
Practical Python 
Data Visualization

A Fast Track Approach To Learning  
Data Visualization With Python
—
Ashwin Pajankar



Practical Python Data 
Visualization

A Fast Track Approach 
To Learning Data Visualization 

With Python 

Ashwin Pajankar



Practical Python Data Visualization: A Fast Track Approach To Learning 

Data Visualization With Python

ISBN-13 (pbk): 978-1-4842-6454-6  ISBN-13 (electronic): 978-1-4842-6455-3
https://doi.org/10.1007/978-1-4842-6455-3

Copyright © 2021 by Ashwin Pajankar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aditee Mirashi
Development Editor: James Markham
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media 1 New York Plaza, 
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole 
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM 
Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for 
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions 
and licenses are also available for most titles. For more information, reference our Print and eBook 
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available 
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6454-6. 
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Ashwin Pajankar
Nashik, Maharashtra, India

https://doi.org/10.1007/978-1-4842-6455-3


I dedicate this book to Abhijit Banerjee, Nobel Laureate 
economist of Indian origin



v

Table of Contents

Chapter 1:  Introduction to Python ��������������������������������������������������������1

Python Programming Language ����������������������������������������������������������������������������1

History of Python ���������������������������������������������������������������������������������������������2

Python Enhancement Proposals ����������������������������������������������������������������������3

Applications of Python �������������������������������������������������������������������������������������4

Installing Python on Various Platforms �����������������������������������������������������������������5

Installing on a Windows Computer ������������������������������������������������������������������5

Installing on Ubuntu and Debian Derivatives ���������������������������������������������������8

Python Modes �������������������������������������������������������������������������������������������������������9

Interactive Mode ��������������������������������������������������������������������������������������������13

Script Mode ���������������������������������������������������������������������������������������������������14

Summary�������������������������������������������������������������������������������������������������������������16

Chapter 2:  Exploring Jupyter Notebook ����������������������������������������������17

Overview of Jupyter Notebook ����������������������������������������������������������������������������18

Setting up Jupyter Notebook ������������������������������������������������������������������������������19

Running Code in Jupyter Notebook ���������������������������������������������������������������������25

Summary�������������������������������������������������������������������������������������������������������������29

About the Author ���������������������������������������������������������������������������������ix

About the Technical Reviewers �����������������������������������������������������������xi

Acknowledgments �����������������������������������������������������������������������������xiii

Introduction ����������������������������������������������������������������������������������������xv



vi

Chapter 3:  Data Visualization with Leather ����������������������������������������31

Running OS Commands in Jupyter Notebook �����������������������������������������������������31

Introduction to Leather����������������������������������������������������������������������������������������33

More Types of Visualizations �������������������������������������������������������������������������������37

Scales �����������������������������������������������������������������������������������������������������������������43

Styling �����������������������������������������������������������������������������������������������������������������45

Summary�������������������������������������������������������������������������������������������������������������48

Chapter 4:  Scientific Python Ecosystem and NumPy��������������������������49

Scientific Python Ecosystem �������������������������������������������������������������������������������50

NumPy and Ndarrays ������������������������������������������������������������������������������������������51

More Than One Dimension ����������������������������������������������������������������������������53

Ndarray Properties ����������������������������������������������������������������������������������������������54

NumPy Constants ������������������������������������������������������������������������������������������������55

Summary�������������������������������������������������������������������������������������������������������������56

Chapter 5:  Data Visualization with NumPy and Matplotlib �����������������57

Matplotlib ������������������������������������������������������������������������������������������������������������58

Visualization with NumPy and Matplotlib ������������������������������������������������������������59

Single Line Plots �������������������������������������������������������������������������������������������������64

Multiline Plots �����������������������������������������������������������������������������������������������������66

Grid, Axes, and Labels �����������������������������������������������������������������������������������������68

Colors, Styles, and Markers ��������������������������������������������������������������������������������73

Summary�������������������������������������������������������������������������������������������������������������79

Table of ConTenTs



vii

Chapter 6:  Visualizing Images and 3D Shapes �����������������������������������81

Visualizing the Images ����������������������������������������������������������������������������������������81

Operations on Images �����������������������������������������������������������������������������������������85

3 D Visualizations �������������������������������������������������������������������������������������������������93

Summary�����������������������������������������������������������������������������������������������������������100

Chapter 7:  Visualizing Graphs and Networks �����������������������������������101

Graphs and Networks����������������������������������������������������������������������������������������101

Graphs in Python 3 ��������������������������������������������������������������������������������������102

Visualizing Graphs in Python 3 ��������������������������������������������������������������������������105

More Types of Graphs����������������������������������������������������������������������������������������107

Assigning Custom Labels to Nodes �������������������������������������������������������������������114

Summary�����������������������������������������������������������������������������������������������������������115

Chapter 8:  Getting Started with Pandas �������������������������������������������117

Introduction to Pandas ��������������������������������������������������������������������������������������117

Series in Pandas ������������������������������������������������������������������������������������������118

Basic Operations on Series��������������������������������������������������������������������������120

Dataframes in Pandas ���������������������������������������������������������������������������������������121

Reading Data Stored in CSV Format ������������������������������������������������������������127

Visualizing with Pandas ������������������������������������������������������������������������������������128

Summary�����������������������������������������������������������������������������������������������������������136

Chapter 9:  Working with COVID-19 Data ������������������������������������������137

The COVID-19 Pandemic and the Data Set��������������������������������������������������������137

Data Sources for COVID-19 Data �����������������������������������������������������������������138

Visualizing the COVID-19 Data ��������������������������������������������������������������������������142

Summary�����������������������������������������������������������������������������������������������������������155

 Index �������������������������������������������������������������������������������������������������157

Table of ConTenTs



ix

About the Author

Ashwin Pajankar holds a Master of Technology from IIIT Hyderabad, 

and he has more than 25 years of programming experience. He started 

his journey in programming and electronics at the tender age of 

seven with the BASIC programming language and is now proficient in 

Assembly programming, C, C++, Java, Shell scripting, and Python. His 

other technical experience includes single-board computers such as 

Raspberry Pi and Banana Pro, and Arduino. He is currently a freelance 

online instructor teaching programming bootcamps to more than 60,000 

students from tech companies and colleges. His YouTube channel has an 

audience of 10,000 subscribers and he has published more than 15 books 

on programming and electronics with many additional international 

publications.



xi

About the Technical Reviewers

Lentin Joseph is an author, roboticist, and 

robotics entrepreneur from India. He runs 

robotics software company Qbotics Labs 

in Kochi and Kerala. He has ten years of 

experience in the robotics domain, primarily 

in Robot Operating System (ROS), OpenCV, 

and PCL. He has authored eight books on ROS, 

including Learning Robotics Using Python, 

Mastering ROS for Robotics Programming, ROS 

Robotics Projects, and Robot Operating System for Absolute Beginners. He 

has pursued his master’s degress in robotics and automation in India and 

also worked at the Robotics Institute at Carnegie Mellon University. He has 

also been a TEDx speaker.  

Aarthi Elumalai is a programmer, educator, 

entrepreneur, and innovator. She has a 

Bachelor of Engineering degree in computer 

science from Anna University, Chennai, 

India. She has launched a dozen web apps, 

plug-ins, and software applications that are 

being used by thousands of customers online. 

She has more than 15 years of experience in 

programming. She is the founder of DigiFisk, 

an e-learning platform that has more than 70,000 students worldwide. 



xii

Her courses are well-received by the masses, and her unique,  

project-based approach is a refreshing change for many. She teaches  

the complex world of programming by using practical exercises and 

puzzles along the way. Her courses and books always come with  

hands-on training in creating real- world projects so her students are 

better equipped for the real world.  

abouT The TeChniCal RevieweRs



xiii

Acknowledgments

I want to express my gratitude to all of the technical reviewers for helping 

me to make this book better. I would also like to express my gratitude to the 

team from Apress. Aditee Mirashi helped us to coordinate the entire book 

process. I am also grateful to Celestin Suresh for giving me the opportunity 

to write this book.



xv

Introduction

I have been working with the Python programming language for more than 

15 years now. I have used it for a variety of tasks like automation, graphics, 

Internet of Things (IoT), and data science. I have found that it is a very 

good tool for generating scientific and data-driven business visualizations. 

It takes fewer lines of code to generate visualizations with Python. Python 

is capable of fetching data from various type of sources. Combining this 

feature with various third-party visualization libraries makes Python the 

perfect tool for various types of visualization requirements.

This book covers the basics of Python, including setup and various 

modes, and many visualization libraries. I have also made a modest 

attempt to visualize real-life data related to the ongoing COVID-19 

pandemic.

I encourage readers to read all of the material and not to skip anything, 

even if you are familiar with the particular topic. I have written this book 

in such a way that every topic and demonstration builds confidence in the 

reader for the next topic. This truly is a step-by-step guide for beginners 

and experts alike.

After reading this book, you will be empowered by the knowledge of 

data visualization with Python and will be able to apply this knowledge 

in real-life projects at your workplace. It will also instill confidence in you 

to explore more libraries for data visualization in Python, as most of the 

support the scientific Python ecosystem and NumPy library discussed in 

detail in this book.

I hope that readers of this book will enjoy reading it and following the 

demonstrations as much as I enjoyed writing it.



1© Ashwin Pajankar 2021 
A. Pajankar, Practical Python Data Visualization,  
https://doi.org/10.1007/978-1-4842-6455-3_1

CHAPTER 1

Introduction to 
Python
I welcome you all to the exciting journey of learning data visualization with 

Python 3. This chapter provides details to get you started with the Python 

programming language, including its history, features, and applications. 

This chapter is focused on general information about Python 3 and its 

installation on various popular operating system (OS) platforms, such as 

Microsoft Windows, Ubuntu, and Raspberry Pi Raspbian. We will be writing 

a few basic Python programs and learn how to execute them on various 

platforms. Here is the list of topics that we will cover in this chapter.

• Python programming language

• Installing Python on various platforms

• Python modes

After completing this chapter, you should be comfortable with 

installation and usage of Python 3 programming language in various modes.

 Python Programming Language
Python 3 is a high-level, interpreted, general-purpose programming 

language. This section provides a general discussion about the Python 

programming language and its philosophy.

https://doi.org/10.1007/978-1-4842-6455-3_1#DOI


2

 History of Python
Python is a successor to the ABC programming language, which itself 

was inspired by the ALGOL 68 and SETL programming languages. It was 

created by Guido Van Rossum as a personal side project during vacations 

in the late 1980s while he was working at CWI Centrum Wiskunde & 

Informatica in the Netherlands. From the initial release of Python through 

July 2018, Van Rossum was the lead developer and Benevolent Dictator 

for Life for this project. Since then, he has gone into a state of permanent 

vacation and now works on a steering committee for Python. The following 

timeline details the important milestones in Python’s release.

• February 1991: Van Rossum published the code 

(labeled version 0.9.0) to alt.sources.

• January 1994: Version 1.0 was released.

• October 2000: Python 2.0 was released.

• December 2006: Python 3.0 was released.

• December 2019: Python 2.x was officially retired 

and is no longer supported by the Python Software 

Foundation.

Python 2.x versions are retired and no longer supported. In addition, 

Python 3 is not backward compatible with Python 2. Python 3 is the latest 

and currently supported version the language. We therefore use Python 

3 throughout the book to demonstrate programs for data visualization. 

Unless explicitly mentioned, Python denotes Python 3 throughout this 

book.

Chapter 1  IntroduCtIon to python



3

 Python Enhancement Proposals
To steer the development, maintenance, and support of Python, 

the Python leadership team came up with the concept of Python 

Enhancement Proposals (PEPs). These are the primary mechanism for 

suggesting new features and fixing issues in Python project. You can read 

more about the PEPs at the following URLs:

• https://www.python.org/dev/peps/

• https://www.python.org/dev/peps/pep-0001/

 Philosophy of Python

The philosophy of Python is detailed in PEP20, known as The Zen of 
Python, available at https://www.python.org/dev/peps/pep-0020/. Here 

are some of the points from that PEP.

 1. Beautiful is better than ugly.

 2. Explicit is better than implicit.

 3. Simple is better than complex.

 4. Complex is better than complicated.

 5. Flat is better than nested.

 6. Sparse is better than dense.

 7. Readability counts.

 8. Special cases aren’t special enough to break the rules.

 9. Although practicality beats purity.

 10. Errors should never pass silently.

 11. Unless explicitly silenced.

 12. In the face of ambiguity, refuse the temptation to guess.

Chapter 1  IntroduCtIon to python

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/pep-0001/
https://www.python.org/dev/peps/pep-0020/


4

 13. There should be one—and preferably only  

one—obvious way to do it.

 14. Although that way may not be obvious at first unless 

you’re Dutch.

 15. Now is better than never.

 16. Although never is often better than *right* now.

 17. If the implementation is hard to explain, it’s a bad 

idea.

 18. If the implementation is easy to explain, it may be a 

good idea.

 19. Namespaces are one honking great idea—let’s do 

more of those!

These are among the general philosophical guidelines that influenced 

the development of the Python programming language and continue to 

do so.

 Applications of Python
Because Python is a general-purpose programming language, it has 

numerous applications in the following areas:

 1. Web development.

 2. Graphical user interface (GUI) development.

 3. Scientific and numerical computing.

 4. Software development.

 5. System administration.

Case studies of Python for various projects are available at  https://

www.python.org/success-stories/.

Chapter 1  IntroduCtIon to python

https://www.python.org/success-stories/
https://www.python.org/success-stories/


5

 Installing Python on Various Platforms
A Python implementation is a program or an environment that supports 

the execution of programs written in Python. The original implementation 

created by Van Rossum is known as CPython and serves as a reference 

implementation. Throughout the book, we use CPython. It is available on 

the Python website and we will learn how to install it in this section.  

I prefer to write Python programs on a Windows computer or a Raspberry 

Pi computer with Raspberry Pi OS. Let us learn how to install Python on 

both of these platforms.

 Installing on a Windows Computer
Visit the Python 3 download page located at https://www.python.org/

downloads/ and download the Python 3 setup file for your computer. It will 

automatically detect the OS on your computer and show the appropriate 

downloadable file, as displayed in Figure 1-1.

Figure 1-1. Python Project home page with download options

Chapter 1  IntroduCtIon to python

https://www.python.org/downloads/
https://www.python.org/downloads/


6

Run the setup file to install Python 3. During installation, select the 

check box related to adding Python 3 to the PATH variable (Figure 1-2).

Click Customize Installation, which provides the customization 

options shown in Figure 1-3.

Figure 1-2. Python Installation Wizard

Chapter 1  IntroduCtIon to python



7

Select all the check boxes and click Next to continue the setup. 

Complete the setup. The name of the binary executable program for 

Python is python on Windows OS. Once installation is finished, run the 

following command at the Windows command prompt cmd.

python -V

It will return the version of Python 3 as follows:

Python 3.8.1

We can also check the version of pip3 as follows:

pip3 -V

pip stands for Pip installs Python or Pip installs Packages; its name is 

a recursive acronym. It is a package manager for the Python programming 

language. We can install the other needed Python libraries for our 

demonstrations using the pip utility.

Figure 1-3. Python installation options

Chapter 1  IntroduCtIon to python



8

To determine the exact locations of Python, you can run the where 

command as follows:

where python

It returns the following result:

C:\Users\Ashwin\AppData\Local\Programs\Python\Python38-32\

python.exe

Similarly, we can learn the location of the pip3 utility by running the 

following command:

where pip3

 Installing on Ubuntu and Debian Derivatives
Debian is a popular distribution. Ubuntu Linux and Raspberry Pi OS are 

other popular distributions based on Debian. Python 3 and pip3 come 

preinstalled on all the Debian distributions and derivatives like Ubuntu 

or Raspberry Pi OS, so we do not have to install them separately. I use 

Raspberry Pi OS on a Raspberry Pi 4B with 4 GB RAM. Both the major 

Python versions, Python 2 and Python 3, come preinstalled on Debian 

derivatives. Their executables are named python and python3 for Python 2 

and Python 3, respectively. We must use python3 for our demonstrations. 

To determine the versions and locations of the needed binary executable 

files, run the following commands one by one.

python3 -V

pip3 -V

which python3

which pip3

Almost all the other popular Linux distributions come with Python 

preinstalled, too.

Chapter 1  IntroduCtIon to python



9

 Python Modes
Python has various modes that we will discuss one by one. First, though, we 

need to learn about the integrated development and learning environment 

(IDLE). This is an integrated development environment (IDE) developed 

by the Python Software Foundation for Python programming. When we install 

the CPython implementation of Python 3 on Windows, IDLE is also installed. 

We can launch it on the Windows OS in various ways. The first way is to search 

for it in the Windows Search bar by typing IDLE as shown in Figure 1-4.

Figure 1-4. Python IDLE on Windows

Chapter 1  IntroduCtIon to python



10

The other way is to launch it from the command prompt (cmd) by 

running the following command:

idle

This will launch the window shown in Figure 1-5.

Before we proceed, we need to configure it to be easy to read. We 

can change the font by selecting Options ➤ Configure IDLE as shown in 

Figure 1-6.

Figure 1-5. Python IDLE

Figure 1-6. Configuring IDLE

The window shown in Figure 1-7 opens. There you can change the font 

and size of the characters in IDLE.

Chapter 1  IntroduCtIon to python



11

Figure 1-7. IDLE configuration

Chapter 1  IntroduCtIon to python



12

Adjust the font settings according to your own preferences.

All the Linux distributions might not come with IDLE preinstalled. We 

can install it on Debian and its derivatives (Ubuntu and Raspberry Pi OS) 

by running the following commands in sequence.

sudo apt-get update

sudo apt-get install idle3

Once the installation is complete, we can find IDLE on the menu (in 

this case the Raspberry Pi OS menu) as shown in Figure 1-8.

Figure 1-8. IDLE on the Raspberry Pi OS menu

Chapter 1  IntroduCtIon to python



13

We can also launch IDLE on Linux by running the following command:

idle

Now let us discuss the various Python modes.

 Interactive Mode
Python’s interactive mode is a command-line type of shell that executes 

the current statement and gives immediate feedback in the console. It runs 

the previously fed statements in active memory. As new statements are fed 

into and executed by the interpreter, the code is evaluated. When we open 

IDLE, we see a command-line prompt that is Python’s interactive mode. 

Let’s look at a simple example. Let’s type in the customary Hello World 

program in the interactive prompt as follows:

print('Hello World!')

Press Enter to feed the line to the interpreter and execute it. Figure 1-9 

presents a screenshot of the output.

Figure 1-9. Python interactive mode on IDLE

Chapter 1  IntroduCtIon to python



14

We can launch Python interactive mode from the command prompt, 

too. At the Linux command prompt (e.g., lxterminal), we must run the 

command python3 and at the Windows command prompt cmd, we have 

to run the command python to launch it. Figure 1-10 is a screenshot of the 

interactive mode at the Windows command prompt.

Figure 1-10. Python interactive mode at the Windows command 
prompt

 Script Mode
We can write a Python program and save it to disk. Then we can launch it 

in multiple ways. This is known as script mode. Let us demonstrate it in 

IDLE. We can use any text editor to write the Python program, but because 

IDLE is an IDE, it is convenient to write and run the Python programs with 

IDLE. Let’s look at that first. In IDLE, select File ➤ New File to create a 

blank new file. Add the following code to that:

print('Hello World!')

Save it with the name prog01.py on the disk (Figure 1-11).

Chapter 1  IntroduCtIon to python



15

On the menu, click Run ➤ Run Module. This executes the program at 

the IDLE’s prompt, as shown in Figure 1-12.

We can even launch the program with Python’s interpreter at the 

command prompt of the OS, too. Open the command prompt of the OS 

and navigate to the directory where the program is stored. At the Windows 

command prompt, run the following command:

python prog01.py

On the Linux terminal, we must run the following command prompt:

python3 prog01.py

Then the interpreter will run the program at the command prompt and 

the output (if any) will appear there.

Figure 1-11. A Python program in the IDLE code editor

Figure 1-12. A Python program under execution at the IDLE 
prompt

Chapter 1  IntroduCtIon to python



16

In Linux, there is another way we can run the program without 

explicitly using the interpreter. We must add a shebang line to the 

beginning of the code file. For example, our code file looks like this:

#!/usr/bin/python3

print('Hello World!')

The first line of this code is known as a shebang line. It tells the shell 

what interpreter to use and its location. Run the following command to 

change the file permission to make it executable for the owner as follows:

chmod 755 prog01.py

Then we can directly launch our Python program file like any other 

executable with ./ as follows:

./prog01.py

The shell will execute the program and print the output to the terminal. 

Note that this is applicable only for Unix-like systems (Linux and macOS) 

as they support executing programs like this. We will learn more about the 

Python programming as and when we need from the next chapter onward.

 Summary
This chapter started with the basics of the Python programming language. 

You learned how to write basic Python programs and execute them in 

various ways. You learned to work with Python on various OSs, including 

Windows and Linux. You also learned about various Python modes and 

how to launch them from the command prompts of various OSs.

In the next chapter, we will learn how to install Jupyter Notebook and 

take a brief tour of Jupyter Notebook.

Chapter 1  IntroduCtIon to python



17© Ashwin Pajankar 2021 
A. Pajankar, Practical Python Data Visualization,  
https://doi.org/10.1007/978-1-4842-6455-3_2

CHAPTER 2

Exploring Jupyter 
Notebook
In Chapter 1, we acquainted ourselves with Python and learned how to 

write a very simple program with Python. We also saw how to use Python 

in both interactive mode and script mode. In this chapter, we explore 

Jupyter Notebook. In Chapter 1 we saw that interactive mode offers us 

the immediate feedback of Python statements. We will continue using 

the interactive mode of Python throughout the book almost all of the 

demonstrations. However, rather than using Python’s built-in interactive 

mode with an interpreter, we will use another and much better tool known 

as the Jupyter tool. This entire chapter is dedicated to this topic.

You will learn about the following topics in this chapter:

• Overview of Jupyter Notebook.

• Setting up Jupyter Notebook.

• Running code in Jupyter Notebook.

After you complete this chapter, you should be comfortable with 

Python programming using Jupyter Notebook.

https://doi.org/10.1007/978-1-4842-6455-3_2#DOI


18

 Overview of Jupyter Notebook
In Chapter 1, you learned various ways to run Python statements. We ran 

Python statements in a script and in the interpreter’s interactive mode. The 

main advantage of using interactive mode is the immediate feedback. The 

main disadvantage of this mode is that, if we make any mistakes in typing 

the statements while and then execute the erroneous statement, we must 

rewrite the entire statement to reexecute it. It is also difficult to save it as 

a program. The option for saving the statements run on the interpreter 

can be found under the File menu option. However, all the statements 

and their outputs will be saved in plain text format with a .py extension. 

If there is any graphical output, it is displayed separately and cannot be 

stored along with the statements.

Owing to these limitations of interactive mode with interpreter, we 

will use a better tool for running the Python statements interactively in the 

web browser: Jupyter Notebook. Jupyter is a server program that can create 

interactive notebooks in a web browser.

A Jupyter notebook is a web-based notebook that is used for interactive 

programming with various languages, including Python, Octave, Julia, and 

R. It is very popular with people working in research domains. A Jupyter 

notebook can have code, visualizations, output, and rich text in a single 

file. The advantage of Jupyter Notebook over Python’s own interactive 

prompt is that, users can edit the code and see the new output instantly, 

which is not possible in Python interactive mode. Another advantage is 

that we have the code, rich text elements, and the code’s output (which 

could be in graphical or rich text format) in the same file on the disk. This 

makes it easy to distribute. We can save and share these notebooks over 

the Internet or using portable storage equipment. There are many services 

online that help us to store and execute Jupyter Notebook scripts on cloud 

servers.

Chapter 2  exploring Jupyter notebook



19

 Setting up Jupyter Notebook
We can easily install the Jupyter Notebook server program on any 

computer by running the following command at the command prompt:

pip3 install jupyter

Let’s explore how we can use Jupyter Notebook for writing and 

executing Python statements. Run the following command at the OS 

command prompt to launch the Jupyter Notebook server process there:

jupyter notebook

Once the Jupyter notebook server process is launched, the command 

prompt window shows a server log, as displayed in Figure 2-1.

Figure 2-1. Launching a new Jupyter Notebook process

Chapter 2  exploring Jupyter notebook



20

It launches a web page in the default browser in the OS. If the browser 

window is already open, it launches the page on a new tab of the same 

browser window. Another way to open the page (in case you accidentally 

close this browser window) is to visit http://localhost:8888/ in your 

browser, which displays a page similar to the one shown in Figure 2-2.

The token can be found in the server logs. The following is a sample 

server log with tokens.

    To access the notebook, open this file in a browser:

         file:///C:/Users/Ashwin/AppData/Roaming/jupyter/runtime/ 

nbserver-8420-open.html

    Or copy and paste one of these URLs:

         http://localhost:8888/?token=e4a4fab0d8c22cd01b6530d5da

ced19d32d7e0c3a56f925c

Figure 2-2. Logging in with a token

Chapter 2  exploring Jupyter notebook



21

      or  http://127.0.0.1:8888/?token=e4a4fab0d8c22cd01b6530d5da 

ced19d32d7e0c3a56f925c

In this log, we can see a couple of URLs. They refer to the same page 

(localhost and 127.0.0.1 are the same hosts). We can either copy and paste 

any of these URLs directly in the address bar of the browser tab and open 

the Jupyter Notebook home page or we can visit http://localhost:8888/ 

as previously mentioned and then paste the token in the server log (in our 

case it is e4a4fab0d8c22cd01b6530d5daced19d32d7e0c3a56f925c) and log 

in, which will take us to the same home page.

Note that every instance of the Jupyter Notebook server will have its 

own token and the token here will not work with your Jupyter Notebook. 

The token is only valid for that server process.

After you follow any one of the routes just explained, you will see a 

home page tab in the browser window that looks like Figure 2-3.

Figure 2-3. A new home page tab of Jupyter Notebook

You can see that there are three tabs on the web page itself: Files, 

Running, and Clusters. The Files tab shows the directories and files in the 

directory from where we launched the notebook server at the command 

prompt. In this example, I have executed the command jupyter notebook 

Chapter 2  exploring Jupyter notebook



22

from lxterminal of my Raspberry Pi. The present working directory is the 

home directory of the pi user /home/pi. That is why we can see all the files 

and directories in the home directory of my RPi computer in the screenshot 

in Figure 2-3.

In the top right corner, there are Quit and Logout buttons. If you click 

the Logout button, it logs out from the current session. To log in again, 

you will again need the token or URL with the embedded token from the 

notebook server log as discussed earlier. If you click Quit, that stops the 

notebook server process running at the command prompt and displays the 

modal message box shown in Figure 2-4.

To work with it again, we need to execute the command jupyter 

notebook again at the command prompt.

On the top right, just below the Quit and Logout buttons, there is a 

small refresh button. Clicking that refreshes the home page. Next to that 

is the New button. Once it is clicked, it displays a drop-down menu, as 

shown in Figure 2-5.

Figure 2-4. The message shown after clicking Quit

Chapter 2  exploring Jupyter notebook



23

As you can see, the drop-down menu is divided into two sections, 

Notebook and Other. In this example, you can choose to create Octave and 

Python 3 notebooks. If your computer has more programming languages 

installed that are supported by Jupyter Notebook, those additional 

languages will be displayed here as well. We can also create text files and 

folders. We can open a command prompt in the web browser by clicking 

Terminal. Figure 2-6 is a screenshot of lxterminal running in a separate 

web browser tab.

Figure 2-5. Options for a new notebook

Chapter 2  exploring Jupyter notebook



24

Selecting Python 3 from the drop-down menu creates a new Python 3 

notebook as shown in Figure 2-7.

If you return to the home page by clicking the home page tab in 

the browser and then click the Running tab, you can see the entries 

corresponding to the terminal and the Python 3 notebook as shown in 

Figure 2-8.

Figure 2-7. A new Python 3 notebook

Figure 2-6. A new lxterminal window within the browser

Chapter 2  exploring Jupyter notebook



25

 Running Code in Jupyter Notebook
Go to the Python 3 Untitled1 tab again and type the following statement in 

the text area (also known as a cell):

printf("Hello, World!\n");

Click Run. Jupyter will execute that as a Python 3 statement and show 

the result immediately below the cell as shown in Figure 2-9.

Figure 2-8. Summary of current Jupyter Notebook subprocesses

Figure 2-9. Code output in Jupyter Notebook

Chapter 2  exploring Jupyter notebook



26

As you can see, after execution, it automatically creates a new cell 

below the result and places the cursor there. Let’s discuss the menu bar 

and the icons above the programming cells. We can save the file by clicking 

the floppy disk icon. We can add a new empty cell after the current cell by 

clicking the + icon. The next three icons are for cut, copy, and paste. Up 

and down arrows can shift the position of the current cell up and down, 

respectively. The next option is to run the cell, which we already saw. The 

next three icons are used to interrupt the kernel, restart the kernel, and 

restart the kernel and rerun all the cells in the notebook. Next to that, we 

have a drop-down menu that allows us to select what type of cell it should 

be. Figure 2-10 is a screenshot of the drop-down menu when clicked.

Figure 2-10. Types of cells in Jupyter Notebook

The cell is treated as a Python 3 code cell when you select the Code 

option. It is treated as a Markdown cell when you choose the Markdown 

option. Markdown is a markup language that can create rich text output. 

For example, anything followed by # creates a heading, anything followed 

by ## creates a subheading, and so on. Just type the following lines in a 

Markdown cell and execute it:

# Heading 1

## Heading 2

During our Python 3 demonstrations, we use the Markdown cells 

primarily for headings. However, you can further explore Markdown 

on your own. You can find more information about it at https://

jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/

Chapter 2  exploring Jupyter notebook

https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working With Markdown Cells.html
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working With Markdown Cells.html


27

Working%20With%20Markdown%20Cells.html. The output of the preceding 

demonstration is shown in Figure 2-11.

You can even change the name of the notebook file by clicking its name 

in the top part of the notebook. Once you click, it displays a modal box for 

renaming as shown in Figure 2-12.

Figure 2-11. Headings in Markdown

Figure 2-12. Rename a notebook in Jupyter

Rename it if you wish to do so. If we browse the location on disk from 

where we launched Jupyter Notebook at the command prompt, we will 

find the file with an ipynb extension, which stands for IPython Notebook.

Chapter 2  exploring Jupyter notebook

https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working With Markdown Cells.html


28

In the same way, we can use Jupyter Notebook for interactive 

programming with the other programming languages that support Jupyter. 

We will mostly use this notebook format to store our code snippets for 

interactive sessions because everything is saved in a single file, which can 

be shared easily as discussed earlier.

We can clear the output of a cell or the entire notebook. On the menu 

bar, select Cell. On the drop-down menu, Current Outputs and All Output 

have Clear option that clears the output of cells. Figure 2-13 is a screenshot 

of the available options.

Figure 2-13. Clearing the output in Jupyter

Chapter 2  exploring Jupyter notebook



29

One of the most significant advantages of Jupyter Notebook is that 

you can edit an already executed cell if there is any syntax error or you 

simply want to change the code. Jupyter Notebook is like an IDE that runs 

within a web browser and produces the output in the same window. This 

interactivity and the ability to keep code, rich text, and output in the same 

file has made Jupyter Notebook hugely popular worldwide. The kernel for 

running Python programs comes from the IPython project. As I mentioned 

earlier, we can use it for other programming languages, too. I have used it 

for running GNU Octave programs as well.

Note you can find more information about Jupyter notebook and 
ipython at the following urls:

https://jupyter.org/

https://ipython.org/

 Summary
In this chapter, we got started with installation of Jupyter Notebook on 

various platforms. We then explored how we can run simple Python 

statements in Jupyter Notebook. We learned that we can store the code and 

the output of that code in a single file that can be shared easily over the 

Internet.

In the next chapter, we will use Jupyter Notebook to work with simple 

visualizations using Python and a popular data visualization library, leather.

Chapter 2  exploring Jupyter notebook

https://jupyter.org/
https://ipython.org/


31© Ashwin Pajankar 2021 
A. Pajankar, Practical Python Data Visualization,  
https://doi.org/10.1007/978-1-4842-6455-3_3

CHAPTER 3

Data Visualization 
with Leather
In Chapter 2, we acquainted ourselves with Python programming using 

Jupyter Notebook. You should now be comfortable writing interactive 

Python programs with Jupyter Notebook.

In this chapter, we will use Jupyter Notebook and Python with a data 

visualization library, leather, to produce basic visualizations. Here is the 

list of topics we will cover in this chapter:

• Introduction to leather

• More types of visualizations

• Scales

• Styling

 Running OS Commands in Jupyter Notebook
You have seen how to use Jupyter notebook for Python programming. We 

will now explore how to execute an OS command in the notebook. This is 

useful, as we need to use pip to install many utilities and we can run it right 

from within the notebook.

https://doi.org/10.1007/978-1-4842-6455-3_3#DOI


32

Create a new Jupyter notebook for all the code in this chapter. We will 

follow this process for all of the chapters, so by the end of the book, we will 

have all the programs in notebooks by chapter.

To execute an OS command in a notebook cell, we have to use the ! 
symbol as a prefix as follows:

!dir

The output of this command is shown in Figure 3-1.

You can upgrade the pip utility by running the following statement:

!pip3 install --upgrade pip

Install the library leather for data visualization demonstrations, using 

this statement:

!pip3 install leather

This installs the leather data visualization library on the computer. In 

the next section, we will get started with visualization with Python and 

leather using a notebook.

Figure 3-1. Output of an OS command in Jupyter Notebook

Chapter 3  Data Visualization with leather



33

 Introduction to Leather
Leather is an easy-to-use, popular data visualization library for Python. 

You can find this on the Python Package Index (PyPI) at https://pypi.

org/project/leather/. PyPI is a repository of third-party packages 

that can be downloaded using the pip3 utility. We can also search for 

availability of a package on PyPI. Run the following command in the 

notebook:

!pip3 search leather

The output is shown in Figure 3-2.

Before we can proceed further, we need to know a few things about the 

Python programming language in advance. In Python, tabs or indentations 

are used to denote code blocks. In a few popular programming languages 

like C, C++, and Java, multiline code blocks are enclosed in curly brackets 

{}. Python instead forces programmers to indent the code blocks and 

there is no other way to denote them. Consider the following code as an 

example.

a = 3

if a%2 == 0:

    print('Even')

else:

    print('Odd')

Figure 3-2. Searching for a package with pip3

Chapter 3  Data Visualization with leather

https://pypi.org/project/leather/
https://pypi.org/project/leather/


34

Run that code in the notebook and see the result. There is also a 

fun thing you can try. We have already learned about PEP 20, the Zen of 

Python. The Python creator added it as an Easter egg in the interpreter, 

and you can invoke it with the following statement:

import this

If you run the statement in the notebook, it prints all the statements in 

the Zen of Python in the output.

Note that whatever program we are going to demonstrate with Jupyter 

Notebook can also be run with the IDLE with a few changes. We are using 

Jupyter Notebook for its immediate feedback and interactive features. Now 

let’s use the import statement to add the leather library to our notebook. 

We just need to import it once per session and it will be available to us 

throughout the session. Use this statement:

import leather

Run this and it imports the library to the current notebook session. It 

is a good idea to use a heading for every new topic, but I leave it to your 

discretion. You will find that I use headings quite often in the notebooks for 

the code bundle of this book to provide context and reference to whatever I 

am demonstrating. It is a good practice and you might want to follow it.

Let us write simple code for visualization of a few points. We can define 

the points in an X-Y coordinate system. We can use a list of tuples to define 

points as follows:

data1 = [(1.5, 2), (2, 3), (4.5, 6), (7.5, 4)]

We can also define them as a list of lists:

data1 = [[1.5, 2], [2, 3], [4.5, 6], [7.5, 4]]

We can also define them as a tuple of tuples:

data1 = ((1.5, 2), (2, 3), (4.5, 6), (7.5, 4))

Chapter 3  Data Visualization with leather



35

We can also define them as a tuple of lists:

data1 = ([1.5, 2], [2, 3], [4.5, 6], [7.5, 4])

As you can see, the leather library is not very particular and is very 

flexible about how we define our data.

Let us define a chart object as follows:

chart = leather.Chart('Simple pairs of x-y')

Next, create a dot chart:

chart.add_dots(data1)

Then let’s visualize the chart as follows:

chart.to_svg()

It will display the output in the same notebook, as shown in Figure 3-3.

Figure 3-3. Plotting the points

Chapter 3  Data Visualization with leather



36

We can save the image to disk with the following statement:

chart.to_svg('image1.svg')

We can then customize dots as follows:

chart = leather.Chart('Customised Dots')

chart.add_dots(data1, fill_color='#00ff00', radius=10)

chart.to_svg()

Let us define more data points:

data2 = [(2, 3), (4, 5), (5, 6), (7, 5)]

We can also visualize multiple series as follows:

chart = leather.Chart('Visualizing Multiple series')

chart.add_dots(data1)

chart.add_dots(data2)

chart.to_svg()

The output is shown in Figure 3-4.

Figure 3-4. Plotting the multiple series

Chapter 3  Data Visualization with leather



37

As we can see in Figure 3-4, leather automatically assigns different 

colors to the points based on the series to which they belong.

 More Types of Visualizations
We can visualize the data with line segments joining the points as follows:

chart = leather.Chart('Visualizing Lines')

chart.add_line(data1)

chart.to_svg()

The output is shown in Figure 3-5.

We can customize the line visualization as follows:

chart = leather.Chart('Customized Line')

chart.add_line(data1,stroke_color='#0000ff', width=3)

chart.to_svg()

Figure 3-5. Visualizations with line segments

Chapter 3  Data Visualization with leather



38

Figure 3-6 displays the output.

We can visualize multiple lines as follows:

chart = leather.Chart('Visualizing Multiple Lines')

chart.add_line(data1)

chart.add_line(data2)

chart.to_svg()

Figure 3-6. Customizing the line

Chapter 3  Data Visualization with leather



39

Figure 3-7 shows the output.

We can visualize multiple types in a single visualization as follows:

chart = leather.Chart('Visualizing Multiple Types')

chart.add_line(data1)

chart.add_dots(data2)

chart.to_svg()

Figure 3-7. Visualizing multiple lines

Chapter 3  Data Visualization with leather



40

Figure 3-8 displays the output.

We can visualize with bars as follows:

data = [[1, 'A'], [2, 'B'], [3, 'C'], [4, 'D']]

chart = leather.Chart('Visualizing Bars')

chart.add_bars(data)

chart.to_svg()

In our data set, one of the dimensions is the text data. The visualization 

is shown in Figure 3-9.

Figure 3-8. Visualizing multiple types

Chapter 3  Data Visualization with leather



41

We can customize it as follows:

chart = leather.Chart('Customizing Bars')

chart.add_bars(data, fill_color='#777777')

chart.to_svg()

The output is displayed in Figure 3-10.

Figure 3-9. Visualizing bar charts

Figure 3-10. Customizing bar charts

Chapter 3  Data Visualization with leather



42

We can visualize with horizontal columns as follows:

data = [ ('A', 1), ('B', 2), ('C', 3), ('D', 4)]

chart = leather.Chart('Visualizing Columns')

chart.add_columns(data)

chart.to_svg()

The output is shown in Figure 3-11.

We can customize the columns as follows:

chart = leather.Chart('Customizing Columns')

chart.add_columns(data, fill_color='#77ff77')

chart.to_svg()

Figure 3-11. Vertical columns

Chapter 3  Data Visualization with leather



43

The output is displayed in Figure 3-12.

 Scales
There are various types of scales the that leather library can create 

automatically and programmatically. An ordinal scale is automatically 

created for the text data. The example is the same as we saw earlier:

chart = leather.Chart('The Ordinal Scale')

chart.add_columns(data)

chart.to_svg()

Linear scales are created automatically when the data is numeric. We 

can set the limit of scales as follows:

chart = leather.Chart('Linear Scale')

chart.add_x_scale(1, 8)

chart.add_y_scale(1, 7)

chart.add_line(data1)

chart.to_svg()

Figure 3-12. Customizing vertical columns

Chapter 3  Data Visualization with leather



44

Figure 3-13 displayes the output.

A temporal scale is automatically created for temporal (time-related) 

data:

from datetime import date

data = [

    (date(2020, 1, 1), 4),

    (date(2020, 3, 1), 6),

    (date(2020, 6, 1), 2),

    (date(2020, 9, 1), 1)]

chart = leather.Chart('Temporal Scale')

chart.add_x_scale(date(2019, 9, 1), date(2020, 12, 1))

chart.add_line(data)

chart.to_svg()

Figure 3-13. Linear scale with custom limits

Chapter 3  Data Visualization with leather



45

The output is shown in Figure 3-14.

 Styling
Leather provides a lot of styling options. We can set the tick values on the 

axes as per our requirements as follows:

chart = leather.Chart('Ticks Demo')

chart.add_x_scale(1, 8)

chart.add_x_axis(ticks=[1, 2, 3, 4, 5, 6, 7, 8])

chart.add_y_scale(1, 7)

chart.add_y_axis(ticks=[1, 2, 3, 4, 5, 6, 7])

chart.add_line(data1)

chart.to_svg()

Figure 3-14. Temporal scale with custom limits

Chapter 3  Data Visualization with leather



46

The output is as shown in Figure 3-15.

We can also customize the font and colors used to show the values and 

the series in the visualization. The following is a simple example.

leather.theme.title_font_family = 'Times New Roman'

leather.theme.legend_font_family = 'Times New Roman'

leather.theme.tick_font_family = 'Times New Roman'

leather.theme.default_series_colors = ['#ff0000', '#00ff00']

chart = leather.Chart('Custom Fonts')

chart.add_line(data1)

chart.add_line(data2)

chart.to_svg()

Figure 3-15. Custom tick values

Chapter 3  Data Visualization with leather



47

Figure 3-16 shows the output for this example.

Figure 3-16. Custom fonts and colors

We can also color the data points according to their position with the 

following code. Let’s import the random library into the notebook:

import random

We will use it to generate the data points as follows:

data = [(random.randint(0, 250),

         random.randint(0, 250)) for i in range(100)]

This creates 100 data points. The values of x and y axes for those 100 

points are randomly chosen from the interval of 0 to 250. We can write a 

colorizer function that returns a color value in terms of RGB based on the 

location of the point.

def colorizer(location):

    return 'rgb(%i, %i, %i)' % (location.x, location.y, 150)

Chapter 3  Data Visualization with leather



48

Let’s call this function to define the fill color of the points as follows:

chart = leather.Chart('Colorized dots')

chart.add_dots(data, fill_color=colorizer)

chart.to_svg()

The output is shown in Figure 3-17.

 Summary
This chapter introduced demonstrations of data visualization with Python 

using leather, a popular data visualization library. We saw different types of 

visualizations, styles, and scales. Leather is a very simple data visualization 

library and is capable of visualizing only simple shapes.

Your business requirements or scientific visualizations might 

necessitate more complex and elaborate visualizations. For that, you need 

to be comfortable with the scientific Python ecosystem. The next chapter 

explores the scientific Python ecosystem in detail. We will also learn the 

basics of NumPy n-dimensional arrays (also known as ndarrays).

Figure 3-17. Custom colors for data points

Chapter 3  Data Visualization with leather



49© Ashwin Pajankar 2021 
A. Pajankar, Practical Python Data Visualization,  
https://doi.org/10.1007/978-1-4842-6455-3_4

CHAPTER 4

Scientific Python 
Ecosystem and NumPy
In Chapter 3, you learned how to create simple visualizations with Python 

3 and the leather data visualization library. You also learned that only 

primitive visualizations can be prepared using the leather data visualization 

library. For more complex and elaborate visualizations, we need to use 

libraries with the advanced data handling and visualization capabilities.

This chapter explores the scientific Python ecosystem and its 

components. It also provides a brief overview of the NumPy library with 

a few coding demonstrations. The following topics are explored in this 

chapter:

• Scientific Python ecosystem

• NumPy and ndarrays

• Ndarray properties

• NumPy constants

Throughout the remaining chapters of this book, we will explore many 

components of the scientific Python ecosystem one by one. Throughout 

this book, we will be using different libraries that are part of this scientific 

Python ecosystem. The valuable knowledge you will gain in this chapter 

serves as foundation for the remaining chapters. As this is an introductory 

chapter for a broad ecosystem, I have kept it short, yet practical.

https://doi.org/10.1007/978-1-4842-6455-3_4#DOI


50

 Scientific Python Ecosystem
The scientific Python ecosystem (SciPy) is a collection of Python libraries 

for mathematics, science, and engineering. SciPy has the following core 

components:

 1. Python programming languages: We explored 

installation and a few basics of the Python 3 

programming language in Chapter 1.

 2. NumPy: This is the numerical Python library, the 

fundamental package for numerical computation 

in Python. It defines an N-dimensional data type 

that can be used for numerical computations on 

multidimensional data.

 3. SciPy library: This includes many routines for 

mathematical and scientific computations that can 

be used for scientific applications.

 4. Matplotlib: This is a MATLAB-inspired library for 

data visualization in Python 3.

There are several additional important member libraries of this 

ecosystem.

 1. Pandas: This stands for Python data analysis. It 

provides versatile data structures such as series and 

data frame.

 2. SymPy: This stands for symbolic Python. It is used 

for symbolic mathematics and algebra.

 3. scikit-image: This library has routines for image 

processing.

Chapter 4  SCientifiC python eCoSyStem and numpy



51

 4. scikit-learn: This library has routines for machine 

learning.

The interactive environments that are usually used with SciPy are 

IPython or Jupyter Notebook. We looked at Jupyter Notebook in detail in 

Chapter 2 and used it in Chapter 3 as well. We will continue using it for rest 

of this book.

The next section covers the NumPy library in greater detail.

 NumPy and Ndarrays
As introduced earlier, NumPy is the fundamental package for numerical 

computation in Python. The most useful feature of the NumPy library is 

the multidimensional container data structure known as ndarray.

An ndarray is a multidimensional array (also known as a container) 

of items that have the same datatype and size. We can define the size and 

datatype of the items at the time of the creation of the ndarray. Just like the 

other data structures such as lists, we can access the contents of an ndarray 

with an index. The index in the ndarrays ranges from 0 (just like arrays in 

C or lists in Python). We can use ndarrays for a variety of computations. 

All the other libraries in SciPy and other libraries also recognize and use 

NumPy ndarrays and associated routines to represent their own data 

structures and operations on them.

Let’s get started with a hands-on example. Create a new Jupyter 

notebook for this chapter, then run the following command to install the 

NumPy library:

!pip3 install numpy

Import it into the current notebook by running the following command:

Chapter 4  SCientifiC python eCoSyStem and numpy



52

import numpy as np

You can create a list and then use it to create a simple ndarray as follows:

l1 = [1, 2, 3]

x = np.array(l1, dtype=np.int16)

Here we are creating an ndarray from a list. The datatype of the 

members is 16-bit integer. You can find a detailed list of the datatypes 

supported at https://numpy.org/devdocs/user/basics.types.html.

We can write the preceding code in a single line as follows:

x = np.array(l1, dtype=np.int16)

Let’s print the value of ndarray and its type (which, we know, is 

ndarray).

print(x)

print(type(x))

The output is as follows:

[1 2 3]

<class 'numpy.ndarray'>

As we can observe in the output, it is of the class numpy.ndarray. As 

we learned earlier, the indexing starts from 0. Let’s demonstrate that by 

accessing the members of the ndarray as follows:

print(x[0]); print(x[1]); print(x[2])

Here is the output:

1

2

3

Chapter 4  SCientifiC python eCoSyStem and numpy

https://numpy.org/devdocs/user/basics.types.html


53

We can even use a negative index: -1 returns the last element, -2 

returns the second to the last element, and so on. Here is an example:

print(x[-1])

If we provide any invalid index value, it throws an error.

print(x[3])

In this statement, we are trying to access the fourth element in the 

ndarray, which is nonexistent. It thus returns the following error:

IndexError                    Traceback (most recent call last)

<ipython-input-4-d3c02b9c2b5d> in <module>

----> 1 print(x[3])

IndexError: index 3 is out of bounds for axis 0 with size 3

 More Than One Dimension
We can have more than one dimension for an array as follows:

x1 = np.array([[1, 2, 3], [4, 5, 6]], np.int16)

This represents a two-dimensional matrix with two rows and three 

columns. We can access individual elements as follows:

print(x1[0, 0]); print(x1[0, 1]); print(x1[0, 2]);

We can even access entire rows:

print(x1[0, :])

print(x1[1, :])

The output is shown here:

[1 2 3]

[4 5 6]

Chapter 4  SCientifiC python eCoSyStem and numpy



54

We can access an entire column with this syntax:

print(x[:, 0])

The output is as follows:

[1 4]

We can even have an ndarray with more than two dimensions. Here is 

the syntax to create a three-dimensional (3D) array:

x2 = np.array([[[1, 2, 3], [4, 5, 6]],[[0, -1, -2], [-3, -4, 

-5]]], np.int16)

Scientific and business applications often use multidimensional 

data. Ndarrays are very useful for storing numerical data. Try to run the 

following items and retrieve the elements of the preceding 3D matrix.

print(x2 [0, 0, 0])

print(x2 [1, 1, 2])

print(x2[:, 1, 1])

 Ndarray Properties
We can learn more about the ndarrays by referring to their properties. 

First, let’s look at all the properties with the demonstration. This example 

uses the same 3D matrix we used earlier.

x2 = np.array([[[1, 2, 3], [4, 5, 6]],[[0, -1, -2], [-3, -4, 

-5]]], np.int16)

We can learn the number of dimensions with the following statement:

print(x2.ndim)

The output returns the number of dimensions:

3

Chapter 4  SCientifiC python eCoSyStem and numpy



55

We can then learn the shape of the ndarray as follows:

print(x2.shape)

The shape indicates the size of the dimensions, as follows:

(2, 2, 3)

We can determine the datatype of the members as follows:

print(x2.dtype)

Here is the output:

int16

We can also learn the size (number of elements) and the number of 

bytes required in memory for storage as follows:

print(x2.size)

print(x2.nbytes)

The output is as follows:

12

24

We can compute the transpose with the following code:

print(x2.T)

 NumPy Constants
The NumPy library has many useful mathematical and scientific constants 

you can use in your programs. The following code snippet prints all of 

those important constants:

print(np.inf)

Chapter 4  SCientifiC python eCoSyStem and numpy



56

print(np.NAN)

print(np.NINF)

print(np.NZERO)

print(np.PZERO)

print(np.e)

print(np.euler_gamma)

print(np.pi)

The output is as follows:

inf

nan

-inf

-0.0

0.0

2.718281828459045

0.5772156649015329

3.141592653589793

 Summary
This chapter introduced the basics of NumPy and ndarrays. The NumPy 

library is extensive, including many routines. There are even separate 

books dedicated to NumPy. For our purposes, we will explore more 

routines from the NumPy library in the coming chapters as and when we 

need them for our visualization demonstrations.

The next chapter introduces a few ndarray creation routines and the 

basics of data visualization with Matplotlib.

Chapter 4  SCientifiC python eCoSyStem and numpy



57© Ashwin Pajankar 2021 
A. Pajankar, Practical Python Data Visualization,  
https://doi.org/10.1007/978-1-4842-6455-3_5

CHAPTER 5

Data Visualization 
with NumPy 
and Matplotlib
Chapter 4 introduced the basics of NumPy. You learned how to install it 

and how to create ndarrays. In this chapter, we continue working with 

NumPy by looking at a few ndarray creation routines. We will also get 

started with the data visualization library of the scientific computing 

ecosystem, Matplotlib. We will use the NumPy ndarray creation routines to 

demonstrate visualizations with Matplotlib. This is a detailed chapter with 

emphasis on coding and visualizations. The following topics are covered in 

this chapter:

• Matplotlib

• Visualization with NumPy and Matplotlib

• Single line plots

• Multiline plots

• Grid, axes, and labels

• Colors, styles, and markers

https://doi.org/10.1007/978-1-4842-6455-3_5#DOI


58

Throughout the remaining chapters of this book, we will use Matplotlib 

and NumPy to demonstrate data visualization.

 Matplotlib
Matplotlib is an integral part of SciPy and it is used for visualization. It is 

an extension of NumPy. It provides a MATLAB-like interface for plotting 

and visualization. It was originally developed by John D Hunter as an open 

source alternative usable with Python.

We can install it using Jupyter Notebook as follows:

!pip3 install matplotlib

To use it in the notebook for basic plotting, we must import its pyplot 

module as follows:

import matplotlib.pyplot as plt

Also, to show the Matplotlib visualizations in the notebook, we must 

run the following command:

%matplotlib inline

This forces Matplotlib to show the output inline, directly below the 

code cell that produces the visualization. We will always use this when we 

need to use Matplotlib.

Let’s import NumPy, too, as follows:

import numpy as np

You can read more about Matplotlib at https://matplotlib.org/.

Chapter 5  Data Visualization with numpy anD matplotlib

https://matplotlib.org/


59

 Visualization with NumPy and Matplotlib
We are now going to learn how to create NumPy ndarrays with ndarray 

creation routines and then use Matplotlib to visualize them. Let’s begin 

with the routines to create ndarrays.

The first routine is arange(). It creates evenly spaced values with  

the given interval. A stop value argument is compulsory. The start value 

and interval parameters have default arguments of 0 and 1, respectively. 

Let’s look at an example.

x = np.arange(5)

In this example, the stop value is 5, so it creates an ndarray starting 

with 0 and ending at 4. The function returns the sequence that has a  

half- open interval, which means the stop value is not included in the 

output. As we have not specified the interval, it assumes it to be 1. We can 

see the output and the datatype of it as follows:

print(x)

type(x)

Here is the output:

[0 1 2 3 4]

numpy.ndarray

Let’s go ahead and plot these numbers. For 2D plotting, we need X-Y pairs. 

Let’s keep it simple and say y = f(x) = x by running the following statement:

y=x

Now, use the function plot() to visualize this. It needs the values of X, 

Y, and the plotting options. We will learn more about the plotting options 

later in this chapter.

plt.plot(x, y, 'o--')

plt.show()

Chapter 5  Data Visualization with numpy anD matplotlib



60

The function show() displays the plot. As we can see above, we 

are visualizing with plotting options o--. This means the points are 

represented by the solid circles and line is dashed, as shown in Figure 5-1.

Let’s look at an example of the function call for the function arange() 

with the start and the stop arguments as follows:

np.arange(2, 6)

It returns the following output (it directly prints and we are not storing 

it in a variable):

array([2, 3, 4, 5])

We can even add an argument for the interval as follows:

np.arange(2, 6, 2)

Here is the output:

array([2, 4])

Figure 5-1. Visualizing y=f(x)=x

Chapter 5  Data Visualization with numpy anD matplotlib



61

The output is displayed in Figure 5-2.

The function linspace(start, stop, number) returns evenly spaced 

numbers over a specified interval. We must pass it the starting value, the 

end value, and the number of values as follows:

N = 11

x = np.linspace(0, 10, N)

print(x)

This code creates 11 numbers (0–10, both inclusive) as follows:

[ 0.  1.  2.  3.  4.  5.  6.  7.  8.  9. 10.]

We can visualize this as follows:

y = x

plt.plot(x, y, 'o--')

plt.axis('off')

plt.show()

Figure 5-2. Output with title

Chapter 5  Data Visualization with numpy anD matplotlib



62

The output is displayed in Figure 5-3.

As you can see, we are turning off the axis with the line plt.axis('off').

Similarly, we can compute and visualize values in the logspace  

as follows:

y = np.logspace(0.1, 1, N)

print(y)

plt.plot(x, y, 'o--')

plt.show()

Figure 5-3. Output of y = x with linspace()

Chapter 5  Data Visualization with numpy anD matplotlib



63

The output is shown in Figure 5-4.

We can even compute a series in the geometric progression as follows:

y = np.geomspace(0.1, 1000, N)

print(y)

plt.plot(x, y, 'o--')

plt.show()

The output is displayed in Figure 5-5.

Figure 5-4. Output of logspace()

Figure 5-5. Output of geomspace()

Chapter 5  Data Visualization with numpy anD matplotlib



64

 Single Line Plots
In this section, we are going to explore a few ways we can draw a single line 

plot. We have used the function plot() to draw plots. When there is only 

one visualization in a figure that uses the function plot(), then it is known 

as single line plot. Let’s explore this further with a few examples.

We can also use Python lists to visualize the plots as follows:

x = [1, 4, 5, 2, 3, 6]

plt.plot(x)

plt.show()

The output is shown in Figure 5-6.

Figure 5-6. Simple single line graph

In this case, the values of the y axis are assumed. Here is another 

example:

x = np.arange(10)

plt.plot(x)

plt.show()

Chapter 5  Data Visualization with numpy anD matplotlib



65

The output is displayed in Figure 5-7.

Next, let’s visualize a quadratic graph y = f(x) = x2. The code is as follows:

plt.plot(x, [y**2 for y in x])

plt.show()

The output is shown in Figure 5-8.

Figure 5-7. Simple single line graph with arange()

Figure 5-8. y = f(x) = x2

Chapter 5  Data Visualization with numpy anD matplotlib



66

We can write the same code in a simple way:

plt.plot(x, x**2)

plt.show()

 Multiline Plots
It is possible to show multiple plots in the same visualization. Let’s look 

at how we can show multiple curves in the same visualization with this 

simple example:

x = np.arange(10)

plt.plot(x, x**2)

plt.plot(x, x**3)

plt.plot(x, x*2)

plt.plot(x, 2**x)

plt.show()

The output is shown in Figure 5-9.

Figure 5-9. Multiline graph

Chapter 5  Data Visualization with numpy anD matplotlib



67

As we can see, Matplotlib automatically assigns colors to the curves 

separately.

We can write the same code in a simple way:

plt.plot(x, x**2, x, x**3, x, x*2, x, 2**x)

plt.show()

The output will be the same as Figure 5-9.

Here is another example:

x = np.array([[1, 2, 6, 3], [4, 5, 3, 2]])

plt.plot(x)

plt.show()

The output is displayed in Figure 5-10.

Figure 5-10. Another example of a multiline graph

Chapter 5  Data Visualization with numpy anD matplotlib



68

 Grid, Axes, and Labels
Earlier, we saw how to enable a grid in the visualizations. It can be done 

with the statement plt.grid(True). Now we will learn how to manipulate 

the limits of axes. Before that, though, we will quickly learn how to save a 

visualization as an image. Look at the following code:

x = np.arange(3)

plt.plot(x, x**2, x, x**3, x, 2*x, x, 2**x)

plt.grid(True)

plt.savefig('test.png')

plt.show()

The statement plt.savefig('test.png') saves the image in the 

current directory of the Jupyter Notebook file. The output is shown in 

Figure 5-11.

Figure 5-11. Multiline graph

Chapter 5  Data Visualization with numpy anD matplotlib



69

We can see that the limits of axes are set by default. We can set them to 

specific values as shown here:

x = np.arange(3)

plt.plot(x, x**2, x, x**3, x, 2*x, x, 2**x)

plt.grid(True)

plt.axis([0, 2, 0, 8])

print(plt.axis())

plt.show()

The output is displayed in Figure 5-12.

The statement plt.axis([0, 2, 0, 8]) sets the values of the axes. 

The first pair (0, 2) refers to the limits for the x axis and the second pair  

(0, 8) refers to the limits for the y axis. We can write this code with different 

syntax using the functions xlim() and ylim() as follows:

x = np.arange(3)

plt.plot(x, x**2, x, x**3, x, 2*x, x, 2**x)

plt.grid(True)

Figure 5-12. Setting axes

Chapter 5  Data Visualization with numpy anD matplotlib



70

plt.xlim([0, 2])

plt.ylim([0, 8])

plt.show()

This code produces exactly the same output as Figure 5-12. You can 

add the title and labels for the axes as follows:

x = np.arange(3)

plt.plot(x, x**2, x, x**3, x, 2*x, x, 2**x)

plt.grid(True)

plt.xlabel('x = np.arange(3)')

plt.xlim([0, 2])

plt.ylabel('y = f(x)')

plt.ylim([0, 8])

plt.title('Simple Plot Demo')

plt.show()

That produces an output that includes the labels and the title as shown 

in Figure 5-13.

Figure 5-13. Title and labels for axes

Chapter 5  Data Visualization with numpy anD matplotlib



71

We can pass an argument for the parameter label in the plot() 

function and then call the function legend() to create a legend as follows:

x = np.arange(3)

plt.plot(x, x**2, label='x**2')

plt.plot(x, x**3, label='x**3')

plt.plot(x, 2*x, label='2*x')

plt.plot(x, 2**x, label='2**x')

plt.legend()

plt.grid(True)

plt.xlabel('x = np.arange(3)')

plt.xlim([0, 2])

plt.ylabel('y = f(x)')

plt.ylim([0, 8])

plt.title('Simple Plot Demo')

plt.show()

That produces an output with legends for the curves as shown in 

Figure 5-14.

Figure 5-14. Output with legends

Chapter 5  Data Visualization with numpy anD matplotlib



72

Instead of passing the legend string as an argument to the function 

plot(), we can pass the list of strings as an argument to the function 

legend() as follows:

x = np.arange(3)

plt.plot(x, x**2, x, x**3, x, 2*x, x, 2**x)

plt.legend(['x**2', 'x**3', '2*x', '2**x'])

plt.grid(True)

plt.xlabel('x = np.arange(3)')

plt.xlim([0, 2])

plt.ylabel('y = f(x)')

plt.ylim([0, 8])

plt.title('Simple Plot Demo')

plt.show()

It produces exactly same output as displayed in Figure 5-14.

We can also change the location of the legend box by making the 

following change to the preceding code:

plt.legend(['x**2', 'x**3', '2*x', '2**x'], loc='upper center')

The output is shown in Figure 5-15.

Chapter 5  Data Visualization with numpy anD matplotlib



73

 Colors, Styles, and Markers
Thus far, in case of multiline plots, we have seen that Matplotlib 

automatically assigns colors, styles, and markers. We have also seen a 

few examples of customizing them. In this section, we will look at how to 

customize them in detail.

Let’s start with colors. The following code lists all the primary colors 

supported by Matplotlib (we are not customizing styles and markers in this 

example).

x = np.arange(5)

y = x

plt.plot(x, y+1, 'g')

plt.plot(x, y+0.5, 'y')

plt.plot(x, y, 'r')

plt.plot(x, y-0.2, 'c')

plt.plot(x, y-0.4, 'k')

plt.plot(x, y-0.6, 'm')

Figure 5-15. Output with legends in upper middle position

Chapter 5  Data Visualization with numpy anD matplotlib



74

plt.plot(x, y-0.8, 'w')

plt.plot(x, y-1, 'b')

plt.show()

The output is displayed in Figure 5-16.

We can also write the preceding code as follows:

plt.plot(x, y+1, 'g', x, y+0.5, 'y', x, y, 'r', x, y-0.2, 'c', 

x, y-0.4, 'k', x, y-0.6, 'm', x, y-0.8, 'w', x, y-1, 'b')

plt.show()

The output will be exactly same as Figure 5-16.

We can customize the line style as follows:

plt.plot(x, y, '-', x, y+1, '--', x, y+2, '-.', x, y+3, ':')

plt.show()

Figure 5-16. Demo of colors

Chapter 5  Data Visualization with numpy anD matplotlib



75

The output is shown in Figure 5-17.

Figure 5-17. Line styles

You can even change the markers as follows:

plt.plot(x, y, '.')

plt.plot(x, y+0.5, ',')

plt.plot(x, y+1, 'o')

plt.plot(x, y+2, '<')

plt.plot(x, y+3, '>')

plt.plot(x, y+4, 'v')

plt.plot(x, y+5, '^')

plt.plot(x, y+6, '1')

plt.plot(x, y+7, '2')

plt.plot(x, y+8, '3')

plt.plot(x, y+9, '4')

plt.plot(x, y+10, 's')

plt.plot(x, y+11, 'p')

plt.plot(x, y+12, '*')

Chapter 5  Data Visualization with numpy anD matplotlib



76

plt.plot(x, y+13, 'h')

plt.plot(x, y+14, 'H')

plt.plot(x, y+15, '+')

plt.plot(x, y+16, 'D')

plt.plot(x, y+17, 'd')

plt.plot(x, y+18, '|')

plt.plot(x, y+19, '_')

plt.show()

The output is displayed in Figure 5-18.

All three features (colors, markers, and line styles) can be combined to 

customize the visualization as follows:

plt.plot(x, y, 'mo--')

plt.plot(x, y+1 , 'g*-.')

plt.show()

Figure 5-18. Markers

Chapter 5  Data Visualization with numpy anD matplotlib



77

The output is shown in Figure 5-19.

These are basic customizations, but you can customize everything in 

greater detail. For example, use this code to customize other details:

plt.plot(x, y, color='g', linestyle='--', linewidth=1.5,

        marker='^', markerfacecolor='b', markeredgecolor='k',

        markeredgewidth=1.5, markersize=5)

plt.grid(True)

plt.show()

Figure 5-19. Customizing everything

Chapter 5  Data Visualization with numpy anD matplotlib



78

The output is shown in Figure 5-20.

You can even customize the values on the x and y axes as follows:

x = y = np.arange(10)

plt.plot(x, y, 'o--')

plt.xticks(range(len(x)), ['a', 'b', 'c', 'd', 'e', 'f', 'g', 

'h', 'i', 'j'])

plt.yticks(range(0, 10, 1))

plt.show()

Figure 5-20. Customizing more details

Chapter 5  Data Visualization with numpy anD matplotlib



79

The output is displayed in Figure 5-21.

 Summary
This chapter focused on the various customizations available for 

visualizations. We learned a great deal about visualizing data. The 

concepts covered in this chapter will be used throughout this book to 

visualize data.

In the next chapter, we will explore data visualization even further. 

We will learn to visualize images and 3D shapes and look at the basics of 

operations of images.

Figure 5-21. Customizing the ticks on axes

Chapter 5  Data Visualization with numpy anD matplotlib



81© Ashwin Pajankar 2021 
A. Pajankar, Practical Python Data Visualization,  
https://doi.org/10.1007/978-1-4842-6455-3_6

CHAPTER 6

Visualizing Images 
and 3D Shapes
In Chapter 5, we got started with visualization using the Matplotlib 

library in Python 3. In this chapter, we will continue our adventures with 

Matplotlib and NumPy to visualize images and 3D shapes. Let’s continue 

our exploration of data visualization with the following topics:

• Visualizing the images

• Operations on images

• 3D visualizations

After this chapter, you will be able to work with images and 3D Shapes.

 Visualizing the Images
In this section, we will learn how to visualize images. We will start by 

creating a new notebook for this chapter. Matplotlib’s function imread() 

can read images in .png file format. To enable it to read files other formats, 

you must install another image processing library known as pillow. Install 

it by running the following command in the notebook cell:

!pip3 install pillow

https://doi.org/10.1007/978-1-4842-6455-3_6#DOI


82

Use the magic command we discussed in Chapter 5 to enable the 

notebook to show Matplotlib visualizations:

%matplotlib inline

Import Matplotlib’s Pyplot module with the following command:

import matplotlib.pyplot as plt

Now, let’s read an image into a variable using the function imread()  

as follows:

img1 = plt.imread('D:\\Dataset\\4.1.02.tiff')

If you are using a Linux, Unix, or MacOS computer, then you need to 

use the following convention for the file path.

img1 = plt.imread('/home/pi/book/dataset/4.1.02.tiff')

The path you are using must be an absolute path. If the image file is 

in the same directory as the program, then the name of only the file will 

suffice.

This function reads an image and stores it in a NumPy ndarray as matrix 

of numerical values. We can verify this by running the following line of code:

print(type(img1))

The output is as follows:

<class 'numpy.ndarray'>

This confirms that the scientific Python libraries handle images as 

NumPy ndarrays.

We can show the image with Matplotlib’s imshow() function and then 

display it as a figure with the function show() as follows:

plt.imshow(img1)

plt.show()

Chapter 6  Visualizing images and 3d shapes



83

The output is shown in Figure 6-1.

You can turn the axis off as follows:

plt.imshow(img1)

plt.axis(False)

plt.show()

Note all the images i am using for the demonstration are 
downloaded from http://www.imageprocessingplace.com/
root_files_V3/image_databases.htm.

Let’s read a grayscale image as follows:

img2 = plt.imread('D:\\Dataset\\5.3.01.tiff')

Figure 6-1. Visualizing a color image

Chapter 6  Visualizing images and 3d shapes

http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
http://www.imageprocessingplace.com/root_files_V3/image_databases.htm


84

We can show it using this code:

plt.imshow(img2)

plt.axis(False)

plt.show()

Figure 6-2 displays the output.

As you can see, the colors seem a bit strange, and this is not a color 

image at all. Matplotlib is displaying the grayscale image with the default 

color map. We can assign the gray color map explicitly to visualize this 

image properly as follows:

plt.imshow(img2, cmap=plt.cm.gray)

plt.axis(False)

plt.show()

Figure 6-2. Visualizing a grayscale image with the default  
color map

Chapter 6  Visualizing images and 3d shapes



85

Figure 6-3 displays the result.

We can also indicate the color map as follows:

plt.imshow(img2, cmap='gray')

plt.axis(False)

plt.show()

Next we turn to basic operations with images.

 Operations on Images
We can perform basic operations on images with NumPy and visualize the 

outputs with Matplotlib. First let’s learn a few arithmetic operations. We 

need two images with the same dimensions for arithmetic operations. Let 

us read another color image as follows:

img3 = plt.imread('D:\\Dataset\\4.1.03.tiff')

Figure 6-3. Visualizing a grayscale image with the gray color map

Chapter 6  Visualizing images and 3d shapes



86

We can visualize it as follows:

plt.imshow(img3)

plt.axis(False)

plt.show()

Figure 6-4 shows the output.

We can add two images and visualize them as follows:

add = img1+img3

plt.imshow(add)

plt.axis(False)

plt.show()

Figure 6-4. Another color image for image operations

Chapter 6  Visualizing images and 3d shapes



87

Figure 6-5 displays the output.

Figure 6-5. Addition of two images

The addition operation is a commutative arithmetic operation. This 

means that if we change the order of the operands, it will not affect the 

output.

add1 = img3+img1

plt.imshow(add)

plt.axis(False)

plt.show()

Let’s try a subtraction operation:

sub1= img1-img3

plt.imshow(sub1)

plt.axis(False)

plt.show()

Chapter 6  Visualizing images and 3d shapes



88

Figure 6-6 shows the output.

We know that the subtraction operation is not commutative. This 

means that if we change the order of operands, then the result is different. 

Let’s try that:

sub1 = img3-img1

plt.imshow(sub1)

plt.axis(False)

plt.show()

The output shown in Figure 6-7 is therefore different than the previous 

output (Figure 6-6).

Figure 6-6. Result of subtraction

Chapter 6  Visualizing images and 3d shapes



89

We have learned that the images are represented as NumPy ndarrays 

in SciPy. The difference between color and grayscale images is that color 

images are made up of multiple channels. These channels are ndarrays 

themselves. We can split the color images and visualize the constituent 

channels separately using indexing in NumPy. Color images have one 

channel for each of the colors red, green, and blue. You can split an image 

with NumPy indexing as follows:

r = img3[:, :, 0]

g = img3[:, :, 1]

b = img3[:, :, 2]

Let’s visualize the original image and the color channels using the 

subplots in Matplotlib:

plt.subplots_adjust(hspace=0.4, wspace=0.1)

plt.subplot(2, 2, 1)

plt.title('Original')

Figure 6-7. Result of subtraction

Chapter 6  Visualizing images and 3d shapes



90

plt.imshow(img3)

plt.subplot(2, 2, 2)

plt.title('Red')

plt.imshow(r, cmap='gray')

plt.subplot(2, 2, 3)

plt.title('Green')

plt.imshow(g, cmap='gray')

plt.subplot(2, 2, 4)

plt.title('Blue')

plt.imshow(b, cmap='gray')

plt.show()

Let’s examine the preceding code. You are creating a grid of 2 × 2 

using the function subplot(). The function subplots_adjust() is used 

to adjust distance between the visualizations. The top left position in the 

2 × 2 grid is 1, the adjacent position in the same row is 2, and so on. The 

bottom right position is the fourth position. Using the function subplot() 

before imshow() or plot(), we can decide where the visualization must be 

placed. The output is shown in Figure 6-8.

Chapter 6  Visualizing images and 3d shapes



91

The color channels themselves are 2D matrices with the values 

of the members ranging from 0 to 256 for an 8-bit unsigned integer 

representation format of a color image. When they are combined, 

Matplotlib interprets them as a color image. We can use appropriate color 

maps to visualize this as follows:

plt.subplots_adjust(hspace=0.4, wspace=0.1)

plt.subplot(2, 2, 1)

plt.title('Original')

plt.imshow(img3)

plt.subplot(2, 2, 2)

plt.title('Red')

plt.imshow(r, cmap='Reds')

plt.subplot(2, 2, 3)

plt.title('Green')

Figure 6-8. Separated color channels

Chapter 6  Visualizing images and 3d shapes



92

plt.imshow(g, cmap='Greens')

plt.subplot(2, 2, 4)

plt.title('Blue')

plt.imshow(b, cmap='Blues')

plt.show()

The output is displayed in Figure 6-9.

We can combine the constituent channels to form the original image 

using the following code:

import numpy as np

img4 = np.dstack((r, g, b))

Figure 6-9. Separated color channels visualized with appropriate 
color maps

Chapter 6  Visualizing images and 3d shapes



93

We are using the function dstack() from the NumPy library. We can 

visualize the output with the usual code:

plt.imshow(img4)

plt.axis(False)

plt.show()

This is how you can perform very basic image processing operations. 

There is more to image processing than what we have learned, and further 

demonstrations would warrant a separate book.

 3D Visualizations
In this section, we examine 3D visualizations with Python 3. To this point, 

we have been displaying the visualizations in the notebook itself. This 

process works well for 2D visualizations. In the case of 3D visualizations, 

though, it will show them only with a fixed angle. We therefore must use 

another method. The best way to work with this is to use another magic 

command that shows a visualization in a separate Qt window as follows:

%matplotlib qt

We have already imported the pyplot module in Matplotlib and 

NumPy in the earlier cells (I am assuming you will continue using the 

same notebook for the whole chapter). We must import more functionality 

with the following statements:

from mpl_toolkits.mplot3d import Axes3D

from mpl_toolkits.mplot3d import axes3d

Chapter 6  Visualizing images and 3d shapes



94

Let’s start with something simple. We have seen how to draw simple 

plots, so now we will do the same in 3D. Begin with a simple parametric 

curve. First define the figure and axis:

fig = plt.figure()

ax = fig.gca(projection='3d')

For 3D visualizations we have enabled 3D projections with the 

parameter and argument pair projection='3d'. Next, define the data. 

You need the x, y, and z coordinates of the data points. First define polar 

coordinates of the data points as follows:

theta = np.linspace(-3 * np.pi, 3 * np.pi, 200)

z = np.linspace(-3, 3, 200)

r = z**3 + 1

Now, compute x and y coordinates as follows:

x = r * np.sin(theta)

y = r * np.cos(theta)

We are using the trigonometric functions in the NumPy library to 

compute x and y. Finally, let’s plot it as follows:

ax.plot(x, y, z, label='Parametric Curve')

ax.legend()

plt.show()

The output will be displayed in a separate window as shown in 

Figure 6-10, and it will be interactive in such a way that we will be able to 

change the angle of view.

Chapter 6  Visualizing images and 3d shapes



95

Note if a separate output window does not pop up and the 3d 
visualization is shown in the browser itself, then you must restart the 
Jupyter kernel and reexecute the relevant cells. in that case, do not 
execute the cell containing %matplotlib inline.

Next, let’s create a 3D bar graph. Compute the data now as follows:

x = np.arange(4)

y = np.arange(4)

xx, yy = np.meshgrid(x, y)

print(xx);print(yy)

The function meshgrid() creates and returns coordinate matrices from 

coordinate vectors as follows:

[[0 1 2 3]

 [0 1 2 3]

Figure 6-10. Visualizing a parametric curve

Chapter 6  Visualizing images and 3d shapes



96

 [0 1 2 3]

 [0 1 2 3]]

[[0 0 0 0]

 [1 1 1 1]

 [2 2 2 2]

 [3 3 3 3]]

Then use the function ravel() to flatten both the matrices as follows:

X, Y = xx.ravel(), yy.ravel()

print(X); print(Y);

This results in the following output:

[0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3]

[0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3]

Now, compute more values:

top = X + Y

bottom = np.zeros_like(top)

width = depth = 1

Next, create a figure and axes and create the bar graph as follows:

fig = plt.figure(figsize=(8, 3))

ax1 = fig.add_subplot(121, projection='3d')

ax2 = fig.add_subplot(122, projection='3d')

ax1.bar3d(X, Y, bottom, width, depth, top, shade=True)

ax1.set_title('Shaded')

ax2.bar3d(X, Y, bottom, width, depth, top, shade=False)

ax2.set_title('Not Shaded')

plt.show()

Chapter 6  Visualizing images and 3d shapes



97

This produces the bar graph shown in Figure 6-11.

Next let’s visualize a wireframe as follows:

fig = plt.figure()

ax = fig.gca(projection='3d')

X, Y, Z = axes3d.get_test_data(delta=0.1)

ax.plot_wireframe(X, Y, Z)

plt.show()

In this code snippet, we first create a figure and an axis in 3D mode. 

Then the built-in function get_test_data() returns the test data. Next 

we use the function plot_wireframe() to plot the wireframe model. The 

output is shown in Figure 6-12.

Figure 6-11. Visualizing a 3D bar graph

Chapter 6  Visualizing images and 3d shapes



98

Finally, let’s compute and visualize a surface. First, compute the x and 

y coordinates and then compute the mesh grid:

x = np.arange(-3, 3, 0.09)

y = np.arange(-3, 3, 0.09)

X, Y = np.meshgrid(x, y)

print(X); print(Y)

The output is as follows:

[[-3.   -2.91 -2.82 ...  2.76  2.85  2.94]

 [-3.   -2.91 -2.82 ...  2.76  2.85  2.94]

 [-3.   -2.91 -2.82 ...  2.76  2.85  2.94]

 ...

 [-3.   -2.91 -2.82 ...  2.76  2.85  2.94]

Figure 6-12. Visualizing a 3D wireframe

Chapter 6  Visualizing images and 3d shapes



99

 [-3.   -2.91 -2.82 ...  2.76  2.85  2.94]

 [-3.   -2.91 -2.82 ...  2.76  2.85  2.94]]

[[-3.   -3.   -3.   ... -3.   -3.   -3.  ]

 [-2.91 -2.91 -2.91 ... -2.91 -2.91 -2.91]

 [-2.82 -2.82 -2.82 ... -2.82 -2.82 -2.82]

 ...

 [ 2.76  2.76  2.76 ...  2.76  2.76  2.76]

 [ 2.85  2.85  2.85 ...  2.85  2.85  2.85]

 [ 2.94  2.94  2.94 ...  2.94  2.94  2.94]]

Next, compute the z coordinate as follows:

R = np.sqrt(X**2 + Y**2)

Z = np.cos(R)

print(Z)

Finally, create the figure and axis, and visualize the 3D surface:

fig = plt.figure()

ax = fig.gca(projection='3d')

surf = ax.plot_surface(X, Y, Z,

                       cmap=plt.cm.cool,

                       linewidth=0,

                       antialiased=False)

plt.show()

Chapter 6  Visualizing images and 3d shapes



100

This produces the output shown in Figure 6-13.

 Summary
In this chapter, you learned about and demonstrated visualizing images. 

You also learned about and demonstrated basic operations on images such 

as arithmetic operations and splitting the color images into constituent 

channels. We also covered writing programs for 3D visualizations 

including curves, bars, wireframes, and meshes.

The next chapter explores how to visualize networks and graph data 

structures.

Figure 6-13. Visualizing a 3D surface

Chapter 6  Visualizing images and 3d shapes



101© Ashwin Pajankar 2021 
A. Pajankar, Practical Python Data Visualization,  
https://doi.org/10.1007/978-1-4842-6455-3_7

CHAPTER 7

Visualizing Graphs 
and Networks
In Chapter 6, we demonstrated the visualization of images and 3D objects 

with Python 3 and Matplotlib. We also learned a bit of image processing.

This chapter focuses on the visualization of the data structure known 

as a graph or a network. Let’s continue our data visualization journey with 

the following topics:

• Graphs and networks

• Visualizing graphs in Python 3

• More types of graphs

• Assigning custom labels to nodes

After completing this chapter, you will be able to visualize graphs and 

networks with Python 3.

 Graphs and Networks
A graph is an abstract datatype. It is also known as a network. It consists of 

a finite set of vertices (also known as nodes) and a finite set of edges (also 

known as links). The terms vertices and edges are used when we refer to 

a graph. Nodes and links are the terms used when we refer to the same 

https://doi.org/10.1007/978-1-4842-6455-3_7#DOI


102

structure as a network. Throughout the chapter, I use the terms graphs, 

nodes, and edges to refer this data structure for consistency.

In a graph, vertices are connected to each other by edges. Trees are 

subtype of graphs. In graphs we can have cycles, but in trees we cannot. 

We can also have directed graphs and undirected graphs. Edges can 

be assigned with values in the graphs, and such graphs are known as 

weighted graphs. In this chapter, we discuss visualization of undirected 

and unweighted graphs.

 Graphs in Python 3
To work and visualize with graphs, there is an easy-to-use library for 

Python 3, known as networkx. You can install it by running the following 

command in a Jupyter Notebook cell:

!pip3 install network

Now, import it and the other library, Matplotlib. We also will enable 

plotting in the notebook:

%matplotlib inline

import networkx as nx

import matplotlib.pyplot as plt

You can create a new empty graph as follows:

G = nx.Graph()

Let us determine its type as follows:

type(G)

Here is the output:

networkx.classes.graph.Graph

Chapter 7  Visualizing graphs and networks



103

You can see the list of nodes and edges, and you can also see their 

datatype as follows:

print(G.nodes())

print(G.edges())

print(type(G.nodes()))

print(type(G.edges()))

This produces the following output:

[]

[]

<class 'networkx.classes.reportviews.NodeView'>

<class 'networkx.classes.reportviews.EdgeView'>

You can add a node as follows:

G.add_node('a')

Alternatively, you can also add multiple nodes specified in a list:

G.add_nodes_from(['b', 'c'])

We will again print the list of nodes and the list of edges (which should 

be empty, as we have not added any edges yet):

print('Nodes of the graph G: ')

print(G.nodes())

print('Edges of the graph G: ')

print(G.edges())

The output looks like this:

Nodes of the graph G:

['a', 'b', 'c']

Edges of the graph G:

[]

Chapter 7  Visualizing graphs and networks



104

Look at the following statement:

G.add_edge(1, 2)

It adds two nodes and a corresponding edge. If the argument in the 

function call is already part of the list of nodes of the graph, then it is not 

added twice. The following is another way to add it:

edge = ('d', 'e')

G.add_edge(*edge)

edge = ('a', 'b')

G.add_edge(*edge)

Let’s again print the list of nodes and edges as follows:

print('Nodes of the graph G: ')

print(G.nodes())

print('Edges of the graph G: ')

print(G.edges())

We can also specify the list of edges and add it to the graph:

G.add_edges_from([('a', 'c'), ('c', 'd'),

                  ('a', 1), (1, 'd'),

                  ('a', 2)])

Now let’s print everything again:

print('Nodes of the graph G: ')

print(G.nodes())

print('Edges of the graph G: ')

print(G.edges())

Chapter 7  Visualizing graphs and networks



105

The output is as follows:

Nodes of the graph G:

['a', 'b', 'c', 1, 2, 'd', 'e']

Edges of the graph G:

[('a', 'b'), ('a', 'c'), ('a', 1), ('a', 2), ('c', 'd'), (1, 

2), (1, 'd'), ('d', 'e')]

 Visualizing Graphs in Python 3
This section focuses on visualization of the graphs with networkx library. 

You already prepared a graph in the earlier section. Now you can just 

visualize it as follows:

nx.draw(G)

plt.show()

The output is shown in Figure 7-1.

Note that these visualizations are generated randomly and every time we 

run the statement, it creates a different image for the visual representation. 

However, the graphs represented by these visualizations are isomorphic. 

Figure 7-2 shows the output when you execute the same cell again.

Figure 7-1. Visual representation of the graph

Chapter 7  Visualizing graphs and networks



106

You can see that the both visualizations are isomorphic, as they are 

generated from the same graph. You must also have observed that the 

nodes do not display any names. You can show the names of the nodes 

with the following code:

nx.draw(G, with_labels=True)

plt.show()

Figure 7-3 shows the result.

Figure 7-2. Another visual representation of the same graph

Figure 7-3. Nodes with labels

Chapter 7  Visualizing graphs and networks



107

To display the labels of the nodes in bold type, use this code:

nx.draw(G, with_labels=True, font_weight='bold')

plt.show()

The visualization looks Figure 7-4.

 More Types of Graphs
Next, we can look at a few more types of graphs and their visualizations. 

The first one is a linear graph or path graph. The number of nodes 

connected to a node in a graph is known as the degree of that node. We 

can say that a path graph is a graph that has two nodes of degree one and 

the rest of the nodes have degree two. If we arrange a path graph visually, it 

looks like a segmented line. To create a path graph, run the following code:

G = nx.path_graph(4)

To display the nodes and edges, use this code:

print('Nodes of the graph G: ')

print(G.nodes())

print('Edges of the graph G: ')

print(G.edges())

Figure 7-4. Nodes with bold labels

Chapter 7  Visualizing graphs and networks



108

Here is the output:

Nodes of the graph G:

[0, 1, 2, 3]

Edges of the graph G:

[(0, 1), (1, 2), (2, 3)]

Next, let’s create a visualization of it:

nx.draw(G, with_labels=True)

plt.show()

The result is shown in Figure 7-5.

The next type of graph is the Petersen graph, an undirected graph with 

10 vertices and 15 edges. We can create it and see the values of edges and 

nodes using the following code:

G = nx.petersen_graph()

print('Nodes of the graph G: ')

print(G.nodes())

print('Edges of the graph G: ')

print(G.edges())

Figure 7-5. Path graph with four nodes

Chapter 7  Visualizing graphs and networks



109

We can visualize it as follows:

nx.draw(G, with_labels=True)

plt.show()

The output is shown in Figure 7-6.

Now, there are many ways to depict it better. We could depict it as a 

pentagon with a pentagram inside, with five spokes. The following code 

does that.

nx.draw_shell(G, nlist=[range(5, 10),

                        range(5)],

              with_labels=True,

              font_weight='bold')

plt.show()

This code shows it in a shell form. We are mentioning the layer-wise 

lists of nodes in the argument nlist. The output displayed in Figure 7-7 is 

isomorphic to the preceding output.

Figure 7-6. Petersen graph

Chapter 7  Visualizing graphs and networks



110

We can customize how our graphs are depicted. Use the following code 

to customize the size of nodes and width of lines:

options = {'node_color': 'black', 'node_size': 100, 'width': 3}

Now let’s visualize the Petersen graph with these options:

nx.draw_random(G, **options)

plt.show()

Figure 7-8 displays the output.

Figure 7-7. Petersen graph visualized as a shell

Figure 7-8. Petersen graph with customized nodes and edges

Chapter 7  Visualizing graphs and networks



111

Next, we can visualize it in a circular configuration as follows:

nx.draw_circular(G, **options)

plt.show()

The output is shown in Figure 7-9.

Figure 7-9. Petersen graph in circular configuration

We can also depict the Petersen graph in a spectral configuration as 

follows:

nx.draw_spectral(G, **options)

plt.show()

Chapter 7  Visualizing graphs and networks



112

Figure 7-10 displays the output.

Figure 7-11. Petersen graph in shell configuration with custom nodes 
and edges

Figure 7-10. Petersen graph in spectral configuration

We can depict the Petersen graph in the shell configuration with 

customized options as follows:

nx.draw_shell(G, nlist=[range(5, 10), range(5)], **options)

plt.show()

The output is displayed in Figure 7-11.

Chapter 7  Visualizing graphs and networks



113

We can also create a dodecahedral graph as follows:

G = nx.dodecahedral_graph()

It can be visualized in the shell form as follows:

shells = [[2, 3, 4, 5, 6],

          [8, 1, 0, 19, 18,

           17, 16, 15, 14, 7],

          [9, 10, 11, 12, 13]]

nx.draw_shell(G, nlist=shells, **options)

plt.show()

Figure 7-12 displays the output.

Figure 7-12. Dodecahedral graph in shell configuration with custom 
nodes and edges

You can save any graph figures as a files on the disk using this 

command:

plt.savefig('graph.png')

This statement saves a file on the disk in the location of the program 

(the same directory as the notebook).

Chapter 7  Visualizing graphs and networks



114

 Assigning Custom Labels to Nodes
You can use the following code to assign custom labels to the nodes:

G = nx.path_graph(4)

cities = {0: 'Mumbai', 1: 'Hyderabad',

          2: 'Banglore', 3: 'New York'}

H=nx.relabel_nodes(G, cities)

print('Nodes of the graph H: ')

print(H.nodes())

print('Edges of the graph H: ')

print(H.edges())

The following is the output:

Nodes of the graph H:

['Mumbai', 'Hyderabad', 'Banglore', 'New York']

Edges of the graph H:

[('Mumbai', 'Hyderabad'), ('Hyderabad', 'Banglore'), 

('Banglore', 'New York')]

Use this code to create a visualization:

nx.draw(H, with_labels=True)

plt.show()

Chapter 7  Visualizing graphs and networks



115

Figure 7-13 displays the output.

 Summary
This chapter explored the concept of graphs, introducing different types. 

You learned to visualize them in different ways. Now you should be 

comfortable with visualization of the graph data structures in Python 3.

The next chapter covers the data science library of SciPy, pandas. 

We introduce versatile data structures in the pandas library, series and 

dataframe, along with a few examples of data visualization.

Figure 7-13. Relabeled nodes in a linear or path graph

Chapter 7  Visualizing graphs and networks



117© Ashwin Pajankar 2021 
A. Pajankar, Practical Python Data Visualization,  
https://doi.org/10.1007/978-1-4842-6455-3_8

CHAPTER 8

Getting Started 
with Pandas
Chapter 7 covered the visualization of graphs using the Python library 

networkx. This chapter focuses on the basics of the data science and 

analytics library of SciPy, pandas. First, we will explore the data structures 

in this library. You will also learn how to read the data from a .csv 

data set. Finally, you will learn how to create simple demonstrations of 

visualizations. These are the topics that are covered in the chapter:

• Introduction to pandas

• Dataframe in pandas

• Visualizing with pandas

After you complete this chapter, you should be comfortable with basic 

visualizations using pandas.

 Introduction to Pandas
Pandas is the data analytics component and an integral part of the SciPy 

ecosystem. It includes very versatile data structures and routines to manage 

them. It also has the capability to visualize the data in a scientific data format.

https://doi.org/10.1007/978-1-4842-6455-3_8#DOI


118

The first step is to install it on the computer by running the following 

command in Jupyter Notebook:

!pip3 install pandas

You can import it to the current session by running the following 

command:

import pandas as pd

You can read more about pandas at https://pandas.pydata.org/.

 Series in Pandas
A series is a one-dimensional array with labels. It can hold data of any type. 

The labels are collectively known as the index.

We can create a series as follows:

s1 = pd.Series([1, 2, 3 , 5, -3])

To determine its datatypes, use the following command:

type(s1)

You can see the values and index associated with them using the 

following statement:

print(s1)

You can explicitly mention the datatype as follows:

s2 = pd.Series([1, 2, 3 , 5, -3], dtype=np.int32)

print(s2)

Chapter 8  GettinG Started with pandaS

https://pandas.pydata.org/


119

To pass a list as an argument to the constructor function to create a 

series, use this code:

x = [1, 2, 3 , 5, -3]

s3 = pd.Series(x)

We can even pass a NumPy ndarray as an argument to the constructor 

function to create a series as follows:

Import numpy as np

y = np.array(x)

s4 = pd.Series(y)

To display the values, use this code:

print(s4.values)

This provides the following output:

[ 1  2  3  5 -3]

You can retrieve the index as follows:

print(s4.index)

This results in the following output:

RangeIndex(start=0, stop=5, step=1)

To assign a custom index, use the following code:

s5 = pd.Series( x, index = ['a', 'b', 'c', 'd', 'e'])

print(s5)

This provides the following output:

a    1

b    2

c    3

Chapter 8  GettinG Started with pandaS



120

d    5

e   -3

dtype: int64

 Basic Operations on Series
We can perform a few basic operations on series. For example, we can 

display the negative numbers as follows:

print(s5[s5 < 0])

This results in the following output:

e   -3

dtype: int64

We can also retrieve the positive numbers as follows:

print(s5[s5 > 0])

The output is shown here:

a    1

b    2

c    3

d    5

dtype: int64

These are examples of comparison operations. To perform a 

multiplication operation, use this syntax:

c = 3

print ( s5 * c )

Chapter 8  GettinG Started with pandaS



121

The output is as follows:

a     3

b     6

c     9

d    15

e    -9

dtype: int64

 Dataframes in Pandas
A dataframe is a two-dimensional labeled data structure with columns of 

that can be of different datatypes. We can create dataframes from series, 

ndarrays, lists, and dictionaries.

Dataframes have labels and they are collectively referred to as an 

index. We can easily view and manipulate data in the dataframes. The data 

is stored in a rectangular grid format in dataframes.

We can create a dataframe from a list of dictionary data as follows:

data = {'city': ['Mumbai', 'Mumbai', 'Mumbai',

                'Hyderabad', 'Hyderabad', 'Hyderabad'],

       'year': [2010, 2011, 2012, 2010, 2011, 2012,],

       'population': [10.0, 10.1, 10.2, 5.2, 5.3, 5.5]}

To create a dataframe from this, use the following code:

df1 = pd.DataFrame(data)

print(df1)

Chapter 8  GettinG Started with pandaS



122

The output is as follows:

        city  year  population

0     Mumbai  2010        10.0

1     Mumbai  2011        10.1

2     Mumbai  2012        10.2

3  Hyderabad  2010         5.2

4  Hyderabad  2011         5.3

5  Hyderabad  2012         5.5

Use the following line of code to display the top five records:

df1.head()

The output is as follows:

        city  year  population

0     Mumbai  2010        10.0

1     Mumbai  2011        10.1

2     Mumbai  2012        10.2

3  Hyderabad  2010         5.2

4  Hyderabad  2011         5.3

You can also pass other numbers as arguments to the function head() 

and it will show that number of the top records from the dataframe. 

Similarly, you can use df1.tail() to show the last records. It has 5 as the 

default argument, but you can customize the argument passed to it.

You can create a dataframe with a particular order of columns as 

follows:

df2 = pd.DataFrame(data, columns=['year', 'city', 

'population'])

print(df2)

Chapter 8  GettinG Started with pandaS



123

This results in the following output:

   year       city  population

0  2010     Mumbai        10.0

1  2011     Mumbai        10.1

2  2012     Mumbai        10.2

3  2010  Hyderabad         5.2

4  2011  Hyderabad         5.3

5  2012  Hyderabad         5.5

Next let’s create a dataframe with an additional column and  

custom index:

df3 = pd.DataFrame(data, columns=['year', 'city', 'population', 

'GDP'],

                   index = ['one', 'two', 'three', 'four', 

'five', 'six'])

print(df3)

The following is the new dataframe:

       year       city  population  GDP

one    2010     Mumbai        10.0  NaN

two    2011     Mumbai        10.1  NaN

three  2012     Mumbai        10.2  NaN

four   2010  Hyderabad         5.2  NaN

five   2011  Hyderabad         5.3  NaN

six    2012  Hyderabad         5.5  NaN

Use the following command to print the list of columns:

print(df3.columns)

Here is the resulting output:

Index(['year', 'city', 'population', 'GDP'], dtype='object')

Chapter 8  GettinG Started with pandaS



124

We can print the list of indexes as follows:

print(df3.index)

That provides the following output:

Index(['one', 'two', 'three', 'four', 'five', 'six'], 

dtype='object')

You can display the data of a column with the following statement:

print(df3.year)

Alternatively, you can also use the following statement:

print(df3['year'])

Here is the output:

one      2010

two      2011

three    2012

four     2010

five     2011

six      2012

Name: year, dtype: int64

You can display the datatype of a column with the following statement:

print(df3['year'].dtype)

You can also use this code:

print(df3.year.dtype)

That provides the following output:

int64

Chapter 8  GettinG Started with pandaS



125

To display the datatype of all the columns, use this statement:

print(df3.dtypes)

The output is as follows:

year            int64

city           object

population    float64

GDP            object

dtype: object

We can retrieve any record using the index as follows:

df3.loc['one']

Here is the resulting output:

year            2010

city          Mumbai

population        10

GDP              NaN

Name: one, dtype: object

You can assign the same value to all the members of a column  

as follows:

df3.GDP = 10

print(df3)

The output is shown here:

       year       city  population  GDP

one    2010     Mumbai        10.0   10

two    2011     Mumbai        10.1   10

three  2012     Mumbai        10.2   10

four   2010  Hyderabad         5.2   10

Chapter 8  GettinG Started with pandaS



126

five   2011  Hyderabad         5.3   10

six    2012  Hyderabad         5.5   10

We can assign an ndarray to the GDP column as follows:

import numpy as np

df3.GDP = np.arange(6)

print(df3)

That gives the following output:

       year       city  population  GDP

one    2010     Mumbai        10.0    0

two    2011     Mumbai        10.1    1

three  2012     Mumbai        10.2    2

four   2010  Hyderabad         5.2    3

five   2011  Hyderabad         5.3    4

six    2012  Hyderabad         5.5    5

You can also assign it a list as follows:

df3.GDP = [3, 2, 0, 9, -0.4, 7]

print(df3)

The output is as follows:

       year       city  population  GDP

one    2010     Mumbai        10.0  3.0

two    2011     Mumbai        10.1  2.0

three  2012     Mumbai        10.2  0.0

four   2010  Hyderabad         5.2  9.0

five   2011  Hyderabad         5.3 -0.4

six    2012  Hyderabad         5.5  7.0

Chapter 8  GettinG Started with pandaS



127

Let’s assign a series to it as shown here:

val = pd.Series([-1.4, 1.5, -1.3], index=['two', 'four', 'five'])

df3.GDP = val

print(df3)

The following output is the result:

       year       city  population  GDP

one    2010     Mumbai        10.0  NaN

two    2011     Mumbai        10.1 -1.4

three  2012     Mumbai        10.2  NaN

four   2010  Hyderabad         5.2  1.5

five   2011  Hyderabad         5.3 -1.3

six    2012  Hyderabad         5.5  NaN

 Reading Data Stored in CSV Format
We can read the data stored in a comma-separated value (CSV) format 

with the method read_csv(). The CSV file could be stored at a remote URL 

or a location on the disk. Here is an example of reading a CSV file hosted 

on a URL over the Internet:

df = pd.read_csv('https://raw.githubusercontent.com/cs109/2014_

data/master/countries.csv')

df.head(5)

The output is as follows:

     Country    Region

0    Algeria    AFRICA

1    Angola     AFRICA

2    Benin      AFRICA

3    Botswana   AFRICA

4    Burkina    AFRICA

Chapter 8  GettinG Started with pandaS



128

We can read the data stored in a file on the disk into a dataframe in the 

same way.

 Visualizing with Pandas
A pandas dataframe has methods for visualization like Matplotlib. 

Basically, these methods are wrappers over the methods in Matplotlib. 

Let’s look at how we can use these methods to visualize the data stored in 

the pandas dataframes.

Let’s import the pyplot module of Matplotlib and use the magic 

command to enable Matplotlib visualization in the notebook as follows:

%matplotlib inline

import matplotlib.pyplot as plt

The NumPy function randn() generates a NumPy array with a 

standard normal random distribution. We will use this to create a series 

and plot it as follows:

ts = pd.Series(np.random.randn(5))

ts

The output is as follows (it will be different every time you execute the 

code, as it is randomly generated at the time of execution):

0    0.257543

1    1.405170

2    1.290728

3    0.068451

4   -0.923677

dtype: float64

Chapter 8  GettinG Started with pandaS



129

This can be visualized as follows:

ts.plot()

plt.grid(True)

plt.show()

It produces the output shown in Figure 8-1.

We can compute the cumulative sum with the function cumsum() and 

visualize it as follows:

ts.cumsum().plot()

plt.grid(True)

plt.show()

Figure 8-1. Simple plot

Chapter 8  GettinG Started with pandaS



130

The output is displayed in Figure 8-2.

Now let’s create a dataframe as follows:

df1 = pd.DataFrame(np.random.randn(10, 4),

                  columns=['A', 'B', 'C', 'D'])

print(df1)

The following output is the result:

          A         B         C         D

0  0.474219  1.821673 -0.296638 -0.566934

1  1.820044  2.199264  2.196097  0.203744

2  0.086325 -1.056730  0.937690 -1.283733

3  0.087798  1.145512 -0.407545  0.747684

4 -0.179241  0.290476  1.823487 -0.059593

5  1.964211 -0.525957  1.615896  0.046840

6 -0.463331  0.032999  1.130027  1.151667

7  1.805051 -0.338121 -0.397105  0.487373

8 -1.212102 -0.610992  0.258653 -1.885551

9 -1.052613  1.624191  0.529037  1.081536

Figure 8-2. Simple plot of the cumulative sum

Chapter 8  GettinG Started with pandaS



131

We can visualize this with vertical bar graphs as follows:

df1.plot.bar()

plt.grid(True)

plt.show()

The output is displayed in Figure 8-3.

You can even use horizontal bar graphs as follows:

df1.plot.barh()

plt.grid(True)

plt.show()

Figure 8-3. Vertical bar plot

Chapter 8  GettinG Started with pandaS



132

Figure 8-4 displays the output.

Let’s create another dataframe with similar dimensions. We will 

use the function rand() that generates a NumPy ndarray using uniform 

normal distribution. Here is an example:

df2 = pd.DataFrame(np.random.rand(10, 4), columns=['A', 'B', 

'C', 'D'])

print(df2)

The output is shown here:

          A         B         C         D

0  0.416596  0.725513  0.707631  0.286249

1  0.166804  0.370956  0.680678  0.938911

2  0.330940  0.426264  0.667221  0.741184

3  0.879112  0.409153  0.460051  0.968562

4  0.248149  0.021732  0.072309  0.186000

5  0.666609  0.692510  0.574111  0.519540

6  0.178994  0.437883  0.036931  0.063519

7  0.057269  0.079832  0.025361  0.150671

Figure 8-4. Horizontal bar plot

Chapter 8  GettinG Started with pandaS



133

8  0.099039  0.886589  0.358671  0.431321

9  0.395520  0.262707  0.291207  0.763712

We can create stacked vertical bar graphs as follows:

df2.plot.bar(stacked=True)

plt.grid(True)

plt.show()

That produces the output shown in Figure 8-5.

Similarly, we can produce horizontal stacked bar plots as follows:

df2.plot.barh(stacked=True)

plt.grid(True)

plt.show()

Figure 8-5. Vertical stacked bar plot

Chapter 8  GettinG Started with pandaS



134

The output is displayed in Figure 8-6.

To create an area plot, use this code:

df2.plot.area()

plt.grid(True)

plt.show()

By default, the area plot is stacked, as shown in Figure 8-7.

Figure 8-6. Horizontal stacked bar plot

Figure 8-7. Stacked area plot

Chapter 8  GettinG Started with pandaS



135

You can create an unstacked overlapping area plot as follows:

df2.plot.area(stacked=False)

plt.grid(True)

plt.show()

That produces the output shown in Figure 8-8.

Next let’s demonstrate a pie chart. Create a simple dataframe as 

follows:

df3 = pd.DataFrame(np.random.rand(4), index=['A', 'B', 'C', 

'D'])

print(df3)

The following is the output:

          0

A  0.292772

B  0.569819

C  0.835805

D  0.479885

Figure 8-8. Overlapping area plot

Chapter 8  GettinG Started with pandaS



136

Use this code to create the pie chart:

df3.eplot.pie(subplots=True)

plt.show()

The result is shown in Figure 8-9.

 Summary
This chapter explored the basics of the data science library of SciPy, 

pandas. You learned the basics of creation and operations on the 

fundamental pandas data structures, series and dataframes. You also 

learned the basics of visualizing dataframe data and how to read the data 

from a CSV file.

All these concepts will be very useful to in completing the exercise 

in the next chapter. The next chapter concludes our data visualization 

journey by working with data related to the ongoing COVID-19 pandemic. 

It provides an interesting real-life case study.

Figure 8-9. Pie chart

Chapter 8  GettinG Started with pandaS



137© Ashwin Pajankar 2021 
A. Pajankar, Practical Python Data Visualization,  
https://doi.org/10.1007/978-1-4842-6455-3_9

CHAPTER 9

Working with 
COVID-19 Data
Chapter 8 covered the basics of the data science library of SciPy, pandas. 

You learned the basics of the series and dataframe data structures and how 

to visualize the data in the dataframes and series.

This chapter is the culmination of all the knowledge you have gained 

in the earlier chapters. In this chapter, we are going to retrieve real-life 

data and visualize it. At the conclusion of this chapter, you should be 

comfortable with visualizations of a real-life data set.

 The COVID-19 Pandemic and the Data Set
At the time of writing of this book, the world is facing an unprecedented 

natural calamity, a pandemic (an infectious disease spreading across 

continents) caused by the severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) and the resulting disease known as COVID-19. This 

virus comes from the same family of viruses (Coronaviruses) that cause 

nonlethal diseases like the common cold and more lethal diseases like 

SARS and MERS. These viruses cause infections of the respiratory tract in 

mammals and humans and can be lethal if not treated in a timely manner.

https://doi.org/10.1007/978-1-4842-6455-3_9#DOI


138

 Data Sources for COVID-19 Data
Many organizations are keeping track of COVID-19 cases worldwide and 

updating the data on their website and web services periodically. The most 

prominent are Johns Hopkins University (https://coronavirus.jhu.

edu/map.html) and World-O-Meter (https://www.worldometers.info/

coronavirus/). These are very reliable sources of data for COVID-19 and 

they update their statistics very frequently (at least once every 24 hours) so 

downstream systems get the latest data.

We can retrieve this data using custom libraries in Python. One such 

library can be found at https://ahmednafies.github.io/covid/. It can 

retrieve the data from both Johns Hopkins University and World-O-Meter. 

To install it, create a new notebook for this chapter and run the following 

command in a code cell:

!pip3 install covid

Next, import the library as follows:

from covid import Covid

You can fetch the data using this code:

covid = Covid()

It fetches the data from Johns Hopkins University by default. You can 

also explicitly mention the data source:

covid = Covid(source="john_hopkins")

To fetch the data from World-O-Meter, change the source value:

covid = Covid(source="worldometers")

You can display all the data using the following commad:

covid.get_data()

Chapter 9  Working With CoViD-19 Data

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://ahmednafies.github.io/covid/


139

This returns a list of dictionaries, as shown in Figure 9-1.

We can determine the source of the data as follows:

covid.source

The output in this case is shown here:

'worldometers'

You can also retrieve the status by country name as follows:

covid.get_status_by_country_name("italy")

Figure 9-1. COVID-19 data

Chapter 9  Working With CoViD-19 Data



140

The result is shown in Figure 9-2.

You can retrieve the data by country ID, too (this function is only valid 

for the Johns Hopkins data source), with this code:

covid.get_status_by_country_id(115)

To retrieve the list of countries affected by the COVID-19 pandemic, 

use this syntax:

covid.list_countries()

Figure 9-2. COVID-19 data by country

Chapter 9  Working With CoViD-19 Data



141

It returns the list shown in Figure 9-3.

The total number of active cases can be obtained as follows:

covid.get_total_active_cases()

The total number of confirmed cases can be obtained as follows:

covid.get_total_confirmed_cases()

The total number of recovered cases can be obtained as follows:

covid.get_total_recovered()

The total number of deaths can be obtained as follows:

covid.get_total_deaths()

Run those statements and examine the output.

Figure 9-3. Countries affected by COVID-19

Chapter 9  Working With CoViD-19 Data



142

 Visualizing the COVID-19 Data
Now you can convert all this data into a pandas dataframe as follows:

import pandas as pd

df = pd.DataFrame(covid.get_data())

print(df)

The output is shown in Figure 9-4.

Use this code to sort the data:

sorted = df.sort_values(by=['confirmed'], ascending=False)

This data contains the cumulative data for all the continents and the 

world, too. We can exclude the data for the world and the continents as 

follows:

excluded = sorted[~sorted.country.isin(['Europe', 'South 

America', 'Asia', 'World', 'North America', 'Africa'])]

Figure 9-4. COVID-19 data converted to a dataframe

Chapter 9  Working With CoViD-19 Data



143

The top 10 countries can be retrieved as follows:

top10 = excluded.head(10)

print(top10)

The output is shown in Figure 9-5.

Now we can extract the data into variables as follows:

x = top10.country

y1 = top10.confirmed

y2 = top10.active

y3 = top10.deaths

y4 = top10.recovered

Now, we can use the results to visualize. Import Matplotlib and enable 

plotting on the notebook with this command:

%matplotlib inline

import matplotlib.pyplot as plt

Figure 9-5. Top 10 countries affected by COVID-19

Chapter 9  Working With CoViD-19 Data



144

Create a simple line graph as follows:

plt.plot(x, y1)

plt.xticks(rotation=90)

plt.show()

The result is shown in Figure 9-6.

We can display the bar graph as follows:

plt.bar(x, y1)

plt.xticks(rotation=90)

plt.show()

Figure 9-6. Top 10 countries affected by COVID-19 (line graph)

Chapter 9  Working With CoViD-19 Data



145

Figure 9-7 displays the result.

Use this code to create a multiline graph:

plt.plot(x, y1, label='Confirmed')

plt.plot(x, y2, label='Active')

plt.plot(x, y3, label='Deaths')

plt.plot(x, y4, label='Recovered')

plt.legend(loc='upper right')

plt.xticks(rotation=90)

plt.show()

Figure 9-7. Top 10 countries affected by COVID-19 (bar graph)

Chapter 9  Working With CoViD-19 Data



146

The output is displayed in Figure 9-8.

We can rewrite the preceding example with compact code and better 

formatting as follows:

labels = ['Confirmed', 'Active', 'Deaths', 'Recovered']

plt.plot(x, y1, x, y2, x, y3, x, y4)

plt.legend(labels, loc='upper right')

plt.xticks(rotation=90)

plt.grid()

plt.show()

Figure 9-8. Top 10 countries affected by COVID-19 (multiline 
graph)

Chapter 9  Working With CoViD-19 Data



147

Figure 9-9. Top 10 countries affected by COVID-19 (multiline graph 
with grids)

The result is shown in Figure 9-9.

We can display the data in vertical multiple bar graphs as follows:

df2 = pd.DataFrame([y1, y2, y3, y4])

df2.plot.bar();

plt.legend(x, loc='upper center')

plt.xticks(rotation=90)

plt.grid()

plt.show()

Chapter 9  Working With CoViD-19 Data



148

Figure 9-10 displays the output.

We can plot the data in vertical stacked bar graphs with the 

following code:

df2.plot.bar(stacked=True);

plt.legend(x, loc='upper center')

plt.xticks(rotation=90)

plt.grid()

plt.show()

Figure 9-10. Top 10 countries’ COVID-19 statistics (multiple bar 
graph with grids)

Chapter 9  Working With CoViD-19 Data



149

Figure 9-11. Top 10 countries’ COVID-19 statistics (vertical stacked 
bar graph with grids)

That produces the output shown in Figure 9-11.

We can create horizontal bar graphs as follows:

df2.plot.barh();

plt.legend(x, loc='upper right')

plt.xticks(rotation=90)

plt.grid()

plt.show()

Chapter 9  Working With CoViD-19 Data



150

This produces the output shown in Figure 9-12.

Next, create a stacked horizontal bar visualization with the following code:

df2.plot.barh(stacked=True);

plt.legend(x, loc='upper right')

plt.xticks(rotation=90)

plt.grid()

plt.show()

Figure 9-12. Top 10 countries’ COVID-19 statistics (horizontal graph 
with grid)

Chapter 9  Working With CoViD-19 Data



151

The output is shown in Figure 9-13.

We can even use area graphs to visualize this data. By default, the area 

graph, as we know, is stacked. We can create it as follows:

df2.plot.area();

plt.legend(x, loc='upper right')

plt.xticks(rotation=90)

plt.grid()

plt.show()

Figure 9-13. Top 10 countries’ COVID-19 statistics (horizontal 
stacked bar graph with grid)

Chapter 9  Working With CoViD-19 Data



152

The output is displayed in Figure 9-14.

You can even create an overlapping area graph as follows:

df2.plot.area(stacked=False);

plt.legend(x, loc='upper right')

plt.xticks(rotation=90)

plt.grid()

plt.show()

Figure 9-14. Top 10 countries’ COVID-19 statistics (stacked  
area graph)

Chapter 9  Working With CoViD-19 Data



153

Figure 9-15 depicts the result.

To create a nice scatter plot where the size of dots is proportional to the 

magnitude of data, use the following code:

factor=0.0001

plt.scatter(x, y1, s=y1*factor);

plt.scatter(x, y2, s=y2*factor);

plt.scatter(x, y3, s=y3*factor);

plt.scatter(x, y4, s=y4*factor);

plt.legend(labels, loc='upper right')

plt.xticks(rotation=90)

plt.grid()

plt.show()

Figure 9-15. Top 10 countries’ COVID-19 statistics (overlapping  
area graph)

Chapter 9  Working With CoViD-19 Data



154

The output is shown in Figure 9-16.

Finally, you can create a nice pie chart with the following code:

plt.pie(y1, labels=x)

plt.title('Confirmed Cases')

plt.show()

Figure 9-16. Top 10 countries’ COVID-19 statistics  
(scatter graph)

Chapter 9  Working With CoViD-19 Data



155

Figure 9-17. Top 10 countries’ COVID-19 statistics (pie chart)

The output is shown in Figure 9-17.

 Summary
In this chapter, you learned how to retrieve COVID-19 data from various 

online sources and convert the data to a pandas dataframe. You also saw 

how to prepare various types of visualizations to represent that COVID-19 

data graphically.

This is how we conclude our data visualization journey, working with 

the real-life data. I hope you enjoyed reading and following the examples 

in this book as much as I enjoyed writing them. Data visualization is 

an expansive domain. There are many other Python libraries for data 

visualization that you can explore, such as ggplot, plotly, and seaborn. 

These libraries provide advanced data visualization capabilities that might 

meet your business and scientific visualization requirements.

Chapter 9  Working With CoViD-19 Data



157© Ashwin Pajankar 2021 
A. Pajankar, Practical Python Data Visualization,  
https://doi.org/10.1007/978-1-4842-6455-3

Index
A, B
Addition operation, 87
arange() function, 60
Arithmetic operations, 85, 100
Assign custom labels, 114

C
Color channels, 89, 91, 92
Comma-separated value (CSV) 

format, 127
Comparison operations, 120
Constructor function, 119
Container, 51
COVID-19, 137

countries affected, 141
data by country, 140
dataframe, 142
data source, 138–142
top 10 countries, 

affected, 143
bar graph, 145
grids, 147
horizontal graph, 150
horizontal stacked bar 

graph, 151
line graph, 144
multiline graph, 146

overlapping area graph, 153
pie chart, 155
scatter graph, 154
stacked area graph, 152
statistics, 148
vertical stacked bar, 149

visualizing data, 142
cumsum() function, 129

D, E, F
Dataframes,Pandas, 121–127
Data visualization library

colors /styles/markers, 73–79
grid/axes/labels, 68–73
Matplotlib, 58–63
multiline plot, 66, 67
Numpy, 59–63
single line plot, 64, 66
types

bar charts, 41
customizing line, 38
line segments, 37
multiple lines, 39, 40
vertical columns, 42, 43

Debian, 8
df1.tail() function, 122
Dodecahedral graph, 113

https://doi.org/10.1007/978-1-4842-6455-3#DOI


158

G
Graphs, 101

nodes and edges, 107
path, 108

H
head() function, 122
Horizontal bar plot, 132
Horizontal stacked  

bar plot, 133, 134

I
Image operations, 86

addition, 87
color channels, 91, 92
subtraction, 88, 89

Integrated development and 
learning environment 
(IDLE), 9

J, K
Jupyter Notebook

definition, 18
plain text format, 18
Python statements, 18
running  

code, 25–27, 29
running OS  

command, 31, 32
setting up, 19–23, 25

L
Leather

code, 33, 34
definition, 33
plotting points, 35, 36
scales, 43, 45
styling, 45–48
tuples, 34

legend() function, 71, 72
Linear/path graph, 115

M
Matplotlib, 50, 56, 58
meshgrid() function, 95

N
Ndarray

definition, 51, 52
one dimension, 53, 54
properties, 54, 55

Network, 101
Networkx, 102, 103, 105, 117
Nodes, 101, 102
NumPy

constants, 55, 56
definition, 51
library, 51, 52

O
Overlapping area plot, 135, 152

INDEX



159

P, Q
Pandas, 117

basic operations, 120
dataframe, 121, 124
GDP column, 126
series, 118
visualization, 128

Petersen graph, 109
circular configuration, 111
edges and nodes, 108
nodes and edges, 110
shell, 110, 112
spectral configuration, 112

Pie chart, 135, 136, 154, 155
plot() function, 59, 64, 72
Python 3

applications, 4
graph, 102
history, 2
installation

Debian/Ubuntu, 8
IDLE, 9, 10, 12
interactive mode, 13, 14
script mode, 14–16
windows computer, 5–8

nodes, 106
OS platforms, 1
philosophy, 3, 4
programming language, 2
visualize graph, 105, 106

Python Enhancement  
Proposals (PEPs), 3

Python Package Index (PyPI), 33

R
randn() function, 128
ravel() function, 96

S
Scientific Python ecosystem 

(SciPy), 48–50
Severe acute respiratory  

syndrome coronavirus 2 
(SARS- CoV- 2), 137

show() function, 60, 82
Stacked area plot, 134
Subtraction operation, 87, 88

T
3D visualizations

bar graph, 95, 97
data points, 94
parametric curve, 95
Qt window, 93
wire frame, 98

U
Ubuntu Linux and Raspberry  

Pi OS, 8

V, W, X, Y, Z
Vertical bar plot, 131
Vertical stacked bar  

plot, 133, 148, 149

INDEX



160

Visualize images
color, 83
display, 82
grayscale, 84, 85

Matplotlib’s Pyplot  
module, 82

stores, 82
turn the axis, 83

INDEX


	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Python
	Python Programming Language
	History of Python
	Python Enhancement Proposals
	Philosophy of Python

	Applications of Python

	Installing Python on Various Platforms
	Installing on a Windows Computer
	Installing on Ubuntu and Debian Derivatives

	Python Modes
	Interactive Mode
	Script Mode

	Summary

	Chapter 2: Exploring Jupyter Notebook
	Overview of Jupyter Notebook
	Setting up Jupyter Notebook
	Running Code in Jupyter Notebook
	Summary

	Chapter 3: Data Visualization with Leather
	Running OS Commands in Jupyter Notebook
	Introduction to Leather
	More Types of Visualizations
	Scales
	Styling
	Summary

	Chapter 4: Scientific Python Ecosystem and NumPy
	Scientific Python Ecosystem
	NumPy and Ndarrays
	More Than One Dimension

	Ndarray Properties
	NumPy Constants
	Summary

	Chapter 5: Data Visualization with NumPy and Matplotlib
	Matplotlib
	Visualization with NumPy and Matplotlib
	Single Line Plots
	Multiline Plots
	Grid, Axes, and Labels
	Colors, Styles, and Markers
	Summary

	Chapter 6: Visualizing Images and 3D Shapes
	Visualizing the Images
	Operations on Images
	3D Visualizations
	Summary

	Chapter 7: Visualizing Graphs and Networks
	Graphs and Networks
	Graphs in Python 3

	Visualizing Graphs in Python 3
	More Types of Graphs
	Assigning Custom Labels to Nodes
	Summary

	Chapter 8: Getting Started with Pandas
	Introduction to Pandas
	Series in Pandas
	Basic Operations on Series

	Dataframes in Pandas
	Reading Data Stored in CSV Format

	Visualizing with Pandas
	Summary

	Chapter 9: Working with COVID-19 Data
	The COVID-19 Pandemic and the Data Set
	Data Sources for COVID-19 Data

	Visualizing the COVID-19 Data
	Summary

	Index



