for Kubernetes

Automate app deployment on any scale with Ansible and K8s

Jeff Geerling

Ansible for Kubernetes

Automate app deployment on any scale with
Ansible and K8s

Jeff Geerling

This book is for sale at http://leanpub.com/ansible-for-kubernetes

This version was published on 2020-09-01

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2018 - 2020 Jeff Geerling

http://leanpub.com/ansible-for-kubernetes
http://leanpub.com/
http://leanpub.com/manifesto

This book is dedicated to my wife, Natalie, and my children.

Cover illustration © 2018 Jeff Geerling.

Ansible is a software product distributed under the GNU GPLv3 open source license.
Kubernetes is a software product distributed under the Apache License 2.0 open source

license.

Contents

Preface i
Who is this book for? iii
Typographic conventions ii
Please help improve thisbook! o L. iv

Current Published Book Version Information \
Aboutthe Author. L v

Introduction vi
In the beginning, there were servers vi
The move to containers vi
AnsiblebyRedHat. viii
Kubernetesandthe CNCF ix
Examples Repository X
Other resources X

Ansibleresources X
Kubernetes resources xi

Chapter 1 -HelloWorld! 1

Hello, Go! 1
Installing Go 1
Creating a ‘Hello world’ appinGo 2
BuildingHelloGo. 4

Deploying Hello Go ina container 5
Running Hello Goin Docker 5

Building the container 7
Running the container 7
Hello Go app summary, 8

CONTENTS

Deploying Hello Go in Kubernetes 8
Installing Minikube Lo L 8
Building the Hello Go container in Minikube 9
Running Hello Go in Minikube 10
Scaling Hello Go in Kubernetes 15
CleanupHelloGo 16

Summary 17

Chapter 2 - Automation brings DevOpsbliss 19

Ansible 101 20
Installing Ansible L 20
Hello, Ansible! 23
Running your first Ansible playbook 26
Ansible 101 summary 27

Managing Kubernetes with Ansible. 27
Managing Minikube o o Lo L 27
Building container images in Minikube with Ansible 29
Managing Kubernetes resources with Ansible. 31
Scaling Hello Go with Ansible 35

Scaling via the existing Deployment spec 35

Scaling with Ansible’s k8s_scale module 36

Scaling with k8s and strategic_merge 38

Cleaning up Kubernetes resources with Ansible 39
Summary 40
Chapter 3 - Ansible manages containers 42

Ansible’s Docker modules L oL 42
docker_imagemodule 43
docker_container module 45
Pushing the container image toaregistry 47

Running a local container registry 47
docker_loginmodule, 49

Pushing an image to a Docker registry with docker_image 50

Ansible Docker module summary 52
Building images using Ansible without a Dockerfile 52

Relying on Roles from Ansible Galaxy 54

CONTENTS

Writing a Playbook to Build a Container Image 55
Writing a Playbook to Test the Container Image 62
Apache Solr container build summary 66
Summary 67
Chapter 4 - Building K8s clusters with Ansible 68
Building a local Kubernetes clusteron VMs 68
Prerequisites - Vagrant and VirtualBox 68

A small Kubernetes cluster architecture 70

A Vagrantfile for local Infrastructure-as-Code 71
Building a Kubernetes cluster with Ansible 74
Describing hosts with an inventory 74
Becoming root in a playbook o oL 75
Building a server withroles 75

Role configuration, 77
Running the cluster build playbook 79

Testing the cluster with a deployment using Ansible 80
Debugging cluster networking issues 86
Fixing issues with Flannel and iptables 88
Switching nftables to iptables-legacy 89

Patching Flannel to use the right network interface 89

Local VM cluster summary 94
Building a cluster using Kubespray 95
Building a cluster on VPSes using Kubespray 95
Building a bare metal cluster using Raspberry Pis 95
Summary 97

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 98

Managing AWS EKS clusters with CloudFormation 98
CloudFormation Templates 100
CloudFormation template for VPC Networking 100
CloudFormation template for an EKS Cluster 107
CloudFormation template for an EKS Node Group 110
Applying CloudFormation Templates with Ansible 113
Authenticating to the EKS Cluster via kubeconfig 118

Deploying WordPress to the EKS Cluster 119

CONTENTS

Build the WordPress Kubernetes manifests 121

Build an Ansible Playbook to deploy the manifests to EKS 128

Point a custom domain at the WordPressELB 131

Run the playbook to deploy WordPress. 134
Summary 135
Chapter 6 - Manage a GKE Cluster with Terraform and Ansible 137
Managing Google Cloud GKE clusters with Terraform 137
Summary 137

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 138

Ansible playbook to deploy a KubernetesJob 140
Add Molecule for development and testing 142
Manage Kind with Molecule 144
Test a playbook in Kind with Molecule 146
Verity the playbook worked with Molecule 147
Kubernetes CI Testing in GitHub Actions 148
Summary 151
Chapter 8 - Ansible’s Kubernetes integration 153
k8smodule 153
k8s_infomodule 153
k8s inventory plugin L L 153
k8s_scalemodule 154
k8s_execmodule L 154
k8s_servicemodule 154
k8s_logmodule. 154
geerlingguy.k8s collection. 154
Summary 155
Chapter9-HelloOperator 156
The Operator Pattern 156
Operator SDK o 156
Go vs. Ansible-based Operators 156
Your first Ansible-based Operator 156
End-to-end testing for an Ansible-based Operator with Molecule. . . 156

Example: WordPress in EKS with an Operator 157

CONTENTS

Summary 157
Chapter 10 - The first real-world application 158
Afterword 159
Appendix A - Using Ansible on Windows workstations 160

Method 1 - Use the Windows Subsystem for Linux / Bash on Ubuntu . . . 160

Installing Ansible inside Bash on Ubuntu 161
Method 2 - When WSLisnotanoption 162
Prerequisites 163
Set up an Ubuntu Linux Virtual Machine 163
Log into the Virtual Machine 164
Install Ansible L 166

Summary 167

Preface

After writing Ansible for DevOps in 2014 and publishing more than 20 revisions
to the book, I had a desire to start working on companion books that were more
focused on particular aspects of infrastructure automation that I couldn’t cover in
depth otherwise.

I started using Kubernetes in 2017, and found Ansible integrated nicely with my
automation workflows in Kubernetes and container-based infrastructure. After
adding a lengthy chapter to Ansible for DevOps introducing readers to Ansible and
Kubernetes, I decided to expand the material into an entire book!

My primary motivation for writing this book is feedback I've been getting from a lot
of readers. They are frustrated when they read other Kubernetes-related books, blog
posts, and documentation, but run into a problem illustrated below:

Preface ii

How to manage apps
in Kubernetes

“A fun and creative guide for beginners™

Fig 1. Statcless *hello world app Fig 2. Build the rest of the damn cluster

But how do you draw the owl1?!

Many books promise to show you how to do new and exciting things in Kubernetes.
They demonstrate simple stateless applications running in a Kubernetes cluster, and
then tell you to go create robust, scalable, clusters running real-world applications.
But they don’t explain how to do it, much less how to make your process automated
and well-tested!

Don’t worry, I'm not going to do that here. We're going to start drawing that circle
in Chapter 1, but through the rest of the book I’ll teach you how to turn that circle
into a beautiful owl—er... Kubernetes-powered infrastructure.

— Jeff Geerling, 2019

Preface iii

Who is this book for?

Many of the developers and sysadmins I work with are at least moderately com-
fortable administering a Linux server via SSH, and manage between 1-100 servers,
whether bare metal, virtualized, or using containers.

Some of these people have a little experience with configuration management tools
(usually Puppet, Chef, or Ansible), and maybe a little experience with Kubernetes
through tools like Minikube or a hosted Kubernetes environment (EKS, GKS, AKS,
etc.). I am writing this book for these friends who, I think, are representative of most
people who have heard of and/or are beginning to use Ansible and Kubernetes.

If you are interested in both development and operations, and have at least a
passing familiarity with managing servers and managing app containers via the
command line, this book should provide you with an intermediate- to expert-level
understanding of Ansible and how you can use it to manage your Kubernetes-based
infrastructure.

Typographic conventions

Ansible and Kubernetes use a simple syntax (YAML) and simple command-line tools
(using common POSIX conventions) to control their powerful abilities. Code samples
and commands will be highlighted throughout the book either inline (for example:
ansible [command] or kubectl [command]), or in a code block (with or without line
numbers) like:

This is the beginning of a YAML file.

Some lines of YAML and other code examples require more than 70 characters per
line, resulting in the code wrapping to a new line. Wrapping code is indicated by a \
at the end of the line of code. For example:

Preface iv

The line of code wraps due to the extremely long URL.
wget http://www.example.com/really/really/really/long/path/in/the/url/c\
auses/the/line/to/wrap

When using the code, don’t copy the \ character, and make sure you don’t use a
newline between the first line with the trailing \ and the next line.

Links to pertinent resources and websites are added inline, like the following links to
Ansible' and Kubernetes?, and can be viewed directly by clicking on them in eBook
formats, or by following the URL in the footnotes.

Sometimes, asides are added to highlight further information about a specific topic:

0 Informational asides will provide extra information.

ﬁ Warning asides will warn about common pitfalls and how to avoid them.

Tip asides will give tips for deepening your understanding or optimizing
your use of Ansible.

When displaying commands run in a terminal session, if the commands are run under
your normal/non-root user account, the commands will be prefixed by the dollar sign
($). If the commands are run as the root user, they will be prefixed with the pound

sign ().
Please help improve this book!

New revisions of this book are published on a regular basis (see current book
publication stats below). If you think a particular section needs improvement or find

'https://www.ansible.com
*https://kubernetes.io

https://www.ansible.com/
https://kubernetes.io/
https://www.ansible.com/
https://kubernetes.io/

Preface \%

something missing, please post an issue in the Ansible for Kubernetes issue queue®
(on GitHub).

All known issues with Ansible for Kubernetes will be aggregated on the book’s online
Errata* page.

Current Published Book Version Information

+ Current book version: 0.4

« Current Ansible version as of last publication: 2.10

+ Current Kubernetes version as of last publication: 1.19
« Current Date as of last publication: September 1, 2020

About the Author

Jeff Geerling is a developer who has worked in programming and reliability engi-
neering, building hundreds of apps and services in various cloud and on-premise
environments. He also manages many services offered by Midwestern Mac, LLC and
has been using Ansible to manage infrastructure since early 2013, and Kubernetes
since 2017.

*https://github.com/geerlingguy/ansible-for-kubernetes/issues
“https://www.ansibleforkubernetes.com/errata

https://github.com/geerlingguy/ansible-for-kubernetes/issues
https://www.ansibleforkubernetes.com/errata
https://github.com/geerlingguy/ansible-for-kubernetes/issues
https://www.ansibleforkubernetes.com/errata

Introduction

In the beginning, there were servers

Deploying and managing servers and applications reliably and efficiently has always
been challenging. Historically, system administrators were walled off from the de-
velopers and users who interact with the systems they administer, and they managed
servers by hand, installing software, changing configurations, and administering
services on individual servers.

As data centers grew, and hosted applications became more complex, administrators
realized they couldn’t scale their manual systems management as fast as the
applications they were enabling. API-driven server management and configuration
management tools like Ansible helped make things manageable for a time.

But the shift to full self-service, developer-centric management of microservices
and serverless application architecture meant that a more seismic shift was coming.
Instead of thinking in terms of servers and infrastructure, developers expect to be
able to manage containerized application lifecycles, with no regard for the servers
on which their applications run.

The move to containers

Contemporary business requirements for applications include one or more of the
following features:

« self-healing infrastructure

« auto-scaling

« high-availability with multi-server failover
« flexible storage backends

« multi-cloud compatibility

Introduction vii

As containerized app development and deployment became more popular, there were
a number of competing technology stacks which checked at least a few of these
boxes, like Apache Mesos and Docker Swarm. Some cloud vendors like Amazon Web
Services (AWS) even built their own container scheduling products (Elastic Container
Service) to meet the needs of cloud-native applications.

What is ‘cloud native’? You’ll often see the term ‘cloud-native’ when
discussing Kubernetes and container management. Like DevOps, the term
can be loaded, and sometimes means different things to different people.
For the purposes of this book, cloud native refers to design and philosophy
that is geared towards operations in a ‘cloud’ environment (whether
public, private, or hybrid), versus operations in a classical server-based
environment (bare metal or VMs).

Application architecture decisions make operating in container-driven
infrastructure much easier if applications are designed in a ‘cloud native’
manner. One design methodology that strongly influenced cloud native
application design is The Twelve-Factor App°.

The Cloud Native Computing Foundation (mentioned later in this intro-
duction) maintains the de facto Cloud Native Definition®, which expands
on the informal definition above.

There were many entrants into the nascent field of container scheduling and self-
healing vendor-independent clustering software, but most of them had limited
feature sets or did not afford the flexibility desired in a modern infrastructure
environment.

*https://12factor.net
“https://github.com/cncf/toc/blob/master/DEFINITION.md

https://12factor.net/
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://12factor.net/
https://github.com/cncf/toc/blob/master/DEFINITION.md

Introduction viii

Ansible by Red Hat

Ansible logo

Ansible was created at a point when many companies were migrating to public or
private cloud infrastructure, often replacing individual servers and hosts with virtual
machines and managed services.

There were a number of ‘configuration management’ tools which served a similar
role to Ansible, but Ansible had a few advantages that made its adoption easier for
a wide variety of uses:

« Ansible was agentless, so you could manage resources without running extra
software on them.

« Ansible was simple, using YAML syntax and a simple, modular architecture
which was easy for most teams to learn, and didn’t require everyone to be
familiar with a particular programming language or a new DSL.

« Ansible had a ‘batteries included’ philosophy, which made it easy to install and
use for almost any scenario out of the box.

As time went on, Ansible expanded its scope, becoming a top choice for Security,
Windows, and Network automation in addition to general Linux and application
automation. After Red Hat acquired Ansible, it consolidated everything into the
Red Hat Ansible Automation Platform, while continuing to support the open source
Ansible engine at the center of all things Ansible.

Ansible’s openness and simplicity made it a central part of many teams’ infras-
tructure automation, and thousands of modules have been added to meet most IT

Introduction ix

automation needs.

As Kubernetes and OpenShift became popular in the late 2010s, Ansible was well-
positioned to manage Kubernetes and OpenShift clusters, applications running on
the clusters, and integrations between Kubernetes services and externally-hosted
services.

Ansible’s abstractions allow flexibility in a modern multi-cloud environment, as
automation has moved from configuring hundreds of servers at a time to actively
managing hundreds of thousands of containers and automation tasks on a daily basis.

Kubernetes and the CNCF

Kubernetes logo

In 2013, some Google engineers began working to create an open source represen-
tation of the internal tool Google used to run millions of containers in the Google
data centers, named Borg. The first version of Kubernetes was known as Seven of
Nine (another Star Trek reference), but was finally renamed Kubernetes (a mangled
translation of the Greek word for ‘helmsman’) to avoid potential legal issues.

To keep a little of the original geek culture Trek reference, it was decided the logo
would have seven sides, as a nod to the working name ‘Seven of Nine’.

In a few short years, Kubernetes went from being one of many up-and-coming
container scheduler engines to becoming almost a de facto standard for large scale
container deployment. In 2015, at the same time as Kubernetes’ 1.0 release, the Cloud
Native Computing Foundation (CNCF) was founded, to promote containers and
cloud-based infrastructure.

Introduction X

Kubernetes is one of many projects endorsed by the CNCF for ‘cloud-native’
applications, and has been endorsed by VMware, Google, Twitter, IBM, Microsoft,
Amazon, and many other major tech companies.

By 2018, Kubernetes was available as a service offering from all the major cloud
providers, and most competing container tooling has been rebuilt to run with
Kubernetes.

Kubernetes is often abbreviated ‘K8s’ (K + eight-letters + s), and the two terms are
interchangeable.

Examples Repository

There are many code examples (playbooks, roles, manifests, configuration, etc.)
throughout this book. Most of the examples are in the Ansible for Kubernetes GitHub
repository’, so you can browse the code in its final state while you’re reading the
book. Some of the line numbering may not match the book exactly (especially if
you’re reading an older version of the book!), but I will try my best to keep everything
synchronized over time.

Other resources

We'll explore all aspects of using Ansible and Kubernetes to deploy applications in
this book, but there’s no substitute for the wealth of documentation and community
interaction that make these tools great. Check out the links below to find out more
about the tools and their communities:

Ansible resources

« Ansible Documentation® - Covers all Ansible options in depth. There are few
open source projects with documentation as clear and thorough.

« Ansible Glossary” - If there’s ever a term in this book you don’t seem to fully
understand, check the glossary.

"https://github.com/geerlingguy/ansible-for-kubernetes
®https://docs.ansible.com/ansible/latest/
*https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html

https://github.com/geerlingguy/ansible-for-kubernetes
https://github.com/geerlingguy/ansible-for-kubernetes
https://docs.ansible.com/ansible/latest/
https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html
https://github.com/geerlingguy/ansible-for-kubernetes
https://docs.ansible.com/ansible/latest/
https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html

Introduction Xi

« Ansible Mailing List'® - Discuss Ansible and submit questions with Ansible’s
community via this Google group.

« Ansible on GitHub"' - The official Ansible code repository, where the magic
happens.

« Ansible Blog'

Kubernetes resources

« Kubernetes Documentation' - Covers Kubernetes usage patterns in depth.

« Kubernetes Glossary'* - If there’s ever a term in this book you don’t seem to
fully understand, check the glossary.

« Kubernetes SIGs and Working Groups™ - These groups are where major
changes and new features are discussed—consider joining one of these groups
if the topic is of importance to you, or just follow along with the groups you’re
interested in.

« Kubernetes on GitHub'® - The official Kubernetes code repository, where the
magic happens.

« Kubernetes on Slack'” - Chat with other Kubernetes users in the official Slack.

« Kubernetes Blog'®

[want to especially point out the official documentation for both projects, which is
continually updated and is very thorough. This book is meant as a supplement to,
not a replacement for, the official documentation!

°https://groups.google.com/forum/#!forum/ansible-project
https://github.com/ansible/ansible

“https://www.ansible.com/blog

https://kubernetes.io/docs/home/
“https://kubernetes.io/docs/reference/glossary/
Phttps://github.com/kubernetes/community/blob/master/sig-list.md
*%https://github.com/kubernetes/kubernetes

http://slack k8s.io

"®https://kubernetes.io/blog/

https://groups.google.com/forum/#!forum/ansible-project
https://github.com/ansible/ansible
https://www.ansible.com/blog
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/reference/glossary/
https://github.com/kubernetes/community/blob/master/sig-list.md
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
https://kubernetes.io/blog/
https://groups.google.com/forum/#!forum/ansible-project
https://github.com/ansible/ansible
https://www.ansible.com/blog
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/reference/glossary/
https://github.com/kubernetes/community/blob/master/sig-list.md
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
https://kubernetes.io/blog/

Chapter 1 - Hello World!

Kubernetes and many other CNCF ecosystem projects are built using the popular
Go language. Because of that, it’s good to have at least a basic understanding of Go
(enough to write a ‘Hello, world!” app*®) before diving deeper into Kubernetes.

Don’t worry, we’ll get to Kubernetes clusters and managing them with Ansible soon!

Hello, Go!

In this chapter, we’re going to build a tiny Go app and run it locally. We'll then
use this app to demonstrate the basics of containers and Kubernetes, and build on
it through the early parts of the book to get you started automating applications in
Kubernetes.

Installing Go

The official method of installing Go requires downloading the correct binary
source package from the Go Downloads page®, then either running the installer
(if downloading the macOS package or Windows MSI installer), or unpacking the
archive into the directory /usr/local/go.

On a typical 64-bit Linux workstation, the process would be:

https://en.wikipedia.org/wiki/%22Hello, World!%22_program
*https://golang.org/dl/

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://golang.org/dl/
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://golang.org/dl/

Chapter 1 - Hello World! 2

export VERSION=1.15

Download the Go archive.
curl -0 https://dl.google.com/go/go$VERSION. linux-amd64.tar.gz

Verify the SHA256 Checksum (against the downloads page).
sha256sum go$VERSION. linux-amd64.tar.gz

Extract the tarball into the “/usr/local™ directory.
tar -C /usr/local -xzf go$VERSION.linux-amd64.tar.gz

Add the Go binaries to your $PATH.
export PATH=$PATH: /usr/local/go/bin

If you want the $PATH changes to persist, make sure to add them to shell
profile (e.g. ~/.profile).

The above commands should be run as the root user, or via sudo, so the Go
installation can operate correctly.

If the installation worked, you should be able to enter go version and get the version
you just installed:

$ go version

go version gol.15 linux/amd64

There are other ways to install Go, e.g. via Homebrew on macOS (brew install
go), Chocolatey on Windows (choco install -y golang), or via various third-party
repositories via apt or yum; as long as you can get a working Go installation, you
should be able to compile the application we’ll build in this chapter.

Creating a ‘Hello world’ app in Go

Go is easy to learn. At its most basic, you can write amain() function, compile, and
run your app.

O 00 I O O b W N =

N N S S o = S O S
0 O 00 N O O b W N =~ O

Chapter 1 - Hello World! 3

We’re going to write the most basic HTTP request response app, called Hello Go.
The design goal is simple:

1. Run a web server on port 8180.
2. For any request, return the content “Hello, you requested: URL_PATH_HERE”

First, create a new project directory, hello-go, with the following directory structure:

hello-go/
cmd/
hello/

Now, inside the hello directory, create the file hello.go with the following Go code:

package main

import (
"fmt"
"log"
"net/http"
)

// HelloServer responds to requests with the given URL path.

func HelloServer(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "Hello, you requested: %s", r.URL.Path)
log.Printf("Received request for path: %s", r.URL.Path)

func main() {
var addr string = ":8180"
handler := http.HandlerFunc(HelloServer)
if err := http.ListenAndServe(addr, handler); err != nil {
log.Fatalf("Could not listen on port %s %v", addr, err)

Chapter 1 - Hello World! 4

This is all that’s needed to generate an HTTP server responding on port 8180. In the
main function, Go’s http.ListenAndServe() listens on the given network address
(addr), and routes incoming requests through the handler (handler).

Our HelloServer handler responds to any request by printing “Hello, you requested:
%s”, with the URL path replacing the %s placeholder.

This is not an amazing HTTP server, and it doesn’t do a whole lot, but it is a full-
fledged Go application, which can now be compiled into a binary.

Building Hello Go

With the hello.go file saved, run the following command from the project’s root
directory:

$ go build cmd/hello/hello.go

After a couple seconds, you should see a new hello binary in the project’s root
directory. Run it by typing:

$./hello

Now, in another terminal, run curl localhost:8180. You should see something like
the following:

curl localhost:8180
Hello, you requested: /

And if you curl another path, like curl localhost:8180/test, you’'ll see:

curl localhost:8180
Hello, you requested: /test

Amazing! A couple more hours and we’ll have implemented Apache in Go!

You may also note that your original terminal window was logging your curl
requests in the background, like:

Chapter 1 - Hello World! 5

$./hello
2025/11/12 20:58:07 Received request for path: /
2025/11/12 20:58:15 Received request for path: /test

It’s always nice to have applications log to standard output (stdout) and standard
error (stderr), because in the cloud-native world, these logs are easy to route and
store centrally.

You can press Control + C to exit the Hello Go app; we're going to work on running
it in a container now, so we can get one step closer to running it in Kubernetes!

Deploying Hello Go in a container

Hello Go isn’t very useful if you can only run it locally on your workstation. This
app is stateless, it logs to stdout, and it fulfills a single purpose, so it is a perfect fit to
containerize for a cloud-native deployment!

Running Hello Go in Docker

Building Go apps in Docker containers is easy. Go maintains a number of images on
Docker Hub containing all the necessary tooling to build your app, and all you need
to do is copy in the source and run go build.

Docker vs. Podman: Docker users wonder about the future of Docker CE
and moby, the engine that runs Docker containers. Events like the sale of
‘Docker Enterprise’ to Mirantis in 2019 did nothing to quell fears about
Docker’s future, and many developers who rely on containers for their
application deployment have been seeking alternative container builders
and runtimes.

One of the more popular alternatives, which implements all the features
we’ll use in this book (in fact, it’s a drop-in replacement for Docker for
most purposes) is the combination of Podman®' and Buildah?*.

This book will mostly use Docker in its examples due to its ongoing popu-
larity, but know there are other container runtimes worth investigating.

'https://podman.io
*https://buildah.io

https://podman.io/
https://buildah.io/
https://podman.io/
https://buildah.io/

a s W N -

10
11
12
13

Chapter 1 - Hello World! 6

It’s time to create a Dockerfile to instruct Docker how to build our Hello Go app
container image.

Create a Docker file in the hello-go project’s root directory, and add the following:

FROM golang:1-alpine as build

WORKDIR /app
COPY cmd cmd
RUN go build cmd/hello/hello.go

If you’ve worked with Docker before, you might be wondering about the syntax of
the first line.

The first line of a Dockerfile should define the base image for the Docker container.
Here, we’re building from the golang library image using the 1-alpine tag, which
will give us the latest version in the Go 1.x series of images, based on Alpine Linux.

But what about as build? This portion of the FROM line allows a multi-stage build.
If we just built our app inside the golang:1-alpine image, we would end up with at
least a 150 MB Docker image. For a tiny HTTP server app like Hello Go, that’s a lot
of overhead!

Using a multi-stage build, we can build Hello Go in one container (named build
using that as build statement), then copy Hello Go into a very small container for
deployment.

Add the following to the same Dockerfile to complete the multi-stage build:

FROM alpine:latest

WORKDIR /app
COPY --from=build /app/hello /app/hello

EXPOSE 8180
ENTRYPOINT ["./hello"]

Building on the alpine: latest base image will give us a final container image that’s
only a few megabytes, which means it will be faster to upload into a container
registry, and faster to pull when running it in Kubernetes.

Chapter 1 - Hello World! 7

We set the same workdir (/app) as the build container, and then COPY the binary that
was built (/app/hello) into the final deployment container.

Finally, we EXPOSE port 8180, since that’s the port our webserver listens on, and then
we set the ENTRYPOINT to our hello binary, so Docker will run it as the singular
process in the container when running it with all the default settings.

Building the container

Now we can build the container image. Run the following command inside the same
directory as the Dockerfile:

docker build -t hello-go .

After a couple minutes (or less if you already had the base images downloaded!), you
should be able to see the hello-go container image when you run docker images:

$ docker images

REPOSITORY TAG CREATED SIZE
hello-go latest 44 seconds ago 13MB
<none> <none> 47 seconds ago 367MB
golang 1-alpine 2 weeks ago 359MB
alpine latest 3 weeks ago 5.55MB

Now we’ll run the container image to make sure Hello Go operates in the container
identically to how it operated when run directly.

Running the container

To run the container and expose the internal port 8180 to your host, run the
command:

$ docker run --name hello-go --rm -p 8180:8180 hello-go

After a second or two, the webserver should be operational. In another terminal,
runcurl localhost:8180/testing, and you should see the “Hello, you’ve requested:
/testing” response in that window, as well as the logged request in the window where
docker run was executed.

Chapter 1 - Hello World! 8

$ docker run --name hello-go --rm -p 8180:8180 hello-go
2025/11/12 22:31:07 Received request for path: /testing

To stop and terminate the container, press Ctrl-C in the terminal where you ran
docker run.

Hello Go app summary

Many tools in the Kubernetes ecosystem are written in Go. You might not be a master
of the Go language after building and running this app in a container, but you at least
know the basics, and could even put ‘Go programmer’ on your resumé now (just
kidding!).

repository, in the hello-go/? directory.

o The code used in this example is also available in this book’s code

Deploying Hello Go in Kubernetes

You could deploy your app to a server somewhere using docker run, but if the app
dies or the server reboots, the container would not come back up. You could specify
a --restart policy with docker run, but the point of this book is to show you how
to deploy into Kubernetes for all the other benefits it provides!

So let’s work on deploying this single-container, stateless Go app into Kubernetes,
using a small local Kubernetes environment, Minikube®*.

Installing Minikube

There are a variety of installation guides®® depending on what OS and distribution
you’re running. If you’re on macOS, you can install Minikube with Homebrew:

“https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/hello-go
**https://minikube.sigs.k8s.io
*https://minikube.sigs.k8s.io/docs/start/

https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/hello-go
https://minikube.sigs.k8s.io/
https://minikube.sigs.k8s.io/docs/start/
https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/hello-go
https://minikube.sigs.k8s.io/
https://minikube.sigs.k8s.io/docs/start/

Chapter 1 - Hello World! 9

$ brew install minikube
If you’re on Windows, you can install Minikube with Chocolatey:
> choco install minikube

If you're on Linux, Minikube can be installed via the latest .deb or .rpm from the
Linux install guide®.

Starting Minikube is as easy as:
$ minikube start

Hello Go doesn’t require much in terms of resources, so the default resources
Minikube allocates are adequate. For later examples, it will be important to allocate
more RAM and/or CPU to Minikube, which is as easy as specifying the values during

start:
$ minikube start --cpus 4 --memory 4g

After a couple minutes, Minikube should be started, and you’ll be able to start
deploying Hello Go inside a Kubernetes environment!

Building the Hello Go container in Minikube

Minikube runs a separate VM on your workstation, and that VM doesn’t have access
to your local Docker registry. If you try to deploy the hello-go: latest image inside
Minikube’s Kubernetes cluster, Kubernetes will complain it can’t pull the image.

Minikube recommends building images inside the Minikube environment, and to do
that, set your local docker CLI to use Minikube’s Docker daemon:

*https://minikube.sigs.k8s.io/docs/start/linux/

https://minikube.sigs.k8s.io/docs/start/linux/
https://minikube.sigs.k8s.io/docs/start/linux/

Chapter 1 - Hello World! 10

$ eval $(minikube docker-env)

If you run docker images now, you’ll see a number of images that are not
present in your local workstation’s Docker installation. And you can verify the
hello-go:latest image is not present.

Now that you’re operating in Minikube’s Docker environment, build and tag the
hello-go image again:

$ docker build -t hello-go .
After it’s finished, you should see the image in Minikube’s docker images listing:

$ docker images

REPOSITORY TAG CREATED SIZE

hello-go latest 7 seconds ago 13MB

<none> <none> 9 seconds ago 367MB
golang 1-alpine 2 weeks ago 359MB
alpine latest 3 weeks ago 5.55MB
k8s.gcr.io/kube-proxy v1.18.3 4 weeks ago 116MB
k8s.gcr.io/kube-scheduler v1.18.3 4 weeks ago 94 .4MB

Running Hello Go in Minikube

In Kubernetes, the most common way to deploy an app is using a Deployment.
Deployments manage Kubernetes Pods, which for the purpose of this chapter are
like individual running Docker containers. Deployments (and Pods, and everything
else about Kubernetes) offer a lot more than we’ll demonstrate right now, and we’ll
dig much deeper through the rest of the book.

For now, though, let’s deploy our Hello Go app into the Minikube Kubernetes
environment using the kubectl command line utility:

Chapter 1 - Hello World! 11

$ kubectl create deployment hello-go --image=hello-go

This command creates a new Deployment resource named hello-go. The Deployment
will run one Pod by default, and that Pod will start a container with the hello-go
image we built inside Minikube’s Docker environment a few moments ago.

If you’re running macOS, you can install it with Homebrew (brew install
kubectl), if you’re on Windows, you can install it with Chocolatey (choco

0 If you don’t yet have kubect1 installed, follow these directions® to install it.

install kubernetes-cli), or on any platform, you can download the
current kubectl binary following the linked instructions in Kubernetes’
documentation and make it executable in your $PATH.

Once the Deployment is created, you can check on its status with:
$ kubectl get deployment hello-go

You might notice Kubernetes prints 0/1 for the READY status of the hello-go
deployment:

$ kubectl get deployment hello-go
NAME READY UP-TO-DATE AVAILABLE AGE
hello-go 0/1 1 (4] 12s

This means the deployment is expecting one running Pod, but currently there are
none. Let’s take a look at the Pods currently running to see what’s happening:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hello-go-6dfc8bbd74-pn2jf ©/1 ErrImagePull 0 22s

It looks like Kubernetes is having trouble pulling the hello-go image (thus the
ErrImagePull message). You can get more details about the pod’s woes using kubect1
describe:

*"https://kubernetes.io/docs/tasks/tools/install-kubectl/

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

Chapter 1 - Hello World! 12

$ kubectl describe pod hello-go-6dfc8bbd74-pn2jf

Name: hello-go-6dfc8bbd74-pn2jf
Namespace: default
Events:
Type Reason Age Message
Normal Scheduled <unknown> Successfully assigned defaul\

t/hello-go-6dfc8bbd74-pn2jf to minikube
Normal Pulling 49s (x4 over 3mb5s) Pulling image "hello-go"
Warning Failed 23s (x4 over 2mb5@s) Failed to pull image "hello-\
go":
ttps://registry-1.docker.io/v2/: net/http: request canceled while waiti\

rpc error: code = Unknown desc = Error response from daemon: Get h\

ng for connection (Client.Timeout exceeded while awaiting headers)
Warning Failed 23s (x4 over 2m5@s) Error: ErrImagePull
Normal BackOff 11s (x6 over 2m49s) Back-off pulling image "hell\
o-go"
Warning Failed 11s (x6 over 2m49s) Error: ImagePullBackOff

There will likely be thousands of instances where you’ll deploy something
into Kubernetes, and then you won’t see it fully started. Using kubectl get
[resource] and kubectl describe [resource] [instance] are usually the
best ways to get started debugging problems in Kubernetes.

In this case, it looks like Kubernetes is trying to pull our image from Docker Hub
(Get https://registry-1.docker.io/v2/) instead of from the local image registry.
We could try to figure out the local registry’s URL and other details, and include that
in the Docker image’s full path (e.g. http://192.168.x.x:1234/hello-go), but that’s
not very portable and would have to change any time we switched clusters.

So instead, we can modify the hello-go deployment to only attempt pulling the
container image if it’s not already present. In your terminal, run:

$ kubectl edit deployment hello-go

35
36
37
38
39
40
41

Chapter 1 - Hello World! 13

Then, edit the YAML key spec.template.spec.containers.@.imagePullPolicy and
change it from Always (Kubernetes’ default) to IfNotPresent. That section of the
deployment’s YAML should end up looking like:

spec:
containers:
- image: hello-go
imagePullPolicy: IfNotPresent
name: hello-go

After you edit the deployment and save the changes (if using Vim, pressEsc, then :wq
to write the changes and quit), Kubernetes should finally be able to run the container
in the hello-go Pod. Confirm that the Deployment is now healthy:

$ kubectl get deployment hello-go
NAME READY UP-TO-DATE AVAILABLE AGE
hello-go 1/1 1 1 8m35s

Hand-editing resources using kubectl edit is fine for development pur-

A poses, but as you get further in your automation journey, you should equate
hand-editing resources (or any kind of management via kubectl) with
hand-modifying individual server configurations—don’t do it! Everything
should be automated by the time you reach production. If it isn’t, you’re
going to find yourself managing an increasingly complex and hard-to-
understand Kubernetes cluster.

At this point, Hello Go is running in Kubernetes. But we won’t be able to access
the app from anywhere, because there is nothing exposing port 8180 to the outside
world. In Docker, we used -p 8180:8180 to expose a port from the Docker container
to a port on the host. In Kubernetes, we can ‘expose’ a deployment to the outside
world using a Kubernetes Service.

In this case, we’ll create a Service of type LoadBalancer, which will take incoming
requests, and distribute them to any Pods running our Hello Go app. By default,

Chapter 1 - Hello World! 14

there’s only one Pod right now, so the Load Balancer might be overkill. But later,
if we want to scale out the app, the Load Balancer will come in handy! Run the
following command:

$ kubectl expose deployment hello-go --type=LoadBalancer --port=8180
And you can check on this service with:

$ kubectl get service hello-go
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
hello-go LoadBalancer 10.110.50.96 <pending> 8180:31565/TCP

Note that, when running Minikube, a LoadBalancer service won’t acquire an external
IP address. Locally, Minikube doesn’t integrate with another service to run external
load balancers. But in most other environments, when you use a Kubernetes
LoadBalancer, it will provision a load balancer external to your cluster, for example
an Elastic Load Balancer (ELB) in AWS, or a Cloud Load Balancer in GKE.

Because Minikube doesn’t integrate with a separate local load balancer, you have to
ask Minikube to simulate the connection using minikube service:

$ minikube service hello-go

Ideally, this will pop open a browser window in your default browser, and you’ll see
the response from Hello Go:

192.168.64.31:31565

Hello, you requested: /

Hello Go responding to an HTTP request in Minikube.

Chapter 1 - Hello World! 15

If not, it should print the URL (including Minikube’s IP address and the port number
Minikube routes to Hello Go), and you can copy and paste that into a browser to test
the app.

Go ahead and visit a few pages (e.g. /testing, /hello-world, etc.), and make sure
Hello Go responds with the appropriate path. You might wonder where all the logs
are—in Docker and when running the app standalone, they were immediately printed
to the screen. In Kubernetes, because you could be running one or one hundred
instances of the app, it’s important for the routing of logs to be a core feature. Thus,
you can monitor the logs from all running instances of Hello Go (currently just one)
using:

$ kubectl logs -1 app=hello-go

This command uses the label selector to choose which Pods’ logs to monitor, and
then prints the logs to the screen. You can add - £ to follow the logs in real-time.

Let’s take a look at how this is helpful once we scale up Hello Go’s Deployment.

Scaling Hello Go in Kubernetes

Let’s scale Hello Go to four instances, instead of one. Use kubectl scale to increase
the deployments replicas:

kubectl scale deployments/hello-go --replicas=4

You can also modify the spec.replicas value via kubectl edit
deployment hello-go, but that requires a few more keystrokes to edit the
YAML then save it, so it’s easier when doing things via CLI to scale using
kubectl scale.

Verify that the scaling is successful using kubectl get deployment:

Chapter 1 - Hello World! 16

$ kubectl get deployment hello-go
NAME READY UP-TO-DATE AVAILABLE AGE
hello-go 4/4 4 4 35m

Now send some more requests through to Hello Go (assuming it’s still being served
at the URL the minikube service command output earlier) while running kubectl
logs:

$ kubectl logs -1 app=hello-go -f

2025/11/13 16:23:00 Received request for path: /

2025/11/13 16:23:00 Received request for path: /favicon.ico
2025/11/13 16:35:01 Received request for path: /

2025/11/13 16:35:03 Received request for path: /testing
2025/11/13 16:35:06 Received request for path: /hello-world

Currently, kubectl logs doesn’t differentiate log lines by pod name, so it
might not be immediately obvious that Kubernetes is actually distributing
requests to all the four replicas on the backend; someday this may be
possible if this Kubernetes feature request is implemented®, but until then,
you can run this one-liner to separate the current logs by pod:

for pod in $(kubectl get po -1 app=hello-go -oname); do echo $pod; kube\
ctl logs $pod; done;

Clean up Hello Go

You can destroy the entire Minikube environment, if you want, by running minikube
delete. However, you might want to keep Minikube running for other purposes,
so here’s how to remove everything we deployed into the Minikube Kubernetes
environment in this chapter:

**https://github.com/kubernetes/kubernetes/issues/44812

https://github.com/kubernetes/kubernetes/issues/44812
https://github.com/kubernetes/kubernetes/issues/44812

Chapter 1 - Hello World! 17

// Delete the Hello Go Service.
$ kubectl delete service hello-go
service "hello-go" deleted

// Delete the Hello Go Deployment (will also delete associated Pods).
$ kubectl delete deployment hello-go
deployment.apps "hello-go" deleted

// Delete the Hello Go container image.
$ eval $(minikube docker-env)
$ docker rmi hello-go

To conserve your workstation’s CPU and memory, it’s a good idea to at least stop
Minikube (minikube stop) when you’re not using it. You might notice a large amount
of CPU load even when nothing is running in the Minikube cluster—that’s par for
the course, as Kubernetes runs a lot of containers to manage the cluster.

g In the last step, we deleted the hello-go Docker image. If you run docker

images, you may notice there are other images which were pulled (and are

still present in the Minikube environment) because of the Docker image

build process. These images take up space, and if you don’t prune them

and/or rebuild servers frequently, they can sometimes lead to problems

like running out of disk space on a node. It is best practice to treat your
Kubernetes cluster servers like cattle and not pets.

When I upgrade my own Kubernetes clusters, I always replace (for Cloud
environments) or rebuild (for bare metal servers) each node during the
upgrade cycle. It’s possible, but not recommended, to keep Kubernetes
nodes running for very long periods of time, doing in-place upgrades of
the Kubernetes resources on them.

Summary

In this chapter, we learned the Go programming language at a very basic level. We
learned how to build a simple application container and run it using Docker. Then we
learned how to deploy the same application into a Kubernetes cluster using Minikube.

Chapter 1 - Hello World! 18

All of the examples in this chapter required manual steps on the command line;
through the rest of the book, we’ll learn how to automate every aspect of application
builds, deployments, and scaling using Ansible and Kubernetes.

/ It is possible to commit no \
| errors and still lose. That is |
| not a weakness. That is life. |

\ (Jean-Luc Picard, TNG) /
\ l_l\
\ (oo)\
(N N\

Chapter 2 - Automation brings
DevOps bliss

In Chapter 1, we spent a lot of time typing in commands in our terminal. When
you start operating at scale, there’s no way you can manage dozens or hundreds of
applications and deployments this way and keep your sanity.

Container Cluster
Build Management

A

Application
Lifecycle

Ansible automates Cloud Native infrastructure and apps.

Chapter 2 - Automation brings DevOps bliss 20

Ansible to the rescue! We’re going to learn how to automate every aspect of the Cloud
Native application lifecycle using Ansible.

While Ansible can do almost everything for you, it may not be the right
tool for every aspect of your infrastructure automation. Sometimes there
are other tools which may more cleanly integrate with your application
developers’ workflows, or have better support from app vendors.

Ansible is rarely used for everything demonstrated in this chapter in a given
organization, but it’s good to know that it can be used, and is often easier
than other solutions.

Ansible 101

As described in the Introduction, Ansible is known for its simplicity and fast onramp
to productivity. To get started, you only need to know a few basic concepts:

1. Ansible uses an ‘inventory’ to describe the hosts on which it operates.

2. You create a YAML file, a ‘playbook’, to describe a series of ‘plays’ and ‘tasks’
Ansible should perform a given set of hosts.

3. Ansible runs the plays and tasks using a huge library of modules fit for most
any automation purpose.

We’ll soon get into our first Ansible playbook, but before that, we need to make sure
Ansible is installed!

Installing Ansible

Ansible’s only real dependency is Python. Once Python is installed, the simplest way
to get Ansible running is to use pip, a simple package manager for Python.

If you’re on a Mac, installing Ansible is a piece of cake:

1. Check if pip is installed (which pip). If not, install it: sudo easy_install pip

Chapter 2 - Automation brings DevOps bliss 21
2. Install Ansible: pip install ansible

You could also install Ansible via Homebrew?” with brew install ansible. Either
way (pip or brew) is fine, but make sure you update Ansible using the same system
with which it was installed!

If you’re running Windows it will take a little extra work to set everything up.
There are two ways you can go about using Ansible if you use Windows:

1. The easiest solution would be to use a Linux virtual machine (with something
like VirtualBox) to do your work.
2. You could also run Ansible inside the Windows Subsystem for Linux.

For detailed instructions for Windows installation, see Appendix A - Using Ansible
on Windows workstations.

If you're running Linux, chances are you already have Ansible’s dependencies
installed, but we’ll cover the most common installation methods.

If you have python-pip and python-devel (python-dev on Debian/Ubuntu) installed,
use pip to install Ansible (this assumes you also have the ‘Development Tools’
package installed, so you have gcc, make, etc. available):

$ pip install ansible

Using pip allows you to upgrade Ansible with pip install --upgrade ansible.
Fedora/Red Hat Enterprise Linux/CentOS:

The easiest way to install Ansible on a Fedora-like system is to use the official yum
package. If you’re running Red Hat Enterprise Linux (RHEL) or CentOS, you need
to install EPEL’s RPM before you install Ansible (see the info section below for
instructions):

$ sudo yum -y install ansible

*http://brew.sh/

http://brew.sh/
http://brew.sh/

Chapter 2 - Automation brings DevOps bliss 22

EPEL repository*. If you run the command yum repolist | grep epel (to
see if the EPEL repo is already available) and there are no results, you need
to install it with the following commands:

0 On RHEL/CentOS systems, python-pip and ansible are available via the

If you're on RHEL/CentOS 6:

$ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64/\
epel-release-6-8.noarch.rpm

If you're on RHEL/CentOS T:

$ yum install epel-release

Debian/Ubuntu:

The easiest way to install Ansible on a Debian or Ubuntu system is to use the official
apt package.

$ sudo apt-add-repository -y ppa:ansible/ansible
$ sudo apt-get update
$ sudo apt-get install -y ansible

If you get an error like “sudo: add-apt-repository: command not found”,
you’re probably missing the python-software-properties package. Install
it with the command:

$ sudo apt-get install python-software-properties

Once Ansible is installed, make sure it’s working properly by entering ansible
--version on the command line. You should see the currently-installed version:

*°https://fedoraproject.org/wiki/EPEL

https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

Chapter 2 - Automation brings DevOps bliss 23

$ ansible --version
ansible 2.9.13

Hello, Ansible!

At its most basic, Ansible can be used to run tasks on the same machine running the
Ansible playbook, by running against localhost, and telling Ansible this is a “local”
connection (Ansible defaults to trying to connect to any host—even localhost—via
SSH).

Let’s start off writing a basic playbook, which will run the date command, store its
result in a variable, and then print the result in a debug message.

Before writing the playbook, create a file named inventory to tell Ansible how to
connect to localhost:

[localhost]
127.0.0.1 ansible_connection=local

Every playbook starts with a play, which is a root level list item, with at least one
key, hosts. To run a playbook against the local machine, you can set the following
line at the beginning of the playbook, in a new file named main.ym1:

- hosts: localhost

The --- at the top of the file denotes the following markup is YAML. It’s
not required if there is only one YAML document in a file, but you’ll likely
need to separate YAML documents in a single file for some of the YAML
you use with Kubernetes later on. So you're better off starting a good habit
now!

When connecting to localhost and running simple automation tasks, you should
usually disable Ansible’s fact-gathering functionality. Often this is not needed and
can save time in your playbook runs. When it is enabled, Ansible digs through the

O© 0 I O O

Chapter 2 - Automation brings DevOps bliss 24

system and stores tons of environment information in variables before it begins
running tasks.

So, to do this, the next line should be:

gather_facts: false

YAML is very picky about indentation! Make sure you have the hosts and
gather_facts keywords on the same indent (2 spaces), and also keep in
mind that YAML only allows spaces (no tabs!) for indentation.

Next up, we’re going to write our first-ever Ansible task, to run the date command
and capture its output:

tasks:
- name: Get the current date.
command: date
register: current_date
changed_when: false

The tasks keyword should be on the same level as hosts, etc., and then all the tasks
should be in a YAML list under tasks.

It’s best practice to name every task you write in Ansible. This serves two purposes:

1. The name serves as an inline comment describing the task in YAML.
2. The value of the name will be printed in Ansible’s output as the name of the task
when it runs.

A name is not strictly required, but it’s a lot easier to debug your playbooks if you
name things after what they are doing!

This first task uses Ansible’s command module, which takes the value of the command
and runs it. So this would be the equivalent of running the date command on the
command line.

O© 00 I O O b W N =~

11
12
13

Chapter 2 - Automation brings DevOps bliss 25

The task also registers the returned value (and some other metadata) into a new
variable current_date, and because we know running date will never change the
state of the host it’s run on, we also add changed_when: false. This helps Ansible
keep track of state—later in the book we will use this to our advantage!

So far, your entire playbook should look like this:

- hosts: localhost
gather_facts: false

tasks:
- name: Get the current date.
command: date
register: current_date
changed_when: false

If we stopped here, we’d have a working playbook, but it wouldn’t show us any
useful information.

So next, add a task to print the returned value of the date command using Ansible’s
debug module:

- name: Print the current date.
debug:
msg: "{{ current_date.stdout }}"

The name is self-explanatory, and we already stated we’ll use the debug module to
display the returned value of the date command.

For debug, you can either pass a var (variable) or msg (message). We chose the latter,
and you might notice the value of the msg has some curly brackets. These indicate to
Ansible it should template something inside using the Jinja templating language®'.
We won'’t get too deep into Jinja yet, but for now, know it will print any variables
(or any inline Python-driven output) inside the curly brackets as strings.

*'https://jinja.palletsprojects.com/en/2.11.x/

https://jinja.palletsprojects.com/en/2.11.x/
https://jinja.palletsprojects.com/en/2.11.x/

Chapter 2 - Automation brings DevOps bliss 26

In this case, if you were to run this playbook using var: current_date (instead of
the msg), you would discover the variable is a dictionary with many keys like rc (for
the return code), stdout (with the entire contents of stdout), stderr, and the like.

So when we tell Ansible to printmsg: "{{ current_date.stdout }}", we are telling
it to print the verbatim output of the date command run in the previous task.

If you ever need to figure out all the available parameters for an Ansi-
ble module, or see usage examples, Ansible’s documentation is the best
resource. Visit the Module Index®? for a browseable list of all Ansible
modules.

Running your first Ansible playbook

Go ahead and run this playbook using the ansible-playbook command, and passing
the inventory file as an argument:

$ ansible-playbook -i inventory main.yml
PLAY [localhost] skskskskkskskkskhkskohkskodskskodokkoskokoskoko koo skokokokor ok

TASK [Get the current date'] >k >k >k ok >k >k ok >k ok ok ok ok ok >k >k >k >k >k >k >k >k sk >k >k sk >k >k >k sk >k sk >k >k >k

ok: [127.0.0.1]

TASK [Print the current date.] ¥kkskskskssssksrskkksskksokkrsokkrkk
ok: [127.0.0.1] =>
msg: Fri Nov 22 22:12:27 CST 2025

PLAY RECAP 3kskkskokok sk sk ok ok ok >k ok ok ok >k 5k ok ok >k >k ok ok ok >k ok ok ok >k >k ok ok >k >k ok ok ok >k >k ok ok >k >k ok ok ok >k ok ok ok >k

127.0.0.1 : ok=2 changed=0 unreachable=0 failed=0 ...

**https://docs.ansible.com/ansible/latest/modules/modules_by_category.html

https://docs.ansible.com/ansible/latest/modules/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules/modules_by_category.html

Chapter 2 - Automation brings DevOps bliss 27

Ansible 101 summary

At this point, after writing less than twenty lines of YAML, you have the basic
understanding of Ansible you need to automate all the manual tasks we performed
in the previous chapter.

If you want to dive deeper into general Ansible usage for server and cloud service
management, I highly recommend you read Ansible for DevOps™®. It has a much
more broad focus on the entire DevOps ecosystem than this Kubernetes-specific
volume.

0 The code used in this example is also available in this book’s code

repository, in the hello-ansible/** directory.

Managing Kubernetes with Ansible

Now that you know Ansible, it’s time to start automating.

Managing Minikube

We could use Ansible’s homebrew?® module to ensure Minikube is installed on macOS,
or the win_chocolatey?® module to ensure it’s installed on Windows... but for this
playbook, we’ll assume Minikube is already installed.

Since there’s not aminikube module for Ansible (at least as of this writing—you could
write your own!), we’re going to use the command module to manage a Minikube
cluster.

Create a new directory hello-go-automation (next to the hello-go directory) with
the same inventory file as used in the previous example, and add a main.yml
playbook. Start the playbook with the same play settings as the earlier example
playbook:

*>*https://www.ansiblefordevops.com
**https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/hello-ansible
**https://docs.ansible.com/ansible/latest/modules/homebrew_module.html
*https://docs.ansible.com/ansible/latest/modules/win_chocolatey_module.html

https://www.ansiblefordevops.com/
https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/hello-ansible
https://docs.ansible.com/ansible/latest/modules/homebrew_module.html
https://docs.ansible.com/ansible/latest/modules/win_chocolatey_module.html
https://www.ansiblefordevops.com/
https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/hello-ansible
https://docs.ansible.com/ansible/latest/modules/homebrew_module.html
https://docs.ansible.com/ansible/latest/modules/win_chocolatey_module.html

10
11
12
13
14

Chapter 2 - Automation brings DevOps bliss 28

- hosts: localhost
gather_facts: false

Next, we’ll define a couple important variables, or vars, to be used in the playbook:

vars:
ansible_python_interpreter: '{{ ansible_playbook_python }}'
image_name: hello-go

The first variable, ansible_python_interpreter, is set this way to ensure all tasks
run on the local machine inherit the same Python environment that’s used by the
ansible-playbook command. Normally you don’t need to set this variable, but when
using the local connection Ansible can get confused if you don’t set it explicitly.

The second variable, image_name, will be used to name the container image when
we build it and use it in a deployment in Minikube. It’s good to use variables for
anything which could be changed over time, or which may be used in many places,
so you can more easily maintain the playbook if something needs to change.

After vars, make sure Minikube is running in a pre_tasks section of the playbook.
pre_tasks will always run prior to tasks (and prior to other sections of a playbook
we’ll learn about later).

First, check Minikube’s current status:

pre_tasks:

- name: Check Minikube's status.
command: minikube status
register: minikube_status
changed_when: false

ignore_errors: true

This runs the minikube status command and stores the result in the minikube_-
status variable. The setting ignore_errors is also set to true, as this command will
return a non-zero exit code if it fails; however, we don’t want that to fail the entire
playbook run (because that’s an acceptable condition).

16
17
18
19

Chapter 2 - Automation brings DevOps bliss 29

- name: Start Minikube if it's not running.
command: minikube start
when: "not minikube_status.stdout or 'Running' not in minikube_st\

atus.stdout™

If there is no output from the minikube status command, or if the status does not
have the word Running in it, this task will run the command minikube start, and
wait for the command to complete.

The task uses the when condition (along with some Jinja conditionals) to determine
whether it should run or not. If Minikube is already running, the command will
be skipped (and no changes reported). If not, it will run, and Ansible will report it
changed something.

Using when conditions properly makes playbooks run faster (you could
always callminikube start, but that would restart the Kubernetes services
and take a minute or so every playbook run) and helps Ansible summarize
when it needed to make changes to the system.

The best Ansible playbooks are idempotent, meaning you can run them
more than one time, and assuming the system hasn’t been changed outside
of Ansible, you'll see no changes reported after the first time the playbook
is run. This is helpful for ensuring a consistent state across your application
deployments, and to verify there are no changes (intended or not) happen-
ing outside of your automation.

Building container images in Minikube with Ansible

We'll follow a similar pattern for building the container image inside Minikube’s
environment:

1. Check if the container image exists.
2. Build the container image if it doesn’t exist.

Since this is part of the application build process, we’ll use it to kick off the playbook’s
main tasks section:

20
21
22
23
24
25
26
27

Chapter 2 - Automation brings DevOps bliss 30

tasks:
Build the hello-go Docker image inside Minikube's environment.
- name: Get existing image hash.
shell: |
eval $(minikube docker-env)
docker images -q {{ image_name }}
register: image_hash

changed_when: false

The first task checks if there’s an existing image with the image_name variable defined
earlier, “hello-go”. Because we are running this playbook on localhost, but Minikube
has its own Docker environment, we use Ansible’s shell module, which is like the
command module, but allows for more specialized use with pipes, redirection, and
command substitution.

In the shell command, we use the vertical pipe (I) to indicate to the YAML parser
it should store the following lines as a “multi-line scalar”. Basically, the following
content will be the equivalent of a shell script, with each line being its own
command. We could’ve written the two commands inline, with ; or && separating
them as needed, but a multi-line scalar makes it easier to understand the individual
commands being run in this task.

Instead of running eval $(minikube docker-env) inline, another option
to set the Minikube Docker environment would be to run minikube
docker-env in one command, register its results, then manually parse the
various environment variables into ansible variables using the set_fact
module. In subsequent tasks, you could then add an environment parameter
with the variables defined.

But since we will only need to use Minikube’s Docker environment for this
and the next task, it’s easier (and barely slower) to run the eval command
once on each task.

Now that we have the result (stored in image_hash) from the docker images
command, we can build the Docker image—but only if it’s not already built:

29
30
31
32

Chapter 2 - Automation brings DevOps bliss 31

- name: Build image if it's not already built.
shell: |
eval $(minikube docker-env)
docker build -t {{ image_name }} ../hello-go
when: not image_hash.stdout

The when condition says “if there’s no stdout returned from the docker images
command, assume the image doesn’t exist yet”. And because environment state is
not shared between Ansible tasks, we use a similar shell task as earlier, with the
eval command to configure the correct Docker environment.

Because this playbook is in a directory adjacent to the hello-go example (which
contains the image build Dockerfile), the context passed to the docker build
command is ../hello-go. This directs Docker to look for a Dockerfile inside the
hello-go directory adjacent to this playbook’s hello-go-automation directory.

Managing Kubernetes resources with Ansible

In chapter 1, we used a convenient kubectl shortcut to create the hello-go deploy-
ment:

$ kubectl create deployment hello-go --image=hello-go

Behind the scenes, this command does a lot more than meets the eye; it creates the
full valid structure of a Kubernetes deployment, with a name and namespace for the
metadata key, and a full set of container specifications under the spec key.

We then had to hand-edit the resulting deployment resource (with kubectl edit), to
update the imagePullPolicy. With Ansible, and with automation in Kubernetes in
general, it’s best to have full control over the Kubernetes resource definitions.

Ansible makes it easy to manage resources with its k8s module. The module uses
the OpenShift Python client to interact with Kubernetes’ APIL To use the OpenShift
client, you need to install it, usually with pip (or pip3 if you're using Python 3):

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60

Chapter 2 - Automation brings DevOps bliss 32

$ pip install openshift

Now that it’s installed, you can pass a full Kubernetes resource definition to the k8s
module, along with state: present to make sure it exists:

Create Kubernetes resources to run Hello Go.
- name: Create a Deployment for Hello Go.
k8s:
state: present
definition:
apiVersion: apps/v1
kind: Deployment
metadata:
name: hello-go
namespace: default
spec:
replicas: 1
selector:
matchlLabels:
app: hello-go
template:
metadata:
labels:
app: hello-go
spec:
containers:
- name: hello-go
image: "{{ image_name }}"
imagePullPolicy: IfNotPresent
ports:
- containerPort: 8180

Note that by passing the full resource definition, we can pass the correct setting for
the imagePullPolicy right away, and we don’t have to create the deployment then
adjust it.

62
63
64
65
66
67
68
69
(%
71
72
73
T4
)
76
T

Chapter 2 - Automation brings DevOps bliss 33

We also need to create the service that exposes Hello Go via a cluster LoadBalancer,
so we can apply the Service definition directly with the k8s module as well:

- name: Create a Service for Hello Go.
k8s:
state: present
definition:
apiVersion: v1
kind: Service
metadata:
name: hello-go
namespace: default
spec:
type: LoadBalancer
ports:
- port: 8180
targetPort: 8180
selector:
app: hello-go

In the first chapter, the equivalent command was:
kubectl expose deployment hello-go --type=LoadBalancer --port=8180

As with the deployment example, the shorthand is great when starting out, but you
don’t have the flexibility you need when you have full control over the resource
definition. Most of the kubectl shortcuts are great for quickly trying something
out or for demonstration, but they don’t cover all the use cases you’ll need when
managing real-world applications in Kubernetes.

If you run the playbook at this point, you’ll end up with a running Hello Go app, with
a Service exposing it through a LoadBalancer. But as we did in Chapter 1, we need
to expose this Service to the host using minikube service (since Minikube doesn’t
ship with an external load balancer).

So in post_tasks, we’ll get the external URL for the service from Minikube, and print
it to the screen with debug.

79
80
81
82
83
84
85
86

Chapter 2 - Automation brings DevOps bliss

post_tasks:

- name: Expose Hello Go on the host via Minikube.
command: minikube service hello-go --url=true
changed_when: false
register: minikube_service

- debug:

msg: "Hello Go URL: {{ minikube_service['stdout_lines'][@] }}"

34

Run the playbook, and after a few minutes, everything should be running. At the

end, the URL for the service running in Minikube should be visible.

$ ansible-playbook -i inventory main.yml

TASK [Create a Service for Hello Go.] *xkkkkskksksksdoksskkkkksokktk

ok: [127.0.0.1]

TASK [Expose Hello Go on the host via Minikube.] *¥xdkkdoofokskkx
ok: [127.0.0.1]

TASK [debug] *¥sksksksksksrkskokskonsokksokskokbokkokkonfokokoaok ootk okkok okt okok kR

ok: [127.0.0.1] =>
msg: 'Hello Go URL: http://192.168.64.50:32234"

127.0.0.1 : ok=2 changed=0 unreachable=0 failed=0 ...

Copy that URL and load it in a browser, and you’ll see the hello-go page, just like in

Chapter 1.

o The code used in this example is also available in this book’s code

repository, in the hello-go-automation/*” directory.

*"https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/hello- go-automation

https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/hello-go-automation
https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/hello-go-automation

Chapter 2 - Automation brings DevOps bliss 35

Scaling Hello Go with Ansible

In the manual example in Chapter 1, we used kubectl to scale our hello-go
deployment:

kubectl scale deployments/hello-go --replicas=4

In this chapter, we’ll scale the deployment using Ansible. There are a few different
ways you can do it:

1. In the main.yml playbook, use a variable for the value of the deployment’s
spec.replicas, increase the value, and run the playbook again.

2. Use Ansible’s k8s_scale module, either via the ansible CLI or in a playbook.

3. Use the k8s module with a strategic merge.

Later in the book, we’ll implement scaling via the Horizontal Pod Au-
toscaler. As you become more confident in your ability to manage Ku-
bernetes resources, you can begin automating aspects like scaling based on
CPU, memory, HTTP requests, or even custom metrics!

Scaling via the existing Deployment spec

Often the simplest solution is the best. If you need to have a certain number of replicas
running (for most applications, you should have at least two for basic redundancy),
you can and should set the default higher in the same playbook that runs your
application in Kubernetes.

Since the spec.replicas value should be easy to change, it’s best to make it a
playbook variable (so it can be easily updated or overridden as needed), used in the
deployment spec.

At the top of the playbook, add a variable to the vars:

45
46

Chapter 2 - Automation brings DevOps bliss 36

vars:
ansible_python_interpreter: '{{ ansible_playbook_python }}'
image_name: hello-go
replicas: 4

Then, in the deployment definition’s spec.replicas, use that variable:

spec:
replicas: "{{ replicas }}"

If you run the main.yml playbook again, you’ll see there are now four pods running
in the cluster:

$ kubectl get pods -1 app=hello-go

NAME READY STATUS RESTARTS AGE
hello-go-6b694fb89b-4qcf8 1/1 Running 1 im
hello-go-6b694fb89b-dtwzl 1/1 Running 1 15m
hello-go-6b694fb89b-w7t95 1/1 Running 1 im
hello-go-6b694fb89b-w9pbs 1/1 Running 1 im

Set the replicas value back to 1 in the vars section, and run the playbook again, and
then you can see the new pods go away (they first go into Terminating status, then
disappear once they’re gone).

Scaling with Ansible’s k8s_scale module

Ansible includes a module that specializes in scaling Kubernetes resources, k8s_-
scale. The module is pretty simple: you give it a resource name, namespace, and kind,
then tell it how many replicas the resource should have. It works for Deployments,
ReplicaSets, Replication Controllers or Job parallelism (we’ll cover some of these
other Kubernetes resources in later chapters).

Create a new playbook named scale-k8s_scale.yml in the same directory as the
main.yml playbook, and start it the same way as the other playbooks:

=N O O b W N =

10
11
12
13
14
15
16
17

Chapter 2 - Automation brings DevOps bliss

- hosts:

localhost

gather_facts: false

vars:

ansible_python_interpreter: '{{ ansible_playbook_python }}'

replicas: 4

37

We don’t need the image_name variable in this playbook, since we’re not defining the
entire deployment spec.

For tasks, we only need one, which uses the k8s_scale module to increase the
replicas to 4:

tasks:

- name: Scale the hello-go deployment with k8s_scale.

k8s_scale:

api_version: vi

kind: Deployment

name: hello-go

namespace: default
replicas: "{{ replicas }}"
wait: false

Run this playbook:

$ ansible-playbook -i inventory scale-k8s_scale.yml

After it’s complete, you should see four pods running.

A

There is a bug in the k8s_scale module in Ansible 2.8 and 2.9 which
prevents it from working correctly. The bug was fixed in pull request
#59887°%, but it is not yet in a stable Ansible release. Until 2.10 is released,
you have to manually patch Ansible or run Ansible from source to use the
k8s_scale module.

Set the replicas variable back to 1 and then run the playbook again.

**https://github.com/ansible/ansible/pull/59887

https://github.com/ansible/ansible/pull/59887
https://github.com/ansible/ansible/pull/59887
https://github.com/ansible/ansible/pull/59887

=~ O U s W N

Chapter 2 - Automation brings DevOps bliss 38

Scaling with k8s and strategic_merge

One other option is using Ansible to patch the deployment using a ‘strategic merge’.
You can modify existing resources a few different ways using Ansible’s k8s module:

« json: The most basic patch method, which replaces everything with your new
definition.

« merge: (Also known as JSON Merge’) Merges JSON objects, but lists are always
replaced.

« strategic-merge: Same as the regular merge, but merges lists where possible.
(See Kubernetes’ documentation on strategic merge®” for more details.)

Ansible defaults to strategic-merge for the k8s module’s merge_type, but you can
override this behavior. In our case, the strategic-merge is exactly what we want to
do, because this playbook will merge a change to the deployment’s spec.replicas,
but should change nothing else.

Create another playbook in the same directory, named scale-strategic-merge.yml,
and add the same beginning to the play as the k8s_scale playbook:

- hosts: localhost
gather_facts: false

vars:
ansible_python_interpreter: '{{ ansible_playbook_python }}'
replicas: 4

For the tasks, use the k8s module, with the minimum required components of the
deployment definition:

**https://github.com/kubernetes/community/blob/master/contributors/devel/sig-api-machinery/strategic-merge-
patch.md

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-api-machinery/strategic-merge-patch.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-api-machinery/strategic-merge-patch.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-api-machinery/strategic-merge-patch.md

9
10
11
12
13
14
15
16
17
18
19
20
21

Chapter 2 - Automation brings DevOps bliss

tasks:
- name: Scale the hello-go deployment by strategic merge.
k8s:
state: present
merge_type: strategic-merge
definition:
apiVersion: apps/vil
kind: Deployment
metadata:
name: hello-go
namespace: default
spec:

replicas: "{{ replicas }}"
Run the playbook:
$ ansible-playbook -i inventory scale-strategic-merge.yml

PLAY [localhost] >k >k >k sk >k ok ok ok ok ok >k ok sk ok >k >k >k ok ok >k >k >k >k >k >k >k >k >k >k >k >k >k >k 5k >k >k >k sk >k sk sk >k >k >k >k >k

TASK [Scale the hello-go deployment by merge.] *¥kkxikkodokokfttkx
ok: [127.0.0.1]

PLAY RECAP >kskokokokskok sk ok sk sk ok sk ok sk ok sk ok >k sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk sk ok sk ok sk ok skok sk skokskokosk ok

127.0.0.1 : ok=1 changed=1 unreachable=0 failed=0 ...

Cleaning up Kubernetes resources with
Ansible

39

You could clean up the Hello Go application resources inside the Minikube cluster
using the same kubectl delete commands found at the end of Chapter 1, but where’s

the fun in that?

Since we’ve already automated the setup of the cluster using Ansible, we can just as

easily automate the teardown. And it’s easier than you think!

Chapter 2 - Automation brings DevOps bliss 40

Consider the following commands:

$ kubectl delete service hello-go
$ kubectl delete deployment hello-go

We already have the service and deployment defined in our playbook; to make them
go away, all you have to do is change the state parameter from present to absent,
and run the playbook again.

Bonus points if you add a variable to the playbook’s vars like app_state, and reuse
that variable in both the deployment and service tasks’ state parameter.

As far as the Minikube cluster itself goes, you could rewrite the pre_tasks and post_-
tasks to either set up or tear down the cluster, and add a when conditional to tasks
like “Expose Hello Go on the host via Minikube.”, but for now, it’s simpler to run
minikube delete once finished with the cluster.

Ssummary

In this chapter, you learned the basics of Ansible. You started running an extremely
simple playbook on the same machine running Ansible, and then learned how to
automate all the manual Minikube and Kubernetes deployment steps for the Hello
Go app from Chapter 1.

Some of the playbooks and YAML resource definitions in this chapter seem more
complex at first glance than the one-line kubectl commands from Chapter 1, but it
is easier to automate real-world application deployment this way.

Chapter 2 - Automation brings DevOps bliss

/ All systems automated and ready. \
| A chimpanzee and two trainees
| could run her.

|
|
\ (Scotty, Star Trek III) /

\ I_I\
N\ o (oo)______
(N JAVAN

41

Chapter 3 - Ansible manages
containers

A prerequisite to managing Kubernetes resources is being able to manage container
workflows. In order to run a custom cloud-native application in Kubernetes you need
to be able to:

1. Build a container image for the application.
2. Run and verify the container image is working correctly.
3. Push the container image to a registry from which Kubernetes can pull.

Ansible can help with any or all of these tasks—or none! Sometimes project teams
already have their own container tooling built, or it is integrated out of the box with
the tools the developers use (e.g. GitLab). Other times, you might not find Ansible is
the right fit for your container management workflow.

In any case, it’s good to know what Ansible can do, so you can see if it should perform
any container management work in your infrastructure.

Ansible’s Docker modules

Docker is the most popular open source tool for building and managing container
images, and Ansible has a comprehensive set of Docker modules*.

The modules do much more than just manage images; there are modules to manage
Docker networks and volumes, Docker Swarm clusters, and interact with running
containers. But for the purposes of this book, we’ll spend more time focusing on
container builds, since containers will usually be run inside Kubernetes.

The docker_* modules require the Docker SDK for Python*', which can be installed
via Pip:

“’https://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#docker
“‘https://pypi.org/project/docker/

https://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#docker
https://pypi.org/project/docker/
https://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#docker
https://pypi.org/project/docker/

Chapter 3 - Ansible manages containers 43

$ pip install docker

To illustrate the most useful Docker modules, we’ll build a playbook that builds the
Hello Go container image, runs it, tests it, stops it, then pushes it to a container
registry.

Create a new folder named ansible-containers alongside the hello-go directory
from Chapter 1 (all code examples can be found in the ansible-for-kubernetes*?
project on GitHub), and inside that folder, create an inventory file with the same
connection details used previously:

[localhost]
127.0.0.1 ansible_connection=local

Then create amain.yml playbook with the same Ansible localhost play configuration
as previous examples from Chapter 2:

- hosts: localhost
gather_facts: false

docker_image module

In the previous chapters, we ran docker build to build Docker images based on Hello
Go’s Dockerfile. Ansible allows for more fine-grained specification of the build using
the docker_image module.

For this playbook, we’ll use variables for the image_name and image_tag so we can
reference those throughout the rest of the playbook.

“*https://github.com/geerlingguy/ansible- for-kubernetes

https://github.com/geerlingguy/ansible-for-kubernetes
https://github.com/geerlingguy/ansible-for-kubernetes

10
11
12
13
14
15
16
17

Chapter 3 - Ansible manages containers 44

vars:
image_name: hello-go
image_tag: latest

Now, we’ll begin the playbook’s tasks by building the Hello Go image with Ansible’s
docker_image module:

tasks:
- name: Build the Hello Go image.
docker_image:

build:
path: ../hello-go
pull: false

name: '{{ image_name }}'
tag: '{{ image_tag }}"'
source: build

Looking back at the docker build command used in previous chapters, we can pull
out all the relevant information being used with docker_image:

// From chapter 1, in the project directory.
$ docker build -t hello-go .

// From chapter 2, inside Minikube.
$ docker build -t {{ image_name }} ../hello-go

Breaking down the commands you have:

« -t hello-goor-t {{ image_name }}: This defines the ‘tag’ for the image; and if
you don’t supply a specific tag in the form name : tag, Docker defaults to 1atest.

« . or ../hello-go: The path at the end of the command defines the path to the
Dockerfile.

Translating the tag and path into Ansible’s docker_image module is simple—we set
the build.path to the project directory, and we specify a name and tag separately.

19
20
21
22
23
24
25

Chapter 3 - Ansible manages containers 45

Just like docker build, you could leave out the tag, and Ansible would default to
latest—however, it’s better to get in the habit of always specifying a tag (even if
it’s 1atest) because you’ll find with Kubernetes, using tags appropriately (instead of
relying on latest) prevents surprises.

There are a couple other things specified in the docker_image parameters that help
Ansible know what to do. Ansible uses the same module to do things like pull an
image (source: pull) or load an image from a tarball (source: load), so it has a
source parameter.

For the build options, we’ve also instructed Ansible to not attempt to pull a newer
version of the base image defined in the Dockerfile’s FROM line. Setting pull: false
makes Ansible behave just like the Docker CLI (note that the default will change in
Ansible 2.12, so this setting may be redundant in the future).

If we run the playbook at this point, we’d end up with a built container image, the
same as if we had run docker build in the project directory. Next, let’s run the image
locally.

docker_container module

In previous chapters, we ran the standalone hello-go container with the command:
$ docker run --name hello-go --rm -p 8180:8180 hello-go

This translates into Ansible’s docker _container module like so:

- name: Run the Hello Go image.
docker_container:
name: hello-go
image: '{{ image_name }}:{{ image_tag }}'
state: started
published_ports:
- 8180:8180

Most things are self-explanatory, translating the docker run command to docker_-
container parameters. Ansible uses the same docker_container module for various
container operations via the state parameter, translating roughly to:

27
28
29
30
31
32

Chapter 3 - Ansible manages containers 46

Docker Command Ansible state value Note

docker run started

docker run present Won’t start a stopped
container.

docker stop stopped

docker rm absent

There is more nuance to the different values of state and how they interact with
other docker_container parameters, but if you need to go into that level of detail, I
recommend reading through the module’s full documentation.

In this case, Ansible will run a container named hello-go using thehello-go:latest
image, and expose the container port 8180 to the host on port 8180.

Next, let’s use Ansible’s uri module to test the now-running Hello Go app:

- name: Verify Hello Go is responding.
uri:
url: http://localhost:8180/test
return_content: true
register: hello_go_response

failed_when: "'/test' not in hello_go_response.content”

The uri module is great for interacting with web services. Similar to curl, it allows
great flexibility in the request structure, and it also makes it easy to handle responses
or test for specific conditions, either in the response headers or body.

In this case, we tell uri to return the content of the response, and then tell Ansible
to fail the task when “/test” is not in the response (using failed_when). Using task
parameters like changed_when or failed_when are often helpful for including at least
basic tests inline with the rest of your automation code.

If Hello Go is not responding correctly, Ansible would report this task as failed and
end playbook execution immediately.

After running Hello Go and verifying it works correctly, it’s time to stop and remove
the running container. This is done with the same docker_container module we used
previously:

34
35
36
37

Chapter 3 - Ansible manages containers 47

- name: Stop and remove the Hello Go container.
docker_container:
name: hello-go
state: absent

Since we’re removing a container with state: absent, all we need is the container’s

name.

It’s unlikely Hello Go would fail in this case, but for more complex apps,
which do fail, you could wrap this entire sequence (run container, test
container, stop-and-remove container) in a block, so even if the uri test
fails, you can always run the stop-and-remove task, so you don’t end
up with a container running forever in your CI environment! (Ansible
Blocks handle exceptions with a block-rescue-always routine, similar to
exception handling in popular programming languages.)

We won'’t get into the specifics of using a block in this chapter, but we will
use blocks later in the book to handle more complex automation. Read the
Blocks** documentation for more information.

At this point, if you run the playbook, it will build, run, test, and then stop and
remove a Hello Go container.

Pushing the container image to a registry

The container build works great, and results in a verified working image—but then
what? Usually, you would want to have your continuous deployment (CD) process
push this verified image to a container registry so it can be pulled and run in your
Kubernetes cluster.

Running a local container registry

For the purposes of this chapter, we need a quick local container registry. Since it will
be local-only, and used just for our testing, we don’t need to worry about configuring
strict security, with certificates and authentication, so we can stick to Docker’s own
registry image on localhost.

Create a separate playbook, called registry.yml, and put the following inside:

“*https://docs.ansible.com/ansible/latest/user_guide/playbooks_blocks.html

https://docs.ansible.com/ansible/latest/user_guide/playbooks_blocks.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_blocks.html

O© 00 1 O O b W N =

[S S S = N Y
© © 00 N O O & W N =~ O

Chapter 3 - Ansible manages containers 48

- hosts: localhost
gather_facts: false

vars:

registry_image: registry:2

tasks:
- name: Ensure the Docker registry image is present.
docker_image:
name: '{{ registry_image }}"'

source: pull

- name: Run the Docker Registry container locally.
docker_container:
name: registry
image: '{{ registry_image }}'
state: started
published_ports:
- 5000 :5000

This tiny playbook pulls the registry image, then runs it with port 5000 exposed to
the host. Therefore the registry is accessible at localhost : 5000.

Go ahead and run this playbook with:
$ ansible-playbook -i inventory registry.yml

If you want to test that it’s working, run:

39
40
41
42
43
44
45
46
47
48

Chapter 3 - Ansible manages containers 49

// Pull a lightweight Docker image from Docker Hub.
$ docker pull alpine

// Tag the image with the local registry's URL as the prefix.
$ docker image tag alpine localhost:5000/test-image

Push the image to the local registry.
$ docker push localhost:5000/test-image

If your local registry is working, the push should be successful:

$ docker push localhost:5000/test-image

The push refers to repository [localhost:5000/test-image]
TTcae8ab23bf: Pushed

latest: digest: sha256:e4355b66995c96b4b4681... size: 528

docker_login module

Now that we have a container registry, we need to be able to log into it. In this case,
there is no login required, because we’re using a local, insecure registry. But this
playbook should work with both unsecured and secure registries.

So let’s write a new task in the post_tasks section of our main.yml playbook which
uses docker_login to log into a registry—but only if registry details are supplied.

post_tasks:
- name: Log into Docker registry.
docker_login:
registry: '{{ registry_url }}'
username: '{{ registry_username }}'
password: '{{ registry_password }}'
when:
- registry_url is defined and registry_ url != "'
- registry_username is defined and registry_username != ''

- registry_password is defined and registry_password !=

50
51
52
53
54
55
56

Chapter 3 - Ansible manages containers 50

If you define a registry_url, registry_username, and registry_password, Ansible
will log into the registry using the supplied credentials. Any container-related task
in the rest of the playbook should then be able to work with that registry.

But in this particular case, we won’t supply any of those three variables (either in
vars in the Playbook, or by passing them as - -extra-vars on the command line), so
this task will appear as being skipped when we run the playbook.

Pushing an image to a Docker registry with docker_image

Now that we’re logged into the registry—or in this particular case, not—it’s time to
push the Hello Go image. Earlier we used the docker_image module to build a new
image based on a Dockerfile, and now we’ll use it to push the image:

- name: Push Hello Go image to Docker registry.
docker_image:
name: '{{ image_name }}'
tag: '{{ image_tag }}"'
repository: 'localhost:5000/{{ image_name }}:{{ image_tag }}'
push: true
source: local

Given an existing image with the name and tag {{ image_name }}:{{ image_tag
}}, we don’t need to add an extra step of running docker image tag to tag it with
the repository. Instead, Ansible implicitly does that when you push an image; all you
need to do is provide the entire path (repository URL plus image name and tag) in
the repository field.

The other important aspect of this task is setting source: local. Setting local tells
Ansible the image must already exist locally, and Ansible should not attempt to
pull or build the image. Because not including a source can cause unexpected (and
sometimes dangerous!) consequences, Ansible will make this parameter mandatory
starting in version 2.12.

Go ahead and run the entire playbook now, making sure the local registry is still
running;:

Chapter 3 - Ansible manages containers 51

$ ansible-playbook -i inventory main.yml

TASK [Log into Docker registry.] ¥xkkksskskisksirsskrsskissokkrdk

skipping: [127.0.0.1]

TASK [Push Hello Go image to Docker registry.] *¥kkxkkkodolokffkkx

changed: [127.0.0.1]

127.0.0.1 : ok=5 changed=4 unreachable=0 failed=0 ...

If you run docker images, you’ll see Ansible tagged the hello-go:latest image with
the repository name. Clear that image out of your local Docker environment:

$ docker rmi hello-go:latest
Untagged: hello-go:latest

$ docker rmi localhost:5000/hello-go:latest
Untagged: localhost:5000/hello-go:latest
Untagged: localhost:5000/hello-go@sha256:1c55f2e03507e895a4c. . .

To verify Ansible successfully pushed the image to the local registry, try to pull the
image back into the local Docker environment:

$ docker pull localhost:5000/hello-go:latest

latest: Pulling from hello-go

89d9c30c1d48: Already exists

eQeed96eacctH: Pull complete

e@1£5325fb82: Pull complete

Digest: sha256:1c55f2e03507e895a4c821019a1eb4c4fc@d713303ab2. . .
Status: Downloaded newer image for localhost:5000/hello-go:latest
localhost:5000/hello-go: latest

It worked!

To clean up the local registry, stop and remove the registry container:

Chapter 3 - Ansible manages containers 52

$ docker rm -f registry

Ansible Docker module summary

It’s easy to both build and test containers using Ansible’s docker modules, and then
push them to a container registry. If you don’t already use an automation tool to
manage your container lifecycle, Ansible is a solid choice.

0 The code used in this example is also available in this book’s code

repository, in the ansible-containers/** directory.

Building images using Ansible without a

Dockerfile

A demo app like Hello Go has a very straightforward Dockerfile.

For smaller apps like Hello Go, there are a few lines copying files into the container
image, a few lines building an artifact or binary, then a few lines setting some
container metadata like the port to EXPOSE and the default COMMAND to run if none
is supplied.

But most real-world apps require more complexity.

It’s not uncommon for me to look at a project’s codebase and find a Dockerfile riddled
with incredibly-complex RUN commands like:

“*https://github.com/geerlingguy/ansible- for-kubernetes/tree/master/ansible- containers

https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/ansible-containers
https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/ansible-containers

Chapter 3 - Ansible manages containers 53

RUN

set -eux; \

apt-get update; \

apt-get install -y --no-install-recommends apache2; \
rm -rf /var/lib/apt/lists/*; \

\

do
rm
1n
1In

1n

"$APACHE_ENVVARS"; \
for dir in \

"$APACHE_LOCK_DIR" \
"$APACHE_RUN_DIR" \
"$APACHE_LOG_DIR" \

do \

rm -rvf "$dir"; \

mkdir
chown
chmod
ne; \
-rvf
-sfT
-sfT
-sfT

_p "$dir"; \
"$APACHE_RUN_USER: $APACHE_RUN_GROUP" "$dir"; \
TTT "$dir"; \

/var/www/html/*; \

/dev/stderr "$APACHE_LOG_DIR/error.log"; \

/dev/stdout "$APACHE_LOG_DIR/access.log"; \

/dev/stdout "$APACHE_LOG_DIR/other_vhosts_access.log"; \

chown -R --no-dereference "$APACHE_RUN_USER:$APACHE_RUN_GROUP" "$APAC\
HE_LOG_DIR"

At a glance, can you tell me what all this does?

The sad fact is, many people dump entire shell scripts into a single RUN line in their
Dockerfiles; instead of a somewhat-organized shell script, though, it turns into a
multi-line monster to maintain!

Ansible offers a better way.

Let’s go through the process of building a container image that runs Apache Solr*’,
a popular open source text search engine built on top of Lucene, which runs on the
Java Virtual Machine (JVM).

“*https://lucene.apache.org/solr/

https://lucene.apache.org/solr/
https://lucene.apache.org/solr/

W N

Chapter 3 - Ansible manages containers 54

Relying on Roles from Ansible Galaxy

One great benefit to using Ansible is there is a giant repository of existing Ansible
automation content in Ansible Galaxy“. There are Ansible modules, plugins, and
roles that are well-tested and premade to let you install and configure almost
anything, almost anywhere.

There are two popular roles on Ansible Galaxy that help you install Java and Solr on
any popular Linux distribution (e.g. CentOS, RHEL, Debian, Ubuntu, or Fedora):

« geerlingguy.java®*’
« geerlingguy.solr*®

To use roles from Ansible Galaxy in your playbook, you add an Ansiblerequirements.yml
file in your playbook directory, and list all the roles your playbook will require. So
create a new project directory named ansible-solr-container, and inside it, create
arequirements.yml file. The file should contain a YAML list of roles:

roles:
- name: geerlingguy. java
- name: geerlingguy.solr

Then, it’s a good idea to tell Ansible where you want the roles installed. By default,
they’ll go to the /etc/ansible/roles directory, and could be shared with other
playbooks. But it’s better to have all your project’s resources self-contained.

So create an ansible.cfg file in the project directory, to customize Ansible’s
configuration for this playbook:

“Shttps://galaxy.ansible.com
“"https://galaxy.ansible.com/geerlingguy/java
“*https://galaxy.ansible.com/geerlingguy/solr

https://galaxy.ansible.com/
https://galaxy.ansible.com/geerlingguy/java
https://galaxy.ansible.com/geerlingguy/solr
https://galaxy.ansible.com/
https://galaxy.ansible.com/geerlingguy/java
https://galaxy.ansible.com/geerlingguy/solr

Chapter 3 - Ansible manages containers 55

[defaults
roles_path = ./roles

nocows = 1

An ansible.cfg file will override any other Ansible configuration files (e.g. the
default one located at /etc/ansible/ansible.cfg), and you can configure any aspect
of Ansible in it. In this case, we're setting two properties:

1. The roles_path is the location where Ansible Galaxy roles will be installed,
and where an Ansible playbook will look for roles when it’s run.

2. The nocows setting tells Ansible to disable cowsay-based output during playbook
runs. (Ansible has a fun tendency to include cows in its output if you have
cowsay installed on your computer; as an example, see any of the quotes at the
end of this book’s chapters!)

Now that we've provided a list of required roles, and configuration telling Ansible
where to install them, go ahead and run the ansible-galaxy command to download
the roles:

$ ansible-galaxy install -r requirements.yml

After this command completes, you should see two folders in the roles directory:
$ 1s -1 roles

geerlingguy. java

geerlingguy.solr

With the roles in place, it’s time to build the playbook that applies them to a Docker
container and creates an Apache Solr image.

Writing a Playbook to Build a Container Image

As with the other examples so far, we’ll run this playbook locally, so create an
inventory file with the contents:

Chapter 3 - Ansible manages containers 56

[localhost]
127.0.0.1 ansible_connection=local

And then create a playbook, main.ym1:

- hosts: localhost
gather_facts: false

Because this playbook is going to use a number of variables, it’s easier to manage the
variables in a separate file (instead of at the top of the playbook). So we can describe
a list of vars_files to Ansible at the top level of the play, and Ansible will pre-load
all variables in these files before running any tasks:

vars_files:
- vars/main.yml

Create a vars directory, and inside it, a main.yml file to store all the variables we’ll
be using. One variable I know we’ll need to provide is a container name, so we don’t
have to specify it over and over in the playbook. So add it as the first variable in the
vars/main.yml file:

container_name: solr

Now, back in the main.yml playbook, after the vars_files, let’s define tasks to be
run prior to the Java and Apache Solr installation roles, using pre_tasks. First, we
need a task to start up a build container, using docker_container:

10
11
12
13

15
16
17
18
19

Chapter 3 - Ansible manages containers 57

pre_tasks:
- name: Create and start the build container.
docker_container:
image: debian:buster
name: '{{ container_name }}'
command: sleep infinity

We could also set the value of the image (which is used here as the base image) as
a variable, but we probably won’t need to change it or reuse the variable, so we are
safe defining it inline.

We set the command to sleep infinity. If you don’t do this, the container would
start, then immediately exit. We want the container to keep running indefinitely, so
we can configure Java and Apache Solr inside using Ansible. Another infinite-loop
command like tail -f /dev/null would be just as effective.

After we have a running container, we need a way for Ansible to know it exists, so
it can interact with the container directly. Luckily, Ansible has a Docker connection
plugin. Connection plugins® allow Ansible to interact with systems via different
protocols. By default, Ansible assumes an SSH connection, but we’ve also made good
use of the local connection plugin in this book, and now we’ll rely on the docker
connection plugin.

To interact with the Docker container in the rest of the playbook, we need to add a
host to Ansible’s inventory, and tell it to use the docker connection plugin:

- name: Add the new container to the inventory.
add_host:
hostname: '{{ container_name }}'
ansible_connection: docker
ansible_python_interpreter: /usr/bin/python3

The add_host module is useful when you are building infrastructure dynamically,
and need to work with systems or containers that were created or started dynamically
in the playbook.

“’https://docs.ansible.com/ansible/latest/plugins/connection.html

https://docs.ansible.com/ansible/latest/plugins/connection.html
https://docs.ansible.com/ansible/latest/plugins/connection.html

21
22
23
24
25

27
28
29

Chapter 3 - Ansible manages containers 58

From this point forward, we can add a special parameter to any task to tell Ansible to
use the new Docker container, delegate_to. For example, the first thing we need to
do is run a raw command on the container to make sure Python 3 is installed, since
it is not installed by default on the debian:buster base image:

- name: Ensure Python is installed.
raw: >
apt-get update &&
apt-get install -y --no-install-recommends python3
delegate_to: '{{ container_name }}'

The raw module runs a command directly through the remote shell, without Ansible’s
Pythonic module system. These commands should be used sparingly, but are useful to
do things like install Python if it’s not already present—since using any other module
would require Python already be installed!

There’s a > character immediately following the raw: module invocation. This is an
indication to the YAML parser that it should ‘fold’ the following lines into one line,
with each newline converted to a space. This is called a “multi-line folded scalar”
and is useful for splitting up one command or one block of text over multiple lines.

Now that we know Python is installed, we need to run Ansible’s setup module, which
does the equivalent of gather_facts: true:

- name: Gather facts inside the container.
setup:

delegate_to: '{{ container_name }}'

Doing this populates a number of facts the Java and Apache Solr install roles will use
to determine what Linux distribution and version are running. We could also specify
these things manually, but it’s nice to have access to the standard set of variables
Ansible populates, like ansible_os_family (which, in this case, would be Debian).

There’s one more task that needs to be done prior to installing Java and Apache Solr,
and that is to ensure the ps command is present in the container, because it is used
by part of the standard Apache Solr install script (which usually targets full VMs, not
Docker containers!):

31
32
33
34
35

37
38
39
40
41
42

=~ O U

Chapter 3 - Ansible manages containers 59

- name: Ensure ps command is present for Solr's installer.
apt:
name: procps
state: present
delegate_to: '{{ container_name }}'

Now it’s time to install Java and Apache Solr, and the simplest way is to define them
both under the top-level roles list in the playbook:

roles:
- name: geerlingguy. java
delegate_to: '{{ container_name }}'

- name: geerlingguy.solr

delegate_to: '{{ container_name }}'

Before we use these roles to configure the respective services, it’s important to make
sure the roles do the right thing! Most roles on Ansible Galaxy have sane defaults
and document how to override important variables in their README files, but in
this case, there are a few settings we’ll need to override to get Apache Solr to run
correctly on Debian Buster:

1. Java 11 (OpenJDK) should be installed.

2. The solr_version should be defined so we have control over what exact version
is being run on our infrastructure.

Looking at both roles’ README files, we need to define two role override variables
in the vars/main.yml file:

java_packages:
- openjdk-11-jdk

solr_version: "8.6.2"

44
45
46
47
48
49
50
51

Chapter 3 - Ansible manages containers 60

At this point, you could run the playbook, and at the end, you'd have a container
with Java 11 and Apache Solr 8 installed. But it wouldn’t be a very useful container,
because it hasn’t been committed and tagged, so can’t be run elsewhere.

After the roles list, create a post_tasks section. In it, we’re going to work on three
things:

1. Cleaning up extra cruft in the container that isn’t necessary, like Apt caches.

2. Committing (tagging) the container so it’s stored in the local image registry.

3. Stopping and removing the running container (since the work to build our
Apache Solr image is complete).

The first task is to clean out some of the cruft that’s generated when we install
packages via Apt, along with the Python 3 installation; we don’t need Python to
run the Java-based Apache Solr, we only needed it so Ansible could work inside the
container. We could leave out this step, but then we’d be wasting an extra 20 MB
of space in the final container image. That’s not a whole lot in this case, when the
image will end up over 1 GB, but it is significant with smaller projects.

post_tasks:
- name: Clean up the container.
shell: |
apt-get remove --purge -y python3
rm -rf /var/lib/apt/lists/*
delegate_to: '{{ container_name }}'
args:

warn: no

The shell module passes through commands just like you would run them on the
command line, and using the pipe | operator tells YAML to parse the following lines
as a “multi-line literal scalar”. Instead of converting newlines to spaces, as with the >
operator, this time the YAML parser will preserve newlines, making the commands
run as if they were in a shell script.

There’s also a special parameter, args, with a setting warn: no; Ansible may emit a
warning in some cases, if you use commands like apt or yum in a shell or command

53
54
55
56
o7
58
59

60
61
62
63

Chapter 3 - Ansible manages containers 61

task, because Ansible has dedicated modules for apt and yum (among other things).
Sometimes we know what we’re doing and don’t want Ansible complaining about
it.

The next command goes back to using a multi-line folded scalar, to run a docker
commit command, which creates a new image from a running container:

- name: Commit the container.
command: >
docker commit
-¢ 'CMD ["/opt/solr/bin/solr", "start", "-f", "-force"]'
-c '"WORKDIR /var/solr'

{{ container_name }} ansible-for-kubernetes/solr:{{ solr_versio\

n }}

The two -c parameters apply Dockerfile instructions to the created image. This makes
it easier to run the image, because the default command, which starts Apache Solr, is
already set, and the working directory is set to /var/solr, so if you exec inside the
container you’ll be dropped into the default directory where writeable Solr files are
stored.

The rest of the command tags the final image so you can push the image to a registry
and run it in your infrastructure.

The final task in the playbook is to stop and remove the running container, since
we’re finished using it:

- name: Remove the container.
docker_container:
name: '{{ container_name }}'
state: absent

Now, it’s time to run the playbook and build the Apache Solr container image!

Chapter 3 - Ansible manages containers

ansible-playbook -1i inventory main.yml

RUNNING HANDLER [geerlingguy.solr : restart solr] dkkkkoktskokskkkok
changed: [127.0.0.1 -> solr]

TASK [Clean up the container_] KKK KK KKK KKK KKK KKK KK KKK KKK KKK KKK KKK

changed: [127.0.0.1 -> solr]

TASK [Commit the container.] #xkkkskskskssssksskirkkkrdskrssokkxddkk

changed: [127.0.0.1]

TASK [Remove the container.] Sk ok skoskoskoskoskoskoskok

changed: [127.0.0.1]

PLAY RECAP kskskokokokskskok ok sk sk ok ok ok >k ok ok ok >k >k ok ok >k >k ok ok ok >k ok ok ok >k >k ok ok ok >k ok ok ok >k ok ok ok >k >k ok ok ok >k ok ok >k

127.0.0.1 1 ok=32 changed=20 failed=0 skipped=14
Now run docker images to see the image in your local repository:

$ docker images

REPOSITORY TAG IMAGE 1ID SIZE
ansible-for-kubernetes/solr 8.3.1 8471 f632f4e9 1.1GB
debian buster 67e34c1c9477 114MB

Committing image layers manually can require more discipline about how
and when you commit, and what’s in the resulting image layer. But it’s
easier to choose between trading off final image size vs. playbook length,
instead of barely-maintainable and not-at-all-maintainable, all for the sake
of a couple megabytes of image space, or a slightly faster build.

Writing a Playbook to Test the Container Image

With the image available locally, you can run it using docker run:

62

Chapter 3 - Ansible manages containers 63

$ docker run -d -p 8983:8983 ansible-for-kubernetes/solr:8.3.1
18b7aed19bad2e18724 £1939b8680bbadabed8cea®5d4579cebecbafead4adle

And then open your browser to http://localhost:8983/ and you should see the
Apache Solr dashboard:

o < [in] ©® O localhost:8983/solr/#/] (i) [l
L *"2‘ L Instance |8 System 0.690.56 0.58 %]
Solr= Lo e
@ Dashboard (Versions
& Logging ” 2.82GB
% solr-spec 8.3.1 3.86 GB
3 Core Admin solr-impl 8.3.1 1 1f - ishan - Swap Space 0.1%
" Java Properties . lucene-spec8.3.1
Thread Dump pl8.3.1 a3d456fba2cdl 1f - ishan -
1.02 MB
1024.00 MB
e File Descriptor Count 0.0%
221
1048576
M ®8 JVM-Memory 31.3%
~ Runtime Debian OpenJDK 64-Bit Server VM 11.0.5 11.0.5+10-post-Debi:
@ Args -DSTOP.KEY=solrrocks 160.19 MB
~-DSTOP.PORT=7983 258.00 MB

-Djetty.homes= /opt/solr/server X
-Djetty.port=8983 sleoome
-Dlog4j.configurationFile=file: /var/solr/log4j2.xml

-Dsolr.data.home=

-Dsolr.default.confdir=/opt/solr/server/solr/configsets/_defaul

-Dsolr.install.dir=/opt/solr

The Apache Solr dashboard.

This is great, but it would be even better to have a playbook which runs the container,
tests that Solr is working correctly, then stops and removes the container. That way,
if we have a CI job for this playbook, we can build and tag the container image, then
test it, all using Ansible.

Go ahead and stop and remove the container you just ran, using the first few
characters in the container identifier Docker returned after you ran docker run to
identify the container:

$ docker rm -f 18bTaed

Now create a playbook named test.yml in the same directory as the main.yml
playbook. Start it the same as the main.yml playbook, using the same vars_files
so you have access to the same variables used in the main playbook:

O O B W N -

10
11
12
13
14

16
17
18
19
20
21
22
23
24
25
26
27

Chapter 3 - Ansible manages containers 64

- hosts: localhost
gather_facts: false

vars_files:
- vars/main.yml

In the pre_tasks, start a container using the image we just built:

pre_tasks:
- name: Run the solr container.
docker_container:
image: 'ansible-for-kubernetes/solr:{{ solr_version }}'
name: '{{ container_name }}-test'
published_ports:
- 8983:8983

Then in tasks, verify Apache Solr is responding correctly for the default Solr
collection using the uri module:

tasks:
- name: Verify Solr is responding.

uri:
url: http://localhost:8983/solr/collectionl/admin/ping
return_content: true

register: solr_response

until:
- solr_response. json is defined
- solr_response. json.status is defined
- solr_response. json.status == '0K'

retries: 5

delay: 5

The admin/ping URL is built into Apache Solr and returns JSON (assuming Solr is
working correctly) with the current status of a given solr collection. The collectiont

29
30
31
32
33

Chapter 3 - Ansible manages containers 65

collection comes by default, and it takes anywhere from a few seconds to a minute
for the collection to be loaded on a cold start.

Therefore, for this uri invocation, we’ve used Ansible’s built-in ‘retry’ functionality.
Every delay seconds, Ansible will retry this task if it fails (up to retries times), until
the parameters defined in until are met.

In this case, we take the content returned by a request to the admin/ping URL, register
it as a variable, solr_response, then check for three conditions:

1. If the response contains JSON. (While Solr is initializing, the response is
completely empty.)

2. If the response contains a ‘status’ key in the JSON. (While the collection is
initializing, even after Solr initialization is complete, there may not be a ‘status’
key in the output.)

3. If the ‘status’ is ‘OK’. (This means Solr has initialized both itself and the
collection successfully, and is ready to index data and retrieve search results.)

Once that task passes, we know our container image has a working instance of
Apache Solr installed, and we can tear down the test container:

post_tasks:
- name: Stop and remove the solr container.
docker_container:
name: '{{ container_name }}-test'

state: absent

Run the test playbook:

Chapter 3 - Ansible manages containers 66

$ ansible-playbook -i inventory test.yml

PLAY [1oca1host] >k ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk kok

TASK [Run the solr Container_] Sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok Sk sk ok sk ok ok ok ok ok sk sk ok sk sk sk ko k ok

changed: [127.0.0.1]

TASK [Verify Solr is responding.] kkskskskskskksksksksksksksksksokskdokkdokkdok
FAILED - RETRYING: Verify Solr is responding. (5 retries left).
FAILED - RETRYING: Verify Solr is responding. (4 retries left).
ok: [127.0.0.1]

TASK [Stop and remove the solr container.] #¥kkkkxkkokkskksokiotkkrkk
changed: [127.0.0.1]

PLAY RECAP 3kskkokokok sk skok ok sk 5k ok ok ok >k ok ok 5k >k >k ok ok >k >k ok ok ok >k >k ok >k >k >k ok ok ok >k ok ok >k >k >k ok ok >k >k ok >k >k >k ok ok >k

127.0.0.1 : ok=3 changed=2 failed=0 skipped=0

On the “Verify Solr is responding” task, you can see the task failed two times (while
Solr spent about ten seconds initializing), and then succeeded on the third retry.

Using ‘retry’ with ‘until’ is extremely helpful when waiting for a new service to start
responding, or when running tasks which could be flaky due to external networking
issues or fragile build processes.

Apache Solr container build summary

Sometimes building container images with a Dockerfile is the best choice. But it’s nice
to have the freedom to build containers in other ways, especially if you have existing
Ansible automation to integrate with your container workflows, or if you need to
manage more complex container builds—which can quickly turn into a spaghetti
mess if done via Dockerfile.

0 The code used in this example is also available in this book’s code

repository, in the ansible-solr-container/*° directory.

*°https://github.com/geerlingguy/ansible- for-kubernetes/tree/master/ansible- solr- container

https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/ansible-solr-container
https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/ansible-solr-container

Chapter 3 - Ansible manages containers 67

Summary

In this chapter, we explored Ansible’s integration with containers. You can build, test,
and push container images with Ansible (though you may not need to use Ansible
for this), and there are many different ways Ansible can supplement or even replace
existing container workflows.

You might also be interested in ansible-bender’’, which integrates tightly with
Ansible and Podman to building containers in a more structured way. For more on
ansible-bender, check out this Opensource.com article: Building container images
with the ansible-bender tool**.

Whether or not you end up using Ansible for your app’s container management
lifecycle, you now know you can, and you’ve learned some interesting things
about Ansible playbooks and YAML along the way. At a future trivia night, when
someone asks you how to indicate a multi-line literal scalar in YAML, you’ll know
immediately, “it’s |!”.

/ If you test me, you will fail. \
\ (Sulu, Star Trek Into Darkness) /

\ I_I\
N\ o (oo)____
(N JAVAN

- |

**https://github.com/ansible-community/ansible-bender
**https://opensource.com/article/19/10/building-container-images-ansible

https://github.com/ansible-community/ansible-bender
https://opensource.com/article/19/10/building-container-images-ansible
https://opensource.com/article/19/10/building-container-images-ansible
https://github.com/ansible-community/ansible-bender
https://opensource.com/article/19/10/building-container-images-ansible

Chapter 4 - Building K8s clusters
with Ansible

Ansible’s modularity has made it one of the best tools for multi-cloud and multi-
cluster management. While managed Kubernetes clusters are the right solution for
many projects, there are times when you need local clusters, or to run Kubernetes
on bare-metal servers. Ansible is a first-class tool for automating Kubernetes cluster
management in any environment.

In this chapter, we’ll learn how to use Ansible to build and manage Kubernetes
clusters in a variety of environments, including local VMs and bare-metal servers!

Building a local Kubernetes cluster on VMs

For the most valiant reader, you might want to try your hand at bootstrapping
Kubernetes The Hard Way*>. The linked project walks you through the primitives,
and holds your hand through the process of installing tools, generating certificates,
writing configuration files, boostrapping etcd, etc.

But there are many different ways to build ‘bare metal’ Kubernetes clusters, and one
of the most popular and supported ways is to use kubeadm.

Since we are using Ansible, we can rely on the community’s existing automation
tools, including roles from Ansible Galaxy. There happens to be a role to manage
bootstrapping multi-node Kubernetes clusters using kubeadm, and we’ll use it in this
chapter to build our own local multi-node Kubernetes cluster on VirtualBox VMs.

Prerequisites - Vagrant and VirtualBox

One of the best ways to learn about and debug Kubernetes applications is to have
an ephemeral local multi-node cluster. Minikube and other single-node projects like

**https://github.com/kelseyhightower/kubernetes- the-hard-way

https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way

Chapter 4 - Building K8s clusters with Ansible 69

Kubernetes-in-Docker (KinD) are great for CI workflows, or for quick testing, but
they fall apart when you’re building and testing real-world applications, which may
behave differently (or break entirely) if run over multiple Kubernetes nodes.

You will need a minimum of 8GB of RAM and a multi-core CPU on your local
workstation to build a small-but-competent cluster, but assuming you have that, the
easiest way to build a local cluster is to use Vagrant®* (a development environment
management tool) to bootstrap multiple VirtualBox*>® VMs.

There are many other ways you can bring up local VMs and network them together,
but I've had great success and reliability for many years with these tools, and I
recommend them for local cluster development.

You will need to install Vagrant and VirtualBox, following their official installation
instructions (basically, download and run the installers):

« Download VirtualBox*
« Download Vagrant®’

Once you have them both installed, you should be able to run the command vagrant
help and get Vagrant’s CLI help:

$ vagrant help
Usage: vagrant [options] <command> [<args>]

-v, --version Print the version and exit.
-h, --help Print this help.

Common commands:

box manages boxes: installation, removal, etc.
cloud manages everything related to Vagrant Cloud
destroy stops and deletes all traces of the vagrant machine

global-status outputs status Vagrant environments for this user

*>*https://www.vagrantup.com
**https://www.virtualbox.org
*https://www.virtualbox.org/wiki/Downloads
*"https://www.vagrantup.com/downloads.html

https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html

Chapter 4 - Building K8s clusters with Ansible 70

A small Kubernetes cluster architecture

For our local cluster, we are going to build a set of servers that looks like this:

@

_»| Node 1(192.168.7.3)

Kubernetes Master
(192.168.7.2)

(& ©

‘@. "
—» Node 2 (192.168.7.4)
— e

docker docker

Local multi-node Kubernetes cluster architecture.

There will be one Kubernetes master node (running the Kubernetes control plane),
and two worker nodes (running workloads).

The master node will run kube-apiserver (which exposes Kubernetes’ API), kube-
scheduler (which schedules workloads on nodes), and etcd (which stores Kubernetes’
data).

The worker nodes will run kubelet (an agent that makes sure the right containers are
running on the right pods) and a container runtime—in this case, Docker.

© 00 N O O b W N =

I = SN
B oW N,

Chapter 4 - Building K8s clusters with Ansible

cluster requires this level of HA, especially since the workloads running
on worker nodes can still operate when the master is down. For learning

P It’s recommended to have multiple masters for redundancy, but not every

purposes, we’ll run with a single master node.

Running a multi-master cluster requires additional infrastructure such as
an external load balancer for the API server, which is out of the scope of
this example. Please see the documentation for Creating Highly Available
clusters with kubeadm®® if you’re interested in building a fully HA cluster

with kubeadm.

A vagrantfile for local Infrastructure-as-Code

Vagrant allows you to define servers using a Vagrantfile. We're going to define all
three servers in a Vagrantfile, with common settings among the servers for RAM
and CPU allocation, and the base OS image (or ‘box’, in Vagrant terminology) to run

on them.

Create a new project directory and inside, create a Vagrantfile, with the following

contents:

-*- mode: ruby -*-

vi: set ft=ruby :

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |configl|
config.vm.box = "geerlingguy/debiani1@"
config.ssh.insert_key = false
config.vm.provider "virtualbox"

1 1

config.vm.synced_folder '.', '/vagrant',6 disabled: true

config.vm.provider :virtualbox do |v|
v.memory = 2048
v.cpus = 2

*®https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/

71

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Chapter 4 - Building K8s clusters with Ansible 72

v.linked_clone = true
v.customize ['modifyvm', :id, '--audio', 'none']

end

Define three VMs with static private IP addresses.
boxes = |

{ :name => "kubel", :ip => "192.168.7.2" },

{ :name => "kube2", :ip => "192.168.7.3" },

{ :name => "kube3", :ip => "192.168.7.4" }

Configure each of the VMs.
boxes.each_with_index do |opts, index|
config.vm.define opts|:name] do [configl|
config.vm.hostname = opts[:name] + ".cluster.test"
config.vm.network :private_network, ip: opts|[:ip]
end

end

end
This Vagrantfile does three things:

1. Sets default for the VMs about to be created: - Each VM will have 2 GB of RAM
and 2 virtual CPU cores - Each VM will run the geerlingguy/debian1@ base
box (Debian Buster). - Each VM will receive a couple tweaks to make sure they
run optimally.

2. Defines a list of ‘boxes’, kube1, kube2, and kube3, which will get IP addresses in
the range 192.168.7. [2-4].

3. Sets the hostname (name .cluster . test) and private network IP address for each
box.

If you run vagrant up, Vagrant will spend a couple minutes downloading the Debian
base box, then it will boot three VMs with the specified hostnames and IP addresses:

Chapter 4 - Building K8s clusters with Ansible 73

$ vagrant up

Bringing machine 'kubel' up with 'virtualbox' provider...
Bringing machine 'kube2' up with 'virtualbox' provider...
Bringing machine 'kube3' up with 'virtualbox' provider...

==> kube3: Setting hostname. ..

==> kube3: Configuring and enabling network interfaces...
If you want to log into any of the VMs individually, you can use vagrant ssh, like:

$ vagrant ssh kubel
Linux kubel 4.19.0-6-amd64 #1 SMP Debian 4.19.67-2+deb1@ul x86_64

The programs included with the Debian GNU/Linux system are free
software; the exact distribution terms for each program are described
in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Wed Dec 18 23:37:07 2025 from 10.0.2.2

vagrant@kube1 : ~$

But logging into individual servers is not what we’re here to do. It’s time to automate
a cluster build!

You don’t have to use Vagrant and VirtualBox for this example to work;
instead, you could run three cloud servers, or use some other virtualization
software. You could even run three separate bare metal servers. The only
requirement is all three servers run Debian minimal, they each have a
stable, dedicated IP address, and you can access them via SSH.

If you’re not using Vagrant, make sure you change the vagrant user details
and SSH key path to work with whatever servers you’re using.

o N O O b W N =

Chapter 4 - Building K8s clusters with Ansible 74

Building a Kubernetes cluster with Ansible

Let’s create a new playbook, namedmain.yml. Since this playbook is targeting servers
reachable via SSH, the playbook will target a ‘group’ of all three hosts, which we’ll
name kube. So start the playbook with:

- hosts: kube

Describing hosts with an inventory

Now create an inventory file, which will tell Ansible what hosts are in the kube
group, and how to connect to them. Add the contents:

[kube]

kubel ansible_host=192.168.7.2 kubernetes_role=master
kube2 ansible_host=192.168.7.3 kubernetes_role=node
kube3 ansible_host=192.168.7.4 kubernetes_role=node

[kube:vars]
ansible_ssh_user=vagrant

ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

There’s a bit to unpack here. This inventory file uses an INI-like format, and has
headings or group names in brackets, then servers and variables defined below each

heading.

First, we’re defining the kube group. In it, we have a list of three hostnames, kubet,
kube2, and kube3. We could define the entire hostname (e.g. kube1 .cluster.test),
but in this case, working with IP addresses is more reliable, so we define anansible_-
host variable for each of the three servers. We also define the role of each server using
the kubernetes_role variable—kube1 will be the master, and the other two will be
general purpose nodes.

Next, we define variables that will apply to all the kube group hosts, including the
SSH user Ansible should use to log into the servers, and the SSH private key Ansible
should use to authenticate.

Chapter 4 - Building K8s clusters with Ansible 75

There are other ways to write inventory files (including generating inventory data
as JSON using a script of your own design), but this format is easy to use for simpler
cases with a static list of servers.

Becoming root in a playbook

Going back to the playbook, we will also need to be root to perform most actions,
so we can add become: true after the hosts definition:

- hosts: kube

become: true

This tells Ansible to become another user when performing tasks—and if not
specified, the default become user is root, and the default method Ansible uses to
become that user is sudo.

Building a server with roles

In my book Ansible for DevOps™, I start at the very basics and walk readers through
building various server types from scratch. In this book, I will take the luxury of
using pre-built Ansible roles from Ansible Galaxy to do some of the heavy lifting.

For an individual Kubernetes cluster server, there are a few thing you have to do:

1. Configure basic security settings (e.g. the ‘first five minutes’ basic security
hardening), like locking down SSH and configuring automatic updates.

2. Disable swap memory. Kubernetes’ architecture prefers having no swap mem-
ory available for performance reasons.

3. Install Docker (or another compatible container runtime). Kubernetes needs to
run containers, so it needs a container runtime available.

4. Install Kubernetes (e.g. kubelet on the nodes, kube-apiserver on the master).

We’'re in luck, because there are four open source roles available on Ansible Galaxy
to do each of those four tasks, with minimal configuration required:

**https://www.ansiblefordevops.com

https://www.ansiblefordevops.com/
https://www.ansiblefordevops.com/

O O B W N

W N

Chapter 4 - Building K8s clusters with Ansible 76

 geerlingguy.security®

e geerlingguy.swap®
 geerlingguy.docker®
 geerlingguy.kubernetes®?

To use the roles, they have to be available locally, so add a requirements.yml file
listing each of the roles:

roles:
- name: geerlingguy.security
- name: geerlingguy.swap
- name: geerlingguy.docker
- name: geerlingguy.kubernetes

Then add an ansible.cfg file defining the roles_path, so the roles will be stored in
the project directory:

[defaults]
roles_path = ./roles
nocows = 1

host_key_checking = False

You’ll notice I also disabled the host_key_checking setting in this file. The reason I
did that is because this is a local, ephemeral Kubernetes cluster, and the host keys used
for SSH on the individual servers can change each time you rebuild the cluster. It’s
convenient to disable host key checking to bypass warnings every time you rebuild
the cluster.

Now that we have a requirements file, and have told Ansible where roles should be
stored, it’s time to download the roles:

“*https://galaxy.ansible.com/geerlingguy/security
“*https://galaxy.ansible.com/geerlingguy/swap
“*https://galaxy.ansible.com/geerlingguy/docker
“*https://galaxy.ansible.com/geerlingguy/kubernetes

https://galaxy.ansible.com/geerlingguy/security
https://galaxy.ansible.com/geerlingguy/swap
https://galaxy.ansible.com/geerlingguy/docker
https://galaxy.ansible.com/geerlingguy/kubernetes
https://galaxy.ansible.com/geerlingguy/security
https://galaxy.ansible.com/geerlingguy/swap
https://galaxy.ansible.com/geerlingguy/docker
https://galaxy.ansible.com/geerlingguy/kubernetes

11
12
13
14
15

Chapter 4 - Building K8s clusters with Ansible 77

$ ansible-galaxy install -r requirements.yml

And now that the roles are available locally, we can include them in our playbook,
in aroles section:

roles:
- geerlingguy.security
- geerlingguy.swap
- geerlingguy.docker
- geerlingguy.kubernetes

It” almost time to configure the servers with Ansible, but not quite yet. We need to
define some variables to customize the roles for our particular cluster.

Role configuration

Looking at the README files for each role, you can see a description of all the
variables available for customization. Each role needs a few tweaks to make sure
they work with our local VMs.

Because Vagrant is built for local development, Vagrant boxes already allow pass-
wordless sudo from the vagrant user, so we don’t need to do any extra secu-
rity configuration besides the defaults defined in the geerlingguy.security role’s
defaults/main.yml variables file.

For Docker, we don’t need to use Docker Compose (since Kubernetes will be handling
the running of containers), so we can disable that, and also add the vagrant user to the
list of Docker users, for convenience (so the vagrant user can run docker commands).

Create a vars directory with a main variables file inside, at vars/main.yml, and
reference it in the main.yml playbook:

vars_files:
- vars/main.yml

In the variables file, define the two Docker role override variables:

a b W N -

11
12
13
14
15

Chapter 4 - Building K8s clusters with Ansible 78

Docker configuration.
docker_install_compose: false
docker_users:

- vagrant

Next, we need to tell the geerlingguy.swap role to disable swap (by default, it’s
enabled), and we can do that by setting swap_file_state to absent, and providing
the path to the swap file:

Swap configuration.
swap_file_state: absent
swap_file_path: /dev/mapper/packer--debian--10--amd64--vg-swap_1

To get the swap file path, I logged into one of the VMs (vagrant ssh kube1), then
inspected the /etc/fstab file, looking for the file system path for the swap entry.

Finally, we need to configure Kubernetes using a few overrides:

Kubernetes configuration.

kubernetes_version: '1.19'

kubernetes_allow_pods_on_master: false
kubernetes_apiserver_advertise_address: '192.168.7.2'
kubernetes_kubelet_extra_args: '--node-ip={{ ansible_host }}'

These four settings are all we need to get Kubernetes to play nice in a cluster of local
VMs:

« kubernetes_version: I always prefer to set a stable version (at least a major
release) for my servers, instead of relying on ‘latest’. That way I can choose
when to upgrade and re-test everything for a newer version.

e kubernetes_allow_pods_on_master: For a small cluster, it’s sometimes desire-
able to be able to run workloads on the master, because otherwise any free
RAM or CPU would be wasted. However, it’s not best practice, because you
want your scheduler, API server, and etcd server to have all the resources they
need to do their job. If you’re packing extra services on the master, it can lead
to resource contention.

Chapter 4 - Building K8s clusters with Ansible 79

* kubernetes_apiserver_advertise_address: Because VirtualBox sets up mul-
tiple virtual network interfaces, we have to specify which IP address the API
server should advertise for communication with kubelet on other nodes.

* kubernetes_kubelet_extra_args: Similarly, all the nodes need to advertise
their own correct IP address, and if you don’t specify it explicitly, kubelet may
choose the wrong network interface, leading to an orphaned node that can’t
communicate with the master.

Now that we have all of our roles configured, it’s time to run the playbook and build
the cluster!

Running the cluster build playbook

With the roles, playbook, and configuration ready to go, let’s run the playbook:

$ ansible-playbook -i inventory main.yml

TASK [geerlingguy.kubernetes : Join node to Kubernetes master] **
changed: [kube2]
changed: [kube3]

RUNNING HANDLER [geerlingguy.kubernetes : restart kubelet] *¥k*x*x
changed: [kube?2]
changed: [kube3]
changed: [kube1]

PLAY RECAP kokokokokoskook skook sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok sk ok skook ok ok ok ok ok sk ok keok

kubel : ok=49 changed=25 unreachable=0 failed=0 skipped=16
kube2 : ok=43 changed=22 unreachable=0 failed=0 skipped=14
kube3 : ok=43 changed=22 unreachable=0 failed=0 skipped=14

Great! To verify cluster functionality, log into the master, switch to the root user, and
check that all the system pods are ‘Running’:

O O b W N =

Chapter 4 - Building K8s clusters with Ansible 80

$ vagrant ssh kubel
vagrant@kubel $ sudo su
root@kubel # kubectl get pods --all-namespaces

NAME READY STATUS RESTARTS AGE

coredns-5644d7b6d9-dgmdq 1/1 Running 0 3m10s
coredns-5644d7b6d9-n8rgl 1/1 Running Q 3m10s
etcd-kubel 1/1 Running Q 2mb6s
kube-apiserver-kubel 1/1 Running 0 2m56s
kube-controller-manager -kubel 1/1 Running Q 2m56s
kube-flannel -ds-amd64-b2871 1/1 Running Q 3m2s
kube-flannel -ds-amd64-dzc42 1/1 Running 4] 3m10s
kube-flannel -ds-amd64-kf8z6 1/1 Running Q 3m2s
kube-proxy-5mecd j 1/1 Running Q 3m2s
kube-proxy-6zwlp 1/1 Running 0 3m10s
kube-proxy-x9nnq 1/1 Running %] 3m2s
kube-scheduler-kubel 1/1 Running 0 2m56s

Looks great! Now lets build a separate playbook that deploys an application to the
cluster and tests that it works.

Testing the cluster with a deployment using Ansible

Create a file named test-deployment.yml, and structure it the same way as the
main.yml cluster playbook, but tell it to only operate on the master (kube1), since
it is configured to be able to connect to the Kubernetes API out of the box:

- hosts: kubel
become: true

vars_files:

- vars/main.yml

To be able to use Ansible’s Kubernetes modules, we need to make sure the openshift
Python library is present. It may already be present locally (e.g. if you installed it on

10
11
12

Chapter 4 - Building K8s clusters with Ansible 81

your workstation using Pip), but it will also need to be present on the Kubernetes
nodes if you want to execute Ansible Kubernetes tasks on them.

Add the following pre_tasks section to ensure the openshift library is present:

pre_tasks:
- name: Ensure k8s module dependencies are installed.
pip:
name: openshift
state: present

Now, we're going to deploy a test app and expose it to outside the cluster with a
service. The best way to manage Kubernetes applications is to store the associated
Deployments, Services, and other object definitions in separate manifest files.

In earlier examples, we used inline YAML definitions, which are convenient, but it’s
even easier to maintain a large number of Kubernetes resources if you separate their
object definition YAML into separate files.

So create a files directory in your playbook directory, and inside, create two files:

e files/hello-k8s-deployment.yml
o files/hello-k8s-service.yml

For the deployment, add the following contents to hello-k8s-deployment.yml:

apiVersion: apps/vi
kind: Deployment
metadata:
name: hello-k8s
namespace: default
spec:
replicas: 3
selector:
matchLabels:
app: hello-k8s

12
13
14
15
16
17
18
19
20
21

© 00 N O O b W N =

[N =N
W N =~ o

Chapter 4 - Building K8s clusters with Ansible

template:
metadata:
labels:

app: hello-k8s

spec:
containers:

- name: hello-k8s

image: paulbouwer/hello-kubernetes:1.5

ports:

- containerPort: 8080

This will run three replicas of the ‘hello-k8s’ container, available over port 8080. To

82

distribute requests to the backends, define a service in the hello-k8s-service.yml

file

apiVersion: vi
kind: Service
metadata:
name: hello-k8s
namespace: default
spec:
type: NodePort
ports:
- port: 8080
targetPort: 8080
selector:
app: hello-k8s

Now, in the Ansible playbook, we need a task to apply the two manifest files. Create
a tasks section, and add a task using the k8s module to deploy the two files:

14
15
16
17
18
19
20
21
22

Chapter 4 - Building K8s clusters with Ansible 83

tasks:
- name: Create hello-k8s resources and wait until they are Ready.

k8s:
state: present
definition: "{{ lookup('file', 'files/' + item) }}"
wait: true

with_items:
- hello-k8s-deployment.yml
- hello-k8s-service.yml

This task uses Ansible’s 1ookup plugin, which reads a file at a given path, and outputs
the content of that file where it is templated. And it does that twice, once for each of
the items in the with_items list.

We’re loading the contents of the file into the definition parameter of this task, and
we’re doing that twice, once for the deployment, and once for the service.

You can skip the lookup plugin if the manifest file is available on the server where
the task is running. If that’s the case, provide a path to the file in the src parameter
and drop the definition. But because this task is running on the Kubernetes master
server, and the file is local on the workstation, we need to use lookup to load in the
file contents.

You can also use lookup to template a file, meaning you can use the full
power of Ansible’s Jinja templating engine in Kubernetes manifests, using
something like:

definition: "{{ lookup('template', 'path/to/manifest.yml.jinja') }}"

We also added wait: true to make sure Ansible waits until all the pods in the
deployment are ‘Ready’, before continuing on to test that the Deployment works
correctly.

The default wait_timeout is 120 seconds, and Ansible will check on the status every
5 seconds (the wait_sleep default), so this is the first check to ensure the health of
our application.

29
30
31
32
33
34

36
37
38
39

Chapter 4 - Building K8s clusters with Ansible 84

Next, we’ll send an HTTP request to the app, to make sure it’s responding correctly.
Since the service is of type ‘NodePort’, it should be reachable on any of the servers’
public IP addresses (e.g. 192.168.7.2) on the port Kubernetes assigns.

When using NodePort, the port number is dynamic, so it will be different any time
you rebuild the cluster. We need Ansible to discover the port, so we can use the
k8s_info module to gather information about the hello-k8s service:

- name: Get hello-k8s service details.
k8s_info:
kind: Service
name: hello-k8s
namespace: default

register: svc

The k8s_info module was named k8s_facts in Ansible 2.8 and earlier. Use
the older module name if you're on an older version of Ansible.

This registers a svc variable, which you could inspect by adding a debug task and
running the playbook, for example:

- name: Print the full svc variable.

debug: var=svc

Using that, we can find the correct structure to define the service’s NodePort, and to
make it easier to use in the next task, we can use set_fact:

- name: Set the service NodePort as a variable.
set_fact:
port: "{{ svc['resources'][0Q]['spec']['ports'][@]['nodePort'] }\

}ll

Finally, use the uri module to make a request. The URI task will fail if the request
does not return a 200 OK response:

40
41
42
43
44
45
46

Chapter 4 - Building K8s clusters with Ansible 85

- name: Test a request to the service.
uri:
url: http://{{ ansible_host }}:{{ port }}/

- name: Print the URL for hello-k8s.
debug:
msg: http://{{ ansible_host }}:{{ port }}/

There’s also a task immediately following using the debug module which prints the
full URL used for the service (which will come in handy later).

Let’s run the playbook to make sure the app is deployed and running properly:

$ ansible-playbook -i inventory test-deployment.yml

TASK [Get hello-k8s service details.] ¥kkkkkkiokskkiokisokiokokftokk

ok: [kube1]

TASK [Set the service NodePort as a variable.] *¥kkxkkdolokfsokkkkk

ok: [kubel]

TASK [Test a request to the service.] *xxkkiolokffokkkskkktokokffokkkkkk

fatal: [kubel]: FAILED! => {"changed": false, "content": "",

"elapsed": 30, "msg "Status code was -1 and not [200]: Request
failed: <urlopen error timed out>", "redirected": false,

"status": -1, "url": "http://192.168.7.2:32202/"}

PLAY RECAP kokokokokoskook skook sk ok ok ok sk ok sk ok ok ok ok ok ok sk ok skook ok ok ok ok ok sk ok kok

kubel : ok=6 changed=2 unreachable=0 failed=1 skipped=0

That’s not good! It looks like something is broken. This is a very simple application,
and it should be running, but it’s not responding to requests on the NodePort.

The Pods all seem to have deployed successfully, and the service is present, otherwise
Ansible wouldn’t have been able to get a NodePort to use. But something must be
wrong on the networking layer, because an HTTP request timed out.

Chapter 4 - Building K8s clusters with Ansible 86

Debugging cluster networking issues

For custom-built Kubernetes clusters, a lot of the frustrations you’ll encounter will
be due to networking issues. Kubernetes has a relatively complex network layer, for
both IP-based routing and DNS routing, and probably 80% of the issues I've ever
encountered in my own bare-metal clusters have to do with one of those layers.

Luckily, Kubernetes’ documentation has two great pages devoted to debugging
broken networking:

« Debug Services**
« Debug DNS Resolution®’

I always like to begin by running an interactive Pod inside the same namespace as
my application, then debug things inside that Pod.

So I'm going to log into the Kubernetes master and switch to the root user:

$ vagrant ssh kubel

vagrant@kube1 $ sudo su
Then I'll check on my application pods that should be running:

kubectl get pods -1 app=hello-k8s

NAME READY STATUS RESTARTS AGE

hello-k8s-6f£5898cfb-66ghd 1/1 Running Q0 9mbs
hello-k8s-6f£5898cfb-8pbsj 1/1 Running Q 9mSs
hello-k8s-6ff5898cfb-bnrdt 1/1 Running Q Ombs

The Pods seem fine, so I'll start another pod alongside them and drop into it, using
kubectl exec:

“*https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
“*https://kubernetes.io/docs/tasks/administer- cluster/dns- debugging-resolution/

https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/administer-cluster/dns-debugging-resolution/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
https://kubernetes.io/docs/tasks/administer-cluster/dns-debugging-resolution/

Chapter 4 - Building K8s clusters with Ansible 87

kubectl run -1 --tty busybox --image=busybox --restart=Never -- sh
If you don't see a command prompt, try pressing enter.
/ #

This drops me into a busybox container with a few helpful tools, like wget, nslookup,
and ping.

First, 'm going to try using nslookup to verify DNS is working inside the cluster.
Every pod should be able to get a route to kubernetes.default, so I'll first test that:

/ # nslookup kubernetes.default
;; connection timed out; no servers could be reached

Hmm... that doesn’t look promising. At this point, I'm tempted to blame the problem
on DNS, because:

It’s always DNS.

However, the ‘no servers could be reached’ message makes it seem this could be
deeper than a DNS issue. It could be there are no network routes between pods at all!

I'll check the IP address of the DNS server this Pod is using, and then try pinging it:

Chapter 4 - Building K8s clusters with Ansible 88

/ ¥ cat /etc/resolv.conf

nameserver 10.96.0.10

search default.svc.cluster.local svc.cluster.local cluster.local
options ndots:5

/ ¥ ping 10.96.0.10 -c 1
PING 10.96.0.10 (10.96.0.10): 56 data bytes

--- 10.96.0.10 ping statistics ---
1 packets transmitted, O packets received, 100% packet loss

Interesting. Earlier, when we checked all the system pods, they reported ‘Running’,
and that included the DNS pods which run CoreDNS. So at this point, I'm inclined
to think IP networking is the issue. (For once, it’s not DNS!).

And indeed, after searching Google for topics like “Pods can’t ping each other”, and
reading through a number of GitHub issues and Stack Overflow Q&As, I found two
important resources:

« Ensure iptables tooling does not use the nftables backend®’.
« Flannel CNI: Vagrant troubleshooting®’

Since we’re using Debian Buster, which uses nftables, we need to switch it to use
iptables-legacy instead.

The geer1ingguy . kubernetes role uses Flannel for its pod networking by default, so
according to the Flannel documentation, we need to specify the Vagrant machine’s
--iface explicitly, in the kube- flannel container’s command.

Fixing issues with Flannel and iptables

Unfortunately, this means our playbook has to be a little bit more complex; it won’t
just be some variables and a few roles. But that’s life with Kubernetes—in cluster
builds, very rarely will everything work ‘out of the box’. It’s a complex system that

“https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/#ensure-iptables-
tooling-does-not-use-the-nftables-backend
“"https://github.com/coreos/flannel/blob/master/Documentation/troubleshooting. md#vagrant

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/#ensure-iptables-tooling-does-not-use-the-nftables-backend
https://github.com/coreos/flannel/blob/master/Documentation/troubleshooting.md#vagrant
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/#ensure-iptables-tooling-does-not-use-the-nftables-backend
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/#ensure-iptables-tooling-does-not-use-the-nftables-backend
https://github.com/coreos/flannel/blob/master/Documentation/troubleshooting.md#vagrant

© 00 N O O & W N =

Chapter 4 - Building K8s clusters with Ansible 89

performs complex tasks, and even though things are very stable nowadays, you can’t
expect it to work in every case, for everyone, without modification.

To keep the main playbook clean, create a new tasks folder in the playbook directory,
and inside, create a file named vagrant-setup.yml. This way, we can keep the tasks
required to get our cluster running in the Vagrant environment separate from the
main playbook.

Switching nftables to iptables-legacy

The switch to use iptables-legacy is pretty easy to do, using the Debian alternatives
system. In fact, Ansible has a module for it!

Inside vagrant-setup.yml, add a task to switch to iptables-legacy (and ipé6tables-
legacy, for completeness):

See: https://github.com/kubernetes/kubernetes/issues/71305
- name: Use iptables-legacy instead of nftables.
alternatives:
name: '{{ item.name }}'
path: '{{ item.path }}'
with_items:
- { name: iptables, path: /usr/sbin/iptables-legacy }
- { name: ip6tables, path: /usr/sbin/ip6tables-legacy }

This task does the equivalent of running the following commands:

update-alternatives --set iptables /usr/sbin/iptables-legacy
update-alternatives --set ip6tables /usr/sbin/ip6tables-legacy

Patching Flannel to use the right network interface

Flannel is a little bit more difficult to deal with. The default and easiest way to install
Flannel in a cluster is to directly apply the Flannel manifest, which is hosted on
GitHub.

O© 00 1 O O b W N =

N
)

Chapter 4 - Building K8s clusters with Ansible 90

But we need to modify the manifest to include the --iface flag, and it would be
very complicated to try to load the entire manifest as YAML, inject the flag in the
correct YAML document and place (especially considering there are a dozen manifest
documents in one file), and then apply it.

We have two options, then:

1. Maintain a forked copy of the Flannel installation manifest.
2. Download the manifest, patch it, then apply it.

The first option may make sense if you're willing to maintain that forked manifest,
and could help provide a more stable cluster installation experience, especially since
it wouldn’t rely on retrieving the manifest from a remote GitHub repository.

But the second option is simpler for our local development purposes (this cluster is
not going to run production workloads on the public Internet), so we’ll go that route.

To create the patch file, you can download the Flannel Kubernetes manifest®®, then
add the item - --iface=enp@s8 to the args under the kube- flannel container inside
the kube-flannel-ds-amd64 DaemonSet. Then create a patch using the diff utility,
and you should end up with a patch file like:

--- kube-flannel.yml 2025-12-18 09:29:04.000000000 -0600
+++ kube-flannel-virtualbox.yml 2025-12-18 09:30:01.000000000 -0600
@@ -189,6 +189,7 @@

args:

- --ip-masq

- --kube-subnet-mgr
+ - --iface=enp0s8

resources:

requests:
cpu: "100m"

Save that patch file as kube- flannel-patch. txt inside the playbook’s files directory,
and then go back to the vagrant-setup.yml task file.

In that file, we need to download the Flannel manifest from GitHub, then patch it so
it’s customized for our local cluster’s network.

“®*https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube- flannel.yml

https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml

11
12
13
14
15
16
17
18
19
20
21
22
23

11
12
13
14

Chapter 4 - Building K8s clusters with Ansible 91

See: https://www. jeffgeerling.com/k8s-cni-virtualbox
- name: Retrieve current Flannel manifest from GitHub.
get_url:
url: https://raw.githubusercontent.com/coreos/flannel/master/Docume\
ntation/kube-flannel.yml
dest: ~/kube-flannel.yml

when: inventory_hostname == 'kubel'

- name: Patch Flannel manifest with VirtualBox interface.
patch:
src: files/kube-flannel-patch.txt
dest: ~/kube-flannel.yml
when: inventory_hostname == 'kubel'

The first task downloads kube- flannel .yml from GitHub into the file ~/kube . flannel.yml,
which places it in the root user’s home directory. The second task uses Ansible’s

patch module to apply the patch (from our files directory) to the kube- flannel.yml
file.

We only need to do this on the Kubernetes master (kube1), so a when conditional was
added to these tasks to limit them to the master node.

Now that the patch is applied, the last step is to force the geerlingguy.kubernetes
role to use our customized Flannel manifest, instead of the default one from GitHub:

- name: Set the correct path for the patched Flannel manifest.
set_fact:
kubernetes_flannel_manifest_file: ~/kube-flannel.yml
when: inventory_hostname == 'kubel'

Now, edit the main.yml cluster build playbook, and add an include to make sure the
vagrant-setup.yml tasks file is included and run before the roles:

10
11
12

Chapter 4 - Building K8s clusters with Ansible 92

pre_tasks:
- include_tasks: tasks/vagrant-setup.yml

roles:

You could just run the main.yml playbook again, but the problem is it may not apply
the change to the Flannel configuration correctly. The nice thing about using Vagrant
and Ansible is everything is automated, so let’s do something powerful that’s enabled
by this automation: throw it out and rebuild it from scratch!

Destroy the local cluster entirely:

$ vagrant destroy -f

Then build it again:

$ vagrant up

And then run the Ansible playbook to configure Kubernetes:

$ ansible-playbook -i inventory main.yml

Chapter 4 - Building K8s clusters with Ansible

Vagrant can automatically run the Ansible playbook, as well. In this
example, we kept the Vagrant build process separate from the Ansible
playbook run, but we could’ve added a section to the bottom of our
Vagrantfile to run the entire playbook as part of the vagrant up process,
using Vagrant’s ansible provisioner. After the config.vm.network line,
you can add:

Provision all the VMs using Ansible after last VM is up.
if index == boxes.size - 1
config.vm.provision "ansible" do |ansible]

ansible.compatibility_mode = "2.0"

ansible.playbook = "main.yml"
ansible.inventory_path = "inventory"
ansible.limit = "all"

end

end

This runs themain.yml playbook against all the servers, after the last server
(kube3d) is running.

After the build is finished, run the test playbook again, and see if it works now:
$ ansible-playbook -i inventory test-deployment.yml

TASK [Set the service NodePort as a variable.] *¥kxkkkkokokkftokkskkk
ok: [kube1l]

TASK [Test a request to the service.] *¥rikkritritrtftfrtkfkotkfkotkfk
ok: [kubel]

TASK [Print the URL for hello-k8s.] kit
ok: [kubel] => {
"msg": "http://192.168.7.2:31812/"

PLAY RECAP kskokokokkskskok ok sk ok ok sk sk ok >k ok >k sk ok ok ok sk ok sk ok ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok skook sk oskokskookoskkok sk

kubel : ok=T changed=2 unreachable=0 failed=0 skipped=0

93

Chapter 4 - Building K8s clusters with Ansible 94

This time it works! With the two networking adjustments, we’ve fixed our Kuber-
netes cluster. If you open a browser window, you should even be able to see the
hello-kubernetes page by accessing the NodePort on any of the three servers, e.g.
http://192.168.7.3:31812 (note: the port will be different for you; see the play
output for the correct port).

192.168.7.3:30606

kubernetes

Hello world!

pod: hello-k8s-6ff5898cfb-ggtgq
node: Linux (4.19.0-6-amd64)

Hello world in our Kubernetes cluster.

Local VM cluster summary

Ansible can be used to manage servers whether running locally or in a cloud
environment. It’s often useful to build servers locally since you have more control
over networking, and you can easily scrap and rebuild everything without incurring
any extra expense (besides maybe buying a laptop with many GB of RAM!).

repository, in the cluster-local-vms/® directory.

0 The code used in this example is also available in this book’s code

*https://github.com/geerlingguy/ansible- for-kubernetes/tree/master/cluster-local-vms

https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/cluster-local-vms
https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/cluster-local-vms

Chapter 4 - Building K8s clusters with Ansible 95

Building a cluster using Kubespray

The local cluster we built on three VirtualBox VMs is hardly production-grade.
It could work for some use cases, especially for something like a CI environment
for your Kubernetes projects, or a non-production staging environment. But in
production, you want to have more HA, and that means more servers and more
configuration.

There’s an official Ansible-based cluster building tool called Kubespray’, and it
touts being able to build ‘Production Ready’ Kubernetes clusters on any cloud
environment, or on bare metal servers.

Kubespray is similar to our earlier playbook in that it uses kubeadm on the backend
to build many parts of the cluster, but it goes beyond the earlier example to allow a
large array of customizable options (e.g. you can choose from one of nine different

CNI network plugins (our local cluster playbook only supports Flannel or Calico out
of the box).

Building a cluster on VPSes using Kubespray

TODO.

Building a bare metal cluster using Raspberry
Pis

In 2019, the Raspberry Pi Foundation introduced the Raspberry Pi 4 model B,
with options including 1, 2, or 4 GB of RAM, and a decent ARM processor and
I/O, including gigabit ethernet. I don’t advocate running heavily-used production
Kubernetes clusters on Raspberry Pis, but I have been interested on cluster computing
on Raspberry Pis for some time.

"°https://github.com/kubernetes-sigs/kubespray

https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray

Chapter 4 - Building K8s clusters with Ansible 96

NETGEAR R b4 W et Fay GS305P

A Raspberry Pi Kubernetes cluster.

For a few hundred dollars, you can build a multi-node cluster with reasonably-
competent hardware, and as long as you keep things powered and cooled adequately,
the cluster will run well for a long time.

How do I know? I've been running a Kubernetes cluster of Raspberry Pis (starting
with the Pi 2 model B in 2017) continuously, at my house, serving the public website
www.pidramble.com”*.

I document all the necessary equipment, and even open-sourced the entire Ansible
playbook that is used to configure networking and run a Drupal website on the
cluster—in fact, the Drupal site codebase that runs pidramble.com is also open source!

If you want to build a cluster of your own, check out the Pi Dramble Wiki"?, as
well as the Raspberry Pi Dramble open source codebase’ that builds and deploys
applications to the cluster.

"*https://www.pidramble.com/
"?https://www.pidramble.com/wiki
"https://github.com/geerlingguy/raspberry-pi-dramble

https://www.pidramble.com/
https://www.pidramble.com/wiki
https://github.com/geerlingguy/raspberry-pi-dramble
https://www.pidramble.com/
https://www.pidramble.com/wiki
https://github.com/geerlingguy/raspberry-pi-dramble

Chapter 4 - Building K8s clusters with Ansible 97

Summary

In this chapter, you learned how Ansible can be used to build Kubernetes clusters
from scratch, integrating with tools like kubeadm.

You could build local clusters, clusters on VMs in cloud environments, or even
clusters on bare-metal servers using Ansible. But managing your own Kubernetes
clusters isn’t for everyone. In the next chapter, we’ll explore using Ansible to manage
managed Kubernetes clusters on popular cloud hosting platforms.

/ Your first command together was \
| less than successful. You are |

\ all dead. (Tuvok, VOY) /
\ l_l\
N\ (oo)\
(N JAVAN

S

Chapter 5 - Build an AWS EKS
Cluster with CloudFormation
and Ansible

Ansible can build bespoke Kubernetes clusters in a variety of situations, but it’s also
great for building and managing managed clusters from popular cloud providers,
like Amazon, Google, and Azure.

In this chapter, we’ll learn how to use Ansible to build and manage an Amazon
Elastic Kubernetes Service (EKS) cluster using AWS CloudFormation Templates and
Ansible, and then we’ll deploy a WordPress application on it.

Managing AWS EKS clusters with
CloudFormation

Ansible includes a number of AWS-specific modules, including the aws_eks_-
cluster” module, which can control AWS resources directly:

- name: Create an EKS cluster
aws_eks_cluster:
name: test_cluster
role_arn: test_role_id
subnets:
- subnet-one-id-here
- subnet-two-id-here
security_groups:
- eks-security-group
register: eks_cluster_info

"*https://docs.ansible.com/ansible/latest/modules/aws_eks_cluster_module.html

https://docs.ansible.com/ansible/latest/modules/aws_eks_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/aws_eks_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/aws_eks_cluster_module.html

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 99

Sometimes, it’s not as effecient to use Ansible modules to directly manipulate
AWS infrastructure components, especially for services which require a lot of re-
lated resource coordination. AWS offers their own ‘Infrastructure-as-Code’ solution,
CloudFormation’, and it’s a reliable way to define AWS infrastructure via YAML
templates.

Ansible is very good at applying and updating CloudFormation templates, via the
cloudformation’® module.

For a simple AWS EKS cluster, you need to build out at least a few basic components,
as shown in the following diagram:

D

— —

!

—

(
|
||
|
|
|

worker node

.

|

us-east-la ﬂ us-east-1b

\‘____/ e — — — —

AWS EKS cluster architecture.

In CloudFormation’s flavor of YAML, the VPC in the architecture diagram would be
defined like so:

"*https://aws.amazon.com/cloudformation/
"*https://docs.ansible.com/ansible/latest/modules/cloudformation_module.html

https://aws.amazon.com/cloudformation/
https://docs.ansible.com/ansible/latest/modules/cloudformation_module.html
https://aws.amazon.com/cloudformation/
https://docs.ansible.com/ansible/latest/modules/cloudformation_module.html

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 100

VPC:
Type: AWS::EC2::VPC
Properties:

CidrBlock: 172.16.0.0/16
EnableDnsSupport: true
EnableDnsHostnames: true
Tags:
- Key: Name
Value: eks-example

We will build out an EKS cluster using three main CloudFormation templates:

1. One for AWS networking components (a VPC, an Internet Gateway, a Route,
and Subnets).

2. One defining the EKS Cluster.

3. One defining an EKS Node Group, which is a managed Auto Scaling Group of
EC2 instances joined to Kubernetes as individual worker nodes.

CloudFormation Templates

Create a new project folder for the AWS EKS Cluster, named cluster -aws-eks. Inside
that folder, create a directory to store all the CloudFormation templates, named
cloudformation.

CloudFormation template for VPC Networking

AWS has a fairly robust virtual networking model, and although this book won’t get
into the details, we’ll need to set up a basic network in which the EKS cluster will
reside.

Most AWS servers and services reside inside a Virtual Private Cloud (VPC), an
isolated section of the AWS cloud environment with a virtual network you define.
The VPC can have portions of the network exposed to the Internet, and portions
isolated on a private subnet. It can also be configured to directly connect to a
corporate network via a VPC bridge, if your applications require a ‘hybrid cloud’
setup.

O© 00 1 O O b W N =

[N T N T e - = = G N ¥
N O O© 00 N O O b W N =~ O

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 101

So the first thing to do is create a CloudFormation template’s basic metadata
(including the template version and description), and the VPC definition. Create a
new file in the cloudformation directory, named vpc.yml:

AWSTemplateFormatVersion: '2010-09-09'
Description: VPC and network configuration for an EKS cluster.

Parameters:

Region:
Type: String
Default: us-east-1
Description: AWS Region for the VPC.

Resources:

VPC:
Type: AWS::EC2::VPC
Properties:
CidrBlock: 172.16.0.0/16
EnableDnsSupport: true
EnableDnsHostnames: true
Tags:
- Key: Name
Value: eks-example

The Parameters section of the template allows for parameters that Ansible can pass
into the template.

In this Parameters section, we defined Region, which can be used in the rest of
the template using the syntax !Ref Region or using a CloudFormation substitution
macro likeFn: :Sub: '${Region}'. We'll need to specify regions for Subnets, so we’ve
defined Region as a template parameter, with a default of us-east-1.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 102

are a more CloudFormation-native method that allows the templates to
work within the CloudFormation ecosystem more easily, and enables

easier sharing of templates among different accounts, even when not using
Ansible.

o You could use Jinja directly on the template if you want, but Parameters

After the VPC, we need an Internet Gateway, to attach the VPC (and our cluster) to
the Internet. We also need a Route and Route Table to allow IP traffic to go from the
VPC to the Internet:

InternetGateway:
Type: AWS::EC2::InternetGateway
Properties:
Tags:
- Key: Name
Value: eks-example

AttachGateway:
Type: AWS::EC2::VPCGatewayAttachment
Properties:
Vpcld: !Ref VPC
InternetGatewaylId: !Ref InternetGateway

RouteTable:
Type: AWS::EC2::RouteTable
Properties:
Vpcld: !Ref VPC
Tags:
- Key: Name

Value: eks-example

Route:
Type: AWS::EC2::Route
Properties:

RouteTablelId: !'Ref RouteTable
DestinationCidrBlock: ©.0.0.0/0

50
51

53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
4!
72
73
T4
75
76
T
78
79
80
81
82

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible

GatewayId: !Ref InternetGateway

DependsOn: AttachGateway

We also need a Network Access Control List (ACL) which allows traffic to pass into

and out from the VPC:
NetworkAcl:
Type: AWS::EC2::NetworkAcl
Properties:
Vpcld: !Ref VPC
Tags:
- Key: Name

Value: eks-example

InboundNetworkAclEntrySSH:
Type: AWS::EC2::NetworkAclEntry
Properties:
NetworkAclId: !Ref NetworkAcl
RuleNumber: 100
RuleAction: allow
Protocol: -1
Egress: false
CidrBlock: ©.0.0.0/0
PortRange:
From: 22
To: 22

OutboundNetworkAclEntryAll:
Type: AWS::EC2::NetworkAclEntry
Properties:
NetworkAclId: !Ref NetworkAcl
RuleNumber: 101
RuleAction: allow
Protocol: -1
Egress: true
CidrBlock: ©.0.0.0/0

83
84
85

87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 104

PortRange:
From: ©
To: 65535

All cluster resources—including the EKS cluster control plane nodes, EC2 nodes in the
EKS Node Group, and every individual Kubernetes Pod—need IP addresses available
to them within the VPC, so we will create multiple subnets, within at least two
(preferably three or more) Availability Zones (AZs). AZs are unique per AWS region,
but typically there are at least an a, b, and ¢ AZ in every region.

Subnetia:
Type: AWS::EC2::Subnet
Properties:
Vpcld: !Ref VPC
AvailabilityZone:
Fn::Sub: '${Region}a’
CidrBlock: 172.16.0.0/18
MapPublicIpOnLaunch: true
Tags:
- Key: Name
Value: eks-example-a

Subnet1aRouteTableAssociation:
Type: AWS::EC2::SubnetRouteTableAssociation
Properties:
SubnetId: !Ref Subnetila
RouteTableId: !Ref RouteTable

SubnetlaNetworkAclAssociation:
Type: AWS::EC2::SubnetNetworkAclAssociation
Properties:
SubnetId: !Ref Subnetila
NetworkAclId: !Ref NetworkAcl

Subnetib:
Type: AWS::EC2::Subnet

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible

Properties:

Vpcld: !Ref VPC
AvailabilityZone:

Fn::Sub: '${Region}b’
CidrBlock: 172.16.64.0/18
MapPublicIpOnLaunch: true
Tags:

- Key: Name

Value: eks-example-b

Subneti1bRouteTableAssociation:
Type: AWS::EC2::SubnetRouteTableAssociation
Properties:
SubnetId: [IRef Subnetilb
RouteTablelId: !Ref RouteTable

Subnet1bNetworkAclAssociation:
Type: AWS::EC2::SubnetNetworkAclAssociation
Properties:
SubnetId: !Ref Subnetib
NetworkAclId: !Ref NetworkAcl

Subnetic:
Type: AWS::EC2::Subnet
Properties:
Vpcld: !Ref VPC
AvailabilityZone:

Fn::Sub: '${Region}c'
CidrBlock: 172.16.128.0/18
MapPublicIpOnLaunch: true
Tags:

- Key: Name

Value: eks-example-c

SubneticRouteTableAssociation:
Type: AWS::EC2::SubnetRouteTableAssociation

105

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 106

149 Properties:

150 SubnetId: !Ref Subnetic

151 RouteTableld: !Ref RouteTable

152

153 SubneticNetworkAclAssociation:

154 Type: AWS::EC2::SubnetNetworkAclAssociation
155 Properties:

156 SubnetId: !Ref Subnetic

157 NetworkAclId: !Ref NetworkAcl

These subnets will allocate addresses in the IP ranges172.16.0.0/18,172.16.64.0/18,
and 172.16.128.0/18, allowing nearly 50,000 Pods and other resources in the VPC.

Note that if you create subnets without accounting for the IP address allocation you
will need for all the resources in your cluster (and other AWS resources that tie into
the cluster), you’ll be in for a world of hurt when you inevitably run out. I like to make
sure I have at least 50% overhead when designing the network; it’s not impossible to
expand or migrate VPCs, but it’s not fun to do.

Finally, we can define Outputs in the CloudFormation template, which allows
consumers of the template (including Ansible) to quickly access certain resource
metadata, like the created VPC’s ID, or the created Subnet IDs. Other templates will
need this data for the creation of resources, so define two Outputs to finish off the
networking template:

159 Outputs:

160

161 Vpecld:

162 Description: VPC id

163 Value: !Ref VPC

164

165 Subnets:

166 Description: List of Subnets in the VPC

167 Value:

168 Fn::Sub: '${Subnetia},${Subnetib},${Subnetic}"

With this template complete, it’s time to build an EKS Cluster template.

© 00 N O O & W N =

N = =y
O© 00 N O O b W0 N »~ O

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 107

(network, cluster, and cluster nodes). Technically we could stuff everything
into one template, but it makes the template longer and harder to maintain,
and risks running into individual CloudFormation template limits (e.g.

maximum of 60 parameters and outputs, 200 resources, or 50KB template
body).

P To make the templates easier to maintain, we split them by resource type

CloudFormation template for an EKS Cluster

To create an EKS Cluster, we need to specify a few more Parameters, including the
VPC ID (which will come from the VPC CloudFormation stack), a list of all the VPC’s
Subnets (so the Cluster members can be placed within these subnets), a cluster name,
and the Kubernetes version the Cluster should be running.

Create a template named eks-cluster.yml and put the initial metadata and param-
eters into it:

AWSTemplateFormatVersion: '2010-09-09'
Description: 'EKS Cluster definition.'

Parameters:

Vpecld:
Type: String
Description: VPC ID.

Subnets:
Type: CommaDelimitedlList
Description: List of subnets in the VPC.

ClusterName:
Type: String

Description: EKS Kubernetes cluster name.

KubernetesVersion:

20
21

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

40
41
42
43
44

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 108

Type: String
Description: EKS Kubernetes cluster version.

The EKS Cluster needs to have an IAM Role assigned to it, with two policies,
AmazonEKSClusterPolicy and AmazonEKSServicePolicy, so it has the right permis-
sions for EKS to manage AWS resources associated with your cluster. Add the Role
as the first resource in the template’s Resources section:

Resources:

ClusterRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
Service:
- eks.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:
- arn:aws:iam::aws:policy/AmazonEKSClusterPolicy
- arn:aws:iam::aws:policy/AmazonEKSServicePolicy

Then add a basic security group EKS can use to allow cluster communication with
worker nodes (which will be configured in the next template):

ClusterControlPlaneSecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:
GroupDescription: Cluster communication with worker nodes.
Vpcld: !Ref Vpcld

Finally, define the cluster itself:

46
47
48
49
50
51
52
53
54
55

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 109

Cluster:
Type: "AWS::EKS::Cluster"
Properties:

Name: [Ref ClusterName
Version: !Ref KubernetesVersion
RoleArn: !GetAtt ClusterRole.Arn
ResourcesVpcConfig:
SecurityGrouplds:
- IRef ClusterControlPlaneSecurityGroup
Subnetlds: !Ref Subnets

The cluster definition references a few parameters that we’ll pass in using Ansible:

¢ ClusterName
¢ KubernetesVersion
e Subnets

And it also references two values from other resources created in the same template:

« ClusterRole.Arn: The Amazon Resource Name (ARN) of the ClusterRole which
gives the EKS cluster the ability to manage its own AWS resources.

« ClusterControlPlaneSecurityGroup: The Security Group ID for the security
group that allows communication between the EKS control plane and worker
nodes.

Finally, we can output two values which will come in handy later:

o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible

Outputs:
ClusterName:
Value: !Ref ClusterName
Description: Cluster Name
Export:
Name :
Fn::Sub: "${AWS::StackName}-ClusterName"
ClusterEndpoint:
Value: !GetAtt Cluster.Endpoint
Description: Cluster Endpoint
Export:
Name:
Fn::Sub: "${AWS::StackName}-ClusterEndpoint"

110

The ClusterName will need to be passed through when creating the EKS Node Group,
and the ClusterEndpoint can be used by automation to connect to the cluster’s API

endpoint.

CloudFormation template for an EKS Node Group

At this point, we could create our own EC2 instances and join them to the cluster
manually, or even build the cluster and use it with no worker nodes, but we wouldn’t

be able to run any services or applications on the cluster.

But AWS makes worker node provisioning easier with Managed Node Groups’’, so
we’ll create a final template to set up a Managed Node Group attached to our cluster.

Create a new file eks-nodegroup.yml and put in the metadata and five parameters

we’ll use to define the Node Group:

""https://docs.aws.amazon.com/eks/latest/userguide/managed- node- groups.html

https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html
https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html

O© 00 1 O O b W N =

NN NN NN NN R R R R s s s
=4 0 O B WD S O O 0 N0 0B WD,

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 111

AWSTemplateFormatVersion: "2010-09-09"
Description: 'EKS Node Group definition.'

Parameters:

ClusterName:
Type: String
Description: The EKS cluster name.

NodeGroupName:
Type: String
Description: Unique identifier for the Node Group.

NodeInstanceType:
Type: String
Default: t3.medium
Description: EC2 instance type for the node instances.

NodeGroupDesiredCapacity:
Type: Number
Default: 3
Description: Desired capacity of Node Group ASG.

Subnets:
Type: "List<AWS::EC2::Subnet::Id>"
Description: The subnets where workers can be created.

The ClusterName will come from the EKS Cluster template’s outputs, and the Subnets
will come from the VPC template’s outputs. The other three parameters will be passed
in by Ansible when we deploy the template.

Now, just like we had to add an IAM Role to allow the EKS Cluster to manage
associated AWS resources, we need to add a Role to allow the Node Group EC2
instances to interact with associated resources (the EKS Cluster, VPC networking,
and EC2 Container Registries):

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

49
50
51
52
53
54
55
56
o7
58
59
60
61

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible

Resources:
NodeInstanceRole:
Type: "AWS::IAM::Role"
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: Allow
Principal:
Service:
- ec2.amazonaws.com
Action:
"sts:AssumeRole"
ManagedPolicyArns:
"arn:aws:iam: :aws:policy/AmazonEKSWorkerNodePolicy"
- "arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy"
- "arn:aws:iam: :aws:policy/AmazonEC2ContainerRegistryReadOnly"
Path: /

112

And finally, we can define the Node Group, using references to the NodeInstanceRole

and parameters passed in to the template:

NodeGroup:
Type: "AWS::EKS::Nodegroup'
Properties:
NodegroupName: !Ref NodeGroupName
ClusterName: !Ref ClusterName
NodeRole: !GetAtt NodelnstanceRole.Arn
InstanceTypes:
- IRef NodelnstanceType
ScalingConfig:
MinSize: 2
DesiredSize: !Ref NodeGroupDesiredCapacity
MaxSize: 5
Subnets: !Ref Subnets

O O B W N

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 113

At this point, the cloudformation folder of your project should have the following
files:

cloudformation/
eks-cluster.yml
eks-nodegroup.yml
vpc.yml

Now that we have our three CloudFormation templates, we need to be able to apply
them easily and automatically, and to do that, we’ll build an Ansible playbook.

Applying CloudFormation Templates with Ansible

Create an inventory file in the cluster-aws-eks directory, with the contents:

[localhost]
127.0.0.1 ansible_connection=1local

Then create a variables file in vars/main.yml to store variables you’ll use in the
playbook. Finally, create a main.yml playbook alongside the inventory file, with a
reference to the vars file:

- hosts: localhost
gather_facts: false

vars_files:

- vars/main.yml

The first thing we need to do is create the VPC using the cloudformation/vpc.yml
template. To do that, we’ll need to define a few variables for Ansible to use in the
vars/main.yml file. Add the following variables to that file:

O© 00 1 O O b W N =

N
[~

o4}

10
11
12
13
14
15
16
17
18
19
20
21
22

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 114

ansible_python_interpreter: '{{ ansible_playbook_python }}'

AWS Settings.
aws_environment: true
aws_region: us-east-1

aws_profile: default

This variable will be populated during playbook runs.
stack_outputs: {}

The first three variables allow us to specify AWS settings, including the region where
CloudFormation stacks will be deployed, and the profile that Ansible will use to
interact with AWS.

The stack_outputs is an empty dictionary that will be modified as the playbook runs,
to contain data from CloudFormation stack Outputs we defined in the templates.

With these variables available, we can create our first two tasks in the playbook: one
to apply the vpc.yml template, and another to add the Outputs from that template to
the stack_outputs variable:

tasks:
- name: Ensure VPC exists via CloudFormation.
cloudformation:
stack_name: eks-example-vpc
state: present
region: "{{ aws_region }}"
profile: "{{ aws_profile }}"
disable_rollback: false
template: cloudformation/vpc.yml
template_parameters:
Region: "{{ aws_region }}"
tags:
stack: eks-example-vpc
application: eks-example
register: vpc_info

23
24
25
26
27

10
11
12
13
14

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 115

- name: Add to stack_outputs.
set_fact:
stack_outputs: "{{ stack_outputs | combine(vpc_info['stack_outp\

uts']) }}"

Because the vpc.yml template has aRegion parameter, we specify it under the Ansible
cloudformation module task’s template_parameters. We also define a few tags
which will be applied to the CloudFormation stack in AWS.

It’s a good idea to apply useful tags to all resources within AWS, as many
tools can be made to track resources based on tags. For example, larger
AWS accounts running hundreds or thousands of servers may be difficult
and unweildy to manage, especially if you’re trying to figure out how
much you’re paying for each type of application you run! Using tags like
application: eks-example—as long as you consistently use them—means
you’ll be able to track resources by that tag and reason about how much
they cost, and how many there are.

The second task uses the registered fact, vpc_info, to store the outputs in the stack_-
outputs variable. The combine() Jinja filter combines all the data from the vpc_-
info['stack_outputs'] dictionary with the existing stack_outputs dictionary.

The next task supplies some of the variables stored in stack_outputs to the template_-
parameters for the eks-cluster.yml template.

Before we can use the eks-cluster.yml template, we need to define a few variables
to pass to its parameters, namely the ClusterName and KubernetesVersion. Add the
following variables in the vars/main.ym1 file:

EKS Cluster settings.

eks_cluster_name: eks-example

See: https://docs.aws.amazon.com/eks/latest/userguide/platform-versio)\
ns.html

eks_kubernetes_version: "1.17"

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 116

The Kubernetes version must be one of the supported EKS platform versions’®.

Now we’re ready to add a task to apply the eks-cluster.yml template, and another
task to combine its outputs with those from the vpc.yml stack:

- name: Ensure EKS Cluster exists via CloudFormation.
cloudformation:
stack_name: eks-example-cluster
state: present
region: "{{ aws_region }}"
profile: "{{ aws_profile }}"
disable_rollback: false
template: cloudformation/eks-cluster.yml
template_parameters:
ClusterName: "{{ eks_cluster_name }}"
KubernetesVersion: "{{ eks_kubernetes_version }}"
Subnets: "{{ stack_outputs.Subnets }}"
Vpcld: "{{ stack_outputs.VpcId }}"
tags:
stack: eks-example-cluster
application: eks-example
register: eks_cluster_info

- name: Add to stack_outputs.
set_fact:
stack_outputs: "{{ stack_outputs | combine(eks_cluster_info['st\
ack_outputs']) }}"

This task uses the Subnets and VpcId stack outputs from the VPC stack, which were
stored in the stack_outputs dictionary previously. And it passes in the cluster name
and Kubernetes version directly, using the variables defined in vars/main.yml.

The final task will create an EKS Node Group. For that, we need to add three addi-
tional variables in vars/main.yml to pass to eks-nodegroup.yml template parameters:

"®https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html

https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html

15
16
17
18

50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 117

Nodegroup settings.

eks_nodegroup_name: eks-example-nodegroup
eks_nodegroup_instance_type: t3.medium
eks_nodegroup_cluster_size: 3

Create the final task in the main.yml playbook:

- name: Ensure EKS Node Group exists via CloudFormation.
cloudformation:
stack_name: eks-example-nodegroup
state: present
region: "{{ aws_region }}"
profile: "{{ aws_profile }}"
disable_rollback: false
template: cloudformation/eks-nodegroup.yml
template_parameters:
ClusterName: "{{ eks_cluster_name }}"
NodeGroupName: "{{ eks_nodegroup_name }}"
NodeGroupDesiredCapacity: "{{ eks_nodegroup_cluster_size }}"
NodeInstanceType: "{{ eks_nodegroup_instance_type }}"
Subnets: "{{ stack_outputs.Subnets }}"
tags:
stack: eks-example-nodegroup
application: eks-example
register: eks_nodegroup_info

At this point, the playbook should be ready to go. Before you can run the playbook,
you need to make sure of the following:

1. The system where you are running the playbook should have the boto3 Python
library available. You can install this via pip install boto3.

2. You have an AWS account allowing programmatic access using an access key
and secret key.

3. Your AWS account’s IAM permissions allow for management of CloudForma-
tion resources, VPCs, EKS Clusters, and other associated resources. (For testing,
it’s easiest to make sure your IAM account is an admin account”.)

"*https://docs.aws.amazon.com/mediapackage/latest/ug/setting-up- create-iam-user.html

https://docs.aws.amazon.com/mediapackage/latest/ug/setting-up-create-iam-user.html
https://docs.aws.amazon.com/mediapackage/latest/ug/setting-up-create-iam-user.html

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 118

4. You have made the access and secret keys available to Ansible either via
environment variables (e.g. AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY),
or you have configured one or more profiles (this playbook assumes the default
profile) in ~/.aws/credentials.

Once you are ready, you can run this playbook to configure all the CloudFormation
stacks:

$ ansible-playbook -i inventory main.yml

It takes some time to build all the cluster resources; it is common to wait 10-20
minutes for this playbook to finish the first time it runs.

After the cluster and nodegroup are created, you should see one EKS cluster and
three EC2 instances running, and you can start to manage the cluster with Ansible.

ﬁ The IAM account you use to build the cluster will inherit the system:master
permissions in the cluster, and only that account will be able to make the
initial changes to the cluster via kubectl or Ansible. If you’re automating
the process with a service account, make sure to add a step in which that
service account adds another user as system:master, otherwise you may

be locked out of administering your own cluster!

Authenticating to the EKS Cluster via kubeconfig

EKS clusters require a special tool, aws-iam-authenticator, to authenticate via [AM.
You need to have this tool installed (following the installation instructions in the EKS
documentation®), and then you can use the AWS CLI (see install instructions here®")
to generate a kubeconfig file for use authenticating to the EKS cluster.

Once you have both tools installed, run the command:

https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html
#https://docs.aws.amazon.com/cli/latest/userguide/cli- chap- install.html

https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html
https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 119

$ aws eks --region us-east-1 update-kubeconfig --name eks-example --kub\
econfig ~/.kube/eks-example

This creates a kubeconfig file located in ~/kube/eks-example. To let kubectl know
where the file is, set the KUBECONFIG environment variable:

$ export KUBECONFIG=~/.kube/eks-example
Test that you can see the cluster with kubect1:

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterlIP 10.100.0.1 <none> 443 /TCP 19m

If you can see the cluster via kubectl, then Ansible can see the cluster the same way.
There are a few other ways to manage the connection details that we won’t get into
here, but this is usually the easiest way to connect to an EKS cluster.

Deploying WordPress to the EKS Cluster

Now that we have an EKS cluster and some worker nodes, we can deploy applications
to the cluster. WordPress is a popular blogging platform and Content Management
System (CMS) that is popular for hosting websites and blogs, and it is easy to deploy
a simple WordPress site into Kubernetes.

Because we’re going to deploy it into EKS, we need to have a way for the outside
world to access the WordPress site via HTTP, and the easiest way to do that is to use
a Kubernetes Load Balancer Service which—when you’re using EKS—automatically
connects an Elastic Load Balancer (ELB) to the service and routes requests to the
Pods behind the Service.

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 120

@ AWS Cloud i

®

deploy
WordPreIss (PHP) Secret (DB Password)

secret deploy

My*QL

PVC (web root) PVC (DB data)

WordPress architecture in EKS.

There will be two Deployments, one for WordPress (in a container running the
Apache web server and PHP), and one for MySQL. Each Deployment will run a

20
21

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 121

single Pod with a Persistent Volume Claim to store persistent data (the WordPress
site code, and the MySQL database). They will both access a secret containing the
MySQL database password. The MySQL Deployment will be exposed internally on
port 3306 (but not available external to the cluster), and the WordPress Deployment
will be exposed to the Internet on port 80, via an ELB.

The ELB will have a DNS record associated with it, and to use a custom domain
name to access the WordPress site, you will need to add an ALIAS DNS record to
your domain pointing at the ELB’s domain name. In this example, we’ll assume the
DNS is managed in AWS Route53, but other DNS providers should have a similar
configuration.

Build the WordPress Kubernetes manifests

The first requirement for this application is a shared MySQL database password,
which we’ll store in the cluster as a Secret.

First, we need to define a password; for now, we can add a plain text password
variable in the vars/main.yml1 file for the project (after the various CloudFormation
variables):

WordPress settings.
wordpress_mysql_password: ebJYfAi2QjhPsR

Storing sensitive data such as passwords and secret keys in your Ansible
playbooks as plain text is generally not a good idea. For the sake of
simplicity, we are storing the password in an unencrypted vars file here,
but for real-world production systems, it would be better to either use
Ansible Vault® to encrypt the vars, or to integrate a 3rd party secret
management solution like HashiCorp Vault®® with your Kubernetes cluster.
The management of external secret management systems is out of this
book’s scope.

Now we’re ready to create some Kubernetes manifests for the various WordPress
components. Create a new directory named wordpress in the EKS cluster project,
and create a file named mysql-pass.yml, with the following contents:

8https://docs.ansible.com/ansible/latest/user_guide/vault.html
#https://www.vaultproject.io

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://www.vaultproject.io/
https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://www.vaultproject.io/

O© 00 1 O O b W N =

N
[~

© 00 N O O b W N =

N O S = Y
O b W N -~ O

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 122

apiVersion: v1
kind: Secret
metadata:
name: mysql-pass
namespace: default
labels:
app: wordpress
data:
password: "{{ wordpress_mysql_password | b64encode }}"

This Secret will store the wordpress_mysql_password we just defined as mysql-pass
in the default namespace. The | b64encode filter is required because Kubernetes
Secrets require data values to be Base64-encoded.

Next, create a mysql.yml file in the wordpress directory, and add the following
Service definition, which will allow applications (e.g. WordPress) to access the
database by name on port 3306:

apiVersion: v1
kind: Service
metadata:
name: wordpress-mysql
namespace: default
labels:
app: wordpress
spec:
ports:
- port: 3306
selector:
app: wordpress
tier: mysql
clusterIP: None

We intentionally set clusterIP to None to make this a ‘headless’ service; that is, there

17
18
19
20
21
22
23
24
25
26
27
28
29
30

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 123

will be no load balancing of requests for multiple backend pods, it will just direct
requests to the MySQL pod using DNS.

Next, we need a Persistent Volume Claim so we can have persistent storage backing
the MySQL database. If we neglected this, the entire database would vanish any time
the server or the MySQL Pod restarted! This particular site may be a low-traffic site
with little content, but to allow for a generous amount of expansion, we’ll request 20
GiB of storage for the database:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mysqgl-pv-claim
namespace: default
labels:
app: wordpress
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Gi

This storage claim doesn’t include a spec. storageClassName, so it will use
the default storage class configured in the cluster. For better performance
(especially for use with databases which require more IOPS), you would
usually create an additional Storage Class that uses higher speed storage,
for example, on AWS, a Storage Class named io1 with a high iopsPerGB
value.

Finally, we will define the MySQL Deployment, which will manage a single database
container, attached to the persistent storage we defined previously, available on port
3306:

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible

apiVersion: apps/v1
kind: Deployment
metadata:
name: wordpress-mysql
namespace: default
labels:
app: wordpress
spec:
selector:
matchLabels:
app: wordpress
tier: mysql
strategy:
type: Recreate
template:
metadata:
labels:
app: wordpress
tier: mysql
spec:
containers:
- image: mysql:5.6
name: mysql
env:
- name: MYSQL_ROOT_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-pass
key: password
ports:
- containerPort: 3306
name: mysql
volumeMounts:
- name: mysqgl-persistent-storage
mountPath: /var/lib/mysql

124

68
69
70
4!

© 00 N O O b W N =

O S =Y
O b W0 N =~ O

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 125

volumes:
- name: mysqgl-persistent-storage
persistentVolumeClaim:
claimName: mysql-pv-claim

In volumes we referenced the Persistent Volume Claim (PVC) defined previously, and
then mounted the path /var/1ib/mysql in the container into that PVC’s storage. We
also set the container’s MYSQL_ROOT_PASSWORD using a reference to the password key
defined in the mysql -pass secret also defined earlier.

The final manifest for WordPress itself is very similar to the MySQL manifest, with
a Service, a Persistent Volume Claim, and a Deployment. The only major difference
is the Service is of type ‘LoadBalancer’, and the container exposes port 80 instead of
3306.

Create awordpress.yml file in the wordpress directory, and put the following Service
at the top:

apiVersion: v1
kind: Service
metadata:
name: wordpress
namespace: default
labels:
app: wordpress
spec:
ports:
- port: 80
selector:
app: wordpress
tier: frontend
type: LoadBalancer

This service exposes any pods with the labels app: wordpress and tier: frontend
on port 80 using a Load Balancer. In EKS’s case, this will trigger the creation of an
Elastic Load Balancer (ELB) in front of the WordPress pods.

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 126

Next, add a Persistent Volume Claim (PVC) for WordPress, so the WordPress web
root (including WordPress code and media files) is stored in a persistent volume:

17
18
19
20
21
22
23
24
25
26
27
28
29
30

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: wp-pv-claim
namespace: default
labels:
app: wordpress
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Gi

And finally, add a WordPress deployment:

apiVersion: apps/vi
kind: Deployment
metadata:
name: wordpress
namespace: default
labels:
app: wordpress
spec:
selector:
matchLabels:
app: wordpress
tier: frontend
strategy:
type: Recreate
template:

48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 127

metadata:
labels:
app: wordpress
tier: frontend
spec:
containers:
- image: wordpress:5.3-apache
name: wordpress
env:
- name: WORDPRESS_DB_HOST
value: wordpress-mysql
- name: WORDPRESS_DB_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-pass
key: password
ports:
- containerPort: 80
name: wordpress
volumeMounts:
- name: wordpress-persistent-storage
mountPath: /var/www/html
volumes:
- name: wordpress-persistent-storage
persistentVolumeClaim:
claimName: wp-pv-claim

This deployment has a similar structure to the MySQL deployment, with a volume
and volume mount which stores the entire WordPress document root (/var /www/htm1)
in persistent storage. It also injects the MySQL password into the container in the
environment variable WORDPRESS_DB_PASSWORD.

It also adds another hard-coded environment variable WORDPRESS_DB_HOST. Where
did we get the value wordpress-mysql from? Well, Kubernetes automatically routes
DNS requests for any service name in a given namespace to that service. So, because
we named the MySQL service wordpress-mysql, we can access the MySQL instance
via that DNS name.

O O b W N =

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 128

At this point, you should have three manifest files in the wordpress directory:

wordpress/
mysql -pass.yml
mysql.yml
wordpress.yml

All but the mysql-pass.yml manifest could be deployed manually, using kubectl
apply -f. But we should automate everything using Ansible—and doing so al-
lows us to inject variables into manifests like wordpress_mysql_password inside
mysql-pass.yml.

Build an Ansible Playbook to deploy the manifests to
EKS

We already have a main.yml playbook which creates the AWS resources to support
an EKS cluster, so create a second playbook named deploy.yml in which we’ll deploy
WordPress to the cluster.

First, as with the main playbook, we’ll create a play that operates on localhost,
doesn’t gather facts, and references the main variables file:

- hosts: localhost

gather_facts: false

vars_files:
- vars/main.yml

For the first task, it is important to deploy the MySQL password secret without
logging anything to the screen, so the password itself is not leaked in the playbook’s
output. Using the k8s module, we will 1oop over all the YAML documents defined in
the mysql-pass.yml file, templating them using Ansible’s lookup plugin:

10
11
12
13
14
15
16

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 129

tasks:
- name: Deploy WordPress secrets.

k8s:
definition: '{{ item }}'
kubeconfig: '{{ k8s_kubeconfig }}'
state: present

loop: "{{ lookup('template', 'wordpress/mysqgl-pass.yml') | from_y\

aml_all | list }}"
no_log: true

Let’s go through this task in detail, since there are a few new things going on that
you might not understand:

« We've done a lookup before, in the previous chapter. Here, we're using the
template lookup plugin to read a file and then template it using Jinja, before
passing the result into the task.

« The data that is templated is then passed to two filters:

— from_yaml_all: This filter parses multi-document YAML files (one or more
YAML documents separated by - --) into a generator of documents.

— list: This filter converts the documents into a list, which can be looped
over, one by one.

« The list of YAML documents, now templated and parsed, is passed to the task’s
loop parameter, which runs the task once for each item (with item being the
contents of the individual list item—in this case, a templated YAML document).

« The kubeconfig parameter tells Ansible where to look for a kubeconfig file to
be used when connecting to the cluster.

« Theno_log parameter forces Ansible to hide any output for this task, even when
run with higher verbosity. This is important to safeguard the password from
being output into the console output and logs, which may be streamed or stored
in less secure locations.

To the last point, we need to define the k8s_kubeconfig path, which is the path to
the file we generated earlier using the aws eks update-kubeconfig command. So
add the following variable to the vars/main.ym1 file:

27
28

17
18
19
20
21
22
23
24
25
26

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 130

Kubernetes settings.

k8s_kubeconfig: ~/.kube/eks-example

We don’t technically need to loop through a list of YAML documents for this task.
We could’ve just as easily used from_yaml instead of from_yaml_all in this instance,
but I prefer to use the same task layout for all my Kubernetes manifest deployments,
to allow for manifests to grow or change over time without requiring changes to the
Ansible playbook.

For the next task, we’ll use the same essential structure, and loop over both of the
other manifest files:

- name: Deploy MySQL and WordPress.

k8s:
definition: '{{ item }}'
kubeconfig: '{{ k8s_kubeconfig }}'
state: present

loop:
- "{{ lookup('template', 'wordpress/mysql.yml') | from_yaml_all\

| list }}"
- "{{ lookup('template', 'wordpress/wordpress.yml') | from_yaml\
_all | list }}"

We don’t need the template lookup here (though in this case we do need from_-
yaml_all since these manifests have multiple YAML documents)—but again, I like to
use the same pattern to allow flexibility in the future. It is likely that over time, I'll
want to be able to use more variables for the MySQL and WordPress configuration,
for example if I want to deploy this app into a staging and production cluster, with
different defined resource limits, but using the same manifest template.

At this point, the deploy.yml playbook is able to deploy a WordPress instance into
the cluster. If you ran the playbook, it would result in an ELB pointing at WordPress,
but to be able to access the site, you would either need to enter a very long random
ELB DNS name, or manually point a DNS CNAME or ALIAS record at the ELB’s
DNS name.

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 131

Since we're using AWS, and since (presumably) the DNS records are managed in
Route 53, we can extend this playbook and manage the DNS automatically, making
turnkey WordPress setup that much easier.

Point a custom domain at the WordPress ELB

Before going further, you should know there is an entire project, External DNS**,
devoted to tying Kubernetes Ingress and Services to external DNS providers via their
APIs. That project works with many popular DNS providers, and might be a better
option depending on your needs.

In this example, though, we’ll use Ansible to integrate a DNS record in a Route
53 hosted zone with the Elastic Load Balancer EKS provisioned for our WordPress
service.

The steps involved include:

1. Getting the ELB’s DNS name.

2. Waiting for the ELB to be responsive (it can sometimes take minutes for an ELB
to provision and start routing traffic).

3. Getting all the properties of the ELB from AWS.

4. Using the data from step 3 to create an A ALIAS record pointing a domain
record at the Wordpress app.

So first things first, add a task to get the wordpress service’s information using the
k8s_info module. That module returns a hostname in its output, which we’ll use to
identify the ELB:

#https://github.com/kubernetes- sigs/external-dns

https://github.com/kubernetes-sigs/external-dns
https://github.com/kubernetes-sigs/external-dns

26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 132

- name: Get load balancer DNS name.
k8s_info:
kubeconfig: '{{ k8s_kubeconfig }}"
kind: Service
name: wordpress
namespace: default

register: wordpress_svc

- name: Set the load balancer URL as a fact.
set_fact:
wordpress_lb_host: "{{ wordpress_svc|['resources'][Q]['status'][\
"loadBalancer']['ingress'][@]['hostname'] }}"

when: aws_environment | bool

Using set_fact to set the wordpress_lb_host makes it easy to refer to the ELB’s
hostname through the rest of the play (without having to define the entire structure
of the wordpress_svc in follow-up tasks).

Now add a task to wait for the ELB to start responding.

- name: Wait for Load Balancer to respond.
uri:
url: "http://{{ wordpress_lb_host }}"
register: lb_result
until: 1lb_result.status == 200
retries: 60
delay: 5

when: aws_environment | bool

On the first playbook run, it’s common to have to wait 3-5 minutes before the ELB
created by EKS for the WordPress service is active. On subsequent runs, it should be
up right away. Adding retries with an until condition allows this task to wait just
long enough to guarantee the ELB is available.

Once the ELB is active, we can get all of its details using the AWS ec2_elb_info
module:

48
49
50
51
52
53
54

56
57
o8
59
60
61
62
63
64
65
66
67
68
69
70
4!
T2

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 133

- name: Get ELB info.
ec2_elb_info:
region: "{{ aws_region }}"
profile: "{{ aws_profile }}"
names: "{{ wordpress_lb_host.split('-')[0Q] }}"
register: elb_info

when: aws_environment | bool

The name of the ELB is derived from the first part of the hostname we retrieved using
k8s_info earlier. We use that name to find the ELB, and register its data to a new
variable elb_info.

The final task adds a record in a given hosted zone in Route 53:

- name: Add an A record in Routeb53 (if configured).
routeb3:
profile: "{{ aws_profile }}"
zone: '{{ wordpress_route53_zone }}'
record: '{{ wordpress_route53_domain }}'
state: present
type: A
ttl: 300
value: '{{ wordpress_lb_host }}."'
alias: true
alias_hosted_zone_id: "{{ elb_info['elbs'][0] ['canonical_hosted\
_zone_name_id'] }}"
wait: true
when:
- aws_environment | bool
- wordpress_routeb3_zone != "'

- wordpress_routeb3_domain !=

The last two when conditions on this task allow it to be skipped if you don’t explicitly
set a wordpress_route53_zone and wordpress_route53_domain.

If you use Route 53 for your DNS, you can set a value for those two variables in
vars/main.yml. If not, you can leave them as empty strings (" '):

23
24
25

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 134

Domain settings for Routeb3 DNS.
wordpress_routeb53_zone: '' # e.g. 'example.com'

wordpress_routeb3_domain: '' # e.g. 'wordpress.example.com'

This means the playbook could be used with WordPress sites that have domains
managed via Route 53, as well as domains managed via other DNS services—you
would just need to make sure that each playbook run has either specified the zone
and domain, or used an empty string.

The route53 module either creates the new A record (if it doesn’t exist), or ensures
the A record has the properties given here.

Run the playbook to deploy WordPress

Now that everything (including DNS) is automated in the deploy.yml playbook,
you’re ready to deploy a WordPress site in your fresh EKS cluster.

Run the playbook:

ansible-playbook -i inventory deploy.yml

And in a few minutes, you should be able to access your WordPress installation at
the configured domain (or via the ELB’s hostname, which can be found with kubect1
get svc). If everything worked correctly, you should be redirected to the WordPress
installer:

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible 135

° WordPress » Installation X +

<« c @ wordpress.example.com/wp-admin/install.php W € @ ® =

W,

English (United States)
Afrikaans

)

A piall 4 pall

ST

Azerbaycan dili
Sl B8
Benapyckasi MoBa
Bbnrapcku

&

Eoe

Bosanski

Catala

Cebuano

Cestina

Cymraeg

Dansk

Deutsch (Schweiz, Du)
Deutsch (Schweiz)
Deutsch (Sie)
Deutsch

Deutsch (Osterreich)

WordPress is ready to be installed in EKS.

ﬁ After you're finished using this test EKS instance, be sure to delete all the
resources you created, or you’ll be billed hourly for the EKS cluster and
EC2 EKS nodes. See the chapter summary for a link to this chapter’s code
examples, which include a delete.yml playbook to automate the removal

of all the resources created in the chapter.

Summary

In this chapter, we discovered the many ways Ansible can interact with AWS services,
including direct manipulation of AWS resources, management of CloudFormation
stacks and templates, and integration with EKS clusters.

The goal is not to force you into using a specific architecture for EKS clusters, but to
show that Ansible is flexible and can be used for as many—or as few—parts of EKS
automation as you’d like!

Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible

The code used in this chapter is also available in this book’s code repository,
in the cluster-aws-eks/* directory. That code includes a delete.yml

playbook which can be used to clean up all the resources created in this
chapter.

/ I don't like to lose. I don't \

| believe in the no-win scenario. |

\ (James T Kirk, TOS) /
\ I_l\
N\ (oo)_____
(N N\
[1----w |

®https://github.com/geerlingguy/ansible- for-kubernetes/tree/master/cluster-aws-eks

136

https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/cluster-aws-eks
https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/cluster-aws-eks

Chapter 6 - Manage a GKE
Cluster with Terraform and
Ansible

TODO.

Managing Google Cloud GKE clusters with
Terraform

TODO: See google_container_cluster®® examples.

Summary

TODO.

/ Computers make excellent and efficient \
| servants; but I have no wish to serve |

\ under them. (Spock, TOS) /
\ I_I\
\ (00)\
(N JAVAN
[1----w |

8https://www.terraform.io/docs/providers/google/r/container_cluster.html

https://www.terraform.io/docs/providers/google/r/container_cluster.html
https://www.terraform.io/docs/providers/google/r/container_cluster.html

Chapter 7 - Development and Cli
Testing with Molecule, Kind,
and Ansible

Developing and testing application deployments in Kubernetes can be difficult. You
may have a fragile build-develop-test cycle which is difficult to integrate with your
CI platform.

It’s important to have a stable development and testing environment, and it makes
Kubernetes development much easier if this environment is lightweight and easy to
build and rebuild.

Molecule

Molecule’s logo

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 139

Molecule®” is a Python tool which makes Ansible development easy, and you can
integrate it with Kind® to manage development and test environments and ensure

your code works.

Kind’s logo

Kind doesn’t replicate advanced functionality like external load balancers, special-
ized node types, or multiple storage classes in a full-fledged cloud environment, but
it lets you run a full Kubernetes cluster locally with Docker, and run tests against it.

For a true User Acceptance Testing (UAT) or staging environment, it’s best
to set up an exact replica of your production environment. Some teams and
projects need this level of test capability prior to approving and pushing
changes to production. Even in that case, Molecule and Kind can play an
important role in allowing local development and short CI runs for smaller
components of the whole system.

In this chapter, we will build an Ansible playbook that deploys a Kubernetes Job,
then set up a development and test environment using Molecule and Kind to test it
locally and in a Continuous Integration (CI) environment.

e The code used in this chapter is also available in this book’s code repository,

in the testing-molecule-kind/® directory.

#https://molecule.readthedocs.io/en/latest/
®https://kind.sigs.k8s.io
*https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/testing-molecule-kind

https://molecule.readthedocs.io/en/latest/
https://kind.sigs.k8s.io/
https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/testing-molecule-kind
https://molecule.readthedocs.io/en/latest/
https://kind.sigs.k8s.io/
https://github.com/geerlingguy/ansible-for-kubernetes/tree/master/testing-molecule-kind

© 00 N O O b W N =

N
[\

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 140

Ansible playbook to deploy a Kubernetes Job

You can test any of the playbooks in this book using Molecule, since it is a generic
playbook development and testing tool, but for the purposes of this chapter, we’ll
build a small playbook which deploys a Job into Kubernetes.

This Job will run a busybox container, and echo ‘Hello, Kubernetes!” into the abyss.

First, create a new project folder, and inside, create an inventory file named
inventory:

[localhost]
127.0.0.1 ansible_connection=local

As with other examples in the book, we interact with Kubernetes on the local host
using a kubeconfig to connect to the cluster.

Now create a playbook that deploys a ‘hello’ Job:

- hosts: localhost
gather_facts: false

tasks:
- name: Deploy 'hello' Job.
k8s:
state: present
definition: "{{ lookup('file', 'manifests/hello.yml') }}"
wait: true

In the k8s module’s definition, we look up a YAML manifest file, so let’s create that
file inside amani fests directory. Create a hello.yml file, and make sure your project
layout looks like this:

© 00 N O O b W N =

T =N
= O O s N~

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 141

inventory

main.yml

manifests/
hello.yml

Inside the hello.yml file, define a Kubernetes Job named hello in the default
namespace. The Job runs a busybox container and echoes some text:

apiVersion: batch/v1
kind: Job
metadata:
name: hello
namespace: default
spec:
template:
spec:
containers:
- name: hello
image: busybox
command:
- sh
- -C
- echo "Hello, Kubernetes!"
restartPolicy: OnFailure

As a reminder, we could deploy anything here, but we’re using a simple playbook
for the purposes of learning Molecule.

If you have a running Kubernetes cluster, and can connect to it with a valid kube-
config file (e.g. K8S_AUTH_KUBECONFIG=~/.kube/config), you can run this playbook
against your cluster, and it will deploy the Job:

$ ansible-playbook -i inventory main.yml

But in our case, we want to build a test environment and run the main.yml playbook
inside.

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 142

Add Molecule for development and testing

Molecule has been used for Ansible role testing for years, and has become one of the
Ansible community’s most popular development tools.

It works out of the box with Docker or Podman, but there are community drivers
available for Vagrant™, libvirt’!, Amazon EC2°* and more.

To use Molecule, install it via Pip:
$ pip install molecule

Then initialize a Molecule default scenario which can be modified to work with
Kubernetes:

molecule init scenario

After doing this, you should see a new molecule directory, and inside that, a default
directory. This directory contains the definition of Molecule’s ‘default’ scenario.

You can delete the INSTALL file, as it is not relevant to our needs.

We need to teach Molecule how to manage a Kind cluster for us. The molecule.yml
file needs to be modified.

Change the driver.name to delegated, as this allows us to control how to ‘create’
and ‘destroy’ the test Kind environment.

Change the provisioner configuration to the following, so Molecule and themain.ym1
playbook have all the environment variables and inventory variables they will need
to use the proper kubecontfig file:

*https://github.com/ansible-community/molecule-vagrant
*https://github.com/ansible-community/molecule-libvirt
*?https://github.com/ansible-community/molecule-ec2

https://github.com/ansible-community/molecule-vagrant
https://github.com/ansible-community/molecule-libvirt
https://github.com/ansible-community/molecule-ec2
https://github.com/ansible-community/molecule-vagrant
https://github.com/ansible-community/molecule-libvirt
https://github.com/ansible-community/molecule-ec2

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 143

provisioner:
name: ansible
inventory:
host_vars:
localhost:
ansible_python_interpreter: '{{ ansible_playbook_python }}'
kubeconfig: "{{ lookup('env', 'KUBECONFIG') }}"
env:
KUBECONFIG: ~/.kube/config-molecule-test
K8S_AUTH_KUBECONFIG: ~/.kube/config-molecule-test

You can remove the dependency and verifier configurations entirely, as we can rely
on Molecule’s defaults (they won’t affect our playbook). Change the platforms to set
only a name, since the other configuration doesn’t apply when using the delegated
driver:

platforms:
- name: molecule-test

I always like to use Molecule’s built-in linter integration as well, so add the following
configuration to the top level of the file:

lint: |
set -e
yamllint .

ansible-1lint

This assumes you have yamllint and ansible-1int installed on the work-
station on which molecule commands are being run. You can install them
with pip install yamllint ansible-lint.

You should now have amolecule.yml file that looks similar to the following:

O© 00 1 O O b W N =

P = =y
© 00 N O O b W N =~ O

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 144

driver:

name: delegated

lint: |
set -e
yamllint .

ansible-lint
platforms:
- name: molecule-test
provisioner:
name: ansible
inventory:
host_vars:
localhost:
ansible_python_interpreter: '{{ ansible_playbook_python }}"
kubeconfig: "{{ lookup('env', 'KUBECONFIG') }}"
env:
KUBECONFIG: ~/.kube/config-molecule-test
K8S_AUTH_KUBECONFIG: ~/.kube/config-molecule-test

Since we set the driver to delegated, we have to tell Molecule how to create and de-
stroy a local Kind cluster. When using the delegated driver, Molecule automatically
runs a create.yml playbook before starting a test run, and a destroy.yml playbook
when the test run is complete.

Manage Kind with Molecule

Create a create.yml playbook in the molecule/default directory:

O© 00 1 O O b W N =

I =S =N
W N s,

© 00 N O O b W N =

[==Y
w N =~

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 145

- name: Create
hosts: localhost
connection: local

gather_facts: false

tasks:
- name: Build a kind cluster (wait for control plane).

command: >-
kind create cluster
--wait 300s
--name molecule-test
--kubeconfig {{ kubeconfig }}

changed_when: true

This playbook uses the kind command to create a local Kubernetes cluster. It
stores the kubeconfig file in the path defined by the kubeconfig variable (set in
molecule.yml earlier), and it names the cluster molecule-test.

Next, we need a playbook called destroy.ym1, which will do the opposite: make sure
the Kind cluster is gone:

- name: Destroy
hosts: localhost
connection: local
gather_facts: false

tasks:
- name: Delete the kind cluster.
command: >-
kind delete cluster
--name molecule-test
--kubeconfig {{ kubeconfig }}
changed_when: false

This playbook deletes the Kind cluster created earlier.

N O U s W N

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 146

You can test that the Kind cluster is created and destroyed successfully, by running:
$ molecule test

But building and deleting a cluster isn’t that exciting. We need to run our main.yml
playbook in the test cluster to make this automation useful!

Test a playbook in Kind with Molecule

Molecule uses a converge.yml playbook to bring everything together in the running
test environment.

In our case, since we want to run the main.yml playbook to test it, all we need to do
in the Converge play is import the playbook:

- name: Converge
hosts: localhost
connection: local

gather_facts: false

- import_playbook: ../../main.yml

Molecule also provides a command which builds the test environment, and runs
the converge.yml playbook, but leaves the environment running for debugging and
development.

Run this command to bring up the Kind cluster and deploy the Job:
$ molecule converge

Once the cluster is running and Molecule is finished running the playbook, you can
inspect the cluster manually and verify the Job has been run successfully:

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 147

$ kubectl get job hello
NAME COMPLETIONS DURATION AGE
hello 1/1 3s 19s

But manually checking on the Job’s status doesn’t scale well. We can make sure the
playbook resulted in the correct cluster state using Molecule.

Verify the playbook worked with Molecule

While Ansible playbooks can contain inline validation with test modules like assert
and fail, it’s often helpful to verify the state of the cluster after the playbook runs.

In averify.yml playbook, add a task to get the hello Job’s details, then add a second
task to assert the Job ‘Succeeded’:

- name: Verify
hosts: localhost
connection: local

gather_facts: true

tasks:
- name: Get 'hello' Job info.
k8s_info:
kind: Job
name: hello
namespace: default
register: jobs

- name: Assert that 'hello' Job ran successfully.
assert:
that: jobs['resources'][Q]['status']['succeeded'] == 1

At this point, you can run molecule verify to run only the verify playbook—
assuming you already ran molecule converge. Or you can run molecule test to
run the full test cycle.

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 148

Are you wondering how to figure out the registered jobs variable’s
structure for the assertion in the second task? You can use Ansible’s debug
module to inspect the structure of any variable:

- name: Print the structure of the jobs var.
debug:
var: jobs

Returned data from k8s_info can have many complex dicts, so I find myself
making use of Ansible’s debug module quite often.

Kubernetes Cl Testing in GitHub Actions

Molecule is helpful for testing and developing playbooks locally, but it’s also a great
tool for ensuring your automation works via CI testing.

I often host my code repositories on GitHub, and because of that, I can use GitHub
Actions™, an integrated CI system. Molecule works in any CI environment, and has
documentation with integration examples for many common CI systems®.

For the playbook in this chapter, we can add a GitHub Actions ‘workflow’ YAML
file in the repository, and if GitHub detects this workflow file, GitHub Actions will
see it and run the workflow on the conditions specified in the workflow file.

Create a workflow file in the playbook repository:

$ mkdir .github/workflows
$ touch .github/workflows/molecule-kind.yml

At the top of the molecule-kind.yml file, define the human-readable name of the
workflow:

*https://github.com/features/actions
**https://molecule.readthedocs.io/en/latest/ci.html

https://github.com/features/actions
https://github.com/features/actions
https://molecule.readthedocs.io/en/latest/ci.html
https://github.com/features/actions
https://molecule.readthedocs.io/en/latest/ci.html

O© 00 N O U b W

© 0O N O O & W N =

I = U=
W N s,

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 149

name: Molecule Kind Test
Then, describe to GitHub Actions when you want this workflow to run:

on:
push:
branches:
- master
pull_request:
schedule:

- cron: 'Q 6 * x X'
This set of conditions tells GitHub Actions to run the workflow on:

1. Every push or pull request merged to the master branch.
2. Every pull request.
3. Every day at 06:00.

Next, define a workflow job that installs test dependencies and runs molecule test:

jobs:

build:
runs-on: ubuntu-latest

steps:

- uses: actions/checkout@v2

- name: Set up Python.
uses: actions/setup-python@v2
with:
python-version: '3.x'

- name: Install dependencies.

15
16
17
18
19
20
21
22
23

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 150

run: >
pip3 install molecule docker openshift

ansible-1lint yamllint

- name: Run molecule test.
run: molecule test
env:
PY_COLORS: '1'
ANSIBLE_FORCE_COLOR: '1'

This book doesn’t cover GitHub Actions’ complete syntax, but the build job defined
in this workflow has four steps:

1. Check out the code into the workspace.
2. Set up the latest version of Python.

3. Install all the test dependencies with Pip.
4. Runmolecule test.

The two env variables, PY_COLORS, and ANSIBLE_FORCE_COLOR, direct Molecule and
Ansible, respectively, to output color codes in their text output; otherwise, since there
is no TTY, all the text would be white, making it harder to see the different types of
messages Ansible outputs in GitHub Actions’ logs.

Once you have the ci . yml workflow file added to your repository, you should be able
to go to the ‘Actions’ section in the GitHub UI for your project, and see the ‘Molecule
Kind Test’ workflow listed on the left, and workflow runs in a list to the right.

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible 151

L] < [im] @ U A & github.com/geerlingguy/ansible-for-kubernetes/actions?query=workflow%3/
O Search or jump to... Pull requests Issues Marketplace Explore
& geerlingguy / molecule-kind-test-repo O sponsor ®Unwatch v 23 FrUnstar 240 Y Fork 116
Code Issues 23 Pull requests ® Actions (@) Security Insights Settings.
Workflows New workflow Molecule Kind Test
All workflows workflow:"Molecule Kind Test" [<]
%4 Molecule Kind Test
6 results Eventv Status~ Branch~ Actor~
~ Molecule Kind Test 59 hours ago
Molecule Kind Test #5: Scheduled & 6ma3s

v Fixes to make sure molecule tests on GA run on push. TR B 11 hours ago
Molecule Kind Test #4: Commit 202340e pushed by geerlingguy & 3m3es

v Issue #36: Add GitHub Actions workflow for testing-... 36-gh-actions 511 hours ago
Molecule Kind Test #3: Pull request #68 synchronize by geerlingguy & 3m3ss

X Issue #36: Add GitHub Actions workflow for testing-... 36-gh-actions 511 hours ago
Molecule Kind Test #2: Pull equest #68 synchronize by geerlingguy Gam1ss

X Issue #36: Add GitHub Actions workflow for testing-... B 11 hours ago

36-ah-actions

GitHub Actions workflows

You can click on a workflow run to see the job output and other details, and from
now on, any time a pull request is submitted, or code is pushed to the master branch,
GitHub Actions will use Molecule to verify the code works as intended.

Summary

In this chapter, you learned how to test your Kubernetes automation using Molecule
with a Kind cluster.

Molecule can be used with any kind of cluster, and its configuration allows almost
infinite flexibility with testing and development environments. If you can run an
Ansible playbook, chances are you can find a way to build the same playbook in a
test environment with Molecule.

Using Continuous Integration (CI) tools to ensure your automation is always working
correctly—especially before you merge new code into your project—should be a high
priority for any software or infrastructure project.

For more help with Molecule, please browse the Molecule documentation site®.

*https://molecule.readthedocs.io/

https://molecule.readthedocs.io/
https://molecule.readthedocs.io/

Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible

/ If you test me, you will fail. \

\ (Sulu, Into Darkness) /
\ I_I\
\ (oo)_____
(N JAVAN

=== |

152

Chapter 8 - Ansible’s
Kubernetes integration

In Chapter 2, through the process of automating the deployment of the Hello Go app
into Kubernetes, you discovered Ansible’s k8s and k8s_scale modules. Ansible has
a number of other modules and plugins to help with your Kubernetes automation,
and new content has been added frequently over the past couple years.

This chapter will give an overview of the most useful Kubernetes integrations
(modules, plugins, collections, and roles) in Ansible.

The rest of the book will make use of these various integrations to help you automate
your Kubernetes cluster and application lifecycle management.

k8s module

TODO.

See k8s module documentation®®.

k8s_info module

TODO.

See k8s_info module documentation®’.

k8s inventory plugin

TODO.

See k8s inventory plugin documentation®®.

*https://docs.ansible.com/ansible/latest/modules/k8s_module.html
*"https://docs.ansible.com/ansible/latest/modules/k8s_info_module.html
*®https://docs.ansible.com/ansible/latest/plugins/inventory/k8s.html

https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_info_module.html
https://docs.ansible.com/ansible/latest/plugins/inventory/k8s.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_info_module.html
https://docs.ansible.com/ansible/latest/plugins/inventory/k8s.html

Chapter 8 - Ansible’s Kubernetes integration

k8s_scale module

TODO.

See k8s_scale module documentation®.

k8s_exec module

TODO.

See k8s_exec module documentation*®.

k8s_service module

TODO.

See k8s_service module documentation®®*.

k8s_log module

TODO.

See k8s_log module documentation'®?.

geerlingguy.k8s collection

TODO.

See geerlingguy.k8s collection®.

**https://docs.ansible.com/ansible/latest/modules/k8s_scale_module.html
1%https://docs.ansible.com/ansible/latest/modules/k8s_exec_module.html
Thttps://docs.ansible.com/ansible/latest/modules/k8s_service_module.html
19%https://docs.ansible.com/ansible/latest/modules/k8s_log_module.html
19https://galaxy.ansible.com/geerlingguy/k8s

154

https://docs.ansible.com/ansible/latest/modules/k8s_scale_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_exec_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_service_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_log_module.html
https://galaxy.ansible.com/geerlingguy/k8s
https://docs.ansible.com/ansible/latest/modules/k8s_scale_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_exec_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_service_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_log_module.html
https://galaxy.ansible.com/geerlingguy/k8s

Chapter 8 - Ansible’s Kubernetes integration

Summary

TODO.

/ Insufficient facts always invite \

\ danger. (Mr. Spock, TOS) /
\ /_/\
N\ (oo)\
(N N\

=== |

155

Chapter 9 - Hello Operator

TODO.

The Operator Pattern

TODO: Why the Operator pattern is awesome. It is the ‘foundation of Kubernetes
application deployment’.

Operator SDK

TODO.

Go vs. Ansible-based Operators
TODO: Compare the following templating:
« Go Example: https://github.com/operator-framework/operator-sdk-samples/blob/1c44eb4
operator/pkg/controller/memcached/memcached_controller.go#L.190-L226
« Ansible Example: https://github.com/operator-framework/operator-sdk-sam-

ples/blob/1c44eb4c2fd238a2c9f53a378064cbf6cbae5c8a/ansible/memcached-operator/roles/
L31

Your first Ansible-based Operator
TODO: Follow Operator SDK guide to build hello-go operator.

End-to-end testing for an Ansible-based Operator with
Molecule

TODO: Build molecule tests for memcached operator.

Chapter 9 - Hello Operator 157

Example: WordPress in EKS with an Operator

TODO: AWS EKS Cluster running WordPress application: Ansible Operator which
manages PHP container running WordPress, then uses Ansible Route53 module to set
up DNS, EFS module to create shared filesystem, and RDS module to create external
database cluster.

(Could be Drupal instead of WordPress, since I already have a Drupal Operator.)

Summary

TODO.

/ Improve a mechanical device and \
| you may double productivity.

| But improve man, you gain a

~ — —

\ thousandfold. (Khan, TOS)
\ l_l\
\ (00)\

(N JAVAN

== |

Chapter 10 - The first real-world
application

TODO:

« Build out Hello Go application from Chapter 1 (possibly just in book repo, don’t
need to deep-dive into Go here if not required).

+ Add database requirement (Postgres), to store request history and IP informa-
tion.

+ Add caching for database (Memcached or Redis) to display cached data.

« GitOps with Ansible (using playbooks from Chapter 3).

/ Shut up, Wesley! \
\ (Jean-Luc Picard, TNG) /

\ /_l\
\ (o0)\
(N JAVAN

=== |

Afterword

You should be well on your way towards streamlined infrastructure management.
Many developers and sysadmins have been helped by this book, and many have
even gone further and contributed back to the book, in the form of corrections,
suggestions, and fruitful discussion!

Thanks to you for purchasing and reading this book, and a special thanks to all those
who have given direct feedback in the form of corrections, PRs, or suggestions for
improvement:

TODO: List of contributors goes here!

Appendix A - Using Ansible on
Windows workstations

Ansible works primarily over the SSH protocol, which is supported natively by most
every server, workstation, and operating system on the planet, with one exception—
Microsoft’s venerable Windows OS (though this may change in the coming years).

To use SSH on Windows, you need additional software. But Ansible also requires
other utilities and subsystems only present on Linux or other UNIX-like operating
systems. This poses a problem for many system administrators who are either forced
to use or have chosen to use Windows as their primary OS.

This appendix will guide Windows users through the author’s preferred method of
using Ansible on a Windows workstation.

Ansible 1.7 and later can manage Windows hosts (see Ansible’s Windows
Support*** documentation), but doesn’t run within Windows natively. You
still need to follow the instructions here to run the Ansible client on a
Windows host.

Method 1 - Use the Windows Subsystem for
Linux / Bash on Ubuntu

If you are running Windows 10, and have installed either the Anniversary Update or
any later version, you can install the Windows Subsystem for Linux (WSL), which
is the most seamless Bash integration you can currently get for Windows.

The WSL downloads Ubuntu and places it in a special privileged VM layer that’s as
transparent as it can be while still existing sandboxed from the general Windows

1%http://docs.ansible.com/intro_windows.html

http://docs.ansible.com/intro_windows.html
http://docs.ansible.com/intro_windows.html
http://docs.ansible.com/intro_windows.html

Appendix A - Using Ansible on Windows workstations 161

environment. Using WSL, you can open up an Ubuntu command prompt and have
access to almost all the same software and functionality you would have if you were
running Ubuntu natively!

Microsoft has the most up-to-date installation guide'*

site, but the installation process is straightforward:

on their Developer Network

1. Turn on Developer mode (inside Settings > Update and Security > For develop-
ers).
2. Open a PowerShell prompt as an administrator and run the command:

Enable-WindowsOptionalFeature -Online -FeatureName \
Microsoft-Windows-Subsystem-Linux

3. Restart your computer when prompted.
At this point, the WSL is installed, but Ubuntu has not yet been installed. To do that:

1. Open a Command prompt (cmd), and run the command bash.

2. Accept the license by typing y when prompted.

3. The first time Ubuntu is installed, you’ll also be asked for a username and
password to use in the bash environment.

Once installation completes, there will be a shortcut either on your Desktop or in the
Start menu, and you can either use this shortcut to launch a bash session, or type
bash in a Command prompt.

Now that you have Bash on Ubuntu running inside Windows, you can install Ansible
inside the WSL environment just like you would if you were running Ubuntu
natively!

Installing Ansible inside Bash on Ubuntu

Before installing Ansible, make sure your package list is up to date by updating apt-
get:

9https://msdn.microsoft.com/en-us/commandline/wsl/install_guide

https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
https://msdn.microsoft.com/en-us/commandline/wsl/install_guide

Appendix A - Using Ansible on Windows workstations 162

$ sudo apt-get update

The easiest way to install Ansible is to use pip, a package manager for Python. Python
should already be installed on the system, but pip may not be, so let’s install it, along
with Python’s development header files (which are in the python-dev package).

$ sudo apt-get install -y python-pip python-dev
After the installation is complete, install Ansible:
$ sudo pip install ansible

After Ansible and all its dependencies are downloaded and installed, make sure
Ansible is running and working:

$ ansible --version
ansible 2.9.13

Upgrading Ansible is also easy with pip: Run sudo pip install --upgrade
ansible to get the latest version.

You can now use Ansible within the Ubuntu Bash environment. You can access files
on the Windows filesystem inside the /mnt folder (/mnt/c corresponds to C:\), but
be careful when moving things between Windows and the WSL, as strange things
can happen because of line ending, permissions, and filesystem differences!

Method 2 - When WSL is not an option

If you’re running Windows 7 or 8, or for some reason can’t install or use the Windows
Subsystem for Linux in Windows 10 or later, then the best alternative is to build a
local Virtual Machine (VM) and install and use Ansible inside.

Appendix A - Using Ansible on Windows workstations 163

Prerequisites

The easiest way to build a VM is to download and install Vagrant and VirtualBox
(both 100% free!), and then use Vagrant to install Linux, and PuTTY to connect and
use Ansible. Here are the links to download these applications:

t106

1. Vagran
2. VirtualBox*%’
3. PuTTY"®

Once you’ve installed all three applications, you can use either the command prompt
(cmd), Windows PowerShell, or a Linux terminal emulator like Cygwin to boot up a
basic Linux VM with Vagrant (if you use Cygwin, which is not covered here, you
could install its SSH component and use it for SSH, and avoid using PuTTY).

Set up an Ubuntu Linux Virtual Machine

Open PowerShell (open the Start Menu or go to the Windows home and type in
‘PowerShell’), and change directory to a place where you will store some metadata
about the virtual machine you’re about to boot. I like having a “VMs’ folder in my
home directory to contain all my virtual machines:

Change directory to your user directory.
PS > cd C:/Users/[username]

Make a 'VMs' directory and cd to it.

PS > md -Name VMs

PS > cd VMs

Make a 'Ubuntu64' directory and cd to it.
PS > md -Name ubuntu-bionic-64

PS > cd ubuntu-bionic-64

Now, use vagrant to create the scaffolding for our new virtual machine:

1%http://www.vagrantup.com/downloads.html
17https://www.virtualbox.org/
198http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Appendix A - Using Ansible on Windows workstations 164

PS > vagrant init ubuntu/bionic64

Vagrant creates a ‘Vagrantfile’ describing a basic Ubuntu 64-bit virtual machine in
the current directory, and is now ready for you to run vagrant up to download and
build the machine. Run vagrant up, and wait for the box to be downloaded and
installed:

PS > vagrant up

After a few minutes, the box will be downloaded and a new virtual machine set
up inside VirtualBox. Vagrant will boot and configure the machine according to the
defaults defined in the Vagrantfile. Once the VM is booted and you’re back at the
command prompt, it’s time to log into the VM.

Log into the Virtual Machine

Use vagrant ssh-config to grab the SSH connection details, which you will then
enter into PuTTY to connect to the VM.

PS > vagrant ssh-config
It should show something like:

Host default
Hostname 127.0.0.1
User vagrant
Port 2222
UserKnownHostsFile /dev/null
StrictHostKeyChecking no
PasswordAuthentication no
IdentityFile C:/Users/[username]/.vagrant.d/insecure_private_key
IdentitiesOnly yes
LoglLevel FATAL

Appendix A - Using Ansible on Windows workstations 165

The lines we’re interested in are the Hostname, User, Port, and IdentityFile.

Launch PuTTY, and enter the connection details:

« Host Name (or IP address): 127.0.0.1
+ Port: 2222

Click Open to connect, and if you receive a Security Alert concerning the server’s
host key, click ‘Yes’ to tell PuTTY to trust the host. You can save the connection
details by entering a name in the ‘Saved Sessions’ field and clicking ‘Save’ to save
the details.

PuTTY will ask for login credentials; we’ll use the default login for a Vagrant box
(vagrant for both the username and password):

login as: vagrant
vagrant@127.0.0.1's password: vagrant

You should now be connected to the virtual machine, and see the message of the day:

Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-43-generic x86_64)

vagrant@ubuntu-bionic:~$

If you see this prompt, you’re logged in, and you can start administering the VM.
The next (and final) step is to install Ansible.

This example uses PuTTY to log into the VM, but other applications like
Cygwin'® or Git for Windows*® work just as well, and may be easier to
use. Since these alternatives have built-in SSH support, you don’t need to
do any extra connection configuration, or even launch the apps manually;
just cd to the same location as the Vagrantfile, and enter vagrant ssh!

1%http://cygwin.com/install.html
%http://git-scm.com/download/win

http://cygwin.com/install.html
http://git-scm.com/download/win
http://cygwin.com/install.html
http://git-scm.com/download/win

Appendix A - Using Ansible on Windows workstations 166

Install Ansible

Before installing Ansible, make sure your package list is up to date by updating apt-
get:

$ sudo apt-get update

The easiest way to install Ansible is to use pip, a package manager for Python. Python
should already be installed on the system, but pip may not be, so let’s install it, along
with Python’s development header files (which are in the python-dev package).

$ sudo apt-get install -y python-pip python-dev
After the installation is complete, install Ansible:
$ sudo pip install ansible

After Ansible and all its dependencies are downloaded and installed, make sure
Ansible is running and working:

$ ansible --version
ansible 2.9.13

Upgrading Ansible is also easy with pip: Runsudo pip install --upgrade
ansible to get the latest version.

You should now have Ansible installed within a virtual machine running on your
Windows workstation. You can control the virtual machine with Vagrant (cd to the
location of the Vagrantfile), using up to boot or wake the VM, halt to shut down
the VM, or suspend to sleep the VM. Log into the VM manually using PuTTY or via
vagrant ssh with Cygwin or Git’s Windows shell.

Use Ansible from within the virtual machine just as you would on a Linux or Mac
workstation directly. If you need to share files between your Windows environment
and the VM, Vagrant conveniently maps /vagrant on the VM to the same folder
where your Vagrantfile is located. You can also connect between the two via other
methods (SSH, SMB, SFTP etc.) if you so desire.

Appendix A - Using Ansible on Windows workstations 167

Summary

There are other ways to ‘hack’ Ansible into running natively within Windows
(without a Linux VM), such as the ansible-babun-bootstrap*!, but I recommend
either using the WSL or running everything within a Linux VM as performance will
be optimal and the number of environment-related problems you encounter will be
greatly reduced!

"https://github.com/jonathanhle/ansible-babun-bootstrap

https://github.com/jonathanhle/ansible-babun-bootstrap
https://github.com/jonathanhle/ansible-babun-bootstrap

	Table of Contents
	Preface
	Who is this book for?
	Typographic conventions
	Please help improve this book!
	Current Published Book Version Information

	About the Author

	Introduction
	In the beginning, there were servers
	The move to containers
	Ansible by Red Hat
	Kubernetes and the CNCF
	Examples Repository
	Other resources
	Ansible resources
	Kubernetes resources

	Chapter 1 - Hello World!
	Hello, Go!
	Installing Go
	Creating a `Hello world' app in Go
	Building Hello Go

	Deploying Hello Go in a container
	Running Hello Go in Docker
	Building the container
	Running the container

	Hello Go app summary

	Deploying Hello Go in Kubernetes
	Installing Minikube
	Building the Hello Go container in Minikube
	Running Hello Go in Minikube
	Scaling Hello Go in Kubernetes
	Clean up Hello Go

	Summary

	Chapter 2 - Automation brings DevOps bliss
	Ansible 101
	Installing Ansible
	Hello, Ansible!
	Running your first Ansible playbook
	Ansible 101 summary

	Managing Kubernetes with Ansible
	Managing Minikube
	Building container images in Minikube with Ansible
	Managing Kubernetes resources with Ansible
	Scaling Hello Go with Ansible
	Scaling via the existing Deployment spec
	Scaling with Ansible's k8s_scale module
	Scaling with k8s and strategic_merge

	Cleaning up Kubernetes resources with Ansible
	Summary

	Chapter 3 - Ansible manages containers
	Ansible's Docker modules
	docker_image module
	docker_container module
	Pushing the container image to a registry
	Running a local container registry
	docker_login module
	Pushing an image to a Docker registry with docker_image

	Ansible Docker module summary

	Building images using Ansible without a Dockerfile
	Relying on Roles from Ansible Galaxy
	Writing a Playbook to Build a Container Image
	Writing a Playbook to Test the Container Image
	Apache Solr container build summary

	Summary

	Chapter 4 - Building K8s clusters with Ansible
	Building a local Kubernetes cluster on VMs
	Prerequisites - Vagrant and VirtualBox
	A small Kubernetes cluster architecture
	A Vagrantfile for local Infrastructure-as-Code
	Building a Kubernetes cluster with Ansible
	Describing hosts with an inventory
	Becoming root in a playbook
	Building a server with roles
	Role configuration
	Running the cluster build playbook

	Testing the cluster with a deployment using Ansible
	Debugging cluster networking issues
	Fixing issues with Flannel and iptables
	Switching nftables to iptables-legacy

	Patching Flannel to use the right network interface

	Local VM cluster summary

	Building a cluster using Kubespray
	Building a cluster on VPSes using Kubespray

	Building a bare metal cluster using Raspberry Pis
	Summary

	Chapter 5 - Build an AWS EKS Cluster with CloudFormation and Ansible
	Managing AWS EKS clusters with CloudFormation
	CloudFormation Templates
	CloudFormation template for VPC Networking
	CloudFormation template for an EKS Cluster
	CloudFormation template for an EKS Node Group

	Applying CloudFormation Templates with Ansible

	Authenticating to the EKS Cluster via kubeconfig
	Deploying WordPress to the EKS Cluster
	Build the WordPress Kubernetes manifests
	Build an Ansible Playbook to deploy the manifests to EKS
	Point a custom domain at the WordPress ELB
	Run the playbook to deploy WordPress

	Summary

	Chapter 6 - Manage a GKE Cluster with Terraform and Ansible
	Managing Google Cloud GKE clusters with Terraform
	Summary

	Chapter 7 - Development and CI Testing with Molecule, Kind, and Ansible
	Ansible playbook to deploy a Kubernetes Job
	Add Molecule for development and testing
	Manage Kind with Molecule
	Test a playbook in Kind with Molecule
	Verify the playbook worked with Molecule
	Kubernetes CI Testing in GitHub Actions

	Summary

	Chapter 8 - Ansible's Kubernetes integration
	k8s module
	k8s_info module
	k8s inventory plugin
	k8s_scale module
	k8s_exec module
	k8s_service module
	k8s_log module
	geerlingguy.k8s collection
	Summary

	Chapter 9 - Hello Operator
	The Operator Pattern
	Operator SDK
	Go vs. Ansible-based Operators
	Your first Ansible-based Operator
	End-to-end testing for an Ansible-based Operator with Molecule

	Example: WordPress in EKS with an Operator
	Summary

	Chapter 10 - The first real-world application
	Afterword
	Appendix A - Using Ansible on Windows workstations
	Method 1 - Use the Windows Subsystem for Linux / Bash on Ubuntu
	Installing Ansible inside Bash on Ubuntu

	Method 2 - When WSL is not an option
	Prerequisites
	Set up an Ubuntu Linux Virtual Machine
	Log into the Virtual Machine
	Install Ansible

	Summary

