is obtained by filtering the higher

harmonics with a low-pass filter. A low-pass filter allows low-frequency

signals to pass through the filter, while a high-pass filter attenuates low-

frequency signals. Using the layout of a voltage divider, a resistor-capacitor

(RC) combination forms an RC low-pass filter, with the capacitor passing

high frequencies to GND and the lower frequencies available at VOUT (see

Figure 17-16). The cutoff frequency of a low-pass filter is (2πRC)−1Hz.

Figure 17-15. Sine wave and odd-integer harmonics

Chapter 17 Signal generation with 555 timer iC

490

The resistor value of an RC low-pass filter is selected, based on the

load of the low-pass filter, and then the capacitor value is determined. For

example, a square wave with frequency of 153 Hz and 50% duty cycle is

generated by the 555 timer IC with a 4.7 kΩ resistor and a 1 μF capacitor.

To obtain the base sine wave with an RC low-pass filter, the resistor

value for the RC low-pass filter is chosen as 1 kΩ; and to obtain a cutoff

frequency, fcut, of 153 Hz, the required capacitor value is 1.04 μF, equal

to (2πRfcut)−1F. With a 1 kΩ resistor and a 1 μF capacitor, the actual cutoff

frequency of the RC low-pass filter is 159 Hz. An RC low-pass filter is

shown in Figure 17-17 with connections in Table 17-9.

Figure 17-17. 555 timer IC and RC low-pass filters

Figure 17-16. Voltage divider and resistor-capacitor low-pass
filter

Chapter 17 Signal generation with 555 timer iC

491

The output signal from the RC low-pass filter is the same form as for

a charging and discharging capacitor (see Figure 17-18, top graph). If

the output from the RC low-pass filter is the input to a second low-pass

filter with the same resistor and capacitor values of 1 kΩ and 1 μF, then

the output signal of the second low-pass filter is a triangular wave (see

Figure 17-18, middle graph). Adding a third low-pass filter converts the

triangular wave to a sine wave with same frequency as the square wave

(see Figure 17-18, bottom graph). The 555 timer IC and the three RC low-

pass filters form a function generator to produce square waves, triangular

waves, and sine waves.

Table 17-9. 555 timer IC and RC low-pass filters

Component Connect to Then to

555 gnD (pin 1) gnD

555 trigger (pin 2) 555 threshold (pin 6)

555 output (pin 3) 4.7 kΩ resistor 555 threshold (pin 6)

555 reset (pin 4) VCC

555 Control (pin 5) 10 nF capacitor positive gnD

555 VCC (pin 8) VCC

1 kΩ resistor (r2) 555 output (pin 3) exponential signal

1 kΩ resistors (r3 and r4) 1 kΩ resistor (r2 and r3) Sawtooth and sine signal

3×1 μF capacitor positive 1 kΩ resistors

3×1 μF capacitor negative gnD

1 μF capacitor positive 555 trigger (pin 2)

1 μF capacitor negative 555 trigger (pin 1)

Chapter 17 Signal generation with 555 timer iC

492

In Figure 17-18, the output signals from the three RC low-pass filters

are shown relative to the square wave signal generated by the same 555

timer IC. The three waves have the required waveform, but the signal

amplitudes decline with each RC filter, which is, to an extent, expected. An

RC low-pass filter has a cutoff frequency of (2πRC)−1Hz, and the capacitor

has a reactance of Xc equal to (2πCf)−1Ω, which is the capacitor opposition

to a change in voltage for a signal with frequency f. If a sine wave with

amplitude V volts is input to an RC low-pass filter, then the output wave

amplitude is reduced to V X R XC C´ +/
2 2 volts. When the capacitor value

is equal to (2πRfcut)−1F, then the capacitor reactance equals the resistor

Figure 17-18. Output waveforms from RC low-pass filters

Chapter 17 Signal generation with 555 timer iC

493

value, R, and the equation for the output wave amplitude simplifies to

V / 2 . The amplitude of sine wave signals at the output of the first,

second, and third RC low-pass filters is V / 2 , V/2, and V / 2 2 volts,

respectively. The amplitudes of signals from the three RC low-pass filters,

given the initial square wave signal, also decline in a systematic manner.

 Square wave to sine wave
An inductor-capacitor (LC) filter is an alternative to a series of RC low-pass

filters to convert a square wave to a sine wave. The LC filter and LC circuit

is described in Chapter 18 (Measuring electricity). Using the layout of a

voltage divider, the LC circuit is also a low-pass filter as the inductor blocks

high frequencies and the capacitor blocks low frequencies, resulting in low

frequencies at VOUT (see Figure 17-19).

The LC circuit resonates at a frequency of 2
1

p LC()- Hz. If the 555

timer IC generates a 50% duty cycle square wave at the resonance frequency

of the LC circuit, then the output of the LC circuit is a sine wave (see

Figure 17-21). For example, an LC circuit with a 470 μH inductor and 1 μF

capacitor has a resonant frequency of 7.3 kHz, and a 555 timer IC with a 1

kΩ resistor and a 0.1 μF capacitor generates a 50% duty cycle square wave

with frequency of 7.2 kHz. The standard 555 timer IC, such as the NE555,

is used to generate the square wave for the LC circuit. Voltage spikes that

occur when changing Output pin states with the standard 555 timer IC are

eliminated by fitting a 0.1 μF capacitor across the VCC and GND pins of the

555 timer IC (see Figure 17- 20 with connections in Table 17-10).

Figure 17-19. Voltage divider and inductor-capacitor low-pass filter

Chapter 17 Signal generation with 555 timer iC

494

Figure 17-20. 555 and inductor-capacitor low-pass filter

Table 17-10. 555 and inductor-capacitor low-pass filter

Component Connect to Then to

555 gnD (pin 1) gnD

555 trigger (pin 2) 555 threshold (pin 6)

555 output (pin 3) 1 kΩ resistor 555 threshold (pin 6)

555 reset (pin 4) VCC

555 Control (pin 5) 10 nF capacitor positive gnD

555 VCC (pin 8) VCC

inductor 555 output (pin 3)

inductor Sine signal 1 μF capacitor positive

1 μF capacitor negative gnD

0.1 μF capacitor (C4) positive VCC

0.1 μF capacitor (C1) positive 555 trigger (pin 2)

0.1 μF capacitors negative gnD

Chapter 17 Signal generation with 555 timer iC

495

In practice, the square wave duty cycle and frequency generated by

a standard 555 timer IC powered at 6 V with a 1 kΩ resistor and a 0.1 μF

capacitor were 66.7% and 5.6 kHz. The resultant sine wave produced by the

LC circuit had a frequency of 5.0 kHz (see Figure 17-21).

 Bipolar junction transistor as a switch
In the “50% duty cycle” and “PWM mode” sections of the

chapter, an NPN (negative-positive-negative) bipolar

junction transistor (BJT) functioned as a switch to turn

on or off the power to a load, which was an LED. When

the 555 timer IC Output pin state was HIGH, the BJT

turned on power to the load; and conversely, no power was available to

the load when the Output pin state was LOW. A detailed description of an

NPN BJT is out of the scope of the chapter, but practical aspects of using

an NPN BJT as a switch are described.

Figure 17-21. Square wave from 555 timer IC and sine wave from LC
filter

Chapter 17 Signal generation with 555 timer iC

496

The BJT has three pins: emitter (E), base (B), and collector (C). The

pin layout of a BJT is specific to the model, with differences in layout even

between manufactures of the same model. The BJT pin layout is available

from the manufacturer's datasheet or is determined with a multimeter

by connecting the positive multimeter lead to one pin and measuring the

voltage on the other BJT pins. When a voltage is detected on both of the

other pins, relative to the pin connected to the positive multimeter lead,

then the multimeter positive lead is connected to the NPN BJT base pin. To

differentiate between the emitter and collector pins, the NPN BJT emitter

pin has a marginally higher voltage than the NPN BJT collector pin.

When an NPN BJT is functioning as an amplifier and a small current is

applied to the base pin, then a larger current flows between the collector and

emitter pins. The ratio of the current between the BJT collector and emitter

pins relative to the current on the BJT base is termed the DC (direct current)

gain and denoted β, but also termed hFE on datasheets. A change in the

base current, Δ, is reflected by a change in the collector to emitter current

of β × Δ. The BJT gain is determined from the manufacturer's datasheet or

by measuring the current at the BJT base and collector pins. For example,

with the 2N2222 BJT in Figure 17-22 (left side), the currents at the base and

collector pins were 255 μA and 25.4 mA, respectively, giving a BJT gain of 100.

Figure 17-22. Bipolar junction transistor as a LOW-side or HIGH-
side switch

Chapter 17 Signal generation with 555 timer iC

497

In contrast, when the BJT is functioning as a switch, the base current

is sufficiently high that an increase in the base current does not result in

an increase in the collector to emitter current, as the BJT is saturated. In

saturation mode, the collector to emitter current is either switched on or off.

For an NPN BJT to function as a switch, the BJT emitter is connected

to GND, and the NPN BJT is termed a LOW-side switch (see Figure 17-22,

left side). To illustrate an NPN BJT functioning as a switch to turn on or

off power to a load, the base pin of a 2N2222 BJT in a TO-92 package is

connected to an ESP8266 development board pin D4, and the collector

pin is connected to the LED resistor and the emitter pin to GND. When the

ESP8266 D4 pin state is HIGH, the current on the BJT base enables current

to flow between the BJT collector and emitter. Current now flows from the

external 5 V power source, through the LED and resistor, to the BJT and to

GND; and the LED turns on.

For the example layout in Figure 17-22 (left side), when the ESP8266

D4 pin state is HIGH, the BJT base current is 260 μA = (3.3 -0.7) V/10 kΩ

as an NPN BJT has a voltage drop of 0.7 V between the base and emitter.

Given the BJT gain of 100, the collector to emitter current is 26 mA = 100

× 260 μA, which is the current through the LED. The red LED used in this

chapter has a forward voltage drop of 2.12 V at 26 mA, and the voltage

across the LED resistor of 2.6 V = 26 mA × 100 Ω results in a voltage of 280

mV across the BJT collector and emitter pins.

In the Figure 17-22 (right side) schematic, the NPN BJT is connected

to VCC and is termed a HIGH-side switch. The HIGH-side switch is not

recommended as the current through the LED is constrained, even though

the components are identical in the two schematics of Figure 17-22. In

practice, the BJT base current of 34 μA results in a voltage across the base

resistor of 338 mV = 34 μA × 10 kΩ. The voltage drops of the LED and base-

emitter of 1.92 V and 0.7 V, respectively, leave a voltage across the LED

resistor of 342 mV, which equates to a current of 3.4 mA – one-eigth of the

current through the LED with the BJT as a LOW-side switch. Note the lower

forward voltage of the LED at a lower current. The essential difference

Chapter 17 Signal generation with 555 timer iC

498

between the NPN BJT functioning as a LOW-side and a HIGH-side switch

is the lower voltage (280 mV relative to 2.74 V) across the BJT collector and

emitter pins with the LOW-side switch.

When the BJT functions as an amplifier, the BJT base resistor value

is determined from the BJT gain, β, and the required current through the

load, IL. The base current is IL/β, and after subtracting the base-emitter

voltage drop of 0.7 V from the base voltage, VB, the base resistor value is

(VB − 0.7) × β/IL. For example, the base resistor, RBASE,, for the BJT LOW-

side switch to supply the LED with 20 mA from the 5 V power source

in Figure 17-22 (left side) is equal to (3.3-0.7)V × 100/0.02 A = 13 kΩ.

However, when the BJT functions as a switch, a lower value base resistor,

such as RBASE,/2 or 6.8 kΩ, ensures that the BJT is in saturation mode.

 MP3 player and PIR sensor application
This chapter demonstrated signal generation by the 555 timer IC with

applications in switch control, in timing, in sound generation, in appliance

control with PWM, and as a function generator of square, triangular, and

sine waves. The 555 timer IC is also used to transform the signal from one

device into the required format for another device. In Chapter 5 (MP3

player), when a passive infrared (PIR) sensor detects movement, the PIR

sensor sends a HIGH signal for 5 s that is read by a microcontroller, which

transfers a command sequence to the MP3 player to play a soundtrack. If a

short LOW signal is received on the MP3 player IO2 pin, then the next track

is played. However, if a long LOW signal is received on the MP3 player pin,

then the volume is increased. To replace the microcontroller, the HIGH PIR

signal lasting 5 s must be converted to a LOW signal lasting only 0.5 s.

The 555 timer IC in monostable mode, with a specific resistor-

capacitor combination, generates a 0.5 s HIGH signal, when the Trigger pin

is connected to GND. Therefore, a process is required to invert the PIR long

Chapter 17 Signal generation with 555 timer iC

499

HIGH signal and trigger the 555 timer IC in monostable mode to generate a

short HIGH signal that is inverted and sent to the MP3 player IO2 pin.

A signal is inverted with a bipolar junction transistor (BJT), such as the

BC548 or 2N2222 transistor. To illustrate signal inversion, two LEDs are

turned on and off alternately. With the Arduino IDE example Blink sketch,

the red LED reflects the ESP8266 microcontroller signal, and the blue LED

indicates the inverted microcontroller signal (see Figure 17-23). Both the

red LED and the BJT base pin are connected to the ESP8266 development

board signal pin. When the signal pin state is LOW, there is no current on

the BJT base nor across the BJT collector and emitter pins, so the current

flows through the blue LED. Conversely, when the signal pin state is HIGH,

the resultant current on the BJT base enables current to flow between

the BJT collector and emitter. The blue LED resistance is greater than the

collector-emitter resistance, so the BJT effectively shorts out the LED and

the blue LED is turned off.

Figure 17-23. Signal inversion with bipolar junction transistor

The schematic for the PIR sensor to trigger the MP3 player to play the

next soundtrack is shown in Figure 17-24, with connections in Table 17- 11.

When movement is detected by the PIR senor, the PIR sensor outputs a

HIGH signal for five seconds. An NPN BJT could invert the long HIGH

PIR signal, with the subsequent LOW signal triggering the 555 timer IC

in monostable mode to generate a short HIGH signal, to be inverted by a

Chapter 17 Signal generation with 555 timer iC

500

second NPN BJT, to produce a short LOW signal as required by the MP3

player to play the next soundtrack.

If the inverted long HIGH PIR signal is sent to the Trigger pin of the 555

timer IC in monostable mode, then the long LOW signal would repeatedly

trigger the 555 timer IC during the five-second duration of the LOW signal.

A resistor (R2)–capacitor (C3) combination is incorporated to generate a

short LOW signal for the 555 timer IC Trigger pin. The resistor R4 reduces

the voltage due to the HIGH PIR signal to a small current on the base pin

of the NPN BJT, which enables current to flow from the BJT collector pin

to the emitter pin. The capacitor C3 and the 555 timer IC Trigger pin are

connected to GND, as the capacitor partially discharges; then capacitor

C3 recharges through resistor R2, and the 555 timer IC Trigger pin is again

connected to VCC.

The 555 timer IC Trigger pin is LOW for 41 ms, which is sufficient

to trigger the 555 timer IC in monostable mode, which sets the Output

pin HIGH for ln(3) × R1C1, equal to 0.55 second with a 5.1 kΩ and 10 μF

resistor-capacitor combination. A second NPN BJT inverts the 555 timer IC

signal, which is sent to the MP3 player IO2 pin to play the next soundtrack.

Figure 17-24. PIR sensor and MP3 player

Chapter 17 Signal generation with 555 timer iC

501

The signal sequence is shown in Figure 17-25 starting with the PIR

sensor output of a long HIGH signal, which is inverted by an NPN BJT

causing capacitor C3 to partially discharge and then recharge, which

triggers the 555 timer IC to generate a short HIGH signal that is inverted by

the second NPN BJT to a short LOW signal for input to the MP3 player.

Table 17-11. PIR sensor and MP3 player

Component Connect to Then to

555 gnD (pin 1) gnD

555 trigger (pin 2) 10 kΩ resistor r2 10 μF capacitor C3

555 reset (pin 4) VCC

555 Control (pin 5) 10 nF capacitor C2 positive gnD

555 threshold (pin 6) 555 Discharge (pin 7)

555 Discharge (pin 7) 5.1 kΩ resistor r1 VCC

555 Discharge (pin 7) 10 μF capacitor C1 positive gnD

555 VCC (pin 8) VCC

transistor (from pir) collector 10 kΩ resistor r3 10 μF capacitor C3

negative

transistor (from pir) base 10 kΩ resistor r4 From pir sensor

transistor (to mp3) collector 10 kΩ resistor r5 to mp3 player

transistor base 10 kΩ resistor r6 555 output (pin 3)

transistor emitter gnD

Capacitor C1, C2 negative gnD

Chapter 17 Signal generation with 555 timer iC

502

 Summary
The functionality of the 555 timer IC is described with examples of the

555 timer IC in monostable, bistable, and astable modes. Examples

included monostable mode with an incident light used to trigger a time

delay, astable mode with an electronic piano, generation of a square wave

with fixed frequency and variable duty cycle to control a servo motor or a

square wave with fixed duty cycle and variable frequency. The 555 timer

IC and resistor-capacitor low-pass filters formed a function generator to

produce square waves, triangular waves, and sine waves. The 555 timer IC

and an inductor-capacitor filter converted a square wave to a sine wave.

Signal transformation by a 555 timer IC and transistors enabled movement

detected by a PIR sensor to trigger an MP3 player to play a soundtrack,

without requiring a microcontroller.

 Components List
• 555 timer IC: Standard NE555 and CMOS TLC555

• Resistor: 2× 220 Ω, 3× 1 kΩ, 2 kΩ, 4.7 kΩ, 2× 10 kΩ, 20 kΩ

• Capacitor: 10 nF, 0.1 μF, 4× 1 μF, 47 μF, 100 μF

• Inductor: 470 μH

Figure 17-25. PIR sensor and MP3 player signal sequence

Chapter 17 Signal generation with 555 timer iC

503

• Switch tactile: 2×

• LED: 2×

• Diode: 2× IN4001

• Potentiometer: 10 kΩ

• NPN transistor: BC548 or 2N2222

Chapter 17 Signal generation with 555 timer iC

505© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_18

CHAPTER 18

Measuring electricity
Voltage, current, resistance, and capacitance are measured with a

multimeter. Understanding the required circuitry and programming an

ESP8266 or ESP32 microcontroller to measure voltage, current, resistance,

capacitance, and inductance is a valuable exercise when studying

electronics. A voltage divider and an analog to digital converter (ADC)

are essential to measuring voltage, current, resistance, capacitance, and

inductance, which are described prior to the measurement projects. For

each project, connection of all components to a common ground defines

the voltage reference point. If a project gives unusual results, then check

that a common ground has been established.

 Voltage divider
A voltage divider reduces an input voltage to a lower output voltage.

A voltage divider consists of an input voltage, VIN, and two resistors,

R1 and R2, with the output voltage measured at the junction of the two

resistors (see Figure 18-1). The output voltage, VOUT, of the voltage divider

is VIN ×
R

R R
2

1 2+
æ
è
ç

ö
ø
÷ . For example, if the two resistors have equal value, then

the output voltage is half of the input voltage. Conversely, given the input

voltage, the required output voltage, and the value of resistor R1, the value

of resistor R1 is R2 ×
V

V V
OUT

IN OUT-
æ

è
ç

ö

ø
÷ . For example, the maximum possible

https://doi.org/10.1007/978-1-4842-6336-5_18#DOI

506

input voltage of 12 V is too high to read on the analog pin of an ESP8266

microcontroller, and a voltage divider is required to reduce the maximum

voltage to 3.2 V. Given the value of 100 kΩ for resistor R1, the value of

resistor R2 is 36.4 kΩ.

A voltage divider consisting of the resistor pair 1 kΩ and 2 kΩ reduces

the input voltage by a third, as does the resistor pair 10 kΩ and 20 kΩ. The

difference between the two resistor pairs is that lower power is used and

less heat is produced by the 10 kΩ and 20 kΩ resistor pair. Power is the

product of voltage and current, equal to
V

R R
IN
2

1 2+
. For an input voltage

of 5 V, the power used by voltage dividers with the 1 kΩ and 2 kΩ resistor

pair and with the 10 kΩ and 20 kΩ resistor pair is 8.33 mW and 0.83 mW,

respectively. Therefore, resistors of high resistance are used in a voltage

divider to reduce power requirements and heat dissipation by the resistors.

The ESP8266 development board contains an internal voltage

divider, consisting of 100 kΩ and 220 kΩ resistors (see Figure 18-2),

which increases the maximum voltage on the analog input pin, from the

reference voltage of 1 volt to 3.2 V. The ESP8266 microcontroller 10-bit

analog to digital converter (ADC) functionality converts a voltage, between

0 and 3.2 V, on the analog input pin A0 to a digital value between 0 and

1023, equal to 210 – 1. Given a voltage, VIN, on the ESP8266 development

board analog input pin, the corresponding ADC value is

V k
kIN ´ +()

´
100

220 100
1024

W
W

.

Figure 18-1. Voltage divider

Chapter 18 Measuring eleCtriCity

507

ADC values for input voltages between 3.2 V and 3.3 V are constrained

to 1023. A 10 kΩ resistor connected between the input voltage and the

ESP8266 development board analog input pin increases the limit of 3.2 V

on the analog input pin to 3.3 V.

The 12-bit analog to digital converter (ADC) functionality of the ESP32

microcontroller converts a voltage, between 0 and 3.3 V, on an analog

input pin to a digital value between 0 and 4095, equal to 212 – 1.

 Analog to digital converter
Several projects in this chapter use the Successive Approximation

Register analog to digital converter (SAR ADC) module of the ESP8266

or ESP32 microcontroller. The 10-bit (ESP8266) or 12-bit (ESP32) ADC

converts a voltage, VIN, on an analog input pin to a digital value between

0 and 1023 = 210 – 1 or 4095 = 212 – 1, relative to a reference voltage, VREF.

Changing the ESP32 microcontroller ADC resolution is described in

Chapter 21 (Microcontrollers). For each of 10 (ESP8266) or 12 (ESP32)

successive comparisons, VIN is compared to a set voltage, VSET(N), defined

by the microcontroller conversion logic module and generated by the

microcontroller digital to analog converter (DAC). Comparison of

VIN with the first set voltage, equal to VSET(1) = VREF/2, determines the

most significant bit (MSB) of the output ADC digital value. Successive

comparisons with set voltages VSET(N) equal to VSET(N-1) ± VREF/2N, with VSET(N)

higher than VSET(N-1) if VIN is greater than VSET(N-1), provide the subsequent

bits of the output ADC digital value.

Figure 18-2. Analog to digital converter

Chapter 18 Measuring eleCtriCity

508

The ADC process is illustrated with an ESP8266 microcontroller. For

an input voltage of 1.28 V that is reduced to 0.40 V by the internal voltage

divider of the ESP8266 microcontroller, the first set voltage, VSET(1), is

VREF/2 = 0.5 V. As VIN of 0.4 V is lower than VSET(1), then the MSB of the ADC

digital value is set to zero. In the second comparison, VSET(2) = VSET(1) – 1

V/22 = 0.25 V, and as VIN is greater than VSET(2), then the second bit of the

ADC digital value is set to one and the third set voltage is VSET(3) = VSET(2) + 1

V/23 = 0.375 V. The ten successive comparisons result in the 10-bit binary

value B0110011001 corresponding to the ADC digital output, which has a

decimal value of 409. To confirm the ADC digital output, an input voltage

of 1.28 V on the ESP8266 development board A0 pin is reduced to 0.4 V, by

the internal voltage divider, and scaled by 1024, which results in the integer

part of (1024 × 0.4 V/1 V) = 409.

Converting an analog voltage to a digital value takes the ESP8266

microcontroller 135 μs, by which time VIN may have changed. The ADC

includes a Sample and Hold module that includes a MOSFET switch,

which is opened after the ADC process has started, and a capacitor, on

which VIN is held constant (see Figure 18-3). For a 10-bit ADC, there are

1024 voltage classes with levels 0–1023; and given the interval voltage

divider and a reference voltage of 1 V, an ADC voltage class spans 3.125 mV.

ADC values of 0, 1, and 1023 correspond to VIN values of from 0 V to less

than 3.125 mV, from 3.125 mV to less than 6.25 mV, and from 3.197 V to less

than 3.2 V, respectively. In the preceding example, the input voltage of 1.28

V is contained in the 410th voltage class of 1.278 V to less than 1.281 V.

Chapter 18 Measuring eleCtriCity

509

 Voltage meter
A battery voltage is measured with the ESP8266 or

ESP32 microcontroller ADC. Although the

ESP8266 microcontroller internal voltage divider

of 100 kΩ and 220 kΩ resistors increases the

maximum input voltage to 3.2 V, an additional

voltage divider further reduces the battery voltage on the analog input pin.

Voltage divider resistors of 22 kΩ and 10 kΩ enable measurement of a

maximum battery voltage of 10.24 V, equal to 3 2
10

22 10
. /V k

k k+
æ
è
ç

ö
ø
÷. The

measured battery voltage is the 10-bit ADC output value multiplied by

10.24 V/210, which is displayed on a 128 × 32–pixel OLED screen (see

Figure 18-4 with connections in Table 18-1). Instead of the external voltage

divider, resistors summing to 702 kΩ and connected in series with the

internal voltage divider, also increase the maximum voltage on the

ESP8266 microcontroller analog input pin to 10.24 V.

Figure 18-3. Analog to digital converter

Chapter 18 Measuring eleCtriCity

510

Figure 18-4. Battery voltage measurement with LOLIN (WeMos) D1
mini

Table 18-1. Battery voltage measurement with the

ESP8266 development board

Component Connect to ESP8266 And to

Battery positive 22 kΩ resistor a0

Battery negative 10 kΩ resistor a0

Battery negative gnD OleD gnD

OleD VCC 3V3

OleD sDa D2

OleD sCl D1

Chapter 18 Measuring eleCtriCity

511

In Listing 18-1, the battery voltage is displayed on an OLED display

with a battery graphic illustrating the battery voltage. The battery frame

is drawn as a solid rectangle of 45 × 12 pixels, starting at position (0, 20)

on the OLED screen with the instruction oled.fillRect(0, 20, 45,

12, WHITE). The empty battery section is an overlaid black rectangle. The

length of the empty battery section is the complement of the measured

battery voltage divided by the maximum battery voltage and scaled by 41,

the length of the battery frame of 45 pixels minus twice the width of the

battery frame of 2 pixels. A battery cap is added as another filled rectangle.

The Adafruit SSD1306 library references the Adafruit GFX and Wire

libraries, so the #include <Adafruit_GFX.h> and #include <Wire.h>

instructions are not required.

Listing 18-1 is for an ESP8266 microcontroller. The only changes to

the sketch, when using an ESP32 microcontroller, are definition of the

analog input pin, as the ESP32 development board has six analog input

pins (see Chapter 21 (Microcontrollers)), inclusion of the instruction

pinMode(ADCpin, INPUT), and replacing the divisor 1024 by 4096, in the

instruction

voltage = analogRead(ADCpin)*maxVolt/ 1024.0;

// calculate battery voltage

Listing 18-1. Battery voltage measurement

#include <Adafruit_SSD1306.h> // Adafruit SSD1306 library

int width = 128; // OLED screen size

int height = 32; // associate oled with SSD1306

Adafruit_SSD1306 oled(width, height, &Wire, -1);

int ADCpin = A0; // define analog input pin

float maxVolt = 10.24; // maximum battery voltage

float voltage;

int battery;

Chapter 18 Measuring eleCtriCity

512

void setup()

{ // OLED display and I2C address

 oled.begin(SSD1306_SWITCHCAPVCC, 0x3C);

 oled.clearDisplay(); // clear OLED display

 oled.setTextColor(WHITE); // set font color

 oled.setTextSize(2); // set font size (1, 2, 3 or 4)

 oled.display(); // start display instructions

}

void loop()

{ // calculate battery voltage

 voltage = analogRead(ADCpin)*max Volt/1024.0;

 oled.clearDisplay();

 oled.setCursor(0,0); // position cursor at (0, 0)

 oled.print(voltage);

 oled.print("V"); // display battery voltage

 oled.fillRect(0, 20, 45, 12, WHI TE); // battery frame 2 pixels width

 battery = 41*voltage/maxVolt; // full battery section

 battery = constrain(battery, 0, 41);

 oled.fillRect(2+battery, 22, 41-bat tery, 8, BLACK);

// empty battery section

 oled.fillRect(45, 23, 3, 6, WHITE); // battery top

 oled.display();

 delay(2000); // delay 2s between readings

}

Chapter 18 Measuring eleCtriCity

513

In practice, voltages measured by the ESP8266 and ESP32

microcontrollers used in this chapter overestimated and underestimated

supplied voltages, in the range of 1–3 V, by 3% and -16%, respectively. For

comparison, the estimated voltage was not biased when measured with

the ATmega328P microcontroller of an Arduino Uno. A biased estimate

of N% is corrected by adjusting the measured voltage with the instruction

voltage = voltage /(1+N/100), with N negative when the measured

voltage is an underestimate.

 Voltage meter with a load

A battery is measured with and

without a load using a bipolar

junction transistor (BJT) 2N2222 to

turn on or off the battery current

to a load, consisting of a low-value

10 Ω resistor (see Figure 18-5). The method is adapted

from the battery tester of Andreas Spiess. With the

BJT off, the battery voltage is measured on the BJT

collector pin, collPin. The BJT base pin, basePin, is

set HIGH to turn on the BJT, with the battery now

providing power to the load. The voltage across the load and the BJT is again

measured on the BJT collector pin. Schematics for the ESP8266 and ESP32

development boards are shown in Figures 18-6 and 18-7, with connections

in Table 18-2.

Chapter 18 Measuring eleCtriCity

514

Figure 18-5. Battery voltage measurement with and without a load

Figure 18-6. Battery voltage tester with LOLIN (WeMos) D1 mini

Chapter 18 Measuring eleCtriCity

515

Figure 18-7. Battery voltage tester with the ESP32 DEVKIT DOIT
development board

Table 18-2. Battery voltage tester with ESP8266 and ESP32

development boards

Component ESP8266 And to ESP32 And to

BJt emitter 10 Ω resistor gnD 10 Ω resistor gnD

BJt base 10 kΩ resistor D6 10 kΩ resistor gpiO 25

BJt collector a0 Battery positive gpiO 35 Battery positive

OleD VCC 3V3 3V3

OleD gnD gnD gnD

OleD sDa D2 gpiO 21

OleD sCl D1 gpiO 22

Battery negative gnD gnD

Chapter 18 Measuring eleCtriCity

516

The sketch in Listing 18-2 measures the battery voltage at two-second

intervals and displays the battery voltage, with and without the load, on

the OLED screen. Repeat measurements of the battery voltage are made

in the readings function, with the average ADC reading scaled by the

reference voltage.

Listing 18-2 is for an ESP8266 microcontroller. When using an ESP32

microcontroller, the GPIO pin numbers for the BJT base and collector pins

are changed (see Table 18-2), the value of maxVolt is increased to 3.3 V,

and the instruction pinMode(collPin, INPUT) is included in the setup

function. The divisors of 1024 in the loop function are changed to 4096, as

the ESP32 microcontroller has a 12-bit ADC compared to the 10-bit ADC

of the ESP8266 microcontroller. Subsequent schematics and sketches

are demonstrated with a LOLIN (WeMos) D1 mini development board

and sketches for an ESP8266 microcontroller. Connections to an ESP32

development board and required changes to the ESP32 microcontroller

sketch are similar to those just described.

Listing 18-2. Battery voltage with and without load measurement

#include <Adafruit_SSD1306.h> // SSD1306 library for OLED

int width = 128; // OLED screen size

int height = 32; // associate oled with SSD1306

Adafruit_SSD1306 oled(width, height, &Wire, -1);

int basePin = D6; // BJT base pin

int collPin = A0; // BJT collector pin

unsigned long sum;

int reps = 10; // number of repeat measurements

float maxVolt = 3.2; // 3.2V maximum voltage

float Vbatt, Vload;

Chapter 18 Measuring eleCtriCity

517

void setup()

{

 pinMode(basePin, OUTPUT); // define basePin as OUTPUT

 oled.begin(SSD1306_SWITCHCAPVCC , 0x3C); // OLED I2C address

 oled.clearDisplay(); // clear OLED display

 oled.setTextColor(WHITE); // OLED font color

 oled.setTextSize(1); // font size 1 character 6×8 pixels

 oled.display(); // start display instructions

}

void loop()

{

 readings(LOW); // read BJT collector pin, BJT off

 Vbatt = maxVolt*sum/(reps*1024.0); // battery voltage

 if(Vbatt > 0.1)

 {

 readings(HIGH); // read BJT collector pin, BJT on

 Vload = maxVolt*sum/(reps*102 4.0); // battery voltage with load

 screen(); // call screen function

 }

 else

 {

 oled.clearDisplay(); // clear OLED when

 oled.display(); // no battery voltage

 }

 delay(2000); // delay between measurements

}

Chapter 18 Measuring eleCtriCity

518

void readings(int pinState) // function to measure BJT pin

{

 digitalWrite(basePin, pinState); // BJT base pin turned on or off

 sum = 0;

 for (int i=0; i<reps; i++) // repeat voltage measurements

 { // sum of voltage measurements

 sum = sum + analogRead(collPi n);

 delay(5);

 }

 digitalWrite(basePin, LOW); // turn off BJT base pin

}

void screen() // function for OLED display

{

 oled.clearDisplay(); // clear OLED display

 oled.setCursor(0,0); // move cursor to position (0,0)

 oled.print("battery ");oled.print(Vbatt,3);oled.println("V");

 oled.setCursor(0, 12);

 oled.print("+load ");oled.print(Vload,3);oled.print("V");

 oled.setCursor(0, 24);

 oled.print("perform ");oled.print(100.0*Vload/Vbatt,0);

oled.print("%");

 oled.display();

}

Chapter 18 Measuring eleCtriCity

519

 Resistance meter (ohmmeter)
 The value of an unknown

resistor is determined with a

voltage divider. Given an input

voltage, VIN, the corresponding

ADC output value of the voltage

divider is
V
V

R
R R

IN

REF

´
+

´
2

1 2
1024 , where VREF is the ADC reference voltage for a

microcontroller with a 10-bit ADC, as 1024 = 210. If the input and reference

voltages are the same, then rearranging the formula gives R2 =
R ADC

ADC
1

1024

´
-

Ω.

Rather than using a known resistor with one value in the voltage

divider, resistors with several values provide a range of known resistances

to reference the unknown resistor. Specific values of the known resistors

are arbitrary, but they could span a range such as 1 kΩ, 4.7 kΩ, and 10 kΩ,

which enables reliable measurement of resistance values between 1 kΩ

and 10 kΩ. The layout is shown in Figure 18-8 with connections given in

Table 18-3.

Chapter 18 Measuring eleCtriCity

520

In Listing 18-3, prior to obtaining the ADC readings, the known resistor

pins are set to INPUT, so that no current flows, which is equivalent to

connecting a 100 MΩ resistor to each pin. Each known resistor pin is

sequentially set to OUTPUT, with a HIGH signal, which sets the voltage on

the known resistor pin to the voltage divider input voltage. The unknown

Figure 18-8. Resistor meter (ohmmeter) with LOLIN (WeMos) D1
mini

Table 18-3. Resistor meter (ohmmeter)

with the ESP8266 development board

Component Connect to ESP8266 And to

Known resistors D5, D6, D7 a0

unknown resistor a0 gnD

OleD VCC 3V3

OleD gnD gnD

OleD sDa D2

OleD sCl D1

Chapter 18 Measuring eleCtriCity

521

resistor value is determined, with a constraint on the ADC reading to

avoid extreme values, and the known resistor pin is again set to INPUT. In

Figure 18-8, the known resistor with the lowest value is connected to the

lowest of the ESP8266 development board pin numbers: D5, D6, and D7.

Listing 18-3. Resistance meter (ohmmeter)

#include <Adafruit_SSD1306.h> // Adafruit SSD1306 library

int width = 128; // OLED screen size

int height = 32; // associate oled with SSD1306

Adafruit_SSD1306 oled(width, height, &Wire, -1);

int resistPin = A0; // analog input pin

int pin[] = {D5, D6, D7}; // pins for known resistor

float known[] = {1000.0, 4700.0, 10000.0}; // known resistor values

float resist, reading;

void setup()

{ // OLED display and I2C address

 oled.begin(SSD1306_SWITCHCA PVCC, 0 x3C);

 oled.clearDisplay(); // clear OLED display

 oled.setTextColor(WHITE); // set font color

 oled.setTextSize(1); // set font size (1, 2, 3 or 4)

 oled.display(); // update display instructions

 for (int i=0; i<3; i++) pinMode(pin[i], INPUT);

} // set known resistor pins to INPUT

void loop()

{

 oled.clearDisplay(); // clear OLED display

 oled.setCursor(0,0);

Chapter 18 Measuring eleCtriCity

522

 oled.print("known ADC predict"); // header on OLED screen

 for (int i=0; i<3; i++) // for each known resistor

 {

 pinMode(pin[i], OUTPUT); // set known resistor pin

 digitalWrite(pin[i], HIGH); // to OUTPUT and to HIGH

 reading = analogRead(resistPin); // voltage divider reading

 if(reading < 10 || reading > 1013) reading = 0;

// constrain ADC reading

 resist = known[i]*reading/(1024.0-r eading);

// calculate resistance

 pinMode(pin[i], INPUT); // reset known resistor pin to INPUT

 oled.setCursor(1, (i+1)*8); // OLED column 1, row 8, 16, 24

 oled.print(known[i],0); // display known resistor

 oled.setCursor(50, (i+1)*8);

 oled.print(reading,0); // display ADC reading

 oled.setCursor(90, (i+1)*8);

 oled.print(resist,0); // display calculated resistance

 oled.display();

 }

 delay(5000);

}

 Capacitance meter
The capacitance of a capacitor is

measured from the charging time of

the capacitor. When a resistor, R, is

connected in series with a capacitor,

C, the capacitor will charge through

the resistor until the voltage across the capacitor equals the reference

voltage, VREF (see Figure 18-9). The voltage across the capacitor after t

Chapter 18 Measuring eleCtriCity

523

seconds of charging is VREF(1 − e−t/RC). After RC seconds of charging, the

voltage across the capacitor is 0.632 VREF, as (1 − e−1) = 0.632. The value of

RC is determined when the analog to digital converter (ADC) reading for

the voltage across the capacitor exceeds 647.3 = 0.632×1024, as the ADC

equates 0 V to 0 and VREF to 1023. The parameter RC is also written as τ, the

Greek letter tau.

Electrolytic capacitors are polarized, and the anode must be at a higher

voltage than the cathode (negative leg). The cathode has a minus sign

marking and a colored stripe on the side of the capacitor. The long leg

of an electrolytic capacitor is the anode or positive leg (see Figure 18-10

and Table 18-4). If the capacitor charging time is too short, then the 10 kΩ

charging resistor is replaced with a higher value; and, conversely, the 10 kΩ

resistor is replaced with a lower value if the capacitor charging time is too

long. Higher values of the charging resistor extend the capacitor charging

time for more precise capacitance estimates. In contrast, a low value of the

discharge resistor results in a rapid capacitor discharge.

Figure 18-9. Resistor-capacitor combination

Chapter 18 Measuring eleCtriCity

524

In Listing 18-4, the capacitor charge pin is set HIGH, and the timing

of the charging capacitor starts. When the ADC value for the voltage

across the capacitor reaches 648, the timing stops, and the capacitance

is calculated from the charging time and the resistor value. Both the

capacitor charge and discharge pins are then set LOW to allow the

capacitor to discharge, after which the capacitor discharge pin is set to

INPUT, so that no current flows through the discharge pin, and the cycle

Figure 18-10. Capacitance meter with LOLIN (WeMos) D1 mini

Table 18-4. Capacitance meter with the ESP8266 development board

Component Connect to ESP8266 And to

Charge resistor D7 a0

Discharge resistor D6 a0

unknown capacitor positive a0

unknown capacitor negative gnD OleD gnD

OleD VCC 3V3

OleD sDa D2

OleD sCl D1

Chapter 18 Measuring eleCtriCity

525

repeats. Setting a pin to INPUT is equivalent to connecting a 100 MΩ

resistor in series with the pin. A lower limit to the estimated capacitance

value is set at 10 nF. The sketch in Listing 18-4 was developed from the

sketch at www.arduino.cc/en/Tutorial/CapacitanceMeter.

Listing 18-4. Capacitance meter

#include <Adafruit_SSD1306.h> // Adafruit SSD1306 library

int width = 128; // OLED screen size

int height = 32; // associate oled with SSD1306

Adafruit_SSD1306 oled(width, height, &Wire, -1);

int capPin = A0; // capacitor positive pin

int chargePin = D7; // pin with 10kΩ charge resistor

int dischargePin = D6; // 220Ω discharge resistor pin

float resistor = 10000.0; // 10kΩ charge resistor

unsigned long startTime;

float mF, uF, nF; // uF for microF (Greek letter μ)

void setup()

{ // OLED display and I2C address

 oled.begin(SSD1306_SWITCH CAPVCC, 0x3C);

 oled.clearDisplay(); // clear OLED display

 oled.setTextColor(WHITE); // set font color

 oled.setTextSize(2); // set font size (1, 2, 3 or 4)

 oled.display(); // update display instructions

 pinMode(chargePin, OUTPUT); // set charge pin

 digitalWrite(chargePin, LOW); // as OUTPUT and to 0V

}

void loop()

{

 oled.clearDisplay();

 oled.setCursor(0,0);

Chapter 18 Measuring eleCtriCity

http://www.arduino.cc/en/Tutorial/CapacitanceMeter

526

 digitalWrite(chargePin, HIGH); // charge pin to reference voltage

 startTime = millis(); // start timing charging capacitor

 while(analogRead(capPin) < 648) {} // do nothing while ADC < 648

 mF = (millis() - startTime) / resistor;

// calculate capacitance = time/R

 uF = 1000.0 * mF; // change millifarad to microfarad

 if (uF > 1)

 {

 if (uF < 10) oled.print(uF, 1); // display capacitance with 1DP

 else oled.print(uF, 0); // or 0DP depending on value

 oled.print(" uF");

 }

 else

 {

 nF = 1000.0 * uF; // convert to nanofarad

 if (nF > 10) // only display if value > 10nF

 {

 oled.print(nF, 0); // display capacitance

 oled.print(" nF");

 }

 }

 digitalWrite(chargePin, LOW); // set charge pin to 0V

 pinMode(dischargePin, OUTPUT); // set discharge pin

 digitalWrite(dischargePin, LOW); // to OUTPUT and 0V

 while(analogRead(capPin) > 0) {} // do nothing while capacitor

// discharges

 pinMode(dischargePin, INPUT); // set discharge pin to INPUT

 oled.display();

 delay(2000); // to ensure no current flows

}

Chapter 18 Measuring eleCtriCity

527

More significant figures for capacitors with low values are obtained

by replacing the millis function with the micros function to measure the

time interval in microseconds, rather than milliseconds, and dividing

(micros()-startTime) by 1000. The 32-bit timer counts to 232 – 1 and then

resets, so the millis and micros functions reset after 49.7 days and 71.58

minutes, respectively.

 Current meter (ammeter)
 Current (I) in a circuit is measured

from the voltage (V) across a known

resistor (R) that is specifically

included in the circuit, as I = V/R.

The resistor must have low

resistance, so that the circuit voltage

is not significantly decreased by the

resistor. A 0.01 Ω current shunt is a

resistor defined by the maximum allowable current and the voltage drop

at that current, such as 100 mV at 10 A. The power through a low-value

resistor, V2/R, is high, but a current shunt resistor is designed to distribute

the generated heat.

The expected voltage across a 0.01 Ω shunt resistor is 10 mV per

amp of current, so measuring current with a shunt resistor alone has low

resolution (e.g., as in Figure 18-11). With the ESP8266 microcontroller 10-

bit analog to digital converter (ADC), a current increase of 1 amp increases

the ADC value by 3.2 = 10 mV × 210/VREF, given the ESP8266 microcontroller

reference voltage of 3.2 V. Conversely, a unit increase in the ADC value

corresponds to an increased voltage of 3.125 mV or 3.2 V/210 across the

0.01 Ω shunt resistor and to an increased current of 312 mA.

Chapter 18 Measuring eleCtriCity

528

An operational amplifier, such as an LM358, or an instrumental

amplifier, such as an AD623, amplifies the voltage from the shunt resistor

to increase resolution of the current measurement. The amplification

gain of the LM358 operational amplifier, 1+
R
R
feedback

GND

, is determined by

the feedback and ground (GND) resistors (see Figure 18-12). The non-

inverting operational amplifier connected to the two resistors, RGND and

Rfeedback, forms a voltage divider. Voltages on the operational amplifier

output and the inverting input terminals are equivalent to the voltage

divider input and output voltages. The output voltage, VOUT, of a voltage

divider is VIN ×
R

R R
2

1 2+
æ
è
ç

ö
ø
÷ . Incorporating the resistor values in the formula

gives V V R
R Rop amp IN op ampOUT

GND

feedback GND

= ´
+

æ

è
çç

ö

ø
÷÷ and the operational amplifier

gain of
V
V

R
R

op ampOUT

op amp IN

feedback

GND

= +1 . For example, an amplification gain of 46

Figure 18-11. Shunt resistor and LOLIN (WeMos) D1 mini

Chapter 18 Measuring eleCtriCity

529

is obtained with a 100 kΩ and 2.2 kΩ resistor pair. A 0.1 uF capacitor is

connected to the operational amplifier output to reduce noise.

The operational amplifier gain in voltage increases the resolution of

the current meter. For example, given a current of 1 A, the 100 kΩ and 2.2

kΩ resistor pair increases the LM358 operational amplifier output voltage

from 10 mV to 465 mV, producing an ADC value of 149 = gain × 10 mV

× 1024/VREF that is substantially higher than the ADC value of 3 without

amplification. Likewise, a unit change in the ADC value corresponds to

a shunt voltage change of 0.067 mV = VREF/(1024 × gain), mapping to a

current differential of only 6.7 mA.

In Figure 18-13, an LM358 operational amplifier is added to the

schematic in Figure 18-11 to amplify the voltage from the shunt resistor

to both increase the ADC value and the resolution of the current meter.

Connections are given in Table 18-5.

Figure 18-12. Non-inverting operational amplifier

Chapter 18 Measuring eleCtriCity

530

If the load is a DC motor, then the motor, which is partially an inductor,

will generate a voltage to maintain current when power to the motor is

switched off. Fitting a diode across the motor prevents a voltage spike

and dissipates energy through the motor when power is switched off. A

Schottky diode, which is a fast-switching diode with a low forward voltage

drop, is recommended.

Figure 18-13. Operational amplifier, shunt resistor, and LOLIN (WeMos)
D1 mini

Chapter 18 Measuring eleCtriCity

531

Table 18-5. Operational amplifier, shunt resistor, and ESP8266

development board

Component Connect to And to

lM358 output (pin 1) esp8266 a0

lM358 output (pin 1) Capacitor esp8266 gnD

lM358 inverting input (pin 2) Feedback resistor lM358 output (pin 1)

lM358 inverting input (pin 2) gnD resistor esp8266 gnD

lM358 non-inverting input (pin 3) load negative

lM358 gnD (pin 4) esp8266 gnD

lM358 VCC (pin 8) esp8266 3V3

load positive schottky diode

cathode (stripe)

Battery positive

load negative schottky diode anode shunt resistor 0.01 Ω

esp8266 gnD shunt resistor 0.01 Ω Battery negative

OleD VCC esp8266 3V3

OleD gnD esp8266 gnD

OleD sDa esp8266 D2

OleD sCl esp8266 D1

The sketch (see Listing 18-5) converts the ADC reading to the

operational amplifier voltage output, which is converted to a voltage

across the shunt, according to the specification of the current shunt and

the operational amplifier gain, and then to the current through the load.

Repeated ADC readings are averaged to reduce noise.

Chapter 18 Measuring eleCtriCity

532

Listing 18-5. Ammeter with shunt resistor

#include <Adafruit_SSD1306.h> // Adafruit SSD1306 library

int width = 128; // OLED screen size

int height = 32; // associate oled with SSD1306

Adafruit_SSD1306 oled(width, height, &Wire, -1);

int ADCpin = A0;

unsigned long ADC;

int Rfeedback = 100000; // feedback resistor value

int RGND = 2200; // resistor GND value

float current, opAmpmV, shuntmV, gain;

void setup()

{

 Serial.begin(115200);

 oled.begin(SSD1306_SWITCH CAPVCC, 0x3C);

// OLED display and I2C address

 oled.clearDisplay(); // clear OLED display

 oled.setTextColor(WHITE); // set font color

 oled.setTextSize(1); // set font size (1, 2, 3 or 4)

 oled.display(); // update display instructions

 gain = 1.0 + Rfeedback/RGND; // calculate op amp gain

}

void loop()

{

 ADC = 0;

 for (int i=0; i<100; i++) // repeated analog readings

 {

 ADC = ADC + analogRead(ADCpin);

 delay(10);

 }

 ADC = ADC/100; // average of analog readings

 opAmpmV = ADC*3200.0/1024; // op amp output voltage

Chapter 18 Measuring eleCtriCity

533

 shuntmV = opAmpmV / gain; // voltage on shunt

 current = 100.0 * shuntmV; // shunt mV to current in mA

 oled.clearDisplay();

 oled.setCursor(0,0); // display results on OLED

 oled.print("current");oled.print(current,0);

 oled.println(" mA");

 oled.print("shunt mV ");oled.println(shuntmV,0);

 oled.print("opamp mV ");oled.println(opAmpmV,0);

 oled.print("ADC ");oled.println(ADC);

 oled.display();

 delay(1000);

}

Figure 18-14 illustrates current measurement with

a multimeter and by an ammeter with an LED

display. In both cases, the meter is inserted in

series with the load, although the circuit layout with

the shunt resistor and the operational amplifier in

Figure 18-13 is not as obvious. The ammeter with an LED display has a

0.05 Ω (R050) shunt resistor and is externally powered.

Figure 18-14. Current meter (ammeter)

Chapter 18 Measuring eleCtriCity

534

 Current sensor
Current is measured by the MAX471 module, with an

upper limit of 3 A. The load positive is connected to

the MAX471 RS- pin and the load negative to GND,

with the load power supply positive connected to the

MAX471 RS+ pin (see Figure 18-15 with connections

in Table 18-6). The default resolution of the MAX471

module is 3.125 mA, equal to 3.2 A/210, given the

10-bit ADC of the ESP8266 microcontroller. The voltage on the MAX471 OUT

pin is ideally equivalent to 1 volt per amp of current. The MAX471 SIGN pin

indicates a discharging or charging battery, with an analog reading greater

than 50 or near zero, respectively.

Figure 18-15. Current sensor MAX471 with LOLIN (WeMos) D1 mini

Chapter 18 Measuring eleCtriCity

535

In the sketch (see Listing 18-6), the current for a load is measured with

the MAX471 module, with measurements displayed every five seconds.

Listing 18-6. Current sensor MAX471 and ESP8266 development

board

#include <Adafruit_SSD1306.h> // Adafruit SSD1306 library

int width = 128; // OLED screen size

int height = 32; // associate oled with SSD1306

Adafruit_SSD1306 oled(width, height, &Wire, -1);

int currentPin = A0; // analog input pin

float current;

Table 18-6. Current sensor MAX471 and

ESP8266 development board

Component Connect to And to

MaX471 rs+ Battery positive

MaX471 gnD Battery negative esp8266 gnD

MaX471 Out esp8266 a0

MaX471 sign

MaX471 gnD load negative

MaX471 rs- load positive

OleD VCC esp8266 3V3

OleD gnD esp8266 gnD

OleD sDa esp8266 D2

OleD sCl esp8266 D1

Chapter 18 Measuring eleCtriCity

536

void setup()

{

 oled.begin(SSD1306_SWITCHCAPVCC, 0x3C); // OLED I2C address

 oled.clearDisplay(); // clear OLED display

 oled.setTextColor(WHITE); // set font color

 oled.setTextSize(3); // set font size (1, 2, 3 or 4)

 oled.display(); // update display instructions

}

void loop()

{

 current = analogRead(currentPin); // analog MAX471 reading

 current = 1000*current*3.2/1024; // convert to current

 oled.clearDisplay();

 oled.setCursor(0,0); // position cursor

 oled.print(current,0); oled.print(" mA"); // display current

 oled.display();

 delay(5000);

}

 Current and voltage sensor
Both current and voltage are

measured with the INA219 module,

which has at least two formats, from

which the corresponding power and

energy over time are derived. The

Adafruit INA219 library instructions

getShuntVoltage_mV() and getBusVoltage_V() provide the voltage across

the INA219 0.1 Ω (R100) shunt resistor and across the load pins, equal to

the supply voltage minus the shunt voltage. The power measurement is

Chapter 18 Measuring eleCtriCity

537

obtained with the instruction getPower_mW() or calculated as the product

of voltage and current (see Figure 18-16 with connections in Table 18-7).

Figure 18-16. Current sensor (INA219) and LOLIN (WeMos) D1
mini

The INA219 module measures the voltage across a 0.1 Ω shunt resistor

with a maximum voltage input of 320 mV. The maximum current that the

INA219 module measures is 3.2 A, equal to 320 mV/0.1 Ω. The default

resolution of the INA219 module is 0.8 mA, equal to 3.2 A/212 = 3.2 A/4096,

given the INA219 12-bit analog to digital converter (ADC). The resolution is

increased to 0.1 mA, equal to 400 mA/212, by reducing the INA219 amplifier

gain by a factor of eight, resulting in a maximum voltage input of 40 mV and

maximum current of 400 mA. Instructions for the default and high resolution

settings are setCalibration_32V_2A() and setCalibration_16V_400mA(),

respectively. An intermediate resolution option is available with the

setCalibration_32V_1A() instruction.

The INA219 module uses I2C (Inter-Integrated Circuit) for

communication with the ESP8266 or ESP32 microcontroller, and the

Adafruit INA219 library references the Wire library, so the #include

<Wire.h> instruction is not required. The default I2C address of the

INA219 module is 0x40, which is changed to 0x41, 0x44, or 0x45 by

Chapter 18 Measuring eleCtriCity

538

bridging the module A0 jumper, the A1 jumper, or both the A0 and A1

jumpers, respectively. For example, the I2C address is defined as 0x41,

with the instruction Adafruit_INA219 ina219(0x41). Note that if the

default I2C address is used, then the instruction Adafruit_INA219 ina219

is sufficient.

If the load is a DC motor, then the motor, which is partially an inductor,

will generate voltage to maintain current when power to the motor is

switched off. Fitting a diode across the motor will prevent a voltage spike

and dissipate energy through the motor when power is switched off. A

Schottky diode, which is a fast-switching diode, is recommended.

Table 18-7. Current sensor (INA219) with the ESP8266 development

board

Component Connect to ESP8266 And to

ina219 VCC 3V3

ina219 gnD gnD Battery negative

ina219 sCl D1

ina219 sDa D2

ina219 Vin- load positive

ina219 Vin+ Battery positive

schottky diode cathode (stripe) load positive

schottky diode anode load negative ina219 gnD

OleD VCC 3V3

OleD gnD gnD

OleD sDa D2

OleD sCl D1

Chapter 18 Measuring eleCtriCity

539

Listing 18-7 measures the current, power, and cumulative energy for

a load with the INA219 module, with measurements displayed every five

seconds. The second OLED screen displays the supply and load voltages.

The high precision option is selected with the maximum current of 400 mA.

Listing 18-7. Current sensor (INA219)

#include <Adafruit_INA219.h> // define Adafruit_INA219 lib

Adafruit_INA219 ina219; // default I2C, associate ina219 with lib

#include <Adafruit_SSD1306.h> // Adafruit SSD1306 library

int width = 128; // OLED screen size

int height = 32; // associate oled with SSD1306

Adafruit_SSD1306 oled(width, height, &Wire, -1);

float shunt, load, supply, current, power;

float energy = 0;

void setup()

{

 ina219.begin();

// ina219.setCalibration_32V_2A(); // default precision option

// ina219.setCalibration_32V_1A(); // intermediate option

 ina219.setCalibration_16V_400mA(); // high precision option

 oled.begin(SSD1306_SWITCHCAPVCC, 0x3 C); // OLED I2C address

 oled.clearDisplay(); // clear OLED display

 oled.setTextColor(WHITE); // set font color

 oled.setTextSize(1); // set font size (1, 2, 3 or 4)

 oled.display(); // update display instructions

}

Chapter 18 Measuring eleCtriCity

540

void loop()

{

 shunt = ina219.getShuntVoltage_mV(); // shunt voltage in mV

 load = ina219.getBusVoltage_V(); // load voltage in V

 supply = load + shunt / 1000.0; // supply voltage in V

 current = ina219.getCurrent_mA(); // current in mA

 power = ina219.getPower_mW(); // power in mW

 energy = energy + power / 3600.0; // energy in mAh

 oled.clearDisplay();

 oled.setCursor(0,0); // display results

 oled.print("current ");oled.print(current,0);

oled.println(" mA");

 oled.print("shunt ");oled.print(shunt,0); oled.println(" mV");

 oled.print("power ");oled.print(power,0); oled.println(" mW");

 oled.print("energy ");oled.print(energy,0); oled.print(" mAh");

 oled.display();

 delay(5000);

 oled.clearDisplay();

 oled.setCursor(0,0); // display supply and load V

 oled.print("supply ");oled.print(supply); oled.println(" V");

 oled.print("load ");oled.print(load); oled.println(" V");

 oled.display();

 delay(5000);

}

 Solar panel and battery meter
A current and voltage measurement application is monitoring the net battery

charge or discharge current of a battery providing power to a load and

charging through a solar panel. The solar panel and battery output currents

and the battery voltage are displayed graphically on an ST7735 TFT LCD

screen with the minimum, present, and maximum battery output currents,

Chapter 18 Measuring eleCtriCity

541

the present battery voltage, and the cumulative battery energy output (see

Figure 18-17). The graph displays the battery current output with positive

values for a discharging battery and negative values for a charging battery.

Figure 18-17. Solar panel current with battery current and voltage
display

Time is on the X-axis with the solar panel and battery current output

on the left Y-axis and battery voltage on the right Y-axis. Figure 18-17

(left graph) demonstrates the combination of a solar panel and battery

providing power for an LED. As the solar panel current (white line on

the left axis) increased from 5 mA with increasing sunshine, the battery

current output (green line on the left axis) decreased, and the battery

voltage increased to 4.08 V (value below and yellow line on the right

axis) with the present solar panel current output of 23 mA (sol 23). The

minimum, present, and maximum battery current outputs are displayed

below the graph. Over the time period, the battery energy output was 7

mAh (see Figure 18-18 for screen layout).

When the LED was removed (Figure 18-17, right graph), the solar panel

current output (white line on the left axis) was 20 mA, the battery current

output of -5 mA indicated the battery was charging (red line on the left

axis), and the total energy provided to the battery was 3 mAh. The battery

voltage was maintained at 4.4 V (yellow line on the right axis).

Chapter 18 Measuring eleCtriCity

542

Figure 18-18. Explanation of screen display

The solar panel charges a 3.7 V lithium battery through the TP4056

battery protection module (see Figure 18-19). The TP4056 battery

protection module terminal pair IN- and OUT- are internally connected,

as are the terminal pair OUT+ and B(battery)+. In contrast, the terminal

pair B- and OUT- are internally connected only when there is a voltage

on the B+ terminal. Further details of the TP4056 battery protection are

given in Chapter 6 (Bluetooth speaker). An MT3608 DC to DC step-up

boost converter power supply module increases the 3.7 V lithium battery

output voltage to 5 V, as required by the load. The MT3608 boost converter

terminals VIN- and VOUT- are internally connected. Solar panel and

battery output currents are measured with INA219 modules. The graph

scale for current output is changed from 0–60 mA to 0–300 mA by an

interrupt service routine (ISR) that defines the graph maximum value,

with the ISR triggered by a switch. The maximum voltage on the ESP8266

microcontroller analog input pin is 3.2 V; and a voltage divider consisting

of two 10 kΩ resistors reduces, by half, the battery voltage on the analog

input pin. Component connections are given in Table 18-8.

Chapter 18 Measuring eleCtriCity

543

Figure 18-19. Solar panel and battery current meter

Table 18-8. Solar panel and battery current meter

Component Connect to And to

solar ina219 Vin+ solar panel positive

solar ina219 Vin- tp4056 (in) +

Battery ina219 Vin+ Battery positive

Battery ina219 Vin- tp4056 Out+/B+

Boost converter Vin+ tp4056 Out+/B+

Boost converter VOut+ load positive

esp8266 D2 (sDa) solar ina219 sDa Battery ina219 sDa

esp8266 D1 (sCl) solar ina219 sCl Battery ina219 sCl

esp8266 a0 10 kΩ resistor voltage divider Battery positive

st7735 tFt lCD gnD esp8266 gnD

(continued)

Chapter 18 Measuring eleCtriCity

544

The first section of the sketch, in Listing 18-8, defines libraries and

variables, with the setup function initializing the INA219 modules, the

ST7735 TFT LCD screen, and the interrupt. The graph function creates

the graph display, with data points plotted and graph updates drawn by

the screenVal and detail functions, respectively. The screenVal function

displays minimum, present, and maximum battery current outputs, below

the graph. The detail function calculates cumulative energy output by

the battery that is displayed along with the solar panel current output. In

both the screenVal and detail functions, black rectangles over-print the

previous text and values, as the displayed text and values may require

fewer characters. The instruction setTextColor(color, BLACK) over-

prints existing text only. HEX codes for colors are defined in the Adafruit_

ST77xx.h file in the Adafruit_ST7735_and_ST7789 library.

Component Connect to And to

st7735 tFt lCD Cs esp8266 D8 (spi Cs)

st7735 tFt lCD reset esp8266 D4

st7735 tFt lCD a0 or DC esp8266 D3

st7735 tFt lCD sDa esp8266 D7 (spi MOsi)

st7735 tFt lCD sCK esp8266 D5 (spi sCl)

st7735 tFt lCD leD esp8266 3V3

switch esp8266 D6 esp8266 gnD

esp8266 5V solar ina219 VCC Battery ina219 VCC

esp8266 gnD solar ina219 gnD Battery ina219 gnD

esp8266 gnD solar panel negative tp4056 (in) -

esp8266 gnD Boost converter VOut- load negative

esp8266 gnD Battery negative

Table 18-8. (continued)

Chapter 18 Measuring eleCtriCity

545

In the loop function, the battery and solar panel current outputs and

the battery voltage are measured and plotted, with the screenVal function

called to display values. To differentiate between a discharging and a

charging battery, the color of a displayed value and the graph data points

change from green to red, with a negative (charging) graph point plotted

by changing the sign of the charging battery current. The baseline of the

graph is on row 110 of the ST7735 TFT LCD screen, and with a graph height

of 100, a point corresponding to the battery current is plotted on row 110 –

100 × (current/maximum value). For example, if the maximum value of

the current axis is 60 mA, then a battery output current of 18 mA is plotted

on row 80 = 110 – 100 × 18/60. The graph function displays the graph

boundary using the library fillRect and drawRect functions, calculates and

displays the Y-axis labels for the battery current and battery voltage, and

prints five dotted lines across the graph to aid interpretation of the graph.

The interrupt service routine (ISR), scale, changes the maximum value of

the battery current axis on the graph.

With two INA219 modules, two I2C addresses are required to

differentiate between the modules. The default I2C address of 0x40 is used

by the solar panel INA219 module, and the battery INA219 module has an

I2C address of 0x41, with the instruction Adafruit_INA219 inaBatt(0x41)

with the module A0 jumper bridged. The ST7735 TFT LCD screen

communicates with Serial Peripheral Interface (SPI), although the ST7735

TFT LCD screen MOSI pin is labeled SDA. The Adafruit ST7735 library

references the Adafruit_GFX library, so the #include <Adafruit_GFX.

h> instruction is not required. The ST7735 TFT LCD screen orientation is

set to either portrait or landscape by the setRotation(N) instruction with

value of 0 or 1, respectively, or with 2 or 3 to rotate the image by 180° for

portrait or landscape, respectively.

Chapter 18 Measuring eleCtriCity

546

Listing 18-8. Solar panel and battery meter

#include <Adafruit_INA219.h> // define Adafruit INA219 library

Adafruit_INA219 inaSolar; // associate inaSolar and inaBatt with lib

Adafruit_INA219 inaBatt(0x41); // I2C address 0x41, 0x40 is default

#include <Adafruit_ST7735.h> // include the ST7735 library

int TFT_CS = D8; // ST7735 screen chip select pin

int DCpin = D3; // ST7725 screen DC pin

int RSTpin = D4; // ST7735 screen reset pin

 // associate tft with Adafruit_ST7735 lib

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, DCpin, RSTpin);

int batVPin = A0; // battery voltage reading pin

int scalePin = D6; // scale pin for interrupt

unsigned int BLACK = 0x0000;

unsigned int YELLOW = 0xFFE0;

unsigned int GREEN = 0x07E0; // HEX codes for colors

unsigned int RED = 0xF800;

unsigned int WHITE = 0xFFFF;

int maxRead = 99; // maximum readings per screen

int n = 0; // reading number

int maxVal = 0; // initial maximum and minimum

int minVal = 1000; // for battery output

int initialY = 60; // initial maximum of Y axis

int alterY = 300; // alternative maximum of Y axis

volatile int maxY; // actual maximum Y axis

float maxV = 4.80; // maximum and minimum value

float minV = 2.40; // for battery voltage

float labelV = (maxV-minV)/6.0; // 6 labels on battery voltage axis

int delayTime = 5; // delay (s) between readings

float energy = 0; // cumulative energy output

float batt, solar; // battery and solar current

Chapter 18 Measuring eleCtriCity

547

float battV; // battery voltage

float battS, solarS, battVS; // scaled values for graph

int labelY, newmaxY, batDirect;

void setup()

{

 inaSolar.begin(); // initialise INA219 modules

 inaBatt.begin();

 inaSolar.setCalibration_16V_400 mA(); // 16V, 400mA range

 inaBatt.setCalibration_16V_400mA();

 tft.initR(INITR_BLACKTAB); // initialise ST7735 screen

 tft.fillScreen(BLACK); // clear screen

 tft.setRotation(3); // orientate ST7735 screen

 tft.drawRect(0,0,160,128,WHITE); // draw white frame line

 tft.drawRect(1,1,158,126,WHITE); // and second frame line

 maxY = initialY; // set graph axes

 newmaxY = initialY;

 graph(); // call graph function

 pinMode(scalePin, INPUT_PULLUP); // set pin state HIGH

 attachInterrupt(digitalPinToInterrupt(scalePin), scale,

FALLING);

}

void loop()

{

 if(newmaxY != maxY) // change graph Y axis

 {

 newmaxY = maxY;

 graph(); // call graph function

 n = 0; // set number of readings to zero

 }

Chapter 18 Measuring eleCtriCity

548

 n++; // increment reading number

 if(n > maxRead)

 { // new screen if n > maximum

 graph();

 n = 0;

 }

 batt = inaBatt.getCurrent_mA(); // battery current output

 if(batt < minVal) minVal = batt; // update minimum and

 if(batt > maxVal) maxVal = batt; // maximum battery current

 screenVal(WHITE, minVal, 5, "min"); // display minimum and

 screenVal(WHITE, maxVal, 85, "max"); // maximum battery current

 solar = inaSolar.getCurrent_mA(); // solar panel current reading

 solarS = 110-100.0*solar/maxY; // scale solar panel reading

 tft.fillCircle(25+n, solarS, 1, W HITE);

// plot scaled solar panel reading

 if(batt < 0)

 { // when battery charging

 screenVal(RED, batt, 35, ""); // change line color to RED

 battS = 110+100.0*batt/maxY; // scale battery reading

 tft.fillCircle(25+n, battS, 1, RED);

 } // plot scaled battery reading

 else

 { // when battery discharging

 screenVal(GREEN, batt, 35, ""); // change line color to GREEN

 battS = 110-100.0*batt/maxY;

 tft.fillCircle(25+n, battS, 1, GREEN);

 } // double battery reading

 battV = 2.0*analogRead(batVPin); // due to voltage divider

 battV = 3.2 * battV /1024.0; // battery voltage

Chapter 18 Measuring eleCtriCity

549

 screenVal(YELLOW, battV*100, 105, "");

// change color to YELLOW

 battVS = 110-100.0*(battV-minV)/ (m axV-minV);

// scale battery voltage

 tft.fillCircle(25+n, battVS, 1, YE LLOW);

// plot scaled battery voltage

 detail(); // function for solar and energy

 delay(delayTime * 1000); // delay (s) between readings

}

void graph() // function to draw graph

{

 labelY = maxY/6; // 7 labels on each Y axis

 tft.fillRect(2,2,156,124,BLACK); // fill screen in BLACK

 tft.drawRect(25,10,100,100,GREEN); // graph rectangle in GREEN

 for (int i=0; i<7; i++) // label y axis

 {

 tft.setCursor(5,10+i*(100/6-1)); // position labels

 tft.setTextColor(WHITE, BLACK);

 tft.print(maxY-i*labelY); // left side Y axis value

 tft.setCursor(130,10+i*(100/6-1));

 tft.setTextColor(YELLOW, BLACK);

 tft.print(maxV-i*labelV,2); // right side Y axis value

 }

 for (int j=0; j<5; j++) // draw 5 dashed lines on graph

 for (int i=0; i<33; i++) tft.drawPixel(25+3*i, 28+j*100/6,

YELLOW);

 tft.setTextColor(WHITE, BLACK);

 tft.setCursor(30, 15); // headings for solar and energy

 tft.print("sol");

 tft.setCursor(75, 15);

 tft.print("mAh");

}

Chapter 18 Measuring eleCtriCity

550

void screenVal(unsigned int color, int val, int x, String text)

{ // function to display text and value below graph

 tft.setTextSize(1);

 tft.setTextColor(color, BLACK);

 tft.setCursor(x, 115); // row number 115

 tft.print(text);

 tft.setCursor(x + 25, 115); // position in row

 if(x == 5) tft.fillRect(30,115,20,8, BLACK);

// over- write previous value

 else if(x == 35) tft.fillRect(60,115,20,8,BLACK);

 else if(x == 85) tft.fillRect(110,115,20,8,BLACK);

 tft.setTextColor(color, BLACK);

 if(x != 105) tft.print(val); // print new value

 else tft.print(val/100.0,2); // 2DP for battery voltage

}

IRAM_ATTR void scale() // ISR to change Y axis scale

{

 if(newmaxY == alterY) maxY = initialY;

 else maxY = alterY;

}

void detail()

{ // battery energy output

 energy = energy + battV * delayTime * batt /3600.0;

// energy (mAh)

 tft.setTextColor(WHITE, BLACK);

 tft.fillRect(50,15,15,8,BLACK); // overlay if fewer digits

 tft.setCursor(50,15);

 tft.print(solar,0); // solar panel current output

Chapter 18 Measuring eleCtriCity

551

 tft.fillRect(100,15,20,8,BLACK);

 tft.setCursor(100,15);

 tft.print(energy,0); // battery current output

}

 Inductance meter
Resistor-capacitor (RC) filters block particular frequencies of a signal,

with low-pass and high-pass filters blocking high and low frequencies,

respectively. For a low-pass filter, the capacitor passes the high frequencies

to GND with the lower frequencies available at VOUT (see Figure 18- 20).

In the high-pass filter, low frequencies are blocked by the capacitor, with

the higher frequencies available at VOUT. The inductor-capacitor (LC)

filter is also a low-pass filter as the inductor blocks high frequencies

and the capacitor passes the high frequencies to GND resulting in low

frequencies at VOUT.

Figure 18-20. Filters and inductor-capacitor circuit

Inductors, denoted L in honor of Emil Lenz, are used in inductor-

capacitor (LC) circuits (see Figure 18-20) for either generating signals with

a specific frequency or filtering a signal to retain a particular frequency.

The capacitor stores energy in the electric field across its plates, while the

inductor stores energy as a magnetic field. When an inductor is connected

across a charged capacitor, the voltage across the capacitor generates a

current through the inductor and increases its magnetic field. When the

voltage across the capacitor drops to zero, the energy stored in the inductor

Chapter 18 Measuring eleCtriCity

552

magnetic field induces a voltage across the inductor, and the current

recharges the capacitor. The cycle of capacitor discharge to inductor

charge to inductor discharge to capacitor charge repeats at a frequency of

2
1

p LC()- Hz.

When a voltage burst is applied to the LC circuit, the circuit starts

to resonate at a specific frequency, but due to the components’ internal

resistance, the oscillation will dampen over time (see Figure 18-21).

When connected across the output of the LC circuit, a voltage comparator

generates a square wave with the same frequency as the LC circuit. The

value of an unknown inductor is determined from the square wave

frequency of the voltage comparator and the known capacitor value. In

practice, the square wave pulse width is measured; and as frequency

equals (2 × pulse width)-1Hz, then the inductance is derived directly from

pulse width = p LC . The measurement unit of inductance is henry, H, in

honor of Joseph Henry, who discovered inductance.

Figure 18-21. LC circuit oscillation

The voltage comparator output voltage is the supply voltage when the

voltage at the plus (+) input pin is greater than the voltage at the negative (–)

input pin. The LM393 voltage comparator generates a square wave with the

same frequency as the damped oscillation from the LC circuit. The LM393

comparator output pin is pulled up to a HIGH state by the 1 kΩ resistor

across the LM393 output and VCC pins. The schematic and connections are

shown in Figure 18-22 and Table 18-9, respectively.

Chapter 18 Measuring eleCtriCity

553

Table 18-9. Inductance meter and LM393 voltage comparator

Component Connect to And to

lM393 output (pin 1) esp8266 D3 resistor 1 kΩ

lM393 input (-) (pin 2) esp8266 gnD

lM393 input (+) (pin 3) inductor

lM393 input (+) (pin 3) Diode cathode (stripe) Capacitor (positive)

lM393 gnD (pin 4) esp8266 gnD

lM393 VCC (pin 8) esp8266 3V3 resistor 1 kΩ

esp8266 D0 resistor 150 Ω

Diode anode resistor 150 Ω

Figure 18-22. Inductance meter and LM393 voltage comparator

(continued)

Chapter 18 Measuring eleCtriCity

554

In the sketch in Listing 18-9, a voltage burst is applied to the LC circuit,

and the HIGH pulse width of the resulting square wave generated by the

LM393 voltage comparator is measured with the instruction pulse =

pulseIn(LM393pin, HIGH, timeout). If signal is HIGH, then the pulseIn

function waits until the signal is LOW, starts timing when the signal goes

HIGH, and stops timing when the signal goes LOW. If a HIGH pulse is not

detected before timeout microseconds, then a zero value is returned. The

square wave frequency is 106 × (2 × pulse width)-1 Hz, as the pulse width is

measured in microseconds, and the inductor value is
pulse width

capacitor

2

2p ´
. The

inductor meter is reasonably accurate for inductances of 50 μH and above.

For example, the estimated inductance for a 470 μH inductor with a 1 μF

electrolytic or ceramic capacitor was 462 μH or 415 μH, respectively. Pulse

length with a ceramic capacitor is generally 2–3 μs lower than with an

electrolytic capacitor (see Figure 18-23).

Component Connect to And to

esp8266 gnD inductor Capacitor (negative)

OleD VCC esp8266 3V3

OleD gnD esp8266 gnD

OleD sDa esp8266 D2

OleD sCl esp8266 D1

Table 18-9. (continued)

Chapter 18 Measuring eleCtriCity

555

A ceramic capacitor fitted across the inductor prolongs the inductor-

capacitor oscillation to a greater extent than an electrolytic capacitor

(see Figure 18-23). An electrolytic capacitor is less effective at higher

frequencies than a ceramic capacitor, due to the higher equivalent series

resistance (ESR) and inductance (ESL), resulting in longer charging and

discharging times. For example, the pulse length of a 1 μF capacitor and a

470 μH inductor pair is a constant 64 μs with a ceramic capacitor, but only

the first two pulses of 65 μs and 70 μs are detectable when an electrolytic

capacitor is used (see Figure 18-23). With an inductor of less than 50 μH,

no pulses are detectable when an electrolytic capacitor is used, given the

high oscillation frequency of 25 kHz.

Listing 18-9. Inductor meter

#include <Adafruit_SSD1306.h> // Adafruit SSD1306 library

int width = 128; // OLED screen size

int height = 32; // associate oled with SSD1306

Adafruit_SSD1306 oled(width, height, &Wire, -1);

int voltPin = D0; // voltage burst pin

int LM393pin = D3; // LM393 output pin

float capacitor = 1.0; // measured in μF

int timeout = 1000; // timeout limit in μs

Figure 18-23. Inductor-capacitor oscillation with ceramic or
electrolytic capacitor

Chapter 18 Measuring eleCtriCity

556

float pulse, pulse1, pulse2, frequency, inductance;

void setup()

{

 pinMode(voltPin, OUTPUT); // define voltPin as output

 oled.begin(SSD1306_SWITCHCAPVCC, 0x 3C); // OLED I2C address

 oled.clearDisplay(); // clear OLED display

 oled.setTextColor(WHITE); // set font color

 oled.setTextSize(1); // set font size (1, 2, 3 or 4)

 oled.display(); // update display instructions

}

void loop()

{

 digitalWrite(voltPin, HIGH); // apply 3.2V on voltPin

 delay(5); // time to charge the inductor

 digitalWrite(voltPin,LOW); // end of voltage burst

 pulse1 = pulseIn(LM393pin, HIGH, timeout);

// measure HIGH pulse duration

 pulse2 = pulseIn(LM393pin, HIGH, timeout);

 if(pulse2 > 0) pulse = (pulse1+p ulse2)/2.0;

// average pulse length

 else pulse = pulse1;

 if(pulse > 0)

 {

 frequency = 1E6/(2.0*pulse); // shorthand for 10 to the power 6

 inductance = pulse*pulse/(PI*P I*capacitor);

// calculate inductance

 oled.clearDisplay();

 oled.setCursor(0,0); // display results

 oled.print("inductance uH ");oled.println(inductance,0);

Chapter 18 Measuring eleCtriCity

557

 oled.print("frequency Hz ");oled.println(frequency,0);

 oled.print("high time us ");oled.print(pulse,0);

 oled.display();

 }

 delay(1000);

}

 Summary
Voltage across a load, resistance of a load, and current through a load

were measured using an ESP8366 or ESP32 microcontroller analog to

digital converter (ADC). Voltage, resistance, and current were determined

from the voltage across the load or the voltage across a shunt resistor to

derive current through the load. The charging time of a capacitor defined

its capacitance. An INA219 current and voltage measurement module

quantified the power and cumulative energy used by a load. The net

battery charge or discharge current of a battery providing power to a

load and charging through a solar panel was measured with two INA219

modules, with the information over time displayed on an ST7735 TFT

LCD screen. Inductance was measured by applying a voltage burst to an

inductor-capacitor circuit. The frequency that the inductor-capacitor

circuit resonated was related to the inductance. The oscillating sine

wave was converted to a square wave by a voltage comparator and the

inductance derived from the square wave frequency.

Chapter 18 Measuring eleCtriCity

558

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: DEVKIT DOIT or NodeMCU

board

• OLED display: 128 × 32 pixels

• Battery: 5 V or 9 V

• Resistor: 150 Ω, 220 Ω, 2× 1 kΩ, 2.2 kΩ, 10 kΩ, 22 kΩ,

and 47 kΩ

• LED

• Shunt resistor: 0.01 Ω

• Operational amplifier: LM358

• Current sensor: 2× INA219

• Solar panel: 5 V output

• Lithium battery: 3.7 V

• Lithium battery charging module: TP4056

• DC-DC adjustable step-up (boost) converter: MT3608

• TFT LCD screen: ST7735, 1.8 inches, 128 × 160 pixels

• Tactile switch

• Voltage comparator: LM393

• Capacitor: 0.1 μF, 1 μF ceramic or electrolytic

• Diode: IN4001

Chapter 18 Measuring eleCtriCity

559© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_19

CHAPTER 19

Rotary encoder
control

A rotary encoder detects rotation of the center

shaft and is used to control machinery position and

motor speed, audio volume, the cursor position on

an LCD (Liquid Crystal Display) screen, or simply

LED brightness. For example, in Chapter 1

(Internet radio), the radio station and volume

were selected by turning a rotary encoder. The incremental rotary encoder

has 20 positions, and the rotor is continuously rotated clockwise or anti-

clockwise to increase or decrease a control variable. The rotary encoder

has two pins, termed A or CLK (clock) and B or DT (data), and a common

pin. As the rotary encoder rotor is turned, pins A and B each make contact

with the common pin, which generates square waves, but as the pins

are offset, the square waves are 90° out of phase (see Figure 19-1). The

number of square wave pulses indicates the extent of the rotation, which is

measured on either pin A or pin B.

https://doi.org/10.1007/978-1-4842-6336-5_19#DOI

560

The square wave states at a given time indicate the direction of

rotation. If the direction is clockwise, then pin A makes contact with the

common pin before pin B makes contact. When pin A disconnects from

the common pin, the pin A square wave state changes from HIGH to LOW,

but the pin B square wave is still HIGH (read Figure 19-1 from left to right).

The position that a square wave changes from HIGH to LOW or from LOW

to HIGH is the falling edge or rising edge, respectively. In contrast, when

the direction of rotation is anti-clockwise, the pin B square wave state is

LOW at the falling edge of the pin A square wave (read Figure 19-1 from

right to left). The direction of rotation is determined by reading the pin B

square wave state at a falling edge of the pin A square wave. If the pin B

square wave is HIGH, then rotation is clockwise, but anti-clockwise if the

pin B square wave is LOW at the falling edge of the pin A square wave.

The sketch in Listing 19-1 demonstrates the rotary encoder generating

square waves, to control two LEDs (see Figure 19-2). The pin A square

wave state is monitored, and when a falling edge is detected, the pin B

square wave state is read. The LED function turns on the red or green

LED, displays the rotation direction, and increases or decreases the count

of encoder increments. Note that the rotary encoder must be turned two

increments to detect the rotation direction. For Listing 19-1, the resistor

and capacitor pairs in Figure 19-2 are not connected.

Figure 19-1. Rotary encoder square waves

Chapter 19 rotary enCoder Control

561

To illustrate that a solution for one microcontroller is not necessarily

appropriate for a microcontroller with a higher CPU frequency, the

sketch in Listing 19-1 is run on both an Arduino Nano and an ESP8266

microcontroller. With the ATmega328P microcontroller of the Arduino

Nano, the number and direction of rotary encoder turns are detected

reasonably correctly, provided the rotary encoder is not turned quickly. In

contrast, there are substantial errors in rotary encoder turn detection by

an ESP8266 microcontroller, which has a higher CPU frequency, 160 MHz

compared to 16 MHz of the ATmega328P microcontroller. Rotary encoder

turn detection is worse with an ESP32 microcontroller, which has a CPU

frequency of 240 MHz, as every pin bounce is detected.

Rotary encoder and LED connections are given in Table 19-1 and

shown in Figure 19-2. Listings 19-1, 19-2, and 19-3 require two LEDs,

while Listing 19-5 requires three LEDs, so all three LEDs are included in

Figure 19-2 to avoid repetition.

Figure 19-2. Rotary encoder and LEDs with LOLIN (WeMos) D1
mini and Arduino Nano

Chapter 19 rotary enCoder Control

562

When uploading a sketch to the ESP8266 microcontroller, GPIO pins

D3 and D4 must not be pulled LOW, so the pins are disconnected from the

rotary encoder DT and CLK pins.

Listing 19-1. Rotary encoder with LEDs

int CLKpin = D4; // rotary encoder pins

int DTpin = D3; // CLK = pin A and DT = pin B

int redLED = D8;

int greenLED = D7; // define LED pins

int count = 0;

Table 19-1. Rotary encoder and LEDs

Component Connect to And to And to

rotary encoder ClK eSp8266 d4 or nano pin 2 Capacitor

positive

rotary encoder ClK 10 kΩ resistor eSp8266 or

nano 5V

rotary encoder dt eSp8266 d3 or nano pin 3 Capacitor

positive

rotary encoder dt 10 kΩ resistor eSp8266 or

nano 5V

rotary encoder SW eSp8266 d2

rotary encoder VCC eSp8266 or nano 5V

rotary encoder Gnd eSp8266 or nano Gnd

Capacitor negative eSp8266 or nano Gnd

led long leg eSp8266 d8, d7, d6, or

nano pins 9 and 12

led short leg 220 Ω resistor eSp8266 or nano Gnd

Chapter 19 rotary enCoder Control

563

int oldCLK = LOW;

int newCLK;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 pinMode(redLED, OUTPUT); // set LED pins as output

 pinMode(greenLED, OUTPUT);

}

void loop()

{

 newCLK = digitalRead(CLKpin); // state of pin A (CLK)

 if(newCLK == LOW && oldCLK == HIGH) // falling edge of pin A

 { // pin B HIGH

 if(digitalRead(DTpin) == HIGH) LED (HIGH, 1, "up");

 else LED(LOW, -1, "down "); // pin B (DT) LOW

 }

 oldCLK = newCLK; // reset pin A (CLK) state

// delay(100); // to confirm microcontroller

} // can miss rotary encoder turns

void LED(int state, int increment, String text)

{

 digitalWrite(redLED, 1-state); // turn on or off the LEDs

 digitalWrite(greenLED, state);

 Serial.print(text);

 count = count + increment; // update and display count

 Serial.println(count);

}

Chapter 19 rotary enCoder Control

564

 Debouncing
There are two issues with the sketch in Listing 19-1. First, bouncing

of the rotary encoder pin A and B connections with the common pin

produces spurious changes in the detected direction and count of encoder

increments. A hardware solution to debouncing the rotary encoder pins is

inclusion of 10 kΩ pull-up resistors (R) and 10 μF (C) capacitors between

the rotary encoder pins A and B with GND (see Figure 19-2 and Table 19- 1).

The resistor-capacitor combination creates a debounce delay of 69 ms,

equal to RC × ln(2) seconds. Further information on capacitor changing

and discharging times is given in Chapter 17 (Signal generation with 555

timer IC). Some rotary encoder modules, such as the KY-040 module,

include 10 kΩ pull-up resistors on the CLK and DT connections, so only

the 10 μF capacitors are required for debouncing.

The resistor-capacitor combination to debounce the rotary encoder

connections for pins A and B with the common pin must ensure that

sufficient time has elapsed for the connection bouncing to have stopped,

without being too long to have missed rotary encoder rotations. The delay of

69 ms achieved with a 10 kΩ resistor and a 10 μF capacitor is a compromise.

 Interrupts
The second issue with the sketch in Listing 19-1 is that the microcontroller

is continuously reading the pin A square wave state to detect a falling edge

and then reading the pin B square wave state to determine the direction of

rotation. If the sketch included other actions, then the microcontroller will

miss detecting falling edges of the pin A square wave. Inclusion of a short

delay of 100 ms in the loop function of Listing 19-1 illustrates the point.

The problem of not detecting the falling edges is resolved by including an

interrupt to detect falling edges of the pin A square wave (see Listing 19-2).

The interrupt is active on the falling edge of the pin A (CLK) square wave,

Chapter 19 rotary enCoder Control

565

and the interrupt service routine (ISR) reads the pin B (DT) square wave

state to determine the direction of rotation. The variable change is updated

in both the loop function and the ISR, so is defined as volatile. Only

instructions referring to the interrupt are annotated in

Listing 19-2, to emphasize the few differences between Listings 19-1

and 19-2.

Listing 19-2 is for an ESP8266 microcontroller. When using an ESP32

microcontroller, the rotary encoder pins are defined with the instructions

pinMode(CLKpin, INPUT);

pinMode(DTpin, INPUT);

In Listing 19-2, the ISR is defined with the instruction IRAM_ATTR void

isr() for an ESP8266 or ESP32 microcontroller to store the interrupt in

internal RAM (IRAM), rather than in the slower flash memory. For the

Arduino Nano, the ISR is defined as void isr().

Listing 19-2. Rotary encoder with interrupt

int CLKpin = D4;

int DTpin = D3;

int redLED = D8;

int greenLED = D7;

int count = 0;

volatile int change; // variable used in ISR

void setup()

{

 Serial.begin(115200);

 pinMode(redLED, OUTPUT);

 pinMode(greenLED, OUTPUT); // attached interrupt

 attachInterrupt(digitalPinToInterrupt(CLKpin), isr, FALLING);

}

Chapter 19 rotary enCoder Control

566

void loop()

{

 if(change != 0) // rotary encoder direction

 {

 if(change > 0) LED(HIGH, "up "); // clockwise

 else if(change < 0) LED(LOW, "down "); // anti-clockwise

 change = 0;

 }

}

void LED(int state, String text) // no change to LED function

{

 digitalWrite(redLED, 1-state);

 digitalWrite(greenLED, state);

 Serial.print(text);

 count = count + change;

 Serial.println(count);

}

IRAM_ATTR void isr() // interrupt service routine

{

 change = 2*digitalRead(DTpin) - 1 ;

} // determine direction of rotation

Including an interrupt to detect changes in the pin A square wave state

and resistor-capacitor pairs to debounce the rotary encoder pins improves

detection of rotary encoder turns for the ATmega328P microcontroller, but

not substantially for the ESP8266 and ESP32 microcontrollers. The next

section describes an effective solution to debouncing the rotary encoder.

Chapter 19 rotary enCoder Control

567

 Square wave states
Debouncing is eliminated by only counting the changes in square wave

states that are consistent with a clockwise or anti-clockwise rotation. The

square wave states for pins A and B are easily visualized by connecting two

LEDs to rotary encoder pins A and B (see Figure 19-3 with connections in

Table 19-2).

Figure 19-3. Rotary encoder and test LEDs

Table 19-2. Rotary encoder and test LEDs

Component Connect to And to

rotary encoder pin a (ClK) red led long leg

rotary encoder pin B (dt) Green led long leg

rotary encoder VCC Battery 5V

rotary encoder Gnd Battery Gnd

led short legs 220 Ω resistors Battery Gnd

Chapter 19 rotary enCoder Control

568

When the incremental rotary encoder is rotated slowly clockwise, the

LED attached to pin A turns on; and, before the incremental rotation is

completed, the LED connected to pin B turns on. If the rotary encoder is

again turned slowly through one increment, the two LEDs turn off with the

LED attached to pin A turning off first. The LED sequence, written as LEDA,

LEDB, is 00, 10, 11, 01, and back to 00 (see Figure 19-1). The sequence,

consisting of 2 bits with 1 bit for each pin, is known as Gray code, after

Frank Gray, with two successive events only differing by 1 bit. The LED or

2-bit sequence when rotating the rotary encoder slowly anti-clockwise is

00, 01, 11, 10, and back to 00.

The changes in square wave states for pins A and B are written as 4-bit

numbers, describing the square wave states as the incremental rotation

progresses. For example, if the rotation is clockwise, the square wave states

for pins A and B are LOW, LOW, then HIGH, LOW, then HIGH, HIGH,

then LOW, HIGH, and finally LOW, LOW. Written as 4-bit numbers, the

sequences are (00)(10), (10)(11), (11)(01), and (01)(00) (see Table 19-3).

Table 19-3. Bit sequence of rotary encoder

square wave states

Initial State Next State 4-Bit Number

LOW, LOW HIGH, LOW 0010

HIGH, LOW HIGH, HIGH 1011

HIGH, HIGH LOW, HIGH 1101

LOW, HIGH LOW, LOW 0100

A 4-bit number has 16 possible values, and each value is mapped to

a directional increment of the rotary encoder (see Table 19-4). The 4-bit

numbers with a zero score represent either no pin changes or two pin

changes, such as 0101 or 0011, respectively.

Chapter 19 rotary enCoder Control

569

Table 19-4. Rotary encoder square wave states as 4-bit numbers

4-Bit Pin A (CLK) and Pin B (DT)
Number Decimal Previous

State
Current
State

Change Direction Score

0000 0 LOW, LOW LOW, LOW none 0

0001 1 LOW, LOW LOW, HIGH anti-

clockwise

-1

0010 2 LOW, LOW HIGH, LOW Clockwise 1

0011 3 LOW, LOW HIGH, HIGH two pins 0

0100 4 LOW, HIGH LOW, LOW Clockwise 1

0101 5 LOW, HIGH LOW, HIGH none 0

0110 6 LOW, HIGH HIGH, LOW two pins 0

0111 7 LOW, HIGH HIGH, HIGH anti-

clockwise

-1

1000 8 HIGH, LOW LOW, LOW anti-

clockwise

-1

1001 9 HIGH, LOW LOW, HIGH two pins 0

1010 10 HIGH, LOW HIGH, LOW none 0

1011 11 HIGH, LOW HIGH, HIGH Clockwise 1

1100 12 HIGH, HIGH LOW, LOW two pins 0

1101 13 HIGH, HIGH LOW, HIGH Clockwise 1

1110 14 HIGH, HIGH HIGH, LOW anti-

clockwise

-1

1111 15 HIGH, HIGH HIGH, HIGH none 0

Chapter 19 rotary enCoder Control

570

Both square wave states must be determined whenever either square

wave state changes, so two interrupts are required, one for each of the

rotary encoder pins A and B. The two square wave states are converted to

a 4-bit number, consisting of the previous and current states, to obtain the

corresponding score. When the score is equal to +2 or -2, then the rotary

encoder has rotated clockwise or anti-clockwise by one increment, as an

incremental rotation of the rotary encoder has two state changes. If a more

definite rotation of the rotary encoder is required, then a score of +4 or -4

requires a rotation of two increments.

The sketch in Listing 19-3 maps both square wave states to a score to

determine both the direction and extent of the rotary encoder rotation.

Score values are included in the vals[] array, and an ISR is activated by

a change in square wave state for either pin A (CLK) or pin B (DT). The

loop and LED functions are identical to those in Listing 19-2. The resistor

and capacitor pairs for the rotary encoder pins are no longer required for

debouncing (see Figure 19-4 with connections in Table 19-5). When the

rotary encoder is turned quickly, there is no loss of accuracy in detecting

rotary encoder rotations. Note that the rotary encoder rotor is only turned

one increment to detect the rotation direction.

Chapter 19 rotary enCoder Control

571

Figure 19-4. Rotary encoder and LEDs with LOLIN (WeMos) D1
mini and ESP32 DEVKIT DOIT board

Table 19-5. Rotary encoder and LEDs with ESP8266 and ESP32

microcontrollers

Component Connect to ESP8266 Connect to ESP32

rotary encoder ClK d4 GpIo 34

rotary encoder dt d3 GpIo 35

rotary encoder SW d2 GpIo 32

rotary encoder VCC 5V VIn

rotary encoder Gnd Gnd Gnd

led long leg d8, d7, d6 GpIo 26, GpIo 27, GpIo 13

led short leg 220 Ω resistor and Gnd 220 Ω resistor and Gnd

Chapter 19 rotary enCoder Control

572

The ISR constructs the 4-bit number from the retained previous square

wave states and the current square wave states for pins A and B and then

increments the score. The bit shift symbol << moves a bit with value N to

position r with the instruction (N<<r). To represent the current square

wave states, the 4-bit number is reduced to a 2-bit number by bit shifting

two positions, equal to the remainder of the 4-bit number when divided by

four, with the instruction oldState = newState % 4. For example, if the

rotary encoder moves clockwise from an initial state HIGH, HIGH to state

LOW, LOW, the 2-bit number sequence is 11, 01, and 00, corresponding to

the two 4-bit numbers of 1101 and 0100 (see Table 19-4). The 4-bit number

for the second stage of the incremental rotation of 0100 has the 2-bit value

of 00, when bit shifted two positions, which is equivalent to a remainder of 0

when the decimal value 8 (4-bit value of 0100) is divided by 4. Alternatively,

the instruction oldState = (digitalRead(CLKpin)<<1)+digitalRead

(DTpin) would suffice, but the square wave states may have changed since

the interrupt was activated.

The new square wave states are a combination of the previous states

and the current states of the pin A (CLK) and pin B (DT) square waves. The

new state consists of the previous square wave states for pins A and B, but

shifted two positions (<<2), the current pin A square wave state shifted one

position (<<1), and the current pin B square wave state.

A switch case instruction is an alternative to including the score

values in an array. For example, the instruction score = score +

vals[newState] in Listing 19-3 is replaced with

switch (newState)

{

 case 0: case 3: case 5: case 6: case 9: case 10: case 12:

case 15:

 break; // no change

 case 1: case 7: case 8: case 14:

Chapter 19 rotary enCoder Control

573

 score = score - 1; break; // reduce score by one

 case 2: case 4: case 11: case 13:

 score++; break; // increase score by one

 default: break;

}

Listing 19-3. Rotary encoder with square wave states

int CLKpin = D4; // define rotary encoder pins

int DTpin = D3;

int redLED = D8; // define LED pins

int greenLED = D7;

int vals[] = {0,-1,1,0,1,0,0,-1,-1,0,0,1,0,1,-1,0 };

// array of scores

int count = 0;

volatile int score = 0;

volatile int change = 0; // variables used in isr and loop functions

volatile int oldState = 0;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 pinMode(redLED, OUTPUT); // set LED pins as output

 pinMode(greenLED, OUTPUT); // attach interrupt

 pinMode(CLKpin, INPUT); // required by ESP32

 pinMode(DTpin, INPUT); // required by ESP32

 attachInterrupt(digitalPinToInterrupt(CLKpin), isr, CHANGE);

 attachInterrupt(digitalPinToInterrupt(DTpin), isr, CHANGE);

}

Chapter 19 rotary enCoder Control

574

void loop()

{

 if(change != 0) // rotary encoder rotated

 {

 if(change > 0) LED(HIGH, "up "); // clockwise

 else if(change < 0) LED(LOW, "down "); // anti-clockwise

 change = 0;

 }

}

void LED(int state, String text)

{

 digitalWrite(redLED, 1-state); // turn LEDs on or off

 digitalWrite(greenLED, state);

 Serial.print(text);

 count = count + change; // update count

 Serial.println(count);

}

IRAM_ATTR void isr() // interrupt service routine

{ // construct 4-bit number

 int newState = (oldState<<2)+(digitalRead(CLKpin)<<1)+

digitalRead(DTpin);

 score = score + vals[newState]; // allocate score from array

 oldState = newState % 4;

// remainder to leave new CLK and DT state

 if(score == 2 || score == -2) // 2 steps for complete rotation

 {

 change = score/2; // unit change per two steps

 score = 0; // reset score

 }

}

Chapter 19 rotary enCoder Control

575

 State switching
The rotary encoder switch, activated by pressing down on the stem of

the rotary encoder, is used to change the state of a binary variable, such

as turning on or off an LED. Noting the time that the switch is pressed

differentiates between a long and a short press, enabling the switch to control

a variable with three levels rather than only two levels. In Listing 19-4, the

rotary encoder switch (SW) pin uses the ESP8266 or ESP32 microcontroller

internal pull-up resistor, rather than including a separate resistor in the

circuit. An internal pull-up resistor is activated with the instruction

pinMode(pin, INPUT_PULLUP), and the pin is active LOW rather than

HIGH. When the rotary encoder switch is pressed and then released, the

pin state changes from HIGH to LOW and then back to HIGH.

Listing 19-4 defines ESP8266 development board pin D2 as an

interrupt pin, and depending on the length of time that the switch is

pressed, the changeSW variable is allocated the character value of 'L', 'S',

or 'B' to indicate a long or short press or a switch bounce. The changeSW

variable is not allocated the string value of "Long", "Short", or "Bounce", as

strings are not passed to an interrupt. The ISR compares the time that the

switch was pressed with the time that the switch was released, relative to

the predefined longpress and shortpress values, to determine if a long press

or a short press or a switch bounce occurred. When the switch is released,

the time between pressing and releasing the switch is displayed with the

category "long press", "short press", or "switch bounce", with the LED state

only changing after a long or short switch press.

Chapter 19 rotary enCoder Control

576

Listing 19-4. Rotary encoder switch

int SWpin = D2; // rotary encoder switch pin

int SWled = D6; // LED pin

int longPress = 1000; // time (ms) for long or short press

int shortPress = 500;

volatile unsigned long newTime, oldTime;

volatile char changeSW; // variables in loop and isr functions

volatile unsigned int lagTime;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 pinMode(SWled, OUTPUT); // set LED pin as output

 pinMode(SWpin, INPUT_PULLUP); // activate pull-up resistor

 attachInterrupt(digitalPinToInterrupt(SWpin), isr, CHANGE);

} // SWpin as interrupt pin and attache ISR

void loop()

{

 if(changeSW != ' ') // switch released, turn on or off

 { // LED if long or short press

 Serial.print(lagTime);Serial.p rint("\t");

// display switch press time lag

 if(changeSW != 'B') digitalWrite(SWled,

!digitalRead(SWled));

 if(changeSW == 'L') Serial.println("long press");

 else if(changeSW == 'S') Serial.println("short press");

 else Serial.println("switch bo unce");

// display only, no effect on LED

 changeSW = ' '; // reset change variable

 }

}

Chapter 19 rotary enCoder Control

577

IRAM_ATTR void isr()

{

 newTime = millis(); // get time ISR triggered

 if(digitalRead(SWpin) == HIGH) // switch now released

 {

 lagTime = newTime - oldTime; // time between switch presses

 if(lagTime > longPress) change SW = 'L'; // L for long press

 else if(lagTime > shortPress) changeSW = 'S ';

// S for short press

 else changeSW = 'B'; // B for bounce

 }

 oldTime = newTime; // reset switch press/release time

}

 Incrementing a value
While the number of square wave pulses indicates the extent of the

rotation of the rotary encoder, the switch is used to control the size of the

incremental count. For example, pressing the switch for a long or short

time changes the incremental count by ten or one. Listing 19-3 is readily

extended by including the instructions for the rotary encoder switch:

int SWpin = D2; // rotary encoder switchpin

int SWled = D6; // LED pin

int longPress = 1000; // time (ms) for long press

volatile unsigned long newTime, oldTime, lagTime;

volatile int increment = 1;

Chapter 19 rotary enCoder Control

578

Instructions are added for the LED, the pull-up resistor, and attaching

the interrupt with ISR isrSwitch in the setup function:

pinMode(SWled, OUTPUT); // set LED pin as output

pinMode(SWpin, INPUT_PULLUP); // activate pull-up resistor

attachInterrupt(digitalPinToInterrupt(SWpin), isrSwitch,

CHANGE);

In the LED function, the count instruction is changed

count = count + change*increment; // update count

and an instruction is added for the LED to indicate the value of the

increment:

digitalWrite(SWled, increment>1); // turn on LED if increment >1

Instructions for the ISR to change the size of the increment are

IRAM_ATTR void isrSwitch()

{

 newTime = millis(); // get time ISR triggered

 if(digitalRead(SWpin) == HIGH) // switch released

 {

 lagTime = newTime - oldTime;

 if(lagTime > longPress) increment = 10; // update increment

 else if(lagTime > 100) increment = 1; // debounce switch

 }

 oldTime = newTime; // reset switch press/release time

}

The size of the incremental count is also controlled by the rotation

speed of the rotary encoder, with a high speed resulting in a larger

increment than a low speed. The ISR maps changes in the pin A and B

square wave states to score the rotation and calculates the rotation time

Chapter 19 rotary enCoder Control

579

from the interval between falling and rising edges of the pin A square

wave. Instructions in an ISR should be as few as possible to minimize the

processing time, and the ISR could be split into two ISRs. ISRs do not run

in parallel, and one interrupt starts when the previous interrupt finishes.

Splitting the ISR into two separate ISRs is not more efficient.

To control the incremental count by the rotation speed of the rotary

encoder, Listing 19-3 is again readily adapted. Variable definitions and the

LED pin are included at the start of the sketch:

int incLED = D6; // LED pin indicates when increment > 1

int rotation = 500; // threshold rotation time (ms)

int increment = 1;

volatile unsigned long newTime, oldTime, lagTime;

volatile int newCLK; // variables used in isr() and loop()

volatile int oldCLK = 0;

The LED to indicate when a large increment is activated is included in

the setup function:

pinMode(incLED, OUTPUT);

In the LED function, the count instruction is changed

count = count + change*increment; // update count

and an instruction is added for the LED to indicate the increment value:

digitalWrite(incLED, increment>1); // turn LED on if increment > 1

In the existing ISR, to avoid rereading the state of the square wave of

pin A (CLK), the instruction

int newState = (oldState<<2)+(digitalRead(CLKpin)<<1)+

digitalRead(DTpin);

is replaced with the instructions

Chapter 19 rotary enCoder Control

580

newCLK = digitalRead(CLKpin);

int newState = (oldState<<2)+(newCLK<<1)+digitalRead(DTpin);

Instructions to calculate the rotary encoder rotation time and the

corresponding increment are included in the existing ISR, as

 newTime = millis(); // get time ISR triggered

 if(newCLK == HIGH && oldCLK == LOW) // interval between falling

 { // and rising edge on pin A (CLK)

 lagTime = newTime - oldTime;

 if(lagTime < rotation && lagTime > 10 0) increment = 10;

// fast rotation

 else if(lagTime > rotation) increment = 1; // slow rotation

 oldTime = newTime; // reset rising/falling edge time

 }

 oldCLK = newCLK; // reset state of pin A (CLK)

Listing 19-5 incorporates the additions to Listing 19-3 for the

incremental count to be determined by the rotary encoder rotation, with

the additional instructions commented.

Listing 19-5. Control incremental count by rotary encoder rotation

speed

int CLKpin = D4;

int DTpin = D3;

int redLED = D8;

int greenLED = D7;

int vals[] = {0,-1,1,0,1,0,0,-1,-1,0,0,1,0,1,-1,0};

int count = 0;

volatile int score = 0; volatile int change = 0;

volatile int oldState = 0;

Chapter 19 rotary enCoder Control

581

int incLED = D6; // increment indicator LED pin

int rotation = 500; // threshold rotation time (ms)

int increment = 1; // default increment

volatile unsigned long newTime, oldTime, lagTime;

volatile int newCLK; // variables used in ISR

volatile int oldCLK = 0;

void setup()

{

 Serial.begin(115200);

 pinMode(redLED, OUTPUT);

 pinMode(greenLED, OUTPUT);

 pinMode(CLKpin, INPUT);

 pinMode(DTpin, INPUT);

 attachInterrupt(digitalPinToInterrupt(CLKpin), isr, CHANGE);

 attachInterrupt(digitalPinToInterrupt(DTpin), isr, CHANGE);

 pinMode(incLED, OUTPUT); // increment indicator LED

}

void loop()

{

 if(change != 0)

 {

 if(change > 0) LED(HIGH, "up ");

 else if(change < 0) LED(LOW, "down ");

 change = 0;

 }

}

void LED(int state, String text)

{

 digitalWrite(redLED, 1-state);

 digitalWrite(greenLED, state);

Chapter 19 rotary enCoder Control

582

 Serial.print(text);

 count = count + change*increment; // incremented count

 digitalWrite(incLED, increment>1);

// turn LED on, increment = 10

 Serial.print(increment);Serial.pri nt("\t");

// display updated increment

 Serial.println(count);

}

IRAM_ATTR void isr()

{ // avoid re-reading the square

 newCLK = digitalRead(CLKpin); // wave state of pin A (CLK)

 int newState = (oldState<<2)+(newCLK<<1)+digitalRead(DTpin);

 score = score + vals[newState];

 oldState = newState % 4;

 if(score == 2 || score == -2)

 {

 change = score/2;

 score = 0;

 }

 newTime = millis(); // get time ISR triggered

 if(newCLK == HIGH && oldCLK == LOW) // interval between falling

 { // and rising edge on pin A (CLK)

 lagTime = newTime - oldTime;

 if(lagTime < rotation && lagTim e > 100) increme nt = 10;

// fast rotation

 else if(lagTime > rotation) inc rement = 1; // slow rotation

 oldTime = newTime; // reset rising/falling edge time

 }

 oldCLK = newCLK; // reset state of pin A (CLK)

}

Chapter 19 rotary enCoder Control

583

The advantage of using interrupts to detect rising or falling edges of a

square wave, to define changes in square wave states, is that the ESP8266

or ESP32 microcontroller can process other instructions simultaneously,

without missing square wave state changes. Mapping changes in square

wave states to a score, to then determine both the direction and extent of

the rotation of the rotary encoder, also resolves the problem of connection

bouncing within the rotary encoder. Consequently, resistor and capacitor

combinations are not required to create a debounce delay.

 Summary
Rotary encoder control of devices by both the direction and extent of

rotation was illustrated. Methods to improve measuring the direction

and extent of rotation of a rotary encoder are described. Interrupts alone

did not enable detection of all rotation increments. Changes in square

wave states generated by the rotary encoder internal connection pins

were mapped to 4-bit numbers. Implementing only the state changes

with appropriate 4-bit numbers effectively debounced the rotary encoder

internal connections. The incremental change in the count of the rotary

encoder rotations was controlled by the rotary encoder switch or by the

speed of rotation.

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: DEVKIT DOIT or NodeMCU

board

• Arduino Nano

Chapter 19 rotary enCoder Control

584

• Rotary encoder: KY-040

• LED: different colors ×3

• Resistor: 3× 220 Ω, 2× 10 kΩ

• Capacitor: 2× 10 μF

Chapter 19 rotary enCoder Control

585© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_20

CHAPTER 20

OTA and saving data
to EEPROM, SPIFFS,
and Excel
The memory storage device for computers and microcontrollers is termed

flash memory, which retains data when power is turned off. In contrast,

data stored in RAM (random access memory) is lost when power is

turned off. Flash memory is partitioned into several sections: application,

OTA (over the air) updating, SPIFFS (Serial Peripheral Interface Flash

File System), EEPROM (Electrically Erasable Programmable Read-Only

Memory), Wi-Fi, and configuration information. A sketch is stored in

application memory, and the variables created and manipulated in a

sketch are stored in RAM. The opportunity to upload a sketch remotely

with OTA and options for saving data in SPIFFS and EEPROM partitions

of flash memory are outlined in this chapter. Saving data directly to a

Microsoft Excel file, instead of using an SD card for data logging, is also

described.

https://doi.org/10.1007/978-1-4842-6336-5_20#DOI

586

 OTA updating
OTA updating remotely uploads a sketch through a Wi-Fi connection with

the ESP8266 or ESP32 microcontroller. The sketch is initially uploaded

with a Serial connection, but subsequent uploads of the sketch use the

Wi-Fi connection for OTA updating. The laptop or computer to transmit

the revised sketch and the ESP8266 or ESP32 microcontroller to receive

the updated sketch must be connected to the same Wi-Fi network. A

requirement of the ArduinoOTA library, which is preinstalled in the

Arduino IDE, is that Python 3.x is installed on the laptop or computer.

Python 3.x is downloaded from www.python.org/downloads, and the

option to Add Python 3.x to PATH must be selected (see Figure 20-1).

Figure 20-1. Installation of Python 3.x

When a sketch is first uploaded, through the Serial connection,

the default name and IP address of the microcontroller network port

is esp8266-[Chip identity] at IP address or esp3232-[MAC address] at IP

address. Naming a network port, rather than using the IP address, allows

the user to identify a particular microcontroller by the user-defined name

with the instruction ArduinoOTA.setHostname("name"). Similarly, a user

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

http://www.python.org/downloads

587

password to permit OTA updating is set with the instruction ArduinoOTA.

setPassword("password"), as the default is no password. If a password

has been defined, then the password is requested when the Arduino IDE

has been restarted or the password has been changed. A list of available

network ports is displayed by selecting the Tools menu in the Arduino IDE

and the Port option (see Figure 20-2). OTA updating incorporates mDNS

(multicast Domain Name System) to match the network port name to an

IP address for small networks, using UDP (User Datagram Protocol) to

send and receive UDP messages. Further details are available at arduino-

esp8266.readthedocs.io/en/latest/ota_updates/readme.html. For the

ESP8266 and ESP32 microcontrollers, the ArduinoOTA library references

the ESP8266WiFi and WiFi libraries, respectively, so the instructions

#include <ESP8266WiFi.h> and #include <WiFi.h> are not required.

Figure 20-2. Available network ports to OTA updating

OTA updating is demonstrated with the sketch in Listing 20-1, which

turns on or off an LED for a fixed time. Listing 20-1 is for an ESP8266

microcontroller, but for an ESP32 microcontroller, the mDNS library

is installed with the instruction #include <ESPmDNS.h>. The mDNS

and WiFiUdp libraries for the ESP8266 and ESP32 microcontrollers are

effectively built-in, once the ESP8266 and ESP32 Board Managers are

installed in the Arduino IDE. When a sketch is first uploaded, through

the Serial connection, the Serial Monitor is available to print progress

messages, but the Serial Monitor is not available with OTA updating. In

the setup function, a Wi-Fi connection is made, and the microcontroller

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

https://arduino-esp8266.readthedocs.io/en/latest/ota_updates/readme.html
https://arduino-esp8266.readthedocs.io/en/latest/ota_updates/readme.html

588

network port is named. The sketch includes the flash function to flash the

 built- in LED every 500 ms while the ESP8266 or ESP32 microcontroller is

connecting to the Wi-Fi network. In the loop function, OTA updates are

monitored with the instruction ArduinoOTA.handle(), with the instruction

repeated after a long delay in the sketch. There are no other changes

to instructions in the loop function of the sketch, compared to when

uploading the sketch with a USB connection.

Remote OTA updating of a revised sketch uses the named network port

of the ESP8266 or ESP32 microcontroller for the Wi-Fi connection, rather

than the Serial connection. With the ESP8266 or ESP32 development

board now remotely powered, in the Arduino IDE Tools menu, select Port

from a list of available network ports, as illustrated in Figure 20-2. Select

the appropriate Port; make the required changes to the sketch, such as

adjusting the LED delay time; and upload the sketch with OTA.

Listing 20-1. OTA updating

#include <ArduinoOTA.h> // include OTA library

#include <ESP8266mDNS.h> // and mDNS libraries

#include <WiFiUdp.h> // include Wi-FI UDP library

char ssid[] = "xxxx"; // change xxxx to Wi-Fi ssid

char password[] = "xxxx"; // change xxxx to Wi-Fi password

int LEDpin = 2; // built-in LED

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 pinMode(LEDpin, OUTPUT);

 WiFi.mode(WIFI_STA); // initialise Wi- Fi

 WiFi.begin(ssid, password);

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

589

 while (WiFi.status() != WL_CONNECTED)

 {

 delay(500); // flash LED while

 flash(); // connecting to Wi-Fi

 }

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP()); // display network port address

 ArduinoOTA.setHostname("WeMos2"); // name network port

 ArduinoOTA.setPassword("admin1"); // set password

 ArduinoOTA.begin(); // initialise ArduinoOTA

}

void loop()

{

 ArduinoOTA.handle(); // check for OTA updates

 digitalWrite(LEDpin, !digitalRead(LEDpin)); // turn on or off LED

 delay(1000);

}

void flash() // function to flash LED

{

 digitalWrite(LEDpin, HIGH);

 delay(100);

 digitalWrite(LEDpin, LOW);

}

 Saving data
Data logging sketches store data externally on an SD (Secure Digital) card

using SPI (Serial Peripheral Interface) communication. The Arduino IDE

built-in SD library provides the necessary instructions to create, open, and

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

590

close files and write to and read from files on an SD card module. Storing

data on an SD card for applications with either low or short-term data

storage requirements is not efficient, and an alternative is to store data

in the ESP8266 or ESP32 microcontroller memory. For example, storing

a device setting, such as the state of a relay or the brightness of an LED,

in flash memory ensures that the device state is maintained when the

microcontroller is reset either after being powered off or if power was lost.

Other examples include storing the ESP32 camera image files in Chapter 2

(Intranet camera) or the servo motor positions generated by an app in

Chapter 10 (Build an app).

The ESP8266 and ESP32 microcontrollers have <50 kB RAM (random

access memory) and 520 kB SRAM (static random access memory),

respectively, where variables are created and manipulated in a sketch.

RAM is volatile memory, and the contents are not accessible after the

microcontroller is powered down.

In contrast, the ESP8266 and ESP32 microcontrollers have 4 MB flash

memory that is non-volatile and is retained when the microcontroller

is powered down. A sketch is stored in the application partition of flash

memory, as are large amounts of data for a lookup table of a sketch,

such as in Chapter 16 (Signal generation). An array is stored in the

application partition of flash memory with the instruction const datatype

arrayname[] PROGMEM = {array values}, and the ith value of the array

is accessed with the instruction pgm_read_datatype(arrayname + i).

Character or integer data is stored with the parameter datatype defined

as unsigned char or uint16_t and accessed with pgm_read_byte or

pgm_read_word, respectively. A string literal containing, for example, the

AJAX code of a web page is also stored in the application partition of flash

memory, as in Chapters 7 (Wireless local area network), 8 (Updating a web

page), 9 (WebSocket), and 12 (GPS tracking app with Google Maps).

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

591

 Saving to EEPROM
EEPROM (Electrically Erasable Programmable Read-Only Memory) is

non-volatile memory that retains the information when the ESP8266 or

ESP32 microcontroller is turned off. EEPROM consists of up to 4096 bytes,

which is one sector of flash memory, with read and write access for each

byte. EEPROM has a limit of 100k write cycles at each memory location. In

Chapter 2 (Intranet camera), the number of images stored on an SD card

was saved in EEPROM.

Accessing data held in EEPROM uses instructions from the Arduino

IDE built-in EEPROM library. For example, the ith byte in EEPROM is

written to or read from with the instruction EEPROM.write(i, val) or

EEPROM.read(i), respectively, where val has an integer value between

0 and 255 equal to 28 – 1, inclusive. Numbering of EEPROM bytes starts

from zero. Integers, real numbers, strings, and structures that require

more than 1 byte of memory are written to or read from EEPROM with the

instruction EEPROM.put(EEaddress, val) or EEPROM.get(EEaddress,

val), respectively, where EEaddress is the EEPROM byte to start writing to

or reading from and val is the value of an integer, real number, string, or

structure. Both an integer and a real number require 4 bytes of EEPROM

storage, with a string requiring 12 bytes, irrespective of the magnitude

of the integer or the length of the string. When logging data with a fixed

structure, the number of bytes of a record is constant, and the number

of records is stored in EEPROM byte zero, with the EEPROM address of

a new record equal to a multiple of the number of records plus four. For

example, if there are already eight data records stored in EEPROM and a

data record consists of a time (two integers), an integer, and a real number

that requires 16 bytes of memory, then the EEPROM address for the ninth

record is 132, equal to 8 (records) × 16 (bytes) + 4 (count at address 0).

EEPROM writing and reading instructions are prefixed with the

instruction EEPROM.begin(N), where N is the number of EEPROM bytes to

be accessed. For example, access of up to 1000 EEPROM bytes requires the

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

592

instruction EEPROM.begin(1000). Writing to EEPROM is followed with the

instruction EEPROM.commit(). The number of bytes allocated to EEPROM

is obtained with the instruction EEPROM.length().

The sketch in Listing 20-2 saves the ultraviolet

sensor reading to EEPROM every five seconds

and displays the saved data on the Serial Monitor.

The number of records is obtained with the

instruction EEPROM.get(0, records), rather than

EEPROM.read(0) which is the value of the byte in address zero, as there

may be more than 255 records. In the sketch, commands are entered

on the Serial monitor to write data, to display data, and to reset data

stored in EEPROM. When the number of bytes required by the records

approaches the set EEPROM capacity, the number of records is reset to

zero. The number of bytes for a record is determined with the sizeof()

instruction, which can either reference the variable type or the variable

itself, as illustrated in the instruction int Nbytes = sizeof(float) +

sizeof(data.minuteTime) + sizeof(int).

Listing 20-2. Saving data in EEPROM

#include <EEPROM.h> // include EEPROM library

int EEaddress, records;

unsigned long seconds, nowTime, lastTime = 0;

char cmd = ' '; // command character

typedef struct // structure to hold data record

{

 float UV; // a real number (4 bytes) and an

 int minuteTime; // integer (4 bytes in EEPROM)

 int secondTime;

} dataStruct;

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

593

dataStruct data; // number of bytes to store data

int Nbytes = sizeof(float) + sizeof(data.minuteTime) +

sizeof(int);

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 EEPROM.begin(1000); // set EEPROM capacity

 EEPROM.put(0, 0); // set record number to zero

 EEPROM.commit(); // write to EEPROM

 Serial.print("Enter R: record, D: display");

 Serial.println(" or Z: zero UV record");

}

void loop()

{ // command from Serial buffer

 if(Serial.available() > 0) cmd = Serial.read();

 nowTime = millis(); // start of time interval

 if((nowTime - lastTime > 5000) && (cmd == 'R'))

 { // collect data every 5s

 data.UV = analogRead(A0)*3200.0/ 1024; // convert reading to mV

 seconds = (nowTime/1000);

 data.minuteTime = seconds / 60; // calculate elapsed minutes

 data.secondTime = seconds % 60; // and seconds

 EEPROM.get(0, records); // number of EEPROM records

 EEaddress = records * Nbytes + 4; // address of new record

 if((EEaddress + Nbytes) > EEPRO M .length())

 { // check if exceeding the set EEPROM capacity

 records = 0; // reset EEPROM record number

 EEaddress = 4; // avoid over-flowing EEPROM

 }

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

594

 records++; // increment number of records

 EEPROM.put(0, records); // update number of records

 EEPROM.put(EEaddress, data); // write data to EEPROM

 EEPROM.commit();

 Serial.print("UV index ");Seria l.println(data.UV);

// display data

 lastTime = nowTime; // update time interval

 }

 if(cmd == 'D') // display data held on EEPROM

 { // number of EEPROM records

 records = EEPROM.get(0, records);

 for (int i=0; i<records; i++)

 {

 EEaddress = i * Nbytes + 4; // EEPROM address of ith record

 EEPROM.get(EEaddress, data); // read and display EEPROM

 Serial.print(data.minuteTime);Serial.print(":");

 Serial.print(data.secondTime);Serial.print("\t");

 Serial.println(data.UV);

 }

 cmd = ' '; // reset command

 Serial.print("Enter R: record, D: display");

 Serial.println(" or Z: zero UV record");

 }

 if(cmd == 'Z') // command to reset records

 {

 EEPROM.put(0, 0); // set record number to zero

 EEPROM.commit();

 cmd = ' ';

 Serial.print("Enter R: record, D: display");

 Serial.println(" or Z: zero UV record");

 }

}

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

595

Figure 20-3 illustrates using an ESP8266 or ESP32 microcontroller

EEPROM to store measurements from an ultraviolet sensor, with

connections given in Table 20-1. For an ESP32 development board,

the analogRead instruction in Listing 20-2 is changed to data.UV =

analogRead(N)*3300.0/4096, with the analog input pin number, N.

Figure 20-3. EEPROM and ultraviolet sensor

Table 20-1. EEPROM and ultraviolet sensor

with ESP8266 and ESP32 microcontrollers

Component ESP8266 ESP32

Uv sensor OUt a0 gpiO 32

Uv sensor vCC 3v3 3v3

Uv sensor gnd gnd gnd

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

596

The number of bytes required to store a data record in EEPROM for a

character, an integer, or a real number is 1, 4, or 4, respectively. When storing a

string, the number of bytes depends on the string data type. The string defined

as String s = "ABCDEFGH" requires 12 bytes of EEPROM, but the string

defined as char * s = "ABCDEFGH" requires only 4 bytes, with s defined as

a pointer to char, which points to an object of type array of char with length

eight. The length of a string, s, is obtained with the instruction s.length() or

strlen(s), when the string data type is defined as String. or char s[].

 Saving to SPIFFS
SPIFFS (Serial Peripheral Interface Flash File System) is a file system for

microcontrollers to write to and read from files stored in flash memory. The

partition of flash memory for SPIFFS is adjusted within the Arduino IDE

depending on the requirements of a sketch. For example, the default SPIFFS

partition for an ESP32 microcontroller is 1472 kB. SPIFFS is used to store data

files, files containing HTML and AJAX code for a web page, and image files.

The ES8266 and ESP32 microcontrollers use the LittleFS and SPIFFS

libraries, respectively. The LittleFS_esp32 library is available in the Arduino

IDE, but currently Espressif supports the built-in SPIFFS library for the

ESP32 microcontroller. Instruction parameters for accessing a file with the

LittleFS and SPIFFS libraries are listed in Table 20-2. Note that double quotes

around instruction parameters in Table 20-2 are required for the ESP8266

microcontroller, but not for the ESP32 microcontroller. SPIFFS has a flat

structure as directories are not supported. A file with path temp/filename.txt

creates a file called temp/filename.txt and not a file called filename.txt in the

temp directory. The ESP8266 SPIFFS, with the FS library, is currently deprecated;

and the LittleFS library, which is faster, is recommended. The only changes to

instructions are replacing #include<FS.h> and SPIFFS.function() instructions

with #include<LittleFS.h> and LittleFS.function() instructions. The

SPIFFS.rename() instruction enables both the dir and filename components

of /dir/filename.txt to be changed, while LittleFS.rename() changes only the

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

597

filename component. Further information is available at arduino-esp8266.

readthedocs.io/en/2.7.4_a/filesystem.html.

The sketch in Listing 20-3 demonstrates opening, writing to, reading

from, renaming, and deleting a file stored in SPIFFS. Although SPIFFS

has a flat structure, files are allocated to directories by prefixing the

file name with a directory name, such as /temp/testfile.txt. The 8-3 file

naming convention, for the file name (eight characters) and extension

(three characters), is recommended, given the limit of 31 characters for

the directory and file name. The SPIFFS library file access parameters,

“r”, “w”, and “a” in Table 20-2 are sufficient for applications, although the

parameters “r+”, “w+”, and “a+” are also available.

Listing 20-3. Write to, read from, and append file with SPIFFS for

the ESP8266 microcontroller

#include <LittleFS.h> // include LittleFS library

String filename = "/temp/testfile.txt"; // structure /dir/file

String newname = "/temp/newfile.txt";

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

Table 20-2. SPIFFS instruction parameters for ESP8266 and ESP32

microcontrollers

File Access ESP8266 LittleFS
Library

ESP32 SPIFFS
Library

read file from start “r” File_read

Create/truncate file to write from start “w” File_Write

append from end “a” File_append

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

https://arduino-esp8266.readthedocs.io/en/2.7.4_a/filesystem.html
https://arduino-esp8266.readthedocs.io/en/2.7.4_a/filesystem.html

598

 if(LittleFS.begin()) Serial.println("initialised OK");

 dirContent("/"); // contents of main directory

 dirContent("/temp"); // contents of sub directory

 File file = LittleFS.open(filename, " w"); // open file to write

 file.println("ABC");

 file.println("123"); // instead of print("xxx/n")

 file.close();

 fileContent(filename); // function display file content

 dirContent("/temp");

 file = LittleFS.open(filename, "a"); // append to file

 file.println("XYZ");

 file.close();

 LittleFS.rename(filename, newnam e);

// change filename not directory

 fileContent(newname);

 dirContent("/temp");

 if(LittleFS.exists(filename)) LittleF S.remove(filename);

} // delete file

void dirContent(String dname) // function to display directory content

{

 Serial.print(dname);Serial.println(" content");

 Dir dir = LittleFS.openDir(dname);

 while(dir.next())

 {

 File file = dir.openFile("r"); // read file

 Serial.print("file ");Serial.print(file.name());Serial.

print("\t");

 Serial.print("size ");Serial.println (file.size()); // filesize

 }

}

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

599

void fileContent(String fname) // function to display file content

{

 File file = LittleFS.open(fname, "r");

 while(file.available()) Serial.write(file.read());

 file.close();

}

void loop() // nothing in loop function

{}

For the ESP32 microcontroller, other than changing the library from

LittleFS to SPIFFS and the file access parameters, the corresponding sketch

only differs from Listing 20-2 in the function to list files in a directory (see

Listing 20-4). The SPIFFS.rename() instruction enables both the dir and

filename components of /dir/filename.txt to be changed, similar to the FS

library for the ESP8266 microcontroller.

Listing 20-4. List directory files with SPIFFS for the ESP32

microcontroller

void dirContent(String dname)

{

 Serial.print(dname);Serial.println(" content");

 File dir = SPIFFS.open(dname); // SPIFFS library

 File file = dir.openNextFile(); // openNextFile

 while(file)

 {

 Serial.print("file ");Serial.print(file.name());

Serial.print("\t");

 Serial.print("size ");Serial.println(file.size());

 file = dir.openNextFile(); // openNextFile

 }

}

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

600

Listing 20-3 illustrates using SPIFFS for data logging applications,

with the instructions file.println("123") and file.println("XYZ"),

for example. SPIFFS is also available for uploading files containing HTML

and AJAX code for a web page or image files. The Arduino IDE requires

a separate plugin for the ESP8266 and ESP32 microcontrollers, when

uploading files to SPIFFS. Instructions for installing and running the

plugin are available at arduino-esp8266.readthedocs.io/en/latest/

filesystem.html and github.com/me-no-dev/arduino-esp32fs-plugin,

respectively. The unzipped esp8266littlefs.jar or esp32fs.jar (Java Archive)

file containing the plugin must be located in the Sketchbook location ➤

tools ➤ ESP8266LittleFS ➤ tool or Sketchbook location ➤ tools ➤ ESP32FS

➤ tool folder, where the Sketchbook location folder is defined in the

Arduino IDE, by selecting File ➤ Preferences. If the Arduino IDE is open,

then Arduino IDE must be closed and restarted, and the Tools menu will

then include the ESP8266 LittleFS Data Upload or ESP32 Sketch Data

Upload option.

Figure 20-4. Plugin details for uploading files to SPIFFS

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

https://arduino-esp8266.readthedocs.io/en/latest/filesystem.html
https://arduino-esp8266.readthedocs.io/en/latest/filesystem.html
https://github.com/me-no-dev/arduino-esp32fs-plugin

601

The text file containing HTML or AJAX code for a web page must be

stored in the data folder within the sketch folder. In the Arduino IDE, select

the Sketch menu, click Show Sketch Folder, and create a folder named

data. A file filename.txt is referenced as /filename.txt in the sketch. Prior to

uploading the text file to the Arduino IDE, ensure that both Board and Port

are selected and that the Serial Monitor is closed. In the Arduino IDE, select

the Tools menu, and click the ESP8266 LittleFS Data Upload or ESP32

Sketch Data Upload option. Once the message LittleFS Image Uploaded or

SPIFFS Image Uploaded is displayed, compile and upload the sketch.

In Chapter 8 (Updating a web page), HTML and AJAX code for a web

page was included on a separate tab, buildpage.h, from the main sketch

with the instruction #include "buildpage.h". The default web page was

loaded by the instruction server.on("/", base) referencing the base

function to send the string page containing the HTML or AJAX code for the

web page to the client, with the instruction server.send (200, "text/

html", page).

When HTML or AJAX code is included in a separate file, such as

webcode.txt, that is uploaded to SPIFFS, then the separate tab, buildpage.h,

is not required and the base function now uploads the file on SPIFFS that is

then sent to the client. The base function is changed to

void base()

{

 File file = SPIFFS.open("/webcode.txt","r"); // file for webpage

 server.streamFile(file, "text/html"); // send file to server

 file.close();

}

Moreover, the first and last lines of the string containing the HTML

or AJAX code, namely char page[] PROGMEM = R"(, and)" of the string

page are deleted. Using the example of Listing 8-4, the first and last lines

of the file webpage.txt are now <!DOCTYPE html><html> and </body>

</html>, respectively.

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

602

In Chapter 2 (Intranet camera), images are stored on the micro-SD

card of the ESP32-CAM module with the instructions in Listing 2-1:

fs::FS & fs = SD_MMC; // with SD_MMC library,

File file = fs.open(filename.c_str(), FILE_WRITE);

 // access SD card

file.write(frame->buf, frame->len); // save file to SD card

The ESP32-CAM module stores a JPEG-formatted image in SPIFFS

with the instructions

File file = SPIFFS.open("/photo.jpg", FILE_WRITE);

 // access SPIFFS

file.write(frame->buf, frame->len); // write file to SPIFFS

and the image size is displayed with the instructions

Serial.print("Image size: ");

Serial.println(String(frame->len));

In Chapter 2 (Intranet camera), ESP32-CAM images are uploaded

to a web page from PROGMEM, as flash (or program) memory has more

capacity than RAM, and uploading from PROGMEM is substantially faster

than uploading from SPIFFS, which takes several seconds.

Downloading SPIFFS files
While data files containing HTML and AJAX code for a web page can

remain stored in SPIFFS, data files stored in SPIFFS by a data logging

sketch may require downloading to a computer or laptop for subsequent

analysis by specific software. A sketch to analyze the data files, while stored

in SPIFFS, is another option.

Files stored in SPIFFS are downloaded to a computer or laptop with

the sketch in Listing 20-5. The ESPAsyncWebServer and AsyncTCP libraries

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

603

by Hristo Gochkov are required, and .zip files containing the libraries

are downloaded from github.com/me-no-dev/ESPAsyncWebServer and

github.com/me-no-dev/AsyncTCP, respectively. The ESPAsyncWebServer

library references the AsyncTCP and Wi-Fi libraries, so the instructions

#include <AsyncTCP.h> and #include <WiFi.h> or #include

<ESP8266WiFi.h> are not required. A directory list of the files held in

SPIFFS is displayed on the Serial Monitor, and a selected file is then

downloaded to the computer or laptop. The sketch includes an HTTP GET

request for the file stored in SPIFFS to be downloaded. The default value

of the last parameter of the request->send instruction is false, to indicate

implementation of the file, as in a file containing HTML code, rather than

downloading of the file. The user determines where the file is saved on the

computer or laptop.

Listing 20-5. Downloading SPIFFS data file

#include <LittleFS.h> // include LittleFS and

#include <ESPAsyncWebServer.h> // ESPAsyncWebServer libraries

AsyncWebServer server(80);

char ssid[] = "xxxx"; // change xxxx to Wi-Fi ssid

char password[] = "xxxx"; // change xxxx to Wi-Fi password

String filename; // file to be downloaded

void setup()

{

 Serial.begin(115200); // define Serial Monitor baud rate

 WiFi.begin(ssid, password); // initialise Wi-Fi

 while (WiFi.status() != WL_CONNECTED) delay(500);

 Serial.print("IP Address: ");

 Serial.println(WiFi.localIP()); // display WLAN IP address

 server.begin(); // initialise server

 server.on("/download", HTTP_GET,

[](AsyncWebServerRequest * request)

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/AsyncTCP

604

 { request->send(LittleFS, filename, "text/plain", true); });

 LittleFS.begin(); // initialise SPIFFS

 dirContent(""); // contents of main directory

 dirContent("temp"); // content of "temp" sub-directory

 Serial.println("\nEnter directory/filename to download");

}

void loop()

{

 if(Serial.available() > 0) // filename entered on Serial Monitor

 {

 filename = Serial.readString(); // read Serial buffer

 Serial.print("In the browser, enter ");

Serial.print(WiFi.localIP());

 Serial.print("/download to download file: ");

Serial.println(filename);

 Serial.println("\n\nEnter directory/filename to download");

 }

}

void dirContent(String dname) // function to display directory content

{

 Serial.print("\nContent of directory: ");

Serial.println(dname);

 Dir dir = LittleFS.openDir("/"+dname);

 while(dir.next())

 {

 File file = dir.openFile("r"); // read file

 Serial.print(dname);Serial.print("/");

 Serial.print(file.name());Serial.print("\t");

 Serial.print("size ");Serial.println(file.size());

 } // filesize

}

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

605

Listing 20-5 is for an ESP8266 microcontroller. For an ESP32

microcontroller, the LittleFS library is replaced with the SPIFFS library;

and, as with Listing 20-3, the dirContent function is changed to the

function in Listing 20-4. In the dirContent function, the instruction File

dir = SPIFFS.open(dname) is also changed to File dir = SPIFFS.

open("/"+dname). The contents of the main and “temp” directories are

separately displayed with the ESP8266 microcontroller, but the content of

all directories is displayed with the instruction dirContent("") with the

ESP32 microcontroller.

 Saving data directly to Excel
The ESP8266 and ESP32 microcontrollers cannot

emulate a USB device, such as a keyboard, to send

a character or a string to a connected laptop or

computer. However, the Arduino Pro Micro can

emulate a USB device for automated data recording

projects. For example, data collected by a sensor

connected to a Pro Micro is sent to the connected

laptop or computer and written directly to a Microsoft

Excel file. Sensor data is plotted immediately, in

contrast to the microcontroller storing data on an SD

card, that is then imported to a Microsoft Excel file.

Keyboard emulation is started with the instruction Keyboard.begin(),

but it is important to have a control system in place to end keyboard

emulation by the Pro Micro; otherwise, the computer keyboard will not

function. For example, changing the state of a GPIO pin, by pressing a

switch connected to the Pro Micro, can trigger the instruction Keyboard.

end() and end the Pro Micro keyboard emulation. A character or string,

str, is sent to the attached computer with the instruction Keyboard.

print(str) or Keyboard.println(str), with the latter including the

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

606

ASCII characters for a carriage return and a new line. Before loading a

sketch using the keyboard emulation instructions, it is recommended to

test the sketch with the Serial.print() or Serial.println() instruction

and that the control system to stop the sketch operates correctly. The Pro

Micro keyboard emulation will print to the open window that is currently

running on the attached computer. While the sketch with the Keyboard.

print() instructions is compiling in the Arduino IDE, the computer cursor

must be positioned on a worksheet of the Microsoft Excel file.

The sketch in Listing 20-6 reads the temperature on a BMP280 sensor,

measures the light intensity with a light-dependent resistor (LDR), and writes

the data directly to the open Microsoft Excel worksheet. Keyboard emulation

by the Pro Micro is stopped by pressing the switch with a pull-down resistor,

which changes the state of the GPIO pin attached to the switch and triggers

the Keyboard.end() instruction. In the sketch, data is written to the Microsoft

Excel worksheet every five seconds. The ASCII characters for keyboard

control of 9, 10, 11, and 13 for a horizontal tab, line feed, vertical tab, and

carriage return are used to format data on the Microsoft Excel worksheet. For

example, the tab keyboard control characters are sent to the connected laptop

or computer with the instruction Keyboard.print(char(9)).

Listing 20-6. Saving data directly to an Excel file

#include <Keyboard.h> // include Keyboard library

#include <Adafruit_Sensor.h> // include Unified Sensor library

#include <Adafruit_BMP280.h> // include BMP280 library

Adafruit_BMP280 bmp; // associate bmp with BMP280

int BMPaddress = 0x76; // I2C address of BMP280

int switchPin = A3; // define switch and LDR pins

int LDRpin = 9;

unsigned long nowTime, lastTime = 0;

float temp, bright;

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

607

int counter = 0;

void setup()

{

 Keyboard.begin(); // initialise Keyboard

 bmp.begin(BMPaddress); // initialise BMP280

 header(); // call header function

}

void loop()

{ // MUST BE ABLE TO STOP KEYBOARD

 if(digitalRead(switchPin) == HIGH) // switch to stop Keyboard

 {

 Keyboard.end(); // stop Keyboard

 while(1); // and do nothing else

 }

 nowTime = millis(); // set start of time interval

 if(nowTime - lastTime > 5000) // collect data every 5s

 {

 counter++; // increment counter

 temp = bmp.readTemperature(); // get BMP280 reading

 bright = analogRead(LDRpin); // and brightness reading

 Keyboard.print(counter); // print counter to Excel

 Keyboard.print(char(9)); // print tab character

 Keyboard.print(temp); // print temp to Excel

 Keyboard.print(char(9)); // print bright to Excel, with

 Keyboard.println(bright); // carriage return and new line

 lastTime = nowTime; // update start of time interval

 }

}

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

608

void header() // function to print columns headers to Excel

{

 Keyboard.print("counter"); // print "counter" to Excel

 Keyboard.print(char(9)); // print tab character

 Keyboard.print("temp");

 Keyboard.print(char(9));

 Keyboard.print("bright");

 Keyboard.print(char(13)); // print carriage return character

 Keyboard.print(char(10)); // print new line character

}

Connections for the Pro Micro, BMP280, and LDR are shown in

Figure 20-5 and listed in Table 20-3. Note the importance of ensuring that

there is a reliable control system to stop the keyboard emulation function,

while the sketch is running, as otherwise keyboard control of the attached

computer is compromised.

Figure 20-5. Pro Micro with BMP280 sensor and light-dependent resistor

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

609

Table 20-3. Saving data directly to an Excel file

Component Connect to And to

BMp280 vCC pro Micro 3.3v

BMp280 gnd pro Micro gnd

BMp280 sdi (serial data) pro Micro pin 2

BMp280 sCK (serial clock) pro Micro pin 3

BMp280 CsB (chip select) not connected

BMp280 sdO (serial data out) pro Micro gnd

ldr top leg pro Micro pin 9

ldr top leg 10 kΩ resistor pro Micro gnd

ldr bottom leg pro Micro 3.3v

switch top leg pro Micro pin a3

switch top leg 10 kΩ resistor pro Micro gnd

switch bottom leg pro Micro 3.3v

 Summary
OTA (over the air) updating is described to remotely upload a sketch to

a ESP8266 or ESP32 microcontroller. The EEPROM (Electrically Erasable

Programmable Read-Only Memory) and SPIFFS (Serial Peripheral

Interface Flash File System) partitions of flash memory of the ESP8266

and ESP32 microcontrollers are used to save data or files or images.

Saving data on the microcontroller internal EEPROM is described with an

example of storing and retrieving sensor measurements. Storing files on

SPIFFS is described with an example of creating, writing to, reading from,

renaming, and deleting a file. A file containing HTML or AJAX code for a

web page is uploaded to SPIFFS with the Sketch Data Upload plugin for

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

610

the Arduino IDE. Data is also saved directly to a Microsoft Excel worksheet

with an Arduino Pro Micro emulating a keyboard, with an example given of

temperature and light intensity measurements.

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: DEVKIT DOIT or NodeMCU

board

• Arduino Pro Micro

• Ultraviolet sensor

• Temperature sensor: BMP280

• Light-dependent resistor

• Tactile switch

• Resistors: 4.7 kΩ, 10 kΩ

Chapter 20 Ota and saving data tO eeprOM, spiFFs, and exCel

611© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_21

CHAPTER 21

Microcontrollers
Several microcontrollers are used in the book, depending on the required

function of the microcontroller. The LOLIN (WeMos) D1 mini board,

based on the ESP8266 microcontroller, is used in applications requiring

Wi-Fi connectivity. The ESP32 DEVKIT DOIT board, based on the ESP32

microcontroller, is ideal for applications requiring intense data processing

with either Wi-Fi or Bluetooth connectivity. The ESP32-CAM board,

which is based on the ESP32-S microcontroller, is the obvious choice for

applications requiring both a camera and Wi-Fi functionality. The Arduino

Pro Micro emulates a USB device, such as a keyboard, in applications

that store data directly to a Microsoft Excel spreadsheet. The Arduino

Uno and the smaller Arduino Nano, both based on the ATmega328P

microcontroller, are appropriate for applications when Wi-Fi connectivity

or high processing power is not required. Table 21-1 summarizes some of

the properties of the microcontrollers, with further information available

from www.arduino.cc/en/Main/Products or from www.espressif.com/

en/products/devkits. The ESP8266 and ESP32 microcontrollers have

significantly higher CPU frequencies, with more flash memory and RAM

(random access memory) than the ATmega328P microcontroller. A sketch

is stored in flash memory, while sketch variables are stored in RAM.

https://doi.org/10.1007/978-1-4842-6336-5_21#DOI
http://www.arduino.cc/en/Main/Products
http://www.espressif.com/en/products/devkits
http://www.espressif.com/en/products/devkits

612

All development boards have PWM (pulse width modulation)

pins and ADC (analog to digital converter) pins. The ESP8266 and

ESP32 microcontrollers both have Wi-Fi connectivity, with the ESP32

microcontroller also having both Bluetooth and Bluetooth Low Energy

connectivity, DAC (digital to analog converter) pins, touch-sensitive pins,

and a Hall effect sensor, (see Chapter 22 (ESP32 microcontroller features)).

The result of higher CPU frequency, flash memory, and RAM is the

lower processing time for a sketch. For example, the sketch in Listing 21-1

measures the time required to determine the first 10k prime numbers. The

sketch may not be optimal, in terms of minimizing processing time, but

is sufficient for establishing a benchmark. The ATmega microcontroller

required 57 seconds to perform the task, while the ESP8266 and ESP32

microcontrollers required under two seconds and less than half a second,

respectively. The CPU frequency of the ESP32 microcontroller is changed,

in the Arduino IDE, to 10, 20, 40, 80, or 160 MHz by selecting Tools ➤ CPU

Frequency. As the CPU frequency doubles, the time to determine the first

10k prime numbers essentially halves from 11607 ms with 10 MHz to 5060

ms with 20 MHz, to 2403 ms with 40 MHz, to 1172 ms with 80 MHz, and to

579 ms with 160 MHz.

Table 21-1. Microcontroller properties

Property ESP32 ESP8266 ATmega328P ATmega32U4

Development board DEVKIT DOIT LOLIN (WeMos)

D1 mini

Arduino

Uno/Nano

Arduino

Pro Micro

Architecture 32-bit 32-bit 8-bit 8-bit

CPU frequency 240 MHz 160 MHz 16 MHz 16 MHz for 5V

Flash memory 4 MB 4 MB 32 kB 32 kB

(S)RAM 520 kB <50 kB 2 kB 2.5 kB

Time for 10k primes 385 ms 1786 ms 56732 ms 57027 ms

CHAPTER 21 MICROCONTROLLERS

613

Listing 21-1. Determine the first 10k prime numbers

int Nprimes = 9999; // required number of primes - 1

unsigned long number = 2; // start from number 2

int count = 1; // prime number counter

unsigned int start = 0; // store processing time

unsigned long ms;

int chk, limit, mod, divid;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 while(!Serial); // wait for Pro Micro to connect Serial

 Serial.print("\nCPU "); Serial.println(F_CPU/1000000);

 start = millis(); // start of processing time

}

void loop()

{

 number++; // increment number to check

 chk = is_prime(number);

 if (chk > 0) count++; // increment counter when prime

 if (count > Nprimes)

 {

 ms = millis() - start; // display results

 Serial.print("Found ");

 Serial.print(count);

 Serial.print(" primes in ");

 Serial.print(ms);

 Serial.println(" ms");

 Serial.print("Highest prime is ");

CHAPTER 21 MICROCONTROLLERS

614

 Serial.println(number);

 delay(50000); // long delay when finished

 }

}

int is_prime(unsigned long num) // function to check if prime number

{

 mod = num % 2; // exclude even numbers

 if (mod == 0) return 0;

 limit = sqrt(num); // check divisors less than square root

 for (int divid = 3; divid <= limit; divid = divid + 2)

 {

 mod = num % divid; // remainder after dividing

 if (mod == 0) return 0; // not prime if zero remainder

 }

 return 1; // no divisor with zero remainder

}

The development boards have different pin layouts and installation

and sketch loading requirements, so details of each development board

are described separately. Information on the pin layout of a development

board that is accessible with the Arduino IDE is listed in the file pins_

arduino, which is located in the file user ➤ AppData ➤ Local ➤ Arduino15

➤ packages ➤ microcontroller ➤ hardware ➤ category ➤ version ➤

variants ➤ board, where microcontroller, category, version, and board

correspond to the particular development board. For example, pin layout

information on the LOLIN (WeMos) D1 mini board is located in the file

user ➤ AppData ➤ Local ➤ Arduino15 ➤ packages ➤ esp8266 ➤ hardware

➤ esp8266 ➤ version ➤ variants ➤ d1_mini.

Information on the microcontroller CPU frequency and GPIO

(General-Purpose Input-Output) pins allocated to SPI (Serial Peripheral

Interface) and I2C (Inter-Integrated Circuit) communication is obtained

CHAPTER 21 MICROCONTROLLERS

615

within the Arduino IDE framework. The sketch in Listing 21-2 also

provides information about the sketch itself. The sketch is run with any

microcontroller that is accessible by the Arduino IDE.

Listing 21-2. Microcontroller information

String str, adjStr;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 Serial.println();

 while(!Serial); // Pro Micro wait for serial port

 Serial.print("Arduino IDE version ");

 str = String(ARDUINO); // Arduino IDE version

 adjStr = str.substring(1,str.length()-5)+".";

 adjStr = adjStr + str.substring(str.length()-4,

str.length()-2)+".";

 adjStr = adjStr + str.substring(str.length()-2);

 Serial.println(adjStr); // date and time sketch compiled

 Serial.print("Compiler version");

Serial.println(__VERSION__);

 Serial.print("Compiled date"); Serial.println(__DATE__);

 Serial.print("Compiled time"); Serial.println(__TIME__);

 Serial.print("Sketch location"); Serial.println(__FILE__);

 Serial.print("CPU frequency(MHz)"); // CPU frequency

 Serial.println(F_CPU/1000000);

 Serial.print("Development board");

Serial.println(ARDUINO_BOARD);

 #ifdef __AVR__ // development board

 Serial.print("Microcontroller");

Serial.println(ARDUINO_MCU);

CHAPTER 21 MICROCONTROLLERS

616

 #endif // microcontroller

 Serial.print("SPI MOSI");Ser ial.println(MOSI); // pin layout SPI

 Serial.print("SPI MISO");Serial.println(MISO);

 Serial.print("SPI SCK");Serial.println(SCK);

 Serial.print("SPI SS");Serial.println(SS);

 Serial.print("I2C SDA");Ser ial.println(SDA); // pin layout I2C

 Serial.print("I2C SCL");Serial.println(SCL);

 #ifndef ESP32

 Serial.print("LED");Serial.println(LED_BUILTIN); // built-in LED

 #endif

}

void loop() // nothing in loop function

{}

The parameters ARDUINO_BOARD and ARDUINO_MCU are generated

by instructions based on line 58 of the platform.txt file that refers to

compiling C++ files. The line starts with recipe.cpp.o.pattern. The platform.

txt file is located in user ➤ AppData ➤ Local ➤ Arduino15 ➤ packages ➤

arduino ➤ hardware ➤ avr ➤ version. The line from the platform.txt file is

pasted into a new file, platform.local.txt, with the addition of

-DARDUINO_BOARD="{build.board}" and -DARDUINO_

MCU="{build.mcu}". The file platform.local.txt is stored in the same folder

as the platform.txt file. When the sketch is compiled, the two variables

are accessible. The parameter ARDUINO_BOARD already exists for the

ESP8266 and ESP32 microcontrollers, and the parameter ARDUINO_MCU

does not need to be displayed for ESP8266 and ESP32 microcontrollers.

Listing 21-2 includes the compiler directives of #ifdef and #endif,

for the compiler to determine if the microcontroller is defined as AVR

based, __AVR__, or not defined as an ESP32 and then only incorporate the

relevant instructions in the compilation process. The compiler directives

of #if, #elif, and #else correspond to if with a condition, else if, and else in

CHAPTER 21 MICROCONTROLLERS

617

the C language. The directive #ifndef is equivalent to if not defined as. The

compiler directive #ifdef must be followed by an #endif directive.

Microcontrollers are broadly grouped as AVR based (__AVR__),

ESP8266, and ESP32. AVR may be an acronym of the inventors of the AVR

architecture: Alf-Egil Bogen and Vegard Wollan RISC processor. Details of

specific microcontroller groupings are listed in the Arduino, ESP8266, or

ESP32 boards.txt file that is located in the same directory as the platform.

txt file, with a grouping defined by board.build. Examples of specific

ESP8266 or ESP32 microcontroller groupings are ESP8266_WEMOS_

D1MINI and ESP8266_NODEMCU or ESP32_DEV and FEATHER_ESP32. If

a specific microcontroller grouping is used in a compiler directive, then the

grouping is preceded with ARDUINO_, as in #ifdef ARDUINO_ESP32_DEV.

The Arduino IDE has predefined values for the constants π, e,

π/180, and 180/π, defined as PI, EULER, DEG_TO_RAD, and RAD_TO_DEG,

respectively. Values are located in the file Program Files (x86) ➤ Arduino

➤ hardware ➤ arduino ➤ avr ➤ cores ➤ arduino ➤ Arduino.

 Arduino Uno
 The Arduino Uno is based on the

ATmega328P microcontroller, and

the development board operates

at 5 V, powered through a USB

connection at 5 V or a DC input jack

at 7–12 V. The maximum current

supply from a GPIO pin is 40 mA,

with a maximum current from all

output pins of 200 mA. In a sketch,

GPIO pins are referenced by the numbering on the development board

and not by the GPIO pin numbers of the ATmega328P microcontroller.

The exception is the ADC pins A0–A5 which are also referenced as pin

numbers 14–19. Communication pins for I2C are A4 (SDA) and A5 (SCL)

CHAPTER 21 MICROCONTROLLERS

618

and for SPI are 11 (MOSI), 12 (MISO), 13 (SCK), and 10 (SS). PWM pins are

3, 5, 6, 9, 10, and 11. Interrupt pins, INT0 and INT1, are 2 and 3. The built-in

LED is on pin 13.

 Arduino Nano
The Arduino Nano has the same

ATmega328P microcontroller as

the Arduino Uno and the same

pin functionality, except that pins

A6 and A7 are analog input only.

Digital pins are prefixed with D

on the development board. The

development board operates at 5 V

and is powered through a mini-USB

connection at 5 V.

In January 2018, Arduino

released a new bootloader for the Arduino Nano, so the relevant processor

must be selected in the Arduino IDE. In the Tools ➤ Processor menu,

select either the ATmega328P option or the ATmega328P (Old Bootloader)

option.

CHAPTER 21 MICROCONTROLLERS

619

 Arduino Pro Micro
In the Arduino IDE, the Arduino Pro

Micro is referenced as the Arduino

Leonardo in the Tools ➤ Board menu.

The development board operates at

5 V and is powered through a mini-

USB connection at 5 V. In a sketch,

pins are referenced by the numbering

on the development board and not

by the GPIO pin numbers of the

ATmega32U4 microcontroller. The ADC

pins A0–A3 are also referenced as pin

numbers 18–21. Pins 4, 6, 8, 9, and 10

correspond to the ADC pins A6–A10.

Communication pins for I2C are 2 (SDA) and 3 (SCL) and for SPI are 16

(MOSI), 14 (MISO), and 15 (SCK). PWM pins are 3, 5, 6, 9, and 10. Interrupt

pins, INT0, INT1, INT2, INT3, and INT6, are 3, 2, 0 (RX), 1 (TX), and 7. The

built-in RX and TX LEDs are on pins 17 and 30, which are active LOW, and

are automatically defined as OUTPUT pins. The TX LED is turned off or on

with the built-in macro TXLED0 or TXLED1, respectively (see Listing 21-3).

When the TXLED0 and TXLED1 macros are not utilized, then the TXLED

pin must be defined.

Listing 21-3. Controlling Pro Micro LEDs

int RXLED = 17; // define RXLED pin

//int TXLED = 30; // required if not using macros

void setup()

{} // nothing in setup function

CHAPTER 21 MICROCONTROLLERS

620

void loop()

{

 digitalWrite(RXLED, HIGH); // turn off RXLED

// digitalWrite(TXLED, HIGH); // turn off TXLED

 TXLED0; // macro to turn off TXLED

 delay(1000);

 digitalWrite(RXLED, LOW); // turn on RXLED

// digitalWrite(TXLED, LOW); // turn on TXLED

 TXLED1; // macro to turn on TXLED

 delay(1000);

}

When a sketch uploads, the ATmega32U4 bootloader Serial port opens

and then closes after the sketch is uploaded. The ATmega32U4 Serial

port then opens, so the COM port may change after a sketch is loaded.

The instruction while(!Serial) waits until the Serial connection is

established. The ATmega32U4 microcontroller does not reset when a COM

port is opened, unlike ATmega328P of the Arduino Uno.

The Arduino Pro Micro microcontroller is reset by connecting the reset

(RST) pin, which has a pull-up resistor, to GND twice to put the Arduino

Pro Micro microcontroller into bootloader mode for an eight-second

period, before a sketch is started. The ATmega32U4 microcontroller

may become un-programmable or bricked if a problem occurs when

uploading a sketch that uses the Keyboard library or with an incorrectly

defined microcontroller, such as a 16 MHz/5 V microcontroller defined

as 8 MHz/3.3 V. The bootloader may have to be reinstalled, and the

Atmega_Board_Programmer by Nick Gammon is recommended, which is

downloaded from githib.com/nickgammon/arduino_sketches.

CHAPTER 21 MICROCONTROLLERS

https://githib.com/nickgammon/arduino_sketches

621

 ESP8266 development board
The LOLIN (WeMos) D1 mini development board (see Figure 21-1) is

based on the ESP-8266EX microcontroller and has Wi-Fi functionality. The

development board operates at 3.3 V and is powered through a micro-USB

connection at 5 V, through the 3.3 V voltage regulator, or directly on the 3.3

V pin, but the former connection is recommended. The pins are not 5 V

tolerant, and the maximum current supply from a pin is 12 mA.

In a sketch, pins are referenced by either the numbering on the

development board prefixed by the letter D for digital pins or by the ESP-

8266EX microcontroller GPIO numbers. The ADC pin is A0 and has 10-bit

resolution. Pins for I2C communication are D2 or GPIO 4 (SDA) and D1 or

GPIO 5 (SCL) and for SPI communication are D7 or GPIO 13 (MOSI), D6 or

GPIO 12 (MISO), D5 or GPIO 14 (SCK), and D8 or GPIO 15 (SS). The four

digital pins, D2, D6, D5, and D8 or GPIO 4, GPIO 12, GPIO 14, and GPIO

15, have 10-bit PWM resolution and interrupt functionality. The built-in

LED on pin D4 or GPIO 2 is active LOW. Note that pins D3 or GPIO 0 and

D4 or GPIO 2 have built-in pull-up resistors, while pin D8 or GPIO 15 has

Figure 21-1. LOLIN (WeMos) D1 mini development board

CHAPTER 21 MICROCONTROLLERS

622

a built-in pull-down resistor. When uploading a sketch, pins D3 and D4

must not be pulled LOW, and similarly pin D8 must not be pulled HIGH. In

Figures 21-1 and 21-2, a built-in pull-up or pull-down resistor is indicated

by Rup or Rdn.

The CH340G USB to UART (Universal Asynchronous Receiver-

Transmitter) driver for the LOLIN (WeMos) D1 mini is downloaded from

docs.wemos.cc/en/latest/ch340_driver.html. Save the CH341SER_

WIN_3.5 zip file on the Desktop, right-click Extract All, and in the extracted

folder CH341SER_WIN_3.5 right-click the SETUP application, select Run

as administrator, and install the driver CH341S64.SYS. Drivers are located

in the C: ➤ Windows ➤ System32 ➤ drivers folder.

The NodeMCU ESP8266 development board (see Figure 21-2) has the

same effective functionality as the LOLIN (WeMos) D1 mini development

board. The NodeMCU ESP8266 development board has three 3.3V pins

and four GND pins for connecting to other devices and two built-in LEDs

on pins D4 or GPIO 2 and D0 or GPIO 16, which are active LOW. The

ESP8266 microcontroller stores a sketch in an external flash memory chip

and communicates with the flash chip over an SDIO (Secure Digital Input-

Output) interface. The NodeMCU ESP8266 development board GPIO 6–11

pins correspond to the SDIO interface pins labeled CLK, SD0, SD1, SD2,

SD3, and CMD.

CHAPTER 21 MICROCONTROLLERS

https://docs.wemos.cc/en/latest/ch340_driver.html

623

The CP210x USB to UART Bridge driver for the NodeMCU ESP8266

development board is downloaded from www.silabs.com/products/

development-tools/software/usb-to-uart-bridge-vcp-drivers. Save

the CP210x_Universal_Windows_Driver zip file on the Desktop and right-

click Extract All. In the extracted folder CHP210x_Universal_Windows_

Driver, right-click either the x64 or x86 version of the CP210xVCPInstaller

application for a 64-bit or a 32-bit operating system, respectively. To

determine if a computer has a 64-bit or a 32-bit operating system, select

Control Panel ➤ System and Security ➤ System, and the system type is

displayed. Select Run as administrator and install the driver silabser.sys.

Drivers are located in the C: ➤ Windows ➤ System32 ➤ Drivers folder. The

computer may need to be restarted to complete the driver installation.

Figure 21-2. NodeMCU ESP8266 development board

CHAPTER 21 MICROCONTROLLERS

http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

624

For both the LOLIN (WeMos) D1 mini and NodeMCU ESP8266

development boards, select File ➤ Preferences in the Arduino IDE

and enter the URL http://arduino.esp8266.com/stable/package_

esp8266com_index.json in the Additional Boards Manager URLs box. If

there is already a URL in the box, then separate the URLs with a comma.

ESP8266 libraries are installed in the Arduino IDE by selecting Tools

➤ Board ➤ Boards Manager, entering 8266 in the Filter option to display

esp8266 by ESP8266 Community, and clicking Install. In the Tools ➤ Board

drop-down list, select LOLIN(WEMOS) D1 R2 & mini, as listed in the

ESP8266 Boards section. In Tools ➤ CPU Frequency, select 160 MHz; and

in Tools ➤ Port, select the relevant COM port.

Reference documentation for the ESP8266 microcontroller is available

at arduino-esp8266.readthedocs.io/en/latest/index.html.

 ESP8266 analog input
The ESP8266 microcontroller 10-bit analog to digital converter (ADC)

functionality converts a voltage, between 0 and 3.2 V, on the analog input

pin A0 to a digital value between 0 and 1023. The instruction

analogRead(A0) reads the voltage on the analog input pin A0. The

reference voltage of the ESP8266 microcontroller ADC is 1 volt; and an

internal voltage divider, consisting of 100 kΩ and 220 kΩ resistors (see

Figure 21-3), increases the maximum voltage on the analog input pin to

3.2 V. Given a voltage, VIN, on the ESP8266 development board analog

input pin, the corresponding ADC value is V k
kIN ´ +()

´
100

220 100
1024

W
W

.

CHAPTER 21 MICROCONTROLLERS

https://arduino.esp8266.com/stable/package_esp8266com_index.json
https://arduino.esp8266.com/stable/package_esp8266com_index.json
https://arduino-esp8266.readthedocs.io/en/latest/index.html

625

ADC values for input voltages between 3.2 V and 3.3 V are constrained

to 1023. A 10 kΩ resistor connected between the input voltage and the

ESP8266 development board analog input pin increases the limit of 3.2 V

on the analog input pin to 3.3V.

 ESP8266 interrupts
An interrupt is attached to a pin on the ESP8266 development board, such

as pins D1–D7 of the LOLIN (WeMos) D1 mini, with the instruction attach

Interrupt(digitalPinToInterrupt(switchPin), change, FALLING) (see

Figure 21-4, left side). The switch is connected to GND and the switch pin

on the ESP8266 development board. The instruction pinMode(switchPin,

INPUT_PULLUP) activates the internal pull-up resistor on the switch pin,

so the switch pin state is HIGH. When the switch is pressed, the switch

pin is connected to GND, changing the switch pin state to LOW, with the

FALLING state activating the interrupt. The ESP8266 microcontroller stores

compiled code in internal RAM (IRAM), rather than in the slower flash

memory, by prefixing sketch instructions with the IRAM_ATTR attribute.

The interrupt ISR is defined as IRAM_ATTR void ISR() rather than void

ISR(). If the interrupt ISR is defined before the sketch setup function, then

the ISR definition instruction is changed to void IRAM_ATTR ISR().

In contrast, if the switch pin is D8, then the switch is connected to 3.3V

and the switch pin on the development board (see Figure 21-4, right side).

Pin D8 has a built-in pull-down resistor, so the pin state is LOW. The

interrupt is attached to pin D8 with the instruction attachInterrupt

Figure 21-3. Analog to digital converter

CHAPTER 21 MICROCONTROLLERS

626

(digitalPinToInterrupt(switchPin), change, RISING). When the

switch pin is pressed, the switch pin state changes to HIGH, with the

RISING state activating the interrupt. The RISING interrupt with pin D8

as the switch pin is less susceptible to switch bouncing than the FALLING

interrupt on pins D1–D7. Note that the difference between the two circuits

in Figure 21- 4 is the switch pin is connected to pins D7 and GND or the

switch pin is connected to D8 and 3.3V.

Figure 21-4. Interrupts with LOLIN (WeMos) D1 mini

The sketch in Listing 21-4 illustrates the difference between interrupts

attached to ESP8266 development board pins D7 and D8. When the

interrupt is attached to pin D7, the pin is defined as INPUT_PULLUP to

activate the built-in pull-up resistor, and the interrupt is activated on a

FALLING signal. If the interrupt is attached to pin D8, then a RISING signal

activates the interrupt.

CHAPTER 21 MICROCONTROLLERS

627

Listing 21-4. Interrupts with the ESP8266 development board

int LEDpin = D0; // define LED pin

int switchPin = D7; // define switch pin

volatile int LEDstate = LOW; // initial LED state

 // volatile as LEDstate in ISR

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 pinMode(LEDpin, OUTPUT); // define LEDpin as OUTPUT

 pinMode(switchPin, INPUT_PULLUP); // when switch pin is D1 to D7

 attachInterrupt(digitalPinToInterrupt(switchPin), change,

FALLING); // when switch pin is D8

// attachInterrupt(digitalPinToInterrupt(switchPin), change,

// RISING);

}

void loop()

{

 Serial.println(digitalRead(switchPin)); // display switch pin state

 delay(1000);

}

IRAM_ATTR void change() // interrupt service routine (ISR)

{

 LEDstate = 1-LEDstate; // change LED state

 digitalWrite(LEDpin, LEDstate); // turn LED on or off

}

CHAPTER 21 MICROCONTROLLERS

628

 ESP8266 watchdog timer
If an ESP8266 microcontroller is prevented from performing background

tasks by a long period of inactivity during a sketch, then the watchdog

timer may initiate a software reset. Background tasks include maintaining

a Wi-Fi connection or managing the TCP/IP (Transmission Control

Protocol/Internet Protocol) Internet connection. A software reset is

indicated by the messages Soft WDT reset and rst cause:2, boot mode:(3,6).

Including the instruction delay(1) or yield() in the sketch at the point of

inactivity may resolve the software reset. The yield() instruction allows

completion of background tasks.

The sketch location of the software reset by the watchdog timer is

determined with the ESP Exception Decoder. Instructions for installing

and running the ESP Exception Decoder are outlined at arduino- esp8266.

readthedocs.io/en/latest/faq/a02-my-esp-crashes.html. The

ESP Exception Decoder is downloaded from github.com/me-no-dev/

EspExceptionDecoder. The unzipped EspExceptionDecoder.jar (Java

Archive) file containing the ESP Exception Decoder must be located in the

Sketchbook location ➤ tools ➤ EspExceptionDecoder ➤ tool folder, where

the Sketchbook location folder is defined in the Arduino IDE, by selecting

File ➤ Preferences.

A hardware reset by the watchdog timer is indicated with the messages

wdt reset and rst cause:4, boot mode:(3,6). The location of the hardware

reset in a sketch is not determined with the ESP Exception Decoder, so

a series of Serial.println() instructions is used to determine the last

successful instruction before the hardware reset.

CHAPTER 21 MICROCONTROLLERS

https://arduino-esp8266.readthedocs.io/en/latest/faq/a02-my-esp-crashes.html
https://arduino-esp8266.readthedocs.io/en/latest/faq/a02-my-esp-crashes.html
https://github.com/me-no-dev/EspExceptionDecoder
https://github.com/me-no-dev/EspExceptionDecoder

629

 ESP32 development board
The ESP32 development board, such as the ESP32

DEVKIT DOIT, is based on the ESP32 microcontroller

and has both Wi-Fi and Bluetooth functionality. The

development board operates at 3.3 V and is powered

through a micro-USB connection at 5 V or directly

on the 3.3V VIN pin, but the former connection is

recommended. The GPIO pins are not 5 V tolerant,

and the maximum current supply from a pin is 12 mA.

In a sketch, pins are referenced by ESP32

microcontroller GPIO numbers. There are six ADC pins

(GPIO 32, GPIO 33, GPIO 34, GPIO 35, GPIO 36, and

GPIO 39) with 12-bit resolution and two DAC (digital to analog converter)

pins (GPIO 25 and GPIO 26) with 8-bit resolution. Communication pins for

I2C are GPIO 21 (SDA) and GPIO 22 (SCL) and for SPI are GPIO 23 (MOSI),

GPIO 19 (MISO), GPIO 18 (CLK), and GPIO 5 (CS). All GPIO pins, except the

input-only pins (GPIO 34, GPIO 35, GPIO 36, and GPIO 39), are PWM pins;

and all GPIO pins have interrupt functionality. There are nine capacitive

touch pins (GPIO 2, GPIO 4, GPIO 12, GPIO 13, GPIO 14, GPIO 15, GPIO 27,

GPIO 32, and GPIO 33). The built-in LED is on GPIO 2, and the LED is active

HIGH. Several pins are available to the real-time clock to trigger the ESP32

microcontroller from sleep mode. Internal pull- up resistors are connected

to GPIO pins 0, 5, 14, and 15 with pull-down resistors on GPIO pins 2,4, and

12. The ESP32 microcontroller contains a Hall effect sensor. Pin layouts

of the ESP32 DEVKIT DOIT and NodeMCU development boards with 30

and 38 pins are shown in Figures 21-5 and 21- 6, respectively, to illustrate

development board differences. Pin functions are coded as A#, analog

input; T#, capacitive touch; input, input only; RTC, real-time clock; Rup,

built-in pull-up resistor; and Rdn, built-in pull- down resistor. GPIO 6–11

pins of the NodeMCU development board are connected to the integrated

flash memory, and use of the pins is not recommended.

CHAPTER 21 MICROCONTROLLERS

630

Figure 21-6. ESP32 NodeMCU 36-pin layout

Figure 21-5. ESP32 DEVKIT DOIT 30-pin layout

CHAPTER 21 MICROCONTROLLERS

631

The CP210x USB to UART Bridge driver for the ESP32 development

board is downloaded from www.silabs.com/products/development-

tools/software/usb-to-uart-bridge-vcp-drivers. Save the CP210x_

Universal_Windows_Driver zip file on the Desktop and right-click Extract

All. In the extracted folder CP210x_Universal_Windows_Driver, right-

click either the x64 or x86 version of the CP210xVCPInstaller application

for a 64-bit or a 32-bit operating system, respectively. To determine if a

computer has a 64-bit or a 32-bit operating system, select Control Panel ➤

System and Security ➤ System, and the system type is displayed. Select Run

as administrator and install the driver silabser.sys. Drivers are located in

the C: ➤ Windows ➤ System32 ➤ Drivers folder. The computer may need

to be restarted to complete the driver installation.

In the Arduino IDE, select File ➤ Preferences and enter the URL

https://dl.espressif.com/dl/package_esp32_index.json in the

Additional Boards Manager URLs box. If there is already a URL in the box,

then separate the URLs with a comma.

ESP32 libraries are installed in the Arduino IDE by selecting Tools ➤

Board ➤ Boards Manager, entering ESP32 in the Filter option to display

esp32 by Espressif Systems, and clicking Install. In the Tools ➤ Board drop-

down list, select ESP32 Dev Board or your specific ESP32 development

board as listed in the ESP32 Boards section. In Tools ➤ Upload Speed, CPU

Frequency, Flash Frequency, Flash Mode, Flash Size, and Partition Scheme,

select 921600, 240MHz (WiFI/BT), 80MHz, DIO, 4MB (32Mb), and Default

4MB with spiffs, respectively. The SPI Flash Mode setting of QIO (Quad

Input/Output) is faster than the DIO (Dual Input/Output) setting, but not

all settings are available to each device. After loading a sketch, the message

rst:0x3 (SW_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT) is displayed if

the QIO setting is unsupported. Further details are available at github.

com/espressif/esptool/wiki/SPI-Flash-Modes. Finally, in Tools ➤ Port,

select the relevant COM port.

CHAPTER 21 MICROCONTROLLERS

http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://dl.espressif.com/dl/package_esp32_index.json
https://github.com/espressif/esptool/wiki/SPI-Flash-Modes
https://github.com/espressif/esptool/wiki/SPI-Flash-Modes

632

Reference documentation for the ESP32 microcontroller is available at

docs.espressif.com/projects/esp-idf/en/latest/esp32/index.html,

particularly the API Reference section.

The ESP32 microcontroller includes several features that are specific

to the ESP32 microcontroller, which are described in Chapter 22 (ESP32

microcontroller features). Sketch instructions for an ESP32 development

board differ in several ways from programming a board containing

an ATmega328P or ESP8266 microcontroller. The following examples

illustrate programming an ESP32 development board to access features

that are available to the ATmega328P or ESP8266 microcontroller.

 ESP32 digital input
To read the state of a GPIO pin, the pin is defined with the instruction

pinMode(pin, INPUT). If a GPIO pin is to be held LOW, then the internal

pull-down resistor on the GPIO pin is activated with the instruction

pinMode(pin, INPUT_PULLDOWN). Similarly, the instruction pinMode(pin,

INPUT_PULLUP) activates the internal pull-up resistor on the GPIO pin,

which is also available on the ATmega328P or ESP8266 microcontroller.

Scenarios for activating the pull-up or pull-down resistor on a GPIO pin

are to maintain the default state of a switch to HIGH or LOW, respectively,

or for triggering an interrupt with a FALLING or RISING signal,

respectively.

 ESP32 analog input
The 12-bit analog to digital converter (ADC) functionality converts a

voltage, between 0 and 3.3 V, on an analog input pin to a digital value

between 0 and 4095. The instruction analogRead(ADCpin) reads the

voltage on the ADCpin, with the ADCpin defined as either the GPIO

number 32, 33, 34, 35, 36 (pin VP), or 39 (pin VN) or by A4, A5, A6, A7, A0,

CHAPTER 21 MICROCONTROLLERS

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/index.html

633

or A3, respectively. The mapping of voltage to digital value is linear for

input voltages of between 0.5 V and 2.5 V with increments of 0.8 mV. The

ESP32 microcontroller incorporates more pins with ADC functionality,

but the pins are not available on the ESP32 DEVKIT DOIT or NodeMCU

development board.

The ADC resolution on an ADC pin is increased using the instruction

analogSetPinAttenuation(ADCpin, attenuation) with attenuation

values of ADC_11dB (default), ADC_6dB, ADC_2_5dB, or ADC_0d. The

input voltage, VIN, on an ADC pin is reduced to VIN
dB

/
/

10
10() for a given

decibel value. For example, the 2.5 dB attenuation reduces an input

voltage of 1 V to 0.75 V resulting in an ADC value of 3072 = 4096*0.75, while

the default 11 dB setting results in an ADC value of 1154. The sketch in

Listing 21-5 changes the attenuation setting of an ADC pin.

Listing 21-5. Analog to digital conversion

int ADCpin = 36; // define ADC pin

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 Serial.println();

 analogSetPinAttenuation(ADCpin, ADC_11d b);

// default setting of 11dB

 Serial.println(analogRead(ADCpin)); // read ADC pin

 analogSetPinAttenuation(ADCpin, ADC_6db) ;

// change setting to 6dB

 Serial.println(analogRead(ADCpin));

 analogSetPinAttenuation(ADCpin, ADC_2_5db);

 Serial.println(analogRead(ADCpin));

 analogSetPinAttenuation(ADCpin, ADC_0db);

CHAPTER 21 MICROCONTROLLERS

634

 Serial.println(analogRead(ADCpin));

}

void loop()

{} // nothing in loop function

 ESP32 pulse width modulation
All GPIO pins, except the input-only pins (GPIO 34, GPIO 35, GPIO 36, and

GPIO 39), are PWM pins and can generate a square wave with variable

duty cycle. Three instructions are required for PWM

ledcAttachPin(wavePin, channel)

ledcSetup(channel, freq, resolution)

ledcWrite(channel, duty)

with the parameters PWM output channel (channel), GPIO pin to output

square wave (wavePin), square wave frequency (freq), PWM resolution

(resolution), and duty cycle (duty). The ESP32 microcontroller uses 8, 10,

12, or 15-bit resolution for PWM, providing ranges from 0 to 255, 1023,

4095, or 32767, respectively. In comparison, the Arduino Uno ATmega328P

and ESP8266 microcontrollers use 8-bit and 10-bit resolution, respectively.

The maximum square wave frequency is equal to 80 MHz/2resolution. For

example, with 8-bit or 15-bit resolution, the maximum square wave

frequency is 312.5 kHz or 2.44 kHz, with a trade- off between the number

of PWM levels, which is the resolution, and the maximum square wave

frequency. The sketch in Listing 21-6 increases and then decreases the

brightness of an LED by changing the 5 kHz square wave duty cycle.

CHAPTER 21 MICROCONTROLLERS

635

Listing 21-6. PWM signal

int channel = 0; // define PWM output channel

int wavePin = 25; // square wave output pin

int freq = 5000; // square wave frequency

int resolution = 8; // PWM resolution

int bright = 0;

int increm = 5; // increment in duty cycle

int lag = 25; // time between PWM changes

void setup()

{

 pinMode(wavePin, OUTPUT); // square wave pin as output

 ledcAttachPin(wavePin, channel); // attached channel to pin

 ledcSetup(channel, freq, resolution);

}

void loop()

{

 ledcWrite(channel, bright); // set channel duty cycle

 delay(lag);

 bright = bright + increm; // increment duty cycle

 if(bright <= 0 || bright >= 255) increm = - increm;

} // reverse duty cycle increment

 ESP32 serial input
The ESP32 DEVKIT DOIT 30-pin development board has two Serial ports

with the Serial transmit and receive pins on GPIO 1 (TX0) and GPIO 3

(RX0) and the Serial2 transmit and receive pins on GPIO 17 (TX2) and

GPIO 16 (RX2). In Chapter 12 (GPS tracking app with Google Maps), the

ESP8266 microcontroller sketch to update positional information of a

CHAPTER 21 MICROCONTROLLERS

636

u-blox NEO-7M GPS module required the SoftwareSerial library for Serial

communication. Similarily, in Chapter 5 (MP3 player), the SoftwareSerial

library was required for Serial communication with the MP3 player. The

ESP32 development board Serial ports enable Serial communication

with more than one device, without having to utilize libraries to

provide the Serial communication functionality. The instruction

Serial2.begin(baud, SERIAL_8N1, RXD2, TXD2) establishes Serial

communication on the second Serial port on pins RXD2 and TXD2, with

the baud rate defined by the parameter baud.

The ESP32 NodeMCU 36-pin development board has three Serial ports

with the Serial1 transmit and receive pins on GPIO 10 (TX1) and GPIO 9

(RX1). The instruction Serial1.begin(baud, SERIAL_8N1, RXD1, TXD1)

establishes Serial communication on the Serial port on pins RXD1 and

TXD1, with a baud rate defined by the parameter baud.

 Wi-Fi communication and web server
Several projects in the book require Wi-Fi communication with web server

functionality. For the ESP8266 microcontroller, the required instructions are

#include <ESP8266WiFi.h>

#include <ESP8266WebServer.h>

ESP8266WebServer server

For the ESP32 microcontroller, the corresponding instructions are

#include <WiFi.h>

#include <WebServer.h>

WebServer server(80)

noting that a port number must be specifically defined for the ESP32

microcontroller. The ESP8266WebServer and WebServer libraries reference

the corresponding Wi-Fi library, so the #include <ESP8266WiFi.h> or

#include <WiFi.h> instructions are not required.

CHAPTER 21 MICROCONTROLLERS

637

 ESP8266 and ESP32 interrupts
Interrupts are attached with the instruction attachInterrupt(digitalP

inToInterrupt(switchPin), ISR, state change) with the parameters

defining the switchPin attached to the interrupt, the interrupt service

routine (ISR), and the change in the switch state, state change, equal to

either CHANGE, FALLING, RISING, HIGH, or LOW. The ESP8266 and ESP32

microcontrollers store compiled code in internal RAM (IRAM), rather

than in the slower flash memory, by prefixing code with the IRAM_ATTR

attribute. The interrupt ISR is defined as IRAM_ATTR void ISR() rather than

void ISR(). If the interrupt ISR is defined before the setup function, then

the ISR definition instruction is changed to void IRAM_ATTR ISR().

 ESP8266 and ESP32 and an OLED screen
The Wire library is required when using the Adafruit SSD1306 library to

display images on an OLED screen, with the OLED I2C pins connected

to an ESP8266 or ESP32 development board. The Adafruit SSD1306

library references the Adafruit GFX and Wire libraries, so the #include

<Adafruit_GFX.h> and #include <Wire.h> instructions are not required.

The OLED screen size, pixel width and height, is defined in the instruction

Adafruit_SSD1306 oled(width, height, &Wire, -1) with the -1

indicating that a reset pin is not defined for the OLED screen. The width,

height, and &Wire parameters are not explicitly defined when using an

OLED screen with an ATmega328P microcontroller.

CHAPTER 21 MICROCONTROLLERS

638

 ESP32 and servo motors
The ESP32 development board requires an ESP32-specific servo library,

rather than the Arduino IDE built-in Servo library. The ESP32Servo library

by Kevin Harrington and John K. Bennett is recommended, and the library

is available in the Arduino IDE. The built-in Servo library instructions

#include <Servo.h> // include Servo library

servoFB.attach(FBpin) // initialise servo motor to FBpin

are replaced with the ESP32Servo library instructions

#include <ESP32Servo.h>

servoFB.setPeriodHertz(F) // define servo frequency (F)

servoFB.attach(FBpin, minPW, maxPW) // initialise servo motor to FBpin

There is no change to the following instructions:

Servo servoFB // associate servoFB with servo lib

servoFB.writeMicroseconds(T) // move to position mapped to Tμs

servoFb.write(N) // move to angle N°

In the servoFB.attach(FBpin, minPW, maxPW) instruction, the

minPW and maxPW parameters refer to the pulse width, in microseconds,

of a square wave to move the servo motor to 0° and 180°, respectively.

Default values for the minPW and maxPW parameters are 1000 μs and

2000 μs, with values of 500 μs and 2500 μs for the Tower Pro SG90 servo.

The square wave frequency, F, is included in the instruction servoFB.

setPeriodHertz(F), which is generally 50 Hz. A sketch to calibrate a servo

motor is given in Chapter 9 (WebSocket).

CHAPTER 21 MICROCONTROLLERS

639

 Summary
Properties of the ESP8266 and ESP32 microcontrollers are described, with

examples to illustrate several features. Specific ESP32 microcontroller

instructions are required for several properties available to the ESP8266

microcontroller, and the instruction differences are highlighted. Attaching

interrupts to an ESP8266 development board and resolving timeout issues

with the watchdog timer are discussed. The Arduino Uno, Nano, and Pro

Micro are briefly described as the microcontrollers are used in several

sketches.

 Components List
• ESP8266 microcontroller: LOLIN (WeMos) D1 mini or

NodeMCU board

• ESP32 microcontroller: DEVKIT DOIT or NodeMCU

board

• LED: 1×

• Resistor: 220 Ω

• Tactile switch

CHAPTER 21 MICROCONTROLLERS

641© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5_22

CHAPTER 22

ESP32 microcontroller
features
Features specific to the ESP32 microcontroller are described in this

chapter. In Chapter 21 (Microcontrollers), differences in instructions for

ESP8266 and ESP32 microcontrollers regarding features that are available

to both microcontrollers were described. The ESP32 microcontroller has

two cores, which are managed independently, Bluetooth communication

and Bluetooth Low Energy (BLE) communication, four independent

timers, a digital to analog converter (DAC) with capacitive touch sensors,

and a Hall effect sensor. The ESP32 DEVKIT DOIT development board is

illustrated in Figure 22-1.

https://doi.org/10.1007/978-1-4842-6336-5_22#DOI

642

 Microcontroller CPU and memory
The CPU frequency of the ESP32 microcontroller is changed, in the

Arduino IDE, to 10, 20, 40, 80, 160, or 240 MHz by selecting Tools ➤ CPU

Frequency. The impact of different CPU frequencies is determined by

measuring the time taken to calculate the first 10k prime numbers (see

Chapter 21 (Microcontrollers)). As the CPU frequency doubles, the time

to determine the first 10k prime numbers essentially halves from 11607

ms with 10 MHz to 5060 ms with 20 MHz, to 2403 ms with 40 MHz, to 1172

ms with 80 MHz, and 579 ms with 160 MHz. The time taken with a CPU

frequency of 240 MHz was only 385 ms.

The ESP32 microcontroller 4 MB flash memory is partitioned to non-

volatile storage (NVS), over the air (OTA) updates, applications, SPIFFS,

and EEPROM (see Chapter 20 (OTA and saving data to EEPROM, SPIFFS,

and Excel)), which are adjusted within the Arduino IDE depending on the

memory requirements of a sketch. Select the Tools menu and Partition

Figure 22-1. ESP32 DEVKIT DOIT development board

Chapter 22 eSp32 miCroController featureS

643

scheme for various combinations of application, SPIFFS, and OTA memory

allocation. For example, the default allocation is base, 36 kB where 1 kB is

1024 byte; NVS, 20 kB; OTA, 8 kB; protocol and application cores, 2 × 1280

kB; and SPIFFS, 1472 kB.

 ESP32 cores
The ESP32 microcontroller includes two cores, each with a Tensilica

Xtensa 32-bit LX6 microprocessor, in contrast to the ESP8266

microcontroller with one Tensilica L106 32-bit processor. The protocol

core, PRO_CPU, manages Wi-Fi, Bluetooth, SPI, and I2C communication,

while the application core, APP_CPU, is for application development.

The two cores are managed by the ESP-IDF (Espressif IoT Development

Framework) FreeRTOS (Real-Time Operating System), which is a

modification of FreeRTOS, with details available at www.freertos.org/

a00106.html. The Arduino IDE implementation of the ESP32 incorporates

ESP-IDF FreeRTOS. The FreeRTOS library by Richard Barry that is available

in the Arduino IDE is compatible with the ATmega328P and ATmega32U4

microcontrollers of the Arduino Uno, Nano, and Pro Micro, but there is

currently no FreeRTOS library for the ESP8266 microcontroller.

Tasks are allocated to a specific core with the instruction

xTaskCreatePinnedToCore(code, "detail", 1000, NULL, pr,

&TaskName, core);

where code is the function containing the task instructions, detail is a

string describing the task, pr is the task priority from 0 (lowest priority)

to 24, &TaskName is a pointer to the task handle, and core is the core

number, 0 or 1 for the protocol or application core. The 1000 value is the

default memory allocation in bytes, and the NULL value indicates that

no parameters are passed. Confirmation that a task is allocated to a core

is obtained with the parameter xPortGetCoreID(). The task handle is

Chapter 22 eSp32 miCroController featureS

http://www.freertos.org/a00106.html
http://www.freertos.org/a00106.html

644

defined with the instruction TaskHandle_t TaskName, but is only required

to delete a task with the instruction vTaskDelete(TaskName). The term

&TaskName is replaced with NULL in the xTaskCreatePinnedToCore()

instruction.

Task instructions are bracketed by

void code(void * parameter) // code function

{

 for(;;) // equivalent to a for instruction

 {

 Task instructions // task instructions

 }

}

The instruction for(;;) has the same format as for(int i=0; i<max;

i++), but without the parameters, and effectively runs the task instructions

in an infinite loop.

The timing of tasks is based on the number of clock ticks, with a tick

equal to 1 ms in the ESP-IDF FreeRTOS, as defined by the parameter

portTICK_PERIOD_MS. The instruction vTaskDelay(xOneSec) represents

a one-second delay, with the variable xOneSec, which is a TickType_t

object, defined as xOneSec = 1000/portTICK_PERIOD_MS. A time interval

is measured as the number of elapsed ticks, with the instructions

int tickTime = xTaskGetTickCount(); // tick count at start

vTaskDelay(xOneSec); // time interval

int tick = xTaskGetTickCount() - tickTime; // change in tick count

The sketch in Listing 22-1 simultaneously turns on or off two LEDs

at different time intervals, with the tasks controlling the LEDs allocated

to different ESP32 cores. A task is allocated to an ESP32 core with the

xTaskCreatePinnedToCore instruction. For comparison, the codeRed

function uses ESP-IDF FreeRTOS time instructions, while the codeBlue

Chapter 22 eSp32 miCroController featureS

645

function uses standard Arduino IDE instructions. In the loop function, the

instruction vTaskDelay(NULL) prevents processor time being allocated to

the function.

Listing 22-1. A task on each core

int redLED = 26; // define LED pins

int blueLED = 27;

TickType_t xOneSec; // create time delay variable

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 pinMode(redLED, OUTPUT); // set LED pins as output

 pinMode(blueLED, OUTPUT);

 xOneSec = 1000 / portTICK_PERIOD_MS; // define number of ticks

 xTaskCreatePinnedToCore(codeRed, "red LED one sec",

1000, NULL, 2, NULL, 0); // allocate tasks to cores

 xTaskCreatePinnedToCore(codeBlue, "blue LED quarter sec",

1000, NULL, 1, NULL, 1);

}

void codeRed(void * parameter) // function for red LED

{

 for (;;)

 {

 int tickTime = xTaskGetTickCount(); // tick count at start

 digitalWrite(redLED, HIGH); // turn on or off LED

 vTaskDelay(xOneSec); // task delay for one second

 digitalWrite(redLED, LOW);

Chapter 22 eSp32 miCroController featureS

646

 vTaskDelay(xOneSec);

 int tick = xTaskGetTickCount() - tickTime; // change in tick

// count

 Serial.print("Core ");Serial.print(xPortGetCoreID());

 Serial.print(" red ");Serial.println(tick);

 }

}

void codeBlue(void * parameter) // similar task with 250ms delay

{

 for (;;)

 {

 unsigned long start = millis(); // time at start

 digitalWrite(blueLED, HIGH);

 delay(250); // task delay of 250ms

 digitalWrite(blueLED, LOW);

 delay(250);

 start = millis() - start;

 Serial.print("Core ");Serial.print(xPortGetCoreID());

 Serial.print(" blue ");Serial.println(start);

 }

}

void loop()

{ // no instructions in loop function

 vTaskDelay(NULL); // other than zero delay

}

Turning on or off two LEDs with a 32-bit microcontroller operating at

240 MHz is trivial, but the sketch demonstrates using both ESP32 cores

simultaneously. The sketch in Listing 22-2 determines the first 5k and

10k primes simultaneously, with each task allocated to a different ESP32

Chapter 22 eSp32 miCroController featureS

647

core. Allocation of tasks to different cores effectively doubles task output

relative to performing a task on one ESP32 core. The last instruction,

vTaskDelay(1), of each task prevents the watchdog timer from resetting

the ESP32 microcontroller. The task to determine 10k prime numbers

takes 334 ms to complete, but when the instruction vTaskDelay(NULL) is

deleted, the task takes 662 ms to complete. The loop function is allocated

to the application core, and the instruction vTaskDelay(NULL) prevents

the use of processor time unnecessarily.

Listing 22-2. Simultaneous determination of the first 5k and 10k

prime numbers

unsigned long num5k = 2, num10k = 2; // start from number 2

int count5k = 1, count10k = 1; // prime number counters

unsigned int start5k = 0, start10k = 0; // processing times

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 xTaskCreatePinnedToCore(code5k, "5k", 1000, NULL, 1, NULL, 0);

 xTaskCreatePinnedToCore(code10k, "10k", 1000, NULL, 1, NULL,

1);

}

void code5k(void * parameter) // function for 5k primes

{

 for (;;)

 {

 num5k++; // increment number to check

 int chk = is_prime(num5k); // call function to test for prime

 if (chk > 0) count5k++; // increment counter when prime

 if (count5k > 4999) // count up to 5k numbers

Chapter 22 eSp32 miCroController featureS

648

 {

 printLine(start5k, count5k, n um5k);

// function to display results

 num5k = 2;

 count5k = 1; // reset parameters

 start5k = millis();

 vTaskDelay(1); // delay for watchdog timer

 }

 }

}

void code10k(void * parameter) // function for 10k primes

{

 for (;;)

 {

 num10k++;

 int chk = is_prime(num10k);

 if (chk > 0) count10k++;

 if (count10k > 9999)

 {

 printLine(start10k, count10k, num10k);

 num10k = 2;

 count10k = 1;

 start10k = millis();

 vTaskDelay(1);

 }

 }

}

void printLine(unsigned long start, int count, unsigned long number)

{

 int ms = millis() - start;

Chapter 22 eSp32 miCroController featureS

649

 Serial.print("Core ");Serial.print(xPortGetCoreID());

 Serial.print(" Found ");Serial.print(count);

 Serial.print(" primes in "); Serial.print(ms);

 Serial.print(" ms");

 Serial.print(" highest prime is ");Serial.println(number);

}

int is_prime(unsigned long num) // function to check if prime number

{

 int mod = num % 2; // exclude even numbers

 if (mod == 0) return 0;

 int limit = sqrt(num); // check divisors less than square root

 for (int divid = 3; divid <= limit; divid = divid + 2)

 {

 mod = num % divid; // remainder after dividing

 if (mod == 0) return 0; // not prime if zero remainder

 }

 return 1; // no divisor with zero remainder

}

void loop()

{

 vTaskDelay(NULL);

}

Information is passed between tasks operating on either the same

ESP32 core or different ESP32 cores using either a semaphore or a queue

to control information transfer. The semaphore method is analogous, to

an extent, to a relay race in which one runner passes a baton to a second

runner to allow the second runner to start running. However, with the

Chapter 22 eSp32 miCroController featureS

650

semaphore method, the first runner keeps running! The instructions

SemaphoreHandle_t baton and baton = xSemaphoreCreateMutex()

create a semaphore variable, baton, with the semaphore given by one task

and taken by the other task with the instructions xSemaphoreGive(baton)

and xSemaphoreTake(baton, portMAX_DELAY), respectively. The position

of the xSemaphoreGive(baton) instruction in the first task instructions

determines when the second task is initiated. With the semaphore method,

any information required to complete the second task is contained in

a global variable, which is defined with the instruction volatile type

variable.

The queue method is analogous to a manager allocating work items

to a worker, with the worker completing the work items on a first-in

first-out basis. The instructions QueueHandle_t queue and queue =

xQueueCreate(N, sizeof(int)) create the queue variable, queue, with

up to N work items. A work item is added or removed to or from the queue

with the instructions xQueueSend(queue, &work, portMAX_DELAY) or

xQueueReceive(queue, &work, portMAX_DELAY), respectively, where

&work is the pointer to the work item.

The difference between the semaphore and queue methods for

transferring information between tasks is the use of global variables

by the semaphore method. The instructions in Table 22-1 illustrate the

similarities and differences between the semaphore and queue methods.

Differences between the semaphore and queue methods are highlighted

in bold. In the sketch, the task allocated to ESP32 protocol core turns on

the red LED for one second and off for a random time period, redOff. The

task allocated to ESP32 application core turns on the blue LED for the

time period that the red LED is off. The delay(1) instruction following the

instruction to allocate a value to the variable redOff allows for processing

time.

With the semaphore method, the variable redOff is a global variable

that is accessible to the task controlling the blue LED. With the queue

Chapter 22 eSp32 miCroController featureS

651

method, the variable redOff is added to the queue by the task controlling

the red LED and read from the queue, as the variable blueOn, by the task

controlling the blue LED. For both methods, when the xSemaphoreGive()

or xQueueSend() instruction precedes the instruction to turn on the red

LED, the two LEDs are turned on simultaneously. In contrast, the two

LEDs turn on alternately, when the xSemaphoreGive() or xQueueSend()

instruction precedes the instruction to turn off the red LED. The sketch

illustrates timing two tasks to commence simultaneously or alternately.

Table 22-1. Semaphore and queue methods

Semaphore Queue

int redleD = 26; int redleD = 26;

int blueleD= 27; int blueleD = 27;

SemaphoreHandle_t baton; QueueHandle_t queue;

volatile int redOff;

void setup() { void setup() {

pinmode(redleD, output); pinmode(redleD, output);

pinmode(blueleD, output); pinmode(blueleD, output);

xtaskCreatepinnedtoCore(codered,

 "red leD ", 1000, null, 1, null, 0);

xtaskCreatepinnedtoCore(codered,

"red leD ", 1000, null, 1, null, 0);

xtaskCreatepinnedtoCore(codeBlu,

 "blue leD", 1000, null, 1, null, 1);

xtaskCreatepinnedtoCore(codeBlue,

"blue leD", 1000, null, 1, null, 1);

baton = xSemaphoreCreateMutex(); queue = xQueueCreate(1,
sizeof(int));

} }

(continued)

Chapter 22 eSp32 miCroController featureS

652

Table 22-1. (continued)

Semaphore Queue

void codered(void * parameter) { void codered(void * parameter) {

 for (;;) { for (;;) {

 redOff = random(500, 2000); int redOff = random(500, 2000);

 delay(1); delay(1);

 xSemaphoreGive(baton); xQueueSend(queue, &redOff,
portMAX_DELAY);

 digitalWrite(redleD, hiGh); digitalWrite(redleD, hiGh);

 delay(1000); delay(1000);

 digitalWrite(redleD, loW); digitalWrite(redleD, loW);

 delay(redoff); delay(redoff);

} } } }

void codeBlu(void * parameter) { void codeBlue(void * parameter) {

 for (;;) for (;;)

 { {

int blueOn;

 xSemaphoreTake(baton,
portMAX_DELAY);

xQueueReceive(queue, &blueOn,
portMAX_DELAY);

 digitalWrite(blueleD, hiGh); digitalWrite(blueleD, hiGh);

 delay(redOff); delay(blueOn);

 digitalWrite(blueleD, loW); digitalWrite(blueleD, loW);

} } } }

void loop() { vtaskDelay(null); } void loop() { vtaskDelay(null); }

Chapter 22 eSp32 miCroController featureS

653

 Bluetooth communication
The ESP32 microcontroller operates both Bluetooth and Bluetooth Low

Energy communication protocols. Bluetooth communication requires a

Serial Bluetooth connection, which is established with the instructions

#include <BluetoothSerial.h> // include Bluetooth library

BluetoothSerial SerialBT; // associate SerialBT with library

SerialBT.begin("ESP32 Bluetooth"); // identify Bluetooth

Serial Bluetooth communicates by sending one character at a

time. Text entered on the Serial Monitor is sent with either SerialBT.

write(Serial.read()) or SerialBT.write(c) for the character c. The

sketch in Listing 22- 3 establishes a Serial Bluetooth connection and

displays the received message from the Bluetooth device on the Serial

Monitor. The Serial.write() instruction converts the ASCII code to

display alphanumeric characters, while Serial.print() displays the

ASCII code for each character in the received message. To both transmit

a message to the Bluetooth device and display the transmitted message

on the Serial Monitor, each character of the message is transmitted

individually as the Serial buffer is not read twice.

Listing 22-3. Bluetooth communication

#include <BluetoothSerial.h> // include Bluetooth library

BluetoothSerial SerialBT; // associate SerialBT with library

String str;

int strLen;

char c;

Chapter 22 eSp32 miCroController featureS

654

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 SerialBT.begin("ESP32 Bluetooth"); // identify Bluetooth device

}

void loop()

{ // received message from Bluetooth device

 if(SerialBT.available()) Serial.write(SerialBT.read());

 if(Serial.available()) // message to transmit

 {

 str = Serial.readString(); // read and display

 Serial.print("\t\t\t\t");Serial.pr intln(str); // Serial buffer

 strLen = str.length();

 for (int i=0; i<strLen; i++)

 {

 c = str[i]; // for each message character

 SerialBT.write(c); // transmit to Bluetooth device

 }

 SerialBT.write('\n'); // add new line character

 }

 delay(50);

}

There are several Bluetooth communication applications to download

from Google Play Store for an Android tablet to communicate with the

ESP32 Bluetooth. The Bluetooth Terminal HC-05 app, by mightyIT, is

recommended. After opening the Bluetooth Terminal HC-05 app, the

client scans for the required device (see Figure 22-2) and establishes a

connection to the server.

Chapter 22 eSp32 miCroController featureS

655

Once the client-server connection is established, Bluetooth

communication between the two devices enables transmission of

alphanumeric text, as shown in Figure 22-3.

Figure 22-2. Client scanning for Bluetooth server

Figure 22-3. Bluetooth communication of text messages

Chapter 22 eSp32 miCroController featureS

656

 Bluetooth Low Energy communication
Bluetooth Low Energy (BLE) communicates on the same 2.4 GHz as

Bluetooth, over a similar transmission range, but with reduced power

consumption. With BLE, data is transmitted only when a connection

is established with the client and the client has requested notification

of updated data values. The server advertises its existence, the client

scans devices, and when the client detects the required device, the

client establishes a connection with the server. For example, the ESP32

microcontroller is the server, and the Android tablet or mobile phone is

the client, which is point-to-point communication. The broadcast and

mesh network topologies are for one–to-many and many-to-many device

communication. This chapter focuses on point-to-point communication.

BLE is used to periodically transmit small amounts of data, such as

in environmental monitoring sensors, home automation appliances, and

health and sports equipment, such as in heart rate and blood pressure

monitors on a smart watch. Data transmitted with BLE has a defined format,

depending on the category of data that is transmitted, with the format

termed the Generic ATTribute (GATT) profile, which is used by appliances

communicating with BLE. A data category consists of a BLE service, such as

Environmental Sensing, which includes characteristics, such as temperature

or humidity, with both the service and each characteristic having a specific

UUID (Universal Unique IDentifier). Details of the GATT services and

characteristics are available at www.bluetooth.com/specifications/

gatt/services. For example, the UUIDs of Environmental Sensing and

temperature are 0x181A and 0x2A63, respectively, with temperature

formatted as uint16_t with two decimal points.

The sketch in Listing 22-10 illustrates the ESP32 microcontroller

transmitting three Environmental Sensing characteristics with BLE

communication. The three characteristics, temperature, heat index, and

UV (ultraviolet) index, are formatted for BLE as uint16_t with 2DP, uint8_t

with 0DP, and uint8_t with 0DP, respectively. To illustrate formatting sensor

Chapter 22 eSp32 miCroController featureS

http://www.bluetooth.com/specifications/gatt/services
http://www.bluetooth.com/specifications/gatt/services

657

data for BLE, the heat index characteristic is derived from the real number

temp, with the UV index derived from the integer UV. Note that there are

limitations on the possible values of characteristics, such as the battery

level characteristic, 0x2A19, which is a percentage between 0 and 100.

The ESP32 BLE Arduino library by Neil Kolban is automatically

incorporated in the Arduino IDE when the ESP32 Board Manager is

installed. Listings 22- 10 and 22-11 are based on sketches in the ESP32

BLE Arduino library and of Andreas Spiess (github.com/SensorsIot/

Bluetooth-BLE-on-Arduino-IDE).

The first section of the sketch in Listing 22-4 installs the BLE libraries

and defines the UUIDs for the service and the three characteristics. The

characteristic UUIDs and required formats are available at www.bluetooth.

com/specifications/gatt/characteristics. Each characteristic has up

to four properties, PROPERTY_READ, PROPERTY_WRITE, PROPERTY_NOTIFY,

and PROPERTY_INDICATE, with the PROPERTY_NOTIFY property allocated

to characteristics transmitted by the server to a client. The ServerConnect

class determines if a client has established a connection with the server.

In the setup function, the BLE server and service are defined, with each

characteristic defined and added to the BLE service.

In the loop function, if the client has established a connection with

the server, then the client is notified of the updated characteristic values.

In the example, the temp and UV values are converted to the required BLE

formats for the temperature, heat index, and UV index characteristics. The

temperature characteristic is uint16-t formatted by allocating the upper

and lower bytes of the real number temp to the tempData array with two

elements, with the upper byte obtained by bit shifting out the lower byte

of the real number. The heat index characteristic is uint8_t formatted by

changing the format of the real number, which is termed casting. The UV

index characteristic is obtained with the instruction (uint8_t*)&UV,

which points (*) to the address (&) of the integer UV. Chapter 14 (ESP-NOW

and LoRa communication) describes variable pointers and addresses.

Chapter 22 eSp32 miCroController featureS

https://github.com/SensorsIot/Bluetooth-BLE-on-Arduino-IDE
https://github.com/SensorsIot/Bluetooth-BLE-on-Arduino-IDE
http://www.bluetooth.com/specifications/gatt/characteristics
http://www.bluetooth.com/specifications/gatt/characteristics

658

When each characteristic is formatted for BLE communication, the

characteristic value is updated and the client notified, with the instructions

setValue() and notify(). The BLEUtils and BLEServer libraries are

referenced by the BLEDevice library, so the instructions #include

<BLEUtils.h> and #include <BLEServer.h> are not explicitly required.

Listing 22-4. BLE communication as a server

#include <BLEDevice.h> // include BLE libraries

#include <BLE2902.h>

BLEServer * pServer; // define BLE server,

BLEService * pService; // BLE service and

BLECharacteristic * pChar; // BLE Characteristic

int devConnect = 0;

#define SERVICE_UUID BLEUUID((uint16 _ t)0x181A)

// environmental service

BLECharacteristic tempChar(BLEUUID((uint16_t)0x2A6E),

 BLECharacteristic::PROPERTY_NOTIFY);

BLECharacteristic UVChar (BLEUUID((uint16_t)0x2A76),

 BLECharacteristic::PROPERTY_NOTIFY);

BLECharacteristic heatChar(BLEUUID((uint16_t)0x2A7A),

 BLECharacteristic::PROPERTY_NOTIFY);

class ServerConnect: public BLEServerCallba cks

{ // to check if connected

 void onConnect(BLEServer * pServer) {devConnect = 1;}

 void onDisconnect(BLEServer * pServer) {devConnect = 0;}

};

float temp = 0;

uint8_t tempData[2];

uint16_t tempValue;

int UV = 0, heat;

Chapter 22 eSp32 miCroController featureS

659

void setup()

{

 Serial.begin(115200); // Serial monitor baud rate

 BLEDevice::init("ESP32"); // define BLE device

 pServer = BLEDevice::createServer(); // define BLE server

 pServer->setCallbacks(new ServerConnect()) ;

// check if connected

 pService = pServer->createService(SERVICE_UU ID);

//define BLE service

 pService->addCharacteristic(&tempChar); // define temperature

 tempChar.addDescriptor(new BLE2902()); // characteristic

 pService->addCharacteristic(&UVChar); // define UV index

 UVChar.addDescriptor(new BLE2902()); // characteristic

 pService->addCharacteristic(&heatChar); // define heat index

 heatChar.addDescriptor(new BLE2902()); // characteristic

 pServer->getAdvertising()->addServiceUUID(SERVICE_UUID);

 pService->start(); // start service

 pServer->getAdvertising()->start(); // advertise service

 Serial.println("Waiting for client to connect");

}

void loop()

{

 if(devConnect == 1) // if the client is connected

 {

 temp = temp + 1.11;

 tempValue = (uint16_t)(temp*100); // convert to uint16_t with 2DP

 tempData[0]= tempValue; // LSB (least significant byte)

 tempData[1]= tempValue >> 8; // MSB (most significant byte)

 tempChar.setValue(tempData, 2); // update characteristic

Chapter 22 eSp32 miCroController featureS

660

 tempChar.notify(); // notify client

 heat = (uint8_t)temp; // convert to uint8_t with 0DP

 heatChar.setValue(heat);

 heatChar.notify();

 UV = UV + 1;

 UVChar.setValue((uint8_t*)&UV, 4); // point to address of UV

 UVChar.notify();

 Serial.print(temp);Serial.print("\t ");

// display values on Monitor

 Serial.print(heat);Serial.print("\t");

 Serial.println(UV);

 delay(1000); // delay between sensor readings

 }

}

The nRF Connect and nRF Toolbox apps by Nordic Semiconductor are

recommended for BLE communication and are available to download

from Google Play Store for an Android tablet or mobile phone. After

opening the nRF Connect app, the client scans for the required device (see

Figure 22-4) and establishes a connection to the server.

Figure 22-4. Client scanning for BLE server

Chapter 22 eSp32 miCroController featureS

661

The Environmental Sensing service is displayed with updated values of

the temperature, heat index, and UV index characteristics (see Figure 22- 5).

Clicking the BLE characteristic arrows (circled in Figure 22-5) enables or

disables display of updated characteristic values by the app, but only in

the context of the sketch in Listing 22-4. Note that updating the heat index

characteristic is currently disabled in Figure 22-5.

Figure 22-5. BLE Environmental Sensing service

Chapter 22 eSp32 miCroController featureS

662

Both data transmission and reception by the server and client are

demonstrated with the sketch in Listing 22-5. The server transmits updated

characteristic values to the client, as in Listing 22-4; but in Listing 22-5, the

client transmits alphanumeric text to the server and also notifies the server

if updated characteristic values are required by the client. To illustrate the

server responding to alphanumeric text received from the client, an LED

attached to the ESP32 development board is turned on or off when the

client transmits the text LED.

The first section of Listing 22-5 installs BLE libraries, as in Listing 22-4,

but the UART service is not defined as a GATT BLE service, so UUIDs for

the UART service and the transmit and receive characteristics are defined

explicitly, rather than implicitly as in Listing 22-4. The three UUIDs are

the default UUIDs used by Nordic Semiconductor for UART transmission.

The RXCallback class manages data reception by the server, with the string

RXstr containing the received alphanumeric text. The NotifyCallback

class sets the value of the devNotify variable, which determines whether

or not the server transmits updated characteristic values to the client. In

the setup function, the transmit (TX) and receive (RX) characteristics are

defined with PROPERTY_NOTIFY and PROPERTY_WRITE, respectively, with the

NotifyCallback and RXCallback classes attached to the TX description and

RX characteristic, respectively (see Figure 22-6).

In the loop function, the server transmits updated characteristic

values, but only if the client both has established a connection and has

requested the updated characteristic values. The C instruction dtostrf is a

method of formatting a real number as a character array, with the required

BLE format. The instruction dtostrf(value, 8, 1, valueStr) converts

the real number value to a character array, of length eight, representing

value with 1DP.

Chapter 22 eSp32 miCroController featureS

663

Listing 22-5. Transmit and receive with BLE communication

#include <BLEDevice.h> // include BLE libraries

#include <BLE2902.h>

BLEServer * pServer; // define BLE server,

BLEService * pService; // BLE service,

BLECharacteristic * pTXChar; // BLE transmit and

BLECharacteristic * pRXChar; // receive characteristics,

BLEDescriptor * pTXDesc; // transmit descriptor

int devConnect = 0;

int devNotify = 0;

int LEDpin = 25;

int LEDstate = 0;

float value;

char valueStr[8];

char SERVICE_UUID[] = "6E400001-B5A3-F393-E0A9-E50E24DCCA9E";

 // UUIDs

char RXChar_UUID[] = "6E400002-B5A3-F393-E0A9-E50E24DCCA9E";

char TXChar_UUID[] = "6E400003-B5A3-F393-E0A9-E50E24DCCA9E";

void changeLED() // function to change LED state

{

 LEDstate = 1 - LEDstate; // turn on or off LED

 digitalWrite(LEDpin, LEDstate);

}

class ServerConnect: public BLEServe rCallbacks

{ // to check if connected

 void onConnect(BLEServer * pServer) {devConnect = 1;}

 void onDisconnect(BLEServer * pServer) {devConnect = 0;}

};

Chapter 22 eSp32 miCroController featureS

664

class RXCallback: public BLECharacteristicC allbacks

{ // receive client data

 void onWrite(BLECharacteristic * pCharacteristic)

 {

 std::string RXstr = pCharacteristic->getValue();

 if (RXstr.length() > 0) // client data available

 {

 Serial.print("Received: "); // read client data

 for (int i=0; i<RXstr.length(); i++) Serial.

print(RXstr[i]);

 Serial.println();

 if(RXstr == "LED") changeLED(); // call changeLED function

 }

 }

};

class NotifyCallback: public BLEDescript orCallbacks

{ // client data notification

 void onWrite(BLEDescriptor * pDescriptor)

 { // obtain TX descriptor

 uint8_t * TXvalue = pDescriptor->getV al ue();

 devNotify = 0;

 if (pDescriptor->getLength() > 0) // client data available

 {

 if(TXvalue[0] == 1) devNotify = 1; // update data notification

 Serial.print("Notify: ");Serial.println(devNotify);

 }

 }

};

Chapter 22 eSp32 miCroController featureS

665

void setup()

{

 Serial.begin(115200); // Serial monitor baud rate

 pinMode(LEDpin, OUTPUT);

 BLEDevice::init("ESP32"); // define BLE device

 pServer = BLEDevice::createServer(); // define BLE server

 pServer->setCallbacks(new ServerConnect ());

// check if connected

 pService = pServer->createService(SER VICE_U UID);

// define BLE service

 // define TX characteristic

 pTXChar = pService->createCharacteristic(

TXChar_UUID, BLECharacteristic::PROPERTY_NOTIFY);

 pTXDesc = new BLE2902(); // define TX descriptor

 pTXDesc->setCallbacks(new NotifyCallb ack ());

// attach notify callback

 pTXChar->addDescriptor(pTXDesc);

 // define RX characteristic

 pRXChar = pService->createCharacteristic(

RXChar_UUID, BLECharacteristic::PROPERTY_WRITE);

 pRXChar->setCallbacks(new RXCallback()); // attach RX callback

 pService->start(); // start service

 pServer->getAdvertising()->start(); // advertise service

 Serial.println("Waiting for client to connect");

}

void loop()

{ // if the client is connected and

 if(devConnect == 1 && devNotify == 1) // requests data notification

 {

 value = random(10, 200)*1.5; // generate real number

Chapter 22 eSp32 miCroController featureS

666

 dtostrf(value, 8, 1, valueStr); // convert 8-char string with 1DP

 pTXChar->setValue(valueStr); // update characteristic

 pTXChar->notify(); // notify client

 Serial.print(value);Serial.print("\t");Serial.

println(valueStr);

 delay(3000); // delay between updates

 }

}

After opening the nRF Connect app, scanning for the required device,

and establishing a connection to the server, the Nordic UART Service

is displayed. Updating of the TX characteristic (see Figure 22-6) by the

server is enabled or disabled by clicking the BLE arrows (see Figure 22-5).

When the single BLE arrow opposite RX characteristic is clicked, a pop-

up window for entering alphanumeric text appears, and the entered text

is displayed as the RX characteristic value (see Figure 22-6). Entering the

text LED results in the ESP32 microcontroller turning on or off the LED

connected to the ESP32 development board.

Chapter 22 eSp32 miCroController featureS

667

The nRF Toolbox app has a keypad function for transmitting

alphanumeric text with BLE communication to the server. On opening the

nRF Toolbox app, select the UART button and click the CONNECT button

to display available devices (see Figure 22-7). Select the required device or

select SCAN to detect more devices.

Figure 22-6. Transmission and reception with BLE
communication

Chapter 22 eSp32 miCroController featureS

668

The displayed keypad (see Figure 22-8) is configured by selecting

EDIT, clicking the relevant keypad button, entering alphanumeric text to

be transmitted when the keypad button is clicked, and selecting a symbol

to be displayed on the keypad button. In the context of Listing 22-5, the

text LED was allocated to the center keypad button.

Figure 22-7. nRF Toolbox app

Chapter 22 eSp32 miCroController featureS

669

For a sketch using BLE communication to control motors attached

to the remote ESP32 development board, the keypad buttons would be

allocated the text forward, backward, left, and right or fast and slow (see

Figure 22-8). The text received by the ESP32 microcontroller is interpreted

in a similar manner to the LED text in the RXCallback class in Listing 22-5

with the corresponding functions called to control the motors or other

devices.

In another BLE example, the ESP32 microcontroller, acting as

the client, scans advertising BLE devices and turns on an LED when

a particular BLE device is detected (see Figure 22-9). The ESP32

microcontroller could turn on a relay, rather than just an LED, to

activate an appliance when the BLE device, such as your smart watch,

is identified. The BLE address of your smart watch is available on the

watch or is determined by a BLE scanning app, such as the nRF Connect

and nRF Toolbox apps by Nordic Semiconductor. For the sketch, the BLE

address of the watch must be changed to lowercase, for example, from

D5:DB:A5:45:99:2F to d5:db:a5:45:99:2f.

Figure 22-8. Keypad function in nRF Toolbox app

Chapter 22 eSp32 miCroController featureS

670

The sketch in Listing 22-6 scans for BLE devices; and if the BLE address

of the device, such as your smart watch, matches the defined BLE address,

then the paired variable is set to one by the watchCallback class. If none

of the scanned devices pair with the ESP32 microcontroller, the BLE

client, then the paired variable is set to zero. Occasionally, the BLE scan

incorrectly does not detect a BLE device, so non-detection of the defined

BLE device is required for two consecutive scans before the LED is turned

off. The BLEAdvertisedDevice library is referenced by the BLEScan library,

so the instruction #include <BLEAdvertisedDevice.h> is not explicitly

required.

Listing 22-6. BLE watch control

#include <BLEDevice.h> // include BLE library

BLEScan * pBLEScan; // pointer to BLE scanner

BLEAddress * pAddress; // and to BLE address

BLEScanResults devices;

String watch = "d5:db:a5:45:99:2f"; // change upper to lower case

String scan;

int scanTime = 3; // scan devices for 3s

int paired = 0, lastPair = 0;

int LEDpin = 25; // define LED pin

Figure 22-9. Scanning for a particular BLE device

Chapter 22 eSp32 miCroController featureS

671

class watchCallback: public BLEAdvertisedDeviceCallbacks

{ // BLE advertising devices

 void onResult(BLEAdvertisedDevice a dvertised)

 { // option to display device data

// Serial.printf("found device: %s \n",

// advertised.toString().c_str());

 pAddress = new BLEAddress(advertised.getAd dress());

// BLE address

 scan = pAddress->toString().c_str(); // convert to string

 if(scan == watch) paired = 1; // device matches watch address

 }

};

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 pinMode(LEDpin, OUTPUT); // LED pin as output

 BLEDevice::init(""); // initialise BLE client

 pBLEScan = BLEDevice::getScan(); //create new scan

 pBLEScan->setAdvertisedDeviceCallbacks(new watchCallback());

 pBLEScan->setActiveScan(true);

}

void loop()

{

 devices = pBLEScan->start(scanTime, false); // start scanning

// Serial.print("scanned devices ");

// Serial.print(devices.getCount());

 digitalWrite(LEDpin, paired); // turn on or off LED

 if(paired == 0 && lastPair == 1) digitalWrite(LEDpin, 1);

Chapter 22 eSp32 miCroController featureS

672

 lastPair = paired; // 2 consecutive non-pairings to turn off

 paired = 0; // reset paired variable

 pBLEScan->clearResults(); // delete scan results

}

 Timers
The ESP32 microcontroller has four independent timers, timer0–timer3,

and a timer frequency of 80 MHz, such that each timer tick lasts 0.0125 μs.

The 16-bit timer pre-scaler determines the number of timer ticks included

in one count of the timer register. For example, a pre-scaler of 80 results in

the timer register incrementing every microsecond (80 × 0.0125) and the

timer counting to one million every second. An interrupt is attached to a

timer to trigger an event. Four instructions are required to define the timer

properties

timer = timerBegin(0, 80, true); // timer0, pre-scalar of 80

timerAttachInterrupt(timer, &timerISR, tr ue);

// attach interrupt ISR

timerAlarmWrite(timer, 1000000, true); // alarm count = 106

timerAlarmEnable(timer); // enable the timer alarm

with the timer variable defined by the instruction hw_timer_t * timer =

NULL and the interrupt service routine (ISR) equal to timerISR. If timer0 is

to count down, the first instruction is timerBegin(0, 80, false). The ISR

is triggered when the value in the timer register equals the alarm count,

which is 106 in the example. The first and last instructions of the ISR are

equal to

portENTER_CRITICAL_ISR(&timerMux)

portEXIT_CRITICAL_ISR(&timerMux)

Chapter 22 eSp32 miCroController featureS

673

with the variable timerMux defined by the instruction

portMUX_TYPE timerMux = portMUX_INITIALIZER_UNLOCKED

If the real number variable value is accessed in an ISR and is

incremented in the loop function, then value is defined with the

instruction volatile float value and in the loop function is bracketed

with the instructions

portENTER_CRITICAL(&timerMux)

value = value + 1

portEXIT_CRITICAL(&timerMux)

Wi-Fi and Bluetooth communication may impact the timing of

interrupts. The communication functionality is stopped with the

instructions WiFi.mode(WIFI_OFF) and btStop(), respectively.

To illustrate use of timers, two LEDs are turned on and off at different

intervals, with the intervals controlled by two timers (see Figure 22-10 and

Listing 22-7).

Figure 22-10. ESP32 timers

Chapter 22 eSp32 miCroController featureS

674

Listing 22-7. Timer control of two independent events

hw_timer_t * timer1 = NULL; // define timer1

portMUX_TYPE timer1Mux = portMUX_INITIALIZER_UNLOCKED;

hw_timer_t * timer2 = NULL; // define timer2

portMUX_TYPE timer2Mux = portMUX_INITIALIZER_UNLOCKED;

int LED1pin = 25;

int LED2pin = 26; // define LED pins

void setup()

{

 Serial.begin(115200);

 pinMode(LED1pin, OUTPUT);

 pinMode(LED2pin, OUTPUT);

 timer1 = timerBegin(1, 80, true); // set timer1 properties

 timerAttachInterrupt(timer1, &timer1ISR, true);

 timerAlarmWrite(timer1, 250000, true); // interval of 0.25s

 timerAlarmEnable(timer1);

 timer2 = timerBegin(2, 80, true); // set timer2 properties

 timerAttachInterrupt(timer2, &timer2ISR, true);

 timerAlarmWrite(timer2, 1000000, true); // interval of 1s

 timerAlarmEnable(timer2);

}

void loop()

{

 vTaskDelay(NULL);

}

IRAM_ATTR void timer1ISR() // ISR for timer1

{

 portENTER_CRITICAL_ISR(&timer1Mux);

 digitalWrite(LED1pin, !digitalRead(LED1pin));

Chapter 22 eSp32 miCroController featureS

675

 portEXIT_CRITICAL_ISR(&timer1Mux);

}

IRAM_ATTR void timer2ISR() // ISR for timer 2

{

 portENTER_CRITICAL_ISR(&timer2Mux);

 digitalWrite(LED2pin, !digitalRead(LED2pin));

 portEXIT_CRITICAL_ISR(&timer2Mux);

}

 Real-time clock and sleep mode
Several GPIO pins are accessible by the real-time clock (RTC) input-output

(rtc_io) library to trigger the ESP32 microcontroller from sleep mode. The

rtc-io library is included in the ESP32 libraries within the Arduino IDE. The

instruction esp_sleep_enable_ext0_wakeup(pin, state) wakes the

ESP32 microcontroller from sleep mode, when the state of the pin is equal

to state. For example, if pressing a switch connected to GPIO 32 is to wake

the ESP32 microcontroller from sleep mode, the parameter pin is defined

as GPIO_NUM_32 or as (gpio_num_t)switchPin, given the pin definition

instruction int switchPin = 32 (see Figure 22-11). The value of state is

zero or one if the switch has a pull-up or pull-down resistor, respectively.

ESP32 microcontroller pull-up and pull-down resistors are disabled

during sleep, so the instruction rtc_gpio_pullup_en(pin) or rtc_gpio_

pulldown_en(pin) enables a pull-up or pull-down resistor on the GPIO

pin connected to a switch, if required for the switch. Details of sleep modes

and wake-up options are available at docs.espressif.com/projects/esp-

idf/en/latest/esp32/api-reference/system/sleep_modes.html.

Chapter 22 eSp32 miCroController featureS

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html

676

Note that a pin is pulled up or pulled down, for use with a switch, with

the instruction pinMode(pin, INPUT_PULLUP) or pinMode(pin, INPUT_

PULLDOWN), respectively. The sketch in Listing 22-8 enables the switch on

pin 32 to wake the ESP32 from sleep mode, flashes both an LED and the

built-in LED, and then returns the ESP32 to sleep mode.

Listing 22-8. RTC and sleep mode

#include <driver/rtc_io.h> // include rtc input-output library

int switchPin = 32; // define switch pin

int LEDpin = 26; // and LED pin

int builtinLED = 2;

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 pinMode(LEDpin, OUTPUT); // LED pins as output

 pinMode(builtinLED, OUTPUT);

 flash(); // call flash function

 rtc_gpio_pullup_en((gpio_num_t)s witchPin); // pull-up switch pin

Figure 22-11. ESP RTC and sleep mode

Chapter 22 eSp32 miCroController featureS

677

 esp_sleep_enable_ext0_wakeup((gpio_num_t)switchPin, 0);

} // wakeup on switch pin with state 0

void loop()

{

 Serial.print("sleep mode on pin ");Serial.println(switchPin);

 esp_deep_sleep_start(); // ESP32 in sleep mode

}

void flash()

{

 for (int i=0; i<3; i++) // flash LEDs three times

 {

 digitalWrite(LEDpin, HIGH); // LED on pin

 digitalWrite(builtinLED, HIGH); // and built-in LED

 delay(200);

 digitalWrite(LEDpin, LOW);

 digitalWrite(builtinLED, LOW);

 delay(100);

 }

}

The ESP32 RTC wakes the ESP32 microcontroller from sleep mode

after a period of time has elapsed, with the instruction esp_sleep_enable_

timer_wakeup(N), where N is the required number of microseconds.

In sleep mode, the ESP32 RTC memory functions, while the ESP32

microcontroller CPU and memory are disabled. If information is to be

retained in sleep mode, then data is stored in RTC memory by including

RTC_DATA_ATTR in the data definition instruction. For example, if the

integer variable var is to be retained during sleep mode, the variable is

defined as RTC_DATA_ATTR int var.

Chapter 22 eSp32 miCroController featureS

678

The sketch in Listing 22-9 defines a counter to be stored in RTC

memory, prints the incremented value, and puts the microcontroller into

sleep mode, to be woken with the RTC timer after 5 seconds.

Listing 22-9. RTC timer and sleep mode

RTC_DATA_ATTR int count = 0; // store count in RTC memory

unsigned long micro = 5000000; // time interval in μs

void setup()

{

 Serial.begin(115200); // Serial Monitor baud rate

 esp_sleep_enable_timer_wakeup(micro) ; // RTC timer interval in μs

}

void loop()

{

 count++; // increment and print count

 Serial.print("count ");Serial.println(count);

 esp_deep_sleep_start();

} // microcontroller in sleep mode

 Digital to analog converter
The 8-bit digital to analog converter (DAC) functionality converts a digital

value, between 0 and 255, to a voltage between 0 and 3.3 V on a DAC pin.

With an 8-bit DAC, there are 256 voltage classes with levels 0–255; and

for a reference voltage of 3.3 V, a DAC voltage class spans 12.9 mV. The

instruction dacWrite(DACpin, N) outputs a voltage on the DACpin, with

the DACpin defined as either the GPIO 25 or 26 or by the term DAC1

or DAC2, respectively. The sketch in Listing 22-10 generates a range of

voltages between 0.5 V and 3 V.

Chapter 22 eSp32 miCroController featureS

679

Listing 22-10. Digital to analog converter

int DACpin = DAC1; // define DAC pin

void setup()

{} // nothing in setup function

void loop()

{

 for (int i=0; i<255; i=i+39)

 {

 dacWrite(DACpin, i); // output voltage 0.5V, 1V...

 delay(2000);

 }

}

 Capacitive touch sensor
The capacitive touch sensors detect changes in capacitance on a touch

pin, for use of a touch pin instead of a switch. When a wire connected

to a touch pin is pressed, the touch pin value falls. The instruction

touchRead(touchPin) reads the touchPin value, with the touchPin defined

as either the GPIO number 2, 4, 12, 13, 14, 15, 27, 32, or 33 or by T2, T0,

T5, T4, T6, T3, T7, T9, or T8, respectively. An interrupt is attached to the

touch pin with the interrupt triggered when the touch pin value falls below

a threshold. The instruction touchAttachInterrupt(touchPin, ISR,

threshold) defines the touch pin, the interrupt service routine (ISR), and

the threshold below which the interrupt is triggered. To prevent the touch

pin repeatedly triggering the interrupt, when the touch pin is pressed,

a time interval must elapse since the touch pin was touched before the

interrupt is triggered. The sketch in Listing 22-11 turns on or off an LED

when a wire connected to a touch pin is pressed. Note that the touch

interrupt ISR change does not have to be defined as IRAM_ATTR.

Chapter 22 eSp32 miCroController featureS

680

Listing 22-11. Capacitive touch sensor

int touchPin = T7; // define touch pin

int LEDpin = 32; // and LED pin

int threshold = 50; // limit for touch pin

volatile unsigned long lastTouch = 0; // time touch pin pressed

void setup()

{

 pinMode(LEDpin, OUTPUT); // LED pin as output

 touchAttachInterrupt(touchPin, change, threshold);

} // define interrupt

void change() // ISR

{ // touch pin recently pressed

 if (millis() - lastTouch < 1000) re t urn;

 lastTouch = millis(); // update touch time

 digitalWrite(LEDpin, 1 - digitalRead(LEDpi n));

} // change LED state

void loop() // nothing in loop function

{}

 Hall effect sensor
The ESP32 microcontroller contains a Hall effect sensor, which is activated

by a magnetic field. The instruction hallRead() returns the Hall Effect

value, with high absolute values indicating the strength of the magnetic

field and positive or negative values indicating the direction of the magnetic

field. The Hall effect sensor is also used to measure rotational speed of a

wheel or shaft with an attached magnet. The sketch in Listing 22-12 turns

on or off an LED when the magnetic field is detected by the ESP32 Hall

effect sensor.

Chapter 22 eSp32 miCroController featureS

681

Listing 22-12. Hall effect sensor

int LEDpin = 32; // define LED pin

unsigned long lastHall = 0; // time Hall value changed

void setup()

{

 pinMode(LEDpin, OUTPUT); // LED pin as output

}

void loop()

{

 if(abs(hallRead()) > 30) change(); // call change function

} // when magnetic field detected

void change()

{

 if(millis() - lastHall < 1000) return; // check time last change

 lastHall = millis(); // update change time

 digitalWrite(LEDpin, 1 - digitalRead(LE Dpin));

} // change LED state

 Summary
The ESP32 microcontroller has two cores, each with a Tensilica Xtensa

32-bit LX6 microprocessor, and allocation of tasks to different cores

effectively doubles task output relative to performing a task on one ESP32

core. The ESP32 microcontroller has Wi-Fi communication, SPI and I2C

communication, analog to digital conversion, pulse width modulation,

and interrupt functions. Several features are specific to the ESP32

microcontroller, which include Bluetooth and Bluetooth Low Energy

communication, four independent timers for controlling events, a real-

time clock to trigger the ESP32 microcontroller from sleep mode, digital

Chapter 22 eSp32 miCroController featureS

682

to analog converter functionality, capacitive touch sensors for use of a

touch pin instead of a switch, and a Hall effect sensor, which is activated

by a magnetic field. Examples illustrate use of the ESP32 comprehensive

features.

 Components List
• ESP32 microcontroller: DEVKIT DOIT or NodeMCU

board

• LED: 2×

• Resistor: 2× 220 Ω

• Tactile switch

Chapter 22 eSp32 miCroController featureS

683© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5

 APPENDIX

Libraries
The majority of the required libraries are uploaded within the Arduino IDE

with other libraries available through GitHub, www.github.com, or specific

websites as listed in Table A-1. Example sketches, within each library,

are accessed in the Arduino IDE by selecting File ➤ Example ➤ library

name. A library is included in a sketch with the instruction #include

<libraryname.h>, which references the library located in the Arduino

IDE libraries folder. To determine the location of the Arduino IDE libraries

folder, select File ➤ Preferences in the Arduino IDE, and the libraries

folder is located in the sketchbook location, for example, C:\Users\user\

Documents\Arduino.

When a library is included in a sketch, a variable is generally

associated with the library, which is termed creating an instance of the

class, where class is the library. The variable has the properties of the

library, in a similar way that a variable defined as an integer has the

properties of an integer. Instructions specific to a library are prefixed with

the variable name. For example, the ESP8266WebServer library is installed

with the instruction #include <ESP8266WebServer.h>, and the instruction

ESP8266WebServer server associates the server variable with the library.

An ESP8266WebServer library-specific instruction is prefixed with server.

as in server.handleClient().

https://doi.org/10.1007/978-1-4842-6336-5#DOI
http://www.github.com

684

There are three methods to install a library:

 1. Use the Library Manager.

Open the Arduino IDE, select the Sketch menu and

select Include Library ➤ Manage Libraries. In the

Library Manager window, use the Filter your search

option to locate the required library. Select the

library version number and click Install. The More

info option provides access to GitHub for library

documentation and updates.

 2. Import a zip file.

Download the library in a .zip file and store the .zip

file on your computer or laptop. In the Arduino IDE,

select the Sketch menu and select Include Library ➤

Add .ZIP library. Select the location where the .zip

file was saved, select the .zip file, and click Open.

 3. Manual install.

Download the library in a .zip file, and extract the

contents of the .zip file to the default library folder,

such as C:\Users\user\Documents\Arduino. The

Arduino IDE must be restarted before the library

is listed in the Arduino IDE, using the Sketch ➤

Include Library option.

appendix Libraries

685

(continued)

Table A-1. Libraries with details on source and author

Library Author and Source if Not Available
in the Arduino IDE

adafruit bMp280 adafruit

adafruit GFx adafruit

adafruit iLi9341 adafruit

adafruit iLi9341 esp nailbuster software

nailbuster.com/?page_id=341

adafruit ina219 adafruit

adafruit MCp4725 adafruit

adafruit neopixel adafruit

adafruit ssd1306 adafruit

adafruit s7735 and sT7789 adafruit

adafruit Unified sensor adafruit

arduinoJson benoit blanchon

arduinoOTa built-in

asyncTCp Hristo Gochkov

github.com/me-no-dev/asyncTCp

bLedevice built-in with esp32

bLescan built-in with esp32

bLeserver built-in with esp32

bLeUtils built-in with esp32

bLe2902 built-in with esp32

bluetoothserial built-in with esp32 espressif systems

appendix Libraries

http://nailbuster.com/?page_id=341
http://github.com/me-no-dev/AsyncTCP

686

Table A-1. (continued)

Library Author and Source if Not Available
in the Arduino IDE

CayenneMQTT Cayenne

eeprOM david Mellis

esp idF FreerTOs built-in with esp32 espressif systems

esp_camera built-in with esp32 espressif systems

esp_http_server built-in with esp32 espressif systems

esp32 bLe arduino neil Kolban, built-in with esp32 installation

esp32 vs1053 ext Wolle

github.com/schreibfaul1/esp32-vs1053_ext

esp32servo Kevin Harrington and John K. bennett

espasyncWebserver Hristo Gochkov

github.com/me-no-dev/espasyncWebserver

espmdns built-in with esp32 espressif systems

esp-nOW built-in with esp8266 and esp32 espressif

systems

esp8266mdns built-in with esp8266

esp8266Webserver built-in with esp8266

esp8266WiFi built-in with esp8266

Fs built-in with esp8266

irremote Ken shirriff

github.com/z3t0/arduino-irremote

irremoteesp8266 david Conran, sebastien Warin, Mark szabo,

and Ken shirriff

(continued)

appendix Libraries

http://github.com/schreibfaul1/ESP32-vs1053_ext
http://github.com/me-no-dev/ESPAsyncWebServer
http://github.com/z3t0/Arduino-IRremote

687

(continued)

Table A-1. (continued)

Library Author and Source if Not Available
in the Arduino IDE

Keyboard built-in

LittleFs built-in with esp8266

Lora sandeep Mistry

Md_ad9833 Marco Colli, Majicdesigns

Md_ds3231 Marco Colli, Majicdesigns

neoGps slash devin

newping Tim eckel

newpingesp8266 Tim eckel and Jordan shaw

github.com/jshaw/newpingesp8266

nTptimeesp andreas spiess

github.com/sensorsiot/nTptimeesp

printf included in rF24

rc-switch saut Özgür

rF24 James Coliz

rH_asK Mike McCauley

www.airspayce.com/mikem/arduino/

RadioHead

rtc-io built-in with esp32

runningMedian rob Tillaart

sd built-in

sd_MMC built-in with esp32 espressif systems

servo built-in, Michael Margolis

appendix Libraries

http://github.com/jshaw/NewPingESP8266
http://github.com/SensorsIot/NTPtimeESP
http://www.airspayce.com/mikem/arduino/RadioHead
http://www.airspayce.com/mikem/arduino/RadioHead

688

Table A-1. (continued)

Library Author and Source if Not Available
in the Arduino IDE

softwareserial built-in

spi built-in

spiFFs built-in with esp32 espressif systems

TFT_espi bodmer

Ticker built-in with esp8266

Time Michael Margolis

Vs1053 ed smallenburg and James Coliz

github.com/baldram/ESP_VS1053_

Library

Webserver built-in with esp32 espressif systems

Websocketsserver Markus sattler

WiFi built-in with esp32 espressif systems

WiFiUdp built-in with esp8266 and esp32 espressif

systems

Wire built-in, nicholas Zambetti

xpT2046 spiros papadimitriou

github.com/spapadim/XPT2046

appendix Libraries

http://github.com/baldram/ESP_VS1053_Library
http://github.com/baldram/ESP_VS1053_Library
http://github.com/spapadim/XPT2046

689© Neil Cameron 2021
N. Cameron, Electronics Projects with the ESP8266 and ESP32,
https://doi.org/10.1007/978-1-4842-6336-5

Index

A
Analog to digital converter (ADC),

1, 91, 101, 444–451, 465,
467, 506–509, 523, 527, 537,
557, 612, 624, 625, 629, 632,
641, 678–679

API key, 69–71, 73, 74, 76, 196, 197,
199, 221, 222

Arduino Nano, 348, 363, 416, 417,
436, 561, 565, 583, 611,
612, 618

Arduino Pro Micro, 605, 610–612,
619, 620

Arduino Uno, 51, 347–349, 354–356,
363, 513, 611, 612, 617–618,
620, 634, 639, 643

Asynchronous JavaScript And XML
(AJAX), 38–40, 171–180,
188–192, 194–195, 197, 201,
222, 224–228, 233, 234,
237–242, 246, 248, 250–255,
329–331, 375, 377, 393–396,
590, 596, 600–602, 609

ATmega328P, 513, 561, 566, 611,
612, 617, 618, 620, 632, 634,
637, 643

ATmega32U4, 612, 619, 620, 643

ATmega16U2 USB to
serial, 348, 363

B
Bipolar junction transistor (BJT)

amplifier, 496
gain, 496
signal inverter, 499
switch, 495–498

Bit shift<<, 572
Bluetooth low energy

characteristic, 658, 661, 663–665
GATT, 662
service, 656–659, 662, 663, 665
UUID, 658, 665

Bluetooth Terminal HC-05 app, 654

C
Capacitive touch, 629, 641,

679–680, 682
Capacitor

ceramic, 554, 555
charging voltage, 469, 477
discharging voltage, 477, 482,

485, 486, 491
electrolytic, 523, 554, 555

https://doi.org/10.1007/978-1-4842-6336-5#DOI

690

Checksum, 115, 116, 120, 122, 124,
135, 137, 138, 144, 146

CH340 USB to serial, 622, 648
Communication

amplitude shift keying (ASK),
400, 435

bluetooth, 151, 266–268, 274,
305, 306, 344, 347, 382, 641,
653–673

bluetooth low energy (BLE),
641, 656, 658, 660, 663,
667, 669

ESP-NOW, 31, 306, 365–397
I2C address, 244, 621, 643, 681
On-Off keying (OOK), 400, 435
over the air (OTA), 585, 609
serial, 28, 113, 115, 117, 119,

120, 260, 274, 636
software serial, 117
SPI, 2, 621, 681

Component
AD9833 waveform generator, 466
BMP280 temperature, pressure,

182, 183, 188, 189, 209
DS3231 real time clock,

141, 150
FOD817C optocoupler, 430
HC-05 bluetooth, 260, 274
74HC4051 multiplexer,

95–98, 416
74HC595 shift register, 447,

449, 466
HC-SR501 PIR, 45
HC-SR505 PIR, 45

HC-SR04 ultrasonic
distance, 230

IFR520 MOSFET relay, 285, 286
ILI9341 touch screen, 84
INA219 voltage and current, 557
IN4001 diode, 558
IRF520 MOSFET relay, 285, 286
ISD1820 record and

playback, 147–150
KY-023 joystick, 436
KY-008 laser, 230, 416
KY-019 relay, 425
KY-040 rotary encoder, 25, 584
light dependent resistor, 287, 610
18650 lithium-ion battery, 157
LM358 amplification gain, 528
LM358 operational amplifier, 558
LM393 voltage comparator,

553, 558
L4940V5 voltage regulator,

230, 256
MAX471 current, 534–536
MAX4466 microphone, 87
MCP4725 DAC, 460, 462, 464
MT3608 boost converter, 151,

155, 157, 542, 558
2N2222 NPN transistor, 503
nRF24L01 transceiver, 317, 332,

333, 345
OLED screen, 332, 333
PAM8403 audio amplifier,

154, 156, 157
piezo transducer, 100, 111
Schottky diode, 425, 531, 538

INDEX

691

SG90 servo motor, 256
shunt resistor, 531, 558
ST7735 screen, 25, 558
SX1278 LoRa, 385
555 timer IC

astable mode, 470, 475, 476,
481, 484, 486–488

bistable mode, 470, 474–475
monostable mode, 470–473,

498–500
PIR sensor and MP3 player,

498–502
TP4056 battery protection,

157, 542
T6845 USB to lithium-ion

battery, 156, 157
u-blox NEO-7M GPS module,

316–318, 324, 332, 345
VS1053 audio decoder, 13, 25
VS1838B infrared, 126
WS2812 RGB LED, 87

Console log, 219–220, 222, 237, 238
CPU frequency, 261, 561, 612, 614,

615, 624, 631, 642

D
DC-balanced, 405
Debounce, 124, 474, 564, 566,

578, 583
Digital to analog converter (DAC),

444–451, 465, 507, 641, 678
Duty cycle, 101, 105, 110, 438–440,

465, 467, 470, 475, 478,

480–487, 490, 493, 495, 502,
634, 635

E
EEPROM, 30–32, 34, 275, 276,

585–610, 642, 686
ESP32 cores

core identity, 643, 644, 646, 649
FreeRTOS, 644
queue, 649, 650
semaphore, 650
task, 643, 644, 646, 647

ESP-NOW, 31, 306, 365–397,
657, 686

Exception decoder, 628

F
Fourier series, 455, 465, 489

G
Google Maps, 289–303, 305–345,

365, 590, 635, 647
Gray code, 568

H
Hall effect, 612, 629, 641, 680–682
High-pass filter, 489, 551
HTML (HyperText Markup

Language)
background-color, 39, 169,

176, 227

INDEX

692

button, 4, 36, 38, 39, 160, 162,
164, 166–168, 170, 174,
180, 237

canvas, 248, 251, 252
colspan, 239
form, 227
image, 36, 38, 237, 596, 600–602
input autocomplete, 238,

240, 251
label, 240, 251, 549
location.reload, 36, 38
refresh webage, 182, 184, 186
rotate, 36, 38–40
rowspan, 248, 251
slider, 237–240, 250, 251
span, 168, 174, 176, 177, 190,

193, 194, 197, 201, 218, 239,
240, 251, 330, 378, 395

style, 39, 40, 168, 169, 173, 176,
227, 237, 239, 240, 250, 251,
377, 395

table, 38, 39, 169, 170, 176,
177, 227, 228, 239, 240,
251, 252

textarea, 227, 228
HTTP request, 5, 13, 36, 38, 42,

69–72, 74, 79, 162–168,
171, 172, 174, 178, 181,
185, 187, 188, 192, 197,
216, 222, 329

HTTP response, 70, 163, 175

I
Inductor, 285, 493, 494, 502, 530,

538, 551–556
Infrared remote

control, 126–132, 150
Interrupt

attachInterrupt, 6, 17, 123, 136,
547, 565, 573, 576, 578, 581,
625, 627, 637

digitalPinToInterrupt, 6, 123,
136, 387, 390, 393, 411, 426,
547, 565, 573, 576, 578, 581,
625–627, 637

ISR, 4, 566, 574, 625, 637, 672, 679

J
JavaScript

className, 40, 175, 177, 178
getElementById, 40, 172, 175,

177–179, 191, 194, 195, 201,
202, 219, 226, 228, 240, 241,
250, 252–255, 330, 331, 378,
395, 396

innerHTML, 172, 175, 178, 179,
191, 194, 195, 201, 202, 240,
241, 250, 252–254, 330, 331,
378, 396

obj.var, 194, 195, 201, 202, 219,
330, 378, 396

onload, 228, 240, 251, 378, 395
script, 39, 40, 172, 173, 177–179,

190, 192, 194, 195, 201, 202,

HTML (HyperText Markup
Language) (cont.)

INDEX

693

228, 240, 241, 252, 255,
329–331, 378, 395, 396

setInterval, 40, 178, 190, 191,
194, 195, 201, 329–331

this.responseText, 172, 178,
179, 191, 194, 195, 201,
219, 330, 331

toLocaleTimeString, 250, 253,
378, 396

XMLHttpRequest, 39, 172, 175,
178, 179, 190, 191, 195, 201,
330, 331

JavaScript Object Notation (JSON),
69, 70, 72, 75–78, 163,
192–195, 197, 198, 201,
219, 220, 222, 233, 234,
236, 240, 245, 247, 248,
252, 326–328, 330, 375–378,
393, 394, 396

K
Keyboard emulation, 605, 606, 608

L
Least significant bit (LSB), 97, 404,

412, 437, 444
Logic level converter, 51, 52, 117
LoRa

instructions, 392
RSSI, 386, 390, 391, 393–395
SNR, 386, 389–391, 393–395

Low-pass filter, 489–494, 502, 551

M
Median filter, 90–92
433MHz, 387, 390, 393
micro-SD card, 27, 30–32, 49, 113,

114, 116, 120, 132, 134, 602
MIT app Inventor

blocks, 310
component

BluetoothClient, 265, 309
clock, 348
serial, 348, 363
TinyDB database, 311, 312

component section, 265
database

instructions, 289, 303
item, 289, 292, 303
tag, 289, 303
value, 289, 292, 303

HorizontalArrangements, 258,
298, 308

ListPicker, 289
Listview, 289
maps

EnableZoom, 298
LineString, 308
ShowScale option, 298

MIT AI2 companion, 257
Palette

connectivity, 348
layout, 258
maps, 298, 308
math, 269
media, 258

INDEX

694

sensors, 348, 363
storage, 292
user interface, 258, 292

procedures, 266, 268
properties section, 258, 271
QR code, 271
SelectBluetooth, 309, 310
SpeechRecognizer, 281, 286
TableArrangement, 279, 357
VerticalArrangements, 265

Most significant bit (MSB), 404,
410, 437, 444, 447, 456, 507

Moving average, 340, 342
MQTT broker

Cayenne
GetValue, 205
VirtualWrite, 204, 205, 207,

209, 213
email/text notification, 215
IFTTT (If This, Then That), 203

N
Network time protocol (NTP),

105–111
nRF connect app, 660, 666
nRF toolbox app, 660, 667–669

O
OpenWeatherMap, 51, 69–71, 73,

74, 76, 77, 79, 84
Optocoupler, 430–436

OTG device, 347–351, 353, 354,
357–360, 362, 363

P, Q
PROGMEM, 36, 39, 172, 176, 190,

194, 201, 227, 239, 250, 330,
377, 395, 462, 590, 601, 602

Pull-down resistor, 2, 45, 117, 118,
121, 447, 473, 606, 622, 625,
629, 632, 675

Pull-up resistor, 4, 6, 8, 14, 17, 27,
119, 122, 129, 136, 144, 471,
473, 474, 564, 575, 576, 578,
620, 621, 625, 626, 629, 632

Pulse width modulation (PWM),
101, 105, 110, 261, 262, 356,
437–440, 467, 470, 486–488,
495, 498, 612, 618, 619, 621,
629, 634–635, 681

Python 3.x, 586

R
Radio frequency

instructions, 402, 403, 406–408,
411–413, 416, 420–423,
432, 433

receiver, 400–409, 416, 419, 420,
424, 435

transmitter, 400–409, 416,
417, 435

Real time clock (RTC), 46, 141–143,
145, 150, 629, 675–678, 681

MIT app Inventor (cont.)

INDEX

695

Relay, 285–287, 423–436, 590,
649, 669

solid state, 433–436
Remote control, 127, 128,

229–236, 423
Rotary encoder

debounce, 564, 566, 567, 570
rotation speed, 578, 579, 583
switch, 13–15, 575–577

R-2R resistor ladder, 445, 449,
464, 465

S
Sawtooth wave, 451, 455
Sigrok, 405, 410
Sine waves, 441, 442, 451–457,

460–465, 467, 470, 488, 489,
493–495, 498

Sketch
analogSetPinAttenuation, 633
analogWriteFreq, 438
atof, 245
atoi, 245
attachInterrupt, 625, 679
bitRead, 97, 98
btStop, 673
charAt, 413, 415
constrain, 117, 525
c_str, 224, 407, 602
decode_results, 127, 129
digitalPinToInterrupt, 625, 626
dtostrf, 662, 666
endsWith, 218

highByte, 120, 124, 137, 146
#ifdef, 56, 167, 187, 615–617
#ifndef, 616, 617
indexOf, 21, 199, 200, 218, 235,

408, 409, 422
INPUT_PULLDOWN, 632, 676
INPUT_PULLUP, 4, 625, 626,

632, 676
insert tab, 31, 34, 36–38, 41, 164,

171, 189, 377
IRAM_ATTR, 4, 625, 679
lastIndexOf, 199, 218
ledcAttachPin, 262, 438, 634, 635
ledcSetup, 261, 262, 438, 634, 635
ledcWrite, 261, 262, 438, 634, 635
length, 14, 73, 224, 225, 233, 242,

367, 405, 410, 511, 554, 592,
596, 615, 662

lowByte, 120, 124, 137, 146
macAddress, 366, 367, 370, 372,

379, 586
map, 570
openReadingPipe, 322, 334, 341
openWritingPipe, 320, 327, 338
parseFloat, 217
parseInt, 91, 242
pgm_read_byte, 462, 590
pgm_read_datatype, 590
pgm_read_word, 590
pointer, 31, 63, 66, 596, 650,

657, 670
portENTER_CRITICAL, 672–675
portEXIT_CRITICAL, 672,

673, 675

INDEX

696

PROGMEM, 36, 172, 462, 590,
601, 602

readString, 216, 261
readStringUntil, 216
server.send, 163, 172, 189,

193, 601
setAutoAck, 320, 322, 327, 334,

338, 341
setBrightness, 88, 93, 102, 107
setCursor, 56, 65, 343, 525
setDataRate, 319, 321, 322, 327,

334, 338, 341
setPALevel, 320–322, 327, 334,

338, 341
setPeriodHertz, 233, 274, 423, 638
setPixelColor, 91
setRotation, 54
setTextColor, 56, 65, 525, 544
setTextsize, 54, 65, 343, 525
sizeof, 324, 339, 370, 372, 592,

650, 651
startsWith, 218
strcmp, 72, 371
string literal, 172, 180, 184, 189,

233, 590
strlen, 407, 596, 653
strncpy, 371
structure, 65, 324, 338, 339, 367,

370, 372, 592, 596, 597
substring, 14, 197, 420, 615
switch case, 128, 131, 572

testCarrier, 337
timerAlarmEnable, 672, 674
timerAlarmWrite, 672, 674
timerAttachInterrupt, 672, 674
toCharArray, 324
toFloat, 197
toInt, 197, 261, 416
touchAttachInterrupt, 679, 680
volatile, 4, 579, 590, 650,

651, 680
WiFi.mode(WIFI_OFF),

109, 673
WiFi.softAP, 162
WiFi.softAPConfig, 162
writeMicroseconds, 233, 242,

274, 423, 638
Sleep mode, 45, 49, 50, 629,

675–678, 681
Solar panel, 540–551, 557, 558
Sound filter, 90
Speech recognition, 281–286
SPIFFS, 29, 30, 275, 585–610,

642, 643
Square wave, 101, 105, 110, 233,

241, 261, 274, 423, 437–441,
455, 465, 467, 470, 471, 475,
478, 480, 482, 485–495, 502,
552, 554, 557, 559, 560,
564–574, 577–579, 583, 634,
635, 638

Superheterodyne, 400, 401, 403,
435, 436

Sketch (cont.)

INDEX

697

T
Text to speech, 132, 143
ThingSpeak, 196, 197, 199, 221
Touch screen, 51–58, 60, 62, 64, 69,

73, 74, 84
calibration, 57–60, 62–68

Triangle wave, 441–444, 456, 465
Tri-state, 410, 412–415, 435

U
Universal Asynchronous Receiver-

Transmitter (UART), 28, 29,
50, 113, 115, 437, 622, 623,
631, 662, 666, 667

Unix epoch time, 69, 70, 75,
100–102, 106, 107

V
Voltage divider, 117, 445–449,

451, 460, 468, 473, 489,
490, 493, 505–509, 519,
520, 522, 528, 542, 543,
548, 624

W
Watchdog timer, 41, 628, 639,

647, 648
Wavelength, 230, 383, 399, 401,

416, 478
WebSocket

broadcastTXT, 224, 226, 236,
247, 376, 394

onEvent, 225, 235, 247
WLAN

access point, 159, 162, 167, 381
access point and station, 162, 381
gateway, 161, 162, 164, 165
IP address, 38, 41, 161, 162, 180,

184, 603
MAC address, 367–370
map URL to function, 185
station, 159
subnet mask, 161, 162

WS2812 RGB LED, 85, 87, 90–94

X, Y, Z
XML HTTP, 38, 171–180, 188–192,

194, 222, 329

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Internet radio
	Station display and selection
	Minimal Internet radio
	Summary
	Components List

	Chapter 2: Intranet camera
	Save images to the SD card
	Load images on a web page
	Stream images to a web page
	PIR trigger to stream images to a web page
	Summary
	Components List

	Chapter 3: International weather station
	ILI9341 SPI TFT LCD touch screen
	Touch screen calibration
	Painting on-screen
	ESP8266-specific touch screen calibration and paint
	Weather data for several cities
	Summary
	Components List

	Chapter 4: Internet clock
	WS2812 RGB LEDs responsive to sound
	ESP8266 and multiplexer
	LED rings clock
	Network Time Protocol
	ESP32 and Internet clock
	Summary
	Components List

	Chapter 5: MP3 player
	Control command for the MP3 player
	MP3 player control with a microcontroller
	Infrared remote control of an MP3 player
	Creating sound tracks and two alarm systems
	Movement detection alarm
	Speaking clock
	Voice recorder
	Summary
	Components List

	Chapter 6: Bluetooth speaker
	Summary
	Components List

	Chapter 7: Wireless local area network
	HTTP request
	HTML code
	XML HTTP requests, JavaScript, and AJAX
	Summary
	Components List

	Chapter 8: Updating a web page
	XML HTTP requests, JavaScript, and AJAX
	JSON
	Accessing WWW data
	MQTT broker and IFTTT
	Parsing text
	Console log
	Wi-Fi connection
	Access information file
	Summary
	Components List

	Chapter 9: WebSocket
	Remote control and WebSocket communication
	WebSocket and AJAX
	Access images, time, and sensor data over the Internet
	Summary
	Components List

	Chapter 10: Build an app
	Control and feedback app
	Install the app
	Servo-robot control app
	Speech recognition app
	Summary
	Components List

	Chapter 11: App database and Google Maps
	MIT App Inventor database
	MIT App Inventor and Google Maps
	Summary
	Components List

	Chapter 12: GPS tracking app with Google Maps
	GPS position transmit
	GPS position receive
	Validate transmission of GPS position
	Improve GPS position signal
	Summary
	Components List

	Chapter 13: USB OTG communication
	App receive
	App transmit
	App receive and transmit
	Summary
	Components List

	Chapter 14: ESP-NOW and LoRa communication
	ESP-NOW
	LoRa communication
	Summary
	Components

	Chapter 15: Radio frequency communication
	Transmitting and receiving text
	Decode remote control signals
	Control pan-tilt servos with RF communication
	Control relay with RF communication
	Relays
	Solid-state relay
	Summary
	Components List

	Chapter 16: Signal generation
	Signal generation
	Digital to analog converter
	Generating waves
	ESP32 8-bit DAC
	12-bit DAC
	Summary
	Components List

	Chapter 17: Signal generation with 555 timer IC
	555 timer IC
	Monostable mode
	Bistable mode
	Astable mode
	Variable duty cycle
	50% duty cycle
	PWM mode
	Function generator
	Square wave to sine wave
	Bipolar junction transistor as a switch
	MP3 player and PIR sensor application
	Summary
	Components List

	Chapter 18: Measuring electricity
	Voltage divider
	Analog to digital converter
	Voltage meter
	Voltage meter with a load
	Resistance meter (ohmmeter)
	Capacitance meter
	Current meter (ammeter)
	Current sensor
	Current and voltage sensor
	Solar panel and battery meter
	Inductance meter
	Summary
	Components List

	Chapter 19: Rotary encoder control
	Debouncing
	Interrupts
	Square wave states
	State switching
	Incrementing a value
	Summary
	Components List

	Chapter 20: OTA and saving data to EEPROM, SPIFFS, and Excel
	OTA updating
	Saving data
	Saving to EEPROM
	Saving to SPIFFS
	Downloading SPIFFS files
	Saving data directly to Excel
	Summary
	Components List

	Chapter 21: Microcontrollers
	Arduino Uno
	Arduino Nano
	Arduino Pro Micro
	ESP8266 development board
	ESP8266 analog input
	ESP8266 interrupts
	ESP8266 watchdog timer
	ESP32 development board
	ESP32 digital input
	ESP32 analog input
	ESP32 pulse width modulation
	ESP32 serial input
	Wi-Fi communication and web server
	ESP8266 and ESP32 interrupts
	ESP8266 and ESP32 and an OLED screen
	ESP32 and servo motors
	Summary
	Components List

	Chapter 22: ESP32 microcontroller features
	Microcontroller CPU and memory
	ESP32 cores
	Bluetooth communication
	Bluetooth Low Energy communication
	Timers
	Real-time clock and sleep mode
	Digital to analog converter
	Capacitive touch sensor
	Hall effect sensor
	Summary
	Components List

	Appendix:
Libraries
	Index

