Machine Learning for High-Risk Applications
FIRST EDITION
Techniques for Responsible AI
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
Patrick Hall
Machine Learning for High-Risk Applications
by Patrick Hall
Copyright © 2022 Patrick Hall. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.
Revision History for the Early Release
See http://oreilly.com/catalog/errata.csp?isbn=9781098102432 for release details.
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Machine Learning for High-Risk Applications, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.
The views expressed in this work are those of the author, and do not represent the publisher’s views. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.
978-1-098-10243-2
[FILL IN]
Preface
Today, machine learning (ML) is the most commercially viable subdiscipline of artificial intelligence (AI). ML systems are used to make high-stakes decisions in employment, bail, parole, lending and in many other applications throughout the world’s economies. In a corporate setting, ML systems are used in all parts of an organization - from consumer-facing products, to employee assessments, back-office automation, and more. Indeed, the past decade has brought with it wider adoption of ML technologies. But it has also proven that ML presents risks to it’s operators and consumers. Unfortunately, and like nearly all other technologies, ML can fail - whether by unintentional misuse or intentional abuse. As of today, the Partnership on AI Incident Database holds over 1,000 public reports of algorithmic discrimination, data privacy violations, training data security breaches and other harmful failures. Such risks must be mitigated before organizations, and the general public, can realize the true benefits of this exciting technology. As of today, this still requires action from people — and not just technicians. Addressing the full range of risks posed by complex ML technologies requires a diverse set of talents, experiences, and perspectives. This holistic risk mitigation approach, incorporating technical practices, business processes, and cultural capabilities, is becoming known as responsible AI.
Who Should Read This Book
Non-technical oversight personnel - along with activists, journalist, and conscientious folks - need to feel empowered to audit, assess, and evaluate high-impact AI systems. Data scientists often need more exposure to cutting-edge technical approaches for responsible AI. Both of these groups need the appropriate critical literacy to appreciate the expertise the other has to offer, and to incorporate shared learnings into their respective work. Machine Learning for High-Risk Applications is the field guide for this new generation of auditors, assessors, leaders and practitioners who seek AI systems that are better for organizations, consumers, and the public. In reading Machine Learning for High-Risk Applications, auditors and attorneys can learn how to reframe their valuable knowledge and experience for better risk management of AI systems. Business leaders can use this book to understand the wide range of available approaches for building responsible AI culture, processes and governance, and to get a better grasp of the limitations of today’s AI systems. Data scientists can use Machine Learning for High-Risk Applications to learn responsible AI methods, and to apply their technical skills with an improved understanding of the real-world complexities implicated by AI system decisions.
What Readers Will Learn
Machine Learning for High-Risk Applications defines the eponymous concept and emphasizes why it’s so important. It addresses how to build accountable and diverse organizational cultures around AI, the necessary organizational structures and impactful roles that individuals can play, how existing roles at companies are evolving to incorporate responsible AI, and how responsible AI is being put into practice today. Integral to all of this is the education around, and standardization of, processes by which individuals can assess AI systems and appreciate the impact they have on business functions, consumers, and the public at large. To that end, Machine Learning for High-Risk Applications examines effective privacy and security policies for AI, applicable legal and compliance standards, the role of traditional model risk management, and AI incident response planning. This book also aims to reinforce auditing and oversight knowledge by linking business and social outcomes to technical tools. Numerous technical approaches to engineer responsible AI systems are available today, and for all stages of the AI lifecycle. For the technical reader, Machine Learning for High-Risk Applications explores porting standard software quality assurance processes to AI systems, experimental design for AI, and reproducibility, interpretability, fairness, security, and testing and debugging technologies.
Preliminary Book Outline
By the end of this book the reader will understand cultural competencies, business processes, and technical practices for responsible AI. The book is divided into three parts that echo each major facet of responsible AI. Each part of the book is split further into chapters that discuss specific subjects and cases. While the book is still being planned and written, Machine Learning for High-Risk Applications will open with an introduction to the topic and then proceed to Part 1. A tentative outline for the book follows below.
Part 1: The Human Touch - Cultural Competencies For Responsible Machine Learning
Part 1 is targeted at the importance of organizational culture in the broader practice of responsible AI. Plans for the first chapter of Part 1 involve a call to stop going fast and breaking things, with a focus on well-known AI system failures and associated vocabulary and cases. Chapter 2 will analyze consumer protection laws, model risk management, and other guidelines, lessons and cases important for fostering accountability in AI organizations and systems. Chapter 3 will examine teams, organizational structures and the concept of an AI assessor. Chapter 4 will discuss the importance of meaningful human interactions with AI systems, and Chapter 5 is intended to detail important ways of working outside of traditional organizational constraints, like protests, data journalism, and white-hat hacking.
Part 2: Setting Up For Success - Organizational Process Concerns For Responsible Machine Learning
Part 2 is slated to cover responsible AI processes. It will begin with Chapter 6 and an exploration of how organizational policies and processes affect fairness in AI systems, and the startling lack thereof. Chapter 7 will outline common privacy and security policies for AI systems. Chapter 8 will consider existing and future laws and regulations that govern AI deployments in the United States. Chapter 9 will highlight the importance of model risk management for AI systems, but also points out a few shortcomings. Finally, the blueprint for Chapter 10 is a discussion of how corporations have heeded past calls for social and environmental responsibility in the context of future responsible AI adoption.
Part 3: The Scientific Method Versus The Kitchen Sink - Technical Approaches For Enhanced Human Trust And Understanding
The agenda for Part 3 covers the burgeoning technological ecosystem for responsible AI. Chapter 11 will address the important science of experimental design, and how it’s been largely ignored by contemporary data scientists. Chapter 12 will summarize the two leading technologies for increasing transparency in AI: interpretable ML models and post-hoc explainable AI (XAI). Chapter 13 is planned to be a deep dive into the world of bias testing and remediation for ML models, and should address both traditional and emergent approaches. Chapter 14 will cover security for ML algorithms and AI systems, and Chapter 15 will close Part 3 with a wide-ranging discussion of safety and performance testing for AI systems, sometimes also known as model debugging.
Bringing it All Together
After all that analysis and exposition, Machine Learning for High-Risk Applications will end with a Chapter entitled “Bringing It All Together.” It serves as a reminder that while building responsible AI organizations and technology is hard work, it’s also quite within reach for individuals and organizations alike. Moreover, it’s necessary. The AI genie is out of the bottle. Headlines revealing embarrassing and damaging AI incidents became much more common in 2020. They won’t stop until people remake AI into responsible AI.
Conventions Used in This Book
The following typographical conventions are used in this book:
Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values or by values determined by context.
TIP
This element signifies a tip or suggestion.
NOTE
This element signifies a general note.
WARNING
This element indicates a warning or caution.
Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/oreillymedia/title_title.
If you have a technical question or a problem using the code examples, please send email to bookquestions@oreilly.com.
This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.
We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Book Title by Some Author (O’Reilly). Copyright 2012 Some Copyright Holder, 978-0-596-xxxx-x.”
If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.
O’Reilly Online Learning
NOTE
For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.
Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.
How to Contact Us
Please address comments and questions concerning this book to the publisher:
Email bookquestions@oreilly.com to comment or ask technical questions about this book.
For news and information about our books and courses, visit http://oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia
Acknowledgments
Chapter 1. Contemporary Model Governance
A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the 9th chapter of the final book.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.
Complex systems tend to drift toward unsafe conditions unless constant vigilance is maintained.
— Closing the AI Accountability Gap, Google Research
Building the best AI system starts with cultural competencies and business processes. Along with a case that illustrates what happens when an AI system is built without proper rigor, Chapter 9 presents numerous cultural and procedural approaches you can use to improve AI performance and safeguard your organization’s AI against real-world safety and performance problems. The primary goal of the methodologies discussed in this chapter is to create better AI systems. This might mean improved in silica test data performance. But it really means training models that perform as expected once deployed in vivo, so you don’t lose money, hurt people or cause other harms.
Chapter 9 begins with a discussion of basic legal standards, to inform system developers of their fundamental obligations when it comes to safety and performance. Because those who do not study history are bound to repeat it, Chapter 9 then highlights AI incidents, and discusses why understanding AI incidents is important for proper safety and performance in AI systems. Since many AI safety concerns require thinking beyond technical specifications, Chapter 9 then blends model risk management (MRM) and information technology (IT) security best practices to put forward numerous ideas for improving AI safety culture and processes within organizations. Chapter 9 will close with a case study focusing on safety culture, legal ramifications, and AI incidents.
Basic Legal Obligations
As makers of consumer products, data scientists and ML engineers have a fundamental obligation to create safe systems. To quote a recent Brookings Institute report, Products liability law as a way to address AI harms, “Manufacturers have an obligation to make products that will be safe when used in reasonably foreseeable ways. If an AI system is used in a foreseeable way and yet becomes a source of harm, a plaintiff could assert that the manufacturer was negligent in not recognizing the possibility of that outcome.” Just like car or power tool manufacturers, makers of AI systems are subject broad legal standards for negligence and safety. Product safety has been the subject of large amounts of legal and economic analysis, but this subsection will focus on one of the first and simplest standards for negligence: the Hand Rule. Named after Judge Learned Hand, and coined in 1947, provides a viable framework for AI product makers to think about negligence and due diligence. The Hand Rule says that a product maker takes on a burden of care, and that such care should always be greater than the probability that an incident involving the product occurs multiplied by the expected loss related to an incident. Stated algebraically:
In more plain terms, organizations are expected to apply care, i.e. time, resources, or money, to a level commensurate to the cost associated with a risk. Otherwise legal liability can ensue.
In Figure 1, Burden is the parabolicly increasing line, and risk, or Probability multiplied by Loss, is the parabolicly decreasing line. While these lines are not related to a specific measurement, their parabolic shape is meant to reflect the last mile problem in removing all AI system risk, and that the application of additional care beyond a reasonable threshold leads to diminishing returns for decreasing risk as well.
Figure 1-1. An illustration of the Hand Rule. Adapted from Economic Analysis of Alternative Standards of Liability in Accident Law.
While it’s probably too resource intensive to calculate the quantities in the Hand Rule exactly, it is important to think about these concepts of negligence and liability when designing an AI system. For a given AI system, if the probability of an incident is high, if the monetary, or other, loss associated with a system incident is large, or both quantities are large, your organization needs to spend extra resources on ensuring safety for that system. Moreover, your organization should document to the best of your ability that due diligence exceeds the estimated failure probabilities multiplied by the estimated losses.
Of course there are legal considerations beyond product liability. The United States (US) Federal Trade Commission’s (FTC) recent rounds of AI guidance are also important for safety and performance. The FTC is urging organizations deploying AI to prioritize fairness, transparency, accountability, and mathematical soundness. While many of those subjects are better suited for other chapters, accountability is crucial for safety and performance. In this context, accountability often means holding yourself to independent standards and allowing for independent oversight. The FTC has also been crystal clear about deceptive practices. AI cannot be used to deceive consumers, or you may face serious enforcement activities. When the FTC found that the photosharing app EverAlbum was being used to collect training data for a facial recognition system operating under a parallel line of business named Paravision, they forced the deletion of the facial recognition system and levied orders to prevent revenue generation based off the deceptive practices.
Much like the EU General Data Protection Regulation (GDPR) has changed the way companies handle data in US, any EU AI regulations will likely have an out-sized impact on US AI deployments. Well, the EU did recently propose sweeping and wide-ranging AI regulations. These regulations cover nearly every aspect of the commercial use of AI, and for safety and performance they mandate risk-tiering, and differing levels of system documentation, quality management, and monitoring based on risk determination. The remainder of Chapter 9 and much of Chapter 15 will be provide helpful information on addressing these requirements and more.
AI Incidents
In many ways, the fundamental goal of the AI safety processes and related model debugging discussed in Chapter 15, is to prevent and mitigate AI incidents. Here, we’ll loosely define AI incidents as any outcome of the system that could cause harm. And using the Hand rule as a guide, the severity of an AI incident is increased by the loss the incident causes, and decreased by the care taken by the operators to mitigate those losses.
Figure 1-2. A basic taxonomy of AI incidents. Adapted from What to Do When AI Fails.
Because complex systems drift toward failure, there is no shortage of AI incidents to discuss as examples. AI incidents can range from annoying to deadly — from mall security robots falling down stairs, to self-driving cars killing pedestrians, to mass-scale diversion of healthcare resources away from those who need them most. As pictured in Figure 2, AI incidents can be roughly divided into three buckets.
Abuses: AI can be used for nefarious purposes, apart from specific hacks and attacks on AI systems. The day may already be have come where hackers use AI to increase the efficiency and potency of their more general attacks. What the future could hold is even more frightening. Specters like autonomous drone attacks and ethnicity profiling by authoritarian regimes are already on the horizon.
Attacks: Examples of all major types of attacks - confidentiality, integrity, and availability attacks (see Chapter 13>> for more information) - have been published by researchers. Confidentiality attacks involve the exfiltration of training data or model logic from AI system end-points. Integrity attacks include adversarial manipulation of training data or model outcomes, either through adversarial examples, evasion, impersonation, or poisoning. Availability attacks can be conducted through more standard denial-of-service approaches, or via algorithmic discrimination induced by some adversary to deny system services to certain groups of users.
Failures: AI system failures tend to involve algorithmic discrimination, safety and performance lapses, data privacy violations, inadequate transparency, or problems in third party system components.
AI incidents are a reality. And like the systems from which they arise, AI incidents can be complex. AI incidents have multiple causes: failures, attacks, and abuses. They also tend to blend traditional notions of computer security, with concerns like data privacy and algorithmic discrimination.
The 2016 Tay chatbot incident is an informative example. Tay was a state-of-the-art chatbot trained by some of the world’s leading experts at Microsoft Research for the purpose of interacting with people on Twitter to increase awareness about AI. Sixteen hours after its release - and 96,000 tweets later - later Tay had spiraled into a neo-nazi pornagrapher and had to be shut down. What happnened? Twitter users quickly learned that Tay’s adpative learning system could easily be poisoned. Racist and sexual content tweeted at the bot was quickly incorporated into its training data, and just as quickly resulted in offensive output. Data poisoning is an integrity attack, but due to the context in which it was carried out, this attack resulted in algorthmic discrimination. It’s also important to note that Tay’s designers, being world-class experts at an extremely well-funded research center, seemed to have put some guide rails in place. Tay would respond to certain hot-button issues with pre-canned responses. But that was not enough, and Tay devolved into a public security and algorithmic discrimination incident for Microsoft Research.
Likely because of nothing more than silly hype, Tay was released without counter-measures for attacks, and due to the complexity of its operating environment this security breach morphed into a large-scale algorithmic discrimination incident. Think this was a one-off incident? Wrong. Just recently, again due to hype and failure to think through performance, safety, and security risks systematically, many of Tay’s most obvious failures were repeated in ScatterLab’s release of it’s Lee Luda chatbot. When designing AI systems, plans should be compared to past known incidents in hope of preventing future similar incidents. This is precisely the point of recent AI incident database efforts and associated publications.
AI incidents can also be an apolitical motivator for responsible technology development. For better or worse, cultural and political viewpoints on topics like algorithmic discrimination and data privacy can vary widely. Getting a team to agree on ethical considerations can be very difficult. It might be easier to get them working to prevent embarrassing and potentially costly or dangerous incidents, which should be a baseline goal of any serious data science team. The notion of AI incidents is central to understanding AI safety and a central theme of this chapter’s content is cultural competencies and business processes that can be used to prevent and mitigate AI incidents. We’ll dig into those mitigants in the next sections and take a deep dive into a real incident to close the chapter.
Organizational and Cultural Competencies for Responsible AI
An organization’s culture is an essential aspect of responsible AI. This section will discuss the cultural competencies like accountability, drinking your-own champagne, domain expertise, and the stale adage, “go fast and break things.”
Accountability
A key to the successful mitigation of AI risks is real accountability within organizations for AI incidents. If no one’s job is at stake when an AI system fails, gets attacked, or is abused for nefarious purposes, then it’s entirely possible that no one in that organization really cares about AI safety and performance. In addition to developers who think through risks, apply software quality assurance (QA) techniques, and model debugging methods, organizations need individuals or teams who validate AI system technology and audit associated processes. Organizations also need someone to be responsible for AI incident response plans. All of this is why leading financial institutions, whose use of predictive modeling has been regulated for decades, employ a practice known as model risk management (MRM). MRM is patterned off the Federal Reserve’s S.R. 11-7 model risk management guidance, that arose out the of the financial crisis during the Great Recession. Notably, implementation of MRM often involves accountable executives and several teams that are responsible for safety and performance of models and AI systems.
Leadership and Teams: Chief Model Risk Officer and the Three Lines of Defense
Implementation of MRM standards usually requires several different teams and executive leadership. Two key tenants form the cultural backbone for MRM:
Effective Challenge: Effective challenge dictates that personnel who did not build an AI system perform validation and auditing of such systems. MRM practices typically distribute effective challenge across three “lines of defense,” where system developers make up the first line of defense and independent technical validators and process auditors make up the second and third lines, respectively.
Accountable Leadership: A specific executive within an organization should be accountable for ensuring AI incidents do not happen. This position is referred to as chief model risk officer (CMRO). It’s also not uncommon for CMRO terms of employment and compensation structure to be linked to AI system performance. The role of CMRO offers a very straightforward cultural check on AI safety and performance. When your boss really cares about AI system safety and performance, then you start to care too.
Incentives: Data science staff and management must be incentivized to implement AI responsibly. Often, compressed product timelines can incentivize the creation of a minimum viable product first, with rigorous testing and remediation relegated to the end of the model life cycle immediately before deployment to production. Moreover, AI testing and validation teams are often evaluated by the same criterion as AI development teams, leading to a fundamental misalignment where testers and validators are encouraged to move quickly rather than assure quality. Aligning timeline, performance evaluation, and pay incentives to team function helps solidify a culture of responsible AI and risk mitigation.
Of course, small or young organizations may not be able to spare an entire full-time employee to monitor ML AI system risk. But it’s important to have an individual or group responsible and held accountable if AI systems cause incidents. If an organization assumes everyone is accountable for ML risk and AI incidents, the reality is that no one is accountable.
Cultural effective challenge
Whether your organization is ready to adopt full-blown MRM practices, or not, you can still benefit from certain aspects of MRM. In particular, the cultural competency of effective challenge can be applied outside of the MRM context. At it’s core, effective challenge means actively challenging and questioning steps in the development of AI systems. An organizational culture that encourages serious questioning of AI system designs will be more likely to develop effective AI systems or products, and to catch problems before they explode into harmful incidents. Note that effective challenge cannot be abusive, and it must apply equally to all personnel developing an AI system, especially so-called “rockstar” engineers and data scientists. Effective challenge should also be structured, such as weekly meetings where current design thinking is questioned and alternative design choices are considered.
Drinking Your Own Champagne
Also known as “eating your own dog food,” the practice of drinking your own champagne refers to using your own software or products inside of your own organization. Often a form of pre-alpha or pre-beta testing, drinking your own champagne can identify problems that emerge from the complexity of real-world deployment environments before bugs and failures affect customers, users or the general public. Because serious issues like concept drift, algorithmic discrimination, shortcut learning or underspecification are notoriously difficult to identify using standard ML development processes, drinking your own champagne provides a limited and controlled, but also realistic, test bed for AI systems. Of course, when organizations employ demographically and professional diverse teams, including domain experts in the field where the AI system will be deployed, drinking your own champagne is more likely to catch a wider variety of problems. Drinking your own champagne also brings the classical Golden Rule into AI. If you’re not comfortable using a system on yourself or your own organization, then you probably shouldn’t deploy that system.
Diverse and Experienced Teams
Diverse teams can bring wider and uncorrelated perspectives to bear on design, development, and testing AI systems. Non-diverse teams often do not. Many have documented the unfortunate outcomes that can arise as a result of data scientists not considering demographic diversity in the training or results of AI systems. A potential solution to these kinds of oversights is increasing demographic diversity on AI teams from its current woeful levels. Business or other domain experience is also important when building teams. Domain experts are instrumental in feature selection and engineering, and in the testing of system outputs. In the mad rush to develop AI systems, domain expert participation can also serve as a safety check. Generalist data scientists often lack the experience necessary to deal with domain-specific data and results. Misunderstanding the meaning of input data or output results is a recipe for disaster that can lead to AI incidents when a system is deployed. Unfortunately, the social sciences deserve a special emphasis when it comes to data scientists forgetting or ignoring the importance of domain expertise. In a trend referred to as "tech’s quiet colonization of the social sciences,” several organizations have pursued regrettable AI projects that seek to replace decisions that should be made by trained social scientists or that simply ignore the collective wisdom of social science domain expertise altogether.
“Going Fast and Breaking Things”
The mantra, “go fast and break things,” is almost a religious belief for many “rock-star” engineers and data scientists. Sadly, these top practitioners also seem to forget that when they go fast and break things, things get broken. As AI systems make more high-impact decisions that implicate autonomous vehicles, credit, employment, grades and university attendance, medical diagnoses and resource allocation, mortgages, pre-trial bail, parole and more, breaking things means more than buggy apps. It can mean that a small group of data scientists and engineers causes real harm at scale to many people. Participating in the design and implementation of high-impact AI systems requires a mindset change to prevent egregious performance and safety problems. Practitioners must change from prioritizing the number of software features they can push or the test data accuracy of an ML model, to recognizing the implications and downstream risks of their work.
Organizational Processes for Responsible AI
Organizational processes play a key role in assuring AI systems are safe and performant. Like the cultural competencies discussed in the previous section, organizational processes are a key non-technical determinant of reliability in AI systems. This section on processes starts out by urging practitioners to consider, document, and attempt to mitigate any known or foreseeable failure modes for their AI systems. This section then discusses a mature and tested process framework for governing predictive models known as model risk management (MRM). While the culture section focused on the people and mindsets necessary to make MRM a success, this section will outline the different processes MRM uses to mitigate risks in advanced predictive modeling and ML systems. While MRM is an incredible process standard to which we can all aspire, there are additional important process controls that are not typically part of MRM. We’ll look beyond traditional MRM in this section and highlight crucial processes for change management, pair or double programming, and security permission requirements for code deployment. This section will close with a discussion of AI incident response. Nearly all powerful commercial technologies suffer incidents. AI is no different. No matter how hard we work to minimize harms while designing and implementing an AI system, we still have to prepare for failures and attacks.
Forecasting Failure Modes
AI safety and ethics experts roughly agree on the importance of thinking through, documenting, and attempting to mitigate foreseeable failure modes for AI systems. Unfortunately they also mostly agree that this is a nontrivial task. Happily, new resources and scholarship on this topic have emerged in recent years that can help AI system designers forecast incidents in more systematic ways. If holistic categories of potential failures can be identified, it makes hardening AI systems for better real-world performance and safety a more pro-active and efficient task. In this subsection, we’ll discuss one such strategy, along with a few additional processes for brainstorming future incidents in AI systems.
Known Past Failures
As discussed in Preventing Repeated Real World AI Failures by Cataloging Incidents: The AI Incident Database, one the most efficient ways to mitigate potential AI incidents in your AI systems is to compare your system design to past failed designs. Much like transportation professionals investigating incidents, cataloging incidents, using the findings to prevent related incidents, and to test new technologies, several AI researchers, commentators, and trade organizations have begun to collect and analyze AI incidents in hopes of preventing repeated and related failures. Likely the most high-profile and mature AI incident repository is the Partnership on AI’s AI Incident Database. This searchable and interactive resource allows registered users to search a visual database with keywords and locate different types of information about publicly recorded incidents. Others have begun collecting AI incidents in simpler GitHub repositories:
Consult these resources while developing your AI systems. If you see something that looks familiar, stop and think about what you’re doing. If a system similar to the one you’re designing, implementing, or deploying has caused an incident in the past, this is one of strongest indicators that your new system could cause an incident.
Failures of Imagination
Imagining the future with context and detail is never easy. And it’s often the context in which AI systems operate, accompanied by unforeseen or unknowable details, that lead to AI incidents. In a recent workshop paper, the authors of Overcoming Failures of Imagination in AI Infused System Development and Deployment put forward some structured approaches to hypothesize about those hard-to-imagine future risks. In addition to deliberating on the who (e.g., investors, customers, vulnerable non-users), what (e.g., well-being, opportunities, dignity), when (e.g., immediately, frequently, over long periods of time), and how (e.g., taking an action, altering beliefs) of AI incidents, they also urge system designers to consider:
Assumptions that the impact of the system will be only beneficial, and to admit when uncertainty in system impacts exists.
The problem domain and applied use cases of the system, as opposed to just the math and technology.
Any unexpected or surprising results, user interactions, and responses to the system.
Causing AI incidents is embarrassing, if not costly or illegal, for organizations. AI incidents can also hurt consumers and the general public. Yet, with some foresight, many of the currently known AI incidents could have been mitigated, if not wholly avoided. It’s also possible that in performing the due diligence of researching and conceptualizing AI failures, you find that your design or system must be completely reworked. If this is the case, take comfort that a delay in system implementation or deployment is likely less costly than the harms your organization or the public could experience if the flawed system was released.
Model Risk Management
The process aspects of MRM mandate thorough documentation of modeling systems, human review of systems, and ongoing monitoring of systems. These processes represent the bulk of the governance burden for the Federal Reserve’s SR 11-7 MRM guidance, which is overseen by the Federal Reserve and the Office of the Comptroller of the Currency (OCC) for predicitve models deployed in material consumer finance applications. MRM represents the culmination of decades of predictive modeling governance in consumer finance, and lessons learned from incidents during those same years. While only large organizations will be able to fully embrace all that MRM has to offer, any serious AI practitioner can learn something from the discipline. The subsection below breaks MRM processes down into smaller components so that you can start thinking through using aspects of MRM in your organization.
Risk-tiering
As outlined in the opening of Chapter 9, the product of the probability of a harm occurring and likely loss resulting from that harm is an accepted way to rate the risk of given AI system deployment. The product of risk and loss has a more formal name in the context of MRM, materiality. Materiality is a powerful concept that enables organizations to assign realistic risk levels to AI systems. More importantly, this risk-tiering allows for the efficient allocation of limited development, validation, and audit resources. Of course, the highest materiality applications should recieve the greatest human attention and review, while the lowest materiality applications could potentially be handled by automatic machine learning (AutoML) systems and undergo minimal validation. Because risk mitigation for AI systems is an ongoing task, proper resource allocation between high, medium, and low risk systems is a must for effective governance.
Model Documentation
MRM standards also require that systems be thoroughly documented. In the traditional MRM setting, documentation covers:
Stakeholder contact information
System business justification
Mathematical assumptions and system usage limitations
Input data dictionary
Preprocessing and algorithm description
Discussion of evaluated alternative approaches
Output data dictionary
Completed testing and validation
Down- and upstream dependencies
Plans for ongoing improvements, testing, validation, and monitoring
Of course, these documents can be hundreds of pages long, especially for high-materiality systems. If you’re feeling like that sounds impossible for your organization today, then maybe these two simpler requirements might work instead. First, documentation should enable accountability for system stakeholders, ongoing system maintenance, and a degree of incident response. Second, documentation must be standardized across systems, for the most efficient audit and review processes. The proposed datasheet and model card standards may also be helpful for smaller or younger organizations.
Model Monitoring
A primary tenant of AI safety is that AI system performance in the real-world is hard to predict and performance must be monitored. Hence, deployed system performance should be monitored frequently and until a system is decommissioned. Systems can be monitored for any number of problematic conditions, the most common being input drift. While AI system training data encodes information about a system’s operating environment in a static snapshot, the world is anything but static. Competitors can enter markets, new regulations can be passed, consumer tastes can change, and pandemics or other disasters can happen. Any of these can change the live data that’s entering your AI system away from the characteristics of its training data, resulting in decreased, or even dangerous, system performance. To avoid such unpleasant surprises, the best AI systems are monitored both for drifting input and output distributions and for decaying quality, often known as model decay. While performance quality is the most common quantity to monitor, AI systems can also be monitored for anomalous inputs or predictions, specific attacks and hacks, and for drifting fairness characteristics.
Model Inventories
Any organization that is deploying AI should be able to answer straightforward questions like:
How many AI systems are currently deployed?
How many customers or users do these systems affect?
Who are the accountable stakeholders for each system?
MRM achieves this goal through the use of model inventories. A model inventory is a curated and up-to-date database of all an organization’s AI systems. Model inventories can serve as a repository for crucial information in documentation, but should also link to monitoring plans and results, auditing plans and results, important past and upcoming system maintenance and changes, and plans for incident response.
System Validation and Auditing
Under traditional MRM practices, an AI system undergoes two primary reviews before its release. The first review is a technical validation of the system, where skilled validators, not uncommonly Ph.D. data scientists, attempt to poke holes in system design and implementation, and work with system developers to fix any discovered problems. The second review investigates processes. Audit and compliance personnel carefully analyze the system design, development, and deployment, along with documentation and future plans, to ensure all regulatory and internal process requirements are meant. Only after these two reviews, would an executive sign-off for deployment begin. Moreover, because AI systems change and drift over time, review must take place whenever a system undergoes a major update or at an agreed upon future cadence.
You may be thinking (again) that your organization doesn’t have the resources for such heavy-handed reviews. Of course that is a reality for many small or younger organizations. The keys for validation and auditing, that should work at nearly an organization, are having technicians who did not develop the system test it, having a function to review non-technical internal and external obligations, and having sign-off oversight for important AI system deployments.
Beyond Model Risk Management
MRM is not the only place to draw inspiration for improved AI safety and performance processes. There are also lots of lessons to be learned from software development best practices and from IT security. This subsection will shine a light on pair programming, least privilege, change management and incident response from an AI safety and performance perspective.
Pair and Double Programming
Because they tend to be complex and stochastic, it’s hard to know if any given ML algorithm implementation is correct! This is why some leading AI organizations implement ML algorithms twice as a quality assurance (QA) mechanism. Such double implementation is usually achieved by one of two methods: pair programming or double programming. In the pair programming approach, two technical experts code an algorithm without collaborating. Then they join forces and work out any discrepancies between their implementations. In double programming, the same practitioner implements the same algorithm twice, but in very different programming languages, such as Python (object-oriented) and SAS (procedural). They must then reconcile any differences between their two implementations. Either approach tends to catch numerous bugs that would otherwise go unnoticed until the system was deployed. Pair and double programming can also align with the more standard workflow of data scientists prototyping algorithms, while dedicated engineers harden them for deployment. However, for this to work, engineers must be free to challenge and test data science prototypes and not relegated to simply re-coding prototypes.
Security Permissions for Code Deployment
The concept of least privilege from IT security states that no system user should ever have more permissions than they need. Least privilege is a fundamental process control that, likely because AI systems touch so many other IT systems, tends to be thrown out the window for AI build-outs and for so-called “rock star” data scientists. Unfortunately, this is an AI safety and performance anti-pattern. Outside the world of over-hyped AI and rock star data science, it’s long been understood that engineers cannot adequately test their own code and that others in a product organization, product managers, attorneys, or executives, should make the final call as to when software is released.
For these reasons, the IT permissions necessary to deploy an AI system should be distributed across several teams within an IT organizations. During development sprints, data scientists and engineers certainly must retain full control over their development environments. But, as important releases or reviews approach, the IT permissions to push fixes, enhancements, or new features to user-facing products are transferred away from data scientists and engineers to product managers, legal, executives or others. Such process controls provide a gate that prevents unapproved code from being deployed.
Change Management
Like all complex software applications, AI systems tend to have a large number of different components. From backend ML code, to application programming interfaces (APIs), to user interfaces, changes in any component of the system can cause side-effects in other components. Add in issues like data drift, emergent data privacy and anti-discrimination regulations, and complex dependencies on third-party software, and change management in AI systems becomes a serious concern. There are many frameworks and project management approaches for change management. If you’re in the planning or design phase of a mission-critical AI system, you’ll likely need to make change management a first-class process control. Without explicit planning and resources for change management, process or technical mistakes that arise through the evolution of the system, like using data without consent or API mismatches, are very difficult to prevent. Furthermore, without change management, such problems might not even be detected until they cause an incident.
AI Incidents Response
According to the vaunted SR 11-7 guidance, “even with skilled modeling and robust validation, model risk cannot be eliminated”. If risks from AI systems and ML models cannot be eliminated, then such risks will eventually lead to incidents. Incident response is already a mature practice in the field of computer security. Venerable institutions like NIST and SANS have published computer security incident response guidelines for years. Given that AI is a less mature and higher-risk technology than general purpose enterprise computing, formal AI incident response plans and practices are a must for high-impact or mission critical AI systems.
Formal AI incident response plans enable organizations to respond more quickly and effectively to inevitable incidents. Incident response also plays into the Hand Rule discussed at the beginning of Chapter 9. With rehearsed incident response plans in place, organizations may be able to identify, contain, and eradicate AI incidents before they spiral into costly or dangerous public spectacles. Although only mandated by regulation in a few specific verticals as of today, AI incident response plans are one of the most basic and universal ways to mitigate AI-related risks. Before a system is deployed, incident response plans should be drafted and tested. For young or small organizations that cannot fully implement model risk management, AI incident response is a primary and potent AI risk control to consider. Borrowing from computer incident response, AI incident response can be thought of in six phases:
Phase 1: Preparation
In addition to clearly defining an AI incident for your organization, preparation for AI incidents includes personnel, logistical, and technology plans for when an incident occurs. Budget must be set aside for response, communication strategies must be put in place, and technical safeguards for standardizing and preserving model documentation, out-of-band communications, and shutting down AI systems must be implemented. One of the best ways to prepare and rehearse for AI incidents are table top discussion exercises, where key organizational personnel work through a realistic incident. Good starter questions for an AI incident table top include:
Who has the organizational budget and authority to respond to an AI incident?
Can the AI system in question be taken offline? By whom? At what cost? What upstream processes will be affected?
Which regulators or law enforcement agencies need to be contacted? Who will contact them?
Which external law firms, insurance agencies, or public relation firms need to be contacted? Who will contact them?
Who will manage communications? Internally, between responders? Externally, with customers or users?
Phase 2: Identification
Identification is when organizations spot AI failures, attacks, or abuses. In practice, this tends to involve more general attack identification approaches, like network intrusion monitoring, and more specialized monitoring for AI system failures, like monitoring for concept drift or algorithmic discrimination. Identification also means staying vigilant for AI-related abuses. Often the last step of the identification phase is to notify management, incident responders, and others specified in incident response plans.
Phase 3: Containment
Containment refers to mitigating the incident’s immediate harms. Keep in mind that harms are rarely limited to the system where the incident began. Like more general computer incidents, AI incidents can have network effects that spread throughout an organizations’ and its customers’ technologies. Actual containment strategies will vary depending on whether the incident stemmed from an external adversary, and internal failure, or an off-label use or abuse of an AI system. If necessary, containment is also a good place to start communicating with the public.
Phase 4: Eradication
Eradication involves remediating any affected systems. For example, sealing off any attacked systems from vectors of in- or ex-filtration, or shutting down a discriminatory AI system and temporarily replacing it with a trusted rule-based system. After eradication, there should be no new harms caused by the incident.
Phase 5: Recovery
Recovery means ensuring all affected systems are back to normal and that controls are in place to prevent similar incidents in the future. Recovery often means re-training or re-implementing AI systems, and testing that they are performing at documented pre-incident levels. Recovery can also require careful analysis of technical or security protocols for personnel, especially in the case of an accidental failure or insider attack.
Phase 6: Lessons Learned
Lessons learned refers to corrections or improvements of AI incident response plans based on the the successes and challenges encountered while responding to the current incident. Response plan improvements can be process- or technology-oriented.
For a sneak peek at a free and open AI incident response plan, see the Sample Incident Response Plan provided by the specialty law firm bnh.ai.
Case Study: Death by Autonomous Vehicle
On the night of March 18th 2018, Elaine Herzberg was walking a bicycle across a wide intersection in Tempe, Arizona. In what has become one of the most high-profile AI incidents, she was struck by an autonomous Uber test vehicle traveling at roughly 40 mph. According to the National Safety Transportation Board (NTSB), the test vehicle driver, who was obligated to take control of the vehicle in emergency situations, was distracted by a smart phone. The self driving AI system also failed to save Ms. Herzberg. The system did not identify Ms. Herzberg until 1.2 seconds before impact, too late to prevent a brutal crash.
Fallout
Autonomous vehicles are thought to offer safety benefits over today’s status quo of human-operated vehicles. Indeed, self-driving cars have driven millions of miles with no fatalities. Yet, the NTSB’s report states that Uber’s, “system design did not include a consideration for jaywalking pedestrians,” and criticized lax risk assessements and immature safety culture at the company. Furthermore, an Uber employee raised serious concerns about 37 crashes in the previous 18 months and common problems with test vehicle drivers just days before the Tempe incident. As a result of the Tempe crash, Uber’s autonomous vehicle testing was stopped in four other cities and governments around the US and Canada began re-examining safety protocols for self-driving vehicle tests. The driver has been charged with negligent homicide. Uber has been excused from criminal liability, but came to a monetary settlement with the deceased’s family. The city of Tempe and State of Arizona were also sued by Ms. Herzberg’s family for $10 million each.
An Unprepared Legal System
It must be noted that the legal system in the US is not yet prepared for the reality of AI incidents, leaving employees, consumers and the general public largely unprotected from the unique dangers of AI systems operating in our midst. The EU Parliament has put forward a liability regime for AI systems that would mostly prevent large technology companies from escaping their share of the consequences in future incidents. In the US, any plans for Federal AI product safety regulations are still in a highly preliminary phase. In the interim, individual cases of AI safety incidents will likely be decided by lower courts with little education and experience in handling AI incidents, enabling Big Tech and other AI system operators to bring vastly asymmetric legal resources to bear against individuals caught up in incidents related to complex AI systems. Even for the companies and AI system operators, this legal limbo is not ideal. While the lack of regulation seems to benefit those with the most resources and expertise, it makes risk management and predicting the outcomes of AI incidents more difficult. Regardless, future generations may judge us harshly for allowing the criminal liability of one of the first AI incidents, involving many data scientists and other highly paid professionals, to be pinned solely on a test driver of a supposedly automated vehicle.
Lessons Learned
What lessons learned from Chapter 9 could be applied to this case?
Lesson 1: Culture is important. A mature safety culture is a broad risk control, bringing safety to the forefront of design and implementation work, and picking up the slack in corner cases that processes and technology miss. Learned from the last generation of life-changing commercial technologies, like aerospace travel and nuclear power, a more mature safety culture at Uber could have prevented this incident, especially since an employee raised serious concerns in the days before the crash.
Lesson 2: Mitigate foreseeable failure modes. The NTSB concluded that Uber’s software did not specifically consider jaywalking pedestrians as a failure mode. For anyone who’s driven a car with pedestrians around, this should have been an easily foreseeable problem for which any self-driving car should be prepared. AI systems generally are not prepared for incidents unless their human engineers make them prepared. This incident shows us what happens when those preparations are not made in advance.
Lesson 3: Test AI systems in their operating domain. After the crash, Uber stopped and reset its self-driving car program. After improvements, they were able to show via simulation that their new software would have started breaking 4 seconds before impact. Why wasn’t the easily foreseeable reality of jaywalking pedestrians tested with these same in-domain simulations before the March 2018 crash? The public may never know. But enumerating failure modes and testing them in realistic scenarios could prevent you or your organization from having to answer these kinds of unpleasant questions.
A potential bonus lesson here is to consider not only accidental failures, like the Uber crash, but also malicious hacks against AI systems and the abuse of AI systems to commit violence. Terrorists have turned motor vehicles into deadly weapons before, so this is a known failure mode. Precautions must be taken in autonomous vehicles, and in driving assistance features, to prevent hacking and violent outcomes in these systems. Regardless of whether its an accident or a malicious attack, AI incidents will certainly kill more people. Our hope is that governments and other organizations will take AI safety seriously, and minimize the number of these somber incidents in the future.
Chapter 2. How to Red-Team AI Systems
A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the 14th chapter of the final book.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.
The worst enemy of security is complexity.
If “[t]he worst enemy of security is complexity,” according to Bruce Schneier, unduly complex AI systems are innately insecure. Other researchers have also released numerous studies describing and confirming specific security vulnerabilities for AI systems. And we’re now beginning to see how real-world attacks occur, like Islamic State operatives blurring their logos in online content to evade social media filters. Since organizations often take measures to secure valuable software and data assets, AI systems should be no different. Beyond specific incident response plans, several additional information security processes should be applied to AI systems. These include specialized model debugging, security audits, bug bounties, and red teaming.
Some of the primary security threats for today’s AI systems include:
Insider manipulation of AI system training data or software to alter system outcomes.
Manipulation of AI system outcomes by external adversaries.
Exfiltration of proprietary AI system logic or training data by external adversaries.
Trojans or malware hidden in third-party AI software, models, data, or other artifacts.
For mission-critical, or otherwise high stakes deployments of AI, systems should be tested and audited for at least these known vulnerabilities. Textbook machine learning (ML) model assessment will not detect them, but newer model debugging techniques can help, especially when fine-tuned to address specific security vulnerabilities. Audits can be conducted internally or by specialist teams in what’s known as “red teaming,” as is done by Facebook. Bug bounties, or when organizations offer monetary rewards to the public for finding vulnerabilities, are another practice from general information security that should probably also be applied to AI systems. Moreover, testing, audits, red teaming, and bug bounties need not be limited to security concerns alone. These types of processes can also be used to spot other AI system problems, such as discrimination or instability, and spot them before they explode into AI incidents.
Chapter 14 explores security basics, like the CIA triad and best practices for data scientists, before delving into ML security. ML attacks are discussed in detail, including ML-specific attacks and general attacks that are also likely to affect AI systems. Countermeasures are then put forward, like specialized robust ML defenses and privacy preserving technologies (PETs), security-aware model debugging and monitoring approaches, and also a few more general solutions. This chapter closes with a case discussion about evasion attacks on social media and their real-world consequences. After reading Chapter 14, you should be able to conduct basic security audits (or “red-teaming”) on your AI systems, spot problems, and enact straightforward countermeasures where necessary.
Security Basics
There are lots of basic lessons to learn from the broader field computer security that will help harden your AI systems. Before we get into ML hacks and countermeasures, we’ll need to go over the importance of an adversarial mindset, discuss the CIA triad for identifying security incidents, and highlight a few straightforward best practices for security that should be applied to any IT group or computer system, including data scientists and AI systems.
The Adversarial Mindset
Like many practitioners in hyped technology fields, makers and users of AI systems tend to focus on the positives: automation, increased revenues, and the sleek coolness of new tech. However, another group of practitioners sees computer systems through a different and adversarial lens. Some of those practitioners likely work along side of you, helping to protect your organization’s information technology (IT) systems from those that deliberately seek to abuse, attack, hack and misuse AI systems to benefit themselves and do harm to others. A good first step toward learning ML security is to adopt such an adversarial mindset, or at least to block out overly positive ML hype and think about the intentional abuse and misuse of AI systems. And yes, even the one you’re working on right now.
Maybe a disgruntled co-worker poisoned your training data, maybe there is malware hidden in binaries associated with some third party ML software your using, maybe your model or training data can be extracted through an unprotected endpoint, or maybe a botnet could hit your organization’s public facing IT services with a distributed denial of service (DDOS) attack, taking down your AI system as collateral damage. Although such attacks won’t happen everyday, they will happen to someone somewhere. Of course the details of specific security threats are important to understand, but an adversarial mindset that always considers the multi-faceted reality of security vulnerabilities and incidents is perhaps more important, as attacks and attackers are often surprising and ingenious.
CIA Triad
From a data security perspective, goals and failures are usually defined in terms of the confidentiality, integrity, and availability (CIA) triad. The CIA triad can be briefly summarized as: data should only be available to authorized users, data should be correct and up-to-date, and data should be promptly available when needed. If one of these tenets is broken, this is usually a security incident. The CIA triad applies directly to malicious access, alteration, or destruction of AI system training data. But it might be a bit more difficult to see how the CIA triad applies to an AI system issuing decisions or predictions, and ML attacks tend to blend traditional data privacy and computer security concerns in confusing ways. So, let’s go over an example of each.
Figure 2-1. An illustration of the CIA triad for information security.
The confidentiality of an AI system can be breached by an inversion attack (see inversion attack below) in which a bad actor interacts with an application programming interface (API) in an appropriate manner, but uses explainable AI (XAI) techniques to extract information about your model and training data from their submitted input data and your system’s predictions. In a more dangerous and sophisticated membership inference attack (see membership inference attack below), individual rows of training data, up to entire training datasets, can be extracted from AI system APIs or other endpoints. Note that these attacks can happen without unauthorized access to training files or databases, but result in the same security and privacy harms for your users or for your organization, including serious legal liabilities.
An AI system’s integrity can be compromised by several means, such as data poisoning attacks or adversarial example attacks. In a data poisoning attack (see data poisoning attack below), an organizational insider subtly changes system training data to alter system predictions in their favor. Only a small proportion of training data must be manipulated to change system outcomes, and specialized techniques from active learning and other fields can help attackers do so with greater efficiently. When AI systems apply millions of rules or parameters to thousands of interacting input features, it becomes nearly impossible to understand all the different predictions an AI system could make. In an adversarial example attack (see adversarial example attack below), an external attacker preys on such overly complex mechanisms by finding strange rows of data — adversarial examples — that evoke unexpected and improper outcomes from the AI system, and typically to benefit themselves at your expense.
The availability of an AI system is violated when users cannot get access to the services they expect. This can be a consequence of the attacks above bringing down the system, from more standard denial of service attacks, or from algorithmic discrimination. People depend on AI systems more and more in their daily lives, and when these models relate to high-impact decisions in government, finance, or employment, an AI system being down can deny users of essential services. Sadly, many AI systems also exhibit erroneous discrimination in outcomes and accuracy for historically marginalized demographic groups. Minorities may be less likely to experience the sames levels of availability from automated credit offers or resume scanners. More directly frighteningly, they may be more likely to experience faulty predictions by facial recognition systems, including those used in security or law enforcement contexts.
These are just a few ways that an AI systems can experience security problems. There are many more. If you’re starting to feel worried, keep reading! We’ll discuss straightforward security concepts and best practices next. These tips can go a long way toward protecting any computer system.
Best Practices for Data Scientists
Starting with the basics will go a long way toward securing more complex AI systems. The following list summarizes those basics in the context of a data science workflow.
Access Control: The less people that access sensitive resources the better. There are many sensitive components in an AI system, but locking down training data, training code, and deployment code to only those who require access will mitigate security risks related to data exfiltration, data poisoning, and backdoor attacks.
Bug Bounties: Bug bounties, or when organizations offer monetary rewards to the public for finding vulnerabilities, are another practice from general information security that should probably also be applied to ML systems. Furthermore, audits, red teaming, and bug bounties need not be limited to security concerns alone. Bug bounties can be used to find all manner of problems in public-facing AI systems, including algorithmic discrimination, unauthorized decisions, and product safety or negligence issues, in addition to security and privacy issues.
Incident Response Plans: It’s a common practice to have incident response plans in place for mission-critical IT infrastructure to quickly address any failures or attacks. Make sure those plans cover AI systems and have the necessary detail to be helpful if an AI system fails or suffers an attack. You’ll need to nail down who does what when an AI incident occurs, especially in terms of business authority, technical know-how, budget and internal and external communications. There are excellent resources to help you get started with incident response from organizations like NIST and SANS Institute. If you would like to see an example incident response plan for AI systems, checkout bnh.ai’s public resource page.
Routine Backups: Ransomware attacks, where malicious hackers freeze access to an organization’s IT systems — and delete precious resources if ransom payments are not made — are not uncommon. Make sure to backup important files on a frequent and routine basis to protect against both accidental and malicious data loss. It’s also a best practice to keep physical backups unplugged (or “air-gapped”) from any networked machines.
Least Privilege: A strict application of the notion of least privilege, i.e., ensuring all personnel — even “rockstar” data scientists and ML engineers — receive the absolute minimum IT system permissions, is one of the best ways to guard against insider ML attacks. Pay special attention to limiting the number of root, admin, or super users.
Passwords and Authentication: Use strong passwords, multi-factor authentication, and other authentication methods to ensure access controls and permissions are preserved. It’s also not a bad idea to enforce a higher level of password hygiene, such as the use of password managers, for any personnel assigned to sensitive projects.
Physical Media: Avoid the use of physical storage media for sensitive projects if at all possible, except when required for backups. Printed documents, thumb drives, backup media, and other portable data sources are often lost and misplaced by distracted data scientists and engineers. Worse still, they can be stolen by motivated adversaries. For less sensitive work, consider enacting policies and education around physical media use.
Product Security: If your organization makes software, it’s likely that they apply any number of security features and tests to these products. There’s probably also no logical reason to not apply these same standards to public- or customer-facing AI systems. Reach out to security professionals in your organization to discuss applying standard product security measures to your AI systems.
Red Teams: For mission-critical, or otherwise high stakes deployments of ML, systems should be tested under adversarial conditions. In what’s known as “red teaming,” as is done by Facebook, teams of skilled practitioners attempt to attack AI systems and report their findings back to product owners. Like bug bounties, red-teaming can be highly-effective at finding security problems, but it’s not necessary to limit such audits only to security vulnerabilities.
Third Parties: Building an AI system typically requires code, data, and personnel from outside your organization. Sadly, each new entrant to the build out increases your risk. Watch out for data poisoning in third party data or conducted by third party personnel. Scan all third-party packages and models for malware, and control all deployment code to prevent the insertion of backdoors or other malicious payloads.
Version and Environment Control: To ensure basic security, you’ll need to know which changes were made to what files, when and by whom. In addition to version control of source code, any number of commercial or open source environment managers can automate tracking for large data science projects. Check out some of these open resources to get started with ML environment management: dvc, gigantum, mlflow, mlmd, and modeldb.
ML security, to be discussed in the next sections, will likely be more interesting for data scientists than the mostly administrative and mundane ideas described here. However, because the security measures considered here are so simple, not following them could potentially result in legal liabilities for your organization, in addition to embarrassing or costly breaches and hacks. While still debated and somewhat amorphous, violations of security standards, as enforced by the US Federal Trade Commission (FTC) and other regulators, can bring with them unpleasant scrutiny and enforcement actions. Hardening the security of your AI systems is a lot of work, but failing to get the basics right can make big trouble when you’re building out more complex AI systems with lots of subsystems and dependencies.
Machine Learning Attacks
Various ML software artifacts, ML prediction APIs, and other AI system endpoints are now vectors for cyber and insider attacks. Such ML attacks can negate all the other hard work a data science team puts into mitigating other risks — because once your AI system is attacked, it’s not your system anymore. And attackers typically have their own agendas regarding accuracy, discrimination, privacy, stability, or unauthorized decisions. The first step to defending against these attacks is to understand them. We’ll go over an overview of the most well-known ML attacks below.
Integrity Attacks: Manipulated Machine Learning Outputs
Our tour of ML attacks will begin with attacks on ML model integrity, i.e., attacks that alter system outputs. Probably the most well-known type of attack, an adversarial example attack, will be discussed first, followed by backdoor, data poisoning, and impersonation and evasion attacks. When thinking through these attacks, remember that they can often be used in two primary ways: (1) to grant attackers the ML outcome they desire, or (2) to deny a third-party their rightful outcome.
Adversarial Example Attacks
A motivated attacker can learn, by trial and error with a prediction API (i.e., “exploration” or “sensitivity analysis”), an inversion attack, or by social engineering, how to game your ML model to receive their desired prediction outcome or how to change someone else’s outcome. Carrying out an attack by specifically engineering a row of data for such purposes is referred to as an adversarial example attack. An attacker could use an adversarial example attack to grant themselves a loan, a lower than appropriate insurance premium, or to avoid pretrial detention based on a criminal risk score. See below for an illustration of a fictitious attacker executing an adversarial example attack on a credit lending model using strange rows of data.
Figure 2-2. An illustration of an adversarial example attack. Adapted from the Machine Learning Attack Cheatsheet.
Backdoor Attacks
Consider a scenario where an employee, consultant, contractor, or malicious external actor has access to your model’s production code — code that makes real-time predictions. This individual could change that code to recognize a strange or unlikely combination of input variable values to trigger a desired prediction outcome. Like other outcome manipulation hacks, backdoor attacks can be used to trigger model outputs that an attacker wants, or outcomes a third party does not want. As depicted in the back door attack illustration, an attacker could insert malicious code into your model’s production scoring engine that recognizes the combination of a realistic age but negative years on a job (yoj) to trigger an inappropriate positive prediction outcome for themselves or their associates. To alter a third-party’s outcome, an attacker could insert an artificial rule into your model’s scoring code that prevents your model from producing positive outcomes for a certain group of people.
Figure 2-3. An illustration of a backdoor attack. Adapted from the Machine Learning Attack Cheatsheet.
Data Poisoning Attacks
Data poisoning refers to someone systematically changing your training data to manipulate your model’s predictions. To poison data, an attacker must have access to some or all of your training data. And at many companies, many different employees, consultants, and contractors have just that — and with little oversight. It’s also possible a malicious external actor could acquire unauthorized access to some or all of your training data and poison it. A very direct kind of data poisoning attack might involve altering the labels of a training data set. In the data poisoning attack figure here, the attacker changes a small number of training data labels so that people with their kind of credit history will erroneously receive a credit product. It’s also possible that a malicious actor could use data poisoning to train your model to intentionally discriminate against a group of people, depriving them the big loan, big discount, or low insurance premiums they rightfully deserve.
While it’s simplest to think of data poisoning as changing the values in the existing rows of a data set, data poisoning can also be conducted by adding seemingly harmless or superfluous columns onto a data set and ML model. Altered values in these columns could then trigger altered model predictions. This is one of many reasons to avoid dumping massive numbers of columns into a black-box ML model.
Figure 2-4. An illustration of a data poisoning attack. Adapted from the Machine Learning Attack Cheatsheet.
Impersonation and Evasion Attacks
Using trial and error, a model inversion attack, or social engineering, an attacker can learn the types of individuals that receive a desired prediction outcome from your AI system. The attacker can then impersonate this kind of input or individual to receive a desired prediction outcome, or to evade an undesired outcome. These kinds of impersonation and evasion attacks resemble identity theft from the ML model’s perspective. They’re also similar to adversarial example attacks.
Like an adversarial example attack, an impersonation attack involves artificially changing the input data values to your model. Unlike an adversarial example attack, where a potentially random-looking combination of input data values could be used to trick your model, impersonation implies using the information associated with another modeled entity (i.e., customer, employee, financial transaction, patient, product, etc.) to receive the prediction your model associates with that type of entity. And evasion implies the converse — changing your own data to avoid an adverse prediction.
In the impersonation illustration below, an attacker learns what characteristics your model associates with awarding a credit product, and then falsifies their own information to receive the credit. They could share their strategy with others, potentially leading to large losses for your company. Sound like science fiction? It’s not. Closely related evasion attacks have worked for facial-recognition payment and security systems, and the case at the end of the Chapter will address several documented instances of evading ML security systems.
Figure 2-5. An illustration of an impersonation attack. Adapted from the Machine Learning Attack Cheatsheet.
Attacks on Machine Learning Explanations
In what has been called a “scaffolding” attack (see Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods), adversaries can poison post-hoc explanation like local interpretable model-agnostic explanations (LIME) and Shapley additive explanations (SHAP). Attacks on partial dependence, another common post-hoc explanation technique, have also been published recently (see Fooling Partial Dependence via Data Poisoning). Attacks on explanations can be used to alter both operator and consumer perceptions of an AI system. For example, to make another hack in the pipeline harder to find, or to make a discriminatory model appear fair (known as fairwashing). These attacks make clear that as ML pipelines and AI systems become more complex, bad actors could look to many different parts of the system, from training data all the way to post-hoc explanations, to alter system outputs.
Confidentiality Attacks: Extracted Information
Without proper countermeasures, bad actors can access sensitive information about your model and data. Model extraction and inversion attacks refer to hackers rebuilding your model and extracting information from their copy of the model. Membership inference attacks allow bad actors to know what rows of data are in your training data, and even to rebuild your training data. Both attacks only require access to an unguarded AI system prediction API or other system endpoints.
Model Extraction and Inversion Attacks
Inversion basically means getting unauthorized information out of your model—-as opposed to the normal usage pattern of putting information into your model. If an attacker can receive many predictions from your model API or other endpoint (website, app, etc.), they can train a surrogate model between their inputs and your system’s predictions. That extracted surrogate model is trained between the inputs the attacker used to generate the received predictions and the received predictions themselves. Depending on the number of predictions the attacker can receive, the surrogate model could become quite an accurate simulation of your model. Unfortunately, once the surrogate model is trained, you have several big problems:
Models are really just compressed versions of training data. With the surrogate model, an attacker can start learning about your potentially sensitive training data.
Models are valuable intellectual property. Attackers can now sell access to their copy of your model and cut into your return on investment.
The attacker now has a sandbox from which to plan impersonation, adversarial example, membership inference, or other attacks against your model.
Such surrogate models can also be trained using external data sources that can be somehow matched to your predictions, as ProPublica famously did with the proprietary COMPAS criminal risk assessment instrument.
Figure 2-6. An illustration of an inversion attack. Adapted from the Machine Learning Attack Cheatsheet.
Membership Inference Attacks
In an attack that starts with model extraction, and also carried out by surrogate models, a malicious actor can determine whether a given person or product is in your model’s training data. Called a membership inference attack, this hack is executed with two layers of surrogate models. First an attacker passes data into a public prediction API or other endpoint, receives predictions back, and trains a surrogate model or models between the passed data and the predictions. Once a surrogate model or models has been trained to replicate your model, the attacker then trains a second layer classifier that can differentiate between data that was used to train the first surrogate model and data that was not used to train that surrogate. When this second model is used to attack your model, it can give a solid indication as to whether any given row (or rows) of data is in your training data.
Membership in a training data set can be sensitive when the model and data are related to undesirable outcomes such as bankruptcy or disease, or desirable outcomes like high income or net worth. Moreover, if the relationship between a single row and the target of your model can be easily generalized by an attacker, such as an obvious relationship between race, gender, age and some undesirable outcome, this attack can violate the privacy of an entire class of people. Frighteningly, when carried out to it’s fullest extent, a membership inference attack could also allow a malicious actor, with access only to an unprotected public prediction API or other model endpoint, to reconstruct portions of a sensitive or valuable training data set.
Figure 2-7. An illustration of a membership inference attack. Adapted from the Machine Learning Attack Cheatsheet.
While the attacks discussed above are some of the most well-known types of attacks, keep in mind that these are not the only types of ML hacks, and that new attacks can emerge very quickly. Accordingly, we’ll also address a few general concerns to help you frame the broader threat environment, before moving on to countermeasures you can use to protect your AI system.
General AI Security Concerns
One common theme of this book is that AI systems are fundamentally software systems, and applying common sense software best practices to AI systems is usually a good idea. The same applies for security. As software systems and services, AI systems exhibit similar failure modes, and experience the same attacks, as general software systems. What are some of these general concerns? Unpleasant things like intentional abuses of AI technology, availability attacks, trojans and malware, man-in-the-middle attacks, unnecessarily complex black-box systems, and the woes of distributed computing.
Abuses of Machine Learning: Nearly all tools can also be weapons, and ML models and AI systems can be abused in numerous ways. Let’s start by considering deep fakes. Deep fakes are an application of deep learning that can, when done carefully, seamlessly blend fragments of audio and video into convincing new media. While deep fakes can be used to bring movie actors back to life, as was done in some recent Star Wars films, deep fakes can be used to harm and extort people. Of course non-consensual pornography, in which the victim’s face is blended into an adult video, is one of the most popular uses of deep fakes, as documented by the BBC and other news outlets. Deep fakes have also been implicated in financial crimes, e.g., when an attacker used a CEO’s voice to order money transferred into their own account. Algorithmic discrimination is another common application of abusive AI. In a “fairwashing” attack, post-hoc explanations can be altered to hide discrimination in a biased model. And facial recognition can be used directly for racial profiling. We’re touching on just a few of the ways AI systems can be abused, for a broader treatment of this important topic see AI-enabled future crime.
Availability Attacks: AI systems can fall victim to more general denial of service (DOS) attacks, just like other public-facing services. If a public-facing AI system is critical to your organization, make sure it’s hardened with firewalls and filters, reverse domain name server system (DNS) lookup, and other countermeasures that increase availability during a DOS attack. Unfortunately, we also have to think through another kind of availability failure for AI systems — those caused by algorithmic discrimination. If algorithmic discrimination is severe enough, driven by internal failures or adversarial attacks, your AI system will likely not be usable by large portion of it’s users. Be sure to test for algorithmic discrimination during training and throughout a system’s deployed life cycle.
Trojans and Malware: Machine learning in the research and development environment is highly dependent on a diverse ecosystem of open source software packages. Some of these packages have many, many contributors and users. Some are highly specific and only meaningful to a small number of researchers or practitioners. It’s well understood that many packages are maintained by brilliant statisticians and machine learning researchers whose primary focus is mathematics or algorithms, not software engineering, and certainly not security. It’s not uncommon for a machine learning pipeline to be dependent on dozens or even hundreds of external packages, any one of which could be hacked to conceal an attack payload. Third party packages with large binary data stores and pre-trained ML models seem especially ripe for these kinds of problems. If possible, scan all software artifacts associated with an AI systems for malware and trojans.
Man in the Middle Attacks: Because many AI system predictions and decisions are transmitted over the internet or an organization’s network, they can be manipulated by bad actors during that journey. Where possible, use encryption, certificates, mutual authentication, or other countermeasures to ensure the integrity of AI system results passed across networks.
Black-box Machine Learning: Although recent developments in interpretable models and model explanations have provided the opportunity to use accurate and also transparent models, many machine learning workflows are still centered around black box models. Such black box models are a common type of, often unnecessary, complexity in a commercial ML workflow. A dedicated, motivated attacker can, over time, learn more about your overly complex black box ML model than you or your team knows about it. (Especially in today’s overheated and turnover-prone data science job market.) This knowledge imbalance can potentially be exploited to conduct the attacks described above or for other yet unknown types of attacks.
Distributed Computing: For better or worse, we live in the age of big data. Many organizations are now using distributed data processing and AI systems. Distributed computing can provide a broad attack surface for a malicious internal or external actor. Data could be poisoned on only one or a few worker nodes of a large distributed data storage or processing system. A back door could be coded into just one model of a large ensemble. Instead of debugging one simple data set or model, now practitioners must sometimes examine data or models distributed across large computing clusters.
Starting to get worried again? Hang in there — we’ll cover countermeasures for confidentiality, integrity, and availability attacks on AI systems next.
Counter-measures
There are many countermeasures you can use and, when paired with the processes proposed in Chapter 9, bug bounties, security audits, and red teaming, such measures are more likely to be effective. Additionally, there are the newer subdisciplines of adversarial ML and robust ML, that are giving the full academic treatment to these subjects. This section will outline some of the defensive measures you can use to help make your AI systems more secure, including model debugging for security, model monitoring for security, privacy enhancing technologies, robust machine learning, and a few general approaches.
Model Debugging for Security
ML models can and should be tested for security vulnerabilities before they are released. In these tests, the goal is basically to attack your own AI systems, to understand your level of vulnerability, and to patch up any discovered vulnerabilities. Some general techniques, that work across different types of ML models, for security debugging are adversarial example searches and sensitivity analysis, audits for insider attacks, discrimination testing, and white-hat model extraction attacks. (We use the term “white-hat” to describe hacking activities that are meant to detect or counter security vulnerabilities.)
Adversarial Example Searches and Sensitivity Analysis
Conducting sensitivity analysis with an adversarial mindset, or better yet, conducting your own adversarial example attacks, is a good way to determine if your system is vulnerable to perhaps the simplest and most common type of ML integrity attack. The idea of these white-hat attacks is to understand what feature values (or combinations thereof) can cause large swings in your system’s output predictions. If you’re working in the deep learning space, packages like cleverhans and foolbox can help you get started with testing your AI system. For those working with structured data, good old sensitivity analysis can go a long way toward pointing out instabilities in your system. You can also use genetic learning to evolve your own adversarial examples or you can use heuristic methods based on individual conditional expectation (ICE) to find adversarial examples. Once you find instabilities in your AI system, triggered by these adversarial examples, you’ll want to use cross-validation or regularization to train a more stable model, apply techniques from robust machine learning, or explicitly monitor for the discovered adversarial examples in real time. You should also link this information to the system’s incident response plan, in case it’s useful later.
Auditing for Insider Data Poisoning
If a data poisoning attack were to occur, system insiders — employees, contractors, and consultants — are not unlikely culprits. How can you track down insider data poisoning? First, score those individuals with your system. Any insider receiving a positive outcome could be the attacker or know the attacker. Because a smart attacker will likely perform the minimum changes to the training data that result in a positive outcome, you can also use residual analysis to look for beneficial outcomes with larger than expected residuals, indicating the ML model may have been inclined to issue a negative outcome for the individual had the training data not been altered. Data and environment management are strong countermeasures for insider data poisoning too, as any changes to data are tracked with ample metadata (who, what, when, etc.). You can also try the reject on negative impact (RONI) technique, proposed in the seminal The Security of Machine Learing paper, to remove potentially altered rows from system training data.
Discrimination Testing
DOS attacks, resulting from some kind of algorithmic discrimination — intentional or not — are a plausible type of availability attack. In fact, it’s already happened. In 2016, Twitter users poisoned the Tay Chatbot to the point where only those users interested in neo-nazi pornography would find the system’s service appealing. This type of attack could also happen in a more serious context, such as employment, lending or medicine, where an attacker uses data poisoning, model backdoors, or other types of attacks to deny service to a certain group of customers. This is one of the many reasons to conduct discrimination testing, and remediate any discovered discrimination, both at training time and as part of regular model monitoring. There are several great open source tools for detecting discrimination and making attempts to remediate it, such as aequitas, Themis, and AIF360.
White-hat Model Extraction Attacks
Model extraction attacks are harmful on their own, but they are also the first stage for a membership inference attack. Conduct your own model extraction attacks to determine if your system is vulnerable to these confidentiality attacks. If you find some API or model end-point that allows you to train a surrogate model between input data and system outputs, lock it down with solid authentication and throttle any abnormal requests at this endpoint. Because a model extraction attack may have already happened via this endpoint, analyze your extracted surrogate models as follows:
What are the accuracy bounds of different types of white-hat surrogate models? Try to understand the extent to which a surrogate model can really be used to gain knowledge about your AI system.
What types of data trends can be learned from your white-hat surrogate model? Like linear trends represented by linear model coefficients or course summaries of population subgroups in a surrogate decision tree.
What rules can be learned from a white-hat surrogate decision tree? For example, how to reliably impersonate an individual who would receive a beneficial prediction? Or how to construct effective adversarial examples?
If you see that it is possible to train an accurate surrogate model from one of your system endpoints, and to answer some of the questions above, then you’ll need to takes some next steps. First, conduct a white-hat membership inference attack to see if that two stage attack would also be possible. You’ll also need to record all of the information related to the white-hat analysis and link to it to the system’s incident response plan. Incident responders may find this information helpful at a later date, and it may unfortunately need to be reported as a breach if there is strong evidence that an attack has occurred.
Debugging security vulnerabilities in your AI system is important work that can save you future money, time and heartache, but so is watching your system to ensure it stays secure. Next we’ll take up model monitoring for security.
Model Monitoring For Security
Once hackers can manipulate or extract your ML model, it’s really not your model anymore. To guard against attacks on your ML, you’ll not only need to train and debug it with security in mind, you’ll also need to monitor it closely once it goes live. Monitoring for security should be geared toward algorithmic discrimination, anomalies in input data queues, anomalies in predictions, and high-usage. Here are some tips on what and how to monitor:
Discrimination monitoring: Discrimination testing, as discussed in previous chapters, must be applied during model training. But for many reasons, including unintended consequences and malicious hacking, discrimination testing must be performed during deployment too. If discrimination is found during deployment, it should be investigated and remediated. This helps to ensure a model that was fair during training remains fair in production.
Input anomalies: Unrealistic combinations of data, that could be used to trigger back doors in model mechanisms, should not be allowed into model scoring queues. Anomaly detection ML techniques, like autoencoders and isolation forests, may be generally helpful in tracking problematic input data. However, you can also use commonsense data integrity constraints to catch problematic data before it hits your model. An example of such unrealistic data is reporting an age of 40 years and a job tenure of 50 years. If possible, you should also consider monitoring for random data, training data, or duplicate data. Because random data is often used in model extraction and inversion attacks, build out alerts or controls that help your team understand if or when your model may be encountering batches of random data. Real-time scoring of rows that are extremely similar or identical to data used in training, validation, or testing should be recorded and investigated as they could indicate a membership inference attack. Finally, be on the lookout for duplicate data in real-time scoring queues, as this could indicate an evasion or impersonation attack.
Output anomalies: Output anomalies can be indicative of adversarial example attacks. When scoring new data, compare your ML model prediction against a trusted, transparent benchmark model or a benchmark model trained on a trusted data source and pipeline. If the difference between your more complex and opaque ML model and your interpretable or trusted model is too great, fall back to the predictions of the conservative model or send the row of data for manual processing. Statistical control limits, which are akin to moving confidence intervals, can also be used to monitor for anomalous outputs.
Meta-monitoring: Monitor the basic operating statistics — the number of predictions in some time period, latency, CPU, memory, and disk loads, or the number of concurrent users — to ensure your system is functioning normally. You can even train an autoencoder–based anomaly detection metamodel on your entire AI system’s operating statistics and then monitor this metamodel for anomalies. An anomaly in system operations could tip you off that something is generally amiss in your AI system.
Monitoring for attacks is one the most pro-active steps you can take to counter ML hacks. However, there are a still a few more countermeasures to discuss. We’ll look into privacy enhancing technologies (PETs) below.
Privacy-enhancing Technologies
Privacy-preserving ML is a research subdiscipline with direct ramifications for the confidentiality of your ML training data. While just beginning to gain steam in the ML and ML operations (MLOps) communities, PETs can give you an edge when it comes to protecting your data. Some of the most promising and practical techniques from this emergent field include federated learning and differential privacy.
Federated learning
Federated learning is an approach to training ML models across multiple decentralized devices or servers holding local data samples, without exchanging raw data between them. This approach is different from traditional centralized ML techniques where all datasets are uploaded to a single server. The main benefit of federated learning is that it enables the construction of ML models without sharing data among many parties. Federated learning avoids sharing data by training local models on local data samples and exchanging parameters between servers or edge devices to generate a global model, which is then shared by all servers or edge devices. Assuming a secure aggregation process is used, federated learning helps address fundamental data privacy and data security concerns. Among other open source resources, look into PySyft or FATE to start learning about implementing federated learning at your organization (or with partner organizations!).
Differential Privacy
Differential privacy is a system for sharing information about a dataset by describing patterns about groups in the dataset without disclosing information about specific individuals. In ML tools, this is often accomplished using specialized types of differentially private learning algorithms. This makes it more difficult to extract sensitive information from training data or a trained ML model in model extraction, model inversion or membership inference attacks. In fact, an ML model is said to be differentially private if an outside observer cannot tell if an individual’s information was used to train the model. There are lots of high-quality open source repositories to check out and try, including:
Google’s differential-privacy
IBM’s diffprivlib
Tensorflow’s privacy
Many ML approaches that invoke differential privacy are based on differentially private stochastic gradient descent (DP-SGD). DP-SGD injects structured noise into gradients determined by SGD at each training iteration. In general, DP-SGD and related techniques ensure that ML models do not memorize too much specific information about training data. Because they prevent ML algorithms from focusing on particular individuals, they could also lead to increased generalization performance and fairness benefits.
You may hear about confidential computing or homomorphic encryption under the PET topic heading as well. These are promising research and technology directions to watch for the future. Another subdiscipline of ML research to watch is robust ML, which can help you counter adversarial example attacks and other adversarial manipulation of your AI system.
Robust Machine Learning
Robust ML includes many cutting-edge ML algorithms developed to counter adversarial example attacks, and to a certain extent data poisoning as well. The study of robust ML gained momentum after several researchers showed that silly, or even invisible, changes to input data can result in huge swings in output predictions for computer vision systems. Such swings in model outcomes are a troubling sign in any domain, but when considering medical imaging or semi-autonomous vehicles, they are downright dangerous. Robust ML models help enforce stability in model outcomes, and strikingly, an important notion from fairness, that similar individuals be treated similarly. Similar individuals in ML training data or live data are individuals that are close to one another in the Euclidean space of the data. Robust ML techniques often try to establish a hypersphere around individual examples of data, and ensure that other similar data within the hypersphere receive similar predictions. Whether caused by bad actors, over-fitting, underspecification, or other factors, Robust ML approaches help protect your organization from risks arising from unexpected predictions. Interesting papers and code are hosted at the Robust Machine Learning site, and Madry group at Massachusetts Institute of Technology (MIT) has even published a full Python package for robust ML.
General Countermeasures
There are a number of catchall countermeasures that can defend against several different types of ML attacks, including authentication, throttling, and watermarking. Many of these same kinds of countermeasures are also best practices for AI systems in general, like interpretable models, model management, and model monitoring. The last topic before the case study is a brief description of important and general countermeasures against AI system attacks.
Authentication: Whenever possible, disallow anonymous use for high-stakes AI systems. Login credentials, multi-factor authentication, or other types of authentication that force users prove their identity, authorization, and permission to use a system put a blockade between your model API and bad actors.
Interpretable, fair, or private models: Modeling techniques now exist (e.g., monotonic GBMs (M-GBM), scalable Bayesian rule lists (SBRL), eXplainable Neural Networks (XNN)), that can allow for both accuracy and interpretability in ML models. These accurate and interpretable models are easier to document and debug than classic ML black boxes. Newer types of fair and private modeling techniques (e.g., LFR, DP-SGD) can also be trained to downplay outward visible, demographic characteristics that can be observed, socially engineered into an adversarial example attack, or impersonated. These models, enhanced for interpretability, fairness or privacy, should be more easily debugged, more robust to changes in an individual entity’s characteristics, and more secure than over-used ML black boxes.
Model Documentation: Model documentation is a risk-mitigation strategy that has been used for decades in banking. It allows knowledge about complex modeling systems to be preserved and transferred as teams of model owners change over time, and for knowledge to be standardized for efficient analysis by model validators and auditors. Model documentation should cover the who, when, where, what and how of an AI system, including many details from contact information for stakeholders to algorithmic specification. Model documentation is also a natural place to record any known vulnerabilities or security concerns for an AI system, enabling future maintainers or other operators that interact with the system to allocate oversight and security resources efficiently. Incident response plans should also be linked to model documentation.
Model Management: Model management typically refers to a combination of process controls, like documentation, combined with technology controls, like model monitoring and model inventories. Organizations should have an exact count of deployed AI systems, and inventory associated code, data, documentation and incident response plans in a structured manner, and monitor all deployed models. These practices make it easier to understand when something goes wrong and to deal with problems quickly when they arise.
Throttling: When high use or other anomalies, such as adversarial examples, or duplicate, random, or training data, are identified by model monitoring systems, consider throttling prediction APIs or other system endpoints. Throttling can refer to restricting high numbers of rapid predictions from single users, artificially increasing prediction latency for all users, or other methods that can slow down attackers conducting model or data extraction attacks and adversarial example attacks.
Watermarking: Watermarking refers to adding a subtle marker to your data or predictions, for the purpose of deterring theft of data or models. If data or predictions carry identifiable traits, such as actual watermarks on images or sentinel markers in structured data, it can make stolen assets harder to use and more identifiable to law enforcement or other investigators once a theft occurs.
Applying these general defenses and best practices, along with some of the more specific countermeasures discussed in previous sections, is a great way to achieve a high level of security for an AI system. And now that you’ve covered security basics, ML attacks, and many countermeasures for those attacks, your armed with the knowledge you need to start red-teaming your organization’s AI --- especially if you can work with your organization’s IT security professionals. We’ll now examine some real-world AI security incidents to provide additional motivation for doing the hard work of red-teaming AI, and to gain insights into some of today’s most common AI security issues.
Case Study: Real-world Evasion Attacks
AI systems used for both physical and online security have suffered evasion attacks in recent years. Below, the case discussion touches on evasion attacks used to avoid Facebook filters and perpetuate disinformation and terrorist propaganda, and evasion attacks against real-world payment and physical security systems.
As the COVID pandemic ground on and the 2020 US presidential campaign was in high gear, those proliferating disinformation related to both topics took advantage of weaknesses in Facebook’s manual and automated content filtering. As reported by NPR, Tiny Changes Let False Claims About COVID-19, Voting Evade Facebook Fact Checks. While Facebook uses news organizations such as Reuters and the Associated Press to fact-check claims made by its billions of users, it also uses AI-based content filtering, particularly to catch copies of human-identified misinformation posts. Unfortunately, minor changes, as simple as different backgrounds or fonts, image cropping, or simply describing memes with words instead of images, allowed bad actors to circumvent Facebook’s AI fact-checking filters. In their defense, Facebook does carry out enforcement actions against many offenders, including limiting the distribution of posts, not recommending posts or groups, and demonetization. Yet, according to one advocacy group, Facebook fails to catch about 42% of disinformation posts containing information flagged by human fact checkers. The same advocacy group — Avaaz — estimates that a sample of just 738 unlabeled disinformation posts lead to an estimated 142 million views and 5.6 million user interactions.
Recent events have shown us that online disinformation and security threats can spill over into the real world. Disinformation about the 2020 US election and the COVID pandemic are thought to be primary drivers of the frightening events of the January 6th, 2021 US Capital riots. In perhaps even more frightening evasion attacks, the BBC has reported that ISIS operatives continue to evade Facebook content filters. By blurring logos, splicing their videos with mainstream news content, or just using strange punctuation, ISIS members or affiliates have been able to post propaganda, explosive-making tutorials, and even evasion attack tutorials to Facebook, garnering tens of thousands views for their violent, disturbing, and vitriolic content. While evasion attacks on AI-based filters are certainly a major culprit, there are also less human moderators for Arabic content on Facebook. Regardless of whether its humans or machines failing at the job, this type of content can be truly dangerous, contributing both to radicalization and real-world violence. Physical evasion attacks are also a specter for the near future. Researchers recently showed that some AI-based physical security systems are easy targets for evasion attacks. With permission of system operators, researchers used lifelike 3-dimensional masks to bypass facial recognition security checks on AliPay and WeChat payment systems. In one egregious case, researchers were even able to use a picture of another person on an IPhone screen to board a plane at Amsterdam’s Schiphol Airport.
Lessons Learned
Taken together, bad actors’ evasion of online safeguards to post dangerous content, and evasion of physical security systems to make monetary payments and to travel by plane paints a scary picture of a world where AI security is not taken seriously. What lessons learned from Chapter 14 could be applied to prevent these evasion attacks? The first lesson is related to robust ML. AI systems used for high-stakes security applications, be it online or real-world, must not be fooled by tiny changes to normal system inputs. Robust ML, and related technologies, must progress to the point where simplistic evasion techniques, like blurring of logos or changes to punctuation, are not effective evasion measures. Another lesson comes from the beginning of the Chapter: the adversarial mindset. Anyone who thought seriously about security risks for these AI-based security systems should have realized masks, or just other images, were an obvious evasion technique. Thankfully, it turns out that some organizations do employ countermeasures for adversarial scenarios. Better facial recognition security systems deploy techniques meant to ensure the liveness of the subjects they are identifying. The better facial recognition systems also employ discrimination testing to ensure availability is high, and error rates are as low as possible, for all their users.
Another major lesson to be learned from real-world evasion attacks pertains to the responsible use of technology in general, and AI in particular. Social media has proliferated beyond physical boarders and its complexity has grown past many country’s abilities to effectively regulate it. With a lack of government regulation, users are counting on social media companies to regulate themselves. Being tech companies, social networks often rely on more technology, like AI-based content filters, to retain control of their systems. But what if those controls don’t really work? As technology and AI play larger roles in human lives, lack of rigor and responsibility in their design, implementation, and deployment will have ever-increasing consequences. Those designing technologies for security or other high-stakes applications have an especially serious obligation to be realistic about today’s AI capabilities and apply process and technology controls to ensure adequate real-world performance. This chapter laid out how to red-team AI systems, and apply process and technology controls, for important security vulnerabilities. The next Chapter will introduce a wide array techniques to test and ensure real-world performance beyond security.
Resources
A Marauder’s Map of Security and Privacy in Machine Learning
BIML Interactive Machine Learning Risk Framework
FTC Start With Security Guidelines
Mitre Adversarial Threat Matrix
NIST Computer Security Resource Center
Chapter 3. Debugging AI Systems for Safety and Performance
A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the 15th chapter of the final book.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com..
Make sure that your AI models are validated and revalidated to ensure that they work as intended, and do not illegally discriminate.
— Using AI and Algorithms, United States Federal Trade Commission
For decades, error or accuracy on hold-out test data has been the standard by which machine learning (ML) models are judged. Unfortunately, as machine learning (ML) models are embedded into artificial intelligence (AI) systems that are deployed more broadly and for more sensitive applications, the standard approaches for ML model assessment have proven inadequate. For instance, test data area under the curve (AUC) tells us almost nothing about algorithmic discrimination, lack of transparency, privacy harms, or security vulnerabilities. Yet, these problems are often why AI systems fail once deployed. For acceptable in vivo performance, we simply must push beyond traditional in silica assessments designed primarily for research prototypes. Moreover, the best results for safety and performance occur when organizations are able to mix and match appropriate cultural competencies and process controls from Chapter 9 with AI technology that promotes trust. Chapter 15 presents sections on training, debugging, and deploying AI systems that delve into the numerous technical approaches for testing and improving safety, performance, and trust in AI.
Training
The discussion of training ML algorithms begins with reproducibility, because without that, it’s impossible to know if any one version of an AI system is really any better than another. Data and feature engineering will be addressed briefly and the training section closes by outlining key points for model specification.
Reproducibility
Without reproducibility, you’re building on sand. Reproducibility is fundamental to all scientific efforts, including AI. Without reproducible results, it’s very hard to know if day-to-day efforts are improving, or even changing, an AI system. Reproducibility helps ensure proper implementation and testing, and some customers may simply demand it. The techniques discussed below are some of the most common that data scientists and ML engineers use to establish a solid, reproducible foundation for their AI systems.
Benchmark Models: Benchmark models are important safety and performance tools for training, debugging, and deploying AI systems. They’ll be addressed several times in Chapter 15. In the context of model training and reproducibility, you should always build from a reproducible benchmark model. This allows a checkpoint for rollbacks if reproducbility is lost, but it also enables real progress. If yesterday’s benchmark is reproducible, and today’s gains above and beyond that benchmark are also reproducible, that’s real and measurable progress!
Hardware: As AI systems often leverage hardware acceleration via graphical processing units (GPUs) and other specialized system components, hardware is still of special interest for preserving reproducibility. If possible, try to keep hardware as similar as possible across development, testing, and deployment systems.
Environments: AI systems always operate in some computational environment, specified by the system hardware, system software, and your data and AI software stack. Changes in any of these can affect the reproducibility of ML outcomes. Thankfully, tools like Python virtual environments and Docker containers that preserve software environments have become commonplace in the practice of data science. Additional specialized environment management software from Domino Data Labs, gigantum, TensorFlow TFX, and Kubeflow can provide even more expansive control of computational environments.
Metadata: Data about data is essential for reproducibility. Track all artifacts associated with the model, e.g., datasets, preprocessing steps, model, data and model validation results, human sign offs, and deployment details. Not only does this allow rolling-back to a specific version of a dataset or model, but it also allows for detailed debugging and forensic investigations of AI incidents. For an open-source example of a nice tool for tracking metadata, checkout TensorFlow ML Metadata.
Random Seeds: Set by data scientists and engineers in specific code blocks, random seeds are the plow-horse of ML reproducibility. Unfortunately, they often come with language- or package-specific instructions. Seeds can take some time learn in different software, but when combined with careful testing, random seeds enable the building blocks of intricate and complex AI systems to retain reproducibility. This is a prerequisite for overall reproducibility.
Version Control: Minor code changes can lead to drastic changes in ML results. Changes to your own code plus it’s dependencies must be tracked in a professional version control tool for any hope of reproducibility. Git and GitHub are free and ubiquitous resources for software version control, but there are plenty of other options to explore. Crucially, data can also be version-controlled with tools like Pachyderm and DVC.
Though it may take some experimentation, some combination of these approaches and technologies should work to assure reproducibility in your AI system. Once this fundamental safety and performance control is in place, it’s time to consider other baseline factors like data quality and feature engineering.
Data Quality and Feature Engineering
Entire books have been written about data quality and feature engineering for ML and AI systems. This short subsection highlights some of the most critical aspects of this vast practice from a safety and performance perspective.
Starting with the basics, both the size and shape of a dataset are important safety and performance considerations. ML algorithms, that form the guts of today’s AI systems, are hungry for data. Both small data and wide, sparse data can lead to catastrophic performance failures in the real-world, because both give rise to scenarios in which system performance appears normal on test data, but is simply untethered to real-world phenomena. Small data can make it hard to detect underfitting, underspecification, overfitting, or other fundamental performance problems. Sparse data can lead to over-confident predictions for certain input values. If an ML algorithm did not see certain data ranges during training due to sparsity issues, most ML algorithms will issue a predictions in those ranges with no warning that the prediction is based on almost nothing.
A number of other data quality problems can cause safety worries, mostly due to misrepresentation of important information or propensity to cause overfitting or pipeline process issues. In Chapter 15, misrepresentation means data is distorted in a way that is consistent across training data partitions, but results in incorrect decisions once a model trained on the incorrect data is applied to new, live data. Overfitting refers to memorizing noise in training data and resulting optimistic error estimates, and pipeline issues are problems that arise from combining different stages of data preparation and modeling components into one prediction-generating executable. The short checklist below can be applied to most standard ML problems to help identify common data quality problems with safety and performance implications.
Misrepresentation
No duplicate data over-emphasizing unimportant information
No incorrect encoding or decoding of character or binary data
No incorrect use of time or date formats
Minimal one-hot encoding — reducing unnecessary sparsity
Minimal outliers — diminishing influence of outliers on model parameters or rules
Minimal use of simplistic imputation — preventing distortion of training distributions
Minimal correlation — increasing stability in model parameters or rules
Thorough normalization of character values — preventing mistreatment of modeled entities
Overfitting
No improper treatment of high cardinality categorical features
No naive target encoding
Minimal duplicate entities across training, validation, or test data partitions
Training data with time or date feature not split randomly for validation and testing
Pipeline Issues
All data cleaning and transformation steps applied during inference
Re-adjusting for over- or under-sampling during inference
Of course, many other problems can arise in data preparation and feature engineering, especially as the types of data that ML algorithms can accept for training becomes more varied. Applying the lens of misrepresentation, overfitting, or pipeline issues to think through how discrepancies in data or pipelines can lead to errors once the system is deployed is usually a helpful exercise for spotting pitfalls. Tools that detect and address such problems are also an important part of the the data science toolkit. For Python Pandas users, the pandas-profiling tool is a visual aide that helps to detect many basic data quality problems. R users also have options, as discussed by Mateusz Staniak and Przemysław Biecek in The Landscape of R Packages for Automated Exploratory Data Analysis.
Model Specification
Once your data preparation and feature engineering pipeline is hardened, it’s time to think about ML model specification. Considerations for real-world performance and safety are quite different from getting published or maximizing performance on ML contest leaderboards. While measurement of validation and test error remain important, bigger questions of accurately representing data and commonsense real-world phenomena have the highest priority. This subsection address model specification for safety and performance by highlighting the importance of benchmarks and alternative models, discussing the many hidden assumptions of ML models, and previewing the emergent disciplines of robust ML and ML safety and reliability.
Benchmarks and Alternatives
When starting a ML modeling task, it’s best to begin with a peer-reviewed training algorithm, and ideally to replicate any benchmarks associated with that algorithm. While academic algorithms rarely meet all the needs of complex business problems, starting from a well-known algorithm and benchmarks provides a baseline assurance that the training algorithm is implemented correctly. Once this sanity check is addressed, then think about tweaking a complex algorithm to address specific quirks of a given problem.
Along with comparison to benchmarks, evaluation of numerous alternative algorithmic approaches is another best practice that can improve safety and performance outcomes. The exercise of training many different algorithms and judiciously selecting the best of many options for final deployment typically results in higher-quality models because it increases the number of models evaluated and forces users to understand differences between them. Moreover, evaluation of alternative approaches is important in complying with a broad set of U.S. non-discrimination and negligence standards. In general, these standards require evidence that different technical options were evaluated and an appropriate trade-off between consumer protection and business need was made before deployment.
Hidden Assumptions
Like undetected misrepresentation problems in training data causing major problems once an AI system is deployed, ML algorithms that don’t align with fundamental structures in training data or in the real-world domain can cause serious incidents. Often times data scientists think they matched their models to the problem domain, but a wide array of hidden assumptions can still cause problems.
Selecting to use an ML algorithm for a modeling problem also comes with a lot of basic assumptions — essentially that high-degree interactions and nonlinearity in input features are important drivers of the predicted phenomenon. Conversely, choosing to use a linear model implicitly downplays interactions and nonlinearities. If those qualities are important for high-quality predictions, they’ll have to be specified explicitly for the linear model. In either case, it’s important to take stock of how main effects, correlations and local dependencies, interactions, nonlinearities, clusters, outliers, and hierarchies in training data, or in reality, will be handled by a modeling algorithm and to test those mechanisms. For optimal safety and performance once deployed, dependencies on time, geographical locations, or connections between entities must also be represented within ML models. Testing for independence of errors between rows in training data or plotting model residuals and looking for strong patterns are general and time-tested methods for ensuring such dependencies have been addressed. It is also possible to directly constrain ML algorithms to reflect reality. Monotonicity constraints ensure known monotonic relationships are reflected in ML models. Interaction constraints can prevent arbitrary or undesirable combinations of input features from affecting model predictions.
Another often unstated assumption that comes with many learning algorithms involves squared loss functions. Many ML algorithms use a squared loss function by default. This means your model thinks that your modeling target variable follows a normal distribution. Some modeling targets are normally distributed, but many are not. Matching your target distribution to your loss function is an important step in aligning your ML algorithm to the problem domain. Hyperparameters for ML algorithms are yet another place where hidden assumptions can cause safety and performance problems. Hyperparameters can be selected based on domain knowledge or via technical approaches like grid search and Bayesian optimization. The key is doing this process systematically and not assuming the large number of default settings in most ML algorithms will work for your data and your problem.
The Future of Safe and Robust Machine Learning
The new field of robust ML is churning out new algorithms with improved stability and security characteristics. Various researchers are creating new learning algorithms with guarantees for optimality, like optimal sparse decision trees. And researchers have put together excellent tutorial materials on ML safety and reliability. Today, these approaches require custom implementations and extra work, but hopefully soon these safety and performance advances will be more widely available.
Model Debugging
Once a model has been properly specified and trained, the next step in the technical safety and performance assurance process is testing and debugging. In years past, such assessments focused on accuracy and error rates in holdout data. As ML models are incorporated in public-facing AI systems, and the number of publicly reported AI incidents is increasing dramatically, it’s clear that more rigorous validation is required. The new field of model debugging is rising to meet this need. Model debugging treats ML models more like code and less like abstract mathematics. It applies a number of different testing methods to find software flaws, logical errors, inaccuracies, and security vulnerabilities in ML models and AI system pipelines. Of course, these bugs must also be fixed when they are found. This section of Chapter 15 explores model debugging in some detail, starting with basic and traditional approaches, moving onto specialized testing techniques, delineating the common bugs we’re trying to find, and closing with a discussion of bug remediation methods.
Software Testing
Basic software testing becomes much more important when we stop thinking of pretty figures and impressive tables of results as the end goal of an ML model training task. When AI systems are deployed, they need to work correctly under various circumstances. Almost more than anything else related to AI and ML systems, making software work is an exact science. Best practices for software testing are well-known and can even be made automatic in many cases. At a minimum, mission-critical AI systems should undergo:
Unit testing: All functions, method, subroutines or other code blocks should have tests associated with them to ensure they behave as expected, accurately, and are reproducible. This ensures the building blocks of an AI system are solid.
Integration testing: All APIs and interfaces between modules, tiers, or other subsystems should be tested to ensure proper communication. API mismatches after backend code changes are a classic failure mode for AI systems. Use integration testing to catch this and other integration fails.
Functional Testing: Functional testing should be applied to AI system user interfaces and endpoints to ensure that they behave as expected once deployed.
Chaos Testing: Testing under chaotic and adversarial conditions can lead to better outcomes when your AI systems faces complex and surprising in vivo scenarios.
Two additional ML-specific tests should be added into the mix to increase quality further:
Random Attack: Random attacks expose AI systems or ML models to vast amounts of random data to catch both software and math problems. The real world is a chaotic place. Your AI system will encounter data for which it’s not prepared. Random attacks can decrease those occurrences and any associated glitches or incidents.
Benchmarking: Use benchmarks to track system improvements over time. AI systems can be incredibly complex. How can you know if the 3 lines of code an engineer changes today made a difference in the performance of the system as a whole? If system performance is reproducible, and benchmarked before and after changes, it’s much easier to answer such questions.
ML is software. So, all the testing that’s done on traditional enterprise software assets should be done on important AI systems as well. If you don’t know where to start with modeling debugging, start with random attack. You may very well be shocked at the math or software bugs random data can expose in your systems. When you add benchmarks to your organization’s continuous integration/continuous development (CI/CD) pipelines, that’s the another big step toward assuring the safety and performance of AI systems.
Traditional Model Assessment
Once you feel confident that the code in your AI systems is functioning as expected, it’s easier to concentrate on testing the math of your ML algorithms. Looking at standard performance metrics is important. But it’s not the end of the validation and debugging process — it’s the beginning. While exact values and decimal points matter, from a safety and performance standpoint, they matter much less than they do on the leaderboard of an ML contest. When considering in-domain performance, it’s less about exact numeric values of assessment statistics, and more about mapping in silica performance to in vivo performance.
If possible, try to select assessment statistics that have a logical interpretation and practical or statistical thresholds. For instance, root mean squared error (RMSE) can be calculated for many types of prediction problems, and crucially, it can be interpreted in units of the target variable. Area under the curve (AUC), for classification tasks, is bounded between 0.5 at the low end and 1.0 at the high end. Such assessment measures allow for commonsense interpretation of ML model performance and for comparison to widely accepted thresholds for determining quality. It’s also important to analyze performance metrics across important segments in your data and across training, validation, and testing data partitions. When comparing performance across segments within training data, it’s important that all those segments exhibit roughly equivalent and high quality performance. Amazing performance on one large customer segment, and poor performance on everyone else, will look fine in average assessment statistic values like RMSE. But, it won’t look fine if it leads to public brand damage due to many unhappy customers. Varying performance across segments can also be a sign of underspecification, a serious ML bug that will be addressed in more detail later in Chapter 15. Performance across training, validation and test datasets are usually analyzed for under and overfitting. Like underspecification, these are serious bugs that will receive more detailed treatment below.
Another practical consideration related to traditional model assessment is selecting a probability cutoff threshold. Most ML models for classification generate numeric probabilities, not discrete decisions. Selecting the numeric probability cutoff to associate with actual decisions can be done in various ways. While it’s always tempting to maximize some sophisticated assessment measure, it’s also a good idea to consider real-world impact. Let’s consider a classic lending example. Say a probability of default model threshold is originally set at 0.15, meaning that everyone who scores less than a 0.15 probability of default is approved for a loan, and those that score at the threshold or over are denied. Think through questions like:
What is the expected monetary return for this threshold?
What is the risk?
How many people will get the loan at this threshold?
How many women? How many minority group members?
Outside of the probability cutoff thresholds, it’s always a good idea to estimate in-domain performance, because that’s what we really care about. Assessment measures are nice, but what matters is making money versus losing money, or even saving lives versus taking lives. You can take a first crack at understanding real-world value by assigning monetary, or other, values to each cell of a confusion matrix for classification problems or to each residual unit for regression problems. Do a back-of-the-napkin calculation. Does it look like your model will make money or lose money? Once you get the gist of this kind of valuation, you can even incorporate value levels for different model outcomes directly into ML loss functions, and optimize towards the best-suited model for real-world deployment.
Error and accuracy metrics will always be important for ML. But once ML algorithms are used in deployed AI systems, numeric values and comparisons matter less than they do for publishing papers and playing Kaggle. So, keep using traditional assessment measures, but try to map them to in-domain safety and performance.
Residual Analysis for Machine Learning
Residual analysis is another type of traditional model assessment that can be highly effective for ML models and AI systems. At it’s most basic level, residual analysis means learning from mistakes. That’s an important thing to do in life, as well as in organizational AI systems. Moreover, residual analysis is a tried and true model diagnostic technique. This subsection will use an example and three generally applicable residual analysis techniques to apply this established discipline to ML.
Example Setup
Since residual analysis is a fairly technical topic, we’ll use an example problem and some related figures for clarity’s sake. The figures below are based on the well-known Taiwanese credit card dataset from the University of California Irvine (UCI) ML repository. In this dataset, the object is to predict if someone will pay, DEFAULT_NEXT_MONTH = 0, or default, DEFAULT_NEXT_MONTH = 1, on their next credit card payment. Features about payments are used to generate probabilities of default, or p_DEFAULT_NEXT_MONTH. The example ML model is trained on payment features including PAY_0 — PAY_6, or a customer’s most recent through six months prior repayment statuses (higher values are late payments), PAY_AMT1 — PAY_AMT6, or a customer’s most recent through six months prior payment amounts, and BILL_AMT1 — BILL_AMT6, or a customer’s most recent through six months prior bill amounts. All monetary values are reported in Taiwanese Dollars (NT$).
Some of the figures also contain the features LIMIT_BAL and r_DEFAULT_NEXT_MONTH. LIMIT_BAL is a customer’s credit limit. r_DEFAULT_NEXT_MONTH is a logloss residual value, or a numeric measure of how far off the prediction, p_DEFAULT_NEXT_MONTH, is from the known correct answer, DEFAULT_NEXT_MONTH. You may also see demographic features in the dataset, like SEX, that are used for bias testing. For the most part, Chapter 15 treats the example credit lending problem as a general predictive modeling exercise, and does not consider applicable regulations.
Analysis and Visualizations of Residuals
Plotting residuals and examining them for tell-tale patterns of different kinds of problems is a long-running model diagnostic technique. And it can be applied to ML algorithms to great benefit with a bit of creativity and elbow grease. Simply plotting residuals for an entire dataset can be helpful, especially to spot outlying rows causing very large numeric errors or to analyze overall trends in errors. However, breaking residual values and plots down by feature and level, as illustrated in Figure 1, is likely to be more informative. In the top row of Figure 1, favorable values for PAY_0, -2,-1,0 representing paying on time or not using credit, are associated with large residuals for customers who default. In the bottom rows the exact opposite, but still obvious, behavior is displayed. Customer’s with unfavorable values for PAY_0 cause large residuals when they suddenly pay on time. What’s the lesson here? Figure 1 shows that the ML model in question would make the same mistakes a human, or a simple business rule, would make. Now that we know about these simplistic decision processes, which happen to arise from thousands of machine-learned rules, the model can be improved, or just replaced with a more transparent and secure business rule: IF PAY_0 < 2 THEN APPROVE, ELSE DENY.
Figure 3-1. Residuals show that a model makes the same obvious mistakes a human might. Customers with good payment track records who default suddenly cause large residuals, as do customers with poor payment track records who suddenly start paying on time. Adapted from Responsible Machine Learning with Python.
Do you have a lot features or features with many categorical levels? You’re not off the hook! Start with the most important features and their most common levels. Residual analysis is considered standard practice for important linear regression models. ML models are arguably higher-risk and more failure prone, so they need even more residual analysis and model debugging.
Modeling Residuals
Modeling residuals with interpretable models is another great way to learn more about the mistakes your AI system could make. Figure 2 displays a decision tree model of the example ML model’s residuals for DEFAULT_NEXT_MONTH = 1, or customer’s who default. While it reflects what was discovered in Figure 1, it does so in a very direct way that exposes the logic of the failures. In fact, it’s even possible to build programmatic rules about when the model is likely to fail the worst. The worst residuals occur when: PAY_0 < 0.5 AND PAY_AMT2 >= 2802.5 AND PAY_4 < 1 AND LIMIT_BAL >= 256602.0 Or more plainly, this model fails when a customer exhibits excellent payment behavior, but then suddenly defaults.
Figure 3-2. An interpretable decision tree model of the example ML model’s residuals displays patterns that can be used to spot failure modes and design mitigation approaches. Adapted from Responsible Machine Learning with Python.
In general this technique helps uncover failure modes. Once failure modes are known, they can be mitigated to increase performance and safety. For the example, if the patterns in Figure 4 can be isolated from patterns that result in non-default, this can lead to precise remediation strategies in the form of model assertions. Model assertions, also known as business rules, are a mitigation technique that can be applied directly to ML model predictions to address such discovered failure modes. Model assertions will be discussed in greater detail below, but don’t be shy about applying other common sense actions to increase safety and performance.
Local Contribution to Residuals
Plotting and modeling residuals are older techniques that are well-known to skilled practitioners. A more recent breakthrough has made it possible to calculate accurate Shapley value contributions to model errors! This means for any feature or row of any dataset, we can now know which features are driving model predictions, and which features are driving model errors. What this advance really means for ML is yet to be determined, but the possibilities are certainly intriguing. One obvious application for this new Shapley value technique is to compare feature importance for predictions to feature importance for residuals, as illustrated in Figure 3.
Figure 3-3. It is now possible to calculate Shapley value contributions to model errors! This means we can know which features are driving predictions, which features are driving errors, and consider mitigation approaches for non-robust features that contribute more to errors than to predictions. Adapted from Responsible Machine Learning with Python.
Figure 3 shows accurate Shapley value feature importance on the left, and accurate Shapley values contributions to residuals on the right, both aggregated over an entire dataset. This reveals that non-robust features like PAY_2 and PAY_3 are actually more important to model residuals than model predictions! Meaning these features should be examined carefully, have strong regularization or noise injection applied to them, or even be dropped from the analysis.
This ends our brief tour of residual analysis for ML. Of course there are other ways to study the errors of ML models. If you prefer another way, then go for it! The important thing is do some kind of residual analysis for all high-stakes AI systems. Along with sensitivity analysis, to be discussed in the next subsection, residual analysis is a major component of the toolkit for ML model debugging.
Sensitivity Analysis
Unlike linear models, it’s very hard to understand how ML models extrapolate or perform on new data, without testing them explicitly. That’s the simple and powerful idea behind sensitivity analysis. Find or simulate data for interesting scenarios, then see how your model performs on that data. You really won’t know how your AI system will perform in these scenarios unless you do basic sensitivity analysis. Of course, there are structured and more efficient variants of sensitivity analysis, such as in the interpret library from Microsoft Research. Another great option for sensitivity analysis, and a good place to start with more advanced model debugging techniques is random attacks, discussed in the Software Testing subsection. Many other approaches, like stress-testing, visualization, and adversarial example searches also provide standardized ways to conduct sensitivity analysis.
Stress-Testing: Stress-testing involves simulating data that represents realistic adverse scenarios, like recessions or pandemics, and making sure your ML models and any downstream business processes will hold up to the stress of the adverse situation.
Visualizations: Visualizations like plots of accumulated local affect (ALE), individual conditional local effect (ICE), and partial dependence curves are a well-known and highly structured way to observe the performance of ML algorithms across various real or simulated values of input features.
Adversarial Example Searches: Adversarial examples are rows of data that evoke surprising responses from ML models. Deep learning approaches can be used to generate adversarial examples for unstructured data, and ICE and genetic algorithms can be used to generate adversarial examples for structured data. Adversarial examples, and searching for them, are a great way to find local areas in your ML response functions or decision boundaries that can cause incidents once deployed.
Figure 4 shows the results of combining visualizations and adversarial example searches in model debugging. The response surfaces in Figure 4 were formed by randomly perturbing a certain interesting row of data many thousands of times and plotting the associated predictions. How was this interesting row of data selected for the basis of an adversarial example search? ICE. The surfaces are based on an ICE curve that showed a particularly drastic swing for different values of input variables.
Figure 3-4. Adversarial example search shows several interesting positive and negative results.
Getting back to the example data and ML model discussed in previous sections, Figure 4 shows the results of six adversarial example searches, seeded by an ICE curve, and presents some positive and negative findings. On the positive side, each response surface shows monotonicity. These simulations confirm that monotonic constraints, supplied at training time and based on domain knowledge, held up during training. On the negative side, a potential logical flaw and a vulnerability to adversarial attack were also discovered. According to one of the response surfaces, the example model will issue high probability of default predictions once customers become two months late on their most recent payment (PAY_0). This harsh treatment is applied even in the circumstance where a customer repays (PAY_AMT1) over their credit limit. This potential logical flaw could prevent pre-payment or over-penalize good customers who failed pay their bill while on vacation. Another surface also shows a surprisingly steep spike in predictions for low first (PAY_AMT1) and second payment (PAY_AMT2) values. This could present an avenue for adversarial examples to evoke surprisingly high probability of default predictions once the system is deployed.
Each of the discussed sensitivity analysis approaches and the example adversarial search technique can provide insight into how your AI system might perform when it encounters certain kinds of data in the real world. A theme of Chapter 15 is anticipating how an AI system will perform in the real-world and making sure it’s performance in the lab is relevant to it’s in vivo performance, so that appropriate controls can be applied before deployment. Sensitivity analysis is one of most direct tools for simulating real-world performance and making sure your AI system is ready for what it may face once deployed.
Benchmark Models
Benchmark models have been discussed at numerous points within 15. They are a very important safety and performance tool, with uses throughout the AI lifecycle. This subsection will discuss benchmark models in the context of model debugging and also summarize other critical uses.
The first way to use a benchmark model for debugging is to compare performance between a benchmark and the AI system in question. If the AI system does not outperform a simple benchmark, and many may not, it’s back to the drawing board! Assuming a system passes this initial baseline test, benchmark models are a comparison tool used to interrogate mechanisms and find bugs within an AI system. For instance, data scientists can ask the question: “which predictions does my benchmark get right and my AI system get wrong?” Given that the benchmark should be well understood, it should be clear why it is correct, and this understanding should also provide some clues as to what the AI system is getting wrong. Benchmarks can also be used for reproducibility and model monitoring purposes as follows:
Reproducibility Benchmarks: Before making changes to a complex AI system it is imperative to have a reproducible benchmark from which to measure performance gains, or losses. A reproducible benchmark model is an ideal tool for such measurement tasks. If this model can be built into CI/CD processes that enable automated testing for reproducibility and comparison of new system changes to established benchmarks, even better!
Debugging Benchmarks: As discussed above, comparing complex ML model mechanisms and predictions to a trusted, well-understood benchmark model’s mechanisms and predictions is an effective way to spot ML bugs.
Monitoring Benchmarks: Comparing real-time predictions between a trusted benchmark model and a complex AI system is a way to catch serious ML bugs in real-time. If a trusted benchmark model and a complex AI system give noticeably different predictions for the same instance of new data, this can be a sign of an ML hack, data drift, or even algorthmic discrimination. In such cases, benchmark predictions can be issued in place of AI system predictions, or predictions can be withheld until human analysts determine if the AI system prediction is valid.
If you set benchmarks up efficiently, it may even be possible to use the same model for all three tasks. A benchmark can be run before starting work to establish a baseline from which to improve performance, and that same model can be used in comparisons for debugging and model monitoring. When a new version of the system outperforms an older version in a reproducible manner, the ML model at the core of the system can become the new benchmark. If your organization can establish this kind of workflow, you’ll be benchmarking and iterating your way to increased AI safety and performance.
Machine Learning Bugs
Now that we know how to find ML bugs with software QA, traditional model assessment, residual analysis, sensitivity analysis and benchmark models, what exactly are we looking for? As discussed elsewhere in 15, there’s a lot that can go wrong, and thinking about an AI system’s operating environment is key to understanding failure modes. But when it comes to the math of ML, there are a few emergent gotchas and many well-known pratfalls. This subsection will discuss some usual suspects and some dark horse bugs including distributional shifts, instability, looped inputs, overfitting, underfitting, and underspecification.
Distributional Shifts
Shifts in the underlying data between different training data partitions and after model deployment are common failure modes for AI systems. Whether it’s a new competitor entering a market or a devastating world-wide pandemic, the world is a dynamic place. Unfortunately most of today’s AI systems learn patterns from static snapshots of training data and try to apply those patterns in new data. Sometimes that data is holdout validation or testing partitions. Sometimes it’s live data in a production scoring queue. Regardless, drifting distributions of input features is a serious bug that must be caught and squashed. (Before you jump to the conclusion that adaptive, on-line, or reinforcement learning AI systems will solve the problem of distributional drift, I’d like to point out that such systems currently implicate untenable risks for in vivo instability and insecurity.) When training ML models, watch out for distributional shifts between training, cross-validation, validation, or test sets using KS-, t-, or other appropriate statistical tests. If a feature has a different distribution from training partition to another, drop it or regularize it heavily. Another smart test for distributional shifts to conduct during debugging is to simulate distributional shifts for potential deployment conditions. Worried about how your model will perform during a recession? Simulated distributional shifts to simulate more late payments, lower cash flow, and higher credit balances and see how your model performs. It’s also crucial to record information about distributions in training data so that drift after deployment can be detected easily.
Instability
ML models can exhibit instability in the training process or when making predictions on live data. Instability in training is often related to small training data, sparse regions of training data, highly correlated features within training data, or high-variance model forms, such as deep single decision trees. Cross-validation is a typical tool for detecting instability during training. If a model displays noticeably different error or accuracy properties across cross-validation folds then you have an instability problem. Training instability can often be remediated with better data and lower-variance model forms such as decision tree ensembles. Plots of ALE or ICE also tend to reveal prediction instability in sparse regions of training data, and instability in predictions can be analyzed using sensitivity analysis: simulations, stress-testing, and adversarial example searches. If probing your response surface or decision boundary with these techniques uncovers wild swings in predictions, or your ALE or ICE curves are bouncing around, especially in high or low ranges of feature values, you also have an instability problem. This type of instability can often be fixed with constraints and regularization.
Looped Inputs
As AI systems are incorporated into broader digitalization efforts, or implemented as part of larger decision support efforts, multiple data-driven systems often interact. In these cases, error propagation and feedback loop bugs can occur. Error propagation occurs when small errors in one system cause or amplify errors in another system. Feedback loops are a way an AI system can fail by being right. Feedback loops occur when an AI system affects its environment and then those effects are re-incorporated into system training data. Examples of feedback loops include when predictive policing leads to over-policing of certain neighborhoods or when employment algorithms intensify diversity problems in hiring by continually recommending correct, but non-diverse, candidates. Dependencies between systems must be documented and deployed models must be monitored so that debugging efforts can detect error propagation or feedback loop bugs.
Leakage
Information leakage between training, validation, and test data partitions happens when information from validation and testing partitions leaks into a training partition, resulting in overly optimistic error and accuracy measurements. Leakage can happen for a variety of reasons, including:
Feature Engineering: If used incorrectly, certain feature engineering techniques such as imputation or principal components analysis (PCA) may contaminate training data with information from validation and test data. To avoid this kind of leakage, perform feature engineering uniformly, but separately, across training data partitions. Or ensure that information, like means and modes used for imputation, are calculated in training data and applied to validation and testing data, and not vice-versa.
Mistreatment of Temporal Data: Don’t use the future to predict the past. Most data has some association with time, whether explicit as in time-series data, or some other implicit relationship. Mistreating or breaking this relationship with random sampling is a common cause of leakage. If you’re dealing with data where time plays a role, time needs to be used in constructing model validation schemes. The most basic rule is that the earliest data should be in training partitions while later data should be divided into validation and test partitions, also according to time.
Multiple Identical Entities: Sometimes the same person, financial or computing transaction, or other modeled entity will be in multiple training data partitions. When this occurs, care should be taken to ensure that ML models do not memorize characteristics of these individuals then apply those individual-specific patterns to different entities in new data.
Keeping an untouched, time-aware holdout set for an honest estimate of real-world performance can help with many of these different leakage bugs. If error or accuracy on such a holdout set looks a lot less rosy than on partitions used in model development, you might have a leakage problem. More complex modeling schemes involving stacking, gates, or bandits can make leakage much harder to prevent and detect. However, a basic rule of thumb still applies: do not use data involved in learning or model selection to make realistic performance assessments. Using stacking, gates, or bandits means you need more holdout data for the different stages of these complex models to make an accurate guess at in vivo quality. More general controls such as careful documentation of data validation schemes and model monitoring in deployment are also necessary for any AI system.
Overfitting
Overfitting happens when a complex ML algorithm memorizes too much specific information from training data, but does not learn enough generalizable concepts to be useful once deployed. Overfitting is often caused by high-variance models, or models that are too complex for the data at hand. Overfitting usually manifests in much better performance on training data than on validation, cross-validation, and test data partitions. Since overfitting is a ubiquitous problem, there are many possible solutions, but most involve decreasing the variance in your chosen model. Examples of these solutions include:
Ensemble Models: Ensemble techniques, particularly bootstrap aggregation (i.e., bagging) and gradient boosting are known to reduce error from single high-variance models. So, try one of these ensembling approaches if you encounter overfitting. Just keep in mind that when switching from one model to many, you can decrease overfitting and instability but you’ll also likely loose interpretability.
Reducing Architectural Complexity: Neural networks can have too many hidden layers or hidden units. Ensemble models can have to many base learners. Trees can be too deep. If you think you’re observing overfitting, make your model architecture less complex.
Regularization: Regularization refers to many sophisticated mathematical approaches for reducing the strength, complexity, or number of learned rules or parameters in an ML model. In fact, many types of ML models now incorporate multiple options for regularization, so make sure you employ these options to decrease the likelihood of overfitting.
Simpler Hypothesis Model Families: Some ML models will be more complex than others out-of-the-box. If your neural network or gradient boosting machine (GBM) look to be overfit, you can try a less complex decision tree or linear model.
Overfitting is traditionally seen as the Achilles’ heal of ML. While it is one the most likely bugs to encounter, it’s also just one of many possible technical risks to consider from a safety and performance perspective. As with leakage, as ML systems become more complex, overfitting becomes harder to detect. Always keep an untouched holdout set with which to estimate real-world performance before deployment. More general controls like documentation of validation schemes, model monitoring, and A/B testing of models on live data also need to be applied to prevent overfitting.
Shortcut Learning
Shortcut learning occurs when a complex AI system is thought to be learning and making decisions about one subject, say anomalies in lung scans or job interview performance, but it’s actually learned about some simpler related concept, such as machine identification numbers or Zoom video call backgrounds. Use interpretable models and explainable AI (XAI) techniques to understand what learned mechanisms are driving model decisions, and make sure you understand how your AI system makes decisions.
Underfitting
If someone tells you a statistic about a set of data, you might wonder how much data that statistic is based on, and whether that data was of high enough quality to be trustworthy. What if someone told you they had millions, billions, or even trillions of statistics for you, they would need lots of data to make a case that all these statistics were meaningful. Just like averages and other statistics, each parameter or rule within an ML model is learned from data. Big ML models need lots of data to learn enough to make their millions, billions, or trillions of learned induction mechanisms meaningful. Underfitting happens when a complex ML algorithm doesn’t have enough training data, constraints, or other input information, and it learns just a few generalizable concepts from training data, but not enough specifics to be useful when deployed. Underfitting can be diagnosed by markedly better performance in validation, cross-validation, and test data versus training data. It can be mitigated by using simpler models or with additional training data, by constraining ML algorithms, or by providing additional input information, such as a Bayesian prior.
Underspecification
Forty Google researchers recently published Underspecification Presents Challenges for Credibility in Modern Machine Learning. This paper gives a name to a problem that has existed for decades, underspecification. Underspecification arises from the core ML concept of the multiplicity of good models, sometimes also called the Rashomon effect. For any given data set, there are many accurate ML models. How many? Vastly more than human operators have any chance of understanding in most cases. While we use validation data to select a good model from many models attempted during training, validation-based model selection is not a strong enough control to ensure we picked the best model - or even a servicable model - for deployment. Say that for some dataset there are a million total good ML models based on training data and the large number of potential hypothesis models. Selecting by validation data may cut that number of models down to a pool of one hundred total models. Even in this simple scenario, we’d still only have a 1 in 100 chance of picking the right model for deployment. How can we increase those odds? By injecting domain knowledge into ML models. By combining validation-based model selection with domain-informed constraints, we have a much better chance at selecting a viable model for the job at hand.
Happily, testing for underspecification can be fairly straightforward. One major symptom of underspecification is model performance that’s dependent on computational hyperparameters that are not related to the structure of the domain, data, or model. If your model’s performance varies due to random seeds, number of threads or GPUs, or other computational settings, your model is probably underspecified. Another test for underspecification is illustrated in Figure 5.
Figure 3-5. Anayzing accuracy and errors across key segments is an important debugging method for detecting bias, underspecification, and other serious ML bugs.
Figure 5 displays several error and accuracy measures across important segments in the example training data and model. Here a noticeable shift in performance for segments defined by higher values of the important feature PAY_0 points to a potential underspecification problem, likely due to data sparsity in that region of the training data. (Performance across segments defined by SEX is more equally balanced, which a good sign from a bias testing perspective, but certainly not the only test to be considered for bias problems.) Fixing underspecification tends to involve applying real-world knowledge to ML algorithms. Such domain-informed mechanisms include graph connections, monotonicity constraints, interaction constraints, beta constraints, or other architectural constraints.
Each of the ML bugs discussed in this subsection has real-world safety and performance ramifications. A unifying theme across these bugs is they cause systems to perform differently than expected when deployed and over time. Unexpected performance leads to unexpected failures and AI incidents. Using knowledge of potential bugs and bug detection methods discussed here to ensure estimates of validation and test performance are relevant to deployed performance will go a long way toward preventing real-world incidents.
Remediation: Fixing Bugs
The last step in debugging is fixing bugs. The previous subsections have outlined testing strategies, bugs to be on the lookout for, and a few specific fixes. This subsection outlines general ML bug-fixing approaches and discusses how they might be applied in the example debugging scenario. General strategies to consider during ML model debugging include:
Anomaly Detection: Strange inputs and outputs are usually bad news for ML systems. These can be evidence of real-time security, discrimination, and safety and performance problem. Monitor ML system data queues and predictions for anomalies, record the occurrence of anomalies, and alert stakeholders to their presence when necessary.
Experimental Design and Data Augmentation: Collecting better data is a often a fix-all for ML bugs. What’s more, data collection doesn’t have to be done in a trial-and-error fashion, nor do data scientists have to rely on data exhaust by-products of other organizational processes for selecting training data. The mature science of design of experiment (DOE) has been used by data practitioners for decades to ensure they collect the right kind and amount of data for model training. Arrogance related to the perceived omnipotence of “big” data and overly compressed deployment time lines are the most common reasons data scientists don’t practice DOE. Unfortunately, these are not scientific reasons to ignore DOE.
Model Assertions: Model assertions are business rules applied to ML model predictions that correct for shortcomings in learned ML model logic. Using business rules to improve predictive models is a time-honored remediation technique that will likely be with us for decades to come. If there is a simple, logical rule that can be applied to correct a foreseeable ML model failure, don’t be shy about implementing it. The best practitioners and organizations in the predictive analytics space have used this trick for decades.
Model Editing: Given that ML models are software, that software artifact can be edited to correct for any discovered bugs. Certain models, like GA2Ms or explainable boosting machines (EBMs) are designed to be edited for the purposes of model debugging. Other types of models may require more creativity to edit. Either way, editing must be justified by domain considerations, as it’s likely to make performance on training data appear worse. For better or worse, ML models optimize toward lower error. If you edit this highly-optimized structure to make in-domain performance better, you’ll likely worsen traditional assessment statistics.
Model Management and Monitoring: ML models and the AI systems that house them are dynamic entities that must be monitored to the extent that resources allow. All mission-critical ML systems should be well-documented, inventoried, and monitored for security, discrimination, and safety and performance problems in real-time. When something starts to go wrong, stake-holders need to be alerted quickly. The next major section of Chapter 15 gives more detailed treatment of model monitoring.
Monotonicity and Interaction Constraints: Many ML bugs occur because ML models have too much flexibility. Constraining that flexibility with real-world knowledge is a general solution to several types of ML bugs. Monotonicity and interaction constraints, in popular tools like XGBoost, can help ML practitioners enforce logical domain assumptions in complex ML models.
Noise Injection and Strong Regularization: Many ML algorithms come with options for regularization. However, if an ML model is over-emphasizing a certain feature, stronger or external regularization might need to be applied. L0 regularization can be used to limit the number of rules or parameters in a model directly, and manual noise injection can be used to corrupt signal from certain features to de-emphasize any undue importance in ML models.
There’s more detailed information regarding model debugging and the example data and model in the Resources Subsection at the end of Chapter 15. For now, we’ve learned quite a bit about model debugging and it’s time to turn our attention to safety and performance for deployed AI systems.
Deployment
Once bugs are found and fixed, it’s time to deploy your AI system to make real-world decisions. AI systems are much more dynamic than most traditional software systems. Even if system operators don’t change any code or setting of the system, the results can still change. Once deployed, AI systems must be checked for in-domain safety and performance, they must be monitored, and their operators must be able to shut them off quickly. This last major subsection of Chapter 15 will cover how to enhance safety and performance once an AI system is deployed: domain safety, model monitoring, and kill switches.
Domain Safety
Domain safety means safety in the real world. This is very different than standard model assessment, or even enhanced model debugging. How can practitioners work toward real-world safety goals? A/B testing and champion challenger methodologies allow for some amount of testing in real-time operating environments. Process controls, like enumerating foreseeable incidents, implementing controls to address those potential incidents, and testing those controls under realistic or stressful conditions are also important for solid in vivo performance. To make up for incidents that can’t be predicted, apply chaos testing, random attacks, and manual prediction limits to your AI system outputs.
Foreseeable real-world incidents: A/B testing and champion-challenger approaches, in which models are tested against one another on live data streams or under other realistic conditions are a first step toward robust in-domain testing. Beyond these somewhat standard practices, resources should be spent on thinking through possible incidents. For example common failure modes in credit lending include algorithmic discrimination, lack of transparency, and poor performance during recessions. For other applications, say autonomous vehicles, there are numerous ways they could accidentally or intentionally cause harm. Once potential incidents are recorded, then safety controls can be adopted for the most likely or most serious potential incidents. In credit lending, models are tested for discrimination, explanations are provided to consumers via adverse action notices, and models are monitored to catch performance degradation quickly. In autonomous vehicles, we still have a lot to learn (as the Chapter 9 case showed). Regardless of the application, safety controls must be tested, and these tests should be realistic and performed in collaboration with domain experts. When it comes to human safety, simulations run by data scientists are not enough. Safety controls need to be tested and hardened in vivo and in coordination with people who have a deep understanding of safety in the application domain.
Unforeseeable real-world incidents: Interactions between AI systems and their environments can be complex and surprising. For high-stakes AI systems, it’s best to admit that unforeseeable incidents can occur. We can try to catch some of these potential surprises before they occur with chaos testing and random attacks. Important AI systems should be tested in strange and chaotic use cases and exposed to large amounts of random input data. While these are time- and resource-consuming tests, they are one of the few tools available to test for so-called “unknown unknowns.” Given that no testing regime can catch every problem, it’s also ideal to apply common sense prediction limits to systems. For instance, large loans or interest rates should not be issued without some kind of human oversight. Nor should autonomous vehicles be allowed to travel at very high speeds without human intervention. Some actions simply should not be performed purely automatically as of today and prediction limits are one way to implement that kind of control.
Another key aspect of domain safety is knowing if problems are occurring. Sometimes glitches can be caught before they grow into harmful incidents. To catch problems quickly, AI systems must be monitored. If incidents are detected, incident response plans or kill-switches may need to be activated.
Model Monitoring
It’s been mentioned numerous times in Chapter 15, but important AI systems must be monitored once deployed. This subsection focuses on the technical aspects of model monitoring. It outlines the basics of model decay and concept drift bugs, how to detect and address drift, the importance of measuring multiple key performance indicators (KPIs) in monitoring, and it briefly highlights a few other notable model monitoring concepts.
Model Decay and Concept Drift
No matter what you call it, the data coming into an AI system is likely to drift away from the data on which the system was trained. The change in the distribution of input values over time is sometimes labeled “data drift.” The statistical properties of what you’re trying to predict can also drift, and sometimes this is known specifically as “concept drift.” The COVID-19 crisis is likely one of history’s best examples of these phenomena. At the height of the pandemic, there was likely a very strong drift toward more cautious consumer behavior accompanied by an overall change in late payment and credit default distributions. These kinds of shifts are painful to live through, and they can wreak havoc an AI system’s accuracy.
Detecting and Addressing Drift
The best approach to detect drift is to monitor the statistical properties of live data — both input variables and predictions. Once a mechanism has been put in place to monitor statistical properties, you can set alerts or alarms to notify stakeholders when there is a significant drift. Testing inputs is usually the easiest way to start detecting drift. This is because sometimes true data labels, i.e., true outcome values associated with AI system predictions, cannot be known for long periods of time. In contrast, input data values are available immediately whenever an AI system must generate a prediction or output. So, if current input data properties have changed from the training data properties, you likely have a problem on your hands. Watching AI system outputs for drift can be difficult due to the information needed to compare current and training quality might not be available immediately. (Think about mortgage default versus online advertising — default doesn’t happen at the same pace as clicking on an online advertisement.) The basic idea for monitoring predictions is to watch predictions in real-time and look for drift and anomalies, potentially using methodologies such as statistical tests, control limits, and rules or ML algorithms to catch outliers. And when known outcomes become available, test for degradation in model performance and fairness quickly and frequently.
There are known strategies to address inevitable drift and model decay. These include:
Refreshing an AI system with extended training data containing some amount of new data.
Refreshing or retraining AI systems frequently.
Refreshing or retraining an AI system when drift is detected.
It should be noted that any type of retraining of ML models in production should be subject to the risk mitigation techniques discussed in Chapter 15 and elsewhere in this book — just like they should be applied to the initial training of an AI system.
Monitoring Multiple Key Performance Indicators
Most discussions of model monitoring focus on model accuracy as the primary key performance indicator (KPI). Yet, discrimination, security vulnerabilities, and privacy harms can, and likely should, be monitored as well. The same discrimination testing that was done at training time can be applied when new known outcomes become available. Numerous other strategies, discussed elsewhere in the book, can be used to detect malicious activities that could compromise system security or privacy. Perhaps the most crucial KPI to measure, if at all possible, is the actual impact of the ML system. Whether it’s saving or generating money, or saving lives, measuring the intended outcome and actual value of the ML system can lead to critical organizational insights. Assign monetary or other values to confusion matrix cells in classifications problems, and to residual units in regression problems, as a first step toward estimating actual business value.
Out-of-range Values
Training data can never cover all of the data an AI system might encounter once deployed. Most ML algorithms and prediction functions do not handle out-of-range data well, and may simply issue an average prediction or crash, and do so without notifying application software or system operators. AI system operators should make specific arrangements to handle data, such as large magnitude numeric values, rare categorical values, or missing values that were not encountered during training so that AI systems will operate normally when they encounter out-of-range data.
Anomaly Detection and Benchmark Models
Anomaly detection and benchmark models round out the technical discussion of model monitoring in this subsection. These topics have been treated elsewhere in Chapter 15, and are touched on briefly here.
Anomaly Detection: Strange input or output values in an AI system can be indicative of stability problems or security and privacy vulnerabilities. It’s possible to use statistics, ML, and business rules to monitor anomalous behavior in both inputs and outputs, and across an entire AI systems. Record any such detected anomaly, report them to stakeholders, and be ready to take more drastic action when necessary.
Benchmark Models: Comparing simpler benchmark models and AI system predictions as part of model monitoring can help to catch stability, fairness, or security anomalies in near real-time. A benchmark model should be more stable, easier to confirm as minimally discriminatory, and should be harder to hack. Use a highly transparent benchmark model and your more complex AI system together when scoring new data, then compare your AI system predictions against the trusted benchmark prediction in real-time. If the difference between the AI system and the benchmark is above some reasonable threshold, then fall back to issuing the benchmark model’s prediction or send the row of data for more review.
Whether it’s out-of-range values in new data, disappointing KPIs, drift, or anomalies — these real-time problems are where rubber meets road for AI incidents. If you’re monitoring detects these issues, a natural inclination will be to turn the system off, and the next subsection addresses kill switches for AI systems.
Kill Switches
Kill switches are rarely single switches or scripts, but a set of business and technical processes bundled together that serve to turn an AI system off — to the degree that’s possible. There’s a lot to consider before flipping a proverbial kill switch. AI system outputs often feed into downstream business processes, sometimes including other AI systems. These systems and business processes can be mission critical, for example, an AI system used for credit underwriting or e-retail payment verification. To turn off an AI system, you’ll not only need the right technical know-how and personnel available, but you also need an understanding of the system’s place inside of broader organizational processes. During an ongoing AI incident is a bad time to start thinking about turning off a fatally flawed AI system. So, kill processes and kill switches are a great addition to your ML system documentation and AI incident response plans (see Chapter 9). This way, when the time comes to kill an AI system, your organization can be ready to make a quick and informed decision. Hopefully you’ll never be in a position where flipping an AI system kill switch is necessary, but unfortunately AI incidents have grown more common in recent years. When technical remediation methods are applied along side cultural competencies and business processes for risk mitigation, safety and performance of AI systems is enhanced. When these controls are not applied, bad things can happen.
Case Study: Remediating the Strawman
The Chapter 15 case study takes a deeper look at how to fix the strawman GBM model discussed in the technical examples. Recall that we found this model to pathologically over-emphasize a customer’s most recent repayment status (PAY_0), we found that some seemingly important input variables were more important to the loss than to the predictions, we found vulnerable spikes and potential logical errors in the response surface, and we saw poor performance, if not underspecification, for PAY_0 values greater than 1. All of these issues conspired to make a seemingly passable ML model less appealing than a simple business rule. Because many ML models are not adequately debugged before deployment, it’s likely that you could find yourself with similar bugs to handle if you applied the debugging techniques in Chapter 15 to one of your organization’s models. For the example data and model, several techniques could be applied to remediate the highlighted bugs. Let’s try to address them one by one as an example of how you could take on these bugs at your job.
Logical errors: For the logical errors that cause high probability of default to be issued, even after very large payments are made, model assertions or business rules are a likely solution. For customer’s who just recently became two month delinquent, use a model assertion or business rule to check if a large payment was also made recently before posting the adverse default prediction. A residual model like the one in Figure 2, focused on that small group of customers could help suggest or refine more targeted assertions or rules.
Over-emphasis of PAY_0: Perhaps the biggest problem with the strawman model, and many other ML models, is bad training data. In this case, training data should be augmented with new, relevant features to spread the primary decision-making mechanisms within the model across more than one feature. Noise injection to corrupt PAY_0 could also be used to mitigate over-emphasis, but only if there are other accurate signals available in better training data. Look into design of experiment as well. Collecting appropriate training data is seen as a mature science in many other data-driven disciplines that weren’t as accepting of by big data hype.
Non-robust input variables: For PAY_2 and PAY_3, the seemingly important input features that ended up being more important to logloss residuals than to model predictions, several different experiments could be performed. Assuming better training data doesn’t mitigate these problems, an A/B or champion-challenger platform would need to be established, so that test results can be measured in vivo, instead of just in silica. Once you can test model changes on realistic data, the first thing to test would be simply retraining the model without PAY_2 and PAY_3. Other interesting experiments could include the application of strong regularization or noise injection to test whether a model would emphasize these features in the same non-robust ways.
Security vulnerabilities: In general, best practices like API throttling and authentication, coordinated with real-time model monitoring, help a lot with ML security. In the case of the example model, the problems is particularly thorny. In many circumstances, the model should give higher probabilities of default for customers who make small payments. The issue here is the dramatic spike in output probabilities for low PAY_1 and PAY_2 values. Regularization or robust ML techniques could be applied during training to smooth out swings in the response function, and this region of the response function could be monitored more carefully with an eye toward adversarial manipulation. For instance, if a row of data appears in the live scoring queue with low values for PAY_1 and PAY_2 and random values for other features, this would certainly be cause for human review and delaying predictions.
Poor performance for PAY_0 > 1: Like many of the other problems with the strawman, this model needs better data to learn more about customers who end up defaulting. In the absence this information, observation weights or over-sampling could be used increase the influence of the small number of customers who did default. However, in the PAY_0 > 1 region, the model predictions may simply be unusable. The model’s monotonicity constraints, discussed briefly in previous sections, are one of the best mitigants to try when faced with sparse training data. The monotonicity constraints enforce well-understood real-world controls on the model. Yet, model performance for PAY_0 > 1 is extremely poor even with these constraints. Predictions in this range may have to handled by a more specialized model, a rule-based system, or even human case workers.
Like AI in general, model debugging is likely still in its infancy. Where it goes from here is largely up to us. Whenever AI is adopted for business- or life-critical decisions, I personally hope to see a lot more responsible AI and model debugging. One final note to address before closing Chapter 15 is that in-depth analysis of discrimination testing and remediation is left for other chapters of the book. This is an incredibly important topic, a very common failure mode for AI systems, and one deserving fulsome coverage and analysis on its own.
Resources
Further reading and code examples related to model debugging examples:
Further reading: Real-World Strategies for Model Debugging
Code examples:
https://nbviewer.jupyter.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/resid_sens_analysis.ipynb
https://nbviewer.jupyter.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/debugging_sens_analysis_redux.ipynb
https://nbviewer.jupyter.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/debugging_resid_analysis_redux.ipynb
Talks, workshops, and educational materials related to model debugging and ML safety and performance:
Toolkits for model debugging:
About the Author
Patrick Hall is principal scientist at bnh.ai, a D.C.-based law firm focused on AI and data analytics. Patrick also serves as visiting faculty at the George Washington University School of Business (GWSB) where his teaching and research focus on data mining, machine learning, and the responsible use of these technologies. Before co-founding bnh.ai, Patrick led responsible AI efforts at H2O.ai, a leading machine learning software firm. His work at H2O.ai resulted in one of the world’s first commercial solutions for explainable and fair machine learning. Among other academic and technology media writing, Patrick is the primary author of popular e-books on explainable and responsible machine learning.
Before joining H2O.ai, Patrick held global customer-facing and R&D roles at SAS, where he authored multiple patents in automated market segmentation using novel clustering methods and deep learning. He was also the 11th person worldwide to become a Cloudera certified data scientist during these years. Patrick studied computational chemistry at the University of Illinois before graduating from the Institute for Advanced Analytics at North Carolina State University.
Table of Contents
Who Should Read This Book
What Readers Will Learn
Preliminary Book Outline
Bringing it All Together
Conventions Used in This Book
Using Code Examples
O’Reilly Online Learning
How to Contact Us
Acknowledgments
1. Contemporary Model Governance
Basic Legal Obligations
AI Incidents
Organizational and Cultural Competencies for Responsible AI
Accountability
Drinking Your Own Champagne
Diverse and Experienced Teams
“Going Fast and Breaking Things”
Organizational Processes for Responsible AI
Forecasting Failure Modes
Model Risk Management
Beyond Model Risk Management
Case Study: Death by Autonomous Vehicle
Fallout
An Unprepared Legal System
Lessons Learned
Security Basics
The Adversarial Mindset
CIA Triad
Best Practices for Data Scientists
Machine Learning Attacks
Integrity Attacks: Manipulated Machine Learning Outputs
Confidentiality Attacks: Extracted Information
General AI Security Concerns
Counter-measures
Model Debugging for Security
Model Monitoring For Security
Privacy-enhancing Technologies
Robust Machine Learning
General Countermeasures
Case Study: Real-world Evasion Attacks
Lessons Learned
Resources
3. Debugging AI Systems for Safety and Performance
Training
Reproducibility
Data Quality and Feature Engineering
Model Specification
Model Debugging
Software Testing
Traditional Model Assessment
Residual Analysis for Machine Learning
Sensitivity Analysis
Benchmark Models
Machine Learning Bugs
Remediation: Fixing Bugs
Deployment
Domain Safety
Model Monitoring
Case Study: Remediating the Strawman
Resources