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CHAPTER 1

TensorFlow 2
TensorFlow is an open source library for machine learning produced by 

the Google Brain Team. It was originally released to the public in 2015 

and quickly became one of the most popular libraries for deep learning. 

In 2019, Google released TensorFlow 2, which was a substantial departure 

from TensorFlow 1. In this chapter, we will introduce TensorFlow 2, 

explain how it can be used in economics and finance, and then review 

preliminary material that will be necessary for understanding the material 

in later chapters. If you did not use TensorFlow 1, you may want to skip the 

“Changes in TensorFlow 2” section.

�Installing TensorFlow
In order to use TensorFlow 2, you will need to install Python. Since Python 2  

is no longer supported as of January 1, 2020, I recommend installing 

Python 3 via Anaconda, which bundles Python with 7,500+ commonly 

used modules for data science: www.anaconda.com/distribution/. Once 

you have installed Anaconda, you can configure a virtual environment 

from the command line in your operating system. The following code will 

install an Anaconda virtual environment with Python 3.7.4 named tfecon, 

which is what we will use in this book:

conda create -n tfecon python==3.7.4

https://doi.org/10.1007/978-1-4842-6373-0_1#DOI
http://www.anaconda.com/distribution/
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You can activate the environment using the following command:

conda activate tfecon

Within the environment, you can install TensorFlow using the 

following command:

(tfecon) pip install tensorflow==2.3.0

When you want to deactivate your virtual environment, you can do so 

using the following command:

conda deactivate

We will use TensorFlow 2.3 and Python 3.7.4 throughout the book. To 

ensure compatibility with the examples, you should configure your virtual 

environment accordingly.

�Changes in TensorFlow 2
TensorFlow 1 was structured around static graphs. In order to perform a 

computation, you needed to first define a set of tensors and a sequence 

of operations. This formed the computational graph, which was fixed at 

runtime. Static graphs provided an ideal environment for constructing 

optimized production code, but also discouraged experimentation and 

increased the difficulty of debugging.

In Listing 1-1, we provide an example of the construction and 

execution of a static computational graph in TensorFlow 1. We will 

consider the familiar case where we want to use a set of regressors 

(features), X, to predict a dependent variable, Y, using an ordinary least 

squares (OLS) regression. The solution to this problem is the vector 

of coefficients, ß, which minimizes the sum of the squared regression 

residuals. Its analytical expression is given in Equation 1-1.
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Equation 1-1. The solution to the least squares problem.

	 b = ( )¢ ¢-X X X Y1
	

Listing 1-1.  Implement OLS in TensorFlow 1

import tensorflow as tf

print(tf.__version__)

'1.15.2'

# Define the data as constants.

X = tf.constant([[1, 0], [1, 2]], tf.float32)

Y = tf.constant([[2], [4]], tf.float32)

# Matrix multiply X by X's transpose and invert.

beta_0 = tf.linalg.inv(tf.matmul(tf.transpose(X), X))

# Matrix multiply beta_0 by X's transpose.

beta_1 = tf.matmul(beta_0, tf.transpose(X))

# Matrix multiply beta_1 by Y.

beta = tf.matmul(beta_1, Y)

# Perform computation in context of session.

with tf.Session() as sess:

        sess.run(beta)

        print(beta.eval())

[[2.]

[1.]]
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TensorFlow 1’s syntax is cumbersome, which is why we have broken up 

the computation of the coefficient vector into multiple steps to maintain 

readability. Additionally, we must perform the computation by building 

the graph and then executing it within the context of a tf.Session(). We 

must also print the elements of the coefficient vector within a session. 

Otherwise, printing beta will simply return the object’s name, shape, and 

data type.

Listing 1-2 repeats the same exercise, but for TensorFlow 2.

Listing 1-2.  Implement OLS in TensorFlow 2

import tensorflow as tf

print(tf.__version__)

'2.3.0

# Define the data as constants.

X = tf.constant([[1, 0], [1, 2]], tf.float32)

Y = tf.constant([[2], [4]], tf.float32)

# Matrix multiply X by X's transpose and invert.

beta_0 = tf.linalg.inv(tf.matmul(tf.transpose(X), X))

# Matrix multiply beta_0 by X's transpose.

beta_1 = tf.matmul(beta_0, tf.transpose(X))

# Matrix multiply beta_1 by Y.

beta = tf.matmul(beta_1, Y)

# Print coefficient vector.

print(beta.numpy())

[[2.]

[1.]]
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While it is not immediately evident from the code, TensorFlow 2 uses 

imperative programming, which means that operations are executed as 

they are called by Python. This means that beta_0, for instance, is not an 

operation that will be executed in a static graph, but is actually the output 

of that computation. We can see this by printing the same objects in both 

the TensorFlow 1 and TensorFlow 2 code, as we do in Listings 1-3 and 1-4.

Listing 1-3.  Print tensors in TensorFlow 1

# Print the feature matrix.

print(X)

tf.Tensor("Const_11:0", shape=(2, 2), dtype=float32)

# Print the coefficient vector.

print(beta)

tf.Tensor("MatMul_20:0", shape=(2, 1), dtype=float32)

In TensorFlow 1 (Listing 1-3), X is an operation that defines a constant 

tensor and beta is an operation that performs matrix multiplication. 

Printing returns the operation type and the shape and data type of the 

output. In TensorFlow 2 (Listing 1-4), printing X or beta will return a tf.

Tensor() object, which consists of the output value, contained in an 

array, and its shape and data type. In order to retrieve the output values of 

operations in TensorFlow 1, we would have to apply the eval() method in 

the context of a session.

Listing 1-4.  Print tensors in TensorFlow 2

# Print the feature matrix.

print(X)

tf.Tensor(

[[1. 0.]
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 [1. 2.]], shape=(2, 2), dtype=float32)

# Print the coefficient vector.

print(beta.numpy())

[[2.]

 [1.]]

While TensorFlow 1 was originally built around the construction and 

execution of static graphs, it later introduced the possibility of performing 

computations imperatively through the use of Eager Execution, which 

was released in October of 2017.1 TensorFlow 2 moved further along this 

development path by enabling Eager Execution by default. This is why we 

do not need to execute computations within a session.

One consequence of the shift to Eager Execution is that TensorFlow 2 

no longer builds static computational graphs by default. In TensorFlow 1, 

such graphs could readily be obtained from logs, such as those generated 

in Listing 1-5, and then visualized using TensorBoard. Figure 1-1 shows 

the graph for the OLS problem. The nodes represent operations, such as 

matrix multiplication and transposition, and the creation of tf.Tensor() 

objects. The edges of the graph indicate the shape of the tensor being 

passed between operations.

Listing 1-5.  Generate logs for a TensorBoard visualization in 

TensorFlow 1

# Export static graph to log file.

with tf.Session() as sess:

        tf.summary.FileWriter('/logs', sess.graph)

1�The Google Brain Team introduced Eager Execution through a post on the Google 
AI Blog: https://ai.googleblog.com/2017/10/eager-execution-imperative-
define-by.html.
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Another change in TensorFlow 2, which you may have noticed in 

Listings 1-1 and 1-2, is that we no longer need to evaluate tensors to expose 

their elements. We can do this by applying the numpy() method, which, as the 

name suggests, extracts the elements of a tf.Tensor() object as a numpy array.

While TensorFlow 2 no longer uses static graphs by default, it does 

provide users with the option to construct them through the use of  

@tf.function. This decorator can be used to incorporate static graphs into 

code in a way that fundamentally differs from TensorFlow 1. Rather than 

explicitly constructing a graph and then executing it using tf.Session(), 

we can instead convert functions into static graphs by including the  

@tf.function decorator before them.

Figure 1-1.  The computational graph for OLS as generated by 
TensorBoard

Chapter 1  TensorFlow 2



8

The primary advantage to using @tf.function to generate static 

graphs is that the function will be compiled and may run faster on a GPU 

or TPU. Furthermore, any functions called within a function defined 

under a @tf.function decorator will also be compiled. Listing 1-6 gives 

an example of the use of static graphs in TensorFlow 2. Here, we return to 

our OLS example and define a function to make predictions based on the 

feature matrix, X, and our estimated coefficient vector, beta. Note the use 

of @tf.function above the definition of ols_predict().

Listing 1-6.  Generate OLS predictions with static graphs in 

TensorFlow 2

# Define OLS predict function as static graph.

@tf.function

def ols_predict(X, beta):

        y_hat = tf.matmul(X, beta)

        return y_hat

# Predict Y using X and beta.

predictions = ols_predict(X, beta)

In addition to what we have mentioned so far, TensorFlow 2 also 

introduces substantial namespace changes. This was an attempt to clean 

up TensorFlow 1, which had many redundant endpoints. TensorFlow 2 

also eliminates the tf.contrib() namespace, which was used to house 

miscellaneous operations that were not yet fully supported in TensorFlow 1.  

In TensorFlow 2, this code has now been relocated to various relevant 

namespaces, making it easier to find.2

2�For an overview of the namespace design decisions that went into the transition 
of TensorFlow 1 to TensorFlow 2, see <RefSource>https://github.com/
tensorflow/community/blob/master/rfcs/20180827-api-names.md.
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Finally, TensorFlow 2 is reoriented around a number of high-level 

APIs. In particular, greater emphasis has been placed on the Keras and 

Estimators APIs. Keras simplifies the construction and training of neural 

network models. And Estimators provides a limited set of models that 

can be defined with a small set of parameters and then deployed to any 

environment. In particular, Estimators models can be trained in multi-

server settings, and on TPUs and GPUs without modifying the code.

In Listing 1-7, we show the process for defining and training an OLS 

model in Keras. We do the same in Listing 1-8 using the Estimators library. 

Notice that both Keras and Estimators require fewer lines of code to define 

and train an OLS model. However, contrary to the low-level TensorFlow 

example given in Listing 1-2, they solve the model by minimizing the sum 

of squared errors numerically, rather than making use of its analytical 

solution.

Listing 1-7.  Solve an OLS model with tf.keras()

# Define sequential model.

ols = tf.keras.Sequential()

# Add dense layer with linear activation.

ols.add(tf.keras.layers.Dense(1, input_shape = (2,),

        use_bias = False, activation = 'linear'))

# Set optimizer and loss.

ols.compile(optimizer = 'SGD', loss = 'mse')

# Train model for 500 epochs.

ols.fit(X, Y, epochs = 500)

# Print parameter estimates.

print(ols.weights[0].numpy())

[[1.9754077]

 [1.0151987]]

Chapter 1  TensorFlow 2



10

Using the Keras approach, we first defined a sequential neural network 

model using tf.keras.Sequential(). A sequential model can be used to 

build and train a neural network by (1) stacking layers on top of each other 

in sequence; (2) compiling the model by specifying options, such as the 

optimizer, loss, and learning rate; (3) and applying the fit() method. Note 

that the model consists of a single dense layer with a linear activation, since 

we are performing a linear regression. Additionally, use_bias is set to False, 

since the first column of X is a vector of ones, which we use to estimate 

the constant (bias) term. We used the mean squared error loss when we 

compiled the model, since we are using ordinary least squares, which 

should minimize the sum of the squared errors. Finally, we set epochs – the 

number of times we pass over the full sample – to 500. Once the model has 

been trained, we can print the parameter estimates, which are available as a 

list in the ols.weights attribute. In this case, the list contains a single object, 

the model parameters, which we’ll recover using the numpy() method.

Listing 1-8.  Solve an OLS model with tf.estimator()

# Define feature columns.
features = [
tf.feature_column.numeric_column("constant"),
tf.feature_column.numeric_column("x1")
]

# Define model.
ols = tf.estimator.LinearRegressor(features)

# Define function to feed data to model.
def train_input_fn():
        features = {"constant": [1, 1], "x1": [0, 2]}
        target = [2, 4]
        return features, target

# Train OLS model.
ols.train(train_input_fn, steps = 100)
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Using the Estimators approach, we first define feature columns, along 

with their names and types. In the example given in Listing 1-8, we had 

two features, one of which was the constant term (or “bias” in machine 

learning). We then defined the model by passing the feature columns to 

a LinearRegressor() model from tf.estimator. Finally, we defined a 

function that feeds the data to the model and then applied the train() 

method, specifying train_input_fn as the first argument and the number 

of epochs as the second.

To make predictions with tf.estimator, we can use the predict() 

method of the model we’ve defined, ols. Similar to the training routine, 

we’ll need to define a function that generates the input dataset, which 

we’ll call test_input_fn(), as shown in Listing 1-9. Passing that to ols.

predict() will yield a generator function for model predictions. We can 

then collect all of the predictions using a list comprehension that iterates 

over all the generator outputs using next().

Listing 1-9.  Make predictions with an OLS model with tf.estimator()

# Define feature columns.

def test_input_fn():

        features = {"constant": [1, 1], "x1": [3, 5]}

        return features

# Define prediction generator.

predict_gen = ols.predict(input_fn=test_input_fn)

# Generate predictions.

predictions = [next(predict_gen) for j in range(2)]

# Print predictions.

print(predictions)

[{'predictions': array([5.0000067], dtype=float32)},

 {'predictions': array([7.000059], dtype=float32)}]
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�TensorFlow for Economics and Finance
If you’re unfamiliar with machine learning, you might wonder why it 

makes sense to learn it through the use of TensorFlow. Wouldn’t it be 

easier to use MATLAB, which now offers machine learning toolboxes? 

Couldn’t some supervised learning methods be performed using Stata 

or SAS? And doesn’t TensorFlow have a reputation for being challenging, 

even among machine learning frameworks? We will explore those 

questions in this section and will discuss what both TensorFlow and 

machine learning can offer to economists.

We’ll start with the argument for learning TensorFlow, rather than 

using more familiar tools or other machine learning frameworks. One 

benefit of using TensorFlow is that it is an open source library that can be 

used in Python and is maintained by Google. This means that there are 

no licensing costs, that it benefits from the large community of Python 

developers, and that it is likely to be well-maintained, since it is the tool 

of choice for one of the commercial leaders in machine learning. Another 

benefit of using TensorFlow is that it has consistently been one of the most 

popular frameworks for machine learning since its release.

Figure 1-2 shows the number of GitHub stars that the nine most 

popular machine learning frameworks have received. The figure indicates 

that TensorFlow is approximately four times as popular as the next most 

popular framework by this measure. In general, this will make it easier to 

find user-created libraries, code samples, and pretrained models for your 

projects. Finally, while TensorFlow 1 was challenging relative to other 

machine learning frameworks, TensorFlow 2 is considerably simpler. Much 

of the challenge comes from the flexibility that TensorFlow offers, which 

will provide substantial advantages relative to more limited frameworks.

There are at least two ways in which TensorFlow can be used in 

economics and finance applications. The first is related to machine 

learning, which is just beginning to gain widespread use in economics 

and finance. TensorFlow is ideally suited to this application, since it is a 
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machine learning framework. The second way in which TensorFlow can 

be used is to solve theoretical economic and financial models. Relative 

to other machine learning libraries, TensorFlow has the advantage of 

allowing the use of both high- and low-level APIs. The low-level APIs can 

be used to construct and solve any arbitrary economic or financial model. 

In the remainder of this section, we will provide an overview of those two 

use cases.

Figure 1-2.  GitHub stars by machine learning framework  
(2015–2019). Sources: GitHub and Perrault et al. (2019)
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�Machine Learning
Economists initially resisted the adoption of methods from machine 

learning but have since come to embrace them. Part of this reluctance 

stemmed from the difference in orientation between econometrics and 

machine learning. Whereas econometrics is centered around causal 

inference in parsimonious linear models, machine learning is centered 

around prediction using non-linear models with many parameters.

There is, however, some degree of overlap between economics and 

machine learning. Economic and financial forecasting, for instance, 

have the same objective as machine learning: accurate out-of-sample 

prediction. Additionally, many of the linear models commonly used 

in econometrics are also used in machine learning. There is, however, 

substantially more potential for machine learning to be used in economics, 

which we will discuss in detail in Chapter 2.

What specifically does TensorFlow have to offer when it comes to 

machine learning applications in economics? There are at least five 

advantages of TensorFlow that are likely to be beneficial for economics and 

finance applications: (1) flexibility, (2) distributed training, (3) production 

quality, (4) high-quality documentation, and (5) extensions.

�Flexibility

As we will discuss in detail in Chapter 2, many applications of machine 

learning in economics will not permit the use of off-the-shelf routines 

(Athey, 2019). Consequently, it will be useful to develop a familiarity with 

a machine learning framework that allows for flexibility. This, of course, 

comes at a cost. For many off-the-shelf applications, simpler and more 

rigid frameworks, such as sklearn or keras, will typically allow for faster 

and less error-prone development. However, for work that combines 

causal inference with machine learning or requires non-standard model 

architecture, there will be no option other than to develop in a flexible 
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machine learning framework. TensorFlow is particularly well-suited to 

this task because it allows for development in a mix of high- and low-level 

APIs. We can, for instance, construct an algorithm that nests a deep neural 

network (DNN) within an econometric estimation routine using tensorflow, 

where the DNN is handled using the high-level keras API in tensorflow 

and the outer algorithm is constructed using low-level tensorflow 

operations.

�Distributed Training

Many machine learning applications in economics do not require the use 

of a distributed training process. For instance, CPU training is typically 

sufficient for penalized linear regression models with a few hundred 

regressors and a few tens of thousands of observations. If, however, you 

want to fine-tune a ResNet model to predict trade flows from satellite 

images of ship traffic, you will want to make use of distributed training. 

TensorFlow 2 detects graphics processing units (GPUs) and tensor 

processing units (TPUs) automatically and can make use of them in the 

training process. Listing 1-10 provides an example of the process by which 

we may list all available devices and select one, such as the GPU or CPU, 

for use in training.

In some cases, you will want to distribute computations over both the 

cores of a device, such as GPU or TPU, and across multiple devices. You 

might, for instance, have access to a workstation with two GPUs. If you 

aren’t using TensorFlow or another framework that provides functionality 

for distributed computing, you will not be able to efficiently make use 

of both GPUs. Alternatively, you might want to distribute a computation 

across multiple GPUs in the cloud to circumvent memory bottlenecks. Or, 

if you work in industry, you may have an application that must perform 

classification using a large model in real time and return the information 

to a user. Again, distributed computing over multiple GPUs or TPUs may 

be the only option for achieving this while keeping latency low.
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TensorFlow provides an interface for multi-device distributed 

computing through tf.distribute.Strategy(). The advantage of 

TensorFlow’s approach is that it is simple and performs well without 

modification. Rather than deciding how the computation should be 

distributed down to the low-level details, you can simply specify the 

devices that will be used and a strategy for distribution. TensorFlow allows 

for both synchronous strategies, which maintain the same parameter 

values and gradient across device, and asynchronous strategies, which 

allow for local updating on individual devices.

Listing 1-10.  List all available devices, select CPU, and then switch 

to GPU

import tensorflow as tf

# Print list of devices.

devices = tf.config.list_physical_devices()

print(devices)

[PhysicalDevice(name='physical:device:CPU_0',

Device_type='CPU'),

PhysicalDevice(name='physical_device:XLA_CPU:0',

Device_type='XLA_CPU'),

PhysicalDevice(name='physical_device:XLA_GPU:0',

Device_type='XLA_GPU'),

PhysicalDevice(name='physical_device:GPU:0',

Device_type='GPU')

# Set device to CPU.

tf.config.experimental.set_visible_devices(

        devices[0], 'CPU')

# Change device to GPU.

tf.config.experimental.set_visible_devices(

        devices[3], 'GPU')
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�Production Quality

For economists working in industry and using machine learning to 

create products or provide services, it is essential that code eventually 

moves from an “experimental” or “developmental” stage to production 

quality. This reduces the likelihood that end users will encounter bugs 

or issues with stability. Another advantage of TensorFlow is that it offers 

functionality for producing and serving production-quality code.

For the creation of production-quality code, TensorFlow offers the 

high-level Estimators API. This can be used, for instance, to train a neural 

network in an environment that enforces best practices and removes 

error-prone parts of the development process. The Estimators API allows 

developers to both make use of pre-made models, where the model 

architecture can be fully specified with a handful of parameters, and also 

to develop their own.

In addition to the Estimators API, which is used to develop models, 

TensorFlow Serving can be used to develop and deploy production-quality 

applications to end users. Using TensorFlow Serving, we can, for instance, 

allow users to submit queries in the form of data, text, or images that will 

then be input into a model, yielding a classification or prediction for the 

user.

�High-Quality Documentation

TensorFlow 1 initially had opaque and incomplete documentation, which 

is part of what made it intimidating for newcomers. This is especially true 

for economists who often use well-documented commercial offerings for 

econometrics and computation, such as MATLAB, Stata, and SAS. This 

changed, however, when Google began work on TensorFlow 2. It has since 

transitioned to high-quality and detailed documentation, which is now 

one of its primary assets as a machine learning framework.
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One advantage of TensorFlow’s documentation is that it is often paired 
with a Google Colaboratory (Colab) notebook. If you are unfamiliar with 
Google Colab, it is a free service for hosted Jupyter notebooks. It also 
allows users to execute notebooks on Google’s servers using GPUs and 
TPUs for free. Pairing documentation with a Colab notebook enables users 
to immediately launch a minimal example of the code, modify it if desired, 

and execute it on state-of-the-art hardware.

Extensions
Another advantage of using TensorFlow for economic and financial 
applications of machine learning is that it has many extensions. We will 
highlight just four such extensions in the following subsections, but there 
are several others that may be of interest to economists.

TensorFlow Hub

Located at https://tfhub.dev/, TensorFlow Hub provides a searchable 
library of pretrained models that can be imported into TensorFlow, and 
then either used as is for classification and regression tasks or fine-tuned 
for related tasks. You could, for instance, use TensorFlow Hub to import an 
EfficientNet model trained on the ImageNet dataset, drop the classification 
head, and then train the model to perform a different classification task 
using an alternative dataset.

TensorFlow Probability

Designed for statisticians and machine learning researchers, TensorFlow 
probability offers an expanded set of probability distributions and tools 
for developing probabilistic models, including probabilistic layers in 
neural network models. It also provides support for variational inference, 
Markov chain Monte Carlo (MCMC), and an expanded set of optimizers 
commonly used in econometrics, such as BFGS. For academic economists 
who wish to perform causal inference with machine learning models, 
TensorFlow probability will be an indispensable tool.
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TensorFlow Federated

In some cases, the data needed to train a model will be decentralized, 

making the task infeasible with standard methods. For academic and 

public sector economists, this issue often arises when legal or privacy 

concerns prevent data sharing. For industry economists, this may occur 

when the data is distributed across user devices, such as mobile phones, 

but cannot be centralized. In all of the preceding cases, federated learning 

offers the possibility of training a model without centralizing the data. This 

can be done using the TensorFlow Federated extension.

TensorFlow Lite

Economists working in industry often train models using multiple GPUs or 

TPUs, only to deploy them to an environment with severe computational 

resource constraints. TensorFlow Lite can be used in such situations 

to avoid resource constraints and improve performance. It works by 

converting a TensorFlow model to an alternative format, compressing 

the weights, and then outputting a .tflite file, which can be deployed to a 

mobile environment.

�Theoretical Models
While TensorFlow was designed primarily for constructing and solving 

deep learning models, it offers a wide variety of computational tools that 

can be used to solve any arbitrary model. This differs from narrower 

machine learning frameworks, which are not sufficiently flexible to 

construct models outside of a well-defined family.

In particular, TensorFlow can be used to solve theoretical models in 

economics and finance. This can be done by (1) defining a computational 

graph that represents the model and (2) defining the associated loss 

function. We may then apply a standard optimization routine in TensorFlow, 

such as stochastic gradient descent (SGD), to minimize the loss function.
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TensorFlow’s state-of-the-art automatic differentiation libraries, along 
with the ease of performing parallel and distributed computation, make it a 
formidable alternative to existing software for solving theoretical models in 
economics and finance. We will discuss this issue in detail in Chapter 10.

�Introduction to Tensors
TensorFlow was primarily designed for the purpose of performing 
deep learning with neural networks. Since neural networks consist of 
operations performed on tensors by tensors, TensorFlow was a natural 
choice for the name.

While tensors have specific mathematical definitions in certain contexts, 
such as physics, we will adopt the one that is most relevant to machine 
learning, taken from Deep Learning (Goodfellow, Bengio, and Courville, 2016):

In the general case, an array of numbers arranged on a regu-
lar grid with a variable number of axes is known as a tensor.

In practice, we will often describe a tensor by its rank and shape.  
A rectangular array with k indices, Yi ik1, ,¼

, is said to be of rank-k. You may 
alternatively see such an array described as having order or dimension k. 
The shape of a tensor is specified by the length of each of its dimensions.

Consider, for example, the OLS problem we described in Listing 1-2, 
where we made use of three tensors: X, Y, and β. These were the feature 
matrix, the target vector, and the coefficient vector, respectively. In a regression 
problem with m features and n observations, X is a rank-2 tensor with shape 
(n, m), Y is a rank-1 tensor with shape n, and β is a rank-1 tensor of shape m.

More generally, a rank-0 tensor is a scalar, a rank-1 tensor is a vector, 
and a rank-2 tensor is a matrix. We will refer to tensors of rank-k, where 
k ≥ 3, as k-tensors. Figure 1-3 illustrates these definitions for a batch of 
images that have three color channels.

At the top left of Figure 1-3, we have a single pixel from the blue color 

channel, which would be represented by a single integer. This is a scalar 

or rank-0 tensor. To the right, we have a collection of pixels, which form 

the border of the green color channel of an image. These constitute a 
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rank-1 tensor or vector. If we take the entire red color channel itself, this 

is a matrix or rank-2 tensor. Furthermore, if we combine the three color 

channels, this forms a color image, which is a 3-tensor; and if we stack 

multiple images into a training batch, we get a 4-tensor.

It is worth emphasizing that definitions of tensors often assume 

rectangularity. That is, if we’re working with a batch of images, each image 

is expected to have the same length, width, and number of color channels. 

If each image had a different shape, it isn’t obvious how we would specify 

the shape of the batch tensor. Furthermore, many machine learning 

frameworks will not be able to process non-rectangular tensors in a way 

that fully exploits the parallelization capabilities of a GPU or TPU.

RANK-0 TENSOR  
(SCALAR)

RANK-1 TENSOR  
(VECTOR)

RANK-3 TENSOR  
(3-TENSOR)

RANK-4 TENSOR  
(4-TENSOR)

RANK-2 TENSOR  
(MATRIX)

Figure 1-3.  Decomposition of batch of color images into tensors
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For most problems that we consider in this book, the data will either 

naturally be rectangular or can be reshaped to be rectangular without 

a substantial loss in performance. There are, however, cases in which it 

cannot. Fortunately, TensorFlow offers a data structure called a “ragged 

tensor,” which is available as tf.ragged, that is compatible with more 

than 100 TensorFlow operations. There is also a new generation of 

convolutional neural networks (CNNs) that make use of masking, a 

process which identifies the important parts of images, allowing for the use 

of variable input shape images.

�Linear Algebra and Calculus in TensorFlow
Similar to econometric routines, machine learning algorithms make extensive 

use of linear algebra and calculus. Much of this, however, remains hidden 

from users in standard machine learning frameworks. To the contrary, 

TensorFlow allows users to construct models from both high- and low-level 

APIs. With low-level APIs, they can build, for instance, a non-linear least 

squares estimation routine or an algorithm to train a neural network at the 

level of linear algebra and calculus operations. In this section, we will discuss 

how common operations in linear algebra and calculus can be performed 

using TensorFlow. However, before we do that, we will start with a discussion 

of constants and variables in TensorFlow, which are fundamental to the 

description of both linear algebra and calculus operations.

�Constants and Variables
TensorFlow divides tensor objects into constants and variables. The 

meaning of the terms “constant” and “variable” coincide with standard 

usage in programming. That is, a constant is fixed, whereas a variable may 

change over time. To illustrate this, we return to the OLS example in  

Listing 1-11. Rather than solving the problem analytically, we’ll simply 

compute a residual term, which could be used to construct a loss function.
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The feature matrix, X, and the target, Y, are defined as constant tensors, 

since they do not change as the model is trained. The parameter vector, 

beta, is defined as a variable using tf.Variable(), since it will be varied 

by the optimization algorithm to try to minimize a transformation of the 

residuals.3

Listing 1-11.  Define constants and variables for OLS

import tensorflow as tf

# Define the data as constants.

X = tf.constant([[1, 0], [1, 2]], tf.float32)

Y = tf.constant([[2], [4]], tf.float32)

# Initialize beta.

beta = tf.Variable([[0.01],[0.01]], tf.float32)

# Compute the residual.

residuals = Y - tf.matmul(X, beta)

In general, we will use constant tensors for both input data and 

intermediate data produced by the model, such as the residuals. We will 

also use constant tensors to capture model hyperparameters. For neural 

networks and penalized regression models, for instance, we will select 

regularization parameters outside of the training process and will use tf.

constant() to define them.

In general, we will use tf.Variable() to initialize trainable model 

parameters. This includes, for example, the weights in a neural network, 

the coefficient vector for a linear regression, or an intermediate step in a 

model that involves a linear transformation using a matrix of parameters.

3�If you’re running the listings in this chapter consecutively in a Jupyter Notebook, 
you can avoid runtime errors by executing listings in separate Python sessions. 
In particular, you may wish to initiate a new session after running tf.estimator 
listings.
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�Linear Algebra
Since TensorFlow is centered around deep learning models – which 

make use of tensor inputs, produce tensor outputs, and apply linear 

transformations – it was designed with considerable capacity to perform 

linear algebra computations and to distribute those computations over 

GPUs and TPUs. In this section, we will discuss how common operations 

in linear algebra can be performed using TensorFlow.

�Scalar Addition and Multiplication

Although scalars can be considered to be rank-0 tensors and are defined as 

tensor objects in TensorFlow, we will often use them for different purposes 

than vectors, matrices, and k-tensors. Furthermore, certain operations 

that can be performed on vectors and matrices cannot be performed on 

scalars.

In Listing 1-12, we examine how to perform scalar addition and 

multiplication in TensorFlow. We’ll do this using two scalars, s1 and s2, 

which we will define using tf.constant(). If we wanted these scalars to 

be trainable parameters in a model, we would instead use tf.Variable(). 

Notice that we first perform addition using tf.add() and multiplication 

using tf.multiply(). We then make use of operator overloading and 

perform the same operations using + and *. Finally, we print the sum and 

product we computed. Note that both are tf.Tensor() objects of type 

float32, since we defined each constant as a tf.float32.

�Tensor Addition

We next examine tensor addition, since it takes only one form and 

generalizes to k-tensors. For 0-tensors (scalars), we saw that the tf.add() 

operation could be applied and that it summed the two scalars taken as 

arguments. If we extend this to rank-1 tensors (vectors), addition works as 

in Equation 1-2: that is, we sum the corresponding elements in each vector.
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Equation 1-2. Example of vector addition.

	

a
a
a

b
b
b

a b
a b
a b

0

1

2

0

1

2

0 0

1 1

2 2

é

ë

ê
ê
ê

ù

û

ú
ú
ú
+
é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

+
+
+

é

ë

ê
ê
ê

ù

û

ú
ú
úú 	

Listing 1-12.  Perform scalar addition and multiplication in 

TensorFlow

import tensorflow as tf

# Define two scalars as constants.

s1 = tf.constant(5, tf.float32)

s2 = tf.constant(15, tf.float32)

# Add and multiply using tf.add() and tf.multiply().

s1s2_sum = tf.add(s1, s2)

s1s2_product = tf.multiply(s1, s2)

# Add and multiply using operator overloading.

s1s2_sum = s1+s2

s1s2_product = s1*s2

# Print sum.

print(s1s2_sum)

tf.Tensor(20.0, shape=(), dtype=float32)

# Print product.

print(s1s2_product)

tf.Tensor(75.0, shape=(), dtype=float32)
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Furthermore, we may extend this to rank-2 tensors (matrices), as 

shown in Equation 1-3, as well as rank-k tensors, where k>2. In all cases, 

the operation is performed the same way: the elements in the same 

positions in the two tensors are summed.

Equation 1-3. Example of matrix addition.
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Notice that tensor addition can only be performed using two tensors 

of the same shape.4 Two tensors with different shapes will not always have 

two elements defined in the same positions. Additionally, note that tensor 

addition trivially satisfies the commutative and associative laws.5

In Listing 1-13, we demonstrate how to perform tensor addition with 

rank-4 tensors. We will use two 4-tensors, images and transform, which 

have been imported as numpy arrays. The images tensor is a batch of 32 

color images, and the transform tensor is an additive transformation.

We first print the shapes of both images and transform to check that 

that they are the same, as is required for tensor addition. We can see that 

both objects have the shape (32, 64, 64, 3). That is, they consist of a batch 

of 32 images, which are 64x64, with three color channels. Next, we convert 

both numpy arrays into TensorFlow constant objects using tf.constant(). 

We then apply the additive transformation using tf.add() and the 

overloaded + operator separately. Note that the + operator will perform the 

computation in TensorFlow, since we converted both tensors into constant 

objects in TensorFlow.

4�As we’ll discuss later in the chapter, there are two types of exceptions to this rule: 
broadcasting and scalar-tensor addition.

5�Let A, B, and C be rank-k tensors. The commutative law states that A + B = B + A, 
and the associative law states that (A + B) + C = A + (B + C).
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Listing 1-13.  Perform tensor addition in TensorFlow

import tensorflow as tf

# Print the shapes of the two tensors.
print(images.shape)
(32, 64, 64, 3)
print(transform.shape)
(32, 64, 64, 3)

# Convert numpy arrays into tensorflow constants.
images = tf.constant(images, tf.float32)
transform = tf.constant(transform, tf.float32)

# Perform tensor addition with tf.add().
images = tf.add(images, transform)

# Perform tensor addition with operator overloading.
images = images+transform

�Tensor Multiplication
In contrast to tensor addition, where we only considered elementwise 
operations, performed on two tensors of identical shape, we will consider 
three different types of tensor multiplication:

•	 Elementwise multiplication

•	 Dot products

•	 Matrix multiplication

Elementwise Multiplication

As with tensor addition, elementwise multiplication is only defined for 
tensors with identical dimensions. If, for instance, we have two rank-3 
tensors, A and B, each with indices i, j, and r, where i ∈ {1, …, I}, j ∈ {1, …, J},  
and r ∈ {1, …, R}, then their elementwise product is the tensor C, where 
each element, Cijr, is defined as in Equation 1-4.
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Equation 1-4. Elementwise tensor multiplication.

	
C A Bijr ijr ijr= * 	

Equation 1-5 provides an example of elementwise tensor multiplication 

for two matrices. Note that ⊙ represents elementwise multiplication.

Equation 1-5. Elementwise tensor multiplication.
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The TensorFlow implementation of elementwise tensor multiplication 

is given in Listing 1-14. We’ll multiply two 6-tensors, A and B, which we 

generate by drawing from a normal distribution. The list of integers we 

provide to tf.random.normal() is the shape of the 6-tensor. Notice that 

both A and B were 6-tensors of shape (5, 10, 7, 3, 2, 15). In order to perform 

elementwise multiplication, both tensors must have the same shape.

Furthermore, we can use either the TensorFlow multiplication operator, 

tf.multiply(), or the overloaded multiplication operator, *, to perform 

elementwise multiplication, since we generated both A and B using 

TensorFlow operations.

Dot Product

A dot product can be performed between two vectors, A and B, with 

the same number of elements, n. It is the sum of the products of the 

corresponding elements in A and B. Let A = [a0…an] and B = [b0…bn]. Their 

dot product, c, is denoted c = A · B and is defined in Equation 1-6.

Equation 1-6. Dot product of vectors.
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Listing 1-14.  Perform elementwise multiplication in TensorFlow

import tensorflow as tf

# Generate 6-tensors from normal distribution draws.

A = tf.random.normal([5, 10, 7, 3, 2, 15])

B = tf.random.normal([5, 10, 7, 3, 2, 15])

# Perform elementwise multiplication.

C = tf.multiply(A, B)

C = A*B

Notice that a dot product transforms the two vectors into a scalar, c. 

Listing 1-15 demonstrates how to perform a dot product in TensorFlow. 

We start by defining two vectors, A and B, each of which has 200 elements. 

We then apply the tf.tensordot() operation, which takes the two tensors 

the parameter axes as arguments. To compute the dot products of two 

vectors, we will use 1 for the axes parameter. Finally, we extract the numpy 

attribute of c, which gives a numpy array of the constant object. Printing it, 

we can see that the output of the dot product is, indeed, a scalar.6

Listing 1-15.  Perform dot product in TensorFlow

import tensorflow as tf

# Set random seed to generate reproducible results.

tf.random.set_seed(1)

6�The reason we specify an axes arugment when using tf.tensordot() is because we 
are actually performing an operation called a “tensor contraction,” which is more 
general than a dot product. A tensor contraction takes two tensors of arbitrary 
rank, A and B, as well as dimension indices, i and j, in A and B. It then contracts A 
and B by performing elementwise multiplication over the specified dimensions 
and then summing the products.
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# Use normal distribution draws to generate tensors.

A = tf.random.normal([200])

B = tf.random.normal([200])

# Perform dot product.

c = tf.tensordot(A, B, axes = 1)

# Print numpy argument of c.

print(c.numpy())

-15.284362

Matrix Multiplication

We next consider matrix multiplication, which we will exclusively 

discuss for the case of rank-2 tensors. This is because we will only apply 

this operation to matrices. In the case where we are performing matrix 

multiplication with k-tensors for k>2, we will actually be performing 

“batch” matrix multiplication. This is used, for instance, in training and 

prediction tasks with convolutional neural networks (CNNs), where we 

might want to multiply the same set of weights by all of the images in a 

batch of images.

Let’s again consider the case where we have two tensors, A and B, but this 

time, they do not need to have the same shape, but do need to be matrices. If 

we wish to matrix multiply A by B, then the number of columns of A must be 

equal to the number of rows of B. The shape of the product of A and B will be 

equal to the number of rows in A by the number of columns in B.

Now, if we let Ai: represent row i in matrix A, B:j represent column j in 

matrix B, and C denote the product of A and B, then matrix multiplication is 

defined for all rows, j ∈ {1, .., J} in C, as in Equation 1-7.

Equation 1-7. Matrix multiplication.

	
C A Bij i j= : :· 	
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That is, each element, Cij, is computed as the dot product of row i 

of matrix A and column j of matrix B. Equation 1-8 provides an example 

of this for 2x2 matrices. Additionally, Listing 1-16 demonstrates how to 

perform matrix multiplication in TensorFlow.

Equation 1-8. Matrix multiplication example.
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We first generate two matrices using random draws from a normal 

distribution. Matrix A has the shape (200, 50), and matrix B has the shape 

(50, 10). We then use tf.matmul() to multiply A by B, assigning the result to 

C, which has a shape of (200, 10).

What would happen if we instead multiplied B by A? We can see from 

the shapes of A and B that this is not possible, since the number of columns 

in B is 50 and the number of rows in A is 200. Indeed, matrix multiplication 

is not commutative, but it is associative.7

Listing 1-16.  Perform matrix multiplication in TensorFlow

import tensorflow as tf

# Use normal distribution draws to generate tensors.

A = tf.random.normal([200, 50])

B = tf.random.normal([50, 10])

# Perform matrix multiplication.

C = tf.matmul(A, B)

# Print shape of C.

print(C.shape)

(200, 10)

7�Assume we have three matrices: X, Y, and Z. The shape of the matrices is such 
that XY is defined and YZ is defined. It will not generally be the case that XY = YX 
and YX may not be defined. It is, however, the case that (XY)Z = X(YZ).
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�Broadcasting

In some circumstances, you will want to want to make use of broadcasting, 

which involves performing linear algebraic operations with two tensors 

that do not have compatible shapes. This will most commonly occur 

when you want to add a scalar to a tensor, multiply a scalar by a tensor, or 

perform batch multiplication. We will consider each of these cases.

Scalar-Tensor Addition and Multiplication

When manipulating image data, it is common to apply scalar 

transformations to matrices, 3-tensors, and 4-tensors. We’ll start with 

the definition of scalar-tensor addition and scalar-tensor multiplication. 

In both cases, we’ll assume we have a scalar, γ, and a rank-k tensor, A. 

Equation 1-9 defines scalar-tensor addition, and Equation 1-10 defines 

scalar-tensor multiplication.

Equation 1-9. Scalar-tensor addition.

	
C Ai i i ik k1 1¼ ¼= +g 	

Equation 1-10. Scalar-tensor multiplication.

	
C Ai i i ik k1 1¼ ¼= g 	

Scalar-tensor addition is performed by adding the scalar term to 

each of the elements in the tensor. Similarly, scalar-tensor multiplication 

is performed by multiplying the scalar by each element in the tensor. 

That is, we repeat the operations specified in Equations 1-9 and 1-10 

for all i1 ∈ {1, …, I1}, i2 ∈ {1, …, 2}, …, ik ∈ {1, …, Ik}. Listing 1-17 provides 

the TensorFlow implementation of both scalar-tensor addition and 

multiplication for a 4-tensor of images of shape (64, 256, 256, 3) called 

images.
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We first define two constants, gamma and mu, which are the scalars we will 

use in the addition and multiplication operations. Since we have defined 

them using tf.constant(), we can make use of the overloaded operators * 

and +, rather than tf.multiply() and tf.add(). We have now transformed 

the elements in a batch of 64 images from integers in the [0, 255] interval to 

real numbers in the [–1, 1] interval.

Listing 1-17.  Perform scalar-tensor addition and multiplication

import tensorflow as tf

# Define scalar term as a constant.

gamma = tf.constant(1/255.0)

mu = tf.constant(-0.50)

# Perform tensor-scalar multiplication.

images = gamma*images

# Perform tensor-scalar addition.

images = mu+images

Batch Matrix Multiplication

A final instance of broadcasting we’ll consider is batch matrix 

multiplication. Consider the case where we have a 3-tensor batch of 

grayscale images of shape (64, 256, 256) named images and want to apply 

the same linear transformation of shape (256, 256) named transform to 

each of them. For the sake of illustration, we’ll use randomly generated 

tensors for images and transformation, which are defined in Listing 1-18.
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Listing 1-18.  Define random tensors

import tensorflow as tf

# Define random 3-tensor of images.

images = tf.random.uniform((64, 256, 256))

# Define random 2-tensor image transformation.

transform = tf.random.normal((256, 256))

Listing 1-19 demonstrates how we can perform batch matrix 

multiplication in TensorFlow using the 3-tensor and 2-tensor we’ve 

defined.

Listing 1-19.  Perform batch matrix multiplication

# Perform batch matrix multiplication.

batch_matmul = tf.matmul(images, transform)

# Perform batch elementwise multiplication.

batch_elementwise = tf.multiply(images, transform)

We used tf.matmul() to perform batch matrix multiplication. It is also 

possible to perform batch elementwise multiplication, too, as we showed 

in Listing 1-19.

�Differential Calculus
Both economics and machine learning make extensive use of differential 

calculus. In economics, differential calculus is used to solve analytical 

models, estimate econometric models, and solve computational models 

that are structured as systems of differential equations. In machine 

learning, differential calculus is typically used in routines that are applied 

to train models. Stochastic gradient descent (SGD) and its many variants 

rely on the computation of gradients, which are vectors of derivatives. 
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Virtually all applications of differential calculus in economics and machine 

learning are done with the same intention: to find an optimum – that is, a 

maximum or minimum. In this section, we’ll discuss differential calculus, 

its use in machine learning, and its implementation in TensorFlow.

�First and Second Derivatives

Differential calculus is centered around the computation of derivatives. A 

derivative tells us how much a variable, Y, changes in response to a change 

in another variable, X. If the relationship between X and Y is linear, then 

the derivative of Y with respect to X is simply the slope of a line, which is 

trivial to compute. Consider, for instance, a deterministic linear model 

with one independent variable, β, which takes the form of Equation 1-11.

Equation 1-11. A linear model with one regressor.

	 Y X= +a b 	

What is the derivative of Y with respect to X in this model? It’s the change 

in Y, ΔY, with respect to a change in X, ΔX. For a linear function, we can 

compute this using two points (X1, Y1) and (X2, Y2), as in Equation 1-12.

Equation 1-12. Calculating the change in Y with respect to a change in X.

	 Y Y X X
2 1 2 1
- = +( ) - +( )a b a b 	

= =D DY X b 	

Dividing both sides of the equation by ΔX yields the expression for 

the change in Y with respect to a change in X. This is just the derivative X, 

which is shown in Equation 1-13.
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Equation 1-13. The derivative of Y with respect to X.
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This, of course, is just the slope of a linear function, as depicted in 

Figure 1-4. Notice that the points we select do not matter. Irrespective of 

the choice of (X1, Y1) and (X2, Y2), the derivative (or slope) will always be 

the same. This is a property of linear functions.

But what if we have a non-linear relationship? Figure 1-5 shows 

examples of two such functions. We can see that the approach we used to 

recover the derivative of X doesn’t quite work for X2 or X2 − X.

Y

X

X

Y

Figure 1-4.  The slope of a linear function
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Why not? Because the slopes of X2 and X2 − X are not constant. The 

slope of X2 is increasing in X. The slope of X2 − X is initially decreasing, 

followed by an increase when the X2 term begins to dominate. Irrespective 

of the choices of (X1, Y1) and (X2, Y2), the derivative of Y with respect to X 

will always vary over the interval over which it is calculated. In fact, it will 

only be constant if we calculate it at a point, rather than over an interval, 

which is precisely what differential calculus tells us how to do.

Equation 1-14 provides a definition for the derivative of any general 

function of one variable, f (X), including non-linear functions. Since the 

derivative itself depends on where we evaluate it, we will denote it using a 

function, f     ′(X).

Equation 1-14. Definition of derivative of f(X) with respect to X.
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Figure 1-5.  Non-linear functions of X
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Notice the similarity between this definition and the one we used 

earlier for the derivative (slope) of a linear function. We can see that ΔX = h 

and ΔY = f(X + h) − f(X). The only thing that has changed is the addition of 

the limit term, which we have not defined.

Informally, a limit tells us how a function behaves as we approach 

some value for one of its arguments. In this case, we are shrinking the 

interval, h, over which we compute the derivative. That is, we’re moving X1 

and X2 closer together.

In Figure 1-5, one of the functions we plotted was Y = X2. We’ll plug that 

into our definition of a derivative for a general function in Equation 1-15.

Equation 1-15. Example of a derivative for Y = X2.

	
¢ =

+( ) -
®

f X
X h X

h
( ) lim

h 0

2 2

	

= +
®
lim
h 0

2X h 	

= 2X 	

How did we compute the limit of 2X + h as h approaches 0? Since we 

no longer have an expression for f  ′(X) that is undefined at h = 0, such as the 

original expression, which contained h in the denominator, we may simply 

plug h = 0 into the expression, yielding 2X.

And what did we learn? The derivative of Y = X2 is 2X, which is also a 

function of X. You might already have the intuition that the slope of X2 is 

increasing in X. Computing the derivative tells you precisely how much 

it increases: that is, a one unit increase in X increases the slope of f(X) by 

two units. Additionally, we may evaluate the slope at a point. At X = 10, for 

instance, the slope is 20.

We can now compute the slope at any point of our choosing, but what 

can we do with this? Let’s return to Figure 1-5. This time, we’ll look at the 

function f (X) = X  2 − X. We can see that the curve in the plot is bowl-shaped 
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over the interval. In mathematical optimization, such functions are said to 

be “convex,” which means that any arbitrary line segment drawn through 

two points on their graph will always lie either above or on the graph itself.

As we can see from the derivative in Equation 1-16 and also from 

Figure 1-5, the slope of the function is initially negative, but eventually 

becomes positive as we move from 0 to 1 over the [0, 1] interval. The point 

at which the derivative changes from negative to positive is the minimum 

value of f(X) over the interval. As the plot indicates visually, the slope of the 

function is zero at the minimum.

Equation 1-16. Example of a derivative for Y = X2 - X.
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This hints at another important property of derivatives: we can use 

them to find the minimum value of a function. In particular, we know 

that f  ′(X) = 0 at the minimum. We can exploit this, as in Equation 1-17, to 

identify points that could be minimums – that is, “candidate” minima.

Equation 1-17. Finding a candidate minimum of Y = X2 - X.

	 0 2 1= -X 	

	 ® =X 0 5. 	

Computing the derivative, setting it to zero, and then solving for X 

yields a candidate value for the minimum: 0.5. Why is it only a candidate 

minimum, rather than just the minimum? There are two reasons. First, 

the derivative will also be zero at the maximum value. And second, there 

may be many local minima and maxima. Thus, it might be the lowest value 
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in the [0, 1] interval, which would be a “local minimum,” but it is unclear 

whether it is the lowest value over the domain of interest for our function, 

which could be the real numbers. Such a minimum is called a “global 

minimum.”

For the preceding reasons, we’ll call the requirement that the 

derivative be zero the first-order condition (FOC) for a local optimum. 

We will always have a derivative that is zero at the minimum value of the 

function, but both the global maximum and local optima will also have a 

derivative of zero. Thus, it is also said to be a necessary, but not sufficient 

condition for a minimum.

We will deal the insufficiency problem by making use of what’s called 

a second-order condition (SOC), which involves the computation of a 

second derivative. So far, we have computed two derivatives, both of which 

were “first derivatives.” That is, they were the derivatives of some function. 

If we take the derivatives of those derivatives, we get “second derivatives,” 

denoted f  ′′(X). A positive second derivative indicates that a function’s 

derivative is increasing at the point at which it is evaluated. In Equation 

1-18, we compute the second derivative of Y = X2 − X.

Equation 1-18. Example of a second derivative for Y = X2 - X.
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In this case, the second derivative is constant. That is, it is always two, 

irrespective of where we evaluate it. This means that the derivative is also 

increasing at X = 0.5, which is the candidate local minimum, where we 

have demonstrated the derivative is zero. If the derivative is both zero and 

increasing, then it must be a local minimum. This is because we’re at the 

lowest point in the neighborhood of X = 0.5, and for X > 0.5, we know that 

f(X) is increasing and, therefore, will not yield values below that of f(0.5).
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We may now provide a formal statement of the necessary and sufficient 

conditions for a local minimum. Namely, a candidate local minimum, X∗, 

satisfies the necessary and sufficient conditions for being a local minimum 

if the statements in Equation 1-19 are true.

Equation 1-19. Necessary and sufficient conditions for local minimum.

	
¢( ) =*f X 0 	

	
¢¢( ) >*f X 0 	

Similarly, the conditions for a local maximum are satisfied if the 

statements in Equation 1-20 are true.

Equation 1-20. Necessary and sufficient conditions for local maximum.

	
¢( ) =*f X 0 	

	
¢¢( ) <*f X 0 	

In general, we may convert maximization problems into minimization 

problems by minimizing over −f (X). For this reason, it is sufficient to 

discuss the minimization of functions.

We’ve now covered first derivatives, second derivatives, and their 

use in optimization, which is primarily how we will encounter them in 

economics and machine learning. In the next section, we’ll provide an 

overview of how to compute derivatives for common functions of one 

variable.
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�Common Derivatives of Polynomials

In the previous section, we introduced the concept of first and second 

derivatives. We also gave examples of the computation of derivatives, 

but performed the computation in a relatively inconvenient way. In each 

instance, we computed the change in f(X) over the change in X, as the 

change in X went to zero in the limit. For the two examples we consider, 

this was straightforward; however, for more complicated expressions, 

such an approach could become quite cumbersome. Additionally, since 

we haven’t introduced the concept of limits formally, we are likely to 

encounter problems when we can’t simply evaluate the expression at its 

limit value.

Fortunately, derivatives take predictable forms, which makes it 

possible to compute them using simple rules, rather than evaluating 

limits. You may have already noticed a few such rules, which applied to 

the derivatives we’ve computed earlier. Recall that we took four derivatives 

(first and second order), which are given in Equation 1-21.

Equation 1-21. Examples of derivatives.

	 f X X f X X( ) = ® ( ) =¢2 2 	

	 f X X f X( ) = ® ( ) =¢2 2 	

	 f X X X f X X( ) = - ® ( ) = -¢2
2 1 	

	 f X X f X( ) = - ® ( ) =¢2 1 2 	
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What are the common relationships between the functions 

and derivatives in Equation 1-21? The first is called the power rule: 

f(X) = Xn → f  ′(X) = nXn − 1. We can see this, for example, in the following 

transformation: f(X) = X2 → f  ′(X) = 2X. Another is the multiplication 

rule. That is, if we have a variable raised to a power and multiplied by 

a constant, the derivative is just the derivative of the variable raised to 

a power, multiplied by the constant: f (X) = 2X → f  ′(X) = 2. We can also 

see that each term of the polynomial is differentiated independently: 

f (X) = X2 − X → f  ′(X) = 2x − 1. This is a consequence of the linearity of 

differentiation and is called the sum or difference rule, depending on 

whether it is addition or subtraction.

For the sake of brevity, we’ll list these rules in Table 1-1 for the 

derivative of polynomials with one variable. Note that there are several 

different forms of notation that can be used for differentiation. So far, 

we have used f  ′(X) to indicate that we are taking the derivative of f(X) 

with respect to X. We may also express differentiation as df/dx. And if we 

have an expression, such as X2 − X, we may use d/dx X2 − X to denote its 

derivative. For the purpose of the table, we will use f(X) and g(X) to indicate 

two different functions of the variable X and c to represent a constant term.
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Memorization of the preceding rules will equip you to compute the 

analytical derivatives for nearly any function of a single variable. In some 

cases, however, a function will be transcendental, which means that 

it cannot be expressed algebraically. In the following section, we will 

consider those cases.

Table 1-1.  Differentiation rules for polynomials

Constant Rule

Multiplication Rule

Power Rule

Sum Rule

Product Rule

Chain Rule

Reciprocal Rule

Quotient Rule

d
dx

c = 0

d
dx

cX c=

d
dx

nXnXn = -1

d
dx

f X g X f X g X( ) + ( ) = ( ) + ( )¢ ¢

d
dx

f X g X f X g X f X g X( ) ( ) = ( ) ( ) + ( ) ( )¢ ¢

d
dx

f g X f g X g X( )( ) = ( )( ) ( )¢ ¢

d
dx f X

f X

f X

1
2( )

= -
( )
( )( )
¢

d
dx

f X

g X

f X g X g X f X

g X

( )
( )

=
( ) ( ) - ( ) ( )

( )
¢ ¢

2
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�Transcendental Functions

Taking the derivatives of polynomials initially appeared daunting and 

cumbersome, but ultimately boiled down to memorizing eight simple 

rules. The same is true for transcendental functions, such as sin(X), 

which cannot be expressed algebraically. Table 1-2 provides rules for four 

transcendental functions we will encounter regularly.

Notice that all the differentiation we have done thus far has been with 

functions of a single variable, which are sometimes called “univariate” 

functions. In both machine learning and economics, we will rarely 

encounter problems with a single variable. In the next section, we’ll 

discuss the extension of univariate rules for differentiation to the 

multivariate objects we will typically encounter in machine learning.

�Multidimensional Derivatives

You might wonder what, exactly, qualifies as a “variable” in economics and 

machine learning. The answer is that it depends on the problem under 

consideration. When we solve a regression problem by employing OLS, 

which minimizes the sum of the squared errors, the variables will be the 

Table 1-2.  Differentiation rules for transcendental functions

Exponential Rule d
dx

cecxecx =

Natural Log Rule d
dx X

ln X( ) = 1

Sine Rule d
dx

Xsin cosX( ) = ( )

Cosine Rule d
dx

Xcos sinX( ) = - ( )
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regression coefficients and the input data can be treated as constants. 

Similarly, when we train a neural network, the weights in the network will 

be variables and the data will be constants.

It is not difficult to see that virtually all problems we’ll encounter in 

economics and machine learning will be inherently multivariate. Solving 

a model, estimating a regression equation, and training a neural network 

all entail finding the set of variable values that minimizes or maximizes the 

objective function. In this section, we will discuss some of the multivariate 

objects we’ll encounter when doing this.

�Gradient

Gradients are the multivariate extension of the concept of derivatives. And 

we need a multivariate extension of derivatives because most problems we 

encounter will have many variables. Take, for instance, the case where we 

want to estimate an econometric model. We’ll do this by minimizing some 

loss function, which will typically be a transformation of variables (model 

parameters) and constants (data). Let L(X1, …, Xn) denote the loss function 

and X1, …, Xn denote the n parameter values of interest. In this setting, the 

gradient, denoted ∇L(X1, …, Xn), is defined as a vector-valued function, 

which takes X1, …, Xn as inputs and outputs a vector of n derivatives, as is 

shown in Equation 1-22.

Equation 1-22. Gradient of n-variable loss function.

	
Ñ ¼( ) = ¶

¶
é

ë
ê ¼

¶
¶

ù

û
úL X X L

X
L
Xn

n
1

1

, , , ,
	

Notice that we’re using the notation ∂L/∂Xi to denote the “partial” 

derivative of L with respect to Xi. That is, we take the derivative of L 

with respect to Xi, treating all other variables as if they were constants. 

Computing the gradient is no different than computing all partial 

derivatives of the loss function and then stacking them into a vector.
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The reason why we attach special significance to the gradient in 

economics and machine learning is because it is employed in many 

optimization routines. Algorithms such as stochastic gradient descent 

(SGD) include the following gradient-related steps:

	 1.	 Compute the gradient of the loss function,  

∇L(X1, …, Xn).

	 2.	 Update the values of the variables, 

Xj = Xj − 1 − α∇L(X1, …, Xn).

In the preceding steps, Xj is the iteration number and α is the “step 

size.” The routine is repeated until convergence: that is, until we reach a 

j where ∣Xj − Xj − 1∣ is smaller than some tolerance parameter. If we want 

to move slowly to avoid passing the optimum, we can set α to be a small 

number.

Why do such algorithms work? Consider the one variable case for 

which we have clear intuition. To have a candidate minimum, it must be 

the case that the derivative is zero. We can find a point where the derivative 

is zero by starting with a randomly drawn value of the variable and 

evaluating the derivative at that point. If it is negative, we step forward – 

that is, increase the value of X – since it will make the loss function more 

negative. If it is positive, we decrease X, since it will also lower the loss 

function. At some point, as we approach the minimum, the magnitude of 

the gradient will begin to decline, moving toward zero. If we approach it 

slowly enough, the near-zero gradient will result in very small updates to 

Xj, until they are so small that the tolerance isn’t exceeded, terminating the 

algorithm.

In general, when we use gradient-based optimization methods, we’ll 

extend the intuition behind these steps to hundreds, thousands, or even 

millions of variables.
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Jacobian

The Jacobian extends the concept of a gradient to a system of n variables and 

m functions. The definition of the Jacobian matrix is given in Equation 1-23.

Equation 1-23. The Jacobian of m functions in n variables.

	

J =
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To make this concrete, let’s calculate the Jacobian of two functions and 

two variables, which are given in Equation 1-24.

Equation 1-24. A system of two functions and two variables.

	 f X X X X
1 1 2 1 2

2,( ) = 	

	 f X X X X
2 1 2 1

2

2

2
,( ) = - 	

Recall what we said earlier about computing partial derivatives: other 

than the variable with respect to which we are differentiating, all others 

can be treated as constants. If we want to compute ∂f1/∂X1, for instance, 

then we may treat X2 as a constant. The Jacobian for this system is given in 

Equation 1-25.

Equation 1-25. Example of a Jacobian for a 2x2 system.

	
J =

-
æ

è
ç

ö

ø
÷

2 2

2 2

2 1

1 2

X X
X X 	
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Jacobians will prove useful when solving systems of equations or 

optimizing vector-valued functions. In machine learning, for instance, a 

neural network with a categorical target variable can be viewed as a vector-

valued function, since the network outputs predicted values for each class. 

To train such networks, we’ll apply optimization algorithms that make use 

of Jacobian matrices.

Hessian

We previously discussed first and second derivatives and their role 

in optimization. We have extended the concept of first derivatives to 

gradients and Jacobian matrices. We will also extend the concept of second 

derivatives to multivariable, scalar-valued functions. We’ll do this by 

arranging all such derivatives into a matrix called a Hessian, which is given 

in Equation 1-26.

Equation 1-26. The Hessian matrix for an n-variable function.
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There are two things worth noticing about the Hessian. First, it is 

computed on a scalar-valued function, similar to the gradient. And second, 

it consists of second partial derivatives. In the notation used, ¶ ¶f Xi/
2  is 

the second partial derivative with respect to Xi, not the partial derivative 

with respect to Xi
2 .

Finally, let’s consider a Hessian for the two-variable function. The 

function is given in Equation 1-27, followed by its Hessian in Equation 1-28.
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Equation 1-27. Example function for the computation of a Hessian 

matrix.

	 f X X X X X
1 2 1

2

2 2

2
2,( ) = - 	

Equation 1-28. The Hessian matrix for a two-variable function.

	
Hf =

-
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÷

2 2

2 4

2 1

1

X X
X 	

In practice, we will encounter Hessian matrices in two places in 

machine learning. The first is to check optimality conditions. This requires 

some additional knowledge of the properties of matrices, so we will say 

relatively little about this. The other way in which Hessians will be used 

is to train models with optimization algorithms. In some cases, such 

algorithms will require us to approximate a function using first and second 

derivatives. The Hessian matrix will be a useful construct for organizing 

the second derivatives.

�Differentiation in TensorFlow

TensorFlow computes derivatives using something called “automatic 

differentiation” (Abadi et al. 2015). This is a form of differentiation that is 

neither purely symbolic nor purely numerical and is particularly efficient 

in the context of training deep learning models. In this section, we’ll 

discuss the concept of automatic differentiation and explain how it differs 

from symbolic and numerical differentiation. We’ll then demonstrate how 

to compute a derivative in TensorFlow. Importantly, while TensorFlow 

does have this functionality, most non-research applications will not 

require users to explicitly program the computation of derivatives.

Chapter 1  TensorFlow 2



51

Automatic Differentiation

Let’s say you want to compute the derivative of f(g(x)), where f(y) = 5y2 and 

g(x) = x3. You know from the previous section that this can be done with 

the chain rule, as in Equation 1-29.

Equation 1-29. Example of the chain rule.

	

d
dx

f g x f g x g x x( )( ) = ( )( ) ( ) =¢ ¢ 30
5

	

What’s shown in Equation 1-29 is called “symbolic” differentiation. 

Here, we perform differentiation either manually or computationally, 

ultimately yielding an exact, algebraic expression for the derivative.

While having tidy, exact expression for derivatives ensures efficient 

and accurate computations, computing symbolic derivatives can be quite 

challenging. First, if we do it manually, the process is likely to be time-

consuming and error-prone, especially for neural networks with millions 

of parameters. And second, if we do it computationally, we are likely 

to encounter problems with the complexity of higher-order derivative 

expressions and the computation of derivatives that have no closed-form 

expression.

Numerical differentiation, which is commonly used as an alternative 

to symbolic differentiation in economics, relies on our original, limit-

based definition of a derivative and is given in Equation 1-30.8 The 

only difference is that we now use a small value of h in the numerical 

implementation, rather than evaluating the expression in the limit as h 

goes to zero.

8�See Judd (1998) for a comprehensive overview of numerical differentiation 
methods.
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Equation 1-30. Definition of numerical derivative using forward 

difference method.

	
¢( ) » +( ) - ( )f x

f x h f x
h 	

There are, in fact, several ways to do this. The one we’ve used in Equation 
1-30 is called the “forward difference” method, since we compute the 
difference between the function evaluated at x and then some value greater 
than x – namely, x + h. We can see two immediate implications of switching 
to numerical differentiation. First, we are no longer computing an exact, 
algebraic expression for the derivative. In fact, we’re not even attempting to; 
rather, we’re merely evaluating the function at different points. And second, 
the size of h will determine the quality of our approximation of f  ′(x).

Equation 1-31 shows how the derivative would be computed for the 
example we used for symbolic differentiation.

Equation 1-31. Example of numerical derivative using forward 
difference method.

	

d
dx

f g x
x h x

h
( )( ) » +( ) -5 5

6 6

	

Automatic differentiation, in contrast, is neither fully symbolic nor fully 
numerical. Relative to numerical differentiation, it has the advantage of 
increased accuracy. It is also more stable than numerical differentiation in 
deep learning settings, where models often have thousands or even millions 
of parameters. Furthermore, it doesn’t suffer from symbolic differentiation’s 
requirement to provide a single expression for the derivative. This, again, will 
prove particularly useful in deep learning settings, where we must compute 
the derivative of the loss function with respect to parameters that are nested 
deep inside of a sequence of functions.

How does automatic differentiation improve this process? First, it 
compartmentalizes the symbolic computation of a derivative into its 
elementary parts. And second, it evaluates the derivative at a single 
point, sweeping either forward or backward through the chain of partial 
derivatives.
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Let’s revisit the nested function example again, where f(y) = 5y2 and 

g(x) = x3, and where we want to compute d/dxf (g(x)). We could use 

numerical differentiation by taking finite differences or compute a single 

expression for the derivative using symbol differentiation, but let’s try 

using automatic differentiation instead.

We’ll start by breaking the computation up into its elementary 

components. In this case, they are x, y, ∂f/∂y, and ∂y/∂x. We then compute 

expressions for the partial derivatives symbolically. That is, ∂f/∂y = 10y and 

∂y/∂x = 3x2. Next, we construct the chain of partial derivatives, which is 

simply ∂f/∂y ∗ ∂y/∂x. The chain rule tells us that this is ∂f/∂x. Rather than 

actually performing the multiplication symbolically, we will sweep through 

the chain numerically.

We’ll start with ∂y/∂x by setting x = 2, since we must perform automatic 

differentiation at a point. This immediately yields ∂y/∂x = 12 and y = 8. We 

can now step through the chain, plugging in y = 8 to yield ∂f/∂y = 80. This 

allows us to compute ∂f/∂x by simply multiplying through the chain of 

partial derivatives, yielding 960.

In this case, we’ve swept through the chain of partial derivatives by 

moving from the front (the input value) to the back (the output). For neural 

networks, we’ll do the exact opposite: we’ll move in reverse during the 

backpropagation step.

While we won’t need to implement automatic differentiation 

algorithms ourselves, knowing how they work will give you a better sense 

of how TensorFlow works. For a survey of the literature on automatic 

differentiation, see Baydin et al. (2018).

Computing Derivatives in TensorFlow

Earlier in the section, we used an example of a nested function and 

demonstrated how to compute it using automatic differentiation. Let’s do 

the same thing in TensorFlow and verify that our manual computations 

were correct. Listing 1-20 will provide the details.
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We start, as usual, by importing tensorflow under the alias tf. Next, 

to match our example from earlier in the section, we define x as a tf.

constant() object equal to two. We then define the nested function f(g(x)) 

within the context of a gradient tape instance. We start by applying the 

watch() method to x to indicate that GradientTape() should record what 

happens to x. By default, it will not, since x is a constant. Note that we 

could have defined x as a tf.Variable() object for the sake of simplicity; 

however, for this problem, we have been treating x as an input, so it would 

be defined as a constant.

Listing 1-20.  Compute a derivative in TensorFlow

import tensorflow as tf

# Define x as a constant.

x = tf.constant(2.0)

# Define f(g(x)) within an instance of gradient tape.

with tf.GradientTape() as t:

        t.watch(x)

        y = x**3

        f = 5*y**2

# Compute gradient of f with respect to x.

df_dx = t.gradient(f, x)

print(df_dx.numpy())

960.0

Finally, we apply the gradient() method of GradientTape() to 

differentiate f with respect to x. We then print the result, applying the 

numpy() method to extract the value. Again, we find that it is 960, matching 

the automatic differentiation we performed manually earlier.
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TensorFlow’s automatic differentiation approach is fundamentally 

different from standard packages for computation in economics, which 

typically offer either numerical or symbolic computation of derivatives, but 

not automatic differentiation. This will provide us with an advantage when 

solving theoretical economic models.

�Loading Data for Use in TensorFlow
In this chapter, we have introduced TensorFlow, discussed the differences 

between versions 1 and 2, and provided an extended overview of 

preliminary topics. We will end the chapter on a practical note by 

explaining how to load data for use in TensorFlow. If you are familiar 

with TensorFlow 1, you may remember that static graphs required all 

fixed input data to be imported as or transformed into a tf.constant(). 

Otherwise, the data would not be included in the computational graph.

Since TensorFlow 2 uses Eager Execution by default, it is no longer 

necessary to work within the restrictions of a static computational graph. 

One implication of this is that you may now directly make use of numpy 

arrays without first converting them to tf.constant() objects. This also 

means that we can use standard data importation and pre-processing 

pipelines in numpy and pandas.

Listing 1-21 provides a loading and pre-processing pipeline for a 

rank-4 image tensor input to a neural network. We will assume that the 

tensor has been stored in the npy format, which can be used to save 

arbitrary numpy arrays.

Notice that we transform the tensor by dividing each of its elements by 

255. This is a common pre-processing step for image data, which, if given 

in red-green-blue (RGB) format, consists of a rank-3 tensor of integers 
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between 0 and 255. Finally, we print the shape, yielding (32, 64, 64, 3), 

which suggests that we have a batch of 32 images of shape (64, 64, 3) in the 

tensor.

Note that the pre-processing step was performed using numpy. What 

if we instead want to perform it using TensorFlow? We can do this using 

the approach in either Listing 1-22 or Listing 1-23. Listing 1-23 transforms 

images into a tf.constant() object before performing division. Since one 

of the objects involved in the division is a TensorFlow object, the operation 

will be performed using TensorFlow.

Listing 1-21.  Import image data with numpy

import numpy as np

# Import image data using numpy.

images = np.load('images.npy')

# Normalize pixel values to [0,1] interval.

images = images / 255.0

# Print the tensor shape.

print(images.shape)

(32, 64, 64, 3)

In contrast, the approach in Listing 1-23 explicitly makes use of the 

TensorFlow operation tf.division(), rather than operation overloading 

with the division symbol, /. This is necessary because neither images nor 

255.0 is a TensorFlow object. Since we are not working with a static graph, 

we did not have to specify this. However, if we are not careful, we will end 

up performing operations using numpy, rather than TensorFlow.
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In many cases, we will want to load data in a flat format, such as a table 

of features, which may be stored in a csv file. As in Listing 1-24, we can do 

this using the read_csv() function from pandas. However, before we can 

use the data in TensorFlow operations, we must first convert it to either a 

numpy array or a tf.constant() object.

Listing 1-22.  Perform division in TensorFlow using constant tensors

import tensorflow as tf

# Import image data using numpy.

images = np.load('images.npy')

# Convert the numpy array into a TensorFlow constant.

images = tf.constant(images)

# Normalize pixel values to [0,1] interval.

images = images / 255.0

Listing 1-23.  Perform division in TensorFlow using the division 

operation

import tensorflow as tf

# Import image data using numpy.

images = np.load('images.npy')

# Normalize pixel values to [0,1] interval.

images = tf.division(images, 255.0)

To reiterate, there are two things to remember about loading data for 

use in TensorFlow. The first is that you may use whichever module you 

prefer to load the data, including numpy and pandas. TensorFlow also offers 

functionality for importing data. And second, once the data has been 

imported, it must be converted to either a numpy array or a TensorFlow 
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object, such as a constant or variable, before you can include it in 

TensorFlow operations. Furthermore, if you would prefer to use operator 

overloading, such as the division symbol, rather than tf.division(), at 

least one of the objects must be a TensorFlow tensor.

Listing 1-24.  Load data in pandas for use in TensorFlow

import pandas as pd

# Import data using pandas.

data = np.load('data.csv')

# Convert data to a TensorFlow constant.

data_tensorflow = tf.constant(data)

# Convert data to a numpy array.

data_numpy = np.array(data)

�Summary
This chapter served as a broad introduction to TensorFlow 2, covering 

not just the basics of TensorFlow itself, including how to load and prepare 

data, but also a mathematical description of calculus and linear algebra 

operations commonly applied in machine learning algorithms. We also 

explained that TensorFlow is a useful tool for applying machine learning 

routines to economic problems and can also be used to solve theoretical 

economic models, making it an ideal choice for economists. Additionally, 

we discussed how it offers a high level of flexibility, distributed training 

options, and a deep library of useful extensions.
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CHAPTER 2

Machine Learning 
and Economics
Machine learning is primarily oriented toward prediction, whereas much 

of economics is concerned with causality and equilibrium. While the two 

disciplines have a shared interest in forecasting, they often approach it 

with different preferences and objectives. The economics discipline tends 

to favor forecasting models that are explicable, parsimonious, and stable, 

whereas machine learning uses an empirical process for determining what 

is included in a model, prioritizing feature selection, regularization, and 

testing over intuition.

As a consequence of these seemingly intractable differences, the 

economics discipline was initially slow in adopting methods from machine 

learning. It has since become clear that economics can benefit from 

integrating the models, methods, and conventions of machine learning. In 

this chapter, we will examine work that has argued in favor of introducing 

elements of machine learning into economics and finance. This research 

not only identifies where machine learning can be fruitfully employed to 

solve problems in economics but also determines where there are genuine 

conflicts between the two disciplines that are unlikely to be reconcilable.

https://doi.org/10.1007/978-1-4842-6373-0_2#DOI
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While this book centers around building, training, and testing models 

using TensorFlow, this chapter has a different objective: to build a strong 

conceptual understanding of the relationship between economics and 

machine learning. We will do this by stepping through the landmark 

papers in economics and finance that discuss machine learning and its 

role in the discipline.

�“Big Data: New Tricks for Econometrics” 
(Varian 2014)
Varian (2014) made one of the earliest attempts to introduce methods from 

machine learning to economists in a paper entitled “Big Data: New Tricks 

for Econometrics.” Among other things, he argues that economists could 

benefit from developing a better understanding of ML’s approach to model 

uncertainty and validation.

He points out that economists typically use a single model that is 

assumed to be the “true” one, whereas machine learning scientists often 

average over many small models. With respect to validation, he explains 

how machine learning methods for cross-validation could be used. For 

instance, k-fold cross-validation, which is depicted in Figure 2-1, divides 

a dataset into k folds or subsets of equal size. It then uses a different fold 

as the validation set in each of k training iterations. He argues that k-fold 

validation and other ML cross-validation techniques could provide an 

alternative to goodness-of-fit measures, such as R2, which are commonly 

used in econometrics.

In addition to high-level insights, Varian (2014) also discusses 

common methods in machine learning that could be employed in 

econometrics. This includes the use of classification and regression trees; 

random forests; variable selection techniques, such as LASSO and spike-

and-slab regression; and methods for combining models into ensembles, 

such as bagging, boosting, and bootstrapping.
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Varian (2014) also provides a number of concrete examples of how 

machine learning could be used in economics. He applies tree-based 

estimators to measure the impact of racial discrimination on mortgage 

lending decisions, making use of the Home Mortgage Disclosure Act 

(HMDA) data. He argues that such estimators could provide an alternative 

to more commonly used methods for binary classification in economics, 

such as the logit and probit models.

Varian also uses models that incorporate feature selection, including 

LASSO and a spike and slab, to examine the importance of different 

determinants of economic growth. He does this using a dataset that 

consists of 72 countries and 42 potential determinants of growth, originally 

introduced by Sala-i-Martín (1997).

= Validation= Train

Iteration

Fo
ld

Figure 2-1.  A diagram of k-fold cross-validation for k = 5
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�“Prediction Policy Problems” (Kleinberg 
et al. 2015)
Kleinberg et al. (2015) discuss the concept of “prediction policy problems,” 

where the generation of accurate predictions is more important than a 

causal inference assessment. They argue that machine learning, which is 

organized around the generation of accurate predictions, has an advantage 

over traditional econometric methods in such applications.

Kleinberg et al. (2015) provide an illustrative comparison between 

two types of policy problems. In the first, a policymaker is confronted 

with a drought and is deciding whether to use a technology, such as cloud 

seeding, to increase rainfall. In the second, an individual is deciding 

whether to take an umbrella on a commute to work to avoid becoming wet 

if it rains. In the first case, the policymaker is concerned with causality, 

since the effectiveness of the policy will depend on whether cloud seeding 

causes rainfall. In the second case, the individual will only be concerned 

with predicting the likelihood of rain and will be uninterested in causal 

inference. In both cases, the intensity of the rainfall will affect the policy 

outcome of interest.

The authors summarize the policy prediction problem in general terms 

in Equation 2-1.

Equation 2-1. The prediction policy problem.
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Here, π is the payoff function, X0 is the policy adopted, and Y is the 

outcome variable. In the umbrella choice example, π is the extent to which 

the person is wet after commuting, Y is the intensity with which it rained, 

and X0 is the policy adopted (umbrella or not). In the drought example, π 
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measures the impact of the drought, Y is the intensity with which it rained, 

and X0 is the policy adopted (cloud seeding or not).

If we select the umbrella as our policy option, then we know that 

∂Y/∂X0 = 0, since the umbrella does not stop the rain from falling. This 

reduces the problem to an evaluation of ∂π/∂X0 and Y, that is, the impact of 

the umbrella on the payoff function and the intensity of rainfall. Since the 

impact of the umbrella on preventing wetness is known, we only need to 

predict Y. Thus, the policy problem itself reduces to a prediction problem.

Notice that this is not the case in the drought example, where we try to 

increase rainfall through the use of cloud seeding. Here, we must estimate 

the effect of the method itself on rainfall, ∂Y/∂X0. The two cases are 

illustrated in a causality diagram, which is shown in Figure 2-2.

Kleinberg et al. (2015) suggest that important policy problems can 

sometimes be resolved by predicting Y itself, rather than performing 

causal inference. This opened up a subfield of problems in economics for 

which machine learning is particularly well-suited to solve. This also has 

X0

Y

X0

Y

Y

Umbrella Cloud Seeding

Figure 2-2.  Illustration of policy prediction problems from Kleinberg 
et al. (2017)
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useful implications for practitioners, including public and private sector 

economists: identifying problems where a policy can be determined purely 

through prediction allows you to use off-the-shelf ML techniques without 

further modification.1

�“Machine Learning: An Applied 
Econometric Approach” (Mullainathan 
and Spiess 2017)
Mullainathan and Spiess (2017) examine how supervised machine 

learning methods could be applied to economics. They argue that 

problems in economics are typically centered around recovering 

estimates of model parameters, ß̂, whereas problems in machine learning 

are typically centered around the recovery of fitted values or model 

predictions, ŷ.

While this difference may initially seem trivial, it turns out to be quite 

important for two reasons. First, it leads to a different orientation in model 

building and estimation that typically results in inconsistent parameter 

estimates in machine learning. That is, as the sample size grows, the 

parameter estimates, ß̂, won’t necessarily converge in probability to the 

true parameter values, ß, in machine learning models. And second, it is 

often difficult or impossible to construct a standard error for any individual 

parameter in a machine learning model.

Despite these substantial differences, Mullainathan and Spiess (2017) 

argue that machine learning can still be useful for economics, as long 

as economists exploit its advantages. That is, rather than using machine 

learning to do parameter estimation and hypothesis testing, they argue 

1�See Kleinberg et al. (2017) for an example of a policy prediction problem 
involving bail decisions.
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that economists should instead consider tasks where prediction itself is 

important. They identify three such cases for economists:

	 1.	 Measuring economic activity: This could be 

done, for instance, using image or text datasets. 

Model parameters do not need to be consistently 

estimated, as long as the model returns an accurate 

prediction of economic activity.

	 2.	 Inference tasks that have a prediction step: 

Certain inference tasks, such as instrumental 

variables (IV) regression, involve intermediate steps 

where fitted values are generated. Since biases 

in parameter estimates arise from overfitting in 

the intermediate steps, making use of machine 

learning techniques, such as regularization, could 

reduce bias in IV estimates. Figure 2-3 illustrates 

the case where we have a regressor of interest, X; a 

confounder, C; a dependent variable, Y; and a set of 

instruments, Z. We then use ML to transform Z into 

fitted values for X.

	 3.	 Policy applications: The objective of policy work in 

economics is ultimately to offer recommendations 

to policymakers. For instance, a school may be 

deciding whether to hire an additional teacher or 

a criminal justice system may be deciding when to 

give bail to those who have been arrested. Making 

a recommendation ultimately involves making a 

prediction. Machine learning models are better 

suited to this task than simple linear models.
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Mullainathan and Spiess (2017) also conduct an empirical application 

in the paper to evaluate the usefulness of machine learning in improving 

fit. The exercise involves the prediction of the natural logarithm of house 

prices from a random sample of 10,000 houses drawn from the American 

Housing Survey. They make use of 150 features and evaluate the results 

using R2. Comparing OLS, a regression tree, LASSO regression, a random 

forest, and an ensemble of models, they find that ML methods are, in 

general, able to deliver improvements in R2 over OLS. Furthermore, there is 

heterogeneity in those improvements: for certain house price quintiles, the 

gains are large, whereas they are small or even negative in other quintiles.

Finally, Mullainathan and Spiess (2017) argue that ML offers value 

added to economics along two additional dimensions. First, it provides an 

alternative process for estimating or training models, which is centered 

around regularization to prevent overfitting and tuning based on empirical 

feedback. And second, it can be used to test theories about predictability. 

The Efficient Markets Hypothesis (EMH), for instance, implies that risk-

adjusted excess returns should not be predictable. Consequently, using 

ML models to demonstrate predictability has implications for the theory, 

even if all parameters used in the prediction are inconsistently estimated.

Y

C

XZ
ML

Figure 2-3.  Illustration of instrumental variables regression using ML
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�“The Impact of Machine Learning 
on Economics” (Athey 2019)
Similar to Mullainathan and Spiess (2017), Athey (2019) reviews the 

impact of machine learning on economics and makes predictions about 

likely future developments. Her work centers on a comparison between 

machine learning and traditional econometric methods, an evaluation of 

off-the-shelf machine learning routines for use in economics, and a review 

of policy prediction problems of the variety discussed in Kleinberg et al. 

(2015).

�Machine Learning and Traditional Econometric 
Methods
Athey (2019) argues that machine learning tools are not suitable for 

performing causal inference, which is the objective of most econometric 

exercises. They are, however, useful for improving semi-parametric 

methods and do enable researchers to make use of a large number of 

covariates. Given the parsimony of econometric models and the increasing 

availability of “big data,” it seems likely that there will be substantial value 

in adopting methods and models from machine learning, which are 

generally better suited to processing and modeling large volumes of data.

Another area of strength Athey identifies is the use of flexible functional 

forms. The econometrics literature has broadly specialized around 

producing tools for a single narrow task: performing causal inference in a 

linear regression model. In many cases, however, there are good reasons to 

believe that such models fail to capture important non-linearities. Machine 

learning offers a rich variety of models that allow for non-linearities between 

features, and between features and the target, something that is usually 

absent from econometric models.
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In addition to causal inference, Athey also compares the processes 

for performing empirical analysis, selecting a model, and computing 

confidence intervals on parameter values. The conclusions she reaches 

about machine learning are covered in the following subsections.

�Empirical Analysis

Athey (2019) highlights an important contrast between economics and 

machine learning, which is most visible in their differing approach to 

empirical analysis. Economists typically select a model using some set of 

principles and determine its functional form through the use of theory. 

They then estimate the model once.

Machine learning takes a different approach to empirical analysis – 

namely, an iterative one. Rather than starting with a model determined 

by principles and theory, machine learning starts with a standard model 

architecture and/or set of hyperparameters. It then trains the model, 

evaluates performance using a form of cross-validation, and then tunes the 

hyperparameters and model architecture to improve performance. The 

training process is then repeated.

Athey argues that tuning and cross-validation are some of the most 

useful tools that machine learning offers to econometricians. Reorienting 

empirical analysis in economics around an iterative and empirical process 

could lead to substantial improvements in explaining variation in the data.

�Model Selection

While Athey (2019) argues that the empirical tuning process in machine 

learning could offer benefits to certain applications in economics, she 

also cautions that it is less likely to be helpful for causal inference. This 

is because machine learning applications typically involve cases where 

the evaluation of performance is simple and measurable. For instance, in 

machine learning, we may want a high rate of accuracy in the validation 

sample or we might want a low mean squared error. In fact, when 
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we estimate regression models in economics, we are also, of course, 

minimizing some loss function, such as the sum of the squared errors. We 

may also look at performance metrics, such as measures of out-of-sample 

forecast errors, as is illustrated in Figure 2-4.

What we can’t do, however, is measure “causality” and train our 

models to maximize it. This is a serious challenge, whether we are using 

econometric tools or machine learning tools; however, it is particularly 

important to point it out for machine learning tools, since this is a reason to 

believe that they will not help us to improve along the causality dimension.

�Confidence Intervals

One drawback of using machine learning methods in economics is that 

such models typically do not produce valid confidence intervals. In fact, 

confidence intervals are not usually an object of interest in machine 

learning, since models often contain thousands of parameters. Athey 

(2019) argues that this is a challenge for research in economics, which 

typically involves hypothesis testing that is centered around the statistical 

significance of individual parameters. It is, however, possible to overcome 

this restriction in certain settings, but it requires the use of advanced, 

recently developed methods in economics and statistics, which are not 

typically available with off-the-shelf ML routines.

Figure 2-4.  Illustration of model evaluation process in machine 
learning
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�Off-the-Shelf ML Routines
Athey (2019) evaluates a broad set of off-the-shelf routines to consider 

how they would perform if applied to tasks in economics and finance. She 

argues that unsupervised machine learning methods, such as clustering 

algorithms and topic modeling, could play a valuable role in economics. 

They have the benefit of not generating spurious relationships, since there 

is no dependent variable, and can, themselves, be used to generate a 

dependent variable.

She then evaluates supervised machine learning methods, classifying 

such methods according to their widespread adoption in the social 

sciences. Neural networks, for instance, have been used in various 

applications in the social sciences in the past, but have only recently 

gained widespread use and acceptance. As such, Athey (2019) would 

classify such models as “machine learning models.” The same cannot be 

said, for instance, for OLS or the logit model, which have long been used in 

economics and finance.

Athey (2019) identifies the following models which can be classified 

as “machine learning models” under this scheme: regularized regression, 

including LASSO, ridge, and elastic net; random forests and regression 

trees; support vector machine (SVM) models; neural networks; and matrix 

averaging.

The standard trade-off inherent in using such models, as originally 

argued by Mullainathan and Spiess (2017), is expressiveness versus 

overfitting. Using more features, allowing for more flexible functional 

forms, and reducing regularization penalties come at the cost of a higher 

probability of overfitting.

Athey argues that this approach has many advantages in settings 

where there are a high number of covariates. It is, however, necessary to 

employ non-standard routines to compute confidence intervals. It is also 

important to evaluate whether results are spurious.
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�Policy Analysis
In addition to causal inference, economics is also concerned with 

prediction for its own sake. An accurate economic forecasting model, for 

instance, will still be useful for planning purposes, even if the accuracy 

arises as a result of non-causal associations between variables. As 

discussed previously in the review of Kleinberg et al. (2015), this concept 

also applies to policy problems. Governments and organizations trying 

to decide whether to take a specific action will often do so under two 

different sets of circumstances. In the first set of circumstances, there is 

uncertainty about the efficacy of the policy they will adopt. In the second, 

the uncertainty is about some external event.

Consider, for instance, a small bank deciding whether or not to build a 

larger capital buffer to prepare for a financial crisis. They might construct 

a model that indicates the targeted size of their buffer conditional on the 

state of the world. This would involve constructing and estimating  

a model that produces a policy prediction. Importantly, causality is 

irrelevant in this model, since the small bank does not influence the  

state of the financial sector to any appreciable extent. Rather, it simply 

needs to be able to predict a crisis in advance, so it can adopt the  

correct policy.

Athey (2019) conducts a review of the related policy prediction  

problem literature. She argues that there are several topics of interest  

within this literature that remain critically important for economists to 

evaluate:

	 1.	 Model interpretability: Economic models tend to 

be simple and interpretable, making the origin of 

the policy prescription understandable. This is not 

the case for many ML models.
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	 2.	 Fairness and non-discrimination: The complexity 

of machine learning models often makes it difficult 

to determine the origin of unfair or discriminative 

policy prescriptions. As such, transitioning to 

ML models will necessitate an evaluation of how 

fairness and non-discrimination can be preserved.

	 3.	 Stability: Given the complexity of machine learning 

models, it is not clear whether relationships 

estimated for one population will tend to hold for 

others. Additional work will be needed to evaluate 

the generalizability of results.

	 4.	 Manipulability: The size and complexity of ML 

models, along with their low level of interpretability, 

opens up the possibility of manipulation. This is 

already a problem in economic models, but it is 

compounded by the complexity and black-box 

nature of many ML models.

These remain both interesting topics of research and also important 

considerations for practitioners. Both public and private sector economists 

will need to evaluate the interpretability, fairness, stability, and 

manipulability of the predictions that arise from the use of ML models in 

economics.

�Active Research and Predictions
Athey (2019) concludes with an exhaustive review of active lines of ML 

research in economics, as well as predictions for the future. Interested 

readers should refer to the manuscript itself for details. We will, however, 

highlight some of the areas of active research and predictions about future 

developments.
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Active lines of research include (1) the use of ML to estimate 

average treatment effects,2 (2) the estimation of optimal policy under 

heterogeneous treatment effects,3 (3) the use of ML to perform 

supplementary analyses that evaluate the extent of the confoundedness 

problem in causal inference,4 and (4) the use of ML in panel and 

difference-in-difference methods.5

Athey includes an extensive list of predictions for ML’s adoption and 

spread within economics, starting with increased use of off-the-shelf 

methods, initially employed for their intended purpose within ML. From 

there, ML is likely to be localized to perform tasks that are of particular 

interest to economists and social scientists. She predicts that the impact 

on causal inference in economics will be small, but the overall impact will 

be large, necessitating increased interdisciplinary work, coordination with 

private businesses, and a revival of stale literatures focused on economic 

measurement.

�“Machine Learning Methods Economists 
Should Know About” (Athey and Imbens 
2019)
Separately, Athey and Imbens made substantial contributions to the 

advancement of machine learning methods in economics through 

multiple works. In Athey and Imbens (2019), they provide an overview of 

methods in machine learning that are useful for economists.

2�See Chernozhukov et al. (2015), Athey et al. (2016), and Chernozhukov et al. 
(2017).

3�See Athey and Imbens (2017), Wager and Athey (2018), and Athey et al. (2019).
4�See Athey and Imbens (2017).
5�See Doudchenko and Imbens (2016).
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They start with a discussion of the integration of ML into economics, 

the initial resistance it faced, and the reasons underlying that resistance. 

The most serious initial objection was that ML models failed to produce 

valid confidence intervals off the shelf. While not important for ML itself, 

this was a substantial hindrance for the use of ML in traditional problems 

in economics.

Athey and Imbens (2019) explain that the literature has since 

approached this problem by producing modified versions of machine 

learning models. In particular, they argue that it is often necessary to 

modify ML models to exploit the structure of specific economic problems. 

This might include issues related to causality, endogeneity, monotonicity 

of demand, or theoretically motivated restrictions.

The paper itself is intended as a brief introduction to each of these 

methods. In particular, they identify the following families of models and 

methods that they deem essential for those who want to use ML to explore 

traditional problems in economics:

	 1.	 Local linear forests

	 2.	 Neural networks

	 3.	 Boosting

	 4.	 Classification trees and forests

	 5.	 Unsupervised learning with k-means clustering and 

GANs

	 6.	 Average treatment effects under the 

confoundedness assumption

	 7.	 Orthogonalization and cross-fitting

	 8.	 Heterogeneous treatment effects

	 9.	 Experimental design and reinforcement learning
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	 10.	 Matrix completion and recommender systems

	 11.	 Synthetic control methods

	 12.	 Text analysis

Interested readers should consult Athey and Imbens (2019) for the 

details of how each method can be integrated into economic analysis. We 

will return to some of these methods in detail later in the book and will 

delay a detailed discussion to those chapters.

�“Text as Data” (Gentzkow et al. 2019)
In contrast to the other surveys we have covered, Gentzkow et al. (2019) 

are narrowly focused on a single topic: text analysis. They provide a 

comprehensive survey of text analysis methods used in economics, as well 

as an introduction to methods that are not currently used in economics, 

but which they argue would be useful if adopted.

The paper is divided into three sections: (1) representing text as data, 

(2) statistical methods, and (3) applications. Since we will cover text 

analysis in Chapter 6, including extended coverage of Gentzkow et al. 

(2019), we will limit ourselves to a brief overview here.

�Representing Text As Data
The paper starts with an extended discussion of standard pre-processing 

routines for text datasets. For most economists, such routines will be 

unfamiliar, but learning how to perform them is essential for conducting 

text analysis. These routines involve the transformation of text documents 

into a numerical format that is usable in models. This usually starts with 

a cleaning process, followed by a feature selection process. Common 

features include words and phrases. We will cover this process in detail in 

Chapter 6.
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�Statistical Methods
The authors point out that most text analysis done in economics makes 
use of dictionary-based methods. Dictionary-based methods fall into the 
category of unsupervised learning methods. Rather than training a model 
to learn the relationship between features and a target, you instead specify 
a dictionary in advance, which is then applied to a document, yielding a 
measure of some feature of the text.

One common form of dictionary-based method measures the 
sentiment of documents. Sentiment tells us the extent to which the text in a 
document is positive or negative. Such dictionaries were originally created 
for purposes unrelated to economics. However, early work in economics 
produced dictionaries that were designed to extract features specific to 
economics. Figure 2-5 illustrates the application of a general sentiment 
dictionary to the first paragraph of a Federal Open Market Committee 
(FOMC) announcement.6 Positive words are highlighted in green and 
negative words in red. We can see that the sentiment of certain words is 
not correctly identified given the context in which they are used.

6�See the following link for the full FOMC statement: www.federalreserve.gov/
newsevents/pressreleases/monetary20190918a.htm.

Figure 2-5.  Application of general sentiment dictionary to FOMC 
statement

Chapter 2  Machine Learning and Economics



79

The authors argue that Baker et al. (2016) is an ideal use of dictionary-

based methods in economics. First, the feature they want to extract, 

uncertainty about economic policy, is unlikely to emerge from a topic model 

applied to newspaper articles. And second, the dictionary they used to 

extract the feature was tested against human readers and produced similar 

results. In such cases, a dictionary-based method is likely to be ideal. A plot 

of the EPU indices for selected countries is shown in Figure 2-6.7

They do, however, point out that economics currently relies heavily on 

dictionary-based methods and that the discipline could benefit from an 

expansion into other methods within text analysis. They cover a combination 

of different methods, some of which are unfamiliar to economists and others 

of which are familiar, but only when used in different contexts.

7�The following link provides updated EPU indices for more than 20 countries:  
www.policyuncertainty.com/.

Figure 2-6.  EPU indices for US, UK, Germany, and Japan

Chapter 2  Machine Learning and Economics



80

Their coverage includes text-based regression, penalized linear 

regression, dimensionality reduction, and non-linear text regression, 

including regression trees, deep learning, Bayesian regression methods, 

and support vector machines.

Finally, they also cover word embeddings, which are arguably 

underused in text analysis applications within economics. Word 

embeddings provide an alternative means of expressing features in text, 

which are continuous and retain the information content of words. This 

contrasts with commonly used approaches in economics, which typically 

involve treating words as one-hot encoded vectors, all of which are 

orthogonal to each other.

�Applications
Gentzkow et al. (2019) end with an expansive literature review of text 

analysis methods in economics. Such applications include authorship 

identification, stock price prediction, central bank communication, 

nowcasting, policy uncertainty measurement, and media slant 

quantification. We will return to this literature and the details of the 

applications in question in Chapter 6.

�“How is Machine Learning Useful 
for Macroeconomic Forecasting” 
(Coulombe et al. 2019)
Both the reviews of machine learning in economics and the methods that 

have been developed for machine learning in economics tend to neglect 

the field of macroeconomics. This is, perhaps, because macroeconomists 

typically work with nonstationary time series datasets, which contain 

relatively few observations. Consequently, macroeconomics is often seen 
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as a poor candidate for benefitting from the adoption of machine learning 

methods, even though prediction (forecasting) is a common task among 

private and public sector macroeconomists.

Coulombe et al. (2019) examine whether this is truly the case 

by comparing machine learning methods to standard tools for 

macroeconometric analysis. They identify four areas in which ML could 

plausibly provide improvements for macroeconometric forecasting:

	 1.	 Non-linearities: Macroeconomics is inherently 

non-linear. Unemployment tends to decline 

slowly during economic expansions, only to spike 

suddenly when a recession occurs. Furthermore, 

if a downturn affects the financial sector, leading 

to a credit contraction, a recession might become 

considerably more severe and prolonged. Capturing 

such elements could be critical for producing 

accurate macroeconomic forecasts. At least in 

principle, ML provides a toolset that allows for 

flexible functional forms, including non-linearities, 

which could be used for such a purpose.

	 2.	 Regularization: In the era of big data, there 

are now many time series available for use in 

macroeconomic forecasting models. The St. Louis 

Federal Reserve Bank’s FRED system, for instance, 

currently includes more than 700,000 time series. 

Given the low frequency of commonly forecasted 

series, such as GDP and inflation, traditional models 

will have too few observations to make use of the 

high number of covariates without overfitting. ML 

suggests that such problems can be resolved by the 

application of regularization techniques, which 

penalize the inclusion of additional variables.
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	 3.	 Cross-validation: As with ML, the test of a good 

forecast model is its out-of-sample performance. 

However, unlike ML, this is not typically the only 

test of a good model. As such, less emphasis is 

placed on cross-validation techniques, which are 

generally better developed in the ML literature. It is 

possible that economics and finance could benefit 

by adopting both techniques and best practices.

	 4.	 Alternative loss functions: The uniformity of 

methods used in economics has resulted in the 

widespread adoption of the same loss functions 

for all problems. It is possible, however, that not 

all prediction errors should be weighted using the 

same scheme; and thus, there may be something to 

gain from examining the ML literature, where it is 

common to train models with exotic loss functions.

The authors perform the comparison exercise in a fixed effects 

regression setting. With respect to ML methods, they consider penalized 

regression and random forests. They also make use of hyperparameter 

tuning and loss function selection. They reach four broad conclusions 

about the use of ML in macroeconometric forecasting:

	 1.	 Having more data and exploiting non-linearities 

improve forecasting at long time horizons for real 

variables.

	 2.	 Factor models, which are already commonly in 

use in macroeconomics, are a suitable source of 

regularization.

	 3.	 K-fold cross-validation is as useful in evaluating 

overfitting as the Bayesian Information Criterion 

(BIC).
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	 4.	 The L2 loss function, which is already common 

in macroeconomics, proved sufficient for their 

forecasting exercise.

Overall, the authors find that ML methods can improve 

macroeconomic forecasts; however, the gains, as we may have expected, 

might be small relative to other categories of problems within economics. 

Time series forecasts for financial series, for instance, might benefit 

considerably more than macroeconomic forecasts, since the data is often 

available at considerably higher frequencies.

�Summary
In this chapter, we covered a conceptual overview of the landscape of ML 

methods and their use in economics. We examined how they have been 

used historically and how economists conducting research on ML believe 

they will be used in the future. We encountered several recurring themes, 

which we list as follows:

	 1.	 Off-the-shelf machine learning methods, if applied 

to policy prediction problems or economic 

forecasting, can generate improvements over 

existing econometric methods.

	 2.	 Off-the-shelf ML methods are unlikely to be useful 

for causal inference. Modifying ML algorithms 

to localize them for use in economics will be 

necessary.

	 3.	 Unlike economics models, ML models don’t 

typically yield valid confidence intervals for 

individual parameter values.
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	 4.	 Whereas economics uses a theory-driven approach 

to modeling and performs estimation only once, ML 

is grounded in empirics and iterative improvement 

via tuning.

	 5.	 Big data, coupled with ML methods, such as 

regularization and cross-validation, is likely to have 

a substantial impact on which economic questions 

can be answered and how they are answered.

	 6.	 Machine learning is likely to be useful for measuring 

economic activity, performing inference with 

models that have a prediction step, and solving 

policy prediction problems.

In the coming chapters, we will focus primarily on applying the 

methods and strategies discussed in this chapter to economic and 

financial problems using TensorFlow.
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CHAPTER 3

Regression
The term “regression” differs in common usage between econometrics 

and machine learning. In econometrics, a regression involves the 

estimation of parameter values that relate a dependent variable to 

independent variables. The most common form of regression in 

econometrics is multiple linear regression, which involves the estimation 

of a linear association between a continuous dependent variable and 

multiple independent variables. Within econometrics, however, the term 

also encompasses non-linear models and models where the dependent 

variable is discrete. To the contrary, a regression in machine learning refers 

to a linear or non-linear supervised learning model with a continuous 

dependent variable (target). Throughout this chapter, we will adopt the 

broader econometrics definition of regression, but will introduce methods 

commonly applied in machine learning.

�Linear Regression
In this section, we’ll introduce the concept of a “linear regression,” which 

is the most commonly employed empirical method in econometrics. 

It is used when the dependent variable is continuous, and the true 

relationships between the dependent variable and the independent 

variables are assumed to be linear.

https://doi.org/10.1007/978-1-4842-6373-0_3#DOI
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�Overview
A linear regression models the relationship between a dependent variable, 

Y, and a set of independent variables, {X0, …, Xk}, under the assumption 

of linearity in the coefficients. Linearity requires that the relationship 

between each Xj and Y can be modeled as a constant slope, represented by 

a scalar coefficient, βj. Equation 3-1 provides the general form for a linear 

model with k independent variables.

Equation 3-1. A linear model.

	 Y X Xk k= + +¼+ - -a b b0 0 1 1 	

In many cases, we will adopt the notation given in Equation 3-2, which 

explicitly specifies an index for each observation. Yi, for instance, denotes 

the value of variable Y for entity i.

Equation 3-2. A linear model with entity indices.

	 Y X Xi i k ik= + +¼+ - -a b b0 0 1 1 	

In addition to entity indices, we will often use time indices in economic 

problems. In such cases, we will typically use a t subscript to indicate the time 

period in which the variable is observed, as we have done in Equation 3-3.

Equation 3-3. A linear model with entity and time indices.

	 Y X Xit it k itk= + +¼+ - -a b b0 0 1 1 	

In a linear regression, the model parameters, {α, β1, …, βk}, do not vary 

with time or by entity and, thus, are not indexed by either. Additionally, non-

linear transformations of the parameters are not permitted. A dense neural 

network layer, for instance, has a similar functional form, but applies a non-

linear transformation to the sum of coefficient-variable products, as shown 

in Equation 3-4, where σ represents the sigmoid function.
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Equation 3-4. A dense layer of a neural network with a sigmoid 

activation function.

	 Y X Xit it k itk= + +¼+( )- -s a b b0 0 1 1 	

While linearity may appear to be a severe functional form restriction, it 

does not prevent us from applying transformations – including non-linear 

transformations – to the independent variables. We can, for instance, 

re-define X0 as its natural logarithm and include it as an independent 

variable. Linear regressions also permit interactions between two 

variables, such as X0 ∗ X1, or indicator variables, such as 1
0 0X x>{ } .  

Additionally, in time series and panel settings, we can include lags of 

variables, such as Xt − 1j and Xt − 2j.

Transforming and re-defining variables makes linear regression a 

flexible method that can be used to approximate non-linear functions 

to an arbitrarily high degree of precision. For instance, consider the case 

where the true relationship between X and Y is given by the exponential 

function in Equation 3-5.

Equation 3-5. An exponential model.

	 Y Xi i= +( )exp a b 	

If we take the natural logarithm of Yi, we can perform the linear 

regression in Equation 3-6 to recover the model parameters, {α, β}.

Equation 3-6. A transformed exponential model.

	 ln Y Xi i( ) = +a b 	

In most settings, we won’t know the underlying data generating 

process (DGP). Furthermore, there will not be a deterministic relationship 

between the dependent variable and independent variables. Rather, there 

will be some noise, ϵi, associated with each observation, which could 

arise as the result of unobserved, random differences across entities or 

measurement error.
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As an example of this, let’s say that we have data drawn from a process 

that is known to be non-linear, but its exact functional form is unknown. 

Figure 3-1 shows a scatterplot of the data, along with plots of two linear 

regression models. The first is trained under the assumption that the 

relationship between X and Y is well-approximated over the [0, 10] interval 

using a single line, as in Equation 3-7. The second is trained under the 

assumption that five line segments are needed, as in Equation 3-8.

Equation 3-7. A linear approximation to a non-linear model.

	 Y Xi i i= + +a b  	

Equatio 3-8. A linear approximation to a non-linear relationship.

	
Y X Xi i X i X ii i

= +[ ] +¼+ + -( )éë ùû +£ <{ } £ £{ }a b a b0 0 0 2 0 0 8 101 8 1  	

Figure 3-1.  Two linear approximations of a non-linear function
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Figure 3-1 suggests that using a linear regression model with a 

single slope and intercept was insufficient; however, using multiple line 

segments in the form of a piecewise polynomial spline was sufficient to 

approximate the non-linear function, even though we worked entirely 

within the framework of linear regression.

�Ordinary Least Squares (OLS)
Linear regression, as we have seen, is a versatile method that can be 

used to model the relationship between a dependent variable and set 

of independent variables. Even when that relationship is non-linear, 

we saw that it was possible to approximate it in a linear model using 

indicator functions, variable interactions, or variable transformations. 

In some cases, we were even able to capture it exactly through a variable 

transformation.

In this section, we’ll discuss how to implement a linear regression in 

TensorFlow. The way in which we do this will depend on our choice of 

loss function. In economics, the most common loss function is the sum or 

mean of the squared errors, which we will consider first. For the purpose 

of this example, we will stack all of the independent variables in an n x k 

matrix, X, where n is the number of observations and k is the number of 

independent variables, including the constant (bias) term.

We will let b̂  denote the vector of estimated coefficients on the 

independent variables, which we distinguish from the true parameter 

values, β. The “error” term that we will use to construct our loss function is 

given in Equation 3-9. It will often be referred to by different names, such 

as error, residual, or disturbance term.

Equation 3-9. The disturbance term from a linear regression.

	  = -Y Xb̂ 	
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Note that ϵ is an n-element column vector. This means that we can 

square and sum each element by pre-multiplying by its transpose, as in 

Equation 3-10, which gives us the sum of squared errors.

Equation 3-10. The sum of squared errors.

	
¢ = -( )¢ -( )  Y X Y Xˆ ˆb b 	

One of the benefits of using the sum of squared errors as a loss 

function – also called performing “ordinary least squares” (OLS) – is that it 

permits an analytical solution, as derived in Equation 3-11, which means 

that we do not need to use time-consuming and error-prone optimization 

algorithms. We obtain this solution by choosing b̂  to minimize the sum of 

squared errors.

Equation 3-11. Minimizing the sum of squared errors.

	

¶

¶
=

¶

¶
-( )¢ -( ) =¢ 

ˆ ˆ
ˆ ˆ

b b
b bY X Y X 0

	

	 - + =¢ ¢2 2 0X Y X X b̂ 	

	 ¢ ¢=X X X Yb̂ 	

	 b̂ = ( )¢ ¢-
X X X Y

1
	

The only thing left to check is whether b̂  is a minimum or a 

maximum. It will be a minimum whenever X has “full rank.” This will hold 

if no column of X is a linear combination of one or more other columns of 

X. Listing 3-1 provides a demonstration of how we can perform ordinary 

least squares (OLS) in TensorFlow for a toy problem.
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Listing 3-1.  Implementation of OLS in TensorFlow 2

import tensorflow as tf

# Define the data as constants.

X = tf.constant([[1, 0], [1, 2]], tf.float32)

Y = tf.constant([[2], [4]], tf.float32)

# Compute vector of parameters.

XT = tf.transpose(X)

XTX = tf.matmul(XT,X)

beta = tf.matmul(tf.matmul(tf.linalg.inv(XTX),XT),Y)

For convenience, we have defined the transpose of X as XT. We have 

also defined XTX as XT post-multiplied by X. We can compute b̂  by 

inverting XTX, post-multiplying by XT, and then post-multiplying by Y 

again.

The parameter vector we’ve computed, b̂ , minimizes the sum of 

squared errors. While computing b̂  was simple, it might be unclear why 

we would want to use TensorFlow for such a task. If we had instead used 

MATLAB, the syntax for writing the linear algebra operations would have 

been compact and readable. Alternatively, if we had used Stata or any 

statistics module in Python or R, we’d be able to automatically compute 

standard errors and confidence intervals for the vector of parameters, as 

well as measures of fit for the regression.

TensorFlow does, of course, have natural advantages if a task requires 

parallel or distributed computing; however, the need for this is likely to 

be minor when performing OLS analytically. The value of TensorFlow will 

become apparent when we want to minimize a loss function that doesn’t 

have an analytical solution or when we cannot hold all of the data in 

memory.
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�Least Absolute Deviations (LAD)
While OLS is the most commonly used form of linear regression in 

economics and has many attractive properties, we will sometimes want to 

use an alternative loss function. We may, for instance, want to minimize 

the sum of the absolute values of the errors, rather than the sum of the 

squares. This form of linear regression is referred to as Least Absolute 

Deviations (LAD) or Least Absolute Errors (LAE).

For all models, including OLS and LAD, the sensitivity of parameter 

estimates to outliers is driven by the loss function. Since OLS minimizes 

the squares of errors, it places a high emphasis on setting parameter 

values to explain outliers. That is, OLS will place a greater emphasis on 

eliminating a single large error than it will on two errors half of its size. To 

the contrary, LAD would place equal weight on the large error and the two 

smaller errors.

Another difference between OLS and LAD is that we cannot express the 

solution to a LAD regression analytically, since the absolute value prevents 

us from obtaining a closed-form algebraic expression. This means we must 

search for the minimum by “training” or “estimating” the model.

While TensorFlow wasn’t particularly useful for solving OLS, it has 

clear advantages when performing a LAD regression or training another 

type of model that has no analytical solution. We’ll see how to do this in 

TensorFlow and also evaluate how accurately TensorFlow identifies the 

true parameter values at the same time. More specifically, we’ll perform a 

Monte Carlo experiment, where we randomly generate data under certain 

assumed parameter values. We’ll then use the data to estimate the model, 

allowing us to compare the true and estimated parameters.

Listing 3-2 shows how the data is generated. We start by defining the 

number of observations and number of samples. Since we want to evaluate 

TensorFlow’s performance, we’ll train the model parameters on 100 

separate samples. We’ll also use 10,000 observations to ensure that there is 

sufficient data to train the model.
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Next, we define the true values of the model parameters, alpha and 

beta, which correspond to the constant (bias) term and the slope. We set 

the constant term to 1.0 and the slope to 3.0. Since these are the true  

values of the parameters and do not need to be trained, we will use  

tf.constant() to define them.

We now draw X and epsilon from normal distributions. For X, we use 

a standard normal distribution, which has a mean of 0 and a standard 

deviation of 1. These are the default parameter values for tf.random.

normal(), so we do not need to specify anything beyond the number of 

samples and observations. For epsilon, we use a standard deviation of 

0.25, which we specify using the stddev parameter. Finally, we compute 

the dependent variable, Y.

We can now use the generated data to train the model using 

LAD. There are a few steps we will need to complete, which are common 

to all model construction and training processes in TensorFlow. We’ll first 

illustrate them using an example that makes use of only the first sample 

of randomly drawn data. We’ll then repeat the process for each of the 100 

samples.

Listing 3-2.  Generate input data for a linear regression

import tensorflow as tf

# Set number of observations and samples

S = 100

N = 10000

# Set true values of parameters.

alpha = tf.constant([1.], tf.float32)

beta = tf.constant([3.], tf.float32)

# Draw independent variable and error.

X = tf.random.normal([N, S])
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epsilon = tf.random.normal([N, S], stddev=0.25)

# Compute dependent variable.

Y = alpha + beta*X + epsilon

Listing 3-3 provides the code for the first step in the model training 

process in TensorFlow. We first draw values from a normal distribution 

with a mean of 0 and a standard deviation of 5.0 and then use them to 

initialize alphaHat and betaHat. The choice of 5.0 is arbitrary, but is 

intended to emulate a problem in which we have limited prior knowledge 

about the true parameter values. We use the suffix “Hat” to indicate that 

these are not the true values, but estimates. Since we want to train the 

parameters to minimize the loss function, we will define them using  

tf.Variable(), rather than tf.constant().

The next step is to define a function to compute the loss. A LAD 

regression minimizes the sum of absolute errors, which is equivalent to 

minimizing the mean absolute error. We will minimize the mean absolute 

error, since this has better numerical properties.1

To compute the mean absolute error, we define a function called 

maeLoss, which takes the parameters and data as inputs and outputs the 

associated value of the loss function. The function first computes the error 

for each observation. It then transforms these values to their absolute 

values using tf.abs() and then returns the mean across all observations 

using tf.reduce_mean().

1�Since the mean is the sum divided by the number of observations (i.e., scaled 
by a constant), minimizing the mean will be equivalent to minimizing the sum. 
In practice, we will typically minimize means, since computing large sums can 
result in overflow, which occurs when a number exceeds the allowable range for 
its data type.
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Listing 3-3.  Initialize variables and define the loss

# Draw initial values randomly.

alphaHat0 = tf.random.normal([1], stddev=5.0)

betaHat0 = tf.random.normal([1], stddev=5.0)

# Define variables.

alphaHat = tf.Variable(alphaHat0, tf.float32)

betaHat = tf.Variable(betaHat0, tf.float32)

# Define function to compute MAE loss.

def maeLoss(alphaHat, betaHat, xSample, ySample):

        prediction = alphaHat + betaHat*xSample

        error = ySample – prediction

        absError = tf.abs(error)

        return tf.reduce_mean(absError)

The final step is to perform optimization, which we do in Listing 3-4. 

To do this, we’ll first create an instance of the stochastic gradient descent 

optimizer named opt using tf.optimizers.SGD(). We’ll then use that 

instance to perform minimization. This involves applying the minimize() 

method to opt. To perform a single step of optimization over the entire 

sample, we pass the function that returns the loss to the minimize 

operation as a lambda function. Additionally, we pass the parameters, 

alphaHat and betaHat, and the first sample of input data, X[:,0] and 

Y[0:], to maeLoss(). Finally, we also need to pass a list of trainable 

variables, var_list, to minimize(). Each increment of the loop performs 

a minimization step, which updates the parameters and the state of the 

optimizer. In this example, we have repeated the minimization step 1000 

times.
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Listing 3-4.  Define an optimizer and minimize the loss function

# Define optimizer.

opt = tf.optimizers.SGD()

# Define empty lists to hold parameter values.

alphaHist, betaHist = [], []

# Perform minimization and retain parameter updates.

for j in range(1000):

        # Perform minimization step.

        opt.minimize(lambda: maeLoss(alphaHat, betaHat,

        X[:,0], Y[:,0]), var_list = [alphaHat,

        betaHat])

        # Update list of parameters.

        alphaHist.append(alphaHat.numpy()[0])

        betaHist.append(betaHat.numpy()[0])

Before we repeat the process for the remaining 99 samples, let’s see 

how successful we were in identifying the true parameter values in the 

first. Figure 3-2 shows a plot of the values of alphaHat and betaHat at 

each step in the minimization process. The code for generating this plot is 

shown in Listing 3-5. Notice that we did not divide the sample into mini-

batches, so each step is labeled as an epoch, where an epoch is a complete 

pass over the sample. The initial values, as we saw earlier, were randomly 

generated by drawing from a normal distribution with a high variance. 

Nevertheless, both alphaHat and betaHat appear to converge to their true 

parameter values after approximately 600 epochs.

Listing 3-5.  Plot the parameter training histories

# Define DataFrame of parameter histories.

params = pd.DataFrame(np.hstack([alphaHist,
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        betaHist]), columns = ['alphaHat', 'betaHat'])

# Generate plot.

params.plot(figsize=(10,7))

# Set x axis label.

plt.xlabel('Epoch')

# Set y axis label.

plt.ylabel('Parameter Value')

Furthermore, alphaHat and betaHat do not appear to adjust any 

further after they converge on their true parameter values. This suggests 

that the training process was stable and the stochastic gradient descent 

algorithm, which we will discuss in detail later in the chapter, was able 

to identify a clear local minimum, which turned out to be the global 

minimum in this case.2

Now that we’ve tested the solution method for one sample, we’ll repeat 

the process 100 times with different initial parameter values and different 

samples. We’ll then evaluate the performance of our solution method 

to determine whether it is sensitive to the choice of initial values or the 

data sample drawn. Figure 3-3 shows a histogram of the parameter value 

estimates at the 1000th epoch for each sample. Most estimates appear 

to be tightly clustered around the true parameter values; however, there 

are some deviations, due to either the initial values or the sample drawn. 

If we were planning to use LAD on a dataset with attributes similar to 

what we’ve generated in the Monte Carlo experiment, we might want to 

consider using a higher number of epochs to increase the probability that 

we converge to the true parameter values.

2�A local minimum is the lowest value of a function in given region, whereas the 
global minimum is the lowest overall value of the function. In practice, loss 
functions often have many local minima, making it challenging to identify the 
global minimum.
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Beyond changing the number of epochs, we may also want to consider 

adjusting the optimization algorithm’s hyperparameters, rather than using 

the default options. Alternatively, we might consider using a different 

optimization algorithm altogether. As we will discuss later in the chapter, 

this is relatively simple to do in TensorFlow.

Figure 3-2.  History of parameter values over 1000 epochs of 
training
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�Other Loss Functions
As we discussed, OLS has an analytical solution, but LAD does not. Since 

most machine learning models do not permit an analytical solution, 

LAD can provide an instructive example. The same process we used to 

construct a model, define a loss function, and perform minimization for 

LAD will be repeated throughout the chapter and book. Indeed, the steps 

used to perform LAD can be applied to any form of linear regression by 

simply modifying the loss function.

There are, of course, reasons to favor OLS beyond the fact that it has 

a closed-form solution. For instance, if the conditions for the Gauss-

Markov Theorem are satisfied, then the OLS estimator has the lowest 

Figure 3-3.  Parameter estimate counts from Monte Carlo 
experiment
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variance among all linear and unbiased estimators.3 There is also a large 

econometric literature which builds on OLS and its variants, making it a 

natural choice for related work.

In many machine learning applications within economics and finance, 

however, the objective will often be to perform prediction, rather than 

hypothesis testing. In those cases, it may make sense to use a different 

form of linear regression; and using TensorFlow will make this task easier.

�Partially Linear Models
In many machine learning applications, we will want to model non-

linearities in a way that cannot be satisfactorily achieved using a linear 

regression model, even with the strategies we outlined earlier. This will 

require us to use a different modeling technique. In this section, we’ll 

expand the linear model to allow for the inclusion of a non-linear function.

Rather than constructing a purely non-linear model, we’ll start with 

what’s called a “partially linear model.” Such a model allows for certain 

independent variables to enter linearly, while others are permitted to enter 

the model through a non-linear function.

In the context of standard econometric applications, where the 

objective is typically statistical inference, a partially linear model would 

usually consist of a single variable of interest, which enters linearly, and 

a set of controls, which is permitted to enter non-linearly. The objective 

of such an exercise would be to perform inference on the parameter that 

enters linearly.

3�The Gauss-Markov Theorem makes five assumptions: (1) the true model is linear 
in the parameters; (2) the data is sampled randomly; (3) none of the independent 
variables are perfectly correlated with each other (no perfect collinearity); (4) the 
error term is exogenous (not correlated with the independent variables); and (5) 
the variance of the error term is constant and finite.
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There are, however, econometric challenges to performing valid 

statistical inference with partially linear models. First, there is an issue 

with parameter consistency when the variable of interest and the controls 

are collinear.4 This is addressed in Robinson (1988), which constructs a 

consistent estimator for such cases.5 Another issue arises when we apply 

regularization to the non-linear function of controls. If we simply apply the 

estimator from Robinson (1988), the parameter of interest will be biased. 

Chernozhukov et al. (2017) demonstrate how to eliminate bias through the 

use of orthogonalization and sample splitting.

For the purposes of this chapter, we will focus exclusively on the 

construction and training of a partially linear model for predictive 

purposes, rather than for statistical inference. In doing so, we will sidestep 

questions related to consistency and bias and focus on the practical 

implementation of a training routine in TensorFlow.

We’ll start by defining the model we wish to train in Equation 3-12. 

Here, β is the vector of coefficients that enter the model linearly, and g(Z) is 

a non-linear function of the controls.

Equation 3-12. A partially linear model.

	 Y X g Z= + + ( )+a b  	

Similar to the example for LAD, we’ll use a Monte Carlo experiment 

to evaluate whether we’ve correctly constructed and trained the model 

in TensorFlow and also to determine whether we are likely to encounter 

numerical issues, given our sample size and model specification.

4�Two regressors, X and Z, are said to be “collinear” if they are not statistically 
independent.

5�A consistent estimator converges in probability to the true parameter value as the 
number of observations goes to infinity.
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In order to perform the Monte Carlo experiment, we’ll need to make 

specific assumptions about the values of the linear parameters, as well 

as the functional form of g(). For the sake of simplicity, we’ll assume that 

there is only one variable of interest, X, and one control, Z, which enters 

with the functional form exp(θZ). Additionally, the true parameter values 

are assumed to be α = 1, β = 3, and θ = 0.05.

We’ll start the Monte Carlo experiment in Listing 3-6 by generating 

data. As in the previous example, we’ll use 100 samples and 10,000 

observations and define the true parameter values using tf.constant(). 

Next, we’ll draw realizations of the regressors, X and Z, and the error term, 

epsilon. Finally, we use the randomly generated data to construct the 

dependent variable, Y.

Listing 3-6.  Generate data for partially linear regression experiment

import tensorflow as tf

# Set number of observations and samples

S = 100

N = 10000

# Set true values of parameters.

alpha = tf.constant([1.], tf.float32)

beta = tf.constant([3.], tf.float32)

theta = tf.constant([0.05], tf.float32)

# Draw independent variable and error.

X = tf.random.normal([N, S])

Z = tf.random.normal([N, S])

epsilon = tf.random.normal([N, S], stddev=0.25)

# Compute dependent variable.

Y = alpha + beta*X + tf.exp(theta*Z) + epsilon
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The next step, shown in Listing 3-7, is to define and initialize the model 

parameters: alphaHat0, betaHat0, and thetaHat0. We then deviate slightly 

from the previous example: rather than computing the loss function 

immediately, we’ll first define a function for the partially linear model, 

which takes the parameters and a sample of the data as inputs and then 

outputs a prediction for each observation.

Listing 3-7.  Initialize variables and compute the loss

# Draw initial values randomly.

alphaHat0 = tf.random.normal([1], stddev=5.0)

betaHat0 = tf.random.normal([1], stddev=5.0)

thetaHat0 = tf.random.normal([1], mean=0.05,

            stddev=0.10)

# Define variables.

alphaHat = tf.Variable(alphaHat0, tf.float32)

betaHat = tf.Variable(betaHat0, tf.float32)

thetaHat = tf.Variable(thetaHat0, tf.float32)

# Compute prediction.

def plm(alphaHat, betaHat, thetaHat, xS, zS):

        prediction = alphaHat + betaHat*xS + \

                        tf.exp(thetaHat*zS)

        return prediction

We’ve now generated the data, initialized the parameters, and defined 

the partially linear model. The next step is to define a loss function, which 

we do in Listing 3-8. As with the previous examples, we can use whichever 

loss function is best suited to our problem. In this case, we’ll use the mean 

absolute error (MAE). Additionally, rather than computing the MAE 

ourselves, as we did previously, we’ll instead use a TensorFlow operation. 

The first argument to the tf.losses.mae() operation is an array of true 

values and the second is an array of predicted values.
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Listing 3-8.  Define a loss function for a partially linear regression

# Define function to compute MAE loss.

def maeLoss(alphaHat, betaHat, thetaHat, xS, zS, yS):

        yHat = plm(alphaHat, betaHat, thetaHat, xS, zS)

        return tf.losses.mae(yS, yHat)

The final step is to perform minimization, which we do in Listing 3-9. 

As in the LAD example, we’ll do this by instantiating an optimizer and 

then applying the minimize method. Each time we execute the minimize 

method, we’ll complete an entire epoch of training.

Listing 3-9.  Train a partially linear regression model

# Instantiate optimizer.

opt = tf.optimizers.SGD()

# Perform optimization.

for i in range(1000):

        opt.minimize(lambda: maeLoss(alphaHat, betaHat,

        thetaHat, X[:,0], Z[:,0], Y[:,0]),

        var_list = [alphaHat, betaHat, thetaHat])

After the optimization process terminates, we can evaluate the 

results, as we did for the LAD example. Figure 3-4 shows the history 

of parameter value estimates over 1000 epochs of training. Notice that 

alphaHat, betaHat, and thetaHat all converge to their true values after 

approximately 800 epochs of training. Additionally, they do not appear to 

diverge from their true values as the training process continues.
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In addition to this, we’ll also examine the estimates for all 100 samples 
to see how sensitive the results are to the initialization and data. The final 
epoch parameter values for each sample are visualized in histograms in 
Figure 3-5. From the figure, it is clear that estimates of both alphaHat and 
betaHat are tightly clustered around their respective true values. While 
thetaHat appears unbiased, since the histogram is centered around the 
true value of theta, there appears to be more variation in the estimates. 
This suggests that we may want to make adjustments to the training 
process, possibly by using a higher number of epochs.

Performing a LAD regression and a partially linear regression 
demonstrated that TensorFlow is capable of handling the construction and 
training of an arbitrary model, including those that contain non-linearities. 
In the following section, we’ll see that TensorFlow can also handle discrete 
dependent variables. We’ll then complete the chapter by discussing the 
various ways in which we can adjust the training process to improve 
results.

Figure 3-4.  History of parameter values over 1000 epochs of training
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�Non-linear Regression
In the previous section, we discussed partially linear models, which 

had both a linear and non-linear component. Solving a fully non-linear 

model can be accomplished using the same workflow as the partially 

linear model. We first generate or load the data. Next, we define the model 

and loss function. And finally, we instantiate an optimizer and perform 

minimization of the loss function.

Rather than using generated data, as we did in earlier examples, we’ll 

make use of the natural logarithm of the daily exchange rate for US dollar 

(USD) and British pound (GBP), which is shown in Figure 3-6.6

6�The raw series is available for download at https://fred.stlouisfed.org/
series/DEXUSUK.

Figure 3-5.  Monte Carlo experiment results for partially linear 
regression
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Since exchange rates are challenging to predict, a random walk is 
often used as the benchmark model in forecasting exercises. As shown in 
Equation 3-13, a random walk models the next period’s exchange rate as 
the current period’s exchange rate plus some random noise.

Equation 3-13. A random walk model of the nominal exchange rate.

	 e et t t= + +-a 1  	

A line of literature that emerged in the 1990s argued that threshold 
autoregressive (TAR) models could generate improvements over the 
random walk model. Several variants of such models were proposed, 
including Smooth Transition Autoregressive Models (STAR) and 
Exponential Smoothed Autoregressive Models (ESTAR).7

7�See Taylor et al. (2001) for an overview of the STAR and ESTAR models.

Figure 3-6.  Natural logarithm of the USD-GBP exchange rate at a daily 
frequency (1970–2020). Source: Federal Reserve Board of Governors
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Our exercise will focus on implementing a TAR model in TensorFlow 

and will deviate from the literature by, among other things, using the 

nominal, rather than real, exchange rate. Additionally, we will again 

abstract away from questions related to statistical inference by focusing on 

prediction.

An autoregressive model assumes that movements in a series are 

explained by past values of the series and noise. A random walk, for 

instance, is an autoregressive model of order one – since it contains a 

single lag – that has an autoregressive parameter of one. The autoregressive 

parameter is the coefficient on the lagged value of the dependent variable.

A TAR model modifies an autoregression by allowing parameter 

values to vary according to pre-defined thresholds. That is, parameters 

are assumed to be fixed within a particular regime, but may vary across 

regimes. We’ll use the regimes given in Equation 3-14. If there’s a sharp 

depreciation of more than 2%, then we’re in one regime, associated with 

one autoregressive parameter value. Otherwise, we’re in another.

Equation 3-14. A threshold autoregressive (TAR) model with two 

regimes.
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Our first step in the TensorFlow implementation will be to prepare the 

data. In order to do this, we’ll need to load the log of the nominal exchange 

rate, compute a lag, and compute a lagged first difference. We’ll load and 

transform the data in pandas and numpy. We’ll then convert them into tf.

constant() objects. For the threshold variable, we’ll also need to change 

its type from a Boolean to 32-bit floating-point number. All steps are shown 

in Listing 3-10.
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Listing 3-10.  Prepare the data for a TAR model of the USD-GBP 

exchange rate

import pandas as pd

import numpy as np

import tensorflow as tf

# Define data path.

data_path = '../data/chapter3/'

# Load data.

data = pd.read_csv(data_path+'exchange_rate.csv')

# Convert log exchange rate to numpy array.

e = np.array(data["log_USD_GBP"])

# Identify exchange decreases greater than 2%.

de = tf.cast(np.diff(e[:-1]) < -0.02, tf.float32)

# Define the lagged exchange rate as a constant.

le = tf.constant(e[1:-1], tf.float32)

# Define the exchange rate as a constant.

e = tf.constant(e[2:], tf.float32)

Now that the data has been prepared, we’ll define the trainable model 

parameters, rho0Hat and rho1Hat, in Listing 3-11.

Listing 3-11.  Define parameters for a TAR model of the USD-GBP 

exchange rate

# Define variables.

rho0Hat = tf.Variable(0.80, tf.float32)

rho1Hat = tf.Variable(0.80, tf.float32)

We next define both the model and the loss function in Listing 3-12. 

We then multiply the autoregressive coefficient by a dummy variable for 
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the regime, de. Finally, this is multiplied by a lag of the exchange rate, le. 

For the sake of simplicity, we’ll use the mean absolute loss function, along 

with the TensorFlow operation for it.

Listing 3-12.  Define model and loss function for TAR model of 

USD-GBP exchange rate

# Define model.

def tar(rho0Hat, rho1Hat, le, de):

        # Compute regime-specific prediction.

        regime0 = rho0Hat*le

        regime1 = rho1Hat*le

        # Compute prediction for regime.

        prediction = regime0*de + regime1*(1-de)

        return prediction

# Define loss.

def maeLoss(rho0Hat, rho1Hat, e, le, de):

        ehat = tar(rho0Hat, rho1Hat, le, de)

        return tf.losses.mae(e, ehat)

The final step is to define an optimizer and perform optimization, 

which we do in Listing 3-13.

Figure 3-7 shows the training history. The autoregressive parameter for 

the “normal” regime – where no sharp depreciation occurs the previous 

day – rapidly converges to approximately 1.0. This suggests that the 

exchange rate is best modeled as a random walk in normal times. However, 

when we look at cases where a sharp depreciation occurred the previous 

day, we instead find an autoregressive coefficient of 0.993, suggesting 

that the rate will be highly persistent, but will tend to drift back toward its 

mean, rather than remaining permanently lower.
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Listing 3-13.  Train TAR model of the USD-GBP exchange rate

# Define optimizer.
opt = tf.optimizers.SGD()

# Perform minimization.
for i in range(20000):
        opt.minimize(lambda: maeLoss(
        rho0Hat, rho1Hat, e, le, de),
        var_list = [rho0Hat, rho1Hat]
        )

We’ve now seen how to perform linear regression with different 
loss functions, partially linear regression, and non-linear regression in 
TensorFlow. In the next section, we’ll examine another type of regression, 
which has a discrete dependent variable.

Figure 3-7.  Training history of the TAR model of the USD-GBP 
exchange rate
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�Logistic Regression
In machine learning, supervised learning models are typically divided into 

“regression” and “classification” categories based on whether they have 

a discrete or continuous dependent variable. As discussed earlier, we will 

use the definition of regression from econometrics, which also applies to 

classification models, such as a logistic regression.

A logistic regression or “logit” predicts the class of the dependent 

variable. In a microeconometric setting, a logit might be used to model the 

choice of transportation over two options. In a financial setting, it might be 

used to model whether we are in a crisis or not.

Since the process of constructing and training a logistic regression 

involves many of the same steps as linear, partially linear, and non-linear 

regression, we will focus exclusively on what differs.

First, the model takes a specific functional form – namely, that of the 

logistic curve – which is given in Equation 3-15.

Equation 3-15. The logistic curve.

	
p X

e X Xk k
( ) =

+ - + +¼+( )
1

1 0 0a b b 	

Notice that the model’s output is a continuous probability, rather than 

a discrete outcome. Since probabilities range from 0 to 1, probabilities 

greater than 0.5 will often be treated as predictions of outcome 1. While 

this functional form differs from anything we’ve dealt with previously in 

this chapter, it can be handled using all of the same tools and operations in 

TensorFlow.

Finally, the other difference between a logistic model and those we’ve 

defined earlier in this chapter is that it will require a different loss function. 

Specifically, we will use the binary cross-entropy loss function, which is 

defined in Equation 3-16.
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Equation 3-16. Binary cross-entropy loss function.

	
Si i i i iY p X Y p X- * ( )( ) + -( )* - ( )( )( log log1 1 	

We use this particular functional form because the outcomes are 

discrete and the predictions are continuous. Note that the binary cross-

entropy loss sums over the product of the outcome variable and the natural 

log of the predicted probability for each observation. If, for instance, the 

true class of Yi is 1 and the model predicts a 0.98 probability of class 1, then 

that observation will add 0.02 to the loss. If, instead, the prediction is 0.10, 

which is far from the true classification, then the addition to the loss will 

instead be 2.3.

While computing the binary cross-entropy loss function is relatively 

simple, TensorFlow simplifies it further by providing the operation tf.

losses.binary_crossentropy(), which takes the true label as its first 

argument and the predicted probability as its second.

�Loss Functions
Whenever we solve a model in TensorFlow, we will need to define a loss 

function. The minimization operation will make use of this function to 

determine how to adjust parameter values. Fortunately, it will not always 

be necessary to define a custom loss function. Rather, we will often be able 

to use one of the pre-defined loss functions provided by TensorFlow.

There are currently two submodules of TensorFlow that contain 

loss functions: tf.losses and tf.keras.losses. The first submodule 

contains native TensorFlow implementations of loss functions. The second 

submodule contains the Keras implementations of the loss functions. 

Keras is a library for performing deep learning that is available as both a 

stand-alone module in Python and a high-level API in TensorFlow.
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TensorFlow 2.3 offers 15 standard loss functions in the tf.losses 

submodule. Each of those loss functions takes the form tf.loss_

function(y_true, y_pred). That is, we pass the dependent variable, 

y_true, as the first argument and the model’s predictions, y_pred, as the 

second argument. It then returns the value of the loss function.

When we work with high-level APIs in TensorFlow in later chapters, 

we will make use of the loss functions directly. However, for the purpose 

of this chapter, which is centered around optimization using low-level 

TensorFlow operations, we will need to wrap those loss functions within a 

function of the model’s trainable parameters and data. The optimizer will 

need to make use of the outer function to perform minimization.

�Discrete Dependent Variables
The submodule tf.losses offers two loss functions for discrete 

dependent variables in regression settings: tf.binary_crossentropy(), 

tf.categorical_crossentropy(), and tf.sparse_categorical_

crossentropy(). We have previously covered the binary cross-entropy 

function, which is used in logistic regression. This provides us with a 

measure of loss when we have a binary dependent variable, such as 

an indicator for whether the economy is a recession, and a continuous 

prediction, such as a probability of being in a recession. For convenience, 

we repeat the formula for binary cross-entropy in Equation 3-17.

Equation 3-17. Binary cross-entropy loss function.

	
L Y p X Y p X Y p Xi i i i i, ( )( ) = - * ( )( ) + -( )* - ( )( )S ( log log1 1 	

The categorical cross-entropy loss is simply the extension of the 

binary cross-entropy loss to cases where the dependent variable has 

more than two categories. Such models are commonly used in discrete 

choice problems, such as a model of the decision to commute by subway, 

bicycle, car, or foot. Within machine learning, categorical cross-entropy is 

Chapter 3  Regression



117

the standard loss function for classification problems with more than two 

classes and is commonly used in neural networks that perform image and 

text classification. The equation for categorical cross-entropy is given in 

Equation 3-18. Note that (Yi==k) is a binary variable equal to 1 if Yi is class 

k and 0 otherwise. Additionally, pk(Xi) is the probability that the model 

assigns to Xi being class k.

Equation 3-18. Categorical cross-entropy loss function.

	
L Y p X p Xi k k i, ( )( ) = - ==( )* ( )( )S S Y ki log 	

Finally, if we have a problem with a dependent variable that may 

belong to multiple categories – that is, a “multi-label” problem – we’ll use 

the sparse categorical cross-entropy loss function, rather than categorical 

cross-entropy. Notice that the normal cross-entropy loss function assumes 

that the dependent variable can have only one class.

�Continuous Dependent Variables
For continuous dependent variables, the most common loss functions 

are the mean absolute error (MAE) and mean squared error (MSE). MAE 

is used in LAD and MSE in OLS. Equation 3-19 defines the MAE loss 

function, and Equation 3-20 defines the MSE loss. Recall that Ŷi  is the 

model’s predicted value for observation i.

Equation 3-19. Mean absolute error loss.
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Equation 3-20. Mean squared error loss.
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Note that we can compute the losses using tf.losses.mae() and tf.

losses.mse().

Other common loss functions for linear regression include the mean 

absolute percentage error (MAPE), the mean squared logarithmic error 

(MSLE), and the Huber error, which are defined in Equations 3-21, 3-22, 

and 3-23. Respectively, these are available as tf.losses.MAPE(), tf.

losses.MSLE(), and tf.losses.Huber().

Equation 3-21. Mean absolute percentage error.
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Equation 3-22. Mean squared logarithmic error.
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Equation 3-23. Huber error.
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Figure 3-8 provides a comparison of selected loss functions. For each 

loss function, the loss value is plotted against the error value. Notice that 

the MAE loss scales linearly in the error. To the contrary, the MSE loss 

increases slowly near zero, but grows much faster far away from zero, 

leading to the application of a substantial penalty on outliers. Finally, the 

Huber loss is similar to the MSE loss near zero, but similar to the MAE loss 

as the error increases in size.
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�Optimizers
The last topic we’ll consider in this chapter is the use of optimizers 

in TensorFlow. We have already seen how optimizers work when we 

applied them in the context of linear regressions. In each case, we used 

the stochastic gradient descent (SGD) optimizer, which is simple and 

interpretable, but is less commonly used in more recent work on machine 

learning. In this section, we’ll expand the set of optimizers we discuss.

�Stochastic Gradient Descent (SGD)
Stochastic gradient descent (SGD) is a minimization algorithm that 

updates parameter values through the use of the gradient. In this case, the 

gradient is a tensor of partial derivatives of the loss function with respect to 

each of the parameters.

Figure 3-8.  Comparison of common loss functions
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The parameter update process is given in Equation 3-24. To ensure 

compatibility with the equivalent TensorFlow operation, we use the 

definition provided in the documentation. Note that θt is a vector of 

parameter values at iteration t, lr is the learning rate, and gt is the gradient 

computed in iteration i.

Equation 3-24. Stochastic gradient descent in TensorFlow.

	 q qt t tlr g= - *-1 	

You might wonder in what sense SGD is “stochastic.” The stochasticity 

arises from the sampling process used to update the parameters. This 

differs from gradient descent, where the entire sample is used at each 

iteration. The benefits of the stochastic version of gradient descent are that 

it increases iteration speed and alleviates memory constraints.

Let’s take a look at a single SGD step for a linear regression with 

an intercept term and a single variable, where θt = [αt, βt]. We’ll start at 

iteration 0 and assume we’ve computed the gradient, g0, for the batch 

of data as [−0.25, 0.33]. Additionally, we’ll set the learning rate, lr, to 

0.01. What does this imply for θ1? Using Equation 3-24, we can see that 

θ1 = [α0 + 0.025, β0 − 0.033]. That is, we decrease α0 by 0.025 and increase β0 

by 0.033.

Why do we increase a parameter value when the partial derivative is 

negative and decrease it when it is positive? Because the partial derivatives 

tell us how the loss function changes in response to a change in a given 

parameter. If the loss function is increasing, we’re moving further away 

from the minimum, so we want to change direction; however, if the loss 

function is decreasing, we’re moving toward a minimum, so we want 

to continue on the same direction. Furthermore, if the loss function is 

neither increasing nor decreasing, this means we’re at a minimum and the 

algorithm will naturally terminate.
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Figure 3-9 illustrates this for the partial derivative of the loss function 

with respect to the intercept term. We focus on a narrow window around 

the true value of the intercept and plot both the loss function and its 

derivative. We can see that the derivative is initially negative, but increases 

to 0 at the true value of the intercept. It then becomes positive and 

increasing thereafter.

Returning to Equation 3-24, notice that the selection of the learning 

rate can also be quite consequential. If we select a high learning rate, 

we’ll take larger steps with each iteration, which could bring us closer to 

a minimum faster. However, taking larger steps could also lead us to skip 

over the minimum, missing it entirely. The selection of the learning rate 

should take this trade-off into consideration.

Figure 3-9.  Loss function and its derivative with respect to the 
intercept
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Finally, it is worth mentioning that the “minima” we’re identifying 
are local and, thus, may be higher than the global minimum. That is, SGD 
makes no distinction between the lowest point in an area and the lowest 
value of the loss function. Consequently, it may be worthwhile to re-run 
the algorithm for several different sets of initial parameter values to see if 
we always converge to the same minimum.

�Modern Optimizers
While SGD is easy to understand, it is rarely used in machine learning 
applications in its original form. This is because modern extensions 
typically offer more flexibility and robustness and perform better on 
benchmark tasks. The most common extensions of SGD are root mean 
square propagation (RMSProp), adaptive moment estimation (Adam), and 
adaptive gradient methods (Adagrad and Adadelta).

There are several advantages to using modern extensions of SGD. First, 
starting with RMSProp, which is the oldest, they allow for the application of 
separate learning rates to each parameter. In many optimization problems, 
there will be orders of magnitude differences between partial derivatives in 
the gradient. Consequently, applying a learning rate of 0.001, for instance, 
may be sensible for one parameter, but not for another. RMSProp allows us 
to overcome this problem. It also allows for the use of “momentum,” where 
the gradients accumulate over mini-batches, making it possible for the 
algorithm to break out of local minima.

Adagrad, Adadelta, and Adam all offer variants on the use of 
momentum and adaptive updates for each individual parameter. 
Adam tends to work well for many optimization problems with its 
default parameters. Adagrad is centered around the accumulation of 
gradients and the adaptation of learning rates for individual parameters. 
And Adadelta modifies Adagrad by introducing a window over which 
accumulated gradients are retained.8

8�For an extended discussion of the theoretical properties of optimizers, see 
Goodfellow et al. (2017).
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In all cases, the use of optimizers will follow a familiar two-step 

process. We’ll first instantiate an optimizer and will set its parameter 

values in the process using the tf.optimizer submodule. And second, 

we’ll iteratively apply the minimize function and pass the loss function to it 

as a lambda function.

Since we have performed the second step multiple times, we’ll focus 

exclusively on the first step in Listing 3-14. There, we’ve instantiated SGD, 

RMSProp, Adagrad, and Adadelta optimizers and have emphasized how to 

set their respective parameter values.

Listing 3-14.  Instantiate optimizers

# Instantiate optimizers.

sgd = tf.optimizers.SGD(learning_rate = 0.001,

        momentum = 0.5)

rms = tf.optimizers.RMSprop(learning_rate = 0.001,

        rho = 0.8, momentum = 0.9)

agrad = tf.optimizers.Adagrad(learning_rate = 0.001,

        initial_accumulator_value = 0.1)

adelt = tf.optimizers.Adadelta(learning_rate = 0.001,

        rho = 0.95)

adam = tf.optimizers.Adam(learning_rate = 0.001,

        beta_1 = 0.9, beta_2 = 0.999)

For SGD, we set the learning rate and the momentum. If we’re concerned 

that there are many local minima, we can increase momentum to a higher 

value. For RMSProp, we not only set a momentum parameter but also set 

rho, which is the rate at which information about the gradient decays. 

The Adadelta parameter, which retains gradients for a period of time, 

also has the same decay parameter, rho. For Adagrad, we set an initial 

accumulator value, related to the intensity with which gradients are 

accumulated over time. Finally, for the Adam optimizer, we set decay 
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rates for the accumulation of information about the mean and variance of 

the gradients. In this case, we have used the default values for the Adam 

optimizer, which generally perform well in large optimization problems.

We’ve now introduced the main optimizers we will use throughout the 

book. We will return to them again in detail when we apply them to train 

models. The modern variants of SGD will be particularly useful when we 

train large models with thousands of parameters.

�Summary
The most commonly used empirical method in economics is the 

regression. In machine learning, the term regression refers to a supervised 

learning model with a continuous target. In economics, the term 

“regression” is more broadly defined and may refer to cases with binary 

or categorical dependent variables, such as logistic regression. For the 

purposes of this book, we adopt the economics terminology.

In this chapter, we introduced the concept of a regression, including 

the linear, partially linear, and non-linear varieties. We saw how to define 

and train such models in TensorFlow, which will ultimately form the 

basis for solving any arbitrary model in TensorFlow, as we will see in later 

chapters.

Finally, we discussed the finer details of the training process. We saw 

how to construct a loss function and what pre-defined loss functions were 

available in TensorFlow. We also saw how to perform minimization with a 

variety of different optimization routines.
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CHAPTER 4

Trees
Tree-based models have proven to be remarkably useful for prediction 

tasks in machine learning and have recently been applied to and modified 

for problems in economics and finance. The fundamental unit of any 

tree-based model is a decision tree, which explains an outcome using a 

sequence of data partitions. Such a model can be naturally visualized as a 

flowchart.

While TensorFlow was developed for the purpose of solving deep 

learning problems, it has recently added libraries for tree-based models in 

its high-level Estimators API. In this chapter, we’ll examine those libraries 

and will apply them to train tree-based models on Home Mortgage 

Disclosure Act (HMDA) application data for the state of Alaska.1

�Decision Trees
A decision tree is analogous to a flowchart with specific numerical and 

categorical thresholds, typically constructed using the family of algorithms 

introduced in Breiman et al. (1984). In this section, we’ll introduce 

decision trees on a conceptual level, focusing on basic definitions and 

1�The HMDA dataset is available for download from the Consumer Financial 
Protection Bureau (CFPB): www.consumerfinance.gov/data-research/hmda/. 
It is publicly available and provides data from many mortgage lenders on 
application features and decisions. We use all application data from Alaska for 
2017.

https://doi.org/10.1007/978-1-4842-6373-0_4#DOI
https://www.consumerfinance.gov/data-research/hmda/
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the training process. Later in the chapter, we’ll focus on implementing 

decision trees in TensorFlow. See Athey and Imbens (2016, 2019) for an 

overview of decision tree use in economics and Moscatelli et al. (2020) for 

an application to corporate default forecasting.

�Overview
A decision tree consists of branches and three types of nodes: the 

root, internal nodes, and leaves. The root is where the first sample 

split occurs. That is, we enter the tree with the full sample of data 

and then pass through the root, which splits the sample. Each split is 

associated with a branch, which connects the root to internal nodes and 

potentially to leave nodes. Much like the root, internal nodes impose 

a condition that splits the sample. Internal nodes are connected to 

additional internal nodes or leaves by branches, which again are each 

associated with a sample split. Finally, the tree terminates at the leave 

nodes, which yield either a prediction or a probability distribution over 

categories.

To fix an example, let’s consider the HMDA mortgage application 

data. We’ll build a simple classifier that takes features from a mortgage 

application and then predicts whether it will be accepted or rejected. 

We’ll start off with a tree model that has only one feature: applicant 

income in thousands of dollars. Our objective is only to train the  

model and see how it splits the sample. That is, we want to know  

what income level is associated with a split between acceptance  

and rejection, given that we don’t condition on anything else, such  

as the size of the mortgage or the borrower’s credit rating. Figure 4-1 

shows this chart.
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As we will discuss later in the chapter, one parameter of a decision tree 

is its maximum depth. We can measure the depth of a tree by counting the 

number of branches between the root and the most distant leaf. In this 

case, we’ve selected a maximum depth of one. Such trees are sometimes 

referred to as “decision stumps.” Our simple model predicts that applicants 

with incomes below $25,500 are rejected, whereas applicants with incomes 

greater than or equal to $25,500 are accepted. The model is, of course, too 

simple to be useful for most applications; however, it provides us with a 

starting point.

In Figure 4-2, we extend this exercise further by increasing the 

maximum depth of the tree to three and adding a second feature: 

the ratio of census tract income to metropolitan statistical income, 

multiplied by 100. Note that we’ve used “Area Income” to describe this 

feature in the figure.

Income < 25.5

True False

Reject

ROOT

BRANCHES

Income < 69.5LEAVES

Figure 4-1.  A simple decision tree (DT) model using the 
HMDA data
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Starting again at the root, we can see that the decision tree first 

partitions the sample by applicant income. Low-income applicants 

are rejected. It then performs another partition among the remaining 

applicants. For lower-income households, the next internal node checks 

whether the income of the area in which they live is below average.  

If it is, they’re rejected, but if isn’t, they’re accepted. Similarly, for high-

income households, the tree checks the level of income in the house’s 

area. However, irrespective of whether it is high or low, the application is 

accepted.

There are a few other things worthy of observation in the diagram. 

First, now that we have sufficient depth, the diagram has “internal nodes” – 

that is, nodes that are not the root or the leaves. And second, not all pairs 

of leaves must contain both an “accept” and “reject” class. In fact, the 

Income < 49.5

True False

Reject

ROOT

BRANCHES

LEAVES

Income < 69.5

True False

Area Income < 100 Area Income < 106

True False True False

Reject Accept Accept Accept

INTERNAL 
NODES

Figure 4-2.  A decision tree model trained on the HMDA data with 
two features and a max depth of three
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class of the leaf will depend on the empirical distribution of classes that 

are associated with the leaf. By convention, we might treat a leaf with 

more than 50% accept observations as an “accept” leaf. Alternatively, we 

might instead state the distribution over outcomes for the leaf, rather than 

associating it with a particular class.

�Feature Engineering
The term “feature engineering” isn’t used often in this book, since 

TensorFlow was designed primarily for deep learning, which typically 

performs feature extraction automatically. It’s worthwhile, however, to 

point out that feature engineering is necessary for decision tree models, 

since they have a restrictive functional form.

In particular, decision trees are constructed by performing increasingly 

granular sample splits. If the functional form of the relationship isn’t 

captured by a threshold for an individual feature, then a tree-based model 

will struggle to discover it. A linear relationship between one feature and 

the dependent variable, for instance, couldn’t be captured by an intercept 

and slope. It would require a complicated step function, constructed from 

potentially hundreds of thresholds.

A clear example of this is the use of applicant income in the HMDA 

example we gave in Figures 4-1 and 4-2. While some minimum level of 

income may be needed to obtain a mortgage of any kind, it is clear that 

lower incomes should be permissible for smaller mortgages. Thus, what 

we might actually want is the debt-to-income ratio, which is commonly 

used to assess lending decisions.

However, if we don’t compute the debt-to-income ratio and include it 

as a feature, the decision tree will require many internal nodes to achieve 

what we were able to do by taking a ratio. For this reason, decision trees 

still rely on expert judgment to inform the feature engineering process.
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�Training
We now know that decision trees make use of recursive sample splitting, 

but we haven’t yet said how the sample splits themselves are selected. 

In practice, decision tree algorithms will perform sample splits by 

sequentially selecting the variable and threshold that generates the lowest 

Gini impurity or the greatest “information gain.” The Gini impurity is given 

in Equation 4-1.

Equation 4-1. Gini impurity for dependent variable with K classes.

	
G p p

k K
k( ) = -

Î
å1 2

	

The Gini impurity is computed over the empirical distribution 

of classes in a node. It tells us the extent to which the distribution is 

dominated by a single class. As an example, let’s consider the model used 

in Figure 4-1, where we performed a single sample split on applicant 

income. We did not mention this earlier, but among the applicants with 

an income below the $25,500 threshold, the probability of acceptance 

was 0.656 and the probability of rejection was 0.344. This gives us a Gini 

impurity measure of 0.451. For those with incomes higher than $25,500, it 

was 0.075 for rejection and 0.925 for acceptance, yielding a Gini impurity 

of 0.139.2

Note that if the split had perfectly divided applicants into rejections 

and acceptances, then the Gini impurity for each group would have been 

zero. That is, we want a low Gini impurity and the algorithm achieves it by 

performing splits that tend to reduce heterogeneity within each node after 

a split.

2�We arrive at a Gini impurity of 0.451 by computing 1-(0.656**2 + 0.344**2). 
Additionally, we arrive at a Gini impurity of 0.139 by computing 1-(0.075**2 + 
0.925**2).
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Next, we’ll consider the information gain, which is the other common 

measure of the quality of a split. Similar to Gini impurity, it measures the 

change in the level of disorder that arises as a result of splitting a sample 

into nodes. In order to understand information gain, it will be necessary 

to first understand the concept of information entropy, which we define in 

Equation 4-2.

Equation 4-2. Information entropy for K-class case.

	
E p p p

k K
k k( ) = -

Î
å log2 	

Let’s return to the example we considered for Gini impurity. If we have 

a leaf with an empirical probability of acceptance of 0.656 and 0.344 for 

rejection, then the information entropy will be 0.929. Similarly, for the 

other leaf, with acceptance and rejection probabilities of 0.075 and 0.925, it 

will be 0.384.3

Since our objective is to reduce entropy in the data, we’ll use a measure 

called the “information gain.” This will measure how much entropy is 

removed from the system by performing a sample split. In Equation 4-3, 

we define the information gain as the difference between the entropy of a 

parent node and the weighted entropies of its child nodes.

Equation 4-3. Information gain.

	
IG E p w E pp

k
k ck= ( )- ( )å 	

Between any nodes connected by a branch, a “child” node is 

subsample of the “parent” node that arises from a split. In Equation 4-3,  

we have already computed the entropies of the two child nodes as 0.929 

and 0.384. The weights for the nodes, wk, are their respective shares of the 

3�We compute the information entropy value as −(0.656 ∗ log20.656 + 0.344 ∗  
log20.344) for the first leaf and −(0.075 ∗ log20.075 + 0.925 ∗ log20.925) for the 
second.
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total sample. Let’s assume the first leaf contains 10% of observations and 

the second contains the remaining 90%. This yields a value of 0.4385 for 

the weighted sum of child node entropies.

Before we can compute the information gain, we must first compute 

the parent node’s entropy. For the sake of illustration, let’s assume that an 

observation in the root node has a 0.25 probability of being a rejection and 

a 0.75 probability of being an acceptance. This yields an entropy of 0.811 

for the parent node. Thus, the information gain or reduction in entropy is 

0.3725 (i.e., 0.811−0.4385).

TensorFlow will allow for flexibility in the choice of splitting algorithm; 

however, we will delay discussing the details of implementation 

in TensorFlow until the “Random Forests” section. This is because 

TensorFlow currently only supports gradient boosted random forests, 

which will require the introduction of additional concepts.

�Regression Trees
Decision trees, which we discussed in the previous section, use a flowchart-

like structure to model a process with a categorical outcome. In most 

economics and finance applications, however, we have a continuous 

dependent variable, which means that we cannot use decision trees. For such 

problems, we can instead use a “regression tree,” where “regression” is used in 

the machine learning context and denotes a continuous dependent variable.

A regression tree is nearly identical in structure to a decision tree. The 

only difference is in the leaves. Rather than associating a leaf with a class 

or a probability distribution over classes, it is instead associated with the 

mean value of the dependent variable for the observations in the leaf.

We’ll follow the treatment of regression trees given in Athey and 

Imbens (2019), but will tie it to the HMDA dataset. To start, we’ll assume 

that we have one feature, Xi, and a continuous dependent variable, Yi. For 

the feature, we’ll use applicant income in thousands of dollars. For the 
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dependent variable, we’ll use the size of the loan in thousands of dollars. If 

we use the sum of squared errors as the loss function, we may compute the 

loss at the root, prior to the first split, as in Equation 4-4.

Equation 4-4. Initial sum of squared errors at root.

	
SSE Y Y

i
i= -( )å

2

	

That is, we do not split the sample, so all observations are in the same 

leaf. The predicted value for that leaf is simply the mean over the values of 

the dependent variable, denoted as Y .

Using the notation from Athey and Imbens (2019), we’ll use l to denote 

the “left” branch, r to denote the right branch of a split, and c to denote 

the threshold. Now, let’s assume we decide to perform a single split at the 

root on the applicant income variable. The sum of squared errors can be 

computed using Equation 4-5.

Equation 4-5. Sum of squared errors after one split.

	
SSE Y Y Y Y
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Notice that we now have two leaves, which means we must compute 

two sums of squared errors – one for each leaf. Starting with the leaf 

connected to the left branch, we compute the mean over all observations 

in the leaf, which is denoted as Yl r, . We then sum the squared differences 

between each observation in the leaf and the leaf mean and add to this to 

the sum of squared differences for the right leaf, computed in the same way.

As with decision trees, we may repeat this process for additional splits, 

depending on the choice of model parameters, such as the maximum 

tree depth. In general, however, we will typically not use regression and 

decision trees in isolation. Rather, we will use them in the context of a 

random forest, which we will discuss in the following section.
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There are, however, some benefits to using single trees in isolation. 

One clear advantage is the interpretability of trees. In some cases, such 

as credit modeling, interpretability may be a legal requirement. Another 

benefit of using a regression tree, which Athey and Imbens (2019) discuss, 

is that they have good statistical properties. The tree’s output is a mean 

and it is relatively straightforward to compute a confidence interval for it. 

They do, however, point out that the mean is not necessarily unbiased, but 

provide a procedure in Athey and Imbens (2016) to correct the bias using 

sample splitting.

�Random Forests
While there are some advantages to using individual decision and 

regression trees, it is not common practice in most machine learning 

applications. The reason for this is primarily related to the predictive 

efficacy of random forests, which were introduced in Breiman (2001). As 

the name suggests, a random forest consists of many trees, rather than just 

one.

Athey and Imbens (2019) point out two differences between random 

forests and regression (or decision) trees. First, unlike regression trees, 

individual trees in a random forest only make use of part of the sample. 

That is, for each individual tree, the sample is bootstrapped by drawing 

a fixed number of observations at random and with replacement. This 

process sometimes referred to as “bagging.” The second is that a random 

set of features is selected at each stage for the purpose of splitting. This 

differs from regression trees, which optimize over all features in the model.

The machine learning field has generally found random forests to have 

a high degree of predictive accuracy. They perform well in the literature, 

in machine learning contests, and in industry applications. Athey and 

Imbens (2019) point out that random forests also improve over regression 

trees by adding smoothness to the computed averages.
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While random forests are almost exclusively used as a tool for 

prediction, recent work has demonstrated how they can be used to 

perform hypothesis testing and statistical inference. Wager and Athey 

(2017), for example, demonstrate the conditions under which leaf-level 

means (i.e., model predictions) are asymptotically normal and unbiased 

and also show how confidence intervals can be constructed for the model 

predictions.

Figure 4-3 illustrates the prediction process for a random forest model. 

In the first step, the set of features is passed to each of the individual 

decision or regression trees. A sequence of thresholds is then applied, 

which will depend on the structure of the trees themselves. Since there is 

randomness in the training process – in both the selection of features and 

the selection of observations – the trees will not have an identical structure.

. . .

. . .

Figure 4-3.  Generating a prediction from a random forest model
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Each tree in the random forest will produce a prediction. The 

predictions will then be aggregated using some function. In classification 

trees, it is common to use a majority vote over the trees’ predictions to 

determine the forest’s classification. In regression trees, averaging over the 

trees’ predictions is a common choice.

Finally, trees in a random forest are trained simultaneously, and the 

weights on individual trees, which are used for aggregation purposes, do not 

update during the training process itself. In the following section, we will 

take a look at gradient boosted trees, which modify random forests in a couple 

of ways and, most importantly, have an implementation in TensorFlow.

�Gradient Boosted Trees
While TensorFlow doesn’t offer a high-level API for regression trees, 

decision trees, or random forests, it does provide functionality for training 

gradient boosted trees. There are two differences between gradient 

boosted trees and a random forest, which we highlight as follows:

	 1.	 Strong vs. weak learners: Whereas random 

forests use fully grown trees, which may have 

many intermediate nodes, gradient boosting 

uses “weak learners”: shallow trees with few (if 

any) intermediate nodes. In some cases, gradient 

boosting uses “decision stumps,” which simply have 

a root and a single split.

	 2.	 Sequential vs. parallel training: In a random 

forest, each tree is trained in parallel and the 

weighting scheme over the trees does not depend 

on the training process. In gradient boosting, each 

tree is trained in sequence and can account for 

deficiencies in the model, given the previously 

trained trees.
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The gradient boosting process relies on techniques that are familiar to 

economists, even if tree-based models are not. To clarify how such models 

are constructed, we will step through an example, where we use least 

squares as a loss function. We’ll start by defining a function, Gi(X), which 

yields predictions for the model’s target, Y, after i iterations. Relatedly, 

we’ll define a tree-based model, Ti(X), which is introduced in iteration i as 

an improvement over Gi(X) and a contributor to Gi + 1(X). The relationship 

between the functions is summarized in Equation 4-6.

Equation 4-6. Relationship between tree and prediction function in 

gradient boosting.

	 G X G X T Xi i i+ ( ) = ( ) + ( )1 	

Since Gi + 1(X) is a model that yields a prediction from features, it can 

be written in terms of the target variable, Y, and the prediction error or 

residual, ϵ, as in Equation 4-7.

Equation 4-7. Define model residual.

	 Y G X T Xi i= ( )+ ( ) + 	

	 ® = - ( )- ( ) Y G X T Xi i 	

Notice that Y − Gi(X) is fixed at iteration i. Thus, adjusting the 

parameters of tree model Ti(X) will affect the residuals, ϵ. We can train 

Ti(X) by minimizing the sum of squared errors, ϵ′ϵ. Alternatively, we could 

use a different loss function. Once Ti(X) has been trained, we can update 

the predictive function, Gi + 1(X), and then repeat the process in another 

iteration to add another tree.
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At each step, we’ll use the residuals from the previous iteration as a 

target. If, for instance, our first tree is positively biased in a problem with a 

continuous target, then the second tree will likely develop a negative bias 

that, when combined with the first, reduces the model bias.

�Classification Trees
Let’s look at an example of implementing gradient boosted decision 

trees in TensorFlow. We’ll make use of the HMDA data. Since we’re using 

decision trees, we’ll need a discrete dependent variable and will make use 

of the application outcome, which can either be acceptance or rejection.

In Listing 4-1, we’ll start the process by importing pandas and 

tensorflow. We’ll then load the HMDA data using pandas and assign it to 

the pandas DataFrame hmda. Next, we’ll define containers to hold the data 

called feature columns using the operation feature_column.numeric_

column(). We’ll name them to match the variables they will contain: 

applicantIncome and areaIncome. We’ll then combine the two feature 

columns into a single list named feature_list.

Listing 4-1.  Prepare data for use in gradient boosted classification 

trees

import pandas as pd

import tensorflow as tf

# Define data path.

data_path = '../chapter4/hmda.csv'

# Load hmda data using pandas.

hmda = pd.read_csv(data_path+"hmda.csv")

# Define applicant income feature column.

applicantIncome = tf.feature_column.numeric_

column("applicantIncome")
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# Define applicant msa relative income.

areaIncome = tf.feature_column.numeric_column("areaIncome")

# Combine features into list.

feature_list = [applicantIncome, areaIncome]

The next step, given in Listing 4-2, is to define an input function for the 

training data. This function will return the features and labels and will later 

be passed to the train operation. We will typically want to define separate 

functions for the training and evaluation process, but for the purpose of 

this example, we will keep things as simple as is possible.

Since we have defined a minimal version of this function, it will take no 

arguments. It constructs a dictionary called features, which uses variables 

for personal income and the median income in the area. It then defines the 

labels using accepted applications from the hmda dataset.

We can now define and train the model, which we do in Listing 4-3. We’ll 

first use the BoostedTreesClassifier from the high-level Estimators API 

to define the model. At a minimum, we’ll need to supply the list of feature 

columns, feature_columns, and the number of batches the sample is 

divided into, n_batches_per_layer. Since the dataset is sufficiently small to 

be processed in a single batch, we set the second parameter to one.

Listing 4-2.  Define function to generate input data function

# Define input data function.

def input_fn():

        # Define dictionary of features.

        features = {"applicantIncome": hmda['income'],

        "areaIncome": hmda['area_income’]}

        # Define labels.

        labels = hmda['accepted'].copy()

        # Return features and labels.

        return features, labels
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Listing 4-3.  Define and train a boosted trees classifier

# Define boosted trees classifier.

model = tf.estimator.BoostedTreesClassifier(

        feature_columns = feature_list,

        n_batches_per_layer = 1)

# Train model using 100 epochs.

model.train(input_fn, steps=100)

Finally, we use the train operation, along with the input function we 

defined earlier, to train the model. For the sake of simplicity, we only will 

set the steps parameter, which determines the number of training epochs, 

to 100.

Once the training process is complete, we can apply the evaluate 

operation, along with our input function and a number of steps as 

arguments. We’ll use the same input function defined earlier, which means 

we’ll evaluate in-sample. While this is not recommended practice in 

general, we will do it here for the sake of providing a minimal example. The 

code for performing evaluation and printing the results is given in Listing 4-4.

Listing 4-4.  Evaluate a boosted trees classifier

# Evaluate model in-sample.

result = model.evaluate(input_fn, steps = 1)

# Print results.

print(pd.Series(result))

accuracy                  0.635245

accuracy_baseline         0.598804

auc                       0.665705

auc_precision_recall      0.750070

average_loss              0.632722
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label/mean                0.598804

loss                      0.632722

precision                 0.628028

prediction/mean           0.598917

recall                    0.958663

global_step             100.000000

dtype: float64

We can see that the console output contains a number of different 

measures of performance, including the loss, the share of correct 

predictions (accuracy), and the area under the curve (AUC). We will not 

cover these metrics in detail here, but it is worthwhile to point out that they 

are produced automatically by the evaluate operation.

�Regression Trees
If we have a continuous dependent variable, then we’ll need to use 

gradient boosted regression trees, rather than classification trees. Much 

of the code will be identical, but with a few changes. To fix an example, 

let’s assume that we now want to predict the loan amount in thousands of 

dollars, rather than the application outcome, but we still want to use the 

same two features.

To do this, we only need to modify the data input function and define 

a BoostedTreesRegressor, rather than classifier. Both steps are shown in 

Listing 4-5.

Listing 4-5.  Define and train a boosted trees regressor

# Define input data function.

def input_fn():

        features = {"applicantIncome": data['income'],

        "msaIncome": data['area_income']}

        targets = data['loan_amount'].copy()

        return features, targets
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# Define model.

model = tf.estimator.BoostedTreesRegressor(

        feature_columns = feature_list,

        n_batches_per_layer = 1)

Since all other steps are identical, we’ll skip to printing the results of 

the evaluation operation, which are given in Listing 4-6.

Listing 4-6.  Evaluate a boosted trees regressor

# Evaluate model in-sample.

result = model.evaluate(input_fn, steps = 1)

# Print results.

print(pd.Series(result))

average_loss       8217.281250

label/mean          277.759064

loss               8217.281250

prediction/mean     277.463928

global_step         100.000000

dtype: float64

Notice that we now have a different set of metrics in Listing 4-6. This 

is because we have a continuous target, rather than categorical labels. 

Measures such as accuracy and the AUC are no longer meaningful in this 

context.

�Model Tuning
Finally, we’ll end this chapter by discussing model tuning, which is the 

process by which we adjust model parameters to improve training results. 

We’ll focus on five model parameters that are common to both gradient 

boosted classification and regression trees:
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	 1.	 Number of trees: This is specified by the n_trees 

parameter and determines how many individual 

trees will be created in the training process. The 

default value is 100, but can be increased if the 

model is underfitting the data or decreased if it is 

overfitting.

	 2.	 Maximum tree depth: This is set using the 

max_depth parameter and is 6 by default. The 

maximum tree depth measures the number of 

branches between the root and the most distant leaf. 

Gradient boosted trees typically use lower values 

than random forests or individual decision trees. If 

overfitting is an issue, you can reduce the maximum 

tree depth.

	 3.	 Learning rate: Since gradient boosted trees can 

be trained using a least squares loss function, 

it is possible to perform optimization using 

stochastic gradient descent or one of its variants. 

Consequently, we’ll need to set a learning rate, 

which is 0.1 by default. In applications where 

convergence proves elusive, we may want to lower 

the learning_rate parameter and increase the 

number of epochs.

	 4.	 Regularization: If we’re concerned with overfitting, 

it makes sense to apply regularization to trees, 

which will penalize them for being deep and having 

many nodes. Setting the l1_regularization 

parameter will penalize the absolute values 

of the weights applied to nodes, whereas l2_

regularization will penalize squared weights. We 

can also penalize the number of leaves using the 

tree_complexity parameter.
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	 5.	 Pruning mode: By default, trees will not be pruned 

by the gradient boosting algorithms in TensorFlow. 

To apply pruning, you will have to set a positive 

value for the tree_complexity parameter and 

then set the pruning_mode to either pre or post. 

Pre-pruning trees is faster, as the growth of trees 

is terminated when a pruning threshold has been 

reached. Post-pruning is slower, since it requires 

us to grow the tree first – and then prune it – but it 

may also allow the algorithm to discover additional 

useful relationships that it would otherwise not 

identify.

In general, when we apply pruning, our primary concern will be the 

mitigation of overfitting. We want to train a model that predicts the data 

well out of sample, but not by memorizing it. Adjusting the values of the 

five parameters we defined in this section will help us to achieve this 

objective.

�Summary
In this chapter, we introduced the concept of tree-based models. We saw 

that there are decision trees, used for the purpose of classification, and 

regression trees, which are used to predict continuous targets. In general, 

trees are not typically used in isolation, but are combined in random 

forests or using gradient boosting. Random forests use “fully grown” trees, 

which are trained in parallel, and generate predictions by averaging or 

applying a majority vote to individual tree outputs. Gradient boosted 

trees are trained sequentially by minimizing the model residual from the 

previous iteration. This process can use a least squares loss function and 

can be trained using stochastic gradient descent or some variation thereof.
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TensorFlow was structured around deep learning and, thus, was not 

originally suitable for training other types of machine learning models, 

including decision and classification trees. With the introduction of 

the high-level Estimators API and TensorFlow 2, that has changed. 

TensorFlow now offers robust, production-quality operations for training 

and evaluating gradient boosted trees. In addition to this, it offers a variety 

of useful parameters through which we can tune models to prevent over- 

and underfitting. In general, we will do this by iterating over training, 

evaluation, and tuning steps.
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CHAPTER 5

Image Classification
Image classification was once a task that required domain expertise and 

the use of problem-specific models. Much of this has changed with the 

emergence of deep learning as general-purpose modeling technique for 

predictive tasks in computer vision. Both the machine learning literature 

and image classification contests are now dominated by deep learning 

models that often do not require domain expertise, since such models 

identify and extract features automatically, eliminating the need for feature 

engineering.

While academic economists have recently begun to import methods 

from machine learning, widespread use of deep learning for image 

classification purposes has lagged behind. Much of the existing work in 

economics that involves image data makes use of pre-processed night-time 

luminosity values. Such data can be used to proxy for economic variables,1 

measure output growth at different levels of geography,2 and evaluate the 

impact of infrastructure investment.3 For an overview of this literature, see 

Donaldson and Storeygard (2016) and Gibson et al. (2020).

1�See Chen and Nordhaus (2011), Nordhaus and Chen (2015), and Addison and 
Stewart (2015).

2�See Henderson et al. (2012), Bluhm and Krause (2018), Bickenbach et al. (2016), 
and Goldblatt et al. (2019).

3�See Mitnik et al. (2018).

https://doi.org/10.1007/978-1-4842-6373-0_5#DOI
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Image datasets remain underused in economics and finance research; 

however, there have been some recent noteworthy applications. Naik et al. 

(2017) use computer vision techniques to measure changes in the visual 

appearance of neighborhoods. They then test theories of urban economics 

by determining which neighborhood characteristics are associated with 

future appearance improvements. Borgshulte et al. (2019) use deep 

learning to measure the impact of stress events on the apparent ages of 

CEOs. They show that stress caused by the Great Recession is associated 

with an approximately 1-year increase in apparent CEO age.

Beyond academic work, computer vision applications – and 

particularly those that involve deep learning – have become common in 

industry settings. Furthermore, they are likely to gain increased use both 

in academia and private industry as a consequence of the proliferation of 

image datasets and the quality of off-the-shelf models.

In this chapter, we’ll provide a broad overview of image data and 

its potential uses in economics and finance. We will focus on the 

development of deep neural networks that are specialized for the purpose 

of classifying images and their implementation in TensorFlow and its high-

level APIs, including Keras and Estimators. We’ll also talk about using 

pretrained models and fine-tuning them to improve performance.

�Image Data
Before we discuss methods and models, let's first define what an image is. 

For our purposes, an image is a k-tensor of pixel intensities. For instance, a 

grayscale image of dimensions 600x400 is a matrix with 600 rows and 400 

columns. Each element of the matrix is an integer value between 0 and 

255, where the value corresponds to the intensity of the pixel it represents. 

A value of 0, for instance, corresponds to the color black, whereas a value 

of 255 corresponds to white.
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Color images have several tensor representations, but the most common 

one – and the one we’ll almost exclusively use in this book – is a 3-tensor. Such 

images are 3-tensors because they contain a matrix with identical dimensions 

for three different color channels: red, green, and blue (RGB). Each matrix 

holds pixel intensity values for its respective color, as shown in Figure 5-1.

Throughout this chapter, we’ll use images from the “Ships in Satellite 

Imagery” dataset, which is available for download on Kaggle.4 It contains 

80x80x3 pixel color images, which are extracted from larger images.  

4�The dataset is available for download on Kaggle: www.kaggle.com/rhammell/
ships-in-satellite-imagery/data. It contains a JSON file with metadata, 
including labels, as well as a folder that contains images of ships and non-ships.

(253, 245, 242) (194, 159, 132) (80, 98, 76) (209, 167, 142)

Figure 5-1.  Each pixel in an RGB image corresponds to an element in 
a 3-tensor. Four such elements are labeled in the figure. Source: www.
kaggle.com/rhammell/ships-in-satellite-imagery/data
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The sub-images are labeled 1 if they contain a ship and 0 otherwise. 
The non-ship images contain a variety of different types of land cover, 
including buildings, vegetation, and water. Figure 5-2 shows a selection of 
random images from this dataset.

There are several ways in which we could use satellite images of ships in 
economics and finance applications. In this chapter, we’ll use them to build 
a classifier. Such a classifier could be used to count ship traffic at locations of 
interest. With the increased availability of daily satellite data, this could be 
used to estimate trade flows at a higher frequency than official statistics.

We’ll start by loading and preparing the data in Listing 5-1. The first 
step is to import the relevant modules. This includes matplotlib.image 
as mpimg, which we’ll use to load and manipulate images; numpy as np to 
convert images into tensors; and os, which we’ll use to perform various 
tasks using the operation system. Next, we apply listdir() to the directory 
where the downloaded images are located, which yields a list of filenames.

Figure 5-2.  Examples of ships from “Ships in Satellite Imagery” dataset
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Now that we can construct the path to each file, we’ll load the images, 
convert them to numpy arrays, and store them in two lists: one for ship 
images and one for images that do not contain ships. We’ll do this by using 
a list comprehension to construct the path to each image and using the 
first character in each filename to identify whether the corresponding 
image contains a ship. The file 0__20150718_184300_090b__-
122.35324421973536_37.772113980272394.g, does not contain a ship, 
whereas 1__20180708_180908_0f47__-118.15328750044623_ 
33.735783554733885.png does.

Listing 5-1.  Prepare image data for use in TensorFlow

import matplotlib.image as mpimg
import numpy as np
import os

# Set image directory.
data_path = '../data/chapter5/shipsnet/'

# Generate file list.
images = os.listdir(image_path)

# Create list of ship images.
ships = [np.array(mpimg.imread(image_path+image))
for image in images if image[0] == '1']

# Create list of no-ship images.
noShips = [np.array(mpimg.imread(image_path+image))
for image in images if image[0] == '0']

Now that we’ve loaded our data into lists, we’ll explore it in Listing 5-2.  
We’ll first import matplotlib.pyplot as plt, which we can use to plot 
images. We’ll then print the shape of one of the items in ships. This 
returns the tuple (80, 80, 3), which means that the image is a 3-tensor of 
pixels. We may also print an arbitrary pixel by selecting a coordinate in the 
tensor. Finally, we use the imshow() function to render the image, which is 
shown in Figure 5-3.
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Listing 5-2.  Exploring image data

import matplotlib.pyplot as plt

# Print item in list of ships.

print(np.shape(ships[0]))

(80, 80, 3)

# Print pixel intensies in [0,0] position.

print(ships[0][0,0])

[0.47058824 0.47058824 0.43137255]

# Show image of ship.

plt.imshow(ships[0])

Figure 5-3.  Image of ship from dataset
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When we printed the color channels for a particular pixel, notice that 

the values were not integers between 0 and 255. Rather, they were real 

numbers between 0 and 1. This is because the tensor has been normalized 

by dividing all elements by 255. We will typically need to do this before 

using images as an input to neural network models designed for image 

processing tasks, since they typically require inputs in the [0, 1] or [–1, 1] 

range.

�Neural Networks
Before we introduce the high-level APIs in TensorFlow that were designed 

for the purpose of constructing and training image classification models, 

we’ll first discuss neural networks, since all models we consider in this 

chapter will be some variant of a neural network.

Figure 5-4 shows a neural network with an input layer, a hidden layer, 

and an output layer.5 The input layer contains eight “nodes” or input 

features. These nodes are multiplied by weights, which are represented 

by the lines in the diagram. After the multiplication step is applied, the 

resulting output is transformed using a non-linear “activation function.” 

This yields the next layer of “nodes,” which is called a hidden layer because 

it is not observed like the input and output layers. Just as with the input 

layer, we multiply the hidden layer by weights and then apply an activation 

function, yielding the output layer.

5�The diagram was generated by LeNail (2019) and modified by this author. To 
access the tool, see https://doi.org/10.21105/joss.00747.
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Note that the output layer is a prediction. In a binary classification 

problem (i.e., ship or no-ship), the output could be interpreted as the 

probability that the image contained a ship and, thus, would be a real 

number between 0 and 1. In a problem with a continuous target, the 

output layer would yield a prediction in the real numbers.

In contrast to a neural network, a linear regression model does not 

apply activation functions and does not have hidden layers. The diagram of 

the familiar linear regression model is shown in Figure 5-5 for comparison. 

Notice that the input and output layers of the linear regression do not differ 

from a neural network.

Figure 5-4.  A neural network with an input layer, hidden layer, and 
output layer
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Another similarity between the diagrams for neural networks and 

linear regressions is that edges connect all nodes between two consecutive 

layers. In a linear regression, we know that there are only two layers and 

that multiplying the input layer by weights (coefficients) yields the output 

layer (fitted values). In a neural network, we perform a similar operation 

whenever we use something called a “dense” or “fully connected” layer: 

that is, we multiply a matrix of weights by the values associated with nodes.

To fix an example, let’s consider the case shown in Figure 5-4. We’ll 

start by performing a step called “forward propagation,” which is the 

process by which we compute a prediction for a given set of features. 

Starting in the input layer, the first operation multiplies the features, X0, 

by weights, w0. We then apply an activation function, f(), which yields the 

next layer of nodes, X1. Once again, we multiply by the next set of weights, 

w1, and apply another activation function, yielding the output, Y. This is 

shown in Equation 5-1.

Equation 5-1. Forward propagation in a neural network with dense 

layers.

	 X f X w1 0 0= ( ) 	

	 Y f X w= ( )1 1 	

Figure 5-5.  A linear regression model
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We may also write this in a single line by nesting the functions, as is 

done in Equation 5-2.

Equation 5-2. Compact expression for forward propagation.

	
Y f f X w w= ( )( )0 0 1 	

What must be true about the shapes of X0, w0, and X1? If we have N 

observations, then the shape of X0 will be Nx8, since we have eight features. 

This means that w0 must have eight rows, since the number of rows in w0 

must equal the number of columns in X0 to perform matrix multiplication. 

Furthermore, the shape of the product of X0 and w0 will be equal to the 

number of rows in X0, which is N, and the number of columns in w0. Since 

we know that the next layer has four nodes, w0 must be 8x4. Similarly, since 

X1 is Nx4 and Y is Nx1, w1 must be 4x1.

Note that dense layers are just one type of layer used in neural 

networks. When working with image classification models, for instance, we 

will often make use of specialized layers, such as convolutional layers. We 

will delay this discussion until we implement such networks in TensorFlow 

later in the chapter.

�Keras
TensorFlow 2 provides tighter integration of high-level APIs. Keras, for 

instance, is now a submodule of TensorFlow, whereas it was previously a 

stand-alone module that allowed for optional use of TensorFlow as a back 

end. In this section, we will discuss how to use the Keras submodule in 

TensorFlow to define and train neural networks.

Whenever we define a model in Keras, we’ll have the choice to do it 

using one of two APIs: the “sequential” API or the “functional” API. The 

sequential API has a simple syntax, but limited flexibility. The functional API 

is highly flexible, but comes at the cost of a more complicated syntax. We will 

start by defining the neural network in Figure 5-4 using the sequential API.
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�The Sequential API
The neural network in Figure 5-4 consisted of an input layer, a hidden 

layer, and an output layer. Additionally, it was constructed using dense 

layers, as indicated by the edges connecting each node in layer i to each 

node in layer i+1. We will construct this simple neural network in  

Listing 5-3 as a first demonstration of the Keras API.

We start by importing tensorflow as tf. Next, we define a sequential 

model in Keras using tf.keras.Sequential(). Once we have defined a 

sequential model, we can add layers through the use of the add() method. 

We first add an input layer with eight feature columns using tf.keras.

Input(). We next define the hidden layer, specifying that it has four output 

nodes, as is indicated in Figure 5-4. We also indicate that it is dense by 

using tf.keras.layers.Dense() to construct the layer. We must also 

specify an activation function, which applies a non-linear transformation 

to the product of the inputs and weights. In this case, we’ve used a sigmoid 

transformation.

Finally, we again use the add() method to append another dense 

layer to the model, which has a single output node and uses a sigmoid 

activation function. As a consequence of this choice of activation function, 

the output of the model will be a predicted probability between 0 and 1. 

If we had a continuous target, rather than a discrete one, we could have 

used a linear activation function instead, which would have allowed for a 

linear prediction.

Listing 5-3.  Implement a simple neural network in Keras

import tensorflow as tf

# Define sequential model.

model = tf.keras.Sequential()

# Add input layer.

model.add(tf.keras.Input(shape=(8,)))

Chapter 5  Image Classification



160

# Define hidden layer.

model.add(tf.keras.layers.Dense(4,

activation="sigmoid"))

# Define output layer.

model.add(tf.keras.layers.Dense(1,

activation="sigmoid"))

Let’s say we want to consider a more meaningful problem, such as the 

classification of ships. What would we need to modify? At a minimum, 

we’d have to change the input layer, which has the wrong shape. The 

images in our dataset are 80x80x3 pixels. If we want to use them as an 

input to a network with only dense layers, we would have to reshape the 

images. Since there are 19,200 pixels (i.e., 80*80*3), we would need to have 

19,200 nodes in the input layer.

In Listing 5-1, we loaded the images, converted them into numpy 

arrays, and stored them as two lists, ships and noShips. In Listing 5-4, 

we’ll reshape the 80x80x3 tensors into 19,200-element vectors using list 

comprehensions. We’ll also create a corresponding dependent variable 

called labels and stack the flattened features into a numpy array.

Two steps remain before we can train our network. The first is to 

randomly shuffle the data and then split it into train and test samples. 

The shuffling ensures that we do not have long clusters of ship or no-ship 

images in a sequence, which can make it difficult to learn using stochastic 

gradient descent (SGD). Additionally, splitting off a test sample is a 

standard practice in machine learning that is used to ensure that we do not 

evaluate model fit with the same observations that were used to train the 

model. This allows us to identify when overfitting occurs.
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Listing 5-4.  Reshape images for use in a neural network with dense 

layers

import numpy as np

# Reshape list of ship images.

ships = [ship.reshape(19200,) for ship in ships]

# Reshape list of non-ship images.

noShips = [noShip.reshape(19200,) for noShip in

noShips]

# Define class labels.

labels = np.vstack([np.ones((len(ships), 1)),

                np.zeros((len(noShips), 1))])

# Stack flattened images into numpy array.

features = np.vstack([ships, noShips])

In Listing 5-5, we’ll handle the first step using the model_selection 

submodule of sklearn. From that module, we’ll use train_test_split, 

which will allow us to specify labels, features, the share of observations that 

should be in the test sample, and a random seed to ensure reproducibility. 

By default, the parameter shuffle is set to True, so we will not need to 

adjust it.

Once our sample has been shuffled and split, the final step is to modify 

the network to allow for 19,200 nodes in the input layer. Listing 5-6 shows 

the revised architecture for the network. Note that this is not ideal for the 

problem under consideration, but will be helpful for understanding how to 

construct, train, and evaluate neural networks.
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Listing 5-5.  Shuffle and split data into train and test samples

from sklearn.model_selection import train_test_split

# Shuffle and split sample.

X_train, X_test, y_train, y_test = \

        train_test_split(features, labels,

        test_size = 0.20, random_state=0

)

Before we start the training process, we might want to get a high-

level overview of our model. We can do this using summary() method, 

as is shown in Listing 5-7. As the output indicates, our model has 76,809 

parameters. This might already give us cause for concern that the model 

will overfit, but we will see that machine learning offers many strategies for 

managing this problem.

We can also see that most of the parameters seem to be located in 

the hidden layer. This is where we multiplied the 19,200 input nodes by 

the weights. This means we’ll need a weight matrix that can transform 

an Nx19200 matrix input into Nx4 matrix. Consequently, it will have to 

have the shape 19200x4, which is 76,800 parameters. The remaining 

four parameters are called “biases,” which are equivalent to the constant 

term in a regression. We will have one for each node in the hidden layer. 

Similarly, for the output layer, we need to transform an Nx4 matrix into an 

Nx1 matrix, which will require a 4x1 matrix of weights, as well as one bias 

term, giving us five additional parameters.

Another thing we may notice from the summary output is that 

parameters are divided into two categories: “trainable params” and “non-

trainable params.” This is because Keras gives us the option to freeze 

parameters, making them untrainable. We will not make use of this feature 

here, but we will return to it later.
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Listing 5-6.  Modify a neural network to fit the input shape

import tensorflow as tf

# Define sequential model.

model = tf.keras.Sequential()

# Add input layer.

model.add(tf.keras.Input(shape=(19200,)))

# Define hidden layer.

model.add(tf.keras.layers.Dense(4,

activation="sigmoid"))

# Define output layer.

model.add(tf.keras.layers.Dense(1,

activation="sigmoid"))

Listing 5-7.  Print a model summary in Keras

print(model.summary())

_____________________________________________________

Layer (type)     Output Shape              Param #

=====================================================

dense (Dense)    (None, 4)                 76804

_____________________________________________________

dense_1 (Dense)  (None, 1)                 5

=====================================================

Total params: 76,809

Trainable params: 76,809

Non-trainable params: 0

We have now seen how to define a model in Keras and interpret its 

architecture. The next step is to “compile” the model by specifying a 

loss function, an optimizer, and metrics to compute during the training 
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process. We do this in Listing 5-8, selecting the binary_crossentropy 

loss, the adam optimizer, and the accuracy metric (i.e., share of correct 

predictions).

We can now apply the fit() method to the model, which will initiate 

the training process. We must specify the number of epochs and the 

batch_size. The number of epochs corresponds to the number of times 

the training process should loop over the full sample, whereas the batch_

size parameter determines the number of observations used in each 

increment of the loop.

Listing 5-8.  Compile and train the model in Keras

# Compile the model.

model.compile(loss='binary_crossentropy',

        optimizer='adam', metrics=['accuracy'])

# Train the model.

model.fit(X_train, y_train, epochs=100,

       batch_size=32, validation_split = 0.20)

Notice that we also set an optional parameter, validation_split, to 

0.20. This will split off an additional 20% of our sample, which will not 

be used to train the model. During the training process, we will compare 

metric performance for the model both in the training and validation 

samples. If the two start to diverge, this tells us that the model is overfitting 

and that we may want to terminate the training process or tune the model’s 

parameters.

At each epoch, the model outputs the value of the loss and the 

accuracy of the predictions, both in the training and validation samples. 

According to the accuracy measure, the model appears to perform quite 

well, correctly predicting 75% of observations in both the training and 

validation samples. Since we did not tune the model at all, we do not have 

to worry that the validation sample’s accuracy is inflated by our choice of 
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training and model parameters. As such, evaluating the test sample is not 

strictly necessary, but we will do it, anyway, in Listing 5-9 for the sake of 

illustration.

Listing 5-9.  Evaluate the model on the test sample

# Evaluate the model.

model.evaluate(X_test, y_test)

loss: 0.5890 - accuracy: 0.7262

We can see that accuracy is slightly lower, but not enough to concern 

us that overfitting might be an issue. There’s one last measure of 

performance we’ll check, which is the confusion matrix. This provides an 

improvement over accuracy by indicating whether we’re misclassifying 0s 

as 1s or 1s as 0s. Listing 5-10 provides code for computing the confusion 

matrix.

We’ll first import confusion_matrix from sklearn.metrics. Next, 

we’ll use the model to make predictions for the test sample labels. The 

predictions are probabilities, but we’ll use a threshold of 0.5 to indicate 

that the model has predicted that an image contains a ship. We’ll then 

pass the true labels, y_test, and predictions, y_pred, to confusion_

matrix(). The resulting matrix contains the true values in the rows and 

the predictions in the columns. The row 0, column 1 element, for instance, 

indicates what number of observations were truly 0s, but classified as 1s.

The confusion matrix indicates that all predictions are 0s – that is, non-

ships. Thus, even though performance was good in the train, validation, 

and test samples, our model simply noticed that 75% of the observations 

were 0s and then predicted 0s for all, rather than trying to learn patterns in 

the data.
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Listing 5-10.  Evaluate the confusion matrix

from sklearn.metrics import confusion_matrix

# Generate predictions.

y_pred = model.predict(X_test)>0.5

# Print confusion matrix.

print(confusion_matrix(y_test, y_pred))

array([[581,   0],

       [219,   0]])

This, unfortunately, is a common problem we’ll encounter when 

training neural networks: samples will often be unbalanced. Since getting 

a 75% classification accuracy is challenging, the model will quickly 

converge on predicting the most common class, rather than learning 

meaningful abstractions. There are two ways to avoid this problem. The 

first is to balance the sample by randomly removing observations from 

noShips. The second is to apply weights in the loss function that scale up 

the contribution of instances of the ships class. We’ll adopt the second 

approach, which is implemented in Listing 5-11.

We’ll start by computing weights for the ships and noShips classes. 

This requires us to set a multiplicative constant for each class, such that the 

product of the weight and the number of observations for a class is the same 

for all classes. In our case, we have 1000 ships and 3000 non-ship images. The 

ship images are coded as 1s and the non-ship images as 0s. If we compute the 

mean of y_train, that’ll give us the share of 1s in the sample, which is 0.25.

We’ll set 0.25 as the weight for noShips, cw0, which will scale down 

its contribution to the loss. We can then set the weight for ships, cw1, as 

1.0 − cw0 or 0.75. Since 0.25 * 3000 = 0.75 * 1000 = 750, the scheme we’ve 

selected is valid. Finally, we define a dictionary, class_weights, which 

uses the classes (0 or 1) as keys and the weights as values. We then pass it 

to the class_weight parameter of fit().
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Listing 5-11.  Train the model with class weights

# Compute class weights.

cw0 = np.mean(y_train)

cw1 = 1.0 - cw0

class_weights = {0: cw0, 1: cw1}

# Train the model using class weights.

model.fit(X_train, y_train, epochs=100,

        class_weight = class_weights,

        batch_size=32,

        validation_split = 0.20)

This time, model prediction accuracy improves to over 0.87 in the 

training, validation, and test samples. This is sufficiently high to rule out 

the possibility that the model is simply predicting the most common 

class; however, we’ll check the confusion matrix again to see how well the 

weighting scheme worked to resolve this issue.

The confusion matrix is shown in Listing 5-12. The elements on the 

diagonal show correct predictions. The elements off of the diagonal show 

incorrect predictions. We can see that the model no longer seems to 

overpredict 0s (non-ships). Rather, most of the classification errors are now 

for ships that are misclassified as non-ships.

We’ve now seen how to perform image classification using a neural 

network with dense layers and have addressed many of the common 

problems we’ll encounter in the training and evaluation process. In the 

following sections, we’ll see how we can apply different layers and make 

other modifications to the training process to improve model performance 

further.
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Listing 5-12.  Evaluate the impact of class weights on the confusion 

matrix

# Generate predictions.
y_pred = model.predict(X_test)>0.5

# Print confusion matrix.
print(confusion_matrix(y_test, y_pred))

[[487  94]
 [  5 214]]

�The Functional API
While the sequential API in Keras simplifies model building, the functional 

API allows for flexibility, but at the cost of a slight increase in complexity. 

To see how the functional API works, let’s start by re-defining the model 

from Listing 5-6, but using the functional API. This is given in Listing 5-13.

We’ll first define the input layer by using the tf.keras.Input() 

method and supplying a shape. Next, we define a dense layer, using tf.

keras.layers.Dense(). Notice that we’ve passed the input layer as an 

argument to the dense layer that followed it. Similarly, we define an output 

layer, again using a dense layer and again passing the preceding layer as an 

argument to it. The final step is to define the model by specifying the input 

and output layer.

We now have a model that is no different from the one we specified 

using the sequential API. We can compile it, summarize it, and train it 

using the exact same methods.

It might not be immediately obvious that there are advantages to using 

the functional API, since we have simply reproduced what the sequential 

API did, but using more lines of code. To see where the functional API 

might be useful, consider a case where we have an additional set of inputs 

that we’d like to include in the model, but want to isolate them from the 

image network itself.

Chapter 5  Image Classification



169

Listing 5-13.  Define a model in Keras with the functional API

import tensorflow as tf

# Define input layer.

inputs = tf.keras.Input(shape=(19200,))

# Define dense layer.

dense = tf.keras.layers.Dense(4,

         activation="sigmoid")(inputs)

# Define output layer.

outputs = tf.keras.layers.Dense(1,

        activation="sigmoid")(dense)

# Define model using inputs and outputs.

model = tf.keras.Model(inputs=inputs,

        outputs=outputs)

In the ship detection example, we might have metadata about the 

location of the ship, such as its longitude and latitude. If the model were 

able to learn something about the likelihood of observing ships in different 

locations, it could combine that with the features extracted from the image 

to assign a class probability.

It isn’t possible to do this with the sequential API, since we can only 

stack layers on top of each other, whereas our objective is to create two 

parallel networks, which are joined somewhere at or above the output 

node. Listing 5-14 demonstrates how we can do this with the functional 

API. We’ll assume that we have the image input and 20 features of 

metadata inputs, and we’ll define two separate input layers, img_inputs 

and meta_inputs. We’ll then isolate those inputs into separate networks, 

since it will otherwise be difficult for the model to determine how best to 
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use the 20 features when they are mixed in with 19,200 pixel values. We’ll 

do this by passing them to separate dense layers, img_dense and meta_

dense. Notice, again, that this would not be possible with the sequential 

API, since we must define the connections between layers explicitly.

Listing 5-14.  Define a multi-input model in Keras with the 

functional API

import tensorflow as tf

# Define input layer.

img_inputs = tf.keras.Input(shape=(19200,))

meta_inputs = tf.keras.Input(shape=(20,))

# Define dense layers.

img_dense = tf.keras.layers.Dense(4,

          activation="sigmoid")(img_inputs)

meta_dense = tf.keras.layers.Dense(4,

          activation="sigmoid")(meta_inputs)

# Concatenate layers.

merged = tf.keras.layers.Concatenate(axis=1)([

          img_dense, meta_dense])

# Define output layer.

outputs = tf.keras.layers.Dense(1,

          activation="sigmoid")(merged)

# Define model using inputs and outputs.

model = tf.keras.Model(inputs=

          [img_inputs, meta_inputs],

          outputs=outputs)
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Next, we use the tf.keras.layers.Concatenate() operation to merge 

the outputs of the two dense layers. This recombines the initially separated 

networks into a single network, which takes four features from the image 

and four features from the metadata. This is then passed to an output layer, 

which allows us to define the complete model, which now requires a list of 

the two input layers.

In addition to defining multi-input models, we can also define multi-

output models using the functional API. For instance, rather than using 

metadata as an input, we might want to train a model to predict it as an 

output. We might use the model with image inputs to predict both a class 

label (ship or non-ship) and GPS coordinates. For an example of the use of 

multi-input models in economics, see Grodecka and Hull (2019).

�Estimators
We previously mentioned the Estimators API in the Chapter 4. TensorFlow 

also offers the possibility of using the Estimators API to train and make 

predictions with neural networks. In general, you will want to consider 

using the Estimators API over Keras if you are working in a production 

setting and do not require a high degree of flexibility, but do require 

reliability and want to minimize the likelihood of errors.

The Estimators API will allow you to fully specify a neural network’s 

architecture using a small number of parameters. Let’s consider an 

example for a deep neural network classifier. We’ll first define feature 

columns to contain our images and will store this as features_list in 

Listing 5-15. After this, we’ll define our input function, which returns the 

features and labels that will be used in the training process. We’ll then 

define an instance of tf.estimator.DNNClassifier(), specifying feature 

columns and a list of the number of hidden units as inputs. For the sake of 

illustration, we’ll select an architecture that uses four hidden layers with 

256, 128, 64, and 32 nodes.
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Note that we have intentionally set only the required parameter values 

for the DNNClassifier. For everything else, we have used the defaults. 

This was only to demonstrate the simplicity of defining and training a 

DNNClassifier with four hidden layers. We can also use the syntax in 

Listing 5-16 to evaluate the model.

Listing 5-15.  Define a deep neural network classifier using 

Estimators

# Define numeric feature columns for image.

features_list =

        [tf.feature_column.numeric_column("image",

        shape=(19200,))]

# Define input function.

def input_fn():

        features = {"image": X_train}

        return features, y_train

# Define a deep neural network classifier.

model = tf.estimator.DNNClassifier(

        feature_columns=features_list,

        hidden_units=[256, 128, 64, 32])

# Train the model.

model.train(input_fn, steps=20)

Listing 5-16.  Evaluate deep neural network classifiers using 

Estimators

# Evaluate model in-sample.

result = model.evaluate(input_fn, steps = 1)
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Finally, beyond what we have listed here, DNNClassifier has other 

parameters that can be adjusted to modify the model’s architecture or 

training process. We describe six of them below.

	 1.	 Number of classes: By default, the number of 

classes is set to two; however, for multi-class 

problems, we can set the n_classes parameter to a 

different value.

	 2.	 Weight column: In cases with unbalanced 

samples, such as the one we considered earlier, 

it is necessary to specify a weight column, so that 

classes are properly weighted in the loss function. 

DNNClassifier takes this through the weight_

column parameter.

	 3.	 Optimizer: By default, DNNClassifier uses the 

Adagrad optimizer. If you would prefer to use a 

different optimizer, you can specify it using the 

optimizer parameter.

	 4.	 Activation function: DNNClassifier applies the 

same activation function to all layers. By default, 

it will use a rectified linear unit (ReLU) activation; 

however, you can supply an alternative, such as tf.

nn.sigmoid, through the activation_fn parameter.

	 5.	 Dropout: In models with a large number of 

parameters, dropout can be used to prevent 

overfitting. Set a number between 0 and 1 through 

the dropout parameter. This is the probability with 

which a given node in the model will be ignored 

during the training process. Common choices range 

between 0.10 and 0.50. By default, no dropout is 

applied.
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	 6.	 Batch normalization: For many applications, batch 
normalization reduces training time. It functions by 
normalizing the mean and variance of observations 
within each mini-batch. You can use batch 
normalization by setting batch_norm to True.

In addition to tf.estimator.DNNClassifier(), the Estimators 
API also has a deep neural network model for continuous targets, tf.
estimator.DNNRegressor(). It also has specialized models, such as 
deep-wide networks – introduced in Cheng et al. (2016) and applied 
within economics in Grodecka and Hull (2019) – which combine a linear 
model that can be used to incorporate one-hot encoded variables, such 
as fixed effects, and deep neural network for continuous features. These 
are available as tf.estimator.DNNLinearCombinedClassifier() and tf.
estimator.DNNLinearCombinedRegressor().

�Convolutional Neural Networks
We started the chapter by training a neural network with dense layers 
to perform image classification. While there is nothing wrong with this 
approach, it will typically be dominated by alternative neural network 
architectures. Networks with convolutional layers, for instance, will 
typically yield both an increase in accuracy and a reduction in model size. 
In this section, we will introduce convolutional neural networks (CNNs) 
and use one to train an image classifier.

�The Convolutional Layer
A convolutional neural network (CNN) makes use of convolutional layers, 
which are designed to handle image data. Figure 5-6 demonstrates how 
such layers work. For simplicity, we’ll assume that we’re working with 
a 4x4 pixel grayscale image, which is shown in pink in the figure. The 
convolutional layer will apply filters, such as the one shown in blue, by 
performing elementwise multiplication of the filter and image segment 
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and then summing the elements of the resulting matrix. In this case, the 
filter is 2x2 and is first applied to the red segment of the image, yielding the 
scalar value 0.7. The filter is then moved to the right and applied to the next 
2x2 segment of the image, yielding a 0 value. The process is repeated for all 
2x2 segments of the image, yielding a 3x3 matrix, which is shown in yellow.

Figure 5-7 demonstrates how convolutional layers fit into a CNN.6 

The first layer is an input layer, which accepts color image tensors of 

shape (64, 64, 3). Next, a convolutional layer with 16 filters is applied. 

Notice that each filter is applied across the color channel, yielding an 

output of 64x64x16. In addition to performing the multiplication step 

illustrated in Figure 5-7, the layer also applies an activation function to 

each element of the output, which leaves the shape unchanged. Note that 

the 16 64x64 matrices that resulted from the operations in this layer each 

are referred to as “feature maps.”

6�The diagram was generated by LeNail (2019) and modified by this author. To 
access the tool, see https://doi.org/10.21105/joss.00747.

Figure 5-6.  A 2x2 convolutional filter applied to a 4x4 image
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The output of the convolutional layer is then passed to a “max pooling” 

layer. This is a type of filter that outputs the maximum value of a group 

of elements. In this case, it’ll take the maximum element from each 2x2 

block of each feature map. We’ll use a “stride” of 2, which means that 

we’ll move the max pooling filter two elements to the right (or down) after 

each application. This layer will take an input of dimension 64x64x16 and 

reduce it to 32x32x16.

We next flatten the 32x32x16 max pooling layer output into a 

32*32*16x1 (16384,1) vector and pass it to a 128x1 dense layer, which 

functions as we described earlier in the chapter. Finally, we pass the 

dense layer output to an output node, which will yield a predicted class 

probability.

Figure 5-7.  A minimal example of a convolutional neural network
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�Training a Convolutional Neural Network
Earlier in the chapter, we introduced a dataset of ship and non-ship 

images. We then constructed a neural network out of dense layers and 

used the dataset to train a ship classifier. As we have noted, using a dense 

neural network to train an image classifier is inefficient, since it does not 

take advantage of the structure of images, including the spatial correlation 

in pixel values and in the location of features.

In this subsection, we’ll use the high-level Keras API in TensorFlow 

to define a CNN for the same classification problem. As we’ll see, this 

substantially improves efficiency. Not only will the number of model 

parameters decline, but the accuracy of the model will actually improve.

Listing 5-17 defines a convolutional neural network with an 

architecture that is designed to match our problem. As usual, we start by 

defining a sequential model using tf.keras.Sequential(). Next, we add 

the input layer, which accepts images of shape (80, 80, 3) and applies a 

convolutional layer, which has 8 filters that have a kernel_size of 3 (i.e., 

are 3x3). We also specify that the layer should apply a relu activation 

function to each element of its output. A relu activation simply applies the 

function max(0,x), which thresholds the values of the feature map.

The second layer is also convolutional. It has 4 filters, a kernel_size 

of 3, and a relu activation function. The final hidden layer transforms the 

feature map outputs of the convolutional layer by flattening them into a 

vector. Flattening allows us to pass the feature maps to the output layer, 

which is dense and requires a vector input. Notice that, as usual, we use a 

sigmoid activation function in the output layer, since we are performing 

classification with two classes.
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Listing 5-17.  Define a convolutional neural network

import tensorflow as tf

# Define sequential model.
model = tf.keras.Sequential()

# Add first convolutional layer.
model.add(tf.keras.layers.Conv2D(8,
        kernel_size=3, activation="relu",
        input_shape=(80,80,3)))

# Add second convolutional layer.
model.add(tf.keras.layers.Conv2D(4,
        kernel_size=3, activation="relu"))

# Flatten feature maps.
model.add(tf.keras.layers.Flatten())

# Define output layer.
model.add(tf.keras.layers.Dense(1,
        activation='sigmoid'))

Next, we’ll use the summary() method to view the model’s architecture. 
This will help us to determine the extent to which we were able to reduce 
the model size by exploiting the fact that the inputs are images. This is 
shown in Listing 5-18. Notice that the number of parameters falls from 
over 75,000 to 23,621. Additionally, of those 23,621 parameters, 23,105 are 
located in the dense layer. The convolution layers only have 516 parameters 
in total. This suggests that we can achieve sizable improvements in 
efficiency by moving from dense layers to convolutional layers.

Before we can train the model, we have to prepare the data. This time, 
rather than flattening the images, as we did for the dense neural network, 
we’ll instead make use of the images themselves as inputs. Listing 5-19 
loads, prepares, and splits the data into train and test samples. It also 
computes class weights. Note that Listing 5-18 starts from the end of 
Listing 5-1.
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Listing 5-18.  Summarize the model architecture

# Print summary of model architecture.

print(model.summary())

_____________________________________________________

Layer (type)        Output Shape          Param #

=====================================================

conv2d_9 (Conv2D)   (None, 78, 78, 8)     224

_____________________________________________________

conv2d_10 (Conv2D)  (None, 76, 76, 4)     292

_____________________________________________________

flatten_3 (Flatten) (None, 23104)         0

_____________________________________________________

dense_3 (Dense)     (None, 1)             23105

=====================================================

Total params: 23,621

Trainable params: 23,621

Non-trainable params: 0

_____________________________________________________

Now that the data has been loaded and prepared and the model 

has been defined, the next steps are to compile and train it. Listing 5-20 

shows this process, along with the evaluation step, where we compile the 

accuracy of model predictions on the test dataset.

In a mere 25 epochs, the CNN model achieves a 0.96 training accuracy 

and 0.95 validation accuracy. Additionally, when we evaluate the model 

using the test dataset, we again find an accuracy of 0.95. Even though this 

network had fewer parameters than the network constructed entirely out 

of dense layers, we were able to achieve a higher accuracy in fewer training 

epochs because we exploited the structure of images.
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Listing 5-19.  Prepare image data for training in a CNN

# Define class labels.

labels = np.vstack([np.ones((len(ships), 1)),

                np.zeros((len(noShips), 1))])

# Stack flattened images into numpy array.

features = np.vstack([ships, noShips])

# Shuffle and split sample.

X_train, X_test, y_train, y_test = \

        train_test_split(features, labels,

        test_size = 0.20, random_state=0

)

# Compute class weights.

w0 = np.mean(y_train)

w1 = 1.0 - w0

class_weights = {0: w0, 1: w1}

Listing 5-20.  Train and evaluate the model

# Compile the model.

model.compile(loss='binary_crossentropy',

        optimizer='adam', metrics=['accuracy'])

# Train the model using class weights.

model.fit(X_train, y_train, epochs = 10,

        class_weight = class_weights,

        batch_size = 32,

        validation_split = 0.20)

# Evaluate model.

model.evaluate(X_test, y_test)

Chapter 5  Image Classification



181

�Pretrained Models
In many cases, there will not be sufficient image data to train a CNN 

using a state-of-the-art architecture. Fortunately, this is rarely necessary, 

since the “convolutional base” of the CNN – that is, the convolutional 

and pooling layers – extracts general features from images and can often 

be repurposed for use in a variety of models, including those which use 

different classes.

In general, we will use pretrained models to perform two tasks: feature 

extraction and fine-tuning. Feature extraction entails using the model’s 

convolutional layers to identify general features of an image, which will 

then be fed into a dense layer and trained on your image dataset. You will 

typically use this when you want to train a model with a different set of 

classes than the original model was trained on. After you have trained a 

classifier, you can then optionally perform “fine-tuning,” which involves 

training the entire model, including the convolutional base at a low 

learning rate. This will slightly modify the model’s vision filters to align 

better with your classification task.

One benefit of not needing to fully train the model on your dataset is 

that you can use more sophisticated architectures, including state-of-the-

art models like ResNet, Xception, DenseNet, and EfficientNet. In addition 

to this, rather than using convolutional layers trained on a small number 

of images, you will be able to make use of state-of-the-art general vision 

filters, trained on large datasets, such as ImageNet.

�Feature Extraction
We’ll start by examining the use of pretrained models as feature extractors. 

The first step will be to load a pretrained model, which we can do using 

either the applications submodule of Keras or TensorFlow Hub. For the 

purpose of this example, we’ll use Keras.
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In Listing 5-21, we’ll use TensorFlow to define a ResNet50 model, 

setting the weights parameter to imagenet. This will load the ResNet50 

model architecture, along with a set of weights from a version of the model 

that was trained using the ImageNet dataset. We’ll also specify False for 

the include_top parameter, which will remove the final dense layer used 

to perform classification. We will not need this, since we are not using the 

ImageNet classes.

Listing 5-21.  Load a pretrained model using Keras applications

# Load model.

model = tf.keras.applications.resnet50.ResNet50(

        weights='imagenet',

        include_top=False

        )

Once the model has been loaded, we may apply the summary() method 

to explore its architecture. Doing this, you will notice two things. First, 

there are many layers and more than 25,000,000 parameters. Additionally, 

nearly all of those parameters fall under the “trainable params” category, 

which means they’ll be trained if you compile the model and apply the 

fit() method. And second, some of the layers may be unfamiliar.

Next, we need to set the convolutional base, which is the part of the 

model we have loaded, to be untrainable, which we do in Listing 5-22. This 

will ensure that we only train the classification head and that the rest of 

the model is simply used to extract features from the input images. After 

this, we’ll define an input layer, which we’ll pass to the model, setting 

the training parameter to False, since this is not a layer with trainable 

parameters. The model will now be able to accept image tensors of shape 

(80, 80, 3) and output a set of feature maps.
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Since we want the model to yield predicted class probabilities, rather 

than feature maps, we’ll need to reshape the feature map into a vector. We 

can do this using a global average pooling layer, which is similar to the max 

pooling operation we described earlier, but computes an average, rather 

than a maximum. We can now define a dense output layer and a functional 

model that accepts input images and outputs class probabilities. Finally, 

we’ll compile and fit the model.

Listing 5-22.  Train the classification head of a pretrained model in 

Keras

# Set convolutional base to be untrainable.

model.trainable = False

# Define input layer.

inputs = tf.keras.Input(shape=(80, 80, 3))

x = model(inputs, training=False)

# Define pooling and output layers, and model.

x = tf.keras.layers.GlobalAveragePooling2D()(x)

outputs = tf.keras.layers.Dense(1)(x)

model = tf.keras.Model(inputs, outputs)

# Compile and train the model.

model.co�mpile(loss='binary_crossentropy', optimizer="adam", 

        metrics=['accuracy'])

model.fit(X_train, y_train, epochs = 10,

        class_weight = class_weights,

        batch_size = 32,

        validation_split = 0.20)
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Just as we did with the convolutional base, we can apply the summary() 

method to the full model. If we were to do this, we'd see that the total 

parameters is similar, but the number of trainable parameters dropped 

from over 25,000,000 to slightly over 2000. This will make it feasible to train 

a highly accurate classifier without having a large number of images on 

which to train. It will also prevent overfitting by reducing the size of the 

trainable model dramatically.

�Model Fine-Tuning
A final and optional step is to perform model fine-tuning. The purpose of 

fine-tuning is to make slight adjustments to the convolutional filters, so 

that they capture features more relevant to your classification problem. 

This step is relatively simple and involves setting the convolutional base to 

be trainable, recompiling the model, and then training on a low learning 

rate, as shown in Listing 5-23.

If you apply the summary() method to the model one last time, you’ll 

notice that it now has more than 23,000,000 trainable parameters. For this 

reason, we have to train on a low learning rate to prevent the model from 

overfitting by making substantial changes to the pretrained convolutional 

filters. Note that such modifications can also degrade or "un-learn" the 

information embedded in the pretrained parameters.

Listing 5-23.  Fine-tune a pretrained model in Keras

# Set convolutional base to be untrainable.

model.trainable = True

# Compile model with a low learning rate.

model.compile(loss='binary_crossentropy',

        optimizer=tf.keras.optimizers.Adam(

        learning_rate=1e-5),
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        metrics=['accuracy'])

# Perform fine-tuning.

model.fit(X_train, y_train, epochs = 10,

        class_weight = class_weights)

�Summary
While computer vision once required the use of sophisticated models and 

domain knowledge, it can now be performed using convolutional neural 

networks with standard architectures. Furthermore, we have reached a 

point at which convolutional neural networks tend to outperform models 

that rely feature engineering, making it sufficient to master CNNs for most 

tasks.

The use of image classification remains underexploited in academic 

economics and finance, but has gained broader use in economic 

applications in industry. In this chapter, we gave an example of using 

satellite imagery to identify ships, which could be used to measure ship 

traffic at ports at a high frequency. The same approach could also be used 

to measure traffic on highways, count cars parked at malls, measure the 

pace of building construction, or identify changes in land cover.

In this chapter, we demonstrated how to construct neural networks 

using dense layers, which could be used for a variety of different regression 

and classification tasks. We also discussed how to define and train 

convolutional neural networks, which make use of special layers that 

take advantage of the properties of images. We saw that this resulted in a 

considerable reduction in the number of parameters needed relative to a 

model with only dense layers.
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Finally, we discussed how to load pretrained models and use them in 

our classification problem. We used a ResNet50 model that was pretrained 

using ImageNet data to extract features from images of ships. We then 

used those features to train a dense classifier layer. As a final step, we 

also showed how the entire network could be fine-tuned by training the 

convolutional layers at a low learning rate.
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CHAPTER 6

Text Data
The economics and finance disciplines have been generally reluctant 

to integrate forms of unstructured data. One exception to this is text, 

which has been applied to a wide variety of empirical problems. This may 

have arisen, in part, as a consequence of early successful applications in 

economics, such as Romer and Romer (2004), which demonstrated the 

empirical value of measuring internal central bank narratives.

The more widespread adoption of text may also be attributable to 

its many natural applications within economics and finance. It can, for 

instance, be used to extract latent variables, such as economic policy 

uncertainty from newspapers,1 consumer inflation expectations from 

social media content (Angelico, et al. 2018), and central bank and private 

firm sentiment from announcements and filings.2 It can also be used to 

predict bank distress (Cerchiello et al. 2017), measure the impact of news 

media on the business cycle (Chahrour et al. 2019), identify descriptions 

1�See Baker et al. (2016) and Bloom et al. (2019) for an overview of the construction 
of Economic Policy Uncertainty (EPU) indices and the current state of the 
literature. EPU indices for different countries are posted and updated  
at www.policyuncertainty.com.

2�Measuring sentiment in central bank statements and in financial filings are 
two of the most common uses of text-based data in economics. Loughran and 
McDonald (2011) was one of the earliest applications for financial filings. As a 
by-product of their work, they introduced a financial sentiment dictionary, which 
has gained widespread use in economics and finance, including for problems 
in central banks. Apel and Blix Grimaldi (2014) later introduced a sentiment 
dictionary that made use of terms specific to central banking.

https://doi.org/10.1007/978-1-4842-6373-0_6#DOI
https://www.policyuncertainty.com
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of fraud in consumer financial complaints (Bertsch et al. 2020), analyze 

financial stability (Born et al. 2013; Correa et al. 2020), forecast economic 

variables (Hollrah et al. 2018; Kalamara et. al 2020), and study central bank 

decision-making.3

The focus on textual data in economics gained renewed emphasis 

when Robert Shiller gave a presidential address to the American Economic 

Association entitled “Narrative Economics” (Shiller 2017). He argued 

that academic work in economics and finance has failed to account for 

the rise and decline of popular narratives, which have the capacity to 

drive macroeconomic and financial fluctuations, even if the narratives 

themselves are wrong. He then suggested that the discipline should begin 

the long project of correcting this deficiency through the exploration of 

text-based datasets and methods.

This chapter will discuss how text can be prepared and applied in the 

context of economics and finance. Throughout, we’ll use TensorFlow for 

modeling purposes, but will also make use of the Natural Language Toolkit 

(NLTK) to pre-process the data. We will also frequently refer to and use 

conventions from Gentzkow et al. (2019), which provides a comprehensive 

overview of many text analysis topics in economics and finance.

�Data Cleaning and Preparation
The first step in any text analysis project is to clean and prepare the data. 

If, for instance, we want to use newspaper articles about a company to 

forecast its stock market performance, we’ll need to start by assembling a 

collection or “corpus” of newspaper articles and then converting the text in 

those articles to a numerical format.

3�See, for example, Hansen and McMahon (2016), Hansen et al. (2018), Acosta 
(2019), and Armelius et al. (2020).
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The way in which we convert from text to numbers will determine 

what types of analysis we can perform. For this reason, the data cleaning 

and preparation step will be an important part of the pipeline for any such 

project. We will cover it in this subsection, focusing on its implementation 

using the Natural Language Toolkit (NLTK).

We’ll start by installing NLTK. We’ll then import it and download its 

models and datasets. You can use nltk.download('book') to download 

book-related data, nltk.download('popular') to download the most 

popular packages, or nltk.download('all') to download all available 

datasets and models, which is what we do in Listing 6-1.

Listing 6-1.  Install, import, and prepare NLTK

# Install nltk.

!pip install nltk

# Import nltk.

import nltk

# Download all datasets and models

nltk.download('all')

Now that we’ve installed NLTK and have downloaded all of the 

datasets and models, we can make use of its basic data cleaning and 

preparation tools. Before we can do that, though, we’ll need to prepare a 

dataset and introduce some notation.
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�Collecting the Data
The data we’ll use comes from US Securities and Exchange Commission 

(SEC) filings, which are available through their online system, EDGAR.4 

The EDGAR interface, shown in Figure 6-1, allows users to perform a 

variety of queries. We’ll first pull up the interface for company filings. 

Here, we can search for documents by company name or specify search 

parameters that will return documents for all companies that fit that 

criteria. Let’s assume that we want to create a project to monitor SEC 

filings about the metal mining industry. In that case, we’ll search by 

standard industrial classification (SIC) code.

4�You can perform queries and download files from EDGAR at the following URL: 
www.sec.gov/edgar/search-and-access.

Figure 6-1.  The EDGAR search interface for company filings. Source: 
SEC.gov
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Pulling up the SEC’s list of SIC codes, we can see that metal mining 
has been assigned the code 1000 and falls under the responsibility of the 
Office of Energy and Transportation, as is shown in Figure 6-2. We can now 
search for all filings by companies with the 1000 SIC code, yielding the 
results given in Figure 6-3. Each page lists companies, the state or country 
associated with the filing, and the Central Index Key (CIK), which can be 
used to identify a filing individual or corporation.

In our case, we’ll select the filings for “Americas Gold and Silver Corp,” 
which you can locate by searching for 0001286973 in the CIK field. From 
there, we’ll look at the text of Exhibit 99.1 from the 6-K financial filing on 
2020-05-15. We show the title and some text from this filing in Figure 6-4.

Figure 6-2.  A partial list of SIC classification codes. Source: SEC.gov
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As we can see in Figure 6-4, the filing corresponds to the first quarter 

of 2020 and appears to contain information about the company that 

could be useful for assessing its value. We can see, for instance, that there 

is information about the firm’s acquisitions. It also discusses mining 

production plans at specific sites. Now that we know how to retrieve filing 

information from the EDGAR system and have identified a specific filing 

of interest, we’ll introduce notation to describe such textual information. 

We’ll then return to the cleaning and preparation tasks in NLTK.

Figure 6-3.  A partial list of metal mining company search results. 
Source: SEC.gov
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�Text Data Notation
The notation we’ll use follows Gentzkow et al. (2019). We’ll let D to denote 

a collection of N documents or a “corpus.” C will denote a numerical array, 

which contains observations on K features for each document, Dj∈ D. In 

some cases, we’ll predict outcomes, V, using C or we’ll use fitted values, V̂ , 

in a two-step casual inference problem.

Before we can apply NLTK to clean and prepare the data, we have to 

answer the following two questions:

	 1.	 What is D?

	 2.	 What features of D should be embodied in C?

If we’re working with only one 6-K filing, then Dj might be a paragraph 

or sentence in that filing. Alternatively, if we have many 6-K filings, then Dj 

is likely to represent a single filing. For the sake of fixing an example, we’ll 

assume that D is the collection of sentences in a single 6-K filling – namely, 

the one we discussed earlier.

Figure 6-4.  A partial 6-K financial filing for a metal mining 
company. Source: SEC.gov
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What, then, is C? It depends on the features or “tokens” we wish to 

extract from each sentence of the filing. In many cases, we’ll use word 

counts as features; and we’ll do that in this example too. The expression 

for C, which is commonly referred to as the “document-feature” or 

“document-term” matrix is given in Equation 6-1.

Equation 6-1. Document-feature matrix.
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Each element, cij, is the frequency with which word j appears in 

sentence i. A natural question we might ask is which words are included in 

the matrix? Should we include all words in a given dictionary? Or should 

we restrict it to words that appear at least once in the corpus?

�Data Preparation
In practice, we’ll select a maximum number of words, K, based on some 

filtering criteria. In addition to this, we’ll also usually remove all non-word 

symbols, such as numbers and punctuation, during the cleaning and data 

preparation process. This will typically consist of four steps, which we 

outline as follows and then implement in an example using NLTK:

	 1.	 Convert to lowercase: Text data is inherently 

high dimensional, which will force us to use 

dimensionality reduction strategies wherever 

possible. One simple way in which we can do this 

is to ignore capitalization. Instead of treating “gold” 

and “Gold” as separate features, we’ll convert all 

characters to lowercase and treat them as the same 

word.
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	 2.	 Remove stop words and rare words: Many words 

do not contain meaningful content, such as articles, 

conjunctions, and prepositions. For this reason, 

we will often compile a list of “stop words,” which 

will be removed from texts during the cleaning 

process. If our C matrix consists of word counts, 

knowing how many times the words “the” and “and” 

were used will not tell us much about our topic of 

interest. Similarly, when we exclude words from the 

document-term matrix, we will often exclude rare 

words, which do not appear frequently enough to 

allow a model to discern their meaning.

	 3.	 Stem or lemmatize: The need to reduce data 

dimensionality further will often lead us to perform 

“stemming” or “lemmatization.” Stemming 

entails converting a word to its stem. That is, we 

might map the verb “running” to “run.” Since 

many words will map to the same stem, this will 

reduce the dimensionality of the problem, just as 

converting to lowercase letters did. Removing a 

word stem may result in non-word, which could 

be undesirable when the objective of a project is to 

yield interpretable outputs. In this case, we will want 

to consider using lemmatization instead, which 

maps many words to one, but uses the “base” or 

“dictionary” version of the word, rather than a stem.

	 4.	 Remove non-word elements: In most problems 

we’ll encounter in economics and finance, it will not 

be possible to make use of punctuation, numbers, 

and special characters and symbols. For this reason, 

we will discard them, rather than including them in 

the document-term matrix.
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We’ll now step through these cleaning and preparation steps in 

NLTK. For the sake of completeness, we’ll start by downloading the 6-K 

filing from SEC’s website using urllib and BeautifulSoup in Listing 6-2. 

Understanding these libraries will not be necessary for understanding the 

remainder of the chapter.

Listing 6-2.  Download HTML and extract text

from urllib.request import urlopen

from bs4 import BeautifulSoup

# Define url string.

url = 'https://www.sec.gov/Archives/edgar/

data/1286973/000156459020025868/d934487dex991.htm'

# Send GET request.

html = urlopen(url)

# Parse HTML tree.

soup = BeautifulSoup(html.read())

# Identify all paragraphs.

paragraphs = soup.findAll('p')

# Create list of the text attributes of paragraphs.

paragraphs = [p.text for p in paragraphs]

To briefly explain the content of Listing 6-2, we first imported two 

submodules: urlopen from urllib.request and BeautifulSoup from 

bs4. The urlopen submodule allowed us to send GET requests, which is a 

way of requesting a file from a server. In this case, we requested the HTML 

document located at the specified url. We then used BeautifulSoup 

to create a parse tree from the HTML, so that we could make use of its 

structure, searching it by tag. Next, we searched for all instances of the 

“p” or paragraph tag. Using a list comprehension, we’ll step through each 

instance, returning its text attribute, which we’ll collect in a list of strings.
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Recall that we decided to use sentences, rather than paragraphs, as our 

units of analysis. This means we’ll need to join the paragraphs together into 

a single string and then determine how to identify sentences within that 

string. We’ll start by merging and printing the paragraphs in Listing 6-3.

Listing 6-3.  Join paragraphs into single string

# Join paragraphs into single string.

corpus = " ".join(paragraphs)

# Print contents.

print(corpus)

Darren Blasutti VP, Corporate Development & Communications 

President and CEO Americas Gold and Silver Corporation Americas 

Gold and Silver Corporation 416-874-1708 Cautionary Statement 

on Forward-Looking Information: This news release contains 

"forward-looking information" within\n      the meaning of 

applicable securities laws. Forward-looking information 

includes,\n  ...

Upon printing the corpus, we can see that it requires cleaning. It 

contains punctuation, stop words, line breaks, and special characters, all 

of which will need to be removed before computing the document-feature 

matrix. Now, we might be tempted to start with the cleaning step, but 

doing so would remove indicators of what constitutes a sentence in the 

text. For this reason, we’ll first split the text into sentences.

While we could write a function to perform the splitting based on 

the location of punctuation, this is a solved problem in natural language 

processing and is implemented in the NLTK toolbox. In Listing 6-4, we 

import NLTK, instantiate a “sentence tokenizer,” which splits a text into 

individual sentences, and then apply it to the corpus we constructed in the 

previous step.
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Listing 6-4.  Tokenize text into sentences using NLTK

import nltk

# Instantiate sentence tokenizer.

sentTokenizer = nltk.sent_tokenize

# Identify sentences.

sentences = sentTokenizer(corpus)

# Print the number of sentences.

print(len(sentences))

50

# Print a sentence.

print(sentences[7])

The Company continues to target commercial production by late 

Q2-2020 or early Q3-2020 and will be providing more regular 

updates regarding the operation between now and then.

The next step is to perform the previously discussed cleaning tasks. 

While it will generally make sense to define a single function for this 

purpose, we’ll divide it into three steps for the sake of clarity. We’ll start by 

converting all characters to lowercase and removing stop words in Listing 6-5. 

For now, we will leave rare words in the corpus.

Listing 6-5.  Convert characters to lowercase and remove stop words

from nltk.corpus import stopwords

# Convert all characters to lowercase.

sentences = [s.lower() for s in sentences]

# Define stop words as a set.
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stops = set(stopwords.words('english'))

# Instantiate word tokenizer.

wordTokenizer = nltk.word_tokenize

# Divide corpus into list of lists.

words = [wordTokenizer(s) for s in sentences]

# Remove stop words.

for j in range(len(words)):

        �words[j] = [w for w in words[j] if

        w not in stops]

# Print first five words in first sentence.

print(words[0][:5])

['americas', 'gold', 'silver', 'corporation', 'reports']

In the next step, we’ll apply a stemmer to reduce the dimensionality 

of the dataset by collapsing each word into its stem. In Listing 6-6, we 

import the Porter stemmer (Porter 1980), instantiate it, and then apply it to 

each word in each sentence. We again print the first five words in the first 

sentence. We can see that the stemmer mapped “corporate” to “corpor” 

and “reports” to “report.” Recall that a word stem will not always be a word.

Listing 6-6.  Replace words with their stems

from nltk.stem.porter import PorterStemmer

# Instantiate Porter stemmer.

stemmer = PorterStemmer()

# Apply Porter stemmer.

for j in range(len(words)):

        words[j] = [stemmer.stem(w) for w in words[j]]
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# Print first five words in first sentence.

print(words[0][:5])

['america', 'gold', 'silver', 'corpor', 'report']

The last step in the cleaning process is to remove special characters, 

punctuation, and numbers. We’ll do this using regular expressions, which 

are commonly referred to as “regexes.” A regular expression is a short 

string that encodes a pattern that can be identified in texts. In our case, the 

string is [^a-z]+. The brackets indicate that the pattern is over a range of 

characters – namely, all the characters of the alphabet. We use the caret 

symbol, ^, to negate this pattern, indicating that the regex should only 

match characters not contained in it. This, of course, includes special 

symbols, punctuation, and numbers. Finally, the + symbol indicates that 

we allow for such symbols to be repeated in a sequence.

Listing 6-7 implements this final step in the cleaning process. We first 

import the library, re, which is used to implement regular expressions. 

Next, we iterate through each word in each sentence and substitute 

an empty string for any pattern matches. This leaves us with a list of 

sentences, each broken down into a list of words. Since the process will 

have left some empty strings, we’ll rejoin the words in each sentence. We’ll 

also remove any white space at the start and end of the sentence.

Listing 6-7.  Remove special characters and join words into 

sentences

import re

# Remove special characters, punctuation, and numbers.

for j in range(len(words)):

        words[j] = [re.sub('[^a-z]+', '', w)

        for w in words[j]]

# Rejoin words into sentences.
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for j in range(len(words)):

        words[j] = " ".join(words[j]).strip()

# Print sentence.

print(words[7])

compani continu target commerci product late q earli q provid 

regular updat regard oper

Printing the same sentence once again, we can see that it now looks 

quite different from its original form. Rather than a sentence, it looks like 

a collection of word stems. Indeed, in the following section, we will apply 

a form of text analysis that treats documents as a collection of words and 

ignores the order in which they appear. This is often referred to as the 

“bag-of-words” model.

�The Bag-of-Words Model
In the previous section, we suggested that one possible construction of 

the document-term (DT) matrix, C, would use word counts as features. 

This representation would not allow us to account for grammar or word 

order, but it would permit us to capture word frequency. There are many 

problems in economics and finance in which we will be able to achieve our 

objective under such constraints.

The model we’ve described is called the “bag-of-words” (BoW) model, 

which was introduced in the information retrieval literature by Salton 

and McGill (1983). The term bag-of-words appears to have originated in a 

linguistic context in Harris (1954):

we build a stock of utterances each of which is a particular 
combination of particular elements. And this stock of combi-
nations of elements becomes a factor … for language is not 
merely a bag of words but a tool with particular properties 
which have been fashioned in the course of its use.
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In this section, we’ll see how to construct a BoW model, starting with 

the cleaned and prepared data from the previous section. In addition to 

NLTK, we’ll also use submodules from sklearn to construct the DT matrix. 

While there are routines to perform such tasks in NLTK, they are not part 

of the core module and are generally less efficient.

Recall that words contained the 50 sentences we extracted from a 6-K 

filing for a metal mining company. We’ll use this list of lists to construct 

the document-term matrix in Listing 6-8, where we start by importing 

text from sklearn.feature_extraction. We’ll then instantiate a 

CounterVectorizer(), which will compute the frequency of words in 

each sentence and then construct the C matrix based on some constraints, 

which can be supplied as parameters. For the sake of illustration, we’ll set 

max_features to 10. This will constrain the maximum number of columns 

in the document-term matrix to be no higher than 10.

Next, we’ll apply fit_transform() to words, transforming it into 

a document-term matrix, C. Since C will be large for many problems, 

sklearn saves it as a sparse matrix. You can convert it to an array using 

the toarray() method. We can also apply the get_feature_names() of 

vectorizer() to recover the terms that correspond to each of the columns.

Listing 6-8.  Construct the document-term matrix

from sklearn.feature_extraction import text

# Instantiate vectorizer.

vectorizer = text.CountVectorizer(max_features = 10)

# Construct C matrix.

C = vectorizer.fit_transform(words)

# Print document-term matrix.

print(C.toarray())

[[3 1 0 2 0 0 1 0 2 2]

 [1 2 0 1 0 0 0 0 0 1]
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        ...

        ...

        ...

 [0 1 0 0 0 1 0 0 0 0]

 [0 0 0 0 0 0 0 1 1 0]]

# Print feature names.

print(vectorizer.get_feature_names())

['america', 'compani', 'cost', 'gold', 'includ',

'inform', 'oper', 'product', 'result', 'silver']

Printing the document-term matrix and feature names, we can see 

that we recovered counts for ten different features. While this was useful 

for the sake of illustration, we will typically want to use considerably more 

features in actual applications; however, allowing more features may result 

in the inclusion of less useful features, which will necessitate the use of 

filtering.

Sklearn provides us with two additional parameters we can use to 

perform filtering: max_df and min_df. The max_df parameter determines 

the maximum number or proportion of documents that a term may appear 

in before it is removed from the term matrix. Similarly, the minimum 

threshold is given by min_df. In both cases, specifying an integer value, 

such as 3, indicates a document count, whereas specifying a float, such as 

0.25, indicates a proportion of documents.

The value of specifying a maximum threshold is that it will remove all 

terms that appear too frequently to provide meaningful variation. If, for 

instance, a term appears in more than 50% of documents, we may want 

to remove it by specifying a max_df of 0.50. In Listing 6-9, we compute the 

document-term matrix again, but this time allow for up to 1000 terms and 

also apply filtering to remove terms that appear in either more than 50% or 

fewer than 5% of documents.
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If we print the shape of the C matrix, we can see that it does not appear 

that the document-term matrix was constrained by the maximum feature 

limit of 1000, since only 109 feature columns were returned. This may have 

been a consequence of our selection of maximum document frequency 

and minimum document frequency parameters, which eliminated terms 

that were unlikely to be useful for our purposes.

Another way in which we can perform filtering is to use the term-

frequency inverse-document frequency (tf-idf) metric, which is shown in 

Equation 6-2.

Equation 6-2. Computing the term-frequency inverse-document 

frequency for column j.
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The tf-idf is computed for each feature, j, in the document-term matrix, C. 

It consists of the product of two components: (1) the frequency with which 

term j appears across all documents in the corpus, ∑icij, and (2) the natural 

logarithm of the document count, divided by the number of documents 

in which term j appears at least once, N
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. The tf-idf metric is 

increasing in the number of times j appears across the entire corpus and 

decreasing in the share of documents in which j appears. If j isn’t used 

frequently or is used in too many documents, the tf-idf score will be low.

Listing 6-9.  Adjust the parameters of CountVectorizer()

# Instantiate vectorizer.

vectorizer = text.CountVectorizer(

        max_features = 1000,

        max_df = 0.50,

        min_df = 0.05

)
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# Construct C matrix.

C = vectorizer.fit_transform(words)

# Print shape of C matrix.

print(C.toarray().shape)

(50, 109)

# Print terms.

print(vectorizer.get_feature_names()[:10])

['abil', 'activ', 'actual', 'affect', 'allin', 'also', 

'america', 'anticip', 'approxim', 'avail']

In Listing 6-10, we repeat the same steps as in Listing 6-8, but we 

use a TfidfVectorizer(), rather than CountVectorizer(). This allows 

us to access the idf_ parameter, which contains the inverse document 

frequency scores. We can then optionally perform filtering by dropping 

columns with a tf-idf score below a certain threshold.

Listing 6-10.  Compute inverse document frequencies for all 

columns

# Instantiate vectorizer.

vectorizer = text.TfidfVectorizer(max_features = 10)

# Construct C matrix.

C = vectorizer.fit_transform(words)

# Print inverse document frequencies.

print(vectorizer.idf_)

[2.36687628 1.84078318 3.14006616 2.2927683  2.44691898 

2.22377543 1.8873032  2.22377543 2.22377543 2.2927683 ]
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In some applications, we may want to use several words in a sequence 

(n-grams) – rather than individual words (unigrams) – as our features. We 

can do this by setting the ngram_range parameter of TfidfVectorizer() or 

CountVectorizer(). In Listing 6-11, we set the parameter to (2, 2), which 

means we only permit two-word sequences (bigrams). Note that the first 

value in the tuple is the minimum number of words and the second value 

is the maximum. We can see that the set of feature names returned is now 

different from the unigrams we generated in Listing 6-9.

In general, applying the bag-of-words model and computing a 

document-term matrix will be only the first step in a natural language 

processing project; however, it should be straightforward to see how such 

a matrix could be combined with standard tools from econometrics to 

perform analysis. If, for instance, we had a dependent variable associated 

with each document, such as stock returns for a firm on the same days as 

SEC filings, we could combine the two to train a predictive model or to test 

a hypothesis.

Listing 6-11.  Compute the document-term matrix for unigrams and 

bigrams

# Instantiate vectorizer.

vectorizer = text.TfidfVectorizer(

        max_features = 10,

        ngram_range = (2,2)

)

# Construct C matrix.

C = vectorizer.fit_transform(words)

# Print feature names.

print(vectorizer.get_feature_names())
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['america gold', 'cosal oper', 'forwardlook inform', 'galena 

complex', 'gold silver', 'illeg blockad', 'oper result', 

'recapit plan', 'relief canyon', 'silver corpor']

�Dictionary-Based Methods
In the previous sections, we cleaned and prepared data and then explored 

it using the bag-of-words model. This yielded a NxK document-term 

matrix, C, which consisted of word counts for each document. We filtered 

certain words of the document-term matrix, but otherwise remained 

agnostic about what features we wished to find in the text.

An alternative to this approach is to use a pre-selected “dictionary” of 

words, which is constructed to capture some latent feature in the text. Such 

approaches are often referred to as “dictionary-based methods” and are 

the most commonly used form of text analysis in economics.

An early application of dictionary-based methods in economics 

made use of latent “sentiment” in Wall Street Journal articles to study 

the relationship between news and stock market performance (Tetlock 

2007). Later work, such as Loughran and McDonald (2011) and Apel 

and Blix Grimaldi (2014), introduced dictionaries that were designed to 

measure specific latent variables, which lead to their widespread use in 

the literature. Loughran and McDonald (2011) introduced a dictionary 

for 10-K financial filings, which was ultimately used to measure negative 

and positive sentiment in many contexts. Apel and Blix Grimaldi (2014) 

introduced a dictionary that measured “hawkishness” and “dovishness” in 

central bank communication.

Gentzkow et al. (2019) argue that economics and the social sciences 

should expand the set of tools they use for performing text analysis. Rather 

than using dictionary-based methods as a default choice, they should 

instead only be considered when the following two criteria are satisfied:
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	 1.	 The prior information you have about the latent 

variable and how it is represented in text is strong 

and reliable.

	 2.	 The information about the latent variable in the text 

is weak and diffuse.

An ideal example of this is the Economic Policy Uncertainty (EPU) 

index introduced by Baker et al. (2016). The latent variable they wanted 

to measure was a theoretical object, which they captured in text by 

identifying the joint use of words that referred to the economy, policy, 

and uncertainty. Without specifying a dictionary for such an object, it is 

unlikely that it would emerge from a model as a common feature or topic. 

Additionally, having specified a dictionary, they demonstrated that it 

captured the underlying theoretical object by comparing EPU index scores 

with human ratings of the same newspaper articles.

Since dictionary-based methods are simple to implement and do not 

require the use of TensorFlow, we’ll demonstrate how they work with a 

single example involving the Loughran-McDonald (LM) dictionary. We’ll 

start by using pandas to load the LM dictionary in Listing 6-12.5 We’ll use 

the read_excel submodule from pandas and will specify the file path 

and the sheet name. Note that we’ve specified the “Positive” sheet, since 

we will exclusively make use of the dictionary of positive words in this 

example.

Listing 6-12.  Compute the Loughran-McDonald measure of 

positive sentiment

import pandas as pd

5�The LM dictionary is currently available for download on the following page: 
https://sraf.nd.edu/textual-analysis/resources/#LM%20Sentiment%20
Word%20Lists.

Chapter 6  Text Data

https://sraf.nd.edu/textual-analysis/resources/#LM%20Sentiment%20Word%20Lists
https://sraf.nd.edu/textual-analysis/resources/#LM%20Sentiment%20Word%20Lists


211

# Define data directory path.

data_path = '../data/chapter6/'

# Load the Loughran-McDonald dictionary.

lm = pd.read_excel(data_path+'LM2018.xlsx',

        sheet_name = 'Positive',

        header = None)

# Convert series to DataFrame.

lm = pd.DataFrame(lm.values, columns = ['Positive'])

# Convert to lower case.

lm = lm['Positive'].apply(lambda x: x.lower())

# Convert DataFrame to list.

lm = lm.tolist()

# Print list of positive words.

print(lm)

['able',

 'abundance',

 'abundant',

         ...

 'innovator',

        ...

 'winners',

 'winning',

 'worthy']

Next, we’ll convert the pandas Series into a DataFrame and use the 

column header “Positive” for the dictionary. We’ll then use a lambda 

function to convert all of the words to lowercase, since they are uppercase 

in the LM dictionary. Finally, we’ll convert the DataFrame to a list object 

and then print. Looking at the last three terms, we can see that two of 

them – winners and winning – are likely to have the same word stem.
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In general, we will typically either want to stem the dictionary and stem 

the corpus or stem neither. Since we have already stemmed the corpus – 

namely, the sentences from a 6-K filling – we’ll stem the dictionary too, 

dropping duplicate stems in the process. We do this in Listing 6-13.

Listing 6-13.  Stem the LM dictionary

from nltk.stem.porter import PorterStemmer

# Instantiate Porter stemmer.

stemmer = PorterStemmer()

# Apply Porter stemmer.

slm = [stemmer.stem(word) for word in lm]

# Print length of list.

print(len(slm))

354

# Drop duplicates by converting to set.

slm = list(set(slm))

# Print length of list.

print(len(slm))

151

Following the steps we took earlier in the chapter, we’ll first instantiate 

a Porter stemmer and then apply it to each word in the dictionary using a 

list comprehension. The original list contains 354 words. If we then convert 

that list to a set, this will drop duplicate stems, reducing the number of 

dictionary terms to 151.
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The next step is to take the words list, which contains the 50 sentences 

we extracted from a document, and count the instances of positive 

word stems. Recall that we cleaned and stemmed each of the words in a 

sentence – and then stored them as strings. We’ll need to iterate through 

each string, counting the number of times each of the positive words 

appears. We’ll do this in Listing 6-14.

Listing 6-14.  Count positive words

# Define empty array to hold counts.

counts = []

# Iterate through all sentences.

for w in words:

        # Set initial count to 0.

        count = 0

        # Iterate over all dictionary words.

        for i in slm:

                count += w.count(i)

        # Append counts.

        counts.append(count)

In Listing 6-14, we started by defining an empty list to hold the counts. 

We then iterated over all strings that are contained in the words list in the 

outer loop. Whenever we started a new sentence, we set the positive word 

count to 0. We then stepped through the inner loop, which iterates over all 

words in the stemmed LM dictionary, counting the number of times they 

appear in the string and adding that to the total. We appended the total for 

each sentence to counts.

Figure 6-5 shows a histogram of the positive word counts. We can see 

that most sentences have none, whereas one sentence has more than ten. 

If we were to perform this analysis at the document level, as we typically 

will, we would most likely find a non-zero value for most 6-K filings.
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In principle, we could take our positivity counts and include them 

as a feature in a regression. In practice, however, we will typically use a 

transformation of the count variable that has a more natural interpretation. 

If we did not have zero counts, we might use the natural logarithm of the 

count, allowing us to interpret the estimated effect as the impact on the 

percentage change in positivity. Alternatively, we could use the ratio of 

positive words to all words.

Finally, in economics and finance applications, it is common to use 

a net index, combining both positivity and negativity or “hawkishness” 

and “dovishness,” as is shown in Equation 6-3. Often, we will take the 

difference between the positive and negative word counts and then divide 

by a normalization factor. This factor may be the total word count for the 

document or the sum of the positive and negative terms.

Equation 6-3. Net positivity index.

	
net positivity

positivity negativity

normalization factor
=

-
	

Figure 6-5.  The distribution of positive word counts across sentence 
in a 6-K filling
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�Word Embeddings
So far, we have used one-hot encoding (dummy variables) to construct 

numerical representations of words. One potential downside to 

this approach is that we implicitly assume that each pair of words is 

orthogonal. The words “inflation” and “prices,” for instance, are assumed 

to have no relationship to each other.

An alternative to using words as features is to instead use embeddings. 

In contrast to word vectors, which have a high-dimensional, sparse 

representation, word embeddings use a low-dimensional, dense 

representation. This dense representation allows us to identify the degree 

to which words are related.

Figure 6-6 provides a simple comparison of one-hot encoded words 

and dense word embeddings. The statement “…inflation rose sharply…” – 

which might appear in a central bank announcement – could be encoded 

using either approach. If we use the one-hot encoded approach, shown on 

the left of the diagram, each word will be translated into a sparse, high-

dimensional vector. And each such vector will be orthogonal to all others. 

If, on the other hand, if we use embeddings, each word will be associated 

with a lower-dimensional, dense representation, shown on the right of 

Figure 6-6. The relationship between two such vectors is measurable and 

can be captured, for instance, using their inner product. The formula for 

the inner product of two vectors of dimension n – x and z – is given in 

Equation 6-4.

Equation 6-4. The inner product of two vectors, x and z.

	 x z x z x zT
n n= +¼+0 0 	
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While the inner product may give us a compact summary of the 

relationship between the two words, it does not provide more granular 

information about how two embedding vectors are related. For this, we 

can directly compare elements in the same position for a pair of vectors. 

Such elements provide a measurement for the same feature. While we 

might not be able to identify what the underlying feature is, we know that 

having similar values in the same position indicates two words are related 

along that dimension.

In contrast to one-hot encoding, we will need to use some supervised 

or unsupervised method to train embeddings. Since embeddings need 

to capture meaning in words and the relationships between words, it will 
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Figure 6-6.  Comparison of one-hot encoding and word 
embeddings
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often not make sense to do the training ourselves. Among other things, 

the embedding layer will need to learn the language in which you are 

performing your analysis, and the corpus you provide will almost certainly 
be insufficient for that task.

For this reason, you will often instead use pretrained word 
embeddings. Common choices include Word2Vec (Mikolov et al. 2013) 
and Global Vector for Word Representation (Pennington et al. 2014).

Notice that there is a strong analogy between word embeddings 
and convolutional layers. With convolutional layers, we said that they 
included general vision filters. For this reason, it often made sense to 
use convolutional layers from a model pretrained on millions of images. 
Additionally, we said that it was possible to “fine-tune” the training of 
such models to improve local performance on your particular image 
classification task. The same is also true with word embeddings.

�Topic Modeling
The purpose of a topic model is to uncover a latent set of topics in a corpus 

and to determine the extent to which those topics are present in individual 

documents. The first topic model, the latent Dirichlet allocation (LDA), was 

introduced to the machine learning literature in Blei et al. (2003) and has 

since found applications in many areas, including economics and finance.

While TensorFlow does not provide an implementation for standard 

workhorse topic models, it is the framework of choice for many 

sophisticated topic models. In general, a topic model will be more likely to 

be implemented in TensorFlow if it makes use of deep learning.

Since topic modeling is seeing increased use in economics, we will 

provide a brief introduction in this section, even though we will not make 

use of TensorFlow. We’ll start with a theoretical overview of the static LDA 

model Blei et al. (2003), followed by a description of how to implement 

and tune it using sklearn. We’ll will close the section by discussing 

recently-introduced variants of the model.
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In Blei et al. (2003), the LDA model is described as follows:

a generative probabilistic model of a corpus. The basic idea is 
that documents are represented as random mixtures over 
latent topics, where each topic is characterized by a distribu-
tion over words.

There are a few concepts worth explaining, since they will reappear 

throughout this chapter and text. First, the model is “generative” because it 

generates a novel output – the topic distribution – rather than performing 

a discriminative task, such as learning a classification for a document. 

Second, it is “probabilistic” because the model is explicitly grounded in 

probability theory and yields probabilities. And third, we say that topics 

are “latent” in that they are not explicitly measured or labeled, but are 

assumed to be an underlying feature of documents.

While we won’t discuss the details of solving an LDA model, we’ll 

briefly summarize the assumptions underlying the model in Blei et al. 

(2003), starting with notation. First, they assume that words are drawn 

from a fixed vocabulary of length V and represent them using one-hot 

encoded vectors. Next, they define a document as a sequence of N 

words, w = (w1, w2, …, wN). Finally, they define a corpus as collection of 

documents, D = {w1, w2, …, wM}.

The model makes three assumptions about the underlying process that 

generates a document, w, in a corpus, D:

	 1.	 The number of words, N, in each document, w, is 

drawn from a Poisson distribution.

	 2.	 The latent topics are drawn from a k-dimensional 

random variable, θ, which has a Dirichlet 

distribution: θ~Dir(α).

	 3.	 For each word, n, a topic, zn, is drawn from a 

multinomial distribution that is conditional on θ. 
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The word itself is then drawn from a multinomial 

distribution, conditional on the topic, zn.

The authors argue that the Poisson distribution of word counts is not 

an important assumption and that it would be better to use a more realistic 

assumption. The choice of the Dirichlet distribution constrains θ to a 

(k-1)-dimensional simplex. It also provides a multivariate generalization 

of the beta distribution and is parameterized by a k-vector of positive-

valued weights, α. Blei et al. (2003) choose the Dirichlet distribution for 

three reasons: “…it is in the exponential family, has finite dimensional 

sufficient statistics, and is conjugate to the multinomial distribution.” They 

argued that this would ensure its suitability in estimation and inference 

algorithms.

The probability density of the topic distribution, θ, is given in  

Equation 6-5.

Equation 6-5. The distribution of topics.
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In Figure 6-7, we provide a visual illustration of 100 random draws 

from the Dirichlet distribution in the case where k = 2. In the left panel of 

Figure 6-7, we set α = [0.9, 0.1], and in the right panel, we set α = [0.5, 0.5]. 

In both cases, all points are located on the simplex. That is, summing the 

coordinates associated with any point will yield 1. Additionally, we can see 

that choosing identical values of α0 and α1 yields evenly distributed points 

along the simplex, whereas increasing the relative value of α0 results in a 

skew toward the horizontal axis (i.e., topic θk).
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We’ll next implement an LDA model, making use of the document 

corpus we constructed earlier by dividing a 6-K filing into sentences. Recall 

that we defined a document-term matrix, C, using CountVectorizer. We’ll 

make use of both in these in Listing 6-15, where we start by importing 

LatentDirichletAllocation from sklearn.decomposition. Next, we 

instantiate a model with our preferred parameter values. In this case, we 

will only set the number of topics, n_components. This corresponds to the k 

parameter in the theoretical model.

We can now train the model on the document-term matrix and recover 

the output, wordDist, using lda.components_. Note that wordDist has 

shape (3, 109). The rows correspond to latent topics, and the columns 

correspond to weights. The higher the weight, the more important a word 

is for defining a topic.6

We’ll next make use of the output, wordDist, to identify the words with 

the highest weights to for each topic. We’ll define an empty list, topics, to 

hold the topics. Within a list comprehension, we’ll step through each topic 

array and apply argsort() to recover the indices that would sort the array. 

We’ll then recover the last five indices and reverse their order.

6�lda.components_ returns unnormalized results that do not sum to 1. For this 
reason, we’ll refer to them as weights, rather than probabilities.

Figure 6-7.  Plot of random draws from Dirichlet distribution with 
k=2 and parameter vectors [0.9, 0.1] (left) and [0.5, 0.5] (right)
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For each index, we’ll identify the associated term by making use of 

feature_names, which we recovered from vectorizer. We’ll then print the 

list of topics.

A complete description of a topic consists of a vector of weights 

over the vocabulary. We can choose how such a topic is described by 

determining which words have weights that are sufficiently high to justify 

their inclusion in the topic’s description. In this case, we have simply used 

the five words with the highest weights; however, in principle, we could 

have used a threshold value or some other criterion.

Listing 6-15.  Perform LDA on 6-K filing text data

from sklearn.decomposition import LatentDirichletAllocation

# Set number of topics.

k = 5

# Instantiate LDA model.

lda = LatentDirichletAllocation(n_components = k)

# Recover feature names from vectorizer.

feature_names = vectorizer.get_feature_names()

# Train model on document-term matrix.

lda.fit(C)

# Recover word distribution for each topic.

wordDist = lda.components_

# Define empty topic list.

topics = []

# Recover topics.

for i in range(k):

        topics.append([feature_names[name] for

        name in wordDist[i].argsort()[-5:][::-1]])
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# Print list of topics.

print(topics)

[['inform', 'america', 'gold', 'forwardlook', 'result'],

 ['oper', 'compani', 'product', 'includ', 'relief'],

 ['silver', 'lead', 'cost', 'ounc', 'galena']]

Now that we have identified topics, the next step is to determine what 

those topics describe. In our simple example, we recovered three topics. 

The first appears to reference forward-looking information related to gold. 

The second appears to involve company operations and production. And 

the third topic is concerned with the cost of metals.

Finally, we complete the exercise by using the transform() method of 

our model to assign topic probabilities to sentences in Listing 6-16.

Listing 6-16.  Assign topic probabilities to sentences

# Transform C matrix into topic probabilities.

topic_probs = lda.transform(C)

# Print topic probabilities.

print(topic_probs)

array([[0.0150523 , 0.97172408, 0.01322362],

       [0.02115127, 0.599319  , 0.37952974],

       [0.33333333, 0.33333333, 0.33333333],

                                ...

       [0.93766165, 0.03140632, 0.03093203],

       [0.08632993, 0.82749933, 0.08617074],

       [0.95509882, 0.02178363, 0.02311755]])

The output, as we can see in Listing 6-16, is a matrix of shape (3, 50), which 

contains topic probabilities that sum to one for each sentence. If, for instance, 

we had collected separate 6-K filings for each date, rather than looking at 

sentences within a filing, we’d now have the time series of topic proportions.
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We’ve also plotted the topic proportions in Figure 6-8. We can see that 

there appears to be persistence in topics across sentences in the document 

document. For instance, topic 1 is dominant at the start and end of the 

document, and topic 3 rises in importance in the middle.

While we considered a simple example that did not require a careful 

choice of model or training parameters, the LDA implementation in 

sklearn does, in fact, permit the choice of a variety of different parameters. 

We consider six of those parameters in the following:

Figure 6-8.  Topic proportions by sentence
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	 1.	 Topic prior: By default, the LDA model will use  

1/n_components as the prior for all elements in 

α. You can, however, supply a different prior by 

explicitly providing a topic distribution for the 

parameter doc_topic_prior.

	 2.	 Learning method: By default, the LDA model in 

sklearn will use variational Bayes to train the model 

and will make use of the full sample to perform each 

update. It is, however, possible to train in mini-

batches by setting the learning_method parameter 

to 'online'.

	 3.	 Batch size: Conditional on using online training, 

you will also have the option to change the mini-

batch size from its default value of 128. You can do 

this using the batch_size parameter.

	 4.	 Learning decay: When using the online learning 

method, the learning_decay parameter can be 

used to adjust the learning rate. A higher value 

of decay lowers the information we retain from 

previous iterations. The default value is 0.7, and the 

documentation recommends selecting a decay in 

the (0.5, 1] interval.

	 5.	 Maximum number of iterations: Setting a 

maximum number of iterations will terminate 

the training process after that threshold has been 

reached. By default, the max_iter parameter is set to 

128. If the model does not appear to converge within 

128 iterations, you may want to set a higher value for 

this parameter.
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Finally, two limitations of the standard LDA model introduced by Blei 

et al. (2003) merit discussion. First, neither the number nor content of 

topics may vary over the corpus. For many problems, this is not an issue; 

however, for applications in economics and finance that involve a time 

series dimension, this can be quite problematic, as we will expand on in 

the following paragraph. And second, the LDA model does not provide any 

meaningful control over the topics extracted. If we wish to track specific 

types of events in the data, we may not be able to do that using an LDA 

model, since there is no guarantee that it will identify those events.

With respect to the first problem – namely, using an LDA in time 

series contexts – two issues may arise. First, the model will censor topics 

that appear only briefly, such as financial crises, even if they are quite 

important during the period in which they appear. And second, it will 

introduce a “look-ahead” bias in the topic distribution by forcing topics 

that emerge in the future to also be topics in the entire sample. This can 

create the impression that the LDA model would have predicted events 

that it would not have if the sample were truncated at the date of the event.

With respect to the second problem, LDA presents two issues. The first 

is that we do not have the possibility to guide the model toward topics of 

interest. We cannot, for instance, submit topic queries to the LDA model. 

The second issue is that the topics the model does generate are often 

challenging to interpret. This is because a topic is simply a distribution 

over all words in the vocabulary. We will often be unable to determine 

what exactly a topic is without studying the distribution and examining the 

documents in which it is determined to be dominant.

There are, however, more recently developed models that attempt to 

overcome the limitations of the static LDA model. Blei and Lafferty (2006), 

for instance, introduce a dynamic version of the topic model. Additionally, 

Dieng et al. (2019) extend this further by introducing a dynamic embedded 

topic model (D-ETM). This model is dynamic, permits the use of a large 

vocabulary, and tends to generate more interpretable topics. This solves 

both of the issues related to the original static LDA model.
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�Text Regression
As Gentzkow et al. (2019) discuss, most text analysis within economics 

and finance centers around the bag-of-words model and dictionary-based 

methods. While these techniques are useful under certain circumstances, 

they are not the best tool for all research questions. Consequently, many 

projects that involve text analysis in economics could likely be improved 

by making use of different methods from natural language processing.

One option is to use a text regression, which is simply a regression 

model that includes text features, such as columns from the term-

document matrix, as regressors. Gentzkow et al. (2019) argue that text 

regression is a good candidate method for economists to adopt. This is 

because economists primarily use linear regression for empirical work and 

often have familiarity with penalized linear regression. Thus, learning how 

to perform a text regression is mostly about constructing the document-

term matrix, not learning how to estimate a regression.

We’ll start this section by performing a simple text regression in 

TensorFlow. To do this, we’ll need to construct the document-term matrix 

and a continuous dependent variable. Rather than using sentences within a 

6-K filing, we’ll use all 8-K filings for Apple in the SEC’s system to construct 

the document-term matrix.7 We’ll then use the daily percentage change in 

Apple’s stock price on the day of the filing as the dependent variable.

For the sake of brevity, we’ll omit the details of the data collection 

process other than to say that we performed the same steps discussed 

earlier in the chapter to produce a document-term matrix, x_train, and 

stored the stock returns data as y_train. In total, we made use of 144 

filings and extracted 25 unigram counts to construct x_train.

7�The most commonly used SEC documents for research in economics and finance 
are 10-K, 10-Q, and 8-K filings. 10-K and 10-Q filings are submitted annually and 
quarterly and contain a high volume of text. 8-K filings are “press releases” that 
are submitted irregularly to comply with information disclosure rules. Apart from 
ownership information, 8-K filings are the most numerous, which is why we have 
selected them for this project.
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Recall from Chapter 3 that a linear model with k regressors has the 

form given in Equation 6-6. In this case, the k regressors are the feature 

counts from the document-term matrix. Note that we index documents 

using t, since we are using a time series of filings and returns.

Equation 6-6. A linear model.

	 Y X Xt t k tk= + +¼+ - -a b b0 0 1 1 	

We could, of course, make use of OLS and solve for the parameter 

vector with an analytical expression. However, for the sake of building 

toward models that are not analytically tractable, we’ll instead make use 

of a LAD regression. In Listing 6-17, we import tensorflow and numpy, 

initialize a constant term (alpha) and the vector of coefficients (beta), 

transform x_train and y_train into numpy arrays, and then define a 

function (LAD), which transforms the parameters and data into predictions.

Recall that we must define the parameters we wish to train using  

tf.Variable() and can use either np.array() or tf.constant() to define 

data.

Listing 6-17.  Prepare the data and model for a LAD regression in 

TensorFlow

import tensorflow as tf

import numpy as np

# Draw initial values randomly.

alpha = tf.random.normal([1], stddev=1.0)

beta = tf.random.normal([25,1], stddev=1.0)

# Define variables.

alpha = tf.Variable(alpha, tf.float32)

beta = tf.Variable(beta, tf.float32)

# Convert data to numpy arrays.
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x_train = np.array(x_train, np.float32)

y_train = np.array(y_train, np.float32)

# Define LAD model.

def LAD(alpha, beta, x_train):

        prediction = alpha + tf.matmul(x_train, beta)

        return prediction

The next steps are to define a loss function and perform minimization, 

which we do in Listing 6-18. We will use a mean absolute error (MAE) loss, 

since we’re performing a LAD regression. We’ll then instantiate an Adam() 

optimizer with default parameter values. Finally, we’ll perform 1000 

training iterations.

Listing 6-18.  Define an MAE loss function and perform 

optimization

# Define number of observations.

N = len(x_train)

# Define function to compute MAE loss.

def maeLoss(alpha, beta, x_train, y_train):

        y_hat = LAD(alpha, beta, x_train)

        y_hat = tf.reshape(y_hat, (N,))

        return tf.losses.mae(y_train, y_hat)

# Instantiate optimizer.

opt = tf.optimizers.Adam()

# Perform optimization.

for i in range(1000):

        opt.minimize(lambda: maeLoss(alpha, beta,

        x_train, y_train),

        var_list = [alpha, beta])
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Now that we’ve trained a model, we can feed arbitrary inputs into the 

LAD function, which will yield predicted values. We’ll do that using x_train 

to generate predictions, y_pred, for y_train in Listing 6-19.

Listing 6-19.  Generate predicted values from model

# Generate predicted values.

y_pred = LAD(alpha, beta, x_train)

We plot the predicted values against the true values in Figure 6-9. 

The constant term matches the mean return, and the predictions appear 

to capture the direction of most changes correctly; however, the model 

generally fails to explain much of the variation in the data.

Figure 6-9.  True and predicted values of Apple stock returns
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There are several reasons that are unrelated to natural language 

processing that are likely to explain our inability to explain much of 

the variation in the data using the model. First, the 1-day time window 

could be too large and may capture developments unrelated to the 

announcement effect. Indeed, much of the literature in economics on 

the subject has moved to concentrating on narrower windows around 

announcements, such as 30 minutes. Second, we didn't include any 

non-text features in the regression, such as lagged returns, returns from 

the entire tech sector, or data releases from statistical agencies. And third, 

predicting surprise returns is challenging and even good models will 

typically fail to explain most of the variation in the data.

For the sake of this exercise, however, let’s put all of that aside 

and consider how we might improve prediction purely from NLP on 

announcements. A good place to start might be to question whether we 

selected unigrams that contained meaningful content for explaining 

returns. Given that we uncritically accepted the 25 features selected by 

the CountVectorizer(), it is possible that a more thoughtful selection 

of features could lead to an improvement. Recall that we can extract the 

features from vectorizer using the get_feature_names() method. In 

Listing 6-20, we do this and then print the unigrams extracted from texts.

Listing 6-20.  Generate predicted values from model

# Get feature names from vectorizer.

feature_names = vectorizer.get_feature_names()

# Print feature names.

print(feature_names)

['act', 'action', 'amend', 'amount', 'board',

'date', 'director', 'incom', 'law', 'made',

'make', 'net', 'note', 'offic', 'order',

'parti', 'price', 'product', 'quarter', 'refer',

'requir', 'respect', 'section', 'state', 'term']
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Many terms, as we can see in Listing 6-20, appear to be neutral. 

Depending on how they are modified in the text, they could predict either 

a positive or a negative return. If the model were able to treat the uses in 

their proper contexts, it might assign a large magnitude to the correctly 

signed feature.

We might try to fix this by expanding the set of features, performing 

more extensive filtering to determine the features we include, or changing 

the model specification to allow for non-linearities, such as feature 

interactions. Since we have already covered cleaning and filtering, we’ll 

focus on the expansion of features and the inclusion of non-linearities.

Given that the training set only contains 144 observations, we might 

be concerned that including more features will lead to training sample 

improvements, but through overfitting. This is a valid concern, and we 

will overcome it by using a penalized regression model. The penalty will 

be such that including more parameters with non-zero values will lower 

the value of the loss function. Thus, if the parameters do not provide 

considerable predictive value, we will zero them out or assign low 

magnitudes to them.

Gentzkow et al. (2019) define a general penalized estimator as the 

solution to the minimization problem in Equation 6-7.

Equation 6-7. The minimization problem for a penalized estimator.
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Note that l(α, β) is a loss function, such as the MAE loss for a linear 

regression, λ scales the magnitude of the penalty, and κj(·) is an increasing 

penalty function that could, in principle, differ by parameter; however, in 

practice, we will often assume it is identical for all regressors.

There are three types of penalized regression we will often encounter, 

each of which is defined by the associated choice of κ(·):
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	 1.	 LASSO regression: The least absolute shrinkage 

and selection parameter (LASSO) model uses the L1 

norm of β, reducing κ to an absolute value or ∣βj∣ for 

all j. The functional form of the penalty in a LASSO 

regression will force certain parameter values to 0, 

yielding a sparse parameter vector.

	 2.	 Ridge regression: A ridge regression uses the L2 

norm of β, yielding k b bj j( ) = 2 . Unlike a LASSO 

regression, a ridge regression will yield a dense 

representation of β with coefficients not set precisely 

to zero. Since the penalty term of a ridge regression 

is a convex function, it will yield a unique minimum.

	 3.	 Elastic net regression: An elastic net regression 

combines both the LASSO and ridge regression 

penalties. That is, k b k b k bj j j( ) = +1 2
2  for all j.

The minimization problems for LASSO, ridge, and elastic net 

regressions are given in Equations 6-8, 6-9, and 6-10, respectively.

Equation 6-8. The minimization problem for a LASSO regression.
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Equation 6-9. The minimization problem for a ridge regression.
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Equation 6-10. The minimization problem for an elastic net regression.
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We will return to the Apple stock returns prediction problem, but will 

now make use of a LASSO regression, which will yield a sparse coefficient 

vector. In our case, there were many neutral terms that likely added 

minimal value in a linear model, where they couldn’t be modified by 

adjectives. By using a LASSO regression, we’ll allow the model to decide 

whether to ignore them entirely by assigning a zero weight.

Before we modify the model, we’ll first apply CountVectorizer() 

again, but this time, we’ll construct a document-term matrix for 1000 

terms, rather than 25. For the sake of brevity, we’ll omit the details and will 

instead start at the end of the process, where feature_names contains 1000 

elements and x_train has the shape (144, 1000).

Next, in Listing 6-21, we’ll re-define beta; set the magnitude of 

the penalty, lam; and re-define the loss function, which we’ll now call 

lassoLoss(). Notice that the only difference is that we’ve added a term 

that consists of lam, multiplied by the L1 norm of beta. Beyond that, 

nothing else changed. We still use the LAD function to make predictions, 

just as we did with the linear regression model.

Listing 6-21.  Convert a LAD regression into a LASSO regression

# Re-define coefficient vector.

beta = tf.random.normal([1000,1], stddev=1.0)

# Set value of lambda parameter.

lam = tf.constant(0.10, tf.float32)

# Modify the loss function.

def lassoLoss(alpha, beta, x_train, y_train,

lam = lam):

        y_hat = LAD(alpha, beta, x_train)
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        y_hat = tf.reshape(y_hat, (N,))

        loss = tf.losses.mae(y_train, y_hat) +

        lam * tf.norm(beta, 1)

        return loss

In Listing 6-22, we’ll repeat the steps to train the model using the 

modified loss function and generate predictions on the training set.

Listing 6-22.  Train a LASSO model

# Perform optimization.

for i in range(1000):

        opt.minimize(lambda: lassoLoss(alpha, beta,

        x_train, y_train),

        var_list = [alpha, beta])

# Generate predicted values.

y_pred = LAD(alpha, beta, x_train)

Now that we have the predicted values from the LASSO model, we 

can perform a comparison with the true returns. Figure 6-10 depicts this 

comparison, providing an update to Figure 6-9, which conducted the same 

exercise, but for the LAD model without a penalty term and with only 25 

features.

We can see that performance has substantially improved under the 

LASSO model with 1000 features; however, we might worry that the 

penalty magnitude we selected wasn’t sufficiently severe and that the 

model is overfitting. To evaluate this, we can adjust lam to higher values 

and check the model’s performance. Furthermore, we can perform 

cross-validation using a test set; however, this will be somewhat more 

challenging in a time series context with only 144 observations.

For now, we recall that a LASSO regression returns a sparse coefficient 

vector and will examine how many coefficients have non-zero values. 

Figure 6-11 plots the histogram of the coefficient magnitudes. From this, 
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we can see that over 800 features were assigned values of approximately 

zero. While we still have enough features to be concerned about 

overfitting, this is less concerning, given that most of the 1000 features 

were ignored by the model as a consequence of the penalty function.

Figure 6-10.  True and predicted values of Apple stock returns using a 
LASSO model
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We’ve now seen that we can make use of additional features in a 
regression by employing a form of regularization (i.e., a penalty function). 
The penalty function prevents us from simply adding more parameters to 
improve fit. Doing this will increase the penalty, which will force parameter 
values to justify their inclusion in the model by substantially improving fit. 
This also means that we’ll be able to include many more features and allow 
the model to sort out which should be assigned non-zero magnitudes.

We mentioned earlier that using a LASSO model allowed us to expand 

the feature set, which was one way to improve performance. Another 

option we mentioned was to allow for dependence between words. We can 

Figure 6-11.  True and predicted values of Apple stock returns using a 
LASSO model
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do this by permitting non-linearities in the model. In principle, we could 

engineer these features. We could also make use of any non-linear model 

to perform such a task. Furthermore, we could couple this with a penalty 

term, just as we did with the LASSO model, to avoid overfitting.

While these are viable strategies and can be implemented with relative 

ease in TensorFlow, we’ll instead make use of a more general option: deep 

learning. We have already discussed deep learning in the context of images 

in Chapter 5, but we return to it here because it provides a flexible and 

potent modeling strategy for most text regression problems.

The distinction between “deep learning” (e.g., neural networks) and 

“shallow learning” (e.g., linear regression) is that shallow learning models 

require us to perform feature engineering. For instance, in a linear text 

regression, we must decide which features are in the document-term 

matrix (e.g., unigrams or bigrams). We must also decide how many 

features to allow in the model. The model will determine which are most 

important for explaining variation in the data, but we must choose which 

to include.

Recall, again, that this was not the case with images. We input pixel 

values into convolutional neural networks and those networks identified 

successive layers of increasingly complex features. First, the networks 

identified edges. In the next layer, they identified corners. Each successive 

layer built on the previous one to identify new features that were useful for 

the classification task.

Deep learning can also be used in the same way for text. Rather 

than deciding how terms relate to each other through the use of feature 

engineering, we can allow a neural network to uncover these relationships 

for us. Just as we did in Chapter 5, we’ll make use of the high-level Keras 

API in TensorFlow.

In Listing 6-23, we define a neural network with dense layers that 

we’ll use to predict stock returns for Apple. There is only one substantive 

difference between this network and the dense layer-based image 

networks we defined in Chapter 5: the use of dropout layers. Here, we 
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have included two such layers, each of which has a rate of 0.20. During 

the training phase, this will randomly drop 20% of the nodes, forcing the 

model to learn robust relationships, rather than using the high number of 

model parameters to memorize output values.8

In addition to this, notice that we’ve defined the model to accept an 

input with 1000 feature columns, which is the number we’ve included in 

our document-term matrix. We also use relu activation functions for all 

hidden layers. Additionally, we use a linear activation function in the 

outputs layer, since we have a continuous target (stock returns).

Listing 6-23.  Define a deep learning model for text using the Keras API

import tensorflow as tf

# Define input layer.

inputs = tf.keras.Input(shape=(1000,))

# Define dense layer.

dense0 = tf.keras.layers.Dense(64,

        activation="relu")(inputs)

# Define dropout layer.

dropout0 = tf.keras.layers.Dropout(0.20)(dense0)

# Define dense layer.

dense1 = tf.keras.layers.Dense(32,

        activation="relu")(dropout0)

# Define dropout layer.

dropout1 = tf.keras.layers.Dropout(0.20)(dense1)

8�While we did not use dropout layers in the dense neural network models we 
discussed in Chapter 5, we will typically make use of them in image-related 
problems to perform regularization.
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# Define output layer.

outputs = tf.keras.layers.Dense(1,

        activation="linear")(dropout1)

# Define model using inputs and outputs.

model = tf.keras.Model(inputs=inputs,

        outputs=outputs)

The architecture we’ve selected will require us to train many 

parameters. Recall that we can check this using the summary() method of 

a keras model, which we do in Listing 6-24. In total, the model has 66,177 

trainable parameters.

With the LASSO model, we were already concerned about overfitting, 

even though the model only had 1001 parameters and the penalty function 

effectively forced 850 of them to be zero. We now have a model with 66,177 

parameters, which should make us even more concerned about overfitting. 

This is why we’ve used a form of regularization (dropout) and why we’ll 

also use a training and validation sample.

Listing 6-24.  Summarize the architecture of a Keras model

# Print model architecture.

print(model.summary())

_____________________________________________________

Layer (type)           Output Shape          Param #

=====================================================

input_3 (InputLayer)  [(None, 1000)]            0

_____________________________________________________

dense_5 (Dense)         (None, 64)            64064

_____________________________________________________

dropout_1 (Dropout)     (None, 64)              0

_____________________________________________________

dense_6 (Dense)         (None, 32)             2080
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_____________________________________________________

dropout_2 (Dropout)     (None, 32)              0

_____________________________________________________

dense_7 (Dense)         (None, 1)               33

=====================================================

Total params: 66,177

Trainable params: 66,177

Non-trainable params: 0

_____________________________________________________

Recall that, in addition to defining a model, we’ll need to compile it. 

We’ll do that and train the model in Listing 6-25. Notice that we use the 

Adam optimizer, the mean absolute error (MAE) loss, and a validation split 

of 30% of the sample. We’ll also use 20 epochs.

Listing 6-25.  Compile and train the Keras model

# Compile the model.

model.compile(loss="mae", optimizer="adam")

# Train the model.

model.fit(x_train, y_train, epochs=20,

batch_size=32, validation_split = 0.30)

Epoch 1/20

100/100 [==============================] - 0s 5ms/sample - 

loss: 2.6408 - val_loss: 2.5870

...

Epoch 10/20

100/100 [==============================] - 0s 117us/sample - 

loss: 1.7183 - val_loss: 1.3514

...
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Epoch 15/20

100/100 [==============================] - 0s 110us/sample - 

loss: 1.6641 - val_loss: 1.2014

...

Epoch 20/20

100/100 [==============================] - 0s 113us/sample - 

loss: 1.5932 - val_loss: 1.2536

As we can see in Listing 6-25, training initially reduces the loss for 

both the training and validation split; however, by the 15th epoch, the loss 

on the training split continues to decline while the loss on the validation 

split begins to increase slightly. This suggests that we might be starting to 

overfit.

Figure 6-12 repeats the prediction exercise for the returns, using 

the predict() method of model. While the predictions appear to be an 

improvement over the linear and LASSO regressions, it is likely that part of 

this gain is attributable to overfitting.
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If we want to reduce the risk of overfitting even further, we could 

increase the rates in our two dropout layers or decrease the number of 

nodes in the hidden layers.

Finally, note that making use of word sequences, rather than ignoring 

the order in which words appear, can lead to substantial improvements in 

model performance. This will require the use of recurrent neural networks 

and their variants, including the long short-term memory (LSTM) model. 

Since we will use the same family of models to perform time series 

analysis, we’ll delay their introduction to Chapter 7.

Figure 6-12.  True and predicted values of Apple stock returns using a 
neural network
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�Text Classification
In the previous section, we discussed how TensorFlow could be used 

to perform text regression. Once we had constructed the document-

term matrix, we saw that it was relatively simple to perform a LAD 

regression and a LASSO regression and to train a neural network. In some 

cases, however, we will have a discrete target and will want to perform 

classification instead. Fortunately, TensorFlow provides us with the 

flexibility to perform classification tasks by making minor adjustments to 

models we have already defined.

Listing 6-26, for instance, shows how we can define a logistic model 

to perform classification. We’ll assume we’re using the same document-

term matrix, x_train, but have now replaced y_train with hand-classified 

labels that we produced by reading the individual 8-K filings and then 

classifying them as “positive” or “negative” based on our perception of the 

content. A positive score will be indicated by a 0 and a negative by a 1.

Listing 6-26.  Define a logistic model to perform classification in 

TensorFlow

# Define a logistic model.

def logitModel(x_train, beta, alpha):

        prediction = tf.nn.softmax(tf.matmul(

        x_train, beta) + alpha)

        return prediction

In addition to the changes to model definition, we’ll also need to 

modify the loss function to use the binary cross-entropy loss, which we do 

in Listing 6-27. After that, we’ll only need to change the function handle 

when we perform optimization. Everything else will work as it did for the 

linear regression example.
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Listing 6-27.  Define a loss function for the logistic model to perform 

classification in TensorFlow

# Define number of observations.

N = len(x_train)

# Define function to compute MAE loss.

def logisticLoss(alpha, beta, x_train, y_train):

        y_hat = LogitModel(alpha, beta, x_train)

        y_hat = tf.reshape(y_hat, (N,))

        loss = tf.losses.binary_crossentropy(

        y_train, y_hat)

        return loss

Similarly, if we want to perform classification with the neural network 

we defined in Listing 6-23, we’ll only need to modify two lines of code, as is 

shown in Listing 6-28.

Listing 6-28.  Modify a neural network to perform classification

# Change output layer to use sigmoid activation.

outputs = tf.keras.layers.Dense(1,

        activation="sigmoid")(dropout1)

# Use categorical cross entropy loss in compilation.

model.compile(loss="binary_crossentropy", optimizer="adam")

We changed two things: the activation function used in the outputs 

layer and loss function. First, we needed to use a sigmoid activation 

function, since we’re performing classification with two classes. And 

second, we used the binary_crossentropy loss, which is standard for 

classification problems with two classes. If we instead had a problem 

with multiple classes, we’d use a softmax activation function and a 

categorical_crossentropy loss.
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For an extended overview of classification with neural networks, see 

Chapter 5, which covers similar material, but in the context of image 

classification problems. Additionally, for information about sequential 

models, which are commonly used for text classification problems, see 

Chapter 7, which makes use of the same models for time series analysis.

�Summary
This chapter provided an extended overview of how text analysis is 

currently used in economics and finance and how it might be used in 

the future. The part of the process that is likely to be least familiar for 

economists is the data cleaning and preparation step, which transforms 

text into numerical data. The simplest version of this was the bag-of-

words model, which stripped words from their context and summarized 

the content of a document using word counts alone. While this method is 

relatively simple to implement, it is powerful and remains one of the more 

commonly used methods in economics.

Dictionary-based methods also work on the bag-of-words model. 

However, rather than counting all terms in a document, we instead 

construct a dictionary that measures a latent variable. Such methods are 

frequently used in text analysis in economics, but are not always the best 

tool for many research applications, as Gentzkow et al. (2019) discuss. The 

EPU index (Baker, Bloom and Davis 2016) is arguably an ideal use case for 

dictionary-based methods in economics, since the measure is interesting 

for theoretical purposes, but is unlikely to emerge as a dominant topic 

from a corpus.

We also discussed word embeddings and saw how to implement 

topic models, text regression models, and text classification models. This 

included an overview of using deep learning models for text. We did, 

however, defer the discussion of sequential models to Chapter 7, which 

uses them for time series analysis.
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CHAPTER 7

Time Series
Empirical work in economics is typically concerned with causal inference 

and hypothesis testing, whereas machine learning is centered around 

prediction. There is, however, a clear intersection between objectives when 

it comes to forecasting in economics and finance. Consequently, there 

has been increasing interest in using methods from machine learning to 

produce and evaluate economic forecasts.

In Chapter 2, we discussed Coulombe et al. (2019), which evaluated 

the usefulness of machine learning for time series econometrics. They 

identified non-linear models, regularization, cross-validation, and 

alternative loss functions as potentially valuable tools that could be 

imported for use in time series econometric contexts.

In this chapter, we’ll discuss the value of machine learning for 

time series forecasting. Since we’ll concentrate on a TensorFlow 

implementation, our focus will diverge from Coulombe et al. (2019) and 

instead concentrate on deep learning models. In particular, we will make 

use of neural network models with specialized layers that are used to 

process sequential data.

Throughout the chapter, we’ll build on a forecasting exercise 

(Nakamura 2005), which was one of the first applications of neural 

networks in time series econometrics. Nakamura (2005) used a dense 

neural network to demonstrate gains over a univariate autoregressive 

model for forecasting inflation.

https://doi.org/10.1007/978-1-4842-6373-0_7#DOI
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�Sequential Models of Machine Learning
Thus far, we have discussed several specialized layers for neural networks, 

but have not explained how to handle sequential data. As we will see, there 

are robust frameworks for handling such data in neural networks, which 

were largely developed for the purpose of natural language processing 

(NLP), but are equally useful in time series contexts. We will also briefly 

return to their use in NLP contexts at the end of the chapter.

�Dense Neural Networks
We have already used dense neural networks in Chapters 5 and 6; however, 

we have not explained how they can be adapted for use with sequential 

data. So far, all of our uses of neural networks involved exercises that 

lacked or did not exploit a time dimension.

We’ll start this section by examining how to make use of sequence 

data to predict quarterly inflation in a setting similar to Nakamura (2005). 

To conduct this exercise, we’ll use quarterly inflation for the United 

States over the period between 1947:Q2 and 2020:Q2,1 which is plotted 

in Figure 7-1. Additionally, following Nakamura (2005), we’ll consider 

univariate models, where we do not include any additional explanatory 

variables beyond lags of inflation.

When we worked with text and image data in earlier chapters, we often 

needed to perform pre-processing tasks to transform the raw inputs into 

something suitable for use in a neural network. With sequential data, we 

will also need to transform the time series into sequences of fixed length.

1�The Consumer Price Index (CPI) and measures of inflation derived from it are 
computed by the Bureau of Labor Statistics: www.bls.gov. The series we use in 
this exercise is available under ID number CUSR0000SA0 on the BLS’s website.
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We’ll start by deciding the sequence length, which is the number of 

lags we’ll use as inputs to the neural network. If, for instance, we select a 

sequence length of three, then the network will predict inflation in period 

t+h using the realizations in periods t, t-1, and t-3. Figure 7-2 illustrates the 

pre-processing step, where we split a single time series into overlapping 

sequences of three consecutive observations. The left side of the diagram 

shows the original input series. The right side shows two examples of 

sequences. The dashed rectangles connect the sequences with the value 

they would predict if we use a single quarter as the forecast horizon (h=1).

Figure 7-1.  CPI inflation over the period between 1947:Q2 and 
2020:Q2. Source: US Bureau of Labor Statistics
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We’ll assume the data has been downloaded and saved as inflation.

csv in a directory located at data_path. We’ll start by loading it with pandas 

in Listing 7-1 and then converting it into a numpy array. Next, we’ll define 

a generator object using TimeseriesGenerator() from the tensorflow.

keras.preprocessing.sequence submodule. As inputs, it will take the 

network’s features and target, the length of the sequence, and the batch size. 

Figure 7-2.  Division of time series into overlapping sequences of three 
consecutive observations
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In this case, we’ll perform a univariate regression, where the feature and 

target are both inflation. We’ll use a sequence length of 4, which we can 

set using the length parameter. Finally, we’ll use a batch_size of 12, which 

means that our generator will yield 12 sequences and 12 target values each 

iteration.

Listing 7-1.  Instantiate a sequence generator for inflation

import numpy as np

import tensorflow as tf

from tensorflow.keras.preprocessing.sequence import 

TimeseriesGenerator

# Set data path.

data_path = '../data/chapter7/'

# Load data.

inflation = pd.read_csv(data_path+'inflation.csv')

# Convert to numpy array.

inflation = np.array(inflation['Inflation'])

# Instantiate time series generator.

generator = TimeseriesGenerator(inflation, inflation,

     length = 4, batch_size = 12)

We now have a generator object that we can use to create batches of 

data. A Keras model can use the generator, rather than data, as an input.  

In Listing 7-2, we’ll define a model and then train it using the generator. 

Note that we use a Sequential() model. This enables us to construct a 

model by stacking layers in sequence and does not have anything to do 

with the use of sequential data.
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We first instantiate the model using the sequential API. We then 

set the number of input nodes to match the sequence length, define a 

single hidden layer with two nodes, and define an output layer that uses 

a linear activation function, since we have a continuous target. Finally, 

we’ll compile the model using the mean squared error loss and an adam 

optimizer.

When we trained models previously, we used np.array() or tf.

constant() objects as input data. In Listing 7-2, we’ve used a generator, 

which will require us to use the fit_generator() method, rather than 

fit(), as we have previously.

Listing 7-2.  Train a neural network using generated sequences

# Define sequential model.

model = tf.keras.models.Sequential()

# Add input layer.

model.add(tf.keras.Input(shape=(4,)))

# Define dense layer.

model.add(tf.keras.layers.Dense(2, activation="relu"))

# Define output layer.

model.add(tf.keras.layers.Dense(1, activation="linear"))

# Compile the model.

model.compile(loss="mse", optimizer="adam")

# Train the model.

model.fit_generator(generator, epochs=100)

Train for 25 steps

Epoch 1/100

25/25 [==============================] - loss: 4.3247
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...

Epoch 100/100

25/25 [==============================] - loss: 0.3816

Between epochs 1 and 100, the model makes considerable progress in 

reducing mean squared error, lowering it from 4.32 to 0.38. Importantly, 

we have not used regularization, such as dropout, and have not created 

a test sample split, so it is possible that there is substantial overfitting. 

In Listing 7-3, we use the summary() method of model to examine its 

architecture. We can see that it has only 13 trainable parameters, which is 

small in comparison to the models we have worked with previously.

Listing 7-3.  Summarize model architecture

# Print model architecture.

print(model.summary())

_____________________________________________________

Layer (type)        Output Shape           Param #

=====================================================

dense_1 (Dense)      (None, 2)               10

_____________________________________________________

dense_1 (Dense)      (None, 1)                3

=====================================================

Total params: 13

Trainable params: 13

Non-trainable params: 0

_____________________________________________________

We can now use model.predict_generator(generator) to generate 

a series of predicted values for inflation. Figure 7-3 plots the true values of 

inflation against our model’s prediction. While model performance looks 

compelling, we have not yet taken the proper precautions to ensure that 

we are not overfitting.
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In Figure 7-4, we examine whether overfitting is an issue for this by 

using the post-2000 period as the test sample. To do this, we need to 

construct a separate generator, which only uses the pre-2000 values to 

train. We then use our original generator to make predictions for the entire 

sample, including the post-2000 values.

We can see that Figure 7-4 does not look substantially different 

from Figure 7-3 post 2000. In particular, there does not appear to be a 

performance degradation after 2000, which is what we would expect if the 

model were overfitting on the pre-2000 data. This is not too surprising, since 

the model has relatively few parameters, making it more difficult to overfit.

Figure 7-3.  Dense network one-quarter-ahead forecast of 
inflation
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In the remainder of this section, we will make use of the same pre-

processing steps, but will add specialized layers to our model that are 

designed to handle input sequences. These layers will exploit the temporal 

information encoded in the lag structure, rather than treating all features 

the same, as we are currently doing with the dense model.

�Recurrent Neural Networks
A recurrent neural network accepts a sequence of inputs and processes 

them using a combination of dense layers and specialized recurrent layers 

Figure 7-4.  Dense network one-quarter-ahead forecast of inflation in 
model trained on data from 1947 to 2000
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(Rumelhart et al. 1986).2 This sequence of inputs could be word vectors, 

word embeddings, musical notes, or, as we will consider in this chapter, 

inflation measurements at different points in time.

We will follow the treatment of recurrent neural networks (RNNs) 

given in Goodfellow et al. (2017). The authors describe a recurrent layer as 

consisting of cells that each take an input value, x(t), and a state, h(t − 1), 

and produce an output value, o(t). The process by which the output value 

is produced for a recurrent cell is given by Equations 7-1, 7-2, and 7-3.

In Equation 7-1, we take the state of the series, h(t − 1), and multiply it by 

weights, W. We then take the input value, x(t), and multiply it by a separate set 

of weights, U. Finally, we sum both terms together, along with a bias term, b.

Equation 7-1. Performing the multiplication step for an RNN cell.

	 a t b Wh t Ux t( ) = + -( )+ ( )1 	

We next take the output of the multiplication step and pass it to a 

hyperbolic tangent activation function, as shown in Equation 7-2. The 

output of this step is the updated state of the system, h(t).

Equation 7-2. Applying an activation function in an RNN cell.

	
h t a t( ) = ( )( )tanh 	

In the final step, given in Equation 7-3, we multiply the updated state 

by a separate set of weights, V, and add a bias term.

Equation 7-3. Generating the output value from an RNN cell.

	 o t c Vh t( ) = + ( ) 	

In the example we’re working with in this chapter, inflation is the only 

feature. This means that x(t) is a scalar and W, U, and V are also scalars. 

2�In a natural language processing context, RNNs will also often contain an 
embedding layer.
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Additionally, notice that these weights are shared for all time periods, which 

reduces the model size relative to what would be needed with a dense network. 

In our case, we will only need five parameters for a layer with one RNN cell.

Figure 7-5 provides a complete illustration of an RNN. The pink nodes 

indicate input values, which are lags of inflation in our example. The 

orange node indicates the target variable, which is inflation in the following 

quarter. The blue nodes are individual RNN cells, which form an RNN layer. 

The network we’ve illustrated has four inputs and two RNN cells.

x(t-3) x(t-2) x(t-1) x(t)

h(t) h(t)

x(t+1)

x(t-3) x(t-2) x(t-1) x(t)

h(t-3) h(t-2) h(t-1) h(t)

o(t)

Figure 7-5.  Illustration of a RNN (top) and unrolled RNN cell (bottom)

Chapter 7  Time Series



260

The bottom panel of Figure 7-5 shows an “unrolled” RNN cell, where 

the cell’s iterative structure has been broken down into a sequence. In 

each individual step, the state is combined with an input to yield the next 

state. The final step yields an output, o(t), which is an input to a final dense 

layer – along with the outputs of the other cells – that yields a prediction for 

inflation one quarter ahead.

We’ve now seen that an RNN makes use of sequential data by retaining 

a state, which it updates at each step of the sequence. It also reduces the 

number of parameters through the use of weight sharing. Furthermore, 

since it is not necessary to apply time-specific weights, it will also be 

possible to use RNN cells with sequences of arbitrary and variable length.

We have now discussed how an RNN differs from a dense network. 

Let’s construct a simple RNN for our inflation forecasting example. We’ll 

start by loading the data in Listing 7-4. Here, we’ve repeated the steps from 

Listing 7-1, but with two important differences. First, we use np.expand_

dims() to add a dimension to the inflation array. This will allow our time 

series data to conform to the input shape requirements of RNN cells in 

Keras. And second, we’ve defined a train generator, which exclusively uses 

data prior to 2000 by slicing the inflation array, retaining only the first 

211 observations.

Once we have loaded and prepared our data, the next step is to define 

the model, which we do in Listing 7-5. As we can see, the model requires 

no more lines of code than did the dense network we used to predict 

inflation. All we do is define a sequential model, add an RNN layer, and 

define a dense output layer with a linear activation function.

Notice that the SimpleRNN layer we used required two arguments: 

the number of RNN cells and the shape of the input layer. For the first 

argument, we selected two cells to keep the network simple at the potential 

risk of underfitting the data. We needed to provide the second argument 

because we defined the RNN layer as the first in our network. We set the 

input_shape to be (4, 1) because the sequence length is four and the 

number of features is one.
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Listing 7-4.  Instantiate a sequence generator for inflation

import numpy as np

import tensorflow as tf

from tensorflow.keras.preprocessing.sequence import 

TimeseriesGenerator

# Load data.

inflation = pd.read_csv(data_path+'inflation.csv')

# Convert to numpy array.

inflation = np.array(inflation['Inflation'])

# Add dimension.

inflation = np.expand_dims(inflation, 1)

# Instantiate time series generator.

train_generator = TimeseriesGenerator(

        inflation[:211], inflation[:211],

        length = 4, batch_size = 12)

Listing 7-5.  Define an RNN model in Keras.

# Define sequential model.

model = tf.keras.models.Sequential()

# Define recurrent layer.

model.add(tf.keras.layers.SimpleRNN(2, input_shape=(4, 1)))

# Define output layer.

model.add(tf.keras.layers.Dense(1, activation="linear"))

The final steps are to compile the model and to use the fit_

generator() method to train it, along with the train_generator we 

constructed earlier. As we can see in Listing 7-6, the model achieves 

a lower mean squared error (0.2594) than we were able to achieve in 
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the dense network with 100 epochs of training. Additionally, as shown 

in Figure 7-6, test sample performance (post-2000) does not appear to 

degrade in any noticeable way.

Listing 7-6.  Compile and train an RNN model in Keras

# Compile the model.

model.compile(loss="mse", optimizer="adam")

# Fit model to data using generator.

model.fit_generator(train_generator, epochs=100)

Epoch 1/100

18/18 [==============================] - 1s 31ms/step - loss: 

0.9206

...

Epoch 100/100

18/18 [==============================] - 0s 2ms/step - loss: 

0.2594

We also mentioned that the RNN model has the benefit of requiring 

fewer parameter values than a dense network. When we stepped through 

the operations performed in an RNN cell, we saw that only five parameters 

were needed for a layer with a single RNN cell. In Listing 7-7, we’ll use the 

summary() method of model to explore the model’s architecture. We can 

see that it has eight parameters in the RNN layer and three in the dense 

output layer. In total, it has 11 parameters, which is fewer than the dense 

network we used earlier. The contrast is not particularly large here, of 

course, since both networks are quite small.
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Listing 7-7.  Summarize RNN architecture in a Keras model

# Print model summary.

print(model.summary())

_____________________________________________________

Layer (type)               Output Shape     Param #

=====================================================

simple_rnn_1 (SimpleRNN)   (None, 2)           8

Figure 7-6.  One-quarter-ahead forecast of inflation for RNN model 
trained on data from 1947 to 2000
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_____________________________________________________

dense_1 (Dense)            (None, 1)           3

=====================================================

Total params: 11

Trainable params: 11

Non-trainable params: 0

_____________________________________________________

In practice, we will not typically use an RNN model without 

modification. At a minimum, there are at least two things we will want 

to consider adjusting. The first is related to a technical problem – the 

“vanishing gradient problem” – which makes it challenging to train deep 

networks. This is also a problem with the original RNN model and long 

sequences of data. Another problem with the original RNN model is that 

it does not allow for the possibility that objects far apart in time or within 

the sequence are more closely related than objects nearer together. In the 

following two subsections, we’ll make some minor adjustments to the RNN 

model that will allow us to deal with both problems.

�Long Short-Term Memory (LSTM)
The first problem with RNNs is that they suffer from the vanishing gradient 

problem when long sequences of data are used as inputs. The most 

effective solution to this problem is to make use of a gated RNN cell. There 

are two such cells that are commonly used: (1) long short-term memory 

(LSTM) and (2) gated recurrent units (GRUs). We will concentrate on the 

former in this subsection.
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The LSTM model was introduced by Hochreiter and Schmidhuber 

(1997) and functions through the use of operators that limit the follow 

of information in long sequences. We will again follow Goodfellow et al. 

(2017) in describing the operations performed in an LSTM.

Equations 7-4, 7-5, and 7-6 define the “forget gate,” “external input 

gate,” and “output gate,” all of which play a role in controlling the follow of 

information through an LSTM cell.

Equation 7-4. Definition of trainable weights called forget gates.

	
f t b W h t U x tf f f( ) = + -( )+ ( )( )s 1 	

Equation 7-5. Definition of trainable weights called external input gates.

	
g t b W h t U x tg g g( ) = + -( )+ ( )( )s 1 	

Equation 7-6. Definition of trainable weights called output gates.

	
q t b W h t U x tq q q( ) = + -( )+ ( )( )s 1 	

Notice that each gate has the same functional form and uses a sigmoid 

activation function, but has its own separate weights and biases. This 

allows the gating procedure to be learned, rather than applied from a fixed 

rule.

The internal states are updated using the expression in Equation 7-7, 

where the forget gate, external input gate, input sequence, and state are all 

applied.

Equation 7-7. Expression for updating the internal state.

	
s t f s t g t b Wh t Ux tt( ) = -( )+ ( ) + -( )+ ( )( )1 1s 	
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Finally, we update the hidden state, making use of the internal state 

and the output gate, as in Equation 7-8.

Equation 7-8. Expression for updating the hidden state.

	
h t s t q t( ) = ( )( ) ( )tanh 	

While the use of gates increases the number of parameters in the 

model, it also yields substantial improvements in the handling of long 

sequences in many practical applications. For this reason, we will typically 

use an LSTM model as the baseline in time series analysis, rather than the 

original RNN model.

In Listing 7-8, we define and train an LSTM model using 100 epochs. 

The only difference was that we used tf.keras.layers.LSTM(), rather 

than tf.keras.layers.SimpleRNN(). We can see that mean squared error 

is higher for the LSTM than it was for the RNN after 100 epochs. This is 

because the model must train more weights, which will require additional 

training epochs. Additionally, the LSTM is likely to be most useful in 

settings with longer sequences.

Listing 7-8.  Train an LSTM model in Keras

# Define sequential model.

model = tf.keras.models.Sequential()

# Define recurrent layer.

model.add(tf.keras.layers.LSTM(2, input_shape=(4, 1)))

# Define output layer.

model.add(tf.keras.layers.Dense(1, activation="linear"))

# Compile the model.

model.compile(loss="mse", optimizer="adam")

# Train the model.

model.fit_generator(train_generator, epochs=100)
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Epoch 1/100

18/18 [==============================] - 1s 62ms/step - loss: 

3.1697

...

Epoch 100/100

18/18 [==============================] - 0s 3ms/step - loss: 

0.5873

Finally, in Listing 7-9, we summarize the model’s architecture. 

When we discussed the additional operations an LSTM cell required, we 

mentioned that it introduced a forget gate, an external input gate, and an 

output gate. All of these required their own set of parameters. As we can 

see from Listing 7-9, the LSTM layer uses 32 parameters, which is four 

times as many as the RNN.

Listing 7-9.  Summarize LSTM architecture in a Keras model

# Print model architecture.

print(model.summary())

_____________________________________________________

Layer (type)         Output Shape          Param #

=====================================================

lstm_1 (LSTM)         (None, 2)              32

_____________________________________________________

dense_1 (Dense)       (None, 1)               3

=====================================================

Total params: 35

Trainable params: 35

Non-trainable params: 0

_____________________________________________________
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�Intermediate Hidden States
By convention, the LSTM model only makes use of the final value of the 

hidden state. In Figure 7-5, for instance, the model uses h(t) and not 

h(t − 1), h(t − 2), and h(t − 3), even though we computed them. Recent 

work, however, has shown that using the intermediate hidden states can 

lead to considerable improvements in modeling long-term dependencies, 

especially in natural language processing problems (Zhou et al. 2016). 

This is typically done in the context of an attention model.

We will not discuss the attention model here, but will explain how to 

make use of hidden states in an LSTM model. Let’s start by naively setting 

the LSTM cells in our model from Listing 7-8 to return hidden states by 

setting return_sequences to True. We’ll do that in Listing 7-10 and then 

check the model’s architecture using the summary() method.

Listing 7-10.  Incorrect use of LSTM hidden states

# Define sequential model.

model = tf.keras.models.Sequential()

# Define recurrent layer to return hidden states.

model.add(tf.keras.layers.LSTM(2, return_sequences=True,

        input_shape=(4, 1)))

# Define output layer.

model.add(tf.keras.layers.Dense(1, activation="linear"))

# Summarize model architecture.

model.summary()
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_____________________________________________________

Layer (type)       Output Shape            Param #

=====================================================

lstm_1 (LSTM)      (None, 4, 2)               32

_____________________________________________________

dense_1 (Dense)    (None, 4, 1)               3

=====================================================

Total params: 35

Trainable params: 35

Non-trainable params: 0

_____________________________________________________

As we can see, there’s something unusual about the model’s 

architecture: rather than outputting a scalar prediction for each 

observation in the batch, it instead outputs a 4x1 vector. This appears to 

be a consequence of the LSTM layer, which is now outputting 4x1 vectors, 

rather than scalars, from each of its two LSTM cells.

There are several ways in which we can make use of the LSTM output. 

One such method is called a stacked LSTM (Graves et al. 2013). This works 

by passing the full sequence hidden states to a second LSTM layer, creating 

depth in the network that allows for more than one level of representation.

In Listing 7-11, we define such a model. In the first LSTM layer, we use 

a layer with three LSTM cells and an input shape of (4, 1). We set return_

sequences to True, which means that each cell will return a 4x1 sequence 

of hidden states, rather than a scalar. We’ll then pass this 3-tensor (4x1x3) 

to a second LSTM layer with two cells, which only returns the final hidden 

states and not intermediate state values.
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Listing 7-11.  Define a stacked LSTM model

# Define sequential model.

model = tf.keras.models.Sequential()

# Define recurrent layer to return hidden states.

model.add(tf.keras.layers.LSTM(3, return_sequences=True,

        input_shape=(4, 1)))

# Define second recurrent layer.

model.add(tf.keras.layers.LSTM(2))

# Define output layer.

model.add(tf.keras.layers.Dense(1, activation="linear"))

The model’s architecture is summarized in Listing 7-12. We can see 

that it now outputs a scalar prediction, which is what we want for the 

inflation forecast. We will omit an analysis of model performance, but 

will point out that the use of such models for time series forecasting 

remains underexplored. It is possible that using stacked LSTM models, the 

attention model, or the transformer model could lead to improvements in 

time series forecasting in cases where modeling long-run dependencies is 

important.

Listing 7-12.  Summarize stacked LSTM architecture

# Summarize model architecture.

model.summary()

_____________________________________________________

Layer (type)      Output Shape             Param #

=====================================================

lstm_1 (LSTM)    (None, 4, 3)                60

_____________________________________________________
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lstm_2 (LSTM)     (None, 2)                  48

_____________________________________________________

dense_1 (Dense)   (None, 1)                   3

=====================================================

Total params: 111

Trainable params: 111

Non-trainable params: 0

_____________________________________________________

�Multivariate Forecasts
So far, we have focused on the mechanics of different methods and have 

structured all examples around the univariate inflation forecasting exercise 

in Nakamura (2005). The methods we have discussed all carry over to a 

multivariate setting. For the sake of completeness, we will provide a brief 

multivariate forecasting example, making use of both the LSTM model and 

gradient boosted trees, which we discussed in Chapter 4. We will, again, 

attempt to forecast inflation, but will do so at a monthly frequency and 

using five features, rather than one.

We’ll start by loading and previewing the data in Listing 7-13. We’ll 

then discuss how to implement a multivariate forecast model using 

an LSTM and gradient boosted trees. The four features we’ve added 

are unemployment, hours worked in the manufacturing sector, hourly 

earnings in the manufacturing sector, and a measure of the money supply 

(M1). Unemployment is measured in first differences, whereas all level 

variables transformed using percentage changes from the previous period.
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Listing 7-13.  Load and preview inflation forecast data

import pandas as pd

# Load data.

macroData = pd.read_csv(data_path+'macrodata.csv',

        index_col = 'Date')

# Preview data.

print(macroData.round(1).tail())

      Inflation  Unemployment  Hours  Earnings   M1

Date

12/1/19  -0.1       0.1         0.5     0.2     0.7

1/1/20    0.4       0.6        -1.7    -0.1     0.0

2/1/20    0.3      -0.2         0.0     0.4     0.8

3/1/20   -0.2       0.8        -0.2     0.4     6.4

4/1/20   -0.7       9.8        -6.8     0.5    12.9

�LSTM
As we saw earlier in the chapter, we can prepare the data for use in an 

LSTM model by instantiating a generator. We’ll first convert the target and 

features to np.array() objects. We’ll then create one generator for training 

data and another for test data. In the previous example, we used quarterly 

data and four-quarter sequence lengths. In this case, we’ll use monthly 

data and 12-month sequence lengths in Listing 7-14.

Listing 7-14.  Prepare data for use in LSTM model

import numpy as np

import tensorflow as tf

from tensorflow.keras.preprocessing.sequence import 

TimeseriesGenerator
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# Define target and features.

target = np.array(macroData['Inflation'])

features = np.array(macroData)

# Define train generator.

train_generator = TimeseriesGenerator(features[:393],

        target[:393], length = 12, batch_size = 6)

# Define test generator.

test_generator = TimeseriesGenerator(features[393:],

        target[393:], length = 12, batch_size = 6)

With the generators defined, we can now train the model in Listing 7-15. 

We’ll use two LSTM cells. Additionally, we’ll need to change the input shape, 

since we now have 12 elements in each sequence and five features. Over 20 

epochs of training, the model reduces the mean squared error from 0.3065 

to 0.0663. If you’ve done macroeconomic forecasting using econometric 

models, you might worry about the number of model parameters, since 

we’re using longer sequences and more variables; however, for the reasons 

we discussed earlier, the longer sequence length does not increase the 

number of parameters. In fact, the model has only 67 parameters.

Listing 7-15.  Define and train LSTM model with multiple features

# Define sequential model.

model = tf.keras.models.Sequential()

# Define LSTM model with two cells.

model.add(tf.keras.layers.LSTM(2, input_shape=(12, 5)))

# Define output layer.

model.add(tf.keras.layers.Dense(1, activation="linear"))

# Compile the model.

model.compile(loss="mse", optimizer="adam")
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# Train the model.

model.fit_generator(train_generator, epochs=100)

Epoch 1/20

64/64 [==============================] - 2s 26ms/step - loss: 

0.3065

...

...

Epoch 20/20

64/64 [==============================] - 0s 6ms/step - loss: 

0.0663

Finally, in Listing 7-16, we’ll evaluate the model by comparing the 

training sample results to the test sample results. We can see that the 

training set performance appears to be better than test set performance, 

which is common; however, if the disparity becomes sufficiently large, we 

should consider using regularization or terminating the training process 

after fewer epochs.

Listing 7-16.  Use MSE to evaluate train and test sets

# Evaluate training set using MSE.

model.evaluate_generator(train_generator)

0.06527029448989197

# Evaluate test set using MSE.

model.evaluate_generator(test_generator)

0.15478561431742632
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�Gradient Boosted Trees
As a final example, we’ll consider performing the same forecasting exercise, 

but using gradient boosted trees, which we discussed in Chapter 4. Within 

the set of tools TensorFlow offers, gradient boosted trees and deep learning 

are most suitable for time series forecasting tasks.

Just as LSTM models require us to prepare data by splitting it into 

sequences, gradient boosting with trees will require us to prepare the data 

in a format usable in the Estimator API. This will involve defining feature 

columns for each of the five features, as we do in Listing 7-17.

The next step is to define functions that generate data. We’ll do this 

separately for train and test functions, so that we can evaluate overfitting, 

just as we did for the LSTM example. Listing 7-18 defines the two 

functions. Again, we use the same sample split: the train set will cover the 

years prior to 2000, and the test set will cover the years afterward.

Listing 7-17.  Define feature columns

# Define lagged inflation feature column.

inflation = tf.feature_column.numeric_column(

        "inflation")

# Define unemployment feature column.

unemployment = tf.feature_column.numeric_column(

        "unemployment")

# Define hours feature column.

hours = tf.feature_column.numeric_column(

        "hours")

# Define earnings feature column.

earnings = tf.feature_column.numeric_column(

        "earnings")
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# Define M1 feature column.

m1 = tf.feature_column.numeric_column("m1")

# Define feature list.

feature_list = [inflation, unemployment, hours,

        earnings, m1]

In Listing 7-19, we train a BoostedTreeRegressor using 100 epochs 

and train_data. We then perform evaluation on both the training and test 

sets and print the results.

Listing 7-18.  Define the data generation functions

# Define input function for training data.

def train_data():

        train = macroData.iloc[:392]

        features = {"inflation": train["Inflation"],

        "unemployment": train["Unemployment"],

        "hours": train["Hours"],

        "earnings": train["Earnings"],

        "m1": train["M1"]}

        labels = macroData["Inflation"].iloc[1:393]

        return features, labels

# Define input function for test data.

def test_data():

        test = macroData.iloc[393:-1]

        features = {"inflation": test["Inflation"],

        "unemployment": test["Unemployment"],

        "hours": test["Hours"],

        "earnings": test["Earnings"],

        "m1": test["M1"]}

        labels = macroData["Inflation"].iloc[394:]

        return features, labels
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The results indicate that the model may be overfitting. The average 

training loss is 0.01, and the average test loss is 0.14. This suggests that we 

should try to train the model again using fewer epochs and then see whether 

the gap between the two closes. If we do not see convergence between 

the two, then we will want to perform additional model tuning to reduce 

overfitting. For a review of what parameters we can tune, see Chapter 4.

Listing 7-19.  Train and evaluate model. Print results

# Instantiate boosted trees regressor.

model = tf.estimator.BoostedTreesRegressor(feature_columns =

feature_list, n_batches_per_layer = 1)

# Train model.

model.train(train_data, steps=100)

# Evaluate train and test set.

train_eval = model.evaluate(train_data, steps = 1)

test_eval = model.evaluate(test_data, steps = 1)

# Print results.

print(pd.Series(train_eval))

print(pd.Series(test_eval))

average_loss         0.010534

label/mean           0.416240

loss                 0.010534

prediction/mean      0.416263

global_step        100.000000

dtype: float64

average_loss         0.145123

label/mean           0.172864

loss                 0.145123

prediction/mean      0.286285

global_step        100.000000

dtype: float64
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�Summary
One of the challenges of applying machine learning to economics and 

finance is that machine learning is concerned with prediction, whereas 

much of the research in economics and finance is concerned with causal 

inference and hypothesis testing. There are, however, several areas in 

which machine learning has considerable overlap with economics, and 

forecasting is a case where the two coincide exactly.

In this chapter, we examined how to make use of time series 

forecasting tools from machine learning, focusing primarily on deep 

learning models, but also covering gradient boosted trees, which are 

also available in TensorFlow. We structured examples around one of the 

earliest uses of a neural network in economics for the purpose of time 

series forecasting (Nakamura 2005). We then covered modern models, 

including RNNs, LSTMs, and stacked LSTMs, which have largely been 

developed for other sequential data processing tasks, such as NLP.

Readers who have an interest in learning more about macroeconomic 

time series forecasting with deep learning models may wish to read Cook 

and Hall (2017). For recent work in finance on stock return and bond 

premium forecasting, see Heaton et al. (2016), Messmer (2017), Rossi 

(2018), and Chen et al. (2019). For recent work on high-dimensional time 

series regression and nowcasting with sparse group LASSO models, see 

Babii, Ghysels, and Striaukas (2019, 2020).
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CHAPTER 8

Dimensionality 
Reduction
Many problem classes in machine learning are inherently high 

dimensional. Natural language processing problems, for instance, often 

involve the extraction of meaning from words, which can appear in an 

intractably large number of potential sequences in writing. Even if we limit 

ourselves to parsing only the 1000 most common words in texts, a short 

paragraph of 50 words will have 10150 possible permutations, which is more 

than the number of atoms of the observable universe. We are unlikely to 

make progress in such a setting without reframing the problem or reducing 

its dimensionality.

Research in economics and finance often makes use of dimensionality-

reduction techniques, such as principal component analysis (PCA) and 

factor analysis (FA). This is typically done in cases where the number 

of covariates (features) is large enough that it risks the possibility of 

overfitting or explicitly violates an assumption of the econometric model. 

PCA and FA are also sometimes used when there is an interest in reducing 

data down to a small number of factors of interest.

https://doi.org/10.1007/978-1-4842-6373-0_8#DOI
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In this chapter, we will briefly discuss two methods used in both machine 

learning and economics: PCA and partial least squares (PLS). We will 

then introduce the concept of autoencoders, which are used in machine 

learning. Autoencoders perform a combination of both “upsampling” and 

“downsampling” or “compression” and “decompression.” A by-product of 

this process is a latent state that encodes the information needed to recover 

the original input state. We can think of autoencoders as providing – among 

other things – a flexible, deep learning-based approach to dimensionality 

reduction.

�Dimensionality Reduction in Economics
Throughout this section, we’ll follow the notation in Gentzkow et al. 

(2019), which discusses dimensionality reduction in the context of text 

analysis. Additionally, we’ll use a combination of sklearn and tensorflow 

to perform the dimensionality-reduction tasks commonly used in 

economics. While everything can be done in tensorflow, it lacks many of 

the convenience methods for PCA and PLS that sklearn offers.

We will also use a common dataset through much of the chapter: GDP 

growth in 25 countries over the period between 1961:Q2 and 2020:Q1, 

which is produced by the OECD. A plot of the data is shown in Figure 8-1. 

We omit a legend, since individual country series are not distinguishable.
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In most exercises, we’ll attempt to extract common components of 

growth across all countries included in the sample. Techniques such as 

PCA will enable us to determine what share of the variance in growth is 

explained by a handful of common components. We’ll also see how those 

components relate to individual country series, giving a sense of which 

countries may be responsible for driving growth internationally.

�Principal Component Analysis
The most common method for dimensionality reduction in economics 

and finance is principal component analysis. PCA maps a collection of 

features to k principal components, where k is set by the econometrician. 

The components are ordered by the share of the variance they explain in the 

data. The first principal component, for instance, explains the largest share 

of variance in the data. Additionally, they are constructed to be orthogonal.

Figure 8-1.  GDP growth for 25 countries from 1961:Q2 to 2020:Q1
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In many cases, we will perform PCA with the intention of reducing 

the dimensionality of the dataset, so that we can use a small number of 

principal components in a regression. The properties we’ve described 

earlier make it particularly attractive for that purpose.

Using the notation in Gentzkow et al. (2019), we may write down PCA 

as the solution to the minimization problem given in Equation 8-1.

Equation 8-1. Principal component analysis minimization problem.

	
min trace C B C BG,B G G{ } -( ) -( )¢é

ëê
ù
ûú

¢
	

	 s t rank rank k. . G B( ) = ( ) = 	

In Listings 8-1 and 8-2, we sketch out how such an optimization 

problem could be solved in tensorflow; however, for our purposes, it will 

be more convenient to use the implementation in sklearn, which we will 

do for the remainder of the chapter.

Listing 8-1.  Define variables for PCA in TensorFlow

import tensorflow as tf

import pandas as pd

import numpy as np

# Define data path.

data_path = '../data/chapter8/'

# Load data.

C = pd.read_csv(data_path+'gdp_growth.csv',

        index_col = 'Date')

# Convert data to constant object.

C = tf.constant(np.array(C), tf.float32)
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# Set number of principal components.

k = 5

# Get shape of feature matrix.

n, p = C.shape

# Define variable for gamma matrix.

G = tf.Variable(tf.random.normal((n, k)), tf.float32)

# Define variable for beta matrix.

B = tf.Variable(tf.random.normal((p, k)), tf.float32)

Listing 8-1 loads the data as the feature matrix, C. It then converts 

the matrix to a tf.constant() object, sets the number of principal 

components to five, and then constructs the G and B matrices. Notice that 

G is an n x k matrix and B is a p x k matrix, where n is the number of time 

periods and p is the number of countries.

In our case, the G matrix captures the size of the impact of the factors 

in each period. Additionally, B measures the degree to which each factor is 

related to each country.

In Listing 8-2, we define a loss function, pcaLoss, which takes C, G, and 

B as inputs and returns a loss value, constructed according to Equation 8-1.  

We then instantiate an optimizer and train the model over 1000 epochs. 

Recall that only G and B are trainable and should be supplied to var_list.

Listing 8-2.  Perform PCA in TensorFlow

# Define PCA loss.

def pcaLoss(C, G, B):

        D = C - tf.matmul(G, tf.transpose(B))

        DT = tf.transpose(D)

        DDT = tf.matmul(D, DT)

        return tf.linalg.trace(DDT)
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# Instantiate optimizer.

opt = tf.optimizers.Adam()

# Perform train model.

for i in range(1000):

      opt.minimize(lambda: pcaLoss(C, G, B), var_list = [G, B])

Now that we’ve seen how tensorflow could be used to construct a 

solution method for PCA, let’s see how the same task can be done using 

sklearn. Listing 8-3 imports the PCA method from sklearn.decomposition 

and loads and prepares the data. We’ll use the data in np.array() format.

In Listing 8-4, we set the number of principal components, instantiate 

a PCA model, and apply the fit() method. We can now recover matrices 

that were equivalent to those we trained in tensorflow. In particular,  

we can recover B using the components_ method and G using  

pca.transform(C). In addition to this, we can recover the share of the 

variance explained by each principal component, S.

Listing 8-3.  Import the PCA library from sklearn and prepare the 

data

from sklearn.decomposition import PCA

# Load data.

C = pd.read_csv(data_path+'gdp_growth.csv',

        index_col = 'Date')

# Transform feature matrix into numpy array.

C = np.array(C)
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Listing 8-4.  Perform PCA with sklearn

# Set number of components.

k = 25

# Instantiate PCA model with k components.

pca = PCA(n_components=k)

# Fit model.

pca.fit(C)

# Return B matrix.

B = pca.components_.T

# Return G matrix.

G = pca.transform(C)

# Return variance shares.

S = pca.explained_variance_ratio_

Notice that we’ve computed 25 principal components, which is the 

number of GDP growth series we had initially. Since our objective is 

dimensionality reduction, we will want to lower this number. A common 

visual approach to selecting a number of principal components is called 

the “elbow method.” This entails plotting the explained share of the 

variance, S, to identify a sharp reduction in the magnitude of the slope – 

an “elbow” – which indicates that the next principal component explains 

much less than does the one that preceded it in importance. This is 

visualized in Figure 8-2.
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Based on Figure 8-2, the most pronounced “elbow” appears at the 

fifth principal component. Subsequent principal components appear to 

explain a considerably smaller share of GDP growth. Consequently, we 

may wish to exclusively make use of the first five principal components in 

subsequent exercises.

Beyond this, we may also want to visualize the association strengths 

between the principal components and the original country series. 

These values are given in the B matrix. Figure 8-3 plots them for the first 

principal component, given by the first column of B. This appears to be a 

component of growth that is associated with small open economies, such 

as Greece and Iceland.

Figure 8-2.  Plot of explained variance share by principal 
component
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In general, when we perform PCA or another form of dimensionality 

reduction, we will do so in the context of broader problem. One common 

application is a principal component regression (PCR), which is a two-

step procedure that involves the use of PCA, followed by the inclusion of 

selected principal components in a regression. A variant of this is used, 

for instance, in Bernanke et al. (2005) to perform factor-augmented 

vector autoregressions (FAVAR), which they use to identify the monetary 

transmission mechanism.1

We’ll consider a simple problem of the form of Equation 8-2, where 

we want to predict Canada’s GDP growth using growth data from other 

countries. We may want to do this to impute values for GDP growth in 

1�Using a FAVAR allows Bernanke et al. (2005) to dramatically expand the set 
of variables included in the VAR, so that they can properly account for the 
information sets that the central bank and private actors can access.

Figure 8-3.  Strength of associations between country series and first 
principal component
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periods where the country is missing a value. Alternatively, we may be 

interested in recovering the coefficient estimates themselves, so we can see 

how GDP growth in one country is affected by different global components 

of growth.

Equation 8-2. Principal component regression.

	
gdp growth PC Ct

CAN
o t p tp t_ = + +¼+ +- -a b b0 1 1  	

In Listing 8-5, we load the data using pandas, extract the column for 

Canada from the DataFrame, create a copy of the DataFrame, delete the 

column for Luxembourg from that copy, and then convert both to np.

array() objects.

Listing 8-5.  Prepare data for use in a principal component 

regression

import tensorflow as tf

import numpy as np

import pandas as pd

# Load data.

gdp = pd.read_csv(data_path+'gdp_growth.csv',

        index_col = 'Date')

# Copy Canada from C.

Y = gdp['CAN'].copy()

# Copy gdp to C and drop LUX.

C = gdp.copy()

del C['CAN']

# Convert data to numpy arrays.

Y = np.array(Y)

C = np.array(C)
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In Listing 8-6, we perform PCA on C and recover the principal 

components, G, which we use as an input to a PCR regression of Y on G in 

tensorflow.

Listing 8-6.  Perform PCA and PCR

# Set number of components.

k = 5

# Instantiate PCA model with k components.

pca = PCA(n_components=k)

# Fit model and return principal components.

pca.fit(C)

G = tf.cast(pca.transform(C), tf.float32)

# Initialize model parameters.

beta = tf.Variable(tf.random.normal([k,1]),

tf.float32)

alpha = tf.Variable(tf.random.normal([1,1]),

tf.float32)

# Define prediction function.

def PCR(G, beta, alpha):

        predictions = alpha + tf.reshape(

        tf.matmul(G, beta), (236,))

        return predictions

# Define loss function.

def mseLoss(Y, G, beta, alpha):

        return tf.losses.mse(Y, PCR(G, beta, alpha))

# Instantiate an optimizer and minimize loss.

opt = tf.optimizers.Adam(0.1)

for j in range(100):
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        opt.minimize(lambda: mseLoss(Y, G, beta, alpha),

        var_list = [beta, alpha])

Now that we’ve trained a model, we can use it to predict the series 

for Canada’s GDP growth. We plot this series against the true series in 

Figure 8-4. Prior to the Great Moderation period, which begins in the mid-

1980s, we can see that GDP growth is more volatile and the model fit is 

worse. After 1980, however, much of Canada’s GDP growth appears to be 

explained by five factors that were present in the GDP growth series of 24 

other countries.

Our finding suggests that there are common global factors that are 

associated with growth. If we wanted to examine this further, we might 

try to determine what those factors are by examining their relationship 

to different countries using the B matrix. For example, it could be the 

case that growth in North America is particularly important for growth in 

Figure 8-4.  Actual and PCR-predicted GDP growth in Canada
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Canada. PCA will help us to reduce the dimensionality of the problem, but 

will also give us the tools to try to tell plausible stories about what we’re left 

with after the reduction is done.

�Partial Least Squares
PCR managed to satisfactorily explain quarterly variation in Canadian 

GDP growth using only five principal components. While the two-step 

procedure we described is convenient to implement and performs 

serviceably for a wide variety of tasks, it does not account for the 

relationship between C and Y in the first stage, which we might think is 

suboptimal if our goal is ultimately to perform prediction.

Indeed, PCA is performed exclusively using C. We then take the 

principal components from C and use them in a regression with Y as the 

dependent variable. It could, however, be the case that the components 

we select explain a high share of the variation in GDP growth for many 

countries, but not for Canada.

There are, however, alternatives to PCR that account for the strength of 

comovement between Y and the feature columns of C. We’ll consider one of 

those – partial least squares (PLS) – in this brief subsection. Our description 

follows Gentzkow et al. (2019) and consists of the following steps:

	 1.	 Compute Ŷ
C

j j j

j j

=
å
å
y

y
, where Cj is the jth feature 

column and ψj is the univariate covariance between 

Y and Cj.

	 2.	 Orthogonalize Y and C with respect to Ŷ .

	 3.	 Repeat step 1.

	 4.	 Repeat steps 2 and 1 to generate the desired number 

of components.
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In contrast to PLR, PLS makes use of the covariance between Y and 

C to generate components that are best suited to the prediction of Y. In 

principle, this should lead us to select components that have greater 

predictive value than we would generate using PCA on C and then 

performing a linear regression in a second step.

In Listing 8-7, we implement a PLS regression using sklearn. We will 

assume that C and Y have been defined as they were in Listing 8-5. For the 

sake of comparability to the PLR results, we’ll again use five components. 

We will then instantiate and train a PLS model and then use the predict() 

method to generate a time series of predictions for Canada.

Listing 8-7.  Perform PLS

from sklearn.cross_decomposition import PLSRegression

# Set number of components.

k = 5

# Instantiate PLS model with k components.

pls = PLSRegression(n_components = k)

# Train PLS model.

pls.fit(C, Y)

# Generate predictions.

pls.predict(C)

In Figure 8-5, we compare actual and PLS-predicted GDP growth 

in Canada for the duration of the sample. As expected, PLS achieves a 

mild improvement over what we were able to do with a two-step PCA 

procedure. This is because it allowed us to exploit the relationship 

between our target variable and feature matrix.
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Note that both PCR and PLS take many forms. While we performed 

PCR using OLS in the second step, we could have, in principle, used any 

model to capture the relationship between the principle components 

extracted from the feature matrix and Canada’s GDP growth. This is one 

of the benefits of performing the second step in tensorflow, rather than 

sklearn.

For a deeper treatment of the econometric theory of PLS, see Kelly and 

Pruitt (2013, 2015). Additionally, for a rigorous treatment of forecasting 

with PCA, see Stock and Watson (2002). For an application of the method 

to weekly GDP growth forecasting during the COVID-19 outbreak, see 

Lewis et al. (2020).

Figure 8-5.  Actual and PLS-predicted GDP growth in Canada
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�The Autoencoder Model
An autoencoder is a type of neural network that is trained to predict its 

input values. Such models can be used to generate music, denoise images, 

and perform a generalized and non-linear version of principal component 

analysis, which is what we’ll focus on in this chapter.

The autoencoder model was developed in LeCun (1987), Bourlard 

and Kamp (1988), and Hinton and Zemel (1993). Goodfellow et al. (2017) 

describe an autoencoder as consisting of two functions. The first is an 

encoder function, f(x), given in Equation 8-3, which takes inputs, x, and 

produces a latent state, h. The second is a decoder function, given in 

Equation 8-4, which takes a latent state, h, and produces a reconstruction 

of the inputs, r.

Equation 8-3. Encoder function.

	 h f x= ( ) 	

Equation 8-4. Decoder function.

	 r g h= ( ) 	

In practice, we may train an autoencoder by minimizing a loss function 

of the form given in Equation 8-5. Notice that g( f(x)) is the reconstruction, 

r, we generate from the encoder and decoder functions and the set of 

inputs. The less distance there is between r and x, the smaller the loss  

will be.

Equation 8-5. Autoencoder loss function.

	
L x g f x( , ( )( ) 	

The encoder part of the network has an architecture that resembles 

a standard dense neural network. It takes inputs and then passes them 

through a sequence of dense layers with a decreasing number of nodes. 
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The encoder performs “downsampling” or “compression.” To the 

contrary, a decoder has the architecture of an inverted neural network. 

It takes a latent state as the input and then performs “upsampling” or 

“decompression” to yield a larger output.

The architecture for an example autoencoder is given in Figure 8-6.  

Here, we have five input nodes, which are reduced to three in the 

following neural network layer. We then output two nodes from the 

encoder network. These are used as inputs in the decoder network, which 

upsamples to three nodes and then five, ultimately providing us with 

something that is comparable to the inputs. The pink nodes at the top of 

the image are the model inputs, whereas the pink nodes at the bottom 

represent the attempted reconstruction of the inputs.

Figure 8-6.  Example architecture for an autoencoder
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While we’ll focus on the use of autoencoders to perform 

dimensionality reduction, they also have two more common uses in 

machine learning that could also be applied to problems in economics and 

finance:

	 1.	 Noise reduction: Both audio and images often 

contain noise. Autoencoders allow us to filter out 

the noise by memorizing only large, important 

features of the image or audio signal. By selecting an 

architecture with relatively few nodes in the latent 

state, we can force the network to compress all of the 

information contained in an image or audio signal 

into a few numbers. When we attempt to reconstruct 

the image or audio signal using the decoder, it 

will not be possible to recover idiosyncratic noise, 

since that would require more information than 

is contained in the latent state. This means we’ll 

recover only a denoised version.

	 2.	 Generative machine learning: In addition to 

classifying different types of objects, machine 

learning algorithms can also be used to generate 

new instances of a class. The decoder of an 

autoencoder model is trained to reconstruct images 

from information in a latent state. This means that 

we can generate entirely new images by randomly 

generating a latent state and then passing it through 

the decoder. Additionally, we can extract a latent 

state from an image using the encoder and modify 

the latent state it outputs to manipulate the image 

we’ll get when passing it to the decoder.
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Based on their use as denoisers and in generative machine learning 

tasks, two things should be clear. First, we don’t typically want to train 

an autoencoder to recover the inputs exactly. Rather, we want it to 

learn important relationships in the data, so that it can generalize, not 

memorize. This is why we use regularization and keep the network 

sufficiently small. And second, the output layer of the encoder, the latent 

state, serves as a bottleneck that must summarize the features in a set of 

inputs. This is precisely why it will be useful as a form of dimensionality 

reduction.

In the final exercise of this chapter, we’ll demonstrate how to train an 

autoencoder on the same GDP growth data. In Listing 8-8, we’ll assume 

that Y and C have already been loaded and are defined as they have been 

throughout the chapter. We’ll then define the encoder and decoder models, 

which will share weights, but will also be able to independently accept 

inputs and produce outputs. We’ll set the number of nodes in the latent 

state, latentNodes, to five, which will give us the equivalent of a five-factor 

PCR model when we perform a regression in the following step.

Listing 8-8.  Train an autoencoder using the Keras API

# Set number of countries.

nCountries = 24

# Set number of nodes in latent state.

latentNodes = 5

# Define input layer for encoder.

encoderInput = tf.keras.layers.Input(shape = (nCountries))

# Define latent state.

latent = tf.keras.layers.Input(shape = (latentNodes))
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# Define dense output layer for encoder.

enco�ded �= tf.keras.layers.Dense(latentNodes, activation = 

'tanh')(encoderInput)

# Define dense output layer for decoder.

deco�ded �= tf.keras.layers.Dense(nCountries, activation = 

'linear')(latent)

# Define separate models for encoder and decoder.

encoder = tf.keras.Model(encoderInput, encoded)

decoder = tf.keras.Model(latent, decoded)

# Define functional model for autoencoder.

autoencoder = tf.keras.Model(encoderInput, decoder(encoded))

# Compile model

autoencoder.compile(loss = 'mse', optimizer="adam")

# Train model

autoencoder.fit(C, C, epochs = 200)

Relative to what we’ve done so far with neural networks, this model 

is quite unusual. When we train the model, we can see that the features 

and target are the same. Additionally, we have an encoder and a decoder 

model, which are functional on their own, but are also part of a larger 

autoencoder model, which is the model we actually train. We can also see 

that we’ve selected the simplest possible architecture, given that we have a 

latent state with five nodes. This is summarized in Listing 8-9.
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Listing 8-9.  Autoencoder model architecture summary

# Print summary of model architecture.

print(autoencoder.summary())

_____________________________________________________

Layer (type)          Output Shape           Param #

=====================================================

input_11 (InputLayer)  [(None, 24)]            0

_____________________________________________________

dense_8 (Dense)         (None, 5)             125

_____________________________________________________

model_10 (Model)        (None, 24)            144

=====================================================

Total params: 269

Trainable params: 269

Non-trainable params: 0

_____________________________________________________

In total, the model has only 269 parameters, but has been trained 

to recover 24 GDP growth series, which each consists of 236 quarters 

of observations. In Figure 8-7, we evaluate the quality of the series 

construction by plotting the actual and predicted series for the United 

States, which we can do using the predict() method of autoencoder.

The autoencoder appears to have reproduced the series for the United 

States with a reasonable degree of accuracy. As we discussed earlier, 

an autoencoder will be forced to discard some of the noise, since the 

bottleneck layer (latent state) will limit how much information can be 

passed to the decoder. As a consequence of this, we can see that the series 

we generated has a lower variance than the original series.
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The next step is to recover the latent state in all periods, which will 

consist of five output values from the encoder. We can do this using the 

predict method of the encoder function, as is shown in Listing 8-10.

Listing 8-10.  Generate latent state time series

# Generate latent state time series.

latentState = encoder.predict(C)

# Print shape of latent state series.

print(latentState.shape)

(236, 5)

Figure 8-7.  Reconstructed series for US GDP growth using autoencoder
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We can now use these latent state time series in a regression to 

predict Canada’s GDP growth. As we can see from Listing 8-11, nothing of 

substance has changed from what we did in PCR. Once the latent states 

have been extracted from the encoder model, the problem reduces to a 

linear regression.

Listing 8-11.  Perform dimensionality reduction in a regression 

setting with an autoencoder latent state

# Initialize model parameters.

beta = tf.Variable(tf.random.normal([latentNodes,1]))

alpha = tf.Variable(tf.random.normal([1,1]))

# Define prediction function.

def LSR(latentState, beta, alpha):

        predictions = alpha + tf.reshape(

        tf.matmul(latentState, beta), (236,))

        return predictions

# Define loss function.

def mseLoss(Y, latentState, beta, alpha):

        return tf.losses.mse(Y, LSR(latentState,

beta, alpha))

# Instantiate an optimizer and minimize loss.

opt = tf.optimizers.Adam(0.1)

for j in range(100):

        opt.minimize(lambda: mseLoss(Y, latentState, beta,

        alpha), var_list = [beta, alpha])

In Figure 8-8, we plot the actual and predicted time series for Canadian 

GDP growth using a regression model built around latent states from an 

autoencoder. We can see that performance is similar to what we were able 

to achieve with PLS.
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Finally, note that we could have changed at least two things about our 

approach to this problem. First, we could have modified the autoencoder’s 

architecture. If, for instance, if we thought the model was underfitting 

and failing to generalize across series, we could have added hidden layers 

or additional nodes within layers. And second, we could have used an 

entirely different model in the second step, such as a neural network. 

Furthermore, using TensorFlow, we could have connected this model 

directly to the autoencoder, training them jointly to predict Y with a set of 

five latent features. This would have given us latent states that were more 

predictive of Y, yielding a PLS-type generalization of the approach.

Figure 8-8.  Actual and OLS-predicted GDP growth in Canada using 
an autoencoder to perform dimensionality reduction on the feature set
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�Summary
Dimensionality reduction is an empirical strategy common to economics 

and machine learning. In many cases, we’ll use dimensionality reduction 

when the second step of a problem – which may be a supervised learning 

task – is infeasible using the available feature set. Using principal 

component analysis or the latent states from an autoencoder, we can 

compress a high-dimensional set of features into a small number of 

factors.

In this chapter, we demonstrated how to perform dimensionality-

reduction tasks in tensorflow and sklearn. Concentrating on GDP growth 

prediction, we saw that a principal component regression performed 

well, but ultimately used factors that were not selected based on their 

relationship with the dependent variable. When we used partial least 

squares, which does exploit comovement between the features and the 

dependent variable, we found minor improvements in the quality of 

prediction.

Finally, we explored the possibility of performing dimensionality 

reduction using an autoencoder. An autoencoder model consists of 

encoder and decoder networks and is trained to output reconstructions 

of its inputs. The encoder part of the network outputs a latent state, which 

can be treated as compressed information about the input features. We 

showed that regressions that used latent states from an autoencoder for 

the purpose of dimensionality reduction performed comparably to PLS 

and could be extended allow for the joint training with the predictive 

model.
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CHAPTER 9

Generative Models
Machine learning models can be divided into two categories: 

discriminative and generative. Discriminative models are trained to 

perform classification or regression. That is, we input a set of features 

and expect to receive probabilities of class labels or predicted values as 

outputs. In contrast, generative models are trained to learn the underlying 

distribution of the data. Once we have trained a generative model, we 

can use it to produce new examples of a class. Figure 9-1 illustrates the 

difference between the two categories of model.

Thus far, we have focused on discriminative models in this book; 

however, there was one exception: the latent Dirichlet allocation (Blei 

et al. 2003), which we introduced in Chapter 6. The LDA model took a 

text corpus as an input and returned a set of topics, where each topic was 

defined as a distribution over the vocabulary.

There has recently been considerable progress in the generative 

machine learning literature, and much of it has been concentrated in the 

development of two types of models: variational autoencoders (VAEs) 

and generative adversarial networks (GANs). With respect to image, text, 

and music generation, these two categories of model have delivered 

considerable breakthroughs.

https://doi.org/10.1007/978-1-4842-6373-0_9#DOI
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For the most part, this progress hasn’t yet reached the economics and 

finance disciplines; however, some work in economics has begun to make 

use of GANs. In the final section of the chapter, we will briefly discuss two 

recent applications of GANs in economics (Athey et. al. 2019 and Kaji et al. 

2018) and speculate on potential future uses.

.3

-.2

.7

GENERATOR

DISCRIMINATOR

DOG

CAT

Figure 9-1.  Comparison of discriminator and generator models
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�Variational Autoencoders
In Chapter 8, we introduced the concept of an autoencoder, which 

consisted of two networks with shared weights: an encoder and a decoder. 

The encoder transformed the model inputs into a latent state. The decoder 

took the latent state as an input and produced a reconstruction of the 

features input into the encoder. We trained the model by computing a 

reconstruction loss, which was a transformation of the difference between 

the inputs and their predicted values.

We used an autoencoder to perform dimensionality reduction, but 

discussed other uses of autoencoders, which primarily involved generative 

tasks, such as the creation of novel images, music, and texts. What we did 

not mention is that autoencoders suffer from two problems that hinder 

their performance on such tasks. Both problems, which we discuss as 

follows, are related to the way in which they generate latent states:

	 1.	 The location and distribution of latent states: 

The latent states of an autoencoder with N nodes 

are points in ℝN. For many problems, these points 

will tend to cluster in the same area; however, 

the autoencoder does not allow us to explicitly 

determine how and where such points cluster 

in ℝN. This might seem unimportant, but it will 

ultimately determine what latent states can be fed 

into the model. If, for instance, we are attempting to 

generate an image, it would be useful to know what 

constitutes a valid latent state and, thus, what can be 

fed into the model. Otherwise, we will use states that 

are far away from anything the model has observed, 

which will yield a novel, but perhaps unconvincing 

image.
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	 2.	 The performance of latent states not present in 
training: An autoencoder is trained to reconstruct 

inputs for a set of examples. For the latent state 

associated with a set of features, the decoder should 

yield outputs that resemble the input features. 

If, however, we perturb the latent vector slightly, 

there’s no guarantee that the decoder will have the 

capacity to generate a convincing example from a 

point it has never visited.

Variational autoencoders (VAEs) were developed to overcome these 

limitations. Rather than having a latent state layer, VAEs have a mean layer, 

a log variance layer, and sampling layer. The sampling layer draws from a 

normal distribution defined by the mean and log variance parameters in 

the preceding layers. The output of the sampling layer is then passed to the 

decoder as the latent state during the training process. Passing the same 

features to the encoder twice will yield different latent states each time.

Beyond the differences in architecture, VAEs also modify the loss 

function to include the Kullback-Leibler (KL) divergence for each 

normal distribution in the sampling layer. The KL divergence penalizes 

the distance between each of the normal distributions and a normal 

distribution with both a mean and log variance of zero.

The combination of these features accomplishes three things. First, it 

eliminates the determinism of latent states. Each set of features will now 

be associated with a distribution of latent states, rather than a single latent 

state. This will tend to improve generative performance by forcing the 

model to treat each individual latent state feature as a continuous variable. 

Second, it eliminates the sampling problem. We can now draw valid states 

randomly by making use of the sampling layer. And third, it corrects the 

issue with the latent distribution in space. The KL divergence component 

of the loss will push the distribution means close to zero and force them to 

have similar variances.
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The remainder of this section will focus on the implementation of 

VAEs in TensorFlow. For an extended overview of the development of 

VAE models and a detailed exploration of their theoretical properties, see 

Kingma and Welling (2019).

The example we’ll use in this chapter makes use of the GDP growth 

data we introduced in Chapter 8. As a refresher, it consisted of quarterly 

time series that spanned the period between 1961:Q2 and 2020:Q1 for 25 

different OECD countries. In Chapter 8, we used dimensionality-reduction 

techniques to extract a small number of common components from the 25 

series at each point in time.

In this chapter, we will instead use the GDP growth data to train a VAE  

that is capable of generating similar series. We will start in Listing 9-1 

by importing the libraries we’ll use in this exercise and will then load 

and prepare the data. Notice that we transpose the GDP data, so that the 

columns correspond to a specific quarter and the rows correspond to 

countries. We’ll then convert the data to a np.array() and set parameters 

for the batch size and the number of output nodes in the latent space.

Listing 9-1.  Prepare GDP growth data for use in a VAE

import tensorflow as tf

import pandas as pd

import numpy as np

# Define data path.

data_path = '../data/chapter9/'

# Load and transpose data.

GDP = pd.read_csv(data_path+'gdp_growth.csv',

        index_col = 'Date').T

# Print data preview.

print(GDP.head())
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Time    4/1/61    7/1/61   10/1/61    1/1/62

AUS  -1.097616 -0.715607  1.139175  2.806800 ...

AUT  -0.349959  1.256452  0.227988  1.463310 ...

BEL   1.167163  1.275744  1.381074  1.346942 ...

CAN   2.529317  2.409293  1.396820  2.650176 ...

CHE   1.355571  1.242126  1.958044  0.575396 ...

# Convert data to numpy array.

GDP = np.array(GDP)

# Set number of countries and quarters.

nCountries, nQuarters = GDP.shape

# Set number of latent nodes and batch size.

latentNodes = 2

batchSize = 1

The next step is to define the VAE model architecture, which will 

consist of an encoder and a decoder, similar to the autoencoder model 

of Chapter 8. In contrast to the autoencoder, however, latent states will 

be sampled from a set of independent normal distributions during the 

training process. We’ll start by defining a function that performs the 

sampling task in Listing 9-2.

Listing 9-2.  Define function to perform sampling task in VAE

# Define function for sampling layer.

def sampling(params, batchSize = batchSize, latentNodes = 

latentNodes):

        mean, lvar = params

epsilon = tf.random.normal(shape=(

        batchSize, latentNodes))

        return mean + tf.exp(lvar / 2.0) * epsilon
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Notice that the sampling layer does not contain any parameters of its 

own. Rather, it takes a pair of parameters as inputs, draws epsilon from 

a standard normal distribution for each output node in the latent state, 

and then transforms each draw using the mean and lvar parameters that 

correspond to the nodes in that state.

Once we have defined a sampling layer, we can also define an encoder 

model, which will closely resemble the one we constructed for the 

autoencoder model. We’ll do this in Listing 9-3. The only initial difference 

is that we’ll take the full time series for a country as an input, rather than 

the cross-section of values across countries at a point in time.

Another difference appears in the mean and lvar layers, which were 

not present in the autoencoder. These layers have the same number of 

nodes as the latent state. This is because they consist of mean and log 

variance parameter values for normal distributions that are associated 

with each of the nodes in the latent state.

We next define a Lambda layer, which accepts the sampling function 

we defined earlier and passes it the mean and lvar parameters. We can see 

that the sampling layer generates an output for each of the features (nodes) 

in the latent state. Finally, we define a functional model, encoder, which 

takes the input features – quarterly GDP growth observations – and returns 

a mean layer, a log variance layer, and sampled outputs using the means 

and log variances to parameterize normal distributions.

Listing 9-3.  Define encoder model for VAE

# Define input layer for encoder.

encoderInput = tf.keras.layers.Input(shape = (nQuarters))

# Define latent state.

latent = tf.keras.layers.Input(shape = (latentNodes))

# Define mean layer.

mean = tf.keras.layers.Dense(latentNodes)(encoderInput)
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# Define log variance layer.

lvar = tf.keras.layers.Dense(latentNodes)(encoderInput)

# Define sampling layer.

enco�ded �= tf.keras.layers.Lambda(sampling, output_

shape=(latentNodes,))([mean, lvar])

# Define model for encoder.

encoder = tf.keras.Model(encoderInput, [mean, lvar, encoded])

In Listing 9-4, we’ll define functional models for the decoder model 

and the entire variational autoencoder. Similar to the decoder component 

of an autoencoder, it accepts the latent state as an input from the encoder 

and then produces a reconstruction of the inputs as an output. The full 

VAE model also bears similarity to an autoencoder, taking a time series as 

an input and transforming it into a reconstruction of the same time series.

The final step is to define the loss function, which consists of two 

components – the reconstruction loss and the KL divergence – and append 

it to the model, which we do in Listing 9-5. The reconstruction loss is no 

different from the one we used for the autoencoder. The KL divergence 

measures how far each of the sampling layer distributions is from a 

standard normal distribution. The further away they are, the higher the 

penalty.

Listing 9-4.  Define decoder model for VAE

# Define output for decoder.

deco�ded �= tf.keras.layers.Dense(nQuarters, activation = 

'linear')(latent)

# Define the decoder model.

decoder = tf.keras.Model(latent, decoded)

# Define functional model for autoencoder.

vae = tf.keras.Model(encoderInput, decoder(encoded))
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Listing 9-5.  Define VAE loss

# Compute the reconstruction component of the loss.

reconstruction = tf.keras.losses.binary_crossentropy(

        vae.inputs[0], vae.outputs[0])

# Compute the KL loss component.

kl =� -0.�5 * tf.reduce_mean(1 + lvar - tf.square(mean) - 

tf.exp(lvar), axis = -1)

# Combine the losses and add them to the model.

combinedLoss = reconstruction + kl

vae.add_loss(combinedLoss)

Finally, in Listing 9-6, we compile and train the model. In Listing 9-7,  

we now have a trained variational autoencoder, which we can use to 

perform a variety of different generative tasks. We can, for instance, use 

the predict() method of vae to generate the reconstruction for a given 

time series input. We can also generate a realization of the latent state for a 

given input, such as GDP growth for the United States. We can also perturb 

these latent states by adding random noise and then use the predict() 

method of decoder to generate an entirely new time series based on the 

modified latent state.

Listing 9-6.  Compile and fit VAE

# Compile the model.

vae.compile(optimizer='adam')

# Fit model.

vae.fit(GDP, batch_size = batchSize, epochs = 100)
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Listing 9-7.  Generate latent states and time series with trained VAE.

# Generate series reconstruction.

prediction = vae.predict(GDP[0,:].reshape(1,236))

# Generate (random) latent state from inputs.

latentState = encoder.predict(GDP[0,:].reshape(1,236))

# Perturb latent state.

latentState[0] = latentState[0] + np.random.normal(1)

# Pass perturbed latent state to decoder.

decoder.predict(latentState)

Finally, in Figure 9-2, we show 25 generated time series that are based 

on a latent state realization for the US GDP growth series. We then perturb 

that original state over a 5x5 grid, where the rows add evenly spaced values 

over the [–1, 1] interval to the first latent state and the columns add equally 

spaced values over the [–1, 1] interval to the second latent state. The series 

in the center of the grid, shown in red, adds [0, 0] and, thus, is the original 

latent state.
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While this example was simple and the latent state contained only 

two nodes for the purpose of demonstration, the VAE architecture can 

be applied to a wide variety of problems. We can, for instance, add 

convolutional layers to the encoder and decoder and change the input and 

output shapes. That will give us a VAE that generates images. Alternatively, 

we could add LSTM cells to the encoder and encoder, which would give 

Figure 9-2.  VAE-generated time series for GDP growth for the United 
States
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us a VAE that could generate text or music.1 Furthermore, an LSTM-based 

architecture could yield some improvements in time series generation over 

the dense network approach we adopted in this example.

�Generative Adversarial Networks
Two families of models have dominated the generative machine learning 

literature: variational autoencoders and generative adversarial networks. 

VAEs, as we’ve seen, provide granular control over the generation of 

examples through the manipulation of latent states and the features they 

encode. GANs, in contrast, have been more successful at producing highly 

convincing examples of classes. For example, some of the most convincing 

generated images are produced using GANs.

As we discussed in the previous section, VAEs are a combination of two 

models: an encoder and a decoder, joined by a sampling layer. Similarly, 

GANs also consist of two models: a generator and a discriminator. The 

generator takes a random input vector, which we may think of as a latent 

state, and generates an example of a class, such as a real GDP growth time 

series (or an image, a sentence, or a musical score).

Once the generator component of a GAN has produced several 

examples of a class, they are passed to the discriminator, along with an 

equal number of true examples. In our case, this would be a combination 

of true and generated real GDP growth series. The discriminator is then 

trained to differentiate between the real and fake examples.

After the discriminator has finished the classification task, we can 

train the generator using an adversarial network, which combines both 

the generator and discriminator models. Just as was the case for the 

encoder and decoder components of the VAE, an adversarial network will 

1�See www.datacamp.com/community/tutorials/using-tensorflow-to-compose-
music for an extended tutorial on generative models for music generation.

Chapter 9  Generative Models

http://www.datacamp.com/community/tutorials/using-tensorflow-to-compose-music
http://www.datacamp.com/community/tutorials/using-tensorflow-to-compose-music


319

share weights with both networks. The adversarial network will train the 

generator to maximize the loss of the discriminator network.

As Goodfellow et al. (2017) discuss, we may view the two networks 

as trying to maximize their respective payoffs in a zero sum game, where 

the discriminator receives v(g, d) and the generator receives −v(g, d). 

The generator chooses samples, g, to trick the discriminator; and the 

discriminator chooses probabilities, d, for each of those samples. The 

equilibrium, characterized by a set of generated images, g∗, is given in 

Equation 9-1.

Equation 9-1. The equilibrium condition for image generation in a 

GAN.

	
g v g d

g d

* = ( )arg min max , 	

Consequently, when we train the adversarial part of the network, we 

must freeze the discriminator weights. This will constrain the network to 

improve the generation process, rather than weakening the discriminator. 

Iterating over these steps in the training process will ultimately yield the 

evolutionary equilibrium described in Equation 9-1.

Figure 9-3 illustrates the generator and discriminator networks of 

a GAN. To summarize, the generator yields novel examples, which are 

not drawn from the data. The discriminator combines those examples 

with true examples and then performs classification. And the adversarial 

network trains the generator by attaching it to a discriminator, but with 

frozen weights. Training over the network occurs iteratively.

Following the example from the section on VAEs, we’ll again make 

use of the GDP growth data, which we load and prepare in Listing 9-8. 

Our intention will be to train a GAN to generate credible GDP growth time 

series from a randomly drawn vector input. We will follow the approach to 

GAN construction described in Krohn et al. (2020).
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Listing 9-8.  Prepare GDP growth data for use in a GAN

import tensorflow as tf

import pandas as pd

import numpy as np

# Load and transpose data.

GDP = pd.read_csv(data_path+'gdp_growth.csv',

        index_col = 'Date').T

# Convert pandas DataFrame to numpy array.

GDP = np.array(GDP)

In Listing 9-9, we define the generative model. We again follow the 

simple VAE model and draw a vector with two elements as an input to the 

generator. Since the input to the generator can be seen as an analogy to  

the latent vector in a VAE, we should view the generator as a decoder. 

.1

.8

-.4

.3

.4

.8

.7

GENERATOR DISCRIMINATOR

Figure 9-3.  Depiction of the generator and discriminator from a 
GAN
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This means we’ll start with a narrow, bottleneck-type layer and will 

upsample to the output, which will be a generated GDP growth time series.

The simplest version of the generator would consist of an input layer 

that accepts the latent vector and an output layer, which upsamples the 

input layer. Since our output layer consists of GDP growth values, we’ll 

use a linear activation function. We’ll also include a hidden layer with a 

relu activation, since the model will otherwise be unable to capture non-

linearities.

Listing 9-9.  Define the generative model of a GAN

# Set dimension of latent state vector.

nLatent = 2

# Set number of countries and quarters.

nCountries, nQuarters = GDP.shape

# Define input layer.

generatorInput = tf.keras.layers.Input(shape = (nLatent,))

# Define hidden layer.

generatorHidden = tf.keras.layers.Dense(16, activation="relu")

(generatorInput)

# Define generator output layer.

gene�rato�rOutput = tf.keras.layers.Dense(236, 

activation="linear")(generatorHidden)

# Define generator model.

gene�rato�r = tf.keras.Model(inputs = generatorInput, outputs = 

generatorOutput)

We’ll next define the discriminator in Listing 9-10. It will take real and 

generated GDP growth series as inputs, each of which will have a length of 

nQuarters. It will then produce a probability of being a real GDP growth 
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series for each of the input series. Note that we did not compile generator, 

but did compile discriminator. This is because we will use an adversarial 

network to train generator.

Listing 9-10.  Define and compile the discriminator model of a GAN

# Define input layer.

disc�rimi�natorInput = tf.keras.layers.Input(shape = 

(nQuarters,))

# Define hidden layer.

disc�rimi�natorHidden = tf.keras.layers.Dense(16, 

activation="relu")(discriminatorInput)

# Define discriminator output layer.

disc�rimi�natorOutput = tf.keras.layers.Dense(1, 

activation="sigmoid")(discriminatorHidden)

# Define discriminator model.

disc�rimi�nator = tf.keras.Model(inputs = discriminatorInput, 

outputs = discriminatorOutput)

# Compile discriminator.

disc�rimi�nator.compile(loss='binary_crossentropy', optimizer=tf.

optimizers.Adam(0.0001))

We have now defined a generator model and a discriminator model. 

We have also compiled the discriminator. The next step is to define and 

compile an adversarial model, which will be used to train the generator. 

The adversarial model will share weights with the generator and will use 

a frozen version of the weights for the discriminator – that is, the weights 

will not update when we train the adversarial network, but they will update 

when we train the discriminator.
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Listing 9-11 defines the adversarial network. The input to the 

adversarial network is a latent vector, so it will have the same size as the 

input to generator. We will next define the output of the generator model 

as timeSeries, which will be a fake GDP growth time series. We can then 

set the trainability of discriminator to False, so that it does not update 

while we’re training the adversarial network. Finally, we’ll set the output 

of the network to be the discriminator’s output and define and compile a 

functional model, adversarial. In Listing 9-12, we’ll train discriminator 

and adversarial.

Listing 9-11.  Define and compile the adversarial model of a GAN

# Define input layer for adversarial network.

adversarialInput = tf.keras.layers.Input(shape=(nLatent))

# Define generator output as generated time series.

timeSeries = generator(adversarialInput)

# Set discriminator to be untrainable.

discriminator.trainable = False

# Compute predictions from discriminator.

adversarialOutput = discriminator(timeSeries)

# Define adversarial model.

adve�rsar�ial = tf.keras.Model(adversarialInput, 

adversarialOutput)

# Compile adversarial network.

adve�rsar�ial.compile(loss='binary_crossentropy', optimizer=tf.

optimizers.Adam(0.0001))
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Listing 9-12.  Train the discriminator and the adversarial network

# Set batch size.

batch, halfBatch = 12, 6

for j in range(1000):

        # Draw real training data.

        idx = np.random.randint(nCountries,

        size = halfBatch)

        real_gdp_series = GDP[idx, :]

        # Generate fake training data.

        latentState = np.random.normal(size=[halfBatch, nLatent])

        fake_gdp_series = generator.predict(latentState)

        # Combine input data.

        features = np.concatenate((real_gdp_series,

        fake_gdp_series))

        # Create labels.

        labels = np.ones([batch,1])

        labels[halfBatch:, :] = 0

        # Train discriminator.

        discriminator.train_on_batch(features, labels)

        # Generate latent state for adversarial net.

        latentState = np.random.normal(size=[batch, nLatent])

        # Generate labels for adversarial network.

        labels = np.ones([batch, 1])

        # Train adversarial network.

        adversarial.train_on_batch(latentState, labels)
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We start by defining the batch size. We then enter the training loop, 

which consists of several steps. First, we draw random integers and use 

them to select rows in the GDP matrix, which each consists of a GDP growth 

time series. This will be the real samples in the discriminator’s training set. 

Next, we generate the fake data by drawing latent vectors and then passing 

them to generator. We then combine both types of series and assign them 

the corresponding labels (i.e., 1 = real and 0 = fake). We can now pass this 

data to the discriminator to perform a single batch of training.

We next perform an iteration of training for the adversarial network. 

Here, we’ll generate a batch of latent states, input them into generator, 

and then train with the objective of tricking the discriminator into 

classifying them as real. Notice that we’re iterating over the training of two 

models and won’t use normal stopping criteria for the training process. 

Rather, we will look for a stable evolutionary equilibrium where neither 

model appears to be able to gain an advantage.

In Figure 9-4, we plot the model losses over time. We can see that after 

approximately 500 training iterations, neither model appears to improve 

substantially, indicating that we have reached a stable evolutionary 

equilibrium.
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Finally, we plot one of the GDP growth series produced by the GAN 

in Figure 9-5. Taking nothing more than white noise vector inputs and 

information about the discriminator’s performance, the adversarial 

network managed to train the generator to produce a fairly credible fake 

GDP growth series after 1000 training iterations. Of course, we could have 

improved performance considerably by allowing for more latent features 

and a more advanced model architecture, such as an LSTM.

Figure 9-4.  Discriminator and adversarial model losses by training 
iteration

Chapter 9  Generative Models



327

�Applications in Economics and Finance
Throughout this chapter, we concentrated on what might seem like an 

obscure example: generating simulated GDP growth series through the 

use of generative machine learning models; however, such exercises are 

common in Monte Carlo simulation studies, which are used to test the 

small sample properties of estimators in econometrics. Without generating 

realistic series and adequately capturing interdependencies between 

series, it is challenging to accurately evaluate the properties of estimators.

In fact, one of the earliest applications of GANs in the economics 

literature was intended to achieve precisely this objective. Athey et al. 

(2019) consider the possibility of using Wasserstein GANs to simulate 

data that appears similar to observations from an existing dataset that 

is insufficiently large to be used in a Monte Carlo simulation. The value 

of this is that it allows an econometrician to avoid the two common 

alternatives to this approach: (1) drawing randomly from the small dataset 

itself, which will result in many repetitions of the same observations, 

Figure 9-5.  Example fake GDP growth series
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and (2) generating simulated series that typically fail to accurately 

capture dependencies between series in the dataset. Athey et al. (2019) 

demonstrate the value of their approach (and GANs more generally) by 

evaluating estimators using artificial data generated by a WGAN.

In addition to Athey et al. (2019), recent work in the economics 

literature (Kaji et al. 2018) examines whether WGANs can be used to 

perform indirect inference, which is typically used to estimate structural 

models in economics and finance. In Kaji et al. (2018), they attempt to 

estimate a model in which workers of different types are choosing from 

a wage and location menu. The parameters they want to recover are 

structural and cannot be directly estimated from the data, which requires 

them to use an indirect inference method. The approach they use is to 

couple model simulation with a discriminator, training the model until the 

simulated data is indistinguishable from the true data.

Beyond the existing applications, which are currently focused on 

model estimation, GANs and VAEs could also be used in off-the-shelf 

applications to image and text generation. While the use of image data 

remains limited in economics – even in discriminative models – GANs and 

VAEs offer the possibility of performing visual counterfactual simulations 

with economic data. In urban economics, for instance, we could infer how 

the placement of public infrastructure would have changed depending on 

the state of public policy and other factors.

Similarly, the growing natural language processing literature in 

economics and finance could make use of text generation to examine how, 

for instance, company press releases would differ when the underlying 

state of the economy or state of the industry changes.
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�Summary
Prior to this chapter, this book primarily discussed discriminative machine 

learning models. Such models perform classification or regression. That is, 

they take features from a training set and attempt to discriminate between 

different classes or make a continuous prediction for a target. Generative 

machine learning differs from discriminative machine learning, in that it 

generates new examples, rather than discriminating among examples.

Outside of the economics and finance disciplines, generative machine 

learning has been used to create compelling images, music, and text. It 

has also been used to improve Monte Carlo simulation (Athey et al. 2019) 

and perform indirect inference for structural models (Kaji et al. 2018) in 

economics.

In this chapter, we focused on two generative models: the variational 

autoencoder (VAE) and the generative adversarial network (GAN). The 

VAE model extended the autoencoder by including mean, variance, and 

sampling layers. This improved the autoencoder by imposing restrictions 

on its latent space, forcing states to cluster around the origin and have a log 

variance of 0.

Similar to autoencoders and VAEs, GANs also consist of multiple 

component models: a generator model, a discriminator model, and an 

adversarial model. The generator model creates novel examples. The 

discriminator model attempts to classify them. And the adversarial 

model trains the generator to create compelling examples that trick the 

discriminator. The training process for GANs involves finding a stable 

evolutionary equilibrium.

Finally, we demonstrated how both VAEs and GANs can be used to 

generate artificial GDP growth data. We also discussed how they are being 

applied within economics currently and how they might be applied in the 

future if they gain more widespread adoption.

Chapter 9  Generative Models



330

�Bibliography
Athey, S., G.W. Imbens, J. Metzger, and E. Munro. 2019. “Using Wasserstein 

Generative Adversarial Networks for the Design of Monte Carlo 

Simulations.” Working Paper No. 3824.

Blei, D.M., A.Y. Ng, and M.I. Jordan. 2003. “Latent Dirichlet Allocation.” 

Journal of Machine Learning Research 3 (993–1022).

Goodfellow, I., Y. Bengio, and A. Courville. 2017. Deep Learning. 

Cambridge, MA: MIT Press.

Goodfellow, I.J., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, 

S. Ozair, A. Courville, and Y. Bengio. n.d. “Generative adversarial 

networks.” NIPS’2014. 2014.

Kaji, T., E. Manresa, and G. Pouliot. 2018. “Deep Inference: Artificial 

Intelligence for Structural Estimation.” Working Paper.

Kingma, D.P., and M. Welling. 2019. “An Introduction to Variational 

Autoencoders.” Foundations and Trends in Machine Learning 12 (4): 

307–392.

Krohn, J., G. Beyleveld, and A. Bassens. 2020. Deep Learning Illustrated:  

A Visual, Interactive Guide to Artificial Intelligence. Addison-Wesley.

Chapter 9  Generative Models



331© Isaiah Hull 2021 
I. Hull, Machine Learning for Economics and Finance in TensorFlow 2,  
https://doi.org/10.1007/978-1-4842-6373-0_10

CHAPTER 10

Theoretical Models
Relative to other machine learning packages, TensorFlow requires a 

substantial time investment to master. This is because it provides users 

with the capacity to define and solve any graph-based model, rather than 

providing them with a simple and interpretable set of pre-defined models. 

This feature of TensorFlow was intended to foster the development of deep 

learning models; however, it also has secondary value for economists who 

want to solve theoretical models.

In this chapter, we’ll provide a brief overview of TensorFlow’s capabilities 

in this area. We’ll start by demonstrating how to define and solve an arbitrary 

mathematical model in TensorFlow. We’ll then apply these tools to solve the 

neoclassical business cycle model with full depreciation. This model has 

an analytical solution, which will allow us to evaluate how well TensorFlow 

performed. However, we will also discuss how to evaluate performance in 

cases where we do not have analytical solutions.

After we demonstrate how to solve basic mathematical models in 

TensorFlow, we’ll end the chapter by examining deep reinforcement 

learning, a field that combines reinforcement learning and deep learning. 

In recent years, it has accumulated several impressive achievements 

involving the development of robots and networks that play video games 

with superhuman levels of performance. We’ll see how this can be applied 

to solve otherwise intractable theoretical models in economics.

https://doi.org/10.1007/978-1-4842-6373-0_10#DOI
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�Solving Theoretical Models
Thus far, we have defined a model by selecting a specific architecture 

and then training the model’s parameters using data. In economics and 

finance, however, we often encounter a different set of problems that are 

theoretical, rather than empirical, in nature. These problems require us 

to solve a functional equation or a system of differential equations. Such 

problems are derived from a theoretical model that describes optimization 

problems for households, firms, or social planners.

In such settings, the model’s deep parameters – which typically 

describe technology, constraints, and preferences – are either calibrated 

or estimated outside of the model and, thus, are known prior to the 

implementation of the solution method. The role of TensorFlow in such 

settings is to enable the solution of a system of differential equations.

�The Cake-Eating Problem
The cake-eating problem is commonly used as a “hello world” style 

introduction to dynamic programming.1 In the problem, an individual 

is endowed with cake and must decide how much of it to eat in each 

period. While highly stylized, it provides a strong analogy to the standard 

consumption-savings problem in economics, where an individual 

must decide whether to consume more today or delay consumption by 

allocating more to savings.

As we discussed previously, the deep parameters of such models 

are typically calibrated or estimated outside of the solution routine. In 

this case, the individual consuming the cake has a utility function and a 

1�Dynamic programming is a method for converting a multi-step optimization 
problem into a sequence of single-step problems. In economics and finance, 
dynamic programming is typically used for multi-period dynamic optimization 
problems. Dynamic programming reduces such problems to sequences of single-
period problems.
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discount factor. The utility function measures the enjoyment an individual 

gets from consuming a piece of cake of a certain size. And the discount 

factor tells us how an individual will value a slice of cake today versus in 

the future. We will use common values of the parameters in the utility 

function and for the discount factor.

Formally, the cake-eating problem can be written down as a 

dynamic, constrained optimization problem. Equation 10-1 defines the 

instantaneous utility that an individual receives from eating a slice of cake 

at time t. In particular, we assume that the instantaneous utility received 

is invariant to the period in which the agent receives it: that is, we place 

a time subscript on c, but not u(·). We also assume that utility is given by 

the natural logarithm of the amount of cake consumed. This will ensure 

that more cake yields more utility, but the incremental gain – the marginal 

utility – of more cake is decreasing in c. This provides the cake-eater with a 

natural desire to space consumption out over time, rather than eating the 

entire cake today.

Equation 10-1. Instantaneous utility of cake consumption.

	 u c ct t( ) = ( )log 	

The marginal utility of consumption can be expressed as the derivative 

of u(ct) with respect to ct, as given in Equation 10-2. Notice that neither 

Equation 10-1 nor Equation 10-2 contains parameters. This is one of 

the benefits of adopting log utility for such problems: it yields simple, 

parameter-free expressions for utility and marginal utility and satisfies the 

requirements that we typically place on utility functions in economics and 

finance.

Equation 10-2. Marginal utility of consumption.

	
¢( ) = ( )

=u c
du c

dc ct
t

t t

1
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In addition to this, the second derivative is always negative, as can be 

seen in Equation 10-3.

Equation 10-3. Marginal utility of consumption.

	
¢¢( ) = -u c

ct
t

1
2 	

To simplify the problem, we’ll normalize the size of the cake to 1, which 

means that all consumption choices will be between 0 and 1. In Figure 10-1, 

we plot the level of utility and its first and second derivatives over c values 

in this interval.

Figure 10-1.  Utility of consumption, along with its first and second 
derivatives over the (0,1] interval
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We’ll start by considering a finite horizon problem, where the agent 

must divide consumption over T periods. This could be because the 

cake only remains edible for T periods or because the individual only 

lives T periods. In this stylized example, the reasoning is not particularly 

important, but it is, of course, more important for consumption-savings 

problems.

At time t = 0, the agent maximizes the objective function given in 

Equation 10-4, subject to the budget constraint in Equation 10-5 and 

a positivity constraint on st + 1 in Equation 10-6. That is, the agent must 

make a sequence of consumption choices, c0, …, cT − 1, each of which is 

constrained by the amount of remaining cake, st, and the requirement 

to carry a positive amount of cake, st + 1, into the following period. 

Additionally, consumption in all future periods is discounted by β ≤ 1.

In Equation 10-4, we also apply the Principle of Optimality (Bellman 

1954) to restate the value of entering period zero with s0 cake. It will be 

equal to the discounted sums of utilities along the optimal consumption 

path, which we will denote as the unknown function, V(·).

Equation 10-4. Objective function for agent at time t = 0.

	
V s c

c
t T

t
t

T
0

0 1

0
1

;
c
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( ) = ( )
¼

Î -{ }-
åmax log

,
..
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Equation 10-5. Budget constraint.

	 c s st t t= - +1 	

	 " Î -{ }t T0 1,..., 	

Equation 10-6. Positivity constraint.

	 st+ >1 0 	
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Bellman (1954) demonstrated that we may re-express the objective 

function in an arbitrary period using what was later termed the “Bellman 

equation,” given in Equation 10-7. We also substitute the budget constraint 

into the equation.

Equation 10-7. The Bellman equation for the cake-eating problem.

	
V s t s s V s tt t t t; ;

st
( ) = -( )+ +( )

+
+ +max

1
1 1 1log b 	

Rather than choosing a consumption sequence for T-t+1 periods, we 

instead choose ct or the st + 1 it implies for the current period. Solving the 

problem then reduces to solving a functional equation to recover V(·). 

After doing this, choosing an st + 1 will pin down both the instantaneous 

utility and the discounted flows of utility from future periods, making this a 

sequence of one-period optimization problems.

For finite horizon problems, such as the one we’ve set up, we can pin 

down V(sT; T) for all sT. Since the decision problem ends in period T − 1, all 

choices of sT will yield V(sT; T) = 0. Thus, we’ll start by solving Equation 10-

8, where it will always be optimal to consume sT − 1. We can now step back 

in time recursively, solving for V(·) in each period until we arrive at t = 0.

Equation 10-8. The Bellman equation for the cake-eating problem.

	
V s T s sT T T

T
- --( ) = -( )1 11;

s
max log 	

There are several ways in which we could perform the recursive 

optimization step. A common one is to use a discrete grid to represent 

the value function. For the sake of exploiting TensorFlow’s strengths and 

maintaining continuity with the remainder of the chapter, we’ll instead 

focus on a parametric approach. More specifically, we’ll parameterize 
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the policy function that maps the state at time t, which is the amount of 

cake we have at the start of the period, to the state at time t+1, which is the 

amount of cake we carry into the following period.

To keep things simple, we’ll use a linear function for the decision rule 

that is proportional in the state, as shown in Equation 10-9.

Equation 10-9. Functional form of policy rule for cake-eating.

	 st+ =1 qt ts 	

We will now implement this approach in TensorFlow for the simple 

case where T = 2. That is, we start with a full cake of size 1 and must decide 

how much to carry forward to period T − 1.

In Listing 10-1, we define the constants and parameters need to solve 

the model. This includes the slope of the policy function, theta, which 

tells us the share of the cake we carry forward into the following period; 

the discount factor, beta, which tells us how much the agent values cake in 

period t relative to t+1; and the share of the cake remaining in period zero, 

s0. Notice that theta is a trainable variable; beta is set to 1.0, indicating 

that we do not discount cake consumption in period t+1; and we initially 

have an entire cake (s0= 1).

Listing 10-1.  Define the constants and variables for the cake-eating 

problem

import tensorflow as tf

# Define policy rule parameter.

theta = tf.Variable(0.1, tf.float32)

# Define discount factor.

beta = tf.constant(1.0, tf.float32)

# Define state at t = 0.

s0 = tf.constant(1.0, tf.float32)
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We next define a function for the policy rule in Listing 10-2, which 

takes values of the parameters and yields s1. Notice that we define s1 as 

theta*s0. We use tf.clip_by_value() to restrict s1 to the [0.01, 0.99] 

interval, which imposes the positivity constraint.

Next, in Listing 10-3, we define the loss function, which takes the 

parameter values as an input and yields the loss. Notice that v1 is 

pinned down by the choice of s1, since 1 is the terminal period. With v1 

determined, we can then compute v0, conditional on the choice of theta. 

We will choose theta – and, thus, s1 – to maximize v0. However, since we 

will perform minimization in practice, we’ll instead use -v0 as the measure 

of loss.

Listing 10-2.  Define a function for the policy rule

# Define policy rule.

def policyRule(theta, s0 = s0, beta = beta):

        s1 = tf.clip_by_value(theta*s0,

        clip_value_min = 0.01, clip_value_max = 0.99)

        return s1

Listing 10-3.  Define the loss function

# Define the loss function.

def loss(theta, s0 = s0, beta = beta):

        s1 = policyRule(theta)

        v1 = tf.math.log(s1)

        v0 = tf.math.log(s0-s1) + beta*v1

        return -v0

We next instantiate an optimizer and perform minimization over the 

course of 500 iterations in Listing 10-4.
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Listing 10-4.  Perform optimization

# Instantiate an optimizer.

opt = tf.optimizers.Adam(0.1)

# Perform minimization.

for j in range(500):

opt.minimize(lambda: loss(theta),

        var_list = [theta])

After 100 iterations of training, theta converges to 0.5, as shown in 

Figure 10-2. The interpretation of theta = 0.5 is that the agent should eat half 

of the cake in period 0 and half of the cake in period 1, which is exactly what 

we would expect in the case where the agent does not discount the future.

Figure 10-2.  Evolution of policy function parameter over training 
iterations
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Of course, we will typically assume a beta of less than one. Figure 10-3  

plots optimal values of theta for different values of beta. In each 

case, we re-solve the model. As expected, we see an upward sloping 

relationship between the two. That is, as we place more value on the future 

consumption, we also choose to carry more cake forward into the future to 

consume.

This problem was highly stylized, and focusing on the two-period 

case trivialized it even further. It did, however, demonstrate the basic 

template for constructing and solving theoretical models in TensorFlow. 

In the following subsection, we’ll consider a more realistic problem, but 

will concentrate on a case where we have a closed-form solution. This will 

make it relatively easy to evaluate the performance of our approach.

Figure 10-3.  Relationship between the discount factor and the policy 
rule parameter
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�The Neoclassical Business Cycle Model
We will end this section by solving a special form of the neoclassical 

business cycle model introduced by Brock and Mirman (1972). In 

the model, a social planner maximizes a representative household’s 

discounted flows of utility from consumption. In each period, t, the 

planner chooses next period capital, kt + 1, which yields output in the 

following period, yt + 1. Under the assumption of log utility and full 

depreciation, the model has a tractable closed-form solution.

Equation 10-10 is the planner’s problem in the initial period, which 

is subject to the budget constraint in Equation 10-11. The objective is 

similar to the cake-eating problem, but the household is infinitely lived, 

so we now have an infinite summation of discounted utility streams from 

consumption. The budget constraint indicates that the social planner 

divides output into consumption and capital in each period. Equation 10-

12 specifies the production function.

Equation 10-10. The social planner’s problem.
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Equation 10-11. The economy-wide budget constraint.

	 y c kt t t= + +1 	

Equation 10-12. The production function.

	 y kt t= a 	

We also assume that β < 1, α ∈ (0, 1), and capital fully depreciates in 

each period. This means that we recover the output produced using the 

capital we carried forward from the previous period, but we do not recover 

any of the capital itself.
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One way in which we can solve this problem is by identifying a policy 

function that satisfies the Euler equation. The Euler equation, given in 

Equation 10-13, requires that the marginal utility of consumption in 

period t be equal to the discounted gross return to capital in period t+1, 

multiplied by the marginal utility of consumption in period t+1.

Equation 10-13. The Euler equation.
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The Euler equation has an intuitive interpretation: a solution is optimal 

if the planner can’t make the household better off by reallocating a small 

amount of consumption from period t to period t+1 or vice versa. We will 

find a solution that is consistent with Equations 10-11, 10-12, and 10-13 by 

defining policy functions for capital and consumption. We will see, though, 

that the policy function for consumption is redundant.

We’ll start by assuming that the solution can be expressed as a policy 

function that is proportional to output. That is, the planner will choose a 

share of output to allocate to capital and to consumption. Equation 10-14 

provides the policy function for capital, and Equation 10-15 provides the 

function for consumption.

Equation 10-14. Policy function for capital.

	 k k yt k t k t+ = =1 q qa 	

Equation 10-15. Policy function for consumption.

	 c k yt k t k t= -( ) = -( )1 1q qa 	

Chapter 10  Theoretical Models



343

The closed-form expressions for the policy functions are given in 

Equations 10-16 and 10-17. We will use these to evaluate the accuracy of 

our results in TensorFlow.

Equation 10-16. Policy rule for capital.

	 k kt t+ =1 ab a 	

Equation 10-17. Policy rule for consumption.

	 c kt t= -( )1 ab a 	

We have now defined the problem and can implement a solution in 

TensorFlow. We’ll start by defining the parameters and the capital grid in 

Listing 10-5. We’ll use standard values for alpha and beta, the production 

function parameter and discount factor. Next we’ll define thetaK, the share 

of output that is allocated to capital in the following period. Finally, we’ll 

define a start-of-period capital grid, k0. This is the vector of capital values 

that a household could hold at the start of period t.

Listing 10-5.  Define model parameters

import tensorflow as tf

# Define production function parameter.

alpha = tf.constant(0.33, tf.float32)

# Define discount factor.

beta = tf.constant(0.95, tf.float32)

# Define params for decision rules.

thetaK = tf.Variable(0.1, tf.float32)

# Define state grid.

k0 = tf.linspace(0.001, 1.00, 10000)

Chapter 10  Theoretical Models



344

In Listing 10-6, we define the loss function. We first compute the 

policy rule for next period capital and then plug the policy rules into the 

Euler equation. We then subtract the right-hand side from the left-hand 

side, yielding error, which is sometimes referred to as the Euler equation 

residual. We then square the residuals and compute the mean.

Listing 10-6.  Define the loss function

# Define the loss function.
def loss(thetaK, k0 = k0, beta = beta):

        # Define period t+1 capital.

        k1 = thetaK*k0**alpha

        # Define Euler equation residual.

        error = k1**alpha-

        beta*alpha*k0**alpha*k1**(alpha-1)

        return tf.reduce_mean(tf.multiply(error,error))

The final step is to define an optimizer and perform minimization, 

which we do in Listing 10-7. After performing optimization, we print 

thetaK and the parameter expression in the closed-form solution, 

beta*alpha. In both cases, we get 0.3135002, suggesting that our 

TensorFlow implementation identified the true solution to the model.

Listing 10-7.  Perform optimization and evaluate results

# Instantiate an optimizer.
opt = tf.optimizers.Adam(0.1)

# Perform minimization.
for j in range(1000):
opt.minimize(lambda: loss(thetaK),

        var_list = [thetaK])

# Print thetaK.
print(thetaK)
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<tf.Variable 'Variable:0' shape=() dtype=float32, 

numpy=0.31350002>

# Compare analytical solution and thetaK.

print(alpha*beta)

tf.Tensor(0.31350002, shape=(), dtype=float32)

Now that we’ve solved for the policy rules, we can use them to do 

things like compute transition paths. Listing 10-8 shows how to compute 

the transitions for consumption, capital, and output using the policy rules 

and starting from a capital stock value of 0.05. We plot the transition paths 

in Figure 10-4.

Listing 10-8.  Compute transition path

# Set initial value of capital.

k0 = 0.05

# Define empty lists.

y, k, c = [], [], []

# Perform transition.

for j in range(10):

        # Update variables.

        k1 = thetaK*k0**alpha

        c0 = (1-thetaK)*k0**alpha

        # Update lists.

        y.append(k0**alpha)

        k.append(k1)

        c.append(c0)

        # Update state.

        k0 = k1
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Finally, it is worth pointing out that we have used an intentionally 

trivial example where the solution can be computed analytically. In 

practice, we will typically encounter problems where this is not the case. 

In such cases, we will often use Euler equation residuals to evaluate the 

accuracy of the solution method.

Listing 10-9 demonstrates how we can modify the loss function to 

compute Euler equation residuals. We’ll start by defining a grid over which 

to compute them. In some cases, we may want to expand the bounds 

beyond what we used to solve the model to demonstrate that our model 

also performs well far away from the steady state. In this case, we’ll use the 

same grid that we used to solve the model.

Figure 10-4.  Transition path for output, capital, and consumption
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Perhaps unsurprisingly – since our policy rule matches the analytical 

solution – the maximum Euler equation residual is negligibly small. While 

not particularly important for this problem, Euler equation residuals will 

be helpful whenever we want to determine the extent to which our results 

are affected by approximation error.

Listing 10-9.  Compute the Euler equation residuals

# Define state grid.

k0 = tf.linspace(0.001, 1.00, 10000)

# Define function to return Euler equation residuals.

def eer(k0, thetaK = thetaK, beta = beta):

        # Define period t+1 capital.

        k1 = thetaK*k0**alpha

        # Define Euler equation residual.

        residuals = k1**alpha-

        beta*alpha*k0**alpha*k1**(alpha-1)

        return residuals

# Generate residuals.

resids = eer(k0)

# Print largest residual.

print(resids.numpy().max())

5.9604645e-08
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�Deep Reinforcement Learning
Standard theoretical models in economics and finance assume that agents 

are rational optimizers. This implies that agents form unbiased expectations 

about the future and achieve their objectives by performing optimization. 

A rational agent might incorrectly predict the return to capital in every 

period, but it won’t systematically overpredict or unpredict it. Similarly, an 

optimizer will not always achieve the best results ex-post, but ex-ante, it will 

have made the best decision given its information set. More explicitly, an 

optimizer will choose the exact optimum, given their utility function and 

constraints, rather than using a heuristic or rule of thumb.

As described in Palmer (2015), there are several reasons why we may 

wish to deviate from the rational optimizer framework. One is that we may 

want to focus on the process by which agents form policy rules, rather 

than assuming that they have adopted the one implied by rationality 

and optimization. Another reason is that breaking either the rationality 

or optimization requirement will greatly improve the computational 

tractability of many models.

If we do wish to depart from the standard model, one alternative 

approach is reinforcement learning, described in Sutton and Barto (1998). 

Its value within economics has been discussed in Athey and Imbens (2019) 

and Palmer (2015). Additionally, it was applied in Hull (2015) as a means 

of solving intractable dynamic programming problems.

Similar to the standard rational optimizer framework in economics, 

agents in reinforcement learning problems perform optimization, but they 

do so in an environment where they have limited information about the 

state of the system. This induces a trade-off between “exploration” and 

“exploitation” – that is, learning more about the system or optimizing over 

the part of the system you understand.
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In this section, we’ll focus on a recently introduced variant of 

reinforcement learning called “deep Q-learning,” which combines deep 

learning and reinforcement learning. Our objective will be to slacken 

the computational constraints that prevent us from solving the rational 

optimizer versions of problems with high-dimensional state spaces, 

rather than studying the learning process itself. That is, we will still seek 

a solution for the rational optimizer’s problem, but we will do so using 

deep Q-learning, rather than using more conventional methods in 

computational economics.

Similar to dynamic programming, Q-learning is often done using 

a “look-up table” approach. In dynamic programming, this entails 

constructing a table that represents the value of being in each state. We 

then iteratively update that table until we achieve convergence. The table 

itself is the solution for the value function. In contrast, in Q-learning, we 

instead construct a state-action table. In our neoclassical business cycle 

model example, which we’ll return to here, the state was the capital stock 

and the action was the level of consumption.

Equation 10-18 demonstrates how the Q-table would be updated in 

the case where we use temporal difference learning. That is, we update 

the value associated with the state-action pair (st, at) in iteration i+1 by 

taking the value in i and adding to it to the learning rate, multiplied by the 

expected change in value induced by choosing the optimal action.

Equation 10-18. Updating the Q-table.
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Deep Q-learning replaces the look-up table with a deep neural network 

called a “deep Q-network.” The approach was introduced in Mnih et al. 

(2015) and was originally applied to train Q-networks to play video games 

at superhuman levels of performance.
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We will briefly outline how deep Q-learning can be used to solve 

economic models, returning to the neoclassical business cycle model 

example. There are several ways in which this can be done in TensorFlow. 

Two common options are tf-agents, which is a native TensorFlow 

implementation, and keras-rl2, which makes use of the high-level Keras 

API in TensorFlow. Since our coverage will be brief and introductory, we’ll 

focus on keras-rl2, which will allow for a simpler implementation with 

more familiar syntax.

In Listing 10-10, we install the keras-rl2 module and import 

tensorflow and numpy. We then import three submodules from the 

newly installed rl module: DQNAgent, which we will use to define a 

deep Q-learning agent; EpsGreedyQPolicy, which we’ll use to set 

the process that generates policy decisions on the training path; and 

SequentialMemory, which is used to retain decision paths and outcomes 

that are then used as inputs to train the deep Q-network. Finally, we 

import gym, which we will use to define the model environment.

Listing 10-10.  Install and import modules to perform deep 

Q-learning

# Install keras-rl2.

!pip install keras-rl2

# Import numpy and tensorflow.

import numpy as np

import tensorflow as tf

# Import reinforcement learning modules from keras.

from rl.agents.dqn import DQNAgent

from rl.policy import EpsGreedyQPolicy

from rl.memory import SequentialMemory

# Import module for comparing RL algorithms.

import gym
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In Listing 10-11, we’ll set the number of capital nodes and define an 

environment, planner, which is a subclass of gym.Env. This will specify the 

details of the social planner’s reinforcement learning problem.

Our class, planner, is constructed to do the following at initialization: 

define a discrete capital grid, define action and observation spaces, 

initialize the number of decisions to zero, set the maximum number of 

decisions, set the node index of the initial value of capital (500 out of 1000), 

and set the production function parameter (alpha). For our purposes, 

the action and observation spaces will both be discrete objects with 1000 

nodes, defined using gym.spaces. The observation space in our case is 

the entire state space: that is, all capital nodes. The action space is also the 

same.

Listing 10-11.  Define custom reinforcement learning environment

# Define number of capital nodes.

n_capital = 1000

# Define environment.

class planner(gym.Env):

        def __init__(self):

                self.k = np.linspace(0.01, 1.0, n_capital)

                self.action_space = \

                gym.spaces.Discrete(n_capital)

                self.observation_space = \

                gym.spaces.Discrete(n_capital)

                self.decision_count = 0

                self.decision_max = 100

                self.observation = 500

                self.alpha = 0.33

        def step(self, action):

                assert self.action_space.contains(action)

                self.decision_count += 1
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                done = False

                if(self.observation**self.alpha – action) > 0:

                        reward = \

                np.log(self.k[self.observation]**self.alpha –

                self.k[action])

                else:

                        reward = -1000

                self.observation = action

                if (self.decision_count >= self.decision_max)\

                or reward == -1000:

                        done = True

                return self.observation, reward, done,\

                {"decisions": self.decision_count}

        def reset(self):

                self.decision_count = 0

                self.observation = 500

                return self.observation

We next define a step method of the class, which is required to return 

four outputs: the observation (state), the reward (instantaneous utility), 

an indicator for whether a training session should be reset (done), and a 

dictionary object that contains relevant debugging information. Calling 

this method increments the decision_count attribute, which records the 

number of decisions an agent has made during a training session. It also 

initially sets done to False. We then evaluate whether the agent made a 

valid decision – that is, selected a positive value of consumption. If an 

agent makes more than decision_max decisions or chooses a non-positive 

consumption value, the reset() method is called, which reinitializes the 

state and decision count.
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In Listing 10-12, we instantiate a planner environment and then define 

a neural network in TensorFlow. We use the Sequential model with one 

dense layer and a relu activation function. Note that the model should 

have an output layer that contains n_capital nodes; however, beyond 

that, we can choose the architecture that is best suited to our problem.

Listing 10-12.  Instantiate environment and define model in 

TensorFlow

# Instantiate planner environment.

env = planner()

# Define model in TensorFlow.

model = tf.keras.models.Sequential()

model.ad�d(tf.keras.layers.Flatten(input_shape=(1,) + env. 

observation_space.shape))

model.add(tf.keras.layers.Dense(32, activation="relu"))

model.add(tf.keras.layers.Dense(n_capital, 

activation="linear"))

Now that our environment and network have been defined, we need to  

specify hyperparameters and train the model, which we do in Listing 10-13.  

We first use SequentialMemory to retain a “replay buffer” of 50,000 

decision paths, which will be used to train the model. We then set the 

model to use an epsilon-greedy policy with epsilon = 0.30. During training 

time, this means that the model will maximize utility 70% of the time and 

explore with a random decision the remaining 30% of the time. Finally, we 

set the hyperparameters of the DQNAgent model, compile it, and perform 

training.
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Listing 10-13.  Set model hyperparameters and train

# Specify replay buffer.

memory = SequentialMemory(limit=10000, window_length=1)

# Define policy used to make training-time decisions.

policy = EpsGreedyQPolicy(0.30)

# Define deep Q-learning network (DQN).

dqn = DQNAgent(model=model, nb_actions=n_capital, memory=memory,

        nb_steps_warmup=100, gamma=0.95,

        target_model_update=1e-2, policy=policy)

# Compile and train model.

dqn.compile(tf.keras.optimizers.Adam(0.005), metrics=['mse'])

dqn.fit(env, nb_steps=10000)

Monitoring the training process yields two observations. First, the 

number of decisions per session increases across iteration, suggesting 

that the agent learns to avoid negative amounts of future periods by not 

drawing capital down as sharply as a greedy policy might suggest. And 

second, the loss declines and the average reward begins to rise, suggesting 

that the agent is moving closer to optimality.

If we wanted to perform a more thorough analysis of the quality of our 

solution, we could examine the Euler equation residuals, as we discussed 

in the previous section. This would tell us whether the DQM model yielded 

something that was approximately optimal.
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�Summary
TensorFlow not only provides us with a means of training deep learning 

models but also offers a suite of tools that can be used to solve arbitrary 

mathematical models. This includes models that are commonly used 

in economics and finance. In this chapter, we examined how to do this 

using a toy model (the cake-eating model) and a common benchmark in 

the computational literature: the neoclassical business cycle model. Both 

models are trivial to solve using conventional methods in economics, but 

provide a simple means of demonstrating how TensorFlow can be used to 

solve theoretical models of relevance for economists.

We also showed how deep reinforcement learning could be used 

as an alternative to standard methods in computational economics. In 

particular, using deep Q-learning networks (DQN) in TensorFlow may 

enable economists to solve higher-dimensional models in a non-linear 

setting without changing model assumptions or introducing a substantial 

amount of numerical error.
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model.predict_
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Model tuning, 144–146
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Multidimensional derivatives, 45–50
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forecast data, 272
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Natural language processing 
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layers, 155
linear regression model, 157
modification, 163
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Non-linear regression
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exchange rates, 109
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loss function, 112
minimization of loss function, 108
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exchange rate, 109
TAR model, 110
TAR model, USD-GBP exchange 

rate, 111–113
train TAR model, 113
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Optimizers, 173

instantiate, 123
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P
Partial least squares (PLS), 282, 
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Partially linear models
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initialize variables, 105
linear regression model, 102
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minimize method, 106
Monte Carlo experiment, 103, 108
non-linear function, 103
non-linear model, 102
parameters, 105
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linear (see Linear regression)
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tf.keras.Sequential(), 10
tf.optimizers.SGD(), 97
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Theoretical models
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