
Extending
Kubernetes

Elevate Kubernetes with Extension
Patterns, Operators, and Plugins
—
Onur Yilmaz

Extending
Kubernetes

Elevate Kubernetes
with Extension Patterns,
Operators, and Plugins

Onur Yilmaz

Extending Kubernetes: Elevate Kubernetes with Extension Patterns,

Operators, and Plugins

ISBN-13 (pbk): 978-1-4842-7094-3 ISBN-13 (electronic): 978-1-4842-7095-0
https://doi.org/10.1007/978-1-4842-7095-0

Copyright © 2021 by Onur Yilmaz

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aditee Mirashi
Development Editor: Laura Berendson
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science + Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc. (SSBM Finance Inc.). SSBM Finance Inc. is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7094- 3.
For more detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Onur Yilmaz
Berlin, Germany

https://doi.org/10.1007/978-1-4842-7095-0

For my wife Nursin and my daughter Ece
for their incredible support

v

About the Author ���ix

About the Technical Reviewer ���xi

Introduction ���xiii

Table of Contents

Chapter 1: Introduction���1

Kubernetes Recap ���1

Control Plane Components ��4

Node Components ���5

Configuring the Kubernetes Cluster ��6

Kubernetes Extension Patterns ���10

Controller ���10

Webhook ��14

Binary Plugin ���16

Kubernetes Extension Points ���18

Key Takeaways ��19

Chapter 2: kubectl Plugins ���21

kubectl Installation and Usage ��21

kubectl Plugin Design ���30

Create Your First kubectl Plugins ��33

Plugin Repository: krew ��36

Key Takeaways ��42

vi

Chapter 3: API Flow Extensions ��45

Kubernetes API Flow ���45

Authentication ���46

Authentication Webhooks ���48

Kubernetes API Server Configuration ��49

Authorization Webhooks ���61

Kubernetes API Server Configuration ��62

Dynamic Admission Controllers ��75

Webhook Configuration Resources ��76

Key Takeaways ��97

Chapter 4: Extending the Kubernetes API ���99

Kubernetes API Overview ��100

API Versioning ��103

API Groups ���104

Extension Points in Kubernetes API ���105

Kubernetes Client Libraries ���106

Custom Resource Definitions and Controllers���111

Operator Pattern in Kubernetes ���117

kubebuilder Framework ��119

Aggregated API and Extension Servers ���130

Key Takeaways ��141

Chapter 5: Scheduling Extensions ��143

Kubernetes Scheduler Overview ���143

Scheduling Framework ���145

Configure and Manage Multiple Schedulers ���149

Table of ConTenTs

vii

Scheduler Extenders ���160

Configuration Details ���161

Key Takeaways ��182

Chapter 6: Infrastructure Extensions ��185

Cloud-Native Infrastructure ���186

Storage Plugins ���187

Container Storage Interface (CSI) ��189

CSI Plugins in Kubernetes ���191

Network Plugins ��200

Kubernetes Network Model ���200

Container Network Interface (CNI) ���204

Device Plugins ��213

Device Plugin API ���214

Development and Deployment of a Device Plugin ���������������������������������������217

Key Takeaways ��226

Chapter 7: Upcoming Extension Points ���227

Service Catalog ���228

Cluster API ���238

Key Takeaways ��241

Conclusion ��241

Index ���243

Table of ConTenTs

ix

About the Author

Onur Yilmaz is a senior software engineer at a multinational enterprise

software company. He is a Certified Kubernetes Administrator (CKA) and

works on Kubernetes and cloud management systems as a keen supporter

of cutting-edge technologies. Furthermore, he is the author of multiple

books on Kubernetes, Docker, serverless architectures, and cloud-native

continuous integration and delivery. In addition, he has one master’s and

two bachelor’s degrees in the engineering field.

xi

About the Technical Reviewer

Erkan Erol is a software engineer and

Certified Kubernetes Application Developer

(CKAD). He has been working on the lifecycle

management of applications on Kubernetes

and developing operators for 3.5 years.

xiii

Introduction

The future is in the skies.

—Mustafa Kemal Ataturk, Founder of Turkish Republic

In recent years, applications have become smaller and more self- governing

with the microservices paradigm shift. Furthermore, they are built, tested,

and deployed as containers with less overhead and flexibility. Thus, if

you aim to develop the applications of the future, you need to aim for

the clouds and containers. However, the management of distributed

applications in a scalable, reliable, and flexible way is not straightforward.

You need a well-architectured abstraction layer between applications

and the clouds. Kubernetes has become the de facto orchestrator for

cloud- native applications running in the containers with its open

architecture and industry adoption.

Kubernetes is a complex but open system with well-designed extension

points and plugins. It is possible to extend Kubernetes by implementing the

APIs in a cloud-native way and make it work for your custom requirements

and infrastructure. This book is a comprehensive guide for understanding

the extension patterns and discovering the extension plugins for Kubernetes.

In this book, you will learn the state-of- the-art extension patterns and

extension points of Kubernetes in depth with real-life use cases and

examples. You will have a comprehensive overview of all possible aspects

of Kubernetes, starting from end user to the fully automated controller

development. Also, the book focuses on creating applications that not only

work on Kubernetes but also interact and operate Kubernetes itself.

xiv

This book is for a wide range of audience, including, but not limited to,

software engineers, developers, DevOps engineers, cloud security analysts,

architects, and managers who have Kubernetes in their short- and long- term

plans. However, this is not a starter's guide to containers, cloud providers,

or Kubernetes. It is expected to have an introductory knowledge and

hands-on experience on Kubernetes to grasp the content fully and follow up

the activities.

In the following chapters, Kubernetes API and extension points

with respective design patterns will be covered with their theoretical

background, hands-on activities, and exercises. At the end of the book, you

will be more enthusiastic about the future of Kubernetes and how you will

extend the Kubernetes to enrich its ecosystem.

InTroduCTIon

1© Onur Yilmaz 2021
O. Yilmaz, Extending Kubernetes, https://doi.org/10.1007/978-1-4842-7095-0_1

CHAPTER 1

Introduction
Life is like an onion; you peel it off one layer at a time, and
sometimes you weep.

—Carl Sandburg
American poet, biographer, journalist,

and editor with three Pulitzer Prizes

Kubernetes is like an onion. You peel it off one layer at a time, and

sometimes you weep, check your YAML file, and read more documentation.

Kubernetes is a complex system. This first chapter will start with a

short history of Kubernetes and how it has grown to a complex system.

Although it already has many layers, it is also extensible with additional

layers. This chapter will also discuss how to configure a Kubernetes

system, its extension patterns, and points. At the end of this chapter, you

will grasp the complexity of Kubernetes and its capabilities.

Let’s start with a short recap of Kubernetes history and its features.

 Kubernetes Recap
Kubernetes is an open source system for managing containerized

applications. The name originates from Greek with the meaning of

helmsman. So, it is not wrong to say that Kubernetes is the tool to help you

find Moby Dick in the stormy oceans of containers and microservices.

https://doi.org/10.1007/978-1-4842-7095-0_1#DOI

2

Google open-sourced Kubernetes in 2014, and it was the accumulated

experience of running production workloads in containers over decades.

In 2015, Google announced the Kubernetes project’s handover to the

Cloud Native Computing Foundation (CNCF).1 CNCF has over 500

members,2 including the world’s most giant public cloud and enterprise

software companies and over a hundred innovative startups. The

foundation is a vendor-neutral home for many of the fastest-growing

projects including Kubernetes, Prometheus, and Envoy.

Kubernetes is currently one of the most popular open source projects

with nearly 3000 contributors, more than 1000 pull requests, and 2000

open issues. The repository (Figure 1-1) is available at GitHub under the

name kubernetes/kubernetes.3

1 www.cncf.io
2 www.cncf.io/about/members
3 https://github.com/kubernetes/kubernetes

Figure 1-1. Kubernetes repository

Chapter 1 IntroduCtIon

https://www.cncf.io
https://www.cncf.io/about/members
https://github.com/kubernetes/kubernetes

3

There is an enormous amount of open issues to resolve, and if you

want to dive into the open source world to contribute, the community is

also one of the most welcoming ones. Now let’s tackle one level more and

check what we mean by a Kubernetes system.

Kubernetes is designed to run on the clusters. A Kubernetes cluster

consists of nodes, and the containerized applications run on these nodes.

We can divide a Kubernetes system logically into two: the control
plane and worker nodes. The control plane manages the worker nodes

and the cluster’s workload, whereas the worker nodes run the workload.

In Figure 1-2, you can see how the components of a Kubernetes cluster are

tied together.

Figure 1-2. Kubernetes components

Chapter 1 IntroduCtIon

4

 Control Plane Components
The control plane is the brain of a Kubernetes cluster to make decisions,

detect events, and respond if required. For instance, the control plane is

expected to give scheduling decisions of pods to worker nodes, identify

failed nodes, and reschedule new pods to ensure scalability.

Control plane components can run on any node in the Kubernetes

cluster; however, it is a typical approach to save some nodes for only

control plane components. This approach separates the workloads from

control plane components in a cluster and makes it easier to operate nodes

for scaling up and down or maintenance.

Now, let’s review each control plane component and their importance

to the cluster.

 kube-apiserver

Kubernetes API is the front end of the control plane, and the kube-

apiserver exposes it. kube-apiserver can scale horizontally by running

multiple instances to create a highly available Kubernetes API.

 etcd

etcd is an open source distributed key-value store, and Kubernetes stores

all its data in it. The state of the cluster and changes are saved in etcd by

only kube-apiserver, and it is possible to extend the etcd horizontally.

 kube-scheduler

Kubernetes is a container orchestration system, and it needs to assign

the containerized applications to nodes. kube-scheduler is responsible

for scheduling decisions by taking into account resource requirements,

available resources, hardware and policy constraints, affinity rules, and

data locality.

Chapter 1 IntroduCtIon

5

 kube-controller-manager

One of the key design concepts of Kubernetes is the controller. Controllers

in Kubernetes are control loops for watching the state of the cluster and

make changes when needed. Each controller interacts with Kubernetes

API and tries to move the current cluster state to the desired shape. In this

book, you will not only be familiar with the native Kubernetes controllers

but also learn how to create new controllers to implement new capabilities.

kube-controller-manager is a set of core controllers for a Kubernetes

cluster.

 cloud-controller-manager

Kubernetes is designed to be a platform-independent and portable system.

Therefore, it needs to interact with cloud providers to create and manage

the infrastructure such as nodes, routes, or load balancers. The cloud-

controller- manager is the component to run controllers specific to the

cloud provider.

 Node Components
Node components are installed to every worker node in a Kubernetes

cluster. Worker nodes are responsible for running the containerized

applications. In Kubernetes, containers are grouped into a resource named

as pod. kube-scheduler assigns pods to the nodes, and node components

ensure they are up and running.

 kubelet

kubelet is the agent running in each node. It fetches the specification of

the pods that are assigned to the node. It then interacts with the container

runtime to create, delete, and watch containers’ status in the pod.

Chapter 1 IntroduCtIon

6

 kube-proxy

Containerized applications operate like running in a single network while

running inside a Kubernetes cluster. kube-proxy runs on every node as a

network proxy and connects applications. It also maintains network rules

for inside and outside cluster network communication.

In a production environment, control plane components run over

multiple nodes to provide fault tolerance and high availability. Similarly,

the number of worker nodes scales with the workload and resource

requirements. On the other hand, it is possible to create more portable

Kubernetes systems running on a single node inside Docker containers

or virtual machines for development and testing environments.

Throughout the book, we will create both production-ready and single-

node Kubernetes clusters and see them in action. In the following section,

we will focus on configuring the Kubernetes system to understand its

capabilities.

 Configuring the Kubernetes Cluster
You can restrain or liberate a Kubernetes cluster by two broad approaches:

configuration and extensions. In the configuration approach, you can

change flags, configuration files, or API resources. This section will focus

on configuring the Kubernetes, and then we will move our focus to

extensions in the rest of the book.

The control plane and node components have their flags and

configuration files defined in the reference documentation.4 Also, it is

possible to get your hands dirty and check them by using Docker images.

Let’s start with kube-apiserver and check its flags as shown in Listing 1-1.

4 https://kubernetes.io/docs/reference/command-line-tools-reference/

Chapter 1 IntroduCtIon

https://kubernetes.io/docs/reference/command-line-tools-reference/

7

Listing 1-1. kube-apiserver flags

$ docker run -it --rm k8s.gcr.io/kube-apiserver:v1.19.0 kube-

apiserver --help

The Kubernetes API server validates and configures

data for the api objects which include pods, services,

replicationcontrollers, and others. The API Server services

REST operations and provides the frontend to the cluster's

shared state through which all other components interact.

Usage:

 kube-apiserver [flags]

Generic flags:

 --advertise-address ip

 The IP address on which to advertise the apiserver to

members of the cluster. ...

 ...

 --cors-allowed-origins strings

 List of allowed origins for CORS, comma separated.

 ...

The command-line output is enormous, with nearly 150 flags for the

kube-apiserver binary. However, there is one flag which every cluster

admin needs to know: --feature-gates. Feature gates are a set of key

and value pairs to enable alpha or experimental Kubernetes features. It is

available in every Kubernetes component and reachable through its help.

Let’s check for kube-scheduler this time as shown in Listing 1-2.

Chapter 1 IntroduCtIon

8

Listing 1-2. kube-scheduler flags

$ docker run -it --rm k8s.gcr.io/kube-scheduler:v1.19.0 kube-

scheduler --help 2>&1 |grep -A 250 feature-gates

--feature-gates mapStringBool

A set of key=value pairs that describe feature gates for alpha/

experimental features. Options are:

 APIListChunking=true|false (BETA - default=true)

APIPriorityAndFairness=true|false (ALPHA - default=false)

APIResponseCompression=true|false (BETA - default=true)

AllAlpha=true|false (ALPHA - default=false)

 AllBeta=true|false (BETA - default=false)

 ...

There are 85 feature gate options for the kube-scheduler in the

particular version, so the output is also very long. Experimental features

in Kubernetes need to go to alpha and beta before graduation or

depreciation. You can track the features’ status in the official reference

documentation5 with their default value, stage, start, and end versions as

in Figure 1-3.

5 https://kubernetes.io/docs/reference/command-line-tools-reference/
feature-gates/

Chapter 1 IntroduCtIon

https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/

9

In managed Kubernetes systems such as Amazon Elastic Kubernetes

Service (EKS) or Google Kubernetes Engine (GKE), it is impossible to edit

the flags of control plane components. However, there are options to

enable all alpha features in Google Kubernetes Engine6 with --enable-

kubernetes- alpha flag similar to --feature-gates=AllAlpha=true. It

is valuable to use alpha clusters for early testing and validation of new

features.

The configuration of Kubernetes enables designing tailor-made

clusters. Therefore, it is essential to grasp the configuration parameters

of the control plane and node components. However, configuration

parameters only allow you to tune what is already inside the Kubernetes.

In the next section, we will expand the boundaries of Kubernetes with

extensions.

6 https://cloud.google.com/kubernetes-engine/docs/how-to/creating-an-
alpha-cluster

Figure 1-3. Feature gates

Chapter 1 IntroduCtIon

https://cloud.google.com/kubernetes-engine/docs/how-to/creating-an-alpha-cluster
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-an-alpha-cluster

10

 Kubernetes Extension Patterns
Kubernetes design is centered on Kubernetes API. All Kubernetes

components such as kube-scheduler and clients such as kubectl operate

interacting with the Kubernetes API. Likewise, the extension patterns

are designed to interact with the API. However, unlike the clients or

Kubernetes components, extension patterns enrich the capabilities of

Kubernetes. There are three well-accepted design patterns to extend the

Kubernetes.

 Controller
Controllers are loops for managing at least one Kubernetes resource type.

They check the spec and status fields of the resource and take action

if required. In the spec field, the desired state is defined, whereas the

status field represents the actual state. We can illustrate the flow of a

controller as in Figure 1-4.

Let’s take a real controller from Kubernetes and try to understand how

they operate. CronJob is a Kubernetes resource to enable running Jobs

on a repeating schedule. Job is another Kubernetes resource that runs

Figure 1-4. Controller pattern in Kubernetes

Chapter 1 IntroduCtIon

11

one or more pods and ensures them to terminate successfully. CronJob

has a controller defined in the Go package k8s.io/kubernetes/pkg/

controller/cronjob. You can create an example CronJob resource like

the following.

Listing 1-3. Example CronJob resource

apiVersion: batch/v1beta1

kind: CronJob

metadata:

 name: example

spec:

 schedule: "*/1 * * * *"

 jobTemplate:

 spec:

 template:

 spec:

 containers:

 - name: hello

 image: busybox

 args:

 - /bin/sh

 - -c

 - date; echo Hello from the Kubernetes CronJob

 restartPolicy: OnFailure

The desired state is in the spec field, and there are two important

sections: schedule and jobTemplate. schedule defines the interval, and it

is every minute for example CronJob. The jobTemplate field has the Job

definition with containers to execute.

Chapter 1 IntroduCtIon

12

We can expect the CronJob controller to watch CronJob resources and

create Jobs when their schedules occur. The source code is relatively long,

but we can highlight some important points. The syncOne function in the

cronjob_controller.go is responsible for creating the Jobs and updating

a single CronJob instance’s status.

Listing 1-4. CronJob controller

jobReq, err := getJobFromTemplate(cj, scheduledTime)

...

jobResp, err := jc.CreateJob(cj.Namespace, jobReq)

...

klog.V(4).Infof("Created Job %s for %s", jobResp.Name, nameForLog)

recorder.Eventf(cj, v1.EventTypeNormal, "SuccessfulCreate",

"Created job %v", jobResp.Name)

...

// Add the just-started job to the status list.

ref, err := getRef(jobResp)

if err != nil {

 klog.V(2).Infof("Unable to make object reference for job

for %s", nameForLog)

} else {

 cj.Status.Active = append(cj.Status.Active, *ref)

}

cj.Status.LastScheduleTime = &metav1.Time{Time: scheduledTime}

if _, err := cjc.UpdateStatus(cj); err != nil {

 klog.Infof("Unable to update status for %s (rv = %s):

%v", nameForLog, cj.ResourceVersion, err)

}

...

Chapter 1 IntroduCtIon

13

When you deploy the sample CronJob resource, you can see both the

updated status and created Job resources in the cluster as shown in Listing 1-5.

Listing 1-5. CronJob in action

$ kubectl apply -f cronjob_example.yaml

cronjob.batch/example created

$ kubectl get cronjob example -o yaml

apiVersion: batch/v1beta1

kind: CronJob

metadata:

 ...

 name: example

 namespace: default

 ...

spec:

 concurrencyPolicy: Allow

 failedJobsHistoryLimit: 1

 jobTemplate:

 ...

 schedule: '*/1 * * * *'

 successfulJobsHistoryLimit: 3

 suspend: false

status:

 active:

 - apiVersion: batch/v1

 kind: Job

 name: example-1598968200

 namespace: default

 resourceVersion: "588"

 uid: e4603eb1-e2b3-419f-9d35-eeea9021fc34

 lastScheduleTime: "2020-09-01T13:50:00Z"

Chapter 1 IntroduCtIon

14

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

example-1598968200 1/1 4s 119s

example-1598968260 1/1 4s 59s

example-1598968320 1/1 3s 8s

Note the source code for the CronJob controller is available on
Github: https://github.com/kubernetes/kubernetes/
tree/master/pkg/controller/cronjob.

Controllers offer a robust extension pattern with the help of custom

resources in Kubernetes. It is possible to extend the Kubernetes API by

defining custom resources and manage them by controllers. In Chapter 4,

we will both extend the Kubernetes API and write custom controllers to

implement this design pattern.

 Webhook
Webhook is an HTTP callback to send event notifications and get back

the results. In Kubernetes API, it is possible to validate some events such

as authorization, validation, or resource mutation by external webhooks.

Kubernetes queries an outside REST service to process such events. We

can illustrate the flow of the requests as in Figure 1-5.

Chapter 1 IntroduCtIon

https://github.com/kubernetes/kubernetes/tree/master/pkg/controller/cronjob
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller/cronjob

15

When a new user wants to connect to the Kubernetes API, the request

is packaged and sent to the defined webhook address and checks for the

response. The webhook server could send the following data like in Listing 1-6

if the user is authorized.

Listing 1-6. Authorization webhook response

{

 "apiVersion": "authorization.k8s.io/v1beta1",

 "kind": "SubjectAccessReview",

 "status": {

 "allowed": true

 }

}

Similarly, if the user wants to change a resource in Kubernetes API,

it is possible to query the webhook server to validate the change. When

the webhook backend accepts the change by sending the following data

similar to Listing 1-7, Kubernetes API will apply the changes.

Figure 1-5. Flow of request in Kubernetes

Chapter 1 IntroduCtIon

16

Listing 1-7. Change webhook response

{

 "apiVersion": "admission.k8s.io/v1",

 "kind": "AdmissionReview",

 "response": {

 "uid": "<value from request.uid>",

 "allowed": true

 }

}

Webhook backend are easy to follow design patterns to extend software

applications. However, webhooks add a point of failure to the system and

need great attention during the development and operation.

 Binary Plugin
In the binary plugin pattern, Kubernetes components execute third-party

binaries. Node components such as kubelet or client programs such as

kubectl utilize this pattern since it requires extra binaries on host systems

For instance, kubectl executes third-party binaries with the function in

Listing 1-8.

Listing 1-8. kubectl binary plugin handling

// Execute implements PluginHandler

func (h *DefaultPluginHandler) Execute(executablePath string,

cmdArgs, environment []string) error {

 // Windows does not support exec syscall.

 if runtime.GOOS == "windows" {

 cmd := exec.Command(executablePath, cmdArgs...)

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

Chapter 1 IntroduCtIon

17

 cmd.Stdin = os.Stdin

 cmd.Env = environment

 err := cmd.Run()

 if err == nil {

 os.Exit(0)

 }

 return err

 }

 // invoke cmd binary relaying the environment and args given

 ..

 return syscall.Exec(executablePath, append([]

string{executablePath}, cmdArgs...), environment)

}

The Go function Execute calls the external binary and captures its

input and output to the command line. In the following chapters, you will

create similar plugins and see binary plugin pattern in action.

Note Source code of the kubectl is available at Github:
https://github.com/kubernetes/kubernetes/blob/
master/pkg/kubectl/cmd/cmd.go.

As software engineering design patterns, extension patterns are

accepted and repeatable solutions to common problems in Kubernetes.

If you have similar obstacles, the patterns help implement solutions.

However, it should be kept in mind that neither design patterns nor

extension patterns are silver bullets. They should be treated as methods

to extend the Kubernetes systems. With multiple components and API

endpoints, Kubernetes has a broad set of open points to the extensions.

In the following section, we will have a more technical overview of these

extension points in Kubernetes.

Chapter 1 IntroduCtIon

https://github.com/kubernetes/kubernetes/blob/master/pkg/kubectl/cmd/cmd.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/kubectl/cmd/cmd.go

18

 Kubernetes Extension Points
Kubernetes is an open system, but it is not like every Kubernetes

component is a LEGO brick to plug in new stuff. There are particular

extension points that you can extend the skills of a Kubernetes system.

There are five principal groups of extension points with their implemented

patterns and working area:

• kubectl Plugins: kubectl is the indispensable tool

of the users interacting with the Kubernetes API. It is

possible to extend kubectl by adding new commands

to its CLI. The kubectl plugins implement the binary

plugin extension pattern, and users need to install

them in their local workspace.

• API Flow Extensions: Each request to Kubernetes API

passes through steps: authentication, authorization,

and admission controls. Kubernetes offers an extension

point to each of these steps with webhooks.

• Kubernetes API Extensions: Kubernetes API has

various native resources such as pods or nodes. You can

add custom resources to the API and extend it to work

for your new resources. Furthermore, Kubernetes has

controllers for its native resources, and you can write

and run your controllers for your custom resources.

• Scheduler Extensions: Kubernetes has a control

plane component, namely, kube-scheduler, to

assign the workloads over the cluster nodes. Also, it is

possible to develop custom schedulers and run next to

the kube- scheduler. Most of the schedulers follow the

controller extension pattern to watch the resources

and take action.

Chapter 1 IntroduCtIon

19

• Infrastructure Extensions: Node components

interact with the infrastructure to create cluster

networks or mount volumes to the containers.

Kubernetes has the extension points for networking

and storage by the designated Container Network

Interface (CNI) and Container Storage Interface

(CSI). The extension points in infrastructure follow

the binary plugin extension pattern and require the

executables installed on the nodes.

We have grouped the extension points based on their functionality and

the implemented extension pattern. In the following chapters of the book, we

will cover each group in depth. You will not only learn the extension points

and their technical background but also create them and run in the clusters.

 Key Takeaways
• Kubernetes is a complex system.

• You can logically divide a Kubernetes cluster into two:

the control plane and node components.

• Kubernetes components have a rich set of

configuration options.

• There are three extension patterns for extending the

Kubernetes: controller, webhook, and binary plugin.

• Kubernetes components and its design allow many

open points for extension: kubectl, API flow,

Kubernetes API, scheduler, and infrastructure.

In the following chapter, we will start with the first extension point:

kubectl plugins. We will create new plugins for kubectl and use the

custom commands to enrich its capabilities.

Chapter 1 IntroduCtIon

21© Onur Yilmaz 2021
O. Yilmaz, Extending Kubernetes, https://doi.org/10.1007/978-1-4842-7095-0_2

CHAPTER 2

kubectl Plugins
We shape our tools, and thereafter our tools shape us.

—Marshall McLuhan
Media scholar and critic

Command-line tools are the Swiss Army knives of the developers. You

can connect to backend systems, run complex commands, and automate

your daily tasks with them. The official command-line tool for Kubernetes

is kubectl. As the god of gates Janus in mythology, kubectl is the god of

entrances into the cluster. It lets you create workloads, manage resources,

and check statuses by communicating with Kubernetes API. In this

chapter, we will focus on extending the kubectl by writing plugins. At the

end of this chapter, you will develop and install new plugins into kubectl

and run custom commands.

Let’s start by installing the gods of the Kubernetes API gateways to your

local workstation.

 kubectl Installation and Usage
kubectl is the client tool to communicate with the Kubernetes API.

Therefore, it is good to have a kubectl version exactly or close to the

Kubernetes API version. Otherwise, it is possible to have incompatible

API requests and failed operations. Source code of kubectl is a part of the

https://doi.org/10.1007/978-1-4842-7095-0_2#DOI

22

official Kubernetes repository, and its releases are jointly managed with

the Kubernetes releases. However, you need to check the kubernetes/

kubectl1 repository in Figure 2-1 for the issues related to kubectl.

The installation of kubectl is fairly straightforward since it is a single-

binary application. You need first to download the binary from the release

repository for your operating system as shown in Listing 2-1.

Listing 2-1. Downloading kubectl binary

Linux

curl -LO https://storage.googleapis.com/kubernetes-release/

release/v1.19.0/bin/linux/amd64/kubectl

1 https://github.com/kubernetes/kubectl

Figure 2-1. Kubernetes kubectl repository

Chapter 2 kubeCtl plugins

https://github.com/kubernetes/kubectl

23

macOS

curl -LO https://storage.googleapis.com/kubernetes-release/

release/v1.19.0/bin/darwin/amd64/kubectl

Then you need to make the binary executable.

Listing 2-2. Executable kubectl binary

chmod +x ./kubectl

Finally, you need to move the binary into your PATH.

Listing 2-3. Moving kubectl binary

sudo mv ./kubectl /usr/local/bin/kubectl

You can test the kubectl with the following command in Listing 2-4.

Listing 2-4. kubectl version check

kubectl version --client

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.0", GitCommit:"e19964183377d0ec2052d1f1

fa930c4d7575bd50", GitTreeState:"clean", BuildDate:"2020-

08- 26T14:30:33Z", GoVersion:"go1.15", Compiler:"gc",

Platform:"darwin/amd64"}

The command prints the client version of kubectl, which is v1.19.0.

In the following exercise, you will create a local Kubernetes cluster and

continue with more complex kubectl commands interacting with the

cluster.

Chapter 2 kubeCtl plugins

24

EXERCISE: STARTING A LOCAL KUBERNETES CLUSTER

although kubernetes is a container management system for large clouds, it

is possible to create single-instance kubernetes clusters locally. minikube

is the recommended and officially supported way of creating single-node

clusters. it is mostly used for development and testing purposes.

in this exercise, you will install minikube and start a new kubernetes cluster.

 1. Download the binary of minikube according to your operating

system:

Linux

curl -LO https://storage.googleapis.com/minikube/

releases/latest/minikube-linux-amd64

macOS

curl -LO https://storage.googleapis.com/minikube/

releases/latest/minikube-darwin-amd64

 2. install the binary to the path:

Linux

sudo install minikube-linux-amd64 /usr/local/bin/minikube

macOS

sudo install minikube-darwin-amd64 /usr/local/bin/

minikube

 3. start a local cluster with minikube:

$ minikube start --kubernetes-version v1.19.0

😄 minikube v1.14.1 on Darwin 10.15.6

✨ Automatically selected the docker driver

👍 Starting control plane node minikube in cluster minikube

🚜 Pulling base image ...

🔥 Creating docker container (CPUs=2, Memory=9000MB) ...

Chapter 2 kubeCtl plugins

25

🐳 Preparing Kubernetes v1.19.0 on Docker 19.03.8 ...

🔎 Verifying Kubernetes components...

🌟 Enabled addons: storage-provisioner, default-storageclass

🏄 Done! kubectl is now configured to use "minikube" by

default

the simplicity of kubernetes operations is packed into the single command

of the minikube start. it downloads the images, starts control plane

components, enables addons, and verifies the cluster components. in the last

step, it configures kubectl to connect to the cluster created by minikube.

You have a kubernetes cluster and a client tool. now, it is time to have fun

with kubernetes by deploying applications, scaling them, and checking their

statuses.

Usage of kubectl is based on the following syntax in Listing 2-5.

Listing 2-5. kubectl syntax

kubectl [command] [TYPE] [NAME] [flags]

command specifies the operation, such as creating, getting, describing,

or deleting that you want to execute against Kubernetes API. You can list

all the commands by running kubectl --help. It lists all the commands

grouped by their functionality and details like in Listing 2-6.

Listing 2-6. kubectl help output

$ kubectl --help

kubectl controls the Kubernetes cluster manager.

 Find more information at: https://kubernetes.io/docs/

reference/kubectl/overview/

Chapter 2 kubeCtl plugins

26

Basic Commands (Beginner):

 create Create a resource from a file or from stdin.

 expose Take a replication controller, service,

 deployment or pod and expose it as a new

Kubernetes Service

 run Run a particular image on the cluster

 set Set specific features on objects

Basic Commands (Intermediate):

 explain Documentation of resources

 get Display one or many resources

 edit Edit a resource on the server

 delete Delete resources by filenames, stdin,

 resources and names, or by resources and label

 selector

...

TYPE specifies the type of the Kubernetes API resource such as pods,

deployments, or nodes. It is possible to list the supported API resources on

Kubernetes API with the following command in Listing 2-7.

Listing 2-7. kubectl API resources

$ kubectl api-resources --output=name

bindings

componentstatuses

configmaps

endpoints

events

limitranges

namespaces

nodes

persistentvolumeclaims

Chapter 2 kubeCtl plugins

27

persistentvolumes

pods

podtemplates

replicationcontrollers

It is a long list with more than 50 resources supported currently in

Kubernetes API.

NAME specifies the name of the resource to execute the command on it,

the operations. If you do not specify a NAME, the commands are executed

for all the resources in the TYPE.

flags are the optional variables for commands such as --namespace

or --kubeconfig. You can list the options that can be passed to any

command with kubectl options as shown in Listing 2-8.

Listing 2-8. kubectl options output

$ kubectl options

The following options can be passed to any command:

...

--cluster='': The name of the kubeconfig cluster to use

--context='': The name of the kubeconfig context to use

...

--kubeconfig='': Path to the kubeconfig file to use for CLI

requests.

-n, --namespace='': If present, the namespace scope for this

CLI request

...

--token='': Bearer token for authentication to the API server

...

-v, --v=0: number for the log level verbosity

Chapter 2 kubeCtl plugins

28

You can run kubectl <command> --help to get more information such

as options, usage, and examples on a given command. Considering the

high number of resources and commands, kubectl is a tool packed with

numerous actions. It is advised to get your hands dirty with kubectl by

trying different commands. kubectl is almost exclusively the single-entry

point to the cluster for deployment, status tracking, and troubleshooting.

In the following exercise, you will use the most common kubectl

commands to get used to it before developing extensions.

EXERCISE: GETTING STARTED WITH KUBECTL

in this exercise, you will use kubectl to interact with the kubernetes cluster.

 1. start with checking the version of your client tool and the api

server:

$ kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.0", GitCommit:"e19964183377d0ec2052d1f1

fa930c4d7575bd50", GitTreeState:"clean", BuildDate:"2020-

08- 26T14:30:33Z", GoVersion:"go1.15", Compiler:"gc",

Platform:"darwin/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.0", GitCommit:"e19964183377d0ec2052d1f1

fa930c4d7575bd50", GitTreeState:"clean", BuildDate:"2020-

08- 26T14:23:04Z", GoVersion:"go1.15", Compiler:"gc",

Platform:"linux/amd64"}

it shows that both the client and the server have the version 1.19.0.

 2. Check the nodes available in the cluster:

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

minikube Ready master 88s v1.19.0

Chapter 2 kubeCtl plugins

29

nodes are also a resource type in kubernetes, and the

command is to retrieve them from the kubernetes api. You will

have one node since you are running a minikube cluster.

 3. Create a deployment with the following command:

$ kubectl create deployment my-first-deployment

 --image=nginx

deployment.apps/my-first-deployment created

this command creates a resource type of deployment with the

name my-first-deployment using the image nginx.

 4. Check the status of the deployment created in step 3:

$ kubectl get deployment my-first-deployment

NAME READY UP-TO-DATE AVAILABLE AGE

my-first-deployment 1/1 1 1 16s

this command retrieves the resource with its name. the

deployment has one ready instance available.

 5. scale the deployment to five instances:

$ kubectl scale deployment/my-first-deployment

 --replicas=5

deployment.apps/my-first-deployment scaled

this is a special command to scale the number of instances

of the resource provided. the --replicas flag specifies the

requested replica count.

 6. Check the pods after scale-up:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

my-first-deployment-...-26xpn 1/1 Running 0 13s

Chapter 2 kubeCtl plugins

30

my-first-deployment-...-87fcw 1/1 Running 0 13s

my-first-deployment-...-b7nzv 1/1 Running 0 2m45s

my-first-deployment-...-kxg2w 1/1 Running 0 13s

my-first-deployment-...-wmg92 1/1 Running 0 13s

as expected, there are now five pods, and the last four ones are

created after the first one.

 7. Clean the deployment with the following command:

$ kubectl delete deployment my-first-deployment

deployment.apps "my-first-deployment" deleted

Your Cli environment has a new member, and you have started discovering

its capabilities. now, it is time to go one step further and extend its skills. in

the following section, we will continue with the plugin design to add custom

commands to kubectl.

 kubectl Plugin Design
Core kubectl commands are essential for interacting with the Kubernetes

API. Plugins extend the kubectl with new subcommands for new custom

features. kubectl extensions implement the binary plugin approach. As

in the binary plugin pattern, kubectl executes third-party applications as

extensions. There are three main rules for plugin binaries:

- Executable

- Anywhere on the user’s PATH

- Begin with kubectl-

Chapter 2 kubeCtl plugins

31

These three rules are based on how kubectl discovers the plugins.

Let’s have a look at the source code of plugin handling in kubectl.

Listing 2-9. Plugin handler in kubectl

// Lookup implements PluginHandler

func (h *DefaultPluginHandler) Lookup(filename string) (string,

bool) {

 for _, prefix := range h.ValidPrefixes {

 path, err := exec.LookPath(fmt.Sprintf("%s-%s",

prefix, filename))

 if err != nil || len(path) == 0 {

 continue

 }

 return path, true

 }

 return "", false

 }

Note source code of the Defaultpluginhandler is available at
https://github.com/kubernetes/kubernetes/blob/
master/pkg/kubectl/cmd/cmd.go.

DefaultPluginHandler checks for the executables in the path starting

with the ValidPrefix, kubectl. Therefore, any binary named kubectl-

my- first-plugin or kubectl-whoami in the PATH environment variable

is an appropriate kubectl plugin. The plugin names are interpreted as

subcommands, such as the binary with the name kubectl-whoami for

kubectl whoami command. Thus, kubectl will check whether there are

any commands in native implementation and then the plugins as shown in

Figure 2-2.

Chapter 2 kubeCtl plugins

https://github.com/kubernetes/kubernetes/blob/master/pkg/kubectl/cmd/cmd.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/kubectl/cmd/cmd.go

32

Let’s have a look at how the plugins are executed in kubectl.

Listing 2-10. kubectl binary plugin handling

// Execute implements PluginHandler

func (h *DefaultPluginHandler) Execute(executablePath string,

cmdArgs, environment []string) error {

 // Windows does not support exec syscall.

 if runtime.GOOS == "windows" {

 cmd := exec.Command(executablePath, cmdArgs...)

 cmd.Stdout = os.Stdout

 cmd.Stderr = os.Stderr

 cmd.Stdin = os.Stdin

 cmd.Env = environment

 err := cmd.Run()

 if err == nil {

 os.Exit(0)

 }

 return err

 }

Figure 2-2. kubectl command handling

Chapter 2 kubeCtl plugins

33

 // invoke cmd binary relaying the environment and args given

 ..

 return syscall.Exec(executablePath, append([]

string{executablePath}, cmdArgs...), environment)

}

Note source code of the Defaultpluginhandler is available at
https://github.com/kubernetes/kubernetes/blob/
master/pkg/kubectl/cmd/cmd.go.

DefaultPluginHandler has an Execute function with the inputs of

the executable path, arguments, and environment variables. The function

passes these variables to the third-party binary, which is the plugin. In

Windows, it connects the standard input and output to the command and

then executes it. In Linux and macOS, the function uses syscall on the

operating system level with the arguments and environment variables.

Now, it is time to add a new custom command to the kubectl by

creating the plugin.

 Create Your First kubectl Plugins
You can list the available plugins with the kubectl plugin commands

locally.

Listing 2-11. Installed plugins

$ kubectl plugin list

error: unable to find any kubectl plugins in your PATH

There are no plugins found locally by kubectl. Now, create a file

named kubectl-whoami with the following content.

Chapter 2 kubeCtl plugins

https://github.com/kubernetes/kubernetes/blob/master/pkg/kubectl/cmd/cmd.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/kubectl/cmd/cmd.go

34

Listing 2-12. Plugin code

#!/bin/bash

kubectl config view --template='{{ range .contexts }}{{ if eq

.name "'$(kubectl config current-context)'" }}User: {{ printf

"%s\n" .context.user }}{{ end }}{{ end }}'

Move the file to a folder in your PATH environment variable and make

it executable.

Listing 2-13. Plugin installation

sudo chmod +x ./kubectl-whoami

sudo mv ./kubectl-whoami /usr/local/bin

Now, rerun the kubectl plugin list command.

Listing 2-14. Installed plugins

$ kubectl plugin list

The following compatible plugins are available:

/usr/local/bin/kubectl-whoami

It shows that kubectl can discover the plugin. Let’s test it and see it in

action.

Listing 2-15. kubectl whoami plugin

$ kubectl whoami

User: minikube

There are two critical points about running the last command. The first

point is that kubectl whoami is an extended command not available in

the native implementation. However, with the extension capabilities, you

can run a custom subcommand. The second point is that it is possible to

retrieve information and interfere with the operations of kubectl now.

Chapter 2 kubeCtl plugins

35

In the following exercise, you will create a kubectl prompt command

to show the current Kubernetes cluster and the username in the bash

prompt.

EXERCISE: KUBERNETES BASH PROMPT

Dealing with one kubernetes cluster is easy, but it becomes cumbersome

when it becomes tens of clusters in a daily routine. it is helpful to know the

current cluster and the user in the terminal bash prompt not to make critical

mistakes. We will have a string displayed before each command with the

(user @ cluster) information.

 1. Create a file with the name kubectl-prompt with the

following content:

#!/bin/bash

currentContext=$(kubectl config current-context)

prompt="(%s @ %s) > "

template="{{ range .contexts }}{{ if eq .name

\"$currentContext\" }}{{ printf \"$prompt\" .context.user

.context.cluster}}{{ end }}{{ end }}"

kubectl config view --template="$template"

the script checks for all the contexts in the kubeconfig and

retrieves the cluster and username fields.

 2. Move the file to a folder in PATH environment variable and

make it executable:

sudo chmod +x ./kubectl-prompt

sudo mv ./kubectl-prompt /usr/local/bin

Chapter 2 kubeCtl plugins

36

 3. test the plugin with the following command:

$ kubectl prompt

(minikube @ minikube) >

 4. set the prompt environment variable:

$ export PS1=$(kubectl prompt)

(minikube @ minikube) >

From now on, every terminal command will have the prompt available. it will

always be on your sight which cluster and user are in control.

Plugins extend the kubectl and help you achieve more while

interacting with the Kubernetes clusters. It is expected to have similar

difficulties while operating the clusters, which leads to developing similar

plugins. In the following section, the focus will be on plugin repository for

kubectl and how to use it.

 Plugin Repository: krew
Kubernetes community has a kubectl plugin manager named krew.

The plugin manager helps to discover, install, and update open source

and community-maintained plugins. Currently, there are more than 100

plugins distributed on krew. Therefore, it is noteworthy to check the plugin

repository before creating a new one. It is already possible someone in

the Kubernetes community has developed the same functionality and

distributed it.

Let’s start installing the krew, a kubectl plugin itself, and discover

some repository plugins. Run this command in the terminal to download

krew.

Chapter 2 kubeCtl plugins

37

Listing 2-16. Downloading krew

curl -fsSLO "https://github.com/kubernetes-sigs/krew/releases/

latest/download/krew.tar.gz"

tar zxf krew.tar.gz

Now, install the binary accordingly to the operating system.

Listing 2-17. Downloading krew

Linux

./krew-linux_amd64 install krew

macOS

./krew-darwin_amd64 install krew

Adding "default" plugin index from https://github.com/

kubernetes-sigs/krew-index.git.

Updated the local copy of plugin index.

Installing plugin: krew

Installed plugin: krew

\

 | Use this plugin:

 | kubectl krew

 | Documentation:

 | https://krew.sigs.k8s.io/

 | Caveats:

 | \

 | | krew is now installed! To start using kubectl plugins, you

need to add

 | | krew's installation directory to your PATH:

 | |

Chapter 2 kubeCtl plugins

38

 | | * macOS/Linux:

 | | - Add the following to your ~/.bashrc or ~/.zshrc:

 | | export PATH="${KREW_ROOT:-$HOME/.krew}/bin:$PATH"

 | | - Restart your shell.

 | |

 | | * Windows: Add %USERPROFILE%\.krew\bin to your PATH

environment variable

 | |

 | | To list krew commands and to get help, run:

 | | $ kubectl krew

 | | For a full list of available plugins, run:

 | | $ kubectl krew search

 | |

 | | You can find documentation at

 | | https://krew.sigs.k8s.io/docs/user-guide/quickstart/.

 | /

/

Finally, add the krew installation directory to the path.

Listing 2-18. Path expansion

export PATH="${KREW_ROOT:-$HOME/.krew}/bin:$PATH"

Now, we can test it by calling as a kubectl plugin.

Listing 2-19. kubectl krew output

$ kubectl krew

krew is the kubectl plugin manager.

You can invoke krew through kubectl: "kubectl krew [command]..."

Chapter 2 kubeCtl plugins

39

Usage:

 kubectl krew [command]

Available Commands:

 help Help about any command

 index Manage custom plugin indexes

 info Show information about an available plugin

 install Install kubectl plugins

 list List installed kubectl plugins

 search Discover kubectl plugins

 uninstall Uninstall plugins

 update Update the local copy of the plugin index

 upgrade Upgrade installed plugins to newer versions

 version Show krew version and diagnostics

Flags:

 -h, --help help for krew

 -v, --v Level number for the log level verbosity

Use "kubectl krew [command] --help" for more information about

a command.

It is now possible to search, install, and upgrade plugins managed by

krew. An up-to-date list of the plugins is available on the krew website with

the name, description, and GitHub popularity as shown in Figure 2-3.

Chapter 2 kubeCtl plugins

40

Let’s assume you are running a web application in Kubernetes, and it

has a service in front of the instances. To access and test the app, you need

to reach the service endpoint. Luckily, the Kubernetes community has a

plugin for this task. open-svc is the kubectl plugin to open the specified

service URL in the browser through a local proxy server. You can install it

via krew.

Figure 2-3. krew plugin list

Chapter 2 kubeCtl plugins

41

Listing 2-20. Installing open-svc plugin

$ kubectl krew install open-svc

Updated the local copy of plugin index.

Installing plugin: open-svc

Installed plugin: open-svc

\

 | Use this plugin:

 | kubectl open-svc

 | Documentation:

 | https://github.com/superbrothers/kubectl-open-svc-plugin

/

WARNING: You installed plugin "open-svc" from the krew-index

plugin repository.

 These plugins are not audited for security by the Krew

maintainers.

 Run them at your own risk.

Note if you have not enabled the kubernetes dashboard for your
cluster, you can run minikube dashboard to install it.

Now, let’s open the Kubernetes dashboard by using the kubectl open-

svc plugin.

Listing 2-21. open-svc plugin in action

$ kubectl open-svc kubernetes-dashboard -n kubernetes-dashboard

Starting to serve on 127.0.0.1:8001

Opening service/kubernetes-dashboard in the default browser...

The command should open the dashboard in the browser like in

Figure 2-4.

Chapter 2 kubeCtl plugins

42

It is just a couple of commands to install new plugins from the

repository and start using them. Therefore, it is useful to check what has

already been developed by the community before creating it from scratch.

 Key Takeaways
• kubectl is the official client to interact with the

Kubernetes API.

• Native kubectl commands are essential to operate

Kubernetes clusters.

• It is possible to extend kubectl with new commands by

creating plugins.

Figure 2-4. Kubernetes dashboard

Chapter 2 kubeCtl plugins

43

• kubectl plugins are third-party binaries, and they are

executed by kubectl.

• There is a community-maintained plugin repository for

kubectl, named krew.

In the following chapter, we will continue with API flow extensions

and learn how to extend the flow with authentication, authorization, and

admission controls.

Chapter 2 kubeCtl plugins

45© Onur Yilmaz 2021
O. Yilmaz, Extending Kubernetes, https://doi.org/10.1007/978-1-4842-7095-0_3

CHAPTER 3

API Flow Extensions
It’s OK to have your eggs in one basket as long as you control
what happens to that basket.

—Elon Musk
Business magnate,

industrial designer, and engineer

Kubernetes is the secure, reliable, and extendible home for cloud-native

applications. Kubernetes API flow makes it possible to authenticate

requests, decide on authorization, and pass through admission steps. The

flow makes Kubernetes a protected environment while letting you define

what is allowed or not. In this chapter, we will focus on extending the

Kubernetes API flow and intervene with our custom decisions. At the end

of this chapter, you will have a confident view of API flow and hands-on

experience with the extension webhooks.

Let’s start with a summary of Kubernetes API flow and its extension

points.

 Kubernetes API Flow
You can connect and use Kubernetes API using kubectl, client libraries,

or directly sending REST requests. Every request to the API goes through

authentication, authorization, and several admission control stages. All

https://doi.org/10.1007/978-1-4842-7095-0_3#DOI

46

three stages offer extension points by webhooks and will be covered in this

chapter. The flow and extension points can be illustrated in Figure 3-1.

 Authentication
Authentication is the first stage to validate the identity of the incoming API

requests. Kubernetes uses client certificates, bearer tokens, basic auth, and

authentication plugins to review the requests. In addition, it is capable

of running multiple authenticators at the same time. The prevalent

Kubernetes installation is expected to have the following:

• Service account tokens for the service account users

• At least one other method such as client certificates,

bearer tokens, or basic auth for user authentication

You can extend the authentication mechanisms by adding a webhook

authenticator to verify bearer tokens. Kubernetes will post a JSON request

to the remote service, which acts as your webhook service. In the remote

service, you will validate the token and decide to allow the request or not.

 Authorization

Authorization is the second stage to determine whether the user can read,

write, or update API resources. Authorization modules in Kubernetes

Figure 3-1. Kubernetes API flow

Chapter 3 apI Flow extensIons

47

check the user, group, HTTP verb, resource, and namespace attributes

of the requests to verify them. Like authentication, it is possible to use

multiple authorization modules such as attribute-based access control

(ABAC), role-based access control (RBAC), and webhooks. You can

extend the authorization by adding new webhook modules. Your custom

webhook services receive the HTTP POST request with the access review

data. After the evaluation, the webhook service sends back the response as

allowed or not.

 Admission Control

The third and the last stage for incoming requests is the admission control

modules. An admission controller is a code to intercept requests coming

to the Kubernetes API server after authentication and authorization but

before persistence to storage. Similar to the previous stages, it is possible

to run multiple admission controllers in sequence. However, there are two

main differences between the earlier stages. The first one is that admission

controllers are not applied for simply GET requests to read objects. The

second difference is that these modules can modify requests and related

entities. Thus, they can validate spec values such as container images or

set default values such as CPU requests.

There are various admission controllers already packaged into kube-

apiserver and enabled or disabled according to the Kubernetes version.

Let’s check the list of controllers from the kube-apiserver binary directly:

Listing 3-1. kube-apiserver plugin listing

$ docker run -it --rm k8s.gcr.io/kube-apiserver:v1.19.0 kube-

apiserver --help | grep enable-admission-plugins

...

 --enable-admission-plugins strings admission plugins

that should be enabled in addition to default

enabled ones (NamespaceLifecycle, LimitRanger,

Chapter 3 apI Flow extensIons

48

ServiceAccount, TaintNodesByCondition, ...). Comma-

delimited list of admission plugins: AlwaysAdmit,

AlwaysDeny, AlwaysPullImages, CertificateApproval,

CertificateSigning, CertificateSubjectRestriction,

DefaultIngressClass, DefaultStorageClass, ...

Note the output is concatenated as it is incredibly long, and
we will not cover each admission plugin one by one. If you need
further information about plugins, you can check the reference
documentation.

In addition to the default admission controllers in kube-apiserver,

adding new ones as webhooks during runtime is possible. Unlike the

authentication and authorization plugins, it is possible to add or remove

admission controllers when the cluster is running; therefore, they are

called dynamic admission controllers.

Let’s start with extending the authentication flow by developing

webhooks and configuring the Kubernetes cluster.

 Authentication Webhooks
Authentication webhooks extend the Kubernetes API flow by external

security logic. Webhooks in Kubernetes are HTTP callbacks to the external

systems. When a specific event happens in the cluster, the Kubernetes

API server sends a structured request to the external service via HTTP

POST. The webhook server is expected to return a structured response

so that the Kubernetes API server continues operating. There are two

essential parts to configure to run authentication webhooks: Kubernetes

API server and webhook server. Let’s start with the Kubernetes API server

to let it know where to connect as a webhook.

Chapter 3 apI Flow extensIons

49

 Kubernetes API Server Configuration
Kubernetes API server runs in the control plane and needs to know

where to connect as a webhook. The configuration is set via flags and

configuration files of kube-apiserver binary. Therefore, the cluster admin,

most probably you, should handle the setup. There are two fundamental

flags for kube-apiserver for authentication webhook configuration:

• --authentication-token-webhook-config-file:

A configuration file describing how to access the

remote webhook service

• --authentication-token-webhook-cache-ttl: How

long to cache authentication decisions with the default

of two minutes

Note there is also a version flag named as --authentication-
token-webhook-version. It determines whether to use
authentication.k8s.io/v1beta1 or authentication.k8s.
io/v1 TokenReview objects to send/receive information from the
webhook. the default is v1beta1 and used as it is in this chapter.

The authentication-token-webhook-config-file flag has no default

value and needs a configuration file that is similar to kubeconfig.

Listing 3-2. Authentication token webhook config example

apiVersion: v1

kind: Config

clusters:

 - name: remote-auth-service

 cluster:

 certificate-authority: /path/to/ca.pem

 server: https://extend.k8s.io/authenticate

Chapter 3 apI Flow extensIons

50

users:

 - name: remote-auth-service-user

 user:

 client-certificate: /path/to/cert.pem

 client-key: /path/to/key.pem

current-context: webhook

contexts:

- context:

 cluster: remote-auth-service

 user: remote-auth-service-user

 name: webhook

When the bearer token authentication is active, the Kubernetes API

server connects to the server defined in the cluster and uses certificate-

authority if necessary. In addition, the API server utilizes the client-

certificate and client-key to communicate with the webhook

server securely. Now, let’s continue with the webhook server and the

communication between Kubernetes API.

 Webhook Server

When the API server is configured with a webhook token authentication,

it will send a JSON request with the TokenReview object. A sample

TokenReview object can be constructed as follows.

Listing 3-3. TokenReview object

{

 "apiVersion": "authentication.k8s.io/v1beta1",

 "kind": "TokenReview",

 "spec": {

 "token": "0x123...",

 }

}

Chapter 3 apI Flow extensIons

51

The webhook server validates the incoming token and gathers

user information. The remote server must fill the status field of the

TokenReview object and send back the data. Successful validation of the

bearer token would return the following TokenReview as an example.

Listing 3-4. TokenReview with a successful status

{

 "apiVersion": "authentication.k8s.io/v1beta1",

 "kind": "TokenReview",

 "status": {

 "authenticated": true,

 "user":{

 "username": "user@k8s.io",

 "uid": "21",

 "groups":["system", "qa"]

 }

 }

}

Username, UID, and groups are the identifiers of the validated user.

The information is essential for the authorization stage to decide who

has access from which group. When the validation of the token fails, the

webhook server should return a request similar to the following.

Listing 3-5. TokenReview with a failed status

{

 "apiVersion": "authentication.k8s.io/v1beta1",

 "kind": "TokenReview",

 "status": {

 "authenticated": false,

Chapter 3 apI Flow extensIons

52

 "error": "Credentials are not validated"

 }

}

kube-apiserver uses the error message in TokenReview status when

the webhook server rejects the user. It is possible to summarize the flow of

TokenReview messages between the webhook and Kubernetes API server

in Figure 3-2.

It is possible to have webhook servers internal or external to the

Kubernetes clusters. In other words, you can run a server inside the

Kubernetes cluster and use it as the webhook server. Kubernetes API

server connects to the webhook server using HTTPS; therefore, you also

need to set up TLS certificates. As an alternative, you can set your webhook

server external to the cluster and make it available to the outside world.

The critical point in both options is to have the webhook server up and

running since authentication flow depends on it. In the following exercise,

you will deploy a serverless webhook to Google Cloud and configure a

local minikube cluster to use it as an authentication endpoint.

Figure 3-2. Authentication message flow

Chapter 3 apI Flow extensIons

53

EXERCISE: SERVERLESS AUTHENTICATION WEBHOOK

the webhook server in this exercise will run on Google Cloud as a part of its

serverless platform. You will start creating a cloud function and deploy it to

Google Cloud. then you will configure the local minikube cluster to use the

address of the serverless function as an authentication webhook.

 1. open Google Cloud Console and head to Compute ➤ Cloud
Functions. Click “CREATE FUNCTION” in the function listing

view as in Figure 3-3.

 2. In the “Create function” view as shown in Figure 3-4, fill the

name field and select “Allow unauthenticated invocations” and

then click NEXT.

Figure 3-3. GCP Cloud Functions

Chapter 3 apI Flow extensIons

https://console.cloud.google.com/

54

note down the trigger Url since you will use it in step 5 as

serVerless_enDpoInt environment variable.

Figure 3-4. Create function

Chapter 3 apI Flow extensIons

55

 3. In the “Code” view, select Go as runtime and fill “entry

point” field with Authenticate. authenticate is the name of

the function that Google Cloud will call when the serverless

endpoint is reached. Change the contents of the function.go

with the following content:

package authenticate

import (

 "encoding/json"

 "errors"

 "log"

 "net/http"

 "strings"

 authentication "k8s.io/api/authentication/v1beta1"

)

func Authenticate(w http.ResponseWriter, r *http.Request) {

 decoder := json.NewDecoder(r.Body)

 var tr authentication.TokenReview

 err := decoder.Decode(&tr)

 if err != nil {

 handleError(w, err)

 return

 }

 user, err := logon(tr.Spec.Token)

 if err != nil {

 handleError(w, err)

 return

 }

 log.Printf("[Success] login as %s", user.username)

Chapter 3 apI Flow extensIons

56

 w.WriteHeader(http.StatusOK)

 trs := authentication.TokenReviewStatus{

 Authenticated: true,

 User: authentication.UserInfo{

 Username: user.username,

 Groups: []string{user.group},

 },

 }

 tr.Status = trs

 json.NewEncoder(w).Encode(tr)

}

func handleError(w http.ResponseWriter, err error) {

 log.Println("[Error]", err.Error())

 tr := new(authentication.TokenReview)

 trs := authentication.TokenReviewStatus{

 Authenticated: false,

 Error: err.Error(),

 }

 tr.Status = trs

 w.WriteHeader(http.StatusUnauthorized)

 json.NewEncoder(w).Encode(tr)

}

func logon(token string) (*User, error) {

 data := strings.Split(token, ";")

 if len(data) < 3 {

 return nil, errors.New("no token data")

 }

Chapter 3 apI Flow extensIons

57

 for _, u := range allowed {

 if u.group == data[0] && u.username ==

data[1] && u.password == data[2] {

 return &u, nil

 }

 }

 return nil, errors.New("no user found")

}

type User struct {

 username string

 password string

 group string

}

var allowed = []User{

 {

 username: "minikube-user",

 group: "system:masters",

 password: "mysecret",

 },

}

this file has the Authenticate http endpoint to parse

TokenReview data, log on the user, and send it back. It uses

the logon helper function to search allowed users. there is

only one permitted user: minikube-user with its valid token

of system:masters;minikube-user;mysecret.

Change the contents of go.mod as follows:

module extend.k8s.io/authenticate

go 1.14

require k8s.io/api v0.19.0

Chapter 3 apI Flow extensIons

58

In the function.go, we are using the Kubernetes Go client

library; therefore, we list it as a requirement with k8s.io/api,

version v0.19.0.

Click DEPLOY at the bottom of the page in Figure 3-5.

Note: In order to build and deploy the function, you need to enable

Cloud Build apI in Cloud Console apI library view if you have not done

before.

 4. wait in the function list view as in Figure 3-6 until there is a

green check next to it.

Figure 3-5. Deployment of the function

Chapter 3 apI Flow extensIons

https://console.cloud.google.com/apis/library

59

 5. Create a local webhook config file serverless-authn.yaml

with the following content:

apiVersion: v1

kind: Config

clusters:

 - name: serverless-authn

 cluster:

 server: SERVERLESS_ENDPOINT

users:

 - name: authn-user

current-context: webhook

contexts:

- context:

 cluster: serverless-authn

 user: authn-user

 name: webhook

Do not forget to change the SERVERLESS_ENDPOINT with the

Url from step 2.

 6. Move the file to minikube files:

mkdir -p $HOME/.minikube/files/var/lib/minikube/certs

mv serverless-authn.yaml $HOME/.minikube/files/var/lib/

minikube/certs/serverless-authn.yaml

Figure 3-6. Successful deployment

Chapter 3 apI Flow extensIons

60

 7. start the minikube cluster with the extra flags:

$ minikube start --extra-config apiserver.authentication-

token-webhook-config-file=/var/lib/minikube/certs/

serverless-authn.yaml

😄 minikube v1.14.1 on Darwin 10.15.7

✨ Automatically selected the docker driver

👍 Starting control plane node minikube in cluster

minikube

🔥 Creating docker container (CPUs=2, Memory=4000MB) ...

🐳 Preparing Kubernetes v1.19.2 on Docker 19.03.8 ...

 ▪ apiserver.authentication-token-webhook-config-

file=/var/lib/minikube/certs/serverless-authn.yaml

🔎 Verifying Kubernetes components...

🌟 Enabled addons: storage-provisioner, default-

storageclass

🏄 Done! kubectl is now configured to use "minikube" by

default

 8. Create a new empty user and use it in the current context:

$ kubectl config set-credentials auth-test

User "auth-test" set.

$ kubectl config set-context --current --user=auth-test

Context "minikube" modified.

 9. run kubectl with the valid token and check the result:

$ kubectl get nodes --token="system:masters;minikube-

user;mysecret"

NAME STATUS ROLES AGE VERSION

minikube Ready master 116s v1.19.2

as expected, Kubernetes apI sends the output for listing the nodes.

Chapter 3 apI Flow extensIons

61

 10. run kubectl with a random token and check the result:

$ kubectl get nodes --token="xyz"

error: You must be logged in to the server (Unauthorized)

 11. Check for the serverless function logs in Google Cloud and see

the webhook in action as shown in Figure 3-7.

the logs show the successful (first) and failed (second) logon activities.

In this exercise, you have exposed a public function and used it in your

Kubernetes cluster. In your production setup, it is suggested to use a protected

function instead.

In the following section, we will extend the Kubernetes API flow with

custom authorization modules. We will learn the webhook and Kubernetes

API server requirements and then implement custom decision logic to

decide who can access or modify resources in the cluster.

 Authorization Webhooks
Authorization webhooks extend the access control of Kubernetes API to

implement custom policies. When a request passes the authentication

stage, authorization modules evaluate the attributes in sequence. If

any of the authorization modules approves or denies the request, the

result is immediately returned. If the request is approved, the API

Figure 3-7. Function logs

Chapter 3 apI Flow extensIons

62

request continues with the flow and moves to the next stages. Like

the authentication stage, there are two basic configurations to run

authorization webhooks in action: Kubernetes API server and webhook

server.

 Kubernetes API Server Configuration
kube-apiserver has flags to define authorization modes and webhook

configuration. The authorization mode is set via --authorization-

mode flag with the default value of AlwaysAllow. In other words, all

authenticated requests are allowed in Kubernetes API by default. However,

in the typical Kubernetes setup, the following authorization modes are

enabled: RBAC and Node. Therefore, to add the webhook authorization,

you need to update the flag value by adding Webhook. There are three

essential flags to configure authorization webhook operations:

• --authorization-webhook-config-file: A

configuration file to describe how to access and

query the remote service. The flag is similar to the

one in authentication, and it needs a configuration

identical to kubeconfig. Ensure that the authorization

webhook server address is correct and certificate data if

necessary.

• --authorization-webhook-cache-authorized-ttl:

Duration to cache the validated requests; the default is

five minutes.

• --authorization-webhook-cache-unauthorized-ttl:

Duration to cache the invalid requests; the default is 30

seconds.

Chapter 3 apI Flow extensIons

63

Note there is also a version flag named as --authorization-
webhook-version. It sets the apI version of the authorization.
k8s.io SubjectAccessReview to send to and expect from the
webhook. the default is v1beta1 and used as it is in the chapter.

 Webhook Server

Kubernetes API server calls the webhook server by sending a

SubjectAccessReview object to describe the action to be checked. The

sent JSON object contains information about the resource, user, and

request attributes. An example SubjectAccessReview to get pods in the

namespace default by the user ece has the following structure.

Listing 3-6. SubjectAccessReview for pod listing

{

 "apiVersion": "authorization.k8s.io/v1beta1",

 "kind": "SubjectAccessReview",

 "spec": {

 "resourceAttributes": {

 "namespace": "default",

 "verb": "get",

 "group": "",

 "resource": "pods"

 },

 "user": "ece"

 }

}

When the non-resource paths in the Kubernetes API are called, such

as /version or /metrics, the nonResourceAttributes field is sent to the

Chapter 3 apI Flow extensIons

64

webhook server. For instance, the Kubernetes API server will ship the

following SubjectAccessReview when the user nursin calls the version

endpoint.

Listing 3-7. SubjectAccessReview for version information

{

 "apiVersion": "authorization.k8s.io/v1beta1",

 "kind": "SubjectAccessReview",

 "spec": {

 "nonResourceAttributes": {

 "path": "/version",

 "verb": "get"

 },

 "user": "nursin"

 }

}

The webhook server responds to the SubjectAccessReview objects

by filling their status fields. If the webhook server accepts the request, it

could easily send the following data back to the Kubernetes API server.

Listing 3-8. Accepted response

{

 "apiVersion": "authorization.k8s.io/v1beta1",

 "kind": "SubjectAccessReview",

 "status": {

 "allowed": true

 }

}

Chapter 3 apI Flow extensIons

65

On the other hand, there are two methods to deny a request in

webhook servers. The first method only indicates that the request is not

allowed as follows.

Listing 3-9. Rejected response

{

 "apiVersion": "authorization.k8s.io/v1beta1",

 "kind": "SubjectAccessReview",

 "status": {

 "allowed": false,

 "reason": "user has no access"

 }

}

When only the allowed field is set to false, other authorization

modules are also checked if any one of them will allow it. If none of the

authorization modules allow the request, it is denied by the API server.

The second approach is to deny any request immediately and bypassing

the remaining authorization modules. The response data is similar to the

previous one with one simple addition.

Listing 3-10. Rejected and denied response

 {

 "apiVersion": "authorization.k8s.io/v1beta1",

 "kind": "SubjectAccessReview",

 "status": {

 "allowed": false,

 "denied": true,

 "reason": "user has no access"

 }

}

Chapter 3 apI Flow extensIons

66

The message flow between the Kubernetes API and authorization

webhook servers can be summarized in Figure 3-8.

Although the message flow seems straightforward, the logic you

will implement in the webhook server has no limits. You can design

an authorization system to limit users from specific groups to take

particular actions. Let’s assume that you have two teams, development and

production, and a continuous deployment (CD) system for releases. It is

possible to create an authorization webhook to let the development team

access only reading pods. Similarly, you can limit the production team

to update the deployments and only allow the technical users from CD to

create new deployments. Considering the team members are defined in any

other external system such as LDAP or GitHub, the webhook server will

have the involved logic and extend Kubernetes authorization.

In the following exercise, you will create a serverless authorization

webhook to make a namespace in Kubernetes read-only. The users will

only read, list, or watch resources but cannot update, create, or delete in

the protected namespace.

Figure 3-8. Authorization message flow

Chapter 3 apI Flow extensIons

67

EXERCISE: AUTHORIZATION WEBHOOK FOR READ-ONLY NAMESPACE

In this exercise, you will develop a serverless webhook in Google Cloud

Functions. the webhook will give authorization decisions to make the

namespace protected read-only. then, you will start a local minikube cluster

and configure it to use the serverless endpoint as an authorization webhook.

 1. open Google Cloud Console and click Compute ➤ Cloud
Functions in the main menu. Click “Create FUnCtIon” in the

function listing view in Figure 3-9.

 2. In the “Create function” view in Figure 3-10, fill the name field

and select “allow unauthenticated invocations” and then click

next.

Figure 3-9. GCP Cloud Functions

Chapter 3 apI Flow extensIons

https://console.cloud.google.com/

68

In the “Code” view, select Go as runtime and fill “entry point” field

with Authorize. It is the function in our deployment to be called by

when the serverless endpoint is reached. Change the contents of the

function.go with the following content:

package authorize

Figure 3-10. Create function

Chapter 3 apI Flow extensIons

69

import (

 "encoding/json"

 "fmt"

 "log"

 "net/http"

 authorization "k8s.io/api/authorization/v1beta1"

)

const NAMESPACE = "protected"

func Authorize(w http.ResponseWriter, r *http.Request) {

 decoder := json.NewDecoder(r.Body)

 var sar authorization.SubjectAccessReview

 err := decoder.Decode(&sar)

 if err != nil {

 log.Println("[Error]", err.Error())

 sar := new(authorization.SubjectAccessReview)

 status := authorization.

SubjectAccessReviewStatus{

 Allowed: false,

 Reason: err.Error(),

 }

 sar.Status = status

 w.WriteHeader(http.StatusUnauthorized)

 json.NewEncoder(w).Encode(sar)

 return

 }

 if sar.Spec.ResourceAttributes != nil {

 v := sar.Spec.ResourceAttributes.Verb

 n := sar.Spec.ResourceAttributes.Namespace

Chapter 3 apI Flow extensIons

70

 if n == NAMESPACE && (v == "create" || v ==

"delete" || v == "update") {

 log.Printf("[Not Allowed] %s

in namespace %s", sar.Spec.

ResourceAttributes.Verb, NAMESPACE)

 response := new(authorization.

SubjectAccessReview)

 status := authorization.

SubjectAccessReviewStatus{

 Allowed: false,

 Denied: true,

 Reason: fmt.Sprintf("%s is not

allowed in the namespace: %s",

sar.Spec.ResourceAttributes.Verb,

NAMESPACE),

 }

 response.Status = status

 json.NewEncoder(w).Encode(response)

 return

 }

 }

 response := new(authorization.SubjectAccessReview)

 status := authorization.SubjectAccessReviewStatus{

 Allowed: true,

 }

 response.Status = status

 json.NewEncoder(w).Encode(response)

}

In this file, there is only one function named Authorize. It is an

http handler to parse the incoming SubjectAccessReview data.

If the incoming data has ResourceAttributes, it checks whether

Chapter 3 apI Flow extensIons

71

the namespace is protected and verbs are create, delete,

or update. when such a request is found, it rejects by sending

Allowed: false and Denied: true. For all other requests, it

allows the request and lets other authorization modules decide.

Change the contents of go.mod as follows:

module extend.k8s.io/authorize

go 1.13

require k8s.io/api v0.19.0

In the function.go, we are using the Kubernetes Go client library;

therefore, we list it as a dependency with k8s.io/api, version

v0.19.0.

Click DEPLOY at the bottom of the page in Figure 3-11.

Figure 3-11. Deployment of the function

Chapter 3 apI Flow extensIons

72

 3. wait in the function list view in Figure 3-12 until there is a

green check next to it.

Create a local webhook config file serverless-authz.yaml with

the following content:

apiVersion: v1

kind: Config

clusters:

 - name: serverless-authz

 cluster:

 server: SERVERLESS_ENDPOINT

users:

 - name: authz-user

current-context: webhook

contexts:

- context:

 cluster: serverless-authz

 user: authz-user

 name: webhook

Do not forget to change the SERVERLESS_ENDPOINT with the Url

from step 2.

Figure 3-12. Successful deployment

Chapter 3 apI Flow extensIons

73

 4. Move the file to minikube files:

$ mkdir -p $HOME/.minikube/files/var/lib/minikube/certs

$ mv serverless-authz.yaml $HOME/.minikube/files/var/lib/

minikube/certs/serverless-authz.yaml

 5. start the minikube cluster with the extra flags:

$ minikube start \

--extra-config apiserver.authorization-

mode=Node,RBAC,Webhook \

--extra-config apiserver.authorization-webhook-config-

file=/var/lib/minikube/certs/serverless-authz.yaml

😄 minikube v1.14.1 on Darwin 10.15.7

✨ Automatically selected the docker driver

👍 Starting control plane node minikube in cluster

minikube

🔥 Creating docker container (CPUs=2, Memory=4000MB) ...

🐳 Preparing Kubernetes v1.19.2 on Docker 19.03.8 ...

 ▪ apiserver.authorization-mode=Node,RBAC,Webhook

 ▪ apiserver.authorization-webhook-config-file=/var/

lib/minikube/certs/serverless-authz.yaml

🔎 Verifying Kubernetes components...

🌟 Enabled addons: storage-provisioner, default-

storageclass

🏄 Done! kubectl is now configured to use "minikube" by

default

this command starts a local minikube cluster with two extra

config parameters. the first config adds webhook to the

authorization modes, and the second one indicates the location

of the config file from step 3.

Chapter 3 apI Flow extensIons

74

 6. Check what the user is allowed to do with the following

commands:

$ kubectl auth can-i create deployments --as developer

yes

It shows that it is possible to create deployments in the default

namespace.

$ kubectl auth can-i create deployments --as developer

 --namespace protected

no - create is not allowed the namespace protected

$ kubectl auth can-i delete secrets --as developer

 --namespace protected

no - delete is not allowed in the namespace protected

however, it is not allowed to create deployments or delete

secrets in the protected namespace. It ensures that the

resources in the namespace stay as it is in a read-only mode.

$ kubectl auth can-i list pods --as developer --namespace

protected

yes

on the other hand, it is possible to list the pods in the protected

namespace which is what we wanted in a read-only mode.

 7. Check for the serverless function logs in Google Cloud and see

the webhook in action as in Figure 3-13.

Chapter 3 apI Flow extensIons

75

the logs indicate the creation and the deletion requests are not allowed by the

authorization webhook.

In the following section, we will extend the Kubernetes API flow with

its last stage: admission controllers. Admission controllers are the last steps

to check or mutate the requests before persisting into the etcd storage. We

will learn the admission webhook setup and how to define dynamically to

extend and implement custom requirements.

 Dynamic Admission Controllers
Admission controllers are the last stage in Kubernetes API flow just

before the persistence of the objects. These controllers intercept the

requests to validate or mutate the resources. There are already various

admission controllers packaged into kube-apiserver binary with the

addition of two extension points: MutatingAdmissionWebhook and

ValidatingAdmissionWebhook. These extension points execute mutating

and validating admission control webhooks, which are dynamically

defined in Kubernetes API. Unlike the authentication and authorization

webhooks, you could create, update, or delete admission controllers while

the cluster is up and running. Therefore, they are mostly covered under the

section “Dynamic Admission Controllers.”

Figure 3-13. Function logs

Chapter 3 apI Flow extensIons

76

Admission webhooks are essential for the Kubernetes control plane

and its operation. Mutating admission webhooks enable setting complex

default values or injecting fields, whereas validating webhooks are

critical for controlling what is deployed into the cluster. Firstly, mutating

webhooks are called in serial since each one can modify the resource

objects. Then, all validating webhooks are called in parallel; if any of them

rejects the request, it is denied by the API server.

There are two aspects to configure and set up to extend the admission

control mechanism: webhook configuration resources and webhook

server. Let’s first focus on webhook configuration resources to let

Kubernetes API know where and when to call webhooks.

 Webhook Configuration Resources
Dynamic configuration of the admission controllers is handled by

ValidatingWebhookConfiguration and MutatingWebhookConfiguration

API resources. An example of a validating webhook can be defined for pod

creation as follows.

Listing 3-11. Webhook configuration example

apiVersion: admissionregistration.k8s.io/v1

kind: ValidatingWebhookConfiguration

metadata:

 name: "validation.extend-k8s.io"

webhooks:

- name: "validation.extend-k8s.io"

 rules:

 - apiGroups: [""]

 apiVersions: ["v1"]

 operations: ["CREATE"]

 resources: ["pods"]

Chapter 3 apI Flow extensIons

77

 scope: "Namespaced"

 clientConfig:

 url: "https://extend-k8s.io/validate"

 admissionReviewVersions: ["v1", "v1beta1"]

 sideEffects: None

There are two crucial parts of the API resource: rules and

clientConfig. When the Kubernetes API server receives a request that

matches the rules, an HTTP request is made to the webhook defined in

clientConfig. For instance, with the definition in Listing 3-11, the API

server will call https://extend- k8s.io/validate when a new pod is

created.

Mutating webhook configuration is done with the

MutatingWebhookConfiguration resources with a similar structure. An

example webhook to call when secrets are created can be defined as

follows.

Listing 3-12. Webhook configuration example

apiVersion: admissionregistration.k8s.io/v1

kind: MutatingWebhookConfiguration

metadata:

 name: "mutation.extend-k8s.io"

webhooks:

- name: "mutation.extend-k8s.io"

 rules:

 - apiGroups: [""]

 apiVersions: ["v1"]

 operations: ["CREATE"]

 resources: ["secrets"]

 scope: "Namespaced"

Chapter 3 apI Flow extensIons

https://extend-k8s.io/validate

78

 clientConfig:

 service:

 namespace: "extension"

 name: "mutation-service"

 caBundle: "Ci0tLS0tQk...tLS0K"

 admissionReviewVersions: ["v1", "v1beta1"]

 sideEffects: None

When a secret creation request is received, the Kubernetes API server

will reach the 443 port of the mutation-service running in the extension

namespace. It will use the caBundle to validate the TLS certificates of the

webhook server. In the following section, we will cover the message flow

between admission controller webhooks.

 Webhook Server

Kubernetes API server sends a POST request with AdmissionReview object

to define the request and its attributes. For example, the webhook server

will receive an item similar to the following when a new pod is created.

Listing 3-13. AdmissionReview example

{

 "apiVersion": "admission.k8s.io/v1",

 "kind": "AdmissionReview",

 "request": {

 "uid": "4b8bd269-bfc7-4dd5-8022-7ca57a334fa3",

 "name": "example-app",

 "namespace": "default",

 "operation": "CREATE",

Chapter 3 apI Flow extensIons

79

 "kind": {"group":"","version":"v1","kind":"Pod"},

 "requestKind": {"group":"","version":"v1","kind":"Pod"},

 "resource": {"group":"","version":"v1","resource":"pods"},

 "requestResource": {"group":"","version":"v1","resource":

"pods"},

 "object": {"apiVersion":"v1","kind":"Pod",...},

 "userInfo": {

 "username": "minikube",

 "groups": ["system:authenticated"]

 },

 "options": {"apiVersion":"meta.k8s.io/v1","kind":

"CreateOptions",...},

 "dryRun": false

 }

}

The admission review object is reasonably packed since it transmits all

the information related to the request and the related item. For instance,

in Listing 3-13 there is a complete pod definition in the request.object

field. Webhook server is required to send an AdmissionReview object again

with the response field loaded. A minimal acceptance response can be

constructed as follows.

Listing 3-14. Accepted admission review response

{

 "apiVersion": "admission.k8s.io/v1",

 "kind": "AdmissionReview",

Chapter 3 apI Flow extensIons

80

 "response": {

 "uid": "<value from request.uid>",

 "allowed": true

 }

}

Similarly, a simple rejection can be sent with the following data.

Listing 3-15. Rejected admission review response

{

 "apiVersion": "admission.k8s.io/v1",

 "kind": "AdmissionReview",

 "response": {

 "uid": "<value from request.uid>",

 "allowed": false

 }

}

Mutating webhooks are also expected to modify the objects in the

requests. Therefore, the webhook server should send the changes in

the AdmissionReview response. Kubernetes supports JSONPatch kind

of operations to change fields of resources. For instance, a JSONPatch to

change the replicas to 5 of a deployment can be constructed as follows:

[{"op": "replace", "path": "/spec/replicas", "value": 5}]. When

the patch is transported inside AdmissionReview, it will be encoded using

base64 as follows.

Listing 3-16. Accepted admission review response with patch

{

 "apiVersion": "admission.k8s.io/v1",

 "kind": "AdmissionReview",

Chapter 3 apI Flow extensIons

81

 "response": {

 "uid": "<value from request.uid>",

 "allowed": true,

 "patchType": "JSONPatch",

 "patch": "W3sib3AiOiAicmVwbGFjZSIsICJwYXRoIjogIi9zcGVjL3J

lcGxpY2FzIiwgInZhbHVlIjogNX1d"

 }

}

When the Kubernetes API gets the response with a patch, it will

apply the changes on the resource and continue processing with the

next admission controllers. The summary of the messages between the

webhook server and Kubernetes API can be summarized in Figure 3-14.

Both mutating and validating webhooks are critical components in

the API flow since they can programmatically change the resources and

accept or reject the requests. It could create chaos quickly when used with

negligence or inadequate design. There are three best practices to follow

for a reliable admission control setup:

• Idempotence: Mutating webhooks should be

idempotent; in other words, the admission webhook

can be called multiple times without changing the

result after the first run.

Figure 3-14. Admission webhook message flow

Chapter 3 apI Flow extensIons

82

• Availability: Admission webhooks are called as part of

Kubernetes API operations. Therefore, they should evaluate

and return the responses as quickly as possible, like all

other webhook servers, to minimize the total latency.

• Deadlocks: If the webhook endpoints are running inside

the cluster, they can interfere with its resources such as

pods, secrets, or volumes. Therefore, it is recommended

not to run admission controllers on the namespace of the

webhook.

In the following exercises, you will first create a dynamic validation

admission webhook to check and verify the container images. In the

second exercise, you will inject environment variables to the pods running

in specific namespaces with mutating admission webhooks.

EXERCISE: VALIDATING WEBHOOK FOR CONTAINER IMAGE CHECK

In this exercise, you will develop a serverless webhook in Google Cloud

Functions. the webhook will validate pod creation requests by evaluating the

container images. It will only allow container images with the nginx and reject

all other pods. You will then start a GKe cluster and configure a namespace of

the cluster to use the validating webhook.

 1. open Google Cloud Console and click activate Cloud shell in the

navigation bar. It should load a terminal in your browser to run

commands like in Figure 3-15.

Figure 3-15. GCP Cloud Shell

Chapter 3 apI Flow extensIons

https://console.cloud.google.com/

83

 2. Create a folder named validation and change the directory

into it:

$ mkdir validation

$ cd validation

Create a file named function.go in the terminal or open the

editor inside Google Cloud Console. the file should have the

following content:

package validate

import (

 "encoding/json"

 "log"

 "net/http"

 "regexp"

 admission "k8s.io/api/admission/v1"

 corev1 "k8s.io/api/core/v1"

 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"

)

func Validation(w http.ResponseWriter, r *http.Request) {

 ar := new(admission.AdmissionReview)

 err := json.NewDecoder(r.Body).Decode(ar)

 if err != nil {

 handleError(w, nil, err)

 return

 }

 response := &admission.AdmissionResponse{

 UID: ar.Request.UID,

 Allowed: true,

 }

Chapter 3 apI Flow extensIons

84

 pod := &corev1.Pod{}

 if err := json.Unmarshal(ar.Request.Object.Raw,

pod); err != nil {

 handleError(w, ar, err)

 return

 }

 re := regexp.MustCompile(`(?m)(nginx|nginx:\S+)`)

 for _, c := range pod.Spec.Containers {

 if !re.MatchString(c.Image) {

 response.Allowed = false

 break

 }

 }

 responseAR := &admission.AdmissionReview{

 TypeMeta: metav1.TypeMeta{

 Kind: "AdmissionReview",

 APIVersion: "admission.k8s.io/v1",

 },

 Response: response,

 }

 json.NewEncoder(w).Encode(responseAR)

}

func handleError(w http.ResponseWriter, ar *admission.

AdmissionReview, err error) {

 if err != nil {

 log.Println("[Error]", err.Error())

 }

Chapter 3 apI Flow extensIons

85

 response := &admission.AdmissionResponse{

 Allowed: false,

 }

 if ar != nil {

 response.UID = ar.Request.UID

 }

 ar.Response = response

 json.NewEncoder(w).Encode(ar)

}

the file has an http handler named Validation to parse

incoming AdmissionReview objects and check the images

of all containers. when it finds a container image not fitting to

nginx, it will directly reject the review and send the response.

otherwise, it will accept by sending Allowed: true.

Create another file named go.mod with the following content:

module extend.k8s.io/validate

go 1.13

require (

 k8s.io/api v0.19.0

 k8s.io/apimachinery v0.19.0

)

In the function.go, we are using the Kubernetes Go client

library; therefore, we list it as a dependency with k8s.io/api

and k8s.io/apimachinery,version v0.19.0.

 3. Deploy the function with the following command:

$ gcloud functions deploy validate --allow-

unauthenticated --entry-point=Validation --trigger-http

 --runtime=go113

Chapter 3 apI Flow extensIons

86

..

entryPoint: Validation

httpsTrigger:

 url: https://us-central1-extend-k8s.cloudfunctions.net/

validate

...

runtime: go113

...

status: ACTIVE

timeout: 60s

..

versionId: '1'

Copy the httpsTrigger Url to use in the following steps.

 4. Create a Kubernetes cluster with the following command:

$ gcloud container clusters create test-

validation --num-nodes=1 --region=us-central1

Creating cluster test-validation in us-central1...

Cluster is being health-checked (master is healthy)...

done.

kubeconfig entry generated for test-validation.

NAME LOCATION MASTER_VERSION

MASTER_IP MACHINE_TYPE NODE_VERSION

NUM_NODES STATUS

test-validation us-central1 1.16.15-gke.4300

34.69.30.171 n1-standard-1 1.16.15-gke.4300

3 RUNNING

Note In order to create a Kubernetes cluster, you need to enable
Kubernetes engine apI in Cloud Console apI library view if you have
not done before.

Chapter 3 apI Flow extensIons

https://console.cloud.google.com/apis/library

87

 5. Create a namespace and label it:

$ kubectl create namespace nginx-only

namespace/nginx-only created

$ kubectl label namespace nginx-only nginx=true

namespace/nginx-only labeled

 6. Create a file with the name validating-webhook.yaml with

the following content:

apiVersion: admissionregistration.k8s.io/v1

kind: ValidatingWebhookConfiguration

metadata:

 name: nginx.validate.extend.k8s

webhooks:

- name: nginx.validate.extend.k8s

 namespaceSelector:

 matchLabels:

 nginx: "true"

 rules:

 - apiGroups: [""]

 apiVersions: ["v1"]

 operations: ["CREATE"]

 resources: ["pods"]

 scope: "Namespaced"

 clientConfig:

 url: https://us-central1-extend-k8s.cloudfunctions.

net/validate

 admissionReviewVersions: ["v1", "v1beta1"]

 sideEffects: None

 timeoutSeconds: 10

the file will create a validating webhook to be called when a new

pod is created in the namespaces labeled with nginx=true. Do

not forget to change the url to the one copied in step 3.

Chapter 3 apI Flow extensIons

88

Deploy the validating webhook conifguration with the

following code:

$ kubectl apply -f validating-webhook.yaml

validatingwebhookconfiguration.admissionregistration.k8s.

io/nginx.validate.extend.k8s created

 7. Create pod with nginx image in the nginx-only namespace:

$ kubectl run --generator=run-pod/v1 nginx --image=nginx

 --namespace=nginx-only

pod/nginx created

the pod is created since the admission webhook allows only

running nginx images.

 8. Create a pod with busybox image in the nginx-only namespace:

$ kubectl run --generator=run-pod/v1 busybox

 --image=busybox --namespace=nginx-only

Error from server: admission webhook "nginx.validate.

extend.k8s" denied the request without explanation

admission webhook denied the image name busybox in the

specified namespace. It shows that both the webhook server

and Kubernetes apI server are configured correctly to extend

validating admission controllers.

 9. Delete the cloud function and Kubernetes cluster to avoid extra

cloud expenses:

$ gcloud container clusters delete test-validation

 --region=us-central1

The following clusters will be deleted.

 - [test-validation] in [us-central1]

Do you want to continue (Y/n)? Y

Deleting cluster test-validation...done.

Chapter 3 apI Flow extensIons

89

$ gcloud functions delete validate

Resource

[projects/extend-k8s/locations/us-central1/functions/

validate] will be deleted.

Do you want to continue (Y/n)? Y

Waiting for operation to finish...done.

Deleted

EXERCISE: MUTATING WEBHOOK FOR ENVIRONMENT VARIABLE INJECTION

In this exercise, you will develop a serverless webhook in Google Cloud

Functions. the webhook will mutate the incoming request while creating new

pods. It will inject an environment variable DEBUG with the value true for the

pods created in the namespace labeled as debug=true. In addition, you will

start and configure a GKe cluster to see the webhook in action.

 1. open Google Cloud Console and click activate Cloud shell in the

navigation bar. It should load a terminal in your browser to run

commands like in Figure 3-16.

 2. Create a folder named mutation and change the directory into it:

$ mkdir mutation

$ cd mutation

Figure 3-16. GCP Cloud Shell

Chapter 3 apI Flow extensIons

https://console.cloud.google.com/

90

Create a file named function.go in the terminal with the

following content:

package mutator

import (

 "encoding/json"

 "log"

 "net/http"

 admission "k8s.io/api/admission/v1"

 corev1 "k8s.io/api/core/v1"

 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"

)

func Mutation(w http.ResponseWriter, r *http.Request) {

 ar := new(admission.AdmissionReview)

 err := json.NewDecoder(r.Body).Decode(ar)

 if err != nil {

 handleError(w, nil, err)

 return

 }

 pod := &corev1.Pod{}

 if err := json.Unmarshal(ar.Request.Object.Raw,

pod); err != nil {

 handleError(w, ar, err)

 return

 }

 for i := 0; i < len(pod.Spec.Containers); i++ {

 pod.Spec.Containers[i].Env = append(pod.Spec.

Containers[i].Env, corev1.EnvVar{

 Name: "DEBUG",

 Value: "true",

 })

 }

Chapter 3 apI Flow extensIons

91

 containersBytes, err := json.Marshal(&pod.Spec.

Containers)

 if err != nil {

 handleError(w, ar, err)

 return

 }

 patch := []JSONPatchEntry{

 {

 OP: "replace",

 Path: "/spec/containers",

 Value: containersBytes,

 },

 }

 patchBytes, err := json.Marshal(&patch)

 if err != nil {

 handleError(w, ar, err)

 return

 }

 patchType := admission.PatchTypeJSONPatch

 response := &admission.AdmissionResponse{

 UID: ar.Request.UID,

 Allowed: true,

 Patch: patchBytes,

 PatchType: &patchType,

 }

 responseAR := &admission.AdmissionReview{

 TypeMeta: metav1.TypeMeta{

 Kind: "AdmissionReview",

 APIVersion: "admission.k8s.io/v1",

 },

Chapter 3 apI Flow extensIons

92

 Response: response,

 }

 json.NewEncoder(w).Encode(responseAR)

}

type JSONPatchEntry struct {

 OP string `json:"op"`

 Path string `json:"path"`

 Value json.RawMessage `json:"value,omitempty"`

}

func handleError(w http.ResponseWriter, ar *admission.

AdmissionReview, err error) {

 if err != nil {

 log.Println("[Error]", err.Error())

 }

 response := &admission.AdmissionResponse{

 Allowed: false,

 }

 if ar != nil {

 response.UID = ar.Request.UID

 }

 ar.Response = response

 json.NewEncoder(w).Encode(ar)

}

the function has an http handler named Mutation to

parse AdmissionReview and prepare a response. It first

adds environment variables to all containers in the pods and

then creates a JSONPatch. Finally, it sends an approved

AdmissionReview response with patch data.

Chapter 3 apI Flow extensIons

93

Create another file named go.mod with the following content:

module extend.k8s.io/mutate

go 1.13

require (

 k8s.io/api v0.19.0

 k8s.io/apimachinery v0.19.0

)

In the function.go, we are using the Kubernetes Go client

library; therefore, we list it as a dependency with k8s.io/api

and k8s.io/apimachinery, version v0.19.0.

 3. Deploy the function with the following command:

$ gcloud functions deploy mutate --allow-unauthenticated

 --entry-point=Mutation --trigger-http --runtime=go113

..

entryPoint: Mutation

httpsTrigger:

 url: https://us-central1-extend-k8s.cloudfunctions.net/

mutate

...

runtime: go113

...

status: ACTIVE

timeout: 60s

..

versionId: '1'

Copy the httpsTrigger Url to use in step 6.

Chapter 3 apI Flow extensIons

94

 4. Create a Kubernetes cluster with the following command:

$ gcloud container clusters create test-mutation --num-

nodes=1 --region=us-central1

Creating cluster test-mutation in us-central1...

Cluster is being health-checked (master is healthy)...

done.

kubeconfig entry generated for test-mutation.

NAME LOCATION MASTER_VERSION

MASTER_IP MACHINE_TYPE NODE_VERSION

NUM_NODES STATUS

test-mutation us-central1 1.16.15-gke.4300

34.122.242.6 n1- standard- 1 1.16.15-gke.4300

3 RUNNING

 5. Create a namespace and label it:

$ kubectl create namespace testing

namespace/testing created

$ kubectl label namespace testing debug=true

namespace/testing labeled

 6. Create a file with the name mutating-webhook.yaml

with the following content. Do not forget to change the

<httpstrigger> with the Url from step 3:

apiVersion: admissionregistration.k8s.io/v1

kind: MutatingWebhookConfiguration

metadata:

 name: debug.mutate.extend.k8s

webhooks:

 - name: debug.mutate.extend.k8s

 namespaceSelector:

 matchLabels:

 debug: "true"

Chapter 3 apI Flow extensIons

95

 rules:

 - apiGroups: [""]

 apiVersions: ["v1"]

 operations: ["CREATE"]

 resources: ["pods"]

 scope: "Namespaced"

 clientConfig:

 url: <httpsTrigger>

 admissionReviewVersions: ["v1", "v1beta1"]

 sideEffects: None

 timeoutSeconds: 10

the file will create a mutating webhook to be called when

a new pod is created in the namespaces labeled with

debug=true.

Deploy the mutating webhook configuration with the following code:

$ kubectl apply -f mutating-webhook.yaml

mutatingwebhookconfiguration.admissionregistration.k8s.

io/debug.mutate.extend.k8s created

 7. Create pod in testing namespace:

$ kubectl run --generator=run-pod/v1 nginx --image=nginx

 --namespace testing

pod/nginx created

Check for the environment variables in the nginx pod:

$ kubectl --namespace testing exec nginx -- env | grep

DEBUG

DEBUG=true

the pod has DEBUG=true environment variable, which is

injected by the mutating webhook. It shows that both the

Chapter 3 apI Flow extensIons

96

webhook server and Kubernetes apI server are configured

correctly to extend mutating admission controllers.

 8. Create pod in default namespace:

$ kubectl run --generator=run-pod/v1 nginx --image=nginx

pod/nginx created

Check for the environment variables in the nginx pod:

$ kubectl exec nginx -- env | grep DEBUG

as expected, there are no environment variables found in the

pods living in the default namespace.

 9. Delete the cloud function and Kubernetes cluster to avoid extra

cloud expenses:

$ gcloud container clusters delete test-mutation

 --region=us- central1

The following clusters will be deleted.

 - [test-mutation] in [us-central1]

Do you want to continue (Y/n)? Y

Deleting cluster test-mutation...done.

$ gcloud functions delete mutate

Resource

[projects/extend-k8s/locations/us-central1/functions/

mutate] will be deleted.

Do you want to continue (Y/n)? Y

Waiting for operation to finish...done.

Deleted

Chapter 3 apI Flow extensIons

97

 Key Takeaways
• Every request to Kubernetes API goes through the

authentication, authorization, and admission control

stages in Kubernetes API flow.

• Webhooks can extend each stage in the Kubernetes

API flow.

• Authentication webhooks enable validating bearer

tokens with custom logic and external systems.

• Authorization webhooks enable verifying the user and

control who can access which resources in the cluster.

• Dynamic admission controllers can modify related

resources and validate the incoming API requests.

In the following chapter, we will extend the Kubernetes API with

custom resources and the custom resources’ automation, namely,

operators.

Chapter 3 apI Flow extensIons

99© Onur Yilmaz 2021
O. Yilmaz, Extending Kubernetes, https://doi.org/10.1007/978-1-4842-7095-0_4

CHAPTER 4

Extending
the Kubernetes API
When I look at the human brain I’m still in awe of it.

—Benjamin “Ben” Solomon Carson
Neurosurgeon, American

politician, and author

Kubernetes API is the brain of the cloud-native container management

system; it makes you feel admiration, respect, and amazement at the same

time. It is a complex API with multiple layers, various resources, and,

fortunately, two extension points. This chapter will focus on extending

the Kubernetes API by creating custom resources and API aggregation.

At the end of this chapter, you will be able to create custom resources

and controllers; namely, you will implement a Kubernetes operator.

In addition, you will create and deploy extension API servers and use

aggregated APIs in action.

Let’s start with an overview of Kubernetes API and its extension points.

https://doi.org/10.1007/978-1-4842-7095-0_4#DOI

100

 Kubernetes API Overview
Kubernetes API is the core foundation of the system. All internal

and external operations to the cluster are requests to the API server.

Consequently, everything in Kubernetes is an API object with its

corresponding actions. The official versioned reference document has all

the API objects with extensive information and examples, such as the v1.19

reference.

The API is a resource-based interface to read, create, update, or delete

resources. The kube-apiserver component serves the API with its HTTP

REST endpoints. Thus, every action by the control plane, node, or end

users is a form of HTTP call to the kube-apiserver. Let’s assume you want

to create a new pod. kubectl create command sends a request to the

Kubernetes API server with the payload of pod definition. The request is an

HTTP POST to the /api/v1/namespaces/{namespace}/pods endpoint as

mentioned in the reference in Figure 4-1.

Chapter 4 extending the Kubernetes api

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/

101

Then, kube-scheduler schedules the pod to a node. As expected, the

scheduling is not an imperative command but a declarative Kubernetes

resource: Binding. You can create a Binding request with node and pod as

follows.

Figure 4-1. Pod creation reference

Chapter 4 extending the Kubernetes api

102

Listing 4-1. Example Binding

apiVersion: v1

kind: Binding

metadata:

 name: pod-to-be-assigned

 namespace: default

target:

 apiVersion: v1

 kind: Node

 name: available-node

kube-scheduler sends Binding resources to /api/v1/namespaces/

{namespace}/bindings endpoint via an HTTP POST request. Then

kubelet does its magic on the node to create containers, attach volumes,

and wait for its readiness. During that time, kubelet updates the status of

the pod, which is a subresource in Kubernetes. The status endpoint is

 /api/v1/namespaces/{namespace}/pods/{name}/status, and updates are

sent via PATCH requests. Finally, you list the pods in your local workstation

using the kubectl get pods command. Let’s debug the command with

some logs to check for its HTTP requests.

Listing 4-2. Getting pods with additional logs

$ kubectl get pods -v 9

...

* Starting client certificate rotation controller

* curl -k -v -XGET -H "Accept: application/

json;as=Table;v=v1;g=meta.k8s.io,application/

json;as=Table;v=v1beta1;g=meta.k8s.io,application/json" -H

"User-Agent: kubectl/v1.19.0 (darwin/amd64) kubernetes/

e199641" 'https://127.0.0.1:55000/api/v1/namespaces/default/

pods?limit=500'

Chapter 4 extending the Kubernetes api

103

* GET https://127.0.0.1:55000/api/v1/namespaces/default/

pods?limit=500 200 OK in 19 milliseconds

* Response Headers:

 Cache-Control: no-cache, private

 Content-Type: application/json

...

As expected, it is a GET command to /api/v1/namespaces/default/

pods address for listing the pods in the default namespace. As you can

realize, the endpoints are structured with two main parts: API versions and

groups.

 API Versioning
There are three levels of API versions in Kubernetes with the following

characteristics:

• Stable: Stable versions have the name vX where X is an

integer such as v1. As expected, stable API endpoints

provide well-established features that will live in the

subsequent releases of Kubernetes.

• Beta: Beta API versions have a name containing beta such

as v1beta1. The features and resources are well tested and

enabled by default. However, the support for these APIs

could be obsolete in the upcoming releases. Therefore, you

should use beta APIs with great care in production.

• Alpha: Alpha API versions have a name containing

alpha, such as v1alpha1. Alpha features are new and

may contain bugs. More importantly, Kubernetes may

drop the support or alter the API without considering

backward compatibility. Therefore, you should only use

alpha APIs for testing and not in production.

Chapter 4 extending the Kubernetes api

104

 API Groups
API groups break the monolith structure of an API server and make

enabling or disabling the groups individually. In Kubernetes, there are

several API groups with two naming convention:

• The legacy core group has apiVersion: v1 and is

located at /api/v1 with its historical reasons.

• All other groups are named with apiVersion:

$GROUP_NAME/$VERSION and located at /apis/$GROUP_

NAME/$VERSION. For instance, deployment objects are

constructed as follows with the apiVersion of apps/v1.

Listing 4-3. Example deployment

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx

spec:

 replicas: 5

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.14

Chapter 4 extending the Kubernetes api

105

API endpoint for the deployment is /apis/apps/v1/

namespaces/$NAMESPACE/deployments, including the group name and

version.

Extending the Kubernetes API focuses on two parts: adding new

endpoints and adding custom implementation logic for the resources

located at endpoints. Now, let’s continue with the two extension points of

the Kubernetes API.

 Extension Points in Kubernetes API
Kubernetes API is a resource-oriented API, and the extension is possible by

creating custom resources. Custom resources can dynamically be added

or removed while the cluster is up and running. When a custom resource

is enabled, it has similar capabilities to a native resource such as pods.

Kubernetes provides two ways of adding custom resources.

 CustomResourceDefinitions

CustomResourceDefinition (CRD) is a native Kubernetes API resource to

define custom resources. In a CRD, you represent a new custom resource

with its name, group, version, and schema. Kubernetes API server creates a

REST endpoint for your custom resource and handles API operations such

as create, read, update, and delete. The custom resource instances are

stored in etcd like all other Kubernetes resources.

 API Server Aggregation

Each resource in Kubernetes has a REST endpoint to handle CRUD

operations. APIService is a native Kubernetes resource to register custom

resources with the group, version, and a back-end endpoint. You can claim

a URL path such as /apis/k8s-extend.io/v1 and make kube-apiserver

delegate requests to your custom backend.

Chapter 4 extending the Kubernetes api

106

The main difference between the two methods is that CRDs extend the

Kubernetes API by adding new resources inside the Kubernetes API. On the

other hand, server aggregation creates new resources handled by an external

server. The two approaches can be illustrated as follows in Figure 4-2.

Custom resources with CRDs are structured data stored in Kubernetes

API. However, their power comes from the custom controllers. Controllers

act on the state of custom resources and take actions such as creation,

deletion, or update. Custom resources with controllers are also mentioned

as operator pattern first defined by CoreOs in 2016. You can create custom

controllers to implement business logic based on the state stored in

custom resources. Both custom controllers and aggregated servers need

to communicate with the Kubernetes API server. Therefore, you need to

develop applications in accordance with Kubernetes REST API. Luckily,

you do not need to implement every resource and request from scratch as

client libraries are available.

 Kubernetes Client Libraries
Kubernetes client libraries implement native resources with requests and

responses. In addition, they handle everyday tasks such as authentication,

the discovery of credentials, and kubeconfig reading. There are officially

Figure 4-2. Kubernetes API Extensions

Chapter 4 extending the Kubernetes api

107

supported client libraries for Go, Python, Java, Dotnet, JavaScript, and

Haskell. In addition, there are many community-maintained client

libraries with different coverage of native resources and focus areas.

Kubernetes maintains the list of client libraries in the official

documentation; however, it is suggested to use Go or Python since

they have the most active community. In addition, Kubernetes and its

ecosystem are developed on Go language; thus, the Go client library is

an indisputable winner. In the following exercise, you will connect to a

Kubernetes cluster using the Go client library, namely, client-go.

EXERCISE: KUBERNETES GO CLIENT IN ACTION

in this exercise, you will create a custom watcher for secrets using client-

go. We will start by creating a dependency file and source code. then, we will

build the binary with the help of cross-platform options in go. Finally, you will

run the custom watcher and see it in action.

Note in order to continue this exercise, you need a running
Kubernetes cluster and a kubeconfig to access. a local cluster
created by minikube is sufficient for executing the steps.

 1. Create a dependency file go.mod with the following content:

module secret-watcher

go 1.14

require (

 k8s.io/apimachinery v0.19.0

 k8s.io/client-go v0.19.0

)

Chapter 4 extending the Kubernetes api

https://kubernetes.io/docs/reference/using-api/client-libraries/
https://kubernetes.io/docs/reference/using-api/client-libraries/

108

go.mod file consists of the requirements for our application.

the first one is apimachinery, and it is the library that provides

resource definitions. the second is the client-go library, which

includes authentication, utilities, and client commands.

 2. Create a file secret_watcher.go with the following content:

package main

import (

 "context"

 "flag"

 "fmt"

 "path/filepath"

 "time"

 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"

 "k8s.io/client-go/kubernetes"

 "k8s.io/client-go/tools/clientcmd"

 "k8s.io/client-go/util/homedir"

 _ "k8s.io/client-go/plugin/pkg/client/auth"

)

func main() {

 // kubeconfig flag

 var kubeconfig *string

 if home := homedir.HomeDir(); home != "" {

 kubeconfig = flag.String("kubeconfig", filepath.

Join(home, ".kube", "config"), "(optional) path to

the kubeconfig file")

 } else {

 kubeconfig = flag.String("kubeconfig", "", "path to

the kubeconfig file")

 }

 flag.Parse()

Chapter 4 extending the Kubernetes api

109

 // create config

 config, err := clientcmd.BuildConfigFromFlags("",

*kubeconfig)

 if err != nil {

 panic(err.Error())

 }

 // create client set

 clientset, err := kubernetes.NewForConfig(config)

 if err != nil {

 panic(err.Error())

 }

 // watch for secrets

 for {

 secrets, err := clientset.CoreV1().Secrets("").

List(context.TODO(), metav1.ListOptions{})

 if err != nil {

 panic(err.Error())

 }

 fmt.Printf("There are %d secrets in the cluster\n",

len(secrets.Items))

 time.Sleep(10 * time.Second)

 }

}

it is the main file which we will build and run to communicate

with the cluster. the function starts parsing the kubeconfig

flag if the default directory is not used. then it reads the

kubeconfig using the client-go library. Following that,

a clientset is created which consists of clients for native

resources. in the end, all secrets are listed and the count is

printed in an infinite loop.

Chapter 4 extending the Kubernetes api

110

 3. start a go build environment in docker with the following

command:

$ docker run -v "$(pwd)":/go/src/secret-watcher -it

onuryilmaz/multi-platform-go-build:1.14-buster bash

root@e45653990bb6:/go#

the command will mount the current working directory and

start an interactive bash inside the container.

 4. run the following command to build the binary:

$ cd src/secret-watcher/

$ export GOOS=darwin # for MacOS. Set to linux or windows

based on your local operating system

$ go build -v

go: downloading k8s.io/apimachinery v0.19.0

go: downloading k8s.io/client-go v0.19.0

go: downloading github.com/google/gofuzz v1.1.0

go: downloading gopkg.in/inf.v0 v0.9.1

...

k8s.io/client-go/kubernetes/typed/storage/v1alpha1

k8s.io/client-go/kubernetes/typed/storage/v1

k8s.io/client-go/kubernetes/typed/storage/v1beta1

k8s.io/client-go/kubernetes

secret-watcher

the output lists retrieving all the dependencies and, in the

end, building the binary. exit from the container to the local

workstation with the exit command.

 5. run the secret-watcher binary, setting kubeconfig flag or

leaving as empty to use the default location:

./secret-watcher

There are 37 secrets in the cluster

Chapter 4 extending the Kubernetes api

111

There are 37 secrets in the cluster

There are 37 secrets in the cluster

...

the secret-watcher application lists all the secrets in the cluster in an

infinite loop, as shown in the output. the successful run of the binary shows

that we can create a custom go application using the client-go library.

in addition, it communicates with the cluster, which shows that cluster

configuration, requests, and responses are working flawlessly.

In the following section, we will extend the Kubernetes API with

custom resources and controllers. We will learn the basics of operator

patterns and then create custom resources to expand the Kubernetes

API. We will then understand the controller concept and make Kubernetes

work for our custom resources and business logic.

 Custom Resource Definitions
and Controllers
CustomResourceDefinition (CRD) is the straightforward way of creating

custom resources in Kubernetes API. With the new resources, Kubernetes

API is extended to handle the REST operations and storage in etcd. It

means that you can create, read, update, or delete the custom resources,

and most importantly, you can create automation on them. Therefore,

the idea is to create custom resources for the business requirements not

implemented in vanilla Kubernetes. Let’s assume you want to install a

clustered and managed database on Kubernetes. You will deploy secrets,

volumes, configurations, statefulsets, and many more Kubernetes

resources. In addition, you want to run some business logic such as

database initialization, migration, or upgrade for your database. Custom

Chapter 4 extending the Kubernetes api

112

resources and the controllers are the design pattern to follow for managing

such applications in a Kubernetes-native way. Let’s start by creating some

CRDs to define custom resources.

CRDs are similar to any other Kubernetes resources; they are

declarative definitions for the desired state. In this case, the desired state

is a new custom resource with a group name, version, scope, schema, and

name. An example CRD for TimeseriesDB resources can be constructed as

follows.

Listing 4-4. TimeseriesDB CRD

apiVersion: apiextensions.k8s.io/v1

kind: CustomResourceDefinition

metadata:

 name: timeseriesdbs.extend-k8s.io

spec:

 group: extend-k8s.io

 versions:

 - name: v1

 served: true

 storage: true

 schema:

 openAPIV3Schema:

 type: object

 properties:

 spec:

 type: object

 properties:

 dbType:

 type: string

 replicas:

 type: integer

Chapter 4 extending the Kubernetes api

113

 status:

 type: object

 properties:

 stage:

 type: string

 message:

 type: string

 scope: Namespaced

 names:

 plural: timeseriesdbs

 singular: timeseriesdb

 kind: TimeseriesDB

 shortNames:

 - tsdb

In the spec of a CRD, there are four blocks:

• group: Multiple custom resources can be grouped into

a single Kubernetes API group. The field represents the

name of the API group.

• versions: In Kubernetes, resources are versioned with

changing schemas. In the CRD, the supported versions

with their schema are provided.

• scope: Custom resource instances can be living in a

Namespace or can be Cluster wide.

• names: Plural, singular, and kind fields are the names

for the resource to use in REST endpoints, resource

definition files, and kubectl commands.

Names of the CRD resources are defined in metadata.name, and it is

in the pattern of <plural>.<group>. Also, Kubernetes stores structured

data in custom resources with their custom fields. The fields’ structure is

Chapter 4 extending the Kubernetes api

114

specified in the schema field, and it is in the form of OpenAPI specification

v3.0. Now, save the CRD in a file and deploy it to the cluster.

Listing 4-5. Deployment of CRD

$ kubectl apply -f tsdb-crd.yaml

customresourcedefinition.apiextensions.k8s.io/timeseriesdbs.

extend-k8s.io created

Now, you can see the timeseriesdbs is added to API resources in the

cluster.

Listing 4-6. API resources listing

$ kubectl api-resources --output=name | grep timeseriesdbs

timeseriesdbs.extend-k8s.io

Besides, you can run kubectl commands and interact with the

Kubernetes API for TimeseriesDB resources. Let’s try it with some logging

enabled.

Listing 4-7. kubectl custom resource listing

$ kubectl get timeseriesdb -v=6 | grep extend-k8s

Config loaded from file: ...

Starting client certificate rotation controller

GET https://127.0.0.1:55000/api?timeout=32s 200 OK in 18

milliseconds

GET https://127.0.0.1:55000/apis?timeout=32s 200 OK in 6

milliseconds

GET https://127.0.0.1:55000/apis/extend-k8s.io/v1?timeout=32s

200 OK in 11 milliseconds

GET https://127.0.0.1:55000/apis/autoscaling/v1?timeout=32s 200

OK in 10 milliseconds

...

Chapter 4 extending the Kubernetes api

https://swagger.io/specification/
https://swagger.io/specification/

115

GET https://127.0.0.1:55000/apis/storage.k8s.io/

v1beta1?timeout=32s 200 OK in 20 milliseconds

GET https://127.0.0.1:55000/apis/extend-k8s.io/v1/namespaces/

default/timeseriesdbs?limit=500 200 OK in 4 milliseconds

No resources found in default namespace.

Note if you do not see api retrieval logs, it is due to the fact that
kubectl caches them. You can clear the cache directory located at
$hOMe/.kube/cache and rerun the command.

In the logs, kubectl first connects to api and apis endpoints to

discover the available API groups and versions. The API discovery results

are locally cached so that in the second run, kubectl will directly call

/apis/extend-k8s.io/v1/namespaces/default/timeseriesdbs.

Kubernetes API is extended with the creation of CRD; thus, both

the API server and client tools are ready to work with new resources. As

expected, there are no resources for TimeseriesDB. Now, let’s continue

with creating the custom resources in the cluster.

TimeseriesDB or any custom resource you will create is not different

than native Kubernetes resources such as pods or secrets. For the

timeseriesdbs.extend-k8s.io CRD and the v1 schema, you can create

the following resource.

Listing 4-8. TimeseriesDB example

apiVersion: extend-k8s.io/v1

kind: TimeseriesDB

metadata:

 name: example-tsdb

spec:

 dbType: InfluxDB

 replicas: 4

Chapter 4 extending the Kubernetes api

116

status:

 stage: Created

 message: New TimeseriesDB

example-tsdb is a definition for creating an InfluxDB database

with four replicas. The status fields explain the current situation of the

resource. Now, let’s match the CRD and example resource fields visually in

Figure 4-3.

You can deploy the resource to cluster with the following command.

Listing 4-9. Custom resource deployment

$ kubectl apply -f example-tsdb.yaml

timeseriesdb.extend-k8s.io/example-tsdb created

You can also use the shortNames defined in the CRD for accessing the

resources.

Figure 4-3. CRD and custom resource

Chapter 4 extending the Kubernetes api

117

Listing 4-10. Custom resource listing

$ kubectl get tsdb

NAME AGE

example-tsdb 1m

Now, we have a custom resource to manage our time-series databases.

The critical question is, now, who will create and manage the four

instances of InfluxDB into our cluster. Similarly, who will upgrade the

database when a new version is released? In other words, there needs to be

an operator to create, update, delete, and manage the applications.

 Operator Pattern in Kubernetes
Kubernetes API stores and serves custom resources. On the other hand,

operators are the software extensions to create and manage applications

defined in the custom resources. The motivation behind software operators

is to replace the knowledge and experience of human operators. In the

traditional approach, the operations team knows how to deploy and

manage the applications. They watch for specific metrics or dashboards

to track the status of the overall system and take actions if necessary. In

the cloud-native world, you are expected to use automation to take care of

such operations.

Operators are the pattern to implement human knowledge and tasks

into code. The pattern is well integrated into Kubernetes since it follows

the controller extension pattern that is prevailing in Kubernetes. There are

four main levels for an operator to manage production-ready cloud-native

applications:

• Installation: Automated installation of the application

with the desired state defined in the custom resource.

• Upgrade: Automated and user-triggered upgrade of the

application with minimum user interaction.

Chapter 4 extending the Kubernetes api

118

• Lifecycle Management: Initialization, backup, and

failure recovery for the applications with decision rules

and automation.

• Monitoring and Scalability: Monitor and analyze the

metrics and alerts for the application. Take automated

actions for scaling, scheduling, and rebalancing when

necessary.

Operators are deployed to clusters with the

CustomResourceDefinition and the associated controllers. Controllers

run inside Kubernetes as containerized applications, most commonly as

a deployment. The operator application interacts with the Kubernetes

API; therefore, it is suggested to use a programming language that can

act as a Kubernetes client. Open source and community-maintained

operators are shared in OperatorHub, and it has 175 operators available to

use. If you plan to deploy a popular database to Kubernetes such as etcd,

MongoDB, PostgreSQL, or CockroachDB, you should check the operators

in OperatorHub. Using a ready-made operator with community support

helps you save time and money; therefore, it is valuable.

If you want to develop your own operator, there are two essential tools

to consider:

• Operator SDK: It is a part of the Operator Framework

to create Kubernetes-native applications in an effective

and automated approach. The SDK provides tooling to

build, test, package, and deploy operators to the cluster.

It is possible to develop in Go, Ansible, or Helm charts

in Operator SDK.

• kubebuilder: It is a framework for building Kubernetes

APIs using CRDs. It focuses on velocity and reduced

complexity to create and deploy extensions to Kubernetes

API. The tool generates clients, interfaces, and webhooks

Chapter 4 extending the Kubernetes api

https://operatorhub.io/

119

for custom resources in Go. It also generates the resources

necessary to deploy operators to the cluster. Next, we

will focus on the kubebuilder framework owing to its two

essential features: vicinity to Kubernetes community and

enhanced developer experience.

 kubebuilder Framework
kubebuilder is a framework to initialize, generate, and deploy Kubernetes-

native API extension code to clusters. The framework is batteries included

so that the created projects have the testing environment, deployment

files, and container specifications. This section will step by step generate a

project for TimeseriesDB custom resource using the framework and see it

in action.

Note the rest of the section is to get your hands dirty with the
following prerequisites: go version v1.14+, docker version 17.03+,
access to a fresh Kubernetes cluster, and kubectl and kustomize.

Let’s start by installing the kubebuilder binary to the local workstation.

Listing 4-11. kubebuilder installation

$ export os=$(go env GOOS)

$ export arch=$(go env GOARCH)

$ curl -L https://go.kubebuilder.io/dl/2.3.1/${os}/${arch} |

tar -xz -C /tmp/

$ sudo mv /tmp/kubebuilder_2.3.1_${os}_${arch} /usr/local/

kubebuilder

$export PATH=$PATH:/usr/local/kubebuilder/bin

Chapter 4 extending the Kubernetes api

https://kubectl.docs.kubernetes.io/installation/kustomize/binaries/
https://kubectl.docs.kubernetes.io/installation/kustomize/binaries/

120

The commands download the binary for your operating system and

install it to your PATH environment variable. Next, it is time to create a new

Go project.

Listing 4-12. Initializing a project

$ mkdir -p $GOPATH/src/extend-k8s.io/timeseries-operator

$ cd $GOPATH/src/extend-k8s.io/timeseries-operator

$ kubebuilder init --domain extend-k8s.io

Writing scaffold for you to edit...

Get controller runtime:

 go get sigs.k8s.io/controller-runtime@v0.5.0

go: downloading sigs.k8s.io/controller-runtime v0.5.0

go: downloading k8s.io/apimachinery v0.17.2

...

go fmt ./...

go vet ./...

go build -o bin/manager main.go

Next: define a resource with:

 kubebuilder create api

The commands create a folder in GOPATH, and then kubebuilder

initializes by creating a scaffold project. Check the contents of the folder

with the following command.

Listing 4-13. Project structure

$ tree -a

.

├── .gitignore
├── Dockerfile
├── Makefile
├── PROJECT

Chapter 4 extending the Kubernetes api

121

├── bin
│ └── manager
├── config
│ ├── certmanager
│ │ ├── certificate.yaml
│ │ ├── kustomization.yaml
│ │ └── kustomizeconfig.yaml
│ ├── default
│ │ ├── kustomization.yaml
│ │ ├── manager_auth_proxy_patch.yaml
│ │ ├── manager_webhook_patch.yaml
│ │ └── webhookcainjection_patch.yaml
│ ├── manager
│ │ ├── kustomization.yaml
│ │ └── manager.yaml
│ ├── prometheus
│ │ ├── kustomization.yaml
│ │ └── monitor.yaml
│ ├── rbac
│ │ ├── auth_proxy_client_clusterrole.yaml
│ │ ├── auth_proxy_role.yaml
│ │ ├── auth_proxy_role_binding.yaml
│ │ ├── auth_proxy_service.yaml
│ │ ├── kustomization.yaml
│ │ ├── leader_election_role.yaml
│ │ ├── leader_election_role_binding.yaml
│ │ └── role_binding.yaml
│ └── webhook
│ ├── kustomization.yaml
│ ├── kustomizeconfig.yaml
│ └── service.yaml

Chapter 4 extending the Kubernetes api

122

├── go.mod
├── go.sum
├── hack
│ └── boilerplate.go.txt
└── main.go

9 directories, 31 files

kubebuilder initializes the project with minimal resources to build

and run an operator. Most of the files are in the config folder with the

format of kustomize, a template-free way of customization integrated into

kubectl.

Add the TimeseriesDB API to the project by creating the resource and

controller.

Listing 4-14. Adding new API

$ kubebuilder create api --group operator --version v1 --kind

TimeseriesDB

Create Resource [y/n]

y

Create Controller [y/n]

y

Writing scaffold for you to edit...

api/v1/timeseriesdb_types.go

controllers/timeseriesdb_controller.go

Running make:

make

...bin/controller-gen object:headerFile="hack/boilerplate.

go.txt" paths="./..."

go fmt ./...

go vet ./...

go build -o bin/manager main.go

Chapter 4 extending the Kubernetes api

123

A boilerplate resource and controller are added to the project. Let’s

first check the resource definition located at /api/v1/timeseriesdb_

types.go.

Listing 4-15. Boilerplate TimeseriesDB resource

type TimeseriesDBSpec struct {

 ...

 Foo string `json:"foo,omitempty"`

}

type TimeseriesDBStatus struct {

 ...

}

// +kubebuilder:object:root=true

// TimeseriesDB is the Schema for the timeseriesdbs API

type TimeseriesDB struct {

 metav1.TypeMeta `json:",inline"`

 metav1.ObjectMeta `json:"metadata,omitempty"`

 Spec TimeseriesDBSpec `json:"spec,omitempty"`

 Status TimeseriesDBStatus `json:"status,omitempty"`

}

Update the TimeseriesDBSpec and TimeseriesDBStatus with the

following Go structs to remove example fields and store actual data.

Listing 4-16. TimeseriesDBSpec with actual fields

// TimeseriesDBSpec defines the desired state of TimeseriesDB

type TimeseriesDBSpec struct {

 DBType string `json:"dbType,omitempty"`

 Replicas int `json:"replicas,omitempty"`

}

Chapter 4 extending the Kubernetes api

124

Listing 4-17. TimeseriesDBStatus with actual fields

// TimeseriesDBStatus defines the observed state of

TimeseriesDB

type TimeseriesDBStatus struct {

 Status string `json:"status,omitempty"`

 Message string `json:"message,omitempty"`

}

In addition, change the kubebuilder flags to set status as a

subresource just before the TimeseriesDB definition.

Listing 4-18. Status subresource flag

// +kubebuilder:object:root=true

// +kubebuilder:subresource:status

Check Reconcile method of controller code located at /controllers/

timeseriesdb_controller.go.

Listing 4-19. Boilerplate TimeseriesDB controller

func (r *TimeseriesDBReconciler) Reconcile(req ctrl.Request)

(ctrl.Result, error) {

 _ = context.Background()

 _ = r.Log.WithValues("timeseriesdb", req.NamespacedName)

 // your logic here

 return ctrl.Result{}, nil

}

The Reconcile method of the controller will be called for every

transaction of TimeseriesDB instances in Kubernetes API. Update the

function with the following content.

Chapter 4 extending the Kubernetes api

125

Listing 4-20. Updated controller

func (r *TimeseriesDBReconciler) Reconcile(req ctrl.Request)

(ctrl.Result, error) {

 ctx := context.Background()

 log := r.Log.WithValues("timeseriesdb", req.

NamespacedName)

 timeseriesdb := new(operatorv1.TimeseriesDB)

 if err := r.Client.Get(ctx, req.NamespacedName,

timeseriesdb); err != nil {

 return ctrl.Result{}, client.IgnoreNotFound(err)

 }

 log = log.WithValues("dbType", timeseriesdb.Spec.DBType,

"replicas", timeseriesdb.Spec.Replicas)

 if timeseriesdb.Status.Status == "" || timeseriesdb.

Status.Message == "" {

 timeseriesdb.Status = operatorv1.

TimeseriesDBStatus{Status: "Initialized", Message:

"Database creation is in progress"}

 err := r.Status().Update(ctx, timeseriesdb)

 if err != nil {

 log.Error(err, "status update failed")

 return ctrl.Result{}, err

 }

 log.Info("status updated")

 }

 return ctrl.Result{}, nil

}

Chapter 4 extending the Kubernetes api

126

The updated reconciler method shows how to retrieve TimeseriesDB

instances using clients generated by kubebuilder. The fields of the

retrieved objects are printed to the output. In addition, the status part is

filled if empty, and the resource is updated in the cluster.

Run make command to generate clients and sample files with the

updated TimeseriesDB resource.

Listing 4-21. Code generation after resource update

$ make

.../controller-gen object:headerFile="hack/boilerplate.go.txt"

paths="./..."

go fmt ./...

go vet ./...

go build -o bin/manager main.go

kubebuilder platform uses the controller-gen tool for generating

utility code and Kubernetes resource files in YAML format.

Install the CRD to the cluster and run the controller locally.

Listing 4-22. Running the controller locally

$ make install run

.../controller-gen "crd:trivialVersions=true"

rbac:roleName=manager-role webhook paths="./..." output:crd:art

ifacts:config=config/crd/bases

...

kustomize build config/crd | kubectl apply -f -

customresourcedefinition.apiextensions.k8s.io/timeseriesdbs.

operator.extend-k8s.io created

...

.../controller-gen object:headerFile="hack/boilerplate.go.txt"

paths="./..."

Chapter 4 extending the Kubernetes api

127

go fmt ./...

go vet ./...

go run ./main.go

...

INFO controller-runtime.metrics metrics server is

starting to listen {"addr": ":8080"}

INFO setup starting manager

INFO controller-runtime.manager starting metrics server

{"path": "/metrics"}

INFO controller-runtime.controller Starting

EventSource {"controller": "timeseriesdb", "source": "kind

source: /, Kind="}

INFO controller-runtime.controller Starting Controller

{"controller": "timeseriesdb"}

INFO controller-runtime.controller Starting workers

{"controller": "timeseriesdb", "worker count": 1}

In the logs, the CRD is installed, and then the controller code started

using Go commands. Metrics server, events source, controllers, and

workers began in the listed order, and our controller is now ready, waiting

for the resource changes.

Update the sample TimeseriesDB instances located at /config/

sample/operator_v1_timeseriesdb.yaml with the following content.

Listing 4-23. Example TimeseriesDB instance

apiVersion: operator.extend-k8s.io/v1

kind: TimeseriesDB

metadata:

 name: timeseriesdb-sample

spec:

 dbType: Prometheus

 replicas: 5

Chapter 4 extending the Kubernetes api

128

In another terminal, deploy the sample custom resource to the cluster.

Listing 4-24. Deploying example TimeseriesDB instance

$ kubectl apply -f config/samples/

timeseriesdb.operator.extend-k8s.io/timeseriesdb-sample created

In the terminal where the controller is running, you should see the

following two lines now.

Listing 4-25. Controller logs after custom resource creation

INFO controllers.TimeseriesDB status

updated {"timeseriesdb": "default/timeseriesdb-sample",

"dbType": "Prometheus", "replicas": 5}

DEBUG controller-runtime.controller Successfully

Reconciled {"controller": "timeseriesdb", "request":

"default/timeseriesdb-sample"}

It shows that the Reconcile method of the controller is called with the

creation of the resource. Let’s check if the status is updated correctly.

Listing 4-26. Custom resource status

$ kubectl describe timeseriesdb timeseriesdb-sample

Name: timeseriesdb-sample

Namespace: default

...

Spec:

 Db Type: Prometheus

 Replicas: 5

Status:

 Message: Database creation is in progress

 Status: Initialized

Events: <none>

Chapter 4 extending the Kubernetes api

129

The controller updates the status fields, and it shows that the controller

is not in a read-only mode and it can make changes to the resources.

After creating an operator from scratch using the kubebuilder

framework, you have an impression of how to extend Kubernetes API

with custom resources and controllers. It is worth mentioning that while

developing operators, there are three essential points to be considered:

• Declarative: Kubernetes has a declarative API, and its

resources should be the same. Your custom resources

and controllers around them should be reading the

spec and updating the status fields only. If you find

yourself changing the spec in a controller, you need to

revise your custom resources and controller logic.

• Idempotent: The changes done by the controller

should be idempotent and atomic. It protects you

from creating a complete database from scratch

when the operator pod is restarted in the middle of a

reconciliation.

• Resistant to Errors: Controllers create resources

inside or outside the cluster, and thus, it is open to

having errors, timeouts, or cancellations. You need to

consider each action of the controller and its potential

failure. The Kubernetes-native approach is to retry

with a backoff policy, update the resource’s status, and

publish events if necessary.

Next, we will continue with the second extension point in Kubernetes

API to create new resources handled by an external server.

Chapter 4 extending the Kubernetes api

130

 Aggregated API and Extension Servers
The aggregation layer extends Kubernetes with additional APIs to provide

beyond what the Kubernetes API server offers. The main difference

between CRD and operator pattern is that new resources are not stored in

Kubernetes API. The requests of the resources are directed to an external

server, and responses are collected. While the approach increases

flexibility, it also increases operational complexity. There are three

essential elements of extending the Kubernetes API by aggregation:

• Aggregation Layer: The layer runs inside kube-

apiserver and proxies the requests for the new API

types.

• APIService Resources: New API types are registered

by APIService resources dynamically.

• Extension API Servers: Extension API servers respond

to the requests proxied over the aggregation layer.

We can illustrate a request’s flow starting in the Kubernetes API and

ending in the extension API server in Figure 4-4. The journey of incoming

requests begins with the authentication and authorization of the user.

Then, the aggregation layer directs the request to the extension API server.

In the extension server, the incoming request is authenticated against the

API server. In other words, the extension API server checks whether the

requests are coming from the Kubernetes API server. Then, the extension

server validates the authorization of the request with the original user.

Finally, if the request passes all stages, then it is executed and stored in the

extension server. The request flow shows that extending the Kubernetes

API server with an extension server follows the webhook design pattern.

Chapter 4 extending the Kubernetes api

131

Dynamic configuration of extension servers and new resources are

controlled by APIService resources. APIService resources consist of an

API group, version, and an endpoint for the extension server. An example

APIService resource to extend Kubernetes API for backup.extend-k8s.io

group and v1 version can be constructed as follows.

Listing 4-27. Example APIService resource

apiVersion: apiregistration.k8s.io/v1

kind: APIService

metadata:

 name: v1.backup.extend-k8s.io

spec:

 version: v1

 group: backup.extend-k8s.io

Figure 4-4. Aggregated API request flow

Chapter 4 extending the Kubernetes api

132

 groupPriorityMinimum: 2000

 service:

 name: extension-server

 namespace: kube-extensions

 versionPriority: 10

 caBundle: "LS0tL...LS0K"

The definition does not specify the actual names of custom resources.

Instead, the aggregation layer redirects all requests coming to /apis/

backup.extend-k8s.io/v1/ endpoint. The extension server manages all

the custom resources in the API groups. The extension server is specified

as a Kubernetes service with its name and namespace. By default, the

HTTPS port of the service is used, and communication is handled over

TLS. The extension server is required to run with a cert signed by the CA

certificate specified in caBundle.

An extension API server’s development is almost as complicated

as developing a Kubernetes API server, namely, kube-apiserver. For a

concrete example of a full-fetch, reference implementation, you can check

sample-apiserver repository of Kubernetes. The recommended way of

using sample-apiserver is to fork the repository, modify the API types,

and frequently rebase to follow the improvements and bug fixes.

In this section, we will generate and deploy an extension API server

from scratch using apiserver- builder. It is a complete framework for

developing an API server, client libraries, and installation resources. We

will use the tool to initialize a project, adding custom resource groups and

versions, code generation, and deployment to the cluster.

Note the steps in this section require the following to be installed
in addition to a running Kubernetes cluster: go v1.14+, docker
version 17.03+, and OpenssL 1.1.1g+.

Chapter 4 extending the Kubernetes api

https://github.com/kubernetes/sample-apiserver
https://github.com/kubernetes-sigs/apiserver-builder-alpha

133

First, let’s install the apiserver-boot tool with its latest available

release.

Listing 4-28. apiserver-boot installation

$ export os=$(go env GOOS)

$ mkdir -p /tmp/apiserver

$ cd /tmp/apiserver

$ curl --output /tmp/apiserver/apiserver-builder-alpha.tar.

gz -L https://github.com/kubernetes-sigs/apiserver-builder-

alpha/releases/download/v2.0.0-alpha.0/apiserver-builder-alpha-

v2.0.0-alpha.0-${os}-amd64.tar.gz

$ tar -xf /tmp/apiserver/ apiserver-builder-alpha.tar.gz

$ chmod +x /tmp/apiserver/bin/apiserver-boot

$ mkdir -p /usr/local/apiserver-builder/bin

$ mv /tmp/apiserver/bin/apiserver-boot /usr/local/apiserver-

builder/bin/apiserver-boot

$ export PATH=$PATH:/usr/local/apiserver-builder/bin

You can verify the installation by running the following command.

Listing 4-29. apiserver-boot version check

$ apiserver-boot version

Version: version.Version{ApiserverBuilderVersion:"8f12f3e43",

KubernetesVendor:"kubernetes-1.19.2", GitCommit:"8f12f3e43cb0a

75c82e8a6b316772a230f5fd471", BuildDate:"2020-11-04-20:35:32",

GoOs:"darwin", GoArch:"amd64"}

Let’s start with creating a folder in GOPATH.

Chapter 4 extending the Kubernetes api

134

Listing 4-30. Go project initialization

$ mkdir -p $GOPATH/src/extend-k8s.io/timeseries-apiserver

$ cd $GOPATH/src/extend-k8s.io/timeseries-apiserver

Create a scaffold API server using apiserver-boot.

Listing 4-31. API server initialization

$ apiserver-boot init repo --domain extend-k8s.io

Writing scaffold for you to edit...

Now, check the generated files with the following command.

Listing 4-32. Folder structure

$ tree -a

.

├── .gitignore
├── BUILD.bazel
├── Dockerfile
├── Makefile
├── PROJECT
├── WORKSPACE
├── bin
├── cmd
│ ├── apiserver
│ │ └── main.go
│ └── manager
│ └── main.go -> ../../main.go
├── go.mod
├── hack
│ └── boilerplate.go.txt

Chapter 4 extending the Kubernetes api

135

├── main.go
└── pkg
 └── apis
 └── doc.go

7 directories, 12 files

The generated code is a basic API server with tooling such as Makefile

and bazel files.

Add a custom resource and controller to the extension server with the

following command.

Listing 4-33. Adding custom resource

$ apiserver-boot create group version resource --group backup

--version v1 --kind TimeseriesDBBackup

Create Resource [y/n]

y

Create Controller [y/n]

y

Writing scaffold for you to edit...

controllers/backup/timeseriesdbbackup_controller.go

Run code generation tool to ensure that new resources and controllers

work as expected.

Listing 4-34. Code generation for new resource and controller

$ make generate

...controller-gen object:headerFile="hack/boilerplate.go.txt"

paths="./..."

First, export $REPOSITORY environment variable as your Docker

repository and then build the container image for the extension server.

Chapter 4 extending the Kubernetes api

136

Listing 4-35. Container build

$ apiserver-boot build container --image $REPOSITORY/

timeseries-apiserver:v1

Will build docker Image from directory /var/folders/nn/.../T/

apiserver-boot-build-container656172154

Writing the Dockerfile.

Building binaries for Linux amd64.

CGO_ENABLED=0

GOOS=linux

GOARCH=amd64

go build -o /var/folders/nn/.../T/apiserver-boot-build-

container656172154/apiserver cmd/apiserver/main.go

go build -o /var/folders/nn/.../T/apiserver-boot-build-

container656172154/controller-manager cmd/manager/main.go

Building the docker Image using /var/folders/nn/.../T/

apiserver-boot-build-container656172154/Dockerfile.

docker build -t $REPOSITORY /timeseries-apiserver:v1 /var/

folders/nn/../T/apiserver-boot-build-container656172154

Sending build context to Docker daemon 102.2MB

Step 1/5 : FROM ubuntu:14.04

 ---> df043b4f0cf1

Step 2/5 : RUN apt-get update

 ---> Using cache

 ---> 60dfe53c07c6

Step 3/5 : RUN apt-get install -y ca-certificates

 ---> Using cache

 ---> ff5f3be9ac8d

Step 4/5 : ADD apiserver .

 ---> 3778467102f7

Chapter 4 extending the Kubernetes api

137

Step 5/5 : ADD controller-manager .

 ---> 32672f63fd9b

Successfully built 32672f63fd9b

Successfully tagged $REPOSITORY/timeseries-apiserver:v1

Push the Docker container to the registry to use inside Kubernetes

clusters.

Listing 4-36. Container push

$ docker push $REPOSITORY/timeseries-apiserver:v1

Deploy the extension API server with the following command.

Listing 4-37. Deployment of extension server

$ apiserver-boot run in-cluster --name timeseriesdb-api

--namespace default --image $REPOSITORY/timeseries-apiserver:

v1 --build-image=false

openssl req -x509 -newkey rsa:2048 -addext basicConstraints=

critical,CA:TRUE,pathlen:1 -keyout config/certificates/

apiserver_ca.key -out config/certificates/apiserver_ca.crt

-days 365 -nodes -subj /C=un/ST=st/L=l/O=o/OU=ou/

CN=timeseriesdb-api-certificate-authority

Generating a RSA private key

.+++++

.................................+++++

writing new private key to 'config/certificates/apiserver_ca.key'

...

Adding APIs:

 backup.v1

...

Chapter 4 extending the Kubernetes api

138

kubectl apply -f config

deployment.apps/timeseriesdb-api-apiserver created

secret/timeseriesdb-api created

service/timeseriesdb-api created

apiservice.apiregistration.k8s.io/v1.backup.extend-k8s.io

created

deployment.apps/timeseriesdb-api-controller created

statefulset.apps/etcd created

service/etcd-svc created

clusterrole.rbac.authorization.k8s.io/timeseriesdb-api-

apiserver-auth-reader created

clusterrolebinding.rbac.authorization.k8s.io/timeseriesdb-api-

apiserver-auth-reader created

clusterrolebinding.rbac.authorization.k8s.io/timeseriesdb-api-

apiserver-auth-delegator created

clusterrole.rbac.authorization.k8s.io/timeseriesdb-api-

controller created

clusterrolebinding.rbac.authorization.k8s.io/timeseriesdb-api-

controller created

The command handles a series of automation to create TLS

certificates, adding the APIs, and deploying a long list of Kubernetes

YAML files. Now, it is time to check whether the custom resource APIs are

enabled and running as expected.

Let’s start by describing the new APIService resource.

Listing 4-38. APIService status

$ kubectl describe apiservice v1.backup.extend-k8s.io

Name: v1.backup.extend-k8s.io

Namespace:

...

Status:

Chapter 4 extending the Kubernetes api

139

 Conditions:

 ...

 Message: all checks passed

 Reason: Passed

 Status: True

 Type: Available

Events: <none>

Message field indicates that all checks passed, and also, the APIService

is listed as Available. Create a sample TimeseriesDBBackup resource with

the following content in example-tsdb-backup.yaml.

Listing 4-39. Example TimeseriesDBBackup

apiVersion: backup.extend-k8s.io/v1

kind: TimeseriesDBBackup

metadata:

 name: example-tsdb-backup

Deploy the example resource to the cluster and retrieve it back.

Listing 4-40. Create and read of the custom resource

$ kubectl apply -f example-tsdb-backup.yaml

timeseriesdbbackup.backup.extend-k8s.io/example-tsdb-backup

created

$ kubectl get TimeseriesDBBackups

NAME CREATED AT

example-tsdb-backup 2021-07-28T09:05:00Z

The outputs show that we can interact with the Kubernetes API for the

custom resource extended by aggregated API.

The last step will be going one level more to check the extended

resources’ physical data in etcd. Kubernetes API server uses etcd as its

Chapter 4 extending the Kubernetes api

140

database. Similarly, the extension API server interacts with its database

to store the custom resources. etcd is deployed next to the extension API

server, and it should have a pod running and accessible.

Listing 4-41. Access to etcd

$ kubectl exec -it etcd-0 -- sh

/ # ETCDCTL_API=3 etcdctl get --prefix /registry

/registry/sample-apiserver/backup.extend-k8s.io/

timeseriesdbbackups/example-tsdb-backup

{"kind":"TimeseriesDBBackup","apiVersion":"backup.extend-k8s.

io/v1","metadata":{"name":"example-tsdb-backup","uid":"...",

"creationTimestamp":"...","annotations":{"kubectl.kubernetes.

io/last-applied-configuration":"{\"apiVersion\":\"backup.

extend-k8s.io/v1\",\"kind\":\"TimeseriesDBBackup\",\"metadata\"

:{\"annotations\":{},\"name\":\"example-tsdb-backup\"}}\n"}},

"spec":{},"status":{}}

The data from etcd shows that the extension API server stores

TimeseriesDBBackup instances. Also, using kubectl shows that

Kubernetes API is extended with the aggregated API method.

Compared to using CRDs, creating and deploying a stand-alone server

to handle API requests is not straightforward. However, extending the

Kubernetes API with aggregated servers has the two following benefits over

CRDs: more flexible validation checks over resources and protocol buffer

support for clients. On the other hand, there are three essential points to

consider while deploying an extension server:

• New Points of Failure: Aggregated API server runs on

its own with the business logic and requirements. It

should be designed well and operated with great care

not to have a single point of failure in the cluster.

Chapter 4 extending the Kubernetes api

141

• Storage: Aggregated API servers can choose how to

store the data. Initialization, backup, recovery, and

storage capacity should be taken into consideration.

• Security and Auditing: Authentication, authorization,

and auditing setup of the aggregated servers should

align with the primary API server.

 Key Takeaways
• Kubernetes API is the core fabric of the system, and all

operations on the cluster are handled as requests to the

API server.

• CustomResourceDefinition (CRD) is the

straightforward way of adding new custom resources

to Kubernetes API. It handles the REST operations and

storage of the resources created by CRDs.

• When custom resources are combined with custom

controllers, it is possible to implement human

knowledge and tasks into code, namely, the operator

pattern.

• The aggregation layer extends Kubernetes with

additional APIs to provide beyond what the Kubernetes

API server offers. Kubernetes API proxies the requests

of the aggregated API resources.

In the following chapter, we will extend the Kubernetes scheduling

with running multiple schedulers and developing custom ones.

Chapter 4 extending the Kubernetes api

143© Onur Yilmaz 2021
O. Yilmaz, Extending Kubernetes, https://doi.org/10.1007/978-1-4842-7095-0_5

CHAPTER 5

Scheduling
Extensions

Action expresses priorities.

—Mahatma Gandhi
Indian lawyer, politician, social activist, and writer

The scheduler is a core part of Kubernetes to assign workload to the nodes

in the cluster. The assignment action is based on priorities and rules set

by cluster admins and operators. This chapter will focus on extending

the Kubernetes scheduler by creating custom schedulers and developing

extensions. At the end of this chapter, you will run multiple schedulers

simultaneously in the cluster. In addition, you will intervene in the

scheduling decisions by creating scheduler extenders.

Let’s start with an overview of the Kubernetes scheduler and its

extension points.

 Kubernetes Scheduler Overview
Kubernetes scheduler runs in the control plane and assigns pods to

the nodes. The default behavior is to balance resource utilization of

nodes while applying the rules and priorities of resources in the cluster.

https://doi.org/10.1007/978-1-4842-7095-0_5#DOI

144

The principle of scheduler follows the controller design pattern of

Kubernetes. It watches for the newly created pods and finds the best

node in the cluster.

Let’s see the Kubernetes scheduler in action by creating a multi-node

cluster from scratch and a pod.

Listing 5-1. Starting a multi-node local cluster

$ minikube start --nodes 5

The command will create a local cluster with five nodes which you can

list with the following command.

Listing 5-2. Node listing

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

minikube Ready master 7m17s v1.19.2

minikube-m02 Ready <none> 5m43s v1.19.2

minikube-m03 Ready <none> 4m10s v1.19.2

minikube-m04 Ready <none> 2m22s v1.19.2

minikube-m05 Ready <none> 34s v1.19.2

Now, let’s create a pod and wait until it is running.

Listing 5-3. Pod creation

$ kubectl run nginx-1 --image=nginx

pod/nginx-1 created

$ kubectl get pods -w

NAME READY STATUS RESTARTS AGE

nginx-1 0/1 Pending 0 0s

nginx-1 0/1 Pending 0 0s

nginx-1 0/1 ContainerCreating 0 0s

nginx-1 1/1 Running 0 16s

Chapter 5 SCheduling extenSionS

145

You will see Pending, ContainerCreating, and Running stages in a

couple of seconds. The vital step for scheduling is Pending. It indicates

that Kubernetes API accepts the pod, but it is not yet scheduled to a

cluster node. Let’s check for the events to find any information related to

scheduling.

Listing 5-4. Event listing

$ kubectl get events

...

2m54s Normal Scheduled pod/nginx-1

 Successfully assigned default/nginx-1 to minikube-m05

...

You will see that the kube-scheduler has selected the minikube-m05

node. Let’s deep dive into the internals of kube-scheduler and learn more

about how the decision is made.

 Scheduling Framework
The scheduling framework is the architecture of Kubernetes scheduler. It is

a pluggable framework where plugins implement the scheduling features.

There are multiple steps in a sequential workflow in the framework, as

illustrated in Figure 5-1. Workflow is mainly divided into two as scheduling

and binding. Scheduling focuses on finding the best node, while binding

handles Kubernetes API operations to finalize scheduling.

Chapter 5 SCheduling extenSionS

146

Each step has self-explanatory names, but there are some essential

points to consider:

• QueueSort: Sort the pods to be scheduled in the waiting

queue of the kube-scheduler.

• PreFilter: Check the conditions and the information

of the pods related to the scheduling cycle.

• Filter: Filter the nodes to find a list of suitable nodes

for the pod by using plugins and calling external

scheduler extenders.

• PostFilter: It is an optional step to run if there are no

feasible nodes. In a typical scenario, PostFilter will

result in preemption of other pods to open up some

space for scheduling.

• PreScore: Create a shareable state for scoring plugins.

• Score/Prioritize: Rank the filtered nodes by calling

each scoring plugins and scheduler extenders.

• NormalizeScore: Combine the scores from multiple

sources and compute a final ranking. The node with the

highest weighted score will win the pod.

Figure 5-1. Scheduling framework

Chapter 5 SCheduling extenSionS

147

• Reserve/Unreserve: It is an optional step to inform

plugins about a selected node.

• Permit: Approve, deny, or pause (with a timeout) the

scheduling decision.

• PreBind: Perform any work required before the pod

is bound to the node, such as provisioning a network

volume and mounting it.

• Bind: The step is handled by only one plugin since it

requires sending the decision to Kubernetes API.

• PostBind: It is an optional and informational step to

inform the result of the binding cycle.

One plugin can register at multiple workflow points and perform

scheduling subtasks. Although the framework and plugins create an

open architecture, all plugins are compiled into the kube-scheduler

binary. You can check the list of the available plugins from the reference

documentation. It is the ultimate knowledge if you are looking to change

the configuration of the kube-scheduler running in the control plane.

We have seen the scheduler in action and had a glimpse into its

architecture. Now we will continue with defining the extension points and

how to use them.

 Extension Points

You can customize or extend the Kubernetes scheduler with four principal

methods.

The first way is to clone and modify the upstream kube-scheduler

code. Then you need to compile, containerize, and run instead of the

kube-scheduler deployment in the control plane. However, it is not so

straightforward and comes with a massive effort of lining up changes to

upstream code in the next versions.

Chapter 5 SCheduling extenSionS

148

The second way is developing plugins for scheduling framework inside

kube-scheduler. It is not hacky as the first approach, but again, it requires

as much effort as the first one, because you need to update, compile, and

maintain the changes of the upstream kube-scheduler repository.

The third approach is running a separate scheduler in the cluster

along with the default one. There is a particular field in PodSpec to define

the scheduler: schedulerName. If the field is empty, then it is set to the

default-scheduler and handled by kube-scheduler. Thus, it is possible

to run a second scheduler and specify it in the schedulerName field. Then,

the custom scheduler will assign the pods to the nodes. This approach

implements the controller Kubernetes design pattern. It will watch for the

pods with the specific schedulerName and assign a node to them.

The fourth and the last way is developing and running scheduler

extenders. Scheduler extenders are external servers, and Kubernetes

scheduler calls them at specific steps of the scheduling framework. The

approach is similar to the scheduling framework plugins, but the extenders

are external services with HTTP endpoints. Thus, the extenders implement

the webhook Kubernetes design pattern.

The first two extension methods are not actual extension points since

they modify the vanilla Kubernetes components. Therefore, in this chapter,

we will focus on the last two ways: multiple schedulers and scheduler

extenders. We can illustrate the interaction of these two methods with the

Kubernetes scheduler in Figure 5-2.

Chapter 5 SCheduling extenSionS

149

Three stages have interaction with scheduler extenders: Filter,

Prioritize, and Bind. Therefore, it is beneficial to use extenders to

operate within the rules of kube-scheduler. If you are looking for

more flexibility, it is wise to choose to run a custom scheduler. Custom

schedulers are external applications, so they are not limited to the

scheduling framework’s flow and requests.

In the following sections, you will learn the details of both methods

and see them in action.

 Configure and Manage Multiple Schedulers
Kubernetes scheduler assigns pods to nodes with its elaborate architecture

and rich configuration capabilities. However, if the default scheduler does

not fit your requirements, it is possible to create a new one and run them

Figure 5-2. Kubernetes scheduler extension points

Chapter 5 SCheduling extenSionS

150

simultaneously. The basic idea of multiple schedulers is based on a field

in pod specification: schedulerName. If the field is specified, the pod is

dispatched by the corresponding scheduler. On the other hand, if it is not

set, the default scheduler dispatches the pod.

Let’s start by creating a multi-node cluster by running minikube start

 --nodes 5 if you have no cluster up and running. Then, you can create a

pod and check it is schedulerName.

Listing 5-5. Pod with the default scheduler

$ kubectl run nginx-by-default-scheduler --image=nginx

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-by-default-scheduler 1/1 Running 0 99s

$ kubectl get pods nginx-by-default-scheduler -o jsonpath=

"{.spec.schedulerName}"

default-scheduler

When you create without specifying the schedulerName field, it is filled

by the default value and then assigned by the default scheduler. Now, let’s

create another pod to be handled by a custom scheduler.

Listing 5-6. Pod with a custom scheduler

$ kubectl run nginx-by-custom-scheduler --image=nginx --overrid

es='{"spec":{"schedulerName":"custom-scheduler"}}'

pod/nginx-by-custom-scheduler created

$ kubectl get pods nginx-by-custom-scheduler

NAME READY STATUS RESTARTS AGE

nginx-by-custom-scheduler 0/1 Pending 0 16s

Chapter 5 SCheduling extenSionS

151

The pod is in Pending state because there is no scheduler to handle it.

It is now time to deploy a second scheduler to cluster to handle pods with

the schedulerName field equals custom-scheduler.

In the custom-scheduler, we will disable all beta features that are

enabled in the upstream scheduler. The scheduler will run in the kube-

system namespace next to the kube-scheduler. Create a file with the name

kube-scheduler-custom.yaml with the following content.

Listing 5-7. Custom scheduler pod definition

apiVersion: v1

kind: Pod

metadata:

 name: kube-scheduler-custom

 namespace: kube-system

spec:

 containers:

 - name: kube-scheduler-custom

 image: k8s.gcr.io/kube-scheduler:v1.19.0

 command:

 - kube-scheduler

 - --kubeconfig=/etc/kubernetes/scheduler.conf

 - --leader-elect=false

 - --scheduler-name=custom-scheduler

 - --feature-gates=AllBeta=false

 volumeMounts:

 - mountPath: /etc/kubernetes/scheduler.conf

 name: kubeconfig

 readOnly: true

 nodeName: minikube

 restartPolicy: Always

 volumes:

Chapter 5 SCheduling extenSionS

152

 - hostPath:

 path: /etc/kubernetes/scheduler.conf

 type: FileOrCreate

 name: kubeconfig

The pod is a frank definition to run k8s.gcr.io/kube-scheduler:v1.19.0

image and attaching the kubeconfig as read-only volume. Three of the

following flags define the features of the custom scheduler:

• leader-elect=false disables the leader election stage

before running the scheduler since only one instance of

the custom scheduler will run.

• scheduler-name=custom-scheduler defines the name

of the scheduler.

• feature-gates=AllBeta=false disables all beta

features.

Create the deployment with kubectl apply -f kube-scheduler-

custom.yaml file and check the pod status.

Listing 5-8. Custom scheduler pod in the cluster

$ kubectl -n kube-system get pods kube-scheduler-custom

NAME READY STATUS RESTARTS AGE

kube-scheduler-custom 1/1 Running 0 24s

Now, check the status of our pod, which is stuck in Pending.

Listing 5-9. Pod assignment

$ kubectl get pods nginx-by-custom-scheduler

NAME READY STATUS RESTARTS AGE

nginx-by-custom-scheduler 1/1 Running 0 42s

Chapter 5 SCheduling extenSionS

153

The pod is in the Running stage, and it means that the custom

scheduler worked flawlessly. Creating custom schedulers may not be part

of every cloud engineer’s daily routine because the default Kubernetes

scheduler works quite well for most cases. However, when you need to

implement more complex requirements, you will create your custom

scheduler and deploy it to the cluster. Let’s assume you want to create a

scheduler for cost minimization. In your custom scheduler, you may need

to assign pods to the cheapest nodes first. Instead, you can create a custom

scheduler that considers monitoring metrics while choosing a node.

In that case, you may need to distribute pods to the nodes to minimize

total latency in the system. However, minimizing the cost or optimizing

the latency is conditioned on external systems and not in the default

Kubernetes scheduler’s scope.

Running multiple schedulers and tagging the pods with their desired

scheduler are a straightforward Kubernetes-native approach. The vital

part is developing a bulletproof scheduler. There are three crucial points to

consider while creating and operating a custom scheduler:

• Kubernetes API Compatibility: Scheduler interacts

with Kubernetes API to watch pods, retrieve the list

of nodes, and create bindings. Therefore, you need to

develop custom schedulers that are compatible with

the Kubernetes API version. If you are using one of the

official client libraries, luckily, you only need to use the

correct versions.

• High Availability: If your scheduler goes down or runs

into failure, it will result in pods in the Pending state.

Thus, your applications will not run in the cluster.

Therefore, you need to design the application to run

with high availability.

Chapter 5 SCheduling extenSionS

154

• Play Along Well with the Default Scheduler: If there is

more than one decision-maker in the cluster, you need

to be careful of conflicting decisions. For instance, the

default scheduler controls the resource requests and

limits. If your custom scheduler fills the nodes without

considering cluster resources, the default scheduler’s

pods may move to the other nodes. Therefore, your

custom scheduler should play nicely with the default

one and avoid conflicting decisions.

In the following exercise, you will create a custom scheduler from

scratch using kubebuilder. Also, you will run it in the cluster and assign

some pods to nodes.

EXERCISE: DEVELOPING A CUSTOM SCHEDULER WITH KUBEBUILDER

in this exercise, you will create a custom chaos scheduler using

kubebuilder. essentially, the schedulers are controllers to watch pods in

the cluster. therefore, you will create a controller and implement reconciliation

methods. Finally, you will run the controller and see it in action.

Note the rest of the exercise is based on kubebuilder, and
it requires the following prerequisites: kubebuilder v2.3.1, go
version v1.14+, access to a Kubernetes cluster, and kubectl.

 1. initialize the project structure with the following commands:

$ mkdir -p $GOPATH/src/extend-k8s.io/chaos-scheduler

$ cd $GOPATH/src/extend-k8s.io/chaos-scheduler

$ kubebuilder init

Writing scaffold for you to edit...

Get controller runtime:

$ go get sigs.k8s.io/controller-runtime@v0.5.0

Chapter 5 SCheduling extenSionS

155

Update go.mod:

$ go mod tidy

Running make:

$ make

.../bin/controller-gen object:headerFile="hack/

boilerplate.go.txt" paths="./..."

go fmt ./...

go vet ./...

go build -o bin/manager main.go

Next: define a resource with:

$ kubebuilder create api

the commands create a folder and bootstrap the project with

boilerplate code.

 2. Create controller for watching the pods with the following

command:

$ kubebuilder create api --kind Pod --group core --version v1

Create Resource [y/n]

n

Create Controller [y/n]

y

Writing scaffold for you to edit...

controllers/pod_controller.go

Running make:

$ make

.../bin/controller-gen object:headerFile="hack/

boilerplate.go.txt" paths="./..."

go fmt ./...

go vet ./...

go build -o bin/manager main.go

Since pods are already Kubernetes resources, skip Create

Resource prompt by selecting no. however, accept the second

prompt to generate a controller for pod resources.

Chapter 5 SCheduling extenSionS

156

 3. open the pod_controlller.go located at controllers

folder. You will see two functions SetupWithManager and

Reconcile. SetupWithManager is the function that is called

when the controller starts. Reconcile is the function that is

invoked by every watched change in the cluster.

Change the SetupWithManager function with the following content:

func (r *PodReconciler) SetupWithManager(mgr ctrl.

Manager) error {

 filter := predicate.Funcs{

 CreateFunc: func(e event.CreateEvent) bool {

 pod, ok := e.Object.(*corev1.Pod)

 if ok {

 if pod.Spec.SchedulerName ==

"chaos- scheduler" && pod.Spec.

NodeName == "" {

 return true

 }

 return false

 }

 return false

 },

 UpdateFunc: func(e event.UpdateEvent) bool {

 return false

 },

 DeleteFunc: func(e event.DeleteEvent) bool {

 return false

 },

 }

Chapter 5 SCheduling extenSionS

157

 return ctrl.NewControllerManagedBy(mgr).

 For(&corev1.Pod{}).

 WithEventFilter(filter).

 Complete(r)

}

it adds a filter to watch creation events of pods with the

schedulerName chaos-scheduler and empty nodeName.

Change the Reconcile function with the following content:

func (r *PodReconciler) Reconcile(req ctrl.Request)

(ctrl.Result, error) {

 ctx := context.Background()

 log := r.Log.WithValues("pod", req.NamespacedName)

 nodes := new(corev1.NodeList)

 err := r.Client.List(ctx, nodes)

 if err != nil {

 return ctrl.Result{Requeue: true}, err

 }

 node := nodes.Items[rand.Intn(len(nodes.Items))].Name

 log.Info("scheduling", "node", node)

 binding := new(corev1.Binding)

 binding.Name = req.Name

 binding.Namespace = req.Namespace

 binding.Target = corev1.ObjectReference{

 Kind: "Node",

 APIVersion: "v1",

 Name: node,

 }

Chapter 5 SCheduling extenSionS

158

 err = r.Client.Create(ctx, binding)

 if err != nil {

 return ctrl.Result{Requeue: true}, err

 }

 return ctrl.Result{}, nil

}

the updated Reconcile function does the following:

• retrieve the list of nodes.

• Select a node randomly.

• Create a binding resource including the node and pod.

• Send the binding resource to Kubernetes api.

Choosing a random node is the essential part of the scheduler to

create chaos. it will test the capability and resilience of Kubernetes to

turbulent and unexpected conditions.

Note Chaos engineering is a common approach to experiment
with a system under ever-changing situations, namely, chaos. the
method experiments large-scale and distributed applications to build
confidence in elasticity and resilience.

add the following libraries to import list of pod_controlller.go:

"math/rand"

"sigs.k8s.io/controller-runtime/pkg/event"

"sigs.k8s.io/controller-runtime/pkg/predicate"

 4. Start the controller with the following command:

$ make run

../bin/controller-gen object:headerFile="hack/

boilerplate.go.txt" paths="./..."

Chapter 5 SCheduling extenSionS

159

go fmt ./...

go vet ./...

../bin/controller-gen "crd:trivialVersions=true"

rbac:roleName=manager-role webhook paths="./..." output:c

rd:artifacts:config=config/crd/bases

go run ./main.go

INFO controller-runtime.metrics metrics server is

starting to listen {"addr": ":8080"}

INFO setup starting manager

INFO controller-runtime.manager starting metrics

server {"path": "/metrics"}

INFO controller-runtime.controller Starting

EventSource {"controller": "pod", "source": "kind

source: /, Kind="}

INFO controller-runtime.controller Starting

Controller {"controller": "pod"}

INFO controller-runtime.controller Starting

workers {"controller": "pod", "worker count": 1}

as the logs show, the controller started and waited for the

events of pods in the cluster.

 5. in another terminal, create a pod to be scheduled by chaos- scheduler:

$ kubectl run nginx-by-chaos-scheduler --image=nginx --ov

errides='{"spec":{"schedulerName":"chaos-scheduler"}}'

pod/nginx-by-chaos-scheduler created

 6. Check the logs of controller started in Step 4:

...

INFO controllers.Pod scheduling {"pod":

"default/nginx-by-chaos-scheduler", "node":

"minikube-m02"}

DEBUG controller-runtime.controller Successfully

Reconciled {"controller": "pod", "request": "default/

nginx- by- chaos-scheduler"}

Chapter 5 SCheduling extenSionS

160

the additional log lines indicate that the custom scheduler

assigned the pod.

 7. Check the status of pod started in Step 5:

$ kubectl get pods nginx-by-chaos-scheduler

NAME READY STATUS RESTARTS AGE

nginx-by-chaos-scheduler 1/1 Running 0 34s

the chaos scheduler assigned the new pod to a node, and it is running.

it shows that the custom scheduler developed from scratch using

kubebuilder works flawlessly.

In the following section, we will extend the Kubernetes scheduler with

the second extension point: scheduler extenders. The scheduler extender

approach will work as webhooks and interfere with the scheduling

framework stages.

 Scheduler Extenders
Scheduler extenders are external webhooks to tweak scheduling decisions

in the different phases of the scheduling framework. The framework has

multiple stages to find a suitable node, and in each step, it calls plugins

compiled into kube-scheduler. In four particular phases, it also calls

scheduler extenders: Filter, Score/Prioritize, Preempt, and Bind. The

responses from the webhooks are combined with the results of scheduler

plugins. Thus, scheduler extenders facilitate an extension of the kube-

scheduler without diving into its source code.

In this section, configuration details and extender API will be covered.

In the end, you will develop a scheduler extender webhook server and run

it with the Kubernetes cluster.

Chapter 5 SCheduling extenSionS

161

 Configuration Details
Kubernetes scheduler connects to external processes, so it should know

where to connect and evaluate responses. The configuration is passed

via a file with the schema of KubeSchedulerConfiguration. A minimal

configuration looks as follows.

Listing 5-10. Minimal KubeSchedulerConfiguration

apiVersion: kubescheduler.config.k8s.io/v1beta1

kind: KubeSchedulerConfiguration

clientConnection:

 kubeconfig: /etc/kubernetes/scheduler.conf

Note Comprehensive details of KubeSchedulerConfiguration
is available in reference documentation.

You can also add extenders to KubeSchedulerConfiguration as

follows.

Listing 5-11. Extenders in KubeSchedulerConfiguration

apiVersion: kubescheduler.config.k8s.io/v1beta1

kind: KubeSchedulerConfiguration

clientConnection:

 kubeconfig: /etc/kubernetes/scheduler.conf

extenders:

 - urlPrefix: http://localhost:8888/

 filterVerb: filter

 ignorable: true

 weight: 1

 - urlPrefix: http://localhost:8890/

 filterVerb: filter

Chapter 5 SCheduling extenSionS

https://kubernetes.io/docs/reference/scheduling/config/

162

 prioritizeVerb: prioritize

 bindVerb: bind

 ignorable: false

 weight: 1

In the preceding example, two extenders are running on

localhost:8888 and localhost:8890. The first one is called for filtering

nodes only, and when it fails, it will not block the scheduling. However,

the second one is called for filtering, scoring, and binding phases of the

framework. Besides, it is not ignorable, so if the webhook is not reachable

or fails, the pod’s scheduling will be stuck at Pending.

Note You can check fields of extender configuration in the source
code as it is not part of Kubernetes api documentation.

After configuring the kube-scheduler with extender information, now

let’s dive into the interaction between them.

 Scheduler Extender API

Kubernetes scheduler makes HTTP calls to extenders with the data related

to its stage and expects structured responses. In your scheduler extender,

you need to implement these calls with their JSON request and responses.

The essential advantage is that you can develop the extender in any

language independent from Kubernetes binaries.

Filter

Filter webhooks receive the following data as argument.

Chapter 5 SCheduling extenSionS

https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/kube-scheduler/config/v1beta1/types.go
https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/kube-scheduler/config/v1beta1/types.go

163

Listing 5-12. ExtenderArgs data structure

type ExtenderArgs struct {

 // Pod being scheduled

 Pod *v1.Pod

 // List of candidate nodes where the pod can be

 // scheduled; to be populated only if

 // Extender.NodeCacheCapable == false

 Nodes *v1.NodeList

 // List of candidate node names where the pod

 // can be scheduled; to be populated only if

 // Extender.NodeCacheCapable == true

 NodeNames *[]string

}

It simply consists of a pod and a list of nodes or node names based on

the cache status in extenders. As a response, the following data structure is

sent back.

Listing 5-13. ExtenderFilterResult data structure

type ExtenderFilterResult struct {

 // Filtered set of nodes where the pod can be scheduled

 // only if Extender.NodeCacheCapable == false

 Nodes *v1.NodeList

 // Filtered set of nodes where the pod can be scheduled

 // only if Extender.NodeCacheCapable == true

 NodeNames *[]string

 // Filtered out nodes where the pod can't be scheduled

 // and the failure messages

Chapter 5 SCheduling extenSionS

164

 FailedNodes FailedNodesMap

 // Error message indicating failure

 Error string

}

type FailedNodesMap map[string]string

The response consists of the filtered nodes for the pod. In addition, the

unschedulable nodes are sent back as FailedNodes with their messages.

Finally, there is an Error field if the filtering fails for any reason.

Prioritize

Prioritize webhooks receive the same data structure, ExtenderArgs, like

filter webhooks. The webhook is expected to create scores for the nodes to

assign the pod and send back the following data structure.

Listing 5-14. HostPriorityList data structure

type HostPriorityList []HostPriority

type HostPriority struct {

 // Name of the host

 Host string

 // Score associated with the host

 Score int64

}

Scores from the webhook are added to the ones calculated by other

extenders and Kubernetes scheduler plugins. The scheduling framework

selects the node with the highest score for the pod assignment.

Chapter 5 SCheduling extenSionS

165

Preempt

When Kubernetes schedules pods to nodes, finding a suitable node in the

cluster is not always possible. In that case, preemption logic is triggered to

evict some pods from the node. If preemption runs successfully, the pod

will be scheduled to the node, and the evicted ones will find a new home.

During preemption, the scheduler also calls enabled webhooks with the

following data structure.

Listing 5-15. ExtenderPreemptionArgs data structure

type ExtenderPreemptionArgs struct {

 //pod being scheduled

 Pod *v1.Pod

 // Victims map generated by scheduler preemption phase

 // Only set NodeNameToMetaVictims if

 // Extender.NodeCacheCapable == true.

 // Otherwise, only set NodeNameToVictims.

 NodeNameToVictims map[string]*Victims

 NodeNameToMetaVictims map[string]*MetaVictims

}

type Victims struct {

 // a group of pods expected to be preempted.

 Pods []*v1.Pod

 // the count of violations of PodDisruptionBudget

 NumPDBViolations int64

}

type MetaVictims struct {

 // a group of pods expected to be preempted.

 Pods []*v1.Pod

 // the count of violations of PodDisruptionBudget

 NumPDBViolations int64

}

Chapter 5 SCheduling extenSionS

166

The data consists of a pod and a map of potential nodes with Victims

living on these nodes. In response, the webhook sends the following data.

Listing 5-16. ExtenderPreemptionResult data structure

type ExtenderPreemptionResult struct {

 NodeNameToMetaVictims map[string]*MetaVictims

}

The webhook evaluates the nodes and pods for preemption and sends

back potential victims.

Bind

Bind call is used to delegate the node and pod assignment. When it is

implemented, it becomes the extender’s responsibility to interact with

Kubernetes API for binding. Webhooks receive the following data as an

argument.

Listing 5-17. ExtenderBindingArgs data structure

type ExtenderBindingArgs struct {

 // PodName is the name of the pod being bound

 PodName string

 // PodNamespace is the namespace of the pod being bound

 PodNamespace string

 // PodUID is the UID of the pod being bound

 PodUID types.UID

 // Node selected by the scheduler

 Node string

}

In response, it returns if an error happened during binding.

Chapter 5 SCheduling extenSionS

167

Listing 5-18. ExtenderBindingResult data structure

type ExtenderBindingResult struct {

 // Error message indicating failure

 Error string

}

In the following exercise, you will create a scheduler extender from

scratch and use it in action. The extender will interfere with scheduling

framework decisions and the assignment of pods to nodes.

EXERCISE: DEVELOPING AND RUNNING A SCHEDULER EXTENDER

in this exercise, you will create a custom chaos scheduler extender and run

it inside the Kubernetes cluster. You will develop an http web server in go

since scheduler extenders are webhook servers in principle. in addition, you

will configure the kube-scheduler in minikube to connect to your scheduler

extender.

Note the rest of the exercise is based on writing a web server in go, and
it requires the following prerequisites: docker, minikube, and kubectl.

 1. Start a multi-node cluster in minikube with the following

command:

$ minikube start --kubernetes-version v1.19.0 --nodes 5

 2. Create the following folder structure in your go environment:

$ mkdir -p cd $GOPATH/src/extend-k8s.io/k8s-scheduler-

extender

$ cd $GOPATH/src/extend-k8s.io/k8s-scheduler-extender

$ mkdir -p cmd manifests pkg/filter pkg/prioritize

$ tree -a

Chapter 5 SCheduling extenSionS

168

.

├── cmd
├── manifests
└── pkg
 ├── filter
 └── prioritize

5 directories, 0 files

the folder structure is the mainstream way of creating a go

application. in the following steps, you will create files in each

directory.

 3. Create a file flip.go in pkg/filter folder with the following

content:

package filter

import (

 "math/rand"

 "time"

 "github.com/sirupsen/logrus"

)

const (

 HEADS = "heads"

 TAILS = "tails"

)

var coin []string

func init() {

 rand.Seed(time.Now().UnixNano())

 coin = []string{HEADS, TAILS}

}

Chapter 5 SCheduling extenSionS

169

func Flip() string {

 side := coin[rand.Intn(len(coin))]

 logrus.Info("Flipped the coin and it is ", side)

 return side

}

the function Flip returns either heads or tails to filter the

nodes randomly.

Create a file filter.go in pkg/filter folder with the

following content:

package filter

import (

 "fmt"

 corev1 "k8s.io/api/core/v1"

 extenderv1 "k8s.io/kube-scheduler/extender/v1"

)

func Filter(args extenderv1.ExtenderArgs) extenderv1.

ExtenderFilterResult {

 filtered := make([]corev1.Node, 0)

 failed := make(extenderv1.FailedNodesMap)

 pod := args.Pod

 for _, node := range args.Nodes.Items {

 side := Flip()

 if side == HEADS {

 filtered = append(filtered, node)

 } else {

Chapter 5 SCheduling extenSionS

170

 failed[node.Name] = fmt.Sprintf("%s

cannot be scheduled to %s: coin is %s",

pod.Name, node.Name, side)

 }

 }

 return extenderv1.ExtenderFilterResult{

 Nodes: &corev1.NodeList{

 Items: filtered,

 },

 FailedNodes: failed,

 }

}

the Filter function implements the logic of the scheduler

extender call by receiving ExtenderArgs as an argument and

ExtenderFilterResult as a response.

 4. Create a file roll.go in pkg/prioritize folder with the

following content:

package prioritize

import (

 "math/rand"

 "time"

 "github.com/sirupsen/logrus"

 extenderv1 "k8s.io/kube-scheduler/extender/v1"

)

func init() {

 rand.Seed(time.Now().UnixNano())

}

Chapter 5 SCheduling extenSionS

171

func Roll() int64 {

 number := rand.Int63n(extenderv1.

MaxExtenderPriority + 1)

 logrus.Info("Rolled the dice and it is ", number)

 return number

}

Roll function imitates rolling dice to find a score for the nodes.

Create a file prioritize.go in pkg/prioritize folder with

the following content:

package prioritize

import (

 extenderv1 "k8s.io/kube-scheduler/extender/v1"

)

func Prioritize(args extenderv1.ExtenderArgs) extenderv1.

HostPriorityList {

 hostPriority := make(extenderv1.HostPriorityList, 0)

 for _, node := range args.Nodes.Items {

 hostPriority = append(hostPriority,

extenderv1.HostPriority{

 Host: node.Name,

 Score: Roll(),

 })

 }

 return hostPriority

}

Prioritize function implements the scheduler extender call

to receive ExtenderArgs and send HostPriorityList

back to kube-scheduler.

Chapter 5 SCheduling extenSionS

172

 5. Create a main.go file under cmd folder with the following content:

package main

import (

 "encoding/json"

 "log"

 "net/http"

 "github.com/gorilla/mux"

 "github.com/extend-k8s.io/k8s-scheduler-extender/

pkg/filter"

 "github.com/extend-k8s.io/k8s-scheduler-extender/

pkg/prioritize"

 "github.com/sirupsen/logrus"

 extenderv1 "k8s.io/kube-scheduler/extender/v1"

)

func main() {

 r := mux.NewRouter()

 r.HandleFunc("/", homeHandler)

 r.HandleFunc("/filter", filterHandler)

 r.HandleFunc("/prioritize", prioritizeHandler)

 log.Fatal(http.ListenAndServe(":8888", r))

}

func filterHandler(w http.ResponseWriter, r *http.

Request) {

 args := extenderv1.ExtenderArgs{}

 response := extenderv1.ExtenderFilterResult{}

 if err := json.NewDecoder(r.Body).Decode(&args);

err != nil {

 response.Error = err.Error()

Chapter 5 SCheduling extenSionS

173

 } else {

 response = filter.Filter(args)

 }

 w.Header().Set("Content-Type", "application/json")

 if err := json.NewEncoder(w).Encode(response); err

!= nil {

 logrus.Error(err)

 return

 }

}

func prioritizeHandler(w http.ResponseWriter, r *http.

Request) {

 args := extenderv1.ExtenderArgs{}

 response := make(extenderv1.HostPriorityList, 0)

 if err := json.NewDecoder(r.Body).Decode(&args);

err == nil {

 response = prioritize.Prioritize(args)

 }

 w.Header().Set("Content-Type", "application/json")

 if err := json.NewEncoder(w).Encode(response);

err != nil {

 logrus.Error(err)

 return

 }

}

func homeHandler(w http.ResponseWriter, r *http.Request)

{

 w.Write([]byte("scheduler extender is running!"))

}

Chapter 5 SCheduling extenSionS

174

it is the entry point of the webhook server with http handlers

for filter and prioritize calls. the server will run on the 8888 port

by default.

 6. Create a go.mod file in the root folder to set the dependency

versions:

module github.com/extend-k8s.io/k8s-scheduler-extender

go 1.14

require (

 github.com/gorilla/mux v1.8.0

 github.com/sirupsen/logrus v1.6.0

 k8s.io/api v0.19.0

 k8s.io/kube-scheduler v0.19.0

)

 7. Create a Dockerfile in the root folder to build container

images in the following steps:

FROM golang:1.14-alpine as builder

ADD . /go/src/github.com/extend-k8s.io/k8s-scheduler-

extender

WORKDIR /go/src/github.com/extend-k8s.io/k8s-scheduler-

extender/cmd

RUN go build -v

FROM alpine:latest

COPY --from=builder /go/src/github.com/extend-k8s.io/k8s-

scheduler- extender/cmd/cmd /usr/local/bin/k8s-scheduler-

extender

CMD ["k8s-scheduler-extender"]

Chapter 5 SCheduling extenSionS

175

 8. now, you can build and push the docker image of your

scheduler extender with the following commands:

Note Set DOCKER_REPOSITORY environment variable according to
your docker repository.

$ docker build -t $DOCKER_REPOSITORY/k8s-scheduler-

extender:v1 .

Step 1/7 : FROM golang:1.14-alpine as builder

...

Step 7/7 : CMD ["k8s-scheduler-extender"]

 ---> Running in 6655404206c1

Removing intermediate container 6655404206c1

 ---> 0ce4bb201541

Successfully built 0ce4bb201541

Successfully tagged $DOCKER_REPOSITORY/k8s-scheduler-

extender:v1

$ docker push $DOCKER_REPOSITORY/k8s-scheduler-

extender:v1

The push refers to repository [docker.io/$DOCKER_

REPOSITORY/k8s-scheduler-extender]

...

v1: digest: sha256:0e62a24a4b9e9e0215f5f02e37b5f86d9235ee

950e740069f80951e370ae5b34 size: 739

 9. Create a Kubernetes scheduler configuration file with the name

kube-scheduler-config.yaml under manifests folder:

apiVersion: kubescheduler.config.k8s.io/v1beta1

kind: KubeSchedulerConfiguration

clientConnection:

 kubeconfig: /etc/kubernetes/scheduler.conf

extenders:

Chapter 5 SCheduling extenSionS

176

 - urlPrefix: http://localhost:8888/

 filterVerb: filter

 prioritizeVerb: prioritize

 weight: 1

it is a simple configuration that will be passed to the kube-

scheduler, and it defines the location of your extender with

endpoints.

 10. Create a Kubernetes scheduler pod file to replace the default

pod definition of kube-scheduler. Set the filename kube-

scheduler.yaml under manifests folder with the following

content:

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 component: kube-scheduler

 tier: control-plane

 name: kube-scheduler

 namespace: kube-system

spec:

 containers:

 - command:

 - kube-scheduler

 - --authentication-kubeconfig=/etc/kubernetes/

scheduler.conf

 - --authorization-kubeconfig=/etc/kubernetes/

scheduler.conf

 - --bind-address=127.0.0.1

 - --kubeconfig=/etc/kubernetes/scheduler.conf

 - --leader-elect=false

 - --port=0

Chapter 5 SCheduling extenSionS

177

 - --config=/etc/kubernetes/kube-scheduler-config.yaml

 image: k8s.gcr.io/kube-scheduler:v1.19.0

 imagePullPolicy: IfNotPresent

 livenessProbe:

 failureThreshold: 8

 httpGet:

 host: 127.0.0.1

 path: /healthz

 port: 10259

 scheme: HTTPS

 initialDelaySeconds: 10

 periodSeconds: 10

 timeoutSeconds: 15

 name: kube-scheduler

 resources:

 requests:

 cpu: 100m

 startupProbe:

 failureThreshold: 24

 httpGet:

 host: 127.0.0.1

 path: /healthz

 port: 10259

 scheme: HTTPS

 initialDelaySeconds: 10

 periodSeconds: 10

 timeoutSeconds: 15

 volumeMounts:

 - mountPath: /etc/kubernetes/scheduler.conf

 name: kubeconfig

 readOnly: true

 - mountPath: /etc/kubernetes/kube-scheduler-config.

yaml

 name: kube-scheduler-config

Chapter 5 SCheduling extenSionS

178

 readOnly: true

 hostNetwork: true

 priorityClassName: system-node-critical

 volumes:

 - hostPath:

 path: /etc/kubernetes/scheduler.conf

 type: FileOrCreate

 name: kubeconfig

 - hostPath:

 path: /etc/kubernetes/kube-scheduler-config.yaml

 type: FileOrCreate

 name: kube-scheduler-config

status: {}

it adds three sections to use the kube-scheduler-config.yaml

from Step 9.

• a command flag config

• a volume with the name kube-scheduler-config

• a volume mount for the volume kube-scheduler-config

 11. Create a pod definition for scheduler extender with the name

kube-scheduler-extender.yaml under manifests folder

with the following content:

apiVersion: v1

kind: Pod

metadata:

 labels:

 component: kube-scheduler-extender

 tier: control-plane

 name: kube-scheduler-extender

 namespace: kube-system

Chapter 5 SCheduling extenSionS

179

spec:

 containers:

 - image: DOCKER_REPOSITORY/k8s-scheduler-extender:v1

 name: kube-scheduler-extender

 hostNetwork: true

Note do not forget to change DOCKER_REPOSITORY to the
environment variable set in Step 8.

 12. Mount the current working directory into minikube node with

the following command:

$ minikube mount $(pwd):/etc/k8s-scheduler-extender

📁 Mounting host path .../src/extend-k8s.io/k8s-scheduler

 - extender into VM as /etc/k8s-scheduler-extender ...

 ...

🚀 Userspace file server: ufs starting

✅ Successfully mounted .../src/extend-k8s.io/k8s-

scheduler- extender to /etc/k8s-scheduler-extender

📌 NOTE: This process must stay alive for the mount to

be accessible ...

 13. in another terminal, SSh into the minikube node and copy

the manifests with the following commands, and restart the

kubelet:

$ minikube ssh

docker@minikube:~$ sudo su

root@minikube:/home/docker# cp /etc/k8s-scheduler-

extender/manifests/kube-scheduler-extender.yaml /etc/

kubernetes/manifests/kube-scheduler-extender.yaml

root@minikube:/home/docker# cp /etc/k8s-scheduler-

extender/manifests/kube-scheduler-config.yaml /etc/

kubernetes/kube- scheduler- config.yaml

Chapter 5 SCheduling extenSionS

180

root@minikube:/home/docker# cp /etc/k8s-scheduler-

extender/manifests/kube-scheduler.yaml /etc/kubernetes/

manifests/kube- scheduler.yaml

root@minikube:/home/docker# systemctl restart kubelet

in the copy steps, you have added manifests and configuration

files to the locations where kubelet looks for. in the last step,

you have restarted the kubelet to load the new files and work

with them. You can exit from the minikube node and continue

on your local workstation.

 14. Create a deployment with 25 replicas and watch for the events

in the cluster:

$ kubectl create deployment nginx --image=nginx

 --replicas=25

deployment.apps/nginx created

$ kubectl get events --field-selector

reason=FailedScheduling

LAST SEEN TYPE REASON OBJECT

MESSAGE

...

3m23s Warning FailedScheduling pod/nginx-

6799fc88d8- qnn9p 0/5 nodes are available: 1 nginx-

6799fc88d8-qnn9p cannot be scheduled to minikube-m02:

coin is tails, 1 nginx-6799fc88d8- qnn9p cannot be

scheduled to minikube-m03: coin is tails, 1 nginx-

6799fc88d8-qnn9p cannot be scheduled to minikube-m04:

coin is tails, 1 nginx-6799fc88d8-qnn9p cannot be

scheduled to minikube-m05: coin is tails, 1 nginx-

6799fc88d8- qnn9p cannot be scheduled to minikube: coin is

tails.

...

Chapter 5 SCheduling extenSionS

181

if you are lucky and get tails for all five nodes, the pod will have similar

events. if you are not lucky to see the event, you can also check the

logs of the scheduler extender:

$ kubectl -n kube-system logs -f kube-scheduler-extender-

minikube

...

time=".." level=info msg="Flipped the coin and it is

heads"

time=".." level=info msg="Flipped the coin and it is

heads"

time=".." level=info msg="Flipped the coin and it is

tails"

time=".." level=info msg="Flipped the coin and it is

heads"

time=".." level=info msg="Flipped the coin and it is

tails"

time=".." level=info msg="Rolled the dice and it is 1"

time=".." level=info msg="Rolled the dice and it is 10"

time=".." level=info msg="Rolled the dice and it is 1"

...

it shows that the kube-scheduler is configured correctly, and it connects

to the scheduler extender webhook. the webhook filters the nodes randomly

by flipping the coin. in addition, it scores the nodes by rolling the dice. in other

words, the scheduler extender generates some randomness and chaos into

the scheduling process.

Developing and running scheduler extenders is straightforward

since you can extend the existing default scheduler’s functionality

without recompiling the binary. Also, you can create the extender in

Chapter 5 SCheduling extenSionS

182

any programming language you want. However, it would be best if you

were careful on the following issues since you generate a touchpoint to

Kubernetes control plane component:

• Configuration: Extenders are defined with a static file

to the Kubernetes scheduler. Therefore, ensure that the

file location and its content are correct. In addition,

ensure that the file will not be overwritten or deleted

with the cluster upgrades.

• Performance: Like all webhooks, extenders run as

external processes. Connecting to another server and

retrieving the response are costly in terms of time.

Ensure that the webhook is providing responses as

fast as possible and it is reachable by the control plane

components.

• Cache Inconsistency: It is possible to enable caches in

extenders for node information. If your nodes do not

change often or scheduling decisions are not so critical,

it would be beneficial to cache the node information in

extenders. On the other hand, if you always need the

recent information about the nodes, disable the caches

and work with the data sent to you by the Kubernetes

scheduler.

 Key Takeaways
• Kubernetes scheduler is the control plane component

to assign workload over the cluster.

• Kubernetes scheduler chooses the best possible node

within the priorities and rules set.

Chapter 5 SCheduling extenSionS

183

• It is possible to extend scheduling decisions by running

multiple schedulers in the cluster.

• The scheduling framework is the pluggable architecture

of the Kubernetes scheduler, and it is extendible by

webhooks.

In the following chapter, we will extend the interaction of Kubernetes

with the infrastructure by developing and running storage, networking,

and device plugins.

Chapter 5 SCheduling extenSionS

185© Onur Yilmaz 2021
O. Yilmaz, Extending Kubernetes, https://doi.org/10.1007/978-1-4842-7095-0_6

CHAPTER 6

Infrastructure
Extensions

Move fast with stable infrastructure.

—Mark Zuckerberg
American entrepreneur and

founder and CEO of Facebook

Kubernetes is the de facto container orchestration system for what it

offers and also what it does not offer. Kubernetes comes with scalable

and reliable container runtime management, but it leaves infrastructure-

related decisions to the end users. It allows users to create their clusters

on any infrastructure as long as it is compliant with APIs. This chapter will

focus on extending the Kubernetes by changing the underlying cloud-

native infrastructure. At the end of this chapter, you will configure and

run storage, networking, and device plugins that implement custom and

flexible requirements.

Let’s start with an overview of the cloud-native infrastructure and how

Kubernetes integrates it.

https://doi.org/10.1007/978-1-4842-7095-0_6#DOI

186

 Cloud-Native Infrastructure
Kubernetes is not a “Write once, run anywhere” type of system, but it also

does not restrict any cloud provider or on-prem system. It allows users to

choose from a wide range of open infrastructure options in the ecosystem.

You can create a Kubernetes cluster on almost every public cloud provider,

inside your datacenter, or even on your laptop. However, making cloud-

native applications requires an underlying cloud-native infrastructure.

The infrastructure should be designed to take advantage of virtualized and

distributed microservice architecture.

Kubernetes is the container orchestration, so its focus is creating,

running, and operating containers. However, containers are not simple

applications running on bare metal nodes. Instead, they are virtualized

systems requiring complicated storage, networking, and device operations.

The stack of Kubernetes can be illustrated in Figure 6-1. There are storage,

network, and device plugins that interact with the physical infrastructure

at the bottom. When it achieves connectivity and volumes, Kubernetes can

create and run your containers as the building block of pods. The upper

layers of Kubernetes make it possible to develop scalable, reliable, and

cloud-native applications with more complex Kubernetes resources.

Chapter 6 InfrastruCture extensIons

187

The plugins between the infrastructure and Kubernetes are the tools to

connect your infrastructures with a custom storage or networking solution.

Since Kubernetes does not enforce a “one size fits all” approach, it works

with every infrastructure provided as long as they are compliant with the

publicly available plugin APIs. In the following sections, we will cover the

three plugins with their APIs and examples.

 Storage Plugins
Storage is one of the challenges in cloud-native architecture with

its durability and rigidity characteristics. Containers are temporary,

and Kubernetes can restart or reschedule them. If there are volumes

attached to the containers, it is possible to lose them too. However, you

need to deploy databases, ERP systems, and data-centric applications

Figure 6-1. Kubernetes and infrastructure

Chapter 6 InfrastruCture extensIons

188

to Kubernetes, so not all applications running in the cluster are fully

ephemeral. Thus, infrastructure should endure the container’s application

data as a part of persistent storage.

Let’s see how persistent storage works in Kubernetes. Create a

PersistentVolumeClaim (PVC) with the following data.

Listing 6-1. Example PVC

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc-test

spec:

 accessModes:

 - ReadWriteOnce

 requests:

 storage: 1Gi

Now, check the PersistentVolumeClaim and PersistentVolume

resources in the cluster.

Listing 6-2. Volume listing

$ kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

pvc-test Bound pvc-467fa613-0396-481a-aa73-

d4b6c5fbcc4b 1Gi RWO standard 10s

$ kubectl get pv

NAME CAPACITY ACCESS

MODES RECLAIM POLICY STATUS CLAIM

STORAGECLASS REASON AGE

Chapter 6 InfrastruCture extensIons

189

pvc-467fa613-0396-481a-aa73-d4b6c5fbcc4b 1Gi

RWO Delete Bound default/pvc-

test standard 13s

In the PVC, you have requested a volume with 1Gi, and the cluster

created one PersistentVolume accordingly. You can now use it in pods,

statefulsets, or even functions to store your application data. It seems

straightforward with a PVC and PV in Kubernetes because it creates a

powerful abstraction from the infrastructure layer. As the end user, we do

not need to know the lifecycle of storage in the infrastructure:

• How is the volume created?

• How much capacity is allocated?

• Where is the volume attached?

• How is the access to storage provided?

• How the backup and restore of the volumes are

managed?

Communication between storage vendors and Kubernetes is

standardized as an open source API. Thus, implementation details and

answers to the questions are left to the storage providers. The abstraction

between Kubernetes and storage infrastructure is defined in Container

Storage Interface (CSI), and you will learn its basics next.

 Container Storage Interface (CSI)
Container Storage Interface (CSI) is an open source API to enable

container orchestrators to work with storage systems. In the early stages of

Kubernetes, volumes are managed by plugins compiled into Kubernetes

binaries. As the number of vendors increases, it becomes more complex to

manage in-tree plugins. In addition, it creates a closed environment since

adding a new storage vendor requires to be a part of Kubernetes source

Chapter 6 InfrastruCture extensIons

190

code. On the other hand, CSI plugins are external applications with an

open standard API.

From the vendor’s point of view, the main advantage is to only develop

plugins and follow the CSI requirements. It is enough to work with every

container orchestrator such as Kubernetes, Apache Mesos, and many to

follow in the future. CSI plugins provide the following capabilities:

• Dynamic provisioning and decommission of volumes

• Attachment/mounting and detachment/unmounting

of volumes

The complete specification is available at GitHub with all functions,

requests, and responses. The communication between the CSI plugins

and container orchestrators is handled by gRPC (Remote Procedure Call),

which is an open framework for high-performance communication.

The CSI plugins are divided into two as Node Plugin and Controller

Plugin:

• Node Plugin is a gRPC server that runs on the node

where the storage provider volumes are provisioned.

• Controller Plugin is a gRPC server that can run

anywhere in the cluster.

The two plugins also implement an Identity gRPC service to provide

information about their capabilities. Therefore, you can deploy Node and

Controller Plugins as two binaries or can be combined into a single binary.

The lifecycle of a volume with the gRPC calls can be summarized in the

following diagram in Figure 6-2.

Chapter 6 InfrastruCture extensIons

https://github.com/container-storage-interface/spec/blob/master/spec.md

191

The flow starts with a CreateVolume call to Controller Plugin to

provision a new volume. Then, ControllerPublishVolume call is made

to indicate that the container orchestrator wants to use the node on

the volume. In this step, the plugin performs the work that is necessary

for making the volume available on the given node. Following that, the

NodePublishVolume call is sent to Node Plugin running on the specific

node to publish that a workload is scheduled and it wants to use the

volume. Similarly, NodeUnpublishVolume, ControllerUnpublishVolume,

and DeleteVolume calls are made while deleting a volume in the storage

provider.

CSI interface is straightforward to work with, but engaging volumes

into a container orchestration system such as Kubernetes is not so frank.

In the following section, you will learn how CSI plugins are integrated into

Kubernetes.

 CSI Plugins in Kubernetes
CSI is a standard for storage systems to work with container orchestration

systems such as Kubernetes. The main idea is for vendors to develop

plugins and install them into the container orchestrators. In this section,

you will learn how Kubernetes integrates CSI plugins with native

Kubernetes resources.

Figure 6-2. Lifecycle of a dynamic volume

Chapter 6 InfrastruCture extensIons

192

Kubernetes defines the communication between kubelet and CSI

plugin with the following two rules:

• kubelet runs on the node and directly calls CSI

functions. Therefore, the CSI plugins should run on the

node with their Unix socket available to kubelet.

• kubelet finds the CSI plugins with a plugin registration

mechanism. Therefore, CSI plugins should register

themselves to the kubelet running on the node.

In addition, the Kubernetes storage community provides sidecar

containers and resources to minimize deployment effort and boilerplate

code. Sidecar containers have the common logic to watch Kubernetes

API and trigger actions against CSI plugins. The idea is to bundle

sidecar containers with the CSI plugins and deploy them as pods to

the cluster. It is not mandatory to use sidecar containers; however, it is

highly recommended since they create a powerful abstraction between

Kubernetes and CSI. Currently, the following sidecars are maintained:

• external-provisioner: It watches for

PersistentVolumeClaim objects in Kubernetes API and

calls CreateVolume against the CSI plugin. When the

new volume is provisioned, the external-provisioner

creates a PersistentVolume object in Kubernetes API.

• external-attacher: It attaches the volumes to the nodes

by calling the ControllerPublish function of CSI

drivers.

• external-snapshotter: It watches for

VolumeSnapshotContent resources in Kubernetes

API and takes CreateSnapshot, DeleteSnapshot, and

ListSnapshots actions against CSI driver.

Chapter 6 InfrastruCture extensIons

193

• external-resizer: It watches for the changes on

PersistentVolumeClaim objects to catch if more

storage is requested. In that case, it calls the

ControllerExpandVolume function of the CSI plugin.

• node-driver-registrar: It fetches CSI driver

information from the plugin endpoint and registers it

with the kubelet.

• livenessprobe: It monitors the CSI plugin endpoints’

health and helps Kubernetes restart the pod if necessary.

CSI plugins are typically deployed to Kubernetes as two components

packed by sidecar containers as diagrammed in Figure 6-3.

Figure 6-3. CSI deployment in Kubernetes

Chapter 6 InfrastruCture extensIons

194

Controller Plugin consists of the CSI plugin that implements controller

service and the following sidecars: external-provisioner, external-attacher,

external-snapshotter, and external-resizer. It can be deployed as a

deployment or statefulset since it can run on any node in the cluster.

Node Plugin consists of a CSI plugin that implements node service

with node-driver-registrar sidecar. It should be deployed on every node in

the cluster by a DaemonSet.

The sidecars make developing a custom storage plugin, and integrating

it into Kubernetes is straightforward. You only need to implement the CSI

services following the standard. All cloud providers (such as Google Cloud,

Azure, AWS, or AliCloud), infrastructure providers (such as IBM, Dell,

VMware, or Hewlett Packard), and storage technologies (such as OpenEBS,

GlusterFS, or Vault) have already their CSI drivers ready and publicly

available. The following section will configure and deploy a CSI driver to a

Kubernetes cluster and see it in action.

 CSI Hostpath Driver in Action

CSI Hostpath Driver is a CSI implementation to create volumes using a

local directory. Therefore, it is a non-production driver and runs on a single

node. In this section, we will deploy it to the cluster and see it in action.

Let’s start by creating a minikube cluster by running minikube start

 --kubernetes-version v1.19.0.

When your cluster is up and running, enable volumesnapshots and

csi-hostpath-driver addons.

Listing 6-3. Minikube addons

$ minikube addons enable volumesnapshots

🌟 The 'volumesnapshots' addon is enabled

$ minikube addons enable csi-hostpath-driver

🔎 Verifying csi-hostpath-driver addon...

🌟 The 'csi-hostpath-driver' addon is enabled

Chapter 6 InfrastruCture extensIons

https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html

195

The first command enables volumesnapshots and deploys the

Volume Snapshot Controller along with the volume snapshot CRDs.

Since minikube is a single-node cluster, by default, there is no CSI

implementation available. The second command deploys CSI Hostpath

Driver, which will provide storage for you.

The next step is to check which CSIDrivers are installed in the cluster.

Listing 6-4. CSIDrivers in the cluster

$ kubectl get CSIDrivers

NAME ATTACHREQUIRED PODINFOONMOUNT

MODES AGE

hostpath.csi.k8s.io true true

Persistent,Ephemeral 9m17s

The name of the CSI drivers follows the domain name notation as

hostpath.csi.k8s.io. In addition, there should be StorageClass for

volumes managed by the hostpath driver.

Listing 6-5. Storage classes in the cluster

$ kubectl get StorageClass

NAME PROVISIONER RECLAIMPOLICY

VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE

csi-hostpath-sc hostpath.csi.k8s.io Delete

Immediate false 12m

standard (default) k8s.io/minikube-hostpath Delete

Immediate false 18m

In addition to the default storage cluster of minikube, you will see a

CSI-managed storage class named csi-hostpath-sc.

Now, let’s deep dive into how the plugins and sidecar containers are

deployed.

Chapter 6 InfrastruCture extensIons

196

Listing 6-6. Statefulsets in the kube-system namespace

$ kubectl -n kube-system get statefulset

NAME READY AGE

csi-hostpath-attacher 1/1 20m

csi-hostpath-provisioner 1/1 20m

csi-hostpath-resizer 1/1 20m

csi-hostpath-snapshotter 1/1 20m

csi-hostpathplugin 1/1 20m

volume-snapshot-controller 1/1 20m

You can go over each statefulset one by one and check the containers

or run the following jq magic.

Listing 6-7. Statefulsets and containers in the kube-system

namespace

$ kubectl -n kube-system get statefulsets -o json | jq

'.items[] | "\(.metadata.name): \(.spec.template.spec.

containers[].name)"'

"csi-hostpath-attacher: csi-attacher"

"csi-hostpath-provisioner: csi-provisioner"

"csi-hostpath-resizer: csi-resizer"

"csi-hostpath-snapshotter: csi-snapshotter"

"csi-hostpathplugin: node-driver-registrar"

"csi-hostpathplugin: hostpath"

"csi-hostpathplugin: liveness-probe"

"volume-snapshot-controller: volume-snapshot-controller"

As you can see, controller sidecars are running independently, while

the node sidecars are packed in the csi-hostpathplugin statefulset. The

connection between the sidecars and drivers is handled by sharing Unix

sockets as volumes.

Chapter 6 InfrastruCture extensIons

197

Listing 6-8. Description of csi-hostpath-provisioner

$ kubectl -n kube-system describe statefulsets csi-hostpath-

provisioner

Name: csi-hostpath-provisioner

Namespace: kube-system

...

 Volumes:

 socket-dir:

 Type: HostPath (bare host directory volume)

 Path: /var/lib/kubelet/plugins/csi-hostpath

 HostPathType: Director

As you can see from the previous command output, the csi-

provisioner sidecar container connects to the CSI service using the socket

defined in the Volume socket-dir.

Create a file named example-pvc.yaml with the following content.

Listing 6-9. Example PVC

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: example-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: csi-hostpath-sc

Deploy to the cluster and check the volumes.

Chapter 6 InfrastruCture extensIons

198

Listing 6-10. Volume creation

$ kubectl apply -f example-pvc.yaml

persistentvolumeclaim/example-pvc created

$ kubectl get pv

NAME CAPACITY ACCESS

MODES RECLAIM POLICY STATUS CLAIM

STORAGECLASS REASON AGE

pvc-dd4570bc-58cc-4074-a284-b13651970d17 1Gi

RWO Delete Bound default/example-

pvc csi-hostpath-sc 13s

A volume for the PersistentVolumeClaim is created with the correct

storage class and it is bound. Let’s check the logs of CSI service and check

for CreateVolume calls.

Listing 6-11. CSI logs

$ kubectl -n kube-system logs csi-hostpathplugin-0 hostpath |

grep -A 3 CreateVolume

* GRPC call: /csi.v1.Controller/CreateVolume

* GRPC request: {"accessibility_requirements":{"prefer

red":[{"segments":{"topology.hostpath.csi/node":"minik

ube"}}],"requisite":[{"segments":{"topology.hostpath.

csi/node":"minikube"}}]},"capacity_range":{"required_

bytes":1073741824},"name":"pvc-dd4570bc-58cc-4074-a284-

b13651970d17","volume_capabilities":[{"AccessType":{"Mount":{}}

,"access_mode":{"mode":1}}]}

created volume af5c51ee-7aa2-11eb-a960-0242ac110004 at path /

csi-data-dir/af5c51ee-7aa2-11eb-a960-0242ac110004

* GRPC response: {"volume":{"accessible_topology":[{"segmen

ts":{"topology.hostpath.csi/node":"minikube"}}],"capacity_

bytes":1073741824,"volume_id":"af5c51ee-7aa2-11eb-a960-

0242ac110004"}}

Chapter 6 InfrastruCture extensIons

199

gRPC calls and responses show that the hostpath service created the

volume as requested in the PersistentVolumeClaim. Sidecar containers

handle the conversion from PersistentVolumeClaim to a valid CSI call.

The abstraction enables that CSI plugins are not concerned about the

container orchestrator implementation details.

By following the steps in this section, you have deployed a CSI

plugin to a Kubernetes cluster and checked how it is integrated into the

Kubernetes ecosystem. In addition, you have seen how it is provisioning

storage when requested in Kubernetes. There are three essential points

while creating and operating CSI plugins in Kubernetes:

• CSI Specification and Capabilities: Ensure that you

have implemented all required capabilities concerning

your infrastructure.

• Idempotent and Fault-Tolerant Drivers: CSI drivers

create a bridge between container orchestrators and

infrastructure. Therefore, the requests should be

idempotent and capable of recovering from failures.

• Kubernetes Sidecars and Resources: Kubernetes

storage community provides sidecar containers and

custom resources to integrate CSI services to the

clusters easily. Utilize them as they are maintained for

upcoming CSI and Kubernetes versions.

Container Storage Interface (CSI) is the open source API to extend

Kubernetes storage operations. It enables working with custom storage

requirements and infrastructure characteristics. You can create CSI plugins

by implementing the required services and deploy using native Kubernetes

resources. Then, you can dynamically create volumes in Kubernetes,

and CSI plugins will provision the storage in the infrastructure layer. The

abstraction and separation of the concerns make it possible to easily

develop, test, and deploy storage extensions to Kubernetes.

Chapter 6 InfrastruCture extensIons

200

The next section will cover the interaction between Kubernetes and

networking infrastructure with the Kubernetes networking model and

Container Network Interface (CNI) plugins.

 Network Plugins
Kubernetes is a scalable container orchestration tool with distributing the

workload among multiple nodes in the cluster. Hence, the communication

between containers and nodes distributed over the datacenters creates

an infrastructure challenge. With its open architecture, Kubernetes does

not dictate any networking setting but only defines the requirements. The

decoupling of Kubernetes and infrastructure enables vendors to develop

their plugins and integrate them into Kubernetes.

In this section, you will learn more about the Kubernetes networking

model and the specification for network integrations and, finally, see the

plugins in action.

 Kubernetes Network Model
The building block of Kubernetes is pods, and every pod gets a unique IP

address. This approach creates two significant advantages; firstly, you do

not need to develop complex links between pods, including container port

to host port matching. Secondly, you can treat pods like VMs in naming,

service discovery, load balancing, and application configuration.

Kubernetes requires the following fundamental rules in the networking

implementations:

• Pod on a node can communicate with all pods in the

cluster without NAT.

• Node agents such as system daemons or kubelet can

communicate with all the pods on the same node.

Chapter 6 InfrastruCture extensIons

201

The simplistic model defined with the two rules originates from the

VMs with assigned IPs and their communication to other VMs. The model

in Kubernetes is named “IP-per-pod” which indicates that IP addresses

exist at the pod scope. Although implementation details are left to the

networking plugins, the three main communication challenges can be

discussed and illustrated:

• Containers of the same pod

• Pods on the same node

• Pods on different nodes

A pod in Kubernetes consists of one or more user-defined containers

and an additional pause container. You can check the pause containers by

connecting to a Kubernetes node.

Listing 6-12. Containers on a Kubernetes node

$ docker ps

CONTAINER ID IMAGE COMMAND ...

...

tm574dmcbc gcr.io/google_containers/pause-amd64:3.0 "/pause" ...

...

zsxqd5lcvx gcr.io/google_containers/pause-amd64:3.0 "/pause" ...

...

The fundamental task of pause containers is to create and keep the

network namespace if other containers crash and reconnect. It ensures

that all the pod’s containers share a single network namespace and

connect via localhost. As diagrammed in Figure 6-4, container A can

connect to port 8080 of container B using localhost:8080.

Chapter 6 InfrastruCture extensIons

202

Each pod has its network namespace and unique IP address. In

addition, each pod has a virtual Ethernet device. The virtual Ethernet

devices create a tunnel between the node and the pod’s network. The

naming of the virtual tunnel is eth0 on the pod side and veth0, veth1,

and vethN on the node side. Thus, a request starts from the eth0 interface

of the pod and arrives at the vethN interface. On the node, there is a

network bridge called cbr0 to connect multiple networks. Every pod on the

node is part of the cbr0 bridge, and requests find their way through it, as

diagrammed in Figure 6-5.

Figure 6-4. Container to container communication

Chapter 6 InfrastruCture extensIons

203

Network bridges on the nodes know the pod IPs and their virtual

Ethernet devices. When a pod tries to connect to an IP not listed in the

network bridge, the routing becomes a little complicated. Although

implementation can vary based on networking plugin and infrastructure,

we can discuss the request’s typical flow as diagrammed in Figure 6-6.

When the bridge has no information about the IP, it asks for a default

gateway at the cluster level. At the cluster level, an IP table is kept for

nodes and their IPs. In a typical setup, pod IPs are allocated between

the nodes—for instance, Node 1 with 100.11.1.0/24 range, Node 2 with

100.11.2.0/24 range, and so on. When the correct node is found, the

request goes to the bridge, virtual Ethernet, and, finally, the pod.

Figure 6-5. Pod to pod communication on the same node

Chapter 6 InfrastruCture extensIons

204

Kubernetes network implementations handle communication

between nodes and cluster level. The implementations follow the

Container Network Interface (CNI), an open source API specification, and

they are installed to clusters as plugins. In the following section, you will

learn more about CNI and see it in action.

 Container Network Interface (CNI)
Container Network Interface (CNI) is a standard interface definition

between network plugins and container runtimes. It is adopted by all

significant container orchestrators such as Kubernetes, Mesos, and Cloud

Foundry. In addition, various cloud providers such as Amazon ECS,

OpenShift, Cisco, and VMware also implement CNI plugins as part of

their container platforms. Therefore, developing a new networking plugin

following the CNI standard will make you compatible with most of the

modern cloud ecosystem.

Figure 6-6. Pod to pod communication on different nodes

Chapter 6 InfrastruCture extensIons

205

CNI consists of a JSON-based binary plugin specification, built-in

plugins, and libraries to develop custom third-party plugins. CNI team

provides and maintains the following built-in plugins under three groups:

• Main plugins for interface creating:

• bridge creates a bridge and adds the host and the

container to it.

• ipvlan adds an ipvlan interface in the container.

• loopback sets the state of the loopback interface to

up.

• macvlan creates a new MAC address and forwards

all traffic to the container.

• ptp creates a veth pair.

• vlan allocates a vlan device.

• host-device moves an existing device into a

container.

• win-bridge creates a bridge and adds the host

and the container to it in Windows-specific

environments.

• win-overlay creates an overlay interface to the

container in Windows-specific environments.

• IPAM plugins for IP address allocation:

• dhcp runs a daemon on the host to make DHCP

requests on behalf of the containers.

• host-local maintains a local database of allocated

IPs.

• static allocates static IP addresses to containers.

Chapter 6 InfrastruCture extensIons

https://github.com/containernetworking/plugins

206

• Meta and other plugins:

• flannel generates an interface corresponding to a

flannel config file.

• tuning tweaks sysctl parameters of an existing

interface.

• portmap maintains an iptables-based port mapping

and maps ports from the host to the container.

• bandwidth allows bandwidth limiting.

• sbr configures a source-based routing.

• firewall uses iptables or firewalld to add rules to

allow traffic to and from the containers.

CNI focuses on the network connectivity of containers with a plugin-

oriented approach. The listed plugins cover fundamental networking

operations such as creating a bridge, IP allocation, or connection between

host and containers. In addition to built-in plugins, a sample plugin with

boilerplate code is maintained to develop custom CNI plugins easily.

Integration of CNI plugins starts with a network configuration in JSON

provided to container runtime as diagrammed in Figure 6-7. Then, the

runtime calls the CNI executable file with the commands based on the

container lifecycle. The plugin runs against the networking infrastructure

and connects containers to create the fabric of container orchestration.

Chapter 6 InfrastruCture extensIons

https://github.com/containernetworking/plugins/tree/master/plugins/sample

207

According to the specification, you should implement the following

commands:

• ADD command for adding containers to a network

• DEL command for removing containers from networks

• CHECK command for validating connectivity

• VERSION for returning the supported CNI versions

As the commands and expectations are simple in CNI, you can create

your plugin in BASH and deploy it as a custom third-party plugin. In the

following section, you will learn more about CNI plugins in Kubernetes

and their integration.

Figure 6-7. CNI and container runtime integration

Chapter 6 InfrastruCture extensIons

208

 CNI Plugins in Kubernetes

Kubernetes is the maintainer, the most active contributor, and a keen user

of CNI. Kubernetes requires containers reaching other containers living

on the same or remote nodes. The network just works when you create a

Kubernetes cluster in a cloud platform such as GCP, AWS, or Azure. The

cloud providers have their CNI plugins installed and configured to work

with their infrastructure in the best way. However, when you create an on-

prem Kubernetes cluster, you have the freedom of choosing a CNI plugin

or developing from scratch.

There are nearly 30 third-party CNI plugins listed in the official

repository of containernetworking/cni. Each plugin has its advantages and

disadvantages; thus, a comparison is reasonably tricky. However, we can

discuss the featured plugins with their essential features:

• Flannel is one of the oldest and most mature plugins,

and it comes with a simple and easy way to configure

a Layer 3 network fabric. It is responsible for providing

and managing the IP network between the nodes of the

cluster. It is easy to deploy it to a Kubernetes cluster as

it runs as a DaemonSet on each node.

• Weave Net is a simple to use CNI plugin without the

requirement of complex configuration or extra code. In

addition, Weave Net provides additional features such as

DNS, IPAM, and a firewall. You can configure and launch

a network fabric using the command-line tool weave.

• Multus is a plugin for Kubernetes to enable attaching

multiple network interfaces to pods. By default, each

pod in Kubernetes has only an interface; however,

multus acts as a metaplugin to call various other CNI

plugins. It is configured via CRDs, so it is Kubernetes-

native by design.

Chapter 6 InfrastruCture extensIons

https://github.com/containernetworking/cni
https://github.com/flannel-io/flannel
https://www.weave.works/products/weave-net/
https://github.com/intel/multus-cni

209

• Calico is a networking and security solution aimed at

containers, VMs, and node services. It supports various

data planes such as a pure Linux eBPF, standard Linux

networking, or Windows HNS data plane. It provides

a full networking stack; however, it is common to use

it in conjunction with other cloud providers, CNIs, to

provide network policy features.

In the following section, you will see Calico in action by running in a

Kubernetes cluster.

 Calico CNI Plugin in Action

By default, minikube provides a single-node Kubernetes cluster with a

basic networking setup. You can enable CNI and install Calico with the

following command.

Listing 6-13. Minikube with Calico

$ minikube start --cni=calico

😄 minikube v1.18.0 on Darwin 11.2.2

✨ Automatically selected the docker driver. Other choices:

hyperkit, ssh

👍 Starting control plane node minikube in cluster minikube

💾 Downloading Kubernetes v1.20.2 preload ...

🔥 Creating docker container (CPUs=2, Memory=1988MB) ...

🐳 Preparing Kubernetes v1.20.2 on Docker 20.10.3 ...

🔗 Configuring Calico (Container Networking Interface) ...

🔎 Verifying Kubernetes components...

💡 Restarting the docker service may improve performance.

 ▪ Using image gcr.io/k8s-minikube/storage-provisioner:v4
🌟 Enabled addons: storage-provisioner, default-storageclass

🏄 Done! kubectl is now configured to use "minikube" cluster

and "default" namespace by default

Chapter 6 InfrastruCture extensIons

https://docs.projectcalico.org/

210

In a couple of seconds, the installation will complete, and you can

check the Calico pods with the following command.

Listing 6-14. Calico pods

$ kubectl -n kube-system get pods -l k8s-app=calico-node

NAME READY STATUS RESTARTS AGE

calico-node-p9bjs 1/1 Running 0 4m46s

Now, add a second node to minikube and check whether it has

connected to the cluster.

Listing 6-15. Adding node to cluster

$ minikube node add

😄 Adding node m02 to cluster minikube

👍 Starting node minikube-m02 in cluster minikube

🔥 Creating docker container (CPUs=2, Memory=2200MB) ...

🐳 Preparing Kubernetes v1.20.2 on Docker 20.10.3 ...

🔎 Verifying Kubernetes components...

🏄 Successfully added m02 to minikube!

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

minikube Ready control-plane,master 17m v1.20.2

minikube-m02 Ready <none> 53s v1.20.2

The listing shows two nodes as expected, and it indicates that

networking between the nodes is set up successfully. Now, let’s deep dive

into what has been running and how it is configured.

In every node of the cluster, there should be a Calico application

running.

Chapter 6 InfrastruCture extensIons

211

Listing 6-16. DaemonSets in the cluster

$ kubectl -n kube-system get daemonsets

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE

NODE SELECTOR AGE

calico-node 2 2 2 2 2

kubernetes.io/os=linux 18m

kube-proxy 2 2 2 2 2

kubernetes.io/os=linux 18m

Calico should provide the network configuration in JSON format. You

can check with the following command in the node.

Listing 6-17. Network configuration in the cluster

$ minikube ssh

docker@minikube:~$ cat /etc/cni/net.d/10-calico.conflist

{

 "name": "k8s-pod-network",

 "cniVersion": "0.3.1",

 "plugins": [

 {

 "type": "calico",

 "log_level": "info",

 "datastore_type": "kubernetes",

 "nodename": "minikube",

 "mtu": 1440,

 "ipam": {

 "type": "calico-ipam"

 },

 "policy": {

 "type": "k8s"

 },

Chapter 6 InfrastruCture extensIons

212

 "kubernetes": {

 "kubeconfig": "/etc/cni/net.d/calico-kubeconfig"

 }

 },

 {

 "type": "portmap",

 "snat": true,

 "capabilities": {"portMappings": true}

 },

 {

 "type": "bandwidth",

 "capabilities": {"bandwidth": true}

 }

]

}

Finally, it is expected to see the CNI binaries in the host system as CNI

plugins follow the binary extension pattern. Let’s check the binary folders

in the node.

Listing 6-18. CNI binaries

docker@minikube:~$ ls /opt/cni/bin/

bandwidth calico dhcp flannel host-local loopback

portmap sbr tuning vrf

bridge calico-ipam firewall host-device

ipvlan macvlan ptp static vlan

With the Calico installation, CNI plugins and configuration are

deployed to the Kubernetes nodes. If you need to extend the networking

capabilities of Kubernetes by configuring, installing, or developing CNI

plugins, you need to follow the same pattern. It is worth mentioning the

following three points if you plan to build your own CNI plugins:

Chapter 6 InfrastruCture extensIons

213

• Scalability: Networking is both the bottleneck and

opportunity when it comes to scalability. You can

find yourself limited by the complexity and overhead

of networking topology while scaling up your nodes.

Therefore, you need to design your CNI plugin based

on the cluster’s expected number of nodes.

• Infrastructure Limits: Most of the CNI plugins are

developed to overcome an infrastructure limit by

creating solutions in the upper layers. Know the

boundaries and barriers in your computing and

networking infrastructure and design your CNI plugins

accordingly.

• Complexity vs. Feature Set: When you look at

the available third-party CNI plugins, you will be

overwhelmed with the provided features. It is suggested

to start small by giving the must-have features first. For

instance, if you do not expect to work with network

policies, you can eliminate this feature while designing

your CNI plugin.

In the following section, device plugins will be discussed as the third

and last infrastructure extension point of Kubernetes.

 Device Plugins
Kubernetes workloads run on the nodes and consume the resources.

The resources on the nodes can be CPU, memory, storage, or any

custom device provided by vendors such as GPUs, high-performance

NICs, or FPGAs. Since it is not feasible to cover all vendors and devices

as a resource in the source code, Kubernetes provides a device plugin

framework. The framework is the extension point to advertise and allocate

Chapter 6 InfrastruCture extensIons

214

system hardware resources via kubelet. Instead of customizing the code,

vendors implement their plugins and deploy them to the cluster to extend

the resource allocation mechanism of Kubernetes.

In this section, you will learn about the device plugin API and lifecycle.

In addition, you will develop a device plugin from scratch and deploy it to

the cluster to see it in action.

 Device Plugin API
Device plugins are applications running on the node and communicating

with the kubelet. Therefore, they follow the binary plugin extension

pattern. The entry point is the registration into kubelet with the provided

gRPC service.

Listing 6-19. kubelet registration service

service Registration {

 rpc Register(RegisterRequest) returns (Empty) {}

}

In the registration, the plugin sends the following information to the

kubelet Unix socket located at /var/lib/kubelet/device-plugins/

kubelet.sock:

• Name of the device plugin socket

• Device plugin API version

• Resource name in the extended resource naming

scheme such as vendor-domain/resource-type

After the registration, the device plugin is responsible for serving a

gRPC service with a Unix socket located at /var/lib/kubelet/device-

plugins/. The service implements the following interface.

Chapter 6 InfrastruCture extensIons

215

Listing 6-20. Device plugin interface

service DevicePlugin {

 rpc GetDevicePluginOptions(Empty) returns

(DevicePluginOptions) {}

 rpc ListAndWatch(Empty) returns (stream

ListAndWatchResponse) {}

 rpc Allocate(AllocateRequest) returns

(AllocateResponse) {}

 rpc GetPreferredAllocation(PreferredAllocationRequest)

returns (PreferredAllocationResponse) {}

 rpc PreStartContainer(PreStartContainerRequest) returns

(PreStartContainerResponse) {}

}

• GetDevicePluginOptions is the metafunction to

provide information about the plugin.

• ListAndWatch is the function that runs continuously

and streams the updated list of devices.

• Allocate is the essential function called during

the container creation. The device plugin handles

infrastructure-related preparation operations. Then,

it returns parameters to make devices available to

containers.

• GetPreferredAllocation and PreStartContainer

functions are optional functions.

The pods request the custom device plugin resources as part of their

container specification. For instance, if the device plugin advertises that

there are ten instances of extend-k8s.io/custom-resource available

on the node, then Kubernetes API uses this information on node status

and scheduling decisions. The following pod definition requires three

Chapter 6 InfrastruCture extensIons

216

instances of the extend-k8s.io/custom-resource device. Kubernetes will

only schedule the pod to a node if there are enough resources to satisfy the

need.

Listing 6-21. Pod with custom device resource

apiVersion: v1

kind: Pod

metadata:

 name: example-pod

spec:

 containers:

 - name: example-container

 image: k8s.gcr.io/pause:2.0

 resources:

 limits:

 extend-k8s.io/custom-resource: 3

Device plugins should be available on Kubernetes nodes and more

specifically in /var/lib/kubelet/device-plugins folders. Therefore, you

need to either install them manually or deploy them as a DaemonSet in

the cluster. DaemonSets have additional advantages such as automated

upgrades and restarting the plugins after kubelet failures.

There are already a couple of device plugin implementations in the

cloud-native ecosystem. These are the open source plugins that are

created and maintained by vendors:

• AMD GPU device plugin

• NVIDIA GPU device plugin

• Intel device plugins for GPU, FPGA, QAT, VPU, SGX, and

DSA devices

Chapter 6 InfrastruCture extensIons

https://github.com/RadeonOpenCompute/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin

217

• KubeVirt device plugins for hardware-assisted

virtualization

• RDMA device plugin

• Solarflare device plugin

• SR-IOV Network device plugin

• Xilinx FPGA device plugins

In the following section, you will create an example device plugin and

deploy it to a cluster.

 Development and Deployment of a Device Plugin
Let’s start by creating a cluster with the following command: minikube

start --kubernetes-version v1.19.0.

Then, create the following folder structure in your Go environment.

Listing 6-22. Go project initialization

$ mkdir -p $GOPATH/src/extend-k8s.io/k8s-device-plugin-example

$ cd $GOPATH/src/extend-k8s.io/k8s-device-plugin-example

$ mkdir -p cmd pkg

Create a main.go file in cmd folder with the following content.

Listing 6-23. Main file for device plugin

package main

import (

 "flag"

 "github.com/kubevirt/device-plugin-manager/pkg/dpm"

 "github.com/extend-k8s.io/k8s-device-plugin-example/pkg"

)

Chapter 6 InfrastruCture extensIons

https://github.com/kubevirt/kubernetes-device-plugins
https://github.com/hustcat/k8s-rdma-device-plugin
https://github.com/vikaschoudhary16/sfc-device-plugin
https://github.com/intel/sriov-network-device-plugin
https://github.com/Xilinx/FPGA_as_a_Service/tree/master/k8s-fpga-device-plugin

218

func main() {

 flag.Parse()

 manager := dpm.NewManager(pkg.Lister{})

 manager.Run()

}

It is a very simple main function to create a new manager using the

Lister. Now, let’s create a lister.go file in the pkg folder with the

following content.

Listing 6-24. Lister implementation

package pkg

import (

 "github.com/kubevirt/device-plugin-manager/pkg/dpm"

)

type Lister struct{}

func (Lister) GetResourceNamespace() string {

 return "extend-k8s.io"

}

func (Lister) Discover(pluginListCh chan dpm.PluginNameList) {

 pluginListCh <- dpm.PluginNameList{"example"}

}

func (Lister) NewPlugin(deviceID string) dpm.PluginInterface {

 return &ExamplePlugin{}

}

It is used in the registration and discovery of the device plugin with the

extend-k8s.io/example name. In addition, it returns a PluginInterface

that you will implement next.

Chapter 6 InfrastruCture extensIons

219

Create a plugin.go file in pkg folder with the following content.

Listing 6-25. Plugin implementation

package pkg

import (

 "context"

 "math/rand"

 "time"

 "github.com/thanhpk/randstr"

 . "k8s.io/kubelet/pkg/apis/deviceplugin/v1beta1"

)

type ExamplePlugin struct{}

func (dp *ExamplePlugin) ListAndWatch(e *Empty, s DevicePlugin_

ListAndWatchServer) error {

 s.Send(&ListAndWatchResponse{Devices: randomDevices()})

 for {

 time.Sleep(5 * time.Second)

 s.Send(&ListAndWatchResponse{Devices:

randomDevices()})

 }

}

func (dp *ExamplePlugin) Allocate(c context.Context, r

*AllocateRequest) (*AllocateResponse, error) {

 envs := map[string]string{"K8S_DEVICE_PLUGIN_EXAMPLE":

randstr.Hex(16)}

 responses := []*ContainerAllocateResponse{{Envs: envs}}

Chapter 6 InfrastruCture extensIons

220

 return &AllocateResponse{ContainerResponses: responses},

nil

}

func (ExamplePlugin) GetDevicePluginOptions(context.Context,

*Empty) (*DevicePluginOptions, error) {

 return nil, nil

}

func (ExamplePlugin) PreStartContainer(context.Context,

*PreStartContainerRequest) (*PreStartContainerResponse, error)

{

 return nil, nil

}

func (dp *ExamplePlugin) GetPreferredAllocation(context.

Context, *PreferredAllocationRequest)

(*PreferredAllocationResponse, error) {

 return nil, nil

}

func randomDevices() []*Device {

 devices := make([]*Device, 0)

 for i := 0; i < rand.Intn(5)+1; i++ {

 devices = append(devices, &Device{

 ID: randstr.Hex(16),

 Health: Healthy,

 })

 }

 return devices

}

Chapter 6 InfrastruCture extensIons

221

The file has two important points to mention:

• ListAndWatch function starts by registering a set of

random devices. Then it updates the devices every 5

seconds with a new set of random devices.

• Allocate function returns an environment variable

K8S_DEVICE_PLUGIN_EXAMPLE to be passed to the

containers. This approach is helpful to use custom

devices in your applications.

Create a go.mod file in the root folder of the project with the following

content.

Listing 6-26. Dependency file

module github.com/extend-k8s.io/k8s-device-plugin-example

go 1.14

require (

 github.com/kubevirt/device-plugin-manager v1.18.8

 github.com/thanhpk/randstr v1.0.4

 k8s.io/kubelet v0.19.0

)

Finally, create a Dockerfile with the following two-layered approach.

Listing 6-27. Dockerfile for device plugin

FROM golang:1.14-alpine as builder

ADD . /go/src/github.com/extend-k8s.io/k8s-device-plugin-

example

WORKDIR /go/src/github.com/extend-k8s.io/k8s-device-plugin-

example/cmd

RUN go build -v

Chapter 6 InfrastruCture extensIons

222

FROM alpine:latest

COPY --from=builder /go/src/github.com/extend-k8s.io/k8s-

device-plugin-example/cmd/cmd /usr/local/bin/k8s-device-plugin-

example

CMD ["k8s-device-plugin-example"]

Now, you can build and deploy the Docker image of the device plugin

with the following commands.

Note set DOCKER_REPOSITORY environment variable according to
your Docker repository.

Listing 6-28. Container build

$ docker build -t $DOCKER_REPOSITORY/k8s-device-plugin-

example:v1 .

=> [internal] load build definition from Dockerfile

...

naming to docker.io/$DOCKER_REPOSITORY/k8s-device-plugin-

example:v1

$ docker push $DOCKER_REPOSITORY/k8s-device-plugin-example:v1

The push refers to repository [docker.io/$DOCKER_REPOSITORY/

k8s-device-plugin-example]

...

v1: digest: sha256:91e41..bffc size: 739

Deploy the plugin to the cluster using the following DaemonSet

definition.

Chapter 6 InfrastruCture extensIons

223

Note Do not forget to change DOCKER_REPOSITORY to the
environment variable.

Listing 6-29. DaemonSet for device plugin

apiVersion: apps/v1

kind: DaemonSet

metadata:

 labels:

 name: device-plugin-example

 name: device-plugin-example

 namespace: kube-system

spec:

 selector:

 matchLabels:

 name: device-plugin-example

 template:

 metadata:

 labels:

 name: device-plugin-example

 spec:

 containers:

 - name: device-plugin-example

 image: $DOCKER_REPOSITORY/k8s-device-plugin-example:v1

 securityContext:

 privileged: true

 volumeMounts:

 - name: device-plugin

 mountPath: /var/lib/kubelet/device-plugins

 volumes:

Chapter 6 InfrastruCture extensIons

224

 - name: device-plugin

 hostPath:

 path: /var/lib/kubelet/device-plugins

Check and ensure the device plugin pod is running.

Listing 6-30. Pod listing

$ kubectl -n kube-system get pods -l name=device-plugin-example

NAME READY STATUS RESTARTS AGE

device-plugin-example-bgktv 1/1 Running 0 2m6s

You can check the status of custom devices from the node status data.

Listing 6-31. Device information in the node status

$ kubectl get node minikube -w -o json | jq '.status.

allocatable."extend-k8s.io/example"'

"3"

"2"

"1"

"2"

The command watches for the nodes and prints only the custom

device information. Since the device plugin updates with a random

number of devices, you should see changes similar to the preceding one.

It shows that the device plugin is configured correctly and interacts with

kubelet to set node status. You can stop the watch command and return to

the terminal via CTRL+C.

Now, let’s create a pod to use the custom device with the following

content.

Chapter 6 InfrastruCture extensIons

225

Listing 6-32. Pod with custom device

apiVersion: v1

kind: Pod

metadata:

 name: device-plugin-consumer

spec:

 containers:

 - name: pause

 image: busybox

 command: ["/bin/sleep", "1000"]

 resources:

 limits:

 extend-k8s.io/example: 1

When the pod is running, execute the following command to check

environment variables.

Listing 6-33. Container environment variables

$ kubectl exec device-plugin-consumer -- env

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/

bin

HOSTNAME=device-plugin-consumer

K8S_DEVICE_PLUGIN_EXAMPLE=5a1b85e33a06f47501504a9c570e4e32

KUBERNETES_PORT_443_TCP_ADDR=10.96.0.1

KUBERNETES_SERVICE_HOST=10.96.0.1

KUBERNETES_SERVICE_PORT=443

KUBERNETES_SERVICE_PORT_HTTPS=443

KUBERNETES_PORT=tcp://10.96.0.1:443

KUBERNETES_PORT_443_TCP=tcp://10.96.0.1:443

Chapter 6 InfrastruCture extensIons

226

KUBERNETES_PORT_443_TCP_PROTO=tcp

KUBERNETES_PORT_443_TCP_PORT=443

HOME=/root

The environment variables list shows that K8S_DEVICE_PLUGIN_

EXAMPLE passed from the device plugin to kubelet and injected into the

container. The last step complements the flow of a device plugin approach

from the gRPC server to the container.

Creating and running device plugins are straightforward compared

to storage and networking plugins. Device plugin API is moderately new

and has not a full-fledged standard similar to CSI and CNI. Therefore, it

is essential to check API changes and Kubernetes version compatibility

during device plugins’ development.

 Key Takeaways
• Kubernetes is an open ecosystem and does not restrict

any cloud provider or on-prem system.

• Interaction of Kubernetes with the infrastructure layer

is extendible with storage, network, and device plugins.

• Storage plugins extend the volume provisioning in

Kubernetes while implementing the CSI standard.

• Networking plugins extend the container networking in

the cluster while implementing the CNI standard.

• Device plugins extend the resource allocation and

usage of custom devices by vendors.

In the following chapter, we will discuss the upcoming trends,

platforms, and libraries in the Kubernetes world.

Chapter 6 InfrastruCture extensIons

227© Onur Yilmaz 2021
O. Yilmaz, Extending Kubernetes, https://doi.org/10.1007/978-1-4842-7095-0_7

CHAPTER 7

Upcoming Extension
Points

Keep your eyes on the stars, and your feet on the ground.

—Theodore Roosevelt
The 26th President of the United States

Kubernetes is a proven success with its strong foundation in the cloud-

native world. It provides a rich set of features to manage containerized

applications and various extension points to add new capabilities.

Nevertheless, Kubernetes is not a finished project; it is probably the most

active open source project in the software development history. Thus, this

very last chapter will focus on the upcoming trends, extension points, and

libraries for Kubernetes. At the end of this chapter, you will learn more

about the latest developments and future trends in the Kubernetes world.

The bright future of Kubernetes will increase your excitement, and you will

be happy to be a part of this journey to the stars.

In this very last chapter, two upcoming extension points that are still in

development will be covered. Let’s start with the Service Catalog extension

API to enable applications running in Kubernetes to use external managed

services.

https://doi.org/10.1007/978-1-4842-7095-0_7#DOI

228

 Service Catalog
The Service Catalog is the extension point in Kubernetes to open its doors

to other managed services. It enables applications running in the cluster

to use external software operated by a cloud provider. Let’s assume you

have a Kubernetes cluster and an application that needs a message queue.

You have basically two options: deploy a message queue into your cluster

or use message queue service from your cloud provider. The first option is

very flexible, but it comes with its operational burden. You need to find a

bridge between the Kubernetes cluster and the cloud provider’s message

queue service for the latter option. The bridge is Service Catalog with the

following architecture in Figure 7-1.

Service Catalog extends Kubernetes API by listing managed services,

provisioning an instance, and binding into an application running

inside the cluster. External services are connected to the cluster using

service broker endpoints defined by the Open Service Broker API.

Figure 7-1. Service Catalog overview

Chapter 7 UpComing extension points

https://github.com/openservicebrokerapi/servicebroker

229

On the Kubernetes API side, the Service Catalog installs an extension

API server and a controller to manage the following API resources under

servicecatalog.k8s.io group:

• ClusterServiceBroker: It is the definition of a service

broker with its connection details. Cluster admins install

new brokers using ClusterServiceBroker resources.

• ClusterServiceClass: It is the managed service

provided by ClusterServiceBroker. When a new

ClusterServiceBroker is added to the cluster, the

Service Catalog connects to the broker and retrieves

the list of managed services to create corresponding

ClusterServiceClass resources.

• ClusterServicePlan: It describes specific offerings of

ClusterServiceClass, such as free tier, paid tier, or

particular versions. ClusterServicePlan resources

are created by Service Catalog just after a new broker is

installed.

• ServiceInstance: It is a provisioned instance of

ClusterServiceClass. When you need a new

instance of the managed service, you need to create a

ServiceInstance. Then, the Service Catalog controller

connects to the service broker and provisions a service

instance.

• ServiceBinding: It is the access credentials to use

ServiceInstance in your application in the cluster.

When you create a new ServiceBinding, the Service

Catalog creates a secret with the connection details to the

ServiceInstance. You can mount the secret into your

application and connect to the external managed service.

Chapter 7 UpComing extension points

230

API resources and Service Catalog controllers ensure that external

managed services and plans are available in the cluster. In addition,

it enables creating new instances of services and binding to the

applications running in the cluster. In the following exercise, you will see

Service Catalog in action and extend Kubernetes cluster with managed

applications.

EXERCISE 1: SERVICE CATALOG IN ACTION

in this exercise, you will walk through all service Catalog capabilities and see

how it extends Kubernetes. You will first deploy the service Catalog to the

cluster, install a service broker, and finally create some managed services.

Note the rest of the exercise is based on deploying resources to
the cluster, and it requires the following prerequisites: minikube,
kubectl, and helm.

 1. Create a Kubernetes cluster using minikube with the following

command: minikube start --kubernetes-version

v1.19.0.

 2. service Catalog has a helm chart to be installed. thus, you

need to add its chart repository first and then install it with the

following commands:

$ helm repo add svc-cat https://kubernetes-sigs.github.

io/service-catalog

"svc-cat" has been added to your repositories

$ kubectl create namespace catalog

namespace/catalog created

$ helm install catalog svc-cat/catalog --namespace

catalog

Chapter 7 UpComing extension points

231

..

NAME: catalog

LAST DEPLOYED: ...

NAMESPACE: catalog

STATUS: deployed

REVISION: 1

TEST SUITE: None

Commands install the service Catalog api resources and

controllers. You can see the list of custom resources with the

following command:

$ kubectl get crd | grep servicecatalog.k8s.io

clusterservicebrokers.servicecatalog.k8s.io

clusterserviceclasses.servicecatalog.k8s.io

clusterserviceplans.servicecatalog.k8s.io

servicebindings.servicecatalog.k8s.io

servicebrokers.servicecatalog.k8s.io

serviceclasses.servicecatalog.k8s.io

serviceinstances.servicecatalog.k8s.io

serviceplans.servicecatalog.k8s.io

 3. You need to install a service broker to manage third-party

applications, and it must have open service Broker api to

interact with the service Catalog. there is already a service

broker to work in minikube named minibroker, and you can

deploy it with the following commands:

$ helm repo add minibroker https://minibroker.blob.core.

windows.net/charts

"minibroker" has been added to your repositories

$ kubectl create namespace minibroker

namespace/minibroker created

Chapter 7 UpComing extension points

https://github.com/kubernetes-sigs/minibroker

232

$ helm install minibroker minibroker/minibroker

 --namespace minibroker

NAME: minibroker

LAST DEPLOYED: Fri Mar 26 12:21:27 2021

NAMESPACE: minibroker

STATUS: deployed

REVISION: 1

TEST SUITE: None

 4. service Catalog controller creates ClusterServiceClass for

each service that the broker provides. You can list the provided

services with the following command:

$ kubectl get clusterserviceclasses

NAME EXTERNAL-NAME BROKER AGE

mariadb mariadb minibroker 3m

mongodb mongodb minibroker 3m

mysql mysql minibroker 3m

postgresql postgresql minibroker 3m

rabbitmq rabbitmq minibroker 3m

redis redis minibroker 3m

the broker service deployed in step 3 provides the preceding

listed services. in addition, these services should have plans as

follows:

$ kubectl get clusterserviceplans

NAME EXTERNAL-NAME BROKER CLASS AGE

mariadb-10-1-26 10-1-26 minibroker mariadb 9m

...

mongodb-3-4-10 3-4-10 minibroker mongodb 8m

...

Chapter 7 UpComing extension points

233

mysql-5-7-30 5-7-30 minibroker mysql 8m

...

postgresql-9-6-2 9-6-2 minibroker postgresql 8m

...

rabbitmq-3-6-10 3-6-10 minibroker rabbitmq 8m

...

redis-5-0-7 5-0-7 minibroker redis 8m

the long list consists of every preconfigured plan of the

services available in the broker.

 5. now, it is time to create some managed database instances.

Create a ServiceInstance resource with the following

content into a file named db-instance.yaml and deploy it to the

cluster:

apiVersion: servicecatalog.k8s.io/v1beta1

kind: ServiceInstance

metadata:

 name: db-instance

 namespace: test-db

spec:

 clusterServiceClassExternalName: mysql

 clusterServicePlanExternalName: 5-7-30

$ kubectl create namespace test-db

namespace/test-db created

$ kubectl apply -f db-instance.yaml

serviceinstance.servicecatalog.k8s.io/db-instance created

Chapter 7 UpComing extension points

234

Wait for a couple of seconds, and your database instance will

be ready:

$ kubectl get serviceinstances -n test-db

NAME CLASS PLAN STATUS AGE

db-instance ClusterServiceClass/mysql 5-7-30 Ready 2m53s

 6. Create a ServiceBinding resource to use the managed

database in your applications. When the ServiceBinding

resource is created, the service Catalog controller will connect

to the broker and retrieve connection details and credentials.

Create a ServiceBinding with the following content and into

a file named db-binding.yaml:

apiVersion: servicecatalog.k8s.io/v1beta1

kind: ServiceBinding

metadata:

 name: db-binding

 namespace: test-db

spec:

 instanceRef:

 name: db-instance

$ kubectl apply -f db-binding.yaml

servicebinding.servicecatalog.k8s.io/db-binding created

in a couple of seconds, the connection information and

credentials will be collected into a secret resource as follows:

$ kubectl -n test-db describe secret db-binding

Name: db-binding

Namespace: test-db

Labels: <none>

Annotations: <none>

Chapter 7 UpComing extension points

235

Type: Opaque

Data

====

database: 0 bytes

mysql-password: 10 bytes

password: 10 bytes

username: 4 bytes

uri: 81 bytes

host: 52 bytes

mysql-root-password: 10 bytes

port: 4 bytes

protocol: 5 bytes

 7. Create a pod for connecting to the database and using

credentials from the secret. Use the following content and save

into a file named my-app.yaml:

apiVersion: v1

kind: Pod

metadata:

 name: my-app

 namespace: test-db

spec:

 containers:

 - name: app

 image: mysql

 command: ["bash"]

 args: ["-c", "sleep infinity"]

 env:

 - name: MYSQL_HOST

 valueFrom:

 secretKeyRef:

 name: db-binding

 key: host

Chapter 7 UpComing extension points

236

 - name: MYSQL_TCP_PORT

 valueFrom:

 secretKeyRef:

 name: db-binding

 key: port

 - name: MYSQL_USER

 valueFrom:

 secretKeyRef:

 name: db-binding

 key: username

 - name: MYSQL_PASSWORD

 valueFrom:

 secretKeyRef:

 name: db-binding

 key: password

 restartPolicy: Never

$ kubectl apply -f my-app.yaml

pod/my-app created

 8. Wait until the test-db pod is in running state and then connect

to the pod and execute mysQL commands to validate managed

database application:

$ kubectl exec -n test-db my-app -it -- bash

root@my-app:/# mysql -u$MYSQL_USER -p$MYSQL_PASSWORD -e

"select version()"

mysql: [Warning] Using a password on the command line

interface can be insecure.

+-----------+

| version() |

+-----------+

| 5.7.30 |

+-----------+

Chapter 7 UpComing extension points

237

it shows that the application running in the Kubernetes cluster

can connect to the database and run queries. the connection

information and credentials are provided from the secret

created by the service Catalog.

 9. You can clean the resources and installations with the following

commands:

$ kubectl delete namespace test-db

$ kubectl delete servicebinding db-binding

$ kubectl delete serviceinstances test-db

$ kubectl delete clusterservicebrokers minibroker

$ helm delete --purge minibroker

$ kubectl delete namespace minibroker

$ helm delete --purge catalog

$ kubectl delete namespace catalog

In the previous exercise, all aspects of the Service Catalog extension

are covered. You have started with the installation of Service Catalog API

resources and controllers. Then, a service broker is installed following

Open Service Broker API. Following that, a managed database instance

is created and connected from an application running in the Kubernetes

cluster. The Service Catalog extends the Kubernetes for managing external

applications and employing them inside the cluster. It creates a strong

connection between the applications running inside and outside the

cluster.

In order to extend Kubernetes with Service Catalog, you need to

develop and run service brokers for your third-party external applications.

Service Catalog API and controllers will make them integrated into the

cluster so that applications in the cluster can connect and consume.

Next, extending Kubernetes API to provision, upgrade, and operate

multiple Kubernetes clusters will be covered.

Chapter 7 UpComing extension points

238

 Cluster API
Cluster API is the Kubernetes-native way of providing a declarative API

to provision, upgrade, and operate Kubernetes clusters. In other words,

it is the extension point for Kubernetes to manage Kubernetes clusters.

Kubernetes clusters and infrastructure such as virtual machines, networks,

storage, or load balancers can be defined as any other Kubernetes-native

resources such as deployments or pods. Platform operators running in the

clusters automate the lifecycle of clusters and underlying infrastructure.

This approach’s main advantage is repeatable and consistent cluster

management across different cloud or infrastructure providers.

Running a Kubernetes cluster is not straightforward as it requires

multiple components to be configured correctly. It is a high entry to

barrier for new starters in the Kubernetes ecosystem. In addition, there

are more than 60 Kubernetes certified distributions and installers with

their configuration and style. kubeadm is the response from the Kubernetes

community to bootstrap clusters following the best practices. Although

kubeadm solves the complexity of the cluster installation, it does not

address the cluster lifecycle management. Cluster API is the solution to

fill the gaps related to day-to-day cluster management operations, such

as provisioning the new VMs, load balancers, and automation. Cluster

API creates an extension point in Kubernetes API to define and manage

Kubernetes clusters declaratively. You can connect to any infrastructure

or cloud system to provision resources or bootstrap provider to install

Kubernetes control plane.

There are two types of clusters in Cluster API:

• Workload cluster is the Kubernetes cluster to be

managed via Cluster API.

Chapter 7 UpComing extension points

https://www.cncf.io/certification/software-conformance/

239

• Management cluster manages the lifecycle of Workload

Clusters with the installed providers. Management clusters

have Cluster API CRDs and follow the controller pattern to

manage the lifecycle of workload clusters.

Two types of providers manage the lifecycle of workload clusters:

• Infrastructure providers are responsible for creating

infrastructure resources such as compute, storage, and

networking.

• Bootstrap providers are responsible for installing the

Kubernetes control plane and joining worker nodes to

the cluster.

The relationship between providers and the clusters can be

summarized as follows in Figure 7-2.

Chapter 7 UpComing extension points

240

You can extend Kubernetes cluster management using Cluster API

with two extension points: adding new infrastructure providers and adding

new bootstrap providers. You can add new infrastructure providers to

create bare metal nodes, VMs, or any other virtualized instances based on

your custom requirements. Similarly, you can develop and deploy new

bootstrap providers to implement custom requirements for Kubernetes

internal operations. However, as the Cluster API resources and controllers

are actively updated, you should check the latest reference documentation

and The Cluster API Book.

Figure 7-2. Cluster API overview

Chapter 7 UpComing extension points

https://cluster-api.sigs.k8s.io/introduction.html

241

 Key Takeaways
• Kubernetes is not a finished product; it is in an active

development stage.

• There are still extension points that are in development

to extend Kubernetes further.

• Service Catalog is the extension point to incorporate

external services into the cluster.

• Cluster API provides a declarative API to manage the

lifecycle of other Kubernetes clusters.

 Conclusion
Kubernetes is a complex container orchestrator with its extension points,

and this book has covered all available extension points by grouping them

on their functionality and underlying extension patterns. In each chapter,

you have learned the extension points from a technical perspective and

got your hands dirty. With the information and experience you have

gained throughout the book, I hope you will be more ambitious about the

future of Kubernetes and how you will extend the Kubernetes to enrich its

ecosystem.

Chapter 7 UpComing extension points

243© Onur Yilmaz 2021
O. Yilmaz, Extending Kubernetes, https://doi.org/10.1007/978-1-4842-7095-0

Index

A, B
Aggregation layer

apiserver-boot installation, 133
APIService resource, 131
APIService status, 138
container image, 135–137
custom resource, 135
deployment, 137
essential elements, 130
extension server, 140
folder structure, 134
project initialization, 134
request flow, 131
server initialization, 134
server’s development, 132
TimeseriesDBBackup, 139

API flow extensions
admission controllers

(see Dynamic admission
controllers)

authentication webhooks
accepted response, 64
configuration, 48, 72
deployment, 58
GCP cloud functions, 53
message flow, 52, 66
operations, 62

read-only namespace, 67–75
rejected/denied response, 65
rejected response, 65
server configuration, 49,

50, 62
serverless function, 53–61
SubjectAccessReview, 63, 64
TokenReview object, 50
webhook server, 50–61

flow/extension points, 46
admission control

modules, 47
authentication, 46
authorization, 46

meaning, 45

C
Cloud Native Computing

Foundation (CNCF), 2
Cloud-native infrastructure,

185, 186
Cluster API

advantage, 238
lifecycle, 239
overview, 240
relationship, 239
types of, 238

https://doi.org/10.1007/978-1-4842-7095-0#DOI

244

Container build, 136, 222
Container Network Interface (CNI)

built-in plugins, 205
calico installation, 209–213
features, 208
integration, 207
interface, 204, 205
IPAM plugins, 205
meta, 206
plugins, 208, 209
specification, 207

Container Storage Interface (CSI)
capabilities, 189–191
CSIDrivers, 195
csi-hostpath-provisioner, 197
deployment, 193
dynamic volume, 191
essential points, 199
hostpath driver, 194–200
interface, 191
kube-system namespace, 196
node/controller plugin, 190
plugins development, 191–194
storage classes, 195
volume creation, 198

CustomResourceDefinition
(CRD), 105

API resources, 114
blocks, 113
custom resource, 116
deployment, 114
kubebuilder framework

batteries, 119–129
boilerplate resource, 123

code generation, 126
controller, 122, 126, 128
custom resource status, 128
declarative, 129
reconcile method, 124
idempotent and

atomic, 129
installation, 119, 120
project structure, 120–122
status subresource flag, 124
TimeseriesDB, 127, 128
TimeseriesDBSpec, 123
TimeseriesDBStatus, 124

kubectl custom resource, 114
operator pattern, 117–119
resources, 111
TimeseriesDB, 112, 113,

115, 116

D
Device plugin

applications, 214–217
custom device resource, 216
development and deployment

container environment
variables, 225

custom device, 224
DaemonSet, 223
dependency file, 221
device information, 224
Dockerfile, 221, 222
implementation, 219, 220
lister implementation, 218

INDEX

245

main file, 217
pod implementation, 224
project initialization, 217

interface, 215
kubelet, 214

Dynamic admission controllers
control plane/operation, 76
extension points, 75
server process, 78

accepted admission review,
79, 80

AdmissionReview, 78
container images, 82–89
control setup, 81
environment variable, 89–96
GCP cloud shell, 82
message flow, 81
rejected admission

review, 80
webhook configuration

MutatingWebhook
Configuration
resources, 77

resources, 76

E, F, G, H
Extension points

additional logs, 102
aggregation layer (see

Aggregation layer)
Alpha features, 103
binding request, 101
client libraries, 106–111

CRD (see CustomResource
Definition (CRD))

custom resources, 106
groups, 104, 105
overview, 99
pod creation reference, 100, 101
requests, 100
server aggregation, 106, 107
version, 103

I, J
Infrastructure extensions

cloud-native
infrastructure, 185, 186

device plugin, 213–226
networking, 200–213
storage (see Storage plugins)

K, L, M
kubectl plugins, 21

API resources, 26, 27
bash prompt, 35
cluster, 23–25, 28–30
dashboard, 42
design process

binary plugin handling, 32
handling process, 31
plugin binaries, 30
whoami command, 31

help output, 25
installation, 33–36
krew installation, 36–42

INDEX

246

options output, 27
repository, 22
single-binary application, 22, 23
svc plugin, 41
syntax, 25
version check, 23

kubectl plugins, 19, 21, 25
Kubernetes system

components, 3
configuration

feature gates, 9
kube-apiserver, 6
kube-scheduler, 7

control plane
cloud-controller-manager, 5
components, 4
etcd, 4
kube-apiserver, 4
kube-controller-manager, 5
kube-scheduler, 4

control plane/worker nodes, 3
extension patterns, 10

binary plugin pattern, 16, 17
controller pattern, 10–14
principal groups, 18, 19
webhook, 14–16

helmsman, 1
history, 1
node components, 5

kubelet, 5
kube-proxy, 6

repository, 2

N, O, P, Q, R
Networking model

CNI (see Container Network
Interface (CNI))

communication, 202
containers, 201
fundamental rules, 200
pod communication, 203, 204
simplistic model, 201
specification, 200

S, T, U, V, W, X, Y, Z
Scheduler

binding handles, 145
configuration capabilities

approaches, 153
assignment, 152
custom scheduler, 150
definition, 151
deployment, 152
features, 152
kubebuilder, 154–160
pod specification, 149

event, 145
extenders

bind, 166, 167
configuration details,

161, 162
control plane component, 182
definition, 160
development, 167–181

kubectl plugins (cont.)

INDEX

247

ExtenderPreemptionArgs
data structure, 165

Filter function, 170
filter webhooks, 162, 164
HostPriorityList data

structure, 164
preemption, 165
prioritize webhooks, 164

extension points, 147–149
framework, 145–147
multi-node cluster, 144
overview, 143
pod creation, 144

Service catalog
API resources, 229, 230
capabilities, 230–237
extension point, 228
overview, 228

Storage plugins
communication, 189
containers, 187
CSI (see Container Storage

Interface (CSI))
persistent storage, 188
PVC, 188
volume, 188, 189

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction
	Kubernetes Recap
	Control Plane Components
	kube-apiserver
	etcd
	kube-scheduler
	kube-controller-manager
	cloud-controller-manager

	Node Components
	kubelet
	kube-proxy

	Configuring the Kubernetes Cluster

	Kubernetes Extension Patterns
	Controller
	Webhook
	Binary Plugin
	Kubernetes Extension Points

	Key Takeaways

	Chapter 2: kubectl Plugins
	kubectl Installation and Usage
	kubectl Plugin Design
	Create Your First kubectl Plugins
	Plugin Repository: krew
	Key Takeaways

	Chapter 3: API Flow Extensions
	Kubernetes API Flow
	Authentication
	Authorization
	Admission Control

	Authentication Webhooks
	Kubernetes API Server Configuration
	Webhook Server

	Authorization Webhooks
	Kubernetes API Server Configuration
	Webhook Server

	Dynamic Admission Controllers
	Webhook Configuration Resources
	Webhook Server

	Key Takeaways

	Chapter 4: Extending the Kubernetes API
	Kubernetes API Overview
	API Versioning
	API Groups
	Extension Points in Kubernetes API
	CustomResourceDefinitions
	API Server Aggregation

	Kubernetes Client Libraries

	Custom Resource Definitions and Controllers
	Operator Pattern in Kubernetes
	kubebuilder Framework

	Aggregated API and Extension Servers
	Key Takeaways

	Chapter 5: Scheduling Extensions
	Kubernetes Scheduler Overview
	Scheduling Framework
	Extension Points

	Configure and Manage Multiple Schedulers
	Scheduler Extenders
	Configuration Details
	Scheduler Extender API
	Filter
	Prioritize
	Preempt
	Bind

	Key Takeaways

	Chapter 6: Infrastructure Extensions
	Cloud-Native Infrastructure
	Storage Plugins
	Container Storage Interface (CSI)
	CSI Plugins in Kubernetes
	CSI Hostpath Driver in Action

	Network Plugins
	Kubernetes Network Model
	Container Network Interface (CNI)
	CNI Plugins in Kubernetes
	Calico CNI Plugin in Action

	Device Plugins
	Device Plugin API
	Development and Deployment of a Device Plugin

	Key Takeaways

	Chapter 7: Upcoming Extension Points
	Service Catalog
	Cluster API
	Key Takeaways
	Conclusion

	Index

