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How does the brain work ? What do we want computers to do? Do we want

our computers and computer
-enhanced systems to act the way we do? If so,

how do we want them to mimic the abilities of humans?

Since World War II, a group of scientists have attempted to understand

the human nervous systems and to build artificial systems that act the way
we do, at least a little bit .

In this book, we have put together a series of interviews of well -known ,

productive scientific leaders in the important , controversial , mildly glamorous 
and very high -risk area of science described as 

"
brain theory ,

" "
neural

networks ,
" 

or 
"
theoretical neuroscience.

" 
The interviews describe how this

science is done and how it was done in the words of the scientists doing it .

Many of the early developments of brain theory sprang from the roots

of cybernetics . Other theorists took inspiration from neuroscience, physics,

electrical engineering , mathematics , and even economics . The neural network 

field is a hotbed of cross-
disciplinary activities , where these messengers

from many disciplines and their ideas collide like subatomic particles swirling 

around a particle accelerator . The interactions , influences, and changes
occasioned by these collisions are described in this collection of informal

conversations .

One of us (Anderson ) is a well -known scientist in the neural network field .

The other (Rosenfeld) is a journalist who has chronicled neural net developments 
for more than a decade. Many of our interview subjects directed specific

comments to one or both of us in our roles as a scientist who participated
in some of this history and as a journalist who has described some of this

history in print , particularly the parts related to practical applications , computer

applications , and business developments .

What emerges are fascinating life stories : seventeen people at the center of

complex scientific and social developments . Their personal stories include

intimate and often touching details about their childhoods and their families

that complement the details of their discoveries .

This book contains the words of individuals who agree about some things ,

but disagree about more . They range in age from the mid -thirties to the

mid -seventies and were educated in several continent , although most of them
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Introduction

currently live in the North America. Most are academics. However, anyone
who believes that academia is an island of serenity populated with tweedy
Mr . Chipses instructing the young in the ways of man and the world with
wise and prudent counsel has obviously had little to do with a modem

university.

Bringing a new field into existence involves the participants in a bitter and
sometimes brutal Darwinian struggle for jobs, resources, and reputation. All
of our interviewees had been through this process. The first thing they discovered 

about trying to promulgate genuinely new ideas is that most of
their colleagues were not really very interested in hearing about them. The

participants
' 

struggles simply to obtain access to scientific communications
channels, so that others would hear what they had done, occupy a significant
part of several interviews and form an undercurrent in others.

Our interviews present neural network stories- the stories that have
been told, referred to, whispered about, and imagined throughout the history
of the neurocomputing field. These interviews are a Rashomon-like web of

reality slices, rendered by interested parties, raconteurs, and sometimes those
who believe that they are, in fact, the central characters. What's more, some
of the mythic people responsible for the foundations of modem brain

theory, communications, and computing
- such as Norbert Wiener, Warren

McCulloch, and Frank Rosenblatt- appear prominently in some of the recollections 
collected here.

One way to view this collection of stories is as a set of candid discussions 
about how science is actually done, as opposed to how we are told it

should be done. Sometime during high school, we get exposed to a bloodless 

something called the "Scientific Method,
" 

which consists of a set of rules
for doing science the proper way. First, we generate a hypothesis. Second,
we test the hypothesis by doing an experiment. Third, we modify or reject
our hypothesis based on the results. like most things we learn in high school,
such an idea has only a vague connection to reality. This book is about the

reality.

These interviews were done in hotel rooms, in offices, and, in one case, by
telephone over a period of several years. We were interested in the history
of the neural network field and of the ideas that formed it as well as in the

personal history of the participants. We had a list of topics we wanted to
cover, but we often did not need to ask our questions. All of our inter-

viewees have extensive experience teaching and lecturing, and most of them

shaped their own narrative, with only modest prodding from us. Looking
over the transcripts, almost all our predesignated topics were covered in
some form or another during each interview. After a couple of questions
to get things going, most interviewees became self-propelled and developed
their story as they wished.

Over ahd over again, we were struck by the drama and passion involved
in the stories. The questions these scientists wanted to answer in their work
were important because they involved the way the mind works, the way the



brain works- the way we as humans connect to and contact the physical
world . Surprisingly, they sometimes involved religion, as something both to

reject and to accept. None of our subjects fit the stereotype of scientists as

cold-blooded, remote intellects. Exactly the opposite was the case. The work

they were doing was an obsession and so dominated their lives that often

they could think of little else.

Some of our interviewees worked alone, some with a few local colleagues.
However, there were two particularly productive centers of work on neural

networks and brain modeling. One was in San Diego in the early 1980s, a
time and place that had a major impact on nearly half of our interviewees.
The famous two-volume "POP books," published in 1986, summarized the

work of the 
"
parallel distributed processing group

" 
at the University of

California at San Diego in this era.

However, by far the most romantic center of research in brain theory was
the group that formed in the 1940s and 1950s around the charismatic
Warren McCulloch and his brilliant, unstable, and ultimately tragic collaborator

, Walter Pitts. Jerry Lettvin, Michael Arbib , and Jack Cowan describe
this time in some detail and give their sometimes differing perspectives on it .
The interviews are arranged in order of the scientist

'
s date of birth so some

of these historical themes can become dearer.

We would not want to give the impression that our interviews reflect only
dour intensity. There are stories with considerable humor: Bernie Widrow

sliding down the hills of San Francisco in his new, leather-soled shoes; Jerry
Lettvin'

s future in medical school being determined by an unusual gross
anatomy exam; Michael Arbib

'
s misadventures job hunting in California.

This book will not provide an introduction to neural networks or brain

theory, though most of the important ideas are quite accessible. For a formal

introduction to the field, let us recommend two collections of well-known

papers that we edited: Neurocomputing (1988) and Neurocomputing 2 (1990).

Anderson
'
s textbook, An Introduction to Neural Networks, gives a systematic

introduction. At this time, a number of other good introductions at many
levels of complexity are in print.

Some of the interviews contain quite technical material. We have left much

of this material in place, although there is no actual mathematics in this book.

Mathematics is a powerful tool for working with complex systems, but, unfortunately

, it often serves as a barrier rather than an aid to understanding.

One way to view mathematics is as a kind of language that very accurately
describes some important kinds of complexity. It is a difficult language to

learn to speak. If a reader does not happen to speak that particular language,
however, many of the basic ideas can still be communicated, often in simple
sentences and images. Mathematics makes these intuitions precise and

usable, but th.e essence of the ideas often comes through without the mathematics
. In this context, some of the seemingly throwaway comments in the

interviews are very deep. Some of these comments may strike resonances in
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those knowledgeable in the field, but the basic issues should be quite clear to

everyone. Real science is often like this: it starts with simple questions; insights 
often begin as fuzzy pictures or vague verbal descriptions; and deep

intuitions are communicated offhandedly, using metaphor and analogy.
Interviews that touch on such deep issues include Carver Mead

'
s discussion 

of analog versus digital process es and Jerry Lettvin'
s comments on the

role of discrete and continuous process es in the thinking of Walter Pitts and
on the way Leibniz influenced both Pitts'

s thinking and indirectly the entire
McCulloch group. Many interviews touch on the important distinction between 

engineering (
"it works"

) and science (
"it works like the brain"

). Often,
what seem like far-fetched connections turn out not to be: Jack Cowan

'
s discussion 

of the forms that hallucinations take and the underlying functional
cortical neuroanatomy is a striking example.

These talks also mention the controversies that surrounded the rise and
fall of public and scientific interest in Rosenblatt's percept ron, as well as the
influence of Marvin Minsky and Seymour Papert on the loss of interest
in neural networks during the 1970s. Robert Hecht-Nielsen address es this

history during his interview and also describes some of the history of the
momentous IEEE neural net meetings that took place in the late 1980s, a

subject also addressed in detail in Bart Kosko's interview.
Another controversy raised in a number of the conversations is the scientific 

"
credit assignment

" 
problem related to the backpropagation algorithm,

discovered by a number of different researchers seemingly independently.
There is also a highly charged area related to the tremendous public attention 

brought to the field in the early 1980s by two of John Hopfield
'
s publications 

in the Proceedings of the National Academy of Sciences.
We hope that some of the excitement and power of the ideas about brain

function and intelligent systems discussed in this book come across to others
as powerfully as they did to us during the actual interviews.

Let us make a few technical comments. These interviews were tape-

recorded and expertly transcribed by Dr. Emily Pickett of the Brown University 

Department of Cognitive and Linguistic Sciences. We owe Dr. Pickett a

great debt. No one speaks grammatical English when talking out loud, even
Ph. D .s, even for the record, so we edited the raw transcripts in order to make
them reason ably grammatical, to eliminate repetitions and hesitations, and
to tighten them up when interviewees started to ramble. We also eliminated
much of the redundancy that characterizes a long conversation. We also
had to work within length limitations forced upon us by the economics of
book publishing. The editorial assistance and publishing guidance provided
by Betty Stanton was invaluable. In addition, our editor-shepherds, Jerry
Weinstein, Wendy Drexler, and Katherine F. Arnold i made sure that these
interviews success fully completed the journey from manuscript to published
book.

In editing the interviews we tried hard to retain the distinct personality of
each speaker and let them convey their ideas as clearly as possible. The
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speakers were offered the opportunity to make corrections , check spellings ,

and, rarely , to make additions .

Ed Rosenfeld
New York City
March, 1998
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IL : I was born in 1920, February 23, so I am now seventy-four.

ER: Where were you born?

IL : In Chicago, grew up and went to school there.

ER: What did your parents do?

IL : My father was a lawyer. My mother was a piano teacher. I was the

oldest of four children, and my youngest brother became a concert pianist.

He's now professor of music at Rutgers University. My mother failed with

me because she wanted me to be a pianist. I gave my first concert when I

was eight and then retired from the field and decided to write poetry. That
'
s

what I wanted to do, to become a poet.

When I graduated high school, mother made it clear to me that either I

would go into medicine or all funds would stop. She had a whim of iron, so I

agreed to study medicine. I eventually entered University of Illinois Medical
School in 1939 and graduated early in 1943 because of the war. Then I came
to Boston City Hospital to the Harvard Neurological Service under Denny-

Brown.

But my interest in nervous systems started in my premed college years at

Lewis Institute, a working-man's school. Fifteen dollars per course. There I
was exposed to psychology by David Boder. He had worked with Pavlov

before becoming. the psychologist for the prison system in Mexico. He

JeromeY . Lettvin1

Jerry Lettvin is Professor of Electrical Engineering and Biomedical Engineering, Emeritus, at
MIT , Cambridge, Massachusetts. Professor Lettvin is well known for his classic 1959 paper
with Humberto Maturana, Warren McCulloch, and Walter Pitts, 

"
What the Frog

'
s Eye

Tells the Frog
'
s Brain,

" 
Proceedings of the Institute of Radio Engineers 47: 1940- 1951

[reprinted in Neurocomputing 2J. Some of the history and implications of this influential 
paper are discussed in the interview.

June 2, 1994 , Cambridge , Massachusetts, at MIT [Some material
added in 1997 ]

ER: I want to And out how you grew up and how it was you happened to

get interested in the brain. What's your date of birth and where were you
born?



bragged that it became the most advanced prison system in the world, with

conjugal rights and an educational program.

He was a remarkable teacher who started me thinking about psychology
as an interesting field, so I began reading. By the time I got into medical

Jeromey . Lettvin

school, I was already committed to study the nervous system if I couldn
'
t

escape and become a writer . I was very lucky to have Gerhardt von Bonin as

my teacher in brain anatomy. You want me to ramble on?

JA: Absolutely.

JL: I was a Arst-year student and I told Gerhardt I wanted to be a poet, that

I really hated medicine. He read some of my poetry and said, 
"
You 're absolutely 

right; you
'd make a better poet than a doctor.

"

So, comes the Anal practical examination in anatomy, and Gerhardt ap-

proaches the table. There's the cadaver. He looks me in the eye. He says,
"
You know, you want to be a poet, and I think it

'
s right that you should be a

poet. Let me put it this way. I will pick up something out of the cadaver. If

you name it, you pass and you go on; that's your fate. If you can't name it,

you fail, and then, by God, you can became a poet.
"

So he picks out something from the abdomen, deep in the abdomen. He

holds it up without looking at it and says, 
'
What is this?"

At this point, you know, it
'
s a very weird choice. I decide to take the

middle ground. So I say, 
"
Cerebellum."

He looks at me with disgust, drops it back in without looking at it . "You

named it . You pass.
" He was a very civilized guy, wonder fully civilized.

The year before I had gone to medical school, I had spent at the University 

of Chicago. There I met Walter Pitts, who became and remained my
best friend. Walter was an autodidact. He taught himself logic and mathematics

, and was able to read a fair number of languages, including Greek and

Latin.

He already had a peculiar history. At the age of twelve he was chased into

a library by a gang of ruffians, and took refuge there in the back stacks.

When the library closed, he didn't leave. He had found Russell and White-

head
'
s Principia Mathematic a. He spent the next three days in that library,

reading the Principia, at the end of which time, he sent a letter to Bertrand

Russell, pointing out some problems with the Arst half of the mst volume; he

felt they were serious.

A letter returned from Russell, inviting him to come as student to England
- a very appreciative letter. That decides him; he's going to be a logician, a

mathematician.

He went to University of Chicago, which is where I met him; but he never

registered as a student. The two of us met at a Bertrand Russell lecture, and

for some reason or another we became fast friends. I knew no science whatsoever

, nQ mathematics at all; I was only interested either in literature, or if
I was going to have to go to medical school, medicine. The two of us became 

inseparable. During that year at the University of Chicago, Walter had



gotten hold of Ca Tnap
'
s new book on logic. This was in 1938. He walks into

Camap
's office with his own annotated version of the book, pointing out

some flaws. And he gives it to CaTnap, talks to him a while, then goes out,

but doesn
't introduce himself. CaTnap spends the next couple of months

hunting high and low for that 
"
newsboy who knew logic." In the end, he did

find Walter and persuaded the University of Chicago to give him some

menial job. Walter had no funds, had separated himself from his family, so

that was good.

We stayed fast friends, even when r d gone to medical school. We met

often, would have long conversations together. He was a wonderful teacher.

When I was in the third year of medical school, McCulloch came to University 

of Illinois, and Gerdhardt, who had worked with him once before at

Yale, took me over to meet him. I remember, when I was about fourteen,

I had read Buckle
's history of the Scotch mind in the seventeenth century

[Henry Buckle, On Scotland and the Scotch Intellect. Chicago: University of

Chicago Press, 1970; orig. pub. 1857]. It set up in me a morbid fear of the

Scotchmen. So when I first meet McCulloch, who carries himself as a cavalier

, a Scotch cavalier, he scared the hell out of me.

Nevertheless, I settled in, and I became absolutely committed to the

notion of working in the nervous system. I didn
'
t do any experiments at the

time. Walter then came over, and Warren was enchanted with him. Walter

was homeless, and I had to escape from my family because the supervision

was incredibly intense; it' s very hard to say how intense it was. And so early

in 1942 Warren invites Walter and me to live with him and his family.

Warren and his wife, Rook, were always enormously generous. We settled

in, and it was in the evenings then that Walter and Warren got together on
"A Logical Calculus of Ideas Immanent in Nervous Activity

" 
[the famous

1943 McCulloch-Pitts paper, reprinted in Neurocomputing]." Walter at that

time was, if I remember correctly, about eighteen, something like that. Walter

had read Leibniz, who had shown that any task which can be described completely 

and unambiguously in a finite number of words can be done by a logical

machine. Leibniz had developed the concept of computers almost three centuries 

back and had even developed a concept of how to program them.

I didn
't realize that at the time. All I knew was that Walter had dredged

this idea out of Leibniz, and then he and Warren sat down and asked whether

or not you could consider the nervous system such a device. So they

hammered out the essay at the end of
' 42. Now, from fall of

' 42 I, in effect,

dropped out of medical school, that is, formal medical school. I didn
't appear

at classes. What had happened was that a lot of personnel had been taken

away by the war. At that time, the military was short on doctors and nurses,

so I became, as it were, intern, resident, and nurse, depending upon what was

needed, at the Neuropsychiatric Institute, the basement of which housed

Warren. The upper floors were dedicated to psychiatry on one side of the

building, neurology and neurosurgery on the other. I would appear for ex-

. aminations in the various courses, but otherwise didn
't go very much to class

JeromeY. Lettvin



because it was sometimes close to twenty-four hours a day that I had to
work. Walter very decently used to come over and keep me company when
I was exhausted and had to rest.

The hospital gave me residence quarters so that I wouldn
'
t have to go

home, and Walter still lived with Warren, but he would come in, and the two
of us would talk together. I graduated from medical school to everyone

'
s

surprise because I'd only appeared for examinations. But now I was really
passionate about neurology. I had written a criticism of some stuff that
had been put out at Harvard on the Argyll -Robert son pupil, and gave an
alternate explanation for it . I sent this to Harvard, along with my application

. I was immediately accepted, to my family
's astonishment, in Harvard

neurology. So I went there.

In 1943, I was working part time in neurology and part time in medical
wards because I had to have general medical experience. My co-intern had
a relative, a second uncle or something of the sort, by the name of Norbert
Wiener, and said we should go over and visit him sometime. OK, so we go
over and visit, and I meet Norbert Wiener for the first time. Wiener had just
lost his right-hand man to a skiing accident, and was desolate; he couldn't
find anybody else of that quality.

So I said, ' 1 happen to know a young man from Chicago a mathematician,
who

'
s extraordinary

" 
and so forth, and I described Walter Pitts.

Wiener said, 
'
There doesn't exist such a person.

"

So I called McCulloch, and I remember the two of us chipped in together
and got Walter a round trip train ticket to Boston.

It was very funny. If you don't mind an image occasionally, I remember
Walter walking into Norbert's office, and Norbert says, 

"
Hello ,

" 
and no introductions

, 
"
Come, I want to show you something,

" 
and takes Walter next

door, where there is a blackboard on two walls, and Wiener says, 
"I want to

show you something; I
'
m going to prove the ergodic theorem." He starts

out, and a short distance down the board, Walter begins some critical questions 
or asking for clarifications, and by the time they

'
d finished the first

board, with Walter going along making commentary, it
'
s sort of obvious

what
'
s going to happen. By the end of the second board it 's definite, Walter

'
s

going to work with Wiener.

Now this was a wonderful thing. When Walter moves to work with Wiener

everything is quite nice, except now I have to go off to the wars. After
basic training in January of 1944, I have to report to New York, Bellevue

Hospital, for a few month
'
s training in neuropsychiatry. Walter at this time

is hired by Kellex Corporation, which is part of the Atomic Energy Project.

They
'
re over in the Woolworth Building, and so we move to New York

together.

We take a room together in the Village. He goes in the morning to Kellex,
I go over to Bellevue, but meanwhile we'

re having a ball because I keep
sending him at Kellex postcards written in German: 

"
Enclosed you

'
ll find

the secret documents." They never got to him, you know, and we wondered

JeromeY. Lettvin



what happened to them, whether people were dissecting the periods, or

whatever.

Any rate, he also used to have fun there. He tangled with General Groves

in a mischievous way. There were two wastebaskets in every room, a red

wastebasket and a green one.

The red wastebasket was for sensitive material, anything in it had to

be taken down, burned in the presence of two witness es. So one day when

the General is coming down the hall, Walter
'
s sitting there, feet on the desk,

cracking peanuts, throwing the shells into the red wastebasket, and the

General screams, 
I What are you doing?"

Walter says, 
I~ ook at the shells,

" and on each shell he had inscribed alpha
or beta, the magic Greek letters used in formulasl so the peanuts had to be

taken down and burned in the presence of two witness es.

In any case, the people there at Kellex were not allowed to talk to each

other. Our apartment was one of the places to which they would come in the

evening so as to be able to talk. If anybody had known this, I
'
d never have

been allowed to go overseas, even though I understood nothing of what

they said.

You want anecdotes, so I
'm giving you some. At this time, the Atomic

Energy effort was being embarrassed by the fact that the draft laws gave no

exclusion of scientific personnel. The result was that good technical people
were being drained from Kellex. They didn

't know how to stop it . The 42nd

Street induction station was an important place.

Now I always wondered whether the solution occurred by design or accident

. There was a particular psychiatrist, Sam Wortis, whom I accused of

arranging it . He refused to deny it , but he also refused to affirm it at the time.

Installed as senior psychiatrist in the 42nd Street induction station was A . A .

Brill, the fellow who had translated Freud. Now, Brill was a nut. He had the

theory that schizophrenia had to do with symbolism, and since mathema-

ticians dealt with symbols, etc.

So once Brill was put in office, and mind you, nobody had instructed him,

it was his own meshugas that kept things going. scientists and engineers
were being turned down right and left for being preschizophrenic, prepsychotic

. It was highly demoralizing to the physicists and mathematicians

who took seriously this schmuck
'
s diagnosis. At any rate, the morning that

Walter was supposed to appear, I decided, 11'm not going to go." It

happened to be my turn, I
've got to be there, but I call off sick; and it was

fortunate I did, because the story came back to me.

Walter at that time wore a beard. He walks in, Brill looks at him and says,
I
~ oung manl why do you wear a beardf

' And Walter says, 
I I Old man, why

do youfl And you can imagine that from this point it was straight downhill .

Walter came out with a diagnosis of frank schizophrenia. Now, this upset
him consider ably. In some respects, he was fragile, and he tried his best to go
back and volunteer. It took several people, including myself, to talk him out

of it .

JeromeY. Lettvin



Then I go off to the wars and I
'
m overseas till the fall of 1946. I come

back, I'm sort of demobbed, and Walter and Wiener had decided it was

about time that I should learn some science.

So Wiener admits me single-handedly here at MIT as a special student. I

hadn
't had the calculus yet, and here I am, late on, twenty-six years old, and

what the hell, what amIgoing to do? At any rate, I
'
m signed up for courses

18.01 and 18.02 [elementary calculus], analysis with Franklin, 8.01 and 8.02

[elementary physics], and that
'
s my first term.

Now, I
'
ve got to put it to you, I had second-hand contact through Walter

with this stuff, but you don
'
t learn it when you are aged, and twenty-six is

advanced age. Anyhow Oliver Selfridge, Hyman Minsky (the future economist

), Walter, and I all move in together in one room on Beacon Street. The

VA has taken me on as psychiatrist, and that pays a good part of our cost of

living . I'm trying to make my way through MIT at the same time as doing

part-time psychiatric work at the VA . It 's not an easy job.

So I managed to survive the first term, passing everything. And then the

second term is 18.03, 8.03, differential geometry, a third course in physics,
and something else that I've since forgotten. Halfway through the term,
Walter manages to lose one of Wiener

'
s manuscripts, which he was supposed 

to look at. So I say to Walter, 
"
Listen, I

'm not cut out to be a scientist

even if I
'
ve learned something. Let me take the blame.

" 
It

'
s clear that

Wiener's going to kick me out if that's the case. So I took the blame and got
kicked out, and that was it .

So now I was on my own. One of the things I encountered was a weird

prejudice. I had graduated from Harvard, internship in neurology; and that

was the field I was really interested in. All of a sudden, my New York training 

and army experience had made me into a psychiatrist, and I went overseas

, and became the head of neuropsychiatry at the 237th General Hospital.

I don
'
t regret any of it . It was the busiest goddamn time I ever had, that

oversea stint. But once I got out of the army, I come to visit Denny-Brown.

Denny-Brown almost doesn't want to talk to me.

I ask, 
'
What

'
s wrong?"

He says, 
"
You became a psychiatrist.

"

I said, 
'1 didn

'
t become a psychiatrist. You know I

'm a neurologist. They
forced me."

He said that was no excuse. Looking back, I agree with him. I wanted to

go back into neurology, but one thing was true in medicine at that time.

Once you were classed as a psychiatrist, forget it ; you
'
re never going to be

able to get out of it . That classification makes you untrustworthy for anything 
else. I'm not joking. That was true back in those days. I didn

'
t want to

do psychiatry although I had some flattering offers. So I decided to hell with

it , and went back to see McCulloch.

He says 
"
Look, the easiest way to get out of this bind is to tell people that

you
'
re a physiologist, and see who bites.

"
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I say, 
'1'm not a physiologist.

"

He says, 
"You

'll become one."

He was a sweetheart. So I hired out and went to the University of

Rochester, and Walter visits me often and we get back together again. At

Rochester, they put me in charge of a very strange project, which is "How

do you abort cats by using an elevator?
" It turns out, a very little known fact

today, almost all of the high rides in the amusement parks in the United

States were used by women who wanted to have abortions. You see, motion

sickness is a well known way of producing abortions. One of the reasons

women used to sign up for cruises in the winter is that in the rough seas you

get seasick so you abort.

Here
'
s the psychologist who at Rochester says we

'
ve got to And out if this

works for other animals. So he builds an elevator that moves up and down in

square waves, sine waves, triangular waves. Anyhow I'm hired on for that.

Warren doubles up with laughter, says, 
'it serves you right .

"

At any rate, there were also some extraordinarily good people in the

neurophysiology of the ear at Rochester. And when the project director is

not looking, I
'
m over there and I'm doing work on the vestibular system of

cats, doing, I think, a damn good job. I had discovered some things already,

but the boss forbade me to publish it because the data were electrical records

. He had no confidence in electrical records, would not allow anyone in

the department to publish such data.

So at the end of the year, I got an offer to go to Utah. Gee, that
'
s nice.

Meanwhile, I had got married just as I came to Rochester. I had met Maggie
in Chicago while I was visiting Warren, and three dates later decided to

be married. So Maggie
'
s pregnant now, coming to term, and we're passing

through Chicago, and I send a telegram to Utah, 
"
Maggie

'
s having a baby,

"

and I get a telegram back. 
'We were trying to get in touch with you. Don

't

come because the funds didn
't come through."

Let me describe Maggie for you. She was one of the most beautiful

women I ever met, in both appearance and character, utterly unpretentious
and with great native intelligence. My family looked down on her, my

friends did not. She had had only a high school education, and my mother

stayed angry for years.

One evening, shortly after we came to MIT , we visited Giorgio de Santil-

lana, the historian of ideas and an old friend from my student days, at MIT .

Giorgio was an adept at interpreting the Tarot. Scarcely a month would

go by but Wiener would insist on having his Tarot told. Giorgio vainly explained 

that the Tarot should be consulted only at times of important choice.

Wiener claimed he always had such a crisis and needed counsel.

At any rate Giorgio was charmed by Maggie and offered to read the

Tarot for her. She was now about twenty-five. He read the cards with a faint

air of disbelief. They told that by age forty she would become a figure of

renown, an author and an innovator. Maggie still remembers that evening
with some awe, for all came true. In her early thirties, after we had forged



our three kids she was back-ended by a hit-and-run driver. For months she
could scarcely lift here arms. Refusing surgery, she studied Gray

'
s Anatomy

and worked out what sort of mechanical regimen would restore her. Recovery 
was slow but steady, and within a year she was symptom-free. Others

came to her for their mechanical disabilities and she worked out from here

newly gained knowledge of anatomy and kinematics some remark ably successful 
conservative treatment. She charged nothing, was only interested in

helping.

Several students, after being helped, persuaded her to hold fitness classes
at MIT . Within a year there were about two hundred people per day taking
those classes. Then Channel 4 in Boston picked her up, then PBS. For the
next seventeen years her program, Maggie and the Beautiful Machine (every-

body
'
s body), was a PBS standby and her MIT classes stayed crowded. She

published four books in her forty
'
s and gloried in the fact that medical practitioners 

approved of her approach. One book is still in print after twenty-

five years. Now she is beginning a new career on the Web, giving counsel
on how to relieve back pain without medicaments.

The only pity is that Giorgio could not know that all this happened. He

began failing before her ascent picked up steam.
Weare still in love, though I am seventy-four and she is sixty-seven.

She has not ever changed in my eyes and I cannot, in retrospect, imagine a
luckier choice. ( Nor, she claims, can she; I had all the luck).

So going back, there I am, high and dry in Chicago with Maggie, and I ask

myself, 
'
What amIgoing to dor ' 

I don
'
t want to be a psychiatrist, but what

the hell. So I go to Manteno State Hospital, near Chicago. The head of the

hospital is a very decent guy. I say, 
"
Look. I'm willing to trade you psychiatric 

work if you
'
ll give me a place to put up a laboratory.

"

So he said, 
"
Sure, no problem. We have a shortage of physicians.

"

So I moved to Manteno State Hospital, where I was for the next three and
a half years. Now what happened was that von Neumann, whom I had met
via Warren, heard that I was doing this. He was very decent; and arranged
that I get five thousand dollars for equipment. By this time I'd learned

enough electronics, so I was able to build my own apparatus, and I started

building my own amplifiers, remaking old oscilloscopes, and so forth. Within
a few months I had a decent lab going. Some of the work I had done in

physiology at Rochester had prepared me. McCulloch was a very good
friend, so the laboratory got some attention. I was visited by some remarkable 

characters, like Pat Wall from Chicago, who became a collaborator.
We formed a little enclave down in Manteno, and it was a delight. Walter

would come and stay with Maggie and me for weeks at a time. I worked in
Manteno for three and a half years. By this time I've developed my own

reputation. At RLE [the Research Laboratory of Electronics at MIT] , Wiener
convinces Jerry Wiesner that it 's about time he got some physiologists of
the nervous system.
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Warren was a distinct catch because he had gotten tired of Chicago. So

Warren, Walter, Pat Wall, and I sat together and decided that if they would

take us as a quartet, we were willing to go, so we came to MIT . That was in

1951.

By this time I had gotten some sophistication in circuit design. I had to

because it was the only way in which I could work, and in fact, I had built

some things that had already attracted some comment. I had no problem

settling in here and getting started. Walter and I now were more or less

inseparable; Maggie was as fond of Walter as I was.

At MIT McCulloch became seduced into what can be done theoretically

with nerve networks. A number of people gathered around and tried to see

what could be mined out of this.

Walter by this time had more or less set himself against the concept of

doing only abstraction. To him it was much more important to come up with

notions of how automata were to be devised. He wrote a thesis, a very long

one, on the properties of nets connected in three dimensions. Others like

Caianiello had already done two-dimensional nets. Walter had come up with

some very strange properties of the three-dimensionally connected net. He

was in no uncertain sense the genius of our group. He was absolutely incomparable 

in the scholarship of chemistry, physics, of everything you could

talk about history, botany, etc. When you asked him a question, you would

get back a whole textbook. You sat back and listened for two or three hours

because he would go on and on. To him, the world was connected in a very

complex and wonderful fashion.

At the same time he was strongly opposed to having his name known

publicly, so much so that when they offered him an advanced degree at MIT

if he would just sign his name or translate a page &om the German, which

he did very easily, he refused. Later on, when they offered him an official

position if he would just sign his name to a document, he refused.

In many respects, he was like the eccentrics you read about in England. He

had exactly that quality. But he was a most winning person. I mean, almost

everyone who knew him was fond of him. He was in a sense almost pure

thought, thought person i Aed, but with a delightful understanding about things

generally, and was a most amiable companion.

At any rate, there was a sudden violent turning of Wiener against McCul-

loch due to Mrs. Wiener, who hated War:ren, and Wiener cut off all relations

with McCulloch and anybody connected with McCulloch, which meant

Walter as well. Now Wiener was what Walter never had, a father Agure, and

that threw Walter into a decline &om which there was no pulling out. He

burnt the manuscript for his work on three-dimensional nets. Jerry Wiesner

offered me a fair amount of support for the lab if I could just recover bits of

it, but I couldn
'
t. Walter was quite complete in destroying his own past

work.

From that point on, we had no way of getting him interested in things. He

did one major piece of work with Bob Gesteland. Bob Gesteland
's mst work
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on olfaction published in the Journal of Physiology, a really prestigious work

that started a new branch of study, was done in collaboration with Walter.

That was it.
When Humberto Maturana and I did the work on the frog vision, Walter

was a little appalled by the results, which were very different from what he

expected. That is, here were the qualities sought, but not as you would have

them. There were invariances that were not formally tractable, or at least

not in any ordinary logical way, and that were of a nature different from

anything that anyone expected. They looked more like black magic than

anything else.
Walter had an interesting response to these results. It's hard to characterize

, but let me try to do it. On the one had, he believed the results wholeheartedly

, and he approved vastly, but on the other hand, it was an index to

him that logic was not the right approach to the brain. See, up to that time,

Walter had the belief that if you could master logic, and really master it, the

world in fact would become more and more transparent. In some sense or

another logic was literally the key to understanding the world.

It was apparent to him after we had done the frog
's eye that even if logic

played a part, it didn't play the important or central part that one would

have expected. And so, while he accepted the work enthusiastically, at the

same time it disappointed him. He would never admit it, but it seemed to

add to his despair at the loss of Wiener's friendship.

Warren, as I say, had committed himself to two-valued and three-valued

logic. Walter lost interest in that. He was perfectly willing to be amiable

about it but he didn't want to spend too much thought on it. He became

more and more introverted. It was difficult to find him. He would try to

escape from all his friends. We'd go hunting for him night after night.

Watching him destroy himself was a dreadful experience for several

people who knew him very well. Warren, at the same time, also began

having trouble. He had developed an inability to eat solid food. He had had

two lung episodes, blowing out a hole in the lung and getting a pneumo-

thorax. They stitched him up, and then finally attached the lung to the wall

of the chest. But in doing so they set up what appeared to be a vagovagal

reflex. Every time he would eat solid food his cardiac T -waves would undergo 

reversal, indicating coronary insufficiency. He would only take liquid

food. It was clear that he felt that he was decaying in his physical powers. To

the end, he always was enthusiastic, but you felt that somehow or another

you weren't touching him. So Pat and I and Humberto worked more or less

independently.

ER: Could you discuss the beginnings of artificial intelligence?

JL: Let me now say that I know nothing about artificial intelligence, which

is a separate discipline from nervous physiology. I have admired the effort

since Marvin Minsky and Seymour Papert began it at MIT, but I never tried

to study it and have as little grasp of it as anyone not directly involved. I do
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bow a little about the history of the problem that they propose to solve

and I can talk about that .

When Walter and I went to live with Warren and Rook McCulloch in

1942, Walter introduced Warren to leibniz
'
s remarkable work in the latter

part of the seventeenth century . First of all, Leibniz showed long before

Boole that logic reduced to arithmetic . The demonstration was incomplete

but went far enough to establish the plausibility of the hypothesis .

Leibniz was an engineer as well as mathematician , scientist , and philosopher

. Early in his career he designed and built the first calculator that did

all four arithmetical operations in decimal and thus superseded Pascal
'
s

adding machine that could only add and subtract numbers . leibniz
'
s method

of multiplication and division was ingenious and remained in use for hand-

powered calculators till the end of the nineteenth century .

But then he invented the binary number system whereby multiplication

and division reduced to addition and substraction . He was unable to build a

hand-
powered calculator in binary because of the friction between the many

parts, and
' 
the technology of the time could not support alternative designs

(e.g., there were no reliable valves ).

Nevertheless he pointed out that if a binary calculator was possible , so

was a logical machine which could perform any finite task that could be
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expressed completely and unambiguously in logical language. That was the

proposition that Warren and Walter adopted. If a neuron could be axio-

matized as a device that performed elementary logical operations, then a

nervous system would be regarded as a computer.

The thrust of their original paper on 
"The Logical Calculus of the Ideas

Immanent in Nervous Activity
" 

(and of their elegant but less often quoted
second paper, 

"
How We Know Universals

"
) [both in Neurocomputing] was to

apply this concept.

Half a decade earlier Turing had issued his fundamental paper on the uni-

versallogical engine. Half a decade later, at the end of WWIl , von Neumann

and Bigelow, would begin to design the first electronic computer in this

country. So in that magical decade the great effort began to realize Leibniz's

concept.

Now Leibniz had also developed the ideas of negative feedback control.

The practice of this control goes back to antiquity, but Leibniz abstracted the

idea, and expressed it in intelligible form. Wiener' s "Cybernetics,
" 

appearing
in mid-decade was, as he says in the book, also in the tradition of Leibniz.

And so too was the concept of information that had appeared at the hands of

Szilard in the 1920s and was to be elaborated wonder fully by Shannon and

Weaver and other mathematicians beginning in the
' 40s.

What with information theory as analyzed and logical machines as

synthesized it was certain that Leibniz
'
s logical automata would appear, machines 

that performed tasks and acted as if animated by intelligent purpose.

While I could not but be aware of these potential developments by dose

association with Warren and Walter, it wasn
't till about five years later, after

we had come to MIT , that I began to suspect that logical machines may not

provide useful models for perception. Von Neumann had voiced his doubts

in his Hixon Symposium Lecture (1949). Certainly I had not the competence
in logic or mathematics to consider the issue myself. But it seemed to me

that before you considered a mind that would perform combinatorics on

perceptions there had to be some qualifications on how perceptions represented 
the world . Everything I had found so far and had read about suggested 
that the world was reported by natural language rather than logical

language, that is, in terms of things and their relations rather than sense data

to be processed into the concepts of things. There was no . feedback from

brain to retina, so that whatever synthetic a priori [genetic programming]

was involved in vision had to be indwelling in the retina itself, a five-layer
device alternately connected vertically and horizontally in the layers. That a

fixed five-layer system of elements, laterally interacting, gave the content of

perception to a frog suggested that we were dealing with a system of active

complex analogue filters rather than a system of logical elements. Each cell

in the array was a complex processor of local spatiotemporal relations in the

images, and was modified by remoter influences.

For this reason I had my doubts about artificial intelligence based on

logical processing. I realize, of course, that any continuous function can be
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represented by a logical program, but also that combinations of such functions

, themselves modulating one another, are not so easily represented in

real time. But then, my ignorance of computational arts is unsurpassed at

MIT and I doubt if I could word a satisfactory argument.

Having delivered this apology let me say that artificial intelligence as a

way of understanding and rea}izing purposive action and even reasoning is

entirely in the Leibnizian tradition. It is a noble effort to develop by synthesis 
new principles to guide the analysis of animal and human activity . Furthermore

, it is in the spirit of biology to discover functional laws as well

as composition of parts and the programs encoded in DNA . In short, AI

becomes an adjunct to psychology in the normal course of events.

I would like to put it that AI and computer science are one and the same

were it not that this would incur the wrath of my colleagues who see a great
difference between their science and psychology.

But the changes in thought brought about by the scientific revolution in

the seventeenth century have not only persisted but been sharpened. Everything 
observed must be explained in terms of mechanism alone, everything

but the knowing observer. What we call process, the strategy of performing 
a task, has to be explained by the state-history of the mechanism, that

express es the process. In the modern biological view it is a vulgar error to

imagine Big Blue as playing chess with the purpose of winning a game.

The state-history of the mechanism, which includes the changes made by the

opponent
's moves, provides a determined sequence that explains how the

end-state of the board resulted &om the initial state. Nothing is added to our

knowledge by the concept that Big Blue is playing chess.

This may sound like a caricature, but any review of modern biology shows

preoccupation with mechanism even in the study of brain and nervous function

. Whatever studies of process there are, they appear as speculations in

clinical journals. And you only have to read the Harvard version of Darwinian 

evolution to see the lengths to which academics go to avoid the concept
of an evolutionary process; or else read the current neurobiology literature

to marvel at the utter lack of interest in process.

Ever since biology became a science at the hands of biochemists it has

carefully avoided or renounced the concept of purpose as having any role in

the systems observed. Purpose in observed nature was once and for all

anathematized by science in the seventeenth century. Only the observer may
have purpose, but nothing observed is to be explained by it . This materialist

article of faith has forced any study of process out of science and into the

hands of engineers to whom purpose and process are the fundamental concepts 

in designing and understanding and optimizing machines.

Leibniz showed beautifully at the end of the seventeenth century that in

any system provided with a Row of energy there were two aspects of energy.

One explained interaction in mechanical dynamics. The other explained how

an interaction would be represented by an independent 
"
spontaneous

" 
Row.

E.g., if you cut the cord suspending a weight (in his example), the weight
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falls of its own accord; the cutting only removes the impediment. Cutting

does not act on this weight, the weight does not ad on the cutter. The only

relation between the cut and the fall is that the fall represents the cut. The

same is true for a flow of water Horn an elevated tank through a valved

outlet. The flow represents the position of the valve. Thus switch es and

analogue amplifiers are responsible for process.

Once representation, as the essence of spirit, is given an energetic explanation 
as information, the structure of an automaton as the mechanism sustaining 

the processing of information becomes intelligible. Logical engines,

computers, are possible, and, if possible, cannot be excluded Horn reality. So

far as Leibniz was concerned, if automata would be manufactured, animate

things could be regarded as automata.

An automaton, thus, must have two explanations, one in terms of mechanism 

and accounted by efficient cause, the other in terms of process and

accounted by final cause. Thus, to deny purpose to living creatures is foolish,

it is tantamount to denying what you don
't choose to explain, a peculiar

stance for a scientist. Logical computers can be built by the arrangement of

switch es. Analogue processors can be built by the arrangement of amplifiers.

What is the problem? Every process must have a mechanism to sustain it .

And this holds even for thinking about a process. The spirit has no subtle

action (such as thinking abstractly) which is not accompanied by the action

of devices in the brain which is part of the body.

All this is part of a longer essay I will write sometime, organizing all the

relevant material out of Leibniz
'
s essays. He felt that living automata differed

Horn manufactured automata in that the elements in living automata were

themselves machines while those in manufactured automata were not. Thus

analogue computations were possible to living machines; manufactured

machines did logical computations.

In the modem case artificial intelligencers took the strong engineering

position. Tell us, they say, in unambiguous terms the tasks you want performed

, including the task of designing task-performing programs, and we

will design them. Even better, we will design them to optimize themselves

to the purpose, to learn. We will even build a program that will discover

theorems of which it hasn
't been informed. That was the salutary beginning.

But the difficulties were soon apparent. For example, the world as it appears

to us is not unambiguously described anywhere. Idealizations that are natural 

to logic are unnatural to me as an animal. Every attribute of a definite object 

of perception, such as color, shape, size, form, order, whatever, is known

by relations with other things and changes as they change. Attributes are

not as we speak of them, predicates of things in themselves, they are relations

. Furthermore, we perceive things in terms of the uses we make of them

rather than as what they are intrinsically as things alone.

Yet the current doldrums of AI are far more laudable than the cop-out

of biology
's anathema on purposive process and its self refinement. It is

obvious by now that the immediate future of biology is in mechanism only.
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It will classify programs and then explain subassemblies of mechanism as

shorn of purpose. Strategy and process will remain, as always, the forte of

engineers who are not at all self-conscious about not being scientists.

You see, to me, biology is a dead end now. Current neurobiology is like

somebody coming in with shelves and shelves of transistor manuals and

saying, 
"
See, this is how, this is what the world reduces to.

" And you say,
"But tell me how to put them together.

"

At this point, I part company with biologists. I find the artificial intelligencers

, the nerve-net people, and their colleagues far more clever. It doesn't

matter that they are wrong in some sensei they are right in spirit, and whatever 

they discover, it
'
s going to be useful in the end, whereas so far as I

'm

concerned, whatever the biologists are discovering tells you nothing about

the nature of the system. I mean, the components don
'
t tell you anything

about what the system does, only how it works.

So, from my point of view, I
'
m a strong supporter even if I

'
m not a sym-

pathizer or participant in artificial intelligence. Forget about biological preoccupation 
with receptors and transmitters and magic molecules. You take

that for granted as mechanism, but the. process of a system is a different

thing from its mechanism.

As I say, Walter held this view, but at the same time, by holding that view

he partly sterilized himself. The economy that we have encountered innerv -

ous system operations drives us up a wall. Most of that stuff I haven
't published

, and I
'
m not likely to publish. But the economy is so fantastic that at

times you almost sort of believe Leibniz
'
s notion about the infinity of operations

. Somewhere in between the logical approach of artificial intelligence
and the semilogical approach of nerve nets lies the possibility of VLSI of

analog devices with variable connections. Let me give you an example.

Consider the eye. You have a very interesting item from Pascal
'
s memoirs

in the seventeenth century. He buys a telescope. This is only a few years
after Galileo introduces it . He

'
s looking up at Venus, and sees it has a phase,

like the moon, just as Galileo remarked. He calls over his mother, who is a

very intelligent woman. She knows a great deal about science. She looks

through the telescope and says, 
"
But Venus is the wrong side to. It

'
s

d "reverse .

Pascal is startled, and says, 
"
How do you know that?" She says, 

"
Because I

can also see it with my naked eye."

Now, there
's a very interesting point here because people had claimed to

see things by naked eye that ordinarily you would say it was impossible to

see. You certainly have the identification of the largest moon of Jupiter, 10,

by a Chinese astronomer in the third century AiD. There were people whose

ability to resolve double stars was quite fantastic. So you look at Pascal
'
s

story, and you
'
re npt willing to dismiss it for two reasons. First, the Scientific

American didn
'
t exist then telling you about the phases of Venus. Second,

you know that telescopes invert. That doesn
't come to mind usually when

you
'
re looking up at the stars.
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So the question arises, would it be possible for Madame Pascal to see what
she did1 It

'
s an interesting question. Now, the angular size of Venus at its

closest approach is a little over the diameter of a foveal core. It
'
s bright

enough that you can use your fovea. At its farthest distance, it
'
s a little less

than a cone in diameter. So how are you going to issue a statement that it
'
s

flattened on one side1

I looked at this, and then I said, 
'
Well , suppose we imagine the initial

layers of the retina as a Wiener filter" [the rods and cones along with the
horizontal cells]. Let me specify what I mean.

For a normal young person with a four-millimeter aperture pupil [the optimum 
aperture for the eye as an optical instrument], a point spot of light at

infinity goes into a Gaussian distribution on the retina of about four cones,
five cones in diameter, maybe a little more. This is a blur. Furthermore, when

you consider the rods and cones, you find that they are resistively connected
at their bases to each other in such a way that the space constant of the
resistance away from a photoreceptor is even larger than the space constant
of the Gaussian distribution.

So you say, God is playing games with us. Here's this woman sees this

thing, and you
'
re giving me one form of crapping it out by the optical image

and a second form of crapping it out in the receptor arrangement and this is
ridiculous.

But there's an interesting point. If the resistive connections are between
the cones and the cones are taken as voltage sources, then the current flow
into each cone is the Laplacian of the voltages. The Wiener filter consists of a

Laplacian applied to a Gaussian, you get super-resolution out of it . With this

super-resolution, you now have a sharpening of the image in a satisfactory
way. Helmholtz said about the human eye, 

'
if somebody brought me this

as an optical instrument, he would be fired on the spot.
" 

To put it bluntly ,
it doesn't even have the optics of a Brownie camera. So far as Helmholtz
was concerned, this was very bad optics, but he did not know of image-

processing in this way. If you
're going to do resolution on the basis of a

Wiener filter, wait a minute, that's a better way to do it because if in fact I
have a discrete manifold of the cones, I don't want to limit myself by discontinuity 

of receptors in determining the resolution of the image.
I want to be able to get honest-to-God sharpness, which means that I must

process at the first layers before I ever go through any nonlinear synapsis.
Now I haven't published this. I

'
m looking for a graduate student who

'
s willing 

to work on it . It 's not a very challenging topic, and image processing
experts who say, 

"
Oh, come on, this is obvious,

" 
But I'd have to reply,

'
Well , if it 's obvious, let's set up a synthetic model of the receptors on the

computer, and let's see what we come up with .
"

You don't want to try for something that's going to restore the image because 
that's a different problem. You want to know, 

'is the information that I

get sufficient to be able to say that I can resolve such and such1
" 

That's all
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you want to know, for the point is to account for expert vision and how it is

possible.

If what I said is true, then the notions that we have of image processing in

the eye are going to have to undergo a major change. You would have to

stop working with the computers and start building instead the arrays of

coupled analog devices that are capable of giving you this sort of operation.

Because if Madame Pascal spoke the truth we had better use the process to

tell what to look for in the mechanism rather than the other way round.

IA : That's a wonderful example. You have all these receptors electrically
stuck together. They

'
re all interacting, and they should make a mess out of

everything.

IL : Which is precisely what they do if you follow ordinary visual physiol-

ogy. The moment you bring in any sort of additional hints of process, it

begins to look tasty. But I'm seventy-four years old. You know, I
'
m not an

adept. I
'
ve seldom used computers. I

'm not going to learn programming. But

the problem is straightforward and any reasonable student should be able to

sit down and grind this out in a few months. After all it is now accepted that

the human eye has super-resolution, and this has to be accounted in the first

layers of the retina for it would be impossible to do later.

The problem I mentioned is the sort of thing that you would say is meat

for any engineer. The difficulty is, it
'
s so trivial formally that nobody wants

to pursue it , and on the o,ther hand, at the level of the physiology it
'
s at odds

with all the received wisdom.

IA: This sounds a lot like ideas I
'
ve read of yours along the lines of when

the nervous system does something, it really does it right . It
'
s just a question

of finding how it
's doing it right .

IL : And how to do it economically.

IA : That
'
s a very profound way of analyzing the system.

IL : Let me give you another example. Humberto and I described the bug
detectors [in 'What the Frog

'
s Eye Tells the Frog

'
s Brain,

" 
1959]. What we

did not report, and what to me is still the most astonishing thing about the

bug detedors, is the following property which I explored with Arthur Grant.

You have a central region of a bug receptor three degrees in diameter, a

three-degree visual angle outside of which you get inhibition of response.

So working stridly within this three-degree angle, by masking off everything 
else, you find the following property. You bring one spot in, move it

into the field, and as long as you move it around, wonderful response.

You bring in two spots; if they
'
re rigidly coupled in their motion by a

fixed distance between them and are moved around, you get a good response 

almost as if they are only one spot.

You bring three rigidly coupled spots in, and it doesn
'
t matter their size or

their disposition or their distances from each other: move then around as a

rigidly coupled triad and there's no response at all.
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'
Wait a minute,

" 
you say 

"
Just a second. You

'
re telling me that this thing

is able to separate four phases from three phases?" If you have a white background 

and two black spots, OK; three spots, forget it . You connect any two

spots of the three by a barely visible black line, and all of a sudden it 's a two-

spot system. It becomes visible. Or else you move anyone spot with respect
to the other two, now there's a response.

How do you build in a system such as the retina, a device that distin-

guishes between four and three phases? That to me is a delightful problem.

I
'
ve been worrying about it for a couple of years, not seriously, you know,

not devotedly, but how would you go about it?

But I don
'
t have any students, and I cannot take on graduate students. Because 

of my age, taking on a graduate student is equivalent to asking him

or her to take a chance. If I die, the student
'
s left high and dry. Who else is

going to take him on?

What I'm saying is that if you
're going to look at visual form even in a

frog you
'
re also going to have to use notions of topology not geometry.

Those three spots, if they move translationally, rotationally, it doesn
'
t

matter how they move, how big they are, how separate they are, whether

they are the same size or different sizes: three spots, no response, providing
they move rigidly together. Now that, I consider that to be a lovely And, but

I can
'
t publish it, you know, so what

'
s the point? I can see an editor saying,

"
So big deal. So what does this tell us about vision?" It tell us that in the

analysis of vision, if we stick to conventional methods and conventional

processing, we
'
re not going to get anywhere.

JA: Is there any work on theory that you
'
ve particularly liked recently?

You mentioned that you talk to Marvin Minsky .

JL: Oh, yeah. Gad Geiger and I are working on something quite different,

top-down sort of stuff. Eight years ago we showed that dyslexia is learned,
not genetic or neurological. And we also devised visual tests by which you
could demonstrate this. Then we went in and showed that we could teach

dyslexics to read. The theory is what our colleagues have jibbed at. If we

had only presented the results, everybody would have said, 
"
Oh yes, very

interesting." But what we have is evidence that there is an internal feedback

of intended action onto the perception of the objects to be acted on. It performs 
a weighting function, not on anything related to contrast or anything

else, but on some operation that switch es between the distinctness of form

and the indistinction of texture.

You can demonstrate lateral masking in yourself by experiment. On a

clean sheet of paper make a small X in the middle as a fixation point. About

an inch and a half to the right or left print a capital letter such as N, about a

quarter-inch high. When you gaze at the X you have no trouble in seeing
and identifying the N. So your visual resolution is sufficient. Now print two

more capitals of the same size on each side of the N to make a five-letter

word, e.g., TENET or SANTA or FUNKY. Now when you gaze at the X



most of you will not see the N identifiably even though you know what you

printed . It is not as if the N is blurred . It has become nonidentifiable - it has

texture but not form . You see clearly both the beginning and ending letter of

the word , and surprisingly , the end letter is clearer even than the beginning
letter . But it is as if the other letters somehow interfere with seeing the

middle letter . Since you can recognize the N by itself , the problem is not
in resolution . Instead the order has departed from the form , leaving only a

statistical impression rather than a distinct set of relations . It is this conversion 

from form to texture that is controllable , but not by the will directly ,
rather by choice of task. It is an unusual concept , but we have evidence to

support it and can even demonstrate an appropriate mechanism in the variable 

receptive field sizes of single cells in frog texture .

In any case, the concept suggested a measure for diagnosing dyslexia and
a treatment to alleviate it . What we showed is that lateral masking applies to

whatever in the field of vision is not directly relevant to the task you want
to perform . It is as if when you decide on the objects of the task, those

objects take on distinct foreground form , and everything else is reduced to

background texture . This is what is meant by attention . The point , of course,
is that attention is not confined to the direction of gaze. It can wander over
the whole visual field . If you mislearn where to attend for a task, the region
that should be attended is laterally masked and so there is a barrier to

correcting misattended task performance .

So we
'
ve used that , you see, and now our latest paper has just been published 

in Vision Research about the work we did in Tuebingen [G. Geiger , J.

Lettvin , and M . Fahle 1994, 
"
Dyslexic Children Learn a New Visual Strategy

for Reading : A Control  led Experiment Vision Research 34; 1223- 33]. We did
it there with grammar school kids . There they let us take a batch of grammar
school kids who were dyslexic , and within eight months they were reading
within three quarters of a grade of where they should have been reading .
The method works . But the theory behind the method , namely , this concept
of task-determined later -

masking operations , goes against the grain of every

psychologist . And yet now there is evidence that this occurs with all forms

of perception , for example, audition . We
'
ve played our game out , and we

wrote sort of a manifesto . Now I would like to switch to some other stuff .

ER: Where would you point people just entering the field now , and what

do you think the difficult problems are?

IL : Well , to me, the difficult problems are how to go from an image to its
content . The important thing that you realize, for example, in perception is
that just as in mathematics , lines are imagined , so they are in vision . You

argue from phase boundaries ; boundaries are the things that are important in

vision . A line is a doubly bounded area. Line drawings are sets of doubly
bounded areas.

IA : I get the feeling you aren
'
t too impressed by the very empirical nature

of neuroscience now .
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JL: I think much of it is beside the point if you want to relate mental activity 

to nervous activity . Don
'
t misunderstand me. I

'
ve great respect for you if

you say, 
"I'm going to find out how this thing is or what the elements are in

building it .
" 

That
'
s a legitimate project, and if people who are doing it confine 

themselves to that, if those were the only claims they made, I would be

delighted and show intense respect. But the pure nonsense that comes out as

if, for example, particular feelings, things, ideas, images were functions of

particular chemical compounds, you know, I have no use for that.

JA: I get the impression that neuroscience is far more empirical now now

than it was twenty-five years ago.

JL: It is. Twenty-five, thirty years ago it was still imaginative on a systems
level. Now unless I were interested in chemistry, I don

'
t think I would go

into it at all.

JA: You know, when I was a graduate student at MIT , I found your approach 
to doing science really inspirational. You did stuff that you thought

was important and not what other people thought was important.

JL: Yes, it
'
s going barefoot. You see, I

'
m lucky. I

'
m one of the few people

who managed to be on the outskirts of everything at the right time. So, in

a certain sense, wherever I walked barefoot, I would pick up some things. I

don
'
t think that sort of liberty is going to be anything that you get anymore,

so I was very fortunate in being a hanger-on in the right places at the right
time.

JA: I remember they had the faculty come in and give talks to us incoming
students. We had a number of very earnest talks about biology . Then you
came and made it sound like a lot of fun. You did interesting problems and

had a lot of fun doing it . It was wonderful.

JL: Actually, there are a huge number of delicious problems in biology on

a macroscopic level that are going begging because, in the first place, NIH

[the National Institutes of Health] will not sponsor anything that doesn
't

sound like careful science, and in the second place, it
'
s very difficult to get

people to be interested in naturalist approach es. It
'
s not deep technical stuff

that appeals to them. There
'
s this intermediate range in which I operate sort

of solo, simply because I'm not learned enough for one group, and am not

enough technically sophisticated enough for the other.

JA: There should be more people like that!

JL: There's a big hedonistic element in looking at individual problems and

asking, just as a first-order pass, 
'What could I do quick and easy before

going into it deeplyf
' 

These first-order and second-order passes are themselves 

informative, much more so than people think. The Pascal's mother

story, that
's a first-order pass at an image-processing system. But it suggests

that if you
're really going to do image analysis, you could do worse than

design yourself a receptor region that is a discrete manifold but in which

you use operations of the sort I described, where you
'
re not precise in im-
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age down to single points and where you must use something 
"
like a Wiener

filter. It
'
s a trivial thing to design in analog computers because all you have

to do is replace every cone by an op-amp, and you have a voltage governed
by the light while the lateral resistor connedions between op-amps gives
you the current. Now, it

's trivial to build such a thing, and behold, if you
monitor the currents, you now have a resolution that is very good indeed. It

may seem a mess, but it 's a sort of mess that tells you what to look for.
So.
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descendents was raped and scalped by Narragansett Indians. She survived in
a hollow tree on rainwater for ten days, con~ buted to the family gene pool,
and wore a cap ever after.

Times were hard in the depression, and some of my earliest public memories 
were of seeing bums and hoboes going from door to door for handouts.

I graduated at the age of seventeen, went to MIT , and spent my first two
semesters there before going into service. Gladly, I might say, because I
came to detest the place for all the reasons that the Berkeley students came
to detest the Berkeley campus in the 1960s. I went into engineering initially
as a 'prospective way to make a good living as a civil engineer because I
wanted to build bridges and pipelines and dams, things like that. But I found

very quickly that there wasn't much intellectual content, and besides, I had
a course in surveying, which involved standing around on street comers in

Cambridge, Massachusetts, in midwinter, which was very unpleasant.
So I switched my major to physics and then went into the Navy and did

service in the South Pacific. They trained me as a radar technician, so I
learned basic electronics, and when I got into research, I could design circuits
with vacuum tubes, though I never mastered transistors. I was out there

fairly late in the action, so I was shot at a couple times, but it wasn't anything 
you

'
d want to make a story out of.

But what did happen that was of interest was that I was stationed in the
Marshall Islands at the time of the Bikini tests and was evacuated along with
most of the other inessential personnel because the hypothesis then was that
when the atomic bomb went off in an underwater explosion, this would rip
the coral atoll Lit pieces, and they would slide down the top of the undersea
mountain and create an immense tidal wave, which then would essentially
wipe out all the people in Oceania. Knowing that this was a possibility, they
went and set off the bomb anyway. But nothing happened. I did see the illumination

, the blast, from a distance- the mushroom cloud. So that was my
introduction to the atomic age. At the time I was rather grateful for the
existence of the bomb because it meant that something like a projected million 

casualties, which I would likely have been one of, in the invasion of

Japan didn
'
t take place.

So I went back to MIT with the conviction that I would get out of the

place as soon as feasible. But at the time, with all the veterans coming back,
there was no place else to go. A turning point came when I went with my
fraternity brothers to a meeting, which was set up by ONR [the Office of
Naval Research], of people who had done war research and who had an
invitation to continue on, to see what new weapons could be developed.
Norbert Wiener was the key speaker in this. His speech consisted, essentially

, of the statement that he had regrets that he had carried out the kinds
of activities he had done. He thought that further weapons research was immoral

, and he was getting out. He advised all his colleagues to get out, and a

good third of the audience got up and left. To my regret, I did not. I was
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puzzled as to what was going on. But having thought about it for the next
several months, I decided that physics had no future. What it was going to
be was making weapons. I went to see the dean to talk this over, and he said,"
Education is either qualitative or quantitative. Which would you preferf

' I
would find something else. I left.

Not knowing what that "else" was, I dropped out, essentially left the sciences
and went into English and mathematics at a place called Ha milton College in

upstate New York, a small liberal arts college. And that was like going into a
monastery. It was very isolated- a long, long, winter in upstate New York.
So by the time spring rolled around, I consulted with the dean of students,
after having had more than one run in with him, and he very quickly said,"
Yeah, go to the University of Chicago; that's where all the other misfits
go."

And so I arrived and spent two very interesting years there studying phi-

losophy under Richard McKeon. He was an Aristotelian and responsible for
the architecture of the University of Chicago undergraduate system, based
on his philosophy of education. He was very difficult as a teacher. He was
abusive, attempting to be challenging, but in the process, leaving people behind

. The history of his teaching- well, of his style, I should say- is well
documented in Robert Pirsig

'
s book, Zen and the Art of Motorcycle Maintenance

, where the chairman of the Committee of Methods and Ideas is
modeled on McKeon. In fact, Pirsig left Chicago to go to a mental hospital
for treatment, which was the motif of his book, and I left to go to medical
school.

While I was in Chicago, I read an account in Time magazine of the work of
Warren McCulloch, and I was impressed with his approach to neurons as
switch es, binary switch es doing Boolean algebra. So I left Chicago without
ever getting an undergraduate degree because I changed majors too often.
I chose to go to medical school at Yale because John Fulton was the leading 

neurophysiologist at the time. He was one of the last students under [Sir
CharlesS herring ton, and the thought appealed to me of being a scientific
grandson of the old master, who was still alive then. I wanted to go into

neurology and biological psychiatry in particular. In this I was very strongly
influenced by my father, who was an eminent neuropsychiatrist and who had
introduced a number of innovative techniques in psychiatry, most notably
the use of prehontallobotomy , which was widely practiced in the era before
the introduction of chemical treatment for psychotic and neurotic disorders.
We were proud of the medical heritage of our family, which went back to a
physician at the time of the revolution, John Morgan, who studied medicine
in Edinburgh. My great grandfather, W. W. Keen, was the first surgeon to
succeed in removing a brain tumor. When I was growing up, our house had
visitors Horn around the world, with talk about the battles between the psychoanalysts 

and the neurosurgeons. The mental hospital at St. Elizabeth's,
where my father worked as the neuropathologist, was a childhood playground 

for me.



Yale is where I got to know some neurophysiology and was very quickly
informed in my studies in physiology, in my first year of medical school, that
McCulloch did not have a valid picture of the nervous system, however
fruitful it might be in other ways. McCulloch was, I think, really the originator 

of automata theory, of self-organizing systems, using digital logic. He
was the godfather of the digital computer since von Neumann relied upon
him so heavily for his neural metaphors. But it was clear to me that that

'
s not

how the nervous system worked.

I did my second experiment on cats in my freshman year. I attended a lecture 

by Bob Livingston and Jose Delgado, the guy who made history in a

bullring in Madrid by fighting a bull after he put electrodes into its dien-

cephalon. He used a radio transmitter instead of a cape to make the bull turn.

Anyway , they described all the reactions you can get by electrical stimulation 
in the diencephalon, the sort of thing that Hess had done for his Nobel

prize, so I went up afterward and asked whether they had ever seen panting
or shivering because that was the topic of the lectures in physiology that
week. Livingston said, 

"
No , but would you like to tryf

' 
I said, 

"
Sure," and

spent the next three years trying and eventually got cats with thermodes

chronically implanted in their hypothalamus to pant. The cats also showed
some interesting postural adaptations to heat and cold. That way I disproved
the old dual-center hypothesis of temperature regulation that Magoun and
Ranson had proposed, by showing that the anterior hypothalamus was
sensitive to both heat and cold.

Well, the reason I went to medical school was to go into practice, not into
research, so after I graduated, I did an internship in pathology at Yale, doing
autopsies, frozen sections for surgeons, that sort of thing-

getting into
the basic science of medicine. Then I did a year of internship on the Osler
Service at Johns Hopkins. It was a pretty demanding time being on twenty-

four-hour call for an entire year, and the standards of patient care were

extremely high, but after some rough spots in the first three months, I got
really good at it and enjoyed that sense of real professional competence. You
didn't expect to save everybody, but you knew what to do, no matter how
bad things were. The turning point came when I drew an old lady, unconscious

, with total paralysis on her right side. She was old and had a history
of a bad heart and weak kidneys, so I wrote orders on her, 

"
No fluids, no

antibiotics, turn every two hours, and call me when there's a change." Well,
that blew the lid off. My resident took me off the case and did the whole
heroic thing

- tracheotomy, positive pressure respirator, levophed drip,

urinary catheter, and so on- and he pulled her through, sort of, though she
couldn

'
t talk or get out of bed or recognize her family. Then I got called into

see the chair of medicine, who held a kind of court martial with some of his
senior people, and the upshot was that I was not to be punished, but, as the
chair put it, 

'if you cannot accept the prevailing ethics of the profession, Dr .
Freeman, you are advised to seek alternative employment.

" 
I thought about

it for a few hours and then decided that that was good advice, so that night
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I wrote an application for a postdoctoral fellowship from NIH [National

Institutes of Health ] to study neurophysiology under Bob Livingston and

Ted Magoun at UCLA . I had my licence, and I kept the door open to go
into practice as a kind of safety net, but after I got tenure at Berkeley , I let
it go because the only practice I had was on my growing family . But that

'
s

another story . I
'
ve always considered myself to be a good scientist , but first

and foremost a good father .

I came to study olfaction by the back door . I started with my medical
school thesis doing temperature regulation and decided after my departure
from clinical medicine to go into a study of feedback regulation by the brain
in what were then called psychosomatic diseases- hypertension , hyperthyroidism

, hyperhydrosis , that kind of thing
- and in particular to study

fever as a resetting of the body thermostat and to do this by recording the
unit and EEG field -

potential activity of the hypothalamus with local heating ,
first with diathermy and then with various bacterial toxins to induce endogenous 

fever . I
'
d done some of that work already in medical school . Well , you

can heat the hypothalamus to the point where it
'
s been cooked , and it doesn

'
t

change its field potentials . The unit activity , of course, is gone . That led me
to search for the origins of the field potentials in the hypothalamus , which

turned out to come from the hippo campus, from the thalamus, but most

strongly from the olfactory cortex , the prepyriform cortex . And that then
led to a study of the mechanisms of origin

- how the dendritic field potentials 
were generated and what their behavioral correlates were - and to the

study of these mechanisms in waking animals with implanted electrodes . It

was obvious that they were dependent on the degree of arousal, but in other

respects there were no clear behavioral correlates of the time series. They
were dependent on respiration , as a driving input , and on the level or degree
of arousal, but virtually nothing else.

This was a period when , as I look back on it now , there was the emergence 

of a virtual obsession with unit recording . The techniques for that had
been developed by C. G. Phillips in England and by Richard lung in Germany
for recording single cells intact in the CNS in behaving animals and for

studying sensory processing using single units . Of course, the people who

became most widely known , Hubel and Weisel , established a kind of meth -

odology for doing these studies in which theory was virtually abolished .

That led eventually to the emergence of cellular neurophysiology . And

although I was interested in unit recording and used it extensively , it was

mostly in conjunction with recording of the dendritic potentials at the same
time . This was from a conviction that the single neuron embedded in very

high - density synaptic connections with other neurons couldn
'
t function as

a single element like a transistor - or a vacuum tube, for that matter - in a

discrete connection system.

J. Freeman

Networks were becoming increasingly elaborated, and this was, of course,
when the percept ron was in vogue and a dozen other network type of devices

, like the Ommatidiac, which I looked upon as, well, interesting gadgets,
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but they had nothing to do with how nervous systems work. I think that I
became somewhat isolated from the main Row of activity - not ever to the
extent where I had difficulty getting funded, though, mainly because there
were some very helpful journal editors like John Fulton and Bill Windle, who

maybe didn't understand the work, but saw that I could write well, and
because the program directors at NIMH [the National Institute of Mental
Health], real idealists, had faith in me and what I was trying to do, so I never
starved. But I had difficulty in establishing ties and working relations with

anyone of the three or four main camps, if you count the physiological psychologists 
who were doing evoked-potential studies, which I had very little

interest in or use for.

There were people doing unit analysis in the style of Vernon Mount castle
in the somatosensory system- Jerry lettvin and Horace Barlow- and Steve
Kuffler in vision, unit studies. There was the prevailing development of per-

ceptron theory, which again was irrelevant to what I was doing. What I was
interested in was dynamics- how a system could work in the context of
feedback control. I was very impressed with Larry Stark's work, opening the

loop of control of the iris by shining a very narrow light beam into the pupil,
too small to be influenced by the pupillary contraction. When I looked at the
oscillations in the olfactory system and the beautiful ringing, sinusoidal kinds
of activity , I was very quick to see that these were not due to oscillations
of single cells being coupled together, because when I looked at the spike-

interval histograms, they were essentially Poisson distributions. They couldn
'
t

come from coupled oscillators at the single-cell level. And when I applied
chelating agents to remove the calcium, which is the way of boosting oscillations 

in single cells, it didn't bring out oscillations at all. But when my student 
Maria Biedenbach and I applied synaptic facilitators like acetylcholine

to the prepyriform, we got enhanced oscillations, so they had to arise from

synaptic interactions.

On the other hand, in 1965 when I looked at the relationships between
the single-unit firings and the field potentials, I found that if I recorded units
from the same cells that were generating the field potentials, the unit firings
and the EEG waves were in phase, just as the feedback equations required.
But there was another class of units that showed a ninety-degree phase lag,
which had to be the units coming from the inhibitory intemeurons. I got comments 

when I published this or sent it off for review; I got comments back
from the editor, 

'
Well , this phase difference here, the difference you

'
re talking 

about, is only a few milliseconds. Why get excited about itf ' 
People

were looking at it in terms of a time delay of 5 or 6 milliseconds for an
oscillation with a period of 25 milliseconds, and they thought that was insignificant 

and didn
'
t look at it as a phase delay, which was ninety degrees.

Well, you see, the distinction is between looking at the activity in terms of a

logical net as distinct from a dynamical system, and I think that that difference 
in perspective still persists. It relates to how you look at this intervening 

process of integration of the dendritic current between the incoming



pulses and the outgoing pulses. It
's a kind of a multifaceted difference between 

my way of looking at the nervous system as masses of neurons and

most other groups around looking at it as nets of neurons. I think that this

difference still to a large extent persists now. But, for me, the 1960s were

really a time of laying down some basic principles. One of them was the

negative feedback loop, which I modeled using differential equations and

Laplacetransforms.

JA: I remember hearing you speak in, I guess it was 1968, at the Salk Institute

, where you discussed some of your linear systems analysis approach es.

I thought it was just wonderful. I was really impressed by it .

WF: Oh, I wish you would have said something; I would have felt better!

JA: I went and looked for all your papers because I thought, 
'
Wow , this

guy
'
s doing something really neat.

"

WF: It 's a different way of looking at brain activity , so I had the negative
feedback loop early. In fact, you know, you don't have to look for how the

cells couple together selectively. It emerges as a simplifying principle: the

notion that there
'
s not just negative feedback, but there are mutual excitation

and mutual inhibition . At that time, mutual inhibition had been demonstrated

by Hartline and Ratliff for Limulus eye, and it was widely used to model

Mach bands and lateral inhibition, but mutual excitation, especially, was regarded 

as a no-no, along with reverberatory circuits, because these were unstable

, abnormal, epileptic. Calal himself had said that feedback couldn't exist

in brains because then a neuron couldn
'
t tell the difference between its input

and its own output. So this is in the nature of a simplifying principle because

you have excitatory neurons and inhibitory neurons, so why restrain/restrict

the action of each onto the other? In fact, if you have the mix, and you have

each type acting on both other types, then very quickly you come to the

conclusion that there are these three types of feedback. I started to play with

what are called Mason diagrams, which show the relationships between

different boxes in a linear circuit where you can rearrange things. I had the

feeling of having broken into a space which was so big that I couldn
'
t see the

other side. I remember thinking to myself, 
"
Hey , if I go into this, into this

area, I
'm going to get swallowed up and may not come out again.

" 
In fact, it

was some seven or eight years later that I Anally came out the other side, so

to speak. This is when I had this marvelous comment from Marcel Verzeano.

Mike was a biophysics professor at UCLA and a senior statesman at the time.

He came up to me after I'd given a talk on the use of impulse responses and

root locus techniques, and he said, 
'Walter ,

" he said, 
'1'

ve got some advice.

You
'
ve got to give up this 

'
mademadics.' People won

't understand your

papers, and they won't read you, and you
'll be ignored.

" 
And he was quite

right, in a way, though not the way that counted.

This was the time in the mid-1960s that I discovered the sigmoid curve. I

called it bilateral saturation because it showed upper and lower limits on

neuron firing. If you use the evoked-potential technique and the poststimulus
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time histogram, you can't see the upper limit because you can fire the

neurons- you can drive the frequency up as. 
high as you want- and they

have time for recovery during the inhibitory rebound. It
'
s only when you

look at the ongoing spontaneous activity and use a statistical measure- the

probability of firing conditional on the EEG amplitude
- that you can begin

to see the upper limit , which shows that the cells can
'
t go over the top of the

sigmoid. It
'
s a static nonlinearity because the firings of the neurons in the

populations are uncorrelated. In fact, I had trouble publishing that. I found

an oddball journal in 
'
67. They finally took it, but the journal subsequently

went out of business, so the original paper is hard to find. It was called the

Logistics Review. It 's not carried by most libraries.

JA: Never heard of it .

WF: Yeah, I
'
d like to get it republished sometime, reprinted sometime, because 

I look on that as a seminal paper, which contained most of these ideas

about cortical systems with feedback, multiple-loop systems, and the bilateral 

saturation nonlinearities, about piecewise linearization and the root

locus technique with Laplacetransforms, and about the importance of opening 
the feedback loops, to get the open-loop rate constants. You do that

with deep anesthesia, either local or general. You can't do feedback analysis
unless you find ways to separate the forward and feedback limbs. Also, the

idea of amplitude-dependent gain changes, of changes with learning, which

was identified with the mutually excitatory synapse, that was also discovered

by you, Jim, among others, in terms of the connection matrix, where there
'
s

a reciprocal connection among the excitatory elements. In fact, Anderson

and Amari and Hopfield and Kohonen- all have that connection matrix. I

discovered this change with learning, identified it there in the prepyriform in

1968, which I think preceded most of you.

That was done in a very simple, elegant experiment where I placed electrodes 

into the olfactory tract of a cat and used electrical stimulation to get
the monosynaptic synaptic evoked potential and then trained the animal to

respond to the stimulus. As the animal learns, during the learning process,
there is some magnificent wave activity that's going on, which is so transient

that it
'
s not possible really to measure it because it

'
s too chaotic. But once

the learning process is completed, then you see this change emerging. Out

of a roiling activity you see this evoked potential coming out. The initial

amplitude is no bigger, so it
'
s not the first synapse which is doing this, but

the duration of the wave is a little bit longer. Again, it
'
s not much longer,

only a couple of milliseconds, but what it tells us is that the synapse, which

has undergone a change, is between the excitatory neurons rather than the

input ones, where L TP [long-term potentiation] takes place, for example. All

these findings came out in the 1960s, and I went on into the 1970s to build

on these studies, to connect them all together with the root locus techniques.

Most of that work was done on the prepyriform cortex.

I went on then to look at the olfactory bulb-
working that way outwardly 

toward the periphery, instead of inwardly, as is more commonly the
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case. I did some studies on the self-exciting populations and the input to

the olfactory bulb, and here again I ran afoul of the establishment because

the prevailing dogma is that the external interneurons, the periglomerular
cells, are inhibitory because they are small and they

're GAB Aergic [GABA is

a neurotransmitter], and they
're supposed to carry out surround inhibition .

My studies showed that not only are they mutually excitatory, but they
're

also excitatory to mitral cells, and they don
't have the need for inhibitory

neurons to stabilize them because they
're stabilized by saturation. I demonstrated 

this by using root locus techniques. But, as you can understand,

physiologists don
'
t understand root locus, and engineers don

'
t understand

physiology. So it's a beautiful study, but it 's just not easy. In fact, it took six

papers to put the study itself out and I couldn
't get the papers all in the same

journal. So two of them are in Brain Research, and two of them are in IEEE

Biomedical Transactions, and the other two are in the EEG Journal. I put it all

together in a book as a kind of an overview. I did that on invitation from

Ilya Prigogine, who invited me to lecture in Brussels. I gave a series of half a

dozen lectures as 
"Titulaire de la Chaire Solvay,

" 
so I was able to summarize

the linear analysis of neural dynamics in one book, using piecewise lineariza-

tion. Later on, at my suggestion, Joachim Wolff and his group at Gottingen
showed that these GABA cells, the periglomerular cells, accumulate chloride

ions, which explains why they are excited by GABA.

JA: That was a very interesting book. What was it , 
'
75 or 

'
761 [ Walter J.

Freeman. 1975. Mass Action in the Nervous System: Eramination of the Neuro-

physiological Basis of Adaptive Behavior through the EEG. New York, N.Y.:

Academic Press.]

WF: Yes, in fact, it
'
s on display in the Academic Press booth here [at the

conference]. It
's still hanging onGoing to Prigogine

'
s group gave me an

opportunity to learn nonlinear dynamics, and that was when I started off

doing dissipative structures. I pushed linear analysis as far as it would go. I

was introduced to this new field by Aharon Katzir-Katchalsky, who was a

frequent lecturer at Berkeley. He organized a workshop because of his insight 

into the possibilities for hierarchical organization of neural populations.

This came out posthumously. He was killed on his way home with the notes

for this congress, this NRP [ Neuroscience Research Program], an MIT think

tank, which meant that it had to be done by others who really didn
'
t understand 

what he saw. He was incredibly quick, had an incredibly well-informed

and broad mind. I sent him a paper which essentially was a summary of what

I'd been doing, and he called me up; he wanted to talk about this. I went up,

and he asked me a few questions, and then he got more and more excited,

and I got more and more excited, and we had this kind of intellectual orgasm

together as he began to explain to me what this work meant. So that was

how I got introduced to Prigogine because one of the last things he said to

me before he went back to Israel was, 
"You

've got to go and see Prigogine."

And I said, 
'
Whor

' and he explained to me who this Belgian theoretical
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chemist was and what he had to offer. And so that is where I learned to
formulate differential equations with nonlinearities and to find some way of

solving the problems of state transitions.

JA: That was Katzir-Katchalsky who was killed in the airport massacre in
Israel, right?

WF: Yes, he was devoted to dissipative structures and state transitions,
which I think people haven

'
t really picked up on even now. I asked him for

some background, and he sent me to Alan Turing
's 1952 paper on chemical

morphogenesis, which was really the origin of Prigogine
'
s thinking on dissipative 

structures.

JA: Those were the unknown Turing papers, the ones that were not on

computers, but on biological dynamical process es.

WF: When Turing essentially got out of computing, he figured that the

really important work was in biological dynamics and especially the growth
of form, the geometrical shapes of trees and flowers. And that

'
s what led to

the emergence of nonlinear dynamics as a major way to study brains now.
So that was also a time that I had finished putting together a system with

sixty-four preamplifiers, a multiplexer, and analog-to-digital converters for

doing spatial recording because I wanted to get back to this old question of
where

'
s the sensory information. It was obviously not in the time domain.

There wasn't a wide enough frequency band, and it wasn't in frequency
modulation, and it certainly wasn't in any small number of pulse trains in
a network. I had developed a system for recording from up to ten microelectrodes 

simultaneously and for taking multiple units from each one. I

placed this array in the mitral cell layer and did simultaneous recording of
wave and unit activity . It was strenuous, trying to watch ten oscilloscopes at
the same time, to balance them all. It was obvious to me that the variability
of the unit activity was so great that only a small fraction of the variance
in each pulse train was covariant with the other pulse trains, and that small
fraction was the crucial information to extract because the output tract of the

olfactory bulb to the olfactory cortex, the prepyriform, has no topographic
order to it . It does have some kind of operation, but it 's in the nature of a

spatial divergence and integration, not topographic mapping. This is another

key feature overlooked among people as diverse as anatomists and engineers.
There are some pathways in brains which have topographic order in them,
but the majority of pathways have this wide divergence. There

'
s got to be

a reason for that. It
'
s not simply that there

'
s some kind of specific wiring of

relatively small numbers of neurons. There are literally tens of billions of
neurons. The only thing that can survive that kind of real-time, on-line integration 

is activity that is common over the whole surface- that has the
same instantaneous frequency.

So that led me to looking at the spatial patterns, regarding the olfactory
bulb as Lord Adrian had postulated a half century before, as essentially a

spatial-coding mechanism. But Adrian had thought that this was a coding in
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which each odor would have a certain location in the bulb , and that maybe
one location would fire whenever an active odor was presented . This is

essentially the percept ron model of olfaction . But the patterns occupied the

whole bulb , like the kind of interference pattern that Karl Lashley looked for ,

and the patterns weren
'
t related to the stimuli , but to the context .

I think the most compelling demonstration was to train the animal to

respond to two odors - one rewarded , the other not - and then simply
reverse the contingency . And we got new patterns . Not only that , but the

pattern for the control state changed too . Well , in a true associative memory ,

this would have to be the case because in making an association to a new

input , you change the existing store; everything has to change, and that is

basically what we see. Of course, it raises the question , 
"
How can you still

have stimulus -
response [5R] invariance when this intervening store is subject

to continual modification , a change with everything that
'
s put in?

" 
And the

obvious answer is that when you change the input side, you also change the

output side. 50 the 5R invariance is maintained through the environment ,

that part of the loop where it belongs , and not on the inside, where in fact
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it can
'
t hold if you have a true associative memory. We came to the conclusion 

that what we
'
re looking at then is not a record or not an image of the

odor itself, but rather of its meaning for the animal, its significance
- what a

stimulus will imply for the animal in terms of what it will have to do about
the odor. Again, this is something that very strongly diverges from existing
views of how the nervous system is operating.

JA: An associative computer is a very different kind of computer than a

nice, clean, digital computer. Things are really a mess, and you have to view
it in a very different way.

WF: I think that
'
s why Horace Barlow, for example, has such difficulty

with mass action. He was in my department; in fact, I hired him when I
was department chair in physiology. He, of course, has a conviction that the

only thing you can know about the nervous system is what comes out of a
microelectrode. EEGs and populations are all part of what Jerry Lettvin once

described to me as the 
"
Sherringtonian ooze."

JA: I've heard that called microelectrode myopia.

WF: Very good. So that's how I got into neurodynamics and then more

recently into chaos, with the realization that these patterns are not periodic,

temporally or spatially. For a while I thought that brains couldn
'
t work if

they were chaotic. In fact, when I was modeling the olfactory system with
what I called Katchalsky sets, I stumbled onto chaos without knowing what
it was, and I changed the design so that sort of thing just wouldn

'
t happen.

What a mistake!

JA: Sort of an interesting evolution from linear to nonlinear dynamics to
chaos.

WF: Kind of going along with the field. I
'
ve had an occasional look into

the history of psychiatry by reading the first chapters in textbooks from
the 1850s, 1880s, on into the 1920s, and it

'
s very clear that psychiatry and

neurology under Hughlings Jackson and Freud, was dynamic. They thought
in terms of nerve energy, resistances. In fact, Freud has a marvelous passage
in his "Prologue to a Scientific Psychology,

" 
in which he describes the importance 

of the contact barriers between neurons as the site of the changes
with learning and changes with degree of will or energy or whatever. It was

two years beforeS herring ton and Foster came out with the word 
"
synapse,

"

but there it was, as Freud said, the contact barrier- that's where the action

was.

JA: It
'
s always amazed me how knowledgable people were about neuro-

physiology in the nineteenth century. You read William James and Freud

and some of the other early work, and it
'
s remarkable.

WF: John Dewey is another of my favorites; he wrote this essay in 1892 in

which he says that the concept of the reflex isn't scientific; it
's a religious

idea.



JA : Do you have any thoughts about where the field is going to go in the

next few years?

WF : I think increasingly it will go in the direction of the emergence of a

new class of machines which are truly dynamic and not symbol processors.

I' ve been urged , for example, to take my system and put it into a form like

a Hopfield net, where it can be operated on by logical tools . But of course

that
'
s throwing out the baby with the bath . The initial approach that I

thought was optimal would take the equivalent of hardware , using operational 

amplifiers to take advantage of continuous -time dynamics for solving

the equations , because the big problem you come out with is how slow the

digital simulation is. But I encountered serious problems in trying to do it

that way . I think the nervous system essentially solves the same problems by

using pulse &equency as an analog variable . Basically , that
'
s what we do in

numerical simulations . Within a few years I think we
'
ll be on real time, using

fully parallel processing and using big machines which are going to be operating 
in the gigahertz range, and then probably go in the direction of dedicated 

hardware involving large numbers of DSPs [digital signal-processing

chips]. Then we
'
ll replace not the single neurons, but rather the local neuron

pool , which really I think of as the functional unit . Self-organizing dynamics

will be increasingly used as means for designing feature extraction .

In other words , when you have a problem of scene reading
- a problem of

defining what
'
s figure and what

'
s ground , what things to look for - this is a

high -level cognitive problem , even philosophical , because it concerns what

is important for an animal, what it needs to see in order to stay alive . You

don
'
t just look for angles, edges, and write digital code to specify these

things ; you turn the system loose and let it do its own thing . And we do that

already with our KIll model , as we call it . Just turn it loose, and it decides for

itself &om examples, generalizing over a few samples for a class. And we

don
'
t know what it

'
s looking at. In fact, the first thing you do is what the eye

and the ear do : take a transform of the input . We can do that most simply

with a Fourier transform because that
'
s easy to code, but almost anyone will

do . In that case, you disseminate the information ; it
'
s all there, but it

'
s not in

a form that we can, as individuals , hear or see. It
'
s what our brains do inside .

It takes a fully parallel system to operate on that stuff .

JA : It sounds as if you
'
re saying that parallel hardware is nice, but the software 

is going to be extremely odd in a parallel domain . You have to worry

about these dynamical systems, these nonlinear systems. And the whole idea

of knowledge will be different in a parallel dynamical system.

WF : Well , it will certainly be different &om what is currently conceived

as knowledge in a conventional digital computer . Knowledge arises &om

actions that people take with their brains- to make a move and try to see

what happens when you do that . When we design machines to learn &om

their own mistakes, knowledge in machines will be, I think, more akin to

knowledge in the sense that we understand the world around us with our
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own brains. And what brains create and process is not information. It 's

meaning. That's the big difference between man and machines, meaning
versus information.

For example, the device that we are currently developing, which is the
basis for a couple of patents that I hold, is essentially used to identify or to

classify small industrial objects. The classification is either acceptable or unacceptable
. It's good or bad. What's extracted, essentially, is the meaning of

the object and not anything having to do with the specifics of the object.
This kind of system can be trained to operate on any number of classes or
kinds of things, just with a couple of examples. Given an example, it takes a
simulated time of a couple of seconds, and then it 's off and ready. It

's like

having a worker on an assembly line. Today it
's going to be sorting apples

from oranges, and tomorrow it
'
s going to be something else. I view this as a

kind of interface between a finite brain and essentially an infinite-dimensional
outside world . I mean, if you think of it in terms of what's coming in to us all
the time, it

'
s a collection of photons, of phonons, of molecules in the airflow,

of whatever. All of this collection of physical energies can be subdivided or
restructured in an infinite number of ways. And what we do, essentially, is to
take this massive inflow- what William James is said to have called the
"
blooming buzzing confusion

"- and replace it with something that we generate 
inside. That replacement is chaotic in its finite dimension, which is

manageable for this finite-state machine inside. Now I see the role for this
kind of dynamical system as providing the interface, which is preprocessing
the inflow from the infinite outside and reducing it into something that's
more manageable, like the dimensions that come with the raw letters on
a printed page. But I don

'
t see that happening very quickly, not so much

because of the technology, which I think is there already, but because a
reorientation of thinking has to take place.

JA: It 's a painful process.

WF: In some respects it
's painful, if it means that you have to learn whole

new kinds of disciplines. For example, we have learned that digital computers 
work well in simulations for point and limit -cycle solutions of our

equations but not for chaotic solutions. This is because of attractor crowding
. As the number of first-order equations is increased, the number of attrac-

tors also increases, and the size of their basins decreases. Over a hundred or
so, the size of the basins approach es the size of the digitizing step. Numerical
solutions are like a drunk trying to walk a straight line. Sooner or later the

projection for the next value falls outside the desired basin, and the model

goes awry. Basically the problem is that digital computers work with rational
numbers, not with real numbers. They truncate, and this is incompatible with

modeling chaos. We have found that we can stabilize chaotic solutions with
additive noise, but we don't have the mathematics that could tell us how
this works. The implication is that we should use analog hardware to model
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chaotic brain dynamics . So the study of brain dynamics leads us right to the

frontiers of mathematics and of analog devices.

ER: Could you describe your current work ?

WF: That might get a little too technical, but maybe I could simplify. As

I say, one of the critical problems is trying to play with the parameters in

the system as we have it now to get some clearer idea of the nature of the

chaotic dynamics. The chaotic process has certain obvious properties in the

nervous system, like spatial coherence and stability, and we can
'
t fully control 

them. We need to be sure that the kind of process we
'
re looking at is in

fact a global process and not a capture of the system by some local part of it

that is dominating it, which I think is antithetical to the way in which the

nervous system
's operating.

I'm continuing to work with animals. I'm trying to develop an alternative

measure of a chaotic process, which depends on spatial-pattern measurement

of the phase, rather than the amplitude pattern, because of what we
'
ve seen

in the olfactory bulb. Each burst of gamma oscillation has a phase gradient in

it over the surface. But, you see, when a stimulus comes and a burst of oscillation 

happens, this is not the spread of a synaptic wave; this is spread of a

state transition, and it 's what physicists call anomalous dispersion. It
's like

when you hit a metal bar on one end with a hammer, and the sound wave

gets to the other end before the impulse does. Anomalous dispersion involves 

a separation of the group velocity of the spreading state transition

from the wave velocity of information transmission. If you put a stimulus

into one part of the olfactory bulb, then by synaptic transmission presum-

ably ultimately the stimulus would get to where it
'
s going, although it dies

out much faster. But when the bulb undergoes a state transition from one

level to another, making this jump essentially involves undergoing a major

global change in its spatial pattern, and that has its own velocity. It's like

what happens when water is supercooled. That crystal falling into it forms

the site of nucleation, and the state change will spread the crystallization

throughout the whole system. It's that kind of a process. And the velocity
that it travels out at is about two meters per second, which is the velocity of

the mitral cell axon collaterals. Most of the collaterals go only a millimeter

or so, but there are some which go longer distances, and that small number is

sufficient when the system is brought close to the edge of a basin for a state

change. When it 's close to a separatrix, then a very small stimulus will carry
it over.

This is where the sensitivity to initial conditions comes in. When a chaotic

system is brought close to its transition state, then any small event can Rip it

over. This is why people talk about the Rapping of a butterfly
's wing in the

Caribbean causing a hurricane in New York. It 's a statement of the sensitivity 

of the system. It 's what Hermann Haken, who worked on lasers, described 

as the expression at the macroscopic level of a microscopic event.

I think that that
'
s a good way to describe a sensory transformation, which
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WF: Christal Koch and Francis Crick.

Walter J. Freeman

often starts with a very weak stimulus. A small twitch of the visual field

or a faint whisper, whatever, can lead to this galvanic change of the whole

nervous system. It
'
s that macroscopic state change over a global piece of

cortex, which has been primed appropriately by past experience and by

present sensitization to a small input to realize that change as an appropriate 

global pattern. That's an excellent reason to go and look at chaotic

dynamics.

JA: Makes good biological sense, too. It 's big and it
'
s fast. That's exactly

what you need for an animal response. A big behavioral response. Not

g:raded.

WF: I gave a talk on this to a group of statisticians a year ago. I went to a

summer symposium of the American Mathematical Society. It was supposed
to be on statistical modeling in biology . I thought I might talk about brains

and their chaotic dynamics, but that seemed to make them somewhat uneasy.

They were not happy about this. The reason is that invoking a deterministic

model to describe these essentially unpredictable phenomena, which you can

look at with statistics, sort of put them into a secondary role. Their interest

in modeling was stochastic equations, and chaos puts them simply in the

journeyman position of having to do the janitorial work of cleaning up after

the fact. So I asked this one guy, 
"Did you find it interesting?

" and he said,
"
Once you see it, it

'
s so obvious, it

's not interesting anymore. What else

could it be?
"

JA: The same is true among psychologists. They love random noise. And

of course you know most of the models in psychology have huge amounts

of random noise in them, so immense the poor brain would never be able to

function.

WF: Well, the brain makes its own noise. In fact, when a transition of this

kind occurs, it
's not that there's signal emerging from noise or embedded in

noise. It
's that the noise generator is now generating a signal, but the properties 

of the signal have such a noisy appearance that oftentimes you can
'
t

tell that it 's a signal.

JA: It looks now as if they
'
re finding waves allover the cortex- these

"
new" oscillations.

WF: Yes, in fact, Wolf Singer says he did what I told him: he opened the

pass band on his amplifier, and the waves fell right out. We
'
ve found the

same dynamical patterns as in the olfactory system in the visual anid auditory
and somatosensory cortices. But they

're still interpreting the process in terms

of coupled single cells. They characterize it as "the binding problem
"- how

to get together a bunch of feature detectors. They
're not thinking of the

process es in terms of a dynamical systems approach.

JA: People got quite exotic, saying this is the basis of consciousness and all

that . . .
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JA : That
'
s who comes to mind .

WF : I have thought this , too , and there are some others now that think

that waves are the basis for consciousness. You might as well say the same

about action potentials . People have done that , too - in fact, S herring ton

and his 
"
magic loom ," though he was actually a dualist when it came to consciousness

. It
'
s an old story that goes back to - well , it

'
s this pattern of

attempting to fix onto some lower level some higher -order property . Like

Holger Hyden came to the conclusion that because he was seeing changes in

RNA , it must be the molecule of memory , which led to that infamous flatworm 

story . A whole generation of young people were misled by cannibal-

izing flatworms . The idea was that you train a flatworm by electric shock to

go to one side or the other of a T -maze, and then you grind it up and feed it

to the cannibals, who remember which way to turn .

ER: In the Journal of Irreproducible Results. . .

WF : The Wont! Runners
' 

Digest. Well , for a good twenty years I was getting 

students who would come, and they wanted to study memory , and this

was how they got started . In fact, high school science fairs featured this . Nobody 

could reproduce it in a scientific setting , but it was easy to reproduce in

high school fairs. Melvin Calvin was a Nobel prizewinner in chemistry for

having solved the problem of photosynthesis , and, like an even dozen other

Nobel prizewinners , he decided that he was going to get a second prize in

the nervous system
- that he was going to solve the problem of memory .

He had an enormous laboratory with highly coordinated , skilled technicians,

Ph.D .s and so on, working under his direction . So he hired a couple of guys

&om Michigan to come out and train flatworms , and then he set up everybody 

else to study the brains . These guys spent an entire year trying to

reproduce their own results with Calvin breathing hot fire down their necks.

But they couldn
'
t reproduce their own results, and they went to other

people
'
s places to try and reproduce their results . Finally , Calvin had to come

to the conclusion that the only animals that were learning were the investigators

. A great defeat.

ER: Is there other work that you think has importance for the neural net

field that you haven
'
t touched on?

WF : Well , in terms of dynamical systems, the most important structure to

study is the limbic system
- the part of the brain that puts intentional behavior 

together , the part that creates emotional behavior and orients it in

time and space
-

especially the entorhinal cortex , which is the main source

of input to the hippo campus and the main target of hippocampal output .

This area is kind of wide open.

As far as applications are concerned, the carryover of these studies to

humans is really important . I
'
m engaged in a joint program with Alan Gevins

and Vinod Menon to try and find these patterns in EEGs from human volunteers

, and I
'
m doing some in my own lab, trying to extend the methods . But

there
'
s a major problem , which is to screen out the EMG [electromyogram ],
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which rather badly obscures what it is that we
'
d like to look at. We haven't

solved that problem.
I see this whole area of nonlinear dynamics as of major importance in the

future development of psychiatry. They have enormous quantities of data
that they don

'
t understand. When you think of it , every transmitter has a

certain level that is maintained by regulatory feedback of the enzymes, which
are manufacturing it on one side and upgrading it or re-uptaking it on the
other side. And the enzymes themselves are subject to regulatory feedback

through the genome, and the set point is subject to modification under regulatory 
control. Well, then there

'
s the interaction. It just balloons out. To

approach that kind of a problem with the same tools that were used by Sir

Henry Dale makes no sense. It
'
s obvious that they have data which they

can
'
t interpret, and a dynamical systems approach is the only way to solve

that kind of a problem.

You go to meetings, and you see the more sophisticated people presenting 
the slides in which they

'
ve got these boxes with arrows going here and

there. It
'
s not a model. Not a dynamical model. It

'
s a description of the parts.

It 's like a collection of parts that you want to put together to make an airplane
. Unless you put them together in a functional way, which can only be

done with an understanding of dynamics, you can't understand the system.
You can't really interpret your results. I foresee the emergence of a whole
new class of residents and medical students who have the facility in the information 

age of working with computers, so they can handle the problems
in enough detail and still apply the theory. I don

'
t think math is the barrier

here because you don't need a higher degree in mathematics to understand

enough about, let's say, solutions to ordinary differential equations when

they
'
re studied by numerical techniques. I foresee an enormous expansion

in that domain, and I think that the INNS [International Neural Network

Society] can playa very important role in helping to fuel that enterprise if
the right connections are made among people.

JA: If you were counseling your students about what courses to take and
what areas to get into, what would you tell them to do?

WF: I'd tell them to take - well, we already tell them to take a basic course
in calculus. I tell them to take a good course in C-Ianguage programming and
a good course in numerical techniques for solving differential equations.

JA: The more mathematics the better?

WF: Only as much as they can handle. And then be prepared to learn

enough now so that you can teach yourself, basically, because there is a tendency 
to take too many courses. You'

re taking too much material that somebody 
else wants you to learn, which is not relevant. But if you have a year

of calculus, a year of differential equations, and then a year of some form
of systems analysis or linear algebra, well, that

'
s three years already. ~ at' s

enough to get started. And after that, be prepared to learn some more. I had,
in fact, to go back. I had three years of mathematics in undergraduate school,



but I had to go back and learn linear algebra and learn engineering mathematics

, learn multivariate statistics, and then learn some nonlinear dynamics.

It
'
s just a continuing process of education. But I have to say that the most

important undergraduate courses for me were in English and philosophy. It
'
s

satisfying to be a good technologist, but it
'
s more important to have a sense

of where you came from, where you are, and what you think the next direction 

you ought to take is.

ER: Could you talk a little bit about your own thinking style? Do you
think visually? Do you think in symbols?

WF: Yes, I would say that what I
'
m best at is putting a large amount of

data on the wall and gestalting it, and just sitting on it and looking at it and

thinking about it and puffing on a cigar now and then, and getting a kind of

large database in mind, which will ferment there in some way. Then gradually 

things will start to emerge, pop out; connections will start to form. Sim-

plifications will begin to emerge, which I facilitate by using pencil and paper
sketch es, making little flow diagrams. It

's a lot like writing poetry. You have

to turn your mind loose and then be prepared to take down in shorthand

whatever it tells you. I
'
m adept at algebra, which I use for shorthand. That

'
s

also why I like Laplacetransforms because they can algebrize equations; I can

do a lot of manipulation that way.

But most of it is a kind of geometrical flow, taking this amorphous stuff

and filtering it down. And eventually, when I come to these new insights, I

don
't even know where they came &om or how they were formed. I know a

crucial part of it is that I get, 
"Aha, I think I have something.

" 
I then start

looking for the illustration which will exemplify it, and I can
't find it, so I

have to go back and do the experiment over again. Then I typically will

have changed the condi Hons. I can
't even remember what the controls were,

and this Hme it comes out the way it
'
s supposed to. But now, you see, the

experiment has already been changed by the theory. So it
'
s very much an

inductive, data-driven process in which the theory that was originally set up
to do the experiment typically is already very quickly proven wrong, but

there isn
'
t anything to replace it yet. And it

'
s very helpful to have a good

"
forgettery ,

" 
to flush your mind of the old data before you start taking in

new stuff. My father used to say that there are far more people in mental

hospitals because they can
'
t forget than because they can

't remember. You

have to unlearn what you used to believe.

ER: You had mentioned a couple of your patents, and I wondered if you
could describe whether you

'
re still ac Hvely trying to go forward and exploit

those intellectual property rights.

WF: That has to do with trying to develop these filtering techniques. Two

of the patents have to do with spatial filtering and spatial imaging of EEG

ac Hvity, which involves decomposition using Fourier and PCA [principal

component analysis]. Another has to do with chaotic dynamics in pattern

recogni Hon. I don't regard the patents as any more than a kind of source of
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pride that I got there first- like it 's an ego trip . And I have some documentation 
that some patent attorney recognized a certain priority , but I'm

not intent on doing any commercial development of these. That
'
s not my

bailiwick.

ER: So you
're not interested in the commercialization of your own work?

WF: Well, I
'd like to see it done, but I don't expect to make any money out

of it, don
'
t in fact really feel the need for it . What

'
s really important can't

be patented- like applying dynamics to understand epilepsy, neurosis, and

psychosis, where the task is to educate, not commercialize.

ER: Aside &om the new machines that are coming on line, how do you
view the commercialization of the whole neural net field?

WF: I think it 's remarkable the number of applications which have emerged,
the great utility of this whole approach, but I don't see the neural network as
a fundamentally new kind of machine. I see it as more of an extension of
some existing ideas. I foresee the dynamical systems approach and how that
will transform psychology and psychiatry &om empirical trial and error to
a biologically based science. That should fulfill Freud

'
s nineteenth-century

dream, which he abandoned because he thought it was premature.
I would say that we can only barely glimpse some of the implications of

that new approach and that these really will be fundamentally different
machines. They

'll be unimaginably more competent at certain tasks but also

maybe unreliable. We were talking only the other day about a neural network 
that can do routing of phone calls in a mobile phone system- you

know, cellular phones
- and I raised the question, 

'
Well , how about using

this for air traffic controlf
' 
But, well, it

'
s not reliable enough. I wouldn

'
t expect 

that this kind of device that I'm talking about, at least for the foreseeable 
future, could be used for that kind of task- something where high

precision, high reliability, and crucial fault-&ee performance are required. If

you
'
re really interested in artificial intelligence and going beyond the current

meaning of the term and the creation of forms of intelligence that truly have

biological capabilities, this is the way to do it . And what are you going to do
with them when you

've got them?

ER: Get out of the way.

WF: One computer guy in Silicon Valley said, 
'
We

'
ll be lucky if they keep

us as their pets!
" I find that expression amusing in a cynical way. But we

humans have the advantage of millions of years of biological and cultural
and social evolution, and I'm sure that it will stay the other way around.

Though they may beat us at chess and suchlike games, we will always be a

couple of steps ahead of them, philosophically speaking. Anyway , we need
to be aware of the risks as well as the advantages.
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BW: I was born on Christmas eve in 1929. I didn't know anything about

the depression because I was too little . The city was Norwich, Connecticut.

It
'
s a small town with about 35,000 people, where people have lived for

generations. My grandfather came from Russia around the turn of the century 

and settled in New York City for a while. He sold from a pushcart and

saved every penny and was eventually able to bring his wife and children

to the u .s. They lived in New York City and again saved every penny and

finally had enough money to get out of New York City and buy a farm in

Connecticut. On the farm there was an icehouse. There was a river there.

People were cutting ice from the river, and they filled the icehouse in the

wintertime. Then they
'd pack it with straw so that throughout the whole

summer they would have ice. My father found himself in the ice business.

In the ' 
30s, in the depths of the depression, my father built an ice plant to

make artificial ice. Natural ice became unavailable because they had warm

winters for a couple of years in a row. He eventually bought another ice

plant. He prospered with it and was able with that little business to send four

kids to college.

I became fascinated with all the electric machinery in the ice plant. I used

to build things. During the Second World War, when I was a kid, I would

take old radios and mix the parts together and make one that worked. You

couldn
'
t get radio parts then; everything was dedicated to the war. If a radio

got sick, it got sick, and that was it . But if you had a couple of sick ones, you
could pull the tubes out and pull the parts out and make something that

worked. That's how I began working on radios.

I was interested in everything electrical. I was browsing in the school

library one day through an encyclopedia that looked interesting, called the

World Book. I just happened to have the R volume, and I was thumbing
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through it and came across "Radio.
" 

The article was so simply written that I

picked up the idea right away. There were a few details that I didn't get

quite right . I didn
'
t realize how important it was to have a few hundred

volts of B-plus to make the tubes work correctly. I thought the electrons

just boiled out of the cathode and went all by themselves straight to the

anode, just from the heat, by thermionic emission. I didn
'
t realize that you

have to have a high voltage to get a decent flow and make it operate properly
. So for several years I was trying to make radios, and none of them

worked. Finally, I got on the right track by reading some more things and

tidking to people, and I made a radio work.

It wasn' t so easy to make a radio work because there was no radio station

in our little town. The nearest radio station was either in New York City or

Boston, which were about a hundred miles away in each direction. You had

to have a pretty decent radio to pick up the signal, and I didn
'
t. I made a

one-tube radio. I was able to listen with a pair of earphones. The first successful 

one began working on my sixteenth birthday. I called my father. He

came down, and he saw this workbench all covered with wiring and parts,

tubes, everything glowing, and he just stood there shaking his head. He said,
'1 never taught him this."

ER: Did your parents expect you to go into the ice business?

BW: My father did not expect me to go into the ice business and did not

expect any of his kids to go into that business. His idea was that all four kids

go to the best colleges that they could possibly go to and become professionals
. A person that I had very high respect for was an electrician who

came to do wiring or fix things in the ice plant. I always watched everything
he did. I worshipped the guy. I told my father that I wanted to be an electrician 

when I grew up.

My father said, 
"
No , you

're not going to be an electrician; you
're going to

be an electrical engineer."

I said to him, 
'
What

'
s thatr '

He said, 
'
1 can

'
t describe it to you, but that

'
s what you

're going to be."

Then we were talking about school, and he said, 
"
And you

're going to go
to MIT ."

And I said, 
"
MIT , what

'
s thatr

'

He said, 
"
Never mind, you

're going to go to MIT ."

So when I was a senior in high school, I came home from lunch one day,

and my father said to me, 
"The physician of MIT wants to know about your

health."

So I said to my father, 
'
Why does he want to know about my health?

Why does he carer'

And my father said, 
"
You dope, they accepted you.

" 
That

'
s a quote.

So I went off to MIT . I started out as a freshman, and I ended up as a

faculty member. I was there for twelve years. After that I went off to Stanford 

and became a faculty member there. I've been at Stanford since 1959.
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I had a bachelor
'
s, master's, and doctorate from MIT . A bachelor' s degree

in 
'
51, master' s degree in '53, and the doctoral degree in '56, all in electrical

engineering.

ER: Were there specific faculty members at MIT who were influential in

the future path you took?

BW: Yes. The man who turned out to be my doctoral thesis advisor was

William K. Linvill , Bill Linvill . I took a class from him. The course was called
"
Sampled Data Systems." Today, you would call it digital signal processing.

I liked that course so much, I liked him so much that I wanted him to be my
thesis advisor.

Usually I had to work very hard to get an A . I really had to work my butt

off. The reason is that my mind works very slowly. It
'
s very, very hard for

me to learn things. What I do is fight with everything. I don
'
t just accept

things. I try to recreate things. What I was doing all throughout my early life

was practicing for the point where I wouldn
't have to learn from someone

else, where I have reached the frontier of knowledge and I alone must push

byond. I always fought when someone was trying to teach me something.

At MIT , it was an incredible struggle because of the rate at which information 

came. Someone described an education at MIT as like trying to get
a drink from a fire hose. If you just accept, if you just relax and accept that

everything is right and just give back what you
'
re taught, you

'
re going to

do very well. I could do that too, but I refused to do it . Struggle, struggle,

with every subject.

So with Linvill
'
s subject, my mind just seemed built for digital signal

processing. I was the one who had the highest grade on the final exam. After

that, I asked if he'd supervise my master's thesis, and he said he
'
d be delighted

. And then to go on beyond that for the doctorate was what I wanted

to do.

I took a class from a man named David Middle ton at Harvard. We were

able to take at that time up to 10 percent of all of our courses at Harvard, so

I took Middleton
's class. Middle ton was a stochastic signal processing guy.

He literally wrote the first book- a huge, huge tome. The man was prolific.

Trying to learn from him was very difficult. Learning from Linvill was very

easy. Linvill said that he always liked to take a horse-and-buggy approach.

Linvill was born and brought up on a farm. He appreciated the simple horse-

and-buggy approach. Linvill would fight with things to make them simple.

Tome , this was a great inspiration. If you
'll look throughout almost all the

work that I
'
ve ever done, you

'll see how simple it is. Make it simple, make it

read clearly, make it easy for somebody to read so that they can just pick it

up and walk away with it, so they don't have to fight with it , so they don
'
t

have to struggle with it . This attitude came from studying with Bill Linvill .

ER: So the converse was true of Middle ton?

BW: Middle ton was encyclopedic, difficult, extremely analytical. But I

learned from Middle ton. What I did for a doctoral thesis was a combination

Bernard Widrow



of what I learned from Linvill and what I learned from Middle ton. I put
the two together, the statistics and the digital signal processing, and made
a theory of round-off noise. Round-off is quantization. If you digitize the

signal, you sample it in time, and you quantize it in amplitude. These are two
different kinds of quantization. But the sampling in time is linear; the quan-

tizing in amplitude is nonlinear. What I was able to show was that you can

analyze this precisely. Even though it
's nonlinear, you can use linear theory

to analyze it by analyzing not the signal, but the statistics of the signal, the

probability density. That was really my first major piece of work.
I stayed at MIT for three years after finishing the doctorate. And then left

to go to Stanford.

JA: While you were at MIT , did you talk at all to the people interested in
brain theory, like Warren McCulloch or Jerry Lettvin?

BW: I had known about McCulloch and Pitts. Not so much Lettvin. I had
met him a few times when I was on the faculty. I never did know McCulloch
and Pitts, but I had friends who had taken classes with them, classes that
were very difficult to learn from. I also had friends who took classes from
Norbert Wiener, also not the easiest classes to grasp things from.

When I studied Wiener theory, I learned it from a man named Y. W. Lee,
who was a disciple of Wiener. Lee was in the electrical engineering department

. Wiener was in the math department. I took the class on Wiener theory
in the EE department from Y. W. Lee. It was interesting, but I didn

'
t think

it was very useful. But it turned out to be incredibly useful for me later on
when I got into digital filtering. The way I began working on learning systems 

was to make a digital filter. I was able to make a filter that could adjust
itself. For what purpose? The purpose was to minimize IT.ean square error. So
it became possible for all the Wiener problems to be done, but not the way
Wiener did them.

Wiener said, 
"
You need to know the statistics. Given the statistics, you

can design the filter." But if you don'
t know the statistics and all you have is

signal, what do you do? That was the problem that I became interested in.
Given the signal, let the filter optimize itself.

I got my doctorate in June of 1956. There were, I think, twenty of us who

got doctorates that year. It was a good crop. I think about ten of the twenty
stayed on the faculty. If you were an assistant professor then, it was more
like a postdoc. You'

re going to go somewhere else after a couple of years.
A friend of mine was doing work at our lab at MIT . There was a seminar

going on at Dartmouth College that somehow he had found out about. The
subject, he told me, was called artificial intelligence.

I said to him, 
'
What '

s that
"
? So he explained to me a little bit about artificial 

intelligence, and so we went to Dartmouth College. We just got in his
car, and we took off and drove to Hanover, New Hampshire. We decided we
were going to spend some time there. We didn

'
t know how much time. We

spent a week, listening to what people were saying. It seems to me Minsky
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was there, and McCarthy was there, and a man from IBM named Rochester

was there . He was doing some very early work on neural nets. I think Clark

and Farley were there from Lincoln Lab. It was an interesting collection of

people, and the seminar was ongoing . We went there and asked questions
and participated . It was open. Anyone can come, and whenever you want ,

you go . The principals involved were planning to stay there for the whole

summer, just talking about artificial intelligence . There was a book that was

already out , by Shannon and McCarthy , called Automata Studies. We all had

read that and knew about it before Dartmouth . I was fascinated by the things
that I heard about artificial intelligence . I knew that I was going to dedicate

the rest of my life to that subject.

I came back to MIT , and I began to think about thinking . I was trying
to think about how to build a thinking machine. I spent six months thinking
about building a thinking machine- the parts that we had available to build

things and the complexity that you need- and my interest in being an academic

, and the problem that you know that you
'
re going to have to do

something useful in the relatively short term . . . Because decisions about

whether or not you
'
re going to get tenure were coming up, and if you don

'
t

get that , you
'
re not going to be an academic. If you want to be able to

do research and do the things you like to do, you do have to play the game

according to the rule book .

So I realized after six months of thinking about thinking
- it was very

interesting , and I felt the time was well spent
- but I

'
m going to have to do

something useful, something in the near term . So what did I know about?

I knew about digital signal processing , so I went back to digital signal processing
. I could easily have made a career out of the theory of quantization ,

but I became more interested in intelligence and learning .

Ingoing back to digital signal processing , I make things adaptive . I had

the idea of Wiener filter theory . I had the idea of signals coming in . Wiener

theory requires that you know the statistics of the input signals. One of my

objections to Wiener theory was that you
'
re required to know beforehand

what the statistics are. When you have a real problem to solve , how do you
know what the statistics are? You don

'
t .

What you
'
d like to do is to have something that can automatically optimize 

itself , adjust itself . Suppose you experiment with the design of the filter ,

you make changes in the parameters of the filter , and see if the performance
is getting better or worse .

A typical Wiener filter problem was the prediction problem . You have a

time series, a sequence of signals over time . Take the Dow Jones industrial

average. Several times a day you can get readings on the Dow Jones Industrial 

Average . What you
'
d like to do is predict some time steps in the

future , what the value of the Dow Jones is going to be because it might have

something to do with the way you are investing . You want to use a system
and let it predict . And then, because it

'
s going to predict , you can let it predict 

and wait a little while and see what happens. You get an idea of what



the error is. What you
're going to do is adjust parameters .to make the error

as small as possible. When you do that, you
'
ve got the best predictor in

some sense, whatever your error criterion is. The one that Wiener used was

mean square error. That seemed like a good one, so I began to work with the

mean square error and developed procedures for minimizing mean square

error. What I found was that mean square error was exactly a quadratic
function of the weight values at the taps of a tapped delay line. The filter

was a tapped delay line, a series of delays with coefficients attached to the

taps. The determination of those coefficients allowed control of the impulse

response
- in other words, the basic characteristics of the filter.

When you Fourier transform the impulse response, you have the &equency

response. The filter responds differently to different &equencies. The way it

responds is obtained by the architecture of the filter and the adjustments of

the adjustable parameters, the weights.

I was developing an automatic means for adjusting these parameters. I was

using the method of steepest descent. I realized early on that the mean square
error is precisely a quadratic function of the weights. When you have two

independent variables, you can draw a picture of mean square error as a

function of these two parameters. It
'
s a paraboloid. The idea is to use its gradient 

to go down to the bottom of the bowl, where mean square error is

minimized. You just roll down the hill ; that was the whole idea.

We were measuring the gradient by taking the values of the weights and

pushing them forward and then pushing them backward, and taking the difference 

in mean square error and dividing by how much you have changed

that weight. That would give you the partial derivative of mean square error

with respect to that particular weight. Then you do it with the next weight

and the next one. Eventually, you get all the components of the gradient.

Then you make a jump in the direction of the negative gradient and that

takes you down the hill .

ER: Tell us about your transition &om the East Coast to the West Coast.

BW: In '59, after three years at MIT , I went to Stanford. I was presenting a

paper at WESCON about a year or so before I went &om east to west.

[ WESCON is a famous and long-established West Coast electronics conference

.] I had never been west before. The title of the paper was 
'1 
Adaptive

Sampled Data Systems.
" I was talking about the tapped adaptive delay line

and an adaptive method of adjusting it . I was measuring gradients very

crudely by the method of elementary calculus- in other words, rocking each

weight forward and backward. That
's an extremely inefficient way to do it,

not only computationally but also very inefficient in the use of the data.

WESCON alternated every other year between San Francisco and Los

Angeles. I attended the conference in the San Francisco area. They held

the meeting at the Cow Palace, which is a good name for it . It was quite
an experience. This was the mst time I

'
d ever really gone to a big meeting
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and tried to present a paper. It was the first time I
'
d been away from New

England.

I planned to spend a week after the conference driving around in California 

to find out what California was all about. Since I knew it was a big

place, a week of driving seemed like a reasonable time. After the conference

was over, I got a Hertz rent-a-car. It was a 1957 Chevrolet, Bel Air model. It

was a great car. We made good cars in those days.

I was staying at the Mark Hopkins Hotel in San Francisco. There was

a bus that took us every day out to the Cow Palace for the conference. I remember 

being impressed with San Francisco. I had never seen anything like

it before. Such a clean, pretty city . I remember walking up and down on the

sidewalks near Nob Hill and having to grab onto cars parked on the side

to pull myself up because I had new leather shoes with leather soles. The

leather was so slippery on the sidewalk; without having rubber soles, it was

impossible to get up without grabbing onto the cars.

You see the cable cars running up and down the hill , and you understand

why you have to have cable cars to get up and down those hills. I was

amazed. I couldn't get over San Francisco.

I left the hotel, went down to pick up the rent-a-car, and walked down this

steep sidewalk, holding on for dear life, and finally got to the Hertz rent-acar 

agency and got the car. I went back to the hotel and got my luggage and

then took off. Started driving . I had no idea where I was, where I was going,

didn
'
t have a map. All I wanted to do was to see California. I got in the car

and drove.

Leaving the Mark Hopkins Hotel and driving in the city- what an experience
, driving up and down those hills. When you start driving at the crest

of the hill and start going down, you can
'
t see where you

'
re going. You have

no idea what
's in front of you. I just couldn

'
t believe that people could drive

like this. I went down the hill and took off. In wandering around in the city, I

saw big green signs that said 101, Highway 101. And I thought, you know,

that
'
s probably like Highway 1 on the East Coast. It probably goes north,

south. Probably goes between Mexico and Canada, up and down the spine
of California. That should be a good road. So I said, 

"
OK, I

'll go on 101." I

just got on the first entrance to 101 and I found I was going south, instead of

north. I said, 
"
Gee, that

'
s interesting, let

'
s go south."

So I went south, and after a little while, I was noticing signs to Palo Alto . I

said, 
"
Gee, Palo Alto , that's where Stanford is. I'd like to see Stanford.

"

So I got off the highway at Palo Alto and drove down University Avenue.

I said, 
"How can you go wrong with that?" I drove right through the town,

and I said, 
"God almighty, what a pretty little place this is.

" 
It was just

beautiful driving on University Avenue, the shopping area; the homes, the

residences along it are just gorgeous. They
'
re old and stately.

I kept ongoing right through the town, right through the downtown

area, and kept ongoing . I went under an overpass, crossing EI Camino Real.

I
'
d heard about EI Camino Real, the famous road that the ancient padres
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traveled. I went onto the Stanford Campus and drove down Palm Drive, and
I saw a road lined with palm trees and thought, 

"
My God, I

'
m in the tropics.

"

I went down onto the campus, and I just was completely taken by it . So

beautiful. I said to myself, 
"
This would be a fantastic place to spend a career

at."

The brother of my thesis advisor was John G. Linvill , who was on the

Stanford faculty there. So I called on John Linvill when I made that first visit
to Stanford, after the WESCON conference.

The chairman of the Electrical Engineering Department at Stanford was a
man named Hugh Skilling. His field was electric machinery and power systems 

and electric transmission lines. He was what you would call a classicist.
At the time, research in those subjects was pretty well done. He had written
his books and done his teaching and now was chairing the department, an
excellent man. His real emphasis was on quality of teaching. He went along
with research more or less, but John Linvill was completely research oriented,
and John Linvill was his right arm. I visited with Professor Skilling when he
attended a conference some time later, in New York City .

I wanted to go to Stanford. They made me an offer, and I was delighted. I

got a 50 percent pay raise over my MIT salary.

Then I had a problem. I
'
d been going out with a girl who I met at MIT .

She was a secretary, and I bumped into her in the elevator one day. And it
was good. Like it says in Genesis, you know, this was done and that was
done, and 

"
it was good." I started dating her, and this was going on for a

couple of years. Then all of a sudden, I was going to be leaving and going to
Stanford. She made it plain that although I

'
m a young fellow and having a

very nice life being a young faculty member and not worrying about a damn

thing, that if I go to California, I better be planning to take her too. Had I

thought about that? So I thought about it, and we got married.

We came to Stanford, and I began research on adaptive filters once again.
The first year that I was there, no one knew me. The students didn't know
me. I began teaching a course in adaptive systems in 1959. I taught a class in

digital signal processing called 
"
Sampled Data Systems.

" 
This went quite

well. I had students coming to me.

The first doctoral student that I had was a man named Ted Hoff . John
Linvill was advising him on his course program. John called me up one day
and said, 

'1'
ve got this student who

'
s my program advisee, and I've been

trying to interest him in some of my research, but it doesn
'
t seem to do it for

him. He's looking for something else, and he doesn
'
t know quite what he

'
s

looking for. He's a very nice young fellow, awfully bright guy. Would you
be willing to talk with him?"

I said, 
"
Certainly, I

'd be delighted.
"

So he sent over Ted Hoff, and the two of us began talking. I was telling
Ted about research. I had several sessions with him. One day I had a session
with him, and out of this session came the LMS [least mean squares] algo-
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rithm. I don
't know how it happened, but it just popped right out. I was

at the time explaining to him how we
'
re

'
measuring derivatives and getting

the gradient and following the gradient with steepest descent. I was showing
him the theory of how this thing learns and how you determine learning
rate. Somehow or other, the idea came for a different way of getting the

gradient, and that was the key to the LMS algorithm.

The idea was to get the gradient not by taking many many samples of

data and measuring mean square error over a long period of time. The idea

was to be able to get the gradient from a single value of error- a single
nUmber, square it , and say that

's the mean square error. Then when you
work out the gradient of that error with respect to the weights, it

'
s really

simple. You get an algebraic expression and you realize that you don
'
t have

to square anything; you don't have to average anything to get mean square
error. You don

't have to differentiate to get gradient. You get this all directly
in one step. Not only that, but you get all components of the gradient simultaneously 

instead of having to make measurements to get one gradient component 

at a time. The power of that, compared to the earlier method, is just
fantastic.

1959 was the date of the algorithm. The first publication about it was

at another WESCON conference. I liked WESCON because you could get

things out quickly, and you could do a significant paper. It had a convention

record, so there was a written record of your paper. But you could also present 
it and get some feedback. I did many things through conferences at the

time. Today, . if I were coaching a young faculty member, I would tell the

person not to do it that way. As far as academic careerism, those papers
aren

'
t worth much because they

're refereed, but only slightly . They don
't get

three referees like a journal paper, and they
'
re much more difficult to find in

libraries than journal papers.

ER: When you and Hoff were working in 1959, were you aware of the

significance of what you had?

BW: I knew it . I think he knew it too. There was no way we could have

anticipated what was going to happen with that algorithm and the uses that

would be found for it . I knew it was something in adaptive research that was

extremely significant. The instant I was at the blackboard writing it, the two

of us were talking together, and I think I said, 
"
Jesus Christ!

" 
or something

like that.

Within a half hour of the time that the algorithm was written on the

blackboard, Hoff had it working in hardware. One of my colleagues, Jene
Franklin, had a large analog computer in the building, right across the hallway

. There was nobody in the computer room. We just went in, picked up a

plugboard, and Hoff wired the algorithm together. We made a single neuron

without the quantizer, just the weights and the sums, so it was a linear

combiner. We were adapting it with the LMS algorithm right on the spot.

This happened on a Friday afternoon in the autumn of 1959.
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We wanted to build this thing up in hardware, compact enough to move

around. We needed potentiometers to make weights. We decided that the

inputs should be not Is and Os, but + 1 or - 1, because we
'
re not doing

binary arithmetic; we're doing something more like usual arithmetic. It 's a

symmetrical thing. What we didn't know at the time was that it had something 

to do with convergence, and convergence works better with + 1, - 1.

It 'll converge just fine with Is and Os, but it's better with + Is and - Is.

Everything was there on the analog computer so that we were able to

wire it together and form a single adaptive linear combiner. We were adjusting 
the weights with ten-turn Heliopots. They were very precise potentiometers

, good to three decimal places. We didn
'
t really need that. All we

needed was approximate changes, but we were making those changes on the

Heliopots and adapting this thing. By the time we were done Addling with

the analog computer, it was about 5:00 in the afternoon, and the stockroom

was closed. The next day was Saturday, so the stockroom was going to remain 

closed. The two of us were just beside ourselves. We couldn
't wait. I'm

not an early riser, but I was that Saturday morning and the same with Hoff.

We went down to Zack
'
s electronics shop in downtown Palo Alto on High

Street, and we bought all the parts. We bought an aluminum chassis to mount

everything. We bought rotary selector switch es. The Arst one we built had

ordinary potentiometers. The second model had rotary switch es. The Arst

one had just knobs and pots. That night we Agured out the parts list, and

we were ready to go next morning. We bought everything, and we put it

together on the aluminum chassis.

We had little switch es to put in + 1 and - 1 inputs. The input pattern
was put in through on array of switch es. We arranged the switch es in a four-

by-four array. You
'
d be surprised how many different geometric patterns

you can make with a little four-by-four array of switch es, where each pixel is

only binary.

We fed those signals into the weights, and the summation was done by

bringing the current together at one solder point. There was no electronics

in this at all. We just took the solder point and connected it to ground

through a microammeter. There was enough current to operate the microammeter 

without an ampli Aer. All we had were the switch es, a battery,

potentiometers, and a meter. We were able to train that thing with LMS

algorithm. The algorithm didn
'
t have the name "LMS

" 
at that time. That

came about a year later.

ER: When you built the Arst Adaline, were you calling it an Adaline?

BW: We called it an Adaline. It was an adaptive linear neuron.

ER: Do you still have the Arst model that you built?

BW: I still have the Smithsonian model in my office- not the very, very
Arst one, the one with potentiometers on the aluminum chasis. That one unfortunately 

is in Adaline heaven. But the next one after that. The Arst little



Bernard Widrow

portable one that you could carry around. When you operate the switch es,

you can see a pattern in lights, so it lets you easily see what the pattern is.

Right after that, Hoff and I became interested in trying to develop electronic 

circuits to implement this. We were only aware of Rosenblatt because

of newspaper stories about his work. This was sensationalized in the press.

After a while, our work also became sensationalized in the press. Some of the

people doing publicity at Stanford arranged a press conference for me one

time. There was a whole room full of reporters, and I was demonstrating a

learning machine. Now this was pretty amazing stuff back in 1960. Nobody
knew what the hell it was or what you could do with it . We didn

'
t know

what you could do with it .

We knew it would be impossible to turn all these knobs by hand. So the

question was what to do to make knob-turning automatic. I was talking with

a colleague at the time, Norman Abramson, who
's now on the faculty at

University of Hawaii. I was chatting with him one day and he made the suggestion
, 

'
Why not do it chemically, electrochemically, the way it

'
s done in

the brain?
" 

So I came up with a circuit diagram to do it . I had the device laid

out. I gave the device the name "Memistor " because what I wanted was

a resistor with memory, the element that we needed to make an adaptive
circuit.

I was envisioning a jar full of electrolyte, with two electrodes sticking in it,
and I

'
m going to vary the impedance between the two electrodes. To make

this happen, put another electrode into the jar, a third electrode, and by putting 
current in and out of that electrode, you can affect the chemistry of the

solution, and that would affect the impedance. I didn
'
t know what chemicals

to use or what kind of reaction to depend on or how quickly you could

change the resistance.

Ted Hoff spent that summer working at SRI [Stanford Research Institute].

I maintained contact with him, even though he wasn
'
t at Stanford every

day. I showed him the circuit that I
'
d drawn up and told him what kind of

element I needed. I knew that when he was a kid, he was just as much interested 

in chemistry as he was interested in electronic things. He knew a lot

about chemistry. He knew a lot about everything, this kid. He
'
s not a kid

anymore. He
'
s got grey hair like me.

So he said, 
'
1t

'
s going to be very difficult to change the impedance of an

electrolyte. The electrolyte, no matter what you do with it, is a liquid and

salts, and it
's going to be a short circuit no matter what you do.

" 
He said,

"
How about if we use the phenomenon of electroplating?

"

We took a piece of paper and took a soft lead pencil, and wrote a line on

the page, and put an ohmmeter on one end of a few inches of the line, and

measured a resistance of something like 10 megohms. Then we put some

solution-
copper sulfate and sulfuric acid- on top of the line, and just by

putting the electrolyte there, the resistance went from about 10 megohms
down to about 10 kilohms. Then we took the third electrode, a piece of
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copper, and dipped it into the solution, and we were able to plate a little bit
of copper onto the pencil line on that piece of paper. That took the resistance
&om about 10,000 ohms down to about 100 ohms.

You can reverse the current and remove the copper. At first, it didn
'
t

remove very well. By the time we fiddled with it a little more, it was very
erratic, and the acid had eaten through the paper and the whole thing fell

apart, but at least we
'
d established the principle.

I started to work on this thing. I went over to the Stanford bookstore
with an ohmmeter. I went up to the counter, and I said to the lady working
behind the counter, 

"
I
'
d like to buy some pencil leads.

"

She says, 
"
Yes, sir. Look at the showcase full of all different kinds of pencil

leads.
"

So I said, 
"I'd like to buy the one with the highest electrical resistance."

She said, 
"I beg your pardon?

"

I explained a little bit, and she pulled them all out of the case, and I took
the ohmmeter out and started measuring pencil leads. The winner was Fine-

line Type H, meant for a mechanical pencil. It measured nine ohms from one
end to the other. That was the highest impedance I could find. So we took
it back and got some copper sulfate and sulfuric acid, and put a clip lead on
one end and dipped the other end into the solution and plated a little bit of

copper onto the tip of the pencil lead. We pulled it out, rinsed it off, and had
a nice coating of copper right on the graphite, right on the pencil lead, solid
as a rock.

We turned it around the other way, put the clip lead on the place we
'
d

just plated, and put a little plating on the other end. We had the two ends
with nice plating. We got some light-gauge wire with plastic insulation and

stripped the ends and soldered the wire onto the two ends. Then I got some

fingernail polish &om my wife, and I used that to coat the solder joint because 
I was maid that the solder would dissolve in the sulfuric acid. We put

this thing in a test tube and put a piece of number 14 copper wire, like a rod,
into the test tube. We tied the plastic wire to the copper rod for support and

pulled the wires out of the top of the test tube.
It was a three-wire device. One was the copper rod. The others were the

two wires soldered to the ends of the pencil lead. So when you measure
these two wires &om outside, you get roughly nine ohms &om the pencil
lead with no plating on it . You put plating solution in there ~ d turn on the

plating current between the copper rod and the graphite, and you can copperplate 
the pencil lead. You can take it &om 9 ohms down to about a quarter of

ohm. You can easily get a thiry to one ratio between no plating and fullyan

plated.

We used that to build an Adaline and designed a circuit to implement the
LMS algorithm. It was a very simple circuit, easy to build, and it was working

. You begin putting in training patterns and you teach it to respond to
the training patterns as you like. You can feed in a whole bunch of patterns,
one on top of the other. When you train in new ones on top of the old ones,
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the new ones tend to disturb the old ones, but you repeat them over again

until the whole thing sinks in .

You really get a feeling for a learning system because you got a machine

here that
'
s learning . The information that

'
s stored in the neuron is stored in

terms of the thickness of the copper on the graphite . You have a substrate,

which is the graphite that you
'
re going to plate on. That has a certain conductance

. As you plate on top of it , the conductance increases over time if

there is a constant plating current . If it plates uniformly , as pretty much it

does, the conductance increases linearly over time . The weight value is the

conductance .

We started a company to manufacture these devices. This began a hu-

mongous learning process about everything under the sun, how to make a

reliable device . We sold a lot of these devices for fifty bucks apiece. That was

a typical selling price for a transistor in those days, an experimental transistor

. Any kind of experimental device sold for fifty bucks.

We almost had a big customer , General Telephone . They were going to

use it , not in a neuron , not as an adaptive device, but as an automatic gain



control in an AGC circuit for a telephone repeater amplifier. It would give
a nice dynamic range for gain control. It was very, very stable because you
could plate this thing, and when you stopped plating, the plating stayed

right where you left it . With the Adaline I have in my office today, which

has Memistor devices in it, I can train in a pattern classification problem and

come back months later, and the training is still in there.

At first you think it
'
s easy to make a reliable device, and then when you

get into it, you realize the difficulty of making something that really works

well. We hired a glass-blowing technician, and we bought a glass lathe. He

was making little glass vials the size of tiny light bulbs. The resistor that we

were using was an alloy made out of platinum and rhodium. We were able

to get special wire that was very finely drawn. This little wire was about a

half-inch long, and we
'
d put it inside this little glass vial. You have to make

contacts through the glass, so you have to have glass-to-metal seals. The

materials have to be impervious to sulfuric acid. They also have to have the

right temperature coefficient to match the glass because if you go through

temperature cycling, you have to keep a perfect seal between the metal

going through the glass envelope and the glass itself.

The glass sealed devices measured about 10 ohms with nothing plated on

them, and they
'
d go down to about an ohm. They were quite reliable. I still

have some in my office. We haven
'
t made them for more than twenty-five

years, and they work just like brand new.

ER: What was the name of the company?

BW: Memistor Corporation. We were selling Adalines, we were selling
Memistors, all sorts of adaptive circuits. The people from General Telephone
were going to have Memistors in every manhole all over, wherever GTE is.

At the time, I think it was about 10 percent of the United States. Then they
decided not to do it . Some people just couldn

'
t accept liquid-state electronics

. Everything had to be solid state.

We took that little thing with three wires coming out and spot welded the

wires to what
'
s called aTOS header. This was the first form of base for a

transistor. It plugs into aTOS socket, so the Memistor was a plug-in unit. I

was able to pick those things up and slam them down with my hand, just as

hard as I could, slam them down on the concrete floor, and they bounced

twenty-five feet up in the air. Then plug them in, and they
'd just adapt like

crazy, like nothing ever happened. The trouble was that the Memistor was

all handmade. There wasn
'
t anything you could integrate.

I found that it
'
s difficult to make adaptive circuits and make neural nets

with analog apparatus. I think people are finding the same thing today with

solid state. My own view, and I think the view of Ted Hoff, on neural circuits 

is that instead of doing them in a politically correct way-
meaning

that because the brain is analog, if you
're to build artificial neurons, you have

to do it like the brain and make them analog. I think the two of us are pretty
well convinced that this is not the way to go. Do it with digital, all digital.

That doesn't mean that there isn
'
t any room for analog because if you
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need extremely high-speed operation, you
'
re probably going to have to use

analog.

I was going to tell you about Rosenblatt and the percept ron. I finally did

get to know him. I was attending many conferences where he and I were

there on the same program, presenting research. There were a number of

followers of Rosenblatt. I was never really convinced that Rosenblatt was

doing things in the right way. I felt the percept ron was a disaster. I thought
the Adaline was the right way to go. What people today are calling the per-

ceptron, Rosenblatt would not call a percept ron. I know, I talked with him.

I
'
ll tell you an interesting story. The little Adaline in my office uses Memis-

tors. The reason why it 's little is you don't need all those potentiometers
with the knobs allover it . I was making a trip to the East Coast and wanted

to make a visit to Frank Rosenblatt and the guys at Cornell. I went up to

Cornell University for the first time and found what a beautiful place it is. I

had that little Adaline with me. I went to see Rosenblatt, and for the first

time I met the percept ron. I can't remember whether it was in one rack of

equipment or two racks. It was a whole pile of gear, and he was making

adaptive weights with electric motors driving potentiometers. So he had

small electric motors driving the pots, and we had the Memistor getting the

effect of a motor-driven potentiometer electrochemically. I noticed in the

back of the room a whole lot of chemicals, so I knew they were trying to

make Memistors. I could see what they were doing, and I gave them some

hints.

So we fed a pattern into the Adaline, and we fed a pattern into the per-

ceptron, and I just put the pattern in and the Adaline went 
"
phut,

" and the

needle was reading to the right or to the left. So I just held the adapt button

down so some of the cells are plating while others are deplating, depending
on the direction of the error signal.

Rosenblatt
'
s students put the pattern into the percept ron. You could see it

in the lights on the percept ron. You could hear the potentiometers grinding

away. We put another pattern into the Adaline, and it went 
"
blip ,

" 
and there

it was, adapted. They put it in the percept ron, and it
'
s still grinding away.

We put in a couple more patterns. Then we test the Adaline and test the

percept ron to see whether the patterns are still in there.

They
're in the Adaline. In the percept ron, they

'
re all gone. I don

'
t know

whether the machine was temperamental or what, but it was difficult to train.

I argued with Rosenblatt about that first random layer. I said, 
"
You

'd be so

much better off if you just took the signal from the pixels and ran them

straight into the weights of the second layer:
' 

He insisted that a percept ron

had to be built this way because the human retina is built that way. That is,

there's a first layer that
'
s randomly connected to the retina. He said the reason 

why you can get something to interpret and make sense of random connections 

is because it
'
s adaptive. You can unravel all this random scrambling.

What I was trying to do was to not model nature. I was trying to do some

engineering. I
'
ve always been very interested in what the neurobiologists
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have to say because I think we can learn some things, but I don't think that
we should feel obligated to take things literally when we're trying to solve

engineering problems.

When the Minsky and Papert book came out, entitled Perceptrons, I somehow 

got a copy of it . Publishers send me zillions of books, so this one came
into my office one day. I looked at that book, and I saw that they

'
d done

some serious work here, and there was some good mathematics in this book,
but I said, 

"
My God, what a hatchet job." I was so relieved that they called

this thing the percept ron rather than the Adaline because actually what they
were mostly talking about was the Adaline, not the percept ron.

I felt that they had sufficiently narrowly defined what the percept ron was,
that they were able to prove that it could do practically nothing. Long, long,
long before that book, I was already success fully adapting Madaline [ Mada-

line = many Adalines], which is a whole bunch of neural elements. All this

worry and agony over the limitations of linear separability, which is the
main theme of the book, was long overcome.

We had already stopped working on neural nets. As far as I knew, there
wasn't anybody working on neural nets when that book came out. I couldn't
understand what the point of it was, why the hell they did it . But I know
how long it takes to write a book. I Agured that they must have gotten inspired 

to write that book really early on to squelch the Aeld, to do what they
could to stick pins in the balloon. But by the time the book came out, the
Aeld was already gone. There was just about nobody doing it .

I think where that book actually came into its own is with the second

coming of neural nets, when they came back again. Then people began to
look back on that book, and some people of faint heart were discouraged.
That doesn't mean that the book isn't interesting and isn'

t valuable. It is. But

they had only a few little examples of multiple neurons. I think most of it
had to do with a single neuron. What I found was that, certainly, the single
neuron couldn't do everything, but the things that it could do were God
damned interesting. The single neuron can't learn everything, but so what?

ER: You said that you had stopped doing neural nets? Was that because of
the GTE decision not to use Memistors?

BW: No, no, no. We had failed to develop algorithms beyond what we
now call Madaline I , the mst algorithm that we developed for the Madaline.
The Madaline had an adaptive mst layer and a Axed-logic second layer.
What Rosenblatt had was a Axed-logic mst layer and an adaptive-logic
second layer or output layer. Now, it is easy to adapt on output layer. But
it 's very difficult to adapt a hidden layer. We didn

'
t call it a hidden layer; we

called it the mst layer. We could adapt an adaptive mst layer with a Axed
second layer as long as we knew what the second layer was. But we never
succeeded in developing an algorithm for adapting both layers, so that the
second layer is not Axed and both layers are adaptive. It wasn~t that we
didn

'
t try . I mean we would have given our eye teeth to come up with

something like backprop.
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Backprop would not work with the kind of neurons that we were using
because the neurons we were using all had quantizers that were sharp. In

order to make backprop work, you have to have sigmoids; you have to

have a smooth nonlinearity, a differentiable nonlinearity. Otherwise, no go.

And no one knew anything about it at that time. This was long before Paul

Werbos-

Backprop to me is almost miraculous. The first exposure I had to backprop
was around 1985 at a meeting at Snowbird, Utah, the first Snowbird conference

. Something funny happened on the first day of the first Snowbird conference

. Someone gave a paper in the first morning session, and during the

question period at the end of the paper someone got up and said, 
"You

know, something like that was done by Widrow back in the early
' 
60s.

"

They began to have this big discussion about what Widrow did and

Widrow didn't do, and I
'
m just sitting there, listening to all this stuff. You

know what I was? I was like a dead man. I was a man who
'
d died, who was

sitting up on a cloud somewhere, looking down on the Earth, watching what

happened after he died. So I let them have their little thing, and then I just
stood up. I didn

'
t know a soul there. I stood up and introduced myself to the

assemblage. At coffee break, everybody was crowding around. Some people

just wanted to touch me to see that I was alive.

We hadn
'
t published anything for all those years in the neural net area,

but the neural net people don
'
t know about adaptive Altering and adaptive

signal processing. That's where I
'
ve been doing my work. We stopped doing

neural nets because we
'
d hit a brick wall trying to adapt multilayer nets. On

the other hand, in adaptive Altering and adaptive signal processing, we were

making great strides.

We had done work on adaptive antennas. When you have an antenna,

you can plot the directivity pattern, the sensitivity pattern of the antenna.

The antenna acts like a filter. It filters spatially. There
'
s a direction that you

can point the antenna that has maximum sensitivity. But even though you

point the antenna in a given direction, it doesn
't mean the antenna receives

only signals from that direction. It also receives signals, with some attenuation

, from other directions. If you make a polar plot of sensitivity versus

angle of an antenna, it has a main lobe and then many, many so-called side

lobes that give finite sensitivity in other directions than the main direction of

the antenna. These side lobes are potentially troublesome. A big problem in

trying to receive a signal occurs when a nasty person nearby is trying to jam
the transmission. The military is concerned with that.

If there
'
s a strong lamming signal, even though it

's not coming in the main

direction, it will still come through so strong that it will destroy your ability
to receive the signal of interest coming from the direction that you

'
re trying

to receive. Usually, the signal that you want is a faint signal coming from far

away.

In any event, if you take an antenna that has many dipole receiving elements

, instead of just connecting them together in a fixed way like the TV



antenna up on your roof, you can take the individual signals from the dipoles
and put each signal through a weighting device that can weight it and then
form a sum. By doing that, you can control the pattern of the antenna; you
can control the direction in which it looks, the maximum sensitivity. Also,
if an unwanted interfering signal is being received by the antenna, you can

adjust the weights to minimize the reception of that unwanted signal. When
the antenna rejects an unwanted signal, you can look at the directivity pattern 

and see that there's a notch, a spatial null in the direction of the interference
. It 's put a null in the direction of the bad guy and thereby gotten rid

of it .

We published the mst paper on adaptive antennas in 1967. That year I
was on sabbatical in Belgium. We didn'

t have Federal Express in those days,
or fax machines. We started the manuscript while I was at Stanford, and then
I worked on it in Europe. I had several students as co authors, and back and
forth it went by airmail.

When the paper was finally done, it was sent in to the Proceedings of the
IEEE for publication. A very interesting thing happened. There were three
reviews. One reviewer said, 

"
Reject it .

" 
Another reviewer said, 

"
Publish it .

"

The third reviewer, the middle-of-the-road guy, said, 
'
Well , there may be

some interesting things in here, but overall it doesn't look very interesting."

He was on the fence about whether it should be published. The editor himself 
made the decision to publish it, but it was so close to being rejected and

not published.

When that paper came out, it became what
'
s called a " citation classic.

" 
I

saw a list of citation classics once. I think at that time, Stanford University
had about thirty of those in all fields of research, from the founding of Stanford

. I think MIT might have had twenty-five; Bell Labs might have had
about thirty . It was an amazing thing that this was a paper that was so close
to being rejected.

I've had papers rejected, but this one I knew was an important piece of
work. The objections that the reviewers had to it just showed that they
didn'

t really understand the paper, and they didn'
t understand the significance 

of it . I think the easiest paper to get published is one that's an epsilon
change over everything that existed before- epsilon being the well-known

very small quantity.

JA: It 's easiest to get funded, too.

BW: It's the easiest. But if you
'
ve got something that is novel and different

, you
'
re going to have a tough time.

I remember one of the strongest objections to this paper was from one of
the reviewers who you could see was an old RF [radio frequency] guy and an
old antenna designer. He was concerned about using variable weights on the

signals of the antenna. When you use a potentiometer on those signals, what

you
'
re doing is losing some of the signal. No self-respecting antenna designer

is going to design an antenna where you
're going to lose some signal in a

variable weight.
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Now, of course, you could have amplified the thing, and then you can

throwaway all the signal you want. It
'
s all just scaling. The point is that you

can have a receiving array that
'
s picking up the signal nicely, but you

'
re

picking up the interference, the lamming signal, much more nicely than

the signal you
'
re looking for. It isn

't a question of being able to get signal.

You
've got plenty of signal. You

've got plenty of signal, but you
'
ve got a

hundred times as much interference. The problem is to get rid of the interference

, and to do that you have to play other kinds of games.

We did adaptive noise canceling too. It
'
s the idea of adding noise to a

noisy signal to come up with a signal with less noise. It
'
s dangerous; you

have to do it right because if you add noise to a noisy signal, it
'
s pretty easy

to come up worse off than you were in the first place.

We first got started in this stuff when one of my students was interested

in doing a doctoral thesis in pattern recognition. He got interested in biomedical 

pattern recognition, particularly electrocardiograms.

I'd done various biomedical problems over the years, lots and lots and

lots of them. That has been a most satisfying experience. During the depths
of the Vietnam War, when students were having sit-ins and shutting down

buildings, my building, the one my office is in now, every single window in

that building was broken. Stanford couldn
'
t keep windows in that building.

Eventually they got tired of replacing the glass, and they used masking tape
to just tape the glass together. Every night in the springtime, when the

weather was nice, the kids would be out there with rocks to break windows.

They wanted to shut down the School of Engineering because they thought
the School of Engineering was responsible for the war in Vietnam. They
were angry, the kids. I think if they hadn

't protested the way they did, we

probably would be still fighting a war in Vietnam because it
'
s easy for the

old guys to be off on some holy mission; it
'
s the young ones who have more

sense, especially when they know that they
'
re the ones who have to fight it .

That was a stupid, terrible period. But we were just beginning to work on

biomedical problems. Engineering students were really beginning to question 
themselves. Like, what are they doing? What kind of careers are they

going into? They were beginning to listen to the students from the English

department and the history department, the humanists who were breaking all

the windows.

I felt very strongly about doing the medical work and was able to enlist

many young engineering students. The Stanford University Medical Center,

which is a major research medical center, is located about five minutes away

by foot from my office. I began teaching a course in computer applications,

and almost all the applications were biomedical. Some Hmes I
'
d have as

many as thirty students at a time working on various research projects. Ted

Hoff, who lives nearby, was helping me supervise. The students were working 

on projects at the hospital, and the doctors were delighted. They had

engineers in their labs that they never had before. There was more computer
and electronic equipment in the medical center than we had in the School of
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Engineering. The kids got experience that they never would have gotten
otherwise, and they were supervised by both engineering and medical

Well, today you can put a notch filter right there. In those days, you
couldn

'
t just go in the store and get a notch filter. If you designed one, it was

built out of analog apparatus. There were no chips, no op amps, no nothing.

It was something that was difficult to build, and it wasn
'
t all that precise.

I thought about this and thought about it some more. I had a couple of

students taking my course in adaptive systems. The students were supposed
to do research projects and write a paper. There was no final exam; they just
did that paper. I had a few students who were interested in doing some circuitry

. I got this crazy idea, and I decided we
'
d build and make the recording

set up work at 60 hertz. We were going to build a circuit to cancel the 60 hertz.

Here's the way the crazy idea went. The patient is in the room getting an

EKG taken. Sixty-hertz interference is amplified and would normally appear
on the chart recording. Suppose that you go to the electric wall outlet, and

you get 60 hertz right from the wall outlet. You can introduce that 60 hertz

attenuated to get it down to low voltage, adjust the phase and magnitude
just right, and you can take that small signal, with the right magnitude and

the right phase, and subtract it from the signal coming from the patient. Then

you can exactly cancel the 60-hertz interference, and you won't need this

low-pass filter that cuts out so much of the electrocardiogram. Two students

built up the circuitry and made it work. They were able to eliminate the 60-

hertz interference.

It's really funny when students study sampling theory in signal processing
, and they know about Nyquist sampling theory, and they know that you

have to sample at least twice as fast as the highest-frequency component
in the signal to capture it . So they say, 

'Well , what's the bandwidth of an

electrocardiogramf
' 
And I tell them, 

'1 don
'
t know.

"
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faculty at the same time.

The first noise-canceling project that we worked on was a biomedical one.
The problem was with the electrocardiograph. In those days you couldn

'
t

get notch filters. A cardiologist was having trouble with 60-hertz interference 
&om the power line. He was German born and a stickler for detail. He

wanted things precise. I mean, he had the mentality of a Mercedes Benz, you
understand? He was complaining to me about his EKG equipment. He said
he had to roll it off at 30 hertz so that at 60 hertz he was about 60 dB down
to get rid of the 60-hertz interference. In Europe, of course, he had the same
trouble with so hertz.

I took a look at his recording setup. He had a nice Faraday cage. He had

copper screen mesh allover the inside walls of the place where he's taking
the EKGs. Right in the middle of the room, he'

s got a 60-cycIe wall plug,
where the EKG equipment plugs in. The interference comes right inside
the Faraday cage. The patient

's body acts like an antenna picking the stuff

up, and when you amplify the signal &om the patient, you also amplify the
60-hertz interference.



And they look at me and say, 
"
What do you mean, you don

'
t know?

You
'
re the professor.

" 
So they come to grips with the idea that not everything 

is cut and dried, that there just isn
'
t a simple answer. So you then use

a method called the method of futz; you futz around with the sampling rate

until you get something that looks pretty good. That's how you And the

sampling rate.

Today, the students all want to work on neural nets, so I only have a few

working on adaptive Alters.

ER: You mentioned that you were drawn back into the neural net Aeld in

the mid-eighties when you went to the Arst meeting in Snowbird, Utah. I

was curious, what other work going on now in neural nets do you think is of

the most importance?

BW: The Snowbird meeting for me was a landmark. You know, we had a

lot of controversy in the early days. It was due to publicity that Rosenblatt

had in the news media and publicity that I had. I found that this kind of publicity 
infuriates colleagues. It

'
s not just that they think this is a stupid thing

to do; they get furlous. That helped also to make the Aeld controversial. You

see, you raise the red flag when you
've got things that are in development,

and you talk to the press when something isn'
t thoroughly developed. It

creates a whole lot of antagonism and anger on the part of fellow scientists.

They like to see things published in refereed journals, not in the New York

Times. That
'
s the problem.

I learned a lot Horn publicity . Don
'
t do it .

What I found about Snowbird was that the atmosphere was incredible.

Here you had a couple hundred people who were crawling allover each

other, not to dig knives in, but to praise each other. It was a love fest. People
were supporting each other, and people were enthusiastic. They were excited.

The other thing was backprop. I never saw that before. I was astounded. I

was so pleased to see that. It was such a good feeling.

I knew that some day I was going to go back into neural nets. Neural nets

are very, very difficult to deal with , analytically. It 's very hard for faculty
committees to approve a doctoral thesis in neural nets. There has to be science

, not just tinkering. Or another way to put it , it shouldn
'
t be just substituting 

different values of resistors to try to make something work.

To do research with neural nets with nonlinearities, with threshold devices,
and with combinations of these things is difficult. The mathematics is difficult

. To do work with an adaptive filter that doesn't have the nonlinearity
is the equivalent of doing work with a single neuron instead of a net. You

can do remarkable things with it - noise canceling, antennas, control systems
. The mathematics for it is really pretty clean stuff, not like the math for

a neural net. It was easy for me to stop neural nets and do things that are

productive, have great engineering value, and are solid scient i Ac work. But I

knew when I left the Aeld that some day, I'm going to come ba~ when I

have more time. It still would have been many years before I'd gone back

into neural nets. if the Aeld hadn
't flared back up.
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Once I was at Snowbird, I caught the spirit, the excitement of that group
of people. There was no way I could stay away from that field, so I went

back in. As soon as that happened, I found that many doctoral students

wanted to work on this. I
'
ve got fifteen doctoral students right now; that

'
s a

lot . If I wanted fifty , I could have fifty PhiD. students working on neural nets.

They
're there; they all want to work on neural nets. They don

'
t know what

the hell it is, but they want to work on it .

Well, over the years we've had some remarkable students. Ted Hoff was
a postdoc for a number of years after completing his thesis. Then there was
a new company getting started in Silicon Valley. The founder was a man

named Robert Noyce. He was just getting a company started. The purpose
of the company was to develop integrated circuit memory. The idea of storing 

one bit with a flip flop was radical. I suspect that when they were all

working at Fairchild, they must have suggested this to management, and

management said no, so they went and formed their own company that they
called Intel.

Ted Hoff joined Intel. I knew that this was the right thing, that being a research 

associate is not a permanent thing in a university. This was an opportunity 
for a young fellow to go ahead and get involved, so he joined Intel.

He told me his badge number was number 12 at Intel.

He worked there for a little while, and he came up with the crazy idea of

putting the entire computer
- the CPU [central processing unit], all the logic,

and the memory- on one chip. I think he must have been influenced by the

computer that he learned on in my lab, an IBM 1620, an ancient machine

now, but then it was quite a fine minicomputer. The machine worked in

binary-coded decimal, BCD. Everything was done with decimal digits. It

takes four bits to represent a single decimal digit , so the first Intel machines
were all four-bit machines, and some of the instructions, I think, were similar.
Ted called it a microprocessor. He was very successful. He

'
s a fellow of the

IEEE, and his Fellow citation reads something like, 
"For the invention of the

microprocessor.
" Note: The Inamori Foundation has announced the laureates 

for the 1997 Kyoto Prizes Oapan
'
s version of the Nobel Prize). For the

invention of the microprocessor, along with Ted Hoff are his co-workers at

Intel at the time, Dr. Federico Faggin, and Mr . Stan Mazor, and a colleague
from Japan, Dr. Masatoshi Shima.

I've had about sixty students who have gotten doctorates under my

supervision over all these years, and almost every one of them has worked

on something adaptive. Now we're back to neural nets again, and I can't find
a student who wants to work on adaptive filters. Everybody wants to work

on neural nets. So neural nets it is.

We've been working on neural controls for a couple of years. We had
a number of students who wanted to work on controls. The first one was
Derrick Nguyen. He did the first broom balancer of the new era. [The "broom
balancer" or "pole balancer" is a classic problem in control, where a system
must learn to balance an inverted pendulum without having it fall over.] We
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were doing broom balancing way, way back, but the broom balancing we

did back in the early
' 
60s was a system where it was learning with a teacher.

The teacher was a control system that knew how to do the balancing, so it

was able to adaptively learn to emulate a system that knew how to do the

balance. This was supervised learning.

Now we start out without having a system that knows how to balance

the broom, and we ask the neural net to learn all by itself how to do the

balancing.

After Nguyen did the broom balancing, he came to me and he said, 
"Well ,

I
've got this working; you saw it .

"

I said, 
"Yes, I saw it . It

's marvelous."

He says, 
"What should I do nextf

'

So I thought about it , and the first thing that came to mind was a double

broom balancer; it
's a broom on top of a broom. I thought, that will Ax him.

But I thought, 
"Wait . I've got another idea.

" I thought about the truck-

backing problem.

I can tell you where the truck-backing problem came from. It came from

my father' s ice plant. One day when I was a little kid, a big truck came into

the ice plant to pick up a load of ice. I didn
't know the driver; he came from a

different city, not a usual customer. He didn
't know where to back the truck

up to get the ice. I was standing on the side lines with a few men, and the

driver got out of the truck, stepped down, and came over to us and said,
"Where do I put this thingf

' Meanwhile, he just left the brake on, and left

the engine running.

And everybody said, 
"Well , over there is where you back up the truck."

He said to me, 
"Kid , you know how to drive?

"

I said, 
"
Sure.

" I think I was about fourteen.

So he said, 
"
OK, back up my truck to the platform, will you?

"

I said, 
"
Sure.

I was a little kid. I just barely was able to climb up into this monster truck.

So I got in, and I can see the little diagram on the dashboard that tells you

how to set the gear shifter. So I got it into reverse, very carefully letting out

the clutch, and putting my foot on the gas pedal, and the thing slowly starts

to move. Yikesf It just wasn
't going where I thought it would go. I had never

had any experience backing up a trailer truck.

I can tell you, all the guys were standing on the sidelines. They were all

laughing. They were having a great time, and I was so embarrassed. I finally

gave up. Got out of the truck. I said, 
'1 can

'
t do it .

"

Everybody thought that was so funny. The driver just got in there and

backed up the truck to the platform, no problem. I guess I never really forgot

that experience.

So when Derrick came in, and he
'
d done the broom balancer, and he

seemed to be pretty pleased with himself, I said to myself, 
'1

'm going to Ax

him. I
'm going to make him back up a truck.

" 
So I suggested the problem to

him of getting the neural net to steer the truck while it
'
s going backward.

Bernard Widrow



The broom balancer, you know, is a classical problem in control. It 's written 

up in control books for the last fifty years. When he did the work on the
broom balancer, I could just refer him to a control book, and he could get all
the equations from the book. So he said, 

'
Where amIgoing to get the equations 

for the truckf ' 
He went into a toy store, and he bought a little plastic

truck with a trailer and took that back to his desk so he could play with it .
He wrote out all the equations of the truck as a nonlinear plant. It didn'

t take
him very long.

He came into my office one day. He said he's got something he thinks I

ought to take a look at. So I went down to the lab with him, and he showed
me the computer screen with a moving image of the simulated truck and
trailer backing up under the control of a neural net. My jaw dropped. I knew
about the broom balancing, but I had no feeling for the difficulty of the truck

problem. It looked like a very difficult problem. The neural net learned all by
itself to steer the truck, by backing up many, many times.

What he had it do is back up, but if it hit something, it stops. He
'
s trying

to back up to a platform in a precise spot. You look at the state of the truck
when it stops and compare it with the desired final state. The difference
between the two is the final error, and it 's a vector because you have many
parameters on the truck to describe its position. Utilizing a form of back-

propagation, the error vector was used to adapt the weights of the neural
controller. Every time the truck backed up, if it were set in the same initial

position and let back up again, it would do it similarly, but the new back up
would come to a stop, and the error vector in the least squares sense would
be less as a result of learning. Now, you don

'
t necessarily back it up from

the same initial conditions every time. What you do is scramble them all

up. The idea is that every time you back up, the thing learns something and
adjusts the controller. So if it were to back up again, it doesn

'
t learn while it 's

backing up; it backs up and then sees what the Anal error is.
Now that it's got an error, it uses backprop to adjust the weights of the

controller. Nguyen was able to do this with backprop. He developed an

algorithm that he didn
'
t have a name for, but it turns out that Werbos had

already developed that algorithm for some other purpose. Werbos had given
it the name "backprop through time." And what Nguyen was using was

backprop through time for this control problem.
When the truck backs up, it backs in increments. Let

'
s say a big trailer

truck backs up a small distance, like one meter. Every time it backs up, it
backs up one meter, one meter, one meter- a whole series of steps until it
hits something and then it stops. You see what the error is, and you go back
and look over all the steps that you

'd gone through, and you change the
controller so that you go though another set of steps where the error would
be smaller. So what Nguyen saw was that the transference of the state of the
system from one state to the next, to the next, and to the next is analogous
to the transmission of data, of signals, from one layer to the next of a neural
net. He looked at each of these steps as analogous to a layered neural net. So
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the neural net that he's dealing with , that he
'
s adapting, is not a two-layer

net or a three-layer net. He
'
s adapting a hundred layers, all with backprop.

He succeeded with the truck backer, and demonstrated great visualization

and ingenuity. [Note: It is with great regret that I report the death of Derrick

Nguyen in the year 1995. He was 30 years old.]
We didn

'
t know originally that the truck backer upper problem would be

amenable to control theory at all. It looked like a very difficult nonlinear

control problem. My first thought was that this was beyond control theory.

Then I talked to some control people, and they indicated that there should

be some way to do it analytically. Just recently, I received from Shankar

Sastry, a colleague at Berkeley, a paper he wrote that shows analytically how

to back up a truck and trailer with n trailers; n could be any number you like.

He has an analytic solution. You don
't have to learn to do it ; you can do it

analytically.

But I think the point is that we're not in the trucking business. We
'
re in

the business of demonstrating a learning capability, showing that something
can learn to do something nontrivial and that it can learn it whether it

'
s a

problem that
'
s amenable to analytical treatment or not.
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ER: Tell us something about your parents and early childhood.

LC: Now, you don
'
t ask a person their date of birth . However, why don

't

we try February 28, 1930.

ER: We
've asked everybody their date of birth, but we

'll note your protest.

LC: I was born in New York City . I grew up in the Bronx and Mount

Vernon and various places around there.

ER: What did your parents do?

LC: I don
'
t think my mother worked after she was married, and my father

at that time had a printing business. He was a typographer by profession.

ER: Did he stay with that business through your childhood?

LC: My childhood was complicated.

ER: What I'm really after in talking to people is to try to get some insight

into what kinds of experiences have formed them so that they become the

people they are.

LC: I wasn
't prepared for deep psychoanalysis.

ER: It 's not psychoanalysis, it
's just . . .

LC: Well, I lost my mother when I was about eight years old. My father

sold everything he had trying to pay for the hospital bills- that
's when he

lost his business. A great illustration of what it means not to have generally

available medical insurance. After that he worked in his profession. We

were moved around for a while, and then he remarried. My father died a

couple of years ago, and my new mother is living and very happy in Florida.

The entire family celebrated her ninetieth birthday with a huge party last

November.
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ER: Do you have brothers and sisters?

LC: I have one younger sister, and I had a half brother, who died when he
was about thirty .

ER: So when your mother died, this had a big impact on you?

LC: I think when an eight-year-old
'
s mother dies it has a big impact on

him.

ER: Did it affect your schooling?

LC: I was shifted around. I was pulled out of one place and sent to another,

though I had some wonderful experiences at a foster home in Mount
Vernon. The family took care of my sister and me for about two years or so.
That was, I think, the first time I had a little laboratory. It was a private
house, and they were nice enough to allow me the use of the basement, in
which I immediately set up a chemistry laboratory, a photography laboratory

, and a laboratory with all kinds of electrical things.

ER: How old were you when you had your first lab?

LC: Nine or ten years old.

ER: Where did this interest in science come from?

LC: That
'
s a good question. I don

'
t know. I don

'
t really have an answer.

My suspicion is that kids look for various things that intrigue them, and
what gets them going is a little bit of success. You know, you do it, and you

get a little something out of it . Then you do a little more, and you get a little

something more out of it . I suppose I must have liked it .

ER: Most nine- or ten-year-olds are not even cognizant of electromagnetism
.

LC: I can't say I was cognizant of electromagnetism. I had learned somewhere 
in magazines like Popular Science or Popular Mechanics that if you put a

battery on an electromagnet, it attracted things. I liked to do that kind of

thing. I think it pleases a child because he or she begins to know something
that the other people around you don

'
t know. It begins to make you feel a

little special. I enjoyed it .

ER: Was there encouragement in school, or was this all on your own?

LC: This was long before I had any encouragement in school.

ER: So this was just your own interest.

LC: I don
'
t remember too well the very early grades. I just remember isolated 

incidents. But later, when I was in junior high school, I remember getting 
a lot of encouragement from my science teacher. I won several science

awards. By that time, I suppose I had an official interest as well as official

encouragement.

ER: Where did you go to high school?

LC: The famous Bronx High School of Science.

ER: Was there a lot of encouragement there?



LC: There was encouragement. There were some wonderful teachers. There

was also enormous encouragement because facilities were available. That
'
s

where I got interested in biology . The reason I got interested in biology was

a great biology teacher and a wonderful biology lab. You could grow bacteria

; you could do all kinds of things like that. I remember no corresponding

opportunity in the other sciences. I used to work there all afternoon, everyday
. A wonderful woman who was in charge would have to throw me out

to close up. You had to wash your own test tubes, make your own culture

media. Everything.

ER: So in high school at least you had made the transition from chemistry
to biology?

LC: Well, no, I did well in all sciences.

ER: But you seemed to have had a very strong interest in chemistry as a

younger child.

LC: I think it 's because chemistry is easiest to do when you
'
re little . You

can buy a chemistry set and mix things together, and something happens
-

like things explode in the closet, which happened to me once. The reason I

did biology in high school was because the lab was there, and I could put

experiments together.

ER: Were you interested in physics?

LC: I was interested in all sciences. I didn
'
t like physics especially. I liked it,

and I didn
'
t like it . I liked the deep ideas, but I didn

'
t like the problems they

gave. So boring. Biology was more interesting. First of all, I had a wonderful

biology teacher. I could do more with my hands and really design experiments
. I won the Westing house Science Talent Search with an experiment

that I designed in that laboratory.

ER: Do you remember what it was?

LC: Of course I do. I was trying to develop a variant of bacillus subtilis that

was more resistant to penicillin. I designed a dilution series to grow the bacteria 

in varying concentrations of penicillin. I would take the bacteria that

grew in the highest concentration and then put them through a new dilution

series and keep doing it . By the time I was finished, I had a strain of bacteria

that would grow in higher concentrations of penicillin than the original wild

type. The next part of the project I never got to do because I graduated, and

they threw me out. I wanted to find out why it was resistant. Was it secreting 

something? It was not easy to do because even if you kept the more

resistant type in the refrigerator, it reverted very quickly to the wild type.

What I wanted to do was to see if I could filter out something. One possibility 
was that the bacteria was secreting something that destroyed the penicillin

. I remember giving a talk on it and listing the various possibilities, so

the next thing to do was to try to track them down. I don
't know exactly

what the story is now, but it was exciting to be able to do experiments like

that.

Leon N. Cooper
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ER: Obviously, you were motivated and driven.

LC: I really was passionately interested in science.

ER: Were you a good student?

LC: That
'
s another story. In science I'd get 99s or 100s in various exams

such as the Regents Exams. In science I was very good. I had a terrible time

with French. This was what dragged me down from being mst in the class to

being only in the mst ten percent. I did abysmally in French. I ask myself

why, because I have a good ear. When I hear a phrase, I can repeat it . Just by

living in Paris a couple of months I learned to speak colloquially. I think the

bottom line is that I have a poor retentive memory for the sequence of actual

spelling and for little grammatical points. I was a disaster on exams. I used to

make numerous spelling errors. People tell me that
'
s just because I

'
m stubborn

, but I don't think so. I have a hard time spelling well, even in English,

and so what this means is that if you have any brains, use a dictionary or a

spell checker. This really tells you something about the way you should

educate children.

Should you judge a person with a lower average if he or she has a weakness 

some place, if they
're very good in other things? Suppose a person

'
s a

gifted musician, has a superb ear, and composes as easily as breathing, but

can just barely make it through the sciences. What difference does that make?

The point is that you should expose them to the sciences. Tome that is one

of the great things about the Brown curriculum. You expose the person to

everything, but you only judge them on what they
're going to do professionally 

because that
'
s all that really matters.

And the ironic thing is that I love French. I read French easily and speak

fluently, but I just couldn
't learn it to spell it for exams. I still can

't. In fact,

maybe I wasn't even learning it so badly; it
'
s just that I couldn

'
t reproduce

that one aspect of it . There must be dozens of stories like that. It
's really a

shame that the educational system finds it so difficult to come to terms with

that idea.

ER: Were you competitive as a student? You mention that you would have

been mst in the class had it not been for your French grades.

LC: Competitive? Me competitive? You
'
ve got to remember that when I

graduated from the Bronx High School of Science February of 
'
47, I didn

'
t

have too many options for colleges. It was very hard to get into college. My

only shot at an Ivy League college was Columbia because I couldn
'
t afford

the others. Three people in my class got into Columbia in February- a very
close friend of mine who was mst or second in the class, the son of an

alumni, and me. The only reason I got in was because I
'
d won the Westing-

house competition. In June of that year Columbia changed its policy. Some

thirty people from the Bronx High School of Science were admitted. Colleges 

were not easy to get into at that time.

ER: Because everybody was coming back from the war?



LC: I won
'
t speculate on what all the reasons were . It wasn

'
t easy. At least,

it wasn
'
t easy for us. So we were competitive .

ER: And what did you study at Columbia ?

LC: I had to make a decision as to which way to go . I decided to major in

physics .

ER: Do you know what the elements of that decision were?

LC: A kind of arrogance . I said to myself that I can always learn biology . I

can always learn all these other things , but if I don
'
t study physics , I will

never understand those deep ideas. I think I was right about that , actually .

ER: As a teenager, what was your notion of what the deep ideas were?

You
'
ve used that phrase twice .

LC : Einstein , relativity , quantum theory
- all those incredible ideas mentioned 

in books and articles. I wanted to know what they were . I'm really

glad I did . However , it wasn
'
t quite as easy to learn the other things as I

thought . It
'
s not because it

'
s so hard; it

'
s just that you have to get into it .

ER: When you were a teenager, when you were first fascinated by these

deep ideas, did you have an understanding of what quantum mechanics was?

LC : No , I didn
'
t understand at all; it

'
s just that I' d heard about it , and I

wanted to understand .

ER: So it was something beckoning you on the horizon .

LC : I wanted to understand . I wanted to understand what the theory of

relativity really was. I' ve always played with quote, 
"
deep philosophical

ideas,
" 

unquote . However , I'm very pragmatic . One of the nicest compliments 
that has ever been paid to me was by an anonymous English reviewer

of my textbook who said that this text book was written by a 
"
no- nonsense

physicist .
" 

I love that . That
'
s what I am, I'm proud to say. I'm a no-nonsense

scientist . Also , it was a time when physics was suddenly very fashionable .

The nuclear bomb had just exploded . It was rough , however , because between 

the deep ideas and what they put you through in the Columbia

physics department , it wasn
'
t easy.

Columbia College was an unbelievably rewarding experience. I loved the

humanities courses. I loved the classics courses. I had a wonderful humanities

instructor , Gilbert Highet , four times a week . There was Mark Van Doren

and Moses Hadas. One regret is that I wanted to sit in on a seminar course

on Hamlet. I won
'
t mention the instructor

'
s name, but he wouldn

'
t let me

because, given that I was taking four physics courses, I couldn
'
t agree to do

all the readings . I suppose he was right .

There was another course called 
"
Colloquium .

" 
We read a book a week,

and then we
'
d meet one evening for about two hours and talk about it .

There were two instructors . I remember getting into an argument with one

of them about Pascal
'
s wager . Do you know Pascal

'
s wager? Pascal says that

we don
'
t know anything about whether God exists . Since we are in total
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ignorance, the chances are fifty -fifty . Thus, he argues, it is your finite lifetime 

against eternity on a fifty -fifty bet. Any rational gambler would take the
bet. There are various ways of showing this argument doesn

'
t work. But my

argument was that just because you
'
re in total ignorance doesn

'
t mean that

the probability is fifty -fifty . Because if it were, you could say I'm also in total

ignorance as to whether Satan exists, etc. Anyway , the instructor would not

accept that. I was stubborn and he was pretty stubborn, too. We spent an
hour and a half arguing about it . Nobody else got a word in edgewise. Then

they called another special session. The argument continued. Finally, somebody 
said, 

"
Just shut up so we can talk about something else."

But it was great. It was an enormously stimulating experience. Some of the
ideas I sketched for that course I've since developed in lectures. I guess college 

is a time when people grow if they
'
re lucky. You remember that period

as the time when you grew up and matured.
At Columbia I didn

'
t keep my opinions to myself. I took a course with

Polykarp Kusch- an absolute marvelous character. The course was electromagnetic 

theory. He had a booming voice and was, I think, deaf in one ear,
so he was very disturbed by people talking in class because he said he
couldn't localize the sound. He worked with I. I. Rabi, did some very famous
measurements, and later won the Nobel prize. I complained bitterly during
the course about how meaningless the problems were, what a waste of time,
etc. I was rambunctious and not fond of work.

In the middle of my junior year he called me in to his office. He was chairman
. I said, 

"
Oh no, they

'
re going to throw me out.

"

But he says, 
"
Cooper, how'd you like to be a teaching assistant at

Columbiaf '

And I said, 
'
What does that meanf'

He answers, 
'
it means you get your tuition paid and $90 a month.

"

So I said, 
'
Where do I sign?"

That's how I made the transition from the college to the graduate school. I
never even looked at another graduate school. They recruited aggressively
in those days.

So I entered the graduate school in February of my senior year. I became a
T A . I remember one of the earliest courses that I taught as a T A . I was probably 

just twenty-one years old. It was to a group of pharmacists-to-be. They
were much older. They were the most undisciplined, unruly class. I couldn

'
t

stand it, so I would throw them out, one after another. They finally shut up.
I thought it was disgusting. So I asked them, 

'
Why are you here? You

have no interest in the material whatsoever."

They said, 
'
Well , this is a required course and we are looking to graduate,

get a job, and make our $87 a week.
" 

That was a high salary at that time.
That was the depth of their intellectual interest.

I was a T A at Columbia, went to graduate school, did my thesis. All those

good things. 
.
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ER: What was your thesis?

LC: It was on an aspect of nuclear physics, mu meson atoms. A mu meson

is like a heavy electron. It doesn
'
t have a strong nuclear interaction, but

because it 's heavy, about two hundred times as heavy as the electron, its

permit ted orbits are much, much closer to the nucleus. When it makes transitions 

between two energy levels, it emits more energetic photons than an

electron making the same transition. By measuring the photon energy of the

2p to Is transition, you could deduce the radius of the nucleus.

Well, the energy of the emitted light was something like a half million

electron volts, more than according to standard calculations using the then

accepted radius of the nucleus. The question was, why? When I worked

on this problem, I was very fortunate. My thesis advisor was Robert Serber.

If you
'
ve seen the TV play The Day after Trinity, Serber was an important

participant in building the bomb. He'd been a student of Oppenheimer and

worked at Los Alamos. I found it a little difficult to communicate to him

because he was on too high a level. Fortunately, Ernie Henley, who was just
a few years older than me, was a postdoc. Serber put me to work on this

problem, and Ernie was also working on it . That was fantastic because I

could have a very close interaction with Ernie.

ER: And so that problem was selected for you, as opposed to something
which you came to yourself?

LC: It was suggested as a possible problem. The experiments were going
on at Columbia; they were being done by Jim Rainwater and Val Fitch. Ernie

and I finished it too quickly, so Serber said that I
'
d have to do other things

before I could get my degree. So I did some other things. I worked with

Rainwater, and I worked a little bit with T. D. Lee. They finally let me out.

Do you want to know what I did after that? It has nothing to do with neural

networks.

ER: Sure.

LC: Well, Serber got in touch with Oppenheimer, who was then director

of the Institute for Advanced Study, and so I went to the Institute and

worked there for a year. Then serendipity. When I was at the Institute,

things seemed to be a dead end in my branch of physics. It was just after

Schwinger, Feynman, and Dyson had done quantum electrodynamics. The

normalization ideas were worked out. It seemed as though people were

spinning their wheels. It was at the Institute that I had a conversation with

John Ward, very well known in quantum field theory. I said to him something 

like, 
II 
After I have finished physics, I would like to go back into biology 

." He was shocked. I guess it was a bit presumptuous.

I probably didn
'
t say quite that, but I always had the idea. I may also

have said that I would write a few operas along the way. I wanted to do

everything. It was difficult for me to accept limits. About that time, John
Bardeen wrote to C. N. (Frank) Yang, asking if there was someone who was

familiar with the current field theoretic techniques because he thought maybe



they could be applied to super conduct ivity . Frank asked me if I might be

interested , and I replied , 
'
Why not ?

" 
Later, Bardeen visited and talked a little

bit about super conduct ivity . I didn
'
t know anything about it . I didn

'
t know

anything about solid -state physics , but the thing that intrigued me was that

super conduct  ivity was a problem that had been around for fifty years, and

no one had been a.ble to solve it . Almost every famous physicist had tried ,
but nobody had been able to solve it . And so I said, 

"
All right , that

'
s something 

for me to do . I
'
m not getting anywhere doing the kind of stuff people

are doing here.
" 

So I figured I
'
d give it a try .

ER: Where was Bardeen?

LC : He was at Illinois . I sometimes wonder why I accepted because I didn
'
t

know anything about the field ; I didn
'
t know anything about solid -state

physics , but it turned out that it was well chosen as a problem for me because 

I didn
'
t have to know anything about solid -state physics . All I really

had to know were a few things , and Bardeen taught them to me in days.

The first thing I did was dutifully to jump into the problem with all the

latest, fanciest field theoretic techniques . No point in listing all the different

things I did . Then, contrary to what almost everyone else thought , I decided

that , you know , this doesn
'
t make any sense at all . I

'
m doing all of this razzle

dazzle, and when you look at the simplest elements of the problem , you ask

people what the solution is in ordinary English , and no one can answer.

I started asking people , 
"
How do you solve a problem of this kindf

'

They said, 
'
1 don

'
t know . Look it up in a quantum mechanics book .

"

And I said, ' 1 already know what
'
s in the texts . How do you solve it in the

form it takes heref
' 
No one had the vaguest idea.

This is really where I separated from everyone else. I was asked, 
'
What

are you doing ? Why aren
'
t you doing what you

'
re supposed to be doingf

' 
I

feel uncomfortable working with complex technical tools if I don
'
t have a

sense in ordinary words of what it is that I
'
m working on.

I
'
ve developed several precepts over the years based in part on this

experience.

1. Don
'
t attack a complicated problem if there is a much simpler version that

you are unable to solve . Solve the simple one first .

2. Don
'
t believe what you don

'
t understand .

3. Beware of those who say that the solution is in the complexity
- that

there is no way to see what
'
s going on . Of course, in some cases this may be

true, but most of the time it
'
s just a way of throwing in the to~ el.

So I went back to fundamentals .

In about one or two months , I thought of a solution to the problem . In

fact, what I had was an idea that would eventually lead to the solution . But

to convince people , to convert that idea into a solution , was the period of

greatest anguish in my life . You have to experience it to understand how

you feel in the wilderness when you are totally unknown .
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You go to meetings and say, 
"
I think I really have solved this problem.

"

People look at you as though you are a raving lunatic. Most individuals who

think they have solutions to big problems are raving lunatics, so statistically

they
'
re right . I've always had a certain sympathy for these itinerant vendors

of new ideas, but one has to face up to the fact that it
'
s statistically unlikely.

Anyhow , I went through about a year in this wilderness.

I buttonholed everyone I could grab at every meeting I managed to go to,

Feynman may have been among them, repeating the spectacle of the earnest

young unknown claiming he had solved a fifty -year-old problem that had

baffled a substantial number of the Great Ones.

Now I know what I should have done. At the time I did all the wrong

things. At every seminar I gave, and I gave quite a few, people would pose

questions. I would try to provide answers. They
'
d say, 

"But how do you
know that this is the case?"

And I would spend three months proving this was the case. And they
'
d

say, 
"
How do you know something else is the case?

" And I would spend
three more months proving something else was the case.

I spent all my time proving one thing after another. What I should have

done, although that wasn
'
t so easy, was to embody the idea and then calculate

, do something. But that was done by three ideally suited people . . .

ER: The three being John Bardeen, you, and Bob Schrieffer . . .

LC: It 's remarkable how each of us contributed things that the other person 
didn

't see, really astonishing. We were and remain very different per-

sonalities. Bob and I are almost the same age. We used to commiserate with

one another a lot . Bob, a graduate student, would say, 
"I'm never going to

get a PhiD. on this problem.
" He did, however, and it was a reason ably substantial 

PhiD.

It all came together about January of 
'
57. We decided that this was it . We

were going to go ahead and work it out. We calculated literally day and

night. Raw calculation for about three or four months. It is simply amazing
the way the results came out. Absolutely astonishing. The techniques we

used were so cumbersome compared to what became available even a few

years later. It is hard to believe we did it, but when you
're in the middle of

things like that, we did just literally work day and night. I also remember,

there were places where we were really stuck. I remember getting a critical

idea at a concert. I had been thinking about the problem un interrupt edly for

a week or ten days. It was a very intense period. After you
're finished with

something like that, what do you do next? I kept working in the field for

several years, but . . .

ER: By finished with it , you mean the paper was published?

LC: Yes, the problem was solved. The solution was accepted. Then there

were all kinds of new techniques that came along. I worked in the area for

quite a few years afterward.



ER: In Illinois?

LC: Illinois, Ohio State, Brown. Actually, at Ohio State with Sessier and
Mills we published the first paper suggesting that helium 3 might be a superfluid

. At that point the idea had always been that helium was one kind of a

superfluid, and the superconductor was another. Helium 4 is composed of
what are called bosons, while superconductors are composed of fermions.
Helium 3 is made of fermions, so in principle it could be a superconductor. It
turns out it 's a much more complicated superconductor.

Anyhow , I kept working. Results kept coming. I published papers and

produced PhiD.s, but it was more and more technical. It didn
'
t please me

anymore. I didn't feel like going on for the rest of my life, becoming a

superguru.

It
'
s a very foolish thing to give up, when you think about it, because when

you
'
re that established, you can get money just by sending in a proposal. It

'
s

very easy because you know everything that
'
s going on. But it really didn'

t
interest me any more, and when you stop being interested, your work
becomes mechanical.

So I began to look for other things to do. Among other things, I began to

toy with myoId interest in biological problems. And because by then I was

very far from any laboratory, I didn
'
t particularly feel like going into things

like molecular biology . Also, I
'
d always had an interest in deep philosophical

ideas. Mind -body problems, that sort of thing, although I take a very pragmatic 
point of view of these problems. I think the difficulties are mostly selfconstructed 

to amuse philosophers.

Anyhow , trying to understand what the nature of the thinking process
was seemed to me an incredible challenge, one I

'
d always been interested in.

Also, my transition was aided by an illusion I had at the time when I began
this work. I was an expert on many-body problems and quantum mechanics.

Super conduct ivity was a many-body problem: many electrons interacting via
known interactions. If you looked at physiology texts at that time, they
would say that the properties of single neurons are fairly well understood.
On the other hand, no one has any notion as to how memory is stored, or
how any thinking process happens. So I said, 

"
That seems like an interesting

challange, and it might be a many-neuron problem."

I guess the whole thing came together when a graduate student, the

famous Menasche Nass, walked into my office and said he wanted to do a

biological-type problem. I don't remember if I'd suggested it to him as a

possibility or vice versa. I told him it was really risky. It was bad enough
trying to be a physicist at that time because the job market was tight , but
this was totally unknown. You didn't know if you

'd get a job; you didn't
know anything. He still wanted to do a biological project.

At that time I had become aware of a paper by Longuet-Higgins proposing 
a distributed rather than local memory that seemed appealing. However,

it didn
'
t seem to be easily realizable in a physiological system, so I assigned
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Menasche the task, a summer project, of coming up with a version that was

more plausible. At the end of the summer, when I next met Menasche, I
asked him to show me his results. It turned out he had found an easier way.

Menasche
'
s family lived in New York. On one of his visits, Menasche

went to visit Jim Anderson at Rockefeller University, who was supposed to
know something about memory. Jim was a postdoc at Rockefeller at the
time. Jim had developed an associative neural network model that was based
on a simple learning rule, of the type that has become known as Hebbian.
It learned using only local information available at the synaptic junctions

\>etween neurons. It did not give very accurate recall, but it did work
and operated as a simple kind of associative memory. It was this solution
Menasche presented.

When we developed this a bit, it became clear that with few assumptions
you could get a lot . It wasn

'
t the grand solution, but in the roughest sense

you could see how associations could be built and put together.

Such things had been talked about for years. People regarded this as

among the deep mysteries. And there it was, coming right out of the simplest 

assumptions. That, I thought, was very powerful.
At that time few people believed that understanding the brain was possible
. They would say, 

'
Well , it

'
s an interesting problem, but it

'
s not going to

be done in our lifetime.
" 

The situation has changed dramatically in twenty
years. I guess that

'
s a reasonable part of a lifetime. But I don

'
t think anyone

feels that way now.

To understand the evolution of my own thinking you have to understand
a bit the way I think and the way I work. To a certain extent I'm oblivious of
the rest of the world . It 's one of the best traits you can have, and one of the
worst. As a marketer, as a person who can sell something, I

'
m terrible because 

I don
't pay enough attention to anyone else. But when I'm satisfied in

my own mind that something is understood, I don
't care what anyone else

thinks. At that point I said, 
"
Those so-called deep problems about memory

and association are just possibly understood in principle.
"

Of course, I was aware that a bit of additional work was needed. For example

, the company I work with , Nestor, has been laboring for twenty years
to try to sharpen things up so as to get commercially viable products. I

wasn
'
t oblivious to that, but I thought that on a deep level we might be

beginning to understand.

The problem was that when I spoke to biologists, their reaction was, 
"a

talented amateur, in never-never land.
" 

So I said, 
"
You know, these guys are

right in away . I am in never-never land. What is required to take this from

fantasy and make it absolutely convincing? What does it require to turn

everyone aroundr' And as I saw it, what was required was to take the theoretical 

fantasy, make it absolutely concrete, and then show that you could
make concrete connedions between experiments that were being done and

explain them.



It
'
s my opinion that this was Galileo

'
s greatest contribution to science. He

was the first one who built a mathematical structure that could be put into

correspondence in a detailed and quantitative way with what was observed.

That's a very powerful idea. And that's what I thought was necessary.

At that time our theoretical models assumed modi6able synapsesAl -

though that had been suggested in biology , there were very few biologists
who took the idea seriously. Let me tell you, things have really changed.

Now it is not uncommon to hear biologists talk about modi6able synapses
and neural networks to explain their experiments.

In order to make this area serious science, to And a way to build a theoretical 

structure sufficiently concrete to be put into detailed correspondence
with experiment, I began what now seems like an incredibly long detour into

visual cortex. I was looking for a place where experiments could be done

that indicated that some kind of learning was occurring.

The early experiments that seemed to show learning in visual cortex were

controversial, ferociously controversial. I won't go through that whole sorry

history, but this is what science is. If you looked at the situation with an unbiased 

eye, you
'
d say, 

"
OK, maybe those guys aren't seeing exactly what

they think they
're seeing, but they

'
re seeing something, and that something

is very interesting."

Someone asked Einstein what he thought about flying saucers. He said,
'
Well , these people are seeing something, but don

'
t ask me what.

"

So, these people who were studying visual cortex were seeing something.

It was pretty clear that experience was modifying the response of the cortical 

cells. That
'
s what I call learning, on a cellular level. And so some kind of

synaptic modi6cation ideas should be able to explain what was happening.

At that point, my own personal work branched. On the one hand, we tried

very hard to make contact with experiments, and on the other hand, we in

effect said, 
"Let's take it and build something with it .

" 
Just throw off all constraints 

and build something real. One way led to the commercial applications 
like Nestor, and the other went to see what was really going on in the

biological system. In an interesting and curious way, they interact again because 

the learning rules that we proposed for the visual cortex, now known

as the BCM theory, have turned out to be powerful statistically fordimen -

sionality reduction. [BCM theory is named for a well-known paper by Elle

Bienenstock, Leon Cooper, and Paul Munro, where it was first proposed:
"
Theory for Development of Neuron Selectivity: Orientation Specificity and

Binocular Interaction in Visual Cortex." Journal of Neuroscience 2: 32- 48

(1982). Reprinted in Neurocomputing.]
We and others have been applying these rules to feature extraction, di-

mensionality reduction. You start with let us say five hundred dimensions,
and you can extract a few powerful features from them. So our initial idea

that biology could teach us something is, I think, valid.

Anyhow , we worked on two tracks. On the biological track, we first tried

to come up with some means of understanding what was going on in visual
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cortex. There was my paper with Nass. Other people were also working on
this problem: Leon Glass, Perez Christoph von der Malsburg. There

'
s a lot of

work that
'
s been done recently.

A key idea came to me in Paris. I was a professor of the Fondation de
France. (I had by then conquered my high school aversion to French.) Michel
Imbert called me to say, 

"
Weare trying to start something in the area of research 

involving neural networks. You come to France. You can be associated 
with the Institute Pasteur, the College de France. You name it, we

'
ll

get you space. Start a laboratory, and we'll give you a five-year appointment
." And I said, 

"
What happens after five years?

"

Well, they said, 
"
That

'
s five years ahead."

I did a rapid calculation and said, 
'
1'm not even going to be out of my

forties in five years.
" I didn

'
t really want to retire, and I didn

'
t want to leave

the whole group here at Brown. So I said, 
"
Why don't we arrange something

so that we can go back and forth?
" 

We can join two laboratories. They

accepted that. And that worked very well.

The first thing they showed me in Michel's laboratory in the College de
France were their experiments with kittens raised in the dark. These kittens
did not show the Hubel- Wiesel-type cell behavior seen in normal kittens,
where cells in visual cortex respond selectively to particular orientations
of lines. Cells in dark-reared kittens generally respond weakly and are very
broad in their response to orientated lines. But if dark rearing was followed

by just a few hours of patterned experience, the sharp tuning came out right
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away. That seemed to me a striking result that cried for explanation. Could

one find a synaptic modification mechanism that could explain it?

According to our arrangement, I lectured in December. What made it

really hard was I was lecturing in French. As I said, I
'
m pretty good using

street French, but my technical French was almost nonexistent. It drove me

crazy because I would mispronounce all the words. Finally I just gave up.

One incident I remember was to try to say 
"
action potential

" in French. I
'
d

say something like 
"
potential d

' 
action,

" 
and all my buddies in the audience

would shout, 
'
We don

't say that. We just say 
'
spiking

' 
the way you do in

English.
" 

In French, that should be pronounced 
"
speek.

" 
So I made it into

a verb, and I said, 
"
ca va speeker,

" 
meaning 

"
that one

'
s going to spike,

" 
and

everyone began to laugh. They said, 
'
We don

'
t say that; we say

' 
ca va

spiker .
' "

I gave up. From then on I lectured in English. Or I mixed it up.

In the course of my lectures- 1 think it was December 1978- 1 really

began to worry about Michel
'
s results. The problem seemed extraordinarily

simple. When neurons are in a patterned environment, they show sharp

tuning. In a noisy environment, no sharp tuning. How do you get that? We

should be able to understand that.

It was during those lectures that I thought of mixing an anti-Hebbian part
with a Hebbian part. I was familiar with the work that T euvo Kohonen had

done with optimal mappings. While I was lecturing, it occurred to me that a

selective cell is sort of an optimal mapping because what it
'
s doing is map-

ping certain patterns to zero and others to a maximum. If the synapses were

modified with a Hebbian rule, but with a minus sign, then cell response
would eventually go to zero. Modifications with a positive rule would give a

growing cell response. It then occurred to me that if the algorithm were such

that all patterns but one resulted in negative modifications, then you would

get the experimental results. That's how the idea was born.

Kay and I went to Finland every once in a while to visit T euvo Kohonen.

As a result of one of these visits, Erkki Ola from Kohonen
'
s laboratory came

to Brown. Fishel Liberman joined us, and we did a paper. It worked pretty
well. But there was a rather amusing problem.

Fishel used to come into my office and say, 
'1'm losing cells.

"

I told him 
"
Put the threshold in the right place. Fishel, you know you have

to place the threshold so that the response to one pattern is above it, and the

response to the others are below. If you put them all below, you
'
re going to

lose cells."

After some deep thinking, it occurred to me that it 's hardly likely that

every cell in the visual cortex has its own Fishel Liberman assigned to it to

adjust its threshold. There must be some way that the threshold adjusts itself

to achieve this effect. And so we began experimenting with thresholds that

would move.

Now what is it going to be a function of? Well, the most obvious thing to

do is to take something like cell activity or depolarization. That
'
s when Elle



Bienenstock- who had asked me in Imbert's lab if he could come and complete 

his PhiD. here- joined us. I won't go through all the stories about Elle.

He had a rough time when he was here. We consumed quite a few glasses of

Scotch in this office. He
'
d tell me about how awful Providence was, how the

food was ghastly. You name it, it was awful. Everything was awful. Now he

seems to be very content coming and spending lots of time in Providence,
and he tells me how awful Paris is. I never stop teasing him about that.

Anyhow , soon after Elle joined us working with moving thresholds, we

came up with an elegant possibility. Allowing the threshold to move as a

nonlinear function of the activity also gives the whole system nice stability

properties. Elle worked this out beautifully in his thesis, and we wrote the

BCM paper. We
'
ve been playing with variations of that ever since. What we

first did was somewhat of a skeleton, as always. Since that time I think we
'
ve

made the theory more sophisticated and realistic. The real world is very

complex, so one simplifies. One of the simplifications, for example, was the

visual environment. We simplified the environment by saying that a normal

environment could be represented by a certain number of patterns distorted

by noise, as opposed to pure noise. Our justification was that if the receptive
fields were small enough, and if you looked at actual images, probably the

repetitive patterns would be edges of various orientations distorted by
noise. That seemed to work well.

A real advance was made with Charlie Law and Harel Shouval, Brian

Blaise, and others. We
'
ve been running the algorithms on real images (pictures 

taken by Harel). The retinal field is shifted over the images, and we get

receptive fields coming out just the way they should. A little circle goes over

the image at random. These are no longer patterns distorted by noise, so we

feel we
'
ve made much more realistic contact with the external world .

We have also been working with Mark Bear and his experimental group.

There seems now to have been confirmation of the phenomenon known as

long-term depression [L TO]. For a long time we have known about long-

term potentiation [L TP]. By stimulating a cell properly, you can enhance the

responsiveness of the cell. This has been attributed to changes at the synaptic 

junctions of the cell and was seen first in the hippo campus. If the BCM

algorithm is correct, by stimulating insufficiently you could decrease the response 

of the cell. People may have seen long-term depression, but no one

was really sure. Depression might be obscured because you could kill a cell

or ruin the synapse.

As Mark says, 
"
Seeing is believing, but in this case it was necessary to

believe in order to see."

For the BCM algorithm to work, in addition to potentiation we need the

negative part, depression. Serena Dudek and Mark Bear did the experiment
to look for it . I won

'
t go through the design, but it

'
s ingenious and maps the

change in responsiveness of the cell as a function of its depolarization. For

insufficient depolarization, learning is negative and then goes into the positive 

region. Long-term depression, then long-term potentiation. This has
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now been demonstrated in many areas of the brain , in young and old animals

and in many species
-

including humans. There may still be a few skeptics,

but I believe that most people are convinced .

The theory also requires that the crossover point between L TO and L TP

move with cell activity , the sliding threshold . It is particularly evident in the

experiment known as reverse suture in which you begin as with monocular

deprivation , then open the previously closed eye, and close the other . The

response of the cortical cells connected to the closed eye is driven to zero.

But then if you reverse the suturing , the previously closed eye recovers . If

the threshold weren
'
t moving , the eye would never recover , so we know it

has to move . Very recent work in Bear
'
s lab by Kirkrood and Bear shows

that the threshold does move , as expected .

Now no one talks now about whether synaptic modification occurs or not .

What is talked about now is what specific receptor protein is altered . Within

a few years, we
'
re going to have an important story describing which receptor 

is modified , what it is that happens when memory is stored , and where

it
'
s stored . And we

'
re also going to know the sites of short -term and long -

term memory . The universe has changed. It really is a tremendous change.

The consequences are difficult to predict , but you would think that if you

know exactly what is being altered when memory is stored , there should be

many important consequences.

My feeling is that one thing you can be sure of is Murphy
'
s Law. If it can

go wrong , it will go wrong . Every step in the sequences of events that leads

to memory storage goes wrong sometimes. When it does, it
'
s known by a

Latin name. It
'
s a disease of some kind . Of course, just because you know

it went wrong doesn
'
t mean you can do anything about it , but it gives one a

chance.

ER: Want to talk a little bit about Nestor , your company ?

LC : Sure. I
'
m always happy to talk about Nestor . That

'
s the other branch .

At Nestor we say, 
"
Let

'
s do something with it .

" 
We have produced useful

commercial products incorporating what are now called artificial neural

networks .

ER: Had you ever been involved with a commercial enterprise before

Nestor ?

LC : In fact, I have. With an old , old friend of mine , Conrad T aff, who was

a venture capitalist , we started a company known as Science Resources. Then

I drifted &om that to the board of directors of other little companies and

association with venture -capital people . The idea of forming a company was

not unknown to me. Making it a neural network company , that just came

together .

ER: When was Nestor started and under what circumstances?

LC : I remember writing to Charles Elbaum &om Paris when I was there ini   

on sabbatical and saying to him , 
'
1 think it would be a good idea to start
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a company.
" 

And then when I came back, I got in touch with some of the

people I knew in New York. They thought it was such a great idea they
were here in Providence the next morning. We started as a limited partnership

, back around 
'
75 or so, raising a grand total of about $400,000, and we

lived on that $400,000 for about ten years, which gives you some indication
of our level of activity .

ER: So what were you trying to do in those early years with the company?
To create a demonstration of the technology, to create a product?

LC: Well, I hate to be quoted on this, although I am aware you will quote
me, but I don't think we knew what a product was. We were academics. We

just had this idea that conceptually was very powerful. I guess we were trying 
to create a demonstration. The first thing we worked on was to try to

create a demonstration of how you could recognize handwriting. Things
were primitive then. Ironically, one of the things that made the company
go wasn't an advance in software, or algorithms, but advances in hardware.
If we wanted to recognize handwriting, way back, what we would do was
write on a magnetic tablet and that was put on a tape. Then the tape was
carried by hand to the mainframe, two days later we

'
d come back, and it

would say that you wrote a "3." This wasn
'
t the most impressive demonstration 

in the world . When machines developed to the stage where you
could attach a magnetic tablet to an early work station like a T erak [a small
POP II - based work station] and have someone write a numeral and have it

recognized right away, then people said, 
"
Hey !"

It was primitive by current standards. Still, it was all there in one place. It
had impact. After fooling around this way, people said, 

"
You guys ought to

get serious. First of all, why don
'
t you form a corporation, why don't you go

public, why don
'
t you hire a few people and try to do something?

"

I think our first contract was with DEC [Digital Equipment Corporation].

They wanted to produce a Kanji recognition system. That's when we had
our place on Governor Street and our first two people.

ER: How did that come about?

LC: As I recall, Terry Potter from DEC walked into my office one day. He
said he had talked to John Hopfield and that John had suggested he talk to
me. This eventually resulted in a project to recognize two thousand Kanji
characters and to do it at the rate of several characters a second, using the

tiny machines that were then available. Let me tell you, that was not easy.
There was another reason why we thought a commercial company was the

way to go. As soon as we began to use neural network-
type systems to

solve real-world problems, the problems didn'
t seem to be academic anymore

. You had to use real data, in real situations. If you really wanted to

develop such systems, it was no longer an academic project.
We

'
ve always been very conscious of potential conflicts of interest. We

just wanted to get things to work and to separate commercial from academic
. There is always the potential of conflict of interest, but I think we



handled it . There are two ways: one way is to say there
'
s potential for conflict 

of interest, so don
'
t do it . The other

" 
is to accept the potential and handle

it properly. We've always been very open with the presidents of Brown and

let them know what we're doing. We
'
ve been scrupulous about making

sure no Brown money was used for Nestor and vice versa, to the point of

ridiculousness.

[Brown President] Howard Swearer said, 
"Go and make a fortune and

make sure you contribute a lot to Brown." It
'
s also been positive because it

enables our students, when they want, to have practical experience. On the

whole, I think it 's been a good interaction.

Anyhow , we had this project with DEC. Charles Elbaum, Doug Reilly,
Chris Scofield, and I worked together. We actually got to do the recognition,
and then of course it wasn

'
t fast enough. I got into all kinds of problems

I'd never dealt with before, such as how to speed things up. I was fascinated

because every day there would be new and very practical problems. It was

really fun. By the time we were Anished, we had two thousand characters

being recognized with high accuracy, in real time, two to three a second, on

the little DEC Pro series computers. One of the big problems was getting
the characters, getting the training set. DEC did that in Japan. They got a

training set for us. We trained on a DEC VAX 730, an old creaky VAX 730

that they lent us or perhaps was part of the contract. By the time the contract 

was Anished, it wasn
'
t even worth carting away.

We would train on two thousand Kanji characters, twenty to one hundred

samples of each. The 730 would run all weekend. Our neural networks trained

very fast, but it still took about a weekend. When we came in on Monday

morning, there
'
s the system, recognizing Kanji. That was pretty impressive.

So DEC had the system, and they put it on their Pro. Then a guy &om DEC

named George Cassidy built it into a beautiful piece of software. I saw it

running, and it was gorgeous. You
'd write the Kanji. It would be recognized

and put on the screen in a font of your choice. You could make it bigger,
smaller, any color; you could do desktop publishing with Kanji. But then,
after all that, the Pro series computers just weren't selling in Japan. How they

expected a machine without any software to sell I don
't know, but they expected 

to sell about ten thousand. They sold a few hundred, so they pulled
the machines off the market.

Our project was pulled with it . Then we floundered for a while.. We floundered 

because we kept wanting to do things with on-line handwriting recognition

. It
'
s a great idea, except the hardware wasn't there. Writing on a

Bitpad wasn't going to work. We always keep thinking that someday this

market is going to develop, and we're going to get into this again, but our

feeling at the moment is that we're on hold as far as on-line written character

recognition is concerned. Well, in the interim we raised money, and then we

raised more money, and then we brought a president in. Presently, we have

a great CEO, Dave Fox. He has tremendous business experience. After all

these years we now have some solid products. We eventually made the con-
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version from a pure technology-driven company to a company that is driven

by the market.

ER: So the products you are talking about are the off-line character recognition
, intelligent character recognition, the one that detects fraud after credit

card transactions, the chip with Intel . . .

LC: Yes. We decided not to be a contract engineering company because
we learned you don't make money that way. Our fraud detection system, for

example, really is a risk analyzer that gives you probability ratings for
events. It can rate risk and look for anomalies. It can be applied in many situations

, but if you want to develop products for the Mancial market, you
should have people who understand banks, how banks work- understand
what they

'
re doing, understand what kind of organizational change they will

accept and what kind of change they won
'
t accept.

If a product is something they would love to have, it usually must not
disturb the system they have. Then if they buy it, they can grow with it .
Once they have con Adence in one system, they often want neural network

technology to do other things for them. Our character recognizer, the
Nestor Reader, is in use at other banks. It

'
s cut their data entry costs enormously

. [note: Since this interview, the Nestor OCR system has been exclusively 
licensed to National Computer Systems Inc.]

ER: What is your involvement in the company now?

LC: Officially, I
'
m a consultant. But, in fact, I

'
m an appendage, a fifth wheel.

Since I know the people, I talk to them. I
'
m on the board, of course, and as

a board member I
'
m involved in decisions at board level. My real technical

involvement is that if Chris or Doug or any of the others want to talk to me
about something, they are free to talk.

ER: Is there a flow to them from some of the ideas that you work on here
in terms of algorithms or concepts?

LC: Sometimes. For example, if they have problems, they may ask one of

my graduate students to come down and consult with them, but they are

product oriented. If we were big enough, we would have a more research-

oriented branch at Nestor, but we don
'
t have the money for that. If the company 

evolves in the future, we'll have that. But at the moment, they
'
re

focused.

ER: What do you think of the neural net business? Do you think it
'
s a field

people should consider as a commercial opportunity ?

LC : I think you have to make a distinction between the companies and the

technology . The technology is just going to become part of the engineering
toolbox . Which companies will make it commercially is difficult to predict . I

think Nestor very likely will , but that
'
s a bet on an individual company . As

.

far as the technology is concerned, I think it is going to be incorporated in

systems of the future . I think too much fuss has been made about neural networks 

as a separate mystery . These networks are part of the solution . They
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will work along with other technology. The brain is a perfect example. We

have no example in nature of a neural network sitting on a table doing

something. Take a piece of cerebral cortex, put it on a table - it doesn
'
t do

very much. It only does something when, for example, it
's linked to some of

the most magnificent optics ever built .

So we expect that the neural networks will be built into systems, working
with conventional components and employing rules also. The dichotomy
between rule-based systems and learning systems is a foolish one, like many
academic dichotomies. Why learn what you already know? Why try to formulate 

a rule that is so complex that it
's almost impossible to put it down,

other than as a set of examples?

That
'
s really where neural networks contribute. Our attitude always has

been that if you know the rules, you might as well put them in. It
'
s ridiculous

not to. It shortens the learning process.

For character recognition, most of our competitors use some form of

neural network. It 's not anymore an issue of whether you use neural networks

. The issue is more which networks are most efficient. The variousal -

gorithms have areas where they do best. What you should do is to use them

in combination.

When we do what we call ICR, intelligent character recognition, we use

neural networks for recognition, and then we might add sophisticated contextual 

checks to try to do connected or cursive writing recognition. As

human beings we use context when we try to recognize things. Sometimes

we use context with conventional means; sometimes we use recursive neural

networks. It is less and less a matter of deep new principle.

ER: What would you advise someone who is just considering the field of

neural networks?

LC: Well, the first thing I would say is, 
"
Don

'
t think of it as neural networks

. Just make that a part of what you learn. Try to learn the underlying
mathematics and statistics, neural network methods, and all the usual things
that must be done to try to understand systems. If you want to go into the

biological end, then you need a very good grip on the biology , the underlying 

ideas, what
's possible experimentally, and what is going on now."

At this moment, we don
'
t seem to have any trouble placing our students

in good jobs. The students that are doing practical applications, at least as

they come out of my group, have a variety of techniques in both neural

networks and statistical methods and how to program computers. They
're a

very valuable commodity.

I suppose my advice is, 
"Train yourself in something that's useful, that

you like, and that has possibilities.
" I think engineering applications are more

interesting than academic problems. Some of the things that are worked

on academically don
'
t turn me on especially. I think some of the real-world

applications are absolutely intriguing . They become engineering problems,

putting systems together that function, but they may lead to some very deep
ideas that we don

'
t yet understand.



How do you take systems of this kind and put them together to arrive at

something that associates- that reasons? And then the deep, deep question:

how do you build something that feels, that
'
s conscious, that is aware of

itself? In my opinion, no one has the foggiest idea, not a clue. To me that
'
s

the great remaining deep mystery in this field.

ER: I noticed you used the term 
"
has feelings,

" whereas most people talk

about intelligent machines in terms of their reasoning ability .

LC: I think the problem of intelligent machines is already solved conceptually

. That
's arrogant, I know, but there are already machines that can do

logic a million times faster than we can. I think we know how to begin to put
them together. But a machine that reasons is not a machine that

'
s aware of

itself. In this field, that is the major unsolved problem.

The typical reaction to the problem of consciousness reminds me of Yogi
Berra: 

"
It

'
s deja vu all over again.

" The typical reaction to really difficult

scientific problems.

First, try to solve a difficult problem, you don
'
t get any place. Then you

prove that it can't be solved. Or you invoke a new law of nature. Or you
solve one mystery by invoking another. Or you say, 

"
For some reason or

another, a solution is irrelevant.
" 

Or you do all of the above.

I remember that
'
s what people did with super conduct ivity . They proved

you couldn
'
t solve it . 

"It's probably a new law of nature,
" 

they said. And one

famous physicist whom I will not identify wrote afterward that it was somewhat 

of a disappointment that this beautiful phenomenon of superconduc-

tivity turned out to be due to small interactions between electrons, thus

missing the point in operatic style.

How has this gone with consciousness? First of all you have the homun-

culus solutions- that is to say, you pour the conscious substance into

the material substance. OK, that
'
s one type of solution. Another kind of

solution is to explain one mystery by invoking another. For example, consciousness 

arises in the interaction with the measurement process of the

quantum theory. This is a subject I happen to know something about, and it

doesn
'
t arise there. Or in quantum gravity , where gravitation meets quantum

theory. What they
'
re really saying is that we don

't understand the latter, and

so maybe it can be used to explain the former. Another way is to say that

consciousness arises quote, 
"somehow," unquote, when you execute algorithmic 

process es of a certain complexity. It
'
s the 

"somehow
" . that I like.

That
'
s what I

'm trying to find out: how does that 
"
somehow

" come about?

Or, another evasion under the cover of positivism is to say, 
"
How do you

know it
's conscious?" I don't care whether I know it or not; I would just like

to explain it if it is conscious. The Turing test is another way of evading this

problem. All of these things have been said.

To me, it
's all beside the point. I

'm really, as this guy described me, a

no-nonsense physicist. I just want to have a little machine, maybe a mental

machine, that becomes conscious. I want to see the atoms going back and
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ER: I know that your academic work has been supported by the u .s. Navy
and many other funding organizations.

LC: ONR [Office of Naval Research] has been visionary and generous in
their funding. They

've been interested in the underlying biology, and they
're

also interested in the transitions between the underlying biology and various

applications of interest. They feel as though the particular transitions that
we've made in, for example, the Nestor-Intel chip or the use of the BCM

algorithm for the separation of reflected acoustic or radar signals is the sort
of thing they

'
re looking for and are willing to fund.

ER: So do you see a continuation of government funding?

LC: Well, it
'
s been very tight . If you look more broadly than neural networks

, if you think about funding in fundamental science, I think the profound 
problem we have is people

'
s desire for quick fixes or quick results. I'm

not against quick results; I love them. It
'
s just that you can't always get them.

And in the area of fundamental science, you can show over and over again
that if you had focused money on an attempt to get the solution of a social
or medical problem with the technology of that time, you would not have
funded what turned out to give you the solution.

forth, and I want to see the thing becoming conscious, due to either the

average velocity or whatever it is. That's what we don't know. I want
to get it the way we get temperature- with primitive mechanical entities
such as the average kinetic energy that you can identify with what we call

temperature.

The way consciousness has to be explained from my point of view is that
we have to find some combination of material objects about which you say,"
That

'
s just what we call consciousness because it has all the properties.

"

Either that can be done or it can't be done. I don
't know. I haven't done it .

I think it can be done, but it hasn't been done, and no one has a clue, in my
opinion, as to how to do it . We can contemplate the possibility that it can't
be done, but we certainly shouldn't begin by assuming that it can't be done.
And if it turns out that it couldn't be done, that would be one of the profoundest 

things we have learned about ourselves in the history of human

thought. I don't think it 's going to turn out that way. It is a profound question
, one that's really worth a little thought.

ER: I wanted to talk about government funding. You had mentioned
that . . .

LC: What do you want me to do, start complaining? I've been so cheerful
all afternoon.

ER: Well, I just wanted to get your opinion on whether you thought that

government funding was important to the field and your thoughts on the

way it's changed.

LC: Government funding is important in all fundamental science.



I
'll give you a few examples. Suppose that in the early 

'
50s you had said

that you
'
d like to find a new method for dense information storage and

improved methods of, let
'
s say, retinal surgery. Would you have funded

Charles Townes
'
s work on the interaction of molecular beams with microwave 

radiation? I don
'
t think so.

Suppose you had been interested in these things in the
' 
20s, would you

have funded Heisenberg, who was working on some far-out idea called an

uncertainty principle? Suppose you were looking for a solid-state device

to replace the vacuum tube. You surely wouldn
'
t have funded Heisenberg.

You probably wouldn
'
t even have funded Bardeen. Would you have funded

Fleming, who in the course of an investigation on the color of bacterial

colonies happened to discover the antibacterial properties of the penicillium
mold?

Let me give the one example that to me is the archetype. At the end of the

nineteenth century, Edward Bellamy wrote a book called Looking Backward.

It was a utopian view, from the end of the twentieth century. One thing
about that future world that particularly delights him is that everyone can

have music in their homes at will . The way he did it is to have musicians

playing in something like city hall connected to homes by acoustic ducts.

Anyhow , he writes this marvelous paragraph that I
'll paraphrase: 

"
If in our

time, we found a way to have music in our homes, in the quantity and quality 
that we wanted, whenever we wanted it, we would have felt ourselves as

having achieved the limit of human felicity and would strive no more.
"

This is in approximately 1880. Now suppose that Her Majesty
'
s Royal

Marine Research Unit said, 
"He's right, what we have to do is to put all of

our funding into getting music into people
'
s homes.

" 
Translate music into

your most horrible disease or anything; throw all your funding at it . Would

they have funded Maxwell? Would they have funded Lorenz or Einstein or

any of these other people? No, of course not. We would now have large

Swiss music boxes. We would have automated piano players.

Two things are obvious. One is that sometimes it
's clear that a precise

development project is in order because you already know the underlying

science. You just have engineering hurdles to solve, and with a little luck

you can solve them. Pour money into it, and you
'
ll do it . And you should

certainly do that.

But for a cure to some diseases you
're going to find that there are things

that are unknown. We don
't know how to discover those unknown things.

So to take money from the National Science Foundation, pour it into various 

directed-research projects, away from what they call 
"
curiosity

"-driven

research, is counterproductive.

ER: Could you give us your view of the neural network field in five years

or perhaps even twenty years out?

LC: I think as far as the biological underpinning, that
's now going to

evolve in an almost predictable way. I think we
're on the way to finding
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where short-term memory is stored, where long-term memory is stored, and
what initiates the transfer between one and the other. I've always held that

long-term and short-term memory are stored at the same sites. It
'
s the simplest 

mathematical theory you can write. What you have are components
that decay quickly, components that decay slowly, or not at all, and the

question is whether you go from the quick decay to the slow decay guided
by some global signal. I think that will be found.

Among the big problems are: How is the processing done? How is visual

processing done? How is it all put together? It
'
s going to be almost an

engineering problem because you have the interaction of very complex
systems, one with the other.

On the other side, as far as the practical applications of neural networks, I
think they will grow, a little bit the way our cortex did it . First, you will
have a little neural network inside a computer. Then it will be a slightly
bigger one. Then it will be an even bigger one, and soon you

'
ll find that

what we call computers have processors asking neural networks what to do
next.

I do have a concrete prediction. The twentieth century is the century of

computers, telephones, cars, and airplanes. I think the twenty-first century
will be the century of what we call intelligent machines- machines that
combine the rapid processing power of the current machines with the ability
to associate, to reason, to do sensible things. And I think these machines will

just evolve. We'll have simple ones at first, and finally we
'
re going to have

reasoning machines.

Then you might ask, 
'
What are human beings to do?"

The answer, I think, is really simple. It
'
s what we've always done with

machines that enhance our abilities. We are comfortable with machines that
enhance the power of our arms or our legs. You see them allover the place.
We'

re comfortable with computers that enhance our logic, our memory, and
we'll be comfortable with reasoning machines. We'll interact with them. I
think they will come just in time because the kinds of problems we have to
solve, these very complex problems that are beyond the capacity of our
minds, probably will be solved in interaction with such machines. We always
have to keep control over them, but that same thing is true of all machines.
In fact, the worst machines we have ever created, much more dangerous to
our he~ th than any reasoning machines, are our bureaucracies.

People will have various levels of comfort with this prospect. But I suspect
that as matters evolve, we will , in the next hundred years or so, be interacting 

with machines that do really reason and that can be applied to very
complex systems.

Let me conclude with this. Human beings have always been self-centered.
The universe is built around us. Think of the extent to which intellectual

problems are self centered. Why, for example, do we regard tic tac toe as
trivial? And two-dimensional chess very challenging? No one plays eight-

dimensional chess.



The reason is the capacity of the human mind. With a smaller mind, we
'
d

find tic tac toe very challenging. With ~ larger mind, we
'
d be playing eight-

dimensional chess. Now, the size of the human mind, I believe, is somewhat

of an evolutionary accident. It could be twice as large or half as large. The

same thing is true of the problems that we solve. And one of the little miracles 

is that there exist scientific problems that we find very important and

that are solvable by our size minds. If our mind had been a little bit smaller,

perhaps we never could have solved any interesting problems. What you
have to think about is that there is a whole range of scientific problems that

are enormously interesting that are beyond the power of our unaided mind. I

think one of the things that will evolve in the future is that with enhanced

power we may be able to tackle problems that are too difficult for us now.

We always have had the mystique of the human alone against the elements

. I can imagine that on the plains of Troy, before the topless towers of

Illium, Achilles lamented to his comrades, 
'With these new chariots, they

're

not going to need us anymore.
"
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ER: Maybe we could begin by talking a little bit about your personal

background, where you grew up and your early education.

] C: I was born in Leeds in the north of England, but in 1939 my family
moved to my father

's hometown of Edinburgh. I grew up in Edinburgh and

went to school there and went to Edinburgh University, where I did a

physics degree, and then I joined F errant i, an English electronics and computer

company. My boss there had also been to the school I went to. He was very

encouraging; his name was J. B. Smith. He and a colleague had designed a

little machine that solved logic problems by trial and error. This was in 1954.

I started work there in '55.

The F errant i machine was sitting in a room full of dust, unused. I got it

working again, and Smith asked me to take the machine to Imperial College
and demonstrate it and talk to some of the people there. They got in contact

with people in the electrical engineering department. Arthur Porter was the

professor of light electrical engineering there and had worked on analog

computing machines in the ' 30s, with Hartree. Hartree was a well-known

physicist, numerical analyst, and computing person in the
' 
30s and was

famous for what
's called the Hartree-Fock approximation in physics.

Anyway , I went there, and I hit it off with Arthur Porter. He introduced

me to a very interesting man called Dennis Gabor. Not only was Gabor the

inventor of holography, but he was one of the pioneers in communication

and information theory. In fact, he wrote a paper in 1944, on 
"
Theory of

Communication,
" which is a very important paper in optics and was a precursor 

of his insights that led to holography. He also introduced what are



now called Gabor functions, Gaussian weighted cosine waves, as a way to

represent information in an optimal sense in optics.

He was also one of the first people, along with Norbert Wiener, to think

about the problem of constructing learning filters- that is, filters with adjustable 
coefficients that could be used to predict the properties of time series

and to filter signals. That's an activity that Norbert Wiener had been heavily

engaged in during World War II and had written a very interesting little
book on it . Anyway , Gabor introduced the method of using gradient descent
to solve for the coefficients in a filter that was to be trained by comparing
the input with the output. In fact, he essentially solved the problem of how

you train such a machine in 1954 or '55. But in those days, life was very
different from what it is now. There weren

'
t many computers around. There

were one or two in England, but they couldn
'
t be used for this, so he and

two or three of his graduate students spent seven years designing a fast

analog multiplier, and they actually built a hardware version of the machine
that finally got going in 1961. By then, Gabor had gotten interested in other

things because lasers had been invented and laser holography burst on the
scene. He was heavily involved in that.

When I was still at F errant i in '
56, they sent me to the first or the

second International Congress on Cybernetics in Namur in Belgium. I met

Gray Walter and Albert Ottley there. I heard some of the early stuff on
conditional-probability computing in the nervous system that Ottley was

doing, and I saw Gray Walter
'
s striking demonstration of his little electronic 

mechanical turtle. This was after the first wave of cybernetics had
been triggered in the late 

'
40s by McCulloch and Norbert Wiener, and things

were still going fairly strong in the mid-fifties. I guess that was one of the
reasons I got interested in neural networks, that and reading von Neumann

'
s

article in Automata Studies.

Anyway , Gabor was interested in learning machines, and he was interested 
in the brain. I hit it off with him when I showed him how I had used

many-valued logics to start looking at the problem of how you can do better
than just simple trial-and-error learning in solving logic problems. One thing
led to another, and I got a fellowship from what was then called the Hol-

lerith Company, now called International Computers and Tabulators. I got a

fellowship from them to go to MIT . I arrived at MIT in the fall of 1958 as a

graduate student.

ER: Could we back up for just a minute? Because you went very quickly
over your childhood. What

'
s your date of birth?

] C: August 24, 1933.

ER: Could you tell us something about your parents, and how you got
interested in ideas having to do with science and things like that?

] C: My grandparents on one side are Jews from near Vilna and on the
other side from near Byalistock. My grandfather on one side was a tailor in
Leeds, and my grandfather on the other side, I don't know what he did in the
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Ukraine, but he had a cart; he peddled fruit around Scotland, just like a lot of

other immigrant families did there. He died early. My father was a baker, and

my mother helped my father. Both my father and mother were quite smart at

school, but they had to leave to work. In those days, there wasn't anything
else to do for first or second generation families.

My mother says I was a gifted child. I don
't know why she said that, but

she
'
s a typical Jewish mother . . . I was reading at some early age, and got

scholarships to go to a very good Scottish equivalent of a public school,

George Heriot's School. By the time I was about nine or ten, I was interested

in science. It was all self-generated. I used to have arguments with my

parents when I got to about twelve. They wanted me to be a doctor, the

usual Jewish family dream. I kept saying, 
"No , I

'
m going to be a scientist.

"

I decided that I was interested in physics, and I ended up winning all the

medals at my school and getting a scholarship to go to Edinburgh University 

to do physics, but when I got there I found the style of teaching at

Edinburgh University in the physics department was not to my taste. I got
bored very rapidly. I went from being the top student in my school to just

scraping along and doing physics courses that I wasn
'
t interested in. I ended

up going to F errant i.

ER: Ok, now we can go back to MIT .

] C: I arrived in 
'
58 at MIT . I had already had a thesis at Imperial College in

which I introduced techniques of many-valued logic to start writing down

parallel computer logic systems. I hit on the idea that you wanted to do

things in parallel bundles. In '56 I got hold of the collection of papers by
Shannon and McCarthy called Automata Studies. I got very interested in von

Neumann
'
s work on probabilistic logic and how you could synthesize reliable 

computers from unreliable elements. That was a big interest of mine

when I arrived at MIT .

I didn
'
t actually meet McCulloch then, but I met Walter Rosenblith, then

the head of the Communications Biophysics Laboratory at MIT , and I

became a member of the group. They were interested mainly in auditory

psychophysics. I was there when Frank Rosenblatt arrived at MIT in the fall

of '58 to give a public lecture on the percept ron. The year before, Marshall

Yovits of the Office of Naval Research had publicized Rosenblatt
'
s work and

made a big splash about it . Here was a machine that could do pattern recognition 
in a humanlike way; it could recognize all kinds of things. Almost

everyone at MIT was very skeptical.

The lecture was in the Research Laboratory of Electronics conference

room. Everybody in the institute was there----Minsky, Shannon, Elias, Huffman

, Fano- the whole group interested in information theory and in signal

processing. I think Jerry Lettvin was there, but I can't be sure, but McCulloch

was there.

Rosenblatt gave his lecture, and it was a terrible lecture. He kept saying,
'Well , you can use information theory to do this, that, and the other.

" He
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made claims that you could tell a circle from a triangle with his early percep-

tron. It was all wrong; you couldn't do things like that. They went after him
and really attacked him.

McCulloch didn't say anything. Shannon said, 
"
It

'
s worth looking at.

"

Rosenblith's group had a little session after the talk, and there was definitely
interest in the problem. Larry Roberts at MIT actually did a master's thesis
in which he speeded up the way the percept ron behaved and got some nice
results on it . But by and large it was clear that the percept ron wasn't doing
the things that Frank claimed it could do.

] A : Did he know about the percept ron convergence theorem at that time?

] C: No, he didn
'
t.

] A : He didn'
t mention it in his early papers, and I assumed that he didn'

t
have the result because it

'
s an important result.

] C: It appeared in two later papers in the Reviews of Modern Physics. Those

papers contained an attempt at a formal proof of the convergence. In 1961-

62 AI Novikoff recognized the essential similarity between linear threshold
elements and the algorithm, and linear programming, and produced a very
elementary but neat proof by contradiction that it converged in a finite
number of trials. Novikoff '

s proof made clear what was going on and should
have, actually, triggered a lot of work.

I think it was after that time that Marvin [Minsky] developed an antipathy
to the percept ron and to everything that had to do with perceptrons. Ironically

, he and Seymour [Papert] later worked out a beautiful treatment of

perceptrons.

After about eighteen months in the Communications Biophysics Labora-

t.ory, where I wrote a master's thesis and where I extended the stuff on

many-valued logics, I got to know McCulloch. He was a very interesting,

generous and welcoming person. I took to him, and he took to me. I ended

up switching groups, which was unheard of in those days. There was a lot of

psychological tension between McCulloch
'
s group, and the Rosenblith

group and Norbert Wiener.

Norbert Wiener was a very interesting person. I sat in on his early lectures 
on nonlinear problems, stochastic theory, and random process es, and

a strange thing happened, which I benefit ted from. Norbert had used data
taken by Margaret Freeman in the lab, to calculate the power-density spectrum 

of human EEG. She had made some mistakes in the calculation so there
was a big peak in the power-density spectrum, and on either side there was a

trough. So Norbert said, 
"
Oh, maybe there's a clock there, a synchronization

phenomenon.
"

Every afternoon, he would arrive at the front door of the Communications

Biophysics Group in old Building 20, the building that had been the radar
lab during the war, which is still there. Everybody in the entire group would

disappear out the back door when Norbert arrived, except me. The reason
was that Norbert would deliver a three-hour monologue on whatever he
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was working on at the time, and all he wanted was somebody to listen and

say, 
"Yes, that

's very good." So I stayed and listened. I got some private
lectures from Norbert, which were fascinating.

Anyway , I ended up going over to McCulloch, and I met Lettvin and

Walter Pitts for the first time. In '59, when I was still in Rosenblith
's group,

Rosenblith organized a very interesting meeting at MIT . There was a book

published from it called Sensory Communication. Werner Reichardt presented
there an early version of what is called the Reichardt motion-detector model.

It
's actually the Reichardt-Hassenstein motion-detector model. It was a great

meeting for the graduate students who were there. Nevertheless, I decided

my interests were more mathematical than the interests of the group, so I

ended up going off to McCulloch and Pitts.

Pitts was very interesting to me, but let me talk about Warren McCulloch

first. He and his wife had a house near Harvard Square. They would always
have all kinds of interesting people staying with them. They were extremely

gregarious, or he was. Rook wasn
'
t quite as gregarious as Warren was, but

she was very nice. And Warren was amazing; he would have cheerfully

mortgaged his house to help one of his students, if need be. He did all kinds

of very generous things for people. They had a big family farm, a 750-acre

farm in Old Lyme, Connnecticut, where we used to go to in the summers.

He was definitely a link with a different kind of American culture from the

one that was sitting around at MIT . He was unusual in many ways. He
'
d

been trained as a neurologist and a psychiatrist at Yale and then at Illinois.

He
'
d worked for two years in a psychiatric hospital and then decided that

was enough; he'd learned enough about patients and psychiatry. He had

gone in 1941 to the University of Illinois. I think he was at the Illinois State

Psychiatric Institute. He met Pitts, and I can tell you something about that.

Jerry Lettvin can give you a much more nonapocryphal picture of things, but

I can tell you the stories I heard from McCulloch about it all. Whether or not

they
're true or not is a problem.

The wildest ones- the ones I can confirm- were true, and the plausible
ones were false. But anyway, there they were in the basement of the Comp-

ton Lab, the early neurophysiology group
- McCulloch, Pitts, Jerry Lettvin,

and Pat Wall, who later went back to England. It was a really interesting

group of eccentrics. That was the nice thing about MIT in those days; there

were so many eccentrics floating around. There was Norbert Wiener, Warren

McCulloch, Roman Jakobson, Emmanuel Sereno, and Claude Shannon. All

kinds of strange and interesting people there. And Marvin [Minsky ], too. I

would say Marvin was in that category.

McCulloch at the time was interested in the reliability problem. He had

gotten into that problem, he says, when he was talking with von Neumann.

They had decided that it was an interesting question how humans managed
to function, even when they were full of alcohol. Warren started to think,

well, clearly the brain is reliable, but computers aren't all that reliable. What
'
s

the difference between brains and computers? How are they organized?
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He started to design little neural networks, which would still give the
same output, even though their thresholds were fluctuating back and forward

. Earlier on, in the Macy Foundation meetings that McCulloch had

organized with Wiener and the others, he was extremely influential in triggering 
von Neumann's interest in automata. And in computing, it was

McCulloch and Pitts' 
formalism that von Neumann used in his first work on

computers. They actually had a very important if indirect influence on the

early development of computers in the u .s.

Turing actually met McCulloch at one time and thought he was a charlatan

, but I think he simply underestimated McCulloch, in many ways. You
could easily get the impression that McCulloch was a charlatan if you didn't
know better.

ER: Because of his outgoingness1

] C: His outgoingness. He looked like Moses; he had this long beard and

bushy eyebrows.

ER: There
'
s this wonderful picture of him on the cover of Embodiments of

Mind , [McCulloch's collected papers] and I figured that's what he looked like.

] C: That
'
s right . He had a strange gleam in his eye. He really looked like he

was crazy a lot of the time. He had grey eyes, and when they got really
bright and glaring, he looked a spectacle.

Anyway , I started to work with him. I had done this stuff on parallel
bundles and logic, so we actually applied that stuff to the reliability problem.
We start.ed to come up with improvements to some of von Neumann

'
s

schemes for multiplexing things. And then there was some work by Elias and
Shannon and others on whether one could extend information theory to

computing, rather than just to communication channels. I ended up recruiting
to our group another ,graduate student by the name of Shmuel Winograd.

Winograd is now one of the top mathematicians at IBM and is an IBM
fellow. He has made all kinds of interesting discoveries on how you multiply
and invert matrices using the Chinese remainder theorem and other fascinating 

mathematical theorems to cut down the number of operations that you
need to use, thereby saving millions of dollars i A computing time.

Anyway , in those days we got interested in this problem of the capacity
of computing devices. We ended up extending Shannon

'
s basic theorem of

information theory, the noisy channel- coding theorem, to computers. We
showed that von Neumann

'
s solution to the problem of how you build reliable 

machines from UIH"eliable elements could be thought of as one extreme,

special case of this theorem. The other ,extreme was the Shannon theorem
itself. In between, if some module had a certain complexity, you could calculate 

what the optimum design was for the network.
The information theorists didn

'
t like our stuff because they said we hadn

'
t

properly taken account of the noise in the decoder, but in fact we had taken
account of it . What we had discovered was one of the earliest constructions
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of a parallel distributed-computing device. We had set up a parallel machine
in which anyone thing to be computed is not computed in a single element,
but in many places, and anyone place does a mixture of many of the things.

We'd arrived at that by showing how you can embed error-correcting
codes into the structure of a computing machine. It required devices that
could compute functions of many, many inputs without being significantly
more noisy than something that is a simple binary switch.

Such devices weren
'
t available in those days, but nowadays it

'
s possible

to do things like that. In principle the architecture that we came up with is
the kind of architecture you want for computing. Anyway , that work got
us known. We wrote a monograph on it . We never published the complete
theory, just part of it, because Shmuel by then was working at IBM. We
never published the real guts of the thing. It 's still sitting in my files. Shmuel
and I agreed we would write it up one of these days.

It is quite interesting in the light of what's happened in computing. We

basically had produced an optimal configuration for doing parallel distributed 

computing. It 's immune to damage- if it
'
s miswired, for example. It

'
s

taken care of by the redundancy in the network. If part of it gets hit by

lightning, it will still work with fairly high reliability . In other words, it
'
s got

the same kind of error insensitivity that you would expect to see in something 

like a percept ron, which has a lot of parallel architecture.

ER: So the main reason this wasn't published was because Shmuel left to

go to IBM?

] C: No. It was just that IBM felt it had a proprietary right to the particular
thing we did at the time, so we wrote a monograph in which we did some of
it, but the real stuff, which would have appealed to the information theory
community, we never have published.

I went back to England after that, back to Imperial College with my own

grant Horn the Office of Naval Research. And Shmuel went on to his work

on matrices at IBM.

I think the main influence on my work was Walter Pitts. The first time I

met him we had a general talk about neural networks. Warren kept talking
about the relationship between neural networks and Turing machines and

logic and things like that. And Walter kept saying, 
"
Yes, but the really interesting 

thing is a continuous approach to neural networks.
" 

Norbert Wiener

also used to say things along similar lines to me.

In '61, I took part in a symposium on information processing in the brain,
in Holland. McCulloch was there, Norbert Wiener was there, Rashevsky was
there, Gordon Pask was there, Albert Ottley was there. I gave a talk on this
stuff, which went down very well.

Norbert Wiener was sitting there. Wiener and McCulloch had had a feud
for years and wouldn

'
t speak to each other. Norbert never let that interfere

with his relationships with students and young people. He was very kind to

everybody. One afternoon at the meeting we went off together into the
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town, and we sat in a little coffee house having coffee, and he sang vaudeville 

songs of the 1920s to me in a high falsetto voice. He was really quite
funny; he wasn't what you might have thought he was. He always needed
reassurance that what he was doing was great. And one time, in fact, he said
to me, 

"
You know, the reason I got all my results on what are now called

the Wiener-Banach spaces and stochastic process es is because of my strong
physical intuition ." He said he got it from looking at all the ripples and antipatterns 

in the Charles River. He had these thick glasses on, and he could

hardly see where he was going. But it
'
s actually true; he did have a strong

intuition about these things.

Anyway , I gave my talk, and he was sitting in the front row, ostensibly
sleeping. I gave my talk, and immediately he stood up and did his usual trick.
He made a long comment on his own work, disguised as a question on my
talk. I didn't really appreciate it at the time, but it was written up, and it 's in
the proceedings. It actually was a very, insightful comment about my work
and his work and the way they might relate.

I was also very much impressed with Pitts and his insights. Walter was

really the intelligence behind Lettvin and McCulloch. I think it was Walter
who was the real driving intelligence there. Since 1921 Warren had had an
idea of somehow writing down the logic of transitive verbs in a way that
would connect with what might be going on in the nervous system, but he
couldn

'
t do it by himself. In 1942, he was introduced to Pitts, who was then

about seventeen years old. Within a few months Walter had solved the

problem of how to do it, using the Russell-Whitehead formalism of logic,
which is not a transparently clear formalism. Nonetheless, they had actually
solved an important problem and introduced a new notion, the notion of a
finite-state automaton. So here was this eccentric but imaginative Warren
and this very clever young Walter doing this stuff together.

ER: I was going to ask you to tell the story about how they met.

] C: This is where I have to rely on the stories I got from McCulloch about
Walter.

The story goes as follows. Walter was born in Michigan, maybe Detroit
or somewhere near there. According to Warren, he had run away from home.
He was at the University of Chicago, sitting around and going to lectures.

Anyway , he was on a park bench in Jackson Park near the campus. He was

reading something by Rudolph Camap, who was then in the philosophy department 
there. It so happened that Bertrand Russell was on sabbatical that

year teaching at Chicago and happened to be there in the park and saw Pitts

reading this stuff. So they got talking, and, as I heard the story, Russell took
Pitts to meet Camap, and through Camap he met Rashevsky.

Nicholas Rashevsky had come from Russia after the revolution and had
been at Rockefeller Institute; he had gotten a Rockefeller Fellowship, come to

Chicago, and joined the physiology department there. Alax Carlson, w~o was
a very famous physiologist, threw him out after a year because he never did
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any experimental work. The story is that Carlson went into Rashevsky
'
s office,

and there was a desk and a chair and Rashovsky, sitting there with a pencil.

And Carlson said, 
'Where is your apparatus?

"

And Rashovsky said in his Russian accent, 
'What apparatus? I am a

mathematical biologist .
"

So he was thrown out.

The net effect was that Rashevsky set up a Committee on Mathematical

Biophysics, as it was originally called, in 1938 in Chicago. He was the early

pioneer in the Aeld of mathematical modeling of neural networks, and his

approach was to try to use differential equations rather than logic. Logic
came along later in '43 with McCulloch and Pitts. Rashevsky had aflourishing 

group going with some very good people who later became distinguished 

in other Aelds. Alvin Weinberger, the former head of Oak Ridge,
was a member of the group, so was Alston Householder, a distinguished
numerical analyst.

Anyway , Pitts became a member of that group, and it was through his

membership in that group that he got in touch with McCulloch, I think

through Rashevsky. So if you believe the story, it was pure chance that led

Pitts and McCulloch together.

ER: Pure chance and Russell and Carnap and Rashevsky. It
's a wonderful

trail.

] C: Whether it
'
s true or not, I have no way of verifying . But that

'
s what I

heard from the lips of Warren Sturgis McCulloch one evening when he was

in his cups. Where were we?

Pitts was at MIT as a research assistant with Wiener. Then McCulloch and

Lettvin and Pat Wall formed the new group in the Research Laboratory of

Electronics at MIT in 1951. But then Wiener and McCulloch had a falling
out, and Pitts got caught in the middle and had a nervous breakdown and

never really recovered from it . So there he was in the lab, but basically he

wasn
'
t doing anything. Lettvin looked after Pitts. Walter was sick. He was

very shy. He was very easily startled by people. He would be somewhat

hard to talk to or And. I managed to talk with him quite a bit, and always he

kept driving home the idea that what one should really do is to look at continuous 

approach es to neural networks rather than the discrete approach es.

There was far more mathematical machinery available, and it was more natural 

to try to look at the statistical mechanics of large populations than to

look at just small network problems.

I already had some exposure to that idea because in 1956, while I was at

Imperial College, I had gotten to know Raymond Beurle, who wrote one of

the earliest papers on pattern formation in neural networks. Even though it

turns out the mathematical details are wrong, nonetheless a lot of the basic

ideas about the dynamical properties of networks of neurons are sitting in

Raymond Beurle
'
s work. I found what Beurle had done was really interesting

mathematically. He had made a mistake in his calculations, so he thought
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that solitons were present in nervous activity . But they
'
re not because refractory 

states in neural activity mean that any two waves that collide with
each other will annihilate each other in a neural network, whereas in a network 

that supports solitons, the waves would just pass through each other.

Apart from that, the paper is full of very interesting things. In it is a description 

of associative memory; for example, a superposition of these waves
leaves along the front a trace of both waves. If the waves affect threshold

properties of cells, you can store information in those changes, so if you
'
ve

got lots of waves, you can easily build up a store. Beurle showed that just

giving part of a wave would regenerate the rest, for example, and he actually
had a lot of properties of what we now know are associative memory in
this paper. Actually, even earlier, Albert Uttley had already arrived at

many of these properties in his own analysis of networks, using conditional

probability ideas.

] A : There are many precursors. There's even some work from Lashley

along the same lines.

] C: But Lashley
's work was never expressed in a mathematical formal

sense. McCulloch gave me a lot of Lashley
's early papers.

But, anyway, I got this interest in a continuous approach, and I happened
to run across some work by Ed Kerner, who had noticed that the Lotka-

Volterra equations of population dynamics had a special mathematical structure 

to them that made them essentially equivalent to Ha miltons equations
of motion and classical mechanics. I sat down, and I constructed a model
neural network, which had similar equations in it . Then I modified the equations 

slightly so that they would be a little bit more stable, and I ended up
with an analog neuron with the sigmoid function in it . So I had introduced a

way to do the statistical mechanics of networks of analog neurons in the

mid-sixties, about
' 
64.

In 1963, I was over in Amsterdam giving some lectures, and Norbert was

there, and we got together. We were going to work together on the statistical 

mechanics of neural networks. Unfortunately, before we got started,
Norbert died. It was a big disappointment that I never got a chance to work

with Wiener on this. I gave a talk at the Wiener Memorial meeting on it, at

the same meeting at which Minsky and Papert presented their first work on

the percept ron.

ER: That was in '651

] C: '65, in Genoa. I was asked by Antonio Borsellino.

ER: How was your work received1

] C: Well, people were a little slow to see the point of an analog neural

network, although Wilfred Taylor' s work on associative memory was all

done with analog neurons. He was perhaps the first person to explicitly produce 
an associative memory scheme. He didn't do it by theory, and he didn

'
t

do it on a computer. He actually built the hardware. In 1956, when I went
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with someone from Imperial College to University College London to meet

him, there he was, and there was this huge bank of apparatus. There was the

machine there doing its thing.

I tried to get him to explain to me how it worked. I couldn
'
t. He didn

'
t

really understand himself what was going on, I think, and to this day in published 

papers you can
'
t quite understand how it works. The learning rule he

'
s

got is not associative, and yet the performance is, so there
'
s something fishy

about it . It was all done with analog circuitry. It took him several years to

build it and to play with it .

The idea of using nonlinear differential equations for neural networks was

a little strange at that time. The Rashevsky group was trying to do things
like that all along, but then the fashion was switching elements. I gave some

lectures on it, but when I did it, it was ten years before the introduction of

spin glasses.

In order to make the analogy with population dynamics, I studied the

antisymmetric coupling case, where one neuron is an exciter that
's coupled

to an inhibitor, and then the inhibitor couples back to it, so the weights can

be antisymmetrically related to each other. What I put aside to look at later

was the symmetric case, which I didn
'
t think was quite as veridical a model

for a neural network as the antisymmetric case. Neither of them is actually a

terribly good approximation.

ER: You had met and read Bernie Widrow1

] C: Right. In 1960, I went with McCulloch and Manuel Blum, who was a

graduate student with McCulloch, to a Wright Patterson Air Force Base

conference on bionics. I gave a talk on the reliability stuff. Then in '62 we

went to Chicago, where there was a meeting on self-organizing systems

arranged by Marshall Yovits, the supporter of Rosenblatt. Frank was there at

the meeting and gave a talk on the percept ron. Bernie Widrow was there and

gave one of the first talks on Adalines.

There was a certain skepticism from the MIT group toward Stanford

engineering and what they were doing. I thought the Widrow stuff was

quite interesting. When I looked at it carefully, I could see that it was essentially 

using the same methods that Gabor had introduced in the mid-fifties,

the gradient-descent algorithm. I did not put it together with my own sig-

moid work, even though I had airady been getting preprints from Minsky
and Papert about their percept ron studies. I knew from what we

'
d done with

McCulloch that the exclusive-OR [X-OR] was the key to neural computing
in many ways. But unfortunately, at the back of my mind I had the idea if I

could work out the dynamics of analog neurons, later on I could start looking 

at learning and memory problems. I just put it aside.

That was a philosophical bias that I inherited from McCulloch. Warren

always used to say that before you can study changes in neural networks,

you should first of all study the behavior of systems where the connections

aren't changing. 
"
You have to get the anatomy before you can pervert it,

" he
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used to say. He was always philosophically biased toward the idea that if

something is true, it works- rather than if something works, it
's true. He

was a great fan of Charles Peirce and pragmatism. Therefore, he always

thought that it was the circuit first and then the behavior, rather than trying
to use the environment to modulate the circuit to get the behavior.

All through the McCulloch group was this idea that there was an innate
structure there. They believed in the Kantian notions of synthetic a priori .
That's the kind of thinking that led Lettvin and Pitts to come up with '

What
the Frog

's Eye Tells the Frog
's Brain.

" 
They attributed much less importance

to plasticity than to specificity in the nervous system. In retrospect, that was

wrong. That was a mistake. That
'
s the reason I never looked at the plasticity

problems with the sigmoids early on because I had been biased to think
about structural things and pattern formation first. That takes things up to
about 1967.

ER: I'm curious about one thing. You said that Minsky and Papert first

presented their notions about exclusive-OR in the Percept ron work.

] c : Well, they first presented their notions about the limitations of percep-

trons and what they could and couldn
'
t do.

ER: They hadn
'
t gotten to exclusive-OR yet?

] C: They had, but that wasn't a central issue for them. The essential issue
was, suppose you had diameter-limited receptive fields in a percept ron, what
could it compute?

ER: How was that received at that first conference?

] C: Both of them were quite persuasive speakers, and it was well received.
What came across was the fact that you had to put some structure into the

percept ron to get it to do anything, but there weren
'
t a lot of things it could

do. The reason was that it didn
'
t have hidden units. It was clear that without

hidden units, nothing important could be done, and they claimed that the

problem of programming the hidden units was not solvable. They discouraged 
a lot of researCh and that was wrong.

Everywhere there were people working on perceptrons, but they weren't

working hard on them. Then along came Minsky and Papert
'
s preprints that

th~y sent out long before they published their book. There were preprints
circulating in which they demolished Rosenblatt

'
s claims for the early per-

ceptrons. In those days, things really did damp down. There's no question
that after '62 there was a quiet period in the field.

A thing that I didn't mention about Rosenblatt was that another person
who was very perceptive about things was Mark Kac, a distinguished Polish
mathematician who came to the Rockefeller University in the early 

'
50s. He

was the one who really promoted Rosenblatt. I think he had a very strong
influence on Marshall Yovits at the Office of Naval Research. At the time,
I think a lot of people felt that Mark Kac simply didn'

t know what he was

doing, but they were wrong in retrospect. He knew. He had real insights
into what was going on.



ER: It might be interesting to talk a little bit about funding at the time.

] C: Funding was in 
"
large part, &om my recollection, the Air Force Office

of Scientific Research, the Wright -Patterson Air Force Base people, and the

Office of Naval Research [ONR], both the physics branch and the information 

systems branch. They were the main providers of funding for work in

cybernetics and bionics and neural networks in those days.

] A : Was there any &om NIH [ National Institutes of Health] or NSF

[ National Science Foundation]?

] C: I don
'
t think there was all that much. My recollection is that all the

hardware and technological stuff and the modeling of the theory were all

with 000 [ Department of Defense] support.

ER: Robert Hecht-Nielsen has told me stories that long before Minsky and

Papert ever committed anything to a paper that they delivered at aconference 

or published anywhere, they were going down to ARP A and saying,
"Yau know, this is the wrong way to go. It shouldn

't be a biological model;

it should be a logical model.
"

] C: I think that
's probably right . In those days they were really quite hostile 

to neural networks. I can remember having a discussion with Seymour,

walking along the banks of the river Charles when I visited MIT . I think it

was after I had gone, so it was in the
' 
60s. We were talking about visual illusions

. He felt that they were all higher-level effects that had nothing to do

with neural networks as such. They needed a different, a top-down approach
to understand. By then he had become a real, a true opponent of neural networks

. I think Marvin had the same feelings as well. To some extent, David

Marr had those feelings too. After he got to the AI lab, I think he got converted 

to that way of thinking. Then Tommy Poggio essentially persuaded
him otherwise.

During the
' 
60s there was a lot of pioneering thinking being done about

continuous models of neural networks and pioneering thinking about associative 

memory. Associative memory really emerged in the
' 
60s. As I said,

Wil &ed Taylor, Raymond Beurle, Steinbuch, and von Heerden had done

work by about 1961 on associative memory. In 
'
64 or 

'65, Christopher
Lo I)guet-Higgins got rolling, and by 

'
68 there was Jim, Longuet-Higgins,

Willshaw, and Buneman.

There was a wave of work after ' 43, when the McCulloch-Pitts paper came

out, and then there was a wave of work after about 1954- 55, with Uttley
and Beurle

'
s work, and then Rosenblatt

's stuff came out, and von Neumann
'
s

work. There was a quietish period, and then there was another wave of work

in the late ' 60s on associative memory.

ER: Were you at Imperial College during all this time, during the ' 60s?

] C: When I was at this meeting in 
'
62 in Chicago, after my talk I was approached 

by two people &om the ONR. The upshot was I ended up with my
own personal grant &om the u .S. Navy, by way of ONR, that I could hold

Jack D. Cowan109



back in Imperial College. I was there for four years. Then I spent a year at

the National Physical Laboratory at T eddington, with Uttley . Then I got a

job offer that I couldn't turn down as Rashevsky
's successor at Chicago,

where I
'
ve been ever since.

I can tell you a bit more about things in the '70s as well, and things that

I
'
ve done with Hugh Wilson.

] A : That would be interesting because that was supposedly the dark ages
of neural nets.

] C: I don't think it was the dark ages at all. There was a lot going on. The

foundations were being laid or rediscovered for a lot of things. There was

you and David Willshaw and Longuet-Higgins, also Gabor. Christopher got

going with his version of associative memory and got furlous with me when

he first presented it at one of the Serbelloni meetings on theoretical biology
that C. H. Waddington organized. I pointed out to him that what he had

produced was virtually identical with Steinbuch
'
s learning matrix. He got

absolutely furlous with me and wouldn't talk to me for quite a while. The

funny thing was, Leon [Cooper] got interested in neural networks through
our interactions at the Institute de la Vie meetings. Leon gave a very nice

talk about the associative memory work at the Institute de la Vie meeting
once, and Christopher stood up and very gently said, 

"
You know, Leon, I

published a paper virtually identical with this several years ago.
"

Leon smiled sweetly at Christopher, and he said, 
'
Well , that

'
s true, but

you know, Christopher, you
'
re famous for the statement, 

'
Reading rots the

mind.
' "

ER: Maybe we should talk a little bit about the '70s and about the period
after you came back to America and decided to stay here.

] C: When I came back to the University of Chicago, the old Rashevsky
Committee was moribund. The only person left was Peter Green. Peter

Green was an interesting person. In 1960, he wrote a paper in which he tried

to use an analogy between coupled oscillators, quantum mechanics and

neural network behavior. It was full of suggestive things, but never got

very far. In 1965, he wrote a paper which not many people know about, in

Rashevsky
'
s journal The Bulletin of Mathematical Biology, called 

"
Random

Superimposed Coding,
" 

in which he rediscovered and applied work by
Calvin Mooers from the early days of information theory on the optimal

storage of information in punch card systems. How do you code the inputs
to associative memories in such a way that they are as unlike as possible, and

yet you have as large a vocabulary as possible to work with . The Zator coding 

scheme as invented by Calvin Mooers solved this problem. Peter
'
s paper

is a complete description of how you go about producing a random superimposed 

coding scheme as an input to an associative memory, and then how

you use the 'associative memory to store and retrieve the information in

it . Interestingly, it
's virtually identical with David Marr's cerebellum model,

except it
'
s not applied to the cerebellum.
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ER: So it anticipated that work by . . .

] C: By four years. It
'
s an open question in my mind as to whether David

knew about that work or not. David got into trouble with Longuet-Higgins
for not referring to anybody in his thesis work. David had a very original
mind, so it

'
s easily credible that David just invented the whole thing himself.

In fact, it
'
s surprising how many people independently invented associative

memories- all the way from Uttley and Beurle, Taylor, Steinbuch, Jim,

Longuet-Higgins, Gabor, Kohonen, Marr . . .

] A : It
'
s a good idea.

] C: It's a very good idea. Anyway , I got involved in trying to build up the
Committee on Mathematical Biology at the University of Chicago. I was
fortunate because George Beadle was the president of the University of Chicago 

at the time. He helped me raise money from the Sloan Foundation and
the National Institutes of Health. Very quickly we built up a good Department 

of Theoretical Biology. The first two appointments I made are now
well-known Mac Arthur fellows. One is Stuart Kauffman. I met Stuart first in
McCulloch

'
s house. He was staying with McCulloch and working on neural

networks with Warren. I hired Stuart right out of medical school. The other

person I recruited out of graduate school was Arthur Winfrey . Both of them
are distinguished theoretical biologists now. We built up a very good group
and trained a lot of the current people in the field, like Leon Glass at McGill
and John Tyson and others.

ER: What route did your work take after you came back to Chicago?

] C: What I started to do was to see if I could develop Beurle
'
s work more. I

had the good fortune to have a postdoc come to work with me-
Hugh

Wilson, who had done a PhiD. in chemistry. Hugh and I worked on how we
would actually clean up and extend Beurle

'
s work so as to handle populations 

of interacting excitatory and inhibitory neurons, with or without refractory 
states. We ended up with a continuum theory for neural dynamics,

which included the Beurle work as a special case, with the sigmoid function
in it playing a key role. We basically showed that neural networks acted like
transistor networks. They could produce attractors, or what are now called
attractors. Switching and cycling and information storage could all be done
within the framework of attractor dynamics. Those papers have become

quite well known.

Later on I realized that we had created the neural analog of Turing
'
s work

on the chemical basis of morphogenesis. Now we know that neuron networks 
as pattern-formation systems are in fact typical of a universal pattern-

forming system. You can use them as models for developmental process es,
for hydrodynamics, and for all kinds of things. This is exactly in the spirit of
the early McCulloch-Pitts work, which said that if you furnish a McCulloch-

Pitts network with an infinite tape, it will act as a Turing machine, which we
all know is a universal machine.
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ER: A lot of people attribute the renaissance of the field to the spin glasses.

] C: In the mid -1970s I wrote a paper with Bard Ermentrout , the first of the

set in which I actually looked at the symmetric 
.
case as well . It turns out a

very old theorem in mathematical physics , called Maxwell
'
s theorem , is relevant

. Maxwell
'
s theorem tells you that if you have a three-dimensional field

- an electromagnetic field , for example
-

you can write it in terms of two

poten Hal functions . One is the gradient of a scalar potential func Hon. The

other is the curl of a vector func Hon. Classical mechanics is basically the curl

of a vector func Hon. The mechanics, which has to do with attractors , comes

from the other term, the gradient of the scalar. Classical mechanics equa Hons

are antisymmetric . The gradient of the scalar equa Hons are symmetric . Any
matrix can be split into the sum of the symmetric and an antisymmetric part .

So in general you can write any dynamical system as if it
'
s built of a mixture 

of two parts . In n dimensions the theorem says that you have a gradient
of a 1 form plus the generalization of the curl of an n - 1 form . I looked at

the symmetric case, but again it was in a kind of continuum . Unfortunately ,
I didn

'
t .know anything about spin glasses, and I never followed that up

either .
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Actually, Erich Harth had seen in simulations that a neural network could

act like a switch and show hysteresis. We essentially showed that with our

continuum trick. But actually, that idea goes way way back to Neville Tem-

perley
'
s work. It was T emperley who first had the idea that a network of

neurons in a sense could act like a network of spins. That was in the early
or mid-fifties. He wrote a paper about the analogy between memory and

hysteresis in networks of spins. So along came the spin glass idea in the mid-

seventies. In the late seventies Hopfield and I ran a workshop in which we

had various people interested in neural networks. In 1981 I spent the winter

quarter at Caltech with John and gave a set of lectures on the stuff I had

done. About six months later, John
'
s first paper appeared on the symmetric

case and the analogy with the spin glass. You know, I think that's neat stuff,
but I still think it

'
s an artificial system, as is the antisymmetric one. It may

have nothing to do with the way things really work in the nervous system,
but it

'
s a very interesting idea.

ER: In terms of the sociology of science, what do you think happened with

the Hopfield paper? It burst everything wide open. I suppose that's why

people refer to the time prior to that paper as the dark ages.

] C: I think why is fairly clear. The theoretical physics community is like

a swarm of locusts. There are far, far more theorists around than there are

problems. There are only two or three problems, and whatever problem gets
hot, a lot of them swarm onto it . That's what happened with the Hopfield

paper. Here was this nice recognition by John that there was a close analogy
between spin glasses and neuronlike networks with symmetric elements. So

all the physicists landed on it . That created a lot of interest.

Independently of that, Geoff Hinton had been working first as Longuet-

Higgins
's graduate student and then later on at UCSD, and he was starting

to get interested in neural computing, as was Dave Rumelhart. I think it was

a sheer coincidence that the spin glass stuff occurred first. I think the other

stuff would have occurred independently of the spin glass stuff.

] A : There was some other related work in the 
'
70s. I was thinking of Shaw

and Little.

] C: Right. Bill Little had noticed that if you took a one-dimensional network 

of neurons evolving in time and set out time as a second space dimension

, then the equations you could write down- the update equations he

came up with- were formally analogous to the Ising spin Ha milton ian network

. His equations were very similar to my sigmoid differential form, except 

a discrete version of it . Again, he showed that in the symmetric case

you could get long-range temporal-order effects and that you could store

things in the attractors.

] A : That work never seemed to catch on the way Hopfield
'
s did.

] C: No, it didn't. The reason was that there wasn't this population of

physicists who knew about spin glasses. That didn
't occur until after 1975. It
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was all a matter of timing with the spin glass model. I think all the time there

was an evolution in the minds of people like Rumelhart and Hinton and

also Terry 5ejnowski. What Terry and Geoff noticed was that if you look at

the spin glass Ha milton ian itself and think of it as an energy function, as in

standard statistical mechanics, you could do things a little more flexibly than

in the way Hopfield did it . So they came up with the Boltzmann machine. At

the same time that they did the Boltzmann machine, they solved the credit

assignment problem within the framework of the Boltzmann machine. They

actually solved the credit assignment problem first. As far as I can see, they
were the first people to publish a solution of the credit assignment problem.

Their scheme is very interesting. I think it 's more biologically plausible in

some ways than backpropagation, at least partly because what they did was

look at the weight patterns in a network where you clamp the input and the

output. Then they compared the weight patterns in that case with the weight

patterns when you don
'
t clamp the output. You just stimulate the net and

look at the output. You don
'
t try to force the system to do anything. Then

they compared the two weight patterns and adjusted the weight patterns in

the clamped case. They adjusted the network weights so that the free-running
case would become more like the clamped case.

They didn
'
t need any elaborate backpropagation scheme for changing

weights, just a comparison between free-running and clamped networks.

That
'
s a bit more brainlike because you have an attentional mechanism that

you
'
re getting feedback from and error feedback, but it

'
s done in a different

way. Of course, it
'
s much slower than backpropagation.

I guess it wasn
'
t long before Rumelhart and Hinton and Williams noticed

that you could solve the hidden-unit problem by a use of the sigmoid function

. In retrospect, the extension to the hidden-layer problem is embarrass-

ingly trivial . I mean, all you have to do is take a threshold logic neuron, as

Bernie Widrow did, and just make the slope of that step finite, and then you
can solve the whole thing by the gradient descent method using the chain

rule of calculus. So, just going from something that has an infinite slope to a

finite slope
- that

'
s the whole problem. It's so trivial it

'
s embarrassing.

ER: What about the early 
'70s7

] C: In the early 
'70s there was quite a bit done. In the mid-1960s I did

statistical mechanics with the sigmoids, but then in the early 
'
70s I worked

with Wilson on the continuum approach to neural tissue. That triggered a lot

of interest.

There was a tremendous amount of excitement created by David Marr's

papers; the 1969 cerebellum paper created a sensation. David
's '69, 

'70, and
'
71 papers

- the cerebellum, the hippo campus, and the neocortex papers
-

created a tremendous amount of interest among neurobiologists. Here for

the first time was an attempt to actually give a role to individual cell types in

a bit of brain tissue. McCulloch and Pitts had tried that with their ' 
47 paper,

"
How We Know Universals." That wasn

'
t a success, but this stuff of Marr's
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was very exciting , and it produced a lot of interest . Interestingly , a lot of the

theoretical biologists felt that it was so speculative that it couldn
'
t possibly

be right and weren
'
t impressed with it , but a lot of other people thought it

was very exciting .

In the mid -seventies Tommy Poggio got going , working with Antonio

Borsellino , on associative memory . He started working with David Marr .

They produced a very nice cooperative model for stereopsis using the sig-

moid elements and coupling them in natural ways , with lateral inhibition

and excitation - a bit like what Wilson and I had done, but now applied to

aspeci Ac problem , the problem of understanding Julesz patterns and what

they were saying . That triggered lots of work . Then Kohonen
'
s book on

associative memory arrived with his methods for doing things . There was

steady progress in the 
'
70s, and also Steve Grossberg was publishing a lot of

stuff as well .

I think there was a lot of activity in the 
'
70s, but it was slightly unfocused .

It wasn
'
t as dramatic as the later work . Then along came the spin glass analogy 

and this large mass of physicists , and also along came personal computers 

and work stations . I think it was the work stations , the ability to do

things that you couldn
'
t do quickly before , that changed the landscape.

That
'
s when people like Sejnowski and Hinton and Rumelhart and company

emerged and cracked the percept ron -training problem .

ER: Terry Sejnowski told us that he spent three years not touching acom -

puter . When he left computers , it was batch processing , and when he got

back, he had to learn UNIX and was on a work station . It made all the difference 

in the world . Suddenly , computers became a part of the equation , rather

than something distant and difficult .

] C: That
'
s right . Backpropagation was the key to it , I think , though . If you

read Rosenblatt
'
s book [Principles of Neurodynamics], he talks about back-

propagation in there- the archi~ecture for solving the problem and everything

, even including the term 
"
backpropagation .

" 
The only thing that

'
s not

there is the actual algorithm , the details of it , but the structure and everything 

else is there . Poor old Frank was vastly undervalued in his day .

ER: In essence, aside from a couple of tricks and turns, Rosenblatt had the

idea for backpropagation1

] C: He had the architecture , everything . He knew he had to back propagate
the signal . He just didn

'
t know how to do it . He had a machine, too . He built

a percept ron at Cornell , outside of Cornell Aeronautical Labs, and he would

have had all the hidden units in there, chunking away .

There was a very heated discussion between Dave Block and Marvin

Minsky . Block reviewed Minsky and Papert
'
s book . [Block was a physicist

at Cornell who worked with Rosenblatt in the early 1960s.] The review

was critical , and then there was a rejoinder . Block claimed that the multilayer

percept ron could do everything that Minsky and Papert claimed couldn
'
t be

done by a percept ron . With hindsight , Dave was correct , although he didn
'
t



know how to do it . He was right that the multilayered percept ron is capable
of doing all the things that they said couldn

'
t be done.

ER: Did you hear any stories about Rosenblatt
'
s demise?

] C: Simon Levin at Cornell told me exactly what happened. He was out

boating one day. The boat capsized. The bow hit him and knocked him

unconscious. He drowned under the boat. It was accident.

ER: Can we talk a little bit about the ' 80s and what you were doing in the
'
80s?

] C: In the 
'
80s I worked on stuff I'm still working on. In the late 

'
70s I had

an idea that I
'
m still working on. It

'
s way, way out in left field, but I like to

work on things there. I reformulated what I had done on the sigmoids as a

probabilistic problem. You see, one of the things that I think is still lacking in

the whole field of neural networks is some understanding of the higher-order

correlations and fluctuations in nervous activity . All the equations, for example

, the ones that I formulated, are basically the canonical equations, and

everybody arrives at something like them. They are all expressions for the
mean firing rate of a neuron. It's clear that neurons don

'
t fire at a constant

rate; they
're fluctuating all the time. There

'
s higher-order statistics in there.

Neurophysiologists stick microelectrodes in, and they measure correlations.

In the study of many-body problems in condensed matter physics, it
'
s clear

that the higher-order statistics are very important. They, in part, produce the

physical phenomenon, the collective effects that determine whether you
'
ve

got a solid o.r a gas or what have you. They
'
re determined in part by the

pairwise correlation functions of higher-order things that are there. In information 

processing, it
'
s correlation functions that are really important. It

's not

mean firing rates, but it
'
s correlations.

There is no decent theory of the dynamics of the creation and flow of correlations 
in neural networks. Anyway , in 1978 I decided I'd take a real stab

at that problem, so I reformulated what I had done as a master equation of

the kind that you see in chemical physics and physics. Instead of looking at

the mean rate of firing of each neuronal population, I said, 
"
Here we have

neurons; they can be in one of several states. They can be quiescent, waiting
to be stimulated, or they can stimulated, or they can be in refractory state

after they
'
ve been stimulated. So let's roughly say there are three states to a

neuron. And if you have n neurons, you
'
ve got 3" 

possible configurations.

What we really want is some way of writing down an equation that describes 

the evolution in space and time of those configurations and the statistics 

of that evolution. If we could do that, we would have a complete

picture of the dynamics of correlations and how it flows back and forward.

Now what is that like?" And the answer is that it
'
s very like quantum mechanics

, quantum field theory.

It 's taken me since 
'
78 to formulate the thing properly. What I

'
ve been

able to do is to show that the mathematical problems are exactly the same as
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the mathematical problems that turn up in quantum field theory. Take, for

example, the simpler case of neurons that are only either quiescent or activated

. Now you introduce what's called a vector space representation of

neurons. The vector with components 1 and 0 represents the active state,
and the vector with the components 0 and 1 represents the quiescent state.

Now you need things that Rip &om one state to the other. Those are two-

by-two matrices. Those matrices that Rip between the state 1 to 0 and the

state 0 to 1. They
'
re what are called 

"
Pauli spin matrices,

" and they turn up
in the theory of angular momentum in quantum mechanics. They

're the thing
that Rip the spins back and forward. You can actually write down a description 

of the evolution of the configurations of a set of neurons- each with

two states, 2" 
configurations- which uses nothing but some combination of

the Pauli spin matrices.

It turns out for three-state neurons in exactly the same way. You'
ve got

the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) as your basis, so you need three-by-

three matrices to Rip them back and forward into their different states and

describe what's going on. And what are those matrices? They
'
re nothing

more than a subset of what are called the Gell-Mann matrices. They
're exactly 

the matrices that turn up in the theory of quarks. So it turns out that

the algebra of state transitions in a neural network, whatever its anatomy-

it doesn
't have to be antisymmetric, symmetric, or anything- are described

by the same kind of mathematics that goes into particle physics. It turns out

you can reformulate the entire structure of the flow of correlations in everything 
in terms of the language of what

'
s called 

"
second-quantized quantum

field theory,
" 

where you have annihilation and creation operators which

move states back and forward. All the machinery that physicists have worked

out since Feynman is sitting there waiting to be used for neural networkcal -

culations. A student and I are calculating using Feynman diagrams in neural

networks to see if we can say something about these fluctuations in activity
and how information might be flowing back and forward in the form of

long-range correlations in the network.

Anyway , that
'
s one of the technical things I work on. Another thing that

I did in the late 
'
70s which attracted quite a bit of attention, but was a bit

too mathematical for most people, is my favorite subject. That's the study
of altered brain states. Among those are migraine states, epileptic seizures,
and hallucinations- particularly geometric visual hallucinations triggered by

things like hallucinogens.

At the University of Chicago there was a famous psychologist neurologist
named Heinrich Kluver, who worked on mescal in and mechanisms of hallucinations

. There are fabulous stories about Kluver in Chicago. He experimented 
in the grand physiological tradition on himself, so he used to take

peyote. The story is that he told one of his colleagues in the medical school

to come and check on him to make sure he hadn
'
t taken too much peyote.

So in comes this colleague, and there
'
s Heinrich stretched out on the floor,

completely unconscious; he had overdosed on this stuff.
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Finally, he refined the dose; he
'
d take just enough so that he would stay

awake, and after the initial period of vomiting, he would start to hallucinate.
He described all of these hallucinations, and he classi Red them. It turns out
there are four classes of hallucinations- patterns called 

"
form constants

" 
by

Kluver. These form constants are ubiquitous. They
're found in everybody

who takes drugs or meditates or, like many people, hallucinates either when

falling asleep or when waking up. I
'
m actually writing a popular book on all

this stuff. There's evidence that many cave paintings are of hallucinogenic
origins; Roger Lewin has written a little piece on that. There's all kind of
evidence that the Mimbres Indians of New Mexico a thousand years ago
used hallucinogens, and you can see it in the way they decorate their

pottery.

So what are these pictures? Why this imagery? What's producing it? The

Jungian mandala Rgures have a lot of the same kind of imagery. Jung claimed
there was a kind of collective archetype to be found. Anyway , if you look at
the form constants, you can do the following thing. In the mid-seventies,
Eric Schwartz, among other people, and I independently worked out the coordinate 

transformation &om the eye to the brain. So here's the visual ReId
out there; we see the world with our retinas, but our retinas are hardwired to
our cortices through the geniculate. The packing density of the retinal ganglion 

cells isn
'
t uniform. In our fovea we have a lot of retinal ganglion cells,

looking at the world, but out in the periphery of our ReId, we have only a
few. That means there must be much bigger representation in the visual
cortex of the center of our visual ReId than out in the periphery.

You can write down the equations that allow you to calculate what polar
coordinates in the retina transform into in the cortex. You can take all the

patterns that people see in visual ReId coordinates and transform them into
what they look like in brain coordinates, in the coordinates of the visual
brain, area 17 [the primary cortical visual area, now usually called VI ]. When

you do that, all the patterns turn out to be nothing more than stripe or blob

patterns.

So it turns out that there
'
s a very close relationship between the work that

Turing and others have done on animal coat markings- and the fact that
animal coats are either in the form of stripes or periodic blob patterns

- and
what

'
s sitting in the brain. Bard Ermentrout and I worked out, using the

techniques of nonlinear stability theory as applied to these sigmoid equations
, what must be the architecture that spontaneously produces such patterns
. The normal unpatterned resting state is destabilized by the actions of

hallucinogenic drugs on the brain stem, which controls the thresholds of cells
in the cortex. We came up with very plausible circuitry consistent with the

neuroanatomy that had been discovered by Hubel and Weisel and others.
It turns out we

'
ve only solved half the problem. There are several kinds of

form constants; there are checkerboard patterns, lozenge patterns, and bicycle 

spoke patterns. Many people see bicycle spoke patterns. They correspond 
to horizontal stripes in the cortex. Many people see concentric circles.



They correspond to vertical stripes in the cortex. But the most common hallucination 

of all is spirals; they correspond to oblique stripes in the cortex.

And the spirals
- the falling down a tunnel, with light at the end of it -

that
'
s just a pattern of stripes being produced in the cortex. But that

'
s only

two out of the four possible form constants- tunnels and funnels, and

checkerboard patterns.

The other two are lattice patterns
- thin-line lattice patterns that are even

described in the Egyptian Book of the Dead as lattices of lights that people
see when they

'
re in trance states. Or cobwebs, spidery cobweb patterns. You

can calculate the cortical projection of those spiderylike patterns. It is a hundred 

microns. You can also work out the cortical projection of the checkerboard 

patterns since one knows the details of the anatomy. It is a millimeter

in human cortex. So what Bard Ermentrout and I had worked out was a

theory of one-millimeter waves in the cortex. That corresponds in human

cortex to turning on everything in a hypercolumn, in a Hubel-Wiesel hypercolumn
. So basically you

'
re turning on and off all the ocular dominance

columns associated with one eye, for example, and that
'
s why you start to

see these patterns in the visual field.

But cobwebs and lattice patterns don
'
t correspond to hypercolumn dimensions

. The reason we know that that figure is correct is the following . If you
measure the number of stripes in the patterns on the average that people report 

seeing, there are about seventeen stripes in a hemicircle, in 180 degrees.

But that patch, that 180 degrees, maps to something that is millimeters  

wide in the cortex; that
'
s the width of the human area 17. So that means

seventeen stripes in millimeters  - that
'
s two-millimeter wave lengths in

the brain. That
'
s exactly the width of the Hubel- Weisel hypercolumns in humans

, twice what it is in monkeys. But now this hundred-micron thing
- it

'
s

got to be the width of an orientation patch. In other words, when you see a

lattice pattern or a cobweb pattern, what you
'
re seeing are, iso-orientation

patches switching on spontaneously when driven by noise in a pattern that
'
s

reflective of the way they
'
re coupled together. It

'
s a kind of spectroscopy

because we
'
re studying the resonances of the brain as they

'
re produced by a

hallucinogen. What you see is your own anatomy basically.

Bernard Hassenstein and I did a study, which we never published, on

visual migraines. I happen to get them every so often; every six months I get
a visual migraine. I get all the fortification illusions. Bernard at the time had

them every month. He got his assistant to make a fixation mark on a blackboard

, and then she would plot where he told her the leading edge of the

disturbance was and time it . You can get a plot of visual angle versus time in

minutes. It
'
s a curve. If you transform it with the retinal cortical transformation 

equations that I worked out, it turns out to be a beautiful straight line

on the cortex. The slope is 1. millimeters  per minute. Now that's much,
much slower than the propagation velocity along axons that comes out of

any of our network models. We know that hallucinations explode in the visual 

field and take about three seconds to cover the whole of the visual field.
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Well, that
'
s about a centimeter per second. That's like in epilepsy. Hallucinations 

really are a form of epilepsy, an epileptic seizure that
'
s stabilizing into

patterns.

A migraine is different. It turns out that it
'
s a propagating wave produced

by the diffusion of extracellular potassium or glutamate. You get a slow de-

polarization wave that moves along, exciting all the iso-orientation patches,
and because of the way their circuits are set up to interact, if one turns on,
others with neighboring orientations cannot. So you can see, in the angles
that people actually see, evidence for what the weight patterns must be like
in the cortex.

I'm not the first person to see this connection. Eric Schwartz actually
wrote about it, but never calculated anything. He did the transformation, and

he saw that these things corresponded to plane waves. I
'
m hoping to be able

to deduce out of this hallucination study the details of the rolling and twisting 

of the actual zigzag patterns and all that. It turns out that you can also

approach epileptic seizures from very similar points of view. I work now
with neurologists on epileptic patients. You have to map out the locus of

where the seizure is before surgery can be done on many patients. One of

the things that's come out of that study is that most epileptic seizures that

turn up are not propagating; they
'
re not giving rise to traveling disturbance.

They
'
re just localized patches of oscillation in the cortex. That

'
s something

that Hugh Wilson and I described in our continuum model in 
'
73. It means

there's lateral inhibition at work in the cortex. There
'
s still enough instability

to produce an oscillation pattern, but it
'
s not moving. But if it was strong

enough, it would then break out, move, and start to give rise to traveling
and rotating wave patterns. I

'm sure that
'
s exactly what's going on in seizures

, except it could be patterned as well. There's all kinds of possibilities.

That's the kind of stuff that I'm interested in, rather than trying to train

machines to learn to do things. I'm interested in altered brain states because I

believe they can tell you a lot about the circuitry.

The same kinds of pattern formation tendencies are present in map formation 

as are present in hallucinations. You can start out with two sheets of

brain tissue and randomly connected wires from one to the other, but with

Hebb synaptic learning and winner-take-all, for example, the map organizes
into a topologically ordered map. The reason is that the Hebb synapse acts

like a recurrent excitation. The competition that's present in the winner-take-

all mechanism acts like lateral inhibition . Again, you
've got this mechanism

that likes to make stripes or blobs.

In the space of weights, rather than the space of activity, making stripes

corresponds to forming a topological map. In the late 1970s, Christoph von

der Malsberg and I worked together on the formation of orientation detec-

tors. I had the idea that maybe this idea of a natural tendency to form stripes
and blobs was the key to understanding it, and all you needed was a two-

layer network stimulated by noise, and it would automatically make the

correct feature detectors.
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Christoph didn
'
t believe me; he said, 

"
That

'
s magic.

"

I said, 
"
No, it

'
s just spontaneous symmetry breaking.

"

It turns out I was right . We never did it, and I have been kicking myself
ever since because Ralph Linsker did it . That

'
s exactly what Linsker discovered

: that stripes and blobs will spontaneously form in a map. That
'
s the

origin of center-surround orientation detectors in the visual cortex. The same

epigenetic mechanism for pattern formation, the tendency to make stripes
and blobs, is ubiquitous in nature. Cloud patterns, animal coat markings, hallucination 

patterns, maps
- all that is sitting there. The brain is no different

in many respects from any other physical organization. There
'
s a tendency

for pattern formation to occur because it 's got all the same kinds of machinery 

in it .

Now I
'
m getting back to the philosophical bias that I guess I got &om

McCulloch. Here's the idea. There
'
s an innate tendency to produce patterns

of a certain kind. It
'
s on those patterns that one should build theories of

learning and memory, but that actually doesn't happen very much in the field
as it is at the moment. They start with a tabuia rasa, and they build in the

structure completely with training. But we know that there
's an enormous

specificity in the nervous system. That's not the result of training; it
's the result 

of genes. In my work on map formation, I
'
ve been studying the effects

of gene products in the form of adhesion molecules, which tell fibers they
'
ve

got to go to certain places. There
'
s abundant evidence in &ogs and fish that

there have to be such chemical markers in the brain to specify which gets
connected to what. That

'
s totally absent in a lot of the theoretical work

on learning and memory. Somehow they
've all got to be put together. The

architecture, a lot of it, is specified.

ER: You
'
ve talked about how you feel that a lot of the ideas having to do

with brain states are more important for you in terms of your work than the

ideas about learning.

] C: One should actually try to work on both. One of the things I
'm trying

to do as well is to study the dynamics of learning with the same mathematical 

methods that I
'
ve used to study the dynamics of activity . I

'm convinced

that there are instabilities in the dynamics of learning, just as there are in-

stabilities to using activity . Jay McClelland, for example, one of the founders

of connectionism, said something really interesting at a meeting a couple of

years ago. He said, in his experience, when he does backpropagation, he can

tell when the network is ready to learn &om when it
'
s not ready to learn.

You can tell when it
'
s not ready to learn because the differences between the

biggest and the smallest weights in the network are small. Only when there

are sufficiently big differences in the weights does it start to learn rapidly.

ER: That's the instability.

] C: That's the instability. I think in weight space there
'
s the same kind of

dynamics at work. It's nonlinear. Every nonlinear system looks the same to

someone who studies instability theory. They can all be treated by exactly
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the same machinery. It
'
s called bifurcation theory. That

'
s what I do. That

'
s

my mathematical tool .

ER: What do you think about some of the other algorithms, like radial-

basis functions?

] C: The radial basis function'
s an interesting idea. I

'
m actually interested in

it for technical reasons. It turns out that radial-basis functions are closely related 
to wavelets. Interestingly, the first use of wavelets was Gabor

'
s. Gabor

functions are close to wavelets.

It turns out that in some of the machinery of quantum field theory that I
use for neural networks are what are called coherent states. They

'
re also very

close to wavelets. Now Tommy Poggio has a view of the brain as a table
look-up system using radial basis functions with some redundancy. It

'
s

actually quite an attractive idea. It 's the ultimate expression of the grandmother 
cell. With the distributed features that it 's got, it

'
s a compromise between 

Lashley
's equipotential networks and grandmother cells.

There's obviously a good bit in it . Of course, he
'
s only been able to do it

for feed forward networks. It's clear the brain is not a feed forward network;
it 's a recurrent network. I haven't seen any real developments of its use in
connection with recurrent networks, whereas the recurrent backpropagation
alogrithm as developed by Pineda and by Zipser and Williams is a very,

very powerful tool . That's the tool that
'
s going to allow brain researchers to

understand the function of a block of brain tissue.

Zipser and Richard Andersen have already started to demonstrate that
with their work on parietal and &ontal cortex based on Joachim Fuster

'
s and

Andersen
'
s data you can train monkeys to do delayed-response tasks, and

they
'
ve clearly got to store the information about the task for a while before

they do it . Hugh Wilson and I in '73 had a paper where we conjectured that
the memory was in the form of reverberatory circuits that had the form of
a bistable flip-flop, which didn

'
t propagate, like the localized limit cycle in

epilepsy. 
.

We said, 
'
Well , what

'
s happening is a little bit of brain tissue is flipped

on, and it stays on for a while before it's flipped off." It turns out that
'
s probably 

right, but we didn
'
t have the machinery for doing the flipping on and

off. With a recurrent backpropagation network Dave Zipser simulated the
mo~ ey behavior and found in his hidden units two kinds-':'-the ones that
did the flipping on and the others that caused the flipping to go on and off.
That corresponds exactly to what's found in the data. There are memory
cells and gating cells in the &ontal cortex that actually are doing the things
that need to be done for the monkey to do the task. And you can discover
what must be in there by using recurrent backpropagation models. I think
that's actually the most interesting use of neural models for real brain
research yet.

ER: Could you comment on what you think some of the most important
trends are in contemporary neural modeling.
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] C: One of the most important trends is the fad that more and more detailed 

modeling is going on. Experimentalists are finding more and more out

about all the different kinds of gating currents and neurotransmitters that are

present. On one side there
'
s this push toward more and more accuracy in the

description of what is actually there, trying to be more inclusive in modeling
what's there. Rather than using these very simple toy models, they are

actually trying to be realistic.

That's both a good thing and a bad thing. It
's a good thing in the sense

that for those people who are interested in the details, it
's good to try to put

the~ all into the model and see what they actually do. From my point of

view of trying to understand higher-order things, it may be a bad thing
because the forest gets lost in the trees.

Manfred Eigen, a mend of mine, is very smart about that. For years I went

to a winter seminar that he ran in Klosters in January. In them he had people
like David Hubel and Tommy Poggio and Werner Reichardt and myself. All

kinds of people, a mix of theorists and experimentalists. Sometimes a distinguished 

experimentalist like David Hubel would get up and say things
like, 

'What 's the point in all this modeling? We don
't know enough about

the details."

He would say something like that, and Manfred would laugh and say,
"Yes, but you have to have some good ideas before you can get the right
fads."

Another thing Hubel used to say to me before we got to like each other

was, 
"You know, Jack. all this modeling stuff you do is for the birds, but you

tell really good jokes." But finally he said, 
"You know, I think modeling

might be useful after all." He said that after about two or three years. He

mellowed.

Another thing Manfred would say is, 
"A good physicist knows that the

purpose of making models and doing theory is to provide insight and

understanding of what
's going on. It

'
s not necessary to put in the kitchen

sink to get insight." You have to abstrad from reality, not face it, which was

a gibe at Eccles
'
s book, Facing Reality.

You have to abstract. If you
'
re good at abstracting the essence of something

, then you
'll get real insights. That

'
s what good theorists do. I think

that just to simulate the hell out of populations of neurons with everything
in the model is mindless. You

've got to pick out of it the things that your
taste tells you might be important and study those in some simplified context

, where you can actually learn something. Otherwise, you
're just mimicking 

what
'
s there without necessarily understanding anything.

ER: Well, is there specific work going on now that impress es you?

] C: I think that Geoff Hinton
's work is terrific. I think that almost everything 

that he does, right or wrong, is interesting. I think that a lot of the

things that Terry Sejnowski and his students do is very good stuff too. I
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think Dave Rurnelhart has got real insight into what you can do with back-

propagation and how it
'
s related to statistical things. One of the most interesting 

things that
'
s coming out is that the statisticians are now starting to

realize the power of backpropagation and the use of nonlinear functions of
linear combinations in doing predictions. For reasons that aren't yet understood

, these function approximations by systems of sigmoids are extremely
powerful function approximators compared with almost everything that the
statisticians have been using. There's something quite important in there from
a theoretical point of view, from the point of view of prediction and filtering.
The old Gabor idea of prediction and filtering with gradient descent is holding 

up well- except it
'
s not with polynomials; it

'
s with sigmoids.

ER: If you were starting out in the field, or if you were advising, as you
do, people who are just starting in the field, what would you suggest to a
newcomer?

] C: Well, what I would tell them is to go and try to work with Geoff
Hinton. I think the best way to get into the field is to find somebody really
good and go work with them. I was very lucky to get going with Gabor
and then with McCulloch and Pitts and to interact a bit with Shannon and
Wiener. I think that's by far the best way to do anything.

I took part in one of the Einstein Centennial meetings a few years ago at
Illinois, organized by a philospher down there. Dirac was at the meeting.

Dirac gave a lecture on relativity and Einstein, a wonderful lecture after
dinner. Then he answered some questions. He was asked three questions.
None of them were very good questions, but his answers were gems.

The first question he was asked by a philospher: 
'
What do you think of

the philosophical significance of quantum mechanics?"
He said, 

'
Well , I'm not interested in questions like that. I'm only interested

in getting the right equations. If you get the right equations, everything else
follows."

The second question he was asked, and this relates to your question, was
by a physics student: 

'
What would you advise a beginning physics student

to work on?
"

Dirac thought for a bit, and he said, 
'
Whatever interests you most,

" 
which

I thought was wonderful.

Then another student asked him, 
"
How did you discover antimatter?"

Dirac said, 
"
Oh, that was easy. In relativity , energy

'
s the square of a quantity

, so I just took the square root."

I mean, that
'
s the real answer: just work on whatever it is that really interests 

you the most. But if you
'
re really smart, you

'
ll go and find somebody

really distinguished and go and work on it with him or her.

ER: Where do you see the field going?

] C: Well, computer technology is increasing its power all the time. I can
see that being a driving force behind ever less toy applications of the theory
to real-world problems: the construction of artificial networks that will do
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more and more powerful things. At the moment these networks are still

doing simple things, but later on they
'll start to do things that will surprise

people. I
'm always interested to follow the debate between the cognitive

psychologists and linguists, people like Pinker and others at MIT , who criticize 

the neural network approach es to language and say, 
'Well , you can

't

really handle this and that, or you can't do semantics, or you can
'
t do this."

A few months after some speci6c criticism is made, there appears a solution.

It's very like the content of the McCulloch-Pitts paper itself. The late

Donald Mackay, whom I knew very well, characterized their theorem as follows

: if you are arguing with someone about what a machine can or cannot

do, and you can specify exactly what it is the machine cannot do, then their

theorem guarantees that there exists at least one machine that can do exactly
what you say it cannot do. If you can specify in enough detail what it is that

you say a machine can't do, you
'
ve produced a solution. So the real question

is, 
'is everything out there describablef

'
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March 1994 , San Francisco , California

ER: I'd like to ask how you grew up and what your parents did.

CM : I was born in 1934 in Bakersfield, May 1, 1934. The reason it was

Bakersfield was because my dad worked for the California Edison Company

back up in the Kern River Valley. Bakersfield was the nearest place there was

a hospital so that was where I was born.

I grew up up in the Sierra Nevada Mountains in a place called Bee Creek,

east of Fresno, about thirty miles back in the woods. I went to a little school

with twenty kids total for the first eight grades, one teacher. A wonderful,

fun time.

ER: What did your father do?

CM : He was the guy in charge of the local power plant. I grew up around

the power plant. He used to bring home electrical stuff, batteries and so on. I

got hooked on electricity at a very early age, and I've been hooked on it

ever since. It
's never gone away. I never had any desire to do anything else.

When I was in sixth grade, a guy moved into camp. This was back in

the mountains with a little group of houses around the power plant that

we called the 
"
camp." The guy who moved into camp was a radio ham. This

was just as World War II was ending. He got to teaching me about this radio

stuff, and I was just blown away. So I'd save all my hard earned money, and

we'd go down to the big town of Fresno once a month. I'd go down to the

surplus store and hunt for bargains. You could buy the most incredible pile

of electronics for a dollar. I collected all this stuff so I could experiment with

it . One thing led to another.

ER: Did you have brothers or sisters?

CM : I was the only child.
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ER: Was your mother at home?

CM : She was at home. Once in a while she
'
d be secretary for the local

school board or something.

ER: Did you build a ham radio station?

CM : I built all my own stuff. I couldn
;
t afford to buy it . So you substituted

labor for buying it . That was much better because you learned all about
the stuff. I built receivers up until I could afford one of those little RME 69s.
Remember them?

JA: I sure do. I had one of those.

CM : Did you? Well, that was the only thing I could afford.

JA: With the great big dial in the front?

CM : That was the one. Those were fun days. We didn
'
t have test instruments 

really. I finally bought a Heathkit vacuum tube volt meter. That was
as close as I could get to a real test instrument. You had to debug stuff blind
as hell. You had no idea what was going on. That was excruciating, but it
would also give you a sense for how to proceed when you didn'

t have
but the tiniest bit of information coming back from the thing and no real
instrumentation to find out. It reminds you of neural networks a whole lot,

actually.

It was wonderful training. It gives you this confidence that if you muck
around for a while, you

'
ll figure it out even though you have no really sound

fundamental basis for it . You just have hunches and you develop a feeling
for it, and after a while it gets to working, and the more you work with it,
the better it works. Then you can't remember why it was hard back in the

beginning. It
'
s an awful lot like research in that sense of being out there

where you don't know what the hell
'
s going on. There is no obvious reason

to be able to succeed, and you just keep at it until you start developing a feel
for it . It really tunes up your intuition .

ER: What was high school like?

CM : I moved away from home when I was fourteen. I went to the big
town of Fresno where my grandmother lived, and I lived with her. I went
to high school there. It was great because I didn

'
t have to put energy into

fighting with my parents. I got my commercial radio license. I ended up
getting a job with the local radio station and the local two-way communication 

place. That was about all you could do in Fresno because that
'
s all the

electronics there was. But that was enough.
I rubbed against people who knew more than I did, and one of them said,

"
Well ,

" 
he says, 

"
you should take electrical engineering at college.

"

Of course, in Fresno, there was Fresno State College, but there wasn
'
t any

electrical engineering there. The closest you got was the physics department.
There was one guy there who knew some electronics. I used to go over
there when I was in high school. My buddies were all in college, and I

'
d



go over there and sit in on their classes. We didn
'
t have any of these AP

[advanced placement] courses. You just made it up as you went along.

I knew this one guy up at the radio station who said, 
"
You should either

go to Caltech or to Stanford.
"

I
'
d heard of Stanford. Never heard of Caltech. I applied to both places, and

I got admitted. I visited up here, and I visited down there. I struggled for a

while. I finally went to Caltech because it was smaller. I've been there ever

since.

I took a bachelor
's and master's and a PhiD. at Caltech. I had no idea I

wanted to do a PhiD. When I was doing my master
'
s, I stopped by the office

of a faculty member, and we got to chatting. He said, 
"Well , you know, a

Ph.D's not much different &om what you
'v~ been doing, except you make

up your own problems instead of doing problems somebody else made up.
"

"
Hey ,

" I said, 
"
That 's what I've always been good at."

So I thought I could succeed in a PhiD. program. It never had occurred to

me before. Absolutely never had occurred to me. I had interviewed for jobs
at places like Minneapolis Honeywell. I was thinking of going to work in a

very standard industry job, and then this guy said what he said, and I went,
"
Hmmm .

"

ER: Was he an advisor or just somebody you knew?

CM : Just one of the guys on the faculty. I liked the way he taught his

course, so I
'
d go up there once in a while and chat. Then I thought what the

hell, so I applied.

I was one of these late bloomers. I had a miserable academic record &om

my undergraduate career, and I was just getting to be OK as I got into my
master' s program. So they made up a special exam to try to weed me out.

This exam was what we now call a mini oral. We've since institutionalized it .

We do it at the end of the master's year because it
'
s such a graceful place to

let somebody go because that way they don
'
t look like they flunked their

oral. It gets the faculty off the hook. I was the first one they gave it to because 

they figured, 
"
This guy

'
s got no business being a PhiD.

" 
I
'
d done well

enough on the master's that there wasn
'
t any obvious way to keep me out,

so they figured that an oral exam was going to make me fall allover myself.

It turned out that, of course, oral exams are more about understanding
than they are about being brilliant mathematically. I

'
ve always been better at

the intuitive side of figuring stuff out than grinding out long solutions to big

complicated things, and so I did really well. They were blown away. They
didn

'
t think that that was going to happen, so I got to stay.

ER: And what problems did you choose?

CM : It was interesting. John Linvill at Stanford- ironically enough, the

place I didn
'
t go

- had just come out with this thing he called the Linvill

model for transistors. You basically did a lumped approximation for the

linear behavior of the thermodynamic quantities in the transistor and then
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put the exponentials into the interface between that and the voltage switch es
- which is, of course, a brilliant way to look at the whole thing. I looked at

it, and I said, 
"
God, even I can cope with that."

Before that time there had been the Ebers-Moll equations, which were

just these godawful nonlinear things. The nonlinearities were all mixed in

with the -other stuff, so you couldn
't see the essential relationships because it

wasn't factored in any nice way.

Linvill had factored in such a nice way that you could see what to do and

where everything came from. So I said, 
"
God, this is what I need to do transistor 

switching times and storage times.
" 

I went and worked all that out on

my own. It was enough for a thesis.

In retrospect, it
'
s kind of trivial , but at the time it was neat because I'd

figured it out myself. You know when you turn a transistor off, it
's a while

before the minority carriers clear out and the thing goes off. You can predict
all that. I had some fun with it, but mostly it was important to me because I'd

figured it out myself. Nobody gave me the problem. It wasn't just one more

homework problem. I had to figure out what the problem was.

ER: And you went directly from the doctorate into teaching?

CM : When I was a first-year graduate student, Dave Meadow brook had

just come down from Stanford. He was teaching a transistor course. I took

his course as a first-year grad student, and I did well in it . The next year
he was going to go off and write a book, but somebody had to teach the

course. He came around and said, 
"
How would you like to teach the coursef

'

Here I was, a second-year grad student supposed to teach a first-year

graduate course. I had been teaching undergraduate courses all along since

I'd been a senior. I'd be a lab T A and stuff like that because I liked teaching.

This course was major because there were all these bright guys who were

smarter than I was. But I figured it out, gradually. It really stretch es the hell

out of you when you
'
ve got to explain this stuff. You

'
ve got to really, really

know it all the way down.

That experience was what got me in love with teaching. When I got done

with it all, it turned out Caltech didn
't have anybody else around doing this

stuff. They were out recruiting young faculty, and in those days you couldn
'
t

find anybody in transistor physics because everybody had been slurped up
by other universities. So they said, 

"
How would you like to stayf

' 
There

wasn
'
t anybody there to compete with , so I had the job to myself.

I went off doing tunneling and transport process es through thin insulators

for about ten years. Then Max Delbruck came around and said, 
"
Hey , these

guys are saying that nerve membranes work like transistors. Is that right?
"

And I said, 
'1 don

'
t know. Let me look at it .

"

He gave me a bunch of papers. People were copying Shockley
's stuff and

putting in ions instead of electrons, and it was all complete hogwash.

So I said to Max, 
'1t's complete hogwash.

"

And he said, 
'
Well , let's figure it out then."
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have certain similarities to cell membranes]. We did a bunch of bilayer stuff . I

guess the only contribution we made there was that we were able to show

that the channels were ohmic .

That was my only real biology . We did that with Max and a couple of

students, one engineering postdoc and one grad student in biology . We

called it our subterranean group because the bilayers would break if you
shook them at all. We had one vibration-isolated darkroom way down in a

sub-basement.

JA: No real animals1

CM : No, I have a hard time with surgeries.

ER: At this time were you aware of any of the the percept ron work or

Widrow
'
s work1

CM : I knew about the percept ron. I
'
d heard about Bernie

'
s stuff, but just

vaguely. I wasn
'
t paying any attention to it at all. That was the time I was

starting to get interested in VLSI. I had these long talks with Max about

how, when you work with biological substances, you realize there
'
s nothing

precise. Everything has to be adaptive. I was getting the idea how that had

to work and how it couldn
't be that there were any precise parameters. How

in the hell can you build a system like this1 It has to find its own zero, find its

own center, and tune itself up.

At the same time I was getting intrigued by large-scale Mas technology
because I could see that if you

'
re going to make big systems, that

'
s the way

you had to do it . That won.

In those days, digital systems were the easiest ones to conceptualize, so

I did them for ten years. I figured out how to made software that would

organize big systems and get them to work. I had in the back of my mind

that what you really ought to do is to use all the physics of a device to

do the computation, not just the on or off property. But you couldn
'
t even

imagine doing that unless you had ways of designing really complex things.

JA: You were always heading toward big analog circuits1

CM : They used all the physics. I was from the device side, so I wanted

to use the physics. It was fascinating to me that you could get wonderful

exponentials over orders and orders of magnitude. I had done a lot of that,

taught courses on it . It always seemed to me a terrible waste to turn these

devices into switch es, but that was the only kind of system we knew how to

imagine. It still isn
'
t obvious.

ER: I think of the VLSI work as culminating with the Mead and Conway
book. [A classic book on VLSI design. Introduction to VLSI Systems. Carver

Mead and L.ynn Conway. 1980. Reading, Mass.: Addison-Wesley.] I was

wondering how that partnership came about1
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CM : I had been doing VLSI. There was a talk around Caltech about having
a computer science program. We didn

'
t have one at the time. We were interviewing 

people for the job. They were all very traditional computer science.

Nobody was really thrilled at having one more. We talked to everybody,
and they

'd say, 
"
Yeah, you

'
ve got to have a guy on operating systems or

this guy on languages.
" It didn

'
t feel like the future exactly.

Then Ivan Sutherland came by and got all excited about VLSI. We ended

up hiring him, and the two of us started the computer science operation at
Caltech. Ivan introduced me to a lot of people he knew, like Dave Evans
back in Utah and his brother, Bert Sutherland, who was running one of the
labs at P ARC [Xerox Palo Alto Research Center]. It turned out to be the lab
where Alan Kay was doing the Small Talk project, and right next door was
Bob Sproul doing wonderful stuff that turned into Postscript eventually
through a very circuitous route.

I went to give a talk up there and Bert said, 
'
Why don

'
t you come and

consult with usf ' So he stuck me next to Lynn Conway. She was at P ARC.
She worked for Bert. After my talk, she came up and said, 

"
You know,

Carver, you should really write a book about this.
"

Then Lynn went off, and the next week when I came back, she had every
book on integrated circuits that was available on her desk. She had looked

through all of them, and she said, 
"
There isn

'
t anything like it . Let

'
s do it ." So

that was it . But that
'
s typical. She did all the research, Agured out what was

out there.

ER: And how long did it take to write the book?

CM : Two years. In a year, we had a note version, and we distributed that
to a number of universities that wanted to teach the course. We got feedback
and Analized it the next year. That was great fun working with people, getting 

the courses started, giving them material, and getting MOSIS [the
national chip fabrication facility] started so people could actually get chips
made. That was a great partnership. We had really good times. God, it was
stressful, trying to start this whole major thing, but it was fun too.

ER: You referred to it earlier as a ten-year detour. When did you start to

get back on your main road?

CM : It was
' 
82. I had been one of the people who had supported the move

to get John Hop Aeld to come to Caltech because I'd known him &om solid-

state physics. I
'
d stopped by at Princeton a few times and got to chatting

with him. So when they started a move to get Hop Aeld to come to Caltech, I
said, 

"
That

'
s great. I like him."

When he got to Caltech, we started talking, and he said, 
"
Let 's do a

course.
"

So Hop Aeld and I and Richard Feynman did a three-way course that
we called the 

"
Physics of Computation.

" 
We did that course for three years.

Three more different stories you have never heard. You would never imagine 
the stories we told had anything to do with each other. We enjoyed it

Carver Mead132



immensely because we could start making connections to each other
'
s viewpoint

. That was a three-year period when we were each evolving our own

view of what it all meant. Then we went off and made three courses.

That period was when I learned about what is now traditional neural

net stuff. I didn
'
t know there had been any except for the percept ron, which

everyone knew about. I didn
't know there had been ongoing work.

I was frustrated because this work was all a very simplistic view of what

was obviously a much more continuous, much richer, adaptive thing. So then

I decided, 
"
Hey, I've got to figure out how to make these adaptive circuits

because that
'
s the only way this is ever going to work."

I figured that in five years you could learn how to make adaptive circuits.

I've been at it ten years, and we still don
'
t how to do any but the beginnings

of it . It
'
s been much longer than I had anticipated. Meanwhile, it

'
s interesting

that simulations are getting more adaptive. Many of them are getting more

like what you can actually build.

ER: I know that many of your students have gone into business and that

you yourself have been involved with various companies through the years.

Maybe you could talk just a little bit about how you
'
ve placed yourself

within the commercial environment through the years.

CM : That was all started by Gordon Moore. When I was a first-year

faculty, Gordon Moore came by, and he had one of these old briefcases that

used to open up at the top. He came by with this briefcase, and he sat down

in my office and said, 
"
Hi , I'm Gordon Moore from Fairchild and I'm a

Caltech alum, and I just stopped by to see what you
'
re doing."

I told him about this device stuff I was doing, and he said, 
'Would you

like some transistors?"

I said, 
"Yeah,

" because I was teaching labs, and transistors were expensive
if they were any good, and if they weren

'
t expensive, they were no good,

and either way you were damned. So he opened up his briefcase. There was

an old shirt and two old socks in there, and he looked up kind of sheepishly,

and he said, 
'1 travel light .

"

He pushed down his dirty clothes, and he pulled out these manila envelopes
- you know, 8!

-by-ll . Two of them. One was full of 2N706s, and

one was full of 2N697s. I'd never seen so many transistors in my life. And he

said, 
"
Here

's some rejects. I don
'
t guarantee what they are, but some of them

will be good. Come up and visit, and maybe you
'
d like to consult for us.

"

So two weeks later I went up to Fairchild. It was a little tiny place. There

were probably twenty people in the whole company. I gave a talk about

what I was doing, and then we all sat around a conference table. The whole

group was there. We sat around and talked for an hour and had lunch. It

was very laid-back. They were building these transistors in this little lab

downstairs.

I started consulting for them. I'd come up every week and spend a day. I

got hooked because I always learned something and I could get samples of

different kinds of devices. I found out the things they didn
'
t understand so
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I could go back and work on them. That's kept up till the present day. It 's

been a source of an enormous wealth of research projects
- the research part

that you don
't have time to follow up when you

'
re in an industrial track.

You
'
ve got to get a product out.

I've kept doing that. When a company got too big so I couldn't do that

any more, I'd find a smaller one. A lot of my former students have started

companies and asked me to get involved with them. I come up there every
week. I've been doing this since the early 

'70s, more than twenty years. I

keep track of what
'
s going on. It 's been wonderful having the best of both

worlds.

JA: Do you have any interest in things like artificial intelligence [AI ]?

CM : I never got involved. I guess I couldn't see a way to make a contribution 

there, is really the honest truth.

JA: Was there discussion about AI at Caltech in that era?

CM : A little bit . And, of course, at Xerox P ARC there was a lot of it because 

P ARC was crawling with AI people. But I never quite found how it fit

with anything I know about. I'd have chats with those people and try to

understand what they were doing, but I never quite got it . But with neural

networks I felt right away that this was an analog thing. It
'
s really a simulation 

of an analog property, and that made a lot of sense.

JA: The work you
'
ve done on analog VLSI has been largely in the direction 

of sensory processing.

CM : There
'
s a reason for that. I started wanting to do learning systems.

The very first chip we did was a learning chip. It was a feed forward net

with outer product learning. It only had two bits of weight storage. That

wasn
'
t enough, but we didn

'
t know that. We had no idea how many bits you

needed for weight storage. It did its thing, and it incremented the weights
and decremented the weights and so forth. We could never get it to do anything 

very interesting. Neither could anybody else. We didn
'
t realize that if

we had five levels, it probably would have been interesting.

But in the process of trying to make it do something, I realized that if this

was going to be interesting, we needed real-time stuff coming in, and if we

were going to have real-time stuff, we weren
'
t going to get it out of a television 

camera. We ought to be doing something about the information coming 

in. That
'
s been a ten-year detour. I really think of it as a way to get data

that's worth learning. I'm sad to report that we still don't have data that
'
s

worth learning. It 's been a much bigger detour than I had ever imagined to

get sensory preprocessing to where it 's in reasonable form to do anything.

It's still not there.

JA: Most of the brain is preprocessing. That's really the most interesting

problem.

CM : I think it is mostly. There
'
s also a motor equivalent of that, which I

don
'
t even have a word for.
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JA: I heard you give a talk a few years ago where you talked about the

cognitive iceberg, which I always thought was a beautiful image. [Mead

compared mental life to an iceberg: a little bit of cognition above the waterline 
and a huge amount of sensory preprocessing below the waterline, where

most of the work gets done.]

CM : I think it was Wundt who came up with that image. When I first saw
it, I thought, 

"
That

'
s my idea." It was a beautiful insight. I really believe it

'
s

true. We get these fully formed concepts and percepts that come floating up
from below.

It
'
s hard to do that, you know. I

'
m still trying to do it . I can

'
t make an

object. I can in trivial cases, but in the real world I can
'
t make an object yet,

and I
'
ve been working very hard. r want an object so I can learn stuff that

is interesting. I haven
'
t made phonemes yet or anything even remotely resembling 

a phoneme. I
'
m very frustrated because I feel like I should have

made more progress, but this tells me that it
'
s a lot harder than I thought.

ER: I was reading a section from a new book that says we must follow
the rule of 

"
microcosmic prophet, Carver Mea~.

" 
The book quotes you as

saying, 
"
Listen to the technology and find out what it is telling us.

"

CM : Yes, I did say that.

ER: I wonder what you think neural nets are telling us.

CM : Adaptation. It
'
s the whole game. I really believe that. It

'
s not just

because of the technology I work in; it
's because of the nature of the real

world . It
'
s too variable to do anything absolute. You don

't make a voice recognizer 

by looking at absolute frequency maps. You don't make vision systems 
by looking at intensities of pixels. You have to develop a higher level

of abstraction than that, and you do that by comparing things and adapting
to things. The nervous system figured that out a long time ago. But, boy, is
that hard because nobody tells you what to adapt to what.

It
'
s a problem, really, about the interface between the real world and computers

. If you talk to anybody in computer vision, they
'll tell you, 

"
Yeah,

you can make everything work, as long as you control the lighting really
well." So they spend all their time going around controlling the lighting
really well, and they get it all just right, and then you can go and do computer 

vision. It looks great, but nobody told you that they spent two hours

getting the lights just right and if you change the light , it doesn't work anymore
. You don

'
t have that problem with your own vision system.

To me, that
'
s the key. My own belief is that what started out as a dumb

kind of adaptation has gradually turned into learning down through evolutionary 
time. This is wild speculation, but I just believe, deep down in my

gut, that sooner or later that's what ended up as learning.

ER: It 's a straight line between adapting and more complicated learning?

CM : A straight line on a log scale, yeah. What people do is take a given
problem and set everything up for that. The brain couldn

'
t do that. It had to

Carver Mead135



work with whatever came in, so that means it had to adapt much more than

our technology has had to .

If new stuff comes along , it figures out what to do with it and just keeps

going . I think the learning is really long -term adaptation . It
'
s a way of adapting 

to things on a longer and longer timescale, and eventually that gets to

be learning . I
'
m not clear in my own mind if there

'
s a boundary between the

rudimentary act of finding a level and the much more complicated act of

getting rid of what I think of as the false entropy in the inputs
-

you know ,

getting rid of the junk that doesn
'
t matter and pulling out the important things .

JA : There
'
s not that many levels in the visual system to do it , either .

CM : And then all of a sudden here you are recognizing somebody
'
s face.

When you see your grandmother , there
'
s a population that lights up that

'
s

different than when you see your grandfather .

JA : I remember a talk you gave in Washington . You had a lot of pictures

illustranng the low selectivity of natural receptors . You pointed out that

sensory receptors are mostly low Q . [
"
Q

" 
~ electronics describes selectivity

of response. A 10w-Q receptor responds to a wide range of different stimuli ;

a high -Q receptor responds to a very narrow range.]

CM : Right . That was the thing that blew me away the most in the beginning
. In color vision , I realized that you see yellows better than you see any
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other color because two broadly tuned Alter functions are crossing at that

point. That was a new idea to me - that you
'd encode things using the crossover

, rather than by the selectivity of the receptors. Of course, if you
'
re

doing adaptive processing, it
'
s the only way you can do it because all you

can do is compare things. There are no absolute levels of anything. If you
have a crossover, you can compare and you get a nice signal, so that made
sense.

ER: You were talking about things that have surprised you. What have
been the major surprises as you

'
ve pursued your work through the years?

CM : It was amazing to me how hard it is to have a new idea. I've always
found that whenever I really understood something, somebody else had

already Agured it out a long time ago
- like this thing about the cognitive

iceberg. It
'
s obvious once you

've seen it, but then, of course, somebody

Agured it out a long time ago.

Adaptive circuits have been much harder to build robustly than I had any
idea. I'd say that of ten circuits that get invented around our place, one will
survive. For every winner there

'
s ten that you think are going to be just

as good, but there
'
s something that isn't adaptive enough. You don

'
t see it

right away, and then later you realize, 
"
Oh, it

's because it wasn't really a relative 

circuit; it wasn't working on the natural scale of the thing. It was working 

on something absolute somewhere, and I just didn'
t see it .

" 
And then it

isn
'
t robust anymore. The difficulty getting to the solutions that are really

clean and robust has been amazing.

ER: Are you surprised about the acceptance of your work?

CM : It
'
s taken longer than I would have guessed to get people interested.

I think part of that is that most people who know about analog stuff are

electrical engineers [EEs], and they
're still a little skeptical about the neural

stuff. So I think as the neUral stuff becomes more mainstream, then we'll get
more EEs interested in the analog way of doing the neural stuff. I think there
is still a lot of skepticism among the hard-core engineering community about

whether this art form really is going to turn into anything, or if it is still fluff.

That's my constituency, the hard-core engineers. There was downright
hostility in the beginning when I started talking about neural things. They

'd

bristle. Then when I started a little softer sell about adaptive analog and how

people started out making digital Alters and then they Anally found out that

they had to be adaptive Alters. But if you
're going to be adaptive, you don't

need the precision, and so then you can be analog. Engineers understand that

argument. But if you start from the neural perspective, they are still skeptical.
I .think it 's turned from hostility into skepticism at this point.

ER: Could you comment a little bit on other people
's work in the Aeld that

you think is important?

CM : I've learned a lot from everybody I
'
ve run into. I'm shameless about

adopting ideas from people. I
'm not sure I can even trace the important
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insights to anyone person. I
'
ve learned a huge amount &om Geoff Hinton.

I think I learned more talking to Geoff than anyone because he thinks so

differently &om me. Just by struggling to cross that different way of con-

ceptualizing I learn a tremendous amount.

My most intense learning experience
- has been this thing called the

Helmholtz Club. I don
'
t know if you

've heard of it . It
's Francis Crick and

Terry Sejnowski and V. S. Ramachandran and myself and John Allman and a

group of other people. We meet once a month, and we invite two people.

We spend a whole day, &om noon on. We get two two-hour presentations
and then discussion. There

's maybe twenty people there. I never miss one. I

have somebody take my class because it lands right on top of my class. I do

it anyway because it
'
s just too important to miss.

The reason it
'
s named after Helmholtz is it

'
s about the intersection of biology 

and harder-core physics and engineering. And it
'
s exposed me to many

different ways of thinking.

We had one talk on eye movements, and we had a guy talk about sleep
and all the things that happen in sleep. I didn

't know anything about sleep. It

was wonderful hearing all that stuff &om someone who was trying to think

of a model. The last one we had was on the amygdala. We've had about

three sessions now on attention.

JA: Attention is incredibly important behaviorally, and it 's something

people almost never build into a neural net.

CM : It seems to me it 's a form of adaptation that
's almost totally missing

&om our artificial models. It is extremely important because it gets the resources 

of the brain focused on things that belong together
- not because

they come through one sense, but because they
'
re important to the animal

for some reason. It
'
s a way of aggregating the stuff that's in memory and the

stuff that's patched together &om all the senses and exploration
- all pulled

together into a context.

ER: What do you tell newcomers starting out in this field? How do you

guide them or direct them? What do you tell them is important?

CM : When someone feels like they want to get involved, I try to find out

what instinct base they have built for themselves. People with different backgrounds 

have different instincts about things. People who get really good
at something develop a set of instincts around what makes sense and what

doesn
'
t. They can sort really rapidly through ideas. This field hasn

'
t got to

the point where you can just grind it out. You
've got to have some instinct

about what
'
s important, or you just get lost.

I try to see a way in which that instinct base can be effective. Then I

will usually try to steer them to someone where it feels to me like the things

they have good sense for will fit in with the way that person works. I
'
ll say,

"
You should go and talk to Terry Sejnowski

" 
or 

"
You should talk to Geoff

Hinton
" 

or 
"
You should talk to John Allman,

" 
whoever might resonate with

that person
'
s native sense of where things are.
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If people think really differently from me, it
'
s hard for me. If I can

'
t see a

way to bridge into what they
'
re doing, it

's better they work with someone

who has that bridge made already. That's happened quite a lot with people
who have come to me, so I say, 

"
Yeah, I think you fit really well here,

" 
and

then I'll make an introduction because we're still not able to make big

bridges yet in this field.

There's still pockets of stuff. You know that there are connections, but you
can't always see them. Most of the time it 's just hard work. We still haven't

got the big blinding flashes yet.

JA: Occasional sparks.

CM : We do get occasional sparks. That
'
s always fun. You believe there

'
s a

big lightning strike out there, someplace.

ER: Where do you see the field going?

CM : I
'
ve grossly underestimated the effort it

'
s taken to get real-time data

to the point where it was useful in learning systems. I would have told you
five years ago that by now we would have real-time stuff that people would

want to learn with - in other words, data that was good enough, with a

good enough representation to feed into a learning system. We're not to

that point yet. I still believe we
'
re going to do it because it

'
s just too important

. It 's in the real-time stuff that the richness of the network shows up.

Networks will be doing things that you just can't do with AI . I don't know

how long it
'
s going to take. I'm getting gun-shy of making predictions.

We
'
ve got to be able to do it in real time with real-time stimuli and all

adapted into some form where a lot of the invariance gets built in on the fly .

That
'
s my own personal goal. I want to provide the front end so people can

build the learning system on the back end.

JA: Do you think we
'
re still on an exponential learning curve in this area?

CM : I guess exponentials happen when one thing you do makes it easier

to do the next thing. The places you get the big exponents are when you
start getting crossings between areas of work so that something that happens
in one place has effects elsewhere.

It feels to me kind of linear right now. We're riding on a computational

paradigm that
'
s getting better all the time, but in terms of the actual knowledge 

in the field it feels linear still. It doesn
'
t feel like the insights from one

way of looking at it play instantly into the other ways. That
'
s what has to

happen to make real exponential growth .

I think we still have the exciting period to go through in this field. It's

beginning to happen. It feels like it
'
s starting to tell us how it wants to be.

We've been telling it how we want it to be, and it
'
s just now starting to

tell us the shape it wants to go into. When that happens, that will be the big

exponential.

Part of what keeps me from being able to take immediate advantage of the

rest of the community
'
s work and vice versa is that the stuff I build is so
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hard to simulate. People don
'
t have the computational resources to apply to

things they are doing. There
'
s so much energy put into getting networks

to run well in the digital paradigm that all these issues of adaptation
- how

to have things be self-normalizing, how to have the levels find themselves,

which are for me the really hard problems
- those issues get swept under

the rug.

ER: What about the commercial future of the field?

CM : It
'
s beginning. There are two issues there. One is neural networks

working on real problems. There
'
s a lot of that now. Most of them are

run on standard computers as simulations, and they
're done in applications

where it
'
s not real time in any sense- like predicting the stock market. You

don
'
t need to have millisecond response, and you can wait till the market

opens the next morning to get your prediction updated.

In the real-time area, first you use DSPs [digital signal-processing chips],

and once you get a huge bunch of DSPs, then you need them to be in a little

box. Then, as a last resort, you
'll think about analog.

Analog is not the driving end of commercial neural networks. It can
'
t be.

There
's too much momentum, too much knowledge, too much lore behind

the software side and the digital side. Eventually some of that lore trickles

down to applications where power and space are critical. Battery-powered

things. At that point, somebody
'
s going to be willing to invest indevelopment 

of an analog system. Then we
'
re going to gradually be able to grow

the analog lore up to where it can start to be a real thing. Right now, it
'
s a

specialty item. By no means is it a commercial neural network thing. That
'
s

being done by the guys doing simulation software packages. And thank God

for that because you need to develop a base of lore and credibility .

You really have to do a lot before you
'll ever make an analog device because 

it takes so long to get it right . As time goes on, we'll get better at it,

but at this point it is really important that we have the digital stuff out there

commercially. Otherwise, as analog people, we wouldn
't be able to keep the

neural net paradigm alive long enough to learn the analog stuff well enough.

As a field, we would be sunk if we didn
'
t have the software that

'
s running

right now.

ER: Do you think that it's important that people are starting to make the

transition from software simulations to making chips?

CM : It
'
s a first step, right? It

'
s beginning to make the point that there is a

real thing here. It 's very important that the neural paradigm is gradually seen

as a thing that has its own structure, its own paradigms, its own way of

being excellent, its own metrics or performance and value. What was scary
for a while was that there were all of these announcements about stuff that

was pretty clearly garbage and couldn
't even compete with standard chips

that were out there for other reasons. That gives the field a bad name, when

people don
't know that they could go and buy off the shelf something that

would work better than what they just built . That was an awkward period. I
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think we
'
re past that now. We

'
re getting serious players who are going in

and doing things in a serious way.

It
'
s fortunate that there

'
s enough awareness about the way things are done

in a neural paradigm, enough different sets of requirements, that you can still

do it in software, but much more optimally by building custom architectures.

ER: Your company [Synaptics, Inc.] is involved mostly with recognition

problems. Do you think this is the foremost area where neural networks can

make a commercial contribution?

CM : It's an area where it
'
s very hard to do anything without a neural net.

The AI people tried for years. With a neural network, you can do better in a

week than people have done fooling around with AI programs for years. I'm

particularly interested in the perception end of it because I'm working &om

that end.

With real-world data, where you don't know what the information is,
neural network paradigms can pullout that information and make it useful.

That is very, very clear. It wasn't dear five years ago. Then, it was a gleam in

all of our eyes, but at that time it wasn't dear to anybody who was objective
about it that it was going to be better than sitting down with a smart guy
and writing a program. Now it 's clear that there

'
s no contest at all. That

'
s

been a big change.

You probably remember some of the early talks I gave which were, 
"
Hey ,

let
'
s not overhype this neural net thing because it could turn into another

crash.
" 

We don
'
t need another twenty-year famine like we had after the per-

ceptron. I think we
'
re well past that now. My own feeling is that it 's not

going to go away no matter what.

JA: It wasn't really a crash. Maybe a Rat spot.

CM : I think we got through it . I think the group has been really states-

manlike in bringing in the old guys. It
'
s like saying, 

"
No , this isn

'
t a community 

that pushes people out. Let
'
s figure out how everything goes together,

what the insights are, whereever they
'
re coming &om. Let

'
s have a community 

that
'
s open to new ideas and new ways of looking or old ways of looking

, or whatever. Let's pull together and find what makes these big collective

systems work."

Tome , that
'
s been the thing that got us through. There was a tendency

for a while for people to break into groups. It feels to me like the statemanship
won out over that, and that

'
s really what caused the community to survive.

ER: Do you have any sense of what's going to happen in terms of the

government
's role? Traditionally, this field has been funded by the more

defense-oriented needs of government, but now defense needs are changing.

CM : I can give you the jaded view, or I can give you the optimistic view.

Maybe I ought to give you both. The jaded view is that the agencies will go
after the hot new fields regardless of what their nominal role is. DARPA

[the government
's Defense Advanced Research Projects Agency] has been a
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great example of an agency that has figured out how to position itself to look

like it
'
s doing the current politically right thing. They

've been skillful enough
at it so that they haven

'
t been bashed like a lot of other agencies have.

I don
'
t think the basic forces in Washington- who does what to whom-

are going to change very much. The fly wheel
'
s too big. The names will just

change around a little bit . The players will move around. They
'll keep talking

to each other, and they
'
ll keep politicking the way they always have.

The problem of having something just defense related is it was always a

sham, anyway, because with research you don
'
t know what

'
s really going to

happen, so you have to make up something. The more you have to make up,
the less relevance there is, and the less feedback there is between what works

and what gets worked on. We
'
ve seen that played out over the last twenty

years to the point where now there
'
s very little feedback from what works

to what
'
s worked on. You see huge budgets going into things that have no

relevance to anything that
'
s ever going to be useful to anyone. You see

things that are really very useful not getting any money.

In the military sector, it takes twenty years before anything gets fielded,
and everybody forgets who did it anyway. There

'
s no feedback. In the commercial 

sector, there
'
s a lot more feedback because it 's pretty clear what

works and what doesn
'
t. You

'
re much more apt to get some sensible form of

feedback.

I think, because of the fact that neural networks do useful things, there will

be a net positive influence from actually looking at what they do rather than

making up stories about what they might do. I mean, it took us twenty years
to get completely disconnected from reality. It may take another twenty years
of constant work to get back connected with reality.

JA: I asked about AI earlier. Do you have any interests in things like

cognitive science?

CM : There are a whole bunch of cognitive people who come to the Helm-

holtz Club. We always try to pair them with a physiologist to try to get
that bridge. I don

'
t consider the whole cognitive psychology, perceptual

psychology side, to be AI . I consider it central to everything.

JA: I'm glad to hear you say that.

CM : How would you work on a perception problem if you didn
'
t know

how you perceive?

JA: I think you have to know what the output is doing as well as

what the input is doing. But there are a lot of people who don
'
t think that,

unfortunately.

CM : I think it
'
s central. As a practical matter, we've actually gotten more

from perceptual psychology than we have from physiology. Fortunately,

physiologists are starting to use psychologically important stimuli.

JA: That's been a subtheme for a long time, but it hasn
'
t gotten more

respectable or popular until fairly recently.
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CM : Now it
'
s kind of expected that you

'
ll do that because otherwise how

the hell do you know what will happen? I find that the most important trend
in neuroscience in recent years. Of course, there have been the occasional

people who did it anyway, but it was an oddball thing, rather than mainstream
. But now it 's mainstream.

JA: It was always like: real scientists count photons.

CM : There was this terrible reductionist thing for years which was just
deadly. If it wasn't reducible to that level of basic physics, then it wasn't
real. And, of course, nothing could be further from the truth. I remember

Feynman once gave a talk. Somebody asked him something about chemistry.
He said, 

"
There's a reason physicists are so successful with what they do,

and that is they study the hydrogen atom and the helium ion and then they
stop.

"

The chemists have to deal with real molecules that have more than one
electron and more than one atom. Of course, there's no way to do that with

physics. So then the chemists have to start making approximations. They
have to start making constructs at a higher level, like the chemical bond.
Well, what the hell is that? Yes, it has some quantum mechanics in it, but it

'
s

not something that you can just solve.
The more complicated the system, the higher level and the more approximate 

will be the concepts that you use. The good physicists knew that. They
knew that the reason they were so successful was they didn't tackle the real

problems. They made up a problem that was simple enough that they could

actually solve it, and then they announced they were successful and left.
In our business there

'
s no hope whatsoever of having that kind of reductionism 

work. We
'
re more like the covalent and the ionic bonds. They

're

approximate ideas, but without them we couldn
'
t make any progress at all.

But it is interesting that, having said it from that side, we can say it from
the other side. There was a time when psychologists would argue vehemently
over the meaning of some term. The philosophers were the same way, and

they would yell and scream at each other. When you look back at those diatribes

, you say, 
'
What the hell were they thinking about?

" 
It

'
s like they were

trying to be precise about something that was a very fuzzy concept anyway.
It had very little to do with anything you could actually observe. Maybe
what they should have been doing was more experimental. It feels bad arguing 

about the meaning of some word which doesn
'
t really have a meaning

yet because you couldn't operationalize it .
How many angels are dancing on the head of a pin? Maybe it was

Aristotle or somebody who felt that you ought to be able to prove
everything. It 's been only twenty years that we

'
ve known that this was an

oxymoron- since Godel- and nonstandard analysis was worked out only
fifteen years ago, so that it 's OK to use infinitesimals again. Maybe Leibnitz
had something after all. It was weird, the place we got into because of our
Western upbringing that said you

've got to be able to prove everything.
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ER: I
'
d like to begin with your date of birth , information about your

growing up . . .

TK: 11th of July, 1934. I was born in a small town in eastern Finland , in a

lake area that has a link by a canal to Russia. The nature there is very beautiful

; I think that it must have affected the people who are living there . My
home town belongs to the western -most part of Karelia . There are eight or

nine regions in Finland that are not bound to the countries , but to the cultures 

of people , and Karelia is one of them . The people there are said to be

very lively , very , very friendly and talkative . But I don
'
t know if I

'
m talkative 

at all . I
'
m rather a very silent type . Except sometimes.

I wa5 raised in a family with two elder children . My brother is twelve

years older than me, my sister is nine years older , and so I was just paid

special attention , by my mother especially .

My father was a very busy man because he had many kinds of duties . He
'
s

a long time dead, but his hundredth birthday was in February 1993, and we

collected his biography . Boy , I really heard interesting stories about him . As

I was a child , my father was so much tied up with various duties . At that

time he was a contractor in transportation . He ran first a one-truck business,
but later he went into the construction area, making roads with tractors

and excavators . He was all the time on the way to different places. I could

actually very seldom talk to him .

My brother was involved with World War II , and after that he studied in

Helsinki . I was still living in eastern Finland, and Helsinki is kilometers   

away, so I .also seldom saw him . My sister stayed home during my high
school times. My mother sewed professionally . She learned that profession
as a young girl . Although she did that in the country , she was almost like a

salon keeper. People sometimes wanted to boast that they had a model dress.
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Both my father and my mother were very practical people. They came

&om the countryside, so practical and very realistic, so there was no abstract

kind of thinking. My father actually went to school very little because in the

far countryside at that time, around 1900, the school system had not spread
out very much in Finland, so he just attended what were called mobile

schools, where the teachers came to the students. My mother went to regular 
school, but both had only grade school educations. My mother came

&om a country house to my father's family. She was also providing for the

family with the sewing business all the time.

My father was also socially very active, and he belonged to the political
life, to the leftist part of it, so he was asked to act in the town- what is it

called, not government, but . . .?

JA: The city council?

TK: City council, yes- sometimes either as a representative, like the congress

, but sometimes in an office like the senate, and also as an alderman. He

was also active serving on certain boards, like the social welfare board. He

was chairman of the welfare board. I remember that when he came home

&om his far away business, and he was having his lunch, there was often a

line of old women asking questions and complaining about things. He was a

very open person, outward directed, who always wanted to help people, too

much. I think that
'
s roughly his character.

My father was ten years older than my mother, so there was also this age
difference accounting for some polarization in the family. Mother was always

taking care of all the practical things, and father was away, on the road, really,

practically all the time. My elder brother is an engineer in telecommunications

, and my sister has economical training, not the university training, but

something which is professional economical training. She used to work for

the truckers
' 
union as the chief accountant.

In my school times, I went to school very early; usually children go to

school at the age of seven, but I insisted ongoing to school at the age of six.

I am biologically very young in regard to my chronological age, so I always
felt like I was just a little boy among the others, which created a kind of tension 

perhaps. But my mother tells all sorts of stories about my childhood.

For instance, I am supposed to have learned to spell at the age of two and a

half, and to read at the age of three or so. I was a complete reader before I

was four. Once my mother was telling me that she saw me skiing outside

when she was sewing, and I was just standing there still and holding the

poles, in this still position.

When I came home, she asked me, 
'What did you do?"

I said, 
'1 was thinking.

"

Also I felt that many of the topics that were discussed at school were

so naive that I would turn in better answers to them. But I was a nice guy
all the way through until the university, so I never really objected to the

teachers. In Finland, you had to be obedient, and that has affected Finnish

people
'
s lives, too.
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We were asked to do much work at school , much homework , and so until

the university , I really felt that that was a bore- not just a bore, but a

nightmare . As a hobby I went to the Scouts. This lake area in Finland is so

nice that also our family often went outside ; we had a summer house. My
father was fond of old motor boats, and he always assembled them himself ,

and I helped him , so I got some experience in how to deal with motors at an

early age. And in school I had my favorite topics
- mathematics , of course,

physics and chemistry . Chemistry was not taught very much, but physics
was very nice. As a special hobby I had psychology ; I even bought books on

gestalt psychology in high school and read them, so at that time I was really

thinking about what is going on in the head. That must have been the first

time when I was really working in this area of psychology .

ER: You were interested in gestalt psychology because you wanted to

know . . .

TK : . . . how it works .

ER: . . . how perception works ?

TK : Yes, perception , yes. Perception and memory . That came to me at the

age of sixteen, I guess.

I don
'
t remember any other special hobbies , except the Scouts. At that

time , I liked music, but the family could not afford fancy lessons. The only
lessons that I got were a few violin lessons from a band player . We built

radios; yes, of course, I have to say, radio building and electronics were also

hobbies .

ER: This was when you were a teenager, or younger ?

TK : Sometime after the age of fourteen or fifteen or so, I believe . I built

a half a dozen radios, also the superheterodynes , and set up an electronic

record player and things like that . I also experimented with chemistry . The

neighborhood called it the 
"
laboratory .

" 
I had this two -story board where I

had the bottles and reagents. There was also the usual building of things .

My brother was much more skilled ; he built a kayak, fine model airplanes,

and everything like that . I was not so skilled , but I was many sided, so I was

trying this and that -
optics , chemistry , electronics .

ER: You mentioned that the load of schoolwork was like a nightmare .

TK: Yes. They gave so much homework to us; the American people cannot

believe how much homework we were given in school . I still remember all

these exercises, like the declensions of the German language.

I think my memory for numbers has always been much better than my

memory for names or faces. I forget faces; I forget the names of people . But

once, as a school kid , I was trying to learn the decimals of pi . I took fifteen

minutes , and then I could say pi to 108 decimal places. My brother was a

witness . But of course such skills must be degrading all the time .

ER: And before you went to University , were there any teachers in elementary 

or high school who stirred you or interested you ?



TK : Oh yes, my mathematics teacher, who also taught physics
- he was

extremely encouraging toward me. He supported my ideas. I think he was

fond of my achievements, so he wanted me to study mathematical subjects

or something , and so I went to the University of Technology , in applied

physics . I have very warm memories of my mathematics teacher. He had

practical advice all the time- "
you must not be sloppy in your work ,

" 
or

whatever - and he gave us some extra advice and counseling when there

were entrance examinations to the university . He gave us a course, for free,

on special aspects of mathematics , but in university I didn
'
t actually get a

very good mathematics education . It was more like engineering mathematics .

I still feel badly about it . I thought that at the same time I should start pure
mathematics , but in our university there was at that time no abstract mathe-
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matical education. It was very practical. That was the University of Technology

, where I still am, but nowadays everything is different.

ER: So when you went to university, you went to Helsinki?

TK: Yes.

ER: And were you living there?

TK: I was living at first in a dormitory , and then I moved to the home of a

private family, but I was only a tenant. I was living in a rented room rather

close to our university until I graduated. At that time, the Helsinki University 

of Technology was in a very antique building in the harbor of Helsinki 

city. Now it has moved to another city, which borders Helsinki, and we

have grand new buildings, including modem architecture.

But at that time our university was situated in an empire-style, old building

, which was in very bad shape. I was in the applied physics department,

which was so small that the class had only eleven members and my professor
, who is now a retired academician. He wanted us to go to the laboratory,

so he said, 
"
Classes must be kept at a minimum. You can always read the

books later on, but just now you must go to the laboratories."

I did all sorts of reproductions of experiments. I myself constructed a continuous 

Wilson cloud chamber, Rutherford
'
s and Millikan

'
s experiments, and

all sorts of things like that.

I liked my studies until graduation very much and also after that. I think

that it is a very good idea to be in a laboratory and to have these experiences
. I have always been very practical, I consider myself more like an inventor 

than a scholar. Scholastic studies are not my style. When I had almost

finished my graduate studies for the doctor' s degree- or a little bit earlier, in

1959- we moved to this new place, the new campus. I finished my doctor' s

thesis in 1962. I was among the first scientists who moved to our new

campus, and I don
'
t know for sure, but I might have had the first laboratory

there, at least one of the very newest.

In Finland we have actually a succession of three degrees
-

adiplomaen -

gineer, which is very much like a master of science, then comes the licenciate.



In Russia, they have something similar which they call 
"
candidate .

" 
Then

comes a doctor
'
s degree afterwards . It takes more time usually in many fields

to take a doctorate degree in Finland than in other countries because the

licenciate is in between .

We actually write three theses, one for each degree. For my first thesis, as

a diploma engineer , I constructed , together with two other people , a simulator 

for the kinetic equations on nuclear reactors. For my licenciate thesis,
I worked with nuclear electronics , constructing nanosecond time -

measuring
circuits , which were later used for positron lifetimes . So that was my hard

experience with fast electronics , where you actually are working with waves

and not signals, so you have to take them through coaxial cables, and you
have to know exactly what to do . Your ground terminal is no longer a

ground terminal ; it
'
s just a reflective plate .

I was not sure whether to write a theoretical thesis or a practical thesis, so

I did work on both . I had theoretical work on quantum electrodynamical

analysis of the scattering of polarized electrons and positrons . There I

needed to use matrix algebra, which later was a good instrument . And as my

practical work , I did the measurement of lifetimes of positrons . We were

evaluating times in the subnanosecond region , with an accuracy approaching
10

- 11 seconds, and that included detectors , the scintillation detectors , too .

I was also doing work on tunnel diodes . That was a gadget which was

popular then, but disappeared very soon. Even IBM made this big mistake,
an odyssey to tunnel -diode computing circuits . Around 1965 they finally

disappeared from the scene, but we still used the tunnel diodes in pulse-

forming circuits . So many people thought that there
'
s this nanosecond

Kohonen .

I showed you the article in the Journal of International Science and Technology

, written by four authors , which actually turned on my interest in neural

networks in 1962. I was immediately caught by the idea. That article would

be a very modern article , even today .

ER: That is the article about learning machines?

TK : Learning machines, yes. However , I couldn
'
t work on neural networks

because, although I had done my thesis in physics , I had to start teaching

computers , because I was the only electronics expert in the department , in

engineering physics and technical physics , whom they could use. It was

against my real interests , using me for teaching computers .

Computer architecture teaching occupied my academic life for five years.

Well , finally , it became interesting when I started to understand . When I was

a professor , in my laboratory we built a computer which belonged to the

second generation of computing . It was built with transistors , but it still used

magnetic cores. So I am teasing the neural network people , 
"
You are boasting 

these sixth -generation computers , but how many of you have done any
of the earlier generations ?" I started with analog computers , then went to

digital computers , and finally to computing theory .
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I was appointed associate professor in applied physics in 1963 and full

professor in electronics in 1965. You must 
"
understand that there was a lack

of people, and the competition was not as high as in the U.S.A ., but I was a

full professor when I was only thirty -one, and I had to develop the laboratory 

from scratch. There had never been any previous professor; the chair

had just been founded. In Finland we have vacancies; we are not just looking
for people, but we are filling vacancies, like in the U.S.A . civil servant system.

So I was filling the vacancy and trying to develop a computer engineering
education.

That occupied my life until I finally decided to go to the States. I got this

possibility through an ex-Fulbright professor who was a dean at the University 

of Washington in Seattle. He invited me to come there during 1968-

69. I had at that time an interest in neural networks, which I finally could
continue, but even before that I had tried to create some algorithms which

might nowadays be similar to genetic algorithms, systems that just learn

by choices. Also, my idea of an associative memory was considered a little
bit weird at that time. I had the idea that we must somehow implement an

associative memory like the Fresnel holograms so that we are not really

reconstructing pictures.

We see a virtual image through the hologram. That would explain, for instance

, hallucinations and mental image scenes, our memorized image scenes,
and almost anything. I still think that that would have been, and still could

be, the highest achievement of my career- that I could explain these things.

But, unfortunately, nobody understood it .

During the late
' 
60s, I sent my paper to Nature, and it came back like a

boomerang because people said, 
"
Hey , you don

'
t separate the key pattern

from the recognized pattern,
" 

Later I was trying to make a more concrete

model, like the correlation matrix model that Jim Anderson was doing at the

same time. At that time I also submitted it to the IEEE Transactions on Computers

, and again it first came back like a boomerang, so I decided to write an

internal report after that. Remember that the internal report was after I had

already done research, and that was 1970, so I could have had publications
before that, but I didn

'
t. But then there was a small conference in physiology

fr~m which I published 
"
Principle of Virtual Images

" 
in a Scandinavian series,

Acta Polytechnic a Scandinavica.

The principle of virtual images I documented also in a neural network

article that started the journal Neural Networks and also published it in one of

my early books, but I never saw any interest from people. I mean, people
were not interested in that idea, although I think that it is a philosophically
very important idea. We need not know who is looking at the hologram
because we are not asking that question, even with a traditional Fresnel

hologram; we take it for granted that we can understand it . Similarly we

can separate the eternal question of soul from just practical conditions of

associative memory.
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As I was in the United States in 1968 and 
'
69 I had the first possibility to

think of the problem of associative memory. After that, I decided to start

a new direction in our university, move it more toward the fundamental

sciences and fundamental problems.

I was quite happy with this situation, but the political life was very disturbing 

in Finland in the 1970s. You said that you had your leftists here, but

it created a very special aroma in Finland because of the Russian influence

on our leftists. I don
'
t know whether this is interesting at all, or whether I

should even mention it , but I must say that the student political life was

much more severe and grave than it ever was here.

Here it was considered as radical when the universities had courses on

basket weaving and meditation, but these people in Finland- these student

politicians
- they later became important political leaders in our life, so they

were almost professional politicians at that time, and they had great support
by our state president. So in the 1970s the situation was very colorful. I had

to fight for my scientific work, to get it published, and then there were the

political problems and everything . . .

Then I had a period in my life which very few people know because it is

possible for professors in Finland to have extra business; they can take one

day a week off or even other times to run a business. I was running a design
office, an engineering office, together with my elder brother, for fourteen

years. We started in 1964. In that office we designed digital control systems
for Finnish industries. That was not a small activity in my life. We were

actually delivering on the order of twenty rather large cabinets full of digital
electronics to stabilize temperatures and the humidities in saw mill industries.

They were drying boards. I abandoned this activity about 1975, but it was

often parallel with my scientific activities.

JA: Did you find the practical work helped at all in your other work?

TK: Oh yes, yes. If you know that by your work you have to find the

salaries for ten people, that creates a very practical view of life. I'm sorry, but

I think that people here in our community, in the academia, just don
't realize

what it means if you have to do something which is so useful that it pays
and that people want to pay for it . Maybe I have been doing too many

things at the same time.

Still, my first journal article on the associative memories was published in

Transactions on Computers in 1972, in addition to those I mentioned published
in the Scandinavian series and in the internal reports. That article is now

considered as one of the initial articles of distributed associative memory

together with those by Kaoru Nakano and Jim Anderson. I became known.

Then I started speech recognition research in 1975. Again we were asked to

do something towards the "phonetic typewriter
" 

so that one of the printing
houses could have their raw material dictated: They said, 

'if you ever get 90

percent accuracy, that will be good enough.
" 

Now we have 95 percent, but I

don't think that it is still useful for printing houses.
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ER: What kind of approach were you using to speech recognition in the
mid-seventies.
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TK: In the mid-seventies we started first with the IBM type of approach.
We had the analog filter bank and then did some kind of direction cosine

comparisons with the correlation matrix formalism. I got these new ideas,
two ideas in 1978. One was called the learning subspace method which is an

early form of competitive learning, something which is similar to the map
idea, except that every node was actually a subspace- that is, a set of code-

book vectors which defined a geometric subspace in a high-dimensional

space. And the learning subspace means that you are rotating these subspaces
instead of making corrections on a single vector. It worked, but it is still not
as good as the map or the learning vector quantization [L VQ ] that I invented
in 1986.

The other invention was a more symbolic method, which is called redundant 
hash addressing. Hash addressing means that you are storing strings of

symbols at memory locations the address es of which are computed as pseudorandom 
arithmetic functions of symbols, regarded as numbers, so you are

mapping strings onto address space so that it randomly fills the address

space. The mapping is detenninistic, though, so you can find everything
practically in one search operation. I just extended this method where by
I created a multitude of mappings so that it was like a lens and rays- the
address pointers

- are converging onto the same location. This kind of redundant 

hash addressing would immediately find strings which were partly
erroneous and it would be a very good method. We started the work in

1972.

James Albus has a somewhat similar idea called the CMAC . I had several
doctors, at least two doctors, write their thesis on this method and some
others who partly used it . We could encode networks of sentences, like one
thousand sentences, and keep them in a packing storage on a disk, a separate
disk unit, and find them on the basis of erroneous cues in real time. So this

was a very interesting method, and we have written on it for some conferences
. We call it something like 

"
emulation of neural networks by software

methods.
"

ER: Was it just a coincidence that you and your brother
'
s business came to

an end at the same time that this speech recognition work started?

TK: I can tell you a very good reason for that. It was because in 1975 I

finally got this position of research professor at the Academy of Finland, and
I had to stop all extra activities. Also, the worldwide economic depression at
that time helped us make the decision.

ER: The other thing I was curious about is how did the printing company
or publishing company know to come to you? I mean, were they aware of

your work, and that
'
s why they brought you this speech-recognition

problem?



TK: We had at that time an associate professor who took part in so-called

round table. I don
'
t know if that is international, but they call it that there,

like the round table knights or something like that. He was there together
with the printing house director, so sometimes they talked science, too.

Always these ideas and agreements come through some special way, so if

you want to do something, you never get it, but you get much without

knowing it, if you have some secret links, hidden units.

JA: That
'
s the way the world tends to work, isn

'
t it?

TK: But we were ready, we had all the infrastructure for that because we

were interested in pattern recognition. We started with the recognition of

characters, but we didn
'
t continue for long because it was decided immediately 

that we would start with speech recognition. This started in 1975, but

we were on our own in 1978. That could be described as a Mark 1 of our

designs, and now we are working on Mark 7, which is the CNAPS computer-

based system [special purpose hardware from Adaptive Solutions inBeaver-

ton, Oregon]. What
'
s in the journal Computer is the phonetic typewriter that

was Mark 4.

JA: That
'
s the article we put in our book, Neurocomputing: Foundations of

Research.

TK: But at the time, when I actually presented this speech recognizer at the

1987 San Diego IEEE Neural Network meeting, I had this nice film. That was

the first time I called it a neural typewriter or something because before this

we didn
'
t talk about "neural" anything.

I remember in 1987 Steve Grossberg calling me to ask whether I would

like to join the INNS [International Neural Network Society] and be co editor

of the journal Neural Networks, and I said immediately, 
"
Yes."

Then he started to talk about the term 
"
neural.

" 
I said, 

'No , no, no, no.
" I

said, 
'
Why not learning machines or adaptive systems or whatsoever?

"

So he said, 
"
Yes, but we have so many opinions, and this seems to satisfy

everybody.
" 

Still, I think that, well, much of the work could have been done

in identical form under another name.

In 1975, I got a visit from the publisher Springer Verlag, and they were

looking for authors, and one of my younger colleagues knew of my interests

in associative memory. I said, 
"
OK, I could write a book, a small book on

associative memory,
" 

which I did. Yes, that was 
'
75 when we made this

agreement, and the book came out in 1977. I said to my colleagues, 
'
Now

I am putting my head into the ants' nest." I knew immediately how many
reactions- not only positive, but negative ones- 1 would experience, and

this was very true. But I was in the right place in the right time.

Writing that book was very good for my career. I could easily make new

versions- like the self-organization of associative memory- based on material 

which I had already collected. I also collected maybe two thousand

articles on content addressable memories. I still have this file in my room. It

fills one wall. Then I published a book, Content Addressable Memories, because
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I thought that there was some confusion in the context of associative memory 
and content addressable memory. People were mixing up these concepts

all the time. This second book on neural networks was a strict literature

study of the area of content addressable memories.
I had already started writing my first book while I was in the United

States in 1968 and 
'
69. There are these circulating agents of the press, and

one came to the University of Washington electrical engineering department
asking who would be willing to write a book on digital circuits, and I was

caught. That was early, in 1969, when I started to collect material. I had
notes already on which to base something, but practically I wrote the book
after I returned home during 1969. The book was published in 1972. In
1974, it was noticed by IEEE because the IEEE Spectrum magazine made a

study, a special series of reports, where they evaluated various areas, and

they evaluated computer science and computer engineering books. I think
that they went through hundreds of copies, and they collected something
like twenty recommended books, and I got the highest points, mainly
because the book had so much coverage.

Then the book was translated into Polish, the only language into which it
was translated. That was before I started to write the neural network books.
The book on content addressable memories came out in 1980, and both it
and the books on self-organized associative memory, self-organization, and
so on have come in many editions. The first associative memory book was
translated into Japanese and Russian, and the content addressable memory
book was translated into Russian, but so far I haven

'
t heard of anything else

unless there are pirate translations somewhere. The Self-Organization and
Associative Memory book is an outgrowth of the old Associative Memory
book, and now I have five books.

Starting in the middle '70s I also started to go to big conferences. In 1978,
Professor K. S. Fu, who was a very well-known character in the pattern
recognition field, asked me to establish the Finnish society for pattern recognition

, which we did, and in 1978, in Kyoto, at an international pattern-

recognition conference, we established the International Society of Pattern

Recognition, where I have been active from the beginning in the same way
as I have been active in neural networks. I was even the first vice president
during 1982 to '84.

I think that the pattern recognition field contains so much material and
basic insights into the recognition field that it should be taken into account
much more in what the neural network people are doing. There

'
s so much. I

think that many of the articles that appear in our circles nowadays have ideas
that were published earlier in pattern recognition.

In the 1970s sometime, starting 1974 or so, I often went to German conferences
- small symposia on biological modeling on neural networks-

where I met many famous people. I met German and American and many
other scientists; I became acquainted with Fukushima and von der Malsburg
and many others.
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Germans love the type of symposia where they invite fifty people, of

which half are giving speech es, and half of them are making comments, so

the discussion is usually twenty to thirty minutes long. I've given some

papers in those symposia. The German view into neural modeling was very
scientific, what I characterize as scholastic, so that they would like to know

everything about the details, all the biological details and functions. It was

very difficult to get an engineer
's point of view accepted, like I was doing,

so I was actually a precursor of the developers of artificial neural networks

because I characterized myself as an inventor. I said that we should actually
be developing new paradigms for new technologies because if you are

developing or inventing something, you must do the most with the least

material. So I was making the first linear models of adaptive associative

memory, correlation matrix and learning models, whatever, and they were

not accepted until the 1980s.

I thought that the whole field was dead. I did not believe in it very much. I

was just living the usual academic life in the late '70s and writing books until

suddenly I was invited in 1985 to the annual meeting of the Optical Society
of America. I was amazed they had accepted the idea of the linear associative

memory. At that time they already had something like five experimental,

optical associative memories. So that actually started my career. I was already
known because I had books in the right place at the right time.

I don
'
t know what my position otherwise would be. For some reason, perhaps 

because I had personal relations and the books, I was the guy who represented 

Europe in the first years. Then in 1988 I mentioned other Europeans
who should have been drawn to the activities. I mentioned the names of

Eduardo Caianiello, John Taylor, Igor Aleksander and some others, who then

started to come to these conferences too. That was very interesting.

ER: Were you aware that neural networks had entered a period of

quiescence in the United States in the 1970s1

TK: Yes, but I really didn
't know about this reentrance of neural networks

in the beginning of the 1980s. Of course, I knew about Hopfield
'
s work, but

because I knew that Jim [Anderson] had done similar work in 1978, I was

completely confused. I didn
'
t know what to think about the situation, but

later I understood that where Hopfield started was in the physical community

, and the physicists were so enthusiastic about the spin glass possibility.

They thought that perhaps this was a new way to do physical information

processing. And, you know, the Hopfield networks are still studied very
much, but mainly among theoretical physicists.

I had also written something about a related idea in 1976 and in my 1977

book. I never had the positive feedback like Jim and Hopfield had, but I had

feedback in another sense, on the correlation matrix memory. My feedback

was adaptive and negative, while Hopfield
's feedback was positive and nonadaptive

.
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My correlation matrix feedback memory is called 
"
novelty filter" because

it creates this filter, which after exposure to a new pattern starts to become

opaque to that pattern. The output fades out. For a new input pattern the

output is the maximally new component in the new pattern, and then it fades

out too. In this way you can train the network, really, to a set of new patterns
, and as an associative memory it has the same capacity as the number

of lines that is the dimensionality of the vector. I have mainly been able to

publish these ideas both in the German journals and in my books, which are

not refereed. But I had great difficulties in getting papers published in U.S.

publications.

ER: Were you aware during the 1970s of the kind of switch from more biologically 

inspired models to the AI models- the more cognitively inspired
models and the bruhaha surrounding Minsky and Papert

's book?

TK: Yes, of course, I was one of the people suffering from Minsky and

Papert
's book [Perceptrons] because it went roughly this way: you start telling

somebody about your work, and this visitor or whoever you talk to says,
"
Don

'
t you know that this area is deadf'

It is something like what we experienced in the pattern recognition society 

when everything started to be structural and grammatical and semantic
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and so on. If somebody said, 
"
I
'
m doing research on the statistical pattern

recognition,
" 

then came this remark, 
"
Hey, don

'
t you know that is a dead

idea already?
"

Communities are very strange in the sense that some strong personality
can lead it for a long time. He's going to dozens of conferences, and his

opinions are cited and people ask each other, 
'
What does he think about

this? And what do you think that he thinks about this?" So it
's like some kind

of propaganda spreading in scientific communities.

ER: It cuts both ways because Hopfield influenced the community in a

positive way about some of his ideas, irrespective of how innovative or

original his thinking was. In part, it was the virtue of where it was published
and the community that it managed to reach.

TK: I hoped that I could keep from mentioning anything negative about

that work because it was Hopfield who put the neural network community
on the bandwagon; but the truth is that Hopfield might have been the sixth

or seventh who published the same idea. In some way, I think his work had a

positive influence. You need some kind of support, and the support came

from the physics community-
especially in the area of, what should we say,

statistical mechanics and certain people studying collective phenomena and

people studying spin glasses because that seemed to be a very good theory
for spin glasses. But there are also people like W. A . Little, who had actually
written similar things on spin systems, so it is not too wrong to say that

there were half a dozen articles along the same line as Hopfield
'
s.

I have always found the lack of support the worst problem in my career.

Finland is a small country; we are the dead end of the western world because

behind us was only the Soviet Union, and nobody crossed that border very
often except on the way to the conferences held in the Soviet Union. Finns

are very apt to accept new ideas, but sometimes they also want to declare

new ideas. It 's either pure accepting or pure declaration. It
'
s seldom transporting 

ideas from one country to another.

ER: When I met you in 1987, you had continued the speech recognition
work. You were doing some of that work not just for Finnish language

speech recognition, but also for the Japanese language under contract to

Asahi Chemical Corp. Could you make a comment about how that came

about?

TK: Sometime in 1983 or 
'
84, there were very high expectations about the

future of speech recognition. Some economics journals had published articles

about the forecast; they had recognized the need in offices for dictating
machines that automatically transcribe dictation, and they said that in the

publishing business, speech recognition would have the potential to be a

very, very good business. So the expectation of course went sky high.

At that time, Asahi was looking for partners; they were searching and visiting 

a lot of speech recognition laboratories, including MIT and Kurzweil

Applied Intelligence and others. They came to my laboratory in 1984.
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I had prepared a demonstration where I spoke Japanese words like
"
sakura" and so on, and they were most fascinated about the speed of the

speech recognizer. The speed was so high that it was almost disturbing: when

you saw the word appearing on the screen, it affected your pronunciation.
Asahi was immediately interested. They started research with us, and

there was a contract for a two-year period of research, &om 1985 to '
87,

something like two academic years. They sent one of their men over, who
was with us all the time, and then there were two short-time visitors. Our

objective was to transfer our technology into the Japanese typewriter. The
motivation behind this objective was that the Finnish and the Japanese language 

are close phonetically. So I thought that our solution would be very
good for the Japanese typewriter, and this guess was right .

In general I
'
m not willing to make guesses because like Einstein said, 

'
1'm

ninety-nine times wrong and one time right .
" 

If you ask me about the future
of anything, or is it possible, I say, I don't know, but I will find out after I
have triedit .

My algorithms include the self-organizing map, redundant hash coding,

dynamically expanding context, the learning vector quantization and others.
Each one I have simulated myself at least over a one-year period of time before 

publishing it . My computers run all the time until I have full comprehension 
of what is going on there. I have always said that you have to

actually think like the process before you can make the process. You have to
internalize all these ideas in your own brain so that you can imagine what is

happening. After that, you can make the design.

But I haven't noticed that many people do it that way. They just take the

algorithms, like some fast Fourier transformation, and they believe that if

you put in some data, out comes a unique result- which is not true in learning 
machines and neural networks.

I once cited in 1987 the man who made artificial rocks for Disneyland and

Disney World for twenty years. He said, 
'
it is easy to make rocks when you

think like a rock." You really have to live with it, and you have to imagine.
So I think it is a common feature to all inventors that you must be able to
visualize - not only visualize, but see inside. To visualize means that you
must be able to internalize various kinds of things so that you are imagining
what is going on.

This is the classical example. At Battel le Memorial Institute, one of their
leaders said once that when he's testing new people, he gives them this

problem: imagine Rubik's cube. Then you ask people the question, 
"
How

many of the little cubes have color on three sides, two sides, one side, and 
.
on

no sider
' 

The purpose is not to find the answer; the purpose is to watch
what people are doing.

Most people are looking for a piece of paper and pencil, so either they
draw figures or they start writing mathematical relationships to find it out.
Real inventors see the cube like the eidetic image, and they put their fingers
on the little cubes and they count them. So if you see a person just opening
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his eyes and start to look as if he saw the cube, then he
'
s a real inventor . I

could certainly say that I
'
m an inventor because the moment I read about

this without yet knowing the answer, I was immediately sure that I had a

cube in front of my eyes.

I spend more than a year with each major problem I study; that shows that

you have to try many things. I have many notebooks full of ideas, wonderful

ideas, elegant ideas, but maybe a fraction of them work well enough so that I

can publish them. If I get an idea, I don't publish it right away.

I got my first shady ideas about the self-organizing map in 1975. I published 
them in 1981. It is usually several years before I

'
m ripe to publish, so I

never publish anything right away. I have to be convinced. It must be credible

, and to gain this credibility is some kind of growth process in my mind. I

don
'
t know if many people are that way. Many people say, 

"
Oh, I must find

a spot under the sun.
" 

They publish immediately, when they get something.

JA: When I get an idea, a great idea, it very often turns out to be wrong.

I don
'
t want to publish real fast.

TK: Exactly, yes. One of my colleagues in psychology says, 
"
Oh, if

I could visit all those places where they have my thesis on the shelves,
I would go there and take it away!

"

I just hate the idea of the so-called networking
- what they have in the

European Commission. The commission has now decided that it should establish 

centers of excellence and networks of centers of excellence, which are

exchanging of people and ideas very fast by all possible means. Why should

I tell my newest ideas to anybody? The biggest reason not to is, as Jim said,

you are not quite sure whether they are right or wrong; you have to test

them over a long time. Often, premature ideas cannot be told to other

people. Or then, of course, if you want to publish something, you have

to keep it to yourself at least until it is printed, so why tell all the ideas?

Unfortunately there is so much competition, and many of us of the older

generation have reached the stage where we are no longer so fast, so rapid,
as is the younger generation. It takes more time for us to finish our paper.

ER: Besides speech recognition, are there other areas that you
're focusing

on?

TK: On the application side, I have left most of the work to some collabo-

rators, students. For instance, there
'
s this very promising work on texture

analysis from images, which has been applied both in industry as well as in

classification of various cloud types from satellite images. This is a good

piece of work, and more than half of the work is included in the preprocessing 
analysis, where we have a very good person doing the work.

We have some directions in medicine where we are looking for new applications 
in medical engineering or analysis of medical data- like analysis

of brain waves, analysis of lung sounds, diagnosis and clinical analysis of

voice disorders, and so on. When people ask me what the three most im-



portant directions for neural network applications are, I usually say industrial

applications, especially in instrumentation and robotics. Second are medical

applications, and third, telecommunications. These are all areas for which
neural networks are a complete fit . They all are dealing with difficult data
and variable data- time-variable data for which you need the adaptive
properties of networks. But speech recognition doesn't belong to that because 

it is more like an isolated problem area.

ER: Are there specific industrial, robotic and control applications that

you
'
re doing work on with your students?

TK: Well, actually some of the work has been initiated without my influence

, but it directly comes &om my ideas. Since 1985 there has been a professional 
installation that one of the Finnish papermill industries is using

the texture analysis method for the analysis of fiber distribution in paper
machines. It works in the production run, and it affects the control variables

, which are set every week.

ER: It's an installed neural network application?

TK: It is, yes. I can be proud of it ; it is the self-organizing map.

ER: What is the name of the company that
'
s doing that?

TK: I cannot tell. It is a business secret. There's another Finnish company, a
sawmill company, which is analyzing the quality of boards in such a way
that when you make the first saw cuts onto it on four sides, by looking at the
surface you can determine what quality of wood you have before you have
to decide how you will optimize the sawing lines. This much I can say: both

companies are in eastern Finland. But there are also other companies which
use the maps.

It is my dream that the self-organizing mapper could be used as a monitoring 

panel for any machine where you have to monitor dynamic variables
- or if not dynamic, then with lots of parallel variables. You could have

that in every airplane, jet plane, or every nuclear power station, or every car.
You could see immediately what condition the system is in. That would be

something like what our nervous system is doing instinctively. There are
now two small applications exactly like this.

In telecommunications there are also very good ideas- for example, our
idea of developing detector systems for digital signals, discrete signals, that

you might encounter in digital television and digital radio. This technology 
is just so new that if you want to use it, you must fit it to the existing

standards.

JA: What are you doing in biology and medicine?

TK: I am no biologist, and the reason why I started with biological problems 
was that everybody thought neural networks are an explanation of the

brain and cognitive process es. So during the 1960s and early 1970s I was

actually desperately trying to relate these networks to biology . We did lots
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of literature search es and studies in order to find new experimental findings
that would be helpful for us. But in this period, mid-1970s till the mid-1980s

it was more like technological development along the pattern recognition
lines, and it has been until quite recently.

Last summer I felt a real duty to relate the self-organizing map to some

kind of biological process. I don
'
t claim that it is exactly that, but if people

understand, if people see the forest instead of trees, then they can see that

there are plenty of avenues now if you start explaining biological things
with the [wetware] models as well as with dry network models.

The techniques of distributing information by means of molecules is so

simple; it is primordial in biology . Why shouldn
'
t the brain be doing that? I

think it is doing it all the time, especially in learning. Maybe not in a single
transmission, but in learning you have to have some kind of sophisticated
chemical process es in the brain. So this is my conviction now, and this is

why I wrote that long article in Neural Networks [
"
Physiological Interpretation 

of the Self-Organizing Map Algorithm ." Neural Networks 6: 895- 905

1993], and I hope that it will be accepted by the community. I
'
m only afraid

that I'm a spoiling their joy because so far everybody believes that we can

do everything with networks of nodes and arcs.

As for medical applications, I mentioned the analysis of brain waves,
where you can just map the various states of awakeness onto the map. In

following experiments you especially need all sorts of monitors and indi-

cators, and this might be very good, for instan~e, for the study of sleep or

for the automatic study of epileptic people. It
's time consuming and very

straining to follow an experiment where you have to look at the EEG recorder 

and determine where it begins.

But if you can develop an automatic alarm method that says, 
"
Please be

alert now,
" 

and something interesting comes out, then the experimenter can

do much better experimental work and clinical work. To aid medical experiments 
and studies clinically and in laboratories is one very important application 
area. I don

'
t know about the prostheses and direct implants and so on.

I don
't want to speculate. Weare not doing anything along those lines. But

this monitoring business certainly is something which is very interesting and

possible for us.

IA : Are you doing any projects yourself right now besides the EEG one?

TK: I don
'
t say that I am doing these practical projects myself; there is

always a group leader who is actually doing the research work and organizing 

everything. I
'm more like a person who is keeping an eye on everything

and trying to find out whether the work and what is done is sensible. I
'm

sort of a watchdog. What I'm doing personally is that I'm trying to develop
these paradigms theoretically. The big question nowadays is what formalism

I should use in order to prove the self-organizing map processor mathematically

. We had a whole winter seminar last winter on the self-organizing

maps; still, we are not so sure whether anybody has the right answer to it .
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JA: How many people do you have working for you?

TK: It varies because they are from very different ages, starting from

young undergraduates I have mainly three group leaders, but roughly fifteen

people are paid from research money.

JA: Fifteen people, that
'
s a big group.

TK: Yes, and of course there are separate subgroups. Also, people come

and go.

JA: Do you get most of your funding

TK:
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&om the Finnish government?

Because I
'm the research professor of the Academy of Finland, and I

get my salary and my research &om the academy, while I'm working at the

university, according to the contract, the machines must be bought by the

university, but all the other expenses come &om the academy.

JA: Is that including the salaries of your coworkers?

TK: Yes, except if they are paid by the university, if they are laboratory
technicians- 1 mean, academic laboratory technicians or perhaps permanent
assistants. There are some lecturers who are permanent.

JA: Do you have to write grant proposals?

TK: Yes, well, to get to this position is of course very difficult because

there are few positions and plenty of applicants, but I have been lucky. It is

necessary to write a proposal only every four years, but I have done that

every year just to be sure. In fact, the board has to accept every year' s

budget anyway, so I
'
m writing some kind of description every year.

JA: But it
'
s not constant proposals, like the things you have to do in this

country?

TK: Well, not at all in the same sense. If I count all the university salaries

and the machines, then it is roughly fifty -fifty that my laboratory gets funds

&om the university and from the academy. But flexible research money
comes &om the academy. There are agencies in Finland that give out money,
but there are also restrictions, much bureaucracy, and you have to find a

partner &om industry or something like that.

JA: It sounds wonderful.

TK: Yes.

ER: Years ago Bart Kosko said to me, 
"
Don

't -you know, Teuvo is the Carl

Sagan of Finland? He
'
s the most well-known scientist in his own country."

He also said that you have television shows?

TK: Television programs? There have been perhaps a dozen interviews on

TV. There was one fifty -minute program. I had no talk show, but there was

one fifty -minute program when they followed me during one week- my
life, my home, and so on- and then they put it on the TV network. I think

that there are dozens and dozens, maybe even more than a hundred, newspaper 

articles, interviews, and such that have been written .
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tronic circuits; then I had to learn biology . You cannot become a neural network 

researcher without knowing at least the basics.

ER: I'm going to shift gears again. What do you believe are the questions
in the field that you would personally like to see answered?

TK: Scien Hfically, again, on the psychological side, I would very much like

to address this question of the virtual images, so that you are not working
like a stimulus response machine, but you are crea Hng some sort of understanding 

of what is going on. That doesn
'
t necessarily need much mathematics

, but it needs understanding.

I consider one of the greatest problems to be the preprocessing problem
because if you look at various items, you can see how your field of attention

is focusing narrower or wider, and so on. If you start doing this introspective

experiment, you will be amazed about what is happening in our own system.

ER: Is knowledge of your work in the neural network area widely known
within your own country?

TK: At least the name of my research has been spread. I think so. I am not

always so sure about the fare of my applications. Sometimes they are treated

very well, but there are also some cases... Although it is easier nowadays,
life is never easy. You are living a dangerous life all the time. You cannot

stop worrying. I
'm sorry, but I'm of the worrying type, so that is how I feel.

ER: Is there work done by other people in the neural network field that

you feel is particularly important or exciting to you?

TK: You mean theoretical or practical?

ER: Either.

TK: I could start answering about the practical. I think that some work
which is done by the entrepreneurs is very good. I could mention Frederico

Faggin [of Synaptics], whose work I really admire. Hecht-Nielsen has a
view into the neural networks area. He has great virtues and profits in that
direction.

In the area of theoretical research, I haven't been convinced of many
breakthroughs. And by the way, like I said earlier, some algorithms could
have been studied in mathematical statistics or statistical physics without

any knowledge of neural networks.

ER: When you advise students, especially those who are just starting out
in this field, what kind of studies do you suggest for them?

TK: Well, nowadays, if we have bright students, I say, 
"Don't forget

mathematics." Then I advise them to read matrix vector formalisms and
mathematical statistics, theory of pattern recognition and image analysis,

optimal and adaptive control, and things like that. But computer science has
never been very high on my list. The students have to know how to program 

computers and systems, but the problems of computer science are not

important to this field at all. I had a background of being an experimental
and partly theoretical physicist, a practicing engineer, and designer of elec-
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So the neural network or the neural system or some kind of cognitive system
must build common case channels, which they first establish and then use.

People in research are doing it the wrong . way . They are developing map
-

pings that should be globally invariant . I think that is wrong . I have done

and I let my students do a small experiment where we measure the reaction

times to various sizes of letters , and I can certainly draw conclusions that

there is first a set of channels established, and after that , these channels are

used. I would like to have some kind of theory about this ; that has been a

dream. I think that locally invariant perception is the answer.

ER: I
'
d like to talk a little bit about the future . I wonder how you envision

the field developing over the next three years, five years, ten years?

TK: I can only base my opinions on the results and progress that I have

seen during the past five years and just recently . First of all, it will be realistic

to say that like when micro process ors started, you could predict how they
were developing . We can almost predict the development now of how the

capacity of neural networks is growing . I would say that parallel processors
or single processors are not what we need. We need some kind of circuits

which have very flexible switching capabilities
-

partly analog, partly digital
- and I see progress along these lines. And I think that this progress is visible 

in three years, in use in five years.

Ten years is a limit which is very , very fuzzy , so that it
'
s difficult to say,

but I think that the main incentive for building neural networks is that they
will be cheap. The amount of information processed per dollar is orders of

magnitude higher than by any other method .

But what else, I don
'
t know . It

'
s difficult to say. Maybe the dream about

a really cognitive machine is too far away, not the least because it
'
s difficult

to define what these machines should be doing . We have made isolated

demonstrations of abstraction and invariance formation and so on, but they
work for rather clean experiments . If you take practical sensory signals, you

might run into big difficulties .
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ER: What is your date of birth and where were you born ?

SG: December 31, 1939, in New York City .

ER: Tell us something about your parents and what your early childhood

was like .

SG: My grandparents were &om Hungary , around Budapest, so I
'
m a

second-generation American . My mother was a school teacher. My biological 

father died when I was one. My mother remarried when I was five ,
and I was adopted .

My new father was an accountant . My mother was a devoted teacher,
and she got her PhiD . equivalency at a time when it was hard for a woman

even to go to college . She very much influenced my religious attitude

toward learning . We grew up first in Woodside , and then when my mother

remarried , we moved to Jackson Heights , Queens, to a lower -middle -class

neighborhood filled with upwardly mobile Jewish boys who were fiercely

competitive .

I was always very interested in art and music.

ER: Was that a natural inclination , or was that something that was fostered

at home?

SG: It came &om within . I was drawing &om a very early age. I used to
win a lot of art prizes, including study at the Museum of Modem Art when
I was in high school . As for music, I went to the neighborhood library and

discovered they had' 
racks of records . I discovered all the major composers

there. That made me want to play piano , so my parents started to save
and eventually bought a piano . I learned very quickly . I actually did a lot of

things well and was always first in my class.



ER: Before you were first in your class, what were your early childhood

experiences like? Did you have a brother and sister?

SG: You
'
ll have to prime me on this sort of thing because I don

'
t usually

talk about myself . I usually talk about work or other people . I
'
m a middle

child . My older brother is two years older . My younger brother is the child

of the second marriage . He
'
s six years younger than me. This is a difficult

position to be in if you want to be a scientist , apparently
- to be the middle

child and also not the child of the living father . How this worked out , I don
'
t

know . I guess it worked out just because I have certain talents, and I worked

incredibly hard .

I knew I didn
'
t want the life that seemed imminent . I looked around , and I

saw a lot of very nice people who seemed unhappy with their lives . I wanted

to find a higher form of life . I used to think about it almost in religious terms,

although I
'
m not what you

'
d call a traditional religionist if only because I

'
m

too much of a loner . I don
'
t like believing things just because other people

believe them . I try to find a path toward some higher form of existence. This

is really fundamental to my whole point of view .

I was very aware of the fact that living things are either growing or they
'
re

dying . I had a strong sense of the dynamics of life - you know , blooming
and decaying . It was already clear to me when I was very young that we

have a short time on earth . It was also clear that society creates barriers to

choice and that I had to find a way to keep my options open broadly so that

I could eventually figure out how I could touch something that was more

enduring . This , to me, was a deeply religious feeling : how to be in touch

with the enduring beauty of the world , even though you can only personally
be here for a very short time . It seemed the only way to do that at the

time , given my limited options because my parents had no money , was to be

incredibly good in school .

ER: What were your early childhood experiences like?

SG: How early do you want ?

ER: As early as you can remember .

SG: Oh , I can remember when I was one.

ER: You can remember when you were one?

SG: Well , I have one memory , and that was when they took my dying
father Horn the house to the hospital . The big black bag of the doctor was

right in hont of my face. That
'
s my only memory Horn so early . Later, I

was lonesome . I was very shy . In fact, one of the hallmarks of oh, the first

twenty -odd years of my life was extreme shyness. I also didn
'
t have much

experience with how to be a man because I never knew my first father , and

my second father was very distant .

My mother was marvelous - is still a remarkable woman - but being

Hungarian was not good at showing or responding to affection . . . . I don
'
t
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know if you know about Hungarians . They had the highest suicide rate in

the world for many years, and one reason is that they wean you early from

any show of affection . This isn
'
t true of all Hungarians ; for example, if you

read the life of John von Neumann , you see that he had quite a different life

because he formed a strong attachment to his father and was pampered by
all the women in his extended family . One thing that made this possible was

they had a great deal of money , and they led a privileged life .

We had little money . Although my parents were totally committed to

their children and deeply loved us, there was a lot of stress, and little overt

affection . My older brother was much more affected by my father
'
s death

than I was. That made him insecure and aggressive, and he used to beat me

up regularly . That was frightening and made me feel vulnerable .

So I became shy and withdrawn , and- like a lot of people who are this

way
- became very creative , fantasized a lot , and tried to find another more

appealing world . My world was the world of art and music at first and a

world of trying to find approval . I found approval by trying to do very well

in school , which also gave me great satisfaction because I was learning about

things that often described other , more perfect , worlds .

In fact, many years later, when I read some of Einstein
'
s essays, the phrase

lithe painful crudity and hopeless dreariness of daily life
" 

stuck with me. Since

that time, I
'
ve built a life with my family and friends that is happy , fulfilling ,

and full of meaning for me. But in my early childhood there was more

painful crudity and hopeless dreariness because there were no examples of

lives around me that I wanted to live . There were good people who were

doing their best, but I viewed their lives as painfully crude and hopelessly
dreary , so I had to find something that wouldn

'
t feel that way to me, and

from an early age I found it in learning more about the world . I also realized

that I wanted to better understand why so many really nice people seemed

unhappy , so I got very interested in people .

Also , you know , if you grow up in New York , there are only two major
forms of life : people and dogs . You can

'
t even see the sky half the time , so it

wasn
'
t as if you were in Nature and looking upon wonderful seasons and

constellations . I therefore got very interested in the most interesting thing in

New York , which was human life , and how people get on, how we come to

know things about the world , and so on. From an early age I had a yearning
to understand people , and I figured I would become a psychiatrist , as soon as

I figured out what a psychiatrist was.

ER: And how early in your life did you start to draw ?

SG: Oh , from the earliest years. I was drawing , oh, goodness, certainly
well before I was five . First , I had all the usual coloring books , but then I

started more active drawing , and I drew at a high level for my age. In fact, it

became ridiculous when I was in public school and high school . I used to

generate these large illustrated books that shocked my teachers because they
were at a professional level .
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The problem was that, even though I was in gifted classes, there was no

one there to really help me build my confidence or move as fast as I could.

Instead, it was a highly competitive environment. My public school, which

was PS 69 in Queens, turned out to have kids with an unusually high overall

cumulative IQ .

For example, we took standardized tests in the eighth grade, on which

the highest you could go was the equivalent of having graduated from

high school. It was called 12.0 plus, the twelfth grade plus, when you were

in the eighth grade. The teacher foolishly read our scores out loud. It was

12.0 plus, 12.0 plus, 12.0 plus, until there was one poor kid with an 11.9-

that kid was crushed. It was a sick environment. There was really little opportunity 
to enjoy being smart, apart from the fact that the satisfactions in

learning were great, but the competitiveness was horrendous.

ER: You said you were also very involved with music, and I was wondering 

what form that took.

SG: Well, basically, my parents knew how much I wanted to play, and

they were able to manage buying a little piano when I was in seventh grade.

Within the year I was playing pretty advanced things
- like Bach partitas,

Gershwin
's "Rhapsody in Blue,

" 
and lots of Chopin. My teacher called me a

"
genius,

" but I guess every music teacher tells parents that their child is a

genius! One reason that I didn't go into music was I realized that, although I

could play pretty well, I didn
'
t have great hands; I also didn't have absolute

pitch. I also tried composing some pieces for piano, and enjoyed this a lot

but this still did not satisfy my yearning to contact enduring truths.

I wanted to do something where I could touch the eternal. I had this feeling 

that we
'
re only here for a moment, and when we're not growing and

helping others to grow, then we
'
re dying. My hope was that the fruits of my

mind might live longer than my body, and whatever understanding I could

achieve would endure even as my body collapsed. So I very much needed

to find something more enduring, more universal. These was this religious
sense of needing to be in touch and commune with the world at an early age.

This was my way of seeking a better future: to find a level of reality in life

that could endure.

ER: Where did you go to high school?

SG: I went to Stuyvesant.

ER: Which is one of the New York schools for gifted children.

SG: It was either Stuyvesant or Bronx Science. Bronx Science was about an

hour, an hour and a half away, and Stuyvesant was forty -five minutes, but in

those days you could take the subway and feel safe. When I first attended

Stuyvesant, it was a wonderful experience. I had some very good teachers,

and I flourished in many ways there. But I was also aware of the terrifying
statistics of the place. What do I mean by that? We had a class of maybe
seven hundred kids. This was a time when there was still prejudice against



Jews in schools. There was a quota system. And only the top, a small segment 
of a place like Stuyvesant, would even get into college. Of course, you

could go to CCNY [City College of New York] which brought outgenerations 
of great scientists. But I didn

'
t even know about CCNY then.

Let me just give you an anecdote to set the stage. I remember going to
a party after I graduated from Stuyvesant for kids from Bronx Science and

Stuyvesant. One kid came up to me and said, 
"
You '

re Grossberg, aren
'
t

you?" and I said, 
"
Yeah,

" 
and he said, 

"I've hated you for four years.
"

I said, 
"
But have we met?" and he said, 

"
No, but I wished you would die."

I said, 
'
Why ?" and he said, 

"
Because if you

'
d died, I

'
d be one higher in

rank at the school."

I felt that all the time. There were several hundred kids who all had grade-

point averages of around 92 percent- that's several hundred kids within
fractions of a point from each other, which determined whether they got
into college. I also knew kids who got three 800s on their college boards,
but didn

'
t get into any college to which they applied on the first round.

There were quite a few of us who had three 800s. I had three 800s on my
boards, too, but I was also, fortunately, first in my class with 98-pointsome -

thing average. So I succeeded within this system. I realized, though, that I
couldn

'
t stand this relentless competition much more. I needed out. I wasn't

getting a chance to pursue my own goals, my own aspirations. My whole
life was being spent on competing to escape, and I realized I had to find
a way to get free from this relentless rat race fast. I didn't yet know what
freedom meant, but I knew that I needed it to find out what I was going to
do with my life.

Unfortunately, my family had no money with which to visit colleges. It
was also a conceit of the time that, if you wanted to escape, you should try
to go to an Ivy League school; that's where smart Jewish kids went. And so I
started looking at Ivy League schools, and applied to several. Dartmouth had
a senior fellowship program, which meant that if you were good enough
in your classes, then in your senior year, you didn'

t have to take courses

anymore. You'
d have a free year to do research, whatever that was. That

was one reason I applied to Dartmouth. Anyway , I got into a number of
these schools with fellowships, including Harvard and Yale, but I got a

bigger fellowship from Dartmouth, which was important because my parents
needed the money.

In Dartmouth, my goal was to try to do so well that maybe I
'd get a

senior fellowship. I worked so hard at Dartmouth that many professors said
that I was the best student that they ever had.

I was so highly motivated to find my way that, when I took Psychology
1, it unexpectedly created a storm of ideas in my mind. I got immensely
engaged by human verbal learning data, animal discrimination learning data,
and human attitude change learning. I was entranced by the implications of
these data for how things are going on moment by moment in our minds-

the kind of things that I still talk about: the real-time dynamics of individual

StephenGrossberg



StephenGrossber~172

minds. I could see that studying mind brought together several of my

yearnings.

First, it was a good way to better understand people. Second, it gave me a

way to better understand the process es of adaptive growth and development
that were so much a part of my view of the world .

In fact, just anecdotally, I don
'
t know if you know who Stuart Kauffman

is? [A Mac Arthur Fellow, now at the Sante Fe Institute.] Well, Stu and I were

classmates at Dartmouth, and we met just before school started at an overnight 

hike where new freshmen got a chance to know each other. Stu and I

found each other that first day, and got into this long philosophical debate

having to do with the mind: how do you know and how do you see, etc.

I can
't remember the details, but I do remember being up in a loft one

night, and we were still talking away while other kids who were trying to

sleep were saying, 
"
Shhh, shhh.

"

Even then, what would happen in our debates was, we would bediscus-

sing some topic during which I would say something, and Stu would say,
"
But that

'
s not philosophy

" because, you see, both of us were deeply interested 

in philosophy; we were high school philosophers! I had always

thought of myself as being interested in philosophy and trying to define

large issues and how to understand them.

Stu went on to become a philosophy major in college, and then he went to

England on a Marshall scholarship in philosophy. It was only later that he

came around to my view that philosophy doesn
'
t have the methods that we

need, and then made a big switch to medicine and from there to his present
research in evolutionary biology .

But already, as freshmen we were having this battle. I
'
d say, 

"
But I don

't

care if it
'
s philosophy or not; this is what I want to know, and I want to find

the right tools to know it .
" I was already searching for tools to understand

better how our minds know the world, so when I read classical psychological

learning data- the data of Hull, Guthrie, Pavlov, and all these other people
- they really changed my life.

That year (1957- 58) after Psychology 1, I went through a major intellectual 

struggle trying to figure out how to represent the real-time process es

underlying these learning data. That is when I introduced the so-called

Additive Model, which later in 1984 was called the Hopfield model by
various people who didn

'
t know the literature of our field. By then I had

published at least fifty papers on it .

This misattribution. You know, when I introduced this model, indeed this

modeling framework, it was really original, because there was nothing like it

in the field. AI [artificial intelligence] was itself barely formed in 1957. There

was just nothing to turn to for guidance. One had to find one
's own way. I

derived a lot of guidance from the bowed serial position curve of human

verbal learning. The bow reflects the fact that the middle of a list is often

harder to
'
learn than its ends. Why does it bow? Why is learning asymmetric

between a list's beginning and end? When you have rest periods between



learning trials, why does the whole bowed distribution of errors change?
. 
Why do errors occur in the forward direction at the beginning of the list
and the backward direction at the end of the list? Tome , these data seemed

extraordinary: first, that learning could go forward and backward in time;
next, that silence between successive list presentations- the nonoccurrence
of items in the future - could retroactively reorganize the entire distribution
of learning. Events going backward in time excited me a lot and made me
think about how to represent events in time.

I loved these data, and it was through studying them that I derived the
Additive Model neural network with its short-term memory traces at network 

nodes, or cell populations, and. its long-term memory traces in neural
connections going forward and backward between these nodes, with the

long-term memory traces at the synapses.
I think it 's an interesting fact that I didn't know any neurophysiology

when this model was derived. It was through quantitatively trying to understand 
the real-time dynamics of the serial position curve that I realized that

there were short-term memory and long-term memory traces and competition 
among these distributed traces. I was also talking to my premed friends

who told me about what they were learning about nerve cells, axons, synapses
, transmitters, and the like when I realized that my model already had

all of these properties.

I can hardly recapitulate my excitement when I realized this. It was such a

passionate time. When it dawned on me that by trying to represent the real-

time dynamics of behavior, you could derive brain mechanisms, I started

reading ne Urophysiology with a vengeance. This first experience captures
the story of my life as a thinker: To first try to understand behavior in a top-

down way, always focusing on how behavior unfolds in real time, moment

by moment, and trying to keep all homunculi out of the explanation. The
model has to do it by itself, whatever its explanatory range. Such analyses
have always made a link to neuroscience, and then computational and mathematical 

analysis showed how interactions among many neurons led to emergent 

properties that linked to behavior. Given the neural link, I'd then work
bottom-up and top-down to further close the gap, pushing on both ends,
between brain and behavior.

At that time, doing this work involved pretty extreme feelings of passion,
terror, joy, and love. I was quite alone and pretty young- only 17 or 18-

to be trying such a difficult path.

Anyway , to make a long story short, I did get a Senior Fellowship, and I

spent my senior year continuing my research, including human verbal leaming 

experiments. I knew that I had to make a difficult decision about what
sort of career to follow . I loved psychology, and I view myself primarily as a

psychologist and neuroscientist even today, rather than as a mathematician. I
realized, though, that there were already many wonderful experimentalists
but very few theorists. And I realized that, to be a good theorist, I needed
mathematical techniques I didn't have, because &om the first equations I
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wrote down as a Freshman, when I was the deriving the Additive Model, I

needed systems of nonlinear differential equations. I hardly knew any appropriate 
math for analysing these equations.

Before I derived the Additive Model, I was stimulated by Bill Estes's

papers on learning models that were just coming out then. He used Markov

models to describe his Stimulus Sampling Theory. In my analyses of serial

learning, I remember trying to express some of the distributions of learned

traces and errors by using Stimulus Sampling Theory. I finally managed to

compute a formula that went on for pages. I then realized that this couldn
't

be the correct method. The results were uninterpretable and meaningless.

After struggling very hard, I began to understand that there were both fast

rates and slow rates hidden in the data. In this way, I was able to start teasing 

out short-term memory and long-term memory traces, network nodes,
and directed paths between them.

The dynamics of these short-term memory and long-term memory made

me start to use differential equations. This was all exciting, but also terrifying 
because, at first, I couldn

't prove anything about these equations. After

going through the model derivation phenomenologically and being very
clear about the steps that led to the equations and qualitatively being able to

argue why they should be able to explain the data, I couldn
't prove it . Computers 

weren
't there to help, either. I can jump ahead and say that when I

went to Stanford to do graduate work, one of the first things I tried to do

was to work with one of the top programmers there to help me program the

model so that I could compute the distribution of errors. He wasn't able to

do it, for one reason or another. That created a major problem and source of

anxiety, because how do you convince people of something that you can
't

prove mathematically and for which there aren
'
t any other computational

tools?

By this time, I had qualitatively derived a lot of results about human

verbal learning and about animal discrimination learning. I also had related

ideas about the dynamics of attitude change. I had replaced statistical psychological 
models with neural network models, and was aware of the importance 

of competitive normalization and contrast gain control to link the

two types of description together.

As this was happening, I became the first joint major in psychology and

mathematics at Dartmouth. It was also made clear to me that I couldn
'
t hope

for a career in a psychology department at that time as a full-time theorist.

One had to function primarily as an experimentalist. Even Bill Estes, I was

told, had a lot of trouble getting his modeling papers published at first, even

though he was already a distinguished experimentalist.

My equations for short-term memory and long-term memory were nonlinear

, many-body, fast-slow systems of differential equations. This was challenging 

mathematics. I needed a way to make it look simple. Although I was,

at first, more interested in human verbal learning and animal discrimination

learning, I then saw how to derive the equations from simple ideas about
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classical conditioning. That was exciting because both human and animal

learning laws then had a similar form. These laws illustrated the type of universality 
that I was seeking.

Of course, none of these activities had anything to do with getting good
grades. I became first in my class at Dartmouth for doing well in the standard 

curriculum. My research activities, in contrast, were not' about getting
grades; this had to do with how to be spiritually alive in the world . On the
other hand, no one else was working to link brain to behavior with nonlinear
neural networks. My intellectual work gave me a sense of purpose, but it
also isolated me from my colleagues. Social acceptance and survival became
a major issue, despite my intellectual success.

It was clear that I had to develop strong mathematical techniques in order
to survive. I mean, how else could I prove anything? The computers weren

'
t

there. How else was I going to escape being considered a nut? At Dartmouth
I was not considered a nut because I handed in one brilliant final exam after
another, but I was still too shy to approach my professors personally. My
own struggles to overcome my shyness have motivated me to set up an
educational framework in our department that is designed to help students
to be open and comfortable in their interactions with faculty.

It was not easy, while I was at Dartmouth, to figure out what to do with

my life. One possibility was to become a mathematician because all science

eventually becomes mathematics. If I could prove theorems about my neural
models, then perhaps in that way I could continue my work.

But to become a mathematician when you really wanted to be a psychologist 
was no easy thing. I psyched myself into it with the following kinds of

considerations. First, mathematics is a form of thinking, of cognitive processing
. I tried to think of it as just one of the highest forms of cognition. This

approach also helped me to better teach mathematics later on. Second, mathematics 

provided a way for me to learn large amounts of science fast, and I
knew that I needed to learn a lot of science as part of my interdisciplinary
training. I realized that if I opened a physics book on quantum mechanics, I

'
d

either get stuck on trying to figure out how to read the equations, or I
'
d feel

so comfortable with the language of mathematics that I could read the equations 
fluently and then be free to think about what the equations physically

mean. Finally, I realized that I needed a virtuoso mathematical technique
to express my own physical intuitions in an appropriate formalism, and then

analyse the behavioral consequences of this formalism.
With these kind of intellectual rationalizations in mind, I decided to try to

get a PhiD. in mathematics. As you can imagine, I was pretty anxious about
how all this would work out. Then the question arose as to where to go to

graduate school. An advisor recommended that I go to Stanford because, at
that time, Stanford had the strongest group in the world in mathematical

psychology: Bill Estes was there, as were Gordon Bower, Dick Atkinson and
Pat Suppes, among others. Stanford also had a strong department of applied
mathematics.



So I figured I'd apply in mathematics at Stanford so I could also be close to

the psychologists. Even if I got a degree in math, I wouldn
'
t be out of touch

with why I
'
m going into science, which was to understand the mind. And

that
'
s what I did. I went to Stanford.

Throughout all this, I can
'
t overemphasize my sense of loneliness. I had a

few wonderful professors, notably John Kemeny and Albert Hastorf, who

were really very supportive, but there was always great anxiety because

no one seemed to really understand what I was doing. I think they had the

sense that because I was so 
"
brilliant ,

" 
unquote, I couldn

'
t be a nut. I was

doing what I as a young person was supposed to be doing: breaking new

ground; and they tried to help me get to the people who could really
evaluate what I was doing.

While this was going on, I wrote my senior fellowship undergraduate
thesis at Dartmouth in 1960- 61. It introduced the Additive Model and used

it to analyse a lot of data about verbal learning. Because of this background, I

don
'
t believe that this model should be named after Hopfield. He simply

didn
'
t invent it . I did it when it was really a radical thing to do. My goal, to

jump years later, was not to have any of these models named after anybody.

I felt that models should have functional names- like Additive Model.

Various power cliques do not seem to see things that way. They seek to

aggrandize themselves even if, in so doing, they do violence to history.

When I went to Stanford I was sustained by my passion and love for

science. My results enabled me to feel a little closer to the enduring beauty of

the world, and gave my life a growing sense of focus and purpose. This was

balanced against widespread indifference or skepticism about what I was

doing. Without strong enough computational or mathematical tools, I realized 

that I had a limited amount of time to continue in this mode, because

I was living off people
's largess. I paid my dues by taking ninety credits of

graduate mathematics, but there was no particular reason for established

faculty to let me continue surviving as a scientist. Everyone else was planning
to get a job in a well-established field, but there was no field that represented
what I wanted to do.

Pat Suppes had been particularly active in getting me to come to Stanford.

In fact, I was accepted in psychology and sociology in addition to mathematics

. He was, however, incredibly busy. After I got there, I would hand

him paper after paper that I was doing while I was taking my math courses
- on human verbal learning, on animal discrimination learning, on competition

, and so on. He never read any of them. When I would get up the courage 

to visit his office intermittently , he would ask what I was doing, and I
'
d

give him a manuscript to read. I'd say, 
"
I
'
d really appreciate if you

'
d look at

it or maybe tell me what
'
s wrong with it ." I'd go back six months later, but

he didn
'
t have time to look at anything.

I greatly admired Bill Estes. I was unfortunately very shy, and Bill Estes

was not exactly talkative. Whenever I visited him, I was always amazed by
the fact that he was so quiet. He would sit there without changing his facial
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expression or saying a word and wait for you to talk . I very much wanted to

communicate with him because I could see why Stimulus Sampling Theory
worked when it did . I had stimulus sampling operations in my neural model .

I could see how , in the neural model , if you changed variables, you
'
d get

ratios of long -term memory traces that were just like stimulus -
sampling

probabilities . I could see why Estes
' 
model worked and why it would fail . But

I found it almost impossible to talk with him . I
'
ve never resented him for it

because he
'
s a marvelous man, and that

'
s just the way he is. But it would

have made my life much easier if he would have been able to draw me out a

little more .

I realized later that Estes and his Stanford colleagues had a real struggle
of their own to get Stimulus Sampling Theory accepted by experimental

psychologists and to make it work . Then here comes this kid with neural

networks . Well , what are they ? Nonlinear differential equations , emergent

properties . They didn
'
t understand it well enough to want any of it . And I

was too young to have the social skills with which to try to change their paradigm
. It was also too soon- this was in 1961 to 1964. The failures of Stimulus

Sampling Theory were not yet obvious enough for that paradigm to be abandoned

. My experiences at Stanford were, by and large, a great disappointment
because I only went there to try to get in touch with these people .

Since I couldn
'
t sell any of my work , all I could do was to work even

harder to try to understand more and to get closer to the communion with

Nature that I desired. The good things that Stanford offered me were that I

took ninety credits of graduate mathematics and read lots of physics , psychology
, and neurophysiology , so I kept growing intellectually . I worked

hard as a graduate student although I was a very unhappy one as I took

course after course.

For the first year and a half or so, at Stanford , I didn
'
t do any of the

research that I did as an undergraduate . I didn
'
t work on neural networks

because I was trying to cope with the very real challenges of being a mathematics 

graduate student . I did love studying mathematics . I found the mathematics 

to be really beautiful . And I was able then to read a lot of physics

quickly because I learned all the relevant mathematics . Socially , though , the

first year at Stanford was so disappointing that I thought the second year
had to be better , because I

'
m an incurable optimist . I figured , 

"
This is so bad

that next year has to be better .
" 

Well , the next year was equally bad. So then
I tried to get out . An unfortunate accident then occurred . I was on an NSF

[National Science Foundation ] fellowship , and I realized that I hadn
'
t yet

heard about my fellowship renewal . When I went to the office in the mathematics 

department , they said that I probably should have heard something
by then . They inquired for me because renewal was supposed to be automatic

. As it turned out , the NSF had mailed my renewal notice to the wrong
address. I just had to fill it out and send it back, and it would have been

renewed, but because of the delay it was just past the renewal deadline . So

suddenly not only was I unhappy , but I also didn
'
t have any money .
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Then Stanford did a very nice thing. They gave me a fellowship that supported 
me for another year. After that, I knew I couldn

't stand it there any
more. I got my Master

'
s degree, and thought I

'
d try to go to MIT , in part to

study under people like Norbert Weiner, and also because my girlfriend was

then a graduate student at Harvard.

By this time, I had been reading a lot of papers by people at the Rocke-

feller Institute-
papers by the neurophysiologists there and also papers by

people like Mark Kac on statistical mechanics. So I wrote a letter to Rocke-

feller asking for information about its program too. This was a period when

Rockefeller had a lot of money. They responded to my letter by checking up
on me. I don't really know how they did it to this day, but the next thing I

knew, they invited me to visit there.

I figured that I
'
d visit Rockefeller and then I

'
d also visit MIT and see if I

could get an interview there too. My visit to Rockefeller seemed unreal. It

had a gorgeous campus right in the heart of Manhattan. There was a guard
at the &ont gate whose name was Angel. It was really like going to Heaven.

You could go from Heaven to Manhattan and back every day if you were a

student at Rockefeller!

So I transferred to Rockefeller instead of MIT , and that was a wonderful

experience for me in many ways. On the other hand, I still had the usual

problems there. My primary mentors were Mark Kac and Gian-Carlo Rota,

who had just come &om MIT . Rota had a sense of what I was doing because,

in addition to being a mathematician of great breadth, he also was a professor 
of philosophy. He kindly became my 

"
protector.

" At Rockefeller you

really needed a protector! Rockefeller was then set up as a set of laboratories,

and there were no required courses at the time. There were a number of lecture 

series. Still, various students went to Columbia or to NYU to take other

courses.

Because Rockefeller was so unstructured, if you didn
'
t affiliate yourself

almost immediately with a laboratory and get a lab chief to claim you, you

were vulnerable to the fluctuating winds of political change. My protector
was Gian-Carlo Rota. During my years there (1964- 1967) I continued to

make lots of discoveries. Then I also had to write a PhiD. thesis. What I did

for a thesis was to develop methods to prove global limit and oscillation

theorems for the Additive Model, treated as a content addressable memory

[CAM ]. They were, I think, the first global CAM theories.

Even then there were problems because- I don
't want to go through

the sordid details- there were some professors who did not believe the

theorems. I had struggled very hard to find a way to demonstrate that my

models worked as I claimed they did. And what could be more secure than a

theorem? The shock was that they didn
'
t believe the theorems! They thought

that there must be a mistake. These people called me crazy before I proved
them. Then they said that the theorems were crazy!

Fortunately, by that time Los Alamos had a big enough computer to

run the equations, and this was done by Stan Ulam
'
s group. They were



interested in the theorems because they describ~d a nonlinear collective phenomenon
. At first they didn

'
t believe the theorems either, but then they ran

the networks on the computer, and the simulations did exactly what the
theorems said they should. These CAM theorems analysed associative

pattern learning in several critical cases: fully connected autoassociators, feed-

forward networks, and partially connected feedback nets. Given the difficulties 
I had in getting good scientists to believe my CAM theorems for

Additive Model autoassociators in 1966, you can see why I am so annoyed
that various people credit Hopfield for this model based on his work in 1984.
I'll say more about this later.

Each graduate student at Rockefeller wrote up a first-year project. My
first-year project in 1964- 65 turned out to be a monograph of around five
hundred pages, which synthesized my main results of the past ten years. It
was called 

"
The Theory of Embedding Fields With Applications to Psychology 

and Neurophysiology.
" 

It took me a long time to write it, and then the

question was what to do with it . Several professors realized that students
don

'
t write five-hundred-page monographs every day. They wanted to get

someone to evaluate it , so they arranged with me to mail it with a cover
letter to 125 of the main psychology and neuroscience labs throughout the
world . It went to David Hubel. It went to Steve Kuffler. It went to Eric
Kandel. It went, actually, to most of the major neuroscientists and cognitive
scientists in the world at that time. Unfortunately, no one seemed ready
to understand it . But that monograph had the main results of my work of
the past ten years and the seeds of my work for the next ten years. My
published papers in the 

'
60s and early 

'
70s either published or worked out

results that were in the monograph. It had a lot of results in it about reinforcement 

learning and human verbal learning. It also, among many other

things, introduced a cerebellar learning model, which predicted that you
'
d

have learning at the parallel fiber- Purkinje cell synapse. That was in 1964.
David Marr made a similar prediction in 1969; Jim Albus in 1971. I published 

this model formally in 1969. Despite this background, the model is

today often called the Marr-Albus model.
This has, all too often, been the story of my life. It

'
s tragic really, and it

'
s

almost broken my heart several times. The problem is that, although I would
often have an idea first, I usually had it too far ahead of its time. Or I would

develop it too mathematically for most readers. Most of all, I
'
ve had too

many ideas for me to be identified with all of them.
Please don't misunderstand my concerns about the so-called Marr-Albus

or Hopfield models. My goal wasn
'
t to get priority . Please understand that,

first, shy people don't name things after themselves, and, second, I
'
m nothing

. God is everything. I can't name after me something that is God
'
s creation 

or God
'
s proof. That's why I would try to give things functional names.

But then many things that I discovered started getting named after other

people! And I was not the only victim. Paul Werbos, David Parker, and,
Shun-Ichi Amari should have gotten credit for the backpropagation model,
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instead of Rumelhart, Hinton, and Williams. Christoph von der Malsburg
and I developed competitive learning and self-organizing feature maps between 

1972 and 1976. In fact, Teuvo Kohonen
'
s first version in 1982 wasn't

the version that he used in 1984 and thereafter. At the meeting in Kyoto
where he presented the first version, I was the chairman of the session. After

his talk, I went through his model's properties as part of the general discussion

, and I noted that my 1976- 78 version of the model had certain advantages
. That is the version that was used two years later in his 1984 book.

And now the model is often named after Kohonen. Well, if it
's named after

anyone, the name should include Christoph and me. To leave out Christoph,
who had a key 1973 Kybernetik paper, 

.which adapted aspeds of my 1972

Kybernetik paper, or me for my 1976 Biological Cybernetics papers which put
the theory in its modem form, that

'
s just historically wrong.

If you
're doing a reputable history, you have to get right who really invented 

things. For example, for Amari and Werbos and Parker not to be

given primary credit for backpropagation is wrong. How did this happen?
In the early 1980s, a type of social autocatalytic wave broke that led to renewed 

acceptance of neural networks. This wave had been building since
the 1970s; I could feel it building then. Some people who were in the mainstream 

of various related disciplines rode this wave, stoked the wave, and
marketed the wave, and they deserve credit for that. Rumelhart has done
a great service to cognitive science by promoting neural models, but he,
Hinton, and Williams didn'

t invent backpropagation; he and Zipser didn't
invent compe~itive learning; and all you have to do is to read the published
literature in order to see that what I say is true.

Parts of my 1964 monograph were broken up and developed into ten research 

papers. While I was a graduate student at Rockefeller, I submitted all

ten papers to The Journal of Theoretical Biology, including my verbal learning
model and my derivation of the Additive Model. When the journal got these
ten papers from this unknown scientist, they didn

'
t know what to do with

them. Bob Rosen, with whom I became friendly years later, was one of the

receivers. He said, 
'
if you had sent us one article we would probably have

accepted it, but we didn
'
t know how to handle ten.

" 
So they rejected them

all. That was in 1964- 65. This was, of course, a major disappointment for me.

Despite these problems, I got a job at MIT because my advisors at Rocke-

feller wrote strong letters on the strength of my PhiD. thesis. When I visited
MIT , I was interviewed by both the eledrical engineering department and
the applied mathematics department. Both departments offered me an assistant 

professorship because my thesis was considered to be very original. I

had introduced a new class of models, these nonlinear short-term and long-

term memory models, and I had proved a kind of theorem that was unfamiliar

, these global CAM theorems. Then I did something which I think in

retrospect was a mistake: I accepted the job in applied mathematics rather
than in EE. I didn

'
t realize that MIT was, at that time, really a big engineering 

department and that the power and influence of that department was
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overwhelming. I was influenced by the fact that Rota was returning to the

MIT mathematics department when I arrived there.

Several of the math faculty were very kind to me. Norman Levinson was

Norbert Wiener's greatest student, and he was one of the great mathematical

analysts of our time. He and his wife Fagi took me under their wing as a kind

of scientific godchild. They had two daughters about my age, but no sons.

Fagi is, in fact, the God grandmother of our daughter. I wrote a large number

of papers after I came to MIT in 1967, and Levinson, being a member of

the National Academy, submitted a series of my notes in PNAS [Proceedings
of the National Academy of Sciences]. There were three notes about neuro-

biological and mathematical properties of the Additive Model and the more

general Shunting (membrane equation) Model . Then I got a series of mathematical 

papers in the Bulletin of the American Mathematical Society and the

Journal of Differential Equations.

MIT was a good experience in many ways. First, there was the challenge
of teaching math to kids. I

'
d never taught before. My first assignments were

to teach math courses in things I
'
d never even studied! I met the challenge

by being so overprepared that I had the whole course totally polished before
the first lecture began. Having never lectured, I would go into classrooms to

practice my lectures to empty rooms. No one at MIT gave us any advice or

help with our teaching. Now such skills are taught in our department to students 
in a one-on-one faculty-student setting as part of their PhiD. training.

I remember the first day that I went into a classroom at MIT ; the kids

saw me, and they audibly groaned because I looked very young at the time.

They figured they were getting yet another graduate student teacher. Anyway
, I was so overprepared that it went OK, and my teaching was effective.

My research also went very well. I published forty -odd papers on an ever

expanding set of topics during my first few years there. Because of the range
of this work, I

'
ll have to skip it in this summary.

As a result, I was promoted after my first year at MIT from assistant professor 
to associate professor. I also won a Sloan faculty fellowship. Everything 

was finally going really well. I was verbally promised a professorship,
but then when the time came, there was a major recession. I don

'
t know if

you remember in the early to mid-seventies there was a deep recession. A lot

of schools got scared. It was the first one for a very long time in the postwar
era. Essentially everyone who got a job at MIT after World War II got tenure

, but then things crashed, and they started dumping us all. Traditionally
at MIT , after you were an assistant professor, there was a critical decision

point when you
'd either be asked to leave or you were honored by being

made an associate professor without tenure. The idea was that everyone who
was chosen associate professor would eventually be a professor with tenure.
You didn

'
t have to worry about tenure, because you

'
d already gotten a

verbal assurance of your future at MIT .

When the recession hit, I was not helped by the fact that some people
considered me a "controversial

" 
case. And no one advised me as to how you
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go about getting tenure. I was simply asked to give the department a representative 
list of people to write to for recommendation letters. I naively

gave them a list of about fifty names of distinguished people across the fields

of psychology, neuroscience, and mathematics. I got a very wide range of

letters. A number of letters said I deserved a Nobel prize and I am a genius. I

also had other letters that said, in effect: "Who the hell does he think he is

trying to model the mind?"

At this point the department tried to break this deadlock by asking somebody 

whom everyone in mathematics would respect and who really knew

what was going on. I don
'
t know if you know who James Lighthill is? He

was the Lucasian professor at that time in Cambridge University. That was

Isaac Newton
'
s chair. Lighthill had just written a scathing attack on AI . So

they figured, first, he's a very substantial mathematician; he can understand

all the math; and second, he has very strong attitudes about AI . Maybe some

of them also thought that he'
d therefore nail me and get it over with .

Anyway , he wrote a glowing three- or four-page letter which basically
said that I was doing exactly what AI should have done. I've seen all these

letters. I wasn
'
t supposed to, but there were some people who were so upset

that MIT didn't keep me that they wanted me to realize that the letters were,

by and large, quite wonderful. They presented the type of case that an experienced 
reader expects to find when someone is doing something highly

original, interdisciplinary, and technical.

I stayed an extra year at MIT . That
'
s the year that Gail Carpenter came to

the applied mathematics department at MIT . She
's the best thing MIT ever

did for me. It was because we overlapped that we could get together. Now

we are very happily married and best &lends. We have also done a lot of

science together.

Then I went to BU [Boston University], and faced my next problem. I am

telling you about these problems in order to reassure young people that you
can hope to survive a lot of problems if you are true to your craft. A professorship 

of mathematics was created for me at BU through the President
'
s

office. I was told that my letters were the strongest that they had ever seen,
but since President Silber was away in Europe, they couldn

'
t offer me tenure

until he read my case in the fall. A new dean then came in that fall, and said

that he opposed creating professorships through the president
'
s office. He

said he would oppose me coming up for tenure in the fall, as promised by
the previous dean, but would support me if I waited two years before going

through the entire tenure process. Unfortunately, this man was no longer
dean when I came up for tenure two years later. Who was? The man who

had supported my tenure in his role as a Vice President two years earlier. No

problem, right? Wrong.

This new Dean fired me. Why did he fire me? Because he claimed that the

mathematics department was too big already. (It has since grown to more

than twice its size then.) So I was fired &om BU a few years after I got there;
and I again lost the tenure that was verbally promised to me.
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To make a long story short, the next six months were a very unhappy
time. I appealed this decision to President Silber. It took quite a while before

Silber considered the case. When he did, he also called up a lot of people to

ask about me. Finally, he called me in to his office and said, 
"
You

'
re exactly

what we want. I
'
m really sorry for the inconvenience.

" 
So I finally got tenure

in 1975 after having been twice rejected for tenure. After 1975, for the first

time I had some stability. It took me a few years to adjust to that. Now I

hold an endowed Chair at BU and am one of its most respected faculty. My
advice is: Never give up and don

'
t hold grudges.

ER: You wanted to talk about Paul Werbos . . .

SG: When I was at MIT , Dan Levine was one of my graduate students, and

Dan was a friend of Paul Werbos who was then at Harvard. Dan told me

about his very bright friend who was trying to do some work in neural networks

, and he was having a lot of trouble with his PhiD. thesis committee.

So Paul came over and talked. The main thing I remember was that he seemed

very bright and enthusiastic, but also talked a lot about all his troubles in

getting people to understand and support what he was trying to do. This

was a recurrent theme- that people who were making important discoveries

about neural networks were hitting political brick walls.

The advice I gave him, which was the only thing I could do, was that he

work out examples for people so they could see how his model worked. This

he did, and he eventually got his PhiD. thesis approved. You see, it was a

period when I wasn
'
t the only person experiencing brick walls right and left.

I met a lot of very smart people who just vanished from the field. They just
couldn

'
t find a way to survive. Paul found away . He deserves immense

credit for that. The fact that, more than a decade later, people like Rumelhart,
Hinton, and Williams were able to run with his ideas and further apply them

when the scientific market was ready to receive them shouldn
't deny the

originators the credit that they deserve for introducing the ideas. I believe

this both because it
'
s the right thing to do, and also because that

'
s why the

field developed so fast in the 1980s. The foundations were already there; a

lot of the main models were known. One can
't believe that in 1982 suddenly

everything was discovered. This just isn'
t the history of our or any other

scientific field.

Around 1980, the Sloan Foundation started to give out grants in cognitive
science. In college, I had gotten a Sloan predoctoral fellowship and at MIT I

won a Sloan postdoctoral fellowship, so I figured I might get lucky again.

I therefore called them up, and I asked, 
"
If I submit a grant in cognitive

science, would you consider it1" 
They said, 

'
Well , you can't because you

're

not a center. We only .make grants to centers." It was at that point that the

concept of forming a center, a new administrative unit that could support

people from many disciplines, firmly took hold in my mind. If I could only
become a center, then I could work with people from many different disciplines 

without having to change departments.
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I was at that time already working a lot with Gail Carpenter. I was also

working with Michael Cohen, and more and more with Michael Kuperstein.

Based on these and other projects, I was able to get a center grant, which

allowed the Center for Adaptive Systems to get started in 1981.

The Center enabled me to start building up an interdisciplinary community 

of people interested in real-time modeling of mind and brain. I also

wanted to help smart young scientists to have an easier time than I did. I

almost didn't make it at multiple points, and I felt a commitment to making
it easier for others to do so. After the Center succeeded, in 1988 I was able

to get the university to start a graduate PhiD. and M .A . granting program
in Cognitive and Neural Systems. This program became a department two

years later. It has developed an interdisciplinary curriculum so that graduate
students can learn the field in a more systematic way. I also introduced the

Neural Networks journal, and while introducing the journal, founded the International 

Neural Network Society [INNS], which began to bring together

people from a lot of different disciplines.

One of the unfortunate facts about our field was that it was broken up into

cliques that didn
'
t cooperate. Physicists don

'
t all love each other; in fact, I

think they
'
re probably one of the most competitive groups of scientists in

the world . But they
'
ve learned how to cooperate to get more resources for

all physicists. I hoped that INNS would help to fix this problem. So far, it has

only achieved partial success because clique activities still tend to divide the

field.

ER: Maybe you could say a little bit more about the more recent scientific

work you
'
ve been doing.

SG: There've been a lot of streams of work in my life. The most pervasive
stream has to do with parallel information processing and learning

- the interactions 

between short-term and long-term memory. The earliest work was

on human verbal learning- the problem of serial order in behavior and how

you can get distributed patterns of errors that would evolve in a given context

, like the bowed serial position curve, and why paired associate learning
and serial learning were different.

I also did a long series of papers about global CAM and associative pattern 

learning. The problem was, how do you know it works as you would

like? I spent years on proving that about what I call the Generalized Additive

Model, which includes the so-called 
"
Hopfield model,

" 
that I hope will not

be called that for much longer.

I also did a lot of work about animal learning. If you think about conditioning
-

operant (or instrumental) and classical (or Pavlovian)- it forces

you to also think about decision making, and associative learning between

cognitive and emotional representations. Putting these concepts together
leads you to think about the feedback between cognitive and emotional

representations and how it focuses attention upon salient events. So, in

thinking about this sort of decision making, I realized that I needed short-



term memory nets that were self-normalizing. I had this insight first in my
1964 monograph and developed it for conditioning around 1969. My first

paper on operant conditioning, per se, was in 1971. It has supported a lot of

subsequent work.

My early learning theorems included outstar theorems, in which single
cells can sample distributed patterns. I then realized that, once you have
stimulus sampling, you need to ensure the selectivity of sampling in response
to the proper combination of environmental cues. I then introduced instar
theorems to ensure selective sampling to trigger outstar learning.

My 1970 paper on neural pattern discrimination used Additive Models
with thresholding of signals to show how you could construct selective
instar pattern discriminators. I realized around this time that you have to
match what you can learn and what you can discriminate through information 

processing. This insight led to instars in 1970. These discriminators
needed two layers of inhibition . In a 1972 article, I pointed out that these

layers were reminiscent of retinas, where the first layer was like the horizontal 
cell layer and the second like an amacrine cell layer. This article also

showed how an instar could adaptively change its selectivity to input patterns
. This 1972 paper influenced Christoph von der Malsburg, who used the

Additive Model but also introduced the key idea of tuning the adaptive filter
with the weights in the filter, whereas I was using adaptive thresholds. His
article came out in 1973.

In the interim, because of my interest in how short-term memory works

during discrimination learning, I had mathematically attacked the problem
of how you design short-term memory networks. It was a thrill to prove
mathematically that properly designed networks had self-normalization and
limited capacity properties as emergent properties of the net. Then I started

classifying signal feedback functions, and I proved that sigmoid signals had

very good properties; they suppressed noise, and also had had partial contrast 

enhancing properties.

I also proved how to design a winner-take-all net. That caused a little
debate between Jim Anderson and me because I liked using the membrane

equation, or shunting net, wherein I could suppress noise and still get self-

normalizing contrast enhancement. His Brain State in a Box got contrast

enhancement at the price of also amplifying noise.

I summarized all these results in a 1973 article, wherein properties of

shunting competitive-feedback nets for short-term memory were classified in
terms of how different signal functions altered the pattern stored in memory.
I think that this was the first paper that mathematically proved why a sig-

moid function is important. When I read Christoph
'
s paper in 1973, which

I thought was a remarkable paper, I was very gratified that he had used
the Additive Model, but he also modified it . In my 1972 article, I had used
a learning law that included both Hebbian and anti-Hebbian properties. I

introduced that law in 1967 and 1968 in PNAS. It was also used in ART

[Adaptive Resonance Theory] later on.
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When I saw Christoph
's 1973 article, I realized that it had several problems

. One problem was that he had used a pur~ly Hebbian learning law. Left

to its own devices, this law would only allow adaptive weights, or long-term

memory traces, to grow. To prevent this, he alternated learning intervals

with trace normalization intervals. The model thus did not run in real time

and it used nonlocal interactions. Based on some modeling and mathematical

work that I'd done in the past few years, I saw how to design a real-time

local model.

One step was to control the contrast enhancement and normalization of

activity in the category node level of the network. The theorems from my
1973 article on recurrent on-center off-surround networks helped me here. In

that paper, I described the first winner-take-all competitive network. More

generally, I proved how a sigmoid feedback signal function could achieve
self-normalizing, partial contrast enhancement, which Kohonen now calls
"
bubbles.

" 
I also realized that the input vector needed to be normalized, and

discussed how to do this with an L1 norm in my 1976 article. Later, in my
1978 article on human memory, I generalized this to an arbitrary Lp norm,
and singled out the L2 norm case for its unbiased properties. Kohonen used
the unbiased L2 norm in his articles &om 1982 onward.

With these innovations in place, I could then return to the use of the
mixed Hebbian/anti-Hebbian learning law of my 1972 and earlier articles

(it was introduced, actually, in 1958 when I started my work at Dartmouth).
This learning law kept the adaptive weights bounded without violating real-

time and locality constraints. I saw that this model was far more general than
the application to which Malsburg had put it, which was the development of

hypercolumns in striate visual cortex. For me, it became a general engine for

classifying the widest possible range of input patterns. That is why I titled

my 1976 Biological Cybernetics articles II Adaptive Pattern Classification and

Universal Recoding."

The "Universal Recoding
" 

part came &om my observation that you could

map the outputs &om the classifier part of the network into the inputs
of an outstar pattern learning network to learn an arbitrary map &om m-

dimensional to n-dimension space. This fact is of historical interest for two

reasons. First, Hecht-Nielsen presented basically the same model again in the

mid-1980s and called it counterpropagation. It has since achieved some popularity 
under that name. Second, when people popularized backpropagation

in the mid-1980s, they often claimed that, whereas backpropagation could

learn such a map, previous models could not. That, like so many other claims

during that period, just wasn't so. In fact, my Iluniversal recoding
" 

map could

learn such a map in an unsupervised way using purely local interactions,
whereas backpropagation always required a teacher and used a nonlocal

transport of adaptive weights.

Trying to live with so many false claims has been difficult for me, at times.
If I try to get credit where it is due, then people who want the credit for
themselves often mount a disinformation campaign in which they claim that
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all that I think about is priority . Because I have been a very productive pioneer

, who innovated quite a few ideas and models, that can create quite a

chorus of disinformationl If I don
't try to get credit for my discoveries, then

I am left with the feeling that eventually most of my ideas may become

attributed to other people, ~specially if I have them too far ahead of my time.

Anyway ,. that's not why a person who has been scientifically adive for as

long as I have- now 40 years- keeps working. So, after designing the first

self-organizing feature map of the type that is now used, I proved a theorem

in a 1976 Biological Cybernetics article which says that such learning is stable

in ~ sparse input environment; that is, an environment in which there aren
'
t

too many inputs or input clusters relative to the number of coding nodes. In

fad , this learning has Bayesian properties, and I showed that the model
's

adaptive weights are self-normalizing and track the density of inputs coded

by each recognition category. These properties were later exploited in the

1980s and thereafter in many applications by people like Kohonen.

My own interest was, however, primarily in how to classify arbitrary

input environments, because no one controls the sparseness of inputs in the

real world . I therefore also described examples in the 1976 article in which

you could cause new learning to catastrophically erase old memories if the

inputs were dense and distributed through 
"
time in a nonstationary way. This

raised the urgent question of how the system could learn stably in a general

input environment. I thought of this as a stability-plasticity dilemma, or how

could a system continue to learn quickly in an arbitrary input environment

without also forgetting what it earlier learned? Said in another way: Why
doesn

'
t fast learning force fast forgetting?

At this time, something exciting happened. I had published an article in

1975 in the International Review of Neurobiology on a neural model of attention

, reinforcement, and discrimination learning. This model culminated

almost two decades of work on classical and instrumental conditioning, which
- as noted above - is the name given to those animal and human learning
situations wherein rewards and punishments operate. In this article, I developed 

a model of cognitive-emotional interactions to explain how attention

gets drawn to motivationally salient events. These phenomena included

what is called attentional blocking and unblocking; or how do we learn what

events predid rewards or punishments and focus attention upon them, while

learning to ignore irrelevant events? This paper included my first adaptive
resonances, which were feedback interactions that matched cognitive with

emotional representations to focus attention in the desired way. I also needed

to analyse what happened when a mismatch occurred, and this led me to

introduce an orienting system that would search for and unblock previously
unattended, but correct, cognitive representations, that could reliably predict
the types of rewards or punishments that might be expected to occur.

One of the most exciting moments in my life occurred when I realized that

the same dynamics of match/mismatch, search and learning that were needed

to focus attention during adult cognitive-emotional interactions were also
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needed to stabilize the development and learning of purely cognitive representations
, from childhood on, including the learning of visual object recognition

, speech, and other cognitive codes. This brought the reinforcement and

cognitive literatures together in a truly radical way. Before that time, there
had been bitter controversies between reinforcement and cognitive ap-

proaches to psychology. People like Skinner on the reinforcement side and

Chomsky on the cognitive side were at each other' s throats. In like manner,

cognitive models in artificial intelligence were attacked for not being able to

incorporate intentionality or feelings.
Part two of my 1976 Biological Cybernetics article introduced Adaptive

Resonance Theory, or ART, to unify all of these apparent antagonisms. The

key was to understand the central role of the stability-plasticity problem, or
how to learn in real time throughout life without experiencing catastrophic
forgetting . I showed that self-stabilizing learning required, among other

things, the learning of top-down expectations, which focused attention on

expected aspects of events. In other words, the stability of learning implies
the intentionality of cognition and the fact that we pay attention. The universal 

status of the stability-plasticity problem helped to clarify why it could

bridge between the cognitive and emotional domains. I also suggested that
all conscious states are resonant states, and still have read no experiments that
have led me to abandon this view.

I then did a lot of work on cognitive information processing, and I began
realizing that I could only go so far until I knew what the functional units
were that were being processed. These cognitive resonances were able to

provide an intermodal binding of information from different sensory streams.
But each of the sensory streams had its own heuristics. If you didn

'
t know

what the sensory units were, then you could go only so far. So I started

working more and more on vision and language. I guess the most fundamental 

paper of that period was my 1978 human memory paper that was

published in Progress in Theoretical Biology, because in that paper I offered a
unified analysis which generated a lot of insights about perception, cognition

, and motor control. That paper became a launching pad for the next
ten years of work- just as my 1964 Rockefeller monograph had been a

launching pad for the previous ten years of work.

Another stream of work tried to understand how to design neural net
content-addressable memories. These networks always converge to one of a

possibly very large number of equilibria in response to a fixed input pattern.
That work greatly generalized my 1973 analysis of winner-take-all nets,

sigmoids, and the like. Through it, I gradually identified in the mid-1970s a
class of models which generalized recurrent on-center off-surround networks
with additive or shunting dynamics, and which always approached equilibrium 

points. To prove convergence in all of these models, I introduced a

Lyapunov functional method that made precise the idea that you can understand 
a competitive process by keeping track of who is winning the competition 

at any time. These results led me to conjecture that networks with
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symmetric coefficients always converge, as a special case of one of my general 
theorems. Mike Cohen and I then tried to prove this. We ultimately

failed, but in the process, and because we were thinking about Lyapunov
methods, we came up with a Lyapunov function in 1981 that helped us to

prove the conjecture directly. We published this work in 1982 and 1983.

This work is now known as the Cohen-Grossberg model and theorem by
a lot of people. We didn

'
t name it that ourselves. The name came about because 

John Hopfield published a special case of our result- the case of the

so-called Additive Model- in 1984, and it was called the Hopfield model by
his colleagues. I had actually introduced that model almost 30 years before

and Mike and I had published the Lyapunov function for it before, so quite a

few people were not happy about naming it after Hopfield. They called our,

more general, work the Cohen-Grossberg model to protect it &om being
misnamed later on. This sort of thing unfortunately happened all the time.

I also was very interested in understanding how a more complex form of

content addressable memory was designed; namely, a working memory. This

is the type of short-term memory whereby, say, you can remember a new

telephone number for a short time after you first hear it , but can then forget
it entirely if you are distracted before dialing it . A lot of data now points
to the &ontal cortex as a site of working memory. I realized that this problem 

of short-term memory was intimately linked to a problem of long-term

memory, which is the type of more enduring memory whereby, say, you can

remember you own name. (presumably you don
'
t forget your own name

every time that you
'
re distractedf) The main issue was that, as a novel list of

items- like the numbers in a new telephone number, or letters in a new

word- is presented to you, you don
'
t want its storage in working memory

to force you to forget familiar learned groupings of those items. For example

, if you
'
ve never heard the word MYSELF, but have learned the words

MY , SELF, and ELF that are subwords of MYSELF, you don
'
t want the

storage of MYSELF in working memory to erase the long-term memory
that you have of its familiar subwords. If this were true, then we could

never learn a language. This study thus identified a variant of the stability-

plasticity dilemma that applies to temporally ordered memories.

I was happy to identify two postulates for such a working memory that

would realize this goal. These postulates guaranteed that the familiar learned

groupings would not be forgotten if they were coded by the type of bottom-

up adaptive filter that occurs in a self-organizing map or an ART system.

That enabled me to write down rules for generating all of the working
memories of this type. Remark ably, these postulates could be realized by
a specialized version of the recurrent on-center off-surround nets that I'd

already studiedf I was then able to prove something really surprising. Previously

, it had often been thought that you could just have a recency gradient 
in working memory, in which more recent events were performed

before earlier events. But just at around the time that I was working
- in

the mid 1970s- data began to appear suggesting that you could have an
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inverted U of short -term memory activity across items, with the earliest and

most recent items performed before items in the middle of a list . In my
model , larger activity of an item

'
s representation translated into earlier performance

. It turned out that I could characterize the conditions under which

you
'
d get recency, primacy , or bowed (inverted U) gradients in working

memory activity . I used this result to explain , for example, data about human

&ee recall of recently presented lists of items . Here, items at the beginning
and end of a list are recalled earlier , and with higher probability , than items

in the middle . The main paradoxical result was this : The need to be able to

store items in short -term working memory without destabilizing previously
learned groupings in long -term memory sometimes implies that the order

of storage is not veridical . It was veridical for short lists- a result which

clarified concepts like the immediate memory span
- but not for longer ones.

These results, combined with my earlier work from the 1960s on the long -

term memory of temporally ordered lists, were both included in my 1978

human memory article , along with a lot of other stuff . They provided the

foundation for more recent work about speech perception and motor planning
. One of the most interesting things to me about results like this is

that they showed how an adaptive property
- like the stability of learned

groupings
- could lead to a maladaptive property

- like the wrong order

of storage
- in certain environments . Many of my results are of this type ,

including results about mental disorders like schizophrenia , juvenile hyperactivity
, and Parkinsonism , or about maladaptive partial reinforcement effects

like persistent avoidance behavior , gambling , or self-punitive behavior .

ER: I wanted to discuss some of the other things that have gone on . You

have patents, and I know that you
'
ve served on the science advisory board

for Robert Hecht -Nielsen
'
s company , HNC Software , and I was wondering if

you could talk a little bit about some of the applications of your work .

SG: We
'
ve gotten patents on several of the ARTs - ART I , ART 2, ART

3, ARTMAP . We
'
ve also gotten a patent on the BCS [Boundary Contour

System, a computer vision algorithm ] and on the Masking Field multiple -

scale short -term memory and coding network . Our goal was not to interfere

with research and development . We want to encourage that in every way

possible . But if a company uses ART , say, to make a lot of money , then we

would like to get some of it back to further energize the research that led to

it . BU has been very good in helping us get patents under its university individual 

investigator agreement . I would say a lot of people are using ART ,
and more and more people are using our other models , but so far, most of

this activity is still in the research and development phase.

ER: Do you have a relationship with any other company besides HNC7

SG: Well , I don
'
t even have a relationship now with HNC ; I was its first

chief scientist , but am not any longer . To talk about more history , did you
know that Robert Hecht -Nielsen entered the field in part because of me?

ER: He said that in his interview .
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SG: My understanding is that Robert was reading the Journal of Differential

Equations in the late 1960s where my early CAM theorems on the Generalized 

Additive Model were proved, and he got really interested in them.

Robert then started to call me up every couple of years or so when he'd be

in town on business, and we'd have lunch and talk about neural nets. I'd

known Robert during years when one could only dream that neural net

theory would be turned into a technology. When HNC started, Robert invited 

me to be its first chief scientist. It wasn't entirely clear to me what that

would mean given that we were three thousand miles away from each other.

At the same time, Frederico Faggin and Carver Mead invited Gail and

me to join their company, Synaptics. That created a serious conflict for me

because I knew Gary Lynch was involved, and he
'
s a really good neuroscientist

. Carver and Frederico are, of course, top chip designers, and they

promised to put some of our key algorithms into chips.

But I felt an old, even romantic, debt to Robert, and so I said yes to his

offer. Apart from periodic meetings at HNC, not much happened. As the

company faced the realities of trying to survive in a market where there

weren't yet any niches, they needed very near-term products and bu.siness

plans. My sense is that they changed direction several times before the company 

became a big success. I was too far away to be a large contributor to

these strategies. So after our initial agreement wore off, it wasn't renewed.

ER: Do you hare other commercial relationships with other companies?

SG: We [the Center for Adaptive Systems] had a relationship with Hughes
Co. on a joint DARPA grant. Gail has consulted for Boeing. A lot of our

students have been getting good jobs at high tech companies. Several of our

students were hired by MIT Lincoln Lab.

I feel that one really has to try to train people in the many interdisciplinary 
tools that the market needs. The nice thing about backpropagation is

that it
's easy to learn, so a lot of people use it . But backpropagation has a

limited range. It
'
s good for certain stationary problems where the variability

in the data isn
't too great, where there aren't too many inputs, and where

you can run learning slowly and off-line. Fortunately, there are a lot of

problems where these constraints hold. Backpropagation was there to help

energize interest in the field, but there are at least as many problems where

you want to learn in real time, on-line, with fast learning. Our students know

backpropagation and ART, among many other skills.

ER: How many students at the Department?

SG: At this point there are fifty PhiD. students and up to thirty MiA . students

. The M .A . students are very interesting; all of them have full-time jobs
in the area; for example, one of oUr MiA . students who recently graduated
is an MiD .; he

'
s at the Eye Research Institute. He

'
s a clinical eye researcher,

and he came to take courses to learn about neural models. Others are at

Raytheon, MITRE, MIT Lincoln Labs, and so on. They
'
re all already working

professionals. We've had people come from the National Security Agency to
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get a masters , who now tell us that ART is being used to guard the nation
'
s

safety . The masters
' 

students form a very interesting pool . They are one reason 

why we teach many of our courses once a week in the evening , so that

qualified working people can set aside an evening each week to take a course

each term , or two courses .possibly

ER: This leads me to my Anal question, which is to ask you to speculate
about the future of neural nets. Where do you see the Aeld going?

SG: I don't really feel comfortable talking about the future because I could
never have predicted the present. I have hopes rather than predictions. I

hope there will be more harmonious interaction among neural network

colleagues.

ER: Well, I was going to give you a last opportunity to address non-

organizational and nonpolitical issues about the future of neural networks.

SG: I
'
ll build my answer on some thoughts about why the brain is special.

The following anecdote may help to make my point. Richard Feynman came
into the Aeld because he was interested in vision. When he realized that the
retina is inverted, with the photo detect ors behind all the other retinal layers,
so that light has to go through all those layers before reaching them, he got
out of the Aeld. He couldn

'
tAgure out what kind of rational heuristics could

be consistent with such a strange fact.
So here we see one of the very greatest quantum mechanicians admitting

that brain dynamics are not just an easy application of quantum mechanics.
On the other hand, the brain is tuned to the quantum level. You can see
with just a few photons. The sensitivity of hearing is adjusted just above the
level of thermal noise. So the brain is a quantum-sensitive measuring device.
Moreover, the brain is a universal measuring device. It takes data from all
the senses- vision, sound, pressure, temperature, biochemical sensors- and
b~ lds them into uniAed moments of resonant consciousness. The black body
radiation problem, which Planck used to introduce quantum theory, also had
a universality property. But then why isn

'
t the brain just another application

of garden-variety quantum mechanics? What
'
s different?

My claim is that what
'
s different is the brain's self-organizing capabilities.

The critical thing is that we develop and learn on a very fast time scale relative 
to the evolution of matter. The revolution is in understanding universal

quantum-sensitive rapidly self-organizing measurement devices.
Let's look at the history of science from this perspective. In the Newtonian

revolution, the universe was described in terms of Axed, absolute coordinates
. Then Einstein taught us that the way in which we make physical measurements

, including how fast light travels, can influence what we know
about the world . Then quantum mechanics went a step further and taught us
that the ad of measurement can actively change the states that are being
measured, as in the Heisenberg uncertainty principle. But still, in all of these
theories, the theory of the measurement device itself was really outside of

physics. Physics taught us how measurement could be changed by the mea-



suring device, but it did not provide a theory of the measurement device, in
this case, the brain.

Theories of mind and brain, in contrast, are really theories of measurement
devices which happen to be self-organizing in order to adapt to an evolving
world . Understanding such measurement devices would be a very big step in
science. So why has it taken so long for such theories to get born?

My answer is in the form of a story that has comforted me greatly when I
was trying to figure out why our field is so crazy. I

'
ve written about it in

several papers and books, so you may already know my view. I believe that
we are living through part of a century-long process that has gradually led
to the recent flowering of neural networks.

If you look at the greatest physicists of the middle to late nineteenth century

, you
'll see that they were often great psychologists or neuroscientists

too. For example, [Hermann von] Helmholtz started early in life to test
whether philosophical Idealists like his father were correct. Was it really true
that you can act on an idea at the instant that you have it? Helmholtz tested
this by measuring how long it took a nerve signal to travel along the arm.
To do this accurately, he had to compensate for factors like muscle activity
and heat generation. By making very careful measurements, he discovered
the law of Conservation of Energy, which is one of the foundations of
nineteenth-century physics. And he did this to settle a philosophical question
by using methods of neuroscience. Helmholtz was as interested in the physics 

of vision and audition as he was in the psychophysics of how we perceive 
visual and auditory events.

The same was true for [Ernst] Mach, who studied the Mach bands in
vision as well as the Mach numbers that are important in aeronautics. Mach's
interest in space and time helped to inspire Einstein's general relativity
theory.

[James Clerk] Maxwell developed the kinetic theory of gases and his

theory of the electromagnetic field, but he also developed an important
theory of color vision.

All of these physicists were interested in both external physical space and
time, and internal psychological space and time. Remark ably, this was no

longer true in the very next generation of physicists. You might say that this
was just ~ue to career specialization, but that is not convincing, because it

happened too fast. I believe that there were deep intellectual reasons for this
schism between physics and psychology. In particular, these interdisciplinary
physicists were discovering facts about mind and brain that contemporary
physics couldn't explain.

Consider Helmholtz's experiences, for example. White light in Newtonian
color theory is light that has approximately equal energy in all the visible

wavelengths. Helmholtz
's experiments showed him, however, that our percepts 

tend to desaturate toward white the mean color of the scene. This

property is related to our brain'
s ability to compensate for variable illumination

- that is, to "discount the illuminant"- when perceiving a scene. Helmholtz
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realized that this was a highly nonlinear, context-sensitive process. Let me
call this property of context-sensitivity 

"
nonlocal

" 
in the good sense that it

involves long-range interactions (not in the bad sense, as in the back-

propagation model, that it cannot be plausibly realized by a local physical
propagation of signals). .

Helmholtz also thought deeply about what we perceive. He claimed that
we perceive what we expect to perceive based upon past learning. This was,

greatly simplified, his idea of 
"
unconscious inference." Such a view implies

that bottom-up inputs from our experiences are matched against top-down

expectations through some sort of cooperative-competitive process, and
that these top-down expectations had to be learned. Such learning is a nonstationary 

process. So one needed nonlinear, nonstationary, and nonlocal
models and mathematics in order to understand vision. Helmholtz realized
that the necessary concepts and mathematics were not available at that time.

Fortunately, in the early twentieth century, you didn'
t need a lot of new

math in order to do great physics. All of the revolutions in twentieth century

physics started using known nineteenth century mathematics. For example,

special relativity just used algebra; general relativity used Riemannian geom-

etry; and quantum mechanics used matrix theory and linear operator theory.
The physicists

' main job was to discover new intuitions with which to
understand the world . Once the intuitions were translated into models, the
mathematics for understanding these models was ready and waiting. In
contrast, to do psychology or neuroscience, you needed to discover new
intuitions as well as new types of mathematics with which to analyse these
intuitions. As a result, physicists, by and large, stopped studying psychology
and neuroscience because their mathematical concepts were not adequate to
understand the new data from these fields. Psychologists returned the favor

by not wanting to learn much mathematics anymore, because the mathematics 
used by physics to

. 
explain the world was often irrelevant for explaining 

their data. It was the wrong math. This led, I think, to a major split
between physical theorists and experimental psychologists and neuroscientists 

around the turn of the century. There followed almost a century of

great physicists who knew nothing about psychology, but enjoyed nonetheless 

analogizing the brain to whatever was hot in technology, whether telephones

, telegraphs, hydraulic systems, holograms, digital computers, or spin
glasses. On the other side, psychologists often had profound intuitions
about their data, but they didn't have appropriate formalisms with which to
turn these intuitions into precise theoretical science.

This led to a century of controversy during which psychologists (and
neuroscientists, too) often became divided into opposing cliques or camps
that mapped out the extreme positions of some dimension of the data. For

example, some psychologists collected data showing that learning seemed
to be gradual, whereas others collected data showing that it seemed to
be all-or-none. They were, in a sense, both correct, because the learning rate
is context-sensitive, but they didn

'
t have the quantitative tools that were



needed to map out in which circumstances one or the other outcome could
be predicted. Likewise, one had the Gestaltists, who believed in the action
of unseen electrical brain fields, on the one hand, and the Behaviorists, who
believed that everything has to be observable, on the other. Etc.

The net effect was that each group collected more and more data to
bolster its position, thereby leading to one of the largest collective data
bases in the history of science, but none of the controversies was ever fully
settled, because the conceptual and mathematical tools that were needed to
describe the underlying nonlinear, nonstationary, and nonlocal process es
were nowhere to be found. My own life's work has been passionately devoted 

to discovering new intuitive and mathematical concepts and methods
with which to overcome these apparent antagonisms and to thereby achieve
a new synthesis of ideas.

Why is this hard to do? Why has it been such a controversial path? I claim
that, in order to self-organize intelligent adaptive process es in real time, the
brain needs nonlinear feedback process es that describe dynamical interactions 

among huge numbers of units acting on multiple spatial and temporal
scales. Such process es are not easy to think about or to understand. One of
the controversies that I experienced early on was whether we needed differential 

equations at all. Many people wanted discrete or symbolic models, but
self-organizing systems need to be described dynamically in real time. Their

symbols emerge from their dynamics. Another controversy involved the use
of nonlinearity. Jim Anderson and I clashed about this matter. I felt that Jim
wanted to keep things linear as long as he could. So did Kohonen for a number 

of years. My own derivations used linear interactions wherever possible,
if only to point clearly to those interactions which really had to be nonlinear.

Feedback in nonlinear systems is particularly hard to understand. It
'
s

essential to achieve the real-time self-stabilization of memory and other

properties. But mathematically, it
'
s a large step. Many people have held off

as long as. they could to avoid closing the feedback loop. Backpropagation
illustrates this tendency, since in that model, the feedback loop is never

really closed. That is why I think of backpropagation as a neoclassical
model that is holding on to the old paradigm as long as it can. In back-

propagation, bottom-up activation is used to compute an error, which then

slowly adapts the model's weights. What you really need, however, is to
close the feedback loop to reorganize the fast dynamics of the activations 

themselves, which in turn will alter the adaptive weights. Adaptive
Resonance Theory boldly took this step, and in so doing helped me to turn
Helmholtz

'
s intuitive concept of unconscious inference into rigorous science;

in particular, rigorous science that is relevant to why we are conscious.
In summary, I see us ankle-deep in a major revolution that will play itself

out during the next few generations. This revolution is about how biological
measurement arid control systems are designed to adapt quickly and stably
in real time to a rapidly fluctuating world . It is about discovering new
heuristics and mathematics with which to explain how nonlinear feedback
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systems can accomplish this goal . Along the way , we will continue to discover 

a lush landscape of models for explaining how intelligent and adaptive
minds emerge Horn brain dynamics through their interactions with the

world . Even now , such models are linking the detailed architectures of brain

systems to the emergent behaviors that they control . Neural models are

already being used to solve difficult technological problems , and have suggested 

explanations of debilitating mental diseases. Ours is a great Aeld that

can be of use to many people and also for better understanding ourselves .
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July 1993, Portland, Oregon
ER: Tell us about how you know each other. How did it all begin?

GC: We met in 1974 at MIT in the applied math department. At that time
Steve had been a professor there for six or seven years, and that was to be
his last year there before he went to Boston University. I had just completed
my PhiD. in mathematics at the University of Wisconsin. I was starting as an
instructor in applied math at MIT as my first job. At that time there were

relatively few people studying neural networks. I had done a thesis on a
neural model, and there was a small but very exciting group of people at
MIT , including Steve, who were developing neural models. More generally,
mathematical biology was an exciting area within mathematics at that time.
There were also several graduate students. One of them was Dan Levine.
We actually met at Dan'

s thesis defense.

ER: Very romantic.

GC: Right. And another student who was there at the time was Stu
Geman, who is now at Brown. We had small seminars, and many people
were visiting . There was a real focus of energy in the field, even though
people now think of that as a time when very little was going on.

So we first met very much in the professional context. While I was doing
my dissertation, I had heard about Steve and seen some of his papers. At
Wisconsin, when people would ask me, is there somebody at MIT that

you
're hoping to work withf

' 
I remember saying, 

"
Steve Grossberg

'
s there

now, but he
'
s about to leave, and I'm not sure if he'll be there next year~

"



Mellon, but that just seemed too

difficult because I had a job at BU, and she would have been in Pittsburgh.

That was just a little too rough for us, if we had a choice.

ER: I want to back up a little bit and get a couple of personal details, perhaps
, about how your relationship with each other developed. Did you ask

her out?

SG: It was clear to both of us that this was a very important relationship,

right off, and then it was just a question of how not to spoil it .

GC: It wasn't quite that straightforward. We had talked a lot, and our

birthdays are almost on the same day, so we went to dinner to celebrate.

SG: Gail had had a romance before, and I was ending a relationship . . .

GC: This was one of the first things Steve told me.

SG: I told her, 
'
1 have just decided to be a lifelong bachelor. I

'm not going
to get into any more of these romances, because there

'
s a little time when it

's

wonderful, and then you spend a lot of time separating without hard feelings.

How could I break my resolution? I had just made itl
" I was working out the

last stages of a relationship so that we could remain friendly after it ended.
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something ?

SG: That is how we met, so we owe something to Dan Levine .

GC : Who was at that time also a friend of Paul Werbos . I didn
'
t know Paul

then, but he was also finishing his dissertation that same year at Harvard , in

applied math , and he and Dan had been friends for a number of years. I think

Steve knew Paul, too .

SG:

It turns out his appointment at BU [Boston University ] had been delayed 

by a year, and that was the year when we met . Do you want to add

Paul was having trou~le on his thesis, and I tried to advise him on

how to try to work out examples to get people to appreciate what backprop
could do.

ER: So what did you think of Steve when you met him, since he was

someone you had known about but hadn
'
t ever met1

GC: I liked his work very much. It wasn
'
t too long before our romantic

link started, within a couple of months. I had started out reading his articles,

and I guess the rest is history. He was teaching a course at the time on

learning models that he taught every year at MIT and had students from

math, psychology, and other disciplines. I sat in on the course.

ER: That was the early 
'
70s1

GC: 1974. In 1976 I went to Northeastern, where I became an assistant

professor.

SG: . . . and then Gail came to BU.

GC: By 1975, I wanted to stay in the Boston area so that we would be in

the same city.

SG: Gail had a job ofter from Carnegie
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Gail and I both realized that this was very important; we wanted to go on
in a nice, stately, not too hurried way because we both wanted it to work.
And so our romance really started on my birthday, my thirty -fifth birthday,
on New Year's Eve at a party. We didn'

t rush into this, but we knew . . .

GC: We'
re talking about a span of two or three months, rather than two or

three years.

SG: Which for us was forever! Gail had an apartment downtown within

walking distance of MIT , and I had bought a house a year or two before. I
was going through a major nesting stage. I needed something solid in my
life because everything else was so uncertain, especially since I kept taking
intellectual risks by attacking such difficult and, then, unfashionable problems.

Over the years we
'
ve gotten closer than I thought you could get to

somebody. She
'
ll often start to say a sentence that I've already started in my

head, or conversely, I don
'
t need to bother saying it anymore.

GC: Now [our daughter] Deborah is starting to do the same thing.

SG: We went through phases where we both worked a lot, but I was so
used to being alone that I never could work with anybody in the room.

Gradually we got so close that we didn'
t want to be far apart. So Gail would

work in the next room while I'd write on the dining room table. That didn't
work out too well because she needed her computer terminal, which she had
at home upstairs. But then I felt that she was too far away. . . .

GC: There was a big step when the dining room table got split in half. We
shared it .

SG: We worked at opposite ends of the table, in the same room, for
several years.

ER: Had you moved in at some point?

GC: Yes, in 1975.

SG: We lived together for four years before we got married. We didn'
t

really start working together scientifically right away although we were very
interested in each other' s work. Gail had done a lot of work on nerve impulse 

equations and the Hodgkin-Huxley model, and I was working more on
the network level. But we realized there were strong links mathematically
between networks and the Hodgkin-Huxley single cell, which is a type of
network also. Then we gradually converged on projects that we wanted to
work on. I'd been very interested in photoreceptor transduction; we worked
on that together and then on circadian rhythms. We gradually started collaborating 

more and more. After we'd known each other several years, our
first paper together came out in 1981, so that

'
s quite a span. We

'
d already

become very close as friends and lovers and colleagues before we were

actually collaborating.

GC: I already had tenure before we had started working together.

ER: In what year were you married?
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GC: 1979.

ER: And you were saying you took all this time when you were colleagues
and mends and lovers, but not yet collaborators. And was that a conscious

decision for both of you.

SG: No, it wasn't really a conscious choice. Gail had a lot of work that she

was doing by herself and with others, and I had been doing a lot of work

also.

GC: Our work really started out as quite distinct. When I met him, Steve

was already developing the foundations of ART [Adaptive Resonance

Theory], for example, and working on what became the 1978 human memory 

paper. And I did a dissertation on the Hodgkin-Huxley equation, which

is for the single nerve cell. I was very mathematical. The focus of my published 
work in the early years was primarily single nerve cell models and

mathematical analysis. Our work wasn
't so close to begin with that there

was an obvious way to think about collaborating, but we talked about each

other
'
s work all the time.

ER: Were you showing each other drafts of things that you were working
on and soliciting feedback from each other?

SG: I think so.

GC: Yes.

SG: I remember Gail gave me a lot of feedback on the human memory

paper.

GC: I remember the one where ART was introduced. The Biological Cyber-

neh"cs paper is in two parts, which has turned out to be a problem because it
'
s

usually split up in anthologies. It was submitted as one, but it was too long,

so just for practical reasons
' 
having to do with Biological Cyberneh"cs's page

length, they said, 
'We want the paper split into two." I remember discussing

how to do that.

SG: So we were very close in that regard. I don
'
t remember exactly why

we collaborated on photoreceptors. I had given a talk at U. of Penn., and Ed

Pugh had told me some data about photoreceptor transduction. I think that
'
s

where I heard about the experimental work on the turtle cone, and it seemed

to me that it was very similar to gated dipole dynamics, except that it was

intracellular. That interested me a lot . Thinking that we should be able to

model this, we started talking, and then we started working together to try
to understand how the different channels in a single cell could generate these

effects, including intracellular adaptation.

GC: You could think of it partly in terms of the size of the networks, especially 
in the ,evolution of my work, as starting out with one cell; the vertebrate 

photoreceptor model represented a single cell plus transmitter . . .

SG: That's why it was a good interface for us . . .



GC: Then the circadian models that we worked on for about three years
were quite small networks. The primary work after that was the development 

of the ART networks. That started in 1985.

SG:

might

It was an interface where circuits that I'd been working on in vision
have an analog or a variant in a single-cell context, and then we

attacked bigger and bigger networks . . .

GC: I remember very early on we would talk about hagments, and one of
the things that struck us is that part of the Hodgkin-Huxley model can be
viewed as a network sigmoid signal function. We were struck by the formal
similarity between the single-cell formalism, where you have a shunting
term, a product of conductances, and the competitive learning STM formalism

. That's something I remember discussing very early.

SG: We got excited about that because if you take the axon, you can break
it up into a lot of little pieces and view it as a one-dimensional network. If
you take some of Gail's theorems about propagating waves, what was exciting 

was that, in a sense, the Hodgkin-Huxley dynamics were selecting for

parameters to give you a wave, whereas in a cortical network the wave
would be like a seizure, and you

'
d select against it . Then we began realizing

that it was in this context of competitive interactions, with the potential
link to ion conductances- excitatory and inhibitory , fast and slow- that we
could think of the single cell as a network, you could also think of the individual 

network nodes as having laws that were very much like the single
cell.

One of the interesting things about this for me was that it took us a long
time to clearly see this. We talked to each other all the time heely, but it
took us years to see this. That was a great comfort to me because I realized
that even when people live together and love each other, it takes so long to
understand some things, so how could I expect colleagues to understand
each other easily? It helped take the edge off my hustration with how hard it
was to communicate. That made me more comfortable with lots of things.

GC: Well, more patient, maybe.

SG: We
'
ve always had the great benefit that both of us are very deeply

committed to science and love science, and we
'
ve had the wonderful experience 

of being able to talk heely about the widest range of areas.

GC: And we both had the same mathematical background.

SG: And to have that communion, it
's really been great. It

'
s not the main

focus of our relationship
-

emotionally and in many other ways we'
re very

well suited. However, it
's been really wonderful, and it 's been a comfort to

us both. Meeting Gail changed my life completely; Horn feeling isolated and
not having someone to talk to, I suddenly had the best person in the world
to talk to. I couldn't believe how lucky I was, starting in 1974- 75, even in
the context of other stressful events like being denied tenure at BU as well as
at MIT . When I was initially turned down for tenure at BU, there was such
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stress at the house that we would play games like Scrabble for hours and we

would watch . . . what is the show with the donkey?

GC: There was a series of Francis the Talking Mule movies on daytime TV.

We watched these not just for a week but for the entire month of January.

SG: We were not big TV watchers, but everything stopped. We just pulled
in . . .

GC: We didn't want to see anybody, we didn't want to have anybody say,
"
Hey , how are your

' We still remember Francis fondly for helping us to get

through that month.

SG: We watched Francis movies and played games and cuddled and tried

to not think about the future because we didn't know what was going to

happen. But at least we had each other. One of the things we computed was

whether, if I lost my job, we could still keep our house on Gail
's salary,

which was about $14,000. I thought I might write books, and we computed
that we could get by. We were bracing for that to happen.

GC: We made decisions like taking our retirement from MIT as of then.

Even though I was only twenty-seven when I left MIT , I started out as a retiree 

because we were calculating every bit- our retirement checks would

have paid our mortgage . . . I was expecting to be the sole breadwinner.

SG: So that was what we were facing. If I lost tenure twice, I might, given
the market at that time, not really be hireable again. And I might have to find

a way to be productive outside of any academic context. Certainly many

people do this profit ably, but I have always thought of myself as an academic

. But we had each other, and that really changed everything. It 's been

an immense source of energy for both of us.

ER: You have done important work together that's under both of your
names. I wondered if you could characterize your collaborative style.

SG: Do you want me to start?

GC: Sure. . .

SG: We talk together. The main difficulty is we're so close that it 's like

talking to yourself inside in a way. And I know when I'm talking to myself,
I'm ruthless. I would never talk to another person the way I talk to myself.

I'm not being mean; I
'm just trying to get at the answer. So sometimes we

would talk to each other that way, but we were talking to someone else-

the person we loved- so we'
ve had to learn how to remind ourselves that

we
'
re separate people.

GC: It
'
s evolved. We've always talked about our separate work that isn't

collaborative. Most of our collaborative work hasn't taken place where

we'
re sitting in the same room, officially working on a problem together, in

part because we have a constant opportunity to have small conversations.

Although sometimes we do have to schedule appointments, or everything
else washes in and takes over.
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SG: We had to work out how to get together in the context of a very
close, intimate relationship and do science.

GC: Part of it is you just put yourself into different compartments to some

extent. We interact in our department at a much greater distance than at

home. It
'
s like being a different person, just as everybody is in different contexts

. Also, in recent years, one of the things that all of us have faced is the

graduate program. It has been a huge stress on everyone in our program.

With lots of students and very rapid growth, having two professors work

either together and or with one student became a luxury .

ER: Well, I wonder if you could choose one thing that you collaborated
on, perhaps from the early

' 
80s, and maybe trace the genesis of the idea and

how you moved it back and forth between you, and what the phenomeno-

logical nature of the collaboration was?

SG: I would say in some of the earlier work, for example, when Gail was

still doing more single cell modeling, I might come in with a rough idea of
what I thought should be going on. My strongest skills are intuitive and
mathematical. Gail has strong mathematical and computer skills. In all our

collaborative work she did all the simulation studies. We would have a phase
together when we

'
d discuss design principles and what the model should

be. Then Gail would try to develop specific model simulations, to see what
worked and what didn

'
t. She also did a lot of analytic work. Then we would

talk together again, and so on.

GC: I think one project that was certainly important was the ART collaboration
. I could give my view of that. Steve had developed the adaptive resonance 

theory during the 1970s, and the theory was explicitly formulated in

the 1976 Biological Cybernetics article. And at that time there was a computa-

tional analysis for stability, along with a series of examples of data from

cognition, olfaction, and vision, and several examples of resonances. Then

over the course of the next decade, he had a series of other papers that

focused on the cognitive aspects. He had a paper in Psychological Review in

1980, for example. In the mid-seventies, I remember even his first lecture on

adaptive resonance, where he had talked about a lot of data, and then in the

last five minutes had given a very quick outline of the basic thought experiment 
of the ART system. I remember discussing it and saying, 

"
That last part

was so wonderful, why don
'
t you make it into a whole lecture?

" 
He did, and it

evolved into the 1980 paper, 
"
How Does the Brain Build a Cogniti,ve Code?

"

However, through all of these papers, including analyses of different kinds

of data, evoked potentials, and so on, there wasn
'
t an actual full working

ART model that could stand alone, that somebody could take and simulate.

There were pieces of it, and many of the concepts were there. Around 1984,
our circadian rhythm work was winding down- we felt that we had
modeled that literature to the extent that the data warranted. I was looking
for something new to start and had always liked the ART work. I sat down

saying, 
"
Let

'
s try to write something out that

'
s an actual system.

"
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In the 1987 ART 1 paper, which was written in 1985, some of the problems 
that the architecture solves seem simple in retrosped. However, it took

months to see how to design the stand-alone model. One issue was: how

do you encode a pattern that
'
s a subset? I remember talking about written

character E and F or E and L, where one pattern is embedded in another as a
subset. In the course of designing the model, new theoretical ideas, such as

vigilance matching and gain control, were also introduced.

SG: Even the decision to design ART 1 only for binary input patterns took
a lot of discussion. The goal of the theory was to encode more general

analog patterns. However, ART 1 was intended to be the simplest possible
model that nevertheless realized key theore Hcal proper Hes. With winner-

take-all coding and binary input patterns, a real analysis of the system became 

possible.

GC: In ART 1, and I think in most of the models since, the role of simulation 

has basically been supportive. Much of the work was done with pencil
and paper, and the simula Hons illustrate properties rather than prove them.
A lot of the work, the core, not only of our joint work, but an approach
that

'
s characteristic of Steve's work and other work in the group, is to focus

on a series of design principles or critical problems. In the case of ART, one
of the critical problems was one pattern being embedded in the other where

they had to be coded distinctly . That was one of the driving computa Honal

problems. ART 2, for analog inputs, was published the same year, although
it had taken another year to develop.

Although ART 2 was based on the Euclidean distance, the model development 

later came full circle to fuzzy ART, which is a dired extension of
ART 1. Fuzzy ART is more natural computa Honally than ART 2 and is what

most people now use, I think. The contemporary ARTMAP systems use

ART 1 or fuzzy ART in the supervised learning context.

ER: Is ferre Hng out the architecture a very collaborative effort that you
both work on in a variety of different ways? I

'
m wondering about the

writing .

GC: Typically, in all our group efforts, I think somebody does a very early
first draft after some discussion, then it goes to somebody else, who makes

changes, and then it goes back. I know in some groups, one person writes

and that
'
s it . But I don

'
t know of any of our papers where that

'
s been so . . .

SG: We have the rule that if you don't like something,you
'
ve got to rewrite 

an alternative. You can't just say, I don
'
t like it and send it back. You

have to . . .

ER: Make a sugges Hon . . .

SG: . . . make a definite improvement . . . We eventually reach a consensus.

Now it
'
s a little more remote because we'

re both so active with students.
Now, we might write and rewrite before giving a draft to the other.
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GC: The ART 1 paper was the first scoping out of many themes, plus
theorems and simulations. Going through the thought process es of how to

organize these things became very complex . . .

SG: What I
'
m trying to remember is how we organized the front end of

the paper. I think that we had to prepare for talks, and that always helps.
That paper was a big struggle because it was much more mathematical than
some readers really wanted, so we made sure the main ideas would be up
front . Not everyone could get to the end of the paper, but they could at least

get the main ideas.

GC: That was before the neural network field had crystallized. The paper
was also written for more than one audience, psychologists, for example. I

'
ve

had engineers say to me, 
'
Why did you write all this stuff? Why didn

'
t you

just cut right to the equations?
" 
And other people would say, 

'
Why did you

have the equations?
" 

We would always try to give a road map at the beginning
. It would say, 

"
If equations are your language, skip to section 30.

" 
They

were irritated that there were all the other sections that they had to leaf

through. This situation is better now; there
'
s more of a body of knowledge

that's common to the field, although there are still communications problems
.

SG: We realize that some of our papers create special difficulties. Our goal
is to try, however imperfectly, to get as many potential readers as possible
to know what the story is about, even if they don

'
t want to follow the details

. But then, who is the reader? As Gail said, there are some people who
want the equations and not the psychological and neural interpretation,
which for us is very important for guiding one

'
s intuitions and design

choices.

ER: You
'
ve succeeded with me. I can usually read the front ends of your

papers.

SG: That was really a main goal. Over the years, I took very seriously
criticisms such as "I have to read all your papers to understand anyone of
them.

" In fact, you might not know everything that led to a certain paper,
but if you read it on its own terms, the model does what it does, in a selfcontained 

way. But it is better up front to give the reader heuristics that will

try to repeat and refer to other things. Some people say, 
'
Why do you refer

to all these papersr
' 

But that's for people who want to know where to find

background material. You can't win.

GC: One thing we've been putting in more and more, especially the last
two or three years, is terse algorithmic specifications so that somebody- in
almost a cookbook fashion if they want to replicate- can simulate each system

. Back with ART 1, we still weren' t doing that. Although you could pick
the algorithm out of the paper, it took some effort. You

'
d have to read most

of the paper to be able to do that. Implementing the algorithm is another

way for somebody to read it , get a feel for the model, really learn it . That has



helped a lot . Now, I also find huge demand &om people who also want a

packaged program, even if it
'
s simple; they want to be able to start without

even going through the step of programming.

ER: You had talked about how difficult it had been recently in the last few

months, that you hadn't been able to do as much collaborating . . .

5G: We're really overloaded. What happened was that the Department of

Cognitive and Neural Systems has grown very quickly. We
'
re added nine

professors since 1988, which in these times is a big investment for the University

. Many smart kids applied and often we didn
'
t have funding for them,

but they were too good to reject. We said, 
"If you want to come, come.

"

They came! We take very seriously our responsibility to train them. We

meet with them in regular research meetings, and we help them to learn how

to prepare lectures and papers and give them a lot of advice. We'
ve really

been working very hard to give them the level of support that we feel is

necessary. Some of the collaborations have been running for some time.

GC: The graduate program has been a kind of collaboration between us

that has been extremely important. In the sense of research, its results are

just barely beginning to show. This has been very much a long-term capitali-

zation of effort. Before the department was formed, Steve and I were co-

directors of the graduate program. Then it became a graduate department,
where Steve is Chairman, and I'm the Director of Graduate Studies. We split

up responsibilities in much the way people split them up at home. It
'
s been

nice because among other things it
's the first time I have ever taught in anything 

remotely like my research field. Before coming to BU, I had always

taught mathematics.

5G: Gail helped me found the Center and the graduate program, and now

she really is a co-chair with me, and I
'm also director of the Center. It

'
s been

very much a team operation. However, one of the things we
've been sensitive 

to is that, although we
'
re married, we don

'
t want people to resent that

fact. I think it
'
s worked pretty well. We really have a very mendly group of

colleagues. We try to support one another personally and intellectually in a

lot of different ways.

ER: Is there scientific work in the future that you
'
re looking forward to

collaborating on?

5G: We'
ve already started talking about a variety of problems, like scene

understanding and other higher-order cognitive process es for which basic

understanding is lacking. We worked together on a problem related to how

you generate multiplexed spatial maps. One reason we did that was because

in dealing with problems of visual search and attentively organizing information 

to recognize objects, you need both spatial representations and categorical 

representations. We
'
ve already started talking about how you do

complex scene understanding. That requires spatial analysis, categorization,
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temporal organization, plans. But, there were so many things going on

already that we had to stop that for the moment to clean things up.

GC: I think some of the
' 
pieces that we' re now working on individually

with students are informed by these ideas as.a longer-term goal. We used
to have regular appointments and research meetings, but neither one of us
had any time between the appointments to do anything. I think the very fact
that we laid out these goals helps us to think more clearly about some of the
individual components we'

re working on.

SG: I would say that a lot of the projects are heading toward higher-level

system integration, even as we're developing, as a Department, new pieces
of the brain puzzle. And one of the. nicest things, one of the keys to the

productivity of the Department, is its way of organizing cooperative, collaborative 
work.
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September 1993 , Providence , Rhode Island

ER: Why don
'
t you tell me a little bit about your parents and your childhood

?

MA : I was born in England in 1940 on May 28, which was the day of the
evacuation of Dunkirk. My father had recently joined the army and had been
in training camp and had managed to travel the length of England to come
and join my mother. He then went off to war and served in the tank corps
in North Africa. He had a South African general who capitulated rather too

easily to the Germans and was shipped off to Italy, to a prisoner of war

camp where, he told me, the only meat he got to eat was the maggots that
rose to the top when they boiled the rice. Then the Italians capitulated and
told their prisoners to wait and the Americans would come in the morning
to liberate them, but the Germans came in at midnight and shipped them off
to Germany, so my father had two years in a German prisoner of war camp.
Rather a difficult time. One time the Germans asked for the names of all the

people who were Jewish, including my father, but it turned out that being a
British officer was sufficient protection, so he made it through the war. My
mother must have done a wonderful job because I don't remember any problems 

when my father returned. He
'
d always been somehow a part of our life.

England was rather depressed in ' 4S, so my father decided that we had
to emigrate to get a better economic future and after considering just about

every part of the world chose New Zealand. We got there in '47, but my
parents found it very provincial, and my mother cried every night for her
home and friends and family back in England. After a couple of business trips
to Sydney, Dad decided that was a better place for us, so in ' 49 we moved



to Australia, which is where I grew up. I was in high school there and then

an undergraduate at Sydney University. When we get to it, that
'
s where the

story of neural networks starts for me. And then I went to MIT .

ER: What did your parents do? Your mother was at home?

MA : When we moved to Australia my father started by selling army surplus 

buildings and then eventually became a master builder, making or designing 

prefabricated buildings, mainly for factories, also shearing sheds. I

remember working at a sheep show in Sydney, helping on the display stand

for the shearing sheds. They also made copra dryers for New Guinea, so at

one time Dad used to commute up to New Guinea from time to time on the

flying boats. That was his career until he retired. My mother was always a

very active person in the community. Then, at about the age of fifty -five she

started a whole new career and became the Julia Child of Australia, publishing 
cookbooks. I think her cookbooks sold something like three hundred

thousand copies. Given that that's just the Australian market, which is 5 percent 
of the American, that

'
s a pretty incredible performance. She got to be

quite a fixture on TV and the radio and the papers. I think that career lasted

about eight years, and then she retired. She died three years ago. My father
'
s

since remarried. I had three sisters. One died at the age of eleven. She
'
d been

born with a small hole in the heart and finally died of complications during

surgery. The other two sisters are alive and well in Australia.

ER: And where are you in birth order?

MA : I was the oldest. Still am.

ER: And what were you like as a child growing up. How did you end up at

MIT7 Were you interested in 
"
things technical?

MA : Well, from the earliest age I was interested in mathematics. As a

six-year-old, I was already reading the Meccano magazine. Meccano is like

Erector sets. You build little things with pieces of metal and screws and

pulleys and so on. Meccano put out a magazine which had lots of science

articles as well as jokes and things to do with Meccano. So, I remember at

about the age of eight giving a lecture on V -2 rockets, which I don
'
t think

was a great success with my schoolmates. When I went to Sydney, I went to

a private school on scholarship because one of my dad
'
s fellow prisoners of

war had been a student there and had recommended it . And when I was

eleven, I went to the high school. I had the good fortune of having a mathematics 

teacher named Fred Pollock, who normally just took the last two

years but decided he would take one class all the way through the five years.
In my first year of five years of high school he lent me Mathematics and the

Imagination by Kasner and Newman, which is an introduction to everything

up to topology . I would borrow it from him once a year and read it .

I had a very strong Interest in mathematics. At the end of my five years
at high school I came top of the state of New South Wales in the statewide

examination on mathematics and then went to university. I started my fresh-
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man year in engineering because the father of a friend of mine had said that

this was a good thing to do, but both of us quickly discovered we did not

like engineering. I think for me the high point of my year as an engineer was

that we had a course on stress and strain in beams. We went through the

most incredible algebra and computations to come up with how thick the

beams should be to carry the load. After all this, the lecturer then said, 
"
But

engineering practice says we make it twice as big." I realized this was not

for me.

I founded an organization in the first year of university called the Useless

Mathematics Mob, with the idea that, to be fun, mathematics should be

totally inapplicable. It rather horrifies me that I did not remain true to the

credo of my own organization. Anyway , computers were very primitive at

that time but very alluring. There were lots of articles on computers as giant
brains. We're now talking about 1957 through 

'60 when I was an undergraduate 

at Sydney University. This was long before the transistor had had

an impact on computers. People like Edmund Berkeley wrote extrapolations
that the computer of the future would need all the power of Niagara Falls to

operate and cool it . We had a close family friend, a physicist named John
Blatt, who was one of the most serious early users of computers in Australia.

He would, every summer in Australia, fly off to New York for the winter

where he would work at the Courant Institute at NYU, with their incredibly

powerful 7090s, or whatever they were at the time. Incredibly powerful
then, but some abysmal fraction of what your personal computer has these

days.

Through him I learned something about computing. He arranged during

my first summer vacation in Australia for me to work at Sydney University,
where they had something called the Silliac, which stood for the Sydney
version of the Illiac 2, the Illinois Automatic Computer. I must confess I don

'
t

remember very much about it except that all the programming was done on

punched paper tape and that they had one program which would play
"
Waltzing Matilda" 

through the loudspeaker of the computer, doubling the

speed on each repetition.

Anyway , that got me into computers, and then the other two summers

that I was an undergraduate I worked at IBM, which was then newly established 

in Sydney. The IBM 650 was my computer, with all of two thousand

words of memory on a rotating drum. Perhaps more important, I never really
learned how to program well. In fact, one friend of mine said he was hired

the following summer to debug all the programs I
'd written the previous

summer.

At that time I devoured not only Norbert Wiener's book, Cybernetics,
but the original McCulloch-Pitts articles from ' 43 and '47 in the Bulletin of
Mathematical Biophysics, and a lot of other things of that kind. It was about

that period, during my third year to fourth year as an undergraduate (1959

and 1960) that I became very serious about neural networks and cybernetics.

Networks at that time were a subset of cybernetics. I got very interested in



automata theory. A paper by Rabin and Scott had just come out on the semigroup 

approach to finite automata in the IBM Journal of Research and Development
. There were other papers. Copi, Elgot, and Wright had a paper in the

Journal of the ACM , linking finite automata to formalized neural networks. A
book called Automata Studies that was fairly new at that time, published in

1956 and edited by Shannon and McCarthy, was another influential book
for me. Also at that time I found Martin Davis

'
s book Computability and

Unsolvability, [1958] which was a formal account of Turing machines and the

theory that went with them and which had one joke in it - namely, the only

figure was labeled 
"
A Square of Turing Machine Tape.

" 
Everything else was

immense formalism.

At that time we did not have Xerox machines, so either you wrote

things out or you had photographs made of the pages. I read and wrote
out Turing

's original paper and found about thirty errors in it . I translated
Godel

'
s original 

'
31 paper with the help of a friend who was a student of

German. At the same time I started reading a lot of heavy mathematics. I

taught myself Lebesgue integration so I could read the proofs of the ergodic
theorem because Khinchin, a Russian mathematician, had put out two little
books, one on information theory and one on statistical mechanics, which
made heavy use of ergodic theory. In Australia, the system at that time was
that an undergraduate degree was three years, and then you took a fourth

year if you wanted to do honors. It was not at all like the American system
in which you got a general education. Basically, you enrolled in four subjects
the first year, three subjects the second year, two the third, and then one
the fourth, where each subject of a course expanded the number of lectures
to more than fill the week. I think we were doing well over twenty hours of

lectures a week.

So my first year was engineering, mathematics, physics, chemistry; my
second year was pure mathematics, applied mathematics; and statistics; my
third year was pure and applied mathematics; and my fourth year was pure
mathematics. In my fourth year, I started looking for where to go for graduate 

school. By that time, through my reading, I knew of Wiener and Shannon

and Minsky and McCarthy, who were at that time all at MIT , so MIT was

very high on my list of places to go.

ER: McCulloch was there too.

MA : But you see, I didn
'
t know that at first when I applied. I had read

all the classic McCulloch papers, which were from the University of Illinois
Medical School. In Wiener's book he talks about McCulloch as a colleague
back at Illinois. I had become mends with a lecturer, which is sort of like an

assistant professor, in the medical school, a neurophysiologist named Bill
Levick. Levick was working with Professor Peter Bishop on the visual system 

of the cat. Bill had decided he needed to know more mathematics, so we
did a deal where I would help him with his mathematics and he would let me
watch him and Professor Bishop do terrible things to cats. It was he who
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showed me, for the first time, the 1959 paper, pretty much hot off the press,
on 

'
What the Frog

'
s Eye Tells The Frog

'
s Brain,

" 
by Lettvin, Maturana,

McCulloch, and Pitts [reprinted in Neurocomputing 2], which is a very significant 
paper in my life. That was when I learned that McCulloch, and Pitts

were at MIT ; they
'
d moved there apparently in 1952.

In terms of applying to graduate school, at that time the tradition was for

essentially all mathematicians from Sydney University to go to Cambridge,

England, for their PhiD.s. I had applied there and never got a reply. Then
twelve years later a professor, the same professor with the son who had
recommended that I go to engineering in my freshman year, Professor V. A .

Bailey- I don't think that anybody knew what his first name was; he was

just V. A . Bailey- died, and they emptied out his mailbox, and there at the
back was the reply from Cambridge to my application for PhiD. studies,
which had somehow gotten lodged in the back of his box and never been
found. I wrote them a letter declining their offer on the grounds that I'd

already received my PhiD. ten years earlier. They never replied.
So that was why I didn'

t go to Cambridge. I did get admitted to NYU on
a full scholarship, but MIT admitted me too, and it was clear by that time
that everyone, so to speak, was at MIT . It was the end of the golden age of

cybernetics. So I went.

Australians live at home, usually, when they go to University, so this was
the first time I had been away from home except for an occasional journey.
I remember traveling halfway around the world, leaving the summer of
Australia and arriving in one of the bitterest winters in living memory in

Cambridge. I visited relatives in New York, took the bus up to Boston, and
then took a cab to MIT . We went along Storrow Drive, and there was the

totally frozen Charles River, with this wonderful view of MIT on the other
side. I remember just looking out of the cab thinking, 

"
My God, you

'
d better

be worth it .
" 

But it was, it was.

A friend who
'
d preceded me by a year or two to study chemistry at Harvard 

helped me find an apartment on Massachusetts A venue. The first thing
I did when I arrived was to visit the mathematics department and met Gian-

Carlo Rota and Ken Hoffman, the first two mathematicians I encountered.
Somewhere along the line I went into the main lobby just off Mass. A venue
and .phoned McCulloch, with whom I'd had no previous contact. He was

very welcoming and told me to come right over. I was sure I had made a
mistake because his voice sounded so young, but when I got there, there he
was with his famous white beard. Some time later he explained how he had
once been in a southern town and a little boy had come up to him and
looked up and said, 

"
Are you de Lord?" I can't remember whether he said

yes or no.

As an undergraduate, for my fourth year paper, my senior thesis as you
'
d

call it here, I had written what later became a paper published in the Journal
of the ACM in 1961, called 

"
Finite Automata, Turing Machines, and Neural

Networks." That was my first publication in neural networks.
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In my first term at MIT I was a T A and was disappointed that a T A didn't

teach; all I got to do was grade homework in linear algebra. I remember

being amazed at how bad students at MIT were. I had had the fantasy-

well, the fear, really- that I would go from being one of the top students in

Australia to being at the bottom of the pack because here was MIT with the

creme de la creme. Once I started grading undergraduate linear algebra, all

my fears were destroyed!

McCulloch adopted me, and I became an RA in his group. Those were the

good old days when there was lots of money around so that being an RA

was not particularly onerous. Basically, the Navy and other agencies gave
lots of money to MIT and MIT funneled it to various people, and Warren

was one of the good guys, so he had quite a lot of money to support bright

young students.

The big thing that Warren McCulloch was worried about at that time was

reliability : how is it that neural networks can still function although we know

there are lots of perturbations? His favorite story on this line was a midnight
call from John von Neumann from Princeton saying, 

'
Warren, I

'
ve drunk a

whole bottle of absinthe, and I know the thresholds of all my neurons are

shot to hell. How is it I can still thinkf ' "That was the motivating problem.

That
'
s what Jack Cowan was working on at that time with Shmuel (Sam)

Winograd, who later became a very high level person at IBM. What McCul-

loch had done was to handcraft small networks, making little Venn diagrams
and then showing how, as the threshold shifted, if you designed the network

right, you could have reasonable insensitivity to the change in threshold and
still get the network to perform pretty much as advertised. Jack and Sam

took a different approach, where they took Shannon's theory of reliable communication 

in the presence of noise and said, 
'
What if we think of the

neurons as doing a process of computing, rather than coding, and we try to
make the redundancy in the network fit in with Shannon

'
s ideas?

" 
Their book

came out a year or so later, Reliable Computation in the Presence of Noise

[1963].

I think that the most influential thing in McCulloch
's group for me at that

time was his partnership with a guy named Bill Kilmer, who I think had

come in from Michigan, later went to Montana, and eventually joined me at

the University of Massachusetts. Bill was working with Warren on the idea

of the reticular formation as a mode selector. Warren had been influenced

by the idea that the reticular formation is involved in switching the overall

organism between sleep and wake fulness. These were ideas from Magoun on
the waking brain, and Warren had extended that to the idea that there were
various modes of behavior.

There's a joke in neuroscience, which is due to Karl Pribram, about the

limbic system being responsible for the four Fs: Feeding, Fighting, Fleeing,
and Reproduction. It was Warren's idea to extend the sleep-wake fulness idea
so that perhaps the reticular formation was responsible for switching the
overall state of the organism. There would be one part of the brain that



would say, well, is this a feeding situation or a fleeing or whatever situation,

and then the rest of the brain, when set into this mode, could do the more

detailed computations. Mode switching.

The other part of the equation came from Arnie and Madge Scheibel, who

were a husband and wife anatomy team at UCLA. Arnie is still alive and

well, but his wife died many years ago. They had done some lovely studies

of the reticular formation and had observed that the anatomy was such that

the dendritic trees ran roughly parallel to each other and orthogonal to the

fibers running up and down the axis of the reticular formation. They had

suggested a poker chip analogy
- that you could replace all the detail by a

stack of poker chips, where there'd be a lot of cells in each chip, but because

of the way the dendrites were placed, they would have roughly homogeneous 

input and output. This suggested to Warren and Bill Kilmer the idea

of modeling the reticular formation as a stack of modules corresponding to

the anatomical poker chips. Each one would have a slightly different selection 

of input, but each would be trying to make up its mind as to which

mode to go into. They would communicate back and forth, competing and

cooperating until finally they reached a consensus on the basis of their divergent 

input and that would switch the mode of organization.

In looking back, I think that the ideas in that paper were a tremendous

influence on me because they said two things. One was that if you
'
re going

to study very complicated neural networks, you shouldn
'
t do it all at one

level, that you need an intermediate level, in this case their modules. This later

became the basis for my theory of schemas, where I replace the anatomical

modules by functional schemas, but the idea was that you need a high-level

language in which to explain the functional interactions rather than mapping

everything immediately down onto the neural net. And the second thing
was the notion of competition and cooperation.

At that time there were two ways of thinking about neural networks that I

was aware of. One was the stuff that I
'
d done my first paper on- namely,

the fact that you could build any finite automaton using a neural network.

You could express the state of the system as the firing of the neurons in it,
and then the input together with the state would determine the next state.

You could set up the wiring in such a way as to represent any finite-state

transition you cared to look at. Then of course if you added it to a control

box to run a tape, you had a Turing machine and universal computation.

That was the result that really went back to the
' 
43 McCulloch-Pitts paper

but written there in an unintelligible way.

In fact, one of the first things I did when I got to MIT was go to see

Walter Pitts, to go over with him the
' 
43 paper because there were some

obscurities in the logic. Pitts had adopted the logical notation of Rudolf

Carnap and had written an almost impenetrable paper, so in many cases I

had to rederive the results rather than follow their proofs. I wanted to check

with Pitts that I had got it right . It was a terrible meeting. We got about two
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sentences into the conversation, and Pitts started shaking and wouldn
'
t stop,

so I had to leave. It turned out he was already far gone into the DT s.
McCulloch'

s story was that Walter Pitts, as a fourteen-year-old, had been
about to be forced by his family- which was very poor at the time, early in
World War II- to leave school and go and work to raise money for the

family. By chance, he was sitting on a park bench when he got into conversation 
with an elderly man, and fortunately for him the elderly man was

Bertrand Russell, who introduced him to Carnap. Carnap knew that Warren
McCulloch, who was then in Chicago, was interested in making a logical
theory of the brain and brought the two together, and that

'
s what led to the

classic McCulloch and Pitts partnership. That led to a long period in which
Pitts, who was an ugly but very bright person, became sort of an adopted
son of the McCullochs. Unfortunately, he was terribly insecure and wasn

'
t

prepared to be loved for his brilliance; he wanted to be loved for his looks,
and he had no looks. It was a very strange relationship, I think, where Pitts
was the child and yet, in some ways, intellectually the more powerful of the

pair, though McCulloch knew an incredible amount about the brain and had
been a very successful anatomist and still was at that time. Apparently, because 

of all these different psychological pressures, Pitts eventually went the

way of drink. I think for many years Lettvin became essentially his guardian
and managed to have him maintain a research position at MIT even though
he was long past being a brilliant achiever.

As I was saying, there were two views about neural nets at the start of the
, 
60s. One was that you could build any finite automaton and the other was
the beginning of learning theory. That time was pretty early. Basically, we
had the percept ron from Rosenblatt, there was some work from Taylor in

England, and a few other beginnings. We were just making the transition
into thinking about what has become the sine qua non for most people of
neural nets today-

learning theory. What was missing in the two conceptions
- (a) you could do anything, and (b) you could learn how to do it-

was the notion that you should think of a more complicated system in which
there were subsystems interacting. Those could be not necessarily doing the
same thing, with each having well-assigned jobs; each could be competing.
It might have part of the truth, and then some process of interaction was

required, so then there's competition and cooperation. The notion of the
multilevel view was I think the biggest lesson I got from my time with
McCulloch.

I also met Norbert Wiener very early in the piece and ended up as his
PhiD. student, but it turned out to my disappointment that Wiener was not

very interested in cybernetics anymore and was devoting himself to statistical 
mechanics. But, since he was the great founder of cybernetics and I

really wanted to understand how his mind worked, I signed up to do a thesis
in his area. Then Norbert Wiener went on sabbatical, and during about six
months I only got one letter from him. It was a charming letter, which I'~e

kept, saying that he'd visited Cordoba in Spain where he had paid homage
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to Moses Maimonides, the great medieval Jewish philosopher, whom he

claimed as an ancestor, but this really wasn
'
t advancing me very much in

the field of statistical mechanics. I turned to Henry P. McKean Jr., who was a

superb probability theorist with some interest in statistical mechanics and

transferred to him. After a while we decided this was not the right subject,
and I ended up putting in a thesis proposal for fractional integration, which

ties in very much with the current mathematics of fractals. The idea was that

in a lot of applied mathematics there was a great interest in white noise-

driven process es. McKean and Kyoshi Ito had written a lot on an approach
to stochastic integration, so I proposed to generalize it to a much broader

class of stochastic process es. But, unfortunately, I succeeded too well and

found a very simple way of doing it . The day before my PhiD. defense

McKean asked me to take a walk. I knew what he was going to say, but

cruelly enough I let him go ahead and suffer through saying it- namely,

please write another PhiD. thesis. So I said OK.

This may have had a very big impact on my orientation as a scientist

because I had already been accepted for a full summer course at the Rand

Corporation, run by Allen Newell and his colleagues, on his approach to

artificial intelligence [AI ]. Had I spent the summer at RAND I might well have

ended up with a much more conventional AI career than I have had. Instead,
I went off from Boston to rural New England because McKean lived in a

small village north of Hanover, New Hampshire. Hanover was where Dartmouth 

College sat, and since that was the nearest mathematics library, that
'
s

where I spent the summer, driving up to McKean
'
s house once a week past

the little red school house and through the covered bridge, and turning left

at Waldo Peterson
'
s place

- and so grew to love New England. I managed
over that summer to write another thesis and finish. The one sad story about

that was that when I went to pick up my diploma in September of 
'
63, I discovered 

that MIT had written the title of the thesis on the diploma itself, but

they had the title of the rejected thesis not the actual thesis. What I regret is

that at that time I made them change the title . I wish now, of course, that I

had the amusing diploma rather than the correct diploma, but never mind.

Actually, a lot happened in the two and a half years that I was at MIT ,
besides the PhiD., which was just a small part of it . There was a lot of involvement 

with McCulloch
'
s group. One of the interesting things about the

involvement was that McCulloch had told me not to tell Wiener about it .

Wiener had been a child prodigy and had to the end of his days retained

many of the marks of his childhood as a prodigy . He was in many ways insecure

, would need a lot of praise, and was in no way a judge of human

character. He had published two books called ExProdigy and I Am a Mathematician

. Cruel people said they should be called ExMathematician and I Am

a Prodigy, but, in fact, 
'
he was a very great mathematician until the end of

his days. In this century the American Mathematical Society has only twice

published memorial issues of its 
"
Bulletin ,

" 
one to honor John von Neumann

and the other for Norbert Wiener. I think it 's very interesting that they did
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that because these are both men who helped found the study of cybernetics
and neural networks. They

'
re also men whose work spanned from applications 

to very deep pure mathematics. Wiener was a great man, but perhaps a
defective human being.

McCulloch had been a very strong neuroanatomist and the work he did
with Pitts and the later work on the reliability problem showed his lifelong
devotion to trying to see how to bring the methods of logic to bear in the

appropriate way to probe the nervous system. On the other hand, he was a
romantic, and he would rather tell a good story than be totally shackled by
all the facts.

I remember once a plane ride with Jack Eccles, the Australian Nobel
Laureate in neurophysiology. We both had been at a meeting in Boston. At
that time I was living in Stanford, he was living in Chicago, and so we flew
as far as Chicago together. He was really anti-McCulloch because of McCul-

loch's somewhat romantic way of handling the facts. What I pointed out to
him was that most of us who worked with McCulloch had enough sense to

accept the inspiration of his ideas but knew that we then had to do the hard
work of finding out which of his ideas were supported by the literature and
which weren't. In this way, a lot of young people had really gained a great
deal of insight into the nervous system and a great deal of inspiration for
their careers from Warren. The other thing about Warren was at that time he
was drinking a lot . But where it caused the DT s in poor Pitts, for Warren a
bottle or so of Scotch was just the key to loquaciousness. For people like

myself who saw a lot of him, it was a bit of a pain because the same stories
would come out again and again, but for people who were seeing him for
the first time, it was always extremely stimulating and motivating.

I finished my PhiD. and was going around MIT paying my farewell respects 
and found myself in Norbert's office for the last time. So we

'
re chat-

ting, and he says, 
'
What else have you been doing while you

're heref
' 
and I

think to myself, 
"
Oh, it won't hurt to tell him," and I said, 

'Well , I've been

working with McCulloch,
" and immediately Wiener went into an apoplectic

fit and said, 
'
Why , that man, that wretched man, why, if I had the money

I'd buy him a case of whiskey so he could drink himself to death." Wouffff So
I spent the next fifteen minutes trying to be loyal to McCulloch while

soothing Wiener.

I discussed this reaction with a number of colleagues. The best explanation
I have - 1 have no independent confinnation of it, but it rings so true with
the characters of the protagonists that I refuse not to believe it- came from
Pat Wall, an expert on the neurophysiology of the pain system. Many years
before, in the '50s, buoyed by the success of his book on cybernetics, Norbert 

had decided to develop 
"
the" 

theory of the brain. So he had gone to
Warren and said, 

'
Warren, tell me all about the brain, and what the open

problems are," and Warren had told him. But, of course, Warren had told a
somewhat romantic story, and Norbert, being no judge of human character,
had not understood this and took it all as a totally objective presentation
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of the state of play. He had then spent two years developing a theory to

explain all these 
"
facts,

" 
and when he presented the theory at a physiological

congress, he was howled down. Instead of realizing what the situation was,
he thought McCulloch had deliberately set him up, thus robbing him of two

years of his life and his chance to establish a great theory. This is Pat Wall
'
s

explanation. I must say it jibes so well with the character of both men that

I
'
m prepared to believe it .

A year and a half into my graduate studies (in mid-1962) I went back to

Australia for a summer. I left the summer in the northern hemisphere for the

winter in the southern hemisphere. I gave a course called 
"
Brains, Machines,

and Mathematics
" 

at the University of New South Wales. At that time they
had a radio station that broadcast courses, so they asked me to write up
notes for this, which could then be sent out to subscribers. I would speak
over the air with the notes in front of me to refer to figures and so on. When

I came back to MIT , I showed these notes to McCulloch, and he encouraged
me to go ahead and publish them. I had the interesting experience of sitting
in McKean

's office discussing my PhiD. thesis with him when the McGraw-

Hill representative came in to talk to the student, not the professor.

We could talk the whole day just about MIT . We haven
'
t talked about the

ineffable Jack Cowan yet. Amongst the other people I immediately went to

see were Minsky and McCarthy, who I knew from the automata studies

book which came out in 1956, the year that McCarthy, at a conference held

in Dartmouth, gave the name 
"artificial intelligence

" 
to a new offshoot of

cybernetics. In that book Minsky was still writing on neural nets, material

from his PhiD. thesis, while McCarthy was talking about logical issues that

continued throughout his career to the present day. Anyway , I arrived at

Minsky
'
s office the day in 1961 he got his reprints for 

"
Steps towards Artificial

. 
Intelligence,

" 
which is one of the two or three founding papers in the

subject of artificial intelligence. It
'
s actually an interesting paper to go back

to now because although it is one of the opening salvos in the battle for artificial 

intelligence, it has a lot of very good neural net theory in it, reflecting
some of his work with Oliver Selfridge.

Jack Cowan did not have a PhiD. at the time, although his knowledge and

experience made him essentially a postdoctoral researcher in McCulloch
'
s

group. I've already mentioned that he had taken a novel approach to the

work of McCulloch on reliability and with Winograd had pushed it a long

way further through bringing in ideas of information theory. When I went

back to Australia and gave my lectures on "Brains, Machines and Mathematics

,
" 

one chapter was an exposition of Shannon
'
s information theory and

of the new work with Winograd. Jack seemed more upset that I had got
some mileage out of his work in my book than he recognized his luck that

his work was being publicized in a way that went beyond the circulation of

his MIT Press monograph.

I remember a conference held in Dayton, Ohio, at about that time, on

bionics. This field comes up with different names. It was cybernetics for a
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while, then it was bionics, now it
'
s neural networks. Who knows what it will

be next year? What I remember vividly about this meeting in Dayton, Ohio,
was a man named Jack Steele, who was one of the monitors of the bionics

program for the Air Force. He had a delicious definition of bionics: "The life
sciences in the service of the death sciences."

The Minsky and Papert book Perceptrons came out of that period. Minsky
and Papert basically said that if you limit your networks to one layer in

depth, then, unless you have very complicated individual neurons, you can't
do very much. This is not too surprising. It

's hard to see why
' 
this was taken

as a serious critique of neural networks. It
'
s like saying to computer hackers

that if you can't have any loops in your code, and you only have ten instructions

, then serial computers are really very limited!

Many people see the book as what killed neural nets, but I really don
'
t

think that
'
s true. I think that the funding priorities, the fashions in computer

science departments, had shifted the emphasis away from neural nets to the
more symbolic methods of AI by the time the book came out. I think it
was more that a younger generation of computer scientists who didn

'
t know

the earlier work may have used the book as justification for sticking with
"
straight AI" and ignoring neural nets. I don't think it played a role in the

actual power struggle that was only reversed in the early 
'
80s.

After getting my PhiD. I did a lot of traveling. I hired a car and drove all
around the States and got to meet a lot of people. Then, in the first half of
'
65, I did a sort of postdoc with Jack Cowan, who had returned to Imperial
College, where he had done his diploma before going to Warren. He was
now in the department of Dennis Gabor, the inventor of the hologram.
When I arrived at Imperial College, Professor John Westcott, head of control

theory there, announced that in a couple of months they were having a conference 
on control theory, and would I like to give a paper? With complete

flippancy, knowing almost nothing about control theory, I said, 
"
Oh, sure,

why not?"

And he said, 
"
Well , what will you talk about there?"

And I said, 
"
Well , the rapprochement between automata theory and control 

theory.
"

And then some weeks later, not having known my twisted sense of
humor, he said, 

"
Where's your paper?"

I said~ 
"
What paper?"

He said, 
"
The one on the rapprochement between automata theory and

control theory." So I got cracking on a book by Zadeh and Desoer and on
Kalman's papers and came up with a paper on the rapprochement between
automata theory and control theory! (I had met Lotfi Zadeh in Berkeley and
Rudolf Kalman in Baltimore during my post-PhiD. tour of the United States.)
That became very important for my non- neural net life. Jack Cowan and I
were not totally compatible, and he was working on his PhiD. thesis at the
time, which was on statistical mechanics. We never clicked in terms of doing
any joint work together.
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I did get to know Dennis Gabor, which was a pleasure. Brains, Machines,

and Mathematics [1964] came out while I was there, and to my pleasure and

amazement Jacob Bronowski, a very well-known writer on the history of

ideas and the implications of science, wrote the lead review in Scientific
American on the subled of my book. I think this was not so much because of

the merit of the book, but the fad that Wiener had just died, and so cybernetics 
was a hot topic at that time. Similarly, Stephen T oulmin, a very wellknown 

philosopher, wrote an article on 
"The Importance of Being Wiener

"

in the New York Review of Books, which referred to my book, and it included

the phrase 
"
even Michael Arbib says,

" which made my twenty-four-year-old

day. The review then went to disagree with what I was saying, but the idea

that I was referred to as if I were a known authority was very gratifying
indeed. It

'
s sort of sad when you peak at twenty-four! None of my books has

ever sold as many copies or been so prominently reviewed since.

Until about June of 
'
64 it had been my intention to go back to Australia to

teach. But around Mayor June I got offers &om both Zadeh and Kalman to

postdoc with them. Kalman had just moved to Stanford. In the end I decided

to accept Kalman
's offer. In June of 

'
65 I went to Stanford.

Kalman, Peter Falb, who was in the applied mathematics department at

Brown for many many years, and I gave a series of lectures that summer.

Peter
's ambition was always to get on the faculty at Harvard. He was very

rich but was a big gambler and one of those people who hate to fly . One

weekend we flew to Las Vegas, and he was terrified the whole way. He gave
me a system for playing craps. I happened to get lucky. I had taken, I think, a

hundred dollars, feeling that was an immense stake at that time in my fiscal

career. I was doling it out in five dollar increments, and there was a guy
at the table with a roll of hundreds, peeling them off. I made five hundred

dollars, which at that time was probably about half a month
'
s salary. On that

basis, I increased the &equency of transpacific phone calls to a young
woman, Prue Hassell, I had met a month before leaving Australia for Stanford

. That proved fateful. When I went home for Christmas, I proposed to

Prue on the seventeenth of December 
'
65, we married on the twenty-ninth,

and then she went back to her parents in Western Australia. I flew off to

Stanford, and we haven
't seen each other since. No, no, she came three

weeks later, and we
'
re still together.

Anyway , those lectures at Stanford became another book, called Topics in

Mathematical System Theory, which is a fairly classic book in mathematical

system theory. That started five years at Stanford. I don
'
t know how it happened

, but after six months as research associate for Kalman in the Department 
of Engineering Mechanics, I suddenly became an assistant professor of

Electrical Engineering at Stanford, despite my dismal experience in first year

engineering at Sydney University.

Back to neural nets. About this time, automata and neural nets were really
sort of the same thing. Neural nets didn

'
t have an independent life. They

were part of automata theory. But the paper on 
'What the Frog

'
s Eye Tells



the Frog
'
s Brain" had been gnawing at me. I got in contact with David Ingle

at McLean Hospital in Boston, who had been doing more recent experiments
on frog vision. The one that really got me going showed a frog two flies,
and the frog snapped at one of them. This may not seem surprising, but it
struck me that this was the real transition from Lettvin's theme of 

'
What the

Frog
's Eye Tells the Frog

's Brain" 
to 

'
What the Frog

's Eye Tells the Frog
"-

that is, how the frog uses this visual information to guide its behavior. This
was a real turning point for me.

I had a student named Rich Didday in electrical engineering at Stanford
who did a PhiD. thesis with me on modeling this stuff. He spent some time
in Ingle

's lab, and the thesis came out in '70. I haven't checked the history,
but the thesis certainly provided one of the first Winner- Take-All [ WT Al
networks, if not the first. We wanted to know how the frog

'
s brain could

take a map of where the flies were and, without serial computing, decide
which one to snap at. I think some people in Reichardt

'
s lab came up with

another Winner- Take-All circuit at about the same time.
The other thing this work really established was the notion of action-

oriented perception. At that time, work on vision was dominated by Hubel
and Wiesel, by Horace Barlow, and so on. Even at that time, vision was an
area in which modelers and physiologists talked to each other. I think the
dominant view of vision then was to look at it as an autonomous module,

extracting information to reconstruct the structure of the environment. By
contrast, I was concerned with how vision was used to control action. It is

only in the last few years that the theme of action-oriented perception has

reemerged to become a very powerful paradigm in the vision community
at large. Finally, people in vision and people in robotics are really talking
together about the notion that you don

't want to do general purpose visual

computing, but, rather, want to have different modules extracting different

types of visual information. Jumping ahead a long way: in the late 
'
80s

people like van Essen showed the visual system in the brain is not a hierarchy

, as Hubel and Wiesel thought, where you start with visual area VI and
then just extract a series of more and more abstract descriptions. Instead,
vision involves many areas linked in different pathways. One area knows a
lot about color, another knows a lot about motion, another knows a lot
about depth, and so on. The idea is that the brain is extracting many different 

aspects of the world, related to different types of process es, in some
cases fairly directly related to motion and to action, in other cases much
more abstract. This is a paradigm that has now reemerged and fits well with

my frog-inspired view of action-oriented perception around 1970.

By the time I left Stanford in 1970, there was a balance between trying
to understand the real brain, as shown in the work on the frog, and abstract
neural network theory. I took two PhiD. students with me to my next place
- Parvati Dev, working on depth perception, and Curtis Boylls, working on
cerebellum.

Michael A. Arbib224



I moved to the University of Massachusetts to become chairman of computer 

science. This happened because I'd had to spend the summer in New

England to finish the PhiD. thesis. A man named Bill Marsh had been a

graduate student at Dartmouth at the time I was there finishing my PhiD.,
and we had become friends. He had moved to Amherst to help found a new

college, Hampshire College. In 1969- 70, the year before Hampshire College

opened to students, the faculty had set up a public lecture series core as a

way of getting the other colleges to begin to integrate Hampshire College
into their intellectual life. I'd accepted an invitation on the basis of our

friendship of six years earlier. A little while before my trip east I received a

phone call from Conrad Wogrin who had become the director of computing
services at the University of Massachusetts at Amherst. We had met about

a year or two before, when he was still at Yale. He
'
d come to ask the faculty

at Stanford if they had any hot young PhiD.s to nominate for recruiting for

Yale, and the half hour we'd spent together had stuck in his memory so that,
when he had the charge of looking for a new head of computer science at U.

Mass., he thought of me. I was twenty-nine at the time and should have said

no, and would have said no, but I was going to be in Amherst anyway, so

why not go for an interview? Then I think ego got the better of me, and the

idea of being appointed chairman and full professor before I turned thirty
was too much for me. I think what really gratified me, apart from the crude

ego trip, w,as that they did not have a PhiD. program, and the charter for the

new chairman was not only to be chair but to put together the proposal for

a new PhiD. program. What I proposed to them was that they were already
reason ably strong in computer systems, but didn

'
t have m~ch in theory, and

Michael A. Arbib1.1.5



nothing in what I was still calling cybernetics. So I proposed a three-part
view of the department: systems, theory, and cybernetics. The dean agreed
to it .

So I left Stanford and moved to U. Mass., where I established this department
, a sort of bittersweet story in away . I was able to hire Bill Kilmer, who

had been a colleague at MIT in the McCulloch days. The first year or two
after Bill arrived things worked very well, but then he went through a period
where there was just no money available for the sort of brain modeling he
wanted to do. He became incredibly depressed and basically left the field
of brain modeling and started doing ecological modeling. So, unfortunately,
there I was with a full professor I had hired to work with me on neural

modeling, and his research had stopped. Another coup, it seemed at the time,
was to hire Nico Spinelli, who had been a colleague of Karl Pribram'

s at
Stanford University, a very inventive visual neurophysiologist with a real
interest in modeling. I don't know what happened. We had a few productive
years from him, and then he just stopped doing any science. However, one

good thing that came out of this was that Spinelli and I were able to attract
some money from Harry Klopf at the Air Force. At that time, Klopf had a

theory of the hedonistic neuron, which was really a metaphor rather than
a theory. We were able to show him that with Nico

'
s work on the plasticity

of the visual system and the modeling skills that Kilmer and I had, U. Mass.
would be a good place for him to deposit some money and try to turn his

metaphors into solid science. Unfortunately, I can
'
t take any credit for this,

but Kilmer and Spinelli hired a young man who had finished his PhiD. at

Michigan and moved to SUNY Binghampton
- namely, Andrew Barto. With

the help of a graduate student named Rich Sutton that Harry Klopf had
recommended we support after he graduated from Stanford, Andy really

figured out how to take these relatively wild ideas of Harry
'
s and turn

them into an interesting theory of learning in neural networks that has now
established itself as the immensely influential approach called reinforcement

learning.

For three years, Kilmer, Spinelli, and I had funding for what we called the
Center for Systems Neuroscience from the Sloan Foundation. For me, the
first year of the Center (1975- 76) was the most fruitful , since I had the pleasure 

of working with two superb visiting Fellows- with Shun-1 chi Amari of

Tokyo on 
"
Competition and Cooperation in Neural Nets,

" 
and with Israel

Lieblich of Jerusalem on the World Graph model of motivated learning in

spatial behavior.

The money ran out for the center after three years because the Sloan
Foundation decided to switch its support from neuroscience to cognitive science

. So I decided that, what the hell, what I was doing could be called cognitive 
science. Meanwhile, Barbara Partee, who had been a fellow graduate

student at MIT - she in linguistics, I in mathematics- was then on the faculty
of linguistics at U. Mass., with her husband Eamon Bach. She had been on one
of the panels that Sloan had brought in to discuss cognitive science, and I
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think I had been on another one. We each talked to Ken K living ton, who

was then our contact at Sloan. He told us we should talk to each other!

And so we put in a series of proposals for three rounds of cognitive science

funding. We were successful on the first two, but not on the third. This led

to a very good period in which, first, it was linguistics and computer science,
then we brought in psychology and philosophy, and then we brought in

people from the other colleges in the area. I believe the cognitive science

program is still doing well, although unfortunately since my departure computer 

science has become much more straight computer science rather than

interdisciplinary .

Perhaps the most surprising outcome of that period was from a conversation 

in Edinburgh (where I spent a sabbatical year in 1976- 77) with

Donald Michie, who was both the grand old man and enfant terrible of artificial 

intelligence, or machine intelligence as he called it , in Edinburgh. There's

something called the Gifford lectures in natural theology, which have been

running for about the last hundred years. They
'
ve generated some wonderful

books like Man on His Nature by S herring ton and Process and Reality by
Whitehead. I said to Donald Michie- in one of those joking tones of voice

one uses for something which one sort of means, but when one doesn't want

to be offended if the person laughs if they don't take it seriously- saying,
well, it would be fun to give the Gifford lectures.

Instead of laughing, he said, 
"
Yes, that would be great. We haven

'
t had

anybody in artificial intelligence except Longuet-Higgins,
" and so he started

lobbying for it . He lobbied, but he also suggested that a theologian share the

lectures with me.

After about three years I got the invitation to give the Gifford lectures in

natural theology at the University of Edinburgh in 1983 and the news that

they would be shared with Mary Hesse, who was not a theologian, but a

philosopher of science who had a big interest in philosophy of religion. We

had never met each other, we didn
'
t know each other' s work, but it turned

out to be a good choice. We had three years to get ready to give the lectures

together.

I put to Mary the notion that we would write a book together, and then

each of us would base our lectures on certain chapters that would have

already been our joint effort. We met twice in Cambridge in her college and

once at U. Mass., and slowly built this book.

The theme was "The Construction of Reality,
" 

which is a Piagetian theme,

looking at the way in which the schemas we already have shape the way
we make sense of the world to create new schemas. I approached that as a

person who has done brain modeling and artificial intelligence and robotics

in terms of the schemas in the head, whereas Mary, from her work in history
and philosophy of science, was more concerned with the social construction

of reality: how do a group of scientists come to agree on a theory given its

underdetermination by the facts? We finally forged, I think, a coherent epis-

temology where we brought together the schemas as social structures and
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the schemas as things in the head, with , for example, language learning being
a nice case: it

'
s not that there

'
s a canonical grammar somewhere that you

'
re

instructed in; rather, you interact with the whole community using language.

You build up in your own head a representation of that language, and

then you become part of the environment for somebody else acquiring the

language.

We took seriously the natural theology charge for the lectures, and we

agreed to disagree about two small issues. One was the &eedom of the will ,
and the other was the existence of God! On the &eedom of the will , I took

the view that freedom is basically a social construct, whereas Mary wanted

there to be some quantum indeterminacy of the type Jack Eccles uses. As for

God, she believed, and I did not.

JA: I still don
'
t know what natural theology is.

MA : Natural theology is the attempt to infer the nature of the Creator

&om the nature of His creation. You look at nature and say, 
'
What would

God have to be like to have created the world or the universe or humans this

way?
" 

It was the attempt of nineteenth-century theologians and scientists to
reconcile their knowledge.

There was a precursor of the Gifford lectures in the early 1800s called the

Bridge water Treatises. One of those is a wonderful book that I've used in my
work, by Sir Charles Bell. He wrote it before Darwin. He looked at how the
fin of the whale, the hand of different animals, and the hand of the human

share a basic ground plan. In a few years Darwin could see this as evidence

for natural selection, but Bell saw it in terms of the parsimony of God
'
s

design. There were ten Bridge water Treatises, and Babbage
- he of the universal 

computing machine of the early 1800s- wrote the eleventh Bridge-

water Treatise, which was not an official one, where he expressed his views

on natural theology in light of his discoveries on the computing engine.

In 1983, these ideas became the series of lectures that Mary and I gave

together in Edinburgh and a few years later became a book, The Construction

of Reality, [1986] which never took off, but seems to crop up &om time to

time.

I was in Amherst for sixteen years. Unfortunately, Kilmer and Spinelli had

dropped out of neuroscience. Andy Barto was very good, and eventually
transferred &om research associate to assistant professor and so on, but there

were no new slots opening up for neural nets. However, our reputation
grew, so we attracted lots of very good students.

In the early to mid-1980s, some of the people in biology and psychology
decided to put together an interdisciplinary neuroscience program. The first

proposal they put out had the word 
"
empirical

" in &ont of the noun "neuroscience
" at each occurrence, and neither Andy Barto nor I were on the list of

faculty. The dean hit the roof when he saw this and got me in to help rewrite

the proposal. For once, I was diplomatic and restrained, but in a sense it put
the writing on the waIl. We had a computer science department that was
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very good. I had very good rela Hons with my colleagues. There were lots

of interesting ideas in computer vision, distributed artificial intelligence,

robotics, cognitive science, but it wasn't going anywhere in terms of the

number of faculty available for neural networks in the department. Meanwhile

, the experimentalists in neuroscience, instead of being excited at having
a distinguished program of brain modeling on campus, saw it as either

irrelevant or threatening.

Prue and I, with our son Benjamin (our daughter Pippa was away at

school) spent a year
's leave at UCSD in La Jolla in '85- '

86. The chancellor

there, Richard Atkinson, had been a colleague at Stanford, where I
'
d run a

faculty seminar on memory and perception which he had attended. Shortly
after we arrived in La Jolla, I went and had a short conversation to pay my

respects to Atkinson. About five minutes into the conversation he said,
'
Would you like a job here?

"

So I said, 
'Well , I

'll have to discuss it with my wife." Prue comes from

Perth in Western Australia, which has a southern California climate, and she

expressed the opinion that sixteen New England winters were quite enough.

So I went back to Atkinson and said, 
"OK, great, Prue and I would really like

that, what do we dof
'

He said, 
'
Well , you have to realize that this is a very democratic university

, so I can
'
t do anything about it myself, but I

'
ll set up an appointment for

you with the dean of engineering.
" 

So about a month later I got my appointment 
with the dean of engineering. I go in and I know things are not going

to work well when the first thing he says is, 
"
Somebody sent me your CV,

"

not, 
"
The chancellor sent me your CV .

" 
Anyway , I have an hour in which

I tell him how great it would be for UCSD and me if they hired me, at the

end of which I say, 
'Well , what do we do nextf

'

I heard, 
"
Oh, well, I can

't do anything. You must understand, this is a very
democra Hc university. The invita Hon has to come from the computer science

department.
"

Eventually, the one contact I had in the computer science department set

up a dinner at which he invited the chairman, and I had this incredible feeling
of sort of crawling across the floor and saying, 

"Excuse me, but, er, the chancellor 

says maybe I
'd like a job here, and the dean says he can

'
t do anything

about it, so could you possibly interview me for a job here pleasef
' 
So I had

an interview and the faculty, with the excep Hon of my mend, voted unanimously 

against me. I suppose the generous theory would be that they
decided that the study of the brain and neural networks was not a proper

part of the charge of the computer science department. My wife'
s theory was

that they felt threatened by my energy. So that was the end of UCSD.

By this time, Prue had gotten it into her head that we really were going to

leave Massachusetts and live in sunny California. At that stage, another

Stanford contact, an Australian who was by then head of electrical engineering 
at Santa Barbara, invited us up, and I interviewed there. Everything went

wonder fully . Then some faculty blew the whistle on the chancellor, who
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had, it turned out, spent $135,000 dollars of university funds renovating
his kitchen on the grounds that he had to do a lot of official entertaining.

As a result of this, the upper administration was turned off, and only routine

assistant professor appointments could be made. That was the end of Santa

Barbara.

The next UC campus was UCLA, where another friend from Stanford,
with whom I

'd set up the bioengineering program there, was now head of

the Crump Institute of Biomedical Engineering. They had advertised in

Science for a full professor. I phoned him and said, 
'Well , could I apply for

this?
"

He said, 
"
Oh, well, actually we weren't thinking of somebody in your

area, but if you
'
re available, that

'
s it .

"

He talked to his colleagues and then phoned me and said, 
l
' Yes, everybody

wants you to do it .
" 

But when I went to UCLA, instead of being set up as a

proper interview, my visit was set up as a sort of love fest, where they
would show me how wonderful they were so I would want to come. Unfortunately

, the rules were that some department had to give me a position,
even though the institute was paying my salary. The department was computer 

science, the chairman was out of town, and there were no appointments 
with the appropriate dean. Although the visit went very well in other

ways, it was clear I had to go back for a proper interview. However, the department 

canceled the interview before it occurred. The official theory is that

the department had never hired somebody with tenure before and so voted

unanimously that they would not create a bad precedent by hiring me as a

full professor. 
.
So that was the end of UCLA.

At this time, we were pretty clear we were going back to U. Mass., but Ed

Blum, whom I had known through work in automata theory going right
back to 

'
66, had been on sabbatical down at La Jolla, visiting from USC, the

University of Southern California. We had some conversations, and he said,
"
Oh, well, we must have you up to interview because we're setting up a

new interdisciplinary program in neuroscience.
" 

Nothing had come of it; it

was already May 1, and so we thought that was it . But then, suddenly, I was

summoned to USC. I gave a couple of talks and everything went well, so I

became a professor of computer science and neurobiology and a few other

things at USC. I was one of the first two people appointed as part of the new

program in NIBS: Neural, Informational, and Behavioral Sciences. At the

time, I saw this as a consolation prize compared to the UC system. In fact,

although it would have probably been nicer to live in La Jolla full time, subsequent 

history has shown that, intellectually, USC has turned out best in

terms of the level of interaction. The Brain Research Institute at UCLA has

been in trouble for years, and at UCSD there are lots of good people but no

real community.

At USC I 
'
feel that 11m both a real professor of computer science and a real

professor of neurobiology; USC has worked out very well as a place in which

to do really good brain modeling. With George Bekey, chairman of the
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computer science department when I was hired, I've built up a robotics lab
in which we go back and forth between neural strategies as studied in the

monkey and neural strategies as implemented in the computer to control the
robot.

A research strand that started up at U. Mass. was work with Parvati Dev,
an Indian woman who later became chief scientist for a biomedical imaging
firm in Palo Alto . She made a model of stereopsis, in the course of which she

spent a summer with Richard Gregory in England. Richard Gregory and I
tend to have punning matches. The last time I visited him, he was very excited 

because he just had a new book coming out called Odd Perceptions. So I
said, 

"Ah, Richard, now you
'
re committed to a sequel called ' Even Perceptions

.'
" 

But he trumped me. He said, 
"
No , no, it

's going to be called ' Even
Odder Perceptions.'

"

Back to Parvati Dev. She came up with a model of stereo vision. A little
later, David Marr and Tommy Poggio published a paper in Science [reprinted
in Neurocomputing] which was a minor variation on Dev's model. They compounded 

the injury by actually knowing about her paper. In the twenty-

third- I remember the number to this day- in the twenty-third footnote

they said, 
"
Oh yeah, there's been some unimportant work in the past

" 
and

then cited Parvati's work along with a couple of other papers. David was an

extremely bright, extremely charming, extremely persuasive person, but he
had the idea that the reason neuroscientists hadn't appreciated modeling
enough was because a lot of it had been bad. Rather than show them that
there was in fact a lot of good neural modeling, which was my strategy, he

agreed with them that everything else was poor and then showed them his
stuff as the first round of really good modeling.

David Marr and I had an interesting relationship. We were very good
friends, and yet it was one of these love-hate things because there was

always this thing of, 
"
David, why don't you just admit there

'
s other good

work?" Around 1980, I think, we had reached a sort of pact. I was then editing 
a thing called the Brain Theory Newsletter. I was ahead of my time. It was

very hard to get more than a few hundred subscribers. If I'd kept that thing
running till now, it would be selling in the tens of thousands, but I gave up
before connectionism really took off again. I persuaded David that he should
write an article for the Brain Theory Newsletter that would put his work in
a perspective that showed that, yes, his work was wonderful, but also that
other people had been doing good work and that his work did have antecedents

. A month or so later, he came up to Amherst and had Thanksgiving
dinner with us, and I vividly remember going out after dinner with him for
a walk along a country road under very bright stars. After the dinner, we
didn

'
t hear from him for a while, which was surprising. When we finally got

in touch with him, we learned he
'
d been diagnosed with leukemia. One thing

about David was that he had a group of acolytes at MIT who worshipped
everything he did. The good side of that was that, while he was incapacitated 

from chemotherapy, they were immensely supportive. He had decided

Michael A. Arbib231



he would write a book on vision, and the preface of the book has this incredible 

bit of English understatement. It says, 
"
Certain events have occurred

that forced me to write this book a few years earlier than I had planned
"

[David Marr . Vision. San Francisco: W. H. Freeman, 1982 p. xvii ]. That's the

only mention in the book of his disease.

The wonderful thing was that Tommy Poggio and Shimon Ullman and

other people in the group would work on the book while he was sick. When

he came out of hospital, instead of having to catch up on three or four weeks

of lost work, the book would have progressed and he could jump in again. In

fact, the last time Prue and I saw him at the Copley Plaza in Boston, he was

very happy because the book had finally gone to press. I don
't think he lived

to see it published, but he did at least live to see it in press and feel that he

had this legacy to pass on.

For me, it
's sort of bittersweet in the sense that it

's very powerful work

and very influential, and yet has given many readers the impression of being
de novo, which destroys what I think is the integrity of scient i Ac work.

There is a network of people working in science, and even if you are Einstein

, you have to acknowledge your predecessors. No matter who you are, I

think you make your progress by acknowledging what has been done, and

then you show what you have added, whereas in machine vision, there are a

lot of people who really believe, in the words of the writers of an Economist

cover story many years ago, that machine vision is the creation of two men,

David Marr and Tomaso Poggio of MIT . In fact, most of what they did built

on things that people in the community already knew about in essence. They
added some nice things. The story of zero crossings was, I think, definitely
theirs. Their later 

l'
non-Devian

" 
work on stereo was in fact interestingly

original. There was no doubt that Marr and Poggio were very important
contributors to computer vision, but they were by no means the creators of

the Aeld.

At U. Mass., building on my early work with Rich Didday, and continuing 

at USC we
've built up what we call RaM computatrix, 

I'
the &og that

computes.
" 

We have gone on to develop many different ideas. How does it

habituate? How does it recognize barriers and detour around them? How

does it recognize enemies and jump away &om them? Many of these aspects
of action-oriented perception are really trying to grow a whole animal, as it

were. We try to think about the way in which more and more parts of the

brain interact to give wider and wider behavioral repertoires
- work that

continues to this day.

It's interesting reflecting back on my career to see the sort of serendipity
that occurred. Certain things were really planned out. I would say the &og
work for a long time had been planned out. But, on the other hand, there

were other topics which occurred for the most bizarre reasons. For example,

my interest in hands was really an accumulation of co incidences. It started

around 
'
79 when I went to a meeting at Brandeis that David Ingle, whom I
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knew through the frog work, arranged on neural mechanisms of visually
guided behavior. One of the speakers there was Marc Jeanne rod from
France, whom I had not met before, who gave a wonderful talk on his work
with an Algerian named Biguer on the control of hand movements. The big
point he was making was that when we reach for an object, the brain has to

simultaneously figure out the control of the arm and the shaping of the hand.
It

'
s not that you get there and then figure out what to do with the hand. The

brain is preshaping the hand at the same time that it 's coming up with the

trajectory. Then he went into some of the things that could go wrong with
different types of brain lesion. I was fascinated by this.

A little later, Vernon Brooks, who was then editing the volumes on motor
control of the Handbook of Physiology: Section on Neurophysiology, decided to
ask me to write the one theoretical chapter that would appear in these two
fat volumes. It

'
s one of the most painful papers I have ever written in my life.

Brooks kept coming up with this wretched view held by many neurophysiol-

ogists that the purpose of theory is to design new experiments, whereas
I always thought the purpose of experiments was to verify new theories.

It was a real battle, but in the end the editorial attentions of Brooks helped
me produce quite a good article. While trying to extend the coverage of the
article, I decided to think through the things I learned about the hand &om

Jeanne rod. I wanted to develop my idea of schemas to include a fairly simple
diagram of the interaction between perceptual schemas- figuring out where
the object is, what size it is, and what orientation it is in- and the schemas
for control of the arm, control of the hand, and so on, and how they all interacted

. This diagram in the handbook is probably the most successful thing
I've done, in terms of the number of reproductions that have occurred in
textbooks and papers, although it was basically a paper and pencil exercise,
rather than a detailed model.

Subsequently, when Ian Darian-Smith was arranging a symposium in '83
in Melbourne, Australia, on the subject of the control of hand movements,
he invited me to be a speaker on the strength of that picture of mine that had
come out two years earlier in the Handbook. But that was basically all I had,
this one figure. Then I mobilized two of my students at the time, Thea Iberall
and Damian Lyons, to work with me on developing these ideas. That led to
a very interesting series of papers on thinking about how the brain would

represent an object, not in terms of recognizing what the object is, but in
terms of figuring out how to grasp it . For Thea, that led in to a lot of

thoughts about human behavior, and for Damian, it led into the development 
of a new language for schemas called RS, for 

"
robot schemas,

" 
which

tied in with my work with Ernie Manes on the categorical approach to programming 
language semantics. (From 1959 to about 1987, I maintained an

active research program in automata theory, mathematical systems theory,
and theory of computation. But that is another storyf) Thus, hands became
an important theme of my work, but only because I'd heard this talk, then



had to write this Handbook article, and then somebody thought I was an

expert and invited me to a meeting, and I detemrined to make myself an

expert by the time the meeting occurred.

A recent series of models with Nicolas Schweighofer was triggered by the

data that shows that if you wear prisms on your eyes, you can eventually
learn to adapt. Your eyes will eventually swing to the appropriate place, as

seen through the prisms, but you can only learn this if you have a cerebellum

. We modeled this using Albus-type adjustments of the synaptic

weights, but with much more of a systems view in terms of how you apply
corrections to a downstream motor generator, rather than how you use the

cerebellar cortex to pick out movements.

The way your saccadic system works is that normally when you make a

rapid eye movement, you
'
re very often wrong, and then you make a quick

corrective movement, without your noticing it . It feels as if you
've turned

your gaze to one place. But if you were to measure with coils or take a

movie or whatever, you
'
d see that in general there are going to be corrective

saccades. Mickey Goldberg at NIH [the National Institutes of Health] would

show a target to a monkey, and while the monkey was saccading towards

it- it seems there
's no effective visual input during this fast eye movement

- Goldberg would move the target to a new place. So the monkey
's brain

would say, 
"
Ch, not on target yet,

" 
and make the corrective saccade. Eventually

, the monkey learns to make the saccade in one step if you
're consistent

in the displacement; the monkey will saccade not to where the target is seen,

but to where the target ends up. It's like a virtual prism, if you will .

Normally in our theories we talk of learning as if it were a trial-by-trial

thing. I make the trial. If I
'm wrong, I make a correction us~ g a classic learning 

rule of some kind. But if you look at the timing in the brain, the brain

issues a command, the command follows, then the erroneous results follow ;

errors have to be sensed and then get back into the brain, where the neurons

that were firing have finished their related activity maybe a hundred milliseconds 

before. In their model of classical conditioning, Barto, Sutton, and

Klopf invented the notion of eligibility : the synapse has some sort of internal

memory, so it remembers that it was active. So now if you send areinforcement 

signal to this part of the brain, if you assume that it hasn
't done anything 

else since, then the only eligible synapses are the ones that were

involved in making the mistake, and the correction goes to them. This is a

very nice idea. However, notice the problem for us. In Goldberg
'
s prepara-

ti.on, you have a saccade and then a corrective saccade. If you have the
"usual" form of eligibility , you will apply the correction not to the synapses
involved in the saccade that was wrong but to those for the saccade that

applied the correction. So Nicolas Schweighofer and I had to invent a new

kind of eligibility , a window of eligibility . The eligibility starts at zero, then

goes up, and then decays again. Instead of just having a simple decay so the

most recent thing wins, in our case the most recent thing won
'
t yet be eli-
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gible. In this way the synapses for the first saccade will be eligible for correction
, and those for the second saccade will not be eligible for correction.

The system works.

This very powerful idea is exciting in two ways. One is that the notion of
eligibility that Klopf, Sutton, and Barto came up with was very powerful
for bridging the conditioning literature and the neural network liter,arore.
The fact that we

'
ve shown the idea has to be made somewhat more subtle

for different applications is interesting for the neural nets community. The
second point for me is that, until recently, there

'
s been a burgeoning world

of neurochemistry which I've tried to stay away from, quite distinct from the
world of relatively large-scale neural networks. Now, suddenly, we

'
re seeing

that we need to tailor the learning rules. Now, if you tailor the learning rules,
you have to get into the biochemistry and understand how the playing off
of the different mechanisms can change the time parameters of the second
messenger system, which presumably underlies eligibility . I now for the first
time really have an integrated view in my work which shows the need to
unify the neurochemistry with the systems modeling.

We
'
re beginning to do PET [positron emission tomography] and functional 
MRI [magnetic resonance imaging], which in the long run will be a

very powerful method for looking at overall human brain function. We are
also pushing the other way, with all this neurochemistry. Neurochemistry
forms the bulk of papers presented at the society for Neuroscience meeting,
but I

'
ve been ignoring it Shame on me, but there wasn't a way to really use

it at the systems level. It was just so much detail. But now we begin to see
how second-order details of these synaptic and other mechanisms become
crucial to understanding real functional questions. I think the next few years
will be tremendously exciting in that way.

E;R: Do you have other comments about the furore of the field?

MA : I think that there was a worry around the early to mid-1980s when
people who had been doing neural networks all along suddenly found thousands 

of new people pouring in with immense enthusiasm. We thought that
this might be a flash in the pan. But I think what has happened since is irreversible

. For whatever reason, a lot of physicists have come in and now the
level of mathematical ability in the field has gone up.

One of the other main changes has been hardware. There is so much fast-

computing hardware around that a lot of ideas which were purely theoretical
in the '70s are now eminently practical in the '90s. If one had to lock up the
machine for a week to run a learning algorithm, that might be fine for an
academic putting out a paper, but it had no practical relevance. Now people
are getting good results for many different applications. A lot of work now
has to be either very focused, on a very specific application, or you have to
develop a hybrid system where you apply some standard signal processing
and some standard AI expert systems stuff, using a neural net for a module
or two . I think the day of the magic single neural network has gone. From
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the practical side, you build a hybrid system, and you find that making some

of those modules neural networks is really a very smart thing to do .

In terms of neuroscience, there were always a few people enthusiastic

about theory , but they were a real minority . After I got my PhiD . in 1963, I

drove around the U.s. for a few months . That was when the first lab computer

, the UNC , which later became joined with the PDP 8, had just hit the

neurophysiology labs. It was very interesting to talk to the neurophysi
-

ologists at that time because some were very enthusiastic and others swore

they would never let computers into the lab because it wo ~ld destroy the

touch they had as they were putting in the microelectrode . Of course, in the

ten years or so after that , computers became absolutely indispensable . People

just realized there was no way they could control their experiments or keep
track of the data without computers .

I think the work stations of the last five years have made a similar change
for simulations . Until five years ago, you were an experimentalist who had

learned to love his or her lab computer , but it was a primitive little thing ,

and it didn
'
t have the power to do anything except run the data. Now you

can buy a massive work station for a few thousand dollars that can let you

have time left over to run lots of simulations . I think more experimentalists
are beginning to have either themselves or someone in their lab who can

play with the models and think about them in relation to the data.

That
'
s leading to some double -threat people , but it

'
s also leading to consortia

, where experimentalists and modelers are really talking to each other

seriously so that the analysis of the experiments involves the modeler , and

what the modeler comes up with suggests new experiments .

There was an initial period , in the second coming of neural networks

in the 
'
80s, when people would just do neural networks uncritically . Now

people will compare them with signal -processing approach es or conventional 

control theory . We just had a competition where there was an attempt
to predict the power consumption of a building . The winner was a neural

network designed around Bayes theorem . This is interesting in two ways . It

was a neural network that won it , but it was a neural network based on a

rather sophisticated probability theory analysis .

I don
'
t believe that neural nets are a magic panacea. I think there

'
s still a

place for knowing how to add numbers exactly , rather than using a neural

net . I think in the future we
'
ll see hybrid systems where we have something

like schema theory or modular design to understand how to take a complex

problem , break it into pieces, and then for some of those pieces find that

neural nets will do the best job . As we learn more about neural nets, we
'
ll be

able to do better and better .
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James A . Anderson

James Anderson is Professor of Cognitive and Linguistic Sciences at Brown University,
Providence, Rhode Island. The best source of further details about his work is his book, An
Introduction to Neural Networks, MIT Press, 1995.

Written Interview

I was born July 31, 1940, in Detroit , Michigan . My father
'
s family was from

Sweden. My grandfather was born in 1876 and arrived in New York in
1892, at the age of sixteen . My grandfather and some of his brothers

founded a furniture factory in Jamestown, New York, and went on to become 

wealthy businessmen, although , unfortunately , most of this money was

lost in the depression . My father learned Swedish before he finally learned

English . The family were devout Swedish Lutherans . My father said that

most of the sermons he remembers were devoted to proving that the Pope
was the Antichrist .

The furniture factory produced enough money to send my father to Dartmouth

, where he was an English major and graduated in 1931, in time for

the worst part of the depression . He married my mother just after graduation
from Dartmouth .

My mother was from a family that had lived in New England since the

pilgrims . They had never been particularly rich, nor particularly poor either ,
and lived in a small town north of Boston on Cape Ann , Manchester ,
Massachusetts.

My father managed to get a college teaching job at a small college in

Cleveland , Ohio - Fenn College . He eventually received a master
'
s in English

from what is now Case-Western Reserve. My parents
' 

extremely low combined 

salaries forced them to live in slum housing in a dangerous neighborhood
. For many years afterwards they had trouble eating spaghetti because

that was what they mostly lived on during the depression years. My father

was a very good writer , and after a few years was offered a good job with a

group making motion pictures in Detroit .

Six months . after I was born , we moved to White Plains, Hastings -on-

Hudson , New York , because my father was offered a better job in Manhattan

. When I was a bit over a year old , the Japanese attacked Pearl Harbor .



My father tried to enlist soon after war was declared but was rejected because 

he was an extremely nearsighted thirty -five year old in poor physical
condition. Because of his persistance, he was finally accepted by the United

States Army Air Force. After reflection, the Air Force decided that his

writing and advertising talents could be put to good use; in any case, with

eyesight as bad as his, he should be kept far away from anything to do

with physical airplanes.

He was first sent to Wright Field, in Dayton, Ohio . In 1943, my father was

assigned to the First Motion Picture Unit, based at the Hal Roach Studios in

Culver City , California. One of the other members of this unit was a moderately 

successful actor, Ronald Reagan. My father became one of the script
writers in the unit, and one of his proudest accomplishments was writing
a film called Air Power and Annies, which was shown to Stalin at the Yalta

Conference.

We arrived in Beverly Hills along with many others who went west because 

of World War II and stayed on after the war. During that period, real

people lived in Beverly Hills. When Beverly Hills was originally formed, the

idea was that the rich folks would live north of Wilshire Boulevard, and their

maids and servants would live south of Wilshire, so there were modestly

priced houses and apartments available for the help. The area I grew up in

was therefore a reason ably average middle-class neighborhood. The loose

living of the motion picture industry impacted my consciousness only when

I noticed that my classmates tended to have frequent changes in their last

names.

My mother got a job as a nursery school teacher at the Beverly Vista

Community Church on South Elm Drive, a beautiful 1920s church building
that I liked because it was quiet, empty, spooky, and smelled good. The

church suffered the sad fate of many older Southern California buildings.

Its beams were found to be infested with dry rot, and the place where the

church building, nursery school, tiled courtyard, and community hall once

stood is now a parking lot . In 1950 we moved to a new house in the Santa

Monica mountains in the area now called Brentwood, close to the sites made

famous by O. J. Simpson.

For forty years my mother was a nursery school teacher at the Beverly
Vista Nursery School and later at the Crestwood Hills Nursery School near

our new house, and was almost worshipped by her students. Every Halloween 

for many years a constant stream of present and former students would

come to 
"Kit 's house

" 
for candy. One year, I remember, we had nearly a

hundred visitors. She taught three-year-olds. When asked for the secret of

her success, she replied, 
"
Just keep an eye on them and make sure they don

't

kill each other.
"

My first grade teacher, Mrs. Wilson- in those days school teachers did

not have first names- was indirectly responsible for the beginnings of my
interest in brain function. In first grade we spent a good deal of time drawing

pictures with crayons. Mrs . Wilson insisted that in a proper drawing every
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image should be surrounded by a black crayon line which she called an
"
accent line .

" 
The classroom stock of black crayons was soon worn down to

tiny stubs and eventually could only draw very thick accent lines.

I had a problem . I could clearly see that objects in the world -
people, for

example
- were not surrounded by thick black lines. But, upon closer introspection

, they did not seem to be surrounded by thin black lines either . So I

concluded , regret fully , that Mrs . Wilson , a pleasant lady and a good first

grade teacher, was simply wrong about accent lines. They weren
'
t there.

However , she was a little bit right as well because I could clearly see that

there was something special about the edges of things . They seemed to be

much more distinct than they should be, as if accent lines existed but were

vanishingly thin . They were there but not there. I found this a great puzzle
and spent considerable time looking at objects, trying to see if I could figure
out what made their edges special. It wasn

'
t until many years later that I

learned about lateral inhibition and orientation selective units in visual cortex

. I believe this experience left me, first , with the deep suspicion that things
out there in the world were not always what they seemed in here, in our

heads, and, second, that adults , even nice ones, were not always correct .

In those days, the Beverly Hills and later the Los Angeles public school

systems were far better than they have become since. In retrospect , I can see

that many of my teachers all through public school were outstanding . They
knew their subject and often displayed great enthusiasm for it . They were

willing to spend a lot of extra time with promising students, particularly in

the sciences and in mathematics . I was fortunate enough to have high school

mathematics teachers who would have been an asset to many college faculties

. One of my favorite high school math teachers, Miss McDonald (no first

names!), had a master
'
s in physics &om Berkeley . In those days, there were

special math classes for the better students, where we moved fast and

learned a lot of advanced topics .

I have always been interested in why people end up doing the things

they do . As far as I am concerned, there were two major reasons why I got
interested in science at an early age.

The first influence involved what I read. I read voraciously all during elementary 

school : comic books , encyclopedias , books about dinosaurs, books

about castles, Hardy Boys novels , war stories, catalogs, books about virtually 

anything . I was completely uncritical until I was about eleven and ran

across a copy of Astounding Science Fiction. From that first issue I knew this

kind of writing was for me. I wanted to understand even the stories I didn
'
t

understand . I read every science fiction book in our local library on San

Vicente Boulevard , even the dreadful ones. I have had a continuous subscription 
to Astounding Science Fiction (now Analog) since about 1952 as well as to

The Magazine of Fantasy and Science Fiction and to Gala:r;y when it was

around . There was a period in college when I believe I could honestly say
that I had read a significant &action of the entire genre .

Science fiction , particularly during the 1950s was vibrant . Exciting people
were doing exciting things . Even when the science the stories described
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made no particular contact with reality , it was still sufficiently plausible to

make you think that it might really have been that way if
' 
God had been a

little more venturesome .

And science fiction was, and still is, full of ideas. Some were crazy, but

some were so good they might be correct . Some actually were correct . The

ideas were about everything , not just science: politics , history , physics , biology

, sociology . The powerful libertarian bias that is now so prominent on

the Internet and among computer professionals was present then in the

stories of Heinlein and many others . Governments were invariably stupid ,

bureaucrats were beneath contempt , liberal arts majors were hopelessly ineffectual

, and the only repository of common sense in the known universe

was among scientists and engineers. Yeahf Since the daily newspapers provided 
data supporting most of those conclusions , it was hard for a twelve

year old not to be impressed.

What really came across in science fiction was that ideas mattered . The

bolder the ideas, the better . Received wisdom was probably wrong , and if

authority figures said it , it was certain to be wrong . Problems had solutions ,

usually technical , if the problem was looked at in the right way . Even though
I know now that things are not quite this simple, my subconscious still

believes it .

The second major influence on me was amateur radio . Somehow , probably
due to the accidental purchase of a copy of the radio magazine QST when I

was about twelve , I got the idea that radio was something that looked challenging 

and something I might be able to do . I had developed some skill

making model airplanes out of paper and balsa wood , and making electronic

gadgets seemed similar , except that instead of winding up a rubber band and

flying the product , you talked to someone else with it .

No one around where I lived knew much about electronics . I built a single
tube radio from a kit . I read some more , accumulated some parts, and in one

of the feats that still gave me the most satisfaction , built a primitive but

working one-tube radio of my own design, with a coil wound on a two -by -

four , a variable tuning capacitor taken from a discarded radio , and a vacuum

tube, a 117L7GT . The vacuum tube was one of the few made that had a filament 

that worked directly off household voltage , so I didn
'
t need a transformer

. It didn
'
t work very well , but it did work . I remember using it and

listening with great pride and pleasure to the local radio stations .

I got my novice amateur license when I was thirteen and bought a simple

crystal -control led transmitter kit . I put the transmitter kit together , and it

worked , or at least it lit up the light bulb I tested it with . One day after

school , I managed to communicate via Morse code with a station in Van

Nuys , located about five miles away in the San Fernando Valley . Maybe it

wasn
'
t very far, but my first contact was both exciting and traumatic . I was

afraid that I would disgrace myself completely in this new culture with some

kind of grievous faux pas, but I managed to get through it .

For the next few years, radio opened a new world that had a lot in

common with science fiction . By the end of 1954, with the help of a couple
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of equipment upgrades, a general-class license, and a barely adequate antenna

, I was talking to people all over the world . I managed to make friends

among the local amateurs, including several roughly my own age who lived

within walking distance. I developed a taste for OXing
- that is, contacts

with far away stations - the more obscure the location , the better . Even if it

is good for nothing else, OXing is wonderful for knowledge of geography ,

and I knew exactly where British Somali land, the South Sandwich Islands,

and the Bonin and Volcano Islands were because I had talked to someone

there. Maybe the conversations we had were not very profound , but , by
God , they were genuine exchanges of information . And technology did

it . The potential was obvious . The Internet has produced no real surprises
for radio amateurs, just obvious extensions of what we were already doing
decades ago.

At this point I have an attractive plaque on my wall in honor of having

managed to 
"
work them all

" - that is, talk to another amateur in every

country on the official amateur OX countries list . This difficult accomplishment 
means absolutely nothing to anyone outside of a small number of

enthusiasts . But then most of science follows an identical pattern of reward .

One lesson I learned from this history was that nerds are eternal , probably

corresponding to a particular combination of alleles on the human genome,
but the expression that nerdiness takes depends on the technology of the

time . In my day we were radio nerds, though we did not use that term :

pasty , unhealthy , either thin or fat, and antisocial . I remember an acquaintance 

during high school who used to carry several vacuum tubes along with

him as conversation starters. (
"
Look at this one! It

'
s a beam power tetrode !

"
)

Girls were not impressed, and he could not understand why . Nowadays , the

computer provides the means for the fufillment of inherent nerd potential .

In my day it was electronics or sometimes cars. Same genome, different

expression . I wonder what we did in the Middle Ages?

My father was an alcoholic and a screen writer . The combination led

to severe financial problems . Though we lived in Brentwood , a comfortable

upper middle -class suburb, our family financial condition was perilous and

significantly worsened during the time I was at University High School in

West Los Angeles . When it came time to apply for college , I remember the

school
'
s college advisor was dismayed at how low our family income was. In

January of 1958 my father joined Alcoholics Anonymous . This stopped his

drinking , and my family
'
s financial position started improving rapidly ,

although it was still difficult for quite a while . Currently , my father has been

in AA for thirty -eight years. I have been to many open AA meetings as a

family member . AA meetings usually involve one or more talks by members

describing their lives when they were drinking . Back in the 1950s and early
1960s people were much more reticent about describing their personal problems 

than they are now . Many of the AA talks were hilarious , and some

were eye opening . Not much about human behavioral pathology has surprised 

me since.
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When it came time to apply for college, I had a problem. I was interested

only in science or engineering. Money was tight , so I would need considerable 

financial support. I knew there were two famous science and engineering 
schools in the country, MIT and Caltech. As someone who grew up in

Los Angeles, I believed nothing important existed east of San Bernardino. I

applied to both MIT and Caltech and was accepted at both. MIT gave me a

generous financial package, including an AI&ed P. Sloan scholarship that

guaranteed a high level of support for four years. Caltech did not make an

offer in that league, so, somewhat against my desires, I ended up going to

MIT . I had no idea where MIT actually was, except that it was located near

Boston. Everything on the East Coast seemed remote and confusing, with

bad weather and juvenile delinquents.

The first year at MIT at that time resembled Marine Corps boot camp
-

with physics, calculus, and inorganic chemistry taken by all freshmen. The

entire MIT &eshman class had an hour quiz every Friday morning at 9:00.

We all trooped to our assigned rooms, in my case a large engineering drafting 

room furnished with large drafting tables and uncomfortable, high stools.

We lived or died based on how we did. The process was competitive, stressful

, and dehumanizing, but it did communicate a lot of information. There

was also a required course in the humanities, but no one took it seriously,

though I found it entertaining. I discovered a thorough background in

science fiction prepares you for reading other stuff, including lit -ra-choor,

though serious mainstream novels seemed unimaginative in comparison.

They still do.

I was now faced with the problem of finding a major. Good science fiction

asks big questions: What is the nature of reality? What is the nature of the

mind? What is the place of man in the universe? Those were the questions I

wanted to answer.

In 1958 there was only one choice: physics. I knew what engineers did

because I had been part of a high school summer program at Hughes Aircraft

Corporation plant in Culver City . Electrical engineers built clever gadgets
but didn

'
t tackle the big questions. I was an OK but not great mathematician,

and, besides, mathematics was too abstract. So physics was it .

I already knew what I wanted to be when I grew up. I wanted to be Hari

Seldon, the central thinker in Isaac Asimov
'
s Foundation series. Hari Seldon

was the first psychohistorian, living at the start of the decline of the twelve-

thousand-year-old Galactic Empire. Seldon was able to predict the future

of the empire through the equations for human behavior he had developed.

MIT did not offer courses in psychohistory. Physics seemed like a good,

temporary substitute.

Along with a staggering amount of information, MIT also provided a way
of thinking about problems. Sometimes this way was good, but in retrospect,
it now seems misleading and dangerous. Around 1960, computers were just

starting to have an obvious impact on the way science was done. As undergraduates

, we did not even have pocket calculators, only slide rules. More,
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our instructors were products of an earlier generation of science education.

What this meant in practice was great emphasis on cleverness and ingenuity
in analyzing problems. The MIT hour exams were perfect examples of how

this worked. A hopelessly complex test problem would be given. If the right
bit of insight was applied, the problem yielded, and the answer was obvious.

Finding the key to the problem could be very hard, but there was always the

assumption that it was there and could be found by being clever.

There were two major problems with this approach to life.

First, cleverness is not always combined with depth of insight. Students

who did extremely well on tests could be quite superficial in their understanding

. Of course, this is an acknowledged problem in all higher education.

Later experience with graduate admissions at Brown has led me to be very

wary of straight-A students.

The second problem was more serious. Thi.s approach to college exams

could easily become a way of life. Before mechanical ways of handling complexity
- like computers

- were available, a simple equation that arose &om

a clever approximation or a deep insight was often the only way to handle

real systems. However, this requirement could undesirably restrict the class

of systems that could be analyzed. It also tended to grossly undervalue the

work involved in coping with details. Both the MIT hour exams and theoretical 

physics
- with , for example, the Schrodinger equation as a model-

taught us to search for the "big theory,
" 

the master equation that would

break the problem wide open. It is far too easy to use a computer as a substitute 

for thought. Why think when you can simulate?

I did quite well my first two years at MIT but then became more and more

disenchanted. My grades were marginal my junior and senior years, especially
in physics, my major. This was because I found school in general and physics
in particular more and more boring and less and less relevant to anything I

was genuinely interested in. I took a number of the limited MIT offerings in

the humanities, brooded, and was unhappy with the prospects for my future.

By this time, I had considerable experience with private industry. I had

worked in the Los Angeles aerospace industry for several summers. Sophomore 

year I worked for North American Aviation , at their plant just south of

the Los Angeles Airport . This old building was where the PSI Mustang had

been designed. They still had dramatic pictures of it on the walls. My project
involved study of reentry heating on the X-IS rocket plane. My job was to

write computer programs to calculate heating of bits of the plane during
various reentry conditions to see if the wings would overheat and fall off. I

had to learn an early version of Fortran, Fortran II, in order to write the programs
. We would submit our jobs on coding sheets, anonymous key punch

operators would transfer our code to punch cards, the jobs would run overnight

, an~ the next day we would get our results back, or, if the jobs did

not run, get actual core dumps, which in those days were printouts on wide

fanfold paper of the entire memory of the IBM 7094 that we used. We could

often tell where we went wrong by checking the core dumps. The second
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floor of the building was an enormous 
"
bull pen

" 
with hundreds of desks and

drafting tables lined up in rows .

My two last summers involved working for the Aerospace Corporation in

EI Segundo, which was fun but was also a lot like physics . I had to wear a

suit and tie like the other technical personnel . I suspect somebody had sold

management on the idea that it would be good to hire college students for

the summer, but there were no particular projects that needed their help . No

one was quite sure what to do with me, so mostly I played around with the

lab equipment .

I had to make a decision during my senior year in college . I had to decide

to do something with my life , but my experience with the aerospace industry 

led me to conclude that I definitely did not want to spend my career

refining the electronics on missiles as a small part of a giant team in a bull

pen.

In addition , all young men of that era were faced with a major problem :

the draft . Some of my earliest memories were of World War II . The Korean

War had influenced my junior high school career. I had read All Quiet on the

Western Front a half dozen times . The Cold War was in full swing . It did not

require much geopolitical savvy to see that the u .S. Army was not going to

be a safe place. In addition , my extensive reading had convinced me beyond
all doubt that my personality type was completely unsuited to the military .

Teamwork had never been my strong point .

If I was not going to work for the military industrial complex with its

many deferments , the only way to be reason ably sure of staying out of the

army was to go to graduate school . However , I had no particular desire to

go to graduate school in physics , though I applied to several of them

through inertia and was rejected by them all . This was clearly the right decision 

from the point of view of the graduate programs involved .

I had always been interested in the big questions that science fiction

physics addressed but real physics ignored . The biggest of these big questions
, I felt , was how the mind worked . I knew the MIT physics department

pretty well by that time , and I knew that with my grades there was no chance

I would be admitted to their graduate school in physics . So I switched my

application for graduate school at MIT from the physics department to the

biology department . I felt I probably would not get in, but if I did , it would

give me a chance to work with something that might be interesting while

I stayed out of the army . For some reason I have never understood , the

MIT biology department admitted me to their graduate program and even

provided financial aid.

In retrospect , I think that my shift to biology was one of the two or three

most important and most correct decisions I have made in my life , but at the

time I felt like I was taking a large step down in status. My friends did too .

Physics was considered the model for all the other , lesser sciences. The only

people smarter than physicists were mathematicians , and they were weird . If

you had some reality contact and were smart, you became a physicist . If you
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were really smart, you became a particle physicist. If you were really really
smart, you became a theoretical physicist and confronted the universe head

on, armed with just your naked intellect. We knew, based on movies and

novels, how this kind of prototypical physics was done: brilliant, disheveled,

mildly eccentric academic, alone in a room with a blackboard covered with

equations. It was the apex of our fantasies.

Biology was somewhere down there with home economics and theory of

sewers in the MIT pecking order. I received condolences about my demotion

from my friends who were going on to do real science.

I started graduate school at MIT in biology in September 1962. Since I
had no background whatsoever in biology , I was required to take a number

of undergraduate courses. Somewhat to my surprise, when I was doing something 
I liked, my grades picked up substantially. This period was before

grade inflation, and one of my proudest academic achievements is the A I
received in the major introductory computer-programming course, competing 

with a horde of MIT undergraduates. The other great event of that first

year in graduate school was being required to take Hans-Leukas Teuber's
"
Introduction to Psychology.

" Teuber had just arrived at MIT , and this was
the first year he taught the course. I still can remember Teuber's large, expressive 

eyebrows moving up and down when he made an important point.
This course made such a strong impression on me that I still use a number of
his ideas in my own teaching. Teuber first introduced me to the work of my
hero William James, who, I soon discovered, thought of almost everything
first and usually expressed it better and more clearly than anyone since.

Teuber
'
s course material covered what we would now probably call cognitive 

science. It was concerned with neurophysiology, animal behavior, clinical

neurology, and big ideas- in equal measure. The course was a revelation.

It described exactly what I wanted to do, except it seemed to be called psychology 
and not physics.

Now graduate school became an exercise in learning all the stuff I was
interested in and convincing the biology department to give me a PhiD. as

soon after July 1966 as possible. The date was important because I had

learned that nobody got drafted after they reached the age of twenty-six.

Apparently, experience from World War II had convinced the military that

raw recruits beyond that age had too much common sense and and too little

physical capacity to make good soldiers.

In my second year in graduate school I met George Moore, who was

spending a year visiting from UCLA. George introduced me to the 
"
sea

hare,
" 

Aplysia california, an animal only a neurophysiologist could love.

Aplysia are large gastropod molluscs that live in the kelp beds off the coast
of California. Ecologically, they are a molluscan cow, grazing serenely on

seaweed. Like most herbivores they are severely lacking in cleverness, initiative

, and motivation, a point for vegetarians to ponder. The Aplysia nervous

system has a small number of very large neurons that are easy to record
from with microelectrodes. These so-called "identifiable neurons" recur with
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the same location , function , and connections from animal to animal - an

ideal arrangement for experiments .

Much neurophysiology involves the search for the perfect preparation
-

that is, the particular 
"
simple

" 
animal or system that gives clear, illuminating

results about an important function . Aplysia is such a valuable preparation . It

is easy to work with , easily available , and emits behavior occasionally . One

of its behaviors is a whole series of withdrawal reflex es. When an Aplysia
is touched unexpectedly , it pulls the touched part out of the way . Many
animals, including us, behave similarly . I thought it would be worthwhile to

study the tentacle withdrawal in a whole animal preparation . I made an

incision in the animal to expose the cerebral ganglion that control led the

tentacle response, recorded from neurons in the ganglion , and provoked the

Aplysia to withdraw by touching it with a probe .

George Moore
'
s original plan was to leave UCLA and come to MIT permanently

, but he ultimately decided not to , so I did a PhiD . thesis on Aplysia
with very limited advising . It was educational to do everything myself , but

inefficient , and I missed a lot of obvious points . Eventually , however , all this

resulted in a PhiD . thesis that I referred to myself as the 
"
Unified Aplysia

Theory
" 

but that carried a more pedestrian title . No one else seemed very
interested in a unified Aplysia theory .

My feeling was that Aplysia was a good example of one possible and

highly successful form of nervous system organization using a small number

of very complex neurons, largely hardwired . I felt that mammals were likely
to show a different organization : one that was also successful, using a very

large number of neurons organized and connected with some number of

statistical rules, but without the degree of individual soldering of connections 

by God (or his agents) present in Aplysia . These statistical rules were

likely to be simpler than the ad hoc connections that would probably be

found in small numbers of complex Aplysia neurons performing complex
functions . So this was the direction I started to explore since I thought that

mammals were far more interesting than Aplysia . Interestingly , more recent

work strongly suggests that the core, hardwired reflex is only a small part of

the actual strength of the reflex, even in Aplysia . Although there is a core,

there also seem to be a large number of intemeurons contributing to the

reflex, showing a much more diffuse and much more mammal -like , distributed 

organization .

So even while I was working on Aplysia for my PhiD . thesis, I was quite
sure that my future did not contain more of it . It was an interesting detour .

I had always been fascinated by memory . Thanks to the computer courses

I had taken, I had a pretty good idea how computer memories are organized .

I could see that human . memories and computer memories are organized

completely differently . That was intriguing to me because I knew that they
both store information but in very different ways . Ours works faster and a

lot better in some ways , but worse in others .
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Sometimes when I get stuck or want to think great thoughts about

big problems , I will go for a long walk . My first year in graduate school I

took several walks like this . I knew about the paper on the &og eye by Jerry

Lettvin , who I also knew as a charistmatic and controversial Agure in the

biology department . He was the faculty member who had dared to say in an

orientation talk to a crop of serious Arst-year graduate students, 
"
The main

thing is to have fun doing science.
" 

I was starting to learn about the work of

Hubel and Wiesel on the cat primary visual cortex . I returned &om one long

walk convinced that all mental functions in mammals were spatial to a large

degree
- that is, many neurons distributed over a sizeable region of space

were involved in doing any mental function of interest . A single neuron did

not count for much . We had selective neurons all right ; Hubel and Wiesel

and Lettvin had found some of them. But a perception of any complexity at

all involved a widespread spatial pattern of the activities of many neurons .

This may not sound like a very profound insight now , but it led me to

focus on the properties of patterns shown by many units operating together

and not on single units , an emphasis I still believe to be correct . This was

somewhat counter to the received, though rarely articulated , neural theory

of the times, which said roughly , 
'
Well , if the &og has bug detectors , and the

cat cortex has orientation selective cells, then we will And more and more

selective cells as we march through the brain .
" 

This approach led to a search

for 
"
grandmother

" 
cells, which did not seem to exist . This experience also

emphasized to me the fact that every neuroscientist , even the most empirical ,

is a theoretician , except that they are rarely aware of it . The worst kinds of

theories are the ones that do not rise to consciousness, but which through

dark subterranean influences determine what data are to be considered important 

and what kinds of experiments get done. Keynes once commented

that 
"
practical men, who believe themselves to be quite exempt &om any intellectual 

influences, are usually the slaves of some defunct economist .
" 

Most

neuroscientists , believing themselves to be servants of the data above all

else, are not even the slaves of the ideas of a real, but dead human, but rather

of a vague unarticulated cultural consensus.

So we were dealing with activity patterns of many neurons . Patterns involving 

many neurons are hard to deal with conceptually . For example, a

single unit may participate in many different patterns . Selectivity is lost .

More speculatively , if the same is true for memory , then the strength of a

single synapse may be a function of many past events, rather than one - a

break with the notion that memory is a vast Ale cabinet with everything in

its place. When I started exploring the literature , I found that Karl Lashley,

Sir John Eccles, and even William James had come to similar conclusions ,

confirming my belief that however clever and original your ideas, someone

else thought of them first .

The first time I tried to do anything with the idea that memory is a distributed

, pattern
-based operation was in a graduate seminar on memory in

the psychology department . I had a very clear visual image in my mind of



the kind of system I wanted . I saw a bunch of input lines, something like

guitar strings connected to a hazy, somewhat three-dimensional set of lines

and connections . In operation , a chord was struck on the input strings , and

after a brief period a different chord , based on past learning , appeared on the

strings . This device was basically an associative memory device, where an

input pattern combined with a bit of network magic gave rise to an associated 

output . I knew from my psychology courses that association was

something people were very good at. It should be possible to reproduce it

with an artificial system.

I had run across perceptrons in a class taught by Murray Eden, but per
-

ceptrons were presented as a pattern recognition device that , for example,

would tell you what letter corresponded to a particular spatial pattern . The

basic percept ron architecture seemed pretty reasonable based on what I

knew of neuroanatomy , but pattern recognition seemed far too rigid . Pattern

association , however , was something else. I could see right away that associations 

were essentially arbitrary and formed what might be called an
"
alogical

" 
computing style . I wrote these qualitative insights up for a term

paper and got a B on it , probably more than I deserved considering the hazi-

ness and confusion underlying my model . I went back to work on Aplysia , the

animal that would both keep me out of the army and maybe get me a job .

I received my PhiD . in January of 1967, right on schedule. George Moore

had managed to obtain support for me as a postdoc at the Brain Research

Institute at UCLA . I wanted to return to L.A . where I grew up. Unfortunately

, just as I arrived at the BRL George Moore left to go across town to

USC as part of their new bioengineering program , so I was again left on my
own , with no advisor , no lab, no equipment , but with financial support for a

couple of years.

I was delighted . This was the 1960s. I wanted to do my own thing , and I

had two years of support . I figured if I couldn
'
t make it in science, I would do

something else for a living . I managed to find a few linear feet of lab bench

space on the seventh floor of the BRI, courtesy of Jose Segundo and Alan

Grinnell , that I could use as a desk. Dr . Segundo was extremely helpful to me

and seemed to understand what I was doing , a wonderful person to whom I

owe a great debt . He was interested in models of neuronal interactions , and

he, George Moore , and Don Perkel, then at the RAND Corporation , had

written several papers on spike train analysis, with examples taken from

Aplysia , that have become classics.

Once I was settled in my little space on the seventh Boor of the BRL I

needed to decide strategy . Even then, there was a torrent of experimental

papers in neuroscience. There was so much data that no one could absorb it .

The situation is ten times worse now . I decided that someone had to become

the audience for which those papers were written and that someone was

going to be me. I would try to figure out what was going on and make sense

of it . If I couldn
'
t make sense of at least a little of it , I would find a new job . It

was the
' 
60s. Anything was possible .
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I chose memory as my topic. I had told people I was going to work on

Aplysia, but I never believed that, and since I had no lab, I couldn
't even if I

wanted to.

I thought that memory was really peculiar. We knew something about the

neural hardware and something about the way memory worked functionally.

It certainly wasn
'
t a file cabinet, though there were a few papers around that

suggested it might be. It was time for another long walk, this time around

the beautiful UCLA campus.

I have always liked to buy used equipment. First, it is cheap. Second, it is

interesting because it has a history of previous owners who left their traces

on it . And third, it is challenging to make things work that others have discarded

. Similarly, I like ideas that others have rejected as unreasonable. Conversely

, I am suspicious of ideas that have been accepted just because they
seem so reasonable. My reading of history and my own experience has convinced 

me that the place where theory goes most seriously and un detect ably

wrong is in the most basic assumptions: What are you actually trying to

do? Is that the right thing to do? Are you assuming a function for a system
because it is the right thing to do or because it is convenient and makes

analysis more manageable?

If I was to take my pattern associator seriously as a model for memory,
then it suggested that the responses of individual units and even the individual 

storage elements, probably synapses, reflected their entire past history
- that is, distinct memories mixed together by the very act of storage. This

seemed very odd. I was aware of several memory models that drew similar

conclusions but that then went to some pains to develop mechanisms to

keep things separate. So in my long walk I said to myself, 
"
Suppose we just

accept instead of reject the fact that things mix together in the act of storage
and see what happens.

"

Lots happened. For one thing, if we simply added patterns directly to each

other, the sum could indeed act as a memory and quite a good one if there

were enough storage elements involved. The analysis tools required to see

this were in books I was just then reading: Lee's Statistical Theory of Communication 

and Davenport and Root
'
s Random Signals and Noise. All we had to

do was apply correlation functions or matched filters to the sum, and the

memory could answer a number of interesting questions
- for example, recognition 

questions, or 
"
Have I seen this pattern beforer

' 
I could even compute 

how accurately it could answer this question. More, this idea predicted
the existence of a whole host of interference effects and related enhancement

effects in the operation of memory. For example, if we saw a lot of noisy

examples of a pattern, the memory would effectively take the sum in the

storage process, thereby applying automatically one of the most effective

noise-reducing signal-processing techniques. Somewhat to my surprise, most

of the predictions of this model were made at the level of the patterns themselves
- that is, at the level of gross behavior or, dare I even think it, of cognition
. Worse, if this model was even vaguely true, it would be very hard

251 James A . Anderson



James A. Anderson252

to see in operation at the level of single neurons or synapses because each

individual part formed only a small bit of a larger pattern.

Another nice thing about the approach
, was that the strength of a lot of

effects like interference and enhancement depended on the details of the
data representation

- that is, the way information was represented in the distributed 

activity patterns. As a neuroscientist, I knew that the brain essentially 
was data representation

- that is, Anely tuned, genetically determined

preprocessing.

Anyway , this simple, unpromising assumption
- that information specificity 

is lost by the act of storage- turned out to open up a series of interesting 

speculations.

I was inspired to write a brief paper pointing out some of these implications
, which I submitted to the journal then called Kybernetik, now called

Biological Cybernetics. It was accepted almost immediately and became my
first real scientific publication. This encouraged me to think that I might

manage to make a living at science, on my own terms.

Once you start thinking along these lines, it is hard to stop. From a single
memory where everything mixes together, it is an obvious step to a memory
with lots of units- a little like neurons- where every unit contains amemory 

of this summed type in its connections, forming a connectivity matrix
that couples one group of units to another. The weights, or connection

strengths, of the units are the summed recognition memories. This became

the associative memory that I had visualized for my term paper in graduate
school, except here it was and it worked. It also had both the desirable and
undesirable qualitative properties of the simpler memory. This associative

memory got described poorly in a 1970 paper and more clearly in a 1972 paper.

Thanks to several different sources of funds- the BRI's Mental Health

Training Program, a Public Health Service Fellowship, and a postdoc at the

Space Biology Laboratory courtesy of Ross Adey, who liked my modeling
work- 1 was able to stay at UCLA for four years, from 1967 to 1971. This

period was the height of 
"
the ' 

60s
" 

and was a time of intense political and
cultural activity , particularly in California, fascinating but strenuous.

From a personal point of view I now needed a steady job. I was newly
married, and after November 1970 I had a new son. (Hi, Diana and Eric!

You are the most important people in my life.) So I had responsibilities. The
election of my father' s wartime coworker, Ronald Reagan, as governor of
California had an immediate impact on the University of California, a hotbed
of radicals and malcontents. Academic job prospects in California were dim.

Again thanks to Segundo I found out about a postdoc at Rockefeller University

, and in June 1971 my wife, son, and I left for New York in our

Volkswagon Microbus. After driving through the Rockies at 25 m. p.h uphill,
max, we arrived at Rockefeller University, where I was to work on pigeon
cerebellum at a laboratory in Theobald Smith Hall, a short way from the

copper-lined lab constructed by Lorente de No.



Rockefeller was a mix of good and bad. The physiological experiments I

participated in were tedious and, I felt, without significance forunderstanding 

how the brain might work. The lab director made it a point to crush any
faint sign of speculation as being unscientific.

At that time, however, Rockefeller was a true university. It had physicists,

psychologists, and mathematicians on its faculty, along with the biologists
and medical doctors that it was originally designed to house. Among the

psychologists was William K. Estes, inventor of statistical learning theory
and a leader in the field of mathematical psychology. He had a large group
of coworkers, at first located on the floor above mine in Theobald Smith

Hall, moving a little later to the third floor of a new building on the other

end of the Rockefeller campus. Since that golden era, Rockefeller has regressed
to its original role as a biomedical research institute.

Just before I left UCLA, Bob Barrett, who shared my laboratory-office and

who worked on the physiology of pit vipers, pointed out to me an article by
Saul Sternberg in the American Scientist. The article reviewed what became

known as the Sternberg list-scanning experiments. The main effect is strong
and reproducible. If a subject learns a short list of items of almost any type,
and then is asked as to whether or not a test item was on the list, the

response time is a linear function of the number of items on the list. This

seemed perfectly resonable if one assumed that there was a list of items

in memory, and the list was scanned to look for a match between test item

and learned items. If an additional item was added to the list, it should take

longer to scan the list, about 35 milliseconds an item, in fact. However, what

made the Sternberg results interesting was that for many cases the time required 

to respond
- "Yes, the item was on the list" or 

"
No , the item was not

on the list"- had the same slope as the number of items was changed. An

efficient computer program to do this task would presumably do learned

item- test item matches and then exit the program when a match was
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found . But this would imply that the slopes of 
"
No

" 
and 

"
Yes

" 
would be in a

two for one ratio because on the average only half the list had to be scanned

for a 
"
Yes

" 
but the entire list had to be scanned for a 

"
No .

" 
But what was

seen experimentally was a one-to -one ratio .

It seemed clear to me that this pattern of results was consistent with my
model for memory . If everything mixed together at the storage elements,
a nice clean list was not present anywhere . And the most reasonable ways
I could think of to extract the information from the memory would have a

time course consistent with Sternberg
'
s experimental results .

I had several discussions with members of Estes
'
s laboratory and with

Estes himself about this . I was very unhappy with my neuroscientific work

brutalizing pigeons . I asked Estes if I could join his laboratory to develop
.

these ideas for the second year of my stay at Rockefeller . He was kind

enough to say yes. This decision also involved a pay cut of some magnitude ,
but I felt it was more than worth it . Just after my decision to join the Estes

laboratory , I remember reading in the New Yark Times that the starting

salary of a New York City garbage collector was exactly twice what I would

be getting the next year .

I spent a happy year in Estes
'
s laboratory learning a whole lot about psychology 

and writing a paper on my model for the Sternberg effect . I was

struck by a number of things in that laboratory . Psychologists were far more

open and responsive to new ideas than were neuroscientists . This was during
the period sometimes called the neural network dark ages, after the Minsky
and Papert book on perceptrons had dried up most of the funding for neural

networks in engineering and computer science. Neural networks continued

to be developed by psychologists , however , because they turned out to be

effective models in psychology . It is no accident that much of the early work

on neural networks - most notably the POP group at UCSO - was done

by cognitive psychologists . What happened during the dark ages was that

the ideas had moved away from the highly visible areas of big science and

technology into areas of science that did not appear in the newspapers.

Another nice aspect of experimental psychology was the fact that a number 

of striking , robust , and lawful experimental phenomena were known . No

one outside of psychology seemed to know this . It was clear that many of

the strongest predictions of neural networks were observable at the behav-

iorallevel but not at the neural level . As only one example, the Minsky and

Papert book had as its primary theoretical result that a simple percept ron

could not tell whether a visual pattern was connected or not . Yet , for a figure
of any complexity , in our immediate perceptions humans cannot either . The

cover of the Minsky and Papert book made this point by having two spirals,
one connected and one not . However , almost no one realizes this until it is

pointed out to them, and even then it is difficult to see. The conclusion was

that perceptrons indeed have some severe processing power limitations , but

those limitations seem to correspond to the strengths and weaknesses shown
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by humans. Perhaps neural nets are not very good engineering devices, but

they are great models for mental function.

During my stay at Rockefeller, I made contact with a small group at

Brown that had started to become interested in brain models: Leon Cooper,

Ulf Grenander, and Jim McIlwain. I was introduced to them by Cooper
'
s

graduate student, Menasche Nass, who burst into my office in Smith Hall

one day and asked me to tell him everything known about memory. Cooper
liked my matrix-based associative memory model. All this discussion led to a

number of visits to Providence and eventually an offer of a job in the Brown

Division of Applied Mathematics. After my appointment at Rockefeller was

up, I compressed my family and all our possessions into our VW Microbus

and moved to Providence in the summer of 1973.

I was clearly not an applied mathematician or any kind of mathematician

for that matter, and after three years my contract was not renewed by

applied math. I moved my office to Hunter Laboratory, which contains the

psychology department. My organizational affiliation shifted to the Center

for Neural Science, an interdepartmental center, largely the creation of Leon

Cooper. The center was formed just about the time that Cooper won the

Nobel Prize for his work on super conduct ivity . He was the 
"
c

" 
in the BCS

theory of super conduct ivity , a theory that correctly explained virtually all

the properties of classical low temperature super conduct ivity . Cooper was

able to use his considerable prestige and influence to obtain support for his

new intellectual interests, which after about 1970 lay primarily in models of

the nervous system.

Since 1973 I have remained at Brown, though my stay at a single institution 

has been enlivened by several shifts of department. Since 1973 I have not

gone anywhere in particular other than to meetings, except for a summer in

1979 spent in La Jolla at UCSD. The major event of that summer was a conference 

that Geoff Hinton and I organized with sponsorship from the Sloan

Foundation as part of their attempt to get cognitive science to be as big a

success as their earlier support of neuroscience. [This small workshop/conference 

is mentioned by several of th~ participants in this book as an important 
influence in reigniting interest in neural networks.] It accomplished a lot

just by bringing an eclectic group together who discovered at the conference

that they were all doing similar things. It also led to the publication of .a

conference proceedings book, Parallel Models of Associative Memory, which

turned out to be quite influential.

When I arrived at Brown, I was still intrigued by the large number of solid

experimental effects seen in cognitive psychology. Many of them seemed to

me to be exactly what you might see arising from operation of the kind of

parallel, distributed computing machine that I felt the brain to be. Particularly

interesting were a number of effects seen in the formation of what psychologists 
call concepts.

One of the most important and useful features of human cognition arises

from deliberate distortion of the information presented to us by our senses.
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ER: How did you choose San Diego?

DR: That
'
s a good question. At the time when I graduated, in '67, mathematical 

psychologists were popular for a year or two . There was a group of

them the year before me, all of whom got very good jobs. Then in my year,

there were a few jobs. At the end of the 
'
60s, things were beginning to dry

up in terms of jobs for psychologists, but mathematical psychologists had a

place for a while because nobody knew quite what they were going to do or

who they were and thought maybe they should have one.

One of the people I met during the years that I was a graduate student

was Bill McGill , who spent a year there. McGill is a very, very interesting
man. I was very impressed by him when he was visiting at Stanford. I discovered 

that he and some others had started a department, a brand new

department, at UCSD. In those days, jobs were a little bit different. Your

advisor would call somebody up on the phone and say, 
"
I have this student

you should hire.
" And apparently something like that happened in my case. I

guess Bill Estes talked to the people at UCSD. They had a job opening, and

he said, 
"
Hey, you ought to look at this guy.

"

I interviewed at three or four places, but UCSD was a new department;

they had really interesting people there, and there was just no question that

if they offered me the job, I would take it . And they did, so I went to UCSD

in the fall of 
'
67. Right away, McGill became chancellor of the university,

so I ended up not interacting much with him, but rather with Don Norman,

who was very active in those days working on memory. Attention and

memory were his fields. I have always been a collaborator. I
'
ve always

enjoyed working with people. It
'
s just the way I think.

I worked with Peter Lindsay, who was an assistant professor there. He

and I did a lot of things together, also with Norman. The three of us had

a research group called LNR, Lindsay-Norman-Rumelhart, which actually

maintained the name LNR long after Peter Lindsay left.

But in any case, at San Diego I started this project that resulted from my

work on my dissertation. Psychologists were too narrow I thought. We had

to have a bigger picture. Mathematical psychology was, I thought, limited

because in those days we required closed-form solutions to things. I began
to get the idea that a better method would be computer simulation. So really

from the time I went to San Diego, I was thinking about computer simulation

. In addition to Jim
'
s work that I mentioned, which I found very interesting

, I also was inspired by the work of Ross Quillian, who in those days

was doing computer models of so-called semantic networks.
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ER: Just to back up for a minute from there, you got your doctorate from

Stanford ?

DR : Right , in 
'
67, and then I went down to San Diego . I was in the psychology 

department at UCSD , and I worked there fairly closely with Don

Nnrman -
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I always had one course that was like a free course in which I
' 
would

choose a book of the year and teach out of that. In 1969, I think it was, or

maybe 
'
70, I chose Perceptrons by Minsky and Papert as the book of the year.

We then carefully went through it and read it in a group. There were some

people from the math department, the graduate students, and me. This, by
the way, was something I learned from Bill McGill . He always liked this idea
of reading a particular book and going though it with a group.

This was my most in-depth experience with things relat~d to neural networks

, or what were later called neural networks. I was quite interested
in Minsky in those days because he also had another book which was called,
I think, Semantic Information Processing. That book was a collection, including 

an article by Ross Quillian. It was a collection of dissertations . from his

graduate students.

In a way, it was Minsky who led me to read about the percept ron more
than anybody else. In those days, in the late ' 

60s, Norman and I got the idea
that artificial intelligence was an important direction. We went off and

got into the AI community. We got to know the people and, although we
were psychologists, we became associated with artifical intelligence as an

approach. It was part of my philosophy that we needed broader theories. We
needed to have theories which were not tiny little micromodels, but were

bigger models.

ER: This also seems to fit your notion that computer simulations were the

way to go.

DR: Right, exactly. Around 1970 I said, 
"
Look, this looks like an important

thing. I
'
ll devote five years of my life to trying to see if this project will work

out"- that is, the AI approach and the computer simulation approach. That
'
s

pretty much what I did for those years. I did lots of different AI -oriented

things, psychology and AI , and out of that work came several things. One of
them was the book that Norman and I did, Explorations in Cognition. That
book was the model for the book that McClelland and I did, the POP [parallel 

distributed processing] volumes. In any case, Explorations in Cognition was
also in a way based on the Minsky model. It was us and our students working 

together and writing this book as a group. By the time we were done, I
had decided that we had to go on. We still weren

'
t broad enough. We were

broadening, but there was still more we needed to do.
A couple of other things happened, interesting things with respect to

my later work on neural networks. I had a student named Jim Levin. He got
interested in a system that he called Proteus. Proteus was inspired by Carl
Hewitt 's actor system, but it turned out to be as close as anything to neural
networks. Instead of having complex actors, we had simple actors. They
were little linear devices that today could easily by characterized as more
or less linear neural network-type systems. We had some nonlinearities too,
as I recall, but I can't remember all the details. His dissertation was on Pro-

teus, which turned out to have a lot of interesting properties.



The other thing that I did in the late 
'
70s or mid-'70s was devise another

model. I was quite interested in reading. I took as my area of work what I

called linguistic information processing.

In psychology it was commonplace to say, 
"OK, I study memory,

" 
or 

'1

study perception,
" 

or 
'1 study attention,

" 
or 

'1 study vision,
"- you name

it . I can view those as slices through the system. I had this idea that we were

interested in information processing. What we should do is follow the information 

from the time that it hits the eye until the time that you do something

. But I felt that was an enormous problem, so I decided to focus on

linguistic information. In particular, reading was a good case because in

reading we have visual information processing: we can study perception, we

can study comprehension, we can study the whole process. . I devised a

model called the interactive model of reading, which was published in the

Attention and Performance volume for 
'
75, I think.

The model was intended, among other things, to challenge the work of

a couple of people who had models of reading. One was David Laberge.

I went to a conference, and David Laberge was there. I had a conversation

with him, and he said, 
"
You know, your model is a fine model; it

'
s very

interesting model.
" 

But he also said, 
"
You know the brain couldn

'
t do that.

"

I said, 
'What are you talking about7

' And I thought, 
"Hm ,

" and I stored

that away in the back of my brain. 
'
What do you mean, the brain couldn

't do

that? Of course, the brain could do that.
"

He said he thought his model was more plausible. It was a purely feed

forward model. My model involved all kinds of interactions. That is why it

was called the interactive model. Information had to move in both directions

in order for it to work. I stored that comment away, and it later played a role

in my thinking.

Another important thing happened in 1974, I think it was. Jay McClelland

came as an assistant professor to UC5D. Jay and I got along quite well. We

jointly taught a course together for a couple of years. This was valuable,

both in terms of getting to know each other and also just in general in terms

of building a common understanding of things. I remember, I taught a mathematical 

psychology course at the time. Jay decided to take this course while

he was an assistant professor. He thought that he could learn to do modeling.

50 he took the course from me, and he built a little model, which in the

end turned out to be closely related to a kind of a neural network model

by the time we got done. The model that he built was what he called the

cascade model, which was a feed forward model with saturation. He used it

to explain reaction times.

I think in 
'
76 or 

'
77, there was a conference at Minnesota which I attended

and which Jay attended and which Jim [Anderson] attended. I was in and out

pretty much, but gave my talk. In those days I was working on story understanding

, and I gave a talk about that. What I remember is that Jay was at

this meeting and apparently had a number of conversations with Jim.
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JA : We had dinner together practically every night .

DR : Jay became quite interested in some of the neural networks ideas.

After Jay came back, we were talking about the cascade model , and we had

this thought . You know the interactive model that I had developed could be

formulated in much the same way as his cascade model , if we allowed feedback

. We had systems that had connections that went in both directions . We

then spent the next two and a half years or so refining this model , which

later became the interactive model of word perception or word recognition .

It had various titles . We published it in two parts in Psychology Review. It was

inspired by all of these different things .

In the end it turned out to be very much like these models that settle into

stable states. Indeed, it was those features that we eventually worked out .

But what I remember are hours and hours and hours of tinkering on the

computer . We sat down and did all this in the computer and built these

computer models , and we just didn
'
t understand them . We didn

'
t understand

why they worked or why they didn
'
t work or what was critical about them.

We had no important theory yet . We struggled and struggled and began to

get insights into the nature of these interacting systems and became totally
obsessed by them . We wanted to make this all work .

Another important thing happened in roughly that time frame, while

McClelland and I were working on this model . We had a postdoctoral program 
that came from the Sloan Foundation . They were then beginning to invest 

money in cognitive science. We looked around the world to find people
to come to our postdocs . We had, I believe , five slots . One of the people we

found to come was Geoffrey Hinton . In those days, Geoff had been working
on vision and had developed a relational model of visual perception .

When I read his thesis, we were trying to decide whether to invite him

or some other people , and we thought , 
"
Gee, this is pretty intriguing stuff .

"

I remember reading his thesis and seeing relationships between it and a

Proteus system, and relationships between it and the kind of stuff that

McClelland and I were thinking about .

So anyway , Hinton came, and Don Norman and I had this idea that we

would hold meetings
- I have this impression of them being daily meetings

- with our postdocs . At these meetings each postdoc would have a week to

tell about his vision of things because these were interdisciplinary groups ,
with people from linguistics and computer science and psychology and

anthropology
- all these areas.

So in my interactions with Geoffrey and Jay and the others I began to

understand better about relaxation and better about how our networks

might be working . The network that McClelland and I were building could

be viewed as a relaxation mechanism. Geoffrey originally came from Edinburgh 

and worked with [Christopher ] Longuet -
Higgins . Longuet -

Higgins
in his early years had been interested in various kinds of distributed memory .

One of his students was David Willshaw . Geoffrey had for a long time been

interested in brainlike models . He went to work with Longuet -
Higgins in part
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because of this distributed model . He spent a year there . By then Longuet
-

Higgins had gone on and was interested in other things and wasn
'
t very

supportive , but Geoff did work for a year or so with David Willshaw . He

was finishing his dissertation and became quite knowledgeable about these

network mechanisms and how they worked , but then he was discouraged

from doing this work further . This was in the early 
'
70s. And so he went off

and used relaxation methods , which were essentially the same ideas, but that

was the way he framed his work .

When he was at San Diego , he came to the decision that he wanted to go

back and think a lot harder about perceptrons and about learning . At that

time I separated the work on learning mechanisms from the relaxation ideas.

I had this idea the relaxation methods were one class of probl .em solving ,

and then there were learning methods , which were basically percept ron

learning .

The other thing we did as part of our program was we allowed each of

our postdocs to invent a conference, any conference that they wanted . So

Geoffrey wanted to have a conference on parallel associative memory . Jim

[Anderson ] came and was part of our program , the Sloan program , for three

months . Jim and Geoffrey put together this conference, which was held in

June of 
'
79.

This conference was really quite interesting because Jim knew a lot of the

people who were doing neural network things , and Geoffrey had lots of

interesting ideas. We brought in really a lot of people . Although I was not

a major participant , I became increasingly intrigued by the work that was

going on-
Geoffrey

'
s and the work that Jay and I had been doing and then

this conference. It all was percolating in my head that this neural network

business was something that I
'
d better pay attention to ; this was really interesting 

stuff .

I thought , 
"
Somehow my work with Jay and these neural networks are related

. I ought to be able to put all this together .
" 

So I continued discussions

with McClelland and Hinton , and then Geoffrey went off back to England

for a while . Jay and I kept talking . Then I went to Stanford on a kind of a

sabbatical leave. My goal when I was there was to write a book . I was supposed 
to write a book on schema theory , but I couldn

'
t manage it . I instead

kept thinking about this work on neural networks , parallel associative memory 

or whatever we called it . I don
'
t think we did call it neural networks . But

anyway , whatever it was, I kept thinking about it .

I didn
'
t write the book . I had built this computer language called SOL,

semantic operating language, which was designed to do semantic networks .

I modified it entirely so that it would do matrix operations and do all this

modeling of essentially neural networks . I simply couldn
'
t manage to do the

work that I was supposed to do .

I decided while I was away that I just had to get this out of my system.

I had to figure out what was going on . It seemed like there were all these

interesting things , and they really must be related to each other in some
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way. I remember there was a meeting in the summer after this. AP A [American 

Psychological Association] met in Los Angeles. This was the summer
of 

' 
81.

I went up to see the books. It was an outing. My wife came with me. I said
to her, 

"
You know, there's something going on here. I really want to learn

about this, this whatever, neural network, parallel associative memory stuff. I
have this book I

'
m supposed to be writing , but, you know, I think I don

'
t

want to write it now. I'm going to put it off. I think this is important.
" 

I said,
"
1 think it

'
s important enough that I should spend at least five years figuring

out what
'
s going on.

"

I had these five-year plans
- at least five years for figuring out what was

going on here. So by the time we finished our train ride, I had committed

myself to saying, 
"
OK, this is it . I want to learn about this stuff.

" .

When I came back to San Diego from this trip, I went to see McClelland,
and I said to Jay, 

"
Look, Geoffrey

'
s coming back in December. Let

'
s spend

two quarters going over all the stuff on these neural network things.
" 

UCSD
used a quarter system. 

"
Let

'
s spend the winter and spring, while Geoffrey

'
s

going to be here. We
'
ll have meetings every day. I

'
m on sabbatical. I can do

this.
" 

Jay was on a Young Investigator Award, and Geoffrey was coming as
a kind of a postdoctoral continuation. We thought we would just really focus
on this, and by the end we would write a book. We

'
d sort all this out; we

'
d

write it down and tell people about it . 
"
Six months, that

'
s plenty of time for

doing this,
" 

we thought.

We sat down starting in early January, and we brought together the

people who were most interested. That was Geoffrey, Jay, me, Francis Crick,
and a couple of graduate students. Richard Golden came to some of these

meetings- I think also Mike Moser and Mike Jordan and Paul Smolensky,
who by then was a metapostdoc on the Sloan program. We decided we
would sort out what was going on, and we would use it as a guide, and then
we would write a book when we got done. We would be working on the
book during all this time.

So we went to the literature, and we read more or less all the work we
could find: Jim

'
s work, work by Steve Grossberg, work by Leon Cooper

- all
the people we could think of who were doing work in this general area. We
would try to put it all together. My memory now could be wrong, but what
I remember is that we met essentially daily, for two quarters, not quite six
months. We met every day, and we met for several hours a day.

The first order of business was to say, 
"
Well , what are we going to call

these things? What are they named?
" 

We ended by deciding that we should
call them parallel distributed processing [POP] systems. We were interested
in them being parallel, and we were interested in them being distributed, so
we devised this name, POP. That was one of our first orders of business, to
come up with this name. So then at least we had a name to call this whole

family of things.
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We read Rosenblatt; we basically informed ourselves as much as possible
of all the literature that that we could find. We couldn

'
t help but keep thinking 

about how we could put it all together. It was during that spring I went

off to a meeting in Florida. It was an ONR [Office of Naval Research] con-

tractors' meeting.

In San Diego we were talking about the difficult problems, like solving the

X-OR [exclusive OR] problem. Geoffrey said, 
"
OK, here's the problem. Here

'
s

a classic problem that the perceptrons don't work on." I had read a little bit

in Rosenblatt about his ideas on how to build multilayer systems. Of course,
I'd read Perceptrons. And I thought, 

'
Well , somehow we have to figure out

how to teach, how to train, a network that has more than one layer. Why
can

'
t we do this?"

McClelland and I had done a trick, we thought, and that trick 
'
was the following

. We wanted to have nonlinear systems that could learn with sig-

moldal units. We were worried because we didn
't know exactly how to train

them. So what we thought was we'd pretend they were linear, and we would

compute the derivatives as if they were linear, and then we could train them.

We did this on a one-layer system. That was what we called delta learning. It

was like the Widrow -Hoff model except that we used sigmoids instead of

linear output units. They were more like the kind of thing that Jim did, which

was to use sharp thresholds.

Every time I go on an airplane trip, I set for myself a problem to solve.

And on this particular trip to the ONR meeting, I set for myself the problem,
"How can we train these multilayer networks?" I knew about, as I say, the

work of Rosenblatt and about the way he tried to do it . He had this idea of

sending error signals back across layers, but he didn
'
t have a very principled

way of doing it .

So I thought, 
'Well , suppose we pretend that this is a linear system. Could

we solve it?" Sure. We would know how to train it if it were linear, but of

course a linear system doesn't have the right properties. In the linear system,
we might as well not have any hidden units. They don

'
t do anything in

a linear system. So I thought, 
'Well , we

'll just pretend like it
'
s linear, and

figure out how to train it as if it were linear, and then we
'll put in these sig-

molds. In that way, we can make a system that would work.
"

In those days I was doing everything in LISP [a computer language]. I

hacked up this idea, and as far as I know the first time I ever worked on the

X-OR problem was by using my LISP code to train one of these back propagation 
networks to solve the problem. The very first problem I worked on.

When I did it, I was disappointed by a number of things. It worked, but

it took maybe a thousand iterations to learn. I thought, 
"
Gee, that's pretty

bad." Geoffrey pointed out, 
"
This is a big problem. There're going to be all

kinds of local minima. It just isn
'
t going to fly very well."

Shortly thereafter I became a bit distracted. McClelland and I wanted to

work on past tense learning. I thought I needed multiple layers to do the

problem of mapping from the phonology. I wanted to do past tense learning,



and I thought, 
'
Well , you know, we might want to have a hidden layer that

would learn the past tense marker somehow.
" I didn

'
t call it a hidden layer,

but an intermediate layer, like a variation on the Gamba percept ron. That

was what I had been focusing on.

But then McClelland and I figured out another trick for learning past
tenses, the so-called 

"
Wickelfeature

" 
representation. We thought, 

"
Oh well,

we don
'
t need multiple layers.

" 
So I put that aside and went off, and we

realized that if we made fancier input representations, we wouldn
'
t need this

intermediate layer. I began working on that.

David Zipser came to San Diego in the summer of 
'
82. He was interested

in competitive learning. He and I spent the next several months working on

competitive learning. I started working with him and put aside this X-OR

stuff for a while and worked on competitive learning. We worked on that for

while, and then in 
'
83, there was a meeting in Pittsburgh.

Hinton was at Pittsburgh. He had spent the summer working with

Sejnowski, and they devised the Boltzmann machine. That summer Jerry
Feldman had a meeting at Rochester, in which John Hopfield came and presented 

his work on the Hopfield nets. Immediately, Hinton and Sejnowski
realized that you could use stochastic elements instead of discrete elements

and built what they called the Boltzmann machine.

Geoffrey called up one day and said, 
"You know, about this book, I really

don
't want to be involved in it anymore because I

'm really into the Boltz-

mann machine, and we
'
ve got all these great ideas, and we

'
re going to work

on that.
" 

So he and Sejnowski, who he had met, by the way, at the conference 

that he and Jim organized, were working on Boltzmann machines.

In the meantime, Paul Smolen sky, also a physicist, had the idea for what

he called 
"
Harmony Theory,

" 
which was closely related to the Boltzmann

~ achine. These are the ordinary physics ways of looking at things, I guess.

But, anyway, there was this somewhat independent pathway that Smolensky
was taking, working on things that turned out to be closely related to Boltz-

mann machines. He had a very different view of it from what Sejnowski and

Hinton were doing.

In any case, Geoffrey decided that he didn
'
t want to be involved in the

book, so Jay and I thought, 
'Well , we'll do the book." Of course, it was falling 

further and further behind as we kept writing more papers. At first we

were going to just summarize the literature, but we kept thinking, 
'Well ,

gee, here
'
s something else,

" 
and so we did this and then we did that, and it

just kept accumulating. The book kept getting bigger and bigger.

I believe it was in '83 that Geoff and Terry held a meeting in Pittsburgh. I

had my choice about two things to talk about. I had done work on what later

became backpropagation and work on competitive learning. I remember

electing at the last minute to talk about the competitive learning work rather

than the backpropagation work. I had my slides all made out to do both of

these talks, and I gave that one.
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Then in I guess it was ' 84 we had a meeting in San Diego. I began getting
back into this problem of intermediate layers. Paul Smolensky and I were

talking about how we could deal with some linguistic information and

thought, 
"
You know, we really need these multilayer systems.

" 
And so I

went back to myoid code; by then it was in C [a computer language]. I
'
d

given up on LISP because it was too cranky. By then I reimplemented these

things in C.
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I was at the meeting in '84. I explained to Terry Sejnowski about back-

propaga Hon and how it worked. Terry immediately understood, and he and

Charlie Rosenberg went off and trained up the first really large problem,

probably the first one other than toy problems, using the backpropaga Hon.

About this time Hinton realized that this system was a lot like the Boltz-

mann system and, in fact, maybe would be faster. Boltzmann machines were

painful. You had to wait for them to relax in order to do learning. He implemented 

a version of backpropaga Hon in January, or thereabouts, of 
'
85. I

was then working with Ron Williams, who was a postdoc. We had pretty
much sorted this out and were working on how to do backpropaga Hon in

time.

Geoff and I decided we really should write this up, so we start~d wriHng
our paper and did a whole bunch of experiments in order to have something
to say in this paper. The paper was really written in the spring of 

'
85. I think

the Nature paper was in the fall of 
'
85. By then I was fairly committed to

learning how it might work. I guess I
'
ve now spent about another ten years

sorHng all of this out the best I could.

ER: Mul Hple five-year plans.

DR: I scrapped the five-year plan. It's now a fifteen-year plan. In the meantime

, a sad thing was that McClelland left San Diego and Hinton left San

Diego. I had an opportunity to move to Stanford and did in '87.

The other thing was the book. Let
'
s see, for several years- probably from

'81 to 
'
85 or 

'86- 1 was pretty much a hermit. I was so obsessed that I did

absolutely nothing else. I hardly left San Diego except to go to mee Hngs on

PDP models or connec Honist models or neural nets, or whatever you want

to call them.

I was so obsessed that I never went out and gave talks for about five

years, except when I had to go to contractors
' mee Hngs. I was just totally

obsessed with working on this book, and it kept get Hng bigger and bigger.

We kept saying, 
"
Oh, here

's another great idea. Let
'
s do this.

" 
Jay is more

organized than I, and he was trying to manage things and keep us from producing 

gigan Hc books. We thought it was important stuff.

In our nego Ha Hons with the publisher it looked like it was going to cost

$100 or $150 maybe, $75 a volume, or something. They were big fat books.

They figured, 
'Well , we'll sell about two thousand maybe, maybe three

if we're really lucky.
" 

They estimated how much it would cost. We said,
"
Look, that

's ridiculous. We're not going to sell any books if we charge $100

and $150 for a two-volume set.
"

We decided to do something. We said, 
"
Look, if we can save money in the

produc Hon of the book, would you cut the price down?
" 

Of course, the more

you cut the price down, the higher the es Hmate of sales is, and the more you
can cut the price. It

'
s a crazy business.

So we agreed to do all the typeset Hng on the book ourselves. They asked

early on if we would do that. I said, 
"
No , we don

'
t want to get involved



wanted them to sell the book at a lower price.

It turned out that, as it happened, the first printing was already committed

before it was actually printed, so they immediately went into .the second

printing before release, and they
've done very well with it . I don't know

how many sales there've been, but maybe forty thousand. That
'
s a lot of

books. It was July of 
'
86 that the book came out.

Anyway , we felt that it was very important to make the book accessible to

people. I mean, you won
'
t buy if it cost $150 for those two volumes. How

many people would have gone out and bought at that price? How would

you have felt about requiring those as books for your classes? One of the

best decisions we ever made was to put in the extra effort. Fortunately, the

System Development Foundation [SDF] was willing to pay for the cost,

really subsidizing the cost of production.

ER: Was there was anyone person who went from Sloan to SDF7

DR: No. I don
'
t know how much you know about the history of all of

these things, but the Sloan Foundation came and seeded a number of places,
us included. That

'
s what started our postdoctoral program. They then had a

competition for larger centers. We applied, but we didn
'
t get one, for who

knows what reasons. We didn
'
t get a cognitive science center or institute,

even though we worked very hard trying to get one at San Diego. Other

places
- Berkeley and Irvine, I think, and MIT and Stanford- got some

support; we didn
'
t.

Some people thought that was too bad. In particular, the people at SDF

approached us and said, 
"
Look, you can continue your program.

" 
They

agreed to continue the funding of our cognitive science program over the

next five years after the Sloan money went away. That
'
s what kept us going.

Most of the money for the POP work came from SDF, as it turned out.

They were funding other things as well. The POP work was my direction,
and Don Norman went off in a different direction. He went off toward
human computer interactions. SDF was funding that work too. But in any
case, the budget was such that it was possible for us to hire somebody to do

this work on the book, which is what we did.

ER: When did you go to Stanford?

DR: 
'
87.

ER: The following year you won the McArthur Foundation Award . . .
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with that .
" 

But Anally we decided 
"
Yes .

" 
We would do the typeset ting and

all the proofreading and all the copyediting . Everything . We would send

them camera-ready copy . Finished pages. Fortunately , by then the SDF

[System Development Foundation ] was funding the work .

They said it was OK for us to use their money to produce the book . We

hired people to do all the copyediting , to do all the work of producing
camera-ready copy . We felt that it would be worth it to be able to charge an

affordable price . We got it out of the door for about $45 for two volumes .

We made sure it was in our contract that we didn
'
t want extra royalties ; we
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DR : No , it was that same year . The McArthur was in June. I had already

agreed to go to Stanford , but then the McArthur Award was given to me ini   

also.

It wasn
'
t an easy decision to go to Stanford because things were quite

good at San Diego , but I
'
d been there a long time , twenty years, and I felt

that I was very entrenched . I had a position there, and we had a large staff.

The SDF money was going away because they had a close date at SDF.

Going out and raising money to keep people on staff was a big job , and I

felt that in starting over and going to a new place, my committments were

less. And of course I had been a graduate student at Stanford , and I liked it .

Marilyn , my wife , had been an undergraduate there . It
'
s a pleasant place.

It was a hard decision because of the people I had worked with for

many , many years, Don Norman in particular , and all the other people that

I worked with , staff and so on. But it was also a kind of a renewal because

it was a matter of, 
"
Here , I

'
m going to a new place. I don

'
t have all these

millions of commitments anymore .
" 

So we decided to do it . I
'
ve been there

for six years now . It seems like less than that .

ER: Could you say something about your work over the last six years and

what you
'
ve been focusing on?

DR : I
'
ve always been interested in everything , very broad interests . I work

on things ranging &om perception and motor control to memory , language,

and attention . When I began to get more and more interested in brainlike

systems, I began to expand my horizons and found out I really needed to

know more about the nervous system, how it works , and so on.

My work now is in about four different programs of research. They range
&om what I call neural modeling or biological modeling , where I

'
m trying to

use networks as models of real biological systems as closely as I can, to what

I think of as cognitive modeling or psychological modeling , where I work on

trying to model things like memory , perception , learning .

In the first case, in biological modeling , the goal is to describe the behavior 

of the biological system. The second case, cognitive modeling , is to

describe the behavior of the organism . The third area that I
'
ve spent a lot of

effort on is what I call theory , the mathematical underpinings of neural networks 

and the like . I
'
ve more or less accepted the word neural networks

now , though I resisted fairly strongly for a variety of reasons. But be that as

it may , events have overtaken me, and so I use the term now . In the third

area, the area of theory , I
'
m trying to do the mathematics and trying to develop 

architectures . A lot of that is statistics . The fourth area is engineering

applications or AI applications , where I
'
ve been doing quite a bit of work on

building systems that solve real-world problems
-

things like medical diagnosis

, things like cursive handwriting recognition , speech recognition , motor

control . We did work on mass spectrum recognition . Things that I think are

important or useful for pushing on the system and saying , 
"
Gee, how do we

solve this problemf
'



My basic program of research is the following . I have this image of the

mind-brain; I
'm still trying to solve the philosopher

'
s problem. I have this

image of the mind and the brain as being two views of the same object. We

can view it as a physical object, or we can view it as a mental thing. But I

think of it as two sides of the same coin. The problem is that when you look

at the two sides, they don
'
t look at all alike. One side has all this introspection

, all this mental stuff going on, behavior and all this. And the other

side has all this wet stuff. The way I see my program of research is to say,
"
How could it possibly be that these two things are the same?

"

What can I do? Well, what tools do I have? I
'
m a computer hacker. The

tools I have are modeling tools, so I
'll try to link these two things together

by making a model, and the model is going to either be more like this, the

brain, or behave more like that, the mind. I think there are a whole series of

models where I try to link the two . Some of them are more abstract, more

loosely connected to the brain and more tightly connected to explaining behavior

. Others are more tightly connected to what we observe in the brain

and more loosely connected to behavior. I have this idea that if we have this

kind of series of overlapping models, all of which have some common structure

, eventually, maybe, we can figure out how to bridge this enormous gap.

So that
'
s the overall program that I see myself doing. I think, along the

way I have to learn about the models; I have to know what their properties
are. That

'
s where the theory part comes in, developing and learning their

properties. How can we make this enormous leap?

I feel we can
'
t know too much about the brain, and we can

'
t know too

much about the mind, and we need to find out as much as we can about each.

A lot of biologists are critical of neural networks. They say they are not

realistic. They
'
re right , of course. We have to abstract. We have to say,

"
Look, of course you know many, many things about the brain that are not

in my models.
"

The psychologists are the same. They know many, many things about the

mind that aren
't in my model. But I have to ask, what

'
s the key? What are

the most important features that I can bring in? I
'
d love to have all of them,

the problem is that the biologists, (a) know a lot of things that I don
'
t know

what to do with , and (b) don
'
t know a lot of the things that I

'
d love to know.

It's a matter of having to make up some things, to say, 
"
Gee, let

'
s suppose

it 's like this,
" 

and at the same time, ignore other things. That
'
s something

that neurobiology hasn't figured out how to deal with .

JA: Neuroscientists are very bad at thinking about implications, especially
as one starts to go beyond biology .

DR: Right. So here
'
s my general program: to find out more about the

brain, to find out more about the mind, and to try to link them with models.

One area that I
'
ve started working on recently, which has taken a great

deal of energy, has been the area of functional magnetic resonance imaging
[fMRI ]. We

'
ve been doing lots of experiments, looking at brain activity in

living humans while they are acting. I see this as a neat way of beginning to
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make these links between mind and brain because here .we can look at the

brain- we can see, essentially, what it 's doing
- while we know what the

behavior is, we know what the person is doing. We can observe both at once

to a first approximation.

ER: I know you have done some speech-recognition work in conjunction
with SRI and ICSI [International Computer Science Institute, Berkeley, CA] as

part of the DARPA-funded effort. And the cursive handwriting recognition
is . . .

DR: I got some money &om a gift &om Hewlett Packard [HP] to pay for

collecting data. I had a postdoc who had his own funds, and I have computers

. So the cursive handwriting didn't have a separate funding s9urce.

For a long time I
'
ve had this vision of how to do cursive handwriting recognition

. HP loaned me a writing pad, and they gave me money to hire

somebody to run subjects and collect data. So I collected about a hundred

thousand words of handwriting data, which we then used to train a network

and devised a network architecture and algorithms for learning. In fact, one

of my students and a postdoc went off and started a little company, Lexicus.

ER: And are you involved commercially with that?

DR: No. I've avoided being involved commercially with any companies,
other than as advisor.

ER: Is the architecture that you developed different &om Lexicus
'
s architecture

?

DR: It depends on the level of description. They definitely started out with

the architecture that I developed. What they have done since, I couldn
'
t tell

you. I don
'
t know. I

'
ve made suggestions at times as to things they might

do. Wh~ther they
'
ve done those or not, I don't know. My interaction has

been really as a kind of advisor.

ER: And how do you feel about working on something &om a resarch

point of view and then seeing it be commercialized?

DR: I love it .

ER: You like it, even if you
'
re not financially rewarded?

DR: I get paid. Stanford pays me.

ER: Suppose some company turned one of your ideas into something, and

you didn
'
t know . . .

DR: I'd love it . Look, my goal in all of this has been to keep all this stuff in

the public domain. When I first was developing the backpropagation stuff,
for about two hours I considered the idea of trying to get some kind of

device that could be patented. I thought, 
"
That 's ridiculous. I don

't want to

do that.
"

I want this stuff to be out in the public domain. Why shouldn
't everybody

use it? That
'
s been my attitude in general. I publish everything. The only

issues that are slightly tricky are when I'm literally a consultant to acom -



pany. In those cases, the ideas that I have when I
'
m being paid by them

belong to them. I think of myself as a problem solver. I think, 
"
OK, you

guys, you have a problem. I have a lot of experience here. Tell me your

problem. I probably have an idea about how to solve it .
"

I
'
ve done a number of things that I like that don

'
t belong to me anymore,

but I got paid for them. You know, when I
'
m a consultant, I get paid, and I

'm

happy. And when I
'm doing basic research, I make sure that the ideas get

published, so that anybody can use them. If some company uses them, that's

great, and some other company can use them too.

ER: That's the thorny issue when you work with commercial entities, the

short life span of any competitive advantage.

DR: That
'
s why it doesn

'
t matter so much. That

'
s why the only thing patents 

are good for is trading them with other people. They
're out of date

very, very soon.

JA: The stuff academics do, the deep models, the big ideas, when you try
to patent those, it doesn

'
t work. The details are what you keep proprietary.

DR: Right, exactly. I just think that I want to get these ideas out there. I

want people to use them. I love it when people use them, and I don
't feel

cheated. I have had what I consider agreements, which have been in the

form of, well, if this stuff works out, maybe gifts to the laboratory would be

a nice thing. Hewlett Packard has given me several gifts. That
'
s to keep the

information channels flowing .

ER: I want to bring up the whole issue of backpropagation and who discovered 

backpropagation and how.

DR: I don
't know if it

'
s a controversy, but as far as I know it 's been

discovered at least three times, maybe more. Paul Werbos apparently discovered 

it and wrote about it in his dissertation. David Parker apparently
discovered it, and we discovered it . As far as I know, those were all entirely

independent discoveries, and there were precursors to all of those. What's

surprising is that it hasn
'
t been discovered more often because it

's such a

simple idea. The reason it caught on is because it is so simple. There's no

complexity there. I mean, it
'
s so easy to understand once you look at it .

ER: Has controversy or anything having to do with these multiple discoveries 

had any kind of impact on your career or your thinking?

DR: No, I don't think so. Our discovery of it was the most publicized with

a paper in Nature. I think that pretty clearly has been the focus for a lot of

the work that
'
s been done using the algorithm. I haven

'
t felt any controversy

. I had no idea that Paul Werbos had done work on it . I had never

heard of him. I had never heard of his work. There are other examples of

work in the control literature in the '60s. If you look at it, they were doing

backpropagation going back even earlier than that, but the ideas were never

really implemented. It wasn
'
t that there weren't these ideas; it

's just no one

had really done anything with them.
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My view is that we not only discovered them, but we realized what we

could do with them and did a lot of different things. I consider them independent 

discoveries, at least three and maybe more. Amari, I think, suggests 
that he had another discovery, and you know, I believe that. You can

look at his paper. He had, but he didn
'
t do anything with it . I think that was

in the late ' 
60s. I don

'
t feel any problem. You know, maybe we should have

done better scholarship and searched out all of the precursors to it, but we
didn

'
t know there were any.

ER: As you look out at the neural net area today, whose work is exciting
and interesting and provocative to you?

DR: Well, it really depends on the dimension that we
'
re talking about. I

mentioned those four different categories, and I think there
'
s exciting work

in each. I'm very interested in attempts to do biological models. Here'
s my

feeling about them so far. They have not done as well as I had wanted. I had
a vision that we would be able to have a stronger connection to biology
than we have. I still think there are some examples of biological modeling
that are important and interesting. I've thought that the work that Andersen
and Zipser did was very nice. Sejnowski and others have done some

interesting work with VCR [vestibulo-ocular reflex]. Modeling hasn't been

accepted as a real part of neurobiology. Neurobiology is an experimental
field primarily, and experimentalists don

't know what to do with theory.

JA: They
're resistant to it .

DR: Very resistant. I'm afraid that in psychology there
'
s a similar story to

be told, although psychologists and cognitive scientists are more open to

modeling work. I think there
'
ve been some interesting and useful pieces of

work, but again, I think we haven
'
t really met the promise that I had envisioned

. Maybe I was too hopeful, or maybe it
'
s turned out to beharder-

harder than I would have wanted. But on the whole modeling has changed
attitudes in psychology and cognitive science, and that

'
s good. There haven

'
t

been as many successful models as I would have hoped. I don
'
t know your

feelings, Jim.

JA: Very similar.

DR: I think we changed attitudes, and that
'
s a big thing. We haven

'
t

changed attitudes yet in biology .

JA: I'm personally most disappointed about neurobiology. They are still so
resistant, so antitheory .

DR: I'm hopeful. I
'm not as disappointed. The most successful area has

been, I think, in the domain of theory. We
'
ve come so far. You know, it was

possible in 1986 for people to make absolutely outrageous claims about
neural networks, and many of them did. But it

'
s now a concrete thing and

largely because we understand the underpi~ ngs tremendously better than
we did then. To me, it

'
s like night and day.
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The other area where there
'
s no doubt that we have made progress is the

area of applications. You look out there, and there are hundreds and hundreds 

of applications, and they
're successful. When the PDP volumes came

out, and we talked about the work on back propagation, what did we talk

about? We talked about X-OR; we talked about the symmetry problem.

Minsky and others talked about the scaling problem, scaled by a factor

of a hundred thousand, and the scaling has not been bad. When I first did the

X-OR problem, it took a thousand iterations to solve it . If we thought that

was the way it was going to go and that we were going to scale up to a

hundred thousand input patterns, my God, we wouldn't live long enough to

see the results. But that
'
s not the way it

'
s gone. That problem turned out to

be an anomaly. The scaling is about linear. We haven't hit any exponential
curves yet. If you make a bigger problem, it

's about a linear increase in training 

time. So OK, we get bigger and bigger problems, but hey, we're not

going to beat linearity.

ER: Do you see any architectures that you think have the same kind of

potential that backprop displays?

DR: Learning architectures? Well, I don
'
t know. I guess my take on that is I

don
'
t know of any, right now. There are co~jugate gradient methods. There

are all kinds of variations, but they
'
re all hill climbing. By now I've framed

backpropagation at such a level of generality that it
'
s hard for me to imagine

a system that isn't a backpropagation system. In particular, virtually every

learning algorithm that exists can be framed as a gradient search of some

kind. Sometimes they use second-order methods, sometimes they use first-

order methods, but they
'
re almost all gradient search es.

The only ones that maybe aren
'
t are the methods that involve adding

units and things like that. Aesthetically, I find that displeasing. I just don
'
t

like it . Don't ask me why. I'd much rather have systems that evolve, starting
out with plenty of stuff and then figuring out what to do. My own feelings
are that there are different architectures- for example, the society of ex-

perts
' 

architecture- but they
'
re all fundamentally gradient search. That

'
s all

backpropagation is.

You take things like the Kohonen algorithm, which isn't literally a gradient 
search, but all you do is smooth the curves, and then you can do a

gradient search, and you get the same kind of results. Every time I find a

system that isn't a gradient search, I insert a smooth curve; then I can cast it

in the general form of a gradient search. In fact, that's about all there is to
neural networks. In the relaxation methods, there's nothing there but a gradient 

search. That's what you
'
re doing, except you

'
re doing your gradient in

another dimension; you
'
re doing it in the activation domain.

JA: I .think there is also interesting stuff in the temporal dynamics of these

nonlinear dynamical systems and how it relates to learning.

DR: But they
'
re doing gradient. It

'
s just that the energy space is unstable;

it
'
s changing.
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JA: They
'
re doing energy minimization, but the dynamics of the search

may allow you to make the contact with the dynamics of the nervous

system.

DR: Conceivably so. And that's possibly where the linkage between
behavior and the nervous system will come.

JA: I agree, this linkage is what we
'
re all after. That's a place I can see it

happen because you have dynamical systems, and they behave quite simply,

though they
're actually very complex.

DR: That
'
s true.

JA: That simplicity out of complexity . . . One of the things that makes

psychology so intriguing is that many behaviors are quite simple and lawful,
and yet the nervous system is so complex. Things are simpler than perhaps
they ought to be. Maybe the only way to link the two together is through
these dynamical systems.

DR: I think statistical phenomena are what
'
s really going on here. Some

people I talk to think that we have to get complexity out of simplicity. They
think the nervous system has these very simple principles of interaction, and
the big problem is getting the complexity out.

JA: That's where they
'
re wrong.

DR: I absolutely agree. We can get chaotic patterns and so on. My own
view is that

'
s the last thing the nervous system wants. The big change that

happened in evolution is that once we got a respiratory system capable of

supporting lots of neurons, we could go to a statistical methodology and
bank on the law of large numbers.

I should say that one of the things I've been working on lately is trying to
factor neurochemistry into my models, neuromodulators and things like that,
which I take to be much more important than we'

ve realized. I have a paper
on the role of neuromodulators. It

'
s a generalization of our conventional

networks, but which have neuromodulators included. If you are interested
in dynamics, it turns out that there

'
s a whole host of ti mescal es involved.

Different neuromodulators have different temporal properties; the neurons
have different temporal properties, and learning has still others. In the
nervous system, these things are all overlapping ti mescal es, not independent
ones like in physics.

JA: In the nervous system, the ti mescal es of the biological events are relatively 
close to the ti mescal es of the events they are controlling or responding

to. Neural network research has had real difficulty handling time domain

problems.

DR: I agree with you.

JA: Part of the reason must be that the nervous system uses lots of special
purpose tricks involving conduction times, network settling times, and neurotransmitter 

actions that build temporal dynamics right into the hardware in a

way that
'
s very hard to analyze.
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DR: Let me say a little bit about the future. My feeling is that the generic
neural network person or the generic neural network conference is probably
a short-lived thing. The real interests of biologists, psychologists, engineers,
and so on are divergent. There are only a few people who want to link them

together. I believe that there will be a field and which will be called the neural 

network field and which will be the residual, really, the theorySome -

body will continue doing it, and it will get more and more esoteric, as always

happens.

But I see a diverging of the fields. I think that biologists really don
'
t care

that much about commercial applications. They don
'
t have any reason to

care. Commercial people, they don't actually care about biology per see They
like it that you can give the argument that neural networks are biological,
but what they want is something that works, very pragmatic. Once these

tools are proved
- and I think they are being proved

- they won
't have an

interest anymore. In psychology, the same. Some people are interested in

psychology, but they
'
re not interested in psychology vis-a-vis neural networks

. Neural networks are their own thing. There
'
re not many of those

people left whose work spans this generic field. There isn
'
t that much reason

for it .

Some of us probably will maintain an interest just for historical reasons

and as a practical matter will find it useful and interesting to work in all these

areas. But it
'
s incredibly difficult to try to keep up in all these areas. I imagine

that there will be a divergence because I don
'
t see a fundamental convergence 

of interests. I think the real goals are different in the subareas. That
'
s a

kind of pessimism. I imagine that the neural network journals that have been

started will eventually specialize in various ways on particular subtopics, and

some of them will go away.

JA: They already are specializing.

DR: I was opposed to the starting of all these journals for the very reason

that my goal was to get these ideas in the public domain. I don
'
t like special-

ized journals. I think that we should publish our work in standard journals,
and they should be interested in it . If you have a choice of publishing a piece
of work that could be published either in the star journal of your discipline
or in a special neural network journal, you

'll probably want to publish in the

star journal. The problem was that at first, before the field became established

, those star journals wouldn
't accept articles on neural nets. But that's

changed as we
'
ve gotten more and more solid. We want this work to be

mainstream, not a little trickling off to the side.

As that happens, there will be less and less of a core remaining for neural

networks per se and more of, 
"Here's a person doing good work in their

field, and they
'
re using neural networks as a tool .

"

That
'
s the way I think. I would like to publish my work in neuroscience

journals. My feeling is that we want to establish our work as real, as doing
science. This is the way we do science now, and we do it by using these

models. I believe they
'
re tools. I believe they are ways of thinking.



JA: It
'
s like mathematical psychology.

DR: Yes, exactly. That was also a tool . When I was a student, everybody
published in the Journal of Mathematical Psychology. But then, Psych. Review
said, 

"
Hey, you can publish this stuff in our journal.

"

So we said, 
"
OK, we

'
ll publish in Psych. Review.

" 
Now who

'
s left in the

Journal of Mathematical Psychology? People doing esoteric mathematics. Most
scientists want other people in their field to be their readers.

I don't know which journals will go away and which ones will stay. Journals 
have a lot of tenacity once they get going. There

'
s a lot of inertia. I was

opposed to Terry starting Neural Computation, although I think it
'
s a fine

journal. I think all of the different journals have to find a niche and areader-

ship. The future, I think, is bright . I think we
'
ve had an impact.

ER: The more impact, the more it will disappear.

DR: Exactly. Disappear as an identifiable separate thing. It will be part of

doing science or doing engineering. And to me, that
'
s not bad. I don

'
t like

being a neural network guru. That's not the way I view myself. I think of

myself as a scientist trying to solve problems of one kind or another. Now,
it happens that the tools that I

'
ve been using, conceptually, are good tools.

I like them. I want to promote them, but I want to promote them because I
think they

'
re . . .

ER: Efficacious.

DR: They
'
re good. But I don

'
t want people to stop all their other ap-

proaches. Because it 's still only one approach. I want those people still

plunking their electrodes in brains, and I want people doing psychology
experiments, and I want people inventing new algorithms.
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ER: I usually begin by asking people to state their date of birth and to tell

us something about their parents, upbringing, and their childhood.

HN : I was born in San Francisco, California on 18 July 1947. My father

was an immigrant from Denmark who was born in 1894, and his parents,
Anna Hecht and Johannes Nielsen, had decided to put their names together
and give it to the children. However, neither of them changed their names,
so that

'
s where my hyphenated name came from.

My Dad moved here in 1922, lived in New York briefly, and then lived in

Chicago and then San Francisco. My mother is originally from Iowa; she is a

musician, and my father was an interior decorator. Neither of them had as

great an influence on me as my grandmother. My maternal grandmother

graduated from Northwestern in 1906, was a very well-educated, very intelligent

, very philosophical person.

My father had a policy of not telling us anything about his past. He had

had some incredible adventures growing up in Denmark and then living in

Germany just before World War I working as an apprentice. As war approached 
he left Germany, having no love for the Kaiser. He spent World

War I in North Africa, then went back to Germany, and lived in the Weimar

Republic. He lived in Chicago during the gangster years and wouldn
'
t tell

us a word about it . So he wasn
'
t that useful, and my mother was always

working, so she wasn't that influential. That is sort of a summary of my

background.

ER: Well, I
'
m curious to know what your childhood was like, how you

grew up. You said your grandmother was very influential. Was she living at

home with you.

HN : We actually moved to her house. My father had medical problems
when I was about eight years old. So we moved from San Francisco to



Denver, where she lived, and we lived with her for the rest of my childhood.

That
'
s how she came to be so influential.

ER: Do you have brothers and sisters?

HN: I have one younger brother. My upbringing was pretty much centered 

around work. I began working when I was ten, delivering newspapers,
and have been working ever since.

ER: Was that your idea, to begin working, or was this from the family?

HN: It was my idea. It was a way of financing my projects and activities.

My hobby during those years was flying airplanes.

ER: Flying model airplanes or real airplanes?

HN : No, real airplanes. I began at age fourteen and that consumed all my
time and interest. I didn

'
t have the time or interest for school. I eventually

got into college on probation and discovered that I was actually interested in

intellectual things. I had previously known that I was interested in things,
but really became aware at the university that I could do well in terms of

studying, and went on from there.

When I was a freshman, I learned I could read technical books the way
most people read novels. Because I came into college on probation, I had to

take a basic calculus class that was stretched out for those who weren
'
t quite

as intellectually capable. Just before the winter break, I asked the professor I

was taking the dummy math class from, what a tensor was because I
'
d heard

this term, and I didn't understand it . He said. 
"
Well , I don

'
t remember, but I

have a book.
" 

He loaned me a book, and then we went on winter holiday
vacation.

I took the book home, read it , and worked all the problems. When school

resumed I brought it back and gave it to him with my notebook and had him

check some of the problems. He responded, 
'
it was a joke! You were supposed 

to take it home, crack it open, and then about halfway down the first

page, give up.
" 

It was at that point I realized that I could read these things,
so I then went in and devoured the library. Basically, I didn

'
t take any more

undergraduate courses.

ER: I want to back up a little bit -because I'm struck by the fact that at

ten years old you wanted to finance your own projects and started your

working career. When you were ten years old, were you thinking that you
wanted to be an aircraft pilot?

HN : No, no. I had only one interest. That was to fly spacecraft, which

didn
'
t exist at that point . This was preSputnik ! But, nonetheless, I had this

strong feeling that it was going to happen.

ER: Do you remember Sputnik? That was 1957, when you were ten years
old.

HN : Very much so.
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ER: And what was going on at school? You were saying you got into

college on probation . . .



weeks to get used to the idea that they were going to entrust the club's only
aircraft to this young pilot , but they got used to it , and it worked out all

right . Flying was, and still is, a passion. I was never troubled by conformity,
so it didn't bother me that I wasn't like the other children. I had a strong
desire to read things, and so I would read voraciously. I didn

'
t feel I was

missing out on much at school.

ER: And were you reading about spacecraft and about aircraft?

HN: I was reading about everything. I read everything I could get my
hands on, practically. But, yes, I read extensively on that and anything
having to do with science, mathematics, and space.

ER: So it was the interest in space that led you first to science?

HN: Actually, I think that interest began back much earlier, when I was
about six or seven. My grandmother bought me a book on astronomy and
that's probably what launched that interest. I went, 

"
Gee, it

'
s interesting

to read about this, but I'd rather go there.
" 

That was the thought process.
And then our 

"
neighbor would give me magazines; he had Popular Science

and Popular Mechanics. There were articles there about artificial satellites that

might some day be constructed. I found all that very inspirational, and that
interest continued for a long time. When I got to college, I found that I could
learn much more rapidly than my peers, so I did. I just consumed as much
information as I could and began taking graduate courses.

ER: Where did you go to undergraduate school?

HN : Mostly at Arizona State University . I started at the University of
Colorado, but then I went to ASU, and that's also where I went to graduate
school.

ER: When you started at the University of Colorado, it was becausey.ou
were living in Colorado?

HN : In Denver, that
'
s right .

ER: So it was just the natural geographic place to go?

HN : It
'
s a funny story. The East High School college counselor had refused

to advise me because of my performance in high school. He said, 
"
It

'
s absolutely 

a waste of time for you to go to college. You should become an aircraft 
mechanic." He had it all figured out. He knew exactly how my life story

was going to read.
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HN: Right. I didn't have much Hme for studying and for those sorts of

things, so I spent all my time after school working, which precluded doing
homework problems, and then the weekends were spent out at the airport.

ER: You started flying at fourteen?

HN: Yes.

ER: As an appren Hce, or . . .?

HN: Well, I joined a glider club and learned to fly . It took them a few



ER: And he was basing this on your grades, or . . .?

HN: A number of things. That was his strong conclusion. He literally refused 

to provide any advisement about going to college because he thought
it would be a big mistake. So I went in to see the Colorado State Employment 

Service representative, who visited the high school for those of us

who weren
'
t worthy of university education. He was telling me about all the

marvelous opportunities in dishwashing, things that were out there waiting
for me, and then he said, 

'it doesn
'
t seem to me as if you

're interested in any
of these opportunities, what do you really want to do?"

And I said, 
'1' d like to go to college." He had a mend who taught a course

called, 
"How to Study in College,

" and so when I was a sel)ior in high
school, I went down to the University of Colorado Denver Center and took

this course. It demystified the whole thing. The course made it seem as if any
schmuck could go to college. It wasn

'
t that big a deal. From then on, it was a

piece of cake. I just went down and registered, and that was that.

ER: And what made you switch from Colorado to ASU?

HN: That
'
s a very long story. I got married in the interim. My first wife

and I were basically very immature when we married, and by the time we

were divorced seven and a half years later we
'
d grown up a lot, and it was

very amicable, so it wasn
'
t at all a negative experience. But it was seven

years out of an otherwise normal progression. She was my childhood sweetheart

. She had moved to Arizona, so I went down there, and we decided to

get married down there and live there. I stayed at ASU for graduate school

because I had a mentor who was very effective, very useful- a fellow named

David Hestenes, who is still a mend.

In retrospect, I probably could have gone to any school and done well, but

I don
'
t regret having gone to ASU. It provided an excellent education, and

it provided me with a perspective which to this day is extremely useful.

There's a .certain objectivity that I think I gained that I think a lot of students

at other schools didn
'
t gain.

The tensor book was instrumental in helping me understand that I didn
't

have to go through this lengthy sequence of courses to understandsome-

thing. I could just jump to the end, read the book, and be done with it, so I

did that in a vast array of subjects. I studied all of undergraduate physics on

my own. However, I did take the entire graduate physics program because I

found that so fascinating, and that occupied a lot of my undergraduate time.

JA: Did you take any psychology or neurobiology?

HN: No, I didn't. The schools I went to had little in these areas worth

taking. I simply read things about that. The available courses didn
'
t seem interesting 

to me. Not even engineering. I never took an engineering course,

although that
'
s all I

'
ve done in my career.

ER: And what about biology?
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physics, a lot more physics than anthropology, physics didn
'
t seem that big

a deal to me.

ER: And did you get a PhiD. at ASU in mathematics?

HN: Yes, in 1974, in functional analysis.

ER: That
'
s what your thesis was about?

HN: That's right . But I did work in other areas, like differential geometry.

Eventually, I did a thesis, a dissertation, on functional analysis. Now , it was
in fact while I was an undergraduate at ASU that I first took a serious interest 

in neural networks. In 1968, we had this beautiful little reading library
where current issues, the last three or four issues, of a significant number of

journals were kept, and this was just down a few floors &om my office, so I
would spend lots and lots of time in there reading journals. And one day I

bumped into a Steve Grossberg article about systems of differential equations 
that could be thought of as a model for a neural network. It was real

interesting-
learning spatial patterns, spatiotemporal patterns, and so forth .

Then I began reading the literature more widely-
began encountering articles 

by people like Jim Anderson and a lot of other people, and very quickly
became serious about following the literature. And in fact, I was even doing
a little bit of research myself. It was absolutely worthless, but it was fascinating 

and instructive. It was valuable for me personally, and I become convinced 
that this was going to be a big deal some day.

ER: Had you read any of the older cybernetics work as part of your reading
? Did the Grossberg article resonate with other reading?

HN : I had read a few little things on perceptrons but hadn't really thought
of them as significant. I understood what a percept ron was, but it hadn't excited 

me. Encountering this Grossberg article and many others that followed

shortly thereafter, I became excited and attuned to neural net theory, so of
course I sought it out. And that

'
s what happened. It became the starting

point for this career path that I eventually followed. I would constantly read
all the relevant journals to find articles because they were sprinkled around
across an extremely wide range of literature. And I would go meet people
occasionally who were doing work in this field. Nobody of prominence. By the
late 

'
70s, say 

'
78, I was spending some of my time actually working on ideas.

ER: Were you working at this point?

HN : Oh yes. After I got out of school, in 1974 I took about a year and a
half off to just decompress. I had gone through a divorce. I had been paying
for my education by flying airplanes. In fact, because I had been married, I
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had acquired tastes that a graduate teaching associate couldn
'
t afford. I had

to have supplementary income, so I worked as a consultant in heat engine

modeling, and I also had a job flying airplanes for a commuter airline.

After decompressing and completing a few relatively short-term engineering 
jobs, I had concluded in 1978 that neural networks were going to be a

big thing shortly, primarily because of the fact that the microprocessor had

been invented a few years earlier. There were now capabilities being developed 

that would allow the implementation of neural network ideas. I mean,
I'm sure you were frustrated, Jim, at the time because so many of the ideas

you had couldn
'
t really be tried out on any kind of a scale.

JA: That
'
s exactly right .

HN : I had done some experiments with neural networks back in 1968,
and my experience was very disappointing. I ran these on a General Electric

computer, and none of my experimental runs ever finished. They didn
'
t even

come close to finishing. I concluded there wasn
'
t any point in doing research

in this area because there wasn
'
t any way to practically apply it . But by the

mid-seventies, and particularly as you got into 1978- 79, I became convinced

that the capability to apply these ideas would soon be upon us.

So in 1979, I decided, 
"
Now is the time. It

'
s time to go off and do neural

networks.
" 

And so I went to Motorola , which was of course a very appropriate 

place, and the division
'
s Chief Engineer Russ Yost had built a learning

machine back in the 
'
50s. This was all hand designed and then built by hand.

It was a simple logic machine, a state machine that could modify its program.

He had developed a little game for it to learn. This was an iterative process.

The machine would learn a game by playing it against human opponents.

Yost had been, throughout his career, an exponent of this idea of learning
machines. I approached him with some specific ideas of what I thought we

could accomplish with neural networks and asked him if he
'
d be willing to

hire me there and provide some research money to try something.

ER: And how did you know about him?

HN: I didn
'
t know him. I went over to Motorola and just walked in the

employment office and effectively said, 
"
1 want to build neural networks, and

1 want you to pay for it . All involved will benefit.
" 

That's my style.

ER: And they connected you with him?

HN: Yes. Immediately. He was my first interviewer.

ER: Very perspicacious of a large company like that to be able to make

that connection. I'm surprised.

HN: Yes. That's right . Well, it wasn
'
t quite as intentional as you

'
re making

it sound; there was obviously a lot of luck involved. They knew that Russ

Yost would be able to judge the value of my idea. By 1982,.1 had been there

for three years, and we
'
d made considerable progress. We had a number of

systems running. We
'
d demonstrated some learning capabilities and some

abilities to do associations.



This was the Motorola Government Electronics Division, so these were

military applications- things like electronic warfare and radar. They were all

very simple applications, as you can imagine, but, nonetheless, they represented 
interesting capabilities. By 

'
82, we had gotten DARPA [the u .s. gov-

ernment's Defense Advanced Research Projects Agency] very interested, and

they were putting together funding for a project to actually build something
that would work on a real-world problem.

Right about then, TRW in San Diego began hiring people for a very large
ramp up that they were going through. They had some new business activities
that they were expanding, and they needed people. It just turned out that one
of my friends at Motorola went over there, and of course his first assignment
was to recruit more people. I kept getting these calls saying, 

"
No , no,"no, don't

make any peremptory decisions. Just come over here and check it out."

So I went over, and the strangest thing was that I immediately met yet
another senior technical leader, Don Spencer, who had been interested in
neural networks earlier in his career and actually had formally studied them
at UCLA. He had tremendous interest in doing more work in the area, or
at least in having someone on his staff doing more work in the area. He

promised all sorts of wonderful things-
including startup support and assistance 

with further marketing.

Since I was a native of California, it was a very interesting concept to
move back there. In the meantime, my son and I had both become interested
in surfing. We had a little artificial surf reef/wave tank in Arizona. Some

people called them toilet waves because there was this huge tank that would
fill up and then flush, and then that would create the wave.

We had vacationed in San Diego and knew it quite well. Anyway , we
went to San Diego, and sure enough, what Spencer had promised came true.
In any event, we did in fact go forward with support from DARPA. This was

extremely helpful, allowing us to build some fast neurocomputers, to get
enough horsepower so that we could really do some experiments and prove
some things.

A young fellow named Todd Gutschow, who had just graduated from
Harvard with a degree in physics

- had also joined TRW in 1983 and had
become interested in neural networks. He and I had become friends and decided 

that we really should consider commercial applications. Even though
we were doing nothing but defense projects at TRW, we thought that the
commercial applications of this technology would be really big. So we put
together a business plan in 1986, and we triedit out on TRW management.

They took it seriously.

They assigned the president of a TRW subsidiary, a small company, to
come see us and go over the business plan. He spent about three days with
us, TRW ultimately concluded that it was probably a reasonable plan, but
that they didn

'
t have any place to fit it into the company. There wasn

'
t a

place that had a charter to do this sort of thing. We shopped the business
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plan around to some venture capitalists and modified it to be aventure -

backed company plan, and we were successful.

In September of 
'
86, we started. Todd and I resigned at TRW- it was an

amicable separation
- and began HNC Software Inc. [Originally called

Hecht-Nielsen Neurocomputer Corporation]. At about that same time, in

mid-1986, I had gone to the Snowbird meeting, which was actually the

second of the first two fairly large neural network meetings. There had been

one at Santa Barbara in 
'
85, and then Snowbird was the one that followed.

The Snowbird meeting had been run by Larry Jackel [of then-AT &T Bell

Labs] and some others. They had created this obnoxious conference registration 
form, where you wrote a little paragraph justifying why you should be

invited to this meeting, and then underneath there were two boxes that they
could check. One was 

"
accept

" 
and one was 

"
reject.

" 
And as I understand

the numbers, there were approximately five hundred of these forms returned,

and something on the order of 125 of them were accepted. The others got
them back saying 

"
rejected.

" 
To say the least, there were a lot of angry, disenfranchised 

people.

Anyway , having come back from Snowbird, I had lunch with a friend of

mine, Bart Kosko [now at the University of Southern California], a fellow

who had worked in the San Diego area. We
'
d been collaborating on projects,

and we actually had a joint project going at that time. He and I had lunch,

and we were lamenting the fact that this meeting had been closed, limited

to 125 people carefully selected by Bell Labs, and that there was probably
-

given the sudden enthusiasm for this field- a vast number of people who

wanted to participate in the meeting. We saw that having a major meeting
with unrestricted attendance was an absolute prerequisite for further growth
and progress in the neural net field.

At that lunch, in June of 
'
86, we devised a plan for a new conference, and

of course that became the IEEE ICNN [international Conference on Neural

Networks] and later the IjCNN [International Joint Conference on Neural

Networks]. We went ahead and got the plan formally put together and presented 
it to the IEEE San Diego section, and with all sorts of tribulations and

fights and battles, it all happened.

At HNC we developed our first product by the middle of 
'
87. We did that

on a seed round of venture-capital [VC] financing. Then after the product
was out and was selling, the company started growing . Then we had a first

full-fledged round of VC funding. The company began to grow, and business

began to go forward. The overall plan at HNC was very simple: to explore
a variety of application areas, looking for some that had the potential of

growing to a large size.

Our strategy from the beginning was to have a very high-quality team

and to eventually grow the company to a very large size. From the very

beginning we had the intent of someday employing hundreds of thousands

of people. And by setting our sights on that kind of strategy, we had the

opportunity then to evaluate opportunities, to explore them far enough to
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know whether or not they had a large market associated with them. Eventually
, we found a set of business es that had the right characteristics, and

then we began to specialize in those.

Perhaps the best expression of that approach was last fall when our optical
character-recognition [OCR] division was divested. We sold it to Mitech

Corporation for multiple millions of dollars. That was part of this focusing
process that we had planned from the beginning. The OCR business was
different from everything else we were doing. It required different management

, different marketing, different sales, and the customers were very different
, so it wasn't really a compatible business. That brings us up to the

present.

My personal involvement has also included teaching a graduate ~ducation
course at night at UCSD [University of California, San Diego]. I just finished
the seventh year of that course. Every single year, it

'
s been the most popular

graduate course in the electrical and computer engineering department. I
have a number of graduates who are now illustrious participants in the
neural network field. It

'
s been just a joy to do this class. It 's been of great

value to me personally.

JA: Could you briefly discuss the 
'
87 ICNN meeting? It was very important 

in the history of neural networks.

HN: Well, that was a very difficult period because this was something that
had never occurred before. There was already a very large clash under way
between people who had been in the field for a long time and who had really
prepared the foundation in the field and had all the good ideas, and new

people who had come along and really didn't add much to the field, if anything
, except perhaps an infectious enthusiasm and a following .

In particular, John Hopfield was an irritant for many people because of the
fact that he had published some very elegant papers, which it turned out
were obviously based on outstanding, well-known earlier work by Shun-ichi
Amari that wasn

'
t cited. I don'

t know exactly his academic research style, but

obviously it doesn't include searching the literature. This was a point of
real difficulty for the field because .Hopfield had an enormous following of

people. He was a .very effective lecturer. He would go around the world

getting people whipped into a frenzy about this field, and they would, of
course, go out and start proselytizing. There was this very broad base of

misunderstanding that Hopfield had created this field.
There was this body of individuals who really had created the field and

really had all the original ideas at that point, who didn
'
t even exist as far as

maybe a majority of the new people interested in the field were concerned.
So one of the roles of the 1987 meeting, which Bart and I were very committed 

to, was to firmly and unequivocally establish the history of the field
in people

'
s minds in a more correct sequence of events.

And so we made a point of emphasizing all of the ideas, the good ideas,
that existed from people in this field, including John Hopfields

'
s. He wasn't
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excluded ; he gave a lecture , and he was there . But anyway , that was a very

important part of it . I think another aspect of the meeting that was really important 

was that many of the people who had been working in the field had

personal difficulties with others who had been working in the field . There

were a lot of personal animosities . It took us a while to figure out how we

were going to overcome that and have everyone show up.

The technical program was easy. There were so many good people and

so many ideas that had never really been adequately aired, that it was just

a joy , but the hardest part was the problem of getting people to actually

show up.

With a list of plenary speakers, tutorial presenters, session chairs, and

special invited talks from that conference, you would have a pretty good list

of the pioneers of the field . Now , we didn
'
t get everybody . There were a lot

of people who had made good contributions to this field that weren' t there .

ER: You couldn
'
t do it all at one meeting .

HN : That
'
s right , but the list that we ended up with was pretty darn good .

For us, we felt that we had succeeded well beyond our expectations .

Many IEEE leaders were against our conference plan from the beginning .

By the time a couple of organizational meetings had passed, the forces that

were arrayed against us had had a chance to regroup and redouble , and they

were absolutely committed to the idea that they were going to kill this

thing . It was not going to ever happen again. The plan had been born , but

now it was time to kill it before it grew up.

The efforts against us the first year were strong , but by the second year

they were immense. But then again, we had learned a lot , and we had formed

some very powerful allies, like the Executive Director of the IEEE, who was

very , very clever and politically astute.

ER: Were you surprised at the attendance at that first ICNN meeting ?

HN : It was higher than we expected .

I also wanted to say a few more things about DARPA and ARPA [the

names DARPA and ARPA refer to the same agency whose official name

changes sporadically ] and its role in the history of neural nets. ARPA was

begun in 1958. As you know , President Eisenhower had this very real fear

that there was a military -industrial complex being formed . He saw a perversion 

of the defense activity , which is a proper activity for a government to

have, becoming some sort of self-serving beast that would become its own

self-contained entity . DARPA was created over his objections , in a sense,

and it was a product of the perceived Sputnik deficiency . It was specifically

set up to allow the Department of Defense to efficiently conduct research

and tap the scientific talent of America for defense purposes .

The important thing is that ARPA , from the beginning , was run by very

strong
-willed people who had very definite ideas of what they wanted to

do and who demanded autonomy . That was the key thing . From the very

beginning , the directors of DARPA demanded that they be really separated
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from the rest of the Department of Defense. They answered directly to the

Deputy Director for Research and Engineering. They basically went right up
to the Secretary of Defense. They still have that same autonomy.

DARPA began funding neural network research somewhere in the neighborhood 
of 1960, and, if I

'm not mistaken, they were funding Cornell Aeronautical 
Labs and some of the percept ron work.

ARPA had been involved in some of that. However, one of the things that

they did from the very beginning was try to operate on the basis of seeking
advice from people in academia who were in fashion. I don

'
t want to make it

sound like that
'
s negative. But they

'
ve always had this practice of identifying

a group of people, typically senior academics, and depending upon them as
fashion evaluators, if you will . Then periodically these things go through

upheaval and revolution, and they have new people come in, and
'
some of

the old people get canceled out; this is very healthy for the nation.

Today [in 1993], DARPA probably has somewhere in the neighborhood
of 120 personnel

-
including everybody, the secretaries, the phone receptionist

- and they dole out about $1.5 billion dollars. DARPA operates with
a very, very tiny bureaucracy and just shoots from the hip. That shapes the

organization. They became interested again in neural nets in 1982, and they

began funding some work.

But they were doing it tentatively. They had some very selective projects,
and they were looking at it and exploring it . They tend to be remark ably
objective and unencumbered by conventional wisdom. Even though they

depend upon fashionable advisors, and even though they have a tendency to

go a little bit overboard in the support of their favorites, they are absolutely

open to new ideas. They will take researchers coming in with new ideas and
listen to them, and really listen to what they have to say, and evaluate it

fairly . I think, I
'
ve really hardly ever heard of anyone who went to DARPA

with a good idea who didn't get funding, or who felt they were treated unfairly
. Now , a lot of people with bad ideas who go there get kicked out on

their face, and that
'
s probably the way it should be.

In the early 1960s DARPA and other research sponsors began significant

funding of neural network research. However, much of this work turned
out to be of rather low quality and some of it was little more than wishful

thinking or alchemy. Further, after about 1963, the flow of good new ideas
seemed to dry up.

During this era of the early 1960s, a significant group of researchers with
a less "biological

" 
and more computer science-oriented approach to what

they called 
"
artificial intelligence

" 
[AI ], found themselves out of fashion and

could not get the large levels of funding they felt their approach warranted,

although, as it turned out, this approach never amounted to much- a realization 
which it .took two decades and billions of dollars to establish and

which did yield a handful of valuable accidental discoveries. Further, at least
some of these researchers on the outs found it emotionally intolerable that
some of what they saw as 

"
lightweight

" 
research on neural networks was
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receiving a lot of press attention . A particularly dramatic case of this was

Marvin Minsky . Minsky had gone to the same New York 
"
science

" 
high

school as Frank Rosenblatt , a Cornell psychology PhiD . whose 
"
percept ron

"

neural network pattern recognition machine was receiving significant media

attention . The wall -to -wall media coverage of Rosenblatt and his machine

irked Minsky . One reason was that although Rosenblatt
'
s training was in 

"
soft

science,
" 

his percept ron work was quite mathematical and quite sound- turf

that Minsky , with his 
"
hard science

" 
Princeton mathematics PhiD . didn

'
t

feel Rosenblatt belonged on . Perhaps an even greater problem was the

fad that the heart of the percept ron machine was a clever motordriven -

potentiometer adaptive element that had been pioneered in the world
'
s first

neurocomputer
- the 

"
snarl

" 
which had been designed and built by Minsky

several years earlier! [In some ways , Minsky
'
s early career was like that of
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Darth Vader. He started out as one of the earliest pioneers in neural networks
, but was then turned to the dark side of the force (AI ) and became

the strongest and most effective foe of his original community. This view
of his career history is not unknown to him. When he was invited to give
the keynote address at a large neural network conference in the late 1980s
to an absolutely rapt audience he began with the words: -

"
I am not the

Devil !
"- R. H-N.]

By the mid-1970s Minsky and his colleagues (notably Seymour Papert)
began to take actions designed to root out neural networks and ensure large
and, in their view, richly deserved funding for AI research by getting the

money currently being 
"
wasted" on neural networks, and more to boot, redirected

. They did two things. First, Minsky and Papert began work on a

manuscript designed to discredit neural network research. Second, they
attended neural network and 

"
bionics

" 
conferences and presented their ever-

growing body of mathematical results being compiled in their manuscript to
what they later referred to as 

"
the doleful responses

" 
of members of their

audiences.

At the heart of this effort was Minsky and Papert
'
s growing manuscript,

which they privately circulated for comments. The technical approach they
took in the manuscript was based on a mathematical theorem discovered
and proven some years earlier- ironically, by a strong supporter of
Rosenblatt- that the percept ron was incapable of ever implementing the
"
exclusive-OR" 

[X-OR] logic function. What Minsky and Papert and their

colleagues did was elaborate and bulk up this idea to book length by devising 

many variants of this theorem. Some, such as a theorem showing that. 
single-layer perceptrons, of many varied types, cannot compute topological
connectedness, are quite clever. To this technical fabric they wove in what
amounted to a personal attack on Rosenblatt. This was the early form of
their crusade manifesto.

Later, on the strong and wise advice of colleagues, they expunged the
vitriol . They didn'

t quite get it all, as a careful reading will show. They did a

complete flip-flop, dedicating the book to Rosenblatt! As their colleagues sensed
it would, this apparently 

"
objective

" 
evaluation of perceptrons had a much

more powerful impact than the original manuscript with its unseemly personal 
attack would have. Of course, in reality, the whole thing was intended,

from the outset, as a book-length damnation of Rosenblatt
'
s work and many

of its variants in particular, and, by implication, all other neural network
research in general.

Minsky and Paperl
'
s book, Perceptrons, worked. The field of neural

networks was discredited and destroyed. The book and the associated
conference presentations created a new conventional wisdom at DARPA
and almost all other research sponsorship organizations that some MIT

professors have proven mathematically that neural networks cannot ever do

anything interesting. The chilling effect of this episode on neural network
research lasted almost twenty years.
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It was this powerfully negative conventional wisdom that those of us

attempting the work in the field encountered almost continuously and had to

overcome. We did overcome, and eventually this conventional wisdom was

itself discredited, but not without many fierce battles.

By the mid-1980s, DARPA, which had played a central role inestablishment 

of the Minsky and Papert conventional wisdom, had strongly reversed

its position on the subject. This was mostly due to the efforts of two

DARPA people, initially , Ira Skurnick, and later, Barbara Yoon. They faced

significant and visceral opposition, but prevailed. Since DARPA is one of the

world
'
s chief arbiters of technological fashion, ONR being another, the

world's opinion of neural networks soon changed. The rest is history.

One byproduct of this episode is a healthy caution that infu~es the field.

Many people are concerned about checking their work for correctness and

insisting on significance of results before publication, to try and avoid a

repeat of this scenario.

There was at least one exception to the calamity that struck in the late

1960s, and that was the Adaptronics Corporation, a company with a most

amazing story. They had started about 1960 with what later we thought of

as polynomial neural networks- the idea that you build layer after layer of

polynomial networks, and you train each unit. Let
's say you have multiple

real number inputs and one real output, and you
'
re trying to approximate a

fixed mapping for which you have examples. So what you do is have each

unit try to yield the final output that you want. That's the training method.

Then you put in a whole bunch of units, each of which gets a pair of inputs
from whatever previous layer you have, and then whichever ones of these

turn out to be pretty good at approximating the desired output, you let

them stay, and you throwaway the others. Then you build another layer.

That
'
s the scheme, anyway.

Adaptronics had invented this themselves, even before a similar approach

emerged later in the decade from Ivakhnenko in the Ukraine. Adaptronics
had done all sorts of interesting and successful projects, and DARPA had

funded them, and they had this little company. That company existed and

was profitable from 1960 all the way through the dark years up until about

1984, when they sold the company. Roger Barron and Lewey Gilstrap were

the principals of that company. Anyway , besides Adaptronics and maybe
a few little sprinklings of things that were sort of neurobiological, ARPA

had quietly funded a tiny bit of neural network research here and there, but

other than that, they really hadn't done anything. So in 1982 I began talking
to them, specifically to a new fellow, Ira Skurnick, who had just joined
DARPA and was very openminded. He paved the way. He brought influential 

DARPA people to meetings. He allowed me to have my say. I would

review the arguments in well-established papers
- such as yours, Jim- and

even though these were things that they should have known about, they
weren

'
t aware of them because of this drought.
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I could stand up and present things that were well known in the field and
would be considered old stuff; yet to those at ARPA, it was all new. It was
marvelous- like, 

"
Wow , you mean, that really works, that will really learn?

"

It was interesting because it was so easy. I didn'
t have to do anything

new, really, except look at applications, which was the whole emphasis, and

implementation, how we build hardware to do this learning in a human
lifetime.

What happened was that as this process went on and John Hopfield
emerged and then we had this [ICNN ] meeting and things began to accelerate

, the scale of DARPA funding went up to certain point, but then they
began to hit significant barriers. DARPA is divided into offices, and some of
these offices were going to maintain the faith that Minsky and Papert had

begun. They weren
'
t going to question the faith: 

"
The common wisdom is

in fact correct; this is garbage.
" 

So for a period of time there was a bit of

controversy. Then pretty soon that all went away, and now the original
supreme defender of the faith, that office at DARPA, is having a neural net
conference this spring [1994], so the controversy

'
s over; that

'
s completely

gone.

ER: And is Ira Skurnick still at DARPA?

HN : Yes, he is, but his role as leader ended when Barbara Yoon joined
them, and that was intentional. I mean, she was hired into the same office
that he was in specifically to become the program manager for neural networks

. He was never doing neural nets as his full-time activity ; that was only
part of his activity . He turned that over to her. So he

'
s still there, and he

'
s

doing other things, but not neural networks.

ER: Do you know if Craig Fields [director of DARPA during this period]
was a champion of neural networks?

HN : Ch, I know for sure. When I first met Craig, which was in '81, he was
someone who was significantly open to these ideas. He had not acquired the
conventional wisdom. Part of the reason was that he went to school with
Steve Grossberg, at Rockefeller. So he had been already indoctrinated, if you
will . Although he wasn't enough aware of the details to be a rabid champion,
he was never negative, and as he became familiar with the arguments, he became 

more positive. When he went down to MCC [Microelectronics and

Computer Consortium], this was one of the areas that he pushed. As you
know, they have had a lot of successful neural network activity .

ER: Right, they have spin-off companies, and so forth.

HN: Exactly. Right. When Craig Fields was the director, Barbara Yoon
was appointed director of the DARPA ANN (Artificial Neural Networks)
Program. Fields had a very definite role in that. By then, he was a convinced

person; he was converted.

ER: Thanks for sharing that history.
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Are you mostly interested in engineering applications? I noticed that most

of the conference tutorials and the sessions that you
'
re involved with are

basically application oriented, but you
'
ve Tai~ed about your wide spectrum

of interests in the field. How does that balance itself in your view- the

engineering side as opposed to the more scientific questions about understanding 

the brain and mind?

HN : Applications are my job. I make my living by applying this technology 

success fully and growing a business in this area- hopefully, growing 
the nucleus of a huge business that can someday employ hundreds of

thousands of people. That
'
s my job. Now aside from that, I have a personal

interest which is much broader and where I
'
m interested more in the fundamental 

understanding of things, the deeper issues. I spend at least a certain

amount of time continuing to read the literature to understand the advances

that are made, and every once in a while, I have the pleasure of doing a little

tiny , tiny bit of research, but that
'
s not very much because there isn

'
t much

time.

ER: Well, I wanted to ask you about some of your own ideas and some of

the things that you
've developed.

HN : Well, I would characterize my contributions as nil . I mean I have made

very few contributions, and all of them have been minor, in terms of actually

creating new ideas. That's my view.

ER: I was thinking of counter propagation and . . .

HN : Yeah, well, that's OK. That's not a bad contribution, but it
'
s minor. It 's

better for others to judge, but I see it as something which is useful and

worthwhile , but minor. Actually, a piece of work that I
'
ve just completed

with two grad students may be something that will be perhaps graded above

minor somewhere, but that's not published yet. That's coming out.

It has to do with the geometry of error surfaces for multilayer perceptions
-

understanding just what the surfaces look like. What we've discovered 

is that the surfaces basically look like this: there's a certain place in

the weight space where you can take a little slice and look at the surface that

lies above that little tiny slice of the weight space, and the whole rest of the

surface is just copies of that. It
'
s just replicated over and over and over again

a vast number of times. And we've figured out exactly what slice that is.

We've. written it down, and the equations are remark ably simple. That
'
s all.

Is that valuable? I don
't know.

ER: Are there other minor contributions that you
'
d like to at least put on

the record?

HN : I guess the ideas that I think were really important only a few other

people think about. I noticed back a long time ago that Kolrnagorov
'
s theorem 

could be reinterpreted as a statement that neural networks can really

approximate arbitrary continuous functions. That was before all of these universal 

approximation theorems.
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In fact, Hal White [a professor of economics at UC5D] very kindly attributes 
that work as the thing that got him interested in proving universal

approximation theorems, which he
'
s done in abundance.

ER: How would you characterize the reception of your ideas by your
peers?

HN : Oh, I think it 's been generously handled, generously accepted.

ER: Have you been surprised at anything? Have you been surprised that
one idea was lauded and another perhaps not paid as much attention to?

HN: Well, as I say, I've never thought of myself as having produced
anything of real significance, at least not yet. I have hopes. I

'
m trying , but

nothing so far. In fact, I
'
ve been flattered on numerous occasions. I mean, I

remember when this counter propagation thing came out, enough people
liked it that I was actually asked to write a paper on it for the journal Neural
Networks. There were a few things like that that kind of shocked me. My
textbook has been useful. It 's been translated now into Japanese, Chinese,
and Russian; it

's used a great deal and has been adopted at many universities.
50 that's been a reason ably satisfactory experience. I feel like that made a
contribution. But is it the greatest book on neural networks ever written?
No. You guys wrote that. I mean, your collection of papers is classic.

ER: At least it has a wonderful title . [Both Robert Hecht-Nielsen and James
A . Anderson and Edward Rosenfeld published books with the same title :

Neurocomputing .]

HN : Now, that
'
s interesting you mention that because you just triggered a

remembrance. The question is, who invented the term "neurocomputing.
"

And you know, I don't remember. I know people who claim I invented it. I
know people who claim you invented it. Maybe not, but it was the title of
your book.

ER: I thought it came out of the air, and we didn't want to call it neural
networks.

HN: So you did invent it.

ER: We didn't have long conversations about this, and I don't know that
we invented it.

HN: But the bottom line is that everything that I've done has been really
just kind of having fun and on a light basis. I don't take anything I

've done very
seriously. If it

's been useful, that makes me happy because that was the intent.
ER: Are there other people whose work you think is specifically important,
and you are very excited by it?

HN: I think we're at a really interesting time, when we're about. to see an
entire phase change in neuroscience, in particular in neurophysiology, where
virtually all of the dominant ideas are going to be trashed in the next five
years. Of course, Wolf Singer is one of the main causes of this. I don't know
if you caught his talk [at the meeting where the interview took place)?



JA: Could you just mention what that talk was about?

HN: I think the experimental work Wolf Singer has done is going to be

explained in ways that he isn
't currently thinking of. In fact, Judy Dayhoff

had an excellent talk today about the learning of delays. My vision is that

within five years we
'
re going to see a whole new world where people are

thinking of synapses as delay elements and that some learning is the learning

of delay. That nerve cells, at least in some of their roles, function as matched

filters, where you have these large number of pulses coming in, arriving, and

then being delayed by different amounts at different synapses, and then

having all of those effects hit the soma at once, causing a spike. And that individual 

spikes, the timing of individual spikes, is a code. This was originally

Christoph von der Malsburg
'
s idea and Singer

's results support. this. That
'
s

the information code: it
'
s the relative timing of spikes coming from different

cells and having influence at other cells by arriving simultaneously, or at

least by being given corrections by the synapses.

ER: When people come to you in business or as a professor and ask you

about how to start out in this field, what advice do you give them?

HN : Well, first of all, the most important advice is to not get discouraged

because, like any field that
'
s really hot and which is still at a fairly .early

stage, we
'
re still in the process of attracting and recruiting the best people in

related fields. What that means is that all the resources that are available are

being sought by people of significant talent and accomplishment. That really

makes it hard for new young people to join the field.

The main advice is, 
"Don

'
t get discouraged. It

'
s true, you

're up against
these very formidable individuals, but there

's plenty of room here." The

other thing that I try to get them focused on are realistic career paths because 

if they
'
re going to be in academia, they better be thinking very early

on about what field they
're going to be in, what it takes to be employed in

that field, and what kind of preparation they should be doing, day after day

to prepare for a realistic possibility of being employed. If they
'
re going to go

into business, same thing. There really aren
'
t that many different kinds of

opportunities available, and they can do the right things to help ensure their

getting a job.

ER: People often ask me, 
'Where is the neural network killer app [application

]? Where is the thing that neural networks can do that nothing else could

do that
'
s going to break the field wide open toward universal acceptance?"

I'm sure you
've been asked that question or some analog of it .

HN : I have to argue a little bit that I think the premise is not quite right . I

think we
'
ve already achieved universal acceptance, in some sense, or at least

we
're in the process of achieving that, and we

'
re probably going to do it

without the killer app. Today, there are well-publicized applications of neural

networks that almost nobody knows about. They work, they
'
re being used;

it
'
s not a stunt, it

'
s not a press event, it

'
s a real thing.
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ER: A couple of examples, please

Well, for example, our handprinted character OCR systems. By the

way, if you ask three-fourths of the academics here, they
'
ll tell you that

'
s an

unsolved problem. Yet, the state of Wyoming does all their tax forms using
this system. The Avon Corporation reads all their order forms. But it 's an
unsolved problem!

That
'
s the problem. There are applications like that in use allover the

world that are largely unknown and unappreciated. They
've been publicized;

there
'
s plenty of magazine articles; we could bring in a stack of them. And

yet they haven
'
t become widely known, maybe because they

'
re not multibillion

-dollar applications.

And those larger applications will probably emerge, and then there will
be this big parade of apps. What we're really seeking is permanence and a
rational level of research activity and the ability to feel as if this is a subject
that's going to in fact meet its destiny, its correct destiny. That is really what
a lot of people have fought for for so long: to see this field actually go
somewhere over a long period of time. I think that is happening now. That

'
s

almost assured. That
'
s not something we have to work towards or &et about;

it 's a fait accompli.

ER: There's another question I want to ask. I consider HNC a small company 
in the broader business sense, and HNC, &om what I know, is a healthy

company . . .

HN : Oh, sure. It started with two people. Small enough.

ER: Well, but you have sixty people now, or . . .

HN : About seventy.

ER: . . . and you would like to have hundreds of thousands.

HN: Right. We
'
re still a tiny company in my view .. .

ER: . . . and in most people
's view in the general world of business. I

wonder if you
'
re disappointed in the economic growth of the field and disappointed 

at what
'
s been happening with some of the other smaller companies

? Some of them have already gone by the wayside, and others are

certainly struggling. I wonder if you
'
d discuss that?

HN : There are two perspectives. I am disappointed because it seemed at
the beginning that there would be scope for a lot of success stories- a lot of
small companies succeeding in this field and growing and becoming large
companies. But, on the other hand, there

'
s another perspective, which I think

is OK also, and that is that this is a technology that has now penetrated all

large business es, effectively. The resistance to it and all those problems we
had at the beginning are all gone. People are now treating it as just any
other technology and weighing the use of it on a rational basis.

There
'
s also always the fact that, statistically, small business es fail, particularly 

nonvel:\ture-backed business es. Venture-backed business es have a ~o
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percent probability of being around five years after foundation. Nonventure-

backed business es have a much lower probability , much lower, probably no

more than 10 percent under the best of circumstances. So you
'
re talking

about a population which I think you yourself ranked as being roughly 250

or 300 companies. Of those, assuming that the vast majority are not venture

backed, we
'
re only going to see ten or twenty even make it five years. And

I'm not talking about big financial success; I mean just survival.

In the venture world, about one in ten of the companies really is successful

. That is to say, it grows, it goes public
- it does something that ensures

its ongoing growth and success. In the nonventure world, it
'
s probably

down around one tenth of a percent. It
's very low; it

'
s under 1 percent. And

so out of three hundred companies, as you quantified them, we can expect at

most three to succeed. Well, if HNC is one, there
'
s only two left, and they

haven
'
t been invented yet. I don

't know . . . Statistically, it
'
s the expected

outcome.

This will be not just the decade, but the millennium of the brain. There

isn
't any question that our society has been transformed by information

processing already to the point where we can
'
t go back. I mean, if this

doesn
'
t work, we

'
re going to be back in those caves because that

'
s the next

step. We have become inexorably and irrevocably dependent upon information 

processing.

I think as we go forward, we
'
re going to see the ever growing capabilities

of machines take over more and more activities that humans themselves perform
. Hopefully, there

'll be some rational selection of those activities, but

probably not. And we will see this technology that we all know and love

really become the last human technology because what will happen is that

by a few hundred years from now, there won
'
t be any human technologists.

The machines will in fact be intelligent, and they will take on the role of

building machines and designing machines and taking our orders and carrying 
them out.

I don't think that's going to happen soon. I think we are at least three

hundred years away from an intelligent machine. Not so much because it

couldn
'
t be done earlier, it

's just because I can
'
t envision a scenario in the

future, even war, that is going to be so dire that we would put the resources 

into building such a device. It could be done- not that far in the

future, probably
- but I don

'
t think it ever will be. It will happen on a much

more gradual basis, transforming society as it goes.

Soon our whole species is going to have a lifestyle and a manner of life

that depends upon these machines. It 's already happened. So I think it will be

a long time, not necessarily because it has to be a long time. I think there are

going to be a lot of problems understanding how brains work. It
'
s like anything 

else, but it 's much more difficult because there are so many specialized
tricks; there are so many different brain areas.

JA: There's not going to be a single brain theory.
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HN: No. There
'
s going to have to be a hundred brain theories or a thousand 

brain theories. It will take three hundred years to understand how the
brain works, and then we'll find out you can't really do a lot of those things
except with meat and chemicals.

ER: Wetwear.

HN : Yes, exactly. The far future is impossible to predict. I think we
'
ve

done something good here, in summary. I would say that the efforts that

you
'
ve put in and the efforts that many of the others of us have put in are

coming to something. This is not a flash in the pan. It 's not something that
becomes a small part of something larger. This IS that large thing, and we
made it happen. Maybe it would have happened anyway. Historians will

certainly chalk it up to that, but I don't think so. History has
' 
a way of

bifurcating and going in strange directions, and at least in this instance we
made sure that it didn

'
t and that it went in a rational direction. So someday

people are going to owe us a lot . I just hope we'
re around to collect.
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ER: Maybe we could start with general biographical material- your date
of birth, where you are from, how you grew up, your early education, your
parents. . .

T5: You want to go back that far?

ER: Absolutely.

T5: Well, I was born in Cleveland in 1947 and went to college in Cleveland
, Case Western Reserve. I graduated from there in '68.

ER: Maybe we could back up a little bit . One of the things we'
re interested

in is trying to find out how people became interested in the brain . . .

T5: OK.

ER: What influence their parents had on this, how their growing up affected
their interests. . .

T5: There were many intangible influences. I grew up in a family where
science was in the air. My father was an engineer, so I had lots of motors and
electrical things to put together in the basement. If you want an interesting
historical document, take a look at my high school literary magazine. I wrote
a short story about a government computer project meant to simulate a
brain. It was about the experiences of somebody who was talking about this
blackout experience he had where he didn'

t remember this one period in
his life. This person is actually the computer project. All his experiences are
being piped in from the outside. All his internal feelings and everything else
were being simulated inside the computer. He didn't know that his world
was the computer.

One of my motivating interests was to understand enough about the brain
to be able to build one.
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ER: So you were obviously thinking about things like that before you
wrote the story?

ER: That
'
s something that had been in my mind for a long time. Everybody 

is curious about what makes their brains tick. I learned a little bit about

brain cells, not very much, but enough to know that there was some sort of

pattern of activity . So the natural question is, 
"
Can you build one?

" If it
'
s just

a machine, you should. be able to build one. But at the time, back in the 
'
60s,

the standard of computing was prehistoric compared to what we have today.

I imagined it would take the whole surface of a moon or a planet. Can you

imagine vacuum tubes as far as you can see? The technology has changed,

but it is basically the same idea.

ER: So you went to Case Western. What did you major in?

TS: I was a physics major. I finished top of the class in physics. I went on to

Princeton for graduate school because I wanted to work with John Wheeler

in relativity . I was part of his group working on projects during the period in

which black holes became a major scient i Ac enterprise. Wheeler had coined

the term. Before that, a black hole was considered a singularity in the equations
, which was unphysical. John Wheeler. has a very physical imagination

and said, 
"Well , what if they exist in the universe? What would they look

like?" So we were doing calculations about what would happen if the black

hole was in the middle of a galaxy. What would happen if there were little

black holes in the middle of the earth? What are the astrophysical consequences 

of this very esoteric, mathematical result?

ER: What had led you to choose physics to begin with?

TS: I had always been interested in science, and physics seemed to me to

be the most basic area of science that all other areas grew from. And I was

good at it . When I had to choose my major as a sophomore I asked a friend
"Well , why did you pick physics?

"

And he said, 
"Well , what other choice is there?

" And that convinced me.

Physics was very attractive, very intellectually exciting. Physics was also

a wonderful education for neuroscience. For what I'm trying to do now,

which is to marry basic neurobiology with neural networks, physics helps
both with the experimental side and with the mathematics that you need to

understand networks. Physics was an ideal background. If I'd planned it, I

couldn
't have planned it better.

ER: So you said you were in Wheeler's group for a couple of years and

working on the black holes.

TS: They have general exams at Princeton where you are required to

master all areas of physics and demonstrate that in a week long test. It.' s just
one exam after the other for a week.

The summer before, instead of studying for these exams, I went to the

library, and I read the Josiah Macy Conference Proceedings, on the early days of

cybernetics. It was more than that because Margaret Mead, Norbert Wiener,



Gregory Bateson, and other really interesting people were there. What was

interesting was the excitement that they were on the verge of understanding
something basic about the brain, about how the control systems in the body
work, and how it could be related to psychological phenomena.

Those meetings were from the '50s, and I followed the thread from one
conference proceedings to the next. There was Organization of the Mind , the
T eddington conference. The British had meetings, and there were big American 

meetings. Self-organization was big.
After an interesting summer reading these books I realized that nothing

ever came of it . That is, there was all this excitement, but it seemed to peter
out. Cybernetics became splintered into a lot of mainstream fields like control 

theory and signal processing that became standard engineering discipline

, but all the exciting parts died out. That was at least the impression I

got from reading the literature, without talking to anybody.
I did ask someone in biology what had happened since then on the brain. I

don
'
t know who it was, but somebody, a postdoc probably, said, 

"
Oh, Hubel

and Wiesel have done some interesting things. Why don
'
t you go and look

up some of their papers?
"

At the time, I desperately wanted to know the answer to one question:"
Do neural cells fire in a regular sort of clocklike fashion, at a fixed clock

rate? Or is it more random? Is there a stochastic component to it?
"

The postdoc said if I read Hubel and Wiesel
'
s papers I would find the

answer to that question, so I went to the library and looked up one of their

papers in the Journal of Physiology. I think in retrospect it was probably the
'
62 paper because that

'
s one of the few papers you can go to where they actually 

give raw data. And 10 and behold, sure enough, the firing was random.

[This classic paper is one of the most cited papers inscienceD . H. Hubel and
T. N. Wiesel. 1962. "Receptive fields, binocular interaction, and functional
architecture in the cat's visual cortex.

" 
Journal of Physiology 160:106- 64.]

Then I started taking some courses in the psychology department. Charlie
Gross was giving a graduate seminar in vision; he had recorded from different 

parts of the visual cortex, a la Hubel and Wiesel, but much farther up.
That was fascinating because I got a chance to catch up on all the work that
had been done in vision since the early

' 
60s. This was back in the early

1970s. Discovering the classical vision literature had a big impact on me.

JA: Was there anyone at Princeton you talked to about these issues?

TS: I had a few really wonderful mentors at Princeton. I spent a summer in
Charlie Gross

'
s lab participating in experiments. This hands-on experience

verified my surmise from the literatures that there was an enormous amount
of random component in the firing patterns of cortical neurons in the visual
cortex, especially in the inferotemporal cortex, where Charlie Gross was

looking at higher-order visual neurons.

Another person who had a big impact was Alan Gelperin, who works on

garden slugs. I did a year postdoc in his lab after getting my degree in physics.
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ER: So you passed the week of exams?

TS: I passed the exams, but at that point I realized that my interests were

already depar Hng from physics. One doesn
'
t really know why one decides to

do things, but I was a little frustrated with the prospect of working in a field

where it was very unlikely in my life Hme that anyone could verify any pre-

dicHon I could make. In gravita Honal radia Hon, which is the area that I was

expec Hng to do my thesis, you can
't do an earth-based experiment; you have

to wait for a supernova. That's not something that happens every day. The

techniques for recording from gravity waves were just being developed.

They are sH I I being developed. We
're sH I I far from having any experimental

data at all.

What was very attrac Hve to me about the brain was the fact that you
could hold it in your own hands.

ER: It was local.

TS: It was local in space and time, it was every bit as much a mystery as

quasars, and there was the prospect that within my life Hme we could make

some progress. Furthermore, from my contacts with the biologists at Princeton

, I became interested in experimental work.

At that Hme, I was wriHng neural network- modeling papers, theore Hcal

papers. Taking courses in the biology department and get Hng research experience 

were influen Hal. I was beginning to realize that just wriHng down

and solving equa Hons, by itself wasn
'
t enough to really give key insights

into the basics, the fundamentals of the brain.

As I learned more in the courses I was taking, I began to realize that

there
'
s a much richer depth to the brain. It

'
s not just spiking that's important.

There are intracellular variables. There are other complex i Hes. If you really
want to understand the basic principles of how the brain works, you first

have to understand those variables. This was after many years of theore Hcal

physics and then theore Hcal neural network modeling.

By the way, the network modeling that I did grew directly out of Charlie

Gross
's lab. I took a classical network model that Jack Cowan and others had

worked on, and I injected noise into it and tried to analyze the stochas Hc

differen Hal equa Hons. I came to the conclusion that correla Hons should be

important. Unfortunately, there was very little data on correla Hons at the

time. It
'
s now a big industry to record from pairs of cells and measure corre-

la Hons. My early intui Hons about temporal coding were on the right track.

ER: So had Charlie Gross led you to Cowan
'
s work?

TS: During that summer, I discovered that Jack Cowan had taken a similar

path, so I read all of his papers. I was a little disappointed by the fact that he

never followed up on some of his early exci Hng work. He started developing
a sta Hs Hcal mechanics of networks but then stopped publishing it . He sHll

hasn
'
t published anything more. Who knows when he

'll publish? But in any
case, I saw myself in that tradi Hon in my modeling work. It was about that

time that John Hopfield started get Hng interested in the brain.
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ER: He was at Princeton?

TS: He was at Princeton, before moving to Caltech. [In 1997 John Hopfield
moved back to Princeton where he is a Professor in the Department of

Molecular Biology.] It became clear that I wasn
'
t going to complete a thesis

in relativity because I wasn
'
t spending any time working on it anymore. I

was spending most of my time talking to biologists. Fortunately, John had

gotten hooked up with the NRP [Neuroscience Research Program, a group
first at MIT that later moved to Rockefeller University]. He was going to

their meetings and listening to talks from neurobiologists, and he had a

sympathetic ear. Furthermore, he was just at the point of making a transition
into that field himself, so he was a natural mentor for me.

ER: Jack Cowan told us that Hopfield had gone to some of the conferences
in the mid-seventies.

TS: It was helpful to me to be able to talk to him about things that he had
heard at those meetings. John was extremely supportive of what I was trying
to do, and without his help I would have been lost. John also had an old

friend at Rockefeller, Bruce Knight, who I had met earlier. So John said,
"
Look, why don

'
t you go and talk to Bruce Knight? Bruce Knight would be a

good person to give you some feedback.
"

Bruce was extremely helpful. He read through the papers and gave me
realistic advice about the likelihood of experimentally verifying prediction 

from the model, but said it looked very promising anyway. It was
wonderful to have someone like Bruce, who was an expert modeler and a
mathematician, read through my papers with that care.

During that period of my life, every few years I would make a transition,

thinking, 
"
Gee, this isn

'
t going to work the way I thought it would work.

"

The move to neurobiology was the real shift in my career, where I drew
a dividing line. Everything I did up to this point was basically physics and

extensions of physics. What I was doing in my thesis was a physicist
's

approach to neurobiology-
writing down some equations and analyzing the

equations.

But as I talked more to neurobiologists, I began to understand the deep

complexities that you have to grapple with . If I were serious about understanding 
the brain, I had to get my hands on real neurons and real data and

to get a better intuition for what was going on, then later come back to

modeling. At that point I decided to immmerse myself in the biology .
I had good fortune. I took a course at Woods Hole at the Marine Biological 

Laboratory in 1978 just after getting my doctorate in physics. I took
the neurobiology course, and that changed the way I thought about everything 

in terms of both the brain and the human enterprise that
'
s involved in

understanding it . Physicists approach problems a little differently, I think,
because in physics there

'
s a tradition of a single brilliant idea or a single experimental 

breakthrough. In other words, it
'
s something that involves singu-

larities, whereas it became clear that biology had a different tradition. Yes,
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there were also exceptionally good people in biology, but there weren't

many singularities. There's such a fantastic complexity, that no matter what

system you pick, you have your hands full . You
'
re never going to solve

that system. No one
'
s ever going to solve anything in biology in the same

sense that physics solves a problem like magnetism. Even the simplest neural

circuits are far beyond what anyone lab can work out, so you have communities 

of labs working on them.

Take one simple circuit, the lobster stomatogastric ganglion, which has

only a handful of neurons. They
'
ve worked out all the connections, and they

know most of the properties of most of the neurons, but they still don
'
t

understand how that ganglion works. They
're getting there. In the process

of uncovering all of these details, they
'
ve uncovered many important principles

. For example, neuromodulators can change and reconngure the network

, which is going to have important implications for mammalian brains.

They
'
ve run into very important nonlinear membrane properties, which are

going to be essential for the mammalian brain as well. To discover the basics

in a little circuit like that has probably involved a community of twenty labs

over a period of twenty years. That
'
s a unit of biological advance.

There are leaders, and there are followers, and there are people who

are good at technical things, and people good at synthesizing. You need all

those different talents focused on one system, but there are probably a hundred 

systems like that and a hundred communities studying different parts of

the brain.

For me, it meant going back to the A B Cs and really learning new techniques

. During the neurobiology course I learned how to record from single
neurons and how to use the freeze-fracture technique to look at single

synapses.

I was particularly fascinated with the hair cell sensory receptors in the

ampullae of Lorenzini in a skate. Skate brains have very, very acute electrosensitivity

, down to the microvolts per centimeter range. I was fascinated

and wanted to know what kind of receptor could possibly pick that up, given
that neurons work on millivolt ranges, not microvolts. So we did the first

study ever that summer on the skate electroreceptors. No one had ever done

freeze-fracture on it before. That amazed me. It seemed that no matter what

you picked up in biology , no one ever did it before.

We had the world
'
s leading experts teaching us. We had skates that were

brought in off a boat, and we dissected out the ampullae, which itself is an

exciting thing
- to see the actual little sock with the electroreceptors on it .

We then processed it and put it in a machine that freezes it to liquid nitrogen

temperature, fractured it, got a replica, put it in a electron microscope, and

zoomed in on the ultrastructure of the synapses and the vesicles. It was

exciting.

I remember that experience vividly . For each fracture, the electron microscope 

gives you a three-dimensional landscape. It
'
s almost as if you could

zoom down into the moon and go into a crater and see all the little rocks
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down there. And the little rocks turn out to be molecular, receptors, in the

membrane that were exposed in the fracture. That changed my whole life.
After that I wasn

'
t interested anymore in just abstract understanding of the

brain. I really wanted to understand how it was made. I was committed to
the idea that you had to understand the actual substance that the brain was
made from if you

're going to understand how it works.

That was 
'
78. I went back to Princeton to start the postdoc with Alan

Gelperin. One day I got a phone call from Steve Kuffler from Harvard Medical 
School, who was the preeminent neurobiologist of his era. He said that he

had a position in his lab and was wondering if I could come to Harvard. That
was practically like getting a call from heaven. It was a wonderful experience
because the neurobiology department during that era was a special place.
The research ranged from uncovering the cytochrome oxidase blobs in the
visual cortex- that was David Hubel, Marge Living stone, and Johnathan
Horton- to the molecular basis of development. Steve Kuffler and I were

working on peptidergic synaptic transmission in bullfrog sympathetic ganglia.
The whole gamut from molecules up to systems was represented in that

department.

The three years that I was at Harvard made a deep impression; in forming
my own lab I

'
ve recapitulated a lot of their traditions. I have a tea room,

which is a miniature version of the lunch room at Harvard. I have daily teas,
which is something that they did. There is the larger social part of doing
science, as well as the scientific part.

During those three years I refused to touch a computer. When I left

Princeton, I wrote my thesis using nroff with a box of punch cards because it

was a batch system. When I left Harvard Medical School to take my first job
at Johns Hopkins, it was the age of the micro. I bought a PDP 11/23, and I

sat down and learned Unix. I felt like Rip van Winkle. During that period,
which was not that long, perhaps only five years, things changed completely
from big computer center-dominated computing to lab-style computing, to

individual work station-style computing.

Although I was completely committed to the biological side, at the same

time I realized the limitations of a purely biological approach. In the biology ,
there

'
s an enormous amount to know before principles emerge. You first

need to understand the basics before you can understand the systems-level

issues. This pure bottom-up approach has the limitation that there's an

infinite number of details, and you don't know a priori what's going to be

important.

At the same time that all this was going on I attended a meeting in San

Diego in '79 that was also a turning point. Geoff Hinton and Jim [Anderson]

organized a meeting that later resulted in the book Parallel Models of Associative 

Memory. It was an exciting meeting. Based on reading the literature,
I had concluded that network modeling was in decline. There were a few

people in little pockets where the torch was still burning, but there was

no heart. Here at this meeting was the heart, a group of people who still



Jay McClelland and David Rumelhart were there. The meeting included a

rich tradition of statistics with Stu Geman. Jim and I represented biology .

There was also AI and computer science, represented with Scott Fahlman

and Jerry Feldman. Teuvo Kohonen , a legendary Finnish engineer , also

attended .

Although we came from all of these different fields, there was a common

belief that networks of simple processing units could be used to solve

difficult computational problems. Cooperation was needed, and here was a

group of cooperative people who were able to talk to each other despite
different backgrounds.

Out of that meeting came long friendships. Geoff Hinton is still my closest

friend, a friendship that started at that 
'
79 meeting and developed over the

course of many years. Whenever he was coming through Boston, he would

stay with me, and when I was in California, I would stay with him.

There was also a highly influential series of follow up meetings held at

Rochester that Jerry Feldman and Dana Ballard organized, that was primarily
in the area of vision, a vision focus group from a network perspective. I trace

many advances, like the Boltzmann machine, directly to discussions at these

mee Hngs. Geoff and I thought that networks could be used to solve a lot of

difficult unsolved problems in vision. We thought that if we had the right

representation, we could bootstrap from the work that was done on the

visual cortex. We had a reasonable algorithm for relaxation, and we developed 

methods for constraint satisfaction and figure-ground segregation, but

we didn't have any good convergence proof.

Dana Ballard also handcrafted algorithms during that era. He would take a

conventional computer vision problem, like finding lines in an image. He

would use Hough transforms and put little units together to make lines support 
each other. The idea was that units were hypotheses about the objects

in the three-dimensional world .

I remember John Hopfield was invited to one of these Rochester meetings.

For the first time, we heard his energy formulation. Both Geoff and I within

seconds
. 
realized that this was the convergence proof we needed to show

that our constraint-satisfaction schemes in vision could actually be implemented 
with hardware. That's how the Boltzmann machine was born. It was

the result of a week of solid thinking about what would happen if we had a

noisy Hopfield network.

We realized immediately how a Hopfield network could be used for global

optimization. The way to jump out of local minima was to add noise. I had

just read an article in Physics Today where Scott Kirk patrick described simulated 

annealing. So we immediately started simulating the idea, and sure

enough
- it was slow, but it would work. It would, in a rigorous way, imple-
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ment all the things that we wanted done. Little did we know, however, that

constraint satisfaction was really just an entrance to the part of the Boltz-

mann machine that had the biggest impact, the learning algorithm. Once you
have a thermodynamic framework that allows you to analyze the probability 

of ~ y state, you can begin to ask, 
'Well , how can I alter the prob-

abilities?" Then you need to deal with how to sculpt the landscape- not

how to search it , but how to change it . That became the Boltzmann machine

learning algorithm.

Geoff was the one who really appreciated the importance of learning. He

calculated the information-gain measure. I remember him calling me and

saying, 
"
You know, all the bad terms cancel." We were convinced this was

the solution. Something that simple had to be important. It was the.first in a

long line of learning algorithms that broke the logjam. Sometimes you really
don

'
t know what

'
s the most important when you

'
re working on something

since you
're deeply involved in it . It

's not until much later that you realize

what
'
s going to prove to be important in the long run.

ER: When you had figured out the Boltzmann machine, where were you?

Were you already at Hopkins?

TS: It was on my way between Harvard and Hopkins; during the summer,

in '82 we worked out a lot of the applications to vision and inference and

started working on little networks that would do symmetry and exclusiveOR

. It took about a year though before the learning algorithm was firmly
established.

Geoff was going to be a co author on the PDP [parallel distributed processing

] books but because the Boltzmann machine looked so exciting, he

felt that it would be more important just to focus our energies on working it

out. He has as many chapters as anyone else, so he should probably have

been co author. He deserves a lot of credit for spearheading that San Diego

group. He was the seed that led to PDP, as well as a lot of other important
contributions. Jay McClelland was fantastic for pushing forward and writing
the book, and Dave Rumelhart kept coming up with new ideas, and back-

propagation occurred during that era. That was a very special time too, that

whole era in San Diego.

ER: How did you get to Hopkins?

TS: There weren
't that many jobs that a physicist with biology training

could get at that time - jobs where I could use my skills. I would have been

out of place in a pure biology department, and I would have been out of

place in a pure physics department. But I found a wonderful home, the biophysics 

department at Hopkins, which had a long tradition in neuroscience.

The colleagues I had were terrifically supportive. They understood what I

was doing. They understood the importance of computational biology and

made it possible for me to build a strong group. That
's what was great about

the environment. I wasn
't isolated because I was in direct contact with all of
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the major researchers who were contributing to network research. Also, at

that time email was just becoming a major way to do research, so Geoff and

I would send email on problems we were working on.

This sense of community was also extended to students. Geoff and I

organized the first Connectionist Summer School in 
'
86 at Carnegie Mellon

University . That was before the PDP books came out, and very few people
knew what was happening &om word of mouth. When we put out the

announcement for the Connectionist Summer School, somebody at MIT put
out a spoof advertising a connectionist cooking summer school.

The people who turned up at the summer school came &om everywhere
- it was pretty uniform in terms of geography. The students were

fantastically enthusiastic. Many of those students are now the people giving
major talks at meetings. We also had a summer school at CMU in '

88,
and there was one in San Diego in '91. In each of those classes there were

students who went on to do brilliant work.

ER: Was it around then that you started with NE Ttalk?

TS: NE Ttalk was a project that grew out of a talk on the Boltzmann

machine I had given at Princeton in the spring of 
'
85. Charlie Rosenberg,

who was a student of George Miller in the psychology department, came

up to me afterwards and said he
'
d like to come and work in my lab over

the summer. I said, 
'
Well , what do you want to work on?" And he said,

"
Language.

"

I said, 
'
Well , OK, we

'll try to think of a project.
"

At that time, I was still working on the Boltzmann machine and was

beginning to do simulations using backprop. I discovered very rapidly that

backprop was about an order of magnitude faster than anything you could

do with the Boltzmann machine. And if you let it run longer, it was more

accurate, so you could get better solutions.

When Charlie showed up, backprop was up and running. We also had lots

of horsepower. I had another stroke of luck in receiving a Presidential Young

Investigator award &om NSF [National Science Foundation]. I had picked

up a Ridge computer, made by a company that is now defunct, but it had

the power of a VAX 11/780 which at that time was the standard candle of

computer power. I had one in my lab, but at that time the whole computer
science department only had a 780, so I had as much computer power as the

computer science department, for a while at least.

We had a real computer, and we had a real algorithm, and we looked for a

do-able project in language. Often in science, the most important decision

you make is the first one, the project. If you pick one that
'
s too easy, then so

what? And if you pick one that's too hard, that you can
'
t solve, then so

what? It
'
s always the cases that are on the borderline that are the most interesting

. We were fortunate to find just such a problem in phonology.

I went to the library and found a book on text-to-speech that had probably 
one thousand rules in it . It was just lists of rules and exceptions. After



every rule , there were dozens of exceptions . I figured that either they
'
re

doing it the wrong way , or this is a really tough problem . We considered

finding something that was simpler
- after consulting the experts in linguistics

. They said, 
"
Chomsky worked on the problem , and it is well beyond the

capability of anything that you could imagine trying to do .
"

Even Geoff Hinton , who visited that summer, thought it was an ambitious

problem . He suggested starting with a children
'
s book with simple three-

and four -letter words . So we went to the library and checked out a child
'
s

book and coded it up by hand. We figured out all the phonemes, and we

assigned them to each of the letters . That book probably had about one

hundred words in it . We were prepared to start out with three words and

then work our way up to ten words , and then by the end of the summer we

might get up to one hundred words . That
'
s a lot of words for a small network 

since it added up to over five hundred letter -to -sound correspondences .

Charlie was a very good programmer , so he was able to get a simulator

up and running very rapidly . When Charlie turned the network on, it started

out very slowly
- it wasn

'
t doing very well . Then it began making some

progress , and we kept coming back and looking at it , and it kept making
more progress and more progress and more progress . By the end of the day,
it was perfect . It had absorbed this children

'
s book; no problem at all .

It was now August ; we had discovered that text -to -
speech was a much

better match to a network than the rule-based approach . Now the question
was, 

'
is the network up to real language f

'
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We came across a book of transcriptions of children at various ages. The

advantage of this corpus was that it had the words on the left side, and on

the right side were all the phonemic sounds that the child actually made on

the tape, transcribed by a phonologist . So here we had a training set. We had

the whole book . We had many thousands of words . But taking that book

and converting it into a computer
-readable format took weeks and weeks

because we had to sit there, align the letters and sounds, and proofread it .

The childrens
' 

transcriptions seems wildly ambitious in retrospect because

we didn
'
t just have dictionary definitions and pronunciations , but full -blown ,

real-life speech, which includes a lot of sounds that are 
"
wrong ,

" 
that are

missing , or elided . It was difficult . In linguistics there is a distinction between

competence and performance
- that is, the theoretical grammar , which is

what the linguists work with , and what people actually say in practice .

The third corpus was a twenty -thousand -word dictionary . That required a

lot of work because the dictionary wasn
'
t aligned . That corpus is still being

used today as a a standard database, a twenty -thousand -word dictionary .

That
'
s a lot of words .

I am amazed at what we accomplished that summer. In addition to the

phonemes, we also did stress, word boundaries , and syllable boundaries . We

naively just coded them into the database and came up with some representations 
for the output . The network accepted whatever we gave it . It took

a day for the network to learn a two -thousand -word corpus of first graders
'

speech. By the time we got around to using the dictionary , it was the end of

August . I went off to a meeting at Woods Hole . I had a Ridge there, and we

had a DE Ctaik speech synthesizer , so it was the first time we actually heard

NET talk speak. It was amazing to hear it for the first time . We started from

scratch and built a working system in just three months . But now we had to

analyze it . That took three years; Charlie
'
s thesis was an analysis of how

NE Ttaik represented the hard 
"
c
" 

in 
"
cat

" 
and the soft 

"
c
" 

in 
"
city

"
.

ER: When I met you in 1986, I didn
'
t know you were doing NE Ttalk . And

next time I saw you , you were on the Today show .

T5: That was another experience.

ER: That
'
s when I thought neural networks were real. I saw you on the

Today show . That made a major impact .

T5: We had no idea how well it would work or that it would make an impact

. In retrospect it was an ideal choice for a problem . It was difficult with

conventional techniques, and it was not clear that the network could handle

it . For that era, it was a big network ; with thirty thousand weights and

several hundred units . But it is tiny by today
'
s standards.

An important lesson from that era was the importance of representation .

You need to have a powerful learning algorithm , but you also need to have

good representations , both for the inputs and outputs , that are compatible
with the learning algorithm .
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A good example is Dean Pomerleau
'
s car driving neural network,

AL VINN . It was exciting to watch a cargoing down the road without a

driver. There
'
s nothing more real than seeing the car try to take that turn or

go through that intersection. That
'
s real life. But if you look into the steering

network, there are only four hidden units. Who could have guessed that

driving a car on a highway would only take four hidden units? That'sadis -

covery. It was an easy problem once you had the right representation. The

intuitive representations that you would think of for the car-driving problem
, which is a visual motor control problem, don't necessarily work. The

natural features to use are local ones like road stripes, but these come in

many forms, or are sometimes absent. Dean Pomerleau
's network uses global

features. The hidden units see the whole visual field. They integrate a lot of

small pieces of information from allover the road.

The same type of internal representation was discovered by NE Ttalk.

There
'
s some very crude distinctions that it makes, like that between vowels

and consonants. But then it used nonintuitive statistics on how to represent
all the rest of the so-called rules. The network picked up higher-order correlations 

and organized all of that information in a correlational structure with

nonlinear hidden units.

We knew back then there were many local minima in the network, and we

knew we were getting trapped. The surprise was that this did not prevent
the network from finding good solutions. There are two approach es that are

extremes. One is to start out with something that works, and try to analyze
it and figure out why, which is what happened to us. The other approach is

to start out with a completely mathematically analyzed system and try to

get it to work. That turned out to be more difficult. A mixture of empirical
and analytic approach es has proved to be most effective.

ER: I know there
's a tremendous amount of other work that comes after

NE Ttalk. Can we talk about your sonar work with Paul Gorman?

TS: Each one of those projects was an exploration into another domain.

The name of the game was database. Whoever had the data could be the first

to see what that data really looked like using networks. It was like a child in

a candy shop. Anything you touched was interesting. Paul Gorman was at

Allied Bendix, which has since become Allied Signal, and had been working
on a sonar classification project for several years as a master's project, using
classical linear discriminants. Paul came around asking whether this was

something that networks might tackle, and I said, 
'
Well , let

'
s give it a try .

"

They had collected sonar echos from mines and rocks. They went around

systematically every ten degrees or so and took a complete set of sonar reflection 

data. Most of the time you only get a few smatterings of data. It 's

very expensive to get data. In speech, there are now some standard labeled

databases, like the TIMIT database, but in the early days, starting with NET-

talk, 90 percent of the battle was getting the database together and figuring
out what the input representation should be. After training a network on



sonar echos from mines and rocks, Paul Gorman showed that the network

could generalize to new echos and correctly classify them- a lot better than

humans could.

Another problem we looked at was protein folding, predicting secondary
structure. After a talk I gave, someone from the audience said, 

"
Look, instead

of using letters, you could use amino acids, and then you can predict secondary 

protein structure.
"

We were fortunate because Brookhaven had a crystallographic database

of protein structures, which included as a subset the secondary structure

assignments. We were able to pull out the data and started training the network

. I had a very good graduate student, Ning Qian, now on the faculty at

Columbia, who really pushed that problem forward. It still is the best existing 

method for predicting secondary structure. We improved the performance 
from 55 percent up to 64 percent and estimated that with more

tweeks, you could probably get it up to about 70 percent. A paper I saw

recently came pretty close to that by improving on the original network.

That
'
s exciting to have the world

'
s best secondary structure prediction for

nonhomologous proteins.

That was a do-able project because I was in a biophysics department,
where everyone was familiar with molecular structures, and we had a good

crystallographer in the department who gave us advice about the database,
Warner Love. The combination of a powerful tool, a good question, and a

large database is a good place to start. The question was, 
"
Can the network

extract the answer from the database?
" In many cases, you don

'
t know until

you try .

ER: Were there ones you worked on that weren
't good?

T5: There were only a few aborted projects. But it
'
s hard to say whether it

was the project or the people who sort of lost interest in it . A lot depends on

how persistent you are- like Charlie Rosenberg, who
'
s incredibly energetic

and will just keep working at a problem until he solves it . That
'
s what you

need to get anything to work.

I am still working on problem in the visual system. Unfortunately, vision

is such a difficult domain that we haven
'
t really made that much progress

. Even now, we are just beginning to recognize some of the enormous

problems that vision poses. It
'
s not just a recognition problem. It

'
s a representation 

problem. How do you represent complex objects? No one has a

clue.

Geoff Hinton probably has the best insight right now into how to use

distributed representations to represent complex objects componentially. But

we
'
re far, far from being able to solve real-world problems in vision. Geoff

has a knack for picking small test problems, like the shifter problem, which is

a test problem for stereo vision. I'm still looking for problems like that,
which are challenging but not so difficult that finding a solution

'
s going to

be impossible.
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It
'
s ironic because back in the 

'
70s when we started, we were inspired by

the visual cortex. We thought that if we only had the right algorithm for

doing constraint satisfaction, we'd be able to solve a difficult problem like

separating an object &om the background.

It's a difficult problem partly because the number of units you need and

the amount of processing you have to do just to look at an image are enormous

. The classical work on computer vision at the University of Maryland
was done on a PDP 11/34, the equivalent to a little PC, like a 386. That

made it very difficult even to store all the images.

ER: Could you say a little bit about moving to the West Coast?

TS: After being at Hopkins for six years and building up a group there,

I began spending more and more time on the West Coast. I was 
'
a visiting

professor at Caltech in 
'
87 and had an opportunity to interact with the San

Diego group. It was a wonderful community.

Getting an opportunity to work at the Salk Institute was a perfect match

to my interests. I had close ties with Francis Crick and Pat Church land, and

we were already collaborating on book chapters. My interests now are

primarily in neuroscience and using techniques and tools &om network

modeling to understand different pieces of the brain.

The community in San Diego is very special. I said earlier that a major
advance in biology involves a team. To understand something as complex as

a psychological or biological system, you need to have expertise in many
different areas, and the people in these areas have to talk to each other.

There has to be a common language. San Diego was at least five years ahead

of any other place that I had come across, mainly because of Dave Rumel-

hart, Jay McClelland, Geoff Hinton, and the others in that community.

ER: Is your lab at UCSD?

TS: I have a faculty position at UCSD and I teach there, but my lab is

physically in the Salk Institute. I have a joint appointment at both places.

There are several other community and institutional groups that I am involved 

in which I think are very important. One of them is a workshop that

I founded at Woods Hole in 1984- the first workshop on computational
neuroscience. I had taken a neurobiology course at MBL [Marine Biological

Laboratory] there in '78, and went back as a researcher for several summers

with Steve Kuffler.

Steve Zucker and I were stuck at the Denver airport one day coming back

&om some meeting. The flight was delayed, and we had hot cocoa in a little

restaurant. It turned out that Steve was really excited about Woods Hole,

too. 'Well , let
'
s have a meeting there.

"

I also was very fortunate that at that time the Sloan Foundation was just

starting to fund computational neuroscience. I submitted a grant, and they

gave me three years of support for running a workshop at MBL. It was a

fantastic group because unlike most big meetings where people bounce off
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each other, there were only twenty young researchers and intense discussions

. Many invited to the very first workshop have come back year after

year so there has been some continuity . This includes Richard Andersen, Bob

Desimone, John Allman, Dana Ballard, and Steve Zucker. There was abalance 

of physiologists and computer vision people. Friendships developed
and common projects blossomed. In terms of getting networks and biology

together, those meetings were a key development.

Another group I'm involved in is the Helmholtz Club, which is a coming

together of psychophysics, physiology, and theoretical analysis with a focus

on. vision. It was founded in '83 by V. S. Ramachandran and Francis Crick,
meets once a month at UC Irvine and comprises about thirty people at Cal-

tech, San Diego, UCLA, and other places. It
's like Woods Hole, except that it

happens once a month.

My guess is that history will tell, many years &om now, that a lot of the

key, seminal ideas in the area of vision primarily, but about other parts of the

brain too, came out of discussions held at Helmholtz meetings. That's something 

you probably won't hear about because the meetings aren
'
t published.

New ideas happen in small groups, not in big meetings. Big meetings are

where the results of ideas are presented.

ER: It underscores what you were saying before about the social compo-

nenent of doing science.

TS: The seminal meeting in 
'
79 that was held in San Diego marked the beginning 

of a cooperative venture of a community of researchers, who shared

some common assumptions but had a lot of differences too. At the outset

they had more differences than they had things in common, but at least they
were willing to sit down and talk and argue with each other, and to understand 

the other person
's language.

This also happened on a much larger scale at the early NIPS [Neural Information 

Processing] meetings. When someone gave a talk, no one in any
other field would understand what was said because the terminology and

jargon was not understandable to anyone outside their particular fields. The

mathematicians had various detailed concerns like convergence. The biologists 

couldn
'
t even understand that these should be concerns. The brain

works. Why should you worry about it converging? What
'
s gradually

emerged at NIPS is a larger community of people who are beginning to

understand the concerns of other groups and are beginning to realize that

those cpncerns may have some impact on their concerns. Some of the new

ideas are getting incorporated into their research.

There are ti mescal es for everything and for creating a new field the average 

timescale is probably a decade. It
'
s not going to happen in a year; it

's not

going to happen even in five years. Probably it needs a decade for a field

to get to a point where there are standards and there's an understanding of

what the difficult problems are. The danger, though, is that after a certain

period you may get boxed in if you don't renew and grow and reach out



into other directions. You may end up going in circles on the same issues
and topics.

ER: Where do you see the neural network Aeld going in the future?

TS: The Aeld is healthy to the extent that we are working with real-world
data, not toy problems. Toy problems are nice for theorists to play with , but
if you don't test them against the world, then I doubt that they

'
re going to

amount to much.

AI went awry by taking toy worlds too seriously. We should be Aguring
out what the real-world problems are, which may be different from the ones
that we imagine them to be. The real world tells you that immediately.
When you drive the car, you

'
ve got the steering wheel in front of . you, and

you can
'
t rely on some symbolic buffer to save your data for you. You have

to deal with it as it flows in, in real time.
Carver Mead had a big influence in convincing me that you really need

to study real time systems. All the simulations are Me as far as they go, but
unless you can get the information flowing through and understand how

you
'
re going to deal with it in real time, you really haven't understood the

essence of the computation. You
'
re just doing off-line stuff. So I see the real

problem in the next Ave, ten years is coming to grips with real time signals,
and imperfections. You don'

t have sixteen bits of accuracy in real neural circuits
. You have only a few bits of accuracy. There have to be ways to adapt

around that, to take advantage of a limited dynamic range.
It

'
s going to be a long time before we create anything that is autonomous.

Truly autonomous. You can create something in a very arti Acial environment
that will continue to work autonomously, but as soon as you have uncertainty

, variability , something that you didn'
t anticipate, you have trouble.

We have to deal with uncertainty all the time- different lighting conditions,

something that you trip on, something that someone says that you didn
'
t

anticipate. Unless we build a system that can anticipate surprises and take

advantage of new things happening, then I don
'
t think we

'
re going to

appreciate what the real problems are.
In twenty-Ave years we should have hardware that can do the enormous

computation needed for real-time vision. We have to have new ways of

putting together all of the chips. It
'
s not enough just to have a retina chip;

we have to have a retina chip that is integrated with the motion chip. The
motion chip has to be connected to the motor chip.

In other words, you have to have a way of putting it all together so it
works as a whole, as a system. We need an arbitrator to Agure out which
networks control the motor system. But what if there

'
s no arbitrator? You

then have an anarchy of hundreds of networks, all competing for attention
and control. Somehow it

'
s organized in such a seamless way so that control

'
s

passed over from one part of the brain to the next, depending on the context
and what's needed at that moment.

ER: Do you think there will ever be a single brain theory?
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TS: What we see now as a lot of isolated results and pieces that don
't fit

together perfectly could at some future date be seen to be limiting cases of

a much broader and far-reaching framework. But it
's just as likely that it

'
s

going to go the other way. If you look in the brain, you don't see one system

, one network. What you see instead are hundreds, perhaps thousands, of

subnetworks that have been honed by evolution to perform particular tasks,

interacting with lots of other pieces that are specialized for other tasks. And

then there is some sort of overall organizational scheme so that they don
't

trip over each other's feet, so to speak. There may be a dozen theories up
there dealing with different problems that have to be solved.

At some future date there may be a way of seeing how all the pieces fit

together: Given that you have this type of representation in the 'cortex, then

it follows that you must use this kind of motor controller to move limbs. In

other words, there may not be independent solutions, and there may be

evolutionary strategies
-

parallel evolution of strategies in different parts of

the brain- and we
'll see a commonality. Maybe it

'
s being obscured by the

fact that the neurons look different. But there may be a commonality that

will emerge in the long run. But so far, we don
'
t see it .

We know that across species there's fantastic diversity- all the different

invertebrate plans, with creatures that crawl, swim, and fly . There may be at

least two or three different theories, different solutions to the same class of

problems.

ER: Is there anything special you wanted to say about the role or influence 

of government and government funding on the field?

TS: I've been fortunate to have support through government and also private 
foundations. My first grant was from the Systems Development Foundation

, which helped get the field started. Some inspired funding is coming
from places like the Air Force, and the Office of Naval Research.

One of the advantages of a system that offers a large variety of places for

people to go for funding is that a lot of ideas are explored in parallel. The

$500 million that was spent by D A R P A
'
s Strategic Computing Initiative on

the Autonomous Land Vehide seems in retrospect to be a fantastic waste of

resources, fantastic beyond anything we can even imagine. $500 million is

real money even by government standards. But a lot of other factors were

involved there. Perhaps other approach es couldn
'
t have gotten as far as they

did because they wouldn
't have developed the infrastructure and the experience

. The future is difficult to predict and often it is . difficult to judge the

value of a project until you get there.
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Paul J. Werbos

Paul Werbos is Program Director of the Knowledge Modelling and Computational Intelligence 

program at the National Science Foundation, Arlington, Virginia. The best source for
further reading is his article, 

"
Optimization: A Foundation for Understanding Consciousness

,
" 

in D. Levine and W. Elsberry, Editors, Optimality in Biological and Artificial Networks
?, Lawrence Erlbaum Associates, 1996.

June 1993 , Baltimore , Maryland

ER: Paul, can you tell us something about your growing up and early
childhood?

PW: I was born on September 4, 1947, in the suburbs of Philadelphia.
When I was very young, I was interested in mathematics. I remember getting 

a book when I was about eight, All about the Stars, from my parents.
Then I went out and weeded lawns to earn money to buy books by Hoyle
and Gamow, people like that.

The book that influenced me most was Fred Hoyle
's paperback book. The

title was The Nature of the Universe [Harper, 1951] and I remember reading
it when I was eight, in 1955. I remember it because my family was very
strongly Catholic, staunch Catholics. They originated, at least on my father's
side, from the same neighborhood where von Neumann originated, around
Timmesfarb, a German enclave in Romania. They were staunch Catholics,
and my mother was a staunch Irish Catholic. I can remember when I read
the first chapter of Hoyle

's book, I was thinking to myself something r~ally
obnoxious like, 

"Ch, the glories of God's universe." And I got to the second

chapter, and it got even better. Then I got to the last chapter, where it says
there is this little planet full of these walking robots, and they had this incredibly 

arrogant idea that the universe was formed by a walking robot. They
have these meaningless things called communism and capitalism that they
shoot each other about, and they think they

're important. And all of that is
total illusion. All we have are the laws of physics.

My initial reaction to that was, 
"
My God, this is what they

've been telling
me is evil. This is terrible. This is horrible."

And then I started thinking it over. How do I know? What is the basis
for my knowledge? And the more I thought about it, I started saying, 

'/Gee,



my source of knowledge for Catholicism is what the nuns told me. This guy

Hoyle probably knows more than those nuns do anyway." And so that was

the end of Catholicism for me.

Independently, I became interested in mathematics. Obviously , mathematics 

fit into what Hoyle was talking about. I found in the attic one of my
mother's old algebra books, and I snuck it away. When I told my elementary
school people that I was already studying algebra, they laughed. But then

somewhere around the fifth grade they decided, 
'
Why don

'
t we check? He

does seem to know his multiplication tables pretty well.
" 

So they checked,
and I did know algebra.

I finished the calculus course by the end of sixth grade. They sent me to

the University of Pennsylvania to take the junior honors calculus course,

complex variables and such, when I was in the seventh grade. My parents
sent me to Lawrenceville in New Jersey so that I could go to Princeton. I had

the equivalent of an undergraduate math major with a graduate course or

two before I graduated at fourteen or fifteen from Lawrenceville.

During that time I took some summer courses in computing. This was one

of the good things that NSF [National Science Foundation] did back then,
but you couldn

't easily measure results from it . It has since been discontinued 

because you couldn
'
t measure it . I took one of those summer courses

at Temple where I learned how to do computer programming. Then, the

Moore School of Electrical Engineering at Penn. had an advanced version of

the same thing, which I took. I guess I was fifteen at the time.

I worked for a summer before I went to Harvard. I worked at the University 

of Pennsylvania Hospital, Jefferson Hospital. We were supposed to

be studying the circulatory system. The guy I was working for handed me

DO . Hebb
'
s The Organization of Behavior [ Wiley, 1949; a classic in the

behavioral sciences]. I thought that was neat. I was supposed to give a talk

back at the Moore School, to inspire the next generation of high school students

. So I said, 
"
How about I program this thing up [Hebbian learning], and

I' ll give a report on it .
"

We scheduled a date. But I looked at it , and I said, 
'Wait a minute, this

is not clear.
" I tried different ways of looking at it, and I said, 

"
This won

'
t

k
"

wor .

It was obvious to me from a statistical point of view that Hebbian learning
was going to be measuring correlation coefficients, and for multivariate

problems it would not work. I never gave the talk. I said, 
"
Now I

'
m going to

figure out something with the same flavor that does work."

At that time, I guess I was sixteen. There were some other things that influenced 

me. I'd read the Foundation Trilogy [by Isaac Asimov, science fiction

classics]. It had some ideas about organizations and thinking. I had forgotten
that book, but when I reread it later, it was like a blueprint for my life. I

didn
'
t consciously remember it, but the impact of that book was incredible.

I
'
d also read Feigenbaum and Feldman

'
s Computers and Thought [McGraw-

Hill , 1963 ]- a beautiful simple book. Ironically, Minsky
'
s chapter was one of
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the things that got me most excited and turned me on. Minsky was one of

my major influences. Well, Minsky and Hebb and Asimov and Freud.
I decided I wanted to do this. This will help us understand the human

mind; it will help human beings understand themselves. Therefore, they will
make better political decisions, and better political decisions are vital for the
future of humanity. I remember explicitly thinking about how developing
this mathematics could help us make better political decisions.

I got to Harvard and I was still interested, but there were no courses in it
[brain theory]. There were math courses, but I already had them. There were

computer courses, and I felt I already had them. Even the graduate courses
didn't look as if they had anything that was really new. So what could I do?
I took the one and only neurophysiology course they .had. It was. a course
for premeds. You were supposed to spend a lot of time memorizing various
hormones. I didn'

t do what I was supposed to do, so I got only a C + in the
course.

I spent a lot of the time reading Rosenblith's Sensory Communication [MIT
Press, 1961], reading Morgan and Stellar [Physiological Psychology] and getting 

that vocabulary down straight and thinking about modeling. I spent a
lot of my college career not doing what I was supposed to do but instead

thinking about neural networks. I wound up majoring in economics.
You may ask, 

'
What does economics have to do with it?

" 
Well, by that

time I'd decided reinforcement learning was the paradigm I wanted to

pursue. I really felt reinforcement learning was the right way to think about
it . I was still frustrated by the fact that I knew Hebb wouldn

'
t work, and I

wanted to find something that would work. Before you start fine-tuning it,
you need a first-order thing that works. That

'
s what we

'
re still doing today. I

feel as if I'm actually past that stage, but I feel the profession still has not
reached the stage of having things that work.

I suspect if you take people in the audience here [the interview was held in
Baltimore at an International Neural Network Society meeting], they

'
re still

doing supervised learning. They haven
'
t really grasped reinforcement learning 

and what it means. I wanted to do reinforcement learning, and I knew it
had something to do with distributed optimization because a neural net is a
distributed system.

In economics, some people had spent years and years trying to figure out
how to build an optimal, decentralized decision-making system. I was interested 

in that problem for its own sake, and it had larger political and social

implications, which I still care about. I figured it
'
s the same mathematics you

need for neural nets. I wound up learning about linear programming, how
that interfaces with economic systems, marginal thises and marginal thats,
how you get nonlinear optimization out of a distributed system. My real

goal was to build a mathematics to help you understand the human mind.
In senior year, one of my suitemates was Dan Levine. We all had single

rooms on the gold coast in Adams House at Harvard, but he was the closest

thing I had to a roommate. He and I spent hours and hours discussing neural
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nets. I
'm the one who got him interested in them, and afterward he went

to work for Grossberg in part because we had fun conversations. We used

to debate optimization. He's going to be coming out with a new book [D.

Levine and W. Elsberry, 1997. Optimality in Biological and Artificial Networks."

Hillsdale, NJ: Erlbaum]. He says his real goal was to recreate our old discussions 

at Adams House about optimization and the human mind.

I wanted to publish some of this because even though I didn't have a

working system, I felt as though this was a start toward a working system.

Trying to publish the start of a new concept is very, very hard, especially if

you:re a mere student. .
I was in London the year after Harvard, more for R and R than for anything 

else. I got a master
's degree in London. That year I sent in a paper to

Cybernetic a, which was published in 1968. It was not a coherent thing, but it

had the germs of all the later ideas. If somebody had ever had the mathematical 

ability and had pursued those ideas, a lot of this stuff would have

been in the literature sooner than it was. Being published is not the whole

thing. Maybe it was the wrong journal.

I talk in there about the concept of translating Freud into mathematics.

This is what took me to backpropagation, s.o the basic ideas that took me to

backpropagation were in this journal article in 
'
68. I talked a lot about what

was wrong with the existing [two state] McCulloch-Pitts neuron model, and

how it was only 
"
I
" 

and 
"
0.

" 
I wanted to make that neuron probabilistic. I

was going to apply Freudian notions to an upper-level, associative drive reinforcement 

system. When I look at what Grossberg is talking about now,
it

'
s very, very similar because his gated dipole system basically is measuring

a matrix. That's what I put in this paper. This paper showed how if you had

that kind of matrix arrangement, you could derive a secondary reinforcement

system that would allow you to do optimization over time. There
'
s a link

between the concepts in there and Grossberg
'
s current concepts. In order to

make it work from an engineering point of view, I later shifted to a different

approach altogether, but it 's possible that original approach could work.

It
'
s possible that what Grossberg and Levine are talking about could work.

Nobody has yet applied the necessary engineering mathematics horsepower
to find out if that kind of architecture could work because the engineers

basically won
'
t listen to what Grossberg writes.

ER: Where did you go to school in London?

PW: London School of Economics. To describe it as recreation may be

a slight exaggeration, but Harvard was a problem-set kind of environment.

There was a little bit of the treadmill, and, frankly, there was also a little bit

of the monk, being an undergraduate at Harvard. If you wanted to spend half

your time doing neural nets and still pass your courses, you wound up in a

very monkish style of existence. Going to the London School of Economics

was great for my sanity because they had a totally different style of education

. It was a seminar-based system, not a lot of grades, and you learned
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a lot in class. We were doing international political systems. I wanted to
understand these systems and see if that understanding could help do useful

things in the world . That still is one of my major concerns.

We can complain about credit assignment in the neural network world,
but in the political world it is ten thousand times as bad. [The 

"
credit assignment" 

problem in. artificial intelligence refers to the notorious difficulty of

assigning credit or blame to the appropriate parts of a complex interacting
system.] To get a good idea through the system, you have to abandon any

pretense of credit, and then after you do that, you won
'
t be able to continue

on with the same endeavor. It
'
s hard to apply systems theory to political

systems- not for intellectual reasons, but for social organization reasons.
Then I went back to Harvard to get a PhiD. in applied math. Having been

fortified with humanity from London, I then descended into the bowels of
the machine, stopping off at the RAND Corporation for the summer of 1968

along the way.

I was excited about working at RAND because I heard they were good in
two things: U.S.-Soviet relations, and cybernetics and dynamic programming

. I said, 
"
My God, that's the right mix for me.

" 
Then I got there, and

they told me I was going to work on the Vietnam War. I said, 
"
Gee, it

's not
that I

'
m opposed to it ; I have no moral inhibitions about it . It

'
s just that

you
'
re going to get zero product from me because I don

'
t know anything

about Asia. I know lots about Europe, the Soviet Union, I know lots about
mathematics, but if you give me work on the Vietnam War, it

'
s just going to

be crap. I
'
ll do the best I can, but I want to warn you, the product isn

'
t going

to be good."

They interpreted that to mean that I was an evil war protestor. A guy
named Ikle who later became director of ACDA [Arms Control and Disarmament 

Ageney] and then number three in the Pentagon personally
threatened me that if I did not work on this Vietnam project and stop giving
them caveats, I would be blackballed and would never have another job for
the rest of my life.

At that point I said, 
"
All right, all right, you want it, you get it .

"

Actually, I did learn a thing that summer that surprised me. It turned out
one of their problems was coming up with a measure of success in the Vietnam 

War. A lot of people were using a measure called the body count. The

body count was a total disaster. It came from a very highly classified paper,

presumably declassified by now, which was total nonsense in any event.
Niskanen, who later became head of the President

'
s Council of Economic

Advisors, made a very thorough, econometric study of the Vietnam War.

Basically, he used factor analysis, which is a stupid method for this purpose.

People then said, 
"
Gee, enemy deaths are correlated with American deaths.

"

They didn
'
t say exactly that, but that

'
s what drove the factor analysis. The

prime factor therefore turned out to involve deaths of American soldiers.

They didn
'
t quite want to say it in these terms because basically it said the

more soldiers you got killed, the better you were doing.
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I looked at this, and I said, 
"
OK, not only is this silly from a substantive

point of view, but from a methodological point of view. Knowing something
about systems design and control, I know why this is crazy. This is not a

good measure of success."

So I immediately went into doing a dynamic system identification kind of

thing, causal analysis, which was part of the adaptive critic design that I was
into, that I even talked about some in Cybernetic a- model-based optimization 

designs over time. I used all that to come up with an argument for
better measures of success.

I looked for stable invariants, and they were things like Vietcong attacks
on Americans. That was the best stable invariant underlying measure. I used
that as a success measure and came to the conclusion that we

' 
should radically 

change our policy and do things like small-unit actions instead of these

large sweeps.

They sent the paper to the Pentagon. The guy who was theoretically the

principal investigator didn'
t discover it until very late in the game because of

security and because he wasn
'
t physically on site. So in September of that

year, on my birthday, I wound up flying to the Pentagon, talking to the
number three guy in the Pentagon. His name was something like Einthoven.

It was a strange conversation, because they walked in, and the number six
man in the Pentagon said, 

"
Uh, Mr . Einthoven, these guys have come up

with an interesting result based on a statistical analysis of this data.
"

His first reponse was, 
"
Bullshit ." He just sat there. Meanwhile, everybody

was shaking. He turned around and uttered two sentences. He said, 
'
1t's all

the Marines, false correlation. It
'
s I Corps.

"

Scurry around, scurry around, then number six guy said, 
'
They did a

separate split-sample study, and they excluded I Corps. They got the same
results."

And Einthoven said, 
"
Really? Well, we

'
d better look into it ."

Of course, it was all classified, and I read it on the front page of the New
Yark Times two weeks later, which immediately made me very cynical about
American security. The minute it

's useful, it
'
s on the front page of the New

Yark Times. That made me very cynical- that event plus a few other things
that happened at the RAND Corporation. They were very diligent about

checking your suitcases and having you show up to work at 9 point 00 point
00. When it came to major fundamental strategic matters, of course, that

goes on the front page of the Times. What else do you do with important,
critical things?

I went on to Harvard graduate school and descended into webs of problem 
sets. Mainly what I studied at the graduate school was mathematical

physics and quantum the~ry . I minored in decision and control. I took

Bryson and Ho'
s course and learned more about dynamic programming.

After I had done the basic course work, I was tom because I wanted to do

something very fundamental in science. There were two or three areas I was
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interested in. One had to do with the foundations of physics. But that was
further out than backprop. Another area was models of intelligence. Another
was models of motivation because you have to figure out where the reinforcement 

function comes from. I spent time thinking about all three areas.
I had passed all my course requirements. It seemed dumb to me that I had

to sign up for four courses when I was supposed to be working on a thesis,
but that was Harvard

'
s rule. I decided to take a course where you get free

computer time and do a computer project. Initially , I was going to do something 
on quantum physics. I learned something about partial differential

equations, but not enough. I couldn
'
t produce a really useful product at the

end of .r number of months.

So I went back to the committee, and I said, 
"
Gee I can

'
t do that, but I

have this little method for adapting multilayer perceptrons. It
'
s really pretty

trivial . It 's just a by-product of this model of intelligence I developed. And
I'd like to do it for my paper for this computer course.

"

They said, 
'
Why don

'
t you go talk about it to Larry Ho?

"

I said, 
"
Look, I

'
ve got a problem with this course. I can

'
t solve the problem

of reality in a course of six months, and so now I want to do a fallback. I've

got this method for training multilayer perceptrons. I
'
m convinced it would

work, and I know it 's not a big thing, but at least I
'
ll get credit for the

"course.

Ho
'
s position was, 

"} understand you had this idea, and we were kind of

openrninded. But look, at this point you
'
ve worked in this course for three

months, admittedly on something else. I
'
m sorry, you

'
re just going to have

to take an incomplete in the course.
"

And I said, 
"
You mean I can't do it?"

"
No , no, you

'll have to take an incomplete because, basically, the first

thing didn't work. We
'
re very skeptical this new thing is going to work.

"
"
But look, the mathematics is straightforward.

"
"
Yeah, yeah, but you know, we'

re not convinced it
'
s so straightforward.

You got to prove some theorems first.
"

So they wouldn
'
t let me do it . One of the reasons that is amusing to me is

that there are now some people who are saying backprop was invented by
Bryson and Ho. They don

'
t realize it was the same Larry Ho, who was on

my committee and who said this wasn
'
t going to work. Ho was right to

be skeptical because I was flying by intuition . If he couldn't reproduce my
intuition in his head, it was entirely legitimate for him to be skeptical. I do
think they should have given me permission, however.

By the time my orals came around, it was clear to me that the nature of

reality is a hard problem, that I
'
d better work on that one later and finish my

PhiD. thesis on something small- something I can finish by the end of a few

years, like a complete mathematical model of human intelligence.
So I defended before my thesis committee a mathematical model of intelligence 

and motivation . I said, 
"
These are the things that I'm interested in.

But I think intelligence is the one I'm going to do for the thesis.
"
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I can remember those orals very well. It turned out the committee was

more interested in motivation than they were in intelligence. I had a one-

page prospectus that talked about each problem. Somewhere in that page, I

think I made a statement that there might be parameters affecting utility
functions in the brain, parameters that vary from person to person. You

could actually get a signi Acant amount of adaptation in ten generations
' time.

I was speculating that maybe the rise and fall of human civilizations, as per

Toynbee and Spengler, might correlate with these kind of things. The political 
scientist on the committee, Karl Deutsch, raised his hand. I

'd worked for

him, by the way, in previous summers. He wrote The Nerves of Government

[Free Press of Glencoe, 1963], arguing that the political system is a neural

network system. He became president of the International Poll~ical Science

Association. His book, The Nerves of Government, which compares governments 
to neural networks, is one of the classic, accepted, authoritative books

in political science.

He raised his hand and he said, 
"
Wait a minute, you can

't get signi Acant

genetic change in ten generations. That cannot be a factor in the rise and fall

of civilizations. That
'
s crazy.

"

Next to him was a mathematical biologist by the name of Bosse~, who

was one of the world
'
s authorities on population biology . He raised his hand

and said, 
"
What do you mean? In our experiments we get it in seven generations

. This guy is understating it . Let me show you the experiments.
"

And Deutsch said, 
"What do you mean, it

'
s common knowledge? All of

our political theories are based on the assumption this cannot happen.
"

And Bossert said, 
"
Well , it happens. Here

'
s the data."

What happened was my oral defense became a discussion between the

political science department and the applied mathematics and biology guys. I

could scarcely get a word in edgewise. I passed the orals having said about

two sentences and not having discussed models of intelligence.

I said, 
"
OK, now I can do what I want to do because I passed with flying

colors, even though I didn
'
t say anything.

"

Then I got started. At some point, I had to write a prospectus on the

model of intelligence. I did, and it was with an adaptive critic, and back~

propagation was part of it . But the backpropagation was not used to adapt a

supervised learning system; it was to translate Freud
'
s ideas into mathematics

, to implement a flow of what Freud called 
"
psychic energy

" 
through

the system. I translated that into derivative equations, and I had an adaptive
critic back propagated to a critic, the whole thing, in '

71 or 
'
72. I actually

mailed out copies of that paper to some people out at Stanford and certain

people around Harvard.

The thesis committee said, 
"
We were skeptical before, but this is just unacceptable

. This is crazy, this is megalomaniac, this is nutzoid. So you have

to do one of several things. You have to And a patron. You must And a

patron anyway to get a PhiD. That
'
s the way PhiD.s work.

"



I was under the illusion that getting a PhiD. was your own creative piece
of work. I'd read that. I believed democratic theory. I thought we were in a

completely free country. I had lots of illusions back then.
"
OK, I

've gotta find a patron." They suggested that I go to MIT , and there
were a few people the committee would accept. One of them was Grossberg.
One of them was Minsky . One of them was Lettvin. I spoke to all three of
them in a search for a patron. The committee didn'

t like the neural network
area generally, but they said, 

"
Look, you find a patron for your thesis, and

we
'
ll let you graduate in this area.

"

I went to speak to Steve Grossberg, who was an assistant professor at
MIT . I remember this very wooden office. I walked in, handed him the

papers, came back, and he said, 
'
Well , you

'
re going to have to sit down.

Academia is a tough business, and you have to develop a tough stomach
to survive in it . I'm sure you can pull through in the end, but you

'
re going

to have to do some adaptation. So I want you to sit down and hold your
stomach, maybe have an antacid. The bottom line is, this stuff you

'
ve done,

it 's already been done before. Or else it 's wrong. I'm not sure which of the
two, but I know it

'
s one of the two.

"

Well, if he
'
d said one or the other, I might have felt bad, but when he said,"

I know it
'
s one of the two, and I don'

t know which,
" 

I thought, 
"
Gee, there

might be a loophole in here somewhere.
"

Then he handed me some of his papers, and he said, 
"
See, I have theorems

to prove that it 's already been done. So either you have replicated my work,
or your work is wrong. I don

'
t know which. But based on these theorems, I

know that my work is the solution to those problems. So if you
'
re willing to

work within this approach, there might be something to do."

But I didn
'
t hear that part, frankly because I was doing something else, and

maybe there was a little pain in my stomach because clearly I had a problem.
How was I ever going to graduate at this rate?

So he handed me his papers. I can honestly say, based on those papers-

this was really early, like '71, 
'
72- 1 know that he was talking about what

we now call Hopfield nets because that
'
s what was in these papers. He was

having trouble getting it published. It may be that what happened with

Grossberg is in part what happened with me- namely, we had the exact
same idea in the exact same form, but people weren't willing to publish it .
He had to dance it through and change it and modify it and screw it up
before people would allow it to get through the system. And then after the
screwed-up version got through, then people would allow the full form of it
to come in from places that they trusted. We were not people they trusted,
neither Steve nor I.

At any rate, what I heard from Steve was not encouraging. He did

say, 
"
You know, it might be nice if you had found an elegant thing like a

LaGrangian formalism from which you rederive what I've got . That might be

intellectually interesting if you found a way to rederive what I've got from a
more general perspective.

"
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I confess at that time I did not know LaGrangian mechanics. The funny

thing was that the first course I'd ever taken in physics was quantum mechanics

, and that was the only physics I knew.

I spoke to Minsky . I remember I had my Rosenblith, and I said, 
"
You

know, I
'
ve got a way now to adapt multilayer perceptrons, and the key is

that they
'
re not Heaviside functions; they are differentiable. And I know that

action potentials, nerve spikes, are 1 or 0, as in McCulloch-Pitts neurons, but

here in this book that I had for my first course in neurophysiology are some

actual tracings. If you look at these tracings in Rosenblith, they show volleys
of spikes, and volleys are the unit of analysis. This is an argument for treating 

this activity as differentiable, at least as piecewise linear. If you look at

that, I can show you how to differentiate through it .
" .

I went to Minsky for help, but Minsky would not offer help. Minsky basically 

said, 
"
Look, everybody knows a neuron is a 1-0 spike generator. That is

the official model from the biologists. Now, you and I are not biologists. If

you and I come out and say the biologists are wrong, and this thing is not

producing Is and Os, nobody is going to believe us. It
'
s totally crazy. I can't

get involved in anything like this.
"

He was probably right, I guess, but he was clearly very worried about his

reputation and his credibility in his community.

Minsky also said, 
"
You know, I used to believe in all this kind of stuff with

reinforcement learning because I knew reinforcement learning would work. I

knew how to implement it . I had a nice guy named Oliver Selfridge who

came in and acted as my patron and gave me permission to do it . We co-

authored a paper, but it was really my idea, and he was just acting as patron
on the Jitters machine. I

'
ll hand you the tech report, which we have deliberately 

never published.
"

It was his bad experience with the Jitters machine that turned him off on

reinforcement learning and all the neural net ideas. It just didn't work. I later

looked at that paper, and it was transparently obvious to me that what was

wrong was that he didn
'
t understand numerical analysis. He didn

'
t understand 

the concept of numerical efficiency. We still have people in the learning 

business today who do not understand the concept of numerical or

statistical efficiency. He had a system that was highly multivariate with a

single reinforcement signal. The system can
't learn efficiently with that. At

any rate, he was totally turned off. That was the end of Minsky .

So I decided, 
"All right , now I

'll try Lettvin.
" 

It was funny. I walked in, and

he said, 
"
Oh yeah, well, you

're saying that there
'
s motive and purpose in the

human brain."

He said, 
"
That

'
s not a good way to look at brains. I've been telling people,

' You cannot take an anthropomorphic view of the human brain.' In fact,

people have screwed up the frog because they
'
re taking bachtriomorphic

views of the frog. If you really want to understand the frog, you must learn

to be objective and scientific. And besides which, even in physics, you know

you can show the physical universe maximizes a utility function, but that
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doesn
'
t prove it

's an anthropomorphic entity . People have just got to get .out
of this whole style of thinking."

Besides, he said, 
'
We will never understand the brain. It is too impossibly

complex and ad hoc."

I recently ran across Lettvin, just this past year. He has mellowed in many
ways. He recognizes that plasticity is what

'
s really exciting about the brain.

I'm an extremist about plasticity. He
'
s even more extreme. I believe that

within any layer of the nervous system, you have the same learning rule.

Everything is produced by learning at the higher levels. The lower-level

systems are so complex that we'll never get a total mathematical handle
on them, but they

'
re inherently boring anyway. At the higher levels, I would

argue, there is an inherent modularity in the learning, which means that it
is inherently understandable. A relatively simple set of learning rules explain
the whole diversity of what we observe after the fact.

I believe it
'
s just like the physical universe. You can't know everything in

the physical universe, but you can understand the laws of dynamics, the laws
of change. I would argue you can understand the laws of the learning that
underlies the interesting stuff in intelligence. The cortex and the cerebellum,
the olive- the fun places that provide higher intelligence. Lettvin is so extreme 

he even argues that one neuron can t~ e over from another neuron, so
it 's really general and really modular. I don

'
t think it

'
s quite that general, but

in terms of the learning mechanism, there may be histological development
mechanisms that provide some additional flexibility .

I might add that when I was an undergraduate, I had a few conversations
with McCulloch that influenced me a lot but had nothing to do with my
PhiD. thesis. Maybe the conversations with McCulloch changed my view of
what neural nets were. I really got along with him. He was a really neat guy
even though it was his model of the neuron I was challenging. Maybe if I'd
talked to him about this model, I would have saved my career.

McCulloch changed my view of the human mind a little bit . I guess I
should be totally honest, given the obscure nature of what we're about here.
OK? This is a personal, not a scientific, sort of a thing. From age eight, I
believed that when we understand the brain and we have the mathematics
down pat, we'll get rid of a whole lot of mystical crap that has confused

people and distorted their decisions and made them do bad things. As a
result of some things that followed from conversations with Warren
McCulloch, I eventually was convinced that maybe there are attributes of
the human mind that we can't reduce down to neurons. I got so far off the

deep end that I now go to Quaker meetings.

I think there is something out there beyond what our models of the brain
are going to give us. It

'
s ironic. The main thing Warren McCulloch did to

my head was to send me into that orbit . But I still believe the mathematics
is important because I believe that mathematics is a universal, just like the

Pythogoreans used to say. I believe all forms of intelligence that we can

possibly conceive of have to be governed by mathematics. Whether these
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forms are physical neural nets or not, I still think that mathematics is relevant

. These days, if people ask me what my religion is, first I say Quaker
Universalist, and if that doesn't work, I tell them to read Bernard Shaw

's Back

to Methusalah, which is the next best approximation. And then I actually
discuss what I think is going on if they

'
re intelligent enough to be interested

in my idiosyncratic views of the mind. That
'
s what Warren McCulloch did.

I didn't find a patron. Nobody would support this crazy stuff. It was very

depressing. I tried to simplify it . I said, 
"
Look, I

'll pullout the backprop part
and the multilayer percept ron part.

"

I wrote a paper that was just that- that was, I felt, childishly obvious. I

didn't even use a sigmoid [non-linearity]. I used piecewise linear. I could

really rationalize that to the point where it looked obvious. 10 handed that

to my thesis committee. I had really worked hard to write it up. They said,
"
Look, this will work, but this is too trivial and simple to be worthy of a

Harvard PhiD. thesis." I might add, at that point they had discontinued

support because they were not interested, so I had no money.

Approximately at the same time there were scandals about welfare fraud,
about how students were getting food. They cut off all that kind of nonsense

, so basically I had no money. NO money. Not even money to buy
food.

A generous guy, who was sort of a Seventh Day Adventist and a Harvard
PhiD. candidate in ethnobotany, had a slum apartment that rented for about

$40 a month in Roxbury in the ghetto. He let me share a room in his suite, in

his suite with the plaster falling off, and didn
'
t ask for rent in advance. I had

no money at that time for food. There was a period of three months when
I was living there in the slums. To conserve the little bit of money I had, I

remember eating soybean soup and chicken neck soup. I remember getting
the shakes from inadequate nutrition .

As for applying for jobs, this was in the days of the great aerospace
layoffs. People were called overqualified, you know. I remember getting one

very short-term job doing a computer program for an astrophysicist at MIT .

It was really terrible. I was a mile from the Harvard Medical School

Library, where I would walk to keep my sanity every day. Past tons and

tons of dog shit. They never cleaned the streets. And through the gangs.

So I guess I was starving for my convictions.

Finally, they said, 
"
Look, you know, we

'
re not going to allow this.

" 
There

was this meeting where we sat around the table. The chairman of the applied
math department at that time was a numerical analystD . G. M . Anderson.

He said, 
"
We can

'
t even allow you to stay as a student unless you do something

. You
'
ve got to come up with a thesis, and it can

'
t be in this area."

Karl Deutsch was the political scientist I had worked for, and he wanted to

be helpful. He had a funny feeling something bad was happening here. Ideas

like this shouldn
'
t be totally destroyed. He didn

'
t have the math, but he had

a feeling something was going on here. He knew that I had done very good
work for him in previous summers.

Paul J. Werbos346



Paul J. Werbos347

So Deutsch said, 
"
You

'
re saying we need an application to believe

this stuff? I have an application that we could believe. I have apolitical -

forecasting problem. I have this model, this theory of nationalism and

social communications? What causes war and peace between nations? I

have used up ten graduate students who
've tried to implement this model

on real-world data I
'
ve collected, and they

've never been able to make it

work. Now, do you think your model of intelligence could solve this problem 
and help us predict war and peace?

"

I had actually seen that model and some of the earlier results. It was my

conclusion at that time that some of the problems with that model were due

to subtle stochastic effects, which I had worried about in a neural net context

, but which also had conventional statistical aspects to them. I felt that

the cutting-edge statistics that really relates to the neural nets- ARMA

modeling- could do the job. My response to the mathematicians was to say
what I just said. I said, 

"I can do it . It
's not exactly a model of intelligence,

but I believe I can handle this problem."

They nodded their heads, and they said, 
"All right . If you can use this new

model of intelligence, and it actually works in predicting models of conflict
- if you succeed, yeah, we

'
ll give you the degree.

"

My impression was that half the guys felt, 
"
Boy, this is a good way to get

rid of him.
" And one or two felt, 

'
Well , he

'
ll do the statistical thing, but it

will be legitimate, and it won
'
t be any of this funny neural stuff.

"

So they said, 
"
OK, go ahead.

"

The next thing, I went back to my Box and Jenkins and said, 
"
Of course.

The multivariate generalization is trivial ; I
'
ll go ahead and do it .

" 
And I went

to the algorithm that was in the book by Box and Jenkins to implement it . I

got computer time from the MIT Cambridge Project, which Deutsch was

connected to. It was a joint MIT -Harvard project at that time. I said 
"I'll just

code this up."

And then I looked at the algorithm, and suddenly, pain in my stomach because 

the cost of estimating multivariate ARMA process es, with the good,

standard algorithm published by statisticians, increased like n6. Even though
n was small, that would be enough to blow the computer budget. Suddenly, I

felt very, very sick to my stomach. My God, I
'
m not going to graduate after

all. I remember those days of sheer agony. It did hurt in my stomach a lot .

And I'm not being figurative.

I remember pounding the walls with my mind and thinking, 
"Dammit , I

can build a brain in order n. How come I can't do this faster than order n6?"

And I thought, 
'Wait a minute, wait a minute. Why can

't I go back and use

this little backpropagation algorithm and solve this statistics problem?"

Then I generalized backpropagation to handle time-varying processes
-

what people would now call recurrent or time-lag recurrent systems. I showed

that I could use that to solve the statistical estimation problem within the allowed 

computer budget. So I went ahead.
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The first application of backpropagation in the world in a generalized
sense was a comman"d that was put into the TSP [Time Series Processor] at

MIT , available to the whole MIT community as part of their standard software

. It was published as part of MIT
'
s report to the DOD [the Department

of Defense] and part of the DO D
'
s report to the world . It was part of the

computer manual, so the first publication of backpropagation was in acom -

puter manual from MIT for a working command for people to use instatis -

tical analysis . I was a second author of that manual. It was Brode, Werbos ,
and Dunn .

That manual went out . It said, 
"
We

'
re using this funny method ,

" 
which I

called dynamic feedback. One of the funny things was that we discovered

that ARMA modeling was not the way to solve that statistical estimation

problem . I
'
d gotten an idea for another way to solve the problem that did

work , fortunately . The other method is something that the neural net community 

has not grabbed onto . I did a lot of nonneural tests of this alternate

estimation method , which I called the pure robust method .
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But, you know, you have to go one step at a time, and that's what I didn't

understand. I got a lot of bad advice from people who said, 
"You know, you

shouldn't have your next publications all be just your PhiD. thesis. You've

got to go on to do something new."

Well, that was bad advice because my PhiD. thesis had enough for about

five careers in it. What I needed to do was to publish one idea at a time,
but it was so hard to get published that I tried to cram a lot into individual

papers. I think that's one of the reasons they weren't widely recognized.

Also, I felt very insecure about my access to journals because of the way

people dumped on me in the past and the lack of encouragement, and

that probably is why, like Grossberg, I have these early papers in the

seventies that have twenty ideas- you know, two paragraphs on each, each

of which will work- but that wasn't enough to really catch the eye of the

community.
That's a digression. The new method worked. I did forecast nationalism

and political assimilation. At that point, the Department of Defense became

interested. In fact, when you can predict conflict twenty, fifty years in advance

, it
's amazing who can become interested. I had a prior track. record

from the Vietnam War that the community as a whole didn't know about,
but they knew that "My God, this is the guy who told us how to get out of

Vietnam,
" which was essentially true because that change in strategy led to

a doubling in efficiency, which was what was behind our ability to remove

troops from Vietnam to a great extent, although there are many other aspects
to that story.

OK, so I had some brownie points at that time with the Department of

Defense. I had two job offers after Harvard. I didn't know that the way the

system works is your thesis advisor gets you a job. My advisor was Karl

Deutsch, so my job had to deal with political science. There was no choice.

I went to the University of Maryland in what was supposed to be a

public policy program. The provost had approved that. After I arrived, the

approval had disappeared, so instead of being the quantitative guy in applied
math and public policy, I instead found myself in a political science department 

proper, which was not a totally comfortable fit.

When I got there I also walked into being PI [Principal Investigator] on

a major grant from DARPA [Defense Advanced Research Projects Agency].

It wasn't like I had filled out a grant application. It
's like the DARPA guys

came and spoke to me and said, 
"Now you are going to head a DARPA

t ".gran .
That's where the job came from, too, because the head of the department

had been in charge of that office in DARPA- CTO, the Cybernetic Technology 

Office. It was a three-way grant. I was one-third PIon crisis management 
and forecasting. It was a three-year grant that bought off two-thirds of

my time.
One third of my time was teaching. I would teach quantitative methods,

like trying to teach backprop to graduate students in political science.
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Two-thirds of my time was working for DARPA. They kept telling me,
"
Look, we don

'
t want pure theory. You can spend some time on pure theory,

maybe half your time. But you
'
ve got to do it as crisis warning. And we

want a practical application.
"

I spent a lot of time working on adaptive critics. I already knew how to

do heuristic dynamic programming [HDP]. Temporal difference methods are

a special case of heuristic dynamic programming. But in the initial proposal
to my thesis committee there was a statistical efficiency problem with having
a scalar critic.

It was in this early period that I figured out how to get a multivariate vector 

critic, which I called dual heuristic programming, that solves the essential

combinatorial problem. I published it in The General Systems Year:book.

I also published the idea of heuristic dynamic programming. Barto and

Sutton
'
s TD [temporal difference] is a special case of HDP. It

'
s fun, but it 's

not a model of the brain. After I'd done this theoretical work, DARPA was

really pushing me for applications. 
'
We need a real-world application of this

stuff.
"

So I said, 
"
OK, they want it real world . What

'
s a real-world forecasting

model?
"

I found out that DARPA had spent a lot of effort building a worldwide

conflict forecasting model for the Joint Chiefs of Staff that was used in the

long-range strategy division of the Joint Chiefs. It was based on a worldwide

data set that they
'
d spent millions of dollars on as the basis of global stratagy 

planning for the u .S. I said, 
"
That sounds like a practical application.

What we
'
ll do is we

'
ll take that model, which is based on something, which

is sort of the equivalent of a TDNN [time-delay neural network], except
. classical. We will reestimate it using the pure robust method and the more

advanced methods that I've derived since then in the same vein."

So I sent someone to get the database. First of all, the database was secret.

Secondly, I was able to get it anyway. Third, it turns out that the data was

grossly misleading. I think that is the right way of putting it . The fact of the

matter is that it was largely interpolated data based on relatively unreliable

sources. To make statistical causal inferences based upon this kind of data

is highly improper in my view. I wound up sending a couple of graduate
students to create a really good database of Latin America.

I said, 
"
You want variance, high variance. Something hard to predict.

" I

thought conflict in Latin America would be the most beautiful case. I figured
there were enough cultural homogeneities that it would be a single stochastic 

process, but with lots and lots of variance in that process. So we got truly
annual data going back, I don

'
t know, twenty or thirty years for all the

countries in Latin America and then reestimated the Joint Chief
's model on

it . It had an r2 of about .0016 at forecasting conflict. By jiggling and jiggling
we could raise it to about .05. It could predict GNP and economic things
decently. Conflict prediction we couldn

'
t improve, though; it was hopeless.
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DARPA wasn
'
t happy when I published that result. They wanted me to

do something real and practical and useful for the United States. This was

useful, but it was an expose. They didn
'
t like that. Therefore, the report,

which included backpropagation in detail and other advanced methods,

was not even entered into DOCSUB. Every time I tried to enter it into

DOCSUB, somebody jiggled influence to say, 
"
No , no, no" we can

't publish
this. This is too hot.

"

It was published in the IEEE SMC [Systems, Man and Cybernetics] Transactions 

Journal in 
'
78 anyway because they couldn

'
t block the journals, but it

didn
'
t include the appendices. So that paper in 1978 said, 

"
We

'
ve got this

great thing called dynamic feedback, which lets you estimate these things. It

calculates derivatives in a single swoop, and you can use it for lots .of things,

like AI .
"

That was all in the paper, but the appendix on how to do it was not there

because of page limits for a journal article. The fact that we could get better

forecasts than conventional statistical methods was in the IEEE SMC Transactions 

Journal in 
'
78.

At that point, DARPA was no longer happy. Things were getting uncomfortable 

at Maryland. Marxists wanted to take over the department and

hated DOD people. I was not on the top of D A R P A
'
s list. I began to feel

uncomfortable. Nobody was in my camp. I was just a lone, middle-of-the-

roader surrounded by Marxists and military contractors and really traditional 

kind of political scientists. So, somebody offered me a chance to work

for a year at the Census Bureau developing these ideas. I wouldn
'
t commit

myself to leave Maryland, but I spent a year at the Census Bureau.

We had reports for the Farmers
' 

Home Administration that were just

adaptive critics translated into policy language. The USDA was just about

ready to put $1 million into using adaptive critics to allocate $20 billion a

year of agriculture loans. They might have done it if I had accepted the job
to stay on at the Census Bureau.

The Department of Energy [DOE] offered me a job. They said, 
"How

would you like to be the person evaluating our global long-range forecasting 

models to tell us what is really true in the whole global energy policy
area in order to advise the U.S. government?"

I said, 
"
Gee, that sounds like an important job. Based on what is useful to

the United States, maybe I ought to take that job." They wanted me to do

the quantitative stuff too- maybe not as much as Farmers' Home Administration

, but some. To this day, I don
'
t know if I made a mistake. I accepted

the job.

The guy who made me the offer is this wild guy, Charles Smith. He's a

real personality. You may remember how Alice in Wonderland was based

upon high-level people in the British establishment. There
'
s a certain style

that book tried to convey, and Charlie had much of that kind of style. At one

point, he was a clubby at Princeton. He had good degrees. I think he

had taught for Mo steller or Tukey [well-known statisticians]. He had a



mathema Hcal background, but he also had a unique personality as well-

definitely the opposite of what you And in bureaucracy. Too far in the other

direction, many people believe.

So Charlie hired me, and my job was to evaluate these models. I was

sincerely concerned about energy. I had some credibility in that part of DOE

because I wasn
't just a guy trying to sell a methodology. They really, really

wanted a sensitivity analysis of their very large long-range energy forecasting 

model, the official model used for long-range forecasting. They wanted

to know how the inputs depend on the outputs.

They had a million dollar contract at Oak Ridge [ Na Honal Laboratory] to

study that model. They wanted me for several things. One, they wanted me

to be a translator between engineering and economics. Two, the.y wanted a

critique. They wanted exposes. They wanted me to rip apart the models of

the Department of Energy in a very scien Hfic, objec Hve way that didn
't look

like I was trying to rip them apart, but was anyway. That's exactly what

they wanted to hire me for, and I didn
't really know that was the motive.

These particular people didn
't like modeling very much.

So at some point they wanted sensitivity analysis. And I said, 
"
You know,

I know a little bit about calcula Hng derivatives.
"

Now the Oak Ridge model was not really a Hme series model, so they
used their own sensitivity analysis methods, which they called adjoint
methods. Historically, if you wanted to And roots outside of neural nets for

backprop, you know, where I got it from was Freud, and maybe dynamic

programming to . a lesser extent. Another possible root, if you
'
re looking

for historical roots of things, would be the adjoint methods and people like

Jacob Barhen. Jacob used to work at Oak Ridge.

Based on what Oak Ridge sent me, what they were doing was very different

. A good way of describing it might be as follows. I had developed a

technique to operate through time by way of arbitrary nonlinear sparse

systems, dynamic systems. Oak Ridge had a technique for taking what we

would call simultaneous recurrent nets and getting derivatives out of them,

effectively but without really exploiting sparse structure.

It was about 1981 or 
'82 that I figured out how you combine Hme-lag

recurrence and simultaneous recurrence and get derivatives efficiently out

of both systems. I applied it to a natural gas model at the Department of

Energy. In the course of applying it I did indeed discover dirt . They didn
'
t

want me to publish it because it was too Poll Hcally sensitive. It was a real-

world application, but the problem was that it was too real. At DOE, you
know, you don't have First Amendment rights. That's one of the terrible

things sombody
's got to Ax in this country. The reality of the First Amendment 

has deteriorated. Nobody
's breaking the law, but the spirit of the First

Amendment has decayed too far for science. At any rate, they Anally gave
me permission to publish it around '86 and 

'
87. I sent it to the journal Neural

Nets- that is, how you do simultaneous recurrent nets and time-lag recurrent 

nets together. Then the editorial process screwed around ~ ith it, made
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the paper perhaps worse, and it finally got published in '88, which makes me

very sad because now I gotta worry about, 
'
Well , gee, didn

'
t Pineda do this

in '88f
'

So once again I had trouble working with journals. That
's always been

one of my problems. In fact, there is one case of a paper that I submitted

to a journal where the reviews came back and said, 
'We can

't publish this

because it is a challenge to good people like Rumelhart.
"

But the paper wasn't negative. It just simply said, 
"I did this.

"

I
'
ve had a few other experiences that are much in the same spirit. We

'
re

probably better than a lot of other professions, but it 's hard to stay objective
when you have these experiences.

So that was in 
'
81. I had an interesting opportunity then, wh~n Charlie

Smith was going to leave DOE. He was offered a job as director of the System 

Development Foundation. He told us, 
"I'm supposed to go out there and

figure out how to combine weird things like brains, artificial intelligence, and

math. Nobody
's done it . Whoever gave us the money said, ' This is what

we're going to fund.
' 

You know, people who give money are sometimes a

little crazy. So we're going to find legitimate things we can fund, but how

can we fund such a weird thing?
"

I went up to Charlie, and I said, 
"
Charlie, let me give you a little briefing?

"

I said, 
"
Charlie, it

'
s not as crazy as all that. I think there

'
s a way to do it .

And let me show you how. First of all, you
'
ve got this sensi~ivity analysis

stuff. You know it works. You
've seen it work. So why can

'
t we apply it to a

differentiable model of the neuron?
"

I drew a little flow chart of where I thought the field was going and

how this would fill a critical hole. And I said, 
"
Charlie, this is what I think is

do-able. You don
'
t have to throwaway the money. It can be done. And

what
'
s more, I

'd like to participate in doing it .
"

To substantiate that I showed him a paper. Now, he was actually the reviewing 

authority for me. I couldn
't publish anything without it going

through the chain of command. You remember what I was saying about the

First Amendment? In order for me to publish a nonenergy paper, it had to be

reviewed only at the lower level, like a number two guy in the agency. If it

was an energy paper, it had to go up to the highest level. Charlie Smith had

signed off on a conference paper and on a tech report. Both of them, conference 

paper and tech report, described backpropagation in general terms

for first and second derivatives, for sensitivity analysis, and for eigenvalues
and applied it to energy models with substantial pages on applications to

artificial intelligence and neural nets.

I said, 
"
Charlie, you signed off on this. You understand the mathematics

"

- he certainly did- "
so therefore you know that this could be applied. If

you approved this paper, presumably the concept is reasonable.
"

He thought about it . He came back, and we had another conversation. I

remember very
" 
vividly being in Charlie

'
s office where he basically said,

"
Yeah, these are fine ideas and good directions to go, but if you want to
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do this stuff . . . You are a civil servant. If you want to consider losing your
tenure and your salary as a civil servant, and getting one third of the salary

you have today for a job that ends in one year, with no security whatsoever

beyond that, then I have some friends and I might be able to arrangesome-

thing. But if you really want to work in this area long term, I mean, really,

you are not the right person to do it because in a deal like this, we need to

have the best people in the country with reputations. Otherwise, you
'
re not

going to be able to change the culture. I think you
'
re not the right person to

do this."

I don't know when he moved to California. I do know in the PDP books

if you look in the acknowledgements section, there is acknowledgement
of Charlie Smith and his critical role. Now, I obviously was not. present in

any conversations between Charlie Smith and anybody else. I do know I
'
ve

heard people say, 
"
Oh well, Charlie Smith didn

'
t know any math.

" I know

that much is not true. I mean you don't teach statistics at Harvard and

Princeton without having at least some knowledge of math, and he did

understand what this was about. But beyond that I don't know.

The other thing is that ideas can spread by nonverbal means. Even with

the best intentioned people. When I was working at MIT and doing my
thesis at Harvard, I remember attending a party once . . .

You know, MIT guaranteed my survival. Once I started doing software

for them, they discovered I was pretty good at it . Once I had put back-

propagation into a TSP command, they offered me a full-time job at the

Harvard Cambridge Project, so I did the PhiD. thesis while having a full-time

job.

While I was doing these things at MIT , I remember going to one party. I

didn
'
t go to a lot . And one of the people there said, 

'We have heard through
the grapevine that somebody has developed this thing called continuous

feedback that allows you to calculate all the derivatives in a single pass.
"

And I sat back and thought, 
"This says something about the grapevine.

"

When you
've got an idea that

'
s hard for people to understand, it doesn

't

move fast. As soon as you
've done what the whole world says you should

do, which is distill the essence into a few understandable ideas, it spreads like

wildfire. The people who have better access to the journals publish it before

you do, which is a trap if you are a young person trying to develop good ideas.

After that party I decided that I would be a little closed lip for a while.

After that, in 1981 in New York, I presented the conference paper that I

mentioned, the one Charlie Smith signed off on. I presented it at the International 

Federation for Information Processing. IFIP was this gigantic conference

. They seemed to know what I was saying. There was lots of applause. It

seemed to be finally accepted. I mentioned we have applications, and now

we can apply it to neural nets. I published the paper in their proceedings ini  

, which became a Springer book. It
'
s not like the usual conference papers,

which never see the light of day. It was a real book and a real conference,.
and I had really talked at length about artificial neural nets and Grossberg
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and the limbic system and the brain. That
'
s where I had the little diagrams

with the circles of the multilayer perceptrons, only with reinforcement learning 

and backpropagation.

At that point, I thought, 
"
Based on this publication, now my priority is

assured, and I will relax a little bit . Now that I know that I've established that

I've done it , now I will relax and let the grapevine hear about it . I will give
the condensations, and I will send them out allover the world

"- you know,
even to people who have not heard of me because I knew how to jiggle the

system to get the idea out.

I don
'
t think it was a coincidence that shortly after I jiggled the system, all

of a sudden things popped up. One place was with the System Development
Foundation and California. Another place things popped up was MIT , and

that was definitely one of the places I jiggled because I was running a contract 

at MIT at the National Center for Economic Research. I was contract

manager there. I tried to get them to implement backprop. They said, 
'
We

'
ll

send it around to the engineers at MIT and see if they are willing to implement 
this thing as a sensitivity analysis tool .

" 
They weren't willing to.

At any rate, the National Center for Economic Research is one of the places
where my ideas popped up. I think that I did succeed at jiggling the system
there. As contract manager, you know, you can do things like that. It is

easier to create heresies from the top, sometimes, than it is from the bottom.

One of the reasons I wanted to become a contracting officer was I
'
d seen

how often our present system prevents new ideas from getting through. I

wanted to be in a position to do the opposite, to take advantage of a position 
in the government to encourage what I felt was the best future direction

. I think history has vindicated me. It was a legitimate direction to push.

There
'
s this incredible conservatism built into the system.

I had a disappointment with Charlie Smith. I stayed at the Department of

Energy and got a chance to do a couple of papers. There was one on energy
models and studies on the long-range economic modeling system at DOE

and how you can use backpropagation to analyze convergence behavior of

very large complex systems. That paper got good reviews in the operations
research community. At least half the paper dealt with how you can implement 

backpropagation for complex energy models without using neural nets

at all. That was 
'
83. That's when I first had the idea of a dual subroutine,

which I think is still crucial to the engineering implementation of these ideas.

The guy who did the book that the paper appeared in was going to do

something on factory automation, so I wrote a paper for that. He said, 
"
Gee,

it isn'
t real world enough for the factory; it

'
s kind of general.

"

In that paper, I was putting the reinforcement learning in a new context,
so he suggested I submit it to the IEEE SMC Transactions Journal. I sent the

paper there, and it came out in January 
'
87. That was the paper that Barto

and Sutton read in January 
'
87, and they suddenly realized there was a connection 

between what they had been doing and what I was doing. We got

together in '87, very shortly after the paper was published.
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I had a long talk with Rich Sutton and Oliver Selfridge at the GTE Research 

Labs in Waltham, Massachusetts. That conversation didn't work very
well because Oliver Selfridge said things like, 

'
1 don

'
t believe in any of this

kind of crap. You know, I
'm a good Anglican, and I believe in the soul.

"

I tried to reassure him by saying, 
"
No , this is consistent, and I believe in

the soul too. I just have a slightly different outlook on it .
"

That was not the way to handle Oliver . What I should have done was get
down to the nitty gritty and show him how to design things. But I made the

mistake of responding to the question, so we didn
'
t get into the nitty gritty .

I think there were a lot of results from that discussion, at least with Rich

Sutton. Rich was the one who mentioned Dave Parker to me, saying, 
l' This

guy has been doing backpropagation.
"

I got in touch with Dave Parker. Parker and Widrow were the people who

invited me to the second ICNN [International Conference on Neural Networks

] conference in San Diego in 1988. If it were not for Parker and

Widrow , all these things- the advanced adaptive critics, the advanced estimation 

techniques, the generality of backprop theorems- would not be irt

the literature. We would be doing pure, simpleminded supervised learning
until we quit and died from boredom. The next generation moving into

neural control would not have happened if Parker and Widrow , for reasons

of conscience, had not given me a chance to exist when a lot of people
wanted to treat me as persona non grata.

To this day, there are people who are screwing up the discussion of recurrent 

nets and confusing people about recurrent nets because they don
'
t

want to cite my 1990 paper in the the Proceedings of the IEEE, where I describe 

backprop through time, very explicitly . I thiitk that may be the best

tutorial paper around on what backprop is
- what backprop is through time'

and how to implement it . But they don
't want to cite it, and so they

'll cite

the 1986 Rumelhart, Hinton, and Williams paper that deals with simultaneous 

recurrent nets. Then these poor guys will go out, and they think

backprop through time has to do with simultaneous recurrent nets. They get
mixed up between time-lag recurrent nets and simultaneous recurrent nets,

which are really like night and day.

Widrow and Parker, on the other hand, were helpful. And when they gave
me that opportunity , the very first thing I did in '88 was to say, 11 thank you
for the platform. Now le Ys talk about the real problem, which is not supervised 

learning. The real problem is intelligence. Intelligent systems, the mind,
that's what I really want to do."

At that point, I was halfway well known, and NSF asked me to be a program 
director. I

'
ve been doing that ever since 

'
88. I

'
ve been pushing the

attempt to understand intelligence. When I took the job, 90 percent of my
motive was to help us understand the human mind. My real ulterior motive

was that I think the development of mental, spiritual potential is one of the

imperatives in life. I think a better understanding of the mind in universal
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terms is crucial to that. I think that
'
s the ultimate value of what we

'
re doing.

My goal in taking a job at NSF, even though it totally involves engineering

applications, is to give me a chance to promote and develop the kind of

mathematics that we need to begin to understand the human mind. I don
't

think a purely bottom-up approach by itself is going to do the job.

I
'
ve seen guys like Grossberg and Klopf do random search es through the

space of models. It
'
s clear that if you do that kind of random search, you get

lost. There
'
s just too much stuff, too many possibilities. You need to have a

guideline, a magic trick that will lead you through the maze. Knowing what

works and what doesn
'
t is that kind of a guideline. The kind of mathematics

we'
re developing does that. And so while the program is developing the

mathematics, I hope eventually we
'
ll come back and make the connection.

It
'
s going to be hard with the barriers that exist in our culture to make the

connection from the real mathematics, the working mathematics, to the hard-

core neurobiology and from there to psychology and from there to a greater

appreciation of human nature.

These are hurdles we're going to have to go through on the way to

changing the culture. It
'
s clear our culture needs to be changed. It

'
s clear that

our understanding of the human mind is wrong in many fundamental ways.

Mathematics can correct a lot of the basic fallacies.

Once I started on the job at NSF, it became apparent to me that the

engineering applications were not only real, but some of them were truly

important. At first I thought, 
'
We

'
ll make a billion dollars here and there

for some company. There are a hundred technologies that are not being
funded, each one of which could generate a billion dollars of product a year,
no sweat. Neural nets are competitive, so they

'
re one of those technologies.

"

But when I started learning about what some of the applications were, I

began to realize, 
"
Hey , these aren

'
t just billion dollar applications. They could

affect human history.
" 

I began to discover that the ability to achieve things
like the human settlement of space required a technology that ultimately falls

back to really tough nonlinear control problems.

I found out that greater efficiency in control can lead to major reductions

in waste or pollution coming out of chemical plants. I found out that control

or system integration is probably the biggest remaining challenge, along
with manufacturing process control, in replacing the internal combustion

engine with something clean, efficient, and sustainable.

After I learned all that, I began to shift my emphasis somewhat. At the

present, I
'd say that about half my motivation in the program is to push the

kind of mathematical development that will help us understand the brain and

the mind, and about half is to make a real and critical contribution to these

major technological needs.

[Paul Werbos made the following additional comments in 1995.] Some

of these areas have moved forward a whole lot, some seem to be just taking
off now, others are still stuck. My greatest frustration is that there is such a

huge amount of work still to be done.



The link to brain circuitry and new experiments has also grown stronger .

Weare talking seriously now about an emerging understanding of how

intelligence works in the brain , an understanding that we are replicating in

engineering . NSF has initiated two programs in engineering -neuroscience

collaboration that open the door to funding this kind of development . NSF

is also developing a still larger initiative that would strengthen the links to

cognitive science and computer science as well . I have also initiated a small

business program at NSF on fuel -cell electric cars, where neural networks

have begun to contribute .

On the other hand, on the deep level of fundamental research and basic

ideas, we still have lots of problems due to paradigm blinders and the walls

between disciplines .

You would be shocked at what people can ignore even when it is staring
at them in the face. We already have sketched out all the basic ideas we will

need to build a truly brainlike , intelligent system, but Alling in the holes will

take a rare degree of creativity .

For myself , I
'
ve been drifting away from trying to All in the big holes in

the neural network area because I see some areas that are perhaps equally

important that are much more in need of an early explorer . Issues involving
basic physics hold most of my personal research attention . I have solved

some of the problems that I worried about years ago, but a whole lot of

follow -through is still needed.
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ER: Where you were born, and when?

GH: I was born in Wirnbledon [UK] in 1947, sixth of December. I didn'
t

actually grow up in Wimble don. My parents moved to Bristol when I was a
year and a half. I grew up in a big house in Bristol. My mother was a school
teacher, and my father was an academic. He was a zoologist. He was an

entomologist; he studied beetles. He was also a Marxist, a Stalinist.

ER: How many brothers and sisters?

GH: I've got an older brother, an older sister, and a younger sister.

ER: And what do they do now?

GH: My older brother is a historian at Warwick University in Britain. He's
the chairman of the history depart me.nt there.

ER: And your older sister?

GH: She was a head mistress at a school in London, and now she
'
s taken

early retirement.

My parents sent me to a British public school- that is, a private school,
the same one that John Cleese [of Monty Python fame] went to. I got Christianity 

at school and Stalinism at home. I think that was a very good preparation 
for being a scientist because I got used to the idea that at least half the

people are completely wrong.
I guess that was a very important sort of experience for me-

going to
school and getting these religious services and having scripture classes and

being convinced that it was all complete nonsense. I was convinced throughout 
my childhood that the whole Christian ideology at school was just complete 

rubbish. I'm still convinced of that. So I always felt like a bit of an
outsider at school.



My number one story, when I first went to public school . . . This is when I

was about eight. We're having a scripture lesson. The scripture teacher says,
"All good things come from God." I realized there was something very suspicious 

about this remark. The way I would put it now is that she didn
'
t have

any independent evidence of this because the only way in which she decided

that things came from God was because they were good. So she just assumed 

that if they were good, they came from God, and actually argued that

this showed that God was good because all the good things came from God.

I tried to argue about this with the teacher, although I'm sure I didn
'
t put my

argument very well. After a while the teacher said, 
"
OK, Hinton, where do

you think all good things come fromf '

So I thought for a bit and said, 
"
Russia.

"

ER: And what was her reaction?

GH: She looked a bit bemused; I think she probably wondered how such a

kid had got into her school.

ER: Was this a school where you lived there?

GH: Most of the kids lived there, but it was in the same town as I was in,
so I lived at home.

ER: So your father was able to exert influence. . .

GH: There were some options when you were older. You could do biology

, physics and chemistry, or you could do mathematics, physics and chemistry

. I wanted to study biology . My father wouldn
'
t let me do biology ; he

said they
'd teach me about genetics, and it was all nonsense, so he wouldn't

let me do it for ideological reasons. Anyway , it was much more important to

do mathematics, he said, even if I wanted to be a biologist. He was keen I

should do more mathematics. It
's probably just as well that I did the mathematics

. He could never do mathematics at all, so he was very concerned that

I should learn to do it .

ER: Did you have hobbies as a child , things that particularly piqued your
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fancy?

GH: I was very interested in insects. That
'
s what my father studied. I also

liked carpentry, and I liked mathematics too.

ER: Are your memories of public school happy ones?

GH: No.

ER: Not at all?

GH: I felt like an outsider there.

ER: For the whole eleven years?

GH: Yes. I was definitely an outsider, which I think set me up for being a

sort of revolutionary later. My first reaction when someone tells me something 

is to try to show that they are wrong.

ER: And
" 
when you went to University, was that directly following public

school?
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GH: Pretty much. I took a year off in between. I actually went to University 

straight after school for a month, and I dropped out.

ER: Where did you go to University?

GH: To Cambridge, to Kings College.

ER: What did you do on your year off? Were you free from parental constraints
?

GH: Yes, I worked in London doing various odd jobs, trying to find myself
.

ER: I laugh because that
'
s what my mother said, 

'
Well , one day you

'
ll find

yourself.
"

GH: I didn't succeed.

ER: Did you feel like an outsider in college?

GH: No, much less so there because I went to Cambridge, where everybody 
was weird.

I started off studying physics and physiology . I planned to end up being
a biophysicist. This was the second time around; I

'
d gone back after a year.

I decided I'd never be much of a physicist because the equations were too
difficult . When I saw several integral signs next to each other, I felt they
were ganging up on me. I was also still interested in finding the meaning of
life, so I switched to philosophy. I was actually naive, switching to philoso-

phy in order to discover the meaning of life, but I then did philosophy for a

year. I didn' t like philosophy because you couldn
'
t tell whether you were

right or not. Very unsatisfactory not being able to tell if you were right .
I got more intrigued by the mind. I had a friend from school. He was a

very interesting character. He read a lot and was a very clever mathematician
-

got me interested in neural networks about the time we went to

University . I can
'
t remember whether it was before or after.

ER: And was he at Kings College with you?

GH: He was at Trinity . He
'
d been at the same school as me. I'd known him

since I was seven, and he also went to University at the same time as me.
He'

s called Inman Harvey.

GH: And are you still in contact with him?

GH: Yes, I am.

ER: Is he still involved with neural networks, with things related to it?

GH: Well it's very interesting. He dropped out completely for about

twenty years. He became a businessman and imported things from Afghanistan
. He was one of the main importers of things to Britain from Afghanistan
. And then, I guess in 1986, I sent him a copy of the Rumelhart and

McClelland books on parallel distributed processing. His reaction was if that
was as far as we'd got, then maybe he should go back into the field. He was

unimpressed by them, so he became a graduate student again. Now he works
at Sussex University, but he works on evolutionary computation there.



After a year of philosophy, I switched again in my third year- did psychology
. I was extremely discontented with psychology. I guess what I was

discontented about was they didn
'
t seem to have any good models of anything

. I expected them to have models of how the mind worked, but they
didn

't. Instead of thinking how the mind worked, they did things like study
rats in mazes. The closest they had to a decent model were things like signal-

detection theory.

I organized the other students to protest about the content of the course.

Rats in mazes, signal-detection theory- it wasn't really about the mind at

all. I got the other students to join me because the whole psychology course

didn
'
t have any mention of psychoanalysis. In the end, the chairman of the

department agreed that he would put some psychoanalysis into . the course,

so then the undergraduate psychology course at Cambridge had one lecture

on psychoanalysis in it, and the lecture was entitled, 
"Freud, lung, and

Adler.
" 

They figured they could cover it all in one lecture.

Of course, the stuff I do now, the psychology that it
's closest to is like the

stuff that goes on in signal-detection theory. It turns out that
'
s the bits of

psychology most relevant to what I'm doing right now.

ER: Did you stay with psychology?

GH: No, after that I became a carpenter.

ER: Where were you?

GH: I was in London. I had a lot to learn about carpentry. I met a really

good carpenter. He was making a door for a very damp cellar. And what

amazed me was that he was figuring out where each piece of wood in the

door should go so that when they all warped, all the warps would cancel out

because the wood was bound to warp because it was in a damp location. He

figured out exactly how everything was going to warp and then put it the

right way around so that the warps would all cancel out. I was completely
amazed at that level of planning.

After I'd been a carpenter for a year, I got a job as a research assistant on

a project in Bristol. It was just before Watergate. The idea was to see what

people actually said to small children because linguists like Chomsky had

made the assertion that you couldn
'
t possibly learn English grammar &om

what was said to you because what was said to you was impoverished and

incorrect.

So we got some people to agree to be part of the project. Their children

wore a little jacket with a radio microphone in it so that everything that the

children said or that was said to the children was broadcast.

In the home, we had a recorder and every twenty minutes it would take

a two-minute sample of what was said to the children. Unfortunately, the

&equency we used could be picked up right at the top of the VHF radio, so

basically anybody in the neighborhood could listen to what was going on

in the house. We discovered this after a while. We used to go and sit outside 

the houses just so we could make sure it would all work, see what was
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going on inside the house. At that time, bugging wasn
'
t seen as a terribly,

big crime. It was after Watergate that people thought that bugging was a
no-no. So we got a sort of unbiased corpus of what got said to little children,
because pretty soon the adults forgot about the fact that it was all being
recorded.

All the mothers were meant to be native English speakers, but one of them
wasn

'
t. We were looking at tags- things like, 

"
Isn

'
t he?"- because they

have a lot of syntax packed into just a few phonemes. One of the children
received the following utterance from his mother, 

"
Santa don'

t give you no
toys if you don

'
t talk proper, isn

'
t he?

"

One of the other things I had to do on that project was develop aquestionnaire 
to assess the mother's attitude towards their child'

s' 
language

development. I didn'
t know anything about questionnaires, so question one

on my questionnaire was, 
'
What

'
s your attitude towards your child

'
s use of

languager
'

So I made up this questionnaire, and then I cycled out to a suburb of Bris-
tol and tried out the questionnaire on social class five parents. In Britain, all
jobs are divided into different social classes, with an official list of the social
classes of different jobs, and the lowest social class is social class five. We
wanted to have balanced social classes in our set of families, so I went out to
try my questionnaire on a social class five mother. She let me in and made
me a cup of tea, and then I said, 

"
OK, now the first question is, What '

s your
attitude towards your child'

s use of languager
"

And the mother said, 
"
Oh, if he uses language, we hit him.

"

ER: Did you go on from there?

GH:. No, that's when I realized I needed to redesign the questionnaire.

GH: When I wanted to do a PhiD., there was a well-known British psychologist 
called Broadbent. I knew someone who was a friend of Broad-

bent's, so through my friend I asked Broadbent where a good place would be
to do a PhiD. on neural networks. Broadbent said that I should either go to
Sussex, or I should go to Edinburgh and work with [Christopher] Longuet-

Higgins.

ER: What happened when you went to Edinburgh?

GH: Longuet-Higgins was a very good mathematician. He
'
d done some

very interesting work on a simple kind of neural network. A former student 
of his who was then a postdoc there was David Willshaw, so it was a

very good group in Edinburgh. The problem was that by the time I arrived,
Longuet-Higgins didn't really believe in neural networks anymore. He believed 

much more in conventional artificial intelligenceAl ], partly because
of Winograd

'
s thesis, which had just come out. Winograd had done a very

impressive job of natural language understanding, so at that point that's
what Longuet-Higgins was really interested in.

I kept working on neural nets anyway. I guess most of what I did was
fairly intuitive stuff without a very good mathematical foundation. Because
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Longuet-Higgins no longer thought that was a sensible area to be working
in, and because what I was doing didn

't have a very good mathematical

foundation, he was pretty skeptical about it .

ER: Do you remember what problem you were working on?

GH: I wanted to have something that learned to understand natural lan-

guage.

ER: And he wanted you to put more AI -related material into it?

GH: Yes, he believed in a more, what would now be called classical AI

approach. Rather than having learning consist of adjust if:'g weights in a neural 

network, it would consist of building new symbolic expressions and

building on previous symbolic expressions.

ER: So did he change the nature of what you were doing?

GH: Not really, no.

ER: And did you get a good degree from Edinburgh?

GH: I got a degree from Edinburgh in the end, yes. Actually, what was interesting 

about him was that a lot of the stuff I was doing, he didn
'
t really

believe in, but he did feel that I had the right to work on what interested me.

So he supported me, even though he didn
'
t believe in what I was doing.

That
's a very British kind of a system. He was very good about supporting

me, and a lot of his criticisms about putting it on a proper mathematical

foundation were very useful.

In my second year at graduate school, there were two main issues I was

interested in. One was how you do unsupervised learning in neural nets.

I became convinced that most of the interesting learning that went on had

to be unsupervised. I knew about the percept ron convergence rule. I sort

of understood the linear version of that, the Widrow -Hoff rule. I had just
started thinking about how you could get something to learn interesting

categories with no supervisory signal.

I remember the concept I worried about was a cat. Why was it worth

having the concept of a cat? I hit on something that had been discovered

many times before and many times since- which is, the reason it
'
s worth

having 
.the concept of a cat is that the properties of cats are highly correlated

. The chance of coming across something that
'
s furry and has whiskers

and goes 
"
meow

" is much higher than the product of the chance of coming
across something that's furry and the chance of coming across something
that says 

"
meow

" and so on.

I decided that the criterion for unsupervised learning ought to be to find

categories where the joint probability is much higher than the product of the

separate probabilities of the properties. Then I started thinking about what

particular function to use to measure that difference. Should you just measure 

the difference between the joint probability and the separate prob-

abilities? Should you measure the ratio? What should you measure?
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I had the idea that you have to have some measure and then try to optimize 
it- that is, change the weights of a network to optimize it . I ended up

with an information theory measure that seemed like the .right thing. At that
same time, I read one of the early information theory books. It might have
been by Shannon and Weaver, or it might have been just by Weaver. It was
a short little . book, and it had the information-gain measure. I realized that
was a good measure to use.

I cooked up a learning algorithm. The idea was to make a statistician look
as stupid as possible, an idea based on the assumption the statistician would
use the naive idea of computing the joint probability by multiplying together
the independent probabilities. It wasn't really the statistician that was stupid;
it was the independence assumption that was stupid, but it seemed easier to

personify that as a statistician. You could compute the probability using the

independence assumption, or you could compute the probability using the
true joint probabilities.

I used this information theory measure as a measure of how different those

probabilities were, and figured out how to get to set the weights. I showed it

actually did learn, in little cases. It did interesting unsupervised learning for a

single neuron. If you gave it a number of input lines, and you took a subset
of them and made them be correlated, it would pick out that subset of
the input weights. It would tune itself to those. It was a nonlinear neuron,
so it was doing something a bit more interesting than just finding the first

principal component.

There were problems with that algorithm. One was I never could see how
to make different

. 
units do different things. I could cook up heuristics to try

and make them be decorrelated from each other, which is the standard way
to go about things, but that wasn

'
t really very satisfactory. I wanted some

overall objective function that would make them do different things- just
like the hidden units in a backpropagation net end up doing different things
because that's the way to satisfy the overall objective function.

I never could see how to do it for that kind of unsupervised learning. In
fact, I didn't see how to do it properly until last year. Now I know how to
do it .

There were other problems with that algorithm. One of the examples I
triedit on was an attempt to detect oriented lines. I had a window with some

piece of image in it, a synthetic image. I put an oriented edge in there. I
wanted it to produce an oriented edge detector. Even though I didn't know
how to get different units to be differently oriented, I wanted to produce at
least one orientation detector, so what I did was put in bars, oriented bars.
This was a problem I

'
d learned about from Christ of von der Malsberg, who

visited Edinburgh in, I guess, 1973. I wanted my little unsupervised learning
algorithm to pick out these edge detectors.

One of the things I was interested in was that Christ of von der Malsberg
had a way of modifiying the synapses, which was basically competitive learning

. He didn't have an overall objective function for it; he just viewed it in
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terms of an algorithm for changing synapse strengths so the right thing
would happen. I was convinced that you had to write down an objective

function and differentiate and get the algorithm. Now I had an objective

function, and I wanted to show that it would work on his example.

The problem was that whenever I turned it loose on oriented bars, what it

would do is produce on-center off-surround fields or off-center on-surround

fields. It would produce circularly symmetric fields because I would be

showing it bars of many different orientations. .Actually, that
'
s the most sensible 

thing for it to produce. That is what maximizes the information measure 

I was using. That is the same thing a principal components analysis
would do.

That was one of the reasons I didn
'
t pursue the algorithm further. It didn

't

do what I wanted it to do; it did the right thing instead, so I didn
'
t go back

to it until many years later. I never published it .

The other thing I got interested in in my second year at graduate school

was why receptive fields are so large in the visual cortex as you go higher

up. The standard view is that by being large, they give you translation

invariance. I got interested in the idea that by being large, they actually do

just the opposite. It
'
s not in order to get translation invariance; it

'
s in order

to get more accuracy about where things are. As you go higher up in the

visual system, you represent more and more complex entities,. but there are

fewer and fewer of them present at once. It
'
s getting more and more sparse

in terms of how many entities there are at a time. For these complex entities,

it pays to have very big, overlapping receptive fields. Then you get much

better accuracy about where they are. I was enchanted by the idea that the

obvious explanation of big receptive fields was exactly the opposite of the

truth. Rather than the big receptive fields causing you to be vague about

where things were, they were actually allowing you to be more precise
about where things were.

JA: That was the genesis of the ideas about coarse coding?

GH: That was my coarse-coding work, and the mathematics of coarse

coding I worked out then. I remember I gave a talk about it to the group, and

I'm not sure if they understood a lot about it . Christopher understood what

I was all about. I remember, he liked the fact that I finally had produced a

paper that had some equations in it . But again, I never published that stuff.

After that I got interested in relaxation approach es for vision. I stopped

working on learning and representation, and worked on how to use aparallel 
network to settle on the interpretation of a visual scene. It was really a

search algorithm. In many ways it was lucky I did that because that research

came from work in computer vision on things like parallel constraint-

satisfaction algorithms. I realized you could do parallel constraint satisfaction

in a neural net and developed a version of it that essentially solved integer-

programming problems. You
'
re searching for an assignment of ones and

zeros to many different hypotheses. Each little part of the scene could be in-
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terpreted in a number of different ways. You want to pick the interpretations
for each part of the scene so that all those interpretations hang together as
some coherent entity . My thesis was on doing constraint satisfaction in a

parallel network.

At more or less the same time and independently, Rosenfeld, Hummel, and
Zucker developed a relaxation algorithm [1976. "Scene Labeling by Relaxation 

Algorithms .
" 

IEEE SMC Journal 6:420- 422.]. It wasn't as good, in my
opinion. Relaxation in things like neural networks became quite a hot topic
at that point . I was interested in how you do constraint satisfaction in neural
networks. Later on, I could see the relation between the work that Hopfield
had done and this.

After I'd done my thesis, I applied for a job in California, a postdoc job
working with Don Norman. I got a very polite letter saying that I hadn't got
the job. I'd been offered a job by Azriel Rosenfeld at the University of
Maryland, working on relaxation. I didn't really want to go to Maryland. I
didn'

t like the place.

ER: Had you visited?

GH: I'd visited. I'd given a talk there. It was very odd. It was the first talk
I'd ever been paid for. I was impressed. They paid me $100 for a talk. I

thought that was the big time. I gave a talk about my thesis. I ended up the
talk by explaining why my method of doing relaxation was so much better
than their method of doing relaxation, and all the things that were wrong
with their method. This was to Rosenfeld's research group.

At the end of the talk, I expected there to be a big argument, and nobody
asked any questions. Nobody said anything.

Then Rosenfeld said, 
'
1' d like to see you in my office in half an hour.

" 
He

said it like a school headmaster would say it .
I thought, 

"
Oh my God, he'

s going tell me I shouldn't be so offensive, and
I shouldn't come there and criticize their work."

I talked to a graduate student for half an hour or so and then went to
Rosenfeld

'
s office. I walked into his office, and he handed me a contract, and

he said, 
"
Sign that." It was a postdoc contract. I didn'

t really want to go
there, so I asked him how long I had to decide. He said I had about a month
to decide.

I'd already been turned down by California, so I looked around for other
jobs and didn'

t find any other jobs. It was hard to get jobs in Britain. At the
last possible minute, I called him up and said, 

"
OK, I

'd like to accept the job.
"

Then an hour later, I got a call from Oxford , from George Mandler, who
was visiting England. Norman and Rumelhart hadn't been able to get in touch
with me pecause of the time difference. Someone had turned down one of
their postdoc jobs, and they now wanted me.

I got this offer in California about an hour after I accepted Rosenfeld
'
s job,

so I called him right back. I was calling him about two or three hours after
I'd accepted the job- to unaccept it . He was absolutely outraged. He said I.
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couldn
'
t do that . I

'
d accepted the job , and that was that . So I said, 

"
Well , I

'
m

not coming .
" 

He
'
s never spoken to me since. I think he

'
s still cross with me.

He was furlous .

I
'
m very glad I went to California . California was wonderful . It was completely 

different &om England in that they were very open to ideas. They

were far less critical than in England . It was much more of a pluralist society

in the sense that people in the States accepted that there simultaneously

could be multiple schools of thought about something . You know , if MIT

thought about it one way , then Berkeley would think about it some other

way . England wasn
'
t quite like that . England was a much smaller, more

closed community , where there was a substantive view and there was nonsense

. So I felt coming to California was very liberating .

I guess Don Norman - at that point , more Don than Dave [Rumelhart ]-

was very interested in neural nets. He didn
'
t actually do them himself , but he

knew about them . I can
'
t remember the chronology exactly , but I think Jim

came out a little after I
'
d got there, right ? I was there for a bit , and then you

came out .

JA : About a year after , something like that .

GH : That was a really nice time because I got back into things like learning 

and representation in neural nets. There was no longer the atmosphere

where this research was some sort of naughty activity that I shouldn
'
t really

be doing , where it was obviously hopeless and they were only letting me do

it because they were willing to suffer people doing silly things . This was an

environment in which people thought these subjects were interesting .

Don , in particular , was interested in how you do complex associations in

neural nets and how you represent relational structures in a neural network . I

did some work on that and more work on coarse coding .

I got to know Jim. I can
'
t remember whether David Willshaw was still in

Edinburgh , but he wasn
'
t really working on neural nets anymore . He was

getting into the biology . California was very liberating . I had a good couple

of years there .

JA : That was 1979, when the conference was held that led to the book

Parallel Models of Associative Memory .

GH : Ch , I have a good story . Jim and I organized this conference. We

started off by rounding up the usual suspects. Then we decided it would be

a good idea to try to find some new blood , so we advertised . We sent flyers
'
round to a whole bunch of computer science and psychology departments

about this conference we were going to have in San Diego and how we were

going to pay all the expenses. We got quite a few applications , and one of

these applications
- I couldn

'
t decide if the guy was a total flake or not . He

was a guy who was at Harvard Medical School . He had been a physicist . He

had publications in physics . Applicants had to write a little spiel about what

they were interested in and why they should come to this conference. He
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wrote a spiel about the machine code of the brain and how it was stochastic,
and so the brain had this stochastic machine code.

It looked like rubbish to me, but the guy obviously had some decent publications 
and was in a serious place, so I didn'

t know what to make of him.
At that time there was a conference in Austin, Texas. It was also organized
by the Sloan Foundation. This was all Sloan Foundation money. I went to
this conference in Austin. David Marr was there, who I'd met once before in

England. I thought, you know, maybe David Marr knew this guy, so I asked
him if he

'
d ever heard of this guy. He had some kind of unpronouncable

name. David Marr said, 
"
Oh yes, I've met him."

I said, 
"
So what did you think of him?"

David Marr said, 
'
Well , he was a bit weird, but he was definitely, smart."

So I thought, OK, so we
'
ll invite him. That guy was Terry Sejnowski, of

course.

I remember when the people arrived for that conference. Terry arrived,
and Stu Geman arrived. I remember them in the little suite of offices that the

postdocs shared- Terry and Stu, writing down lots of equations abou~ cQr-

relations. I remember thinking, 
"
Gee, those are impressive equations; this

must be real science."

ER: So did this conference represent some sort of turning point?

GH: I'm not sure. It did for me personally. I got to know a lot more people.
I met Stu, and I met Terry and Scott Fahlman and Kohonen. It wasn't like
there was any sort of big insight at the conference. I guess I wouldn'

t say it

represented a big turning point, but I guess the book was one of the first
books to come out about neural networks for a long time. It was the beginning 

of the end of the drought.

ER: That was a turning point.

GH: In that sense, it was a bit of a turning point, but the conference itself
didn't seem so much like that.

ER: So there was no sense when you were doing it that this was the first
time that all these people were coming together?

JA: Actually, both Dave Rumelhart and Terry said that from their point of
view, just getting all these people interested and in the same room was a real

legitimizing breakthrough.

GH: I guess. One important thing was that Jerry Feldman came. He was an
AI figure, and so was Scott Fahlman. Having AI people talk to people like

Terry and Stu Geman was important.

JA: I remember one of the high points of that conference was Jerry Feld-

man standing up in front of the group and computing how many cells you
'd

need to have enough grandmother cells to do vision. The numbers became
astronomical extremely quickly. He realized he might have to rethink the

problem.

Geoffrey E. Hinton371



ER: Was the conference the culmination of your work at San Diego?

GH: No. I went back to San Diego for six months a couple of years later.

That
'
s when we started on the PDP [parallel distributed processing] books.

After San Diego, I went back to England. Jerry Feldman organized meetings
more or less every year after that. Those were pretty important in keeping

people going. They were very small meetings. It would be Terry and me

and Feldman and Fahlman and Dana Ballard and maybe half a dozen other

people. After a couple of years, Hopfield came to one of these meetings, so

that would probably be 
'
82, summer of 

'
82.

He gave a talk about energy functions. I suddenly realized that they

solved the problem that David Willshaw had been thinking about years

earlier, which was how you could have an iterative net and hav~ some idea

of what it would do and guarantee that it would settle down. They also

solved the problem that Marr and Poggio had worked on. Marr and Poggio

actually had a net that had symmetric weights in it . They were trying to

understand how it would behave. They had failed to notice that there was a

Lyapunov function, so they tried analyzing the net by analyzing all the sorts

of little configurations of weights you could have. They just hadn
'
t understood 

about this energy function.

As soon as Hopfield gave that talk, I realized that what you wanted to use

these nets for was to solve constraint-satisfaction problems. You wanted to

let the energy function correspond to the objective function you were mini-

mizing. I
'm not sure Hopfield had really understood that. He was using these

nets for memories at that point, 1982.

At that same little meeting in Rochester in 1982, Terry was there. Terry

told me about Scott Kirk patricks work on simulated annealing. I didn
't know

about it . Terry decided that simulated annealing might be a good thing to do

in a Hopfield net so that you didn
't get trapped in local minima. We

'
d both

realized that would be great if you were trying to do constraint satisfaction

and if you wanted to escape from local minima and get much better global

interpretations.

I remember sitting through one of the talks and trying to figure out what

the decision function for a neuron would have to be if you were to implement 

Kirk patrick simulated annealing in a Hopfield net. It was a sort of

squashing function. I remember that since I
'
d realized that the decision rule

had to be a stochastic squashing function, I got all excited because I thought,
"Well , neurons look a bit like that, so that must be what they

're doing."

There was a period then for a couple of years when I was absolutely convinced 

that that
'
s what the brain was up to. I

'm no longer convinced of that.

It seemed like such a nice theory- that the brain must be solving these

constraint satisfaction problems by using this noisy settling to find a minimum 

in an energy function. I always joked about our local minima.

To begin with , we didn
'
t think about learning; we were just interested in

constraint satisfaction. We
'
d obviously understood that there was a learning
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issue, but the exciting thing was it could do this kind of constraint satisfaction
. That was in the summer of 

'
82.

I had a job in Cambridge [U.K.] at that point, so I went back there. I had

programmed the idea up on a VAX and got it to find little paths through
mazes. We wrote a paper and sent it to Nature, who rejected it .

It wasn't until the Christmas of '82, by which time I'd moved to Carnegie
Mellon, that I really started thinking about how to learn the weights. It
looked very tricky . I remember I had to give a talk, a sort of research seminar

, at Carnegie Mellon in either February or March of 
'
83, and I was really

scared about it because I'd just moved there. I wanted to give a really good
talk about something. I wanted to talk about this si~ ulated annealing in

Hopfield nets, but I figured I had to have a learning algorithm. I was terrified
that I didn't have a learning algorithm. I was really seriously lacking a learning 

algorithm for these things.

Luckily, I had absolutely nothing else to do at Carnegie Mellon . They said
in my first year I didn'

t have to do any teaching, and so I had nothing to do
but sit there and worry about the fact that I didn'

t have a learning algorithm.
I sat there and worried for months and months about the fact that I didn

'
t

have a learning algorithm. Around Christmas time, I realized you could view
these things as doing Bayesian inference, so I understood the relation between 

what was going on in these stochastic networks and Bayesian inference
. But I still didn't understand the learning algorithm.

Then by sheer good luck, as I was worrying about not having a learning
algorithm for these things when they had hidden units, I remembered the
stuff I'd done much earlier in Edinburgh on learning for these single units
and the information-gain objective function, so- I guess basically by good
luck- I wrote down the right objective function. I tried lots of objective
functions, but among them I tried the right one. I wasn

'
t very good at doing

mathematics, and so I remember Terry and I were talking on the phone all
the time, and I would go and visit him a lot .

I remember on one occasion calling him up and telling him, 
"
How about

trying this objective function, and see what the derivatives looked like?"

Maybe the derivatives would come out nice and simple for this one because
this was a good objective function to use- because this was kind of the

right thing in information theory terms. I remember him calling back and

saying, 
"
No , the derivatives didn

'
t come out right .

"

I thought, 
"
Ch dear." Then I decided I'd differentiate it myself, so I sat

down and did the maths, and it 's like a whole page of mathematics. I got it
so they came out right after a while, and I got these very simple derivatives.

I called Terry back, and he agreed that, yeah, it came out right, so we

finally found the learning rule for Boltzmann machines. We'
d known there

was going to be a simple learning rule because we understood that the

energy was linear in the weights and the log probability was linear in the

energy so that the log probabilities were linear in the weights. We sort of
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knew this meant that it was going to be easy to manipulate log probabilities

by manipulating weights, so there had to be some decent way to do it, but it

was quite a while before we wrote down the right objective function.

Then we got very excited because now there was this very simple local-

learning rule. On paper it looked just great. I mean, you could take this great

big network, and you could train up all the weights to do just the right

thing, just with a simple local learning rule. It felt like we
'
d solved the problem

. That must be how the brain works.

I guess if it hadn't been for computer simulations, I'd still believe that, but

the problem was the noise. It was just a very very slow learning rule. It got

swamped by the noise because in the le;arning rule you take the difference

between two noisy variables- two sampled correlations, both of which have

sampling noise. The noise in the difference is terrible.

I still think that
's the nicest piece of theory I' ll ever do. It worked out like a

question in an exam where you put it all together and a beautiful answer

pops out.

ER: Terry was at Johns Hopkins at this point?

GH: Terry was at Johns Hopkins.

ER: So you were going back and forth?

GH: We were going backwards and forwards.

ER: How did you end up at Carnegie Mellon?

GH: It was a result of that conference that Jim and I organized. I got to

know Scott Fahlman there. I was interested in getting back to the States, and

Fahlman was interested in the neural net stuff and basically got me a job at
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CMU . It was partly because of [Allen] Newell also. Although he was somewhat 
antia lot of this stuff, he was very eclectic. He was very broadminded.

He realized that sooner or later there was going to be a connection between
what went on in the mind and what went on in the brain. Carnegie Mellon
was a big place. Newell was in favor of having people do all sorts of things
there, so he was basically in favor of having someone who worked on neural
nets there. He could see it coming back into fashion. Even though it wasn't
what he did, and he didn't really believe in it, he had enough insight to
realize that it was going to come back into fashion again. So he was in favor
of getting somebody like that, and Fahlman sort of pushed my case. That

'
s

how I ended up at CMU .
I was very impressed by the fact that Newell was open to gettingsome -

body in an area that he didn'
t believe in. It

'
s very rare to see that in

academics.

JA: Did you ever convince him?

GH: No, no, I never did. At one stage we tried to write a paper together
about information processing in the brain. It never got very far. He

'
d also

been very impressed by the work on speech recognition in the 
'
70s at CMU

and the fact that the system that worked the best was the Harpy system, not
the Hearsay system.

The Hearsay system was an AI system that used a working memory- the
facts fitting right into working memory, and demons looking oat working
memory, and all that stuff. Sorry, they didn'

t call them "demons
"
; they called

them "production rules.
" 

The Harpy system was a Markov model; I think
you could call it that. It was a totally dumb system, in AI terms.

It was really a battle between having complicated representations, but no
automatic learning rule, and having really dumb representations, like a
stochastic finite-state automaton, but a proper learning rule. It turned out in
the competition that having a proper learning rule, a way of estimating the
parameters, just overwhelmed having better representations. Having good
representations and no way to decide what -they are isn'

t as effective as lousy
representations and a good way to decide what they are.

Newell understood that when he wrote a paper about this battle and
about how people in AI should take note of it . It must mean something. I
think it was partly because of this puzzle that he was interested in getting a
neural network presence. Indeed, he

'
d gotten the message then in a way that

other people in AI still haven't.

ER: How long did you stay at CMU ?

GH: I was there for five years. It was by far the most productive period in
my life. I did very little there except work. It wasn't a particularly happy five
years, but I got an awful lot of work done.

ER: That was the five years that neural nets were bursting onto the scene,
so there was a lot more acceptance in the air.

~.
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GH: Much more, yes. There's one other curious piece of history that I left

out. I went back to San Diego, in 
'
82 I guess. I was back there in the first half

of 
'
82. Paul Smolensky was a postdoc there then. I talked a lot with him.

Dave Rumelhart came up with this idea of backpropagation. He wasn
'
t the

first to come up with it , but . . .

I first of all explained to him why it wouldn
't work, based on an argument

in Rosenblatt
's book, which showed that essentially it was an algorithm that

couldn
'
t break symmetry. If you had a deterministic learning rule, and you

started off with two identical hidden units, they would stay identical, so the

deterministic learning rule was no good.

Now , as you know, the standard way of doing learning is to have random

initial weights, or you could just put a little bit of noise in the ~earning rule
- either would be fine. So Dave Rumelhart pointed out that we didn

'
t need

to worry about symmetry.

The next argument I gave him was that it would get stuck in local minima.

There was no guarantee you
'd find a global optimum. Since you

'
re bound to

get stuck in local minima, it wasn't really worth investigating.

Nevertheless, Dave programmed it up and did a few things with it . I think

he showed it could learn X-OR [exclusive OR]. Paul Smolensky and I programmed 
it up. Then I tried to use it to get a very obscure effect. I couldn

't

get this very obscure effect with it , so I lost interest in backpropagation.

I managed to get this very obscure effect later with a Boltzmann machine.

I'd realized that if you
've got a net to learn something, and then you add

noise to the weights by making it learn something else, it should be much

faster at relearning what it had previously learned. You should get very
fast relearning of stuff that it previously knew, as compared to the initial

learning.

We programmed a backpropagation net, and we tried to get this fast relearning

. It didn
'
t give fast relearning, so I made one of these crazy inferences

that people make- which was, that backpropagation is not very interesting.

This was a completely crazy reason for losing interest in it . but I was also

discontented with it because of the problem about finding only local minima.

I hadn
'
t really accepted at that point that this was the best you ever were

going to be able to do.

Later on, when I knew about Boltzmann machines, Terry and I initially
looked for a learning algorithm to find the global minima. After a while I

realized that wasn
't really feasible; I thought, 

'
Well , you know, like back-

propagation maybe we'll just find a local minimum." .
That's what the learning algorithm did. The weights basically just found a

local optimum. When Boltzmann machines turned out not to be very good
in practice because they were so slow, I kept on at them for quite a while.

After we first got them working, I spent over a year trying to get them to

work properly, cooking up all sorts of little tricks- like weight decay because 

by keeping the weights small, you could make sure you didn
'
t get big



energy barriers . We tried lots of other tricks , but we never got them to work

very well .

I remember at one point discovering that if you get a Boltzmann machine

and you train it , it would do quite well at modeling some function . But if

you keep on training it , it will get worse and worse . We called this 
"
going

sour.
" 

The networks would go sour . We just couldn
'
t understand why they

went sour . I would print out reams and reams of paper showing the performance 
of the network and showing what the weights were, and I remember

having a stack of paper about three inches thick because I couldn
'
t believe

these networks would go sour . I couldn
'
t believe that as you learn more and

more , you would get worse and worse .

It took me weeks and weeks to realize that what was going on was the

learning algorithm was based on the assumption that you could reach thermal

equilibrium . As the weights got bigger , the annealing was failing to reach

thermal equilibrium ; it was getting trapped in the local minima . So the learning 

algorithm was then doing the wrong thing . That
'
s why we had to introduce 

weight decay
- to stop that happening .

Anyway , after over a year of fiddling around with such things to try to

make them work properly , I finally decided they really weren
'
t going to

work . In despair, I thought , 
'
Well , maybe, why don

'
t I just program up that

old idea of Rumelhart
'
s, and see how well that works on some of the problems 

we
'
ve been trying ?

"

So I gave a little presentation to my research group about Rumelhart
'
s

idea. They
'
d all been thoroughly indoctrinated by then into Boltzmann

machines. There were about ten students there . I explained this back-

propagation idea of Rumelhart
'
s and said, 

"
You know , would anybody just

like to program it up? It would only take a day or so to program it , just so

we could see how well it worked and compare it with Boltzmann machines.
"

I remember at the end of the meeting nobody was prepared to . 
program

it . They all said, 
"
You know , why would you want to program that?

" 
We

had all the arguments : It
'
S assuming that neurons can send real numbers to

each other ; of course they can only send bits to each other ; you have to have

stochastic binary neurons; these real-valued neurons are totally unrealistic .

It
'
s ridiculous .

"

So they just refused to work on it , not even to write a program , so I had

to do it myself . I went off and I spent a weekend . I wrote a LISP program to

do it . I almost blew it because the first thing I triedit on was a 8-3-8 encoder;
that is, you have eight input units and three hidden units and eight output
units . You want to turn on one of the input units and get the same output
unit to be on.

In a Boltzmann machine, since the units are binary , the states of the three

hidden units have to be the eight different binary codes, so you know what

the hidden units will look like when they ' ve solved the problem . So I ran

backpropagation on this problem and looked at the weights of the hidden

units . They didn
'
t have the right structure of weights . I decided it wasn

'
t
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really working; it wasn't solving the problem. I never bothered to look at the

error measure, which had gone to zero. I just looked at the weights because I

knew what the solution should look like. It didn't look like that.

I thought, 
"
Oh well, it turns out backpropagation

's not that good after

all." Then I looked at the error, and the error was zero. I was amazed. Of

course, with real-valued hidden units it
'
s much easier to solve the problem.

There are many different ways of solving it . Then I triedit on a bunch of

other things, and it worked amazingly well on all of the things we triedIt

worked much better than Boltzmann machines.

So I sent mail to Dave Rumelhart saying, 
"
You remember that algorithm

of yours? It seems to actually work." I don't know if Dave was already experimenting 

with it again then, but over the next few months w~ triedit on

lots of things. Dave was trying it on things in San Diego, and I was trying it

on things in Pittsburgh. That was at the stage when we were just completing 
the PDP books, so we'd already agreed on what was going to be in the

books. The final chapters were being edited. We decided we
'
d just slip in

an extra chapter on backpropagation, so it was a late addition to the book.

But I was always a bit disappointed. I mean, intellectually, backpropagation
wasn

'
t nearly as satisfying as Boltzmann machines. It 's not just because I

didn
'
t think of it . I think it 's because it didn

't have the nice probabilistic

interpretation.

ER: I don
't know if anybody will ever figure out who really thought of it

first. We have Amari, we have Werbos . . .

GH: I think there
'
s about a half dozen different people who thought of

it - different versions of it - and I wasn
'
t one of them.

ER: What made you leave CMU?

GH: It was a mixture of things. It was Reagan
's America back then. I didn't

like the politics. I managed to survive for a long time at CMU without

taking any military funding, but toward the end of my time there I ran out of

money, and I had to take ONR [Office of Naval Research] money and I

didn
'
t like that. So it was sort of a political reason- 1 guess not liking the

way American society was organized and not liking having to take military

money to do research.

I might have been able to put up with that, but I also got married then, at

the end of my time at CMU . My wife didn
'
t like all those things even more.

She really didn
't want to live in the States, so we looked around for somewhere 

we would both be happy to live. We decided we
'
d both be happy to

live in Vancouver, so that
'
s why we're in Toronto .

I had a friend in Vancouver. I got in touch with him to see if there were

any jobs going in Vancouver, and I learned about the Canadian Institute for

Advanced Research, which was providing money to buy people off their

teaching. Then I learned that Toronto actually had a better department than

Vancouver, and my wife wanted to come to Toronto when we learned more

about Toronto . Someone I
'
d known in San Diego, George Mandler, got in
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touch with people in psychology at Toronto for me. I ended up getting a job

that was mainly in computer science, but partly in psychology. With this

funding from the Canadian Institute for Advanced Research I didn
'
t have to

do much teaching.

ER: When did you come to Toronto?

GH: 
' 
87. I went to Carnegie Mellon in 

'
82, and I left in '87. And, yes, when

I was still at CMU , I got interested in trying to show that backpropagation
could do some difficult problems, as opposed to just things like X-OR. I realized 

that phoneme recognition was an important problem that people had

tried lots of things on, including hidden Markov models.

One very lucky thing happened to me at CMU . Early on w~en I was

there, I had a graduate student called Peter Brown, who knew a lot about

speech recognition and knew all about hidden Markov models. He told me

about hidden Markov models while I was doing Boltzmann machines. I wish

I
'
d understood more about them then because I only very, very slowly really

understood them.

The reason hidden units in neural nets are called hidden units is that Peter

Brown told me about hidden Markov models. I decided 
"hidden

" was a good
name for those extra units, so that

's where the name 
"
hidden

" 
comes from.

By the end of the time I was at CMU , and he
'
d gone back to IBM, he had

some data that he
'
d used for his thesis on phoneme recognition, where he

used very fancy hidden Markov models.

I decided to see if we couldn
'
t beat his performance by using back-

propagation, so Kevin Lang and I developed a variety of backpropagation
called 

"
time-delay neural networks

" for doing phoneme recognition. That

wQrked pretty nicely. It was one of the earlier examples of backpropagation

doing well at a tough task that people had tried other good methods on. It

wasn' t as spectacular as something like Terry Sejnowski
'
s NET talk. On the

other hand, that
'
s not a very tough task.

JA: Was that was your first try at a practical application?

GH: The first practical application I did was that phoneme-recognition

study with Kevin Lang. I
've done Moi:e since then but not that many. I'm not

really that interested. I
'm much more interested in how the brain does it . I'm

only interested in applications just to prove that this is interesting stuff to

keep the funding flowing . To do an application really well, you have to put

your whole heart into it; you need to spend a year immersing yourself in

what the application' s all about. I guess I've never really been prepared to do

that.

When I got to Toronto, I got more interested in relating what was going
on in neural networks to statistics. Also, when I was doing backpropagation,

I was still convinced that unsupervised learning was what the brain really
did, particularly for perception. Very early on, as soon as I got backpropaga-

tion working, I realized- because of what we
'
d been doing with Boltzmann

machines- that you could use autoencoders to do unsupervised learning.
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You just get the output layer to reproduce the input layer, and then you
don'

t need a separate teaching signal. Then the hidden units are representing
some code for the input.

In late 1985, I actually had a deal with Dave Rumelhart that I would write
a short paper about backpropagation, which was his idea, and he would write
a short paper about autoencoders, which was my idea. It was always better
to have someone who didn

'
t come up with the idea write th.e paper because

he could say more dearly what was important.
So I wrote the short paper about backpropagation, which was the Nature

paper that came out in 1986, but Dave still hasn
'
t written the short paper

about autoencoders. I'm still waiting.
What he did do was tell Dave Zipser about the idea of autoericoders and

doing unsupervised learning. Dave Zipser told Gary Cottrell, and they produced 
a paper on autoencoders. I never did write that paper about autoencoders

. Luckily, I thought more about it . A few years ago, I realized that

you should think about it in information theory terms. With Rich Zemel I

developed a way of doing unsupervised learning based on autoencoders.
In an autoencoder, the hidden layer in the middle is meant to learn codes

for the input. There's a way of thinking about it all in communication theory
terms. It initially seems very bizarre. You have a sender and a receiver, and

they both get to see the input vector. The sender has to tell the receiver
what the input vectors are. One way the sender could do it is by just sending 

the raw input back to the receiver. That would take lots of bits. You
would need a very big bandwidth channel to do that. Another way it could
be done is the sender could decide on some way of encoding the inputs,
which is what the hidden layer

's going to do anyway. Then, the sender
could tell the receiver what the code is for each input vector and also tell the
receiver, 

'
When you try and reconstruct the input vector from that code,

here are the errors you
'
ll get.

"

These are going to be codes, not quite perfect codes, but slightly incorrect
codes for things, in the sense that when you reconstruct from these codes,
you get an error, so what the autoencoder net is trying to do is make those
reconstruction errors small. By trying to make the reconstruction error small,
what you

'
re really doing is minimizing the amount of information that has to

be sent to explain to the receiver what the reconstruction errors are, because
small things are cheaper to send.

As soon as you view it in those terms, you realize there's something missing 
in a standard autoencoder: to send the input to the receiver, you have to

send both the code and the reconstruction error. The standard learning algorithm 
is just minimizing the cost of sending the reconstruction error, but it

also ought to be minimizing the cost of sending the code.
So, in a standard learning algorithm, in the standard autoencoder, you

assume that it
'
s free to send the activities of the hidden units to the receiver.

You can think about it as, 
"
Take the input vector, turn it into activities in the
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hidden units, and send those activities to the receiver.
" The receiver uses

those activities to reconstruct the best bet it can for the input vector, and

then you additionally have to send the errors to Ax up that best bet.

The standard algorithm just minimizes the additional information you

have to send to Ax up the best bet, but it doesn
't minimize the amount of

information you have to send to communicate the activities of the hidden

units. You can keep that small by having only a few hidden units. You can

think of principal components in statistics as a good autoencoder with only

a few hidden units. Not much information is required because there
's only a

few.of them.

It
's still a bit worrying because you have to send real numbers. Even

though there
'
s only a few of them, there might be quite a bit of information

on them. What you really ought to be doing is simultaneously minimizing

the reconstruction error and the number of bits it would take to communicate 

the activities of the hidden units. That's much easier to do if you view

the hidden units as stochastic binary units, like in the Boltzmann machine,

than if you view them as real-valued units, like in normal backpropagation.

So Rich Zemel and I developed a system where you have hidden units that

are stochastic binary units, and you train up the whole system so as to minimize 

the amount of information that would have to be communicated to

tell a receiver about the input vector by first telling the receiver about the

activities of the hidden units and then about the reconstruction error. You
're

simultaneously minimizing the information in the activity of the hidden units

and the information in the reconstruction error.

We showed
" 
that that does some nice things. It

'
s a more powerful kind of

learning than principal components
- or somewhat more powerful, anyway.

Subsequently, with Peter Dayan, we generalized that to multilayer systems,

with multiple layers of hidden units. That
's what we now call a Helmholtz

machine. [See P. Dayan, G. E. Hinton, R. M . Neal, and R. S. Zemel. 1995.
"The Helmholtz Machine.

" Neural Computation 7:889- 904.]

The nice thing is that for the multilayer system, there
's a very very simple

learning rule that minimizes the information. It
'
s very like Boltzmann machines 

in that there
'
s a very simple local-learning rule that allows you to

learn these multiple layers of representation. The one big difference &om

Boltzmann machines is that this system seems to work quite well. It works

reason ably quickly.

JA: You aren
'
t estimating probabilities?

GH: No, you are estimating probabilities. The underlying theory of it is

much more complicated than Boltzmann machines, but the learning rule is

very simple. The underlying theory differs &om Boltzmann machines. in that

you
're not assuming that you reach thermal equilibrium. If you reach thermal

equilibrium, you get one kind of mathematics. If you don
't go all the way to

thermal equilibrium, but just approximate it, you get a bound rather than

an equality. You can work with these bounds instead of equalities, and by
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working with bounds you get an algorithm that
'
s far more efficient than if

you have to settle to an equilibrium so that you get the equality.
One way of summarizing it is that in a Boltzmann machine the mathematics 

is simple because you assume the network has settled to thermal

equilibrium, and now you have an equality. In Helmholtz machines, the
mathematics is messy, but the system works much faster because you don

'
t

assume that it has to settle to thermal equilibrium.

ER: And you call them Helmholtz machines because. . .

GH: Because as a physical system settles to thermal equilibrium, it
's mini-

mizing a quantity called Helmholtz free energy. At thermal equilibrium, that

quantity is minimized. In these new systems, the Helmholtz free energy
doesn

'
t settle all the way down to the minimum value. It turns out that

the Helmholtz free energy of a physical system is exactly the same as the
number of bits that are needed to communicate the input vector by first

communicating the code and then communicating the reconstruction error.
There

'
s a precise mathematical equivalence between physical systems that

haven
'
t quite reached equilibrium and methods of coding images by sending

hidden vectors and then reconstructing things from the hidden vectors. That
'
s

one reason they
'
re called Helmholtz machines; for the physical system, the

underlying quantity is the Helmholtz free energy.

The other reason they
'
re called Helmholtz machines is that the~e systems

have a generative model of data. That is, from the hidden vector you communicate

, you must be able to regenerate the data. Helmholtz believed in

generative models. Helmholtz
'
s investigations into perception led him to believe 

in generative models that allow you to extract the most likely causes of
the data. It turns out that one technical way to get an algorithm that does all
that is by using the Helmholtz free energy, which he invented in physics.

I want to go and dig him up and explain this to him.

JA: He would have loved it .

GH: Well, he might have seen flaws in it . He was very smart, but I think he
would have found it at least intriguing that you could use Helmholtz free

energy this way in perception.

ER: I was wondering if you would be interested in making some comments
on the state of neural networks today.

GI:i: I think one very satisfying thing that
'
s happened in the last five years

is that people developing neural network algorithms have learned a lot more
about statistics. There

'
s been a kind of unification between the computational

statisticians who are investigating new algorithms and the neural network

people. Those two communities now talk to each other quite a lot . I think
that

'
s very important because it

'
s the statisticians who

'
ve traditionally investigated 

this idea of how you estimate things from noisy data.
There

'
s been a lot more use of the underlying algorithm in hidden Markov

models; the EM algorithm is used much more in neural nets now. There
'
s



been a lot of transfer of ideas &om statistics into neural networks. I think

there
's also transfer the other way. I think it

'
s a very fruitful interaction, so

that
's something very good that

'
s happened.

Something I am rather disappointed about is that we still haven
't got a clue

what learning algorithm the brain uses, but let me say one more encouraging

thing. Traditional AI always saw itself as very, very separate &om neural

nets. Neural nets was this weird sort of stuff that used real numbers. People

doing expert systems and also thinking about knowledge represention, particularly 

Judea Pearl, have come up with these things called 
"belief nets.

"

They
're used quite widely now for expert systems because they do correct

probabilistic reasoning. Early on in the development of expert systems

people came up with silly ways of using things that resembled prC?babilities

because they realized you have uncertain knowledge. They have to deal with

uncertainty somehow. They were so resistant to the idea of actually allowing 

probabilities in that they were much happier to buy into other ways of

dealing with uncertainty.

It turns out that those other ways aren
't nearly as good as using proba-

bilities. If you want to deal with uncertainties, you want to use probabilities.

Now, within standard AI , belief nets are taking over. It turns out that belief

nets are very like Helmholtz machines. They have a generative model of the

data, a probabilistic generative model.

One of the big problems is that the researchers presently get all the

parameters in their belief nets by talking to an expert. You
'
d really like to

estimate the parameters &om data, so you
've got a learning problem with

belief nets. You can view Helmholtz machines as one way of trying to deal

with the learning problem in belief nets.

I think what it amounts to is this. A belief net is a generative model of

data, so you think about the data as having been generated &om some

underlying process. In neural net terms, we assume the top-down connections 

that come &om some underlying representation have produced the

data. Neural nets have traditionally been recognition devices that go &om

the data to the underlying representations. What
'
s happening in a Helmholtz

machine is you have both top-down connections that are a generative model

and bottom-up connections that are a recognition model. The nice thing

about a Helmholtz machine is you can use each set of 
.
connections for training 

the other. The top-down connections are used to train the bottom-up

connections and vice versa. You get this very simple delta learning rule.

Just as over the last five years we
'
ve seen a unification with statistics,

where there are transfers of the ideas &om statistics into neural nets, I think

what we
're going to get in the next five years is a big unification with AI ,

where there are transfers of ideas between the AI people doing belief nets

and neural net people who are interested in learning belief nets. I predict

that
'
s going .to be a big growth area.

JA: Are you looking at that area yourself?
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GH: Yes, of course. A journalist sometime ago asked me, 
"
What do you

think the hottest new idea in neural nets is?
"

I said, 
"
Helmholtz machines.

"

And he said, 
"
But that's what you

're working on.
"

So I said, 
"
Well , any researcher who says that the hottest new idea is not

what he's working on has got to be stupid. If you think it
'
s the hottest new

idea, then why aren
'
t you working on it?"
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ER: Why don
'
t we begin with your date of birth and where you were

born?

BK: I was born February 7, 1960, Kansas City , Kansas, in a region called

Strawberry Hill , a Slavic community.

My father was Russian. He was a building contractor. My mother was
Serbian. She was a housewife. I grew up in a Serbo-Croatian culture. My first
musical instrument was a mandolin, an approximation of abrac, which is a
Slavic instrument. My cousins were in the Tambouritzans, a balalaika-type
orchestra but with Yugoslav instruments. I thought everybody spoke a little
Serbo-Croatian or Russian. I ate that kind of food, lived that sort of lifestyle
to some degree, and knew about the feud between the Croats and the Serbs.

ER: There was no academic interest in the family?

BK: No academic interest. I come &om a long line of peasants. My grandparents 
all came over &om the old country in Eastern Europe. They came

over poor, and all ended up in a Slavic region. Slavs, Poles, Russians, Dalma-

tians, Yugoslavs, Czechs- the whole group in Strawberry Hill .

ER: So there was a rather intense family scene?

BK: The Yugoslav side of the family was very much family oriented. It
was very positive. The Kosko side, the Russian side, was a little more aggressive

- much more in the spirit of The Brothers Karamazov.

ER: Did you have brothers and sisters?

BK: I have one brother. He is three years older. All during high school he
was the intellectual. I was always off doing other things, more in the arts
and nature. I was an outdoors kid at the time and hunted and trapped and

gathered wild ginseng. He got the scholarships first and then went to school.
We all went through the hippie era.
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ER: I'm curious what your earlier childhood was like.

BK: I grew up very early. I grew up in large part as part of a Kansas City
street gang. My brother was the youngest member of it and he was three

years older. I grew up very early. I had my first sexual experience with a girl
when I was four. A deep dark secret. I didn

't find out that my brother and

his friends had had their experiences at the same time until I was twenty-five.

So we were part of a group of bad boys in the street gangs in Kansas City .

Some of those kids grew up to become complete hoodlums. I don
'
t know if

they
're in jailor not. When I was in second grade, for whatever reasons, my

father thought it was a good idea to move out into the country to a farm.

That
'
s where we lived for a fair amount of time. That was the best part of

my life- out on the farm, wide open, minimal government interVention.

I've always had a problem with the government. When I was three the

government took our house through eminent domain to
. 
build Freeway 635

for the Kansas City Airport . That was a shocking thing to tell a little kid:
"Your house is going to be tom down and destroyed." But when I was

seven or eight years old, I found myself on the farm, hunting and fishing and

animals. It was bucolic. It was just wonderful. Wide open. My father was a

very open-minded man.

That all ended for me when I was ten and the house burned down. A few

months after that; my father died. I began living with other people then. My
brother and I split up. I still stayed largely in the farm community. We had

another farm after that very briefly in the same area. Through high school I

stayed in the city of Lansing, Kansas, outside of levenworth in the northeastern 

comer. My high school never had more than 400 people in it .

ER: Were you with your mother during this period?

BK: Sometimes with her, but often split up, living with other people.

ER: Relatives?

BK: More often friends. I had different friends during high school. I went

through various phases at this point and went through the hippie phase very

early, when I was young, and got deep into drugs when I was twelve. That

began for me in part when I became a 12-year-old amateur herbalist under

the influence of Euell Gibbons, Stalking the Wild Asparagus.

It was Kansas, so you would start smoking some local pot (called K-pot
or Kansas ditch weed) and then try different kinds of herbs. My brother was

deep into chemistry at this point . I remember we read a copy of Aidous

Huxley
's Doors of Perception. I was at the time around twelve years old.

We wanted to try mescaline and did. I had some very mind-opening experiences 

with LSD. I was deep into the hard rock music. Then I had a bad

trip when I was fourteen. A very bad acid trip, a paranoid trip, and I got

completely out of it and was turned off to the whole culture, including rock

music.

For whatever reason I got deep into classical music at that time. I had

some training in the mandolin and I switched that over immediately to a



violin . I got book on orchestration and I began to study that. By the time I

started high school I was writing my first little violin concerto. I got some

supervision at the local college from a music professor there and got deep
into music.

So at a farm school in Kansas I saw myself as the next Beethoven and

started writing a lot of works- small works, big works. Within a year, members 

of the Kansas City Philharmonic had performed my first string quartet
and piano trio . And so during high school I' d come home at night, and every

night before I'd go to bed, I'd make sure that I wrote some music. I learned

the discipline of creativity. I would not go to sleep until I had written at least

a few bars of some musical project. By the time I was sixteen, I was reason-

ably good. By the time I was seventeen, I'd won the Young Composer' s

contest. Then I started getting scholarships. The best one was from USC.

And out to USC I went.

ER: So music was always a kind of central organizing principle in your life?

BK: I began with music. The big intellectual event for me happened when

in my senior year in high school I learned physics, and I lost my faith in

God. This was a big crisis for me. Physics pushed God right out of my head

and replaced it with physics. There was an alternative description of the universe

. I was deep into Newtonian mechanics. I had a professor, rather an instructor

, Bill Geler. Since Lansing, Kansas, is next to Fort Levenworth, many

people cycled through the military school there - high-caliber instructors

who taught pro bono and stepped in to teach at the local farm schools. This

fellow did that for me. He came in to teach our physics class. When I stood

in graduation Line and I had my robe on, he walked up to me and said, 
"
Here

is your graduation gift .
"

It was May 1978, and it was a copy of that year' s Pulitzer Prize winner

by Carl Sagan, The Dragons. of Eden, which speculates about the origins of

human intelligence. This was the first book I'd ever read on the brain.

So now I'd lost God, and I was deep into physics as a substitute and

got this book and read it cover to cover in a day. He handed it to me then,
I think, rather than earlier because this was a Bible belt town. Many would

have considered this a radical book. It made me think. It was the first time I

ever understood the idea of neural networks and synapses in the brain.

And it had a mechanistic view of mind. I'd long since become a materialist

in my philosophical point of view. Here at last were some speculations on

how that might actually be brought about. That was my first acquaintance
with neural networks. I'm happy to say that many years later, when I wrote

my first textbook on neural networks, I wrote thanks to Carl Sagan, and

he was nice enough to write a kind response in return and we began a

friendship.

When I went away to USC under a music scholarship, I was already working 

on my first symphony. I had a contract to record. I got it on the basis of
an orChestral overture to the Count of Monte Christo. When I came to USC I

Bart Kosko389



Bart Kosko390

wanted to be the next Richard Wagner. I wanted to make films and score

them and write them. I wanted to be the artistic superman of the day. I had

no concept of how any of these things worked. I didn
't know that U5C, for

example, is located in the ghetto. I thought of L. A. as filled with movie stars

and all those sorts of things a farm boy in Kansas would think about Los

Angeles.

50 I got out to U5C on a full scholarship to the top music school on the

West Coast. The first thing I did was take placement exams. These were for

undergraduates and I passed them. Understand, at the time I was very advanced 

in my musical work, had several copyrights, and was orchestrating

my first symphony, so they had me take the PhiD. exams. And I passed
those.

The faculty did not know what to do with me because the music that they

taught was atonal, and what I like is very tonal. It would tend to be placed
more like in the late-nineteenth century in the sense of harmonic romanticism

and the expanded orchestra. They were not interested in that. 50 we fought.

The way it played out was that they got me into the graduate course in film

composing, which was what I wanted to do anyway, and they let me keep
the scholarship for a year, provided I got the hell out of the music program.

50 I did.

All of a sudden, before classes had started, this guiding principle of my life
- this goal, the music- was cut out from beneath me. Now

'
l was drifting ,

my hobbies had been philosophy and science. They advanced from hobbies

to degrees. The four years of undergraduate school led to two degrees
-

one in philosophy and one in economics. Those in turn have led to the two

fields I work in now, fuzzy logic and neural networks. The philosophy led

to fuzzy logic and the economics led to neural networks.

ER: You said that you had read widely in philosophy and science before

you got to U5C. You referred earlier to Aidous Huxley and Doors of Perception
. Was that what first made you start thinking about philosophy?

BK: I think you think about philosophy when you think about the two big
ideas of 

"
goodness

" and "Godness.
" "

Does God exist?
" 

and 
"
Is this right?

"

These were the questions of metaphysics and ethics. Is the universe just? Is

that particular action just? It had nothing to do with psychedelics.

My brother came back periodically. He was at Northwestern at the time.

He had just taken the latest course in philosphy or math, and we
'
d debate

these sorts of questions. That was the age of Zen and the Art of Motorcycle
Maintenance. We

'
d sit around smoking pot or eating magic mushrooms and

talking about metaphysical questions. Although we lived on a farm, we had

some terrific drug parties out there. Thinking back, it was one of the best

parts of my life, but I saw my relationship to the government was very much

like my relationship to God. It was one I questioned and one I lost faith in.

Most scientists question God while they still cling to government.

Life in Kansas, now that I look back on it , was very good. I think of Kansas

now and see it as wide open. A place to do my own thing in my own way,



make a lot of mistakes, pursue a lot of paths. The whole drug culture was a

part of that.

ER: What made you choose economics?

BK: That's an interesting question because if you
'
re really going to be a

fanatic about philosophy, you have to have a political philosophy, so the
first thing a young man in philosophy encounters is Marxism. It seems the
most radical. The first book I read on it was Das Kapital. I read that before I
read the Communist Manifesto. Having lived on a farm and worked so much
with the supply and demand process es, I wasn

'
t impressed with the labor

theory of value. I was impressed though with the revolutionary spirit, as
I think most young people are. That

'
s what brings them to Marxism- to

what makes them man the barricades- not the labor theory of value.
At the same time I found that the collectivist-type arguments really

weren't for me. I was looking for a social philosophy, and this is where I
stumbled upon libertarianism. This idea has two goals: maximal personal and
economic freedom.

Now that I look back upon it , I think that that may be where I got the idea
for the fuzzy cube because there

'
s a fuzzy square used to define your political

position. It has two axes. One axis is from 0 to 100 percent for political liberties
, and the other axis runs from 0 to 100 percent for economic liberties.

You slice up the square into four pieces. One quadrant that says 
"
low

political freedom
" 

and 
"
low economic freedom" 

is the populist position- an
Archie Bunker position, a government-control position. Another quadrant
that says 

"
high economic freedom" 

but '10w personal freedom
" 

is the conservative 

position, the Rush Limbaugh position. The other quadrant, diagonally 
opposite from that, says 

"
high personal freedom" 

and '10w economic
freedom." That's the modem position, the bourgeois, the petty socialist, the
modem liberal- or Bill Clinton, for example.

That leaves the last quadrant, which says 
"
high economic and high personal 

freedom,
" 

and that's the libertarian position. I saw that drawing and
realised that

'
s me up there in the far comer. The real question is, 

'
What

'
s the

optimal size of government?
" 

I think the answer is zero- somewhere between

monarchy and free-market anarchy. I don'
t think government- or socialized

science- is destiny.

I started taking courses in microeconomics. I thought at first that a minimum 

wage was a good idea. Why not raise it by 50 percent? Why not raise
it by a thousand percent? Minimum wage, rent control, tuition subsidies.

They all sounded good to me at the time. I was poor. I was working on
work-study all my time at USC. But these notions collapsed with asupply -
and-demand analysis, so I found myself incr~asingly in that upper box of the

fuzzy political square, arguing for a government for a monopoly on power,
that was truly limited.

At the time I thought the limit could in theory go to zero and maybe
some day would. That was really the essence of Marxism. The real vision
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of Marxism was that the state would wither away. In fact it tended not

to wither but to grow and grow and grow . The ultimate Marxist state was

a very libertarian-looking thing, with complete wealth, complete freedom

from the state, and so forth. The issue was the means of achieving that rich

stateless society.

I saw that we all wanted to end up in that upper quadrant in that final

corner of complete freedom. At the time that I was getting deeper into the

libertarian philosophy, I was also being forced to register for the draft. That

tends to sharpen one
'
s position on these issues. I was in the first draft pool.

The cut-off line began for those born January 1, 1960. I was born February

7, 1960. That made me think a lot about the ideas behind a free-market or

volunteer draft.

The case for a volunteer military seemed very clear. In case after case I

saw that the alternatives were whether to have the government provide a

monopoly service or have competition for a given service. It had nothing to

do with the nature of the service itself, whether it was protection by way of

the courts, or police protection, or in the end even national defense. The

effects of philosophy and economics on me were to further erode my belief

in the state. Again like a lot of people, I lost my belief in God with science.

With more science and philosophy, I lost my belief in the state. I have little

sympathy for atheist scientists who kneel before the state and spend much of

their time hunting state subsidies. They have betrayed science and corrupted

themselves. They do not live up to their social marginal product.

Now what happened is that part of my work at USC was in political phi-

losophy. My instructor there was John Hospers, who was the first Libertarian 

presidential candidate. He was at USC and wrote an acclaimed book

called Libertarianism, the first explicit book on the subject. Right away I became 

a campus libertarian. My friends and I took charge of tne Speaker
'
s

Committee. I remember, for example, we made Ted Kennedy speak outside

in the rain one day. We brought in speakers and kept out others. I remember 

we brought in G. Gordon Liddy but he turned us off with his big-

government conservatism.

The other thing that I did was write essays. At this time, when I was nineteen

, I tried to become a professional writer . I even wrote soft-core porn

stories under a pseudonym. It was very hard work. I took courses in the

graduate program for writing at USC to train myself for writing . I started

making some extra income and I learned the discipline of writing . I started

writing essays- essays about the military draft, the abolltion of victimless

crimes, the nature of liberty . I would run those in the Daily T rajan [US C
's

student newspaper]. Then I sent copies to my friends and comrades at other

universities- at KU, Northwestern, at different schools. They would run

the essays under their own names, and they would respond to the questions
themselves. That was their obligation. I remember at one point I was hitting

an audience of more than 100,000 people. That
's a very powerful feeling

when you
're twenty years old.

Bart Kosko392



Bart Kosko393

When I got into philosophy a little more deeply, I started with political
philosophy. The modem philosophy is the philosophy

. 
of science and

the works of [Willard Van Orman] Quine and the logical positivists. Every
statement is either true or false. It is meaningful if and only if it is an empirical 

or testable statement or a logically trivial statement- in other words
it is meaningful just in case it is either a statement of math or science. Questions 

of ethics or other questions may have personal meaning to you but

they have no cognitive content.

My heroes were the members of the Vienna circle of logical positivism in
the 1930s, &om Rudolf Camap to Quine. Quine even came and visited us at
USC in the philosophy department. I began taking courses in symbolic logic.
So I had lost my faith in God and I turned to science. I tried fanatically to find
some kind of foundation to stand on. I very soon realized that the language
of science is math and that the structure of math is logic, and the essence of

logic is basically these Aristotelian assumptions of the black and the white. I
remember, for example, running across the books of Ayn Rand and her big
propagandistic novel called Atlas Sh rugged. The three acts of the drama are
labeled the three so-called laws of Aristotelian thought: 

II 
A equals A," 

II 
A or

not A," and "not the case of A and not A ."
I began to question these laws of Aristotle . This was to me the next big

changing point of my life. I got deeper and deeper into logic and was taking
graduate courses in symbolic logic while still an undergraduate. Suddenly I
had a crisis. I couldn't find a single statement of the world, about the world
- the descriptive world, the world of factual truth- to which logic applied.
I couldn

'
t find a single statement that was either 100 percent true or 100

percent false: "The grass is green." 
"
The sky is blue;

" "
The dirt is brown."

These statements were matters of degree, but by logical law they had to be
true or not true. They had the same status as the statement 

"
2 equals 2

" 
or

"
2 equals 3." This was a great crisis for me. I saw a mismatch between a grey

world and a black-and-white science.

Then I stumbled on multivalued logic and that to me was a big breakthrough
. I thought this was a central issue, trying to get language to match

fact. That led very quickly to my fuzzy research. Now, at the same time, in
economics I got deeper into the study of &ee markets. This was the beginning 

of the Reagan revolution, so the &ee market was becoming very popular
. But there are certain theorems that a lot of people don't know about.

One of them is called the Coase theorem. For this, Ronald Coase was given
the Nobel prize in economics a few years ago. It says that if transactions'

costs in exchange are zero or small, and if property rights are well defined,
then the market outcome is Pareto optimum or is efficient. "Pareto optimum

"

means it 's a kind of social equilibrium where it 's impossible to make somebody 
better off without making someone else worse off. It 's almost like an

ideal Marxian state. So you can view the economy as a big game, an exchange 

game. If you fall in a state of Pareto optimality the you
'll never move



out of it . The Coase theorem was bouncing around the halls of both the

econ. school at U5C and its law school.

The other theory that was very hot at the time and that brought me back

to biology was the theory of sociobiology. This was one of these grand,

sweeping, worldview theories. The selfish human. We
'
re just gene machines.

The chicken is the egg
'
s way of making more eggs. We

're DNA
's way of

making more DNA . I began to look into this. I read E. O. Wilson
's big textbook 

on sociobiology. That was a lot of work. Population biology , ecology
- there are many things packed into that book. I started writing my first

technical paper on the marijuana market. I viewed that market as a socio-

biological type of game that can achieve what
'
s called an E55 or an evolu-

tionarily stable strategy
- another notion of global equilibrium. That

'
s close

to a Nash equilibrium in game theory or the Pareto optimality in the Coase

theorem.

I thought more and more about the social systems that emerged through
so-called invisible hand mechanisms- for example, language or morals or

markets. No one invented languages. They evolved. These mechanisms

include most social institutions, general market outcomes, 5upply-equals-

demand equilibria, and so on. The concept began to fill my head that the

more agents enter the game, the quicker and in some sense the better the

equilibrium you reach. 50 between sociobiology and the new mathematical

economics and my political enthusiasm for free markets, I was driven deeper
into the mathematics.

I was good at logic. When I
'
d taken calculus earlier, I was at first selftaught 

and never had much enthusiasm for it . I hadn
'
t run with it as I

'
d run

with music. 50 when I was twenty, right before Christmas break, one day I

went to the book store and bought for $1.50 an old calculus text. I took it

with me over Christmas break and began working each problem in each

chapter. I thought it was easy and trivial and simple. I kept working these

problems like an exercise workout, with the same daily discipline. Pretty

soon it was like when I
'
d worked with physics or with musical theory. I got

deep into it and began to think and guess in terms of it . This was when I

woke up mathematically.

50 when classes resumed, and the new semester came around, I enrolled in

an advanced calculus class and got the only A in the course. That began a

new line of training for me in mathematics. I pursued it too with religious
zeal.

I had to learn topology , so I got the Schaum
'
s Outlines books and did some

background work and got my first notion of topology , very general notions

of connectedness and compactness and smoothness. I studied the transformations 

of one system into another so that I could grasp the works of

Gerard Oebreu, who won the Nobel prize in economics in 1983. The key

book for me was Oebreu
'
s A Theory of Value. The entire equilibrated economy 

reduces to a fixed point of the system, the Brouwer fixed point. You

can picture it in terms of, again, a unit square if you view the positive diago-
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nal as the locus of fixed points, where x equals f (x). Then it 's impossible to

draw a curve from the left to the right witho~t hitting that diagonal at least

once. The theorem says that a continuous function of a compact convex

set into itself always has a fixed point . Debreu had the clever idea of showing 
the economy in terms of market-clearing functions and setting them up

in terms of the compact convex set of price vectors (a simplex). Each price
vector is like a probability vector. The components all add up to one. The

system maps into itself. Debreu showed there had to be ' one such price
vector that decentralized the economy. That, in effect, was Adam Smith

'
s

invisible hand. I thought that this was a clever proof of laissez faire capitalism
. It falls right out of the Brouwer fixed-point theo,rem and the Kakatuni

fixed-point theorem that extends it .

I got deep into such things and then ran into the works of neur~l theorist
Morris Hirsch. His book, Differential Topology- I couldn

'
t really handle it,

and I still have a hard time with it, but increasingly research in economics
dealt with what are called generic systems, properties that hold almost everywhere

. The more agents you have, the more likely you might see something
like you see with neural systems- that is, exponentially fast convergence to

equilibrium. It was this idea, systems equilibrating, that got me into neural networks
. At the same time I was working with evolutionarily stable strategies

of game theory. The idea was to extend that idea to CSSs, or culturally stable

strategies. I did that with my marijuana paper, which I wrote in a couple of

days but which took me many years to get published.

Another thing that helps concretize my ideas is trying to write them down
and get them published. The idea of the invisible hand, the convergence of

systems, Debreu
'
s work, Arrow

'
s dictatorship theorem, the Coase theorem

- all these things convinced me that we could construe broad social structures 
in economic terms. Somewhere, someday, I don

'
t remember how or

when, I thought of the brain in the same way. Why couldn
'
t the brain act like

a big economy?

It was in that context that I ran across an obscure paper by Stephen
Grossberg, very hard for me to read, about competition as an organizing

principle for biological systems. Competition ruled not just at the broad
level of the Darwinian slug out, but even down at the level of the structure
of the ,brain. I have to give Grossberg credit for bringing me into the neural
field. In some sense it began with Carl Sagan. But it was with Grossberg that
I saw the mathematics for the first time. He had theorems that tied agent
behavior to brains.

Around this time then I wrote my own paper called "Equilibrium in Local

Marijuana Games,
" 

which was a game played among growers, ripoffs, and
narcs. I wrote that paper after watching a Ted Koppel program on A B C

'
s

Nightline on the growing of marijuana. There were narcs trying to raid the

pot patches. The narcs found that as these narc raids went up, the rip-offs
went up as well. That was the game played between growers and rip-offs. So
in modeling that phenomena, I had my first mathematical result. I derived
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a global equilibrium for the entire grass game. Given any combination of

agents- any mix of growers, rip-offs, and narcs- the game would always

converge, exponentially quickly and independent of initial conditions, to a

stable outcome.

I had just graduated &om USC and had no money. I was accepted into

graduate school in math at UCSD. During that summer I remember I checked

out more than one hundred books at the USC library because I now spoke
the mathematical language. I read books on traffic theory and books on engineering 

and as much as I possibly could on population biology . I laid out

my first novel on sociobiology. I was writing a little fiction along those lines

arid did publish some stories.

I tried hard to get my marijuana paper published. The only pla~e I thought
I could do that was in High Times. They accepted it , but rather than paying
me for the article they offered me advertising space. That was really not the

sort of thing that I do, so it didn't get published at that time. It took many

years. It didn
'
t appear until 1991, and I changed it along the way, but the

essence remains, the result that I derived when I was an undergraduate. It

is still one my favorite results- my mapping &om TV to math.

In my last semester at USC, when I was taking various math courses, I

wanted to understand general relativity . It was just an intellectual goal.

To do that, you need to understand differential geometry, the calculus of

curvature, calculus on manifolds. They offered a course on it that semester

with a fellow named Mark Kac. He was one of the editors of The Annals of

Probability.

I remember when Mark walked into the class. He was a big man, big powerful 

presence, white hair, bright red tie. He said, 
"I'm here to tell you the truth

and only the truth, but not the whole truth because that would scare you.
"

I was very taken with the man. I began pursuing differential geometry much

more than I otherwise would have, and I became something of his protege.

He was new at USC, and I was just about to leave USC. He wanted to see

as many people as possible go into pure math. Within a month or two he

was writing letters of recommendation for me. That's how I got into UCSD
'
s

math department.

I was offered a scholarship in the economics program at USC, but I

wanted to pursue math. I was into the idea that math was the language of

science, that this was the new religion or at least the bedrock of the Information 

Age. I couldn
'
t learn enough of it . So through the help of Mark and

others. I made it to UCSD. I remember we'
d have many discussions about

the nature of probability . He was a rabid probabilist and called himself an

operationalist. That led me to believe that what exists was what you could

measure. Mark had worked with Richard Feynman and others on the foundations 

of quantum mechanics. If you asked him, 
'is the moon there if you

'
re

not looking?" he would say, 
"
No .

"

I thought, 
"
Now here's a guy I have great respect for, saying something

that is clearly false, clearly outrageous, and yet there
'
s a reason why he says
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that." I'm very suspicious of probability , not just because of its general
problems, but also because probability looked a lot like God. It was used to

explain a lot of things, and you could never catch it in the act. You could
never find the real thing. You find at most its footprints.

I remember asking Mark about multivalued logic, and he pooh-poohed it .
We talked instead about what was called "the measure theory of probability 

.
" 

SO when I was twenty -two and at graduate school at UCSD in mathematics

, and a T A in calculus, I began to pursue measure theory, or the
formal theory of probability . My economic development went on hold.

At the time, I was very poor. I had no money and a minimal scholarship in
the math department. This was at the height of the recession, in 1982- 83. I
raced through and got a master's very quickly, in one year, and got a job. I
sent out seventy resumes.

The only job I could get was at General Dynamics. I had mixed feelings
about this. I mean, here was a libertarian about to go to work for the largest
defense contractor in the world . Yet it was very seductive. They were paying 

me $30,000, and I had never had anything like that. I had earned maybe
$5,000 a year, if even that. So I got $30,000 to be, in effect, an artificial

intelligence consultant, a mathematical internal consultant. I could continue
PhiD. work gradually on the side. I had to take it . I

'
d always been poor, and I

wanted to have my first home and all those sorts of things.
So before I knew it I was at General Dynamics. I started work on July 11,

1983. I began the security interviews and all the things that you have to do
to work there. Again, I felt the omnipresence of the state that had plagued
me since I was age three. But the one thing that was very good at General

Dynamics was they had a library at the Convair Division, where I was in San

Diego. They had unlimited technical resources. They changed the copying
machine policy because I copied so many articles.

The first thing I got into there was fuzzy logic. I had stumbled across that
term "fuzzy

" 
in an article by Ronald Yager. Before, I

'
d always heard the field

described as "multivalued
" 

or 
"
vague.

"' 
I read the works of Lofti Zadeh and

checked out all the books I could find on it and ordered other books on the

subject. I went to seminars and just devoured works on that field and related
ones. I looked more at artificial intelligence. I found interesting the problems
of AI . But there was little mathematical basis there.

It was at this time at General Dynamics that I began looking at neural
networks in detail. I wanted to apply the economic notions I

'
d worked out to

military planning. Somewhere along the line I ran across the words 
"
den-

dritic tree,
" 

and so it was time to start looking at neural networks. I got some

primers on neurobiology. Before long, I ran across Stephen Grossberg
'
s

book, Studies of Mind and Brain, which had just come out. I had a hell of
a time reading that. I still have a hell of a time reading that book. Yet it
remains my .favorite book in the field.

For me, these two fields that were to play such a heavy role in my life

began to come together. The first research type thing I did in 
'
83 was to
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come up with something called a fuzzy cognitive map. Now, the term
"
cognitive map

" 
has been used by many people in psychology and also in

political science as a way to relate causal events. The idea is pretty obvious,
just to allow fuzzy causal events as well. So if this node goes up, then that
connected node goes down to some degree. The nodes themselves can stand
for fuzzy sets- like the strength of a government, or political activism, or
these kinds of abstract notions to which all events belong to some degree.

My application stemmed from the problem of how you put values on a

target. I was working on some smart weapons at the time, largely the Tomahawk 
cruise missile. There was the problem of launching several Tomahawks

at different targets. It is a relative evaluation problem. It
'
s the problem of the

target value of a bridge. The bridge is worth a lot before the tanks go over
it . It

'
s worth very little once they

'
ve gone over.

We looked at expert system decision trees, and they didn
'
t really handle

the problem. Then I tried cognitive maps. I wrote my first fuzzy paper using
them. The analysis suggested that the maps really should have feedback, but
the minute you put in feedback, then there were closed loops and no more
tree structure. Then the doors of AI shut, and you couldn't do inference. The

question was, What can you do with feedback cognitive maps?
" 

There was

just one idea: "The hell with graph search. Why not just let the thing spin
around, and see if, like an economy, it would cool down and equilibrate?"

This was a type of feedback neural network I was playing with . It was the

year after the Hopfield paper came out. I read that and other papers. I started
to see the neural connection, though I was still thinking of the cognitive map
in terms of causal prediction, which lies at the heart of much of philosophy.
Hume said that causality is an illusion. When you say, 

"
A causes B,

" 
really it

just means "if A, then B." Causality is a constant conjunction of events, I
wanted to see if we could have an adaptive causal structure. Data change the
causal links in a cognitive map.

The problem I had with the Hume idea- which was a correlation idea,
really a Hebbian idea- was that it grew spurious causal links. The idea that
came to me was that of John Stuart Mill who said that causality is a concomitant 

variation of events. A simple way to deal with variation is as a change,
as a derivative, and as a product or concomitance you just multiply . This
is where I came up with my first neural contribution, what I later called the
differential Hebbian law, or the differential synapse. I designed it at first for
causal prediction on a cognitive map with no intention of a neural connection

. Much later, I saw the work of Harry Klopf, who did apply a similar idea
to neural networks.

I began to study how a cognitive map might behave and saw how to

exploit its matrix and nonlinear structure. I
"
read a book edited by Jim Anderson 

and Geoffrey Hinton
" 
and saw that you could reduce a lot of neural networks 

to linear algebra, followed by some nonlinear operations. I worked
that out for cognitive maps.
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At about the same time, I was proving my first theorems on the foundations 

of fuzzy set theory. By now I was caught up in the debate between

fuzzlness and probability . Most people just said fuzzlness was probability in

disguise. I wanted to see whether that was true. I expected that it might be,
or that it might be the other way around, since I sat in the fuzzy world . At

this point, I had met Lofti Zadeh and many of the founders of the field. Lofti

took me on, in effect, as a long-distance graduate student and steered me

into electrical engineering, which is why I moved from UCSD to UCI and

UC Berkeley. I could find no interest at UCSD in this at all.

My goal was to recast fuzzy theory from the foundations. So I thought
that it might proceed like this: In the most general case, you have a set of

objects and all possible subsets of those objects, what
'
s called the power set.

If you have n you have 2" subsets. I wanted to work with the set of all possible 
fuzzy subsets, which is infinite, even if n is finite. That

'
s the big sigma-

algebra. It
'
s all in the algebraic structure of the sets. The big advance was

when I saw that that sigma algebra had the structure of a unit hypercube
- it

was like Jim Anderson
'
s Brain State in a Box. Maybe that was a triggering

event in my life, or maybe it was the libertarian cube. I don
'
t know what

it was. I remember thinking that a Rubik
'
s Cube has eight comers, just as a

set of three objects has a power set with eight objects in it . Any point inside

a Rubik
'
s cube corresponds to a fuzzy set of three elements, where each

element belongs to some degree.

About this time, 1984, I ran into Robert Hecht-Nielsen. He and I were part
of the neural underground in San Diego, the neural fuzzy underground. He

had designed a processor called a fuzzy associative memory. It really wasn
'
t

fuzzy, but it did have some outcomes where output values could take on a

spectrum of values. Robert and I became friends at once. We never fitted in

at UCSD. We were never members of the POP [parallel distributed processing
] group. And when we tried to get in later, we were always persona non

grata perhaps because we were in industry. The UCSD folks did not allow

me to present my neural theorems there. They instead allowed my friend

Professor Clark Guest to present them for me. So Robert and I were on our

own.

Robert was at TRW then. He ran the AI lab. Very soon I moved to a

smaller company called VERAC; the V stands for nothing, but the rest is

Engineering Research Analysis Corporation. I soon became manager of

adaptive systems. Also, I ran a local neural network interest group. We'd

invite various people to speak
- for example, David Rumelhart and David

Zipser. It was very much of an underground movement.

Now, to step aside here from the technical issues, there was also a political

development. Something happened in 1985. I thought at the time that the

most important conference series was the IJCAI and AAAI series of artificial

intelligence conferences. That
'
s where I met, physically met, Lofti Zadeh.

I saw AI experts pummel him on the panel on uncertainty. I watched Lofti
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Zadeh try to sell fuzzy logic to the AI experts in the section called 
"
Management 

of Uncertainty in Expert Systems.
" 

They didn
'
t buy it , they only

joked about it . At the same time , I would scan 
'
the 

"
Proceedings

" 
and seldom

see a neural paper . Robert and I were both trying to get our papers published
- in my case neural and fuzzy , in his case just neural . It never worked .

I remember the 1985 AI conference at UCLA . This was at the height of

the AI movement . I
'
d done some work with the Symbolics Company , one of

the developers of the LISP machine . I
'
d developed a program for the government 

called ADBM , an Adaptive Distributed Ballistic Management System,

which tried to organize the SDIO System [Strategic Defense Inlative Office ,

often called Star Wars ] like a big &ee-market system in the sky . The folks at

Symbolics Graphics had worked out a videotape that was very popular and

that soon brought me, the libertarian , to the headquarters of the Strategic

Defense Initiative to explain the system. From that point , I began to see that

the way we pursued mission planning in the military was purely centralized

or socialistic . The DOD remains the world
'
s largest command economy .

The turning point was in 1985 at the AI conference. This was the peak AI

conference in terms of attendance and certainly in terms of enthusiasm. It

was held in our backyard at UCLA, and my fuzzy mends and neural mends

were there . Robert Hecht -Nielsen and I went up to L.A . Of course they rejected 

our papers, but what we saw there made a deep impression
- just the

panache of the AI community . The two competing vendors of LISP machines

- LMI and Symbolics
- both had separate limousine services that would

take you to the Beverly Wilshire , another very large downtown hotel . There

was all the food and drink that you wanted . There was a big Malibu party

&om Symbolics . It was very posh
- the structure of the tutorials , the plenary
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talks, the way the venture capitalists were running around trying to fund

the field. And somewhere in there the idea began to emerge, sort of at a

subliminal level still : why not do something like this for the neural or fuzzy
fields7

That same year, after the AI conference, in the summer of 1985, the president 
of my company VERAC happened to be the IEEE [Institute of Electrical

and Electronics Engineers] San Diego chairman of the computer society. He

said, 
"
How would you like to be chairman next year, in 19867 The only

requirements are that you say, 'I do,
' 
and that you be an IEEE member.

"

I wasn
'
t a member. So he wrote me the letters and I became a member and

I 
.
d 

"
I d 

"sat , o.

So when 1986 rolled around, I had a vote on the executive committee of
the San Diego IEEE section. At the same time, I was teaching a

' 
course at

UCSD at night on fuzzy theory, in which I was developing a lot of my fuzzy
ideas to the point where I was giving out homework problems on them.
Often I would create a new theoretical idea, like the idea of fuzzy entropy,
and within a week r d already assigned homework problems on it to the
students and for myself to explore. This was in early 1986.

Then I did something. The local section of the IEEE had about $30,000
in the treasury. They felt that each year they were eating that up by about

$5,000. So they were slowly going broke. They needed something to raise
revenues. I had the idea, 

'
Why don

'
t we get a bunch of these AI vendors together 

and throw a mini conference 7 We'll call it the AI Slugout. We'll have
LMI compete with Symbolics and bring in all the smaller vendors that are

selling AI machines." These included Sun Microsystems, Silicon Graphics,
and other companies that had AI packages, the AI software tools people, and
so forth. So at UCSD I rented Mandeville Auditorium for $LOOO, courtesy
of the IEEE, and brought together several of these vendors.

In April 1986 we had the AI Slugout. It was on a Sunday afternoon. I'll
never forget it . The curtain hadn

'
t been drawn; it was to start at 2:00. I went

behind the scenes, and there were at least twenty people, most of whom were

major vendors. The two biggest ones refused to show up, Syrnbolics and
LMI , but the smaller vendors showed up, and we had a show. I peeked outside 

the curtain, and there were exactly six people in the audience. There
were far more vendors than attendees, so I told the vendors that the program 

had been delayed about half an hour. I ran outside with my friends, and
we began to grab anybody walking by and tell them they had to come see
this artificial intelligence conference. We got maybe fifteen, twenty people.
That got a critical mass going. Other people began trickling in. We put up a
small sign, and at one point the crowd reached almost as many as a hundred

people.

The local IEEE section judged it a success. I had the vendors contribute

$200 apiece. The net result was we not only paid for Mandeville Auditorium

, but we made a profit . In the eyes of the local IEEE section, this was a

big stamp of credibility for me.
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We
'
d been talking, always talking, about perhaps having a conference

someday as a major revenue enhancer. They weren
'
t sure about what. They

were talking about having maybe something in manufacturing, where there

already was a conference, and trying to co sponsor it . In the first week of

June 1986, I believe, Business Week ran our famous article on neural networks

. In it were pictures of Robert Hecht-Nielsen bending over his neural

machine at TRW and John Hopfield standing with his arms folded in front of

a picture of a neural network. Everybody was talking about it . Robert had

thrown the first neural short course in the fall, which largely neural researchers

attended, and had scheduled another one for later in that summer. I was

about to begin a course at UCSD on neural networks.

I sat at the monthly IEEE meeting. I had brought Oa copy of Business Week

with me and said, 
"
Have you all seen this?

" 
I showed the pictures of Robert

and John Hopfield. I said, 
'We have a very large neural effort here in San

Diego, such as the POP group.
"

At this point the Rumelhart POP books were not out, but we
'
d all seen

advance copies of it and talked to members of the group. Every week, EE

Times had run articles on neural networks. I had some of those with me, so I

said, 
'
Why don

't we throw a neural network conference?
"

I put forth the motion, got a second, and won approval to explore the

issue. I called Robert Hecht-Nielsen and bounced the idea off him. He

seemed enthused. I think we had lunch some time after that to talk about it .

The next big step was when I brought Robert and his golden mouth to the

next board meeting of the San Diego IEEE section. Robert and his magnetic

personality convinced them that not only could we do it, but we could do it

with panache just like the AI guys did at IJCAI-85 at UCLA.

That was the plan. We would structure this just like the big, glossy 1985

AI conference. We would have the tutorials, the plenaries, the luminaries.

We
'
d do it right in a big hotel. We

'
d have a party, a banquet, the whole

thing, and most of all, we'd use the mailing list of the AI community. We

would schedule the conference two to three weeks before the big AI conference

. We
'
d beat them at their own game. Sure enough, the AI community

sold us their mailing list, and we had kept copies of the brochures and proceedings 
from previous conferences and completely copycat ted what we

viewed as our competition.

Now the problem, of course, is that a local section, a city section of

the IEEE has no authority to throw an international conference, not even a

region-wide conference, and yet we
'
d gone ahead and done it . The IEEE is a

volunteer organization. If somebody has the initiative to do something, it
's

very hard to stop him.

By the fall of 1986 we had already printed a preliminary brochure. We

went around to the many feuding factions in neural networks. The feuds

were really beginning to heat up now. The POP books were out. There were

different camps, and we felt the only thing to do was have a level playing
field. Libertarian capitalist that I am, I suggested that we offer a very lucra-



tive tutorial fee, but conditional. The deal was, if the conference didn
'
t make

money- and nobody thought it would make money at this point
- the

tutorial presenters got nothing. If it did make money, they could make as
much as $15,000 if they brought in enough audience. So there was a risk
in the package, something that critics later ignored.

Many of the leaders of the neural field who we asked to participate and to

give tutorials literally hated each other
'
s guts but now had a joint , common

self-interest in this conference. We wanted something on a very broad scale
in San Diego, something again that looked a lot like the AI conferences. The
idea. I learned from Marxist politics is that you don

'
t just criticize a field. You

don't just shoot holes in somebody
's boat. What you do is you build a

second boat, and then you shoot holes in the first boat. That was the idea.
The problem was that we didn't have nearly the money that you need to fund
this big conference. In terms of marketing, it was all bootstrap ping. We had
to commit to a hotel, the entire Sheraton. The only way we could get it was
to commit to the entire thing, to fill it up. That meant we had a legal liability
of more than half a million dollars, maybe as much as a million dollars. Th~
San Diego section, with just $30,000 in the bank, had just put itself on the
line for more than half a million dollars.

We began to line up more and more of the scientific talent. I was technically 
the general chair, but we called it the organizing chair. We had Stephen

Grossberg be honorary chair, but de facto general chair. We brought in all
the major players in the neural field. We had various schedules and cut-off
dates and appointments. By late January, when my daughter was born-

January 30, 1987- about that time, we were at the first cut-off date, and we
had done some linear prediction of attendees. We thought we'd have several
hundred people enrolled by February 1. I think there were less than twenty.

Then came the calls to close down the conference, including calls from
some members in the local IEEE in San Diego. People were getting scared.
Worse, people had begun to hear about the conference in the IEEE: 'Who
the hell were these people in San Diego who have put the IEEE on the hook
for a half-million dollars? And the reputation of the IEEE? Who the hell is a

twenty-six-year-old puke named Bart Kosko? How many conferences has he

managed? Who
'
s Robert Hecht-Nielsen?" And so on.

Critics circulated petitions to close the conference. This occurred as late as
a month before we threw the conference in June of 1987. It was very much a
classic success story. The great bulk of attendees registered in the last two or
three months. Then we knew we had a smashing success. The rest is neural

history. We had the conference, about two thousand paid attendees, and the
San Diego section, which had broken a lot of IEEE rules, had become the
richest section in the history of the IEEE. All of a sudden, the game changed.
And, of course, there was the risk package for the tutors. I made a lot of

money; everybody made a lot of money. Engineers and academics criticized
us in some bitter mix of real concern and raw envy.
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I also want to give credit where due. Right before the conference was

held, in the spring of 1987, there was an emergency meeting about what to

do about this conference. The executive director of IEEE, Eric Hertz, who

happened to be a former head of the San Diego section, flew in and met with

me and my other PhiD. advisor, Professor Alan Stubberud from UC Irvine,

who had been the chief scientist for the Air Force and was about to become

director of region six of the IEEE. We met, and Merrill Buckley was there,

who was about to become president of the IEEE. Merrill wanted to close us

down, but Eric Hertz stood up for us. He put his job on the line to Buckley,

who was, I think, on the governing board of the entire IEEE, and said, 
"00

you want to fire me or notf ' 
Buckley backed down, and the conference

survived. .
But something I

'll never forget, when it was all over, when Robert and I

were talking with Eric Hertz, he told us the golden law of bureaucracy: 
"It 's

easier to get forgiveness than permission.
" 

He was going to let us go this

time, 
"but don

'
t ever pull something like this again.

"

So it was a success. After the conference in June and the formation of the

INNS [International Neural Network Society], the field congealed to a sort

of stable state as we now know it . At that point, there came the question,
'What would be the next conference?

" The reason the IEEE had done it and

had in the end endorsed it, was that they knew there was going to be a lot

of money when they saw the final attendance. It became a big dog fight.

Different societies in the IEEE wanted a piece of the action. The IEEE is a

massive bureaucracy, and it in effect took over the conference.

At the same time, Steve Grossberg
'
s INNS set up the first INNS annual

meeting in Boston. It looked like something of a competition would emerge.

So the real interesting drama was how there ever came to be an ICNN [International 

Conference on Neural Networks] 
'88 because the IEEE had formally

cancel led it . During the summer of 1987, the IEEE wanted to proceed with

the next annual conference. It was a question of who would run it . There

were many fights about this. The one thing they agreed upon is that Bart

Kosko and Robert Hecht-Neilsen would have nothing to do with it . We

could live with that. The problem was we felt they were about to kill the

goose that laid the golden egg. They were going to let the conference series

die. That we could not live with .

So. in September or October 1987, Robert and I asked IEEE what the status

was, and they said, 
"We

'
ve killed it . No one can reach a consensus.

"

This was totally unacceptable, so Robert and I decided to do it again.

Supposedly, there's an AI Capone saying: "00 it first, do it yourself, and

keep doing it .
" I appeared as program chair for 1988 and Robert as general

chair. We had our say. It wasn't just ego, although there was certainly a lot

of that. It was more than that. The IEEE had shut down the conference.

Robert and I said, 
"
To hell with this. We

'
re going to the 1987 NIPS [Neural

Information Processing] conference and sign up as many people as we can

for the next ICNN conference in 
'
88.

"
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We asked T euvo Kohonen to be the honorary chair. He agreed. We set
out with the same structures we had before, went down the list, filled out the
slots, found the people we

'
d like to invite and those we had to invite. By fall

the IEEE had circulated letters, and different members had circulated letters
to every major society, asking them not to support Hecht-Nielsen and Kosko
in this endeavor. There would be no ICNN 

'
88.

Robert and I really took a big risk here because if we failed we would be
the Milli Vanilli of neural networks. Robert at this point was head of his own

company HNC [now HNC Software Inc.]. We signed up most of the major
neural researchers, just as we'

d done before. I think Steve Grossberg didn'
t

want to do it because he thought it would interfere with the INNS annual

meeting, but nevertheless we signed up most of the major people. \:'Ve would
have had serious egg on our faces if it didn't come to pass.

Once we had a slate, with all the intellectual Are power to do it the next

year, and the hotel reserved because we had the reputation from the previous 
conference, and the management structure, what happened is that my

former PhiD. advisor, my good friend and mentor Alan Stubberud, was about
to become region six director of the IEEE. He was also now a boss at the
National Science Foundation, which carries a lot of weight in the socialized
academic community. There was a great screaming match held in his office at
NSF [the National Science Foundation] between Robert Hecht-Nielson, who

argued for the conference, and the current president of the IEEE, Troy Nagle,
who opposed it . They hammered out a basic deal in which the local San

Diego section got some cut of the a future conference series, and the IEEE

got theirs. This was the basis of what continued as the ICNN series. In the

following July, I guess it was, we had the conference. I was program chair
and Robert was general chair. We gambled and won.

ER: I think you
'
ve given us a very complete history.

BK: So that
'
s how the conference series began. To get back to technical

developments, for me one of the big achievements of my career is the thing
called the BAM , or the bidirectional associative memory. That was in 1985,
back in those times when I was very much taken with the idea of global stability

, Hopfield-style networks, the ball rolling into the energy well. At the
same time, I thought the neatest idea in neural networks was Grossberg

'
s

Adaptive Resonance Theory [ART] that you learn only if you resonate. But
to me the weakness of the adaptive resonance paradigm was that global stability 

was not part of it . You might be searching .through an awful lot of

grandmother cells before you resonated finally and learned the pattern.
At the same time I was fooling around with fuzzy associative memories.

These were fuzzy matrices that mapped fuzzy vectors or points in the unit

hypercube into other points in the hypercube. I remember pushing a vector

through a matrix and getting out a different-size vector on the other side
and then pushing that back through the other way. When I pushed the out.,

put vector back through, I had to use the transpose or flip the matrix over
and then a fixed point developed there. That was an interesting property.



I wondered what whould happen if you did this with a regular matrix ,

with linear algebra operations , and did the usual thresholding . You push

vector A through the matrix , and out pops B, and then you transpose the

matrix , push vector B back through , and out pops A . I did it , and 10 and behold

, it always stabilized . It seemed for any matrix that was always the case.

So this was one of those moments , those epiphanies of scientific discovery ,

where now you have a theorem to prove . I quickly proved a simple version

for a discrete , additive BAM , showed the global stability
- that is, that any

matrix always stabilizes in a BAM .

I got excited by this . I also applied it to an autoassociative matrix , a Hop
-

field net, but in the Hopfield case you had to update one neuron at a time . In

the BAM , you update the entire vector at a time .

I did many extensions of it . If this result was that robust , you should be

able to change the weights slowly , and then you would have what I thought

was something more like adaptive resonance theory , in the sense that you

have both the neurons changing and synapses changing . You could extend

the idea to what I called an ABAM , or adaptive BAM , and have a Hebbian

learning law . The system always converges to fixed points . If you use the

competitive learning law , it would still work . Now you have something

that
'
s similar in contour to the ART model . I kept extending results and

finally got into a random domain . As long as you have a system perturbed

by a noise of finite variance, the system will always cool down . In effect, the

learning is structurally stable. It is robust .

That was one line of research. Along the way , I found a learning law that

I think is a more important idea, the idea of combining competitive learning

with differential Hebbian learning
- in other words , using not just acom -

petition signal , but the signal velocity . The question had always been, 
"
How

could a neuron or synapse compute a derivative ?
" 

It
'
s a very (:omplicated

calculation and very unstable numerically . But if you have pulses, as you

have with real neurons, then it falls out very simply . The derivative is just

the pulse minus the expected signal value . So you can estimate the derivative

at any moment by whether there
'
s a pulse. If there is, it

'
s a positive derivative

. If there
'
s not , it

'
s a negative derivative . That

'
s a biologically plausible

mechanism.

By this point I
'
d also worked out a lot of theorems on the foundation of

fuzzy sets, all housed in the geometry of a hypercube . It was my approach to

try to see things in math because if it
'
s a real structure , you can always picture 

it . One inspiration was the Brain State in a Box neural model , where

the allowable state space of a neural system is bounded and is in effect

equivalent to a unit hypercube . There ought to be a neural connection . The

next level was to go from a cube to two cubes and mappings between the

cubes. This was the idea of a fuzzy associative memory . If that mapping

changed with time , then you had an adaptive fuzzy associative memory
- or,

if you like , a neural fuzzy associative memory . So each fuzzy rule defined one

of these little mappings from one cube to another . If the air was cool , then it
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turned down the air conditioner a little . If the air was cold , then it turned it

down a lot . Each one of those rules is a mapping . The fuzzy system has all

those rules firing in parallel as it converts inputs to outputs .

I began to pursue this , building it &om cubes to multiple cubes. By this

point , late 
'
80s, Hal White had proven that feed forward neural networks

could approximate any function if you used enough neurons . I was convinced 

you could do the same thing with fuzzy systems. I found a very

simple proof . If you view a rule as a patch in the state-space geometry , map
-

ping &om the input , trying to estimate the function that maps &om input

to output , that
'
s just a curve that would go through some high

-dimensional

space. You could cover the graph of that curve with patches and average the

overlapping patches, and that gives you back a fuzzy system. rhe catch is

exponential rule explosion
- the curse of dimensionality . In my dissertation

I
'
d worked with this averaging process. I

'
d developed my fuzzy integral . The

dissertation was called 
"
The Foundations of Fuzzy Estimation Theory ,

" 
and I

did it with Stubberud and Zadeh.

I went back to that work and extended it to this problem of function approximation
. I was teaching the subject at USC. I had a class where I introduced

, libertarian that I am, a market incentive . I offered $1,000 prize . money

that came &om a hightech company . Whoever developed the best neural

fuzzy project would win the prize and get some local press. Students

produced a neural computer
-dating service, and the usual applications to

robotics , and lunar landers, and a wide variety of fuzzy applications . Some

were bawdy , some very clever , some were done on video tapes. Each time

I
'
d teach a class, I would do a video countdown &om the previous class. It

was a place to try out new ideas. The Discovery Channel
'
s 

"
Beyond 2000

"

tapped the project presentations in 1993.

I was convinced that I saw a quick proof that you could approximate any

function with a fuzzy system. Unlike the neural proof , this was a little more

constructive because the patches were rules. We had geometrized a piece of

knowledge as a rule, and we could estimate those patches with neural networks

. The rules could not only find the first patch, but tune it . In time , we

found that a one, two punch of unsupervised learning to estimate and supervised 
to tune was the best combination . We triedit out for a class and ap

-

plied it to Bernie Widrow
'
s truck 

"
backer upper .

" 
Widrow showed that you

could back up a truck and trailer in a parking lot into a loading dock with a

neural system. We showed you could also do that with a small set of fuzzy

rules and then showed you can convert any neural system into an epsilon
-

equivalent fuzzy system, which has similar input
-
output characteristics , but

with the fuzzy system you can open the black box , and you have a set of

structured rules.

For me, all this brought together the lines of research that began with Carl

Sagan
'
s Dragons of Eden, the works of Debreu , the economics , the libertarianism

, the philosophy ; all came together in what I call the F AT theorem ,

the fuzzy approximation theorem . It says you can always approximate any
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continuous or measurable function on a compact set to any degree of accuracy 

with a finite set of fuzzy rules. These rules can be very general but they

tend to be exponential in number . I now prefer to pick these as ellipsoids , or

regions of attractability in mathematical analysis. I also proved that optimal

fuzzy rules cover the extremes or turning points in the graph of a function .

They patch the bumps .

ER: Maybe we should talk a little bit about how you got into doing your
recent book , Fuzzy Thinking . It

'
s for the general reader. It tries to describe

these ideas, make them more accessible, and has almost a Buddhist point of

view .

BK : I was a writer all along . I always did freelance writing , a lot of political

writing
-

very little of which paid . So in pursuing the libertarian writing and

my writing of fiction , most of which has been done under a pseudonym , I

got into the discipline of writing every day . I write every day and I exercise

every day . I get up in the morning and pay my quota to myself . I write a

certain quota of words and exercise, and then I go to the university to do

whatever it is that I do .

In that way I turned out my first textbook , a very large book , Neural

Networks and Fuzzy Systems, with a lot of my work and the work of other

people . I edited a volume called Neural Networks and Signal Processing, and

now there is a third book coming out called Fuzzy Engineering, part of a

three-book package from Prentice-Hall .

Along the way I also began writing essays on the philosophy of neural

networks and fuzzy systems in the tradition , I thought , of the old philosophers

, who would learn as much science as they could - stand at the

periphery of science- and then speculate. That had always been the nature

of metaphysics and ethics and the like in the past.

An editor asked me to write a a series of essays for AI Expert, an AI

magazine, in 1989. The managing editor called me up and asked me if I was

interested in having a regular monthly or bimonthly column . We decided

we
'
d call it 

"
Meditations ,

" 
and it could be about anything I wanted . I sent

him several topics , and we agreed that the first essay would be an articleen -

titled 
'
in Defense of God

" 
because after having lost my faith in the God of

shepherds, I gradually regained belief in a math God of sorts . I wrote that

essay and sent it in, and, of course, there was a change of editor ; a very antineural
-fuzzy editor took over . The editor had to send the article for review

to other people for an outside opinion . They did publish the essay 
"
In

Defense of God ,
" 

but that was it . I would get no series.

But in time that essay secured me a contract for the popular book Fuzzy

Thinking . A sci-fi reader read it , and some other people , and it led to a profile
in the L.A . Times Magazine . Different editors and agents read that article , and

around and around it went . They wanted a book talking about God and

neural -fuzzy speculation .

Here was the argument about God . The strongest arguments against God

had always been the fact that God could never be defined . That is, you can
'
t
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say what he is. So you can
'
t say that he is. The one thing that neural networks 

taught me is what we call 
"
recognition without definition.

" 
You could

recognize the pattern of a face without having the ability to define it . Surely

dogs and animals have this property. They canit articulate anything but they
sniff out and see patterns just fine.

This idea is a negative one- that the inability to define God is in itself not

a sufficient reason not to believe in him. There are other reasons you may
not believe in God: the fact that your prayers don

'
t work is the most popular

, or A I Ds spreads, or the worst get on top and stay there, or science is

enough, or whatever the reason happens to be. But just because you can
'
t

define God, that itself is not sufficient. That was point number one.

The second thing that both disturbed me and delighted me Wa,S that science 

seems to track math, but doesn
'
t have to. The cl,assic example is that

Maxwell puts forth some equations for electricity and magnetism. You

manipulate the equations and then, poof, out pops light or rather the wave

equation for light . You get a wave equation as a mathematical prediction,

and sure enough, we find that experience verifies this. The same thing occurs

with the general relativity equations or the so-called Einstein Curvature equation
: what immediately falls out is a wave equation, hence the prediction of

gravitational waves that travel at the speed of light .

For some reason, science tracks math, but logically it doesn
'
t have to. That

impress es me. It seems to me that God, the power, whatever you want to

call it, is the he, she, or it that wrote the math. The idea of the Math Maker.

This is the one we take orders &om. I think if this continues- if we take

orders &om a Pythagorean theorem and a million others- for a thousand, a

million, a trillion years then the idea of the math blueprint in the sky will be

clearer. We tend to recognize that pattern even though we can't define it .

That was the content of the essay, the last line of which is, 
"
There may

be no God but the Math Maker and science is His Prophet.
" 

That idea of

speculating at the periphery of science intrigued some editors.

I had other essays. I
'
d written essays on the Buddha. I saw a sort of historical 

duality here between Aristotle and the Buddha, between 
"A or not

A" 
and 

"A and not A .
" 

To Artistotle , the pink rose is either red or not. The

Buddha says it
's both red and not red to some degree. So around that historical 

boxing match, I cast a book, Fuzzy Thinking, whose thesis is that everything 
is a matter of degree. If we look at the world through a set of gray

glasses we might see the mismatch between precise black-and-white math

and science and a grey world .

ER: If you were advising someone just getting started in the neural network 

field, as you probably do as a professor, what is it that you tell him or

her?

BK: Learn as much math as you can. But what sells a field or a career is

a vision. What sold Marxism was a vision of the state withering away and

the complete &eedom that would follow . Some people want to become



the next Steven Jobs or Bill Gates. A major in information science, neural

networks, or fuzzy systems may be the means to do that. Other people
want to understand our meat brains or build the Commander Data of the

future.

I like to ask researchers where they get their ideas. The only answer I've

heard that . makes any sense is, 
"You vary your input if you want to vary

your output.
" Do lots of things. If you

've gotta take drugs, take drugs. Take

long walks, meditate, watch a lot of movies, learn a new language, read

different books, argue the other side of the debate- anything you can to

vary your stimuli. And then you have to, as they say, 
"
keep the ass in the

seat." You actually have to sit down and write . Do it in a disciplined way. I

think if people have a certain minimal training in mathematics, the problem
will take care of itself because neural networks are inherently interesting, and

I believe they will stay interesting well into the next century.

ER: Where are neural nets now? What do you think the future looks like?

BK: I
'
m very skeptical of subsidized science. If I look at the fields of AI ,

neural networks, and fuzzy logic, I see an inverse relationship between government 

funding and commercial products. I
'
ve heard estimates that in the

past 40 or so years, something like $100 billion dollars went into AI , and we

all know there
'
s hardly a product to show for it .

There
'
s been at least $100 million or more put into neural networks, and

finally some products have come out. We gambled on the first conferences.

We thought there would be products in three, four, or five years. Enthusiasm

might lead to . 
products. Finally some products did appear: pap smear recognizers

, bomb detectors, process controllers, and so forth . It
'
s taken a long

time.

As for the fuzzy systems, there was, in effect, zero research investment

and now billions of dollars in product.

Let me just tell you a little story. In 1987, after the success of the first

neural conference, Robert and I were at the first NIPS Conference in Denver.

We were soliciting, signing up people, to talk and to chair the sessions of

ICNN 
'
88. One of those people was Carver Mead. There was a meeting

about what should be done to get more money from the government. That

was the question. Only one person had a dissenting view, and it was Carver

Mead. He put forth a Gresham
'
s Law. Gresham

's law in economics says that

bad money chases out good. His view was that bad researchers chased out

the good ones. We ought not get any money at all from DARPA [the gov-

ernment
'
s Defense Advanced Research Projects Agency]. I was very impressed 

by that idea; there
'
s a lot of wisdom to it . When you pick winners,

you tend to end up supporting dinosaurs. Imagine if the state picked winners
in Hollywood as it tries to pick them in science.

I'm suspicious of government funding and worry about appealing to government 

agencies. Yet this is something we did. The first conferences had

government panels, and each government agency had someone get up and
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talk about the money they could give out. I think the best thing that could

happen to neural networks, happened. That was the collapse or contraction
of the aerospace industry, the end of the cold war. That helped take off the

training wheels that the field had begun to support itself with .

ER: Do you see the future as in some way bound up with fuzzy systems?

BK: To some degree. First off, there is the interplay between the two systems
, the intertranslatability between neural and fuzzy systems. I realize, and

it breaks my neural heart, that I want to use the neural systems now largely
just to tune a fuzzy system, but you can use either one as approximators.
There is this problem with the neural system: when you learn something
new, you may forget what you

'
ve already learned. In a fuzzy system, you

can open that black box, study the rules, and see how they
're changing. The

problem is rule explosion. A neural system sees abstract patterns in the data,
and those patterns are fuzzy sets- a concept like "

cool air," for example,
or the setting of the motor speed to "a little " 

or "a lot .
" 

In the next step, it

begins to reason or associate those patterns into fuzzy rules. But 
.
the system

itself, which turns inputs to outputs, is a fuzzy system. So I think, at least
from an applications point of view, for many years the way to go is a neural

fuzzy system.

I think an area of future application is neural fuzzy systems in the small, at
the nano level- the so-called "nanobot." Viral swarms of .little computers
that can recognize the abstract pattern of a cancer cell or an AIDS virus and
eat it and convert it into healthy nutrients for the other cells and, in time,

repair the cells one cell at a time. If you can fix up a smashed up car a part at
a time, why can't you resurrect the body a cell at a time? In the bigger picture

, we can reduce death to a problem of molecular engineering.

Maybe the neural-fuzzy nanobots will help bring us back from death. I
intend to find out. As of now I'm about the 350th person signed up to be

cryonically suspended upon death. I've gone for whole body suspension.
Most of my colleagues have gone for head only- the idea being that if
nanoscience could resurrect the brain, its synaptic structure, it could also

regrow the body from the head stump, from the information in the DNA . It
was really my final conversion to materialism through neural networks that
drew me to the belief that I am my synapses. If I can resurrect those, repair
those, and fill in missing links with some clever averaging algorithm, I may
come back. Cryonics also acts a crude default strategy in case we do not live

long enough to transfer our synaptic patterns of "
self

" 
to a computer chip.

It 's a hell of a thing to live in a meat machine that has no back up. I would
not bet my life on cryonics. But I am more than happy to bet my death on it .



No one, and that includes the editors of this book, could read all these interviews withouten -

countering unfamiliar words, terminology, jargon, and technical vocabulary. Brain theory is a
field.with a long, sometimes glorious, history, and it has accumulated many ideas, concepts, and

techniques, all desaibed with a specialized vocabulary. Moreover, many of our interviewees
sometimes used their own tenninology, especially when desaibing the history of their own
research.

We felt it was necessary to provide definitions of some of the more common and more important 

specialized terms that appear throughout the book. At the same time, there are simply
too many words that are sure to be unfamiliar to one or another reader to list them all in aglossary

. Therefore, we decided that we would provide a short glossary of the terms we felt were

general enough. or important enough, or appeared often enough, or were odd enough to require
a little explanation. We are not including terms that were used infrequently or that are idiosyncratic 

to one speaker. When encountering such an undefined term, two things can be done. First,
in fact, an exact definition is rarely necessary to get the gist of what the speaker is talking about.

Second, to get fuller explanations of all of the terms, we suggest going back to the original
technical literature. We asked our interviewees to provide a single reference that best represented 

their work. Other information can be obtained from the Neurocomputing and NeurD-

computing 2 collections of papers mentioned in the Introduction. or from any reason ably

comprehensive textbook in neural networks. We mentioned the text from one of the editors

(James Anderson. An Introduction to NeurAl Networks, 1995, Cambridge, MA : MIT Press) as one

source of explanations of most of the ideas presented here. Another excellent, large, comprehensive 
and much more mathematical introduction to neural networks can be found in the text

by Simon Haykin, NeurAl Networks, Maanillan, 1992 (2nd edition. 1998).

ACM The Association for Computing Madtinery , a large professional organization.

action potential The most striking dtaracteristic of a neuron. discovered early in the history
of physiology. When a neuron is excited above a threshold value, the cell changes properties
(
"
Ares a spike

"
) so the voltage inside the cen goes from negative to positive and then quickly

(1/2 millisecond) returns again to negative. The action potential is traditionally desaibed as 
"
allor-

none,
" that is, either there or not there rather than graded. The action potential travels along

the axon. often for considerable distances, without change or attenuation.

Adalhte An 
"
ADaptive Unear NEuron" 

designed by Bernard Widrow to implement the LMS

algorithm around 1960. During the dark days when neural networks were unpopular in the
19705, Widrow re-acronymized it as the 

"
ADaptive LINear Element,

" but it did the same thing
as before.

adaptive maps A learning algorithm that builds a topographic map of input patterns, so that
similar patterns tend to be near eadt other on the map. Properly done, this technique.can perform 

useful clustering and preprocessing for many purposes. Topographic maps are common in
cerebral cortex and seem to be a useful computational tedmique widely used in the real brain.

Glossary



AI See Artificial intelligence.

algorithm A series of explicit rules and procedures for accomplishing a task.

ARPA Advanced Research Projects Agency. Government agency known for supporting high
risk-high reward projects. ARPA has an impressive record. for example. developing what has

become the Internet. For reasons impenetrable to outsiders. ARPA changes its name to DARPA

periodically. (See DARPA.)

ART Adaptive resonance theory. ART and its many variations perform categorization and

clustering. Originated and investigated by Stephen Grossberg and Gail Carpenter.

Artificial intelligence Universally known by its initials, AI. As an independent discipline, AI

developed in the 1950s and '60s. During the 1960s AI and neural networks were competitors for
influence and funding but now their areas of interest overlap to a degree, though there is still
some tension between them. The most general goal of AI is given by its name: to make smart
machines. The techniques used may have nothing to do with those used by a biological nervous

system, but sometimes they may.

association Since Aristotle it has been observed that much of human cognition depends on

forming somewhat arbitrary links between different events. For example, the familiar animal

species dog is arbitrarily associated with different sound patterns in different languages: 
"
dog:

'
"chien:

' "Hund,
" etc.

attrador state Nonlinear dynamical systems often have attractor states. In a "fixed-point
" attractor

, as time progress es and the network state evolves, the system may reache a point where
the state no longer changes. A physical analogy would be a rock rolling down hill into a valley.
The bottom of the valley would be an attractor state since the rock will not move further. These
stable states correspond to local energy minima, or minima of a Lyapunov function. Another

possibility for an attractor state is repeating 
'limit cycles

" where the system state evolves toward
a closed oscillation which attracts nearby states.

autoassociation In autoassociation, a pattern is associated with itself, that is, both the input of
the network and the output are the same pattern. This permits reconstruction of the whole pattern 

&om a &agment of it. A number of nonlinear neural networks use this architecture. An autoassociative 
architecture seems very restrictive but in fact is quite general. (See heteroassociation.)

autodidad Self taught. The most notable example mentioned in this book is Walter Pitts.

autoencoder An autoencoder is a multilayer neural network where the goal of learning is to

reproduce the input state as accurately as possible at the output. The hidden layer has fewer
units than the input and output layers, therefore the output is an approximation of the input. A
well-known autoencoder problem is the "8-3-8" 

problem with eight input and output units and
three hidden units. All input units are zero except there is a single 

"1" at one of eight input positions 
and the correct output pattern should have a " I " in the same position in the eight output

units. One way to solve this problem is to observe that a binary representation of the numbers
&om 1 to 8 only requires three values, therefore three hidden units should be able to learn the
correct transformation, and indeed, learning algorithms like backpropagation can find solutions
to this problem.

backpropagation By far the best known supervised neural network algorithm. 
"
Backprop

" is

very good at learning accurate input-output associations using gradient descent error correction
and has a number of valuable practical applications. A typical backprop network has multiple
layers: an input layer, and output layer, and one or more hidden layers. The output error for an

input pattern is computed and then propagated backwards and used for gradient descent error
correction &om the output layer to the hidden layers to the input layer. Any neural network text
can provide details.

basin of atb"action In a nonlinear dynamical system, the set of points that move to a particular 
attrador when the system settles into its final state.
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Bayesian inference An approach to analyzing complex systems where prior probabilities are

incorporated into the computation. The Bayesian approach is particularly useful for analyzing

low-level vision, where a multitude of possible arrangements of objects in the world can give

rise to the same image on the viewer' s retina. Given the observed image, and statistics about

the world estimated from prior experience, the Bayesian computation tries to give the most

probable actual situation corresponding to the observed retinal image.

bifurcation At a bifurcation in a dynamical system, a small change in the value of a parameter

can lead to a qualitatively different evolution of the behavior of the system. An example might

be the development of chaotic oscillation.

binary units Model neural elements that have only two states. These two states can be variously 

described as one or zero, plus one or minus one, or, with much greater philosophical

weight, 
"
true

" 
or 

"false.
" A famous 1943 McCulloch and Pitts paper was based on (a) the binary,

all-or-none nature of neural activation, i.e., either quiescent or firing an action pot~ tial, and (b)

the analogy between 
"
all-or-none" and 

"true or false." This led to a very influential early model

of the nervous system based on the idea that neurons were computing the truth or falseness of

logical predicates.

binding problem How does the brain bind together the different features of a complex object

so that it can behave like a single unitary object in our mentallife1 For example, the activity of

cells coding 
"red

" 
cooperate in the perception of a stop sign in one context whereas activity of

the same cells coding red in a different context are part of the perception of a firetruck. The

units alone are ambiguous, yet our perceptions and object identifications are selective, stable,

and precise.

bionics Word formed by the combination of 
"
biology

" and "electronics.
" 

This name was used

in the 1960s for research in what would now include neural networks.

Boltzmann mamine A technique capable of finding the global energy minimum in a complex

neural network by combining stochastic binary units with simulated annealing. The network

state has much added random noise (high system 
"
temperature

"
) , which is slowly decreased. The

system state is more and more likely to be found in the lower energ:y states as the noise decreases 

(lower system 
"
temperature

"
). Eventually, the system state spends almost all its time in

the lowest energy state. When combined with a statistical learning rule, the Boltzmann machine

gave rise to one of the first practical learning algorithms for multilayer networks.

Boolean algebra Formal techniques for calculating with discrete logic.

bug detector A famous 1959 paper by Lettvin, Maturana, McCulloch and Pitts called 
"What

the Frog
'
s Eye Te Us the Frog

'
s Brain

" 
(reprinted in Neurocomputing 2) described a class of retinal

cells that responded strongly to small, convex, moving objects. These units were called 
"
bug

detectors
" 

by the neuroscience community. Besides their importance for neurobiology, their discovery 

led to an active search for other kinds of 
"
detectors

" 
since it suggested that a model for

brain function might be based on more and more selective cells. The most extreme version of

such a model assumes that the brain contains what are called 
"
grandmother cells

" 
(see entry).

cerebral cortex The outer layer of the mammalian brain. Essentially a two- dimensional folded

sheet of cells, about the size of a dish towel in humans. The cells (gray matter) are extensively

interconnected by fibers comprising the white matter. Cognitive science is the continuation of

cortical neurophysiology by other means.

coarse coding A distributed coding technique. Units that are unselective and respond to a

wide range of parameter values can give rise to a highly selective overall system response.

credit assignment problem In a complex interacting system- a neural network, a chess

game, a bureaucracy- when a good outcome occurs it is often hard to ten exactly what was

responsible for it . Conversely, is it not clear what gets the blame if there is a bad outcome. If you

don' t know where to put praise or blame, it is hard to make the system learn to do better.
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cybernetics A field of applied mathematics and engineering particularly associated with

energy fundion The behavior of some neural networks can be characterized by an "energy
function." This function mathematically takes the same form as energy in a physical system,

though this quantity is not actual physical energy. As the system evolves in time, system
"
energy

" 
decreases. See Lyapunov function.

equipotentiality A theory about organization of the cerebral cortex associated with Karl

Lashley. It proposed that cortex was unspecialized and fundion was widely distributed. If part of

the brain was lost, the deficit was proportional to the amount lost, and not to the exact location

of the loss.

evoked potentials Event-related potentials from the nervous system. For example, a flash of

light produces a characteristic potential at an electrode near visual cortex. These potentials are

small and variable, and when analyzing them potentials from multiple events often must be

av.eraged to reduce noise.

excitation Making a neuron or a group of neurons more likely to be active, or be active at a

higher level than before.

exclusive -OR
" 

Often abbreviated 
"
X -OR.

" 
A logic function that played an important role in

the history of neural networks, since the simplest neural networks have trouble learning it . The

Exclusive-OR of two predicates A and 8 is True (a) if A is True or (b) if 8 is True. Exclusive-OR

is False if (a) neither A nor 8 is True or if (b) Both A and 8 are True. (
"
Either A or 8 but not both

A and 8.
"
)

Faraday cage A space completely surrounded by conductors, say, a cube of copper screening.

Outside electrical interference is highly attenuated inside a properly designed Faraday cage, so

one is often used in laboratories for recording of small neuroelectric potentials.

&ring &equency The number of action potentials a neuron fires per second.

fortification illusion A visual ha Iludnation often accompanying or preceding a migraine
headache. In the most common form. a jagged, somewhat se"micircular broad line of shimmering
colors moves slowly outward from the center of gaze, taking several minutes to cross the visual

Beld. The jagged line, apparently composed of short bright colored line segments at right angles
to each other, bears a fancied resemblance to the jagged walls of a fort .

Fourier analysis A method for analyzing a signal as the sum of components of particular frequencies

. (See line R T system.)

fuzzy logic An engineering and computational technique of considerable utility based on the

observation that in the real world events or properties are rarely absolutely either one thing or

ness, and ease of formation of broadly selective

lem. (See grandmother cells.)

dynamical system A mathematical system that evolves in time. The changing system state is

characterized by a trajectory in state space. Dynamical systems are often described by a set of

differential equations.
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Norbert Wiener. The name is derived from the Greek word for 
"
steersman

" 
and it has become

associated with the mathematics of control and information.

DARPA Defense Advanced Research Projects Agency. Same as ARPA (see entry).

data representation See representation.

DEC Digital Equipment Corporation. A large computer corporation. They now prefer to be

called 
"
Digital

" 
for short, but are much more widely known by the monosyllable 

"
DEC.

"

distributed representation A form of data representation in the brain that assumes that neurons 

are somewhat unselective. A complex input stimulus therefore gives rise to the discharge of

many neurons. Advantages of distributed representations include ability to generalize, robust-

units. Disadvantages include the binding prob-
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another but usually fall somewhere in between. It is hard to apply traditional fonnallogic with

only 
"
true

" 
or "false

" 
values allowed to such situations.

Gaussian distribution The normal distribution of statistics, or the 
"
bell -shaped

" 
curve.

global minimum Suppose we have a complex system with an objective function such as a
measure of system error. Every set of system parameters, say, the weights in a neural network.

gives rise to a different value for error. The set of error values plotted against the system
parameters defines a surface. Such a surface may have many low points, local minima, where
movement in any direction causes the error to increase. The minimum with the lowest value of
the function is the global, or overall, minimum. A local minimum in the United States might be a
mountain valley; the global minimum: Badwater in Death Valley.

gradient descent A technique for finding the minima of a complex high-dimensional surface.
If we always head downhill , eventually we will come to a point where every direction we move
is uphill. However, the slope of the hill may be steeper in one direction than in. others. If we

always move downhill in the direction of the steepest slope, we should get to a minimum quickly.

Many neural network learning rules (LMS, backpropagation) perform gradient descent on the
error surface. This technique is sometimes called 

"
steepest descent.

" 
Gradient descent usually

finds a local minimum. To find the global minimum it is sometimes necessary to move in the

wrong direction, upward, to get over a ridge to reach the next valley. Simulated annealing is one

way of accomplishing this.

grandmother cells An extreme form of selectivity in data representation. The name is a

mildly pejorative caricature. The notion is that the concept, idea, and memory of "grandmother
"

corresponds to the activity of a single neuron- the 
"
grandmother cell" - somewhere in the

brain. Advantages of grandmother cells are their conceptual clarity and lack of a binding problem
. Among other disadvantages are lack of ability to generalize and the observation that there

are probably more things to learn in this world than there are grandmother cells to learn them
with . (See distributed representation and bug detedor.)

Hebb synapse Some variant of a Hebb synapse is the most commonly used learning rule in
neural networks. It is named for Donald Hebb, who proposed it in the 1949 classic The Organization 

of Behavior, though similar rules were proposed earlier, most notably by William James.
The rule says that a synapse coupling two neurons increases in strength if both neurons are
excited at the ~ e time, that is, coincidence of activation of the two neurons is required for

learning, not just activation of one or the other by itself. There is now strong biological evidence
for the existence of some version of Hebb synapses in the mammalian brain.

heuristics Techniques that make a system work better or more reliably even though it is often
not fully understood why.

heteroassodation A neural network associator where the input and the output are different

patterns. (See autoassociator.)

hidden imits In a multilayer network. a middle layer of units that is neither an input layer nor
an output layer.

Hodgkin and Huxley Scientists who first accurately described and modeled the dynamics
of the nerve cell axon (the squid giant axon) and received a Nobel prize for their work. The

Hodgkin-Huxley equations are a set of coupled, nonlinear differential equations that predict the
behavior of the axon.

Hopfteld nets A simple recurrent nonlinear neural network composed of binary units. Hop-

field nets are autoassociative networks that can be shown to be minimizing an energy function
as they evolve in time. Their behavior is similar to some well-studied physical systems, for

example, spin glasseS and the Ising model. Their simplicity and rich behavior attracted the
interest of a number of theoretical physicists in the mid-1980s.

hypercolumn A concept proposed by David Hubel and T orsten Wiesel for visual cortex. The
set of all units in cortex that look at a particular point in visual space. The idea is that every
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point in space should be fully analyzed with units sensitive to all orientations, both eyes, etc.,
and this set of cells fonn the hypercolumn.

IEEE Institute of Electrical and Electronic Engineers. A large and influential engineering professional 

society.

inhibition Making a neuron or a group of neurons less likely to be active, or be active at a

lower level.

lateral inhibition An active unit is wired so as to inhibit neighboring units and so reduce their

activity . First described quantitatively in the Lirnulus eye, but something similar had been conjectured 

to exist by Ernst Mach as an explanation of Mach bands. A major function of lateral

inhibition appears to be to increase contrast at edges.

Iimi~ cycle A dynamical system attrador state where the system state becomes attraded into

a closed orbit . (See attractor state.)

linear system A system that obeys the principle of superposition. Briefly, if we' have a linear

system L, suppose input I gives rise to an output g. Suppose input f gives rise to an output g' . A

system is linear if we use the sum of the inputs, (I + I
'
) as input to L and the output is given by

the sum of the outputs due to each component of the input, that is, (g + g' ). Many important

physical systems (electromagnetic waves, for example) are linear and it is possible to understand

the way they behave by using a number of straightforward techniques. For example, a technique
like Fourier analysis can take a complex input signal and break it down into simpler components,
sine and cosine waves, which can then each be processed independently. Once the processing of

the separate components is Anished, the overall system output is generated by summing the

component outputs.

linear assodator A simple neural network associator, using the Hebb rule and linear computing 
units.

linear separability Suppose we have two sets of patterns that can be described mathematically 

as sets of points in a space. The two sets of points are said to be linearly separable if a line

or hyperplane exists that separates the points. Perceptrons can only learn to separate linearly

separable pattern classes, a major limitation.

line detectors In primary visual cortex, most units do not respond to simple light or dark, but

to oriented line segments, that is, to complex features of the image.

Limulus eye Limulus polyphemus, popularly known as the horseshoe crab, is a common invertebrate 

on the east coast of the United Stares. The eye of Limulus is a model small visual system
that perfonns neural computations in a way similar in important respects to the vertebrate visual

system. Lateral inhibition was first observed in the Limulus eye.

LMS algorithm least mean squares algorithm. Also known as the Widrow -Hoff algorithm.

When a neural network is trying to learn a set of input-output relations, every set of weights
has an associated error. The goal of the LMS algorithm is to adaptively reduce the error to

the smallest value possible. It does this by using a gradient descent technique. The power of the

LMS algorithm is that the learning rule used to implement gradient descent is simple and the

technique is very robust.

localleaming An often assumed constraint on the fonn learning can take in a neural network

learning algorithm. For example, the Hebb synapse only depends on infonnation available in

close physical proximity to the synaptic junction.

Los Alamos A U.S. government national laboratory in New Mexico. The laboratory was

founded during the Manhattan Project to design and construct the atomic bomb.

Lyaplmov flmction A complex system can have assodated with it a lyapunov function. The
"
energy

" 
de Aned for a neural network is an example. The lyapunov fundion can be used to

predid that some system states will be stable.



definition, particularly for neural networks, where sometimes noise is based on what you happen
not to be thinking about at the time.

non Unear Systems that do not obey the principle of superposition. i.e.. not-linear. (See linear.)
This definition is similar to and as arrogant as the distinction between vertebrates (1% of species)
and invertebrates (9~/o) of species. Formal logic is a good example of a highly nonlinear system.

Consider the logic function inclusive-OR of two predicates A and B. Inclusive-OR is true if

either A or B is true. It is not twice as true if both A and B are true. As an additional example.

the logic function exclusive-OR of A and B (See entry) is false if both A and B are true. We have

techniques to analyze linear systems in great detail but often have great difficulty analyzing
nonlinear systems.
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mabix A two- dimensional array of numbers that can transfonn one point in a space into another

. The mathematics of vectors and matrices is called linear algebra and plays a prominent
role in neural networks and brain theory.

Mc Cu Uom-Pitts neurons Proposed in a famous 1943 paper by McCulloch and Pitts. Model

neurons that can be either in an on state or an off state. These two states can also be considered

as 
"
true

" 
or 

"
false

" 
states. This assumption lead to a model of brain computation based on units

that computed logic functions. (See binary units.)

MOSIS A VLSI custom chip fabrication service. This service is popular with educational

institutions since classes can get chips made through support from DARPA and NSF.

multivalued logic An alternative approach to logic that assumes a statement can be other

than true or false. For example, a proposition might be "true,
" "

false,
" 

or "uncertain." Fuzzy logic
is one version of multivalued logic.

nearest neighbor model A pattern recognition technique where new inputs are given the

classification of the nearest classified pattern. A simple, powerful, and highly effective algorithm,
based on the observation about the way the world is constructed, things that look and act similarly 

are likely to be given the same classification. (If it looks like a duck, and quacks like a

duck . . .)

negative feedback A powerful control temnique used in everything from stereo amplifiers to

the nervous system. A sample of the output of a system is subtracted from the input so as to

compensate for error and distortion and make the output pattern as true a copy of the input

pattern as possible.

neuromodulators Chemicalsignals that control. often in complex ways, the behavior of large

groups of neurons. Neuromodulator effects range from the control of excitability and enhancement 

of learning in a structure to a major change in the pattern of neural responses in an entire

nucleus.

neurob"ansmitters Chemicals used for synaptic transmission. There are many neurotransmitters 

which can be small molecules (acetylcholine, dopamine, glutamate) or large protein
molecules (endorphins).

Nn I National Institutes of Health. The major u .s. funding source for biomedical research.

Notoriously conservative and somewhat hostile to brain theory.

NIMH National Institute of Mental Health. One of the National Institutes of Health whose

primary concern is with mental illness, behavioral science, neuroscience, and related fields.

noise Noise, like weeds, is what you don' t want where it happens to be. Often a matter of



nonlinear dynamical system A nonlinear system evolving in time.

NSF National Science Foundation. The major U.S. civilian funding agency for science except
for health-related research. (See NIH.)

Oak Ridge A U.S. national laboratory located in Tennessee. Formed during the Manhattan

Project to help design and construct the atomic bomb.

objective fundion A mathematical expression used to describe the state of a complex system,

for example, a neural network. A measure of error between the actual output and what the network 

would get if it worked perfedly might be an objective function, or a cost associated with

a process. The function of learning is often described as minimizing an objective function, for

example, reducing the error measure to as small a value as possible.

ONR Office of Naval Research. A U.S. military funding agency with an impressive record of

supporting innovative basic research.

PDP books The very influential two-volume set of books that introduced and described

neural networks to a wide audience in 1986. ( DE . Rumelhart, J. L. McClelland and the POP

Research Group, Parallel Distributed Processing, Volume 1. Found R Hons. Cambridge, MA : MIT

Press. J. L. McClelland. O. E. Rumelhart and the POP Research Group, Parallel Distributed Processing

, Volume 2. Psychological and Biological Models. Cambridge, MA: MIT Press.)

percepb' on An influential learning neural network. proposed by Frank Rosenblatt in the late

1950s. This model gave rise to the first major burst of enthusiasm for neural networks. According 

to neural network lore, Marvin Minsky and Seymour Papert terminated interest in neural

networks by pointing out eloquently that simple perceptrons could not compute some things it

would be nice to compute, for example, exclusive-OR.

percepb' on convergence theorem One of the first formal proofs that a learning machine, the

percept ron, could learn something interesting. The proof showed that a percept ron could learn

to separate patterns if the examples of the patterns were linearly separable.

pixel A single 
"
picture element" in a digitized image.

positive feedback The output of a system is returned to the input with a positive sign, so the

amplitude of the output grows. A squealing public address system is the paradigmatic undesirable 

example of positive feedback. but positive feedback has a num~ r of very valuable uses

in both electronics and neural networks.

protein folding A protein starts as a linear string of amino acid residues which proceeds to

fold up in what can be a very complex structure. Predicting the final configuration of the protein
is very difficult and of great practical importance.

receptive field Many neurons are selective and respond to only some kinds of sensory inputs.

For example, a visual neuron may respond only to patterns of light and dark falling on a small

area of the retina, the receptive Reid. A neuron responding to touch may have a receptive Reid

of only part of a finger, or a small patch of the skin.

reau Tent nets Nets that have inputs based to some degree on their own activity , either based

on their activity at past times or based on feedback from their current state.

reinforcement learning Reinforcement learning concerns itself with cases where only information 

about success or failure of the entire computation is available. In a situation of any complexity 

it is very hard to know where or when the system did the right thing that led to a

successful outcome. (See credit R S Signment problem.) A number of interesting and important learning 

algorithms based on reinforcement have been developed.

representation In neural networks, probably the most important single decision made by a

neural network designer: how the input and output data are represented in the pattern of activ-

ities shown by the neurons in the network. In AI , a representation describes features of the entities 

in the computation, how they interact, and how they are structured.
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saccade The eyes move around a scene from location to location in extremely quick movements 

called saccades.

Schrodinger equation An amazingly general, powerful. and simple equation describing the

behavior of many quantum mechanical systems. Called the 
"
God equation

" 
by MIT undergraduates

.

sigmoid An S-shaped curve. In neural networks, this curve is typically monotonically increasing

, roughly linear in the center and bends toward the horizontal at top and bottom bounded by

upper and lower limits on unit activity .

simulated annealing A mathematical technique that can be used to find the true global minimum 

of a complicated function. Control led but decreasing amounts of noise, related to temperature 

in physical systems, are added to the mathematical system. As 
"
temperature

" 
drops, the

system is more and more likely to be found in the global minimum. Named by analogy with

annealing a hot metal. where rate of temperature decrease has important effects on the ultimate

properties of the metal.

spike An action potential. Called a 
"
spike

" because of its shape on an oscilloscope screen.

spin glass A physical system that was used as an inspiration for the Hopfield net.

stereopsis The ability to combine information from the two eyes to see objects in three

dimensions. Depth perception.

STM Short-term memory. "Short-term
" is variously defined to range from seconds to hours.

Short-term memory is usually held to have very different properties from long-term memory,

for example, limited storage capacity.

stochastic binary neurons Probabilistic neurons with only two states, say, on and off. Instead

of having their state absolutely determined by their inputs, sometimes the state of the unit will

be in agreement with what its inputs say it should be and sometimes it will not be in agreement.

Although it seems counterintuitive to add 
"
noise

" 
to a deterministic system, in fact such neurons

can be used to find better solutions to problems than noise-free units. (See & ltzmann machine.)

supervised learning Assumes the existence of a "supervisor
" who knows in detail what the

right answer to a network computation is supposed to be. The more detailed knowledge that is

available about the error between what the network was supposed to do, and what it actually

did, the better job a learning algorithm can do to adjust the network so as to reduce error.

synapse The connection between biological neurons. Synapses are very complex structures.

Some are capable of modification with experience.

system state A complete description of a complex system at an instant in time. For example,

in a neural network. it would be the activity of all the units at a particular time. Often represented 

as a vedor .

threshold A neuron does not fire a spike or action potential unless it is excited enough so its

membrane potential rises above a critical, threshold value.

topographic maps In the cerebral cortex, many sensory systems represent information with a

strong spatial arrangement. For example, in primary visual cortex ( VI ) there is a map of visual

space on the surface of cortex. In somatosensory cortex, there is a map of the body surface.

TRW A large company known for its aerospace and defense work.

unit A single computing element in a neural network. Modeled originally on biological neurons

, but very much simplified.

unsupervised learning Learning without feedback as to correctness or incorrectness of responSe

. An unsupervised learning system might learn a set of patterns and, based on the pattern

statistics, decide that there are "really
" 

only a certain number of significantly different events

giving rise to the input patterns. In cognitive science, a "concept fonning
" 

system has sometimes

been cast as an unsupervised learning problem. Intrinsically more difficult and less well defined

than supervised learning. but also often more useful and realistic.
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VI The first visual cortical area, receiving input from the retina by way of the lateral geniculate 

body in the thalamus. VI is large, and located at the back of the head.

VAX A famous computer model particularly popular in the 19805. Made by Digital Equipment

Corporation (OEC).

vedor A one-dimensional array of numbers. Geo metric ally, a vector represents a point in

what may be a very high- dimensional space. The most common interpretation of a vector in

neural networks is the pattern of activity shown by a group of neurons.

visual cortex Region of the cerebral cortex involved in processing vision. In the human brain,

VI , the primary visual cortex, lies at the back of the head.

VLSI Very-large-scale integration. The 
"
chip

" 
technology that lies behind modern computers.

VOR Vestibulo-ocular reflex. Reflex compensatory eye movements that tend to stabilize the

retinal image as the head moves. The neural pathways involved can be shown to be adaptive

and have been used as a model system to study neural plastidty .

wavelets A class of functions used to analyze signals. Wavelets (and the related Gaborfunc-

tions) have frequency selectivity, in that they respond to some frequendes more strongly than

others, but also respond best to signals at a particular location.

weight The strength of connection between two units in a neural network. Weights in a network 

are an abstraction of the synaptic coupling between two biological neurons. Weights are

usually assumed to have a single value. Synaptic coupling between neurons is far more coqtplex.

white noise Random noise characterized by equal energy in all frequendes. The hiss between

stations on the radio is a familiar example of approximately white noise.

Wickelfeatluoe representation A method of coding information about letters based on ideas

of Wayne Wickelgren. Used in an important and controversial model of past tense learning by

Rume1hart and McClelland in the POP books.

Widrow -Hoff algorithm See LMS algorithm.

WTA network A winner-take-all neural network. At the end of a WTA computation in a

group of units, only one unit remains active (the winner) and the rest 
.
of the units are inactive.

X- OR See uclusive-OR.
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