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PROLOGUE

Reader, I am reviewing the copyedited manuscript of a book about
technology and learning just as a pandemic has spread across the
globe. By the time you download these words onto your favorite
screen or, I pray, walk into your local bookstore to pick up a copy, the
world will be different.

Schools and colleges are among the most durable and
conservative of our social institutions. They prepare people for the
future by connecting them with knowledge and wisdom from the
past. Faculty make some accommodations for changing times, but
for the most part, instructors teach how they were taught. Schools
hold fast.

Even during history’s watersheds, they hold fast. My colleagues in
higher education are right now, for the most part, trying to teach as
they did before, using video conferencing software to continue
broadcasting their lectures. Most elementary school teachers have
quickly and wisely given up on continuing a typical spring
progression and shifted to “enrichment,” providing weblinks and
worksheet packets that families can do at home to stay busy.
Secondary school teachers are somewhere in between.

These heroic, hasty efforts by teachers are working unevenly. In
educational institutions serving affluent students, where instructors
can assume that students all own their own devices, have access to
sufficient broadband, and live in homes stable enough to weather a
global recession, things are proceeding reasonably well. Not so for
schools that serve rural families and poor urban neighborhoods, or
for community colleges, state institutions, and for-profit colleges
serving working adults. In these settings, the best efforts of teachers
are being overwhelmed by the barriers of technology access,
employment disruption, hunger, homelessness, stress, and disease.

Many things that happen in schools simply cannot happen at a
distance. In one of the first American news articles about the shift to
online learning, a parent lamented that his six-year-old required full-



time supervision to participate in the remote instruction being offered
by his first-grade teacher. That anyone—a parent, a first-grade
teacher, a school principal, a journalist—would expect a six-year-old
to have the self-control, motivation, and attention span to participate
in remote instruction is strange—yet typical of our extraordinary
expectations for the power of learning technologies. It should not be
a surprise that a six-year-old would need direct, physical human co-
presence to participate in schooling; it is more surprising that so
many people might be led to believe otherwise.1

In the early days of a lost semester, students, parents, and
teachers are rapidly discovering the possibilities and limits of
distance learning technologies. In the dark days of quarantine,
technology provides some light for learning. Mo Willems, the brilliant
children’s book author, is broadcasting weekly lessons about
reading, writing, and drawing. Vast numbers of online courses and
textbooks, from massive open online course (MOOC) providers and
open educational resource repositories, are providing useful support
to self-paced learning, especially for older learners. As children miss
months of school, the loss of math instruction is one area where
students face lasting detrimental effects on academic progress, and
by good fortune, adaptive math learning software is one of the most
well-developed categories in the field of education technology.

For all these bright points, however, it is also obvious that the
gains of learning technologies are substantially offset by the loss of
schools as places for camaraderie, shelter, nutrition, social services,
teaching, and learning. When all the bars closed, people could still
find companions and dates (even against CDC recommendations)
on Tinder, Bumble, and Grindr. If the printing presses were to stop,
people could still get their news online. But parents, students,
administrators, governments, and pundits who thought that schools
could simply pivot to online learning and finish out the semester are
learning in the early days of the pandemic that the social and social
service functions of schools are intimately tied to their learning
outcomes.

In what follows, I attempt to explain why learning technologies
work in some situations but not others, and for some people but not
others. I hope that the explanations that I developed in a period of



relative stability provide some insight in the wake of a terrible
pandemic. I hope it becomes clear why a steady drumbeat of
techno-optimism about learning technology over the last decade
might lead people to believe that a first-grade teacher could remotely
instruct twenty or so six-year-olds. I expect that the world will still be
wrestling with COVID-19 as this book is released, and I hope that
what follows can help educators and the public understand the
places where learning technologies are most likely to be of service.

We will have much to rebuild, and perhaps learning technology
can help. But online learning won’t be an effective replacement for
our old system. Rather, the best possible future will be one where we
recognize the incredible importance of our formal education systems
to the social order, and we provide these systems with adequate
funding, support, and respect. Our learning technologies are only as
strong as the communities of educators who guide their use.
—J. R., March 21, 2020



 



INTRODUCTION

Education Technology’s Unrequited Disruption

THE MUST-HAVE TOY OF THE 2013 holiday season was Rainbow Loom. A
simple plastic board with vertical pegs, Rainbow Loom came
packaged with hundreds of small, colorful rubber bands that children
could weave across the pegs to make bracelets and charms. Press
coverage celebrated Rainbow Loom as a back-to-basics craft toy.
The Toronto Star reported that “parents love the toy because it’s
simple. It doesn’t require a battery. It doesn’t mean more screen time
and it isn’t an app.” The article quoted industry expert Jim Silver: “It’s
an activity. You can sit down and create.… Parents also like it when
they show creativity. And you’re not done playing with it because you
can wear it.”1 In an era when iPads and smartphones were
ascendant, Santa brought millions of children a toy that would finally
get kids to put down those damned devices.

Except it didn’t. Rainbow Loom wasn’t an antidote to screens;
rather, screens were integral to playing with the loom. Because some
of the things children could make with Rainbow Loom were quite
intricate, the easiest way to learn a new design was through a video
tutorial.

In 2013, two girls—Ashley, from Pennsylvania, and Steph, from
Ohio—published a sixteen-minute video demonstrating how to use
Rainbow Loom to make a “starburst bracelet”—an intricate, three-
dimensional display of color and technique.2 To make the video, they
mounted the camera in a stationary position above the Rainbow
Loom, which they placed on the carpet. As Ashley carefully
demonstrates to viewers the process of weaving each band, the
video moves slowly through new techniques and speeds up through
repetitive motions. Within two years, the video had been viewed
more than thirty million times.

The very first Rainbow Loom videos were created by the niece
and daughters of Cheong Choon Ng, the inventor of the loom. Ng
recognized early on that teaching and learning would be essential to



the marketing and success of his crafty new toy. After kids had made
all the bracelets specified in the printed instructions that came with a
kit, they could continue to discover new possibilities by searching for
videos posted online by people who had invented their own
creations. Ng turned to his kids to help: “The problem was that
people didn’t understand how [the looms] worked. So, I asked my
niece and my daughters to create YouTube videos explaining how to
make rubber-band bracelets. These created a trend.”3 In a
quintessential example of what media scholar Henry Jenkins calls
the “participatory culture” of the internet, many other children and
aficionados followed suit.4 They shared videos, asked questions,
offered hints, started discussion forums, posted pictures on
Facebook, and sold bracelets through online stores and websites.
Together, these Rainbow Loomers formed what cultural
anthropologist Mizuko Ito calls “affinity networks”—online
communities of enthusiasts who connect with each other around
interests and hobbies for learning, comradery, support, and critique.
Running alongside the global supply chains that delivered Rainbow
Loom kits under millions of Christmas trees in 2013 was an
extraordinary, organic, almost instantaneous global network of
teachers and learners sharing ideas, designs, and techniques.5

For those with access to global online networks, now is the
greatest time in history to be a learner. Never before have learners
had such incredible access to resources and communities of tutors
and apprentices. Whether they want to learn to play guitar, brew
beer, identify birds, translate Cicero, throw a javelin, intubate a
trauma victim, integrate a function, detonate a bomb, program in
Javascript, or become a better teacher, there are online classes,
tutorials, forums, and networks full of people who are excited to
teach and excited to learn. If you’ve ever signed up for an online
class, downloaded an educational app, or watched a video about
how to unclog a toilet, you are part of that network.



Bold, Unfulfilled Predictions

The first two decades of the twenty-first century brought dramatic
changes in informal learning practices alongside other major social
changes powered by ubiquitous connectivity and mobile devices.
Journalism experienced a flourishing of new voices through blogging
and social media and also a collapse of local news as traditional ad
revenue sources moved to internet behemoths. Streaming
technologies transformed music and entertainment industries. Dating
apps spawned new courtship rituals, and social networking sites
redefined the word friend.

Against this backdrop of rapid social change, education
technologists and reformers imagined a dramatic transformation in
formal education institutions. In 2008, Harvard Business School
professor Clayton Christensen, with colleagues Michael Horn and
Curtis Johnson, published Disrupting Class, a book about online
learning and the future of K–12 schools. They predicted that by
2019, half of all middle- and high-school courses would be replaced
by online options, and “the cost will be one-third of today’s costs, and
the courses will be much better.”6 These dramatic changes would be
driven by innovators in education technology, or edtech. One such
educator (though he was not identified by name in Disrupting Class),
was Salman Khan, who in 2008 founded Khan Academy with a
collection of short videos explaining math concepts, which he later
augmented with an extensive collection of online practice problems
and introductory videos in many other subjects. In a 2011 TED talk,
“Let’s Use Video to Reinvent Education,” Khan described a future in
which students proceed through foundational content online at their
own pace, freeing up teachers to provide intensive remediation or
facilitate sophisticated group projects.7 As his vision captured the
attention of popular media, Wired, Time, and Forbes all featured
Khan on their covers. A typical headline read, “One Man, One
Computer, 10 Million Students: How Khan Academy is Reinventing
Education.”8 Khan published a book, The One World Schoolhouse:
Education Reimagined, and founded a brick-and-mortar school, the
Khan Lab School in Mountain View, California, to test and
demonstrate his transformational ideas.9



This rhetoric of disruption, transformation, and renewal was heard
in higher education as well, sparked by the emergence of massive
open online courses (MOOCs). In 2011, Peter Norvig and Sebastian
Thrun—researchers affiliated with Google and Stanford—offered an
online course called Introduction to Artificial Intelligence. The course
consisted of short online videos interspersed with practice problems,
a model inspired by Khan Academy. When over 160,000 learners
signed up to participate in the course, elite higher education
institutions took notice and began embracing online learning with
staggering speed. Stanford faculty created the for-profit MOOC
providers Coursera and Udacity, while Harvard and MIT created the
nonprofit MOOC provider edX. As millions signed up for the first
offerings from these institutions, MOOC providers promised a radical
reconfiguration of higher education, and a New York Times headline
called 2012 the “Year of the MOOC.” That article summed up the
vision: “The shimmery hope,” it explained, “is that free courses can
bring the best education in the world to the most remote corners of
the planet, help people in their careers, and expand intellectual and
personal networks.”10 In August 2013, Udacity cofounder Sebastian
Thrun talked about the prospect of offering powerful learning
experiences at low cost and global scale, and he made a confident
declaration: “The thing I’m insanely proud of right now is I think
we’ve found the magic formula.”11

Thrun was in the vanguard of MOOC enthusiasm, but he was also
one of the first to dramatically revise his expectations. Three months
later, in November 2013, Thrun declared in another interview that
MOOCs hadn’t accomplished what he had hoped: “We were on the
front pages of newspapers and magazines, and at the same time, I
was realizing, we don’t educate people as others wished, or as I
wished. We have a lousy product.”12 In the years that followed, other
edtech evangelists also displayed more chastened expectations.

Millions of people have watched Khan’s two TED talks, but I
suspect that far fewer have read his 2019 interview with District
Administration, a trade magazine for school superintendents and
central office staff. “Now that I run a school,” he told the interviewer,
“I see that some of the stuff is not as easy to accomplish compared
to how it sounds theoretically.” Khan’s recommendations in 2019



focused less on disruptive transformations of math education and
more on using Khan Academy as a modest supplement to traditional
classroom instruction: “More recently, we’re seeing that if students
put 30 minutes to an hour per week—or one class period per week—
toward software-based, self-paced learning, schools will see a 20 to
30 percent greater-than-expected gain on state assessments. That’s
exciting because that’s a dosage that’s very doable in mainstream
classrooms. We tell schools to give students 30 to 60 minutes of
Khan Academy per week, with teachers doing traditional curriculum
four days per week.” When Khan’s soaring vision met the complex
reality of schools, disruption and transformation gave way to
accommodation.13

The blended model that Khan espoused in District Administration
is actually at least twenty-five years old. In 1997, Ken Koedinger and
colleagues published “Intelligent Tutoring Goes to the Big City,” a
report describing the use of adaptive, self-paced algebra tutoring
software in the Pittsburgh public schools. Students learned in
traditional settings for most of their class time and then spent about
one day a week using math tutoring software, which led to
improvements on math tests similar to what Khan would find
decades later.14 Much of what Khan Academy discovered by 2019
about computer-assisted math instruction, after more than $100
million in philanthropic investment, could have been found in
academic papers published in the 1990s.



Genres and Dilemmas

In the decades ahead, educators can expect to hear a new
generation of product pitches about the transformative potential of
new technologies for school systems: how artificial intelligence or
virtual reality or brain scanners are the innovations that, this time, will
actually lead to profound changes in education. These pitches will
also be wrong—these new technologies will not reinvent existing
school systems (though some of them may make valuable
incremental improvements)—and this book is an effort to explain
why.

I have two main arguments, corresponding to the two sections of
this book. First, new technologies in education are not, in fact, wholly
new; they build on a long history of education innovations. Second,
there are certain basic obstacles that time and time again have
tripped up the introduction of large-scale learning systems. A few
words about each of these arguments will help to preview the
territory the book will cover.

Regarding the history of new technologies, from the earliest days
of computing, back when mainframes took up entire rooms,
technologists have tried to use these new machines for teaching and
learning. The project of teaching people with computers is at least
sixty years old, as old as digital computing itself. If you know
something about this history, you can look at a new technology, trace
its lineage, and make well-informed predictions about how a new
iteration will contribute to existing educational systems.

In exploring this history, I’ll focus on technologies for learning at
scale—learning environments with many, many learners and few
experts to guide them. Whereas some technologies, like a calculator,
easily fit into the existing structure of schools, large-scale learning
technologies are the ones that reformers most often turn to when
they imagine widespread transformation of educational systems.
These tools are sometimes used entirely online, but they are also
blended in countless ways with on-campus learning communities in
classrooms, schools, and universities. Online platforms that can be
used by millions of learners independently fit squarely within the
definition of learning at scale, but so can tools that attempt to



individualize learning in a classroom or substantially reshape the
experience in a large lecture class. I primarily study how these
emerging large-scale learning technologies intersect with existing
educational systems, but I remain keenly interested in interest-driven
learning outside of schools and what schools can glean from the
experiences of Rainbow Loomers and other participants in online
affinity networks.

Large-scale learning environments can be classified into three
genres, based on the answer to a key question: Who creates the
activity sequence for learners? Because a sequence can be created
by an instructor (as in the case of MOOCs), by an algorithm (as in
the case of adaptive tutoring software), or by a peer (as in the case
of distributed learning networks), there are instructor-guided,
algorithm-guided, and peer-guided large-scale learning technologies.
Each of these genres has a history, a research literature, and a track
record of success and failures in formal educational institutions. If
you can figure out into which of these categories a new large-scale
learning technology fits, you can do two useful things. First, based
on the prior performance of similar approaches, you can make
predictions about what outcomes will emerge as new technologies
are integrated into complex systems of schooling. Second,
understanding what is old and recycled can throw into relief what is
genuinely innovative in a new product or approach. Identifying the
modest innovations in emerging technologies can help predict how a
new offering might offer some incremental improvement over past
efforts.

Turning to the second argument, the histories of technologies in
all these genres reveal some common challenges that have
consistently hindered efforts at improving learning through education
technology. In Part II of this book, I identify four kinds of obstacles
that large-scale learning systems have encountered repeatedly over
recent decades, which I call “as-yet intractable dilemmas”: the curse
of the familiar, the edtech Matthew effect, the trap of routine
assessment, and the toxic power of data and experiments. These
patterns help explain why predictions for transformative change have
fallen flat, and examining these dilemmas is critical for looking
forward. These four dilemmas comprise a set of grand challenges



that designers, researchers, and educators need to overcome if
education technology is to make learning faster, cheaper, more
enjoyable, more effective, and more accessible for people around
the world.

New technologies alone will not sweep away these dilemmas,
because the challenges of learning at scale are not merely technical
in nature. In his ethnographic study Life in Classrooms, Philip
Jackson offers a memorable observation: “The path of educational
progress more closely resembles the flight of a butterfly than the
flight of a bullet.” For engineers, sometimes more is just better: a
bigger explosion in the chamber leads to a faster bullet; more fuel
burned makes rockets fly faster. As historian Larry Cuban argues,
education is not just complicated but complex. It is an interlocking
system of learners, educators, technologies, and broader social
contexts, with all kinds of invisible linkages and unexpected
consequences. Trying to accelerate learning by ramping up
technology is like putting rockets on butterfly wings. More force does
not lead linearly to more progress.15

Educational systems are political institutions negotiated by a
diverse set of stakeholders: teachers, students, families,
communities, school boards, trustees, vendors, state and federal
governments, and others. They exist to serve a variety of sometimes
conflicting purposes: preparing people for civil society, training
workers for employment, sorting and ranking students into a social
hierarchy, developing moral character, providing breakfast and lunch
while parents are working, and on and on. Technologists often
assume that their creations can reconfigure or bypass these complex
systems, but instead, they discover that school cultures (in words
that I and Mizuko Ito have used before) “domesticate new
technologies.”16 Rather than upending existing educational systems,
new technologies get put to work serving some particular niche in
schools or universities. In the second half of this book, I argue that
the most promising approaches to learning at scale combine
technical innovations with efforts to improve these complex systems.



Edtech Charismatics, Skeptics, and Tinkerers

In The Charisma Machine, anthropologist Morgan Ames contrasts
two approaches to applying emerging technology to improve
learning. There are “charismatic” initiatives that envision sweeping
change—her case example is the “One Laptop per Child” project
launched in 2002—and ascribe tremendous power to new
technologies to reinvent education.17 In the 2000s and 2010s,
evangelizing technologists often adopted the rhetoric of “disruptive
innovation” to describe how emerging technologies can offer a new
value proposition that leads to the wholesale transformation of
existing systems. One way to look at the TED conference is as an
annual revival meeting for charismatic technologists; reading
transcripts from TED talks about educational topics is a reliable
research strategy for finding unfulfilled predictions about education
technology over the last decade. The disruption of schools promised
by education-technology advocates in the first twenty years of the
twenty-first century has been universally unrequited.

One opposing position to the charismatic stance is skepticism,
and education technology has a rich tradition of critique that
designers and educators should take seriously. But there is another
alternative position to the charismatic: tinkering, a term drawn by
Ames from David Tyack and Larry Cuban’s history of K–12 schooling
in the United States, Tinkering toward Utopia.18 Tinkerers see
schools and universities as complex systems that can be improved,
but they believe that major improvement is the product of many
years of incremental changes to existing institutions rather than the
result of one stroke of wholesale renewal. Tinkerers study past
efforts at educational reform to avoid replicating past mistakes.
Tinkerers harbor an optimism that technology can be used to
improve teaching and learning, but they embrace research and
critique as a crucial check against utopian thinking. Charismatic
technologists orchestrate boom-and-bust hype cycles, cajoling local
systems into making major changes and then moving on when
transformation proves elusive. Tinkerers persist much longer with
their designs, their partners, and their communities. Tinkering offers
a middle way between the charismatic and the skeptical.



This book is a tinkerer’s guide to learning at scale. For classroom
instructors, school technologists, department chairs, and
administrators, the history of learning at scale provides valuable
guidance in selecting and tinkering with implementation of new
learning technologies. For technology developers and researchers,
investigating the persistent challenges faced by education
technologists over the last two decades reveals important avenues
for new research and development. Understanding how technologies
are being adopted to improve schooling and lifelong learning
empowers parents and citizens to influence the public educational
systems in which all of us have a stake.



A Tinkerer’s Career in Education Technology

I came to tinkering with education technology through classroom
teaching. In 2003, I took my first full-time teaching job in a private
school south of Boston, where I taught ninth-grade world history. In
the corner of my classroom was a cart of blue and orange clamshell
MacBooks loaded with web browsers and an intranet application
suite called FirstClass that offered a server-based version of just
about everything that Google Suite for Education now offers through
the cloud. To help the school figure out what networked learning
might look like, my world history class was part of a test program in
which I was expected to use the laptops every day. I loved it.

Archives, governments, and museums around the world were in
the midst of a massive campaign of digitizing historical material. With
colleagues, we completely redesigned our world history syllabus
from a traditional survey class to one in which we investigated
contemporary world conflicts through journalism and then traced the
peoples involved back into ancient and medieval history. My
students explored primary sources available online, and they
developed and demonstrated their understanding not only through
traditional assignments such as essays, but also through new media
including blogs and podcasts. In a place with extremely privileged
access to resources—hardware, software, networks, and support
staff—and well-prepared students, I found teaching with technology
to be incredibly energizing for me and for my students.19

I went on to co-found a consultancy, EdTechTeacher, to help
schools implement digital learning. In this work, I visited with faculty
and school administrators from hundreds of schools across the
United States and around the world. I joined a doctoral program in
2008 and studied how social media and peer production tools like
blogs and wikis were finding new uses in K–12 classrooms. I
graduated right before the founding of edX, and I was the first full-
time researcher hired by Harvard to develop the infrastructure for
researching edX MOOCs. From my office next to the video
producers and project managers who developed Harvard’s first edX
courses, I tried to study the enterprise as both an insider and an
outsider, close enough to the action to understand some of its inner



workings yet distant enough to make a concerted effort at objective
analysis. Eventually, I united my interests in online learning and
professional development for educators, and I now run a lab at the
Massachusetts Institute of Technology (MIT) called the Teaching
Systems Lab, where we aspire to design, implement, and research
the future of online learning for K–12 teachers.

An oddity of my career is that I am an education technologist who
often writes about how education technology fails to deliver on its
promises. In 2009, around the same time that Clayton Christensen
and his colleagues published Disrupting Class, I wrote a report on
education technology for a short-lived British enterprise, Beyond
Current Horizons, a website published by the United Kingdom’s
Department of Children, Schools and Families. I predicted that
technology would lead to only minimal or superficial changes in
school practices. I saw no evidence that edtech advocates had any
plans to provide the substantial investment in professional learning
that teachers would need to incorporate new technologies in
powerful ways. Four years later, on my first day at work at HarvardX,
I published a blog post at Education Week with a prediction: “I think
it’s probably more likely that most [MOOCs] end up being talking
textbooks with auto-graded worksheets, useful in some particular
circumstances with particular populations, but, like every previous
generation of education technology, ultimately a disappointment.…
And my deepest concern is that the people who will benefit from
these new initiatives are those who already are privileged and
advantaged.” In this book, as in my past writing, I try to maintain
humility when approaching the challenges of improving school
systems and to show deep respect for the teachers and professors
who work heroically every day to maintain the daily work of existing
schools. In the face of these challenges, three ideas have sustained
my interests in tinkering with technology in schools.

The first is that the needs are vast. We will soon have eight billion
people in the world, and as many of them as possible should have
the benefits of education. Over two hundred million people in any
given year access higher education, but many millions more dream
of the opportunity.20 Nearly a quarter of all students in schools
serving America’s poorest children have no access to a calculus



course. Large-scale learning cannot serve all learners in all places,
but we should find the places where technology can expand
educational opportunities or improve learning.21

Second, when online learning works well, it is beautiful. I love
meeting students who found a new path in life after taking a MOOC
or discovering an online community. I love meeting educators whose
ideas about learning and instructional design were challenged and
reshaped by encounters with online tools. I enjoy watching my own
young daughters explore the world of learning online. My second
grader’s passion for math is currently being nurtured by a flashcard
app, and although I hope it is not the only way she experiences math
and technology at school, I am grateful that she has the opportunity
to enjoy the rewards of practice, repetition, and advancement. I think
the app she has is a little better than the flashcards I used as a kid,
and incremental changes of these kinds are meaningful. As my
colleague Ken Koedinger says, a step change is just twenty years of
incremental change as viewed from a distance.

Finally, and most importantly, I remain convinced that even though
technology alone will not disrupt systems, technology can abet
system change. Emerging technologies help learners, educators,
and other stakeholders encounter new possibilities, and they loosen
the grip of education’s conservatism. They invite questions about
what might be possible if we rearranged curricula, schedules, goals,
assessments, and other key features of educational systems to allow
emerging technologies to provide more utility and opportunity.
Technology will not dissolve the stubborn challenges of education,
but designed thoughtfully and implemented reflectively, learning-at-
scale technologies can help. The chapters that follow are my effort to
share the most important lessons I have learned about tinkering with
technology in the service of improving educational systems.



 



I
THREE GENRES OF LEARNING AT SCALE:

INSTRUCTOR-GUIDED, ALGORITHM-GUIDED, AND
PEER-GUIDED



 



1
INSTRUCTOR-GUIDED LEARNING AT SCALE

Massive Open Online Courses

IN 2011, Peter Norvig and Sebastian Thrun, computer scientists
affiliated with Stanford and Google, emailed one thousand affiliates
of the Association for the Advancement of Artificial Intelligence
announcing a new, free, online course: Introduction to Artificial
Intelligence. The course mirrored the residential class offered to
Stanford students, with videos of Norvig and Thrun talking over their
computer screens as they wrote snippets of code, math equations,
and bullet points of important ideas. Interspersed among these
videos were multiple-choice quizzes and short computer-
programming assignments, which were submitted online and graded
by computer. People from 190 countries signed up for the offering,
and twenty-three thousand people completed the course.1

This startling demand for a university-level computer science
class immediately prompted other courses with huge public
enrollments. Stanford computer science professors launched three
classes in machine learning, artificial intelligence, and databases,
and each had more than one hundred thousand enrollees. At MIT,
Anant Agarwal created a new platform, called MITx, and offered his
own course, Circuits and Electronics, that gathered more than
150,000 registrants. The courses became known as massive open
online courses, or MOOCs (a term coined several years earlier by a
group of Canadian educators experimenting with distributed learning
models.)

Venture capitalists in Silicon Valley took note of the emerging
opportunity, and they provided seed funding for several online
learning startups, among them Udacity and Coursera. Harvard and
MIT invested $60 million to create a nonprofit alternative called edX,
and they created new provost-level enterprises to lead online



learning initiatives. For higher education observers used to the
glacial movement of universities, these institutional changes
appeared with blistering speed.2

Online courses had been well established in higher education
long before these events. At the turn of the millennium, 8 percent of
undergraduates took at least one of their classes through distance
education, primarily at non-selective colleges and for-profit
universities. Elite institutions, too, dabbled in online learning
throughout this period. By 2012, faculty at Harvard and other
institutions could put new MOOCs on edX relatively quickly because
of the schools’ existing, largely unheralded, investments in digital
learning. In its first year, HarvardX was able to launch six courses in
computer science, political philosophy, public health, ancient history,
and law because many of the faculty involved in these enterprises
were already conducting online courses in their own schools and
scholarly societies or through Harvard’s Extension School.3

Perhaps the most immediate change sparked by MOOCs was
social rather than educational. With the blessing of Ivy League
universities, online learning switched from low status to high status
almost overnight. Universities that bragged about how many
students they rejected in each admissions cycle began to compete
for how many students they could enroll online.

In 2013, soon after finishing my doctorate, I joined HarvardX as its
first full-time research scientist, the Richard L. Menschel HarvardX
Research Fellow. I was physically close to the teams developing
MOOCs but organizationally removed, managed by faculty on the
newly created Research Committee for the Office of the Vice Provost
for Advances in Learning rather than by the HarvardX executive
staff. My tasks were to study the enterprise, develop the
infrastructure for conducting research on edX courses (verifying data
packages from edX, defining measures and metrics, and creating
surveys), publish research and reports, and advise stakeholders.
(The perspective on these initiatives offered here is my own; it is not
the official position of either Harvard or MIT.)



Three Big Bets for MOOCs

In the months that followed the founding of edX, Coursera, and
Udacity, MOOC advocates offered a set of dramatic claims—three
big bets—about how MOOCs would revolutionize higher education
and lifelong learning.

The first big bet was that MOOCs would transform the delivery
model of higher education, led by a new generation of online
providers. In early 2013, Clayton Christensen, a Harvard Business
School professor known for his theory of disruptive innovation,
warned that within fifteen years, “maybe half the universities would
be in bankruptcy.” The concern was that every local college’s
Introduction to Biology course would be replaced by one or two Bio
101 courses taught by rockstar super-professors from elite
universities. As digital providers and their partners created these
mega-courses across the curriculum, the economies of scale
afforded by giant courses would allow them to be better and cheaper
than anything a local institution could offer. Sebastian Thrun from
Udacity speculated that in fifty years, there might be only ten
institutions of higher education left, and Udacity could be one of
them.4

The second big bet was that MOOCs would dramatically expand
global access to higher education. In her 2012 TED talk, Coursera
cofounder Daphne Koller described her mission as creating “the best
courses from the best instructors from the best universities, [and
providing] it to everyone in the world for free.” Her idea was that
Coursera would host free online course material and charge a small
fee to anyone who wished to receive an official certificate of
completion upon successfully passing a course. Learners could get a
valuable new kind of credential associated with the prestige of elite
universities, while Coursera minted millions for investors and
university partners. Students in the far reaches of the world without
access to traditional higher education would join working
professionals who were too busy to return to school full-time in
creating a massive new population of online learners.5

The third big bet was that through research and continuous
iteration, these new online courses would provide more engaging



and effective learning experiences. The long, droning lectures of
university faculty would be replaced with short, snappy videos
interspersed with active-learning exercises. The vast behavioral data
generated by online learning platforms would fuel new research into
the fundamentals of human learning. The resulting insights would
then be applied to further improve instructional design. Koller
imagined that MOOCs would “turn the study of human learning from
the hypothesis-driven mode to the data-driven mode, a
transformation that, for example, has revolutionized biology.”6

Together, these three bets proposed a future in which MOOCs
would sweep away all the inefficiencies of a legacy system of
colleges and universities. Higher education researchers sometimes
describe the challenges of improving postsecondary education by
referring to the “iron triangle” of cost, access, and quality. Efforts on
one side—to reduce cost, broaden access, or improve quality—
generally have a negative impact on at least one of the other two
sides. The promise of MOOCs was that they could have positive
effects on all three sides. Costs would go down as expensive faculty
labor was reduced with digitized lectures and computational
assessment. Access would increase because learners would not
need to pass bureaucratic barriers, pay high fees, or even be
physically present in a classroom. Quality would improve as a result
of technological innovation and partnerships with elite institutions.

These dramatic changes have not come to pass. Instead of
transforming higher education, MOOCs have been absorbed by the
existing higher education system. They are now primarily
supplements to existing infrastructure for professional master’s
degrees and executive education programs. Understanding why
these three big predictions didn’t pan out and what was
accomplished requires drilling down into the pedagogical and
technological foundations of MOOCs to reveal their capacities and
limits.



New Technologies, Old Pedagogies

Given the breathless enthusiasm with which new learning
technologies are introduced, one of the most useful dispositions in
evaluating edtech is to regularly ask the question, “What’s really new
here?” Most components of new products and systems have a long
history, and only occasionally do new entrants offer a genuinely
novel innovation. To evaluate how MOOCs tried to revolutionize
higher education, the first step is to explore what was old and what
was new.

When Thurn and Norvig were developing Introduction to Artificial
Intelligence, one of their most important influences was Khan
Academy. In the mid-2000s, Salman Khan, working as a senior
analyst at a Boston hedge fund, started making a series of video
tutorials about mathematics for his young cousin in Louisiana. The
aesthetics of the videos were simple: Khan drew equations and
notes on a black screen with a baritone voiceover describing what he
was doing and why. Viewers never saw Khan’s face; the focus was
on the math.

Khan Academy’s platform includes both instructional videos and
practice problems, but in the early 2010s, these learning resources
were separated from one another—videos on one part of Khan’s
website and practice problems on another. The Introduction to
Artificial Intelligence course, by contrast, interleaved video tutorials
with practice problems. Like Khan, Norvig and Thrun talked through
a segment of content with a video lasting five to ten minutes. Unlike
Khan Academy, after a video, they presented their students with a
few practice problems to answer, mostly multiple-choice or short-
answer questions. After several of these lessons, students
completed longer programming assignments that were submitted
online. A computer program graded them based on whether the
programs accomplished the engineering tasks for the assignment.
When students ran into questions or difficulties, a discussion forum
provided a space for learners to gather and answer each other’s
questions. This general format was replicated in Andrew Ng’s first
Coursera course on machine learning and in Anant Agarwal’s first
MITx course on circuits and electronics.



This lecture-based pedagogical approach goes back millennia. To
a first approximation, there are only two primary approaches to
teaching and learning. As Plutarch wrote in “On Listening” in the first
century CE, “Education is not the filling of a pail, but the lighting of a
fire.” Of course, theories of learning and instruction can be infinitely
more complex than this simple dichotomy, but these two
perspectives of pail filling and fire lighting appear in various guises
throughout the history of schooling and learning. Summarizing these
two ideas in the American context, historian Ellen Lagemann argued,
“One cannot understand the history of education in the United States
during the twentieth century, unless one realizes that Edward L.
Thorndike won and John Dewey lost.”7

In twentieth-century America, philosopher John Dewey became
the patron saint of the fire-lighters. Dewey famously argued, “I
believe that education, therefore, is a process of living and not a
preparation for future living,” and he advocated for an approach to
education that emphasized apprenticeship, interdisciplinary learning,
and connections to the world beyond schools. Social constructivism
—the idea that individuals construct new understandings from prior
understandings in the context of learning communities—is one term
used by education researchers to capture this family of pedagogies.8

Edward Thorndike is less well known than Dewey, but his
approach to education will be recognizable readily. Thorndike
believed that education could be organized as a science, in the
positivist traditions that shaped sociology, political science,
economics, and other social sciences. Thorndike believed that
learning could be precisely measured, and he was an early
developer and advocate of standardized tests and intelligence
testing. With these measures of learning, best practices in the direct
transfer from experts to novices could be standardized and
scientifically evaluated. No single term captures all of the pail-filling
intellectual decedents of Thorndike’s thinking, but instructionism is a
useful label for these ideas. MOOC developers have been
overwhelmingly instructionists.9

New learning technologies rarely innovate on these fundamental
pedagogical ideas. Instead, they reenact them. Educators and
researchers who had been conducting online courses since the



1980s noted that few new MOOCs offered an improved pedagogical
experience for distance learners; most courses simply recorded a
professor lecturing, harkening back to the earliest days of motion
pictures when the first order of business was the filming of stage
plays. MOOC advocates placed their big bets on innovation in
distribution rather than innovations in teaching and pedagogy. But
even MOOC technologies for online dissemination had well-
established histories.10



The Key Components of MOOCs = Learning Management Systems,
Storefronts, and Autograders

The fundamental technology supporting edX, Coursera, Udacity, and
other MOOC providers was the learning management system (LMS)
—a platform on which instructors could arrange and deliver learning
resources to learners in a sequential order. By 2012, LMSs were
widely used throughout higher education both to make online
materials accessible to residential students and to facilitate fully
online courses. MOOC platforms added two components on top of
these LMSs: storefronts and autograders.



LEARNING MANAGEMENT SYSTEMS
The essential purpose of an LMS is to organize instructional content
online. The first cited references to learning management systems
appear in scholarly literature in the 1960s and 70s. The first
commercially successful LMS was Blackboard, released in 1997,
and the first widely adopted open-source LMS was Moodle, released
in 2002. The earliest LMSs were dissemination tools that provided a
space for storing and distributing syllabi, readings, and other course
materials. Over time, they also offered dropboxes, which allow
students to upload assignments and instructors to grade and return
the work on the site, and discussion forums, which serve as the
primary means of peer interaction. Crucially, LMSs provide a set of
authoring tools that allow faculty with no programming experience to
create course sites. By dragging and dropping content and plugins
and by filling in forms and textboxes, faculty can create a
presentable web presence for their courses without writing a single
line of HTML, CSS, or JavaScript.11

Learning management systems are boring. They fall into that
class of infrastructure—pipes, wires, roads, authentication protocols
—that are essential to everyday experience even as they are mostly
invisible. But LMSs play a powerful role in shaping people’s learning
experiences, mostly by homogenizing them. Despite the dozens of
options—Blackboard, Moodle, Desire2Learn, Schoology, Haiku,
Edmodo, Canvas, and so on—they are all largely the same. The
state of the LMS field is one of feature convergence, where every
innovative feature that a company develops is rapidly copied by
competitors. Once schools and universities adopt an LMS,
administrators from the information technology department typically
create course templates for faculty. These templates have a set of
standard sections—a place for the syllabus, weekly readings, weekly
assignments, a discussion forum, supplementary readings, and so
forth. As a result, the online components of courses within an
institution are usually extremely similar to one another, whether one
is teaching about poetry or proteins.12

These organizing structures also make MOOCs extremely similar
to one another, both across the courses of a single platform (like edX



or FutureLearn) and between platforms. For instance, every edX
course is comprised of chapters, every chapter contains a series of
“horizontals,” which are sequences of subunits that are further
broken into “verticals,” which are scrolling pages of learning objects.
By default, the edX navigation system moves every student along a
linear, instructor-guided pathway through these verticals, horizontals,
and chapters. While with great effort, instructional designers can
hack around the edges of the edX LMS to create a different
pedagogical design, in practice, most instructors make do with linear
learning designs that emphasize formal content dissemination from
an instructor that is followed by assessments to quantitatively
measure knowledge gained.13



STOREFRONTS
MOOCs offered two innovations on top of conventional learning
management systems. The first was a business operations
innovation: MOOCs put a “storefront” on top of an LMS that allowed
the public to sign up for a course. This wasn’t particularly technically
difficult; it just had not been done much before. Historically, students
registered for a college or university, and then, from within that
college, they signed up for classes through a registrar, which in turn
granted them access to a course LMS. At elite colleges and
universities, it was impossible to buy just one course a la carte; one
needed to buy a year’s worth of courses, live in student housing, and
eat from a meal plan. Coursera, Udacity, and EdX allowed anyone in
the world to directly register for an online course and to access the
course LMS without enrolling in a university or interacting with a
registrar. It turned out that millions of people around the world were,
initially, interested in casually exploring free courses without any
formal university affiliation.14



AUTOGRADERS
Automated assessment is the second MOOC addition to the
traditional features of a learning management system. For decades,
LMSs had very simple assessment items, such as multiple-choice
and fill-in-the-blank problems, as well as dropboxes and other
mechanisms for students to submit essays, labs, problem sets, and
other complex assignments that were then evaluated by human
graders. This model was insufficient, however, once online courses
became massive. With over 160,000 registrants in Intro to AI, there
was no possibility that teaching staff could evaluate all the work
submitted by students. Assignments had to be assessed by
computer programs.

In some disciplines, educators and technology developers have
made great progress in developing automated assessment of
complex student performances. Computer scientists have developed
tools that can evaluate the quality of students’ programs along a
number of dimensions: Does the submission meet engineering
requirements (does it print “Hello World” to a screen or correctly
identify misspelled words in a document)? How quickly does it run?
How many lines of code are required? Does the code meet design
specifications in its syntax, indentation, and other features to allow
developers to collaborate with one another?15 Other quantitative
disciplines, including physics and math, also have developed such
automated assessments when the steps to solve a problem are well
defined. A crucial part of the first MITx course, Circuits and
Electronics, was a circuits simulator that allowed students to connect
wires, lights, capacitors, transistors, and other elements in order to
perform specific engineering challenges. Since the physical laws
behind these electrical components are well understood, and since
these components behave predictably and consistently, the simulator
can determine objectively whether or not students have a correct
solution to a problem.16

There remain many fields of study, however, for which computers
cannot validly assess complex human performance.17 Under most
conditions, computers cannot effectively evaluate unstructured text
in essays or short-answer assignments (in Chapter 7, we will discuss



the few conditions under which they might be able to do this). Since
teaching how to reason from evidence is one of the main purposes
of higher education, and since the main way of demonstrating this
reasoning is through essays and similar written performances, the
inability to autograde this kind of work is a critical limitation for
instructor-guided online learning. MOOC developers conducted
some interesting experiments with automated essay grading and
peer grading, but for the most part, these systems have proved
cumbersome and insufficiently reliable. Automated essay grading
systems require extensive human training—through hand grading
hundreds of sample submissions—before machines can take over.
Peer grading systems require every submission to be evaluated by
multiple course participants, so assigning students to write an essay
also requires them to read and give feedback on four or five others.
Few MOOC providers have continued to experiment with these
systems. Since automated assessments can evaluate human
performance more reliably in some domains than others, MOOCs
are better suited to credential learning in those domains where
knowledge is more amenable to computational assessment.18

Learning management systems, in use for two decades before the
arrival of MOOCs, had not previously led to the three big
breakthroughs that MOOC enthusiasts predicted: expanded access,
transformed systems, or better teaching from data-driven research.
This helps frame our investigation of MOOCs. Now that we have
identified what is old, we can focus on what is new: Could the main
innovations—storefronts and autograders—lead to the fulfillment of
the three big bets of MOOCs?



From Storefronts to Online Program Managers

When the first few million people clicked through the new storefronts
created by MOOCs in 2012, it initially appeared as if the first big bet
of MOOCs—transforming the delivery model of higher education—
could indeed pay off. Students around the world could take single
courses through MOOC providers and earn a credential to show to
prospective employers. Two problems with this model emerged.
First, relatively few students who signed up for courses actually
completed them. Second, the value of non-degree credentials
remained ambiguous; bypassing the bureaucracy of admissions also
meant giving up on the legitimacy associated with formal
relationships with an academic institution. As a result, the novel
delivery models that MOOC advocates imagined with their new
storefronts have largely given way to more well-established
arrangements in higher education.

As MOOC advocates emphasized the staggering number of
people who registered for new offerings, researchers, journalists,
and critics asked a logical follow-up question: “How many of them
passed the class?” Early research reports showed that MOOC
completion rates typically hovered around 5 percent. Debates
ensued as to how substantial of a problem this was. Perhaps it was
fine for leisurely browsers of online learning to sample but not
complete courses, much as one might sample articles but not read
the entire Sunday New York Times. Nonetheless, further research
suggested that even committed learners often did not finish their
courses; only about 20 percent of learners who declared in surveys
that they intended to complete a course were successful in doing so,
and completion rates among those who paid for the opportunity to
earn a “verified” certificate were around 50 percent. MOOC
advocates argued that these figures were not out of line with what
might be found in other non-selective higher-education settings, and
MOOC critics observed that most learners failed to meet their goals.
Pedagogical considerations aside, low pass rates threatened the
growth of a certificate-based business model; customers who failed
to earn a certificate were unlikely to pay for subsequent courses.19



Furthermore, the value of these certificates was unclear, and no
widespread evidence emerged that employers were recognizing
them in hiring or promotion at any meaningful scale. In one study of
sixty MOOC certificate earners, researchers found that learners had
mixed views of the value of those certificates. Some described them
as evidence of learning that was valuable in conversations with
current and potential employers, but others declared that while they
found the learning valuable, the certificates were meaningless.
Perhaps the best indication of the questionable value of certificates
is that after a few years, MOOC providers embraced more familiar
approaches to credentialing students.20

With relatively few students finishing individual courses and with
the value of individual course certificates in question, MOOC
providers pivoted away from individual courses and toward more
comprehensive programs. Udacity was the earliest to make this shift,
and through a partnership with Georgia Tech and AT&T, it created
the first MOOC-based degree program, an online master’s degree in
computer science. With a $2 million start-up investment from AT&T,
Georgia Tech created thirty online courses, enrolled 380 students in
its first year, and by 2019 was enrolling over two thousand new
students per year. Given that just over ten thousand master’s
degrees in computer science are awarded every year in the United
States, these are substantial numbers. With the online degree
costing only $7,000, successful graduates get the exact same
academic certification as students in Georgia Tech’s highly regarded
on-campus program. Evidence suggests that the program attracted
primarily working professionals who were not applying to residential
degree programs. Since students take only a few courses per
semester and are allowed six years to complete the program, as of
this writing, the dropout rate is not yet clear, though the dean of the
School of Computing estimated it to be about 40 percent per year.
Coursera, edX, and FutureLearn have followed with other fully online
master’s degrees, most of which are more expensive than the
Georgia Tech online master’s, and none of which have yet attracted
as much attention, enrollment, or research interest.21

Some MOOC providers have experimented with a middle path
between offering single course certificates and full master’s degrees.



edX created a new program called the MicroMasters that allows
students to earn an online credential by completing a series of
MOOCs and sometimes passing a proctored exam. Students can
then apply those credentials as course credit toward an on-campus
or online degree. For instance, people who earned a MicroMasters
from MIT’s supply chain management program could apply to earn
an accelerated on-campus master’s at MIT or at partner schools,
such as the University of Zaragoza, in only one semester of
residence. In the first year of the new blended program, MIT enrolled
approximately forty students in the traditional one-year master’s
program and admitted another forty students who completed the
MicroMasters and then attended one semester on campus to earn a
degree. The program developers were gratified to learn that the
blended-program students were well prepared by their online
courses and earned spring semester grades that were slightly higher
than their residential counterparts.22

As of 2019, edX has created over fifty MicroMasters programs.
The hope is that MicroMasters might become to the master’s degree
what the associate degree has been to the bachelor’s, an affordable
stepping stone to a more complete degree. The crucial difference is
that associate degrees are overwhelmingly entry points to higher
education, whereas thus far, MicroMasters appear to be an
extension for the already educated. In the MIT supply chain
MicroMasters program, the majority of students to earn the
MicroMasters credential and the majority of those who go on to earn
the master’s degree already had a first graduate degree and were
pursuing a second one.23

In addition to these degrees and programs, MOOC providers also
make their courses available for companies to provide through their
internal professional development offerings. In some cases,
corporations purchase “seats” for their learners in existing courses,
and sometimes MOOC providers codevelop new programs for use
within companies. For instance, Udacity has developed a variety of
nanodegrees, non-credit-bearing technology credentials, in
partnership with tech-sector employers; as one example, their
natural language processing nanodegree is advertised as developed
in partnership with IBM and Amazon Alexa. Little research has been



conducted about these private offerings, but they have similarities
with non-degree certificate programs that technology companies
have offered for many years (for example, “Microsoft-certified”
technicians).24

What these MOOC-based degrees, MicroMasters, and corporate
training programs have in common is that they recognize the value
of a formal, bureaucratic connection between a learner and a
university or employer. MOOC providers have found that people
willing to pay for educational services want their purchases to
include some kind of recognizable credential, not just a certificate for
an individual course. The course-based MOOC storefronts still exist,
but rather than becoming a new pathway to higher education, they
are more like try-before-you-buy teaser opportunities, where people
can sample a course to see what a degree program might be like.25

In less than a decade, then, MOOC providers have come to look
less like a disruptive force and more like a well-established player in
higher education called online program managers (OPMs). Few
have heard of low-profile companies such as Pearson Embanet,
Wiley Education Services, or 2U, but for two decades, they have
operated behind the scenes driving the expansion of online learning
in higher education. My first encounter with OPMs came in 2006,
when I was running a little website for teachers called the Best of
History Websites. A representative from Embanet called and asked if
he could place an advertisement on the site for Norwich University’s
online master’s in military history. As we chatted, I asked him if
Embanet was a marketing firm, and he explained that Embanet’s
purview was much broader. They would take on nearly any element
of a university’s online degree programs—marketing, admission,
instructional design, even teaching—and perform those functions
under a university’s brand. Online program managers even made
financing easier by paying upfront for the development costs of new
programs in exchange for an ongoing fraction of the tuition revenue
from subsequently enrolled students. Coursera CEO Jeff
Maggioncalda, who took over the company in 2017, has been
explicit that the company’s strategy is to follow the trail blazed by
OPMs such as 2U and assist universities in implementing online
degree programs.26



The first big bet of MOOCs, that they would fundamentally
reconfigure the business model of higher education, has not panned
out. No doubt some institutions will close in the years ahead, but it is
unlikely that half of all colleges and universities will be gone by 2028,
and closures are more likely to be caused by declining public
funding, global recession, and demographic shifts than by disruptive
competition from low-cost MOOC providers. MOOCs have neither
conquered the world nor gone bust. Instead, they plod along,
adopting forms and business models—like OPMs or executive
education—that are recognizable to those familiar with the history of
online learning in higher education over the last two decades.

New storefronts did not revolutionize higher education: In the
future, MOOCs will occupy particular niches within a conservative,
complex higher education system. Their impact will be different in
computer science versus the humanities, in professional schools
versus colleges, in developed and developing countries, and for
those seeking their first degree versus the already-credentialed. If
storefronts are not the killer adaptation for MOOCs, what about
autograders? Which students can thrive in the self-paced online
learning environments that autograders enable, and which
disciplines are amenable to autograding?



The Diversity and Homogeneity of People and Courses on MOOC
Platforms

The second big bet of MOOC enthusiasts was that their low-cost and
online format would expand access to higher education to learners
around the world from diverse life circumstances. Indeed, all kinds of
people in nearly every country in the world have signed up for
MOOCs. The bulk of people who succeed in this kind of instructor-
guided, self-paced online learning, however, are typically already-
educated, affluent learners with strong self-regulated learning skills.
Autograded courses allow people to proceed at their own time and
pace, but the scale of the enterprise means that students need to
press on alone or find their own sources of academic support.

In 2013, the New York Times featured the story of Battushig
Myanganbayar, dubbed the Boy Genius of Ulan Bataar.
Myanganbayar was a high school student in Mongolia who earned a
perfect score on the first MITx MOOC about circuits and electronics
and who later was admitted to MIT. The core narrative of the article
was a boy on the periphery of civilization who suddenly, through the
generosity of MIT and the magic of the internet, had access to the
richest learning resources to be found in the core of the Ivory Tower.
The full story was somewhat more nuanced. The principal of the
boy’s school was the first MIT graduate from Mongolia, and the
principal arranged for a Stanford graduate student to spend several
months running labs in the high school’s physics class that would
complement the MITx MOOC. One interpretation of the story, then, is
that through MOOCs, MIT can reach students around the world;
another interpretation is that if MIT graduates go on to become
principals in every school, MIT can reach students around the world.
Causality is a tricky thing.27

MOOCs have some remarkable young students like
Myanganbayar, but most MOOC students are older, already have a
bachelor’s or advanced degree, and are embedded in the workforce.
Two very strong predictors of registering for and succeeding in a
MOOC are what social scientists call socioeconomic status
(measures of access to social and financial capital) and proficiency
with self-regulated learning strategies.



From the detailed data we have from HarvardX and MITx about
where learners live, we know that 80 percent of people who register
for these MOOCs come from the world’s most affluent countries.
Those who come from less developed countries tend to be among
the most well educated in those countries. An early Nature paper
titled “Online Education: MOOCs Taken by Educated Few” presented
data from Coursera courses showing that 80 percent of learners had
a bachelor’s degree and 44 percent had a master’s degree.
Subsequent studies of edX found similar participation patterns.
Within the United States, HarvardX and MITx students live in
neighborhoods that are approximately one-half standard deviation
more affluent than typical Americans. There are edX registrants from
every type of neighborhood, from the very poorest to the most
affluent, but the income distribution of HarvardX and MITx registrants
is higher than Americans as a whole. MOOCs open a door of
opportunity that anyone can walk through, but the majority of people
walking through that door are already well off, financially and
academically. Furthermore, once students enroll in a class, affluence
is a good predictor of who finishes. MOOC researchers have
identified a “global achievement gap” in which learners from the most
affluent countries earn certificates at substantially higher rates than
learners from the least developed countries, even adjusting for
individual education level and other factors.28

The handful of experiments in using MOOCs with underserved
populations of undergraduates in the United States have had
disappointing outcomes. In 2012, Udacity partnered with San Jose
State University to replace face-to-face remedial math courses with
MOOCs, and the results were disastrous, with student pass rates
substantially below those of residential counterparts. Seasoned
observers of higher education questioned whether automating
faculty labor through recorded video and autograded practice
problems could solve the complex challenges of the fundamentally
social enterprise of learning and education. In 2015, Arizona State
University partnered with edX to create the Global Freshman
Academy, a program where prospective students could take
introductory courses as MOOCs and pay to transfer the credit toward
an ASU degree. By the end of 2019, over 350,000 people had



signed up for one of the twenty MOOCs developed for the program,
but only 1,750 paid for college credit, and fewer than 150 students
pursued a degree at ASU. Overall, MOOCs have created new
opportunities for the already educated more than they have created
new pathways into higher education.29

Successful MOOC learners demonstrate effective use of self-
regulated learning strategies, such as goal setting, time
management, help seeking, self-monitoring, and so forth. Learners
who use these strategies persist longer and earn higher grades than
those who don’t, which is perhaps not surprising given the minimal
social interactions in most MOOCs. People develop self-regulated
learning strategies through direct instruction and practice, often
through a long apprenticeship in formal educational systems. If self-
paced MOOCs require self-regulated learning, and if self-regulated
learning is most commonly developed through formal education,
then this provides a learning science rationale for one of the key
observations about MOOCs: they are most likely to effectively serve
the already educated pursuing advanced postsecondary learning.30

The population of MOOC learners is also affected by the range of
MOOC offerings. In their early days, Coursera and edX emphasized
their interest in reproducing the full academic diversity of the modern
university. Harvard’s first offerings reflected this effort, including
Michael Sandel’s popular political philosophy class, JusticeX; David
Malan’s introductory computer science class, CS50X; and Gregory
Nagy’s course on classic literature, The Ancient Greek Hero in 24
Hours. When looked at closely, every MOOC had a different origin
story, a different approach, and a different goal.

In technical fields, however, autograders and assessments work
reasonably well to certify and credential learners, and in the
humanities, they don’t. We have not developed computer programs
that can provide meaningful feedback to a student’s essay on “What
does it mean to be human?” In part because of these limits, and in
part because of labor market returns on educational investment in
technical fields, the earliest degree programs created by edX,
Coursera, and Udacity have followed the contours of where
autograders are most useful by offering degrees in such courses as
computer science, data science, accounting, marketing, and



cybersecurity. In many respects, the modal MOOC in 2019 looks a
lot like Norvig and Thrun’s first effort in 2011: most MOOCs are
instructional sequences of short videos and autograded practice
problems that teach topics in quantitative and computational fields.
These kinds of courses may be valuable continuing education for
already-educated workers in the white-collar tech sector, but they
don’t offer the full array of entry points into higher education that are
available in community and state colleges.

These findings explain why the second big bet of MOOCs—that
they would dramatically expand access to higher education to new
populations—has not materialized. The majority of learners who sign
up for MOOCs already had access to and success with higher
education, and these advantages are compounded among those
who go on to complete MOOC courses and earn credentials. These
patterns have shaped the course offerings and strategies of MOOC
providers, who have increasingly targeted their offerings toward
those seeking postbaccalaureate professional degrees and
executive education certificates.31

The present circumstances do not portend an inescapable
destiny. The bulk of early MOOC research, news media, and
attention has focused on elite providers, in part because of their
enormous marketing power and cultural cachet, and in part because
the elite providers have the resources to hire folks like me to conduct
research full time about their endeavors. Research evidence is just
beginning to emerge from smaller, regionally focused MOOC
providers, and patterns of participation in that environment may be
quite different. For instance, a recent study comparing learners in the
Arab world taking HarvardX and MITx courses to learners enrolled
with the Jordanian MOOC provider Edraak shows that learners in
Edraak courses have better gender balance, include more people
with lower levels of education, and have higher completion rates
compared to their Arab counterparts on edX. A few specific features
of Edraak may explain this success: their courses have instructors
from Arab universities, are targeted to regional needs, and support
the right-to-left writing of the Arabic language. It may be that MOOCs
will be able to expand access to higher education if they are
designed and hosted by institutions that support broad access to



education as part of their core mission rather than by elite
universities. This likely requires that governments and philanthropists
make major investments in the public online offerings of colleges and
universities with a proven track record of expanding access to higher
education.



Terabytes of Data, Little New Insight

The servers of MOOC providers collect vast new sources of data
about learning behavior from students around the globe. Every time
a student submits a problem, clicks a new page, or starts or stops a
video, a server records a log of the action. Researchers can then
aggregate millions and millions of individual actions to study the
complex patterns of learners across the world.

The third big bet of MOOCs was that these new sources of data—
vaster, more global, and finer grained than almost anything ever
collected by education researchers—would lead to new insights
about how humans learn, both in general and online specifically.
Despite considerable effort over many years trying to make this bet
pay off, progress here has been disappointing.

Researchers have developed a variety of useful, policy-relevant
findings about the MOOC enterprise, but this information is largely
limited to descriptive evidence of MOOC learners, not how they
learn. We know how many learners register, what background levels
of education they have, what courses they take and complete, and
so forth. These data are useful for understanding who might benefit
from taking MOOCs, the value of MOOCs for postsecondary
professional education, and how MOOCs might perpetuate
inequality. But despite the efforts of a global network of researchers
studying MOOCs, very little has been discovered about learning in
MOOCs.32

I have jokingly summarized the bulk of MOOC learning research
as proving Reich’s Law: “People who do stuff do more stuff, and
people who do stuff do better than people who don’t do stuff.” One of
the earliest MOOC papers, by Jennifer Deboer and colleagues,
involved taking every measure of behavior and outcome that they
could think of (such as grades, number of problems answered, and
time spent watching video) and correlating each of those measures
in a giant matrix with every other measure in a MOOC. The central
finding was that almost all of the measures were correlated—people
who answered more problems were likely to watch more videos,
people who watched more videos got higher grades, and so forth.



That students who do more go on to learn more is not an insight
requiring millions of dollars of research investment.33

It turns out that one can have terabytes of data about what people
do online and very little understanding of what changes inside their
heads. Rather than building lots of courses and hoping that data-
driven insights appear downstream, a far more promising approach
is to invest in online courses that are designed from the beginning
not just for student learning but also for conducting research about
learning. The Open Learning Initiative (OLI), from Carnegie Mellon
University and Stanford, is one of the best examples of how we
might pursue such a path.

The OLI, which predates the halcyon years of MOOCs, was an
organization of researchers, instructors, and learning designers who
created a set of openly licensed online courses in introductory topics
like statistics and biology for use in traditional higher education
settings. The OLI team also sought to demonstrate a methodology
for course development that would advance research and student
learning simultaneously. Open Learning Initiative course
development was an iterative, multidisciplinary enterprise. The OLI
team brought together experts in assessment, instructional design,
course subject matter, and learning science. Collaboratively, the
team identified key concepts, developed assessment items, and
produced learning materials. Both assessment and learning
materials were tagged using the key concepts such that assessment
items could be connected with the relevant learning materials. As
learners participated in the course, researchers examined
assessment items to understand where students were performing
well and where they were struggling, and they refined the
instructional materials and assessments to continuously improve
those outcomes.34

The development model for OLI courses is quite different from the
development process for typical MOOCs, which are usually designed
by a single professor with the support of one or two instructional
technologists. Funding rarely supports upgrades to MOOCs once the
course is completed. As a result, most MOOCs have tended to be
transliterations of residential classes to online settings, with minimal



improvements to take advantage of online tools and only modest
improvements between runs of a course.

An OLI course costs at least an order of magnitude more to
develop than a typical MOOC, but research results from this
approach have been promising. Independent researchers used the
OLI statistics course in a rigorous experiment in which students at
six non-selective colleges were randomly assigned to take either a
typical introduction to statistics course taught in a typical manner—
in-person lectures, recitations, and so forth—or to take the online
OLI statistics course with optional weekly recitations with an
instructor. Students assigned to either condition did equally well on
the final exam, but students in the OLI course reported spending 18
percent less time on the course than their counterparts in the in-
person courses. For typical college students, the self-paced course
developed their initial statistics fluency as well as a traditional lecture
class, but required less time. Of the thousands of MOOCs that have
been developed, virtually none has a research base supporting its
effectiveness comparable to that of OLI.35



Tinkering with MOOCs in the Teaching Systems Lab

I have described a somewhat disappointing picture above—MOOCs
primarily serve already-educated students in professional programs
who already possess strong self-regulated learning skills, they have
been absorbed into existing higher education systems rather than
disrupting them, and we haven’t learned much about learning from
them.

Nonetheless, my colleagues and I in the MIT Teaching Systems
Lab labor away at tinkering with new approaches to MOOCs,
primarily about teacher and school leadership. In our field of K-12
professional education, the needs are vast; educators around the
country are disappointed with the professional development they are
offered, yet their success as teachers is intimately linked to the very
future of the nation. We are working to create a new generation of
open online learning that builds upon the successes and failures of
the past. We offer courses such as Launching Innovation in Schools,
Design Thinking for Leading and Learning, Envisioning the Graduate
of the Future, and Becoming a More Equitable Educator that provide
learners with the skills and inspiration to lead learning initiatives in
their local schools.36

Our designs attend to findings from MOOC research. Our entire
enterprise of serving teachers is premised on the research showing
that already-educated professionals are among the groups best
prepared for self-paced online learning. Since self-regulated learning
remains a challenge for many learners, we do, however, encourage
our participants to join “learning circles,” small groups of educators at
the same school taking the course together, and we provide
facilitator guides and other resources to try to make collaboration
easier. Since we know that most people who register for a course
drop out soon after enrollment, we start our courses with short
“capsule” units that summarize the most important ideas of the
course. Our assessment and research efforts are focused not on
course completion or clicks, but rather on whether our courses
actually change the behavior of our educators when they are back in
their classrooms. We follow our learners out in the field through
surveys and interviews to understand whether and how they apply



what they learn. We raise substantial funding to support
interdisciplinary teams of designers, education experts, software
developers, learning scientists, and evaluation researchers working
together to make courses that simultaneously advance practice and
research.

Our progress is mixed. As with many other MOOC developers,
our course enrollment numbers are far smaller than what was
common in the first years of the MOOC phenom; we have thousands
rather than tens of thousands of registrants and hundreds rather
than thousands of people who complete our courses. Like other
MOOC providers, we find that our most committed learners have
terrific learning experiences. Our learners report that our courses
make a substantial difference in their professional practice and
provide both the scaffolding and inspiration for them to successfully
launch reform initiatives in their local contexts and to share what they
have learned with colleagues. That’s the good news. The bad news
is that, heartbreakingly, inequalities continue to haunt us. While we
serve teachers from all kinds of schools, our learners are
disproportionately likely to come from independent or suburban
schools serving affluent students. Perhaps we aren’t offering the
right courses or marketing in the right way to recruit learners serving
the most vulnerable learners, or perhaps educators in well-resourced
schools simply have more time and professional development
support to take our courses. Social inequality is a tenacious feature
of educational systems.37



The Troubling Recent History of Instructor-Guided Learning
at Scale in K–12

Thus far in this chapter, I have focused on higher education and
lifelong learning because K–12 institutions have mostly avoided
instructor-guided, large-scale learning environments. My intuition is
that K–12 educators (and parents and school boards) recognize the
inherently social nature of learning as well as the limits of young
people’s self-regulated learning skills, so school systems rarely
adopt technology-based systems like MOOCs that try to entirely
bypass teacher-student relationships.

Where K–12 systems have adopted models that look like MOOCs,
the results have generally been disastrous, particularly for students
in poverty-impacted communities. Two places where self-paced
online learning have found their way into K–12 education have been
virtual schools and credit-recovery programs for students at risk of
failing to graduate. Full-time virtual schools offer an option for
students who cannot or choose not to attend traditional schools.
They have served a subset of learners reasonably well—the very ill,
the bullied, athletes, artists, and homeschooling families that want a
more structured curriculum. On average, however, learning results
from virtual schools are quite poor—often worse than the weakest
results from the most struggling traditional schools—and they are
least effective at serving learners most impacted by poverty. Online
credit recovery programs typically take students who have recently
failed in a traditional classroom and try to have them pass a course
independently online, and these also have a very poor track record.
The most effective self-paced online courses in K–12 are those
providing advanced learning experiences to successful secondary-
school students, such as those in rural areas where access to
advanced courses may be limited. For the oldest, most successful
students who have already developed the kind of self-regulated
learning skills that self-paced online learning requires, instructor-
guided online learning environments might be a valuable resource.
Overall, though, K–12 educators should use caution in putting
students, especially those who have struggled academically, in self-
paced online learning environments.38



Two more common models used in K–12 schools have been
adaptive tutoring programs, which I discuss at length in the next
chapter, and online platforms that have some opportunities for self-
paced learning but are intended as a learning resource within
classrooms with typical teacher-student ratios. Probably the most
well-known of these latter offerings is the Summit Learning Platform,
developed by a charter school network in northern California. Like a
MOOC, Summit Learning is an LMS with learning content for typical
middle and high school courses. Unlike MOOCs though, students
are not expected to progress entirely on their own. Students are
meant to spend part of their school day independently clicking
through lessons, but the system has a variety of checkpoints and
reports that are meant to encourage students to connect with their
teachers for coaching, small group lessons, projects, and so forth.
The platform has been used very successfully within the Summit
charter schools to foster more independent learning by students. As
Summit has exported the platform around the country, the results
have been more mixed, and research remains nascent and
inconclusive; some schools report that teachers and students are
very happy with the program, and some implementations have been
disasters, with family protests and student walkouts. My hunch is
that when schools with strong student-teacher relationships,
coaching, and mentorship use Summit Learning like a textbook, as
one resource among many, then it becomes an age-appropriate way
to start fostering independent learning. In schools where educators
use Summit Learning like a MOOC to be completed independently,
they generate an additional point of evidence that for learning to be
successful, most young people (and most adults, too) require robust
social supports from teachers and peers.39



The Future of MOOCs and Instructor-Guided Learning at Scale

My bumper-sticker summary of the MOOC enterprise is that
“MOOCs are good for helping people pursue a second or third
degree.” In the years ahead, I predict that MOOC efforts and
investment will be targeted at learners seeking a master’s degree or
a professional certificate, mostly in technical fields such as
computing or accounting. Rather than becoming on-ramps into
higher education for populations at the margins, MOOC providers
will create opportunities for learners who already have self-regulated
learning skills and stable financial situations to pursue additional
instructor-guided, self-paced online learning.

Another way to summarize the MOOC phenomenon is to return to
the construct of the iron triangle of cost, access, and quality. When
MOOC providers tried to lift the access barriers of cost by recording
lectures and replacing teachers with autograders and discussion
forums, their new systems enacted a new tacit barrier: the
requirement for MOOC learners to have preexisting, well-developed,
self-regulated learning skills. Since most people develop these skills
through an apprenticeship in formal education, the evidence to date
suggests that cost savings and quality learning will probably accrue
primarily to already-affluent, already-educated professional learners.
Most learners require support and human contact that are
unavailable in MOOCs, and provisioning that human support would
raise costs and erase the financial “benefit” of automating faculty
labor. The triangle is called “iron” for a reason.40

Other futures for MOOCs are certainly possible. For MOOCs to
fulfill the original mission of broadening access to higher education,
perhaps the best MOOC designers will be faculty not from elite
universities but from the public universities with the strongest track
records of advancing social mobility—the very best instructors for
Introduction to Biology might be at University of California, Irvine, or
in the City University of New York system rather than in the Ivy
League. Deep research insight and practitioner wisdom is also
available from institutions like the Open University that have been
offering distance education for decades. In 2013, Patrick McAndrew
and Eileen Scanlon published advice for the MOOC enterprise in



Science magazine that would still be worth heeding today: the
MOOCs that are most likely to substantially advance our
understanding of effective online learning will require interdisciplinary
teams tinkering over multiple years and committed to research and
continuous improvement.41 For MOOCs to serve populations beyond
the already educated, there will need to be substantial support for
the social elements of learning—coaching, advising, peer support,
and so forth. All of these efforts will require seeing MOOCs not as a
technological solution to a complex social problem, but as one
element of a comprehensive solution. A daunting challenge to be
sure, but one commensurate with the vast global hunger for access
to education.



 



2
ALGORITHM-GUIDED LEARNING AT SCALE

Adaptive Tutors and Computer-Assisted Instruction

ON EVERY CONTENT PAGE of an edX MOOC there are two buttons:
“Next” and “Previous.” The MOOC’s instructional-design staff
organizes course content into a linear sequence of pages, and every
learner—novice or expert, confused or confident—who clicks the
“Next” button will be moved to the following page in that sequence.
It’s one-size-fits-all learning at a massive scale. This chapter
examines an alternative to instructor pacing: large-scale learning
environments where the sequencing of content is determined by
algorithmic assignment rather than by instructor designation. In
algorithm-guided learning, the next action in a sequence is
determined by a student’s performance on a previous action rather
than by a preset pathway defined by instructors. The tools in this
genre go by many names; I’ll call them adaptive tutors or computer-
assisted instruction (CAI).

Earlier, I introduced Khan Academy, a free online resource with
instructional materials in many subjects. Khan Academy is best
known for its online explainer videos, but in K–12 schools, the
majority of student time using Khan Academy is spent on math
practice problems. Teachers assign (or students choose) a domain
for study, such as “evaluating expressions with one variable,” and
then students are presented with a series of problems. These
problems are instantly recognizable to anyone who has ever
completed a worksheet. A mathematical expression is in the center
of the screen, and below is an answer box for numerical answers
(some questions have multiple-choice answers or allow for marking
points on a Cartesian plane). There are links to video explainers and
hints for each problem, and then there is a “Check Answer” button.
When users get an answer right, there are pop-ups with stars, bings,



and firework animations. When users get an answer wrong, they can
try again, get hints, or move on. When students get problems right,
the system assigns harder problems from the same domain, and
when students get problems wrong, the system assigns easier
problems. When students get enough problems correct, the system
encourages students to move on to a new domain. Students who log
into a user profile can also be assigned practice problems from older
material to promote retention through retrieval practice, and teachers
who register their classes can track student performance.

Imagine you are a K–12 school principal, and parents, faculty, and
school board members are reading stories in Time, Wired, and
Forbes about how Khan Academy is poised to change the world.
Clayton Christensen has declared these new technologies to be a
“disruptive innovation,” a disjunction between an inferior past and a
better future. Adopting adaptive tutors across a grade, a department,
or an entire school would constitute a major initiative, requiring
investing in hardware, scheduling computer lab or laptop cart times,
selecting software, training teachers, communicating with parents
and family, and tinkering with many other elements in the complex
ecology of a school. As a principal, if you chose to invest your
energy in this initiative, the opportunity cost would be all of the other
initiatives that you chose not to take up.1 You’d also want to be
confident that introducing adaptive tutors would actually improve
learning outcomes, especially for the students who are struggling the
most. How do you decide whether implementing adaptive tutors is
the best possible bet for your students and community?

School leaders facing these kinds of decisions about technology-
based innovations should ask four sets of questions. The first order
of business is to understand the basics of how the technology works
as a learning tool: What is the pedagogical model? What are the
fundamental principles of the underlying technology? Some
educational technologists pushing their product may try to convince
you that their technology is new, complex, and hard to understand.
Demystifying the technology is the first step to understanding how it
may or may not work for your students in your school.

The second task is to investigate how similar technologies have
been integrated into schools elsewhere. Some of these questions



should be about nuts and bolts: How much do teachers and students
actually use the technology after it has been purchased? What kinds
of changes in schedule, curriculum, physical plant, and other school
elements must be adopted to make the new technology-mediated
practices work?

After understanding how the technology works and how it might
be integrated into schools, a third step is to investigate what the
accumulated research evidence says about which kinds of schools
and students are most likely to benefit from a new approach. Do
these tools benefit learners on average? How do impacts differ
between high- and low-achieving students, or between more-affluent
and less-affluent students? In MOOCs, answering these questions
was challenging because the research on large-scale, self-paced
online learning has been relatively sparse. By contrast, there are
dozens of high-quality studies that examine how adaptive tutors
affect learner outcomes in the K–12 context that can inform a
principal’s judgment.

These first three questions are about average effects: What do we
know about how the technology has been implemented across many
kinds of schools? The final task for the principal (or school board
member, or superintendent, or department head) is to consider all
this history and evidence in the light of one particular, idiosyncratic
school: yours. What are the unique features of your school, your
faculty, your students, your community that might abet or thwart
efforts to make a technology adoption of adaptive tutors a success?

If the evidence base for adaptive tutors suggested that they
substantially benefited all students in all subjects in all contexts, this
would be an easy question to answer (full speed ahead!).
Unfortunately, as I will describe below, the track record of algorithm-
guided technologies is not nearly so clear. Some evidence from
some contexts suggests that they can be moderately helpful in some
subjects, but many implementations of these technologies have
shown null or even negative effects. This unevenness comes from a
variety of sources. Schools are complex places, and factors like
technology availability or teachers’ willingness to adopt new
practices play a role in determining the efficacy of the initiative.
Furthermore, adaptive-tutoring technologies are well developed only



in a few subject areas, including math and early reading, so a push
toward adaptive learning can only benefit this limited subset of the
curriculum. And students from different backgrounds have different
experiences and outcomes with new technologies. All this complexity
and nuance means that for a principal to answer the most important
question—Will adaptive tutors help my students in my school?—the
best place to start is by investigating the origins of CAI and
understanding the pedagogy, technical underpinnings, and values of
this approach.



Computer-Based Instruction, Sixty Years in the Making

In most K–12 schools, the day is organized around class periods of
fixed length, and each class period is assigned to a single topic. On
a given day, a student will spend forty-seven minutes learning to
factor polynomials, whether the student needs 17 minutes or 107
minutes to learn the topic. For those seeking to maximize individual
student learning, the inefficiencies here are stark: some students
spend the majority of class bored and not learning anything new, and
others leave class without having mastered the requisite material
that will be necessary for learning in subsequent lessons.

One solution is to tutor every child so that all children receive the
amount and type of instruction best suited for their intellectual
development. In a now famous 1984 research paper, “The 2 Sigma
Problem,” Benjamin Bloom published results from two doctoral
dissertations comparing students who were randomly assigned to
learn in one of three conditions: a traditional classroom setting, a
one-on-one tutoring condition, or a third condition called “mastery
learning,” in which students received additional instruction and
practice on concepts that they struggled with. Bloom argued that the
students in the one-on-one tutoring condition performed two
standard deviations (2 sigma) better on a unit post-test than students
in the classroom condition. If a typical student in the classroom
condition would be at the fiftieth percentile, then a typical student in
the tutoring treatment would be at the ninety-eighth percentile. Thus,
Bloom and his colleagues used the full machinery of modern social
science to argue what medieval lords knew: that tutoring, while
expensive, worked quite well. Bloom’s article became a call to action
to design educational approaches that could achieve the kinds of
gains that could be achieved with one-on-one tutoring. One of
Bloom’s suggestions was to explore “whether particular computer
courses enable sizable proportions of students to attain the 2-sigma
achievement effect.”2

By the time Bloom published this suggestion in 1984, computer
scientists and researchers had been working on this challenge for
over two decades. Since the very first days of computer
technologies, computer scientists have sought to use computers as



individualized tutors for students. In 1968, R. C. Atkinson and H. A.
Wilson wrote in Science that “ten years ago the use of computers as
an instructional device was only an idea being considered by a
handful of scientists and educators. Today that idea has become a
reality.”3

Among the first computer-based teaching systems was the
Programmed Logic for Automatic Teaching Operations, or PLATO,
developed in 1960 at the University of Illinois Urbana-Champaign. In
1967, with the development of the TUTOR programming language,
PLATO formalized several innovations essential to the future of CAI,
including automated assessment and branching.4

Problems in TUTOR included a minimum of a question and a
correct answer, but the language also allowed for complex answer
banks and different feedback for right and wrong answers. In the
1969 guide to the language, one of the first examples presents a
student with a picture of the Mona Lisa and then asks the student to
name the artist. The correct answer, “Leonardo da Vinci,” produces
the response, “Your answer tells me that you are a true Renaissance
man.” The incomplete answer “Leonardo” produces the prompt, “The
complete name is Leonardo da Vinci.” A blank entry provokes a hint:
“HINT—MONA LISA—HINT.” Any of the correct answers drives
students to a subsequent unit in the lesson sequence, on the artist
Rubens, but the incorrect answer “Michelangelo” takes students to
MREVIEW, a review unit.

Here we see some of the crucial features of CAI. Lesson
sequences were organized around a series of instructional units that
both presented content and tested student recall or understanding.
Students were given different feedback based on their responses,
and the system was designed such that when students provided
incorrect answers, they could be given different learning experiences
to remediate different kinds of problems. These systems required
that curriculum authors manually sequence each problem and
learning experience, telling the computer how to address wrong
answers, what feedback to give, and which problems were easier or
harder.

In the five decades following the initial development of the TUTOR
programming language, there were two critical advances that



brought adaptive-tutoring systems to the forefront of education
reform debate and dialogue in the twenty-first century. The first
innovation was statistical. Starting in the 1970s, psychometricians
(statisticians who study educational testing) developed an approach
called item response theory to create a mathematical model of the
relative difficulty of a question, problem, or test item. These
quantitative representations of learning experiences paved the way
for computers to automatically generate testing and learning
sequences that could adapt to the performance of individual students
rather than having to manually program branches as in the TUTOR
example above. Nearly all contemporary adaptive-tutoring systems
use variations on this forty-year-old statistical toolkit.

The second innovation was rhetorical. In the late 2000s,
education reformers developed an interlocking pair of narratives
about “personalized learning” and “disruptive innovation” that
explained why and how Bloom’s vision of computerized tutors for
every child could be brought into reality. The most ambitious
blueprints to put personalized learning at the center of students’
school experience called for a dramatic reorganization of schooling
institutions. Students would spend less time in face-to-face, whole-
class instruction and more time working individually with adaptive
learning software. Teachers might spend more time coaching
individual students or working with small groups, and supervision of
students working on software could be done by paraprofessionals.
These models called for new schedules, new teaching roles, and
new learning spaces. Very few schools adopted these personalized
learning blueprints in any substantial way, and the predictions of
transformation based on the theory of disruptive innovation proved
incorrect, but these new rhetorical devices help explain why adaptive
tutors experienced a surge of interest in the 2000s.5



Technical Foundations for Algorithm-Guided Learning at
Scale: Item Response Theory

Few edtech evangelists of the twenty-first century can match Jose
Ferreira for bravado and exaggeration in describing new educational
technologies. Ferreira wanted educators and investors to believe
that algorithm-guided learning technologies were unfathomably
complicated. (Contrary to Ferreira’s assertions, the important
elements of nearly every education technology are, with a little bit of
study and research, comprehensible.)

Ferreira founded Knewton, a company that tried to offer “adaptive
learning as a service.” Most publishers and start-ups offering
adaptive learning have implemented their own algorithmic-based
systems in their own platforms. Knewton offered to do this technical
development for publishers. Publishers could generate textbooks
and assessment banks, and then Knewton would handle turning
those assessments into CAI systems.

Ferreira described his technology in magical terms: “We think of it
like a robot tutor in the sky that can semi-read your mind and figure
out what your strengths and weaknesses are, down to the
percentile.” The robot tutor in the sky was powered by data; Ferreira
claimed that Knewton collected 5 to 10 million data points per
student per day. “We literally have more data about our students
than any company has about anybody else about anything,” Ferreira
said. “And it’s not even close.”6

These claims, however, were nonsense. If you have ever sat in a
computer lab watching students—some engaged, some bored—click
or type their way through an adaptive tutor, you will have seen quite
clearly that students are not generating millions of useful data points
as they answer a few dozen problems.7 But Ferreira’s was a
particular kind of nonsense: an attempt to convince educators,
investors, and other education stakeholders that Knewton’s
technologies were a disjunctive break with the past, a new order
emerging. The truth was something much more mundane. While
Ferreira made claims of unprecedented scale and complexity in
Knewton promotional material, Knewton engineers were publishing
blog posts with titles like “Understanding Student Performance with



Item Response Theory.” In one post, engineers declared, “At
Knewton, we’ve found IRT models to be extremely helpful when
trying to understand our students’ abilities by examining their test
performance.” Lift up the hood of the magical robot tutor, and
underneath was a forty-year-old technology powering the whole
operation.8

In the 1970s, researchers at Education Testing Service developed
a statistical toolkit called item response theory (IRT) that would
eventually allow computer algorithms to generate customized
sequences of problems and learning experiences for individual
students. Item response theory was originally designed not for
adaptive tutors but to solve a basic problem in test design. When
testing large numbers of students, consumers of testing data
(admissions offices, employers, policymakers) would like to be able
to compare two students tested on the same material. Testing
companies, however, would prefer not to test all students on the
exact same material, since using identical test items and formats
with different students in different places and times opens the door to
cheating and malfeasance. Rather than giving students the exact
same test, therefore, test makers would prefer to give students
different tests that assess the same topics at the same level of
difficulty, allowing results to be compared fairly. Doing so requires a
model of the difficulty of each question on the tests. To understand
how these models work, we’ll need to do a bit of math (graphing
logistic curves, to be precise).9

In IRT, every test question or problem—in psychometric parlance,
an item—is modeled as an S-shaped curve called a logistic function.
These S-curves start at the origin (0,0) in a Cartesian plane, start
ascending slowly up and to the right, then ascend more quickly, and
then ascend more slowly as they approach an asymptote, making
them look like a stretched out “S.” Logistic curves always go up and
always follow these S-shaped patterns because of the way that they
are mathematically defined  for those inclined to
remember their algebra).

In these models, the x axis represents the ability of a student in a
particular domain (for example, recognizing Chinese characters or
multiplying single-digit numbers), and the y axis represents the



probability that a student at a given level of ability will get an item
correct. On an S-curve, values of y—probability of getting an answer
correct—are low at low levels of student ability (on the left side of the
x axis) and are high at high levels of student ability (on the right side
of the x axis). Psychometricians summarize the difficulty of any item
by describing the level of student ability where the S-curve crosses
the point where 50 percent of students are predicted to get the item
correct. When item developers make a new item, they have to guess
to set the initial parameters of these S-curve models (how quickly
they ascend up and down and how far to the right they stretch), but
then these models can be dynamically updated as they are piloted
and used in the field. If lots of students who are highly skilled in a
domain (as measured by other items) answer an item incorrectly,
then its difficulty can be revised upward.

Those are the basics of item response theory, and even if your
memory of logistics curves is a little fuzzy, your takeaway should be
that IRT does nothing more than create a mathematical model (an S-
curve) of the difficulty of an item. Test makers use these models to
make equivalently difficult versions of the same test. For developers
of computer-assisted instructional systems, IRT and its variants
make it possible for a computer program to assign an appropriate
item in a sequence based on the student’s answers to the previous
item (or a recent sequence of answers). Since computers have a
model of the difficulty of each item in an item bank, when learners
get an item right, the system can assign a slightly harder item, and
when learners get an item wrong, the system can assign an easier
item. Instead of humans manually creating branching instructional
activities, as with the early TUTOR programming language
examples, computers can algorithmically generate instructional
sequences and continuously improve them based on student
responses.10

These algorithm-guided large-scale learning technologies are
decades old. Knewton, then, was not a magical new technology;
rather, it offered one business innovation (adaptive learning as a
back-end service rather than a product feature) on top of a very well-
established set of learning technologies. My hope is that seeing the
basic functioning and long history of a complex technology like



adaptive tutors will help education stakeholders understand that new
technologies are both comprehensible and historically rooted. If we
can situate a new technology in its history, we can make predictions
about how that new technology will function when integrated into the
complex ecology of schools.

In education technology, extreme claims are usually the sign of a
charlatan rather than an impending breakthrough. Knewton failed.
Ferreira left Knewton in 2016, and soon after, the company hired a
former publishing executive as its CEO and pivoted to publishing its
own textbooks with adaptive practice problems. In 2019, the
company was sold to publisher Wiley in a fire sale. Like Udacity,
which became a provider of technical certificate programs, and
Coursera, which became an online program manager, Knewton
began with dramatic claims about transforming teaching and
learning, raised vast venture funds, and within a few years pursued
well-trodden pathways to financial sustainability that fit easily into
existing educational systems.11

Even if Knewton wasn’t effective as a provider of learning
experiences, it was for a time extremely effective in deploying
narratives about change to raise incredible sums of venture capital
funding (a process that technology commentator Maciej Cegłowski
calls “investor storytime”). These narratives about how technology
can transform archaic, traditional educational systems were central
to the surge of venture and philanthropic investments in adaptive
tutors in the first two decades of the twenty-first century.12



Rhetoric of Transformation: Personalized Learning and
Disruptive Innovation

In 2010, references to “personalized learning” began appearing at
education conferences and in trade magazines. Computers had
been in schools in various forms for decades by this point, but
suddenly, the narrative of personalized learning was everywhere. For
CAI enthusiasts, personalization meant that each child would be able
to spend part or all of her day proceeding through technology-
mediated learning experiences at her own pace. Students would sit
at computer terminals using software that algorithmically optimized
student pathways through a set of standardized curriculum material.
Teachers would be available for coaching and small group
instruction, particularly when software flagged individual students or
groups as requiring additional supports.13

One challenge that the CAI enthusiasts had in advancing their
vision was that it was fairly easy to characterize extreme versions of
the model as dystopian: children wearing headphones sitting in
cubicles staring at screens all day long. So CAI advocates
sometimes argued that CAI approaches could save classroom time
for more project-based learning. In the early years of Khan Academy,
Salman Khan suggested that mathematics education could be
transformed in a series of steps: (1) schools would adopt Khan
Academy’s free math resources; (2) each student could then pursue
a personalized mathematics learning trajectory that allowed him or
her to proceed at his or her own pace; and (3) with all the classroom
time saved through personalized CAI, collaborative activities in math
could focus on rich, real-world, project-based learning exercises. The
idea was that if students learned the facts and basics of mathematics
faster with technology, then they would have more time to do
interesting projects and team-based work. As Khan said in 2019, “If
Khan Academy can start taking on some of the foundational practice
and instruction, it should hopefully liberate the teachers and class
time to do more higher-order tasks.”14

This argument has deep roots among CAI advocates; historian
Audrey Watters found a variation of this argument made in 1959 by
Simon Ramo, who like Khan was a businessman (vice president of



the firm that developed the intercontinental ballistic missile) turned
education technology advocate. As Ramo wrote in “A New
Technique in Education,” his 1959 CAI manifesto, “The whole
objective of everything that I will describe is to raise the teacher to a
higher level in his contribution to the teaching process and to remove
from his duties the kind of effort which does not use the teacher’s
skill to the fullest.”15 Thus, the rhetoric of personalized learning made
two grand claims: that adaptive tutors would be more efficient at
teaching students mastery of key concepts and that this efficiency
would enable teachers to carry out rich project-based instruction.

If personalized learning provided the vision for what schools could
look like, the theory of disruptive innovation provided a blueprint for
how technology innovations would inevitably lead to school change.
In 2008, Clayton Christensen, Curtis Johnson, and Michael Horn
published a book called Disrupting Class that argued that online
education and CAI represented a new kind of disruptive innovation in
education. The theory of disruptive innovation argues that,
periodically, innovations come along that may be low quality in some
dimensions but offer low cost and novel features. The Sony
Walkman’s sound quality was much worse than contemporary hi-fi
systems, but it was relatively cheap and you could walk around with
it; it appealed particularly to “non-consumers,” people who were
unlikely to buy expensive hi-fi systems, like those of us who were
teens and tweens in the 1980s. Christensen and colleagues argued
that online education was one such disruptive innovation that would
eventually revolutionize education in the same way that the Walkman
or iTunes revolutionized music and media.16

In Disrupting Class, the authors made three predictions about how
online learning would reshape K–12 education. They predicted that
by 2019, half of all secondary courses would be mostly or entirely
online, that the cost of providing these courses would be about a
third the cost of traditional classes, and that the quality of these
online courses would be higher. Disruption, the theorists argued,
often catches established stakeholders unaware, because early in
their existence, disruptive innovations are obviously deficient in
certain dimensions—like sound quality in a Walkman or the quality of
the learning experience in online schools. But disruptive innovations



are supposed to improve rapidly in both established dimensions and
novel ones, so Christensen and colleagues argued that as online
learning was rapidly adopted, it would quickly prove superior to
existing educational models.

Christensen and colleagues argued that these disruptive
processes could be predicted with precision. They claimed that
adoption of disruptive innovations historically followed an S-shaped
logistic curve, and a feature of logistic curves is that when plotted
against log-transformed x and y axes, the S-curve becomes a linear
straight line. If early adoption patterns followed this log-transformed
linear model precisely—and the Disrupting Class authors argued that
data on online course adoption showed that it did—then a new
technology could be definitively identified as disruptive, and the
timing of its adoption could be predicted with some precision. Their
models showed that the adaptive online learning curve would pass
the midpoint of adoption by 2019, at which point, 50 percent of all
secondary school courses in the United States would be conducted
through customized, personalized online software. In this model of
disruption, schools could choose to be early adopters or late
adopters, but progress and change were inevitable.



Personalized Learning: An Unrequited Disruption

Theories of personalized learning and disruptive innovation offer
models of how schools might be dramatically transformed by
algorithm-guided learning technologies—though one is challenged to
find any school in which this grand vision of transformation actually
occurred. It was something of a Rube Goldberg plan; to get better
and deeper project-based learning, schools should buy computers,
buy CAI software, train teachers on their use, reallocate time to
individualized computer-based instruction, and then, when all of that
was working, use additional time for projects. Schools are complex
places, and they are not typically successful at implementing
multipart schemes to improve learning. It is not surprising, then, that
CAI did not remake education in the way predicted by true CAI
enthusiasts.

Furthermore, the theory of disruptive innovation, the guiding force
behind the bold predictions in Disrupting Class, has come under
substantial critique. In 2014, Harvard historian Jill Lepore presented
one of the most damning appraisals of the theory. In a piece
published in the New Yorker, Lepore argued that the theory was
based on idiosyncratically selected case studies of individual
industries and circumstances, weak foundations on which to build
new theories. Disruption theory evangelists disregard case studies
showing contrary examples, and theorists observe disruption in
hindsight but struggle to accurately use the theory to predict future
changes (an unfortunate quality for a business management theory).
Lepore showed that many of the companies presented as laggardly
dinosaurs in Christensen’s original tome, The Innovator’s Dilemma,
are happily dominating their industries decades later. Both Lepore
and Audrey Watters have observed that disruption theory appears to
draw as much on millenarian narratives of struggle and redemption
as it does from empirical evidence: the death of old worlds trapped in
old ways, reformed and reborn by the revelation of new
technologies.17

In the field of online learning, there is no evidence that the core
predictions from Disrupting Class have come to pass by 2020. The
data on online course enrollment by secondary school students are



incomplete, but no data suggest that secondary schools are even
close to provisioning 50 percent of their courses through adaptive
online offerings. In 2018, there were about 57 million children in US
pre-K–12 schools (40 million in pre-K–8, and 17 million in high
school), and only 430,000 students enrolled in fully online or blended
schools—about 0.75 percent. No evidence suggests that traditional
US high schools have made substantial adoptions of online or
blended offerings that would allow 50 percent of all courses to be
taken in online or blended forms.

Nor is there evidence that online education has become one-third
less expensive to provision than traditional education. In my home
state of Massachusetts, I sat for six years on the state’s Digital
Learning Advisory Council to provide policy guidance on the state’s
two K–12 virtual schools. In 2010, the state required school districts
to pay a tuition of $6,700 for each student who chose to attend one
of these virtual schools, which was about two-thirds of the state’s
formula for per-pupil expenditures ($10,774). In 2018, the two virtual
schools requested a funding increase, and the state set the new
funding at $8,265, which was the state formula less estimated costs
for operating buildings. Rather than reducing costs as virtual schools
in Massachusetts expanded enrollment, virtual school leaders
argued that virtual schooling should cost about the same as
traditional education. Limited research exists in other states, but it
does not appear that good virtual schooling can be provisioned for
one-third the cost of traditional schooling. And as was noted at the
end of Chapter 1 on instructor-paced learning at scale, learning
outcomes for fully online schools are generally dismal. As we shall
see in the rest of this chapter, the evidence on adaptive tutors
implemented within K–12 schools is complex and somewhat more
promising, but mainly in certain areas of mathematics instruction.18



Adaptive Tutors in K–12 Schools: Mathematics and Early
Reading

Grand visions of disruption and transformation did not come to pass,
but adaptive tutors have found two more modest niches in K–12
schools: providing supplemental practice for mathematics and for
early reading. A confluence of factors is responsible for the limited
role of adaptive tutors in schools, including the costs of computing
infrastructure and mixed evidence of efficacy. Probably the most
important limit, however, is technological. For adaptive tutors to
assign a sequence of problems and learning resources to students,
the system has to measure the performance of students regularly
and automatically. The core technology of adaptive tutors is an IRT-
powered assignment algorithm paired with an autograder. As we
observed in Chapter 1 on MOOCs and will explore further in Chapter
7 on assessment technologies, the state of the art in autograders is
quite limited. Autograders work reasonably well in mathematics,
where quantitative answers can be computationally evaluated. In a
few domains of early reading, they can be useful as well—testing
students’ ability to match sounds with letters (phonics), identifying
basic vocabulary, or doing simple translations when learning a
foreign language. Reading instructors sometimes discuss a
transition, which happens in about the third grade, from learning to
read—learning how to decode the sounds and meaning of text—to
reading to learn—using reading to advance content knowledge.
Generally speaking, the autograders of adaptive tutors have some
applications in learning to read, but very limited applications in
reading to learn. When educators need to evaluate whether students
can reason based on the evidence provided in a text, autograders
typically cannot effectively evaluate the quality of student reasoning.

These two subject domains of mathematics and early reading also
overlap with a substantial portion of the standardized testing
infrastructure in the United States. As high-stakes testing has spread
throughout the United States since the 1990s, educational publishers
have invested more in developing resources for tested subjects than
non-tested subjects. The reasoning goes something like this:
because schools are more likely to purchase products and services



related to tested subjects like reading and math, and because
autograding technologies work best in reading and math, publishers
have generally focused on creating adaptive tutors in reading and
math. (As we shall see in Chapter 7 on assessments, this alignment
is not coincidental but instead part of a powerful feedback loop;
standardized test developers have access to the same autograding
technology as educational publishers, so our testing infrastructure
evaluates domains like reading and math where autograders work
best; then schools emphasize those subjects, publishers create
products for those subjects, policymakers evaluate schools on those
subjects, and the system becomes mutually reinforcing.)



Do Adaptive Tutors Improve Student Learning?

Adaptive learning tools for reading and mathematics have been
researched extensively over the last thirty years, and the results are
mixed at best. Two groups of researchers have conducted most of
this research. The first group are the computer scientists, learning
scientists, and CAI researchers who developed these systems. A
second group are economists of education, who are typically
interested in the return on investment for different educational
interventions. The interest of CAI researchers is obvious: they want
to know if their innovations improve student learning. To the credit of
the CAI community, many CAI products have been regularly
scrutinized through studies in which the CAI software companies
help with implementation of the software and teacher training, but
independent third-party organizations conduct the research
evaluation. An easy way to tell if an edtech developer is serious
about improving learning and not just hoping to extract dollars from
the education system is to see how they participate in research
studies with a real chance of showing that their products do not
work. Economists of education are often interested in innovations
that have the potential to substantially change educational practice
at large scales, and they are interested in labor issues; computers
that can do some of the work of teachers tick both boxes.

Over the past thirty years, there have been hundreds of studies
about adaptive tutors in K–12 schools, allowing researchers to
conduct meta-analyses (research studies that investigate trends
across multiple studies). Through the early 2010s, the general
consensus of economists and other education policy experts was
that CAI should not be considered a reliable approach for improving
student learning in math or reading. This conclusion was based on
evidence from numerous large-scale randomized controlled field
trials conducted in the 1990s and early 2000s; such trials are the
best research methods we have to determine whether or not a
pedagogical approach improves learning in typical school settings
(as opposed to in research labs or special cases). Some of these
studies showed a positive effect, some a null effect (no impact), and
some a negative effect. The meta-analyses of these field trials



suggest that on average, adaptive reading tutors do not lead to
better reading test scores than traditional instruction. Meta-analytic
findings about math CAI approaches have been more mixed; some
meta-analyses found average null results and others found modestly
positive effects for math CAI. In one meta-analysis, researchers
argued that adaptive math tutors overall had a small positive effect
on students but that they benefited students from the general
population more than low-achieving math students. They warned
that “computerized learning might contribute to the achievement gap
between students with different achievement levels and aptitudes.”
This study provides some evidence of the edtech Matthew effect that
will be discussed in Chapter 6.19

Even within studies that show an average effect of zero, there can
still be considerable variation in how adaptive tutors effect change in
individual schools or classrooms. An average effect of zero can
happen when nobody’s learning changes, or it can happen when
some students experience large positive effects and some
experience large negative effects, which cancel each other out. In
his doctoral research, Eric Taylor, now on the faculty at the Harvard
Graduate School of Education, articulated a version of this
argument. He observed in a meta-analysis that the average learning
gains of classrooms using CAI and classrooms not using CAI were
about the same. But among teachers using CAI, the variance of
learning gains from teacher to teacher was lower than the variance
among teachers not using CAI. Put another way, the difference in
learning outcomes from classroom to classroom for teachers not
using CAI is rather large: some classes do very well, some very
poorly. When teachers use CAI, the difference between the classes
that do well and the classes that do poorly is smaller. Why should
this be?20

Nearly all CAI implementations follow some kind of blended
model, where human educators teach class for part of the time
(usually a few days a week), and students work individually with
computers during the other part of the time. In contrast, the
traditional model of math instruction involves teacher-led whole-
group instruction followed by individual practice problems without
feedback. Taylor argued that for the weakest teachers in the system,



replacing one or two days a week of their instruction with individual
time on computers improved outcomes for students—that time on
computers was a boon for students who had the weakest teachers.
By contrast, for the strongest teachers in the system, replacing part
of their instruction led to worse outcomes; for their students, the time
on computers took away from valuable time with a proficient
instructor. This one study shouldn’t be considered dispositive, but it
provides an intriguing hypothesis for the effects of CAI on instruction
and some real puzzles for implementation, which we’ll come to soon.



Two Recent Studies of Adaptive Math Tutors with Positive
Results

Two of the largest experimental field trials of adaptive tutors,
Cognitive Tutor and ASSISTments, have occurred since the meta-
analyses of the early 2010s, and these two studies showed much
better outcomes for student learning than would have been predicted
based on the history of CAI in schools. Both studies were conducted
by reputable third-party researchers funded by the federal
government, and they showed substantial positive effects for CAI in
math classrooms.

In 2014, the RAND corporation released a study investigating the
use of Carnegie Learning’s Cognitive Tutor: Algebra in seventy-three
high schools and seventy-four middle schools in seven US states.
Cognitive Tutor emerged from three decades of research at
Carnegie Mellon University, and it is among the most widely adopted
CAI systems and among the most closely researched. In the RAND
study, a large number of schools agreed to adopt Cognitive Tutor:
Algebra, and then half of those schools were randomly assigned to
get the CAI software and professional development support; the
other half continued with business as usual. Carnegie Learning
encourages teachers to spend three days a week doing regular
whole-class instruction in which the pace of the class roughly
matches the pace of a typical algebra class. Then, two days a week,
students use the Cognitive Tutor: Algebra program for individualized
practice; in these sessions, students are supposed to work through
the material at their own pace. Thus, in a five-day week, students
receive both in-person, group instruction and supplemental
personalized computer practice provided by intelligent tutors.21

John Pane lead the RAND team evaluating test score data from
the experiment. He and his colleagues found no effect of CAI in the
first year of implementation in a new school, which they characterize
as an “innovator’s dip.” They argued that it takes schools about a
year to figure out how to productively integrate new tools into their
math teaching routines. In the second year, they saw positive,
statistically significant improvements in learning outcomes among



ninth graders using the program (they saw more modest, positive,
not statistically significant effects among eighth graders).

Describing learning gains in education research is a tricky
business, and the shorthand references that researchers and
policymakers use can often be confusing. The most common
measure of an intervention’s effect on learning is called the effect
size, which is the average change in assessed outcomes in standard
deviation units. Using a standard deviation unit allows comparisons
across different interventions with different tests, different scales,
and so forth. In the RAND study of Cognitive Tutor: Algebra, in the
control condition without any CAI technology, the average student
gain between pre- and post-tests after a year of learning was about
0.2 standard deviations. In the experimental condition, researchers
found a 0.2 effect size in the second year of the study, meaning that
on average, those students experienced a 0.4 standard deviation
gain from pre-test to post-test. We could think of the 0.2 standard
deviation growth in the control group as the baseline amount of
learning that typically occurs in an algebra classroom, so getting an
additional effect size of 0.2 standard deviations of test score gains
from CAI meant that students in the treatment group were seeing
twice as much learning gains as a typical student. (Another way to
frame the magnitude of the effect is that students in the fiftieth
percentile in the control group would be, on average, in the fifty-
eighth percentile if assigned to the treatment group.)

As may be apparent from the previous paragraph, effect sizes and
standard deviations are difficult to parse, so researchers have tried
using months or years of learning as a measure—taking a standard
measure of average learning gains and translating that to one year,
or nine months, of learning; in the case of the RAND study, 0.2
standard deviation represents a “year of learning.” Since an
additional effect size of 0.2 standard deviation, then, represents an
“additional year of learning,” the Carnegie Learning website claimed
that Cognitive Tutor: Algebra doubled students’ learning. One
important clarification is that no one is claiming that students learned
two years of material in one year. Rather, students showed
performance gains in Algebra I post-tests as if they had studied for
eighteen months in a traditional control setting instead of nine



months, assuming a consistent rate of learning per month. Students
assigned to Cognitive Tutors learned the Algebra I curriculum twice
as well, as measured by standardized tests, as typical students, but
they did not learn Algebra I and an additional year of math.22

These average effect sizes mask the great variation in
effectiveness across schools. In some middle schools, students
assigned to use Cognitive Tutor saw gains even greater than the 0.2
standard deviation average, and some saw gains that were much
smaller. After the RAND study, Carnegie Learning researchers
looked more deeply into the data to try to explain this variation, and
they found that learning outcomes were better in schools where
teachers most fully allowed students to proceed on practice
problems at their own pace, even if that meant that sometimes,
different students were working on problems from very different
places in the curriculum.

In experimental studies, one concept that researchers study is
“fidelity”: do teachers actually use the pedagogical innovation in the
intended ways? One of the core intentions of Cognitive Tutor is that
while using the software, students should advance only as they
demonstrate mastery so that students don’t miss foundational ideas
early on. This means that students should be working on different
lessons at different times. Since Cognitive Tutor logs student activity,
researchers can tell whether students in the same class are mostly
working in lockstep or whether teachers are actually letting students
work on a topic until they achieve mastery. In a 2016 follow up to the
RAND study, Steve Ritter from Carnegie Learning presented
evidence that how teachers used Carnegie Learning mattered a
great deal for student learning outcomes. Ritter’s research team
looked at how much adaptive mastery learning teachers actually
allowed in their classes, and they found that some teachers assigned
work in Carnegie Learning in such a way that it wasn’t really
personalized—these teachers required students to work on problem
sets related to the topics being taught at that moment to the whole
class. By contrast, other teachers allowed students to work at their
own pace, even if this meant that some students were still doing
practice problems on topics that might have been covered in class
weeks earlier. Ritter’s team found that overall learning gains were



higher in the classes where students were allowed more
opportunities to move at their own pace; in other words, the teachers
who used Carnegie Learning as intended had more learning gains in
their classrooms than did the teachers who kept their students
moving in lockstep. That suggests that more professional
development and coaching for teachers implementing Cognitive
Tutors might be able to improve outcomes further if all teachers
could be convinced to let students work on practice problems at their
own pace.23

In 2016, the contract research group SRI International evaluated a
major field trial of a similar CAI system called ASSISTments.
ASSISTments was created by Neil and Cristina Heffernan, both
former middle school math teachers. Neil did his dissertation at
Carnegie Mellon with Ken Koedinger, who was instrumental in the
development of Cognitive Tutor. The Heffernans took ASSISTments
in a slightly different direction than Cognitive Tutors. Cognitive Tutor:
Algebra was designed to replace part of routine class activity;
students would spend three days a week on in-person group
instruction and two days a week on computers using Cognitive Tutor:
Algebra. ASSISTments, by contrast, is mostly a homework helper:
students do teacher-assigned homework problems at night, get
immediate feedback about whether they are right or wrong, and have
the option to do some additional “skill-builders” that incorporate
some adaptive elements of CAI.24

The program was rolled out in middle schools across Maine,
where a statewide laptop initiative ensured universal access for
middle school students. Teachers received professional development
from the ASSISTments team for using the freely accessible
ASSISTments system. The research team estimated that students
would use ASSISTments three or four nights a week for about ten
minutes a night, although data later showed that students used
ASSISTments somewhat less than that. Most student work was
probably on non-adaptive teacher-assigned homework problems
rather than the skill practice, so the intervention probably wasn’t
really testing adaptive learning environments—for the most part, kids
were doing the same textbook problems they would have been
doing, except the problems were online. The main levers of learning



were probably two-fold: students got immediate feedback on
problems in the evening, and teachers got a simple report each
morning that showed which problems students struggled with,
allowing them to tailor their morning homework review in class to the
most challenging problems and issues.

Like the RAND / Cognitive Tutor study, the SRI team found that
students in the treatment condition assigned to use ASSISTments
learned more on average and did about 0.2 standard deviations
better on pre- and post-test gains, which was about 75 percent more
than the control group. They also found that most of the gains were
among low-achieving math learners, so the intervention played a role
in closing achievement gaps.

In comparing the ASSISTments study with the Cognitive Tutor:
Algebra study, one difference that leaps out is how much simpler
ASSISTments is. Cognitive Tutor: Algebra is a full CAI adaptive
learning solution, while ASSISTments is more of an online
homework helper. Cognitive Tutor: Algebra requires major changes
in classroom practice, which reduces teacher contact time with
students, increases in-classroom computer usage, and creates the
opportunity for individual pacing. By contrast, as used in the Maine
study, ASSISTments just lets kids see the answers to their problems
and lets their teachers get more information about how students are
doing. Cognitive Tutor rearranges math teaching; ASSISTments
gains some efficiencies in homework and review. In the two
experimental studies, the effects of both interventions were about the
same. This suggests that all the complex machinery of the full CAI
system may be unnecessary, and a lightweight online homework
helper could perhaps be just as good as a complex adaptive tutor.

For policymakers or school leaders trying to decide what role
computers should play in teaching mathematics, these two recent
studies can help advance our understanding of the value of CAI.
New studies do not replace previous studies; rather, they help
stakeholders in math and computer-assisted education regularly
update our understanding of the state of the art. One view of this
research is that two large, well-conducted, randomized field
experiments should revise our consensus to have a more positive
outlook on intelligent tutors in math. This pair of experiments with



Cognitive Tutor: Algebra and ASSISTments suggests that
researchers, developers, and educators have developed an
understanding of computer-assisted instruction that allows teachers
using this software to consistently get moderate learning gains from
incorporating these tools. If this were the case, we should expect
future studies and implementations to show similar gains from CAI
systems, perhaps even with modest improvements over time as
developers continuously improve these systems. In this view, even
though the older consensus was that CAI systems in math did not
significantly improve learning, these new studies suggest that the
field is maturing.

A more cautious view would be that over the last three decades,
there have always been occasional studies that show positive
results, but these are regularly “balanced out” by other studies that
showed negative or null results. For instance, in early 2019,
Teachers College at Columbia University released results from a
study of Teach to One, another computer adaptive learning system
developed originally in the New York City Public Schools. While not a
randomized field trial, this study showed that schools adopting Teach
to One did not improve on state test scores. No single research
study perfectly captures the “true effect” of an education approach,
as our measures are always affected by errors in measurement,
sampling variation, and other exigencies of research. Perhaps in the
Carnegie Learning and ASSISTments studies, these errors nudged
the results in the positive direction; it could be that the next two big
CAI assessments will have negative effects, and the two after that
will be null, and as a field, we will realize that the evaluation that
economists had in the mid-2010s probably holds into the future.25

My own view is that these recent positive results represent a
maturing of the field, and in the future, we should expect these kinds
of consistent, replicable gains for adaptive tutors in math. That said, I
am constantly trying to look at new studies and new evidence, and I
try to revise my thinking as more studies come out. I hope that the
case study above of adaptive tutors provides a model for how people
interested in education technology can steadily revise their thinking
on a topic—looking for meta-analyses or studies that provide a



consensus view of a field, and then gradually updating their thinking
as new studies emerge.



So What Should a Department Head Do? Synthesizing Research
in Computer-Assisted Instruction

Let’s put ourselves back in the shoes of a K–12 principal considering
whether it’s worth pursuing adaptive tutors as a way to improve
student performance in a school. We understand a bit more about
how these tools work; they are not magical robot tutors in the sky,
but rather are software programs with a long history of designers and
researchers tinkering toward incremental improvement. They have
not found a wide purchase in the K–12 curriculum, but they have
been used in early elementary reading and throughout the math
curriculum. On average, studies of adaptive tutors in early reading
have not shown positive impacts on learning. A school looking to be
on the cutting edge of innovation might be willing to try some newly
developed approach, but elementary schools looking for reforms with
a strong track record of research should probably turn to other
approaches to support early reading.

In a sense, then, the decision to explore adaptive tutors in K–12
schools probably belongs primarily to the math department head, as
math is the only domain where adaptive tutors have consistently
shown some evidence of efficacy, especially in a few recent studies.
In the ideal world, a math department head looking to improve
teaching and learning in her district would take all of these studies
and perspectives into account before identifying whether CAI would
be a good fit for her math teachers, and if so, what specific products
might work well. Randomized control trials are good tools for figuring
out if interventions work on average. But no school district is
average; every context is unique. If schools have already made big
investments in technology, as the middle schools in Maine did with
their laptop program, then the costs to schools of implementing CAI
are much lower than the costs of buying new machines just for math.
If math teachers in a district are generally quite strong, then Eric
Taylor’s research suggests that adaptive tutors might not be the best
tool for getting further improvements, or maybe that a
complementary system like ASSISTments would be more promising
than a supplementary system like Carnegie Learning. By contrast, in
a system where math teachers are generally not as strong—maybe



a district with frequent teacher turnover and many new teachers—
computer-assisted instruction may be a more compelling path
forward.

Some schools may have teachers of varying quality but with a
high willingness to try new approaches. A school district with math
teachers willing to dive into a new program may have better results
with Carnegie Learning than a district with teachers who aren’t as
willing to change their teaching practices. Steve Ritter’s research
suggests that Carnegie Learning works best with teachers who are
most willing to let the tutors personalize student practice on the days
devoted to computer-based instruction.

One of the wonderful and challenging things about schools is that
they can always be improved; teaching and learning are so
immensely complex that there is always room for tinkering and
improvement. There is no evidence that computer-based instruction
regularly outperforms traditional instruction or that CAI leads to
dramatic transformation of math learning. The best way to
understand CAI is as one possible tool among many for improving
mathematics education. There are other options too, of course:
investment in human tutors to provide more support for the students
struggling the most; professional development for teachers in rich
mathematical discourse or a deeper understanding of fundamental
math content; new software that facilitates new kinds of visualization
in mathematics, like Geometer’s Sketchped or the Desmos graphing
calculator. For some schools, CAI might be the right tool to improve
math instruction, and in other schools, one of these other
approaches might be a better fit, based on the strengths,
weaknesses, and interests of the teachers in a given school or
district.

This argument about the utility of intelligent tutors should feel
familiar, as it is structurally similar to the case made in the previous
chapter in regard to MOOCs. Both technologies are useful but not
transformative. They have particular niches in which they appear to
work well (math education for CAI, professional education for
MOOCs) and other niches in which evidence suggests that they are
much less useful (reading education for CAI, remedial or entry-level
higher education for MOOCs). Both technologies raise serious



concerns about issues of inequality, though some studies of adaptive
tutors suggest ways that they might benefit struggling students.
Instead of transforming educational systems, they are best
understood as technologies that can offer limited but meaningful
value in particular parts of our existing education systems. With
ongoing research and tinkering, I suspect that technologies and
implementation models for adaptive tutors will continue to
incrementally improve, and perhaps over time, the weight of
evidence will shift to support more widespread adoption and
implementation. Technology evangelists who claim that a new
generation of adaptive tutors can reshape the arc of human
development should be treated with suspicion.



 



3
PEER-GUIDED LEARNING AT SCALE

Networked Learning Communities

WHEN THE rhetoric of “personalized learning” seized the education
world starting in 2010, I was struck by the diverse constituencies
advocating for technology-mediated personalization. The enthusiasm
for personalized learning cut across many of the typical partisan
divides in the politics of education reform. From pedagogical
progressives to free-market reformers, people who agreed about
nothing else—charter schools, unions, school boards, direct
instruction, national standards—agreed that personalization was (1)
going to be enabled by technology and (2) going to improve student
learning.

The consensus about the great potential of personalized learning
depended on a stark disagreement about what the term actually
meant.1 For the advocates of adaptive tutors and blended learning
whom we met in Chapter 2, personalization meant that each
individual child would be able to spend part or all of her day
proceeding through technology-mediated learning experiences at her
own pace. For other educators, it wasn’t the pace that should be
personalized; it was the content and learning experience. For these
educators—usually aligned with John Dewey’s vision of
apprenticeship models of education—personalization meant that
students would be able to leverage online networks to explore their
own interests. Students would identify passions, join online learning
communities, study topics of their choosing, and create
performances and artifacts of their learning that could be shared
online. Learning in schools would look more like the experience of
the Rainbow Loomers whom we met in the Introduction.

These twin visions of personalization—personalization as
algorithmically optimizing a student’s pathway through established,



traditional curriculum and personalization as students choosing
topics for study and communities for participation—are not only very
different, they are in some sense irreconcilable. It is only possible for
adaptive tutors to algorithmically optimize student pathways through
content if educators define all of that content in advance and limit
assessment to those domains in which computational assessment is
tractable. If learners are to be empowered to choose their own topics
of study and demonstrate their understanding through different kinds
of assessment, then online networks that can support diverse
investigations become more essential than adaptive tutors that can
accelerate learners through pre-defined content.

Behind these two perspectives on personalization, there is
another important distinction in how these camps view the notion of
“scale.” For most systems of instructor-guided and algorithm-guided
learning at scale, the tutorial is considered the ideal mode of
learning, and the goal is to bring the best possible tutorial experience
to as many learners as possible. And since human tutors are too
expensive, the model uses technology to create something as close
to the tutorial ideal as possible. The massive scale of human-
learning needs is a problem in this model; scale is a hurdle to be
overcome through technology.

An alternative vision sees scale not as a hurdle, but as a crucial
resource for creating powerful learning experiences. Scale means
knitting together a community of learners from across the networked
world, leveraging their interests, talents, and inclinations to teach
and share. In this chapter, we will focus on examples from the peer-
guided genre of learning at scale, where learning designers and
instructional leaders are intentional about weaving networked
learning environments into formal educational institutions. In the
peer-guided genre of learning at scale, a learner’s progress through
an experience is decided not by an instructor or an algorithm but by
the learners themselves, who navigate a network of learning
experiences generated by a community of peers and curated by a
set of designers and instructional leaders.

Whereas much that happens in MOOCs and adaptive tutors feels
very familiar to anyone who has spent time in traditional schools and
colleges, many designs in the peer-guided genre of learning at scale



can appear novel or foreign to both learners and educators. One
place to begin exploring the opportunities and challenges presented
by this new approach is with the original learning experiences that
called themselves MOOCs but differed in form and philosophy from
the instructor-guided MOOCs discussed in Chapter 1. These
connectivist MOOCs, or cMOOCs, formed primarily in Canada
several years before Thrun and Norvig’s Introduction to Artificial
Intelligence course started the MOOC phenomenon in elite higher
education.



Connectivism and Peer Learning

The term massive open online course was coined in 2008 by David
Cormier, an instructional technologist on Prince Edward Island in
Canada, to describe a new kind of online course that a handful of
educational technologists were experimenting with. These early
MOOCs had a few thousand participants whose primary learning
activity was engaging in conversations over social media, and they
differed dramatically from what Coursera and edX would create four
years later. One of the first MOOCs was called Connectivism and
Connected Knowledge, taught in 2008, and known by its social
media hashtag #CCK08. It was offered for credit to twenty-four
students at Manitoba University, but through its open design, over
2,200 students participated in the course in some way.2

The form of the CCK08 learning experience was influenced
heavily by its subject matter, the epistemology of connectivism. Two
Canadian instructional technologists, George Siemens and Stephen
Downes, were the principal architects of the theory, which argues
that knowledge exists in networks. At the biological level, this means
that knowledge exists in the networked structure of the brain; at the
sociological level, knowledge exists within communities of people
and practitioners. This epistemological position on the nature of
knowledge—it primarily exists in networks—led naturally to a
pedagogical position: the way to increase knowledge is to generate
richer, denser networks. In this model, the best learning happens
when learners connect with other people and resources that support
ongoing inquiry.3

In the original connectivist MOOCs, the home base for a course
was a publicly accessible site on the open web—no logins, no
paywalls. This home base offered shared content, guidelines, and
instructions for students. Instructors encouraged students to create
their own online web presence, typically by creating individual blogs
and social media accounts. Learners came to the home base to find
shared texts (reading assignments) and prompts for discussion and
interaction, and then they responded to those prompts on their
individual blogs and social media accounts that were networked with
other students on social media. To organize this cacophony of



activity, instructors developed techniques that came to be called
syndication.4

One of the simplest syndication techniques was using a course
hashtag. Students could write a blogpost on their own blog and then
tweet the link using the #CCK08 hashtag so that other people
following the course could find it. More sophisticated syndication
techniques used RSS, or real simple syndication, which was one of
the gems of the open web that has been marginalized by the growth
of walled-garden platforms like Facebook. Stephen Downes
developed an RSS software toolkit called gRSShopper, which
allowed students to register their individual blogs and other content
sources, and then gRSShopper would make a copy of each
submission and aggregate it elsewhere in a variety of forms.
gRSShopper automatically published a daily digest of all
submissions, and it also allowed the instructors to easily curate a few
highlights from each week in a course.5

While instructors played an important role in shaping the direction,
membership, and cadence of activity within these communities, the
learning experience of each individual student in the course was
dramatically shaped by the student’s peer network. Siemens and
Downes argued that it was the discussions and connections in the
network, rather than the instructor-selected content in the home
base, that defined the learning experience. Stephen Downes wrote
that the “content is a MacGuffin,” the narrative trick in a movie that
brings people together. For an educator, this is a provocative stance:
that the content of a course is a kind of trick designed to bring people
together into conversation, and it is through this conversation—
rather than through direct instruction—that the learning happens.6

The primary learning activities in the Connectivism and Connected
Knowledge course were reading and commenting on other people’s
thoughts via blog posts, Twitter threads, and other forms of social
media, and then responding with a student’s own posts and
perspectives. Among the most important learning tasks were
connecting with other people—adding new people to follow on
Twitter, bookmarking blogs, and adding others’ RSS feeds.
Successful learners used technology to create a learning community.



To those steeped in pedagogical theory, the approach of Siemens
and Downes had much in common with what Jean Lave and Etienne
Wenger called “situated learning.” Lave and Wegner studied
vocational communities and how apprentices in those communities
developed their expertise. They argued that a central part of
apprenticeship was a mode of interaction called “legitimate
peripheral participation.” Legitimate peripheral participation is when a
novice hangs out on the edge of a community of experts, looking for
opportunities to move from the edge toward the middle—a kid hangs
around the auto repair shop, watching the mechanics at work, until
one day, a mechanic asks him to hold a bolt in place for a minute,
and the next week he’s asked to actually tighten the bolt, then he’s
hired a few hours a week, and from there, the journey commences.

Stephen Downes argued that what makes someone a physicist is
only in part her knowledge of the facts and formulas of physics. Even
more important to becoming a physicist is having colleagues who are
physicists, knowing the current debates in physics, and becoming
inculcated in a physics community. Situated learning and
connectivism are pedagogical approaches that are attentive to the
social and cultural dimensions of learning. In particular, they
encourage designs that let people move from the periphery to the
core of a learning experience or learning community. In the twenty-
first century, those communities are often defined by their online
networked connections. The technological scaffolding of
connectivism—blog posts, Twitter hashtags, and other open web
technology practices—were novel and attuned to a moment when
social networking was transforming society, but as with so many
things in education and education technology, it built upon ideas and
practices that had come before.7



Building the Infrastructure for Peer Learning

In the connectivist vision for peer-guided learning at scale, learners
need to develop a variety of online learning skills as a precursor to
learning about particular topics or subjects. Learners need to be able
to set up blogs and social media accounts, use social networking
features such as following accounts or feeds, and navigate a
decentralized web of resources and people. Engaging in these
processes just to access the learning experience is much more
complex than figuring out how to click “Next” in a MOOC or how to
submit an answer in an adaptive tutor and wait for the next problem
to appear. Just getting started in a cMOOC required that learners
develop a whole set of new skills for participating in online learning.
While most cMOOCs addressed these needs through online tutorials
or peer mentoring sessions, a few places experimented with building
institutional infrastructure to help students develop these skills.

The most ambitious efforts to have students develop the technical
fluency needed to participate in connectivist-inspired learning
communities were centered at the University of Mary Washington,
where a team of innovative instructional technologists tried to
reimagine digital learning infrastructure in higher education. One of
the leaders of this effort was Jim Groom, who in 2008 defined the
term edupunk to describe a way of relating to education technology
that rejected corporate solutions, especially learning management
systems, and promoted student ownership of the means of
technological production. In 2010, Groom helped develop the online
course Digital Storytelling, or DS106, a computer science course
with a goal of helping students develop skills related to media
production, web development, and storytelling online. Like the
Canadian cMOOCs, DS106 developed an open online component
that let other universities participate in the course (parallel sessions
have been offered at the University of Michigan, Kansas State, and
several other colleges) and individual learners from the web join in.8

As in other connectivist, peer-guided learning experiences, the
home page of DS106 serves as a guide, a syllabus, and an
aggregator, syndicating the feeds of blogs, Flickr, YouTube, and
other accounts from learners around the world. There is a DS106



online radio station and a livestream video station for media projects.
Perhaps the most distinctive feature of the course is the Daily Create
—a challenge to make media in twenty minutes or less every day.
The Daily Creates are inspired by materials out of the Assignment
Bank, a repository of media creation prompts (“Make a video where
you tell the stories of the keys on your keychain”). These
assignments have been submitted over nearly a decade by
instructors, enrolled students, and passersby. Through these kinds of
assignments, students developed the skills in media production, web
hosting, and social networking to be able to participate in peer-
guided large-scale learning communities. If CCK08 was a cMOOC
about the ideas animating cMOOCs, then DS106 was a cMOOC
about the technical skills required to participate in cMOOCs.9

Having every student who was enrolled in DS106 create his or her
own blog through a commercial provider was a logistical barrier to
student participation, so Groom and colleagues developed their own
blog-hosting solution for the school. This eventually turned into a
Domain of One’s Own, a project to give every freshman at University
of Mary Washington his or her own server space and online
presence. Much in the same way that learning management systems
provided institutional infrastructure for teacher-directed instructionist
learning, the Domain of One’s Own project attempted to create an
institutional infrastructure for connectivist learning. Other universities
took an interest in the Domain of One’s Own approach, and Groom
left the University of Mary Washington to start Reclaim Hosting. To
reclaim universities’ web presence from learning management
systems and to reclaim the web from centralized commercial
interests more broadly, Reclaim Hosting offered a turnkey solution
for universities to create their own Domain of One’s Own projects. A
number of universities—University of Oklahoma, Drew University,
Brigham Young University, and others—tested using Reclaim
Hosting to make a student-controlled online space a central part of
their information technology infrastructure.10

Groom and colleagues realized that implementing their student-
centered, peer-guided vision would require not just making a new
site or app, but also developing an entirely new technology
infrastructure for supporting higher education. Few universities to



date have taken this path, but Reclaim Hosting maintains an
alternate, edupunk, indieweb approach that, like a global seed vault,
stores possibilities for alternative futures.11



What Happened to cMOOCs

For those who had the technical prowess to generate and navigate
content on the open web and the time to invest in navigating these
communities, the connectivist MOOCs were powerful learning
experiences. Participants explored new ideas, developed new
technical skills, and perhaps most importantly, developed a set of
relationships and connections that in some cases long outlived their
original course communities. One could head onto Twitter a decade
after CCK08 and still find participants occasionally posting on the
#CCK08 hashtag. But despite the passion that cMOOCs evoked
among enthusiasts, they never expanded much further than a few
hothouses of fertile experimentation.

For a time, it looked like both connectivist MOOCs and
instructionist MOOCs might coexist side by side in an online learning
ecosystem, and commentators came up with the terms cMOOCs
and xMOOCs to distinguish the Canadian open web experiences
from the increasingly paywalled, linear learning experiences offered
primarily by elite universities. Researchers conducted comparative
studies of both approaches, and the xMOOC-mania of 2012 gave
rise to a small surge of renewed interest in and attention to
cMOOCs. In 2012, as a response to public attention on instructionist
MOOCs, a pair of women’s studies professors, Anne Balsamo and
Alexandra Juhasz, came together to create a distributed open
collaborative course called FemTechNet around feminist dialogues in
technology. The course was designed much like CCK08 or DS106,
with a series of online resources to support small local “nodal”
classes facilitated by local instructors with ideas and feedback
permeating back to the core. If Downes and Siemens framed their
project as pedagogical, FemTechNet was more explicitly political,
contesting not just the instructionist pedagogy of xMOOCs but also
their hegemonic model, where elite universities sent their digital
emissaries to the far corners of the world to instruct rather than to
listen and share. In these efforts, cMOOCs were not just an
alternative to xMOOCs but a critique of them.12

Connectivist MOOCs blossomed at a peculiar historical moment in
the history of the web, in the pivot point between a dramatic increase



in the number of people creating content online and the capture of all
that activity by a handful of proprietary platforms. The peer-guided
cMOOCs were made possible by a series of new technologies called
Web 2.0—WYSIWYG (“what you see is what you get”) web editors
that let people create web content without HTML or CSS, and
hosting solutions for blogs and websites that let people upload
images and other files without using file transfer protocol (FTP)
services. In 2008, when CCK08 started, people on the web created
their own blogs through Blogger and Wordpress, hosted and shared
their pictures on Flikr, and read through news and blog feeds through
Google Reader. In the years that followed, the largest technology
companies were successful at integrating all of those different
features into their “walled-garden” platforms. People could share
thoughts, host images, and scroll through a news feed all in one
place on Facebook, LinkedIn, or Snapchat. Advocates of the
indieweb have lamented the concentration of power within a few
platforms, and the loss of the richness that emerged from the
multiple, distributed voices on the open web. But for most users, the
integrated experience of posting ideas, connecting with people, and
reading content in a single, tidy, walled garden was simpler and
more compelling than the additional efforts required to maintain and
participate in the open web.

The simpler, centralized, linear approach won out among MOOCs
as well. In the same way that Facebook came to define what it
meant to “go online,” the edX and Coursera xMOOC cemented what
it meant to be a MOOC in the public consciousness. Courses and
platforms adopting the xMOOC model accumulated the
overwhelming majority of registrations in large-scale learning
experiences. Learners consistently found cMOOCs confusing and
difficult to navigate, like wandering through a corn maze rather than
the tended linear paths of xMOOCs There are still a few cMOOCs
offered every year, mostly to other educators, but the connectivst
experiment in higher education increasingly appears to be the road
not taken, or perhaps a road to be reclaimed.13

While peer-guided approaches to learning at scale have generally
foundered in schools, there is one striking exception: the Scratch
programming language and online community that has been



translated into over sixty languages and widely adopted by schools
and systems around the world.



The Scratch Community and Peer Learning in K–12

Scratch is a block-based programming language, which means that
rather than learning to write software code through syntax
(print:“Hello World”), people learn to write code by snapping together
digital blocks, each of which represents a function, variable, or other
programming element. Scratch was developed by Mitch Resnick,
Natalie Rusk, and their team at the Lifelong Kindergarten lab at MIT.
Scratch has integrated graphics editing, and when combined with the
programming language, it is a powerful platform for making
animations, games, and other visually appealing programs.14

From the beginning, Scratch was imagined as a creative learning
community of users, called Scratchers. Each Scratch program
contributed by a user is automatically made available for inspection
and remixing—starting a new project with a copy of another project
—by anyone else on the site. In his recent book, Lifelong
Kindergarten, Mitch Resnick describes the Scratch platform as the
intersection of four alliterative learning dimensions: projects, passion,
peers, and play. There are a few tutorials on the site and some
exemplar projects created by staff, but the instructional approach of
Scratch leans heavily on learners sharing examples of their projects
with the community. The home page hosts a collection of curated
examples, sometimes from project staff and sometimes from
community members, along with a few algorithmically curated sets of
projects based on what’s currently being “loved” by the community or
remixed. Every project page includes space for the author to post
instructions, notes, and credits, along with a comment thread where
other Scratchers can offer feedback, ask questions, and interact with
the project author. Scratchers also communicate about their projects
in the very active forums, where they ask for suggestions, share tips
and tricks, and discuss projects with the community as a whole.15

For Resnick and the Scratch team, the whole point of the learning
environment is to empower young people to explore their passions
through creativity and design. There is no right way to program in
Scratch or right pathway to learning how to program, so the site
generally stays away from the kinds of linear instruction provided by
MOOCs or adaptive tutoring systems. Resnick and his collaborators



were influenced by the ideas of Seymour Papert and Cynthia
Solomon, who codeveloped the Logo programming language that
many of us from Generation X used when we were in elementary
school. Papert argued that programming environments for young
people should offer “low floors and high ceilings”; it should be easy
to get started programming in the environment, but still possible to
create sophisticated programs. To this, Resnick adds the idea of
wide walls; community members should be able to create a wide
variety of projects, based on their interests and passions, with
different themes and purposes.16

Learning in the Scratch community looks much like learning in the
connectivist MOOCs. Scratchers use the features of the platform to
develop their own identity, make connections with people and
resources, and develop their skills along the lines of their interests.
The learning environment supports a wide variety of activities and
levels of participation. While tens of millions of registered users have
made over 40 million projects on the Scratch platform (as of 2019),
many of these learners pass through the system relatively quickly,
lurking on a few projects or starting one or a few simple ones. A
small percentage of Scratchers get seriously into creating, remixing,
and commenting on projects, and a very small number of users
become leaders in the community, creating tutorials, moderating
forums, editing the wiki, curating collections, and so forth. People
choose how they want to participate, and they do so to varying
degrees.17

Just as connectivism provides a useful framework for explaining
the learning designs in cMOOCs and higher education, the theory of
connected learning, developed by cultural anthropologist Mizuko Ito
and colleagues, provides a lens for understanding networked
learning among younger learners. Connected learning is interest-
driven and peer-supported, but crucially, it also provides
opportunities for academic connections; connected learning is
realized “when a young person is able to pursue a personal interest
or passion with the support of friends and caring adults, and is in turn
able to link this learning and interest to academic achievement,
career success or civic engagement.”18 Realizing connected learning
in the Scratch community means letting kids develop new skills to



create projects that reflect their interests, but also supporting young
people in seeing how creating animations and games or learning
how to program can connect to other academic pursuits in school.

In a 2014 TEDx talk, Resnick tells the story of a boy who was
using Scratch to create a video game. Seeing that the boy would
need to include mathematical variables in his program if he were to
realize his vision, Resnick explained how to encode variables in
Scratch programming blocks. Resnick described the moment when
the concept of a variable clicked for the boy: “He reached his hand
out to me, and he said, ‘Thank you, thank you, thank you.’ And what
went through my mind was, ‘How often is it that teachers are
thanked by their students for teaching them variables?’ ” By placing
the concept of variables in the context of a meaningful project,
Resnick and Scratch helped the boy connect his interests in gaming
with at least one crucial algebraic concept.19

Scratch was developed out of Resnick and Rusk’s work in
Computer Clubhouses, a network of afterschool programs around
the world for exploring computational creativity, and in the early
years, Scratch was primarily used by individual kids and informal
learning programs. More recently, Scratch adoption has taken off in
K–12 schools as a way of introducing computing and computer
programming, but not always in the ways that the Scratch team had
intended. As Resnick noted, “Over the past decade, we’ve found that
it’s much easier to spread the technology of Scratch than the
educational ideas underlying it.” In Resnick’s TEDx story, a boy
starts a project connected to his own interest in video games, and
when he encounters a particular challenge, Resnick steps in with
some just-in-time learning to help the boy develop the skills and
knowledge needed to advance the project. By contrast, Resnick and
his colleagues in the Lifelong Kindergarten lab have countless
stories of schools where teachers introduce students to the Scratch
programming language through teacher-structured activities rather
than through open-ended exploration. It is very common for teachers
introducing Scratch to create their own model program and then ask
students to create a replication of that model, sometimes even by
requiring that students reproduce step by step a project that a
teacher projects on a screen. Many of the core expectations of



schools—that students produce their work independently, that all
students complete a project in a similar amount of time, that all
students study topics regardless of their interest level—conspire
against a pedagogy that seeks to empower students as leaders of
their own creativity and learning.20



Comparing Peer-Guided with Instructor-Guided and Algorithm-
Guided Learning Environments: Shared Visions of Mastery and

Different Approaches to Get There

Having examined all three of the learning-at-scale genres of
instructor-guided, algorithm-guided, and peer-guided large-scale
learning environments, we are now better equipped to compare
them.

People with very different pedagogical proclivities often have
surprisingly similar views about the end goals of learning. When
sociologist Jal Mehta of Harvard University and educator Sarah Fine
of High Tech High Graduate School of Education studied dozens of
highly lauded high schools in the United States that approached
instruction quite differently, they found that many of them pursued a
similar vision of “deeper learning,” a set of interrelated competencies
that include traditional disciplinary knowledge as well as the skills of
communication, collaboration, problem solving, and self-regulation.
Mehta and Fine characterize deeper learning as the intersection
between three important learning outcomes: mastery, identity, and
creativity. When students experience deeper learning, they develop
mastery of deep content knowledge in a domain. They also
experience a shift in identity where the learning activity is a part of
who they are rather than something that they do—the shift from
“learning to swim” to “being a swimmer.” They also have
opportunities to create novel, authentic, interesting new projects and
performances with their new skills and knowledge.21

Sal Khan of Khan Academy and Mitch Resnick and Natalie Rusk
of Scratch would all agree that students should learn math in order to
create wonderful things in the world. I suspect they would agree that
great mathematicians and great computer programmers have a deep
understanding of content knowledge in the domain, develop an
identity around their practice, and show true mastery not by
replicating what has been done before but by creating things that are
new. But if they do not differ in ends, they differ dramatically in how
they believe learners should make progress toward these ends.

Traditional instructionist educators believe that content mastery is
a necessary precursor to shifts in identity and opportunities for



creativity. They rightly observe that people who do the most novel
and important creative work in a field tend to have extensive mastery
of the domain knowledge in that field, so they start their teaching by
focusing on knowledge mastery and hope that content mastery will
provoke shifts in identity and that mastery can then lead to creative
output. By contrast, social constructivists observe that most
motivation for learning comes from opportunities to be creative. As
people play with Scratch, they become Scratchers, and the
opportunities for creativity unlock their passion for learning about
programming and mathematics to make ever more intricate
programs and creations.

In Khan Academy, the proper first step toward deeper learning is
learning mathematical procedures and facts that might eventually
lead to doing interesting collaborative projects. In Scratch, the first
step in that journey is getting people to play with tools for
computational creativity that will inspire learners to understand how
variables and other mathematical concepts can enrich their
creations. I think there is room for both models in our education
systems. But given that our formal educational systems are
overwhelmingly organized around the mastery-first models, I’m
enthusiastic about approaches that create more opportunity for
creativity-first and identity-first learning in schools and colleges.



Different Goals Lead to Different Research Approaches
across Genres of Learning at Scale

The divergent pedagogical beliefs of traditionalists and progressives
about idealized pathways to learning lead to differences in how each
camp conducts research about their large-scale learning
environments.

The research concerning the efficacy of adaptive tutors that we
explored in Chapter 2 had a set of shared assumptions, and those
shared assumptions were part of what made meta-analyses and
comparisons across multiple studies possible. Adaptive-tutor
research assumed that instructors and designers identified a body of
content knowledge that students should learn, and that teachers and
the system as a whole should be judged on the basis of how much
progress all learners made toward content mastery. Usually,
progress toward that goal was measured by the change in the
average proficiency of learners before an intervention (such as the
adoption of adaptive tutors in classrooms) and the average
proficiency afterward. This research assumed that the goal of
education is for every student to make progress toward mastery and
that the bell-shaped distribution of student competence, measured in
effect sizes, should shift to the right over time.

These assumptions about essential features of a learning
environment are not shared by the researchers in Resnick’s Lifelong
Kindergarten group or by the designers of connectivist MOOCs. If
educators take seriously the idea that learning ought to be driven by
the interests of students, then when students decide that Scratch is
not really interesting to them but that something else is, then it’s no
loss to the Scratch designers to see those students move on to other
things. For supporters of peer-supported, interest-driven learning,
the concerns are less about whether an entire class of learners is
developing new capacities in one subject, but rather whether the
subset of learners who are really interested in and devoted to a
learning experience can steadily improve their skills and that the
environment can successfully invite in new community members who
share their interests.22



Part of the challenge of measuring peer-driven learning is that in
many of these learning environments, goals are determined by
individual students and the networked community, not by teachers or
evaluators. If, as Downes says, the content is a MacGuffin, then
what would be reasonable measures of learning in that
environment? If a participant in #CCK08 knows little or nothing about
connectivism but has built a network of new peers and colleagues, is
that a successful course? These problems plague other learning-at-
scale environments as well—for instance, some xMOOC students
are more interested in learning and practicing English than the
particulars of course content—but the challenges posed by the
multiple aims and goals of learners in peer-guided large-scale
learning environments make summarizing their effectiveness
particularly challenging.

Because the goals of a peer-guided educational environment are
different from those of an instructionist one, so too are the research
methods used to evaluate them. Researchers in the Lifelong
Kindergarten lab have largely studied the Scratch community
through intensive qualitative research—thick descriptions of the lives
and practices of individual Scratchers. Much of this research tends to
focus on individuals who have powerful learning experiences online
and share that learning with others. In a sense, the purpose of
Scratch is to create the conditions for these deeply invested learners
to thrive, while also allowing other learners at the periphery to
participate at less intense levels. Having a learner leave the Scratch
community or pass through with only a light touch isn’t necessarily a
loss or a concern.23

The goals and research methods for the different types of learning
environments then interact with the pedagogies and instructional
designs of developers in mutually reinforcing ways. The outlook
shapes the questions that designers and researchers ask, the
methods to conduct research, and the answers to research
questions—and the answers to those questions then feed back into
the iterative design of these large-scale learning systems.

A group of advocates for the merits of traditional instruction wrote
one of my favorite papers on education, provocatively titled “Why
Minimal Guidance during Instruction Does Not Work: An Analysis of



the Failure of Constructivist, Discovery, Problem-based, Experiential,
and Inquiry Teaching.” They argue that over and over again,
experimental studies that contrast traditional methods of direct
instruction with minimally guided, open-ended learning demonstrate
that for a wide variety of learning outcomes, direct instruction works
better. They draw on a set of ideas from cognitive science called
cognitive load theory to explain why this is the case. Put simply,
people have a limited working memory, and when learners allocate
that working memory to solving a problem, they often are not
permanently encoding learning about the patterns and practices that
let them solve that type of problem. It is more efficient and effective
to have an instructor demonstrate through worked examples how to
solve an individual problem and less efficient and effective to have
students try to discover solutions and patterns from problems without
much instruction.24

It is crucial to understand, however, what these authors mean by
“successful learning.” For these critics of minimally guided, peer-led
instruction, a learning environment that works is one that helps shift
a bell-curve-shaped distribution of learners toward higher levels of
mastery; indeed, the statistical models they use to test their
interventions require as an assumption that there is a measurable
skill that is normally distributed across the population of learners.
That is one useful definition of a learning intervention that “works,”
but it’s not the only one. The Scratch learning community is a
powerful refutation of the argument that minimally guided instruction
does not work. Scratch does everything wrong according to the
advocates for traditional instruction—there is almost no direct
instruction, there are very few formal assessment mechanisms, there
is no assigned sequence of learning activities, there is no attention
given to managing learner cognitive load, there are no experimental
tests of interventions, and nearly every change to the Scratch
platform is evaluated on the basis of qualitative case studies and
user observations rather than randomized control trials. And yet
Resnick and his team have built one of the most widely adopted
engines of creative learning in the world.

When something “works” for Resnick and the Lifelong
Kindergarten team, it allows individuals to explore their passions,



publish authentic performances of understanding to the world, and
develop deep mastery. They have tuned the Scratch learning
environment to allow for widespread participation, but they have also
ensured that accommodating widespread participation doesn’t place
undue restrictions on the individual pathways of the most devoted
learners. As a result, Scratch “works” brilliantly, in the sense that
millions of students are introduced to block-based programming
through the system, and a subset of those young people develop
remarkably deep understandings of block-based programming,
creative digital expression, and computational thinking through the
system.

I have a vigorous commitment to methodological pluralism; I think
both of these approaches to learning are necessary and can lead to
great outcomes for learners. Our society needs instructional systems
that address both kinds of aims. We need our entire population to
have fundamental skills in reading, writing, numeracy, civics, science
literacy, and communication; in these domains, we need to take the
entire distribution of learners and help them move toward mastery.
We also need learning environments that let young people discover
their interests and explore them deeply, much more deeply than
might be allowed if the environment were equally concerned with
bringing along the unenthusiastic with the enthusiastic. We need
learning environments that shift whole distributions to the right, and
we need learning environments that enable deep learning for a self-
selected few.

That said, one of the challenges in understanding peer-guided
learning environments is that the research defies easy
summarization. For peer-guided learning environments, we know
that some learners become deeply immersed in these learning
environments and can develop very high levels of proficiency, but we
have less understanding of what learning looks like across the whole
distribution of people who engage.



Teaching Hate on the Open Web

Pedagogies come bundled with philosophies and moralities. For
instance, advocates of instructionist approaches tend to emphasize
that learning is difficult and results from struggle; advocates of
progressive pedagogies tend to emphasize that learning is natural
and easy. Seymour Papert argued that just as people learned the
French language naturally from living in France, so too the Logo
programming language could become a “Mathland” where people
naturally and easily learn math. In Jean-Jacques Rousseau’s novel
Emile, or On Education, the protagonist’s education emphasizes
exploration and observation in the natural world over formal study,
and Rousseau associates this naturalistic approach with preparation
for a more democratic society that would transcend the feudal and
monarchical structures of eighteenth-century Europe. An assumption
that cuts through these older ideas and contemporary approaches to
peer-guided learning is that if young people are given the opportunity
to explore their interests and passions, then they will generally
choose interests and passions that are enriching and interesting.

Throughout this chapter and this book, I’ve celebrated peer-
guided learning at scale, not as the best learning methodology for all
learning, but as an approach to empowering learners that provides
an important counterbalance to the instructionism that dominates
schools, colleges, and formal learning institutions. I have also
celebrated the peer-led, informal learning that happens among
Rainbow Loomers and enthusiasts of all kinds. Part of my
enthusiasm for peer-guided learning at scale is rooted in a general
optimism about learning and humanity that Papert and Rousseau
shared: given the freedom and resources to learn, people will
generally choose to learn about worthwhile things.

Unfortunately, peer-guided learning environments can be used to
recruit people into dark and hateful ideologies in much the same way
that people can learn Rainbow Loom or digital storytelling. In 2018,
there was a terrible incident where a man in his mid-twenties rented
a van and proceeded to drive it down a busy Toronto sidewalk, killing
ten and injuring fifteen. As police and others explored the online
history of the murderer, they found that he had participated in an



online community of men that call themselves incels, or involuntary
celibates. These are men who gather on subreddits and the troll-
filled message board of 4chan to lament their inability to persuade
women to have sexual relationships with them. Incels promulgate a
worldview of male radicalization according to which all men are owed
sex from women, but women only provide these opportunities to men
from certain social strata. The ideology is a mixture of resentment
and madness, and periodically it explodes into violence. The Toronto
van murder was inspired by a similar incel mass murder in California
some years earlier.25

Even the introduction here of the term incel in explaining this
particular murder is in itself a potentially dangerous act. The word
incel functions as a potential aggregator for male radicalization in the
same way that “starburst bracelet” might operate for a Rainbow
Loom enthusiast or “#CCK08” works for a cMOOC enthusiast: it is a
search term that can bring people into a broader online community
interested in educating new members. In an October 2018 talk by
danah boyd, founder of Data and Society, boyd excoriated members
of the media for broadcasting the term incel in the wake of the
Montreal murder:26

I understand that the term “incel” was provocative and would excite your
readers to learn more, but were those of you who propagated this term
intending to open a portal to hell? What made amplifying this term
newsworthy? You could’ve conveyed the same information without giving
people a search term that served as a recruiting vehicle for those
propagating toxic masculinity. Choosing not to amplify hateful recruiting
terms is not censorship. You wouldn’t give your readers a phone number to
join the KKK, so why give them a digital calling card?

When boyd accuses journalists of helping their readers “learn
more” about incels, it is useful to realize that incels and other
advocates of male radicalism have built a sophisticated online
learning environment on the open web—hidden in plain sight—that
has much in common with connectivist-inspired learning
environments: it is a distributed network of people and resources that
seek to invite new members to join them in a community in which
they will learn new ideas, knowledge, and skills. Those seeking to



inculcate new—primarily young—men into male radicalism post a
range of materials online, from mainstream critiques of political
correctness to targeted social campaigns like Gamergate to
extremist forums, and these communities strategically guide people
along these paths toward extremism.27

There is mounting evidence that some of the architectural features
of online networks can, unfortunately, be more powerful in amplifying
extremist messages than more moderate messages. The video-
hosting platform YouTube illustrates this phenomenon best, but the
features of the YouTube recommendation engine can be seen in
other algorithmic recommendation engines as well. In 2018,
sociologist Zeynep Tufekci observed that in a variety of situations,
after a viewer watches a YouTube video, YouTube will recommend
another video with content more intense, extreme, and disturbing
than the last. After watching videos in support of Donald Trump, she
observed recommendations for videos about white supremacy or
Holocaust denial. After watching Bernie Sanders videos, she got
recommendations for videos claiming that 9 / 11 was an inside
government job. Watch videos about vegetarianism, and you’ll get
recommendations for veganism. Watch videos about jogging, and
you’ll get recommendations for videos about ultramarathons. As
Tufekci argues, “It seems you are never ‘hard core’ enough for
YouTube’s recommendation engine.”28

Of course, in learning, “getting more hard core” is often quite
wonderful, as when a Rainbow Loomer graduates from a simple
design to a more complex one. When a casual watcher of Rainbow
Loom videos starts posting comments and then making her own
videos, we can celebrate the process of legitimate peripheral
participation, moving from the periphery of a community to a core.
Online educators and policymakers, however, must come to
understand that the bad guys have learned these educational
techniques as well. Anti-vaccine conspiracy theorists understand that
videos with open-ended questions about vaccine safety can draw in
new “anti-vaccine learners” and that those videos, comment threads,
and recommendations can be used to move people toward more
hard-core anti-government conspiracies.



The proliferation of online communities organized around hate
groups or the kinds of conspiracies that Richard Hofstadter called
the “paranoid style in American politics” reveals one of the virtues of
the centralized learning experiences provided by publishers of
adaptive tutoring systems or university providers of MOOCs. These
traditional institutions provide an editorial filter. This filter is imperfect,
and elite educational consensus can countenance truly terrible ideas
(such as the dark history of segregated schooling). For all these
flaws, though, it would be virtually impossible for Coursera to host a
MOOC that indoctrinated learners in explicitly white nationalist
ideology or for Carnegie Learning to produce an intelligent tutor on
the physics of a flat earth. And if they did, there are various
watchdogs and other methods to police such transgressions. When
Walter Lewin, a physics professor whose extraordinarily popular
lectures were available online, was found to have sexually harassed
women in online course contexts, his lectures and MITx courses
were removed.29

In the introduction to this book, I argued that new technologies
make this the greatest time in history to be a learner. In this chapter,
I have enthusiastically endorsed approaches to peer-guided learning
that give learners agency and help them learn to navigate online
networks of peers and resources to develop new skills and
knowledge. But participating in vast network of online learning
resources doesn’t guarantee that people will inevitably learn ideas
and skills that will bring about better individuals and a better society.
Our technologies and learning resources are shaped by the broader
culture, and political battles about whether we have a culture of
dignity, respect, and inclusion or a culture of divisiveness and
tribalism will determine whether or not our extraordinary
infrastructures for learning will, in fact, lead to a better, more just
world.



The Puzzle of Peer Learning in Schools

Participation in open-web, peer-guided learning environments is
ubiquitous. People all over the world have hopped online to learn
how to use a certain block in Minecraft, how to debug a software
problem, how to cook an apple pie, or how to crochet a dragon out of
rubber bands. Quantifying the exact scope of this learning is difficult,
but when millions of people have created Scratch accounts and
YouTube videos like “How to Make a Rainbow Loom Starburst
Bracelet” have tens of millions of views and hundreds of comments,
it seems clear that the global community of online learners is
massive.

One of the complexities of peer-guided learning environments is
that participants can find them both completely intuitive and utterly
baffling. With instructor-guided and algorithm-guided learning
environments, students find it easy to use the system but may not
always be motivated to do so. People get bored going through
xMOOCs and cognitive tutors, and they quit, but it’s less common
that they are so confused that they don’t know how to participate. By
contrast, many cMOOC participants find these networked learning
environments overwhelming, and students “getting stuck”—not
knowing what to do next to advance their learning—is a common
challenge in classrooms adopting Scratch. One of the signature
design challenges of peer-guided learning environments is to figure
out how to make them more accessible to novices without turning
them into instructor-led learning environments.30

Peering into these kinds of mysteries reminds us that learning and
teaching remain, after millennia of practice and study, unfathomably
complex. Somehow, millions of people around the world find ways to
teach and learn with one another online without any formal training
and sometimes without any organization, and yet when designers try
to create these kinds of environments with intention, they encounter
substantial challenges with motivation and comprehension. It’s
frustrating how far we are from understanding how best to create
online learning communities where people support one another’s
learning in powerful ways, but inspiring to see how despite our
limited understanding, people make progress anyway.



And all of the challenges of designing powerful, accessible, and
equitable large-scale learning environments are magnified by the
additional challenge of integrating these environments in formal
education systems. Schools and colleges are tasked with doing
more than just helping individual people learn whatever they want.
Formal education systems mandate that all students learn certain
fundamentals, whether or not they have an intrinsic inclination to do
so. Teachers evaluate learners in part to provide feedback, but also
so that learners can be ranked, sorted, and tracked into different
parts of the educational system. While there may be opportunities for
collaboration and peer learning, students in schools are expected to
tackle many of their most consequential assessments alone so that
their individual competency can be measured. These expectations
for teaching, assessing, ranking, and sorting individuals create an
inhospitable institutional climate for peer-guided learning
environments to take root.

Forward-looking schools, therefore, face a challenging dilemma.
Peer-guided networked learning environments will be central to how
people, young and old, learn across their lifetimes. In some
professions, participation in these kinds of networks will be essential
to professional advancement. For instance, computer programming
languages advance so quickly that it is almost impossible to be a
successful computer programmer without participating in networked
learning communities, such as Stack Overflow, where people ask
and answer questions about specific programming languages or
coding approaches.31 Formal education systems need to teach
students how to engage with and learn in this type of open, large-
scale, peer-guided network. But the learning practices in these
environments grate against some of the key commitments of formal
educational systems; they mix like oil and water. A few schools will
respond to these challenges by dramatically changing their practices
to more closely match the patterns of learning that happen outside of
schools, and some schools will simply ignore the changes happening
beyond their classroom walls. The most adaptive approach in the
near-term is probably for creative educators to find more spaces
where peer-guided large-scale learning can be woven into the
periphery of schools—in electives, extracurriculars, and untested



subjects—so that learners can have some practice in navigating
these new networks with a community of local peers and mentors to
support them.



 



4
TESTING THE GENRES OF LEARNING AT SCALE

Learning Games

OVER THE LAST FORTY YEARS, the growth of digital games has
profoundly changed the landscape of entertainment in the networked
world. Some of my earliest childhood memories are of computer
gaming: batting balls with handheld wheel controllers in Pong on an
Apple II+, blasting space aliens in Zaxxon on a Commodore 64, and
typing “go north” to venture into the unknown in the Zork text
adventures. In my 1980s childhood, video gaming was a niche
hobby marketed primarily to young boys, but the gaming industry
now rivals film and television in size, scope, and cultural significance.
People of all ages, all genders, and all walks of life play billions of
hours of games every year.1

Games offer a nice microcosm of learning at scale and a good
place to recap the major themes from Part I of this book. In the early
2010s, games and “gamification”—the process of adding game
elements to learning technologies—experienced a surge of interest
against the backdrop of the widespread growth of gaming. Futurists
imagined a more playful future for schools, and technology
developers created new educational games and, in some cases,
promised dramatic results. From 2012 to 2014, the Horizon Report—
a publication from education futurists—predicted that “games and
gamifications” were “two to three years” away from generating
considerable impact in formal education. Some interesting
experiments, which I will discuss in this chapter, proved to be
popular and effective in a few niches within the ecology of human
development, but overall, the learning game movement remains
another unrequited disruption.2

Games are indisputably great engines of learning: ask a
passionate Pokémon player about the virtues of Charizard versus



Pikachu or the strategies for deploying these monsters in imaginary
battles, and you can unleash a torrent of factual knowledge, strategic
thinking, and hard-won wisdom from hours of experience. Many
modern games are immensely complex, and developers deploy a
variety of features for helping players learn that complexity. They
gradually and dynamically adjust difficulty, adding levels, new
elements, and new challenges in response to player success and
development, which keeps players at the sweet spot between what a
learner knows how to do without help and what a learner can’t yet
do, the liminal space that psychologist Lev Vygotsky called the zone
of proximal development. Games provide a narrative world of
meaning, consequence, and relevance to motivate and engage
players. Hinting systems, online wikis, video tutorials, and discussion
boards provide as-needed resources for just-in-time learning as
players seek to improve. Through these kinds of strategies, gamers
are unquestionably learning and getting better at the game. The core
question of learning games is one of transfer: Do people who
develop new skills, knowledge, and proficiencies within a game
world flexibly deploy those new insights back in the humdrum of
everyday life?3



Learning Games and the Problem of Transfer

While many educational technologists make claims about product
benefits that far exceed the evidence, very few developers manage
to venture so far into the realm of falsehood that they attract the
attention of the Federal Trade Commission. The developers of
Lumosity, then, hold a special place of ignominy in the history of the
2010s edtech hype cycle for earning a $2 million fine from the FTC
for false advertising.4

Lumosity develops “brain training games.” They take cognitive
tests of mental capacities like working memory and divided attention,
and they turn these tests into mini-games. Lumosity advertised to
users that practicing these games would lead to more generalized
benefits “in every aspect of life,” including improvements in school
work, age-related cognitive decline, and brain injuries. If a person
played a game that helped them improve their working memory in a
puzzle, for example, then Lumosity claimed that their performance
would improve on a wide range of real-world tasks that require
working memory. In 2016, the FTC found no evidence to support
these claims, and psychology researchers conducting experimental
evaluations of these programs also found no evidence of these
general benefits.5

In psychological terms, the Lumosity advertisers were making a
claim about the concept of “transfer,” the idea that what people learn
in one situation (such as a game) can be applied to novel situations
(such as in day-to-day life). One of the first psychologists to study
transfer was Edward Thorndike, the pioneering education scientist
whom we met briefly in Chapter 1. In the early twentieth century (and
long before), educators and curriculum developers claimed that the
rigorous study of Greek and Latin built up “mental muscles” that,
once strengthened, could be productively used for tackling other
cognitive problems. Transfer emerged as a critique of this line of
reasoning. Thorndike observed that when learners developed new
knowledge or skills, they were far more likely to be able to apply
those skills in novel contexts if the new context had many similarities
—Thorndike called them “identical elements”—to the original
learning context. Situations that are only slightly novel are known as



near transfer; if you learn to drive in a sedan and then hop into a
station wagon, you are practicing near transfer. Learning contexts
that are substantially different from the original are known as far
transfer, like learning to drive a car and then trying to fly a helicopter,
or learning Latin and then trying to do math, or playing puzzles on
your phone and then being a better thinker in everyday life.6

While Lumosity’s claims were sufficiently specific and incorrect to
merit regulatory attention, claims about the general cognitive benefits
of games and pastimes are quite common. For example, many
people believe that chess experts develop generalizable strategic
thinking skills. A recent meta-analysis examined studies of chess
training, music training, and working-memory training, and found little
compelling evidence that any of these three practices improved
people’s general cognitive performance. It turns out that chess
expertise primarily depends upon an encyclopedic knowledge of
common chess moves and board positions; if you show chess board
positions that come from actual, realistic chess situations to both
masters and novices, masters are much more likely to be able to
recreate those situations from memory. If you show chess masters
and novices board positions that are nearly impossible to occur in
actual chess games, then masters have little advantage in re-
creating the nonsense boards. The knowledge of common board
positions is essential to getting better at chess, but this knowledge is
mostly useless when trying to play other games or conduct other
strategic tasks. Similarly, the research from Luminosity shows that
people who play working-memory games indeed get better at other
working-memory games (near transfer), but getting better at these
working-memory games does not help with other kinds of cognitive
tasks (far transfer).7

The implications of this feature of human development are quite
significant and quite challenging for educators. As a society, we hope
that schools can teach domain-independent, broadly useful skills like
critical thinking, collaboration, and communication, but it turns out
that most skills are actually quite domain specific—thinking critically
about a chess move requires different knowledge and skills than
thinking critically about the interpretation of a novel. This also proves
to be a substantial challenge for the field of educational games. Part



of what makes games fun and engaging is immersing people in an
alternate world, but theories of transfer suggest that the more
distance between those alternate worlds and our own, the less likely
it is that learners will be able to deploy game-world learning in the
real world.

So if far transfer doesn’t work, are educational games worth
pursuing? Learning games, like adaptive tutors, have been used
long enough in schools and other settings that a track record of
research exists about their effectiveness. One of the best ways to
evaluate a class of learning experiences is to look not just at an
individual study but at collections of studies, or meta-analyses. In a
meta-analysis, researchers collect a set of published research
studies—usually experimental and quasi-experimental designs that
draw comparisons between an intervention group and a control
group—and draw comparisons across a whole set of findings. Two
major meta-analyses of classroom use of games were published in
2013 and 2016, and they both pointed in the same direction. Across
the studies, students who participated in game-based learning
experiences had modestly better learning outcomes on measures of
knowledge and intrapersonal domains like intellectual openness,
work ethic, and contentiousness. Playing games over multiple
sessions was more effective than one-time games, and when basic
versions of a game were compared with versions with more
advanced and theoretically informed features, the more advanced
games led to better results. Yet even experiments using games with
simple mechanics—limited narrative, goals targeting lower-order
thinking skills, basic content exercises with badges, stars, and points
layered on top—showed modestly better outcomes than control
conditions without games. Of course, what happens on average
won’t perfectly predict what will happen in any particular classroom
or school, but these kinds of studies provide some useful guidelines
for reasonable expectations. Using learning games as part of
teaching can probably lead to modest improvement in student
learning and motivation. Enthusiasts promising a dramatic
transforming of schooling and learning through games and
gamification should be regarded with skepticism.8



The research on learning games isn’t overwhelmingly negative or
positive, and the effects of individual games vary. But by using the
concept of transfer and applying the genres of educational
technology at scale that we have learned over the first part of this
book, we can imagine how individual games might interact with
school systems. Think back to the last educational game that you
played. Who designed the order of your activities and experiences in
the game world? Did you move from one set piece to another, and
was the order of set pieces determined by the designers? Did your
actions or answers in one part of the game trigger algorithmic
decisions that determined what happened next? Did engagements
with peers shape your playing experience? Most learning games fit
reasonably well into one of the three genres of instructor-guided,
algorithm-guided, and peer-guided learning at scale. Placing games
in those genres helps throw into relief where any given game might
provide targeted benefits to some learners. Other strategies
introduced throughout the last three chapters—asking “What’s really
new here?,” reviewing published evidence of effectiveness, and
finding the alignments or misalignments between learning
technologies and existing educational systems—can all prove useful
in reviewing learning games and imagining how they might support
learning in different parts of the education landscape, even if we can
be confident that they won’t profoundly transform schools.



Instructor-Guided Learning Games: Math Blaster and
Chocolate-Covered Broccoli

Most learning games are simple to classify, and most are instructor-
guided experiences. For many in my generation, Math Blaster was
the first learning game they encountered. The on-screen playing field
was arranged roughly like Space Invaders with aliens from the top of
the screen descending upon a village below while the player shoots
laser beams at the aliens. In this case, however, the lasers are
inexplicably powered by math problems, and the game stops
periodically to have students answer a question, where the variables
in the questions are randomized but basically arranged in
predesignated sequences. As students complete the sequence, they
get to do harder problems. My nine-year-old daughter has a math
app from school called XtraMath where the conceit is different—
she’s racing against a “teacher” to provide math facts (for problems
like “12 minus 9”), but the mechanism for XtraMath and Math Blaster
are basically the same: solve simple math problems, get points,
solve harder math problems, get more points. These instructor-
guided games exist on a walled-garden platform or inside a software
package or app, assess student performance and progress through
pattern-matching autograders, and draw pedagogical inspiration
from pail fillers rather than flame kindlers.

Game researcher Brenda Laurel developed the vivid analogy of
“chocolate-covered broccoli” to describe these kinds of games. The
core activity in Math Blaster or XtraMath is no different from the core
activity on a worksheet: solve arithmetic problems. Since many
students experience worksheets as dreadfully boring, game
designers add a layer of points, stars, beeps, and other rewards on
top of drill-and-practice activities. Underneath this layer of external
rewards and incentives are very traditional math activities. The
process of pouring behaviorist chocolate over instructionist broccoli
is often described as “gamification,” and these practices have a
broad foothold in schools. Gamification can be found as elements in
learning software, like the points and badges awarded in Khan
Academy. Platforms such as Kahoot allow teachers to author their
own content within a gaming platform, turning typical classroom



routines such as quizzes and review sessions into classroom game
shows.9

These approaches to gamification fit relatively easily into
traditional school settings by making minimal changes to what David
Tyack and Larry Cuban call the “grammar” of schooling, or the
unquestioned processes, beliefs, and assumptions deeply
embedded in the educational system.10 As we’ve discussed in
previous chapters, the grammar of schooling tends toward
Thorndike’s pedagogical philosophy, in which students learn through
organized, direct instruction, and their learning can be measured.
Gamified learning exercises are simple to use and short to play,
making them easy to assign in class in lieu of similar kinds of
activities. They take worksheet problems and add game elements to
them. One purpose of doing worksheet problems is practicing for the
kinds of classroom and standardized tests that serve as gatekeepers
to advancement in the education system. In that regard, learning
games have the advantage of aiming to bridge a problem of near
transfer, using games about problems found on math tests to help
people do better on math tests.



Algorithm-Guided Learning Games: Duolingo

Relatively few learning games have managed to become breakout
hits beyond the classroom, but one of the most successful efforts in
recent years is the gamified language-learning app Duolingo. A
game-like, algorithm-guided, adaptive tutor for language learning,
Duolingo was cofounded by Luis von Ahn, a computer scientist at
Carnegie Mellon and the inventor of the CAPTCHA crowdsourcing
system. Most Duolingo activities are some form of translation or
recognition activity, where students earn points, complete progress
bars, and earn badges for translating text between the target and
native language in speech and writing. As of 2018, over 300 million
people had signed up for an account with Duolingo, making it one of
the largest platforms for independent learning in the world. One of
the distinctive features of Duolingo is that it includes adaptive
features that allow for personalized spaced repetition. These
adaptive features offer some interesting targeted benefits for
learners, but as with other algorithm-guided large-scale learning
technologies, limitations of autograding are an important constraint
on the overall utility of these kinds of tools.11

Going back nearly a century, psychologists have recognized that
people remember things better when they practice recalling them
over a long period of time rather than through cramming. If you have
a choice between studying for an hour one day before a test or
studying for twenty minutes each of the three days before a test, the
spaced practice is almost universally better. These systems can be
improved further if the studying experience focuses most on the facts
or topics that a learner remembers least well. When studying
language facts on flash cards, learners should spend little time on
the flash cards they always get right (despite the emotional rewards
of doing so) and nearly all their time on flash cards that they always
get wrong. The benefits of spaced repetition are some of the oldest
and most well-established findings from cognitive psychology with
obvious implications for learning, but they are very rarely
implemented in actual classrooms.12

Your Spanish teacher probably could not implement personalized
space repetition in your class because it is very logistically



complicated—an instructor has to identify word definitions or other
language facts (like verb conjugations) that each student has not
mastered, provide opportunities to practice these facts alongside
introducing new content, and then slowly withdraw facts from
practice as students demonstrate mastery. Tossing a few vocabulary
words from week two on the week-six test is not too difficult for an
instructor, but personalizing practice tests for dozens of students on
the basis of their individual progress and mastery is nearly
impossible for a typical teacher to organize. Computers, however,
can implement these complex, personalized schemes of spaced
repetition for each student. The results are promising, at least for the
introductory parts of learning a language. In 2012, independent
researchers found that Duolingo users who spent an average of
thirty-four hours on Duolingo learning Spanish would learn material
roughly equivalent to the first semester of college Spanish.13

An interesting feature of a language-learning curriculum is that
midway through a typical course progression, the cognitive
complexity of the learning sharply increases. In introductory Spanish,
students are memorizing the Spanish word for cat and how to
conjugate the verb to have. In advanced Spanish, students are
reading and interpreting Cervantes. Autograders are much more
useful for the former kinds of tasks with well-defined correct answers
than for the latter kinds of interpretive tasks, so it is unlikely that
Duolingo’s usefulness in learning introductory language concepts will
extend to more advanced language acquisition skills. The
assessments in Duolingo can evaluate whether a person has defined
or translated a word or short phrase correctly; they cannot evaluate a
student’s arguments for the impact of Don Quixote on Spanish
literature and culture. Language-learning games may be a great way
for people to start learning a language, but for the foreseeable future,
developing real fluency will require engagements with native
speakers and culture that are not possible through an autograded
app.



Peer-Guided Learning Games: Vanished and Minecraft
If the chocolate-covered broccoli approach is to slather gamification
elements on top of traditional schooling activities, then the alternative
is to search within content areas to find fun and playful elements that
already exist. In this approach to developing learning games, the fun
isn’t getting to shoot aliens after doing some math, the fun is doing
the math.

My colleagues in the MIT Education Arcade develop what they
call “resonant games,” games that try to immerse players,
individually and in communities, into activities that are personally
engaging and provide rich insights into academic content. If most
learning games align best with the instructionist, banking model of
education—filling students with content and testing their recall—then
the Education Arcade’s resonant games tend to look more like the
flame-kindling, apprenticeship model of learning, where the game
world immerses players in some kind of cognitive apprenticeship.14

For instance, the game Vanished doesn’t quiz people on science
facts, but rather immerses players as members of a community of
scientists trying to understand the fate of a lifeless planet. Developed
by researchers and designers at the Education Arcade in partnership
with the Smithsonian Institution, Vanished was a massive multiplayer
puzzle experience played out on the open web—a kind of online
escape room for thousands of people at once. In the game narrative,
scientists from the future send messages back in time to warn
humanity about a forthcoming asteroid-induced apocalypse. They
communicate to the players through a series of puzzles and mini-
games hidden throughout the web and at physical museums. Some
of the puzzles required large-scale collaboration; each user
randomly received one of ninety-nine codes that needed to be
assembled to solve a puzzle. Players could purchase documents
with points that they earned throughout the game, and some
documents were so expensive that players could buy them only
while pooling points. Over 6,000 player accounts were registered in
the game, and over 650 were active toward the end.

While not explicitly influenced by connectivism, the game has
much in common with connectivism-inspired pedagogies—



participants in the game form networks, communicate with one
another, share resources and solutions. Players both learn about a
topic (in this case, climate change that renders humanity incapable
of responding to the asteroid threat) and develop a shared identity as
scientists. The story provided an opportunity for players to learn
about a range of scientific content areas, from unit conversion to
forensic anthropology, but perhaps more importantly, it gave
participants the opportunity to develop their identities as scientists.
As one player wrote as part of an evaluation of the game, “I really
feel like a future scientist now. Imagine, when we all have famous
jobs at research centers across the world, someone will discover
how we all as kids worked on a game.” Vanished shares a series of
common challenges with other peer-guided learning experiences:
attrition limited the number of learners who benefited from the full
experience, participant experiences were idiosyncratic and learning
outcomes uneven, and a long-term, unfamiliar learning experience
was challenging to integrate into traditional classroom practices. For
those who invested deeply in the experience, however, the game
provided a uniquely powerful learning experience that was not just
about science but also about what it is like to be a scientist.15



MINECRAFT
Math Blaster, Vanished, and Duolingo represent efforts to create
games or gamified experiences designed for educational purposes,
but another approach to learning games is to find commercial games
that have both widespread appeal and the potential to foster
powerful learning experiences. Rather than making and marketing
new games, what if educators could take existing games and use
them for teaching and learning academic content? In 2020, Minecraft
and Minecraft: Education Edition represent one of the most
ambitious efforts along those lines.

Minecraft is one of the world’s largest learning communities—
millions of young and young at heart around the world play, build,
and explore in the Minecraft world. Minecraft is an open-world game
made up of square blocks of various kinds—dirt, stone, sand, water,
lava, iron, gold, diamond—that can be mined with tools and then
recombined to make Lego-block-like creations in the game world.
Resources that drop from different blocks can be combined to create
a wide variety of items, from new tools, weapons, and armor to
decorative elements like doors and carpets. It is among the most
popular games of all time, with over 180 million copies sold.
Minecraft worlds can be set up as multiplayer servers so people can
enter the same world and play, build, share, and collaborate.16

The scope of the learning community on Minecraft is extraordinary
in its breadth. Like many recent games, Minecraft is highly complex
but ships without any kind of manual. Through in-game
experimentation and examination of game files, users essentially
have cocreated the manual themselves on sites like the Gamepedia
Minecraft wiki. That wiki is maintained by over three hundred active
contributors and has over four thousand articles on topics that range
from the original staff of the Swedish game developer Mojang to the
probability distributions of finding diamonds at various depths in the
game world. There are countless YouTube accounts devoted to
demonstrating features in Minecraft, including genuine global
celebrities such as Joseph Garrett, also known as Stampylonghead,
whose YouTube channel has 9 million subscribers and whose How
to Minecraft introductory series has tens of millions of views. Twitch



has hundreds of active streamers playing Minecraft at any given
time; Reddit has a subreddit with photos of incredible creations and
gifs of funny moments. Any one of these content distribution
channels is an endless rabbit hole of narrative and creativity.17

All of these digital learning resources form a dense, complex, and
intricate peer learning network, with resources to guide players from
their first actions in the Minecraft world to the complex management
of resources necessary to visit the far reaches of the game world or
to create massive built environments atop the randomly generated
game world. There is an easily recognizable peer-guided learning-at-
scale network that teaches people about Minecraft, but to what
extent can the game itself be used for learning both within and
outside of formal education systems?

Given that Minecraft has consumed billions of hours of youth time
over the last decade and is increasingly being seen in the classroom,
there is surprisingly little research about the experience of playing
Minecraft and what benefits it might accrue. Studying these kinds of
informal learning environments is profoundly difficult. When students
come to school, we have particular goals for them, we give them
assessments, and we combine these assessments with observations
of classroom processes to understand what learning is taking place.
Tracking the learning that happens across tens of millions of
households as kids play informally is much, much harder.

Researchers who study play and informal learning can point to a
variety of behaviors in Minecraft that could potentially lead to positive
outcomes for young people. Games encourage discovery and
perseverance, requiring self-regulation in single-player settings and
communication and collaboration in multiplayer settings. Game
designer and researcher Katie Salen suggests a list of Minecraft
related skills: teamwork, strategic communication, asking for help,
persistence, recovery from failure, negotiation, planning, time
management, decision-making, and spatial awareness. This is the
optimist’s view of transfer, that time invested in learning these skills
in a game like Minecraft will translate into domain-independent skills.
Teamwork skills developed through collaboratively building a castle
in Minecraft might prove useful when building teams in a workplace
or civic setting.18



A more pessimistic view built upon the research on transfer is that
people who spend a lot of time playing Minecraft will primarily learn
about playing Minecraft. If people who invest considerable time
mastering chess do not appear to be developing domain-
independent strategic thinking skills, then it is not clear that people
playing Minecraft are necessarily developing any particular domain-
independent architectural or design skills, or any of the other skills
developed in Minecraft.

My own view is that there probably are some domain-independent
problem-solving skills that players develop in Minecraft. For instance,
players might develop the intuition that if they get stuck on a task,
there is likely to be a community of teachers and learners online who
have documented solutions to similar tasks or would be willing to
engage in online dialogue about how to solve the problem. As the
last chapter on peer-guided learning at scale suggests, that is an
enormously useful disposition to adopt in a networked world,
because in nearly any domain of human endeavor, there are people
online willing to help. That said, there are particular skills and facts
required to take advantage of each of those distinct networks of
learning. To figure out how to do something in Minecraft, a player
must understand the mechanics of the game, the vocabulary of the
game, the most common repositories of reliable knowledge, and the
norms of information dissemination and online discourse. One has to
learn similar things to figure out how to write a particular function and
debug a program in JavaScript, but in another domain: the
mechanics and syntax of the JavaScript language, the vocabulary of
its functions and primitives, the common repositories of reliable
knowledge, how to search within Stack Overflow, and how to ask
new questions within community norms. The domain-independent
skills, a disposition to seek out peer-guided online learning networks,
and an understanding of their common structures are a little bit
helpful in many different circumstances; extensive content
knowledge in a domain, like memorizing common board positions in
chess, is essential to mastery in a local context and not very useful
elsewhere. These distinctions do not reduce the value of the broader
disposition of online help-seeking and participation in online
networks, but that disposition alone will not bridge the chasm of far



transfer. Domain-independent skills are slightly useful in lots of
different domains but not deeply useful in any particular domain.

Recognizing the popularity and potential for learning in Minecraft,
some classroom educators have explored making tighter
connections between Minecraft play and classroom learning. At
Carnegie Mellon University, materials science professor B. Reeja
Jayan used Minecraft to teach the basics of material science to
engineers by having students build models of atoms and molecules
out of digital blocks. The Minecraft universe includes a substance
called “redstone” that can be used to create circuits within the game,
and educators have developed a variety of tasks for learning the
basics of physics, electrical engineering, and computer science. In a
kind of learning-at-scale special crossover episode, faculty at UC
San Diego have created a MOOC about teaching coding in
Minecraft.19

The open-world design of Minecraft is terrific for play and
exploration but imperfectly suited for targeted content learning that
happens in schools. In an effort to add more classroom-friendly
features, in 2011, TeacherGaming released MinecraftEDU, a version
of Minecraft developed with specific modifications to aid teachers in
using Minecraft in their classrooms. The modifications made certain
logistical tasks easier, such as registering students and assigning
them to a world. It also allowed educators to create specific worlds
with specific tasks, constraints, and game rules so that teachers
could give students a more instructor-guided experience within the
open-world platform. In the 2010s, both Minecraft and MinecraftEDU
were bought by Microsoft, which released a Minecraft: Education
Edition that provides new ways for instructors to control the game
world and a set of turnkey lesson plans and game worlds that
teachers can use for teaching academic content ranging from
biodiversity and extinction to Boolean logic in circuits.

In a sense, these modifications run counter to some of the
fundamental principles of Minecraft. For most players, Minecraft is
fun because they can do whatever they want: building structures,
inventing arbitrary challenges (harvesting enough diamonds to build
a full set of armor), or just exploring to see if there are any llamas
around the next corner. The Minecraft: Education Edition projects



constrain some of this creativity; in order to teach specific content,
they ask students to do what teachers want them to do. In the worst
cases, the imposition on the freedom of Minecraft will spoil the fun,
and the high time-cost for instructors setting up these worlds won’t
be worth the modest gains in engagement. In the best cases, these
additional scaffolds will form a productive hybrid of open-world play
and teacher-guided problem-based learning. Little rigorous research
exists as yet about Minecraft in education, but I would predict
findings similar to what researchers have discovered with other
approaches to learning at scale that fit uncomfortably in the
constraints of formal schools: a handful of really extraordinary
applications in a few institutions but no widespread adoption across
many schools.



Hybridity and Learning-at-Scale Genres: The Logical Journey
of the Zoombinis

A worked example is a teaching strategy where an instructor
explains, step by step, how he or she would solve a type of problem.
In this chapter, I have tried to offer a worked example of a
classification exercise that takes a type of large-scale learning
technology, in this case educational games, and situates that
technology within the learning-at-scale taxonomy to demonstrate
what patterns emerge. Throughout the chapter, I provided several
examples of games that fit well in the three learning-at-scale genres:
Math Blaster as an example of an instructor-guided learning
experience; Duolingo as an adaptive, algorithm-guided learning app;
and Vanished and Minecraft as peer-guided large-scale learning
communities. Placing games in these categories provides a way to
quickly frame some of their strengths and weaknesses; if you can
see that Duolingo is an adaptive tutor, then you can review what you
know about the history of adaptive tutors and make some good
guesses about its strength and limitations. That history can also
reveal ways in which a new product is distinct; we’ve had decades of
adaptive tutors, but few have been as widely adopted by individuals
outside of formal learning environments as Duolingo. Something
about the design of Duolingo—its gamified elements, the subject
matter of language learning, a mobile-first platform—led to a wider
adoption than might have been otherwise expected. Designers can
tinker with these standout aspects of a particular approach and
consider which of them might be applicable to other technologies
within that same genre or beyond.

Not all learning-at-scale approaches fit neatly within the three
genres that I have proposed, and hybridity is a promising site for
sources of innovation. In finding novel combinations of elements
within a game or other new technology, we might be able to take
inspiration in devising new approaches to learning at scale. One
example of a learning game that demonstrates this kind of hybridity
is The Logical Journey of the Zoombinis, one of the all-time great
mathematics games, developed by Scot Osterweil.



In the game, players have a small band of Zoombinis, which are
basically little blue heads with feet, who are on a journey across a
series of landscapes to find a new homeland after being enslaved by
the evil Bloats. Each Zoombini has four distinct characteristics—
eyes, nose, hair, and feet—and each of these characteristics has five
options (for instance, wide eyes, one eye, sleepy eyes, glasses, and
sunglasses) for a total of 625 unique Zoombinis. The player must
bring bands of these Zoombinis through a series of puzzles in which
the puzzles are responsive to the characteristics of the Zoombinis.
For instance, in the Allergic Cliffs level, there are two bridges, and
each bridge has a set of allergies to certain Zoombini characteristics
—like wide eyes or green noses; although the player is given no
instructions about these particular bridges, and it is left to the player
to discover their properties. If the player tries to move a Zoombini
with an allergen across the bridge, the bridge will sneeze and blow
the Zoombini back. The game is designed to help players explore
ideas about logic, pattern recognition, and combinatorics.20

To classify the game, we can start by asking who controls the
pace and pathway of the learning. As a single-player game, there is
no peer element, but the game has a blend of features that support
both algorithm-guided and instructor-guided elements. Within a
puzzle, there is no “Next” or “Previous” button; players try a series of
steps, moves, and combinations, and the game levels react to player
choices. When players complete a puzzle level, they are exposed to
a branching structure to choose the next puzzle that splits autonomy
between designers and players. The results are somewhere
between a fully sequenced system like a MOOC and a fully adaptive
system. While the visual skin of Zoombinis and edX are quite
different, they share a set of sequenced learning activities evaluated
by autograders.

The Logical Journey of the Zoombinis defies easy categorization
in the learning-at-scale schema that I have proposed, but the genres
help us to situate the gameplay and learning relative to other
learning experiences. Pedagogically, the game is an open-ended
immersion into logical thinking exercises, with a strong emphasis on
inquiry. Levels have no written instructions, and there are no
demonstrations or worked examples; rather, players need to



discover the rules of each puzzle through visual contextual clues,
trial and error, and logic. Despite wildly different appearances, the
technological infrastructure of the game has important commonalities
with MOOCs, as a walled garden with an automated assessment
system. The pacing and gated objectives have more in common with
MOOCs or adaptive tutors than with Scratch or the Rainbow Loom
community. Despite these similarities to MOOCs and intelligent
tutors, the pedagogy behind the game is more about apprenticeship
and play than instruction; it has a closer philosophical kinship with
Seymour Papert’s Logo programming language than with Salman
Khan’s practice problems.

Zoombinis is a learning experience that cuts against the grains of
the patterns that I have described in the past chapters, and it can
provide inspiration for new avenues of development. What might it
look like to have an automated assessment system in the Scratch
platform that maintained the values of playfulness and
apprenticeship? What might it look like to have the ideas of
playfulness and apprenticeship embedded into an intelligent tutor or
an xMOOC? Tinkering with hybridity offer potential ways of offsetting
the limitation of one learning-at-scale genre with the strengths from
another.



From Learning-at-Scale Genres to As-Yet-Intractable
Dilemmas

In Part I of this book, I highlighted the differences among large-scale
learning environments to define three genres, and in the next four
chapters I turn to a set of similarities. In some respect, the
technology innovations that I’ve described over the past four
chapters are astonishing: free online courses in nearly any subject
from anatomy to zoology, a repository of free online videos that
cover the entire mathematics curriculum, adaptive tutors that
personalize practice for individual students, peer communities where
learners gather to study computational creativity or online learning,
and games for learning languages or building worlds. As these
innovations were introduced, particularly in the late 2000s and early
2010s, they were accompanied by dramatic predictions about how
these tools might pave the way for fundamental transformations of
educational systems. Yet for all the adoption of large-scale learning
technologies in informal learning environments and formal
institutions, fundamental transformations have been elusive. New
learning-at-scale technologies have proven limited but useful
supplements to traditional education systems, rather than levers for
fundamentally remaking those systems. Why?

Across very different kinds of large-scale learning systems—
inspired by Dewey or Thorndike, found behind paywalls or on the
open web, guided by instructors, algorithms, or peer communities—
certain dilemmas emerge over and over again. The curse of the
familiar starts from the observation that technologies that look like
typical elements in schools—like the practice problems on Khan
Academy—scale much more easily than things that look very
different from anything that has come before, like the open-ended
programming environment on Scratch. Schools are complex
institutions finely tuned to a kind of homeostasis. And if old ideas are
easier to adopt than truly novel, and potentially much more powerful,
approaches, how then can schools change and evolve to meet the
challenges of the future? From MOOCs to adaptive tutors to Scratch,
evidence suggests that an edtech Matthew effect is quite common:
that new technologies disproportionately benefit learners with the



financial, social, and technical capital to take advantage of new
innovations. How might we design learning technologies that
ameliorate rather than exacerbate opportunity gaps? I have
described technologies as unevenly useful across different subject
domains, and one of the core sources of unevenness is assessment
technologies. These technologies work much better in domains
where problem solving is structured and routine; the trap of routine
assessment is that the places where automated assessment works
best may overlap closely with the domains where automation and
robotics are most likely to replace human work. Throughout each of
these first four chapters, I have observed that one of the
characteristics of the best learning technology systems is that they
are subject to constant research, iteration, and refinement. This kind
of research might be greatly aided by the vast stores of data
collected by online learning environments, and yet these data also
include deeply personal information about people’s lives and
learning experiences—how they learn, where they succeed and fail,
how they rank compared to others, their interests and beliefs.
Navigating this tension requires addressing the toxic power of data
and experiments and weighing the privacy risks with the research
benefits of data collection. Across very different technologies,
pedagogies, and designs, all learning-at-scale initiatives are forced
to confront these common challenges that take up the second half of
this book.
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5
THE CURSE OF THE FAMILIAR



Rip Van Winkle and Skeuomorphism

AN OLD JOKE and over-used keynote riff among education innovators
is that if Rip Van Winkle awoke today from his hundred-year nap, he
would be befuddled by the new world. He might wander across town
marveling at people’s constant staring, swiping, and tapping into
mobile phones. He might balk to see cars driving themselves and
stores with automated checkout lines. And when he finally made his
way into a school, Rip would heave a great sigh of relief that schools
are just as he remembered (insert uproarious laughter here).

This joke overemphasizes the stability of schooling, but it contains
an important kernel of truth: schools are conservative institutions in
society. People tend to teach how they were taught, and new
technologies are far more likely to be bent to fit into existing systems
than they are to lead to major reorganizations.

When faced with integrating new technologies, most educators
take an approach constrained by a combination of an anxiety about
trying new things, a desire to make the best possible use of students’
time, and the stress of the demanding workloads required just to
keep classes running. It is only with support, professional learning
opportunities, collaborative planning time, and other system-level
resources that most educators can become comfortable enough to
try new approaches to teaching and learning with technology.

Even when teachers have adequate support for technology
integration, research has shown that adoption of new technologies is
a process that usually begins with using new technologies in old
ways. In the 1980s, Judith Sandholtz and a team of researchers
conducted the Apple Classrooms of Tomorrow project, an initiative to
place cutting-edge personal computers like the Apple IIe and some
of the first wired computer networks into K–12 classrooms. She
found that teachers needed to proceed through a developmental
trajectory of stages: entry, adoption, adaptation, appropriation, and
invention. At early stages, teachers replicated existing practices with
technology, and over time, teachers developed approaches to
teaching and learning that would be impossible without the new
technologies. When introduced to new technology, most teachers
start at the early phases, and many do not progress much beyond



that. This isn’t necessarily a criticism, as great teaching can happen
with or without technology, but it is an empirical observation.
Developing the capacity to integrate new technologies in ways that
lead to meaningful changes in teaching and learning takes time,
opportunities for professional development, coaching, and peer
support.1

Many learners approach education technology with the same
conservativism that we find with teachers. While working for
HarvardX in the first few years of MOOC development, I was struck
by how common it was for a subset of learners to vociferously
critique anything that didn’t look like a “standard” MOOC. When
microbiology professor David Cox created a MOOC with animations
and simulations for learning about the human brain, learners
dismissed it as non-serious compared to more lecture- and test-
based MOOCs. In 2014, George Siemens led the development of an
edX MOOC about learning analytics called Data Analytics and
Learning, or DALMOOC, which attempted to include components of
both instructionist and connectivist MOOCs. The edX portion of the
MOOC had lecture videos and autograded items, and there was a
parallel online community that functioned more like a cMOOC, with
social features and more open-ended learning. In the edX forums,
several learners railed against the cMOOC portion, even though it
was optional. In a 2014 interview, Siemens explained, “If you take a
MOOC today, you basically have the same structure as you had in
2011 when Coursera and edX were introduced—students have a
certain set of expectations. They want that format, it seems.” In three
short years, learner expectations around xMOOCs had solidified
around a conservative notion of what MOOCs should be.2

Designers of popular consumer technologies also often assume
some conservativism in their users. One of the most widely
recognized icons on a computer screen is the “trash” or “delete” icon,
which often looks like a wastepaper basket. This is a classic
example of a user-experience design strategy called
skeuomorphism, which involves making digital tools look like their
analog components. Early versions of Notes, Apple’s iOS notebook
app, were made to look like a leather-bound legal pad; the pages
were yellow and had straight lines across them, and a leather image



ran down the left edge. These markers of familiarity were included to
help people imagine how they might use a new technology. But that
imagination is constrained by the presence of visual markers of an
older technology, and that constraint is imposed by design; the
invitation from the leather-bound Notes app was to continue taking
notes as you had in the past, not to imagine new ways that a digital
notebook might lead to more interesting, useful, or effective habits of
study or practice. Skeuomorphism gives users hints about what to do
at the cost of limiting their imaginations about what new things might
be possible with a new technology.3

Skeuomorphism is a useful metaphor for education technology;
most new tools are designed to harken back to some kind of analog
antecedent in typical classroom practice. Watch five seconds of a
Khan Academy video, and you will know that you are watching a
lecture. Peek at one of their problem sets, and you’ll recognize the
questions and response boxes as a digital worksheet. The stars and
points and bing noises that accompany correct answers are as
familiar as the gold star that your first grade teacher might have
affixed to the top of a homework sheet.

One of the most widely used education technology products in the
world is Quizlet, an app for creating decks of online flash cards for
practice, testing, and sharing. Quizlet has over 50 million monthly
users around the world and claims to engage 50 percent of all K–12
students in the United States (there are over 50 million students
each year in US K–12 schools). If government leaders convened a
panel of global experts to discuss the most urgent needs in our
education system, it is hard to imagine that “a dearth of flash cards”
would rise to the top of the list. Managing a global transition from
index cards to digital flash cards is probably not the most compelling
strategy for education reform. Quizlet may have successfully
engaged half of American students with a single app, but there is no
reason to believe that this technology adoption has led to substantial
improvements in national learning. But digital flash cards offer some
efficiency gains over paper flash cards, they fit neatly into existing
educational systems, and they can be easily used and adopted by a
wide range of teachers and learners.4



This, then, is one side of what I call the curse of the familiar.
Easily adopted technologies will be those that replicate existing
classroom practices, but digitizing what teachers and students
already do is unlikely to lead to substantial improvements in schools.
Whether students are testing themselves on 1 million, 1 billion, or 1
trillion Quizlet study sets per year, online flash cards are not going to
profoundly change the experience of schooling and learning.



Bafflement or Banality, and the Flip Side of the Curse of
the Familiar

The flip side of the curse of the familiar coin is that when edtech
developers do create novel learning environments that offer the
promise of substantially changing learners’ experiences, many
learners will find these environments confusing and teachers will find
them difficult to adopt. I discussed this dynamic in several earlier
chapters. Recall that when many learners encountered the
connectivist MOOCs developed by Canadian educators, they were
baffled by the decentralized structure, the new aggregation
technologies, the freedoms afforded to learners, and the minimally
specified ends of the exercise. From figuring out how to sign up and
participate to making sense of the point of it all, learners had to put
substantial effort into meta-learning about how to participate in a new
learning environment. This was precisely the point of connectivist
MOOCs, but it was also their stumbling block.

Efforts to adopt the Scratch programming environment in schools
provide another example of the curse of the familiar. Developers and
advocates hope that Scratch can generate opportunities for students
and learners to develop computational creativity through a pedagogy
that emphasizes projects, passion, partners, and play (recalling
Scratch founder Mitch Resnick’s description of the project in Lifelong
Kindergarten). In the ideal use cases of Scratch, learners should
have a high degree of autonomy in pursuing projects of interest, and
as they develop personally relevant animations, games, programs,
and resources, they’ll encounter moments of difficulty or
opportunities for learning. To respond to those challenges,
Scratchers would ideally search their online and local communities,
including teachers, to find learning resources. For some Scratchers
—a large number but a relatively small proportion—Scratch provides
precisely the motivation to pursue these investigative pathways. But
for many students who open Scratch, the open-ended learning
environment and possibilities for collaboration are confusing or
overwhelming. It is not clear what to do with coding blocks or how
they might work; it is not obvious how one might go from the blank
canvas in Scratch to the sophisticated animations and games that



experienced programmers create. Many people who sign up for
Scratch start a project then quit soon after. As of 2019, Scratch had
about 40 million registered users and about 40 million Scratch
projects. The typical engagement with Scratch is a one-off.

The dilemma that Resnick and colleagues face as Scratch is
widely adopted in schools is that a variety of typical school structures
are inimical to the pedagogical philosophy behind Scratch. Scratch
values remixing of projects so that new ideas can build upon and
reimagine older ones, and schools typically insist on clear, individual
provenance of work to allow for assigning grades to individual
students. In schools, remixing is cheating. Scratch values open-
ended exploration and discovery, but class periods have strict time
limits, and teachers often ask students to complete particular
milestones at particular time points in order to assign grades, credit,
or other markers of compliance. Scratch is designed as the
technology avatar and vehicle for constructionist pedagogy, and
schools are often successful at neutering those elements of Scratch
so that it can be implemented in learning environments emphasizing
teacher control and student compliance with specific routines or
instructions.5



Funding New Tech for Conservative Educational Systems

The curse of the familiar poses a two-sided dilemma: reproduce the
ordinary and get adoption but not change, or attempt to do
something different and either confuse your intended audience or
have them take your novel approach and transform it into something
conventional. Venture-backed education technology efforts over the
last decade have overwhelmingly chosen the former.

Over the past ten years, the involvement of venture capital in
education technology has grown substantially, with millions of dollars
now invested annually in new startups from Boston to Beijing and a
global landscape of edtech incubators, coworking spaces where
startups can find comradery and networks of support. Venture capital
firms purchase a portion of equity in new startups in exchange for an
infusion of cash that startups can use for hiring and operations.

For venture-funded edtech startups, one of the core goals is to
amass as many users as possible as quickly as possible. A growing
install base attracts additional venture capital funding and is
supposed to provide the basis of value that would attract an
acquisition (where a larger edtech company purchases a smaller
new entrant) or investors for an initial public offering. Often, growth is
prioritized over revenue generation in startups on the theory that if a
company can offer a service to a large enough group of consumers,
then revenue generation will sort itself out down the road.

The way to grow as fast as possible is to create something that
people are already familiar with. In 2018, education technology
historian and critic Audrey Watters compiled a list of eleven edtech
companies with the largest investments; seven of them were focused
on tutoring for test prep. The other four companies developed
administrative software for schools, intelligent tutors for K–8 math,
and tutoring for music lessons and English language learning.
Venture capital firms are structurally incentivized to be more
concerned with getting a return on their investment than in
supporting products that substantially improve education. The
conservatism of educational systems and the conservativism of
financial systems reinforce one another. It is perhaps no surprise that
some of the most interesting education technology efforts emerge



from universities—connectivist MOOCs from Canadian universities
and Scratch from the MIT Media Lab—where there is an unusual
combination of available funding, intellectual freedom, and long time
horizons. If widespread adoption is conditional on familiarity, then it
is hard to imagine truly novel approaches from teaching and learning
emerging from funding structures that are concerned with
maximizing adoption and return on investment.6



The Path through the Curse of the Familiar is Community

The curse of the familiar emerges from trying to use technology
alone to change schooling. Schools, with their innate complexity and
conservatism, domesticate new technologies into existing routines
rather than being disrupted by new technologies. For anyone hoping
to substantially change teaching and learning through technology,
the most promising way of passing through these thickets is to
prioritize systems change alongside technology adoption. And the
most important stakeholders in educational change are teachers.
What’s needed to encourage the design, transmission, and adoption
of new ideas is a large, thriving community of teachers who are
committed to progressive pedagogical change and designers who
are excited about seeing this community as partners.

Peer-to-peer connections among teachers are crucial to
transmitting new ideas in schools. When K–12 teachers and faculty
in higher education are surveyed or interviewed about the process of
pedagogical change, they commonly respond that the number one
influence over their pedagogy is other teachers. Principals, state
requirements, and other factors can heavily influence what educators
teach and their curriculum choices, but peers play the most powerful
role in shaping how they teach. It is people that scale new
pedagogical practices: educators engaging one another in
conversations about teaching and learning, communities forming to
understand and advocate for new ideas, and individuals and groups
of individuals practicing the time-consuming, patience-testing work of
changing institutional cultures and structures. Changing teacher
behavior at scale requires nurturing widely distributed networks of
peer learning among educators.7

Technology can help in this process, in the sense that new
technologies can be provocative ways of starting new conversations.
When schools adopt the Scratch programming language and online
community into a computer science curriculum, an entry point is
created for educators to discuss the many purposes of computing
and how technologies can spark and support student creativity.
Perhaps my main motivation for spending the last decade in
education technology is that I have found educators to be genuinely



more willing to engage in open discussions of pedagogy when
encountering new technologies. But even if technology helps as a
catalyst, it cannot replace the hard work of reshaping educational
systems to take advantage of the potential of new technologies.

As we have seen in the first part of this book, technology
evangelists often use the language of disruptive innovation to tell
stories about how old systems will give way to new technologies. In
reality, it is community, not technology, that offers the best chance of
changing practice in schools. Two organizations are exemplars of
groups trying to drive meaningful change in pedagogy through
conversations about technology: the Lifelong Kindergarten group
and their Scratch project and the developers of the Desmos online
graphing calculator.



Scratch: Technology, Community, and Teacher Learning

While Scratch started primarily as a resource for after-school
programs and for kids during their leisure time, the more recent
growth of Scratch has been driven by school-based adoption. Mitch
Resnick, Natalie Rusk, and their colleagues in the Lifelong
Kindergarten lab are proud of the widespread adoption of Scratch,
but that is not their only goal; they are constantly working to help
educators not only to use Scratch, but also to embrace its underlying
ideas. In a sense, the adoption of Scratch in schools has outpaced
the adoption of creative, constructionist pedagogy, and the Lifelong
Kindergarten team is working to help bridge the gap.

One set of strategies that the Scratch team has pursued is to
provide more structure as teachers and students are introduced to
Scratch. Seymour Papert, who codeveloped the Logo programming
language that pre-dated Scratch, argued that good learning designs
have low floors and high ceilings. They should be easy to start
working with while allowing for more complex engagement over time.
Resnick later added “wide walls” to the design specifications, noting
that good learning designs allow for a wide variety of creations that
align with student interests. The Scratch team is currently exploring
the development of more “narrow foyers”—places with constraints
and scaffolds that help people get into both the ideas and the
operational nuts and bolts of Scratch. To create new entry points, the
Scratch team created Microworlds, Scratch programming
environments with a subset of programming blocks and
prepopulated graphics organized around themes that connect with
youth interests. For instance, one Microworld emphasizes hip-hop;
dance has a series of interesting connections with programming—
including the concepts of synchronicity, parallelism, and order of
operations—and can serve as a natural connection between coding
and urban arts. Other Microworlds include topics such as fashion,
art, and comedy. After starting projects in the Microworlds,
Scratchers can activate the full set of blocks and “graduate” to more
complex projects. The hope is that by reducing the initial complexity
of Scratch and providing learners and educators with interest-based



entry points, educators will better understand how Scratch supports
creative expression through code.8

Another approach from the Scratch team has been to develop
decks of physical coding cards that show the range of projects that
students can create—from games to stories to music to animations
—and activity guides that again introduce students to diverse forms
of expression in Scratch. The wide range of options is meant to
guide educators toward seeing the potential of Scratch for individual
expression—to push them away from homogenous, recipe-based
projects for a whole class toward learning environments where
students have the freedom to learn to code driven by their interests
and a sense of play and exploration.9

While developing a computer programming language that can be
used by children around the world is, on its own, a massive
undertaking, the Lifelong Kindergarten lab is also invested in the
massive undertaking of engaging educators around the world with
these ideas. Even as the technical team at Scratch works to
distribute the Scratch programming language as widely as possible,
the outreach team is committed to building a community of educators
and other fellow travelers invested in the ideas behind Scratch.

The Lifelong Kindergarten group has a variety of approaches to
help educators better understand the ideas behind Scratch. At the
annual Scratch conference, educators and Scratchers come to MIT
to share ideas, connect with the Lifelong Kindergarten team, and
build community. Each year on Scratch Day, teachers, librarians,
after-school educators, young people, and other Scratchers around
the world host their own local Scratch-related events and meetups.
In 2018, there were over 1,200 registered Scratch Day events of all
sizes around the world. The Scratch team recommended that these
events include a welcoming ceremony, workshops for learning,
“festive activities,” and times for people to share their experiences
and celebrate the day. Resnick and his team engage educators
online as well. The group has taught various iterations of Learning
Creative Learning, an open online course that introduces educators
to the ideas behind Scratch while engaging in projects with Scratch
and related technologies from the group. In tandem with the release
of Scratch 3.0 in early 2019, the lab launched a series of other online



efforts aimed at educators, including Scratch in Practice, a more
modular approach to online learning with resources organized
around monthly themes. The site includes educator stories and
examples, “Minute with Mitch” videos to share bite-sized ideas
behind Scratch, “Natalie’s Notes”—blog posts with ideas for
educational approaches—featured resources, and a curated Twitter
feed of student ideas. Another experimental way to connect with
educators is WeScratch, where Scratchers gather to work in small
video conference rooms online to collaborate on projects or just do
parallel programming with other Scratchers online.10

Another team at Harvard, ScratchEd, led by Resnick’s former
student Karen Brennan, also works directly with educators to help
them implement Scratch in classrooms in ways that are aligned with
the project’s pedagogical foundations. Brennan and her team have
led online courses like Getting Unstuck, a twenty-one-day email-
based course during which participants received daily creative
challenges, not unlike the Daily Create in DS106. ScratchEd
organizes Scratch meetups, regular gatherings of Scratch educators
throughout the year, where participants are encouraged to learn
about Scratch through engaging in peer-led, open-ended learning
experiences that immerse participants in the pedagogical
foundations of Scratch so educators can create similar experiences
for their own students.11

These efforts at tinkering with community building have not yet
broken the curse of the familiar. Scratch has millions of students
around the world logging in from schools, and the ScratchEd
meetups have, in 2020, a little over 3,500 members. To be sure,
these educators likely have influence over a wider circle of peers and
colleagues, but they still represent only a fraction of the educators
engaging students with Scratch. Scaling dissemination is far easier
than scaling community, but educators change their practice in
response to new ideas from peers, not through encounters with new
technology alone. If the Scratch team is successful in encouraging
the adoption of constructionist learning practices in schools, their
success will come not just by building the right technological features
in the Scratch platform, but by building communities of educators



who can help their peers understand the pedagogical foundations
underneath that technology.



Desmos: Designing with and for Community

Another of my favorite examples of community building comes from
Desmos, a platform for teaching and visualizing mathematics.
Desmos has its roots as an online graphing calculator project meant
to replace the nearly ubiquitous Texas Instrument TI-84 calculators
that are used in advanced math classes. The idea behind Desmos is
that since many students have access to phones, tablets, laptops,
and other mobile devices, they would no longer need to purchase a
separate, single-function calculator if they could use an online
graphing calculator on their multifunction device. Desmos is able to
make the calculator free for students and teachers by licensing it to
publishers and testing companies for use in their commercial
projects. Pearson, College Board, and other companies pay Desmos
for institutional uses, and Desmos can give away individual and
classrooms uses of the technology for free. Over time, Desmos has
developed beyond just mimicking the functions of a calculator to
become a platform where students and teachers can build and share
visualizations of mathematical models.12

Desmos’s chief academic officer is a former high school math
teacher named Dan Meyer, who has built an extraordinary career as
a math education researcher, designer, and teacher educator.
Meyer’s vision of high-quality mathematics instruction has a strong
emphasis on mathematical modeling, and he argues that much of
the work that students do in math class should be organized around
social and creative problem solving as a framework for developing
conceptual understanding and procedural fluency.

Meyer first became well known in the mathematics education
community for what he calls “three-act” math problems. In a three-
act math problem, students watch a short video with some kind of
interaction in a world; one of the original examples was a video with
one of those octagonal tanks that are often seen in a geometry
textbook (but almost never in the real world) being filled with water
from a hose. The videos are simultaneously banal and somewhat
mesmerizing. Dan recounts how in many classes, at some point, a
student will say, “Man, how long is it going to take to fill it up?” and
Dan can respond, “I’m so glad you asked!” The video begs a



question, and once students find the question, then Dan provides
more information. In the second act of the task, Dan presents the
video again with slightly more detail: a timer and a few
measurements, so that students have enough information to produce
a set of mathematical models predicting when the tank will be filled.
In the third act, the video runs again to the very end with a timer so
students can see how their models line up with reality. The approach
makes mathematical modeling, rather than just procedural
computation, central to math classrooms. Desmos is one tool for
creating graphical representations that support these kinds of
modeling activities.13

Meyer has presented to math teachers in all fifty states, and he
has written extensively about mathematical modeling and student
agency in problem solving and how Desmos supports those ideas.
He has worked relentlessly to simplify his pedagogical principles so
that they can be shared and adopted. His talks and workshops
provide a rationale for his approach, explain the limits of typical
instruction, and demonstrate concretely how changes in teaching
materials can spark new kinds of participation and mathematical
thinking from students, especially those who are not typically active
in math classes. In a keynote address, he might take a typical math
problem from a textbook and show how it can be modified in slide
presentation software to make it more open-ended and amendable
to modeling, discussion, and discovery. Through traveling, speaking,
and actively participating in math educator communities on blogs
and Twitter, Meyer has nurtured a community of math educators
excited about incorporating these kinds of modeling approaches into
their teaching.

In late 2016, Meyer made an unusual announcement on the
Desmos blog. Five years after its founding, Desmos was adding two
features: the ability to incorporate short videos in instructional
materials and multiple-choice items. Meyer wrote, “These are the
first features lots of companies add to their online activity platforms,
so we wanted to explain why we waited so long.”14

Meyer offered two reasons for the wait. One reason was that the
Desmos team had an intuition that their earliest users would define
the development of their product and its use and reputation. Desmos



was attentive to the idea that in order to have a technology project
that changed teaching, it had to scale through a community with a
shared set of values about what good teaching looked like. Much as
Scratch saw teacher meetups, after-school computer clubhouses
and programs, and teacher online communities as central to their
efforts to spread and scale, Meyer saw teacher networks, such as
the state-level branches of the National Council for Teachers of
Mathematics and online communities like the #iteachmath hashtag
on Twitter, as essential to the spread of the ideas of modeling,
discovery, and participation that are integral to the vision behind
Desmos.

The second reason was that delaying the release of these
features allowed Desmos to develop them in ways that aligned with
the pedagogical goals of the company and community. For instance,
Desmos’s multiple-choice-item creator requires by default that
students have to explain their answer when they select one, and it
also displays (when possible) three answers from other students to
the same question. Meyer describes these features as “consistent
with our interest in connecting students and their thinking together.”15

This combination of cultivation of community alongside deliberate
development of technology is the tightrope that developers will need
to walk to create technologies that can support meaningful changes
in classroom practice. The impact of new technologies should not be
measured by conventional metrics for the scale of an adoption: the
number of user accounts, minutes of activity, or total clicks in log
data. Instead, scale needs to be measured in terms of the
communities of people that are engaged in sustained exploration of
how technologies can lead to meaningful changes in practice. These
technologies will not, in and of themselves, change institutional
structures and practices. But communities of committed educators
might.



Building New Technologies While Engaging Complex Systems

For designers of educational technology like Desmos and Scratch to
bring their visions to life, they must address the full complexity of
educational institutions. They have to engage communities of
practicing teachers, teacher educators in colleges and universities,
and the material conditions of learning environments. Education
technologists need to consider how teachers and learners access
devices and software, how time is used in learning environments,
how new technologies are embedded into assessment systems
(whether that be how to adopt Desmos to high-stakes math tests or
block-based programming languages to advanced placement
computer science tests), and how state and district policies address
math and computer science teaching and learning. It is a tall order
for a technology company or research group to address these
complex factors, but the nature of their engagement with the public is
that they do not have to do this work alone. By thinking of educators
and learners as partners and stakeholders, technologists empower
allies in policy positions, district leadership, testing companies,
higher education, teacher training, and other places to consider how
different elements of a complex system might be tinkered with to be
more amenable to the pedagogical visions espoused by Desmos
and Scratch.

Stimulating change in conservative, complex systems is not easy.
If Desmos and Scratch continue to be widely adopted in schools, I’d
wager that it would be in precious few of these implementations that
Mitch Resnick, Natalie Rusk, or Dan Meyer would say upon walking
into a classroom, “Yes! This is what I think the teaching and learning
with these technologies should look like!” In far more places, I
suspect, their observation would be, “It looks like some of the
teaching and learning we’d hoped for is happening here, but there
are still too many ways where the technology is being bent to
conform to an existing, conservative pedagogical structure.”
Education historian Larry Cuban refers to this pattern as teachers
“hugging the middle” of the pedagogical poles of pail filling and flame
kindling. In his half-century of research on classroom practices, he
has found that when pedagogical progressives encourage teachers



to substantially reform their practices, it is much more common for
teachers to adopt bits and pieces of new approaches, while
maintaining consistent attachment to the kinds of routines that have
dominated the grammar of schooling over the past two centuries.16

David Cohen and Jal Mehta describe this dynamic in a 2017
paper titled “Why Reform Sometimes Succeeds: Understanding the
Conditions That Produce Reforms That Last.” Cohen and Mehta
examine several of the major curriculum reform efforts over the last
century, including the Sputnik-inspired efforts in STEM and social
science in the 1950s and 60s and the efforts to reform math
education as part of the standards-based reform movement
beginning in earnest in the 1990s. Both movements critiqued the
emphasis on memorization and procedure in American classrooms
and pressed for more inquiry-oriented, student-centered instruction.
In both cases, reforms took hold firmly in a handful of places with
committed teams of educators, and ripples of influence could be
found throughout the American system. For instance, in math
education reforms, researchers found more evidence of instruction
focused on making meaning of mathematics over just procedural
learning, but this meaning was typically conveyed through teacher-
centered instruction—pail filling on the kinds of things that students
might have discovered through flame kindling if teachers only had
the time.17

Cohen and Mehta argue that more substantial and durable
changes can occur in “niches” within the ecology of educational
systems. Certain forms of ambitious instruction can be found in
Waldorf and Montessori schools and certain charter-school networks
operating outside the public district–based education system. Other
forms thrive in International Baccalaureate or Advanced Placement
classrooms operating within, but somewhat cordoned off from, the
public education system.

These historical perspectives offer a somewhat grim choice for
ambitious reformers: thrive in small places (perhaps over populated
with the affluent and privileged) or allow watered-down ideas to
spread widely. If large-scale learning technologies offer a path
through this Scylla and Charybdis of school change, it will be in
offering technologies that can balance a set of competing priorities.



They need to provide easy entry points—narrow foyers—that allow
busy educators to adopt them, while affording the opportunity for
educators to grow beyond their initial experiences. Quizlet has a
narrow foyer, but there is nowhere to go beyond it. For a tool to
break the curse of the familiar, the design of the experience needs to
function as a vector for new pedagogical ideas. The experience of
using the technology needs to remind or nudge or compel teachers
and students to look beyond the familiar routines of the grammar of
schooling and imagine new possibilities. The technology also needs
to make complex teaching and learning practices easier to
implement; it needs to be simpler and less time consuming for
teachers to attempt ambitious instruction. And all of these
technological changes need to be accompanied by equally difficult
efforts to build networked communities of educators who can
evangelize new ideas and practices and offer supports to novices
attempting to shift their practice.18

The curse of the familiar will have a tight hold over education
technology around the globe in the decades ahead. Those who
break the curse will be tinkering not just with technology, but with
ways of nurturing communities of innovative educators working on
reforming systems while adopting new technologies. I view this
problem as immensely difficult to solve but one worth working on
nonetheless. Education technology is a good field for those who see
themselves as patient optimists.



 



6
THE EDTECH MATTHEW EFFECT

FOR MANY YEARS, educators, designers, and policymakers have hoped
that free and low-cost online technologies could bridge the chasm of
opportunity that separates more and less affluent students. This
dream has proven elusive.1

When I was a graduate student, I visited a classroom in rural New
Hampshire where an ambitious young teacher was planning to have
her students build collaborative presentations on wikis—websites
that allow for multiple authors to publish together online. The
technology in the lesson required a linked chain of resources:
internet networks came into the building through cables to a wireless
router broadcasting in her room; the students had laptops that had
been successfully charged the night before and were receiving the
wireless signal; the teacher had a computer plugged into a projector;
the screen on the wall came down to receive the image (teachers
reading this will shudder to remember those flimsy screens that
wouldn’t stay down); and the teacher took the power cord from the
projector and went to plug it into the wall to show students what to do
from her computer. As she pushed the plug into the outlet, the outlet
rocked out of position and fell back behind the drywall,
unrecoverable. After a few moments of fishing behind the insulation,
the teacher gave up on using the projector and shifted to plan B,
rather miraculously making the lesson work without a demonstration.

Since that visit, I’ve often thought of the delicacy of that chain of
resources—power, broadband, wireless signal, equipment, bulbs,
chargers—that allows people to learn from technology in their
classrooms, schools, dorms, and homes. Affluent communities—
neighborhoods, families, schools, and institutions—have more
resources devoted to building and maintaining this delicate chain to
take advantage of free, online learning tools and apps. Sociologists
call this kind of phenomenon a Matthew effect, named for a verse in



the biblical Gospel of Matthew: “For whoever has will be given more,
and they will have an abundance. Whoever does not have, even
what they have will be taken away from them.”2 The edtech Matthew
effect posits that this pattern is quite common in the field of
education technology and learning at scale: new resources—even
free, online resources—are more likely to benefit already affluent
learners with access to networked technology and access to
networks of people who know how to take advantage of free online
resources.

As we shall see, despite robust evidence for the prevalence of the
edtech Matthew effect, edtech funders, developers, and enthusiasts
continue to be animated by three linked myths about technology’s
potential to democratize learning. Working toward a more equitable
future for education technology requires rejecting these myths and
confronting the realities that could guide us toward more productive
development, policy, and practice.

The first myth is that technology disrupts systems of inequality.
For all the hope and hype that technology might enable major
organizational changes in educational systems, the reality is that
technology reproduces inequalities embedded in systems. New
apps, software, and devices are put in the service of existing
structures and systems, rather than rearranging them.

The second myth is that free and open technologies will
democratize education. The rich data that can be collected from new
digital platforms allow closer investigation than ever before about
how learners from different life circumstances access and use new
learning technologies. The research from these investigations makes
the reality clear: new technologies, even free ones,
disproportionately benefit already-advantaged students. In a sense,
the digital divide is more of a digital fault line, and each new
innovation opens chasms of opportunity between our most and least
affluent students.

The third myth is that digital divides can be closed by expanding
access to technology. Helping learners access functioning, modern
computers with reliable broadband connections is only one step
toward digital parity. Social and cultural forms of exclusion are as
powerful, and often much harder to understand and address, than



challenges of technology access. Turning the potential of education
technology toward the benefit of the students who are furthest from
opportunity will require reckoning with the social and cultural
contexts in which marginalized students live and the very different
contexts in which most new technology applications and services are
developed.

The accumulated evidence disproves these myths and makes
clear that education technology will never simplistically close digital
divides. No matter how many transistors we squeeze into a square
millimeter, no matter how many bits are passing wirelessly over our
heads, the hard parts of reducing educational inequality will remain
hard.



Edtech Equity Myth No. 1: Technology disrupts systems of
inequality. Reality: Technology reproduces the inequality

embedded in systems.

From the earliest days of signals technologies, inventors and
evangelists have promised that new technologies would provide
more equitable learning experiences for young people. In his 1984
book Teachers and Machines, Larry Cuban shows an image from the
1930s of children huddled around a giant radio transceiver with the
caption, “With Radio, the Underprivileged School Becomes the
Privileged One.” Cuban chronicles developments in film, radio,
television, and early efforts to place personal computers in
classrooms, and he observes how each generation of technology
advocates promised a radical reconfiguration of teaching and
learning. Cuban found a handful of bold, interesting experiments, but
for the most part, they primarily reproduce the patterns, behaviors,
and inequalities that already exist within schools.3

One of the most unfortunate and inequitable practices in schools
is the separation of students into learning experiences of very
different quality. In her classic study Keeping Track, Jeannie Oakes
documents how students in honors and college preparatory courses
engage with rich content, solve complex problems, and
communicate their understanding in diverse ways. In the same
schools, students in basic and remedial courses encounter a
simplified curriculum, solve less interesting problems, and find fewer
opportunities for creative and intellectual expression. Assignment
into these tracks correlates with race and class; affluent majority
students are most likely to find themselves in the most challenging
and meaningful learning environments, while students from low-
income families or racial minorities are more likely to be placed in
classrooms that limit their growth and potential.4

For the past thirty years, education technology researchers have
collected evidence showing that similar patterns of diverging
educational quality emerge in the implementation of digital learning
technologies. At the turn of the twenty-first century, sociologist Paul
Attewell proposed that educators think of these patterns as two
digital divides. The first digital divide is the divide of access: students



from low-income or marginalized backgrounds typically have less
access to new technologies than more affluent students. But even
more important is the second digital divide of usage: students from
low-income or marginalized backgrounds are more likely to use
technology for routine drill and practice with limited adult support,
while more affluent students use technology for more creative
activities with greater mentorship from teachers, parents, and
adults.5

In the 1990s, Harold Wenglinsky at the Educational Testing
Service analyzed test scores and survey data from the 1996 National
Assessment of Educational Progress (NAEP). Students were asked
about patterns of technology usage in their math classrooms, and
Wenglinsky found that low-income, non-white children used
technology primarily in math class for drill and practice, while affluent
white children were more likely to use technology for graphing,
problem solving, and other higher-order exercises. Wenglinsky
argued that “poor, urban, and rural students were less likely to be
exposed to higher-order uses than non-poor and suburban
students.”6 The same survey questions were used again in the 2009
and 2011 NAEP tests with basically identical results: the most
promising uses of educational technology were mostly available to
already-advantaged students. Qualitative researchers have found
similar patterns through close observations of schools and families.
For his dissertation, Matthew Rafalow conducted an ethnographic
study of three high schools in southern California that all had the
same levels of technology access but served different populations of
students. One of his study sites was a majority white school in an
affluent neighborhood, where teachers and educators described
creative and playful uses of technology—even playing games like
Minecraft—as a valuable part of student development. By contrast,
in the two schools Rafalow visited serving middle- and lower-income
students, educators described these uses of technology as irrelevant
or disruptive, and their technology use focused on more basic skills.
In affluent schools, kids who played around with computers were
hackers, and teachers saw their play as preparing for careers in
technology; in schools serving low-income families, kids who played
around with computers were treated as slackers.7



For the most part, new technologies don’t rearrange practices in
schools. They reinforce them.



Myth No. 2: Free and open technologies promote equality.
Reality: Free things benefit those with the means to take

advantage of them.

In recent years, technology advocates have used the phrase
“democratizing education” to describe the potential for new
technologies to reduce inequality. Democratize is a slippery word,
and it’s usually used to describe making something more fair, more
equitable, or more just, without describing exactly how these goals
might be achieved. One theory of change is that because affluent
learners and families already can afford high-quality learning
experiences, if new technologies are made free or more easily
accessible, then less affluent learners will get access to what the
affluent already have.

One of the virtues of new large-scale learning technologies is that
they generate data sources that can be used to delve deeper into
how technologies are used differently by students from different
backgrounds. In the last ten years, I’ve worked on two major studies
about the second digital divide of usage. In the late 2000s, I studied
how teachers and students used social media and peer production
tools such as blogs and wikis. At the time, there was a real optimism
that these tools would be as transformative in education as they had
been in journalism, business, social relationships, and information
management. Wikis and blogs could create new opportunities for
students to collaborate with peers across the classroom or around
the world, and they could provide new means for students’ digital
expression. Before the arrival of these web-based collaboration
tools, collaborative computing projects would require a major
investment in computers, networks, and specialized software (like
Hypercard). The hope was that with computers more accessible and
the software free or low cost, these opportunities for rich digital
learning would be much more widely available, especially for low-
income students.8

Starting in 2009, I looked at data from hundreds of thousands of
wikis used in K–12 education settings. Each wiki recorded every
change made by every user, and in many wikis, we could examine
the content created on the site, identify the school where the wiki



was created, and use data from the National Center for Education
Statistics to learn more about the demographics of the schools
creating the wikis. We found that wikis were more likely to be created
in schools serving affluent neighborhoods, and the wikis created in
those affluent schools were used for longer periods of time with
greater opportunities for student involvement. Wikis created in
schools serving low-income families were more likely to be used for
teacher-centered content delivery, and they fell into disuse more
quickly.9

To try to understand these patterns, I started visiting wiki-using
teachers around the country, which is how I found myself in the New
Hampshire classroom with the dodgy power outlets. I saw a
phenomenon similar to what Attewell observed in the 1990s: in more
affluent schools, more resources were devoted to the maintenance
of technology networks, which could then be used more easily and
more reliably. Teachers had more access to planning time and
professional development, and because they had fewer pressures
from standardized testing, they could take more pedagogical risks
and try new things like wikis. Teachers in affluent neighborhoods
could count on more access to technology resources in homes,
which made them more comfortable assigning complex projects that
might require online homework. While the wiki cloud software was
free for teachers to use, the maintenance of technological systems
and expertise was expensive.

After the passing surge of interest in integrating social media and
peer production in education, MOOCs became the next participant in
the edtech hype cycle, with advocates again declaring that free
online courses would democratize education. As I discussed in
Chapter 1, when my colleague John Hansen and I connected MOOC
registration and participation data from edX with demographic data
from the US census, we found that people living in more affluent
neighborhoods were more likely to sign up for edX MOOCs.
Moreover, markers of socioeconomic status—like having a parent
with a college degree or living in a more affluent neighborhood—
were positively correlated with course completion. MOOCs opened a
door of opportunity, and although there are remarkable stories of
learners from very difficult circumstances who took advantages of



these new opportunities, the majority of people who walk through
that door of opportunity are already educated and already affluent.10

Learners in affluent neighborhoods are better able to take
advantage of new education technology, even when those
technologies are free. The research record becomes increasingly
clear with each passing year: we should expect that most education
technology initiatives—including those made available for free online
—will disproportionately benefit the affluent.



Myth No. 3: Expanding access will bridge digital divides.
Reality: Social and cultural barriers are the chief

obstacles to equitable participation.

While financial and technical barriers are real and important, social
and cultural exclusions are often the thornier obstacles to
educational equity. These social and cultural barriers are harder to
discern, require more nuance to address, and vary substantially
across different communities and contexts.

The “digital divide” is too simple a metaphor to characterize
educational inequality. I prefer the image of a digital fault line;
inequalities emerge and disappear as tectonic shifts from new
technologies change the social landscape. As new technologies
arrive and as older technologies become obsolete, the shape of the
digital fault line constantly changes. In the 1980s and 1990s, the
digital divide in education referred primarily to the differences in
student-computer ratios between more and less affluent schools or
to gaps in home desktop computer ownership. As more schools
began to acquire computers, the most pronounced digital gaps have
shifted toward broadband access rather than device ownership. For
a short time, when mobile internet first became accessible, youth of
color actually led adoption, since it was a better value for many
families than home broadband subscriptions. As mobile phones have
become increasingly sophisticated, however, gaps in mobile
broadband adoption have emerged. In their study of the broadband
subsidy program Connect2Compete, Vikki Katz and her colleagues
found that policy decisions often showed a profound
misunderstanding of the populations that they were trying to serve.
The subsidy program assumed that families were completely
disconnected and would welcome even a single ethernet connection.
In reality, most families were already online and needed to reliably
connect multiple devices via Wi-Fi in order to meet the needs of the
entire family for school, work, community engagement, and leisure.
The subsidy program was trying to close a gap in the digital fault line
that had already mostly closed while ignoring the one that had
opened right next to it.11



The easiest gaps to measure along the digital fault line are gaps
of access—who has access to how many computers or mobile
devices with what kinds of broadband speeds. But the more
challenging obstacles are those that are social and cultural in nature.
Katz and colleagues documented that in the Connect2Compete
program, uptake across low-income communities differed by levels
of community trust. In one case study where community trust in
schools and municipalities was high, the program was more effective
in helping families get access to new resources. In their case study
site in Arizona, however, uptake was much less, because many
immigrant families were concerned about using school-issued
laptops out of fear of state surveillance. Matt Rafalow’s three-school
case study, discussed above, reveals how even when technology is
held constant across different schools, teachers can celebrate
technology usage by privileged students while questioning it among
other students.

Large-scale quantitative research also sheds some light on these
challenges at a global scale. One robust finding from MOOC
research is that a person’s country of residence can be a strong
predictor of course completion. Using the Human Development
Index (HDI), a measure of a country’s affluence, education, and
general well-being developed by the United Nations Development
Program, research shows that MOOC learners from countries with
low HDI measures are significantly less likely to complete courses
than learners from countries with high HDI scores, a kind of global
achievement gap in MOOCs. Obstacles that online learners in
developing countries face that contribute to this gap might include
unstable internet and electricity, structural poverty, and many other
challenges.12

My colleague René Kizilcec theorized that learners from less
developed countries might face an obstacle called social identity
threat. Social identity threat occurs when learners use cognitive
resources attending to concerns about stereotypes or feelings of
exclusion rather than to learning. We cannot say definitively what
causes these feelings in online courses, but triggers could include
the elite branding of universities offering MOOCs, the predominantly
white American and European faculty who offer these courses, the



English language usernames in the forums, and other markers that
feel excluding to minority participants. Feelings of social identity
threat can lead to negative recursive cycles: when people start a
class, they may feel like an outsider. This feeling of exclusion might
lead to their not doing as well in the first week as they might have,
which makes them more attuned to things that would make them feel
like outsiders, which makes them do less well in the course, and so
on. In other words, Kizilcec hypothesized that some of the
challenges that learners from developing countries might face would
be psychological in nature, in addition to the structural and economic
barriers that learners from developing countries might face in trying
to participate in online courses.13

To test this hypothesis, Kizilcec, myself, and a team of colleagues
from Harvard, MIT, and Stanford randomly included an intervention
that addressed social identity threat in the pre-course surveys of
more than 250 MOOCs. In this simple intervention, learners were
asked to read a list of values and identify two or three that were most
important to them. They then wrote a short note about why taking an
online class aligned with those values. The intervention was
designed to deepen the connection between a learner’s sense of
purpose and his or her participation in a class, and in theory, it
served as a kind of “inoculation” to the negative feedback cycle
induced by social identity threat. The writing exercise addressed
feelings of exclusion by having learners themselves write new
narratives about inclusion. Learners in the control group received the
standard survey without the intervention. We found that the
intervention worked in courses where students from more affluent
countries earned certificates at much higher rates than students from
developing countries. In these courses, students from medium- and
low-HDI countries who were randomly assigned to the intervention
were more likely to complete courses than students in the control
condition. In other words, where a “global achievement gap” existed,
the intervention closed a portion of that global achievement gap.
While MOOC students from less developed countries may still face
challenges from infrastructure quality and access, our study
suggests that at least some of the differences seen in educational
attainment in MOOCs might result from feelings of exclusion.14



This idea that social and cultural exclusions could be as powerful
as economic and technological obstacles can seem very
counterintuitive. When Kizilcec and I first submitted an earlier paper
about our interventions to Science, the paper was rejected without
explanation and without having been sent out for review (a process
called desk rejection, not uncommon for a prominent journal). One
anonymous editor had written in his comments, “Not clear to me that
this ‘fear that they could be judged in light of negative stereotypes
about their nation’ is more of a hurdle than, say, irregular power
supply, intermittent internet, gender, lack of tailoring of materials to
local contexts / cultures, etc.” The central premise of our paper was
that our experiment only affected learners’ psychological state;
students from low-HDI countries in the treatment condition faced
identical challenges with technology and access as students from
low-HDI countries in the control condition. The experiences of
students in the experiments differed only in terms of access to one
short exercise designed to provide psychological support. Even in
the face of experimental evidence that cultural exclusions matter, this
one reviewer remained convinced of the importance of technical
dimensions. The story does have a happy ending. After we reframed
our writing to emphasize that the only factor we changed in learner
experiences was a psychological one, the editors chose to accept
the paper.15

One challenge in addressing cultural exclusions is the chasm of
social status between edtech developers and advocates and the
communities of learners that they are trying to serve. Sociologist
Tressie McMillan Cottom argues that technologists often imagine
their students as “roaming autodidacts,” which she describes as “a
self-motivated, able learner that is simultaneously embedded in
technocratic futures and disembedded from place, culture, history,
and markets.”16 If this description fits any group aptly, it might be the
developers of education technology themselves—primarily white and
Asian men coming from a handful of top-tier universities, at ease
whether in Cambridge, Massachusetts, or Palo Alto, California, and
part of the global elite that uses technology and affluence to
transplant their culture and comforts wherever they go. Most people,
however, live in a particular place, grounded in cultures and families



that shape their interactions with learning experiences. It is
astoundingly complex to create learning experiences that effectively
scale to millions while responding productively to local differences,
cultures, and contexts. It’s even harder to do when the developers of
technologies share a homogenous set of formative cultural and
educational experiences, and the students they serve come from
places both less privileged and more diverse.

Addressing the challenges of education technology and equity
requires rejecting the myth that free online educational opportunities
are in and of themselves democratizing. Instead, educators,
developers, and policymakers must grapple with the extensive data
that show us the reality: educational technology is implicated in
perpetuating inequality. We now know enough about these dynamics
that when the next wave of educational hype comes along, whether
that is with virtual reality or artificial intelligence, we can step back
and question who will be best served by new innovations.



Design Principles for Digital Equity

For all of the incredible opportunities for learning that may be
generated by education technology, the hard parts of creating a
more equitable future through education will remain hard. And for all
these challenges, there are many educators, developers, and
researchers who are experimenting with a variety of approaches that
do have some traction in closing digital divides. The solution space
in this domain is not nearly as well understood as the problem
space: we can confidently describe how new technologies typically
reproduce or expand educational inequalities, but as a field, we don’t
have a good handle on what kinds of approaches or strategies can
reliably address new gaps along the digital fault line. There are a
variety of intriguing cases, experiments, and initiatives but not
enough by way of unifying theory or principles.

What the field needs is a set of “design principles for digital
equity”: guidelines that can be used by funders, venture capitalists,
philanthropists, developers, educators, and policymakers to guide
investment decisions, development strategies, policy, and practice
around the equitable use of learning technologies. My colleague
Mizuko Ito and I have taken a first stab at this set of design
principles, and we’ve come up with four main themes: unite around
shared purpose; align home, school, and community; connect to the
interests and the identities of culturally diverse children and youth;
and measure and target the needs of subgroups.17

First, designers should unite around shared purpose with learners
and their communities. Equity-oriented efforts can bring developers,
educators, and learners together with common purpose. When
initiatives are codeveloped and cofacilitated with stakeholders, they
are more likely to be attuned to important elements of social and
cultural contexts, and teachers and learners are more likely to take
ownership of these initiatives.

Second, designers should align home, school, and community.
While affluent students often have tech-savvy parents and the latest
technology at home, less well-resourced students cannot count on
these supports. This disconnect can be exacerbated when
developers and reformers focus all of their efforts at building



technology literacy and capacity in schools. One fruitful strategy for
reducing this gap is building the capacity of parents and mentors
alongside that of young people. Intergenerational learning
experiences can strengthen family ties while giving parents and
children skills to explore new domains.

Third, educators should connect to the interest and identities of
minority children and youth. Peer learning communities are
exclusionary when they reflect a dominant culture in ways that create
a hostile environment for outsiders, but they can also be harnessed
to create safe affinity spaces for minority children and youth.
Powerful learning experiences result when students have the
opportunity to connect their interests from outside of school to
learning opportunities in more academic contexts.

Finally, designers and researchers should measure and target the
needs of subgroups. When developers and reformers understand
the specific needs of the communities they serve, they can deploy
targeted programs that give the greatest advantage to the neediest
groups. These strategies might include addressing psychological
threats, addressing specific costs that matter more to low-income
groups, and targeting high-risk moments in students’ learning
trajectories.



Unite around Shared Purpose

People from different backgrounds and life circumstances can
experience life very differently, and these experiences can lead to
divergent ways of understanding the world. An affluent white
computer science major from an elite college who goes to work in
education technology may see the world quite differently from black
and Latinx children who grow up in poverty-impacted neighborhoods.
Uniting around shared purpose involves including diverse
stakeholders in education technology initiatives. For her doctoral
thesis, Betsy DiSalvo wanted to develop new pathways for African
American boys into computer science, and she worked with a cohort
of young men to create a program called the Glitch Game Testers.
Glitch Game Testers became an after-school program where high
school students worked on quality-assurance projects for computer
game companies and were involved in shaping the trajectory of the
initiative—choosing the name and logo, developing practices, and
instigating more formal computer science education learning
experiences. Including the young men in the design ensured that
participants were engaged and that educational opportunities met
the real needs of learners rather than the needs and circumstances
that program leaders might have imagined.18

School-based student tech teams are another mechanism for
uniting around shared purpose. The Verizon Innovative Learning
Schools program is in the midst of a ten-year initiative to provide
tablet computers and three years of free 4G wireless access to more
than five hundred Title I middle schools across the United States.
One of the requirements of the program is that schools create a
student tech team to codesign technology policy, help lead the
program roll-out, and serve as advisors and troubleshooters
throughout the program. Giving students co-ownership of the
program increases engagement and reduces disciplinary issues.19

In addition to including student voices as key stakeholders in
educational programs, venture capitalists and philanthropists can
include more diversity in their funding and program teams and
encourage developers and entrepreneurs to include people on their
teams who share the backgrounds with those they are trying to



serve. Edtech companies can do more development and testing in a
variety of real-world contexts and include more teachers and families
as paid advisors and consultants. Uniting around shared purpose
empowers new voices for leadership in education and increases the
chances that designers of new edtech products and programs will
meet the needs of their target audiences.



Align Home, School, and Community

If it takes a village to raise a child, then edtech developers should
consider how programs can build capacity among not just young
people but their family members and caretakers as well. One
promising approach for supporting educational equity for young
people is creating new kinds of learning experiences for the adults
around them. As we discussed in the chapter on peer-driven learning
environments, Scratch is a block-based programming language and
social community where young people can code up games,
animations, and other programs. Qualitative interviews with
Scratchers, especially from before the widespread use of Scratch in
schools, revealed that many are from families in which one parent is
a computer programmer or engineer or has some other connection
to STEM and programming. When Scratchers grow up in families
with computing expertise, their learning is supported and accelerated
through that expertise. These kinds of advantages inspired Ricarose
Roque, now at the University of Colorado Boulder, to do her doctoral
work at the MIT Media Lab on a project called Family Creative
Learning. Roque engaged parents and children in creative-
technology workshops held at community-based organizations like
Boys and Girls Clubs. Unlike in more traditional crafts such as
knitting, parents and children have fewer intergenerational touch
points when it comes to new technology, particularly among less
tech-savvy parents. By hosting meals and conducting activities using
Scratch and the Makey Makey invention kit within safe and
welcoming spaces, the project builds capacity within families to
support children’s becoming digital creators. Some activities are
done separately by youth and parents or guardians, and some
activities are shared and done together. Kids and families build new
skills, parents have new strategies for supporting young people’s
learning with creative technologies, and families have an experience
that bonds and connects.20

Tech Goes Home is a similar project in the Boston Public Schools
in which families can get access to a $50 laptop and discounted
internet options. Parents of Boston Public School children take a
fifteen-hour computer literacy course taught by a teacher in the



child’s school, and at the end of the course, they can buy their
computer. The course isn’t only about using technology for learning;
it is also about helping parents use computers to find work and
community opportunities and stay connected through social media,
among other applications. Parents go home with a computer that
everyone in the family can benefit from, and parents have new skills
for guiding technology usage at home and a new relationship with a
teacher inside their child’s school. The program simultaneously
improves computer access, parent and child technology literacy,
home-school connections, and teacher relationships with
communities, all by situating a program about technology access in a
broader social context.21

LaunchCode is a program for adults based in St. Louis that
originally began as an opportunity for community members to take
an introductory programming MOOC together. Jim McKelvey, who
cofounded the payment processing company Square, wanted to
create more opportunities in his hometown of St. Louis, so he
sponsored a community group to take HarvardX’s CS50x course
together. The initial demand was much greater than expected, and
the program quickly moved from the local library to the Peabody
Opera House to accommodate demand. CS50x is an extremely
demanding course, and participants are very unlikely to finish without
external support—Harvard’s on-campus version of CS50 has a
veritable army of teaching assistants available almost around the
clock during the semester to support Harvard undergrads.
LaunchCode provided some of these same supports to help
participants successfully complete the MOOC, and then moved on to
include additional support for employment and interview preparation,
internships and apprenticeships, and other structures to help CS50x
grads (and later, grads of their own Introduction to Computer
Science course) move into careers in computer programming. The
HarvardX MOOC provided a valuable learning resource for
bootstrapping LaunchCode, and LaunchCode built a set of human
supports around the experience. These wrap-around services mean
that LaunchCode looks more like a community college than a
MOOC, and scaling supportive communities to create pathways of
opportunity is far more difficult that scaling and spreading a new



MOOC learning management system. But for those concerned with
issues of equity, blended approaches to addressing inequalities are
far more likely to be successful than online-only efforts.22



Engage Diverse Student Interests

A third strategy for addressing inequalities with technology is to
create entry points into learning experiences that connect to student
interests. As discussed in Chapter 3, connected learning is a model
advanced by Mizuko Ito and others that puts student interests at the
center of learning design and builds connections between learning
institutions so that interests that young people pursue at home and in
after-school activities can have academic connections with school-
based learning opportunities. Interest-based learning pathways start
with student passions and showcase connections between their
interests and academic subjects.23

In the Coding for All project, Scratch developers and designers
are building new entry points into the Scratch community that target
common interests of girls and students of color. The projects that
have been historically popular and featured on the Scratch website
include many with traditionally geeky themes around video games,
anime, and related topics. These are enticing entry points for some
young learners but discouraging for others. To create new entry
points, the Scratch team is creating Microworlds that provide
different ways into Scratch programming—including the Microworld
mentioned in Chapter 5 that emphasizes hip-hop and others that
feature such topics as fashion, art, and comedy—to help different
young people connect their interests to coding.24

In Chicago, the Digital Youth Network’s Digital Divas project
creates culturally relevant STEM learning activities for middle school
girls offered in after-school programs. Girls learn programming and
engineering through e-textiles and other design projects. In these
cases, designers are not only creating engaging new programs that
build on student interests, but also working with community partners
to ensure that they serve lower-income and minority students.25

There is no assurance that these kinds of approaches will work.
There is perhaps no group of parents that is more successful at
surrounding their children with interest-driven learning experiences
than upper-class white families. An edtech culture that simply
focuses on aligning technologies with student interests (“all student
interests matter”) will likely contribute to educational inequality, but a



focus on connecting with the interests of learners alienated from
schools or unable to access rich educational experiences could be a
powerful bridge across digital fault lines.



Study and Address the Needs of Specific Subgroups

Finally, serving subgroups well requires actively studying them,
addressing specific needs in particular communities, and deploying
targeted programs that give the greatest advantage to the neediest
groups. The research that I have conducted with René Kizilcec and
colleagues addressing social identity threat in MOOCs followed this
model; we studied variation in how students from different
backgrounds performed differently in MOOCs, identified ways we
might be able to support particular groups of learners who might
need extra scaffolding, and experimentally tested different
interventions, first in pilots and then in larger scale replications. Only
by understanding how different subgroups experience learning at
scale differently can we try to address some of the gaps in
opportunity that emerge.

The issue of pricing reveals how similar product features can
operate very differently in different social contexts. From 2013 to
2018 or so, most MOOCs were available for free (during this period,
Udacity, Coursera, and eventually edX added a variety of paywalls to
their products), and the evidence suggests that the bulk of benefits
of MOOCs accrued to more affluent learners. But there are other
online learning experiences that set prices at zero that do appear to
disproportionately benefit the families furthest from opportunity. In
particular, when the cost of an educational product is substantial for
low-income families but trivial for affluent families, free goods may be
particularly effective at closing gaps.

OpenStax develops free, peer-reviewed, openly licensed
textbooks for introductory college courses. A substantial portion of all
college enrollments in any given semester are in a relatively small
number of introductory courses: algebra, biology, calculus,
economics, psychology, and government, among a few others. The
textbooks for these survey courses can cost more than $100, a
substantial burden on students in community colleges and other
settings who may be paying only a few hundred dollars per credit
hour. OpenStax claims that by providing free alternatives, in the
2016–2018 school years, they saved students about $177 million in
textbook costs. While students from all backgrounds may be



benefiting from these resources, the families and students benefiting
most are those for whom a $175 textbook represents a major
financial hurdle.26

Similarly, Desmos has developed a free browser-based graphing
calculator as a direct competitor to the Texas Instruments line of
calculators, such as the TI-84+ that retails for over $100. The
Desmos graphing calculator has substantially more functionality than
a handheld calculator and represents a major improvement in terms
of accessibility through integration with screen readers and other
accessibility software. As with the cost of a textbook in the case of
OpenStax, the $100 price tag for a TI calculator is modest for
affluent families but a substantial burden for low-income schools and
families—especially when many families already sacrifice to make
more fully functional laptops, phones, and tablets available to their
children.

Targeting subgroups can also mean understanding the barriers to
access and progress that are unique to particular groups of people.
In 2014, Ben Castleman and Lindsay Page defined a phenomenon
that they called “summer melt.” Castleman worked at the MET
School in Providence, Rhode Island, an urban charter school that
was unusually effective at supporting students in making it through
high school and toward graduation with acceptances to colleges and
universities. As MET staff tracked their graduates past high school,
they discovered a shocking phenomenon: a surprising number—
between 10 and 40 percent—of high school graduates who were
accepted into college did not register for their first semester. This is a
problem almost unimaginable to the parents of elite students, who
can assume that college matriculation will naturally lead to
attendance and graduation. In studies of three large urban districts,
they discovered that schools that had successfully improved
graduation rates and college acceptance rates were losing students
in the transition to college.27

The bureaucratic hurdles that high school graduates faced
throughout the summer in registering for classes and applying for
financial aid were particularly mystifying for first-generation college
students. Castleman and Page joined with foundations, schools, and
other researchers in try to tackle this particular challenge, though



their initial efforts have had mixed results. They launched a series of
text-message-based interventions that reminded students of key
dates and actions related to enrollment, registration, financial aid,
and orientation. These interventions didn’t address every challenge
for every student, but they successfully raised college entry by
several percentage points at very low cost. Unfortunately, these
initial improvements in registration did not lead to improvements in
graduation rates among students receiving the “summer melt”
treatment; students who got a boost over the bureaucratic hurdles
into college didn’t necessarily persist all the way through. The
ultimate success of Castleman and Page’s research program will
depend upon deeply understanding the needs and challenges of an
important group of students and then identifying widely accessible
technologies that could be used to support students’ learning
trajectories.28



Building a New Movement for Edtech and Equity

As a field, we understand the challenges of digital fault lines much
better than we understand potential solutions. We have a substantial
body of research that characterizes myths and realities about
education technology and equity, but our understanding of solutions
is a spottier collection of case studies. The field needs a surge of
research into strategies for digital equity to guide new education
technology efforts.

One way to approach this research effort would be to consider the
full life cycle of an education technology product through a set of
stages—bringing together a team, funding an idea, developing the
technology, selling and marketing to schools and learners,
implementing in schools or other environments, collecting feedback
and data, and evaluating programs. Issues of equity can be
addressed at each of these stages: Does the founding team have a
diverse leadership that can bridge social gaps between technology
developers and student communities? Will the funders hold grantees
or entrepreneurs accountable for addressing equity goals? Are the
learners who need the most support included as codesigners in the
development process? Do data collection and evaluation practices
investigate the needs, strengths, and opportunities of different
subgroups?

To provide guidance at each of these stages, we need much more
research about effective, equity-focused practice. The case studies
we have of Tech Goes Home, Family Creative Learning, OpenStax,
and other initiatives are a terrific start, but we need to develop a
much richer understanding of the programs and strategies that are
effectively addressing the needs of the learners farthest from
opportunities. From additional case studies, we could identify
practices worthy of more rigorous research and develop a set of
design principles for digital equity that could guide the work of all the
different stakeholders who have a hand in supporting learning
through new technologies. The principles in this chapter offer a
starting point for that work.



 



7
THE TRAP OF ROUTINE ASSESSMENT



Routines for Computers, Unstructured Problem Solving, and
Complex Communication for People

AUTOGRADERS EXCEL AT assessing routine tasks. These are exactly the
kinds of tasks that we no longer need humans to do.1

As personal computers were widely adopted in the workplace
throughout the 1980s and 1990s, executives, policymakers, and
researchers wondered what influence these new machines would
have on human labor. An early hypothesis was that computers would
complement high-wage workers and replace low-wage workers—
computers would replace cashiers but not professionals like doctors.
Computerization has certainly replaced human work in the labor
market, but the story that has unfolded over the last forty years is
much more complex than this simple prediction. Economists
interested in education have investigated computerization not just to
understand how labor and skill demands would change, but to better
understand how these changes could and should impact education.
Richard Murnane and Frank Levy have explored these issues for
many years, and one story they use to help people understand
automation is about airline check-in counters.2

Some of us remember checking in for an airplane flight with an
actual human being. The conversations with these people were
extremely structured. If you fly frequently, you can probably
remember exactly how these conversations are supposed to go:

Do you have a ticket?
What is your final destination?
Do you have identification?
Do you have bags to check?
Have your bags been in your possession since you packed them?
Did anyone else help pack your bags?
Here are your tickets and luggage receipts. Have a nice flight.

The people behind the counters were solidly middle-class
workers. They joined unions, wore uniforms, and had decent salaries
and benefits. And many of these jobs are gone. Today, few people
check in first with a human being to get on an airplane.



The information needed to process these conversations was
highly structured—a ticket is a number, a passenger name, a seat
ID, and an origin and a destination; the baggage questions are yes /
no; identification cards are designed to be scanned and matched to
people. As a result, these conversations could be encoded into
computers built into kiosks, and these kiosks could inexpensively
and ceaselessly carry on these conversations with passengers day
and night. As mobile technologies and networks spread, these
kiosks are now complemented by smartphone apps that carry on
these same conversations with you from the palm of your hand.

Still, if you visit a bank of airline check-in kiosks, you will see
uniformed airline employees behind the counters and amid the
kiosks. As an educator, I am extremely interested in these people—
who they are, what they do, and what they are good at. In a sea of
automation, what are the tasks being done by the last few people
whose jobs could not be automated?

Airline counter staff tackle two general kinds of problems that
kiosks and mobile apps don’t handle well. First, there are problems
that come up periodically that were not anticipated by the designers
of the kiosk systems: flights get diverted, payments get mixed up,
and other out-of-the-ordinary events occur. Murnane and Levy call
these “unstructured problems,” problems whose outcomes and
solution paths are not immediately clear. Humans have what
economists call “a comparative advantage” over computers in these
kinds of challenges, meaning that as tasks get more complex and ill
structured, the cost of developing and maintaining software to
provide a service becomes higher than the cost of hiring people.3

Second, people have all kinds of difficulty communicating with the
kiosks. They cannot find the right kiosk, or they do not speak a
language programmed into the kiosk, or they forgot their glasses, or
they are so hopping mad at the airline that they just bang on the
kiosk. Human beings are better than computers at “complex
communication,” problems whose solutions require understanding a
task through social interaction, or when the task itself involves
educating, persuading, or engaging people in other complex ways.4

Complex communication and unstructured problem solving are
domains where for the foreseeable future, human beings will out-



perform computers. David Autor, along with Levy and Murnane, took
the list of hundreds of job codes maintained by the United States
Department of Labor and labeled each job as routine manual work,
routine cognitive work, work requiring complex communication, or
work requiring ill-structured problem solving. They found that routine
work was disappearing as a proportion of the labor market, and jobs
requiring complex communication and expert thinking were
expanding. Subsequent studies found that certain kinds of routine
jobs were persisting in the service sector, but these were typically
jobs that could be performed by any interchangeable person without
any particular skills, and they typically paid the state- or federally
mandated minimum wage.5

This labor market research by Levy and Murnane is the original
source for nearly every list of twenty-first-century skills promoted by
education reformers over the last two decades. Perhaps the most
popular formulation has been the “four Cs” of creativity, critical
thinking, communication, and collaboration. The first two of the four
Cs (creativity and critical thinking) are derivatives of unstructured
problem solving, and the latter two (communication and
collaboration) are derivative of complex communication.6



Computers Changing Work Up and Down the Labor Force

These kinds of shifts can also be seen within job categories, and the
effects are similar across very different kinds of jobs and wage
levels. One of my favorite illustrations of this phenomenon comes
from a cabin that I own in rural Vermont. My mother bought the cabin
thirty-five years ago, and she had a hot-water heater installed by the
local plumber. Twenty-five years later, my mother passed, my brother
and I inherited the house, and the hot-water heater needed
replacing.

The same plumber was still working after all those years, and he
installed a beautiful new system. After he finished, he brought me
into the utility closet to explain it. The heater had an LED panel that
under normal operations displays the word “GOOD.” The plumber
said that if that panel ever said something other than GOOD, I
should hit the reset button and wait a while. If that didn’t work, I
should toggle the power system on and off and reboot my hot-water
heater. I asked him what to do if that didn’t work, and he explained
that only one plumber in the Upper River Valley of Vermont had
flown to Scandinavia to get trained on how to reprogram this kind of
heater, and I would have to call him.

Over the years, I have thought about that tradesman in the 1960s
and 70s completing his plumbing apprenticeship, learning how to cut
and solder pipes, install new appliances, and get frozen houses in
rural Vermont up and running again. What would it be like to explain
to the young men in that apprenticeship program that fifty years later,
plumbers would be computer programmers? Not only that, but the
computers inside hot-water heaters can solve the easy problems
themselves through rebooting and power cycling. Plumbers with
computer programming skills are needed only to solve the
uncommon, non-trivial problems that the computer cannot resolve on
its own.

There are similar stories on the other end of the economic
spectrum. In legal work, a common task is discovery, the request or
retrieval of documents from a deposition that may contain evidence
of malfeasance. In days gone by, firms might have hired a small
army of lawyers to read every document looking for evidence. New



services automate part of the discovery process by having
computers scan and examine documents to look for keywords or
other incriminating patterns. A much smaller subset of documents
can then be turned over to a much smaller subset of lawyers for
examination.7

In every profession in every sector of our economy, enterprising
computer programmers are identifying tasks that can be turned into
routines and then writing software, developing apps, creating robots,
and building kiosks that can replace those elements of human work.
Self-driving cars represent one much sought after milestone in the
development of automation technologies. In The New Division of
Labor, published in 2005, Levy and Murnane described a left-hand
turn into oncoming traffic as the kind of decision that was so
complex, with so many variables of cars, conditions, pedestrians,
animals, and so forth that computers could never learn to reliably
and safely decide when to turn left. And of course, roboticists,
artificial intelligence specialists, machine vision experts, and others
are working furiously to program self-driving cars that can turn left
against traffic, among many other complex decisions.8

As an educator, one of my foremost concerns is whether our
educational systems can help all students develop the kinds of skills
that computers and robots cannot replicate. Our efforts as educators
should have a special focus on domains where humans have a
comparative advantage. If computers are changing the demands of
the labor market and civic sphere and requiring that students
develop proficiency with complex skills, what role can large-scale
learning technologies play in addressing those challenges?

As we observed in the previous chapters, the value proposition
offered by instructor-guided and algorithm-guided learning at scale is
that learners can engage in educational experiences facilitated by
computers, and they can advance through those learning materials
on the basis of automated assessments. Most MOOCs and adaptive
tutoring systems include problems, quiz questions, or other activities
that purport to assess learner competencies. On the basis of those
assessments, they offer feedback or credentials, or, in the case of
personalized tutors, additional problems or learning resources based
on those performances.



So what kinds of domains of human performance can we evaluate
with computational systems?



(Mis)Understanding Testing: The Reification Fallacy

Before addressing this question, it’s worth taking a moment to
consider the “reification fallacy,” when we uncritically believe that
something’s name accurately represents what that thing actually is.
Psychometricians are statisticians who study testing and all the ways
tests and testing data are understood and misunderstood. One of the
most common fallacies in evaluating testing systems is believing that
the name of a test accurately defines what it tests. In common
parlance, we might call something an “algebra test,” but just calling it
an algebra test doesn’t necessarily mean that it’s an accurate
measure of a person’s ability to do algebra. An immigrant student
just starting to learn English might understand algebra very well but
fail an algebra test that depends on English language fluency. The
thing called an “algebra test” isn’t just an algebra test, but also an
English (or maybe a “mathematical English” or “academic English”)
test and an evaluation of the knowledge not just of subject matter
content but of test-taking strategies.9

Also, an algebra test won’t evaluate every possible dimension of
algebra. All tests are an effort to sample a learner’s knowledge within
a domain. An algebra test might include many items on rational
expressions and very few on reasoning with inequalities, so the test
might do a good job of evaluating learners in one part of algebra and
a lousy job evaluating in another. The reification fallacy reminds us
that something called an “algebra test” is never a universal test of
algebra. A well-designed assessment might sample widely from
representative domains of algebra while providing enough supports
and scaffolds so that the assessment is not also testing English
language fluency, or test-taking skills, or other domains. But all
assessments are imperfectly designed.10

An implication of the reification fallacy is that all tests are better at
measuring some parts of what they claim to be testing and worse at
others, and tests inevitably also evaluate domains that are not
named in the description of the test. When educators and
instructional designers use computers to automatically grade
assessments, the strengths and limitations of computational tools



dramatically shape what parts of a given domain we examine with a
test.



Computers, Testing, and Routines

Much as computers out in the world are good at highly routine tasks,
computers used in educational systems are good at evaluating
human performance when that performance can be defined in highly
structured ways or turned into routines with well-defined correct and
incorrect answers.

In Chapter 2, I referred to one of the first computer programming
languages that was developed exclusively for educational purposes:
the TUTOR language, written in the 1960s for the PLATO computer
systems. Over time, PLATO supported a remarkably wide variety of
learning experiences, games, and social interactions, but some of its
earliest functions were creating computer-assisted instructional
lessons in which screens of content delivery alternated with
assessments. These assessments used a pattern-matching system.
Instructional designers could enter certain words, numbers, or
features into an answer bank, PLATO would pose a question to
students, students would type in an answer (which appeared
immediately on the screen in front of them—a major advance at the
time!), and the PLATO systems would evaluate whether there was a
match between the learner’s answer and the acceptable answers in
the bank.11

This kind of pattern matching is still the primary way that
computers evaluate answers. There is no automated evaluation
system that employs reasoning like human reasoning, that evaluates
meaning, or that makes any kind of subjective assessment. Rather,
computers compare the responses that students submit to “answer
banks” that encode the properties of correct and incorrect answers.
Computers determine whether or not new answers and the
established bank of answers are syntactically or structurally similar.
Computers evaluate answers based on syntax and structure
because computers understand nothing of substance and meaning.

Over time, we have developed increasingly complex tools for
pattern matching. In the early version of the TUTOR programming
language, if an instructional designer wanted to accept “5,” “five,”
“fiv,” and “3 + 2” as answers to a problem, those alternatives (or rules
defining the complete set of alternatives) would all need to be



manually programmed into the answer bank. We have increasingly
sophisticated answer “parsers” that can evaluate increasingly
complex inputs, but at a fundamental level, computational
assessment tools match what students submit with what assessment
designers have defined as right.12

Most automated grading systems can only evaluate structured
input. Grading systems can automatically evaluate multiple-choice-
type items (if the correct answer is programmed into the system).
They can evaluate quantitative questions for which there is a single
right answer (“5”) or a set of right answers (“5” and “-5”). In
chemistry, they can check for balancing of chemical equations,
where the inputs aren’t strictly numerical but can be converted into
numerical systems. When a system can be evaluated through
computational logic, like the circuit and electronics systems featured
in MIT’s first MOOC, 6.002x, instructors can define success criteria
even for somewhat open-ended challenges (“using these simulated
parts, build a complete circuit that turns this simulated light on”), and
computers can identify which student-built systems meet the
success criteria.

When considering these capabilities, it is important to remember
that even in the most quantitative of subjects and disciplines, not
every human performance that we value can be reduced to highly
structured input. Consider mathematics. The Common Core State
Standards, a set of math and literacy standards widely adopted in
the United States, defines the process of mathematical modeling as
including five steps: (1) finding a problem in a set of features; (2)
arranging that problem into an appropriate model—which could be
an equation, table, schematic, graph, or some other representation;
(3) resolving computational problems within the model; (4) putting
numerical answers in their original context; and (5) using language to
explain the reasoning underlying the models and computations.13 As
a field, our autograding tools are good at evaluating the
computational component, and of the five parts of mathematical
modeling, that component is the one thing we no longer need human
beings to do. When I write an academic paper with statistical
reasoning, I typically will use a calculator or computer to make every
calculation in that paper. The value that I bring as a human into my



academic collaboration with computers is that I, not the computers,
know what the interesting problems are. My value comes in asking
interesting questions, identifying interesting problems, framing those
problems for both humans and computers to understand, and then
presenting structured equations and inputs that allow computers to
compute solutions. Once the computer has (usually instantly)
computed a solution, then I take the helm again and explain how the
computer’s computational answer fits into the context that I initially
described, and I craft a written argument to explain the reasoning
behind my solution process and what consequences the solution has
for my academic field or for human society.

In my collaboration with statistical computing software, my added
value comes from doing all of the things that software cannot do—
analyzing unstructured data or interesting problems, framing those
problems in (subjectively judged) useful ways, and using natural
language to explain my process. Computers cannot do those things,
and therefore they generally cannot be programmed to evaluate
human performance on those kinds of tasks (though I’ll come to
some advances below). And since we cannot develop autograders
for these things, we tend not to evaluate them at scale in math class.
Rather, what we evaluate at scale in math class are the
computational things that computers are already good at and that we
don’t need humans to do any more.14

Here again, the idea of the reification fallacy is useful. All
throughout their careers, students take things called “math tests,” but
if these math tests are computer graded (or if they are limited to
problem types that could be graded by computers), then we know for
certain that these tests are only evaluating a portion of the full
domain known as “math.” A student who scores well on a computer-
graded “math test” may be good at computation, but the test has not
evaluated his or her ability to find interesting problems, frame those
problems, explain his or her reasoning, or any of the other things that
we pay professional mathematicians to do.

I do not mean to imply that we should not teach computation in
schools. Reasoning about mathematics and writing about
mathematics require an understanding of computation, and young
people should learn all kinds of computation. Students should still



memorize the kinds of mathematical facts—multiplication tables,
addends that combine to ten—that are incredibly useful in all kinds of
situations where it is advantageous to have faster-than-Google
access to those facts. But those computational facts should be
building blocks for students’ learning how to go beyond quantitative
computation into reasoning mathematically.

The trap of routine assessment is that computers can only assess
what computers themselves can do, so that’s what we teach
students. But in our economies and labor markets, we increasingly
do not need people to do what computers are already good at. We
need students to develop complex communication skills and take on
unstructured problems—problem finding and framing rather than
problem computing in mathematics—and explain their reasoning.
But school systems cannot cheaply test these important domains of
mathematics, so school systems do not assess these dimensions at
scale, and so teachers, publishers, and others diminish the
importance of these dimensions of mathematics in curriculum and
teaching. To be sure, there are some fabulous math teachers who do
teach a more complete mathematics, but when they do so, they are
working against the grain.



Machine Learning and Assessment

If we see improvements in assessment technologies in the decades
ahead, where computers develop new capacities to evaluate human
reasoning, it will most likely be connected to advances in “machine
learning.” Machine learning is a field combining algorithms and
statistics in which computers are programmed to make
determinations without following specific rule sets but by making
inferences based on patterns. For assessment, the most relevant
branch of machine learning is supervised machine learning, which
involves training computer programs to label data or make decisions
such that their results are similar to how proficient human beings
might label data or make decisions. For instance, native speakers
listening to language learners trying to pronounce a series of words
would label the words as correctly or incorrectly pronounced.
Computer programmers then take these “training” data and try to use
them to teach computers how to recognize correctly or incorrectly
pronounced words.15

The machines doing this learning will not “listen” to the words in
any kind of meaningful sense; or at least, they will not listen to words
in the same ways that humans do. Rather, computer programmers
will instruct the machines to take the audio files of sounds and then
break them down into very small audio wave segments and compute
certain features of these microsounds, such as pitch and volume.
The machine-learning algorithm then calculates which of these
quantitative sound properties are more strongly correlated with
correct pronunciations and which are more correlated with incorrect
pronunciations. When the machine-learning algorithm inputs a new
sound that hasn’t been labeled as correct or incorrect, it will compare
the quantitative properties of the new sound file with existing sound
files and produce a probability that the new sound file is more like a
correctly pronounced sound file or more like an incorrectly
pronounced sound file. Humans can then review these computer-
generated assessments and reevaluate them (“No, computer, this
sound that you labeled as ‘0’ for incorrect pronunciation should
actually be labeled a ‘1’ for correct pronunciation.”). Scoring
algorithms can be updated based on these tuning improvements.16



Machine-learning-based approaches to improving autograders are
most useful when two conditions are true: when a set of rules cannot
describe all possible right answers, and when human evaluators can
distinguish between right and wrong (or better and worse) answers.
If a set of rules can be programmed to describe all possible right
answers (as with a circuit simulator or an arithmetic problem), then
machine learning is unnecessary; a set of programmed evaluation
rules will do. If humans cannot reliably distinguish between correct
and incorrect, then humans cannot generate a set of training data
that can be used to program computers. Machine-learning
approaches to computer-assisted pronunciation training are
promising because both of these conditions are true. It is impossible
to develop a strict set of rules for correct pronunciation in the same
way that computer programmers could develop a strict set of pattern-
matching rules for defining the correct answer to an arithmetic
problem. At the same time, most native speakers can trivially
recognize the difference between a correctly or incorrectly
pronounced word. Now, there is “fuzziness” in these human
assessments—will a native English speaker from Minnesota
recognize my Boston argot of “cah” as an acceptable pronunciation
for automobile?—but training data do not need to be labeled with
perfect agreement among human beings in order for machine-
learning algorithms to develop predictions that work with acceptable
levels of reliability.

Through these machine-learning-based pronunciation
technologies, you can speak “por favor” into your favorite language-
learning app, and the app can make an automated assessment as to
whether you are pronouncing the phrase more or less correctly. It is
not the case that your phone has “listened” to you saying “por favor”
in the same way that your Spanish teacher in middle school did.
Instead, your language-learning app took the sound file for your “por
favor,” broke it down into many tiny sound segments, assessed
certain quantitative features of those segments, used those
assessments to create a quantitative evaluation of your sound file,
and then matched those quantitative assessments against a library
of quantitative models of “por,” “favor,” and “por favor” that had been
labeled by humans as correctly or incorrectly pronounced. From that



comparison, the pronunciation autograder then made an estimation
as to whether the quantitative model of your sound file was more
similar to the correctly pronounced sound files or the incorrectly
pronounced sound files. This assessment is probabilistic, so a
programmer determined the tolerance for false positives and false
negatives and decided on a threshold of probabilistic confidence that
the language-learning app had to reach in order to assign your
sound file a rating of “correct.”

All of this is essentially a magnificent kluge of a system to do the
same kind of pattern matching that programmers trained the TUTOR
language to do with the PLATO system fifty years ago. It takes
something as idiosyncratic as the sound of a word and breaks that
sound down into a series of quantitative features that can be
compared to an “answer bank” of similar quantitative sound models.
We have only the tiniest understanding of all the marvelous
complexity of what happens inside the sea of neurons and chemicals
in the human brain that lets a child instantly recognize a
mispronounced word, and our computers take this nuanced, fuzzy
assessment that humans can make and transform it into a series of
routine computational tasks that can result in a probabilistic
assessment.

Training these systems requires vast stores of data. When Google
trains its image search engines to classify new images, it can use as
training data the enormous corpus of existing images on the internet
that have been captioned by human beings. There is no naturally
occurring source of data where humans label text as pronounced
correctly or not, so companies developing language-learning apps
must create these data. As you might imagine, it’s relatively
inexpensive to have expert humans rate pronunciations for the most
common thousand words in the most common pronunciations of a
single language, but it becomes much more expensive to develop
training sets that include more words and phrases, more variation in
acceptable dialect and accent, and more languages. If a
pronunciation detector is trained using data from native Spanish
language speakers from Spain learning English, the classification
algorithms used by the detector will work with decreasing fidelity with
Spanish language learners from Latin America, native Portuguese



speakers, other Romance language speakers, and native Mandarin
speakers. The kinds of errors that native Mandarin speakers make
learning to pronounce English are sufficiently different from the kinds
of errors that Spanish speakers make that new data are needed to
train classifiers that can effectively evaluate the quality of
pronunciation from those different speakers. Vast stores of human-
labeled data are required for robust pronunciation assessment, and
the heterogeneity of the labeled data inputs—such as having novice
learners from many different native language backgrounds and
experts from many different contemporary dialects of the target
language—plays a major role in how effectively the assessments
can correctly autograde learners from different backgrounds. The
costs of this data collection, labeling, and assessment system
training are substantial. Language-learning systems will make steady
progress in the decades ahead, but the challenges of recognizing
pronunciation demonstrate how far away we are from an adaptive
tutor that can listen to natural speech and provide feedback like a
native speaker.17



Machine Learning and Automated Essay Scoring

Perhaps the most prominent place where machine learning has been
applied to advancing autograding is in automated essay scoring. If
automated essay scoring worked reliably, then throughout the
humanities, social studies, sciences, and professions, we could ask
students to demonstrate their understanding of complex topics
through writing. Ideally, as essay questions were added to various
high-stakes exams and other facets of our testing infrastructure,
teachers would need to assign more high-quality writing assignments
to help students do well on these gate-keeping experiences. Better
tests could allow for better instruction. As in most education
technologies, the state of the art does not come close to these
majestic hopes. Automated essay scoring provides limited, marginal
benefits to assessment systems, benefits that are neither completely
trivial nor truly revolutionary. It is possible that in the years ahead,
these systems will continue to improve, but gains will probably be
incremental.18

The mechanics of automated essay scoring strike most educators
as weird. In evaluating essays, human scorers examine both syntax
—the arrangement of words and punctuation—and semantics, the
meaning that emerges from syntax. Just as computers do not
understand the sound of words, computers do not understand the
meaning of sentences, so computers only parse syntax. An
automating essay-scoring tool starts with training data—a large
corpus of essays that have been scored by human graders
according to a rubric. Then, the computer takes each essay and
performs a variety of routines to quantify various characteristics of
the text. One such technique is called—and this is a technical term—
the bag of words, where the software removes all punctuation,
spacing, and word order; removes all stop words like a, an, the, and
and; stems all words so that jumping, jumped, and jump are all the
same word; and then produces a list of all remaining words in the
document with their frequency counts. Autograders can perform a
variety of other similar calculations, such as total word count or n-
grams, the frequency with which word pairs or trios occur with each
other. The autograder then develops a model of correlations



between human scores and the quantized syntactical features of the
essay.

With enough training data on a specific essay topic written by a
specific target audience, usually hundreds of essays from a
particular standardized test essay question, each newly submitted
essay is run through the same syntactical algorithms (tossed into a
bag of words, counted, weighed, and so on). The autograders can
make a prediction, based on feature similarity, of how a human rater
would grade an essay with similar syntactic features. Through this
process, scores generated by autograders can achieve a level of
reliability similar to human graders. Here, reliability refers to the fact
that if hundreds of new essays were given to two humans and a
computer to be graded, the computer’s grade will disagree with the
score from any given human rater about as often as any given
human disagrees with another human.

The case in favor of this approach to grading is that it allows for
more inexpensive grading of natural language writing at scale. The
assessment conducted by human graders in these large-scale
writing assessments is not particularly good. Raters are typically
given only a couple of minutes per essay to provide a holistic
assessment with no qualitative feedback for students, but computers
can achieve something close to this level of assessment quality and
reliability. By using these technologies to increase the number of
essays that are included in standardized tests, the hope is that
educational systems are more likely to teach writing in their curricula,
and even if the assessment is imperfect, it is better than
standardized tests without writing.19

The case against automated essay grading is that it ignores the
essential role of the audience in writing, that it replicates grading that
is of low quality to begin with, and that it is difficult to scale. People
don’t write to have computers dump our craft into a bag of words; we
write to reach other people or ourselves. Writing to satisfy the
syntactic criteria of a software program drains the meaning out of the
activity of writing. The semantic meaning of the grade itself is also
somewhat different. A human grade signifies that a person has
evaluated the semantic meaning of a piece of writing against a set of
criteria and made a claim about quality. A computer grade is a



prediction about how the syntactic qualities of a document relate to
the syntactic qualities of other documents. Advocates argue that
these different means bring about the same grading ends, but critics
of autograding argue that the process of these educational activities
matters.

Finally, the whole system of standardized test writing is not a
crown jewel of our global educational system. The prompts tend to
be banal, the time constraints of writing unrealistic, and the quality of
human assessment rushed and poor. Developing essay banks and
training datasets large enough to reliably autograde new essays is
expensive and time consuming, requiring a big investment from
students, human raters, assessment designers, and so forth.
Importantly, training data from one essay do not allow an autograder
to reliably evaluate another essay, so each particular prompt must be
trained. Incrementally making this system better by creating ever-so-
slightly-less-lousy autograders may not be a productive path to
improving teaching and learning.20

One clever way to critique essay autograders is to program essay
autowriters. Given that computers evaluate patterns in language
syntax, if humans can decode those patterns, then they can use
computational tools to generate new essays that are semantically
meaningless but syntactically adhere to the patterns favored by
grading algorithms. Les Perelman, the emeritus director of MIT’s
Writing across the Curriculum program (now called Writing, Rhetoric,
and Communication) and an inveterate critic of automated essay
grading, worked with MIT students to develop the Babel Generator,
which can produce semantically meaningless essays that
nonetheless score highly on automated essay rubrics. Perelman’s
team used the Educational Testing Service’s ScoreItNow! tool to get
automated feedback on their autogenerated essays. In an essay
about mandatory national school curricula that started with the
sentence, “Educatee on an assassination will always be a part of
mankind” and concluded, “Therefore, program might engender most
of the disenfranchisements,” they scored a six, which ScoreItNow!
describes as a “cogent, well-articulated analysis of the issue [that]
conveys meaning skillfully.”21



Autowriters probably aren’t a threat to proctored standardized
exams—though presumably, a determined student could memorize
an autogenerated nonsense essay and submit it. But autowriters
could be problematic for the grading of un-proctored essays, and
they certainly present a striking kind of critique.22

When I read about autowriters and autograders, I like to imagine
students downloading and running computer programs that
automatically write essays while instructors use computers to
automatically grade those essays. While the computers
instantaneously pass these essays and grades back and forth,
students and instructors can retire to a grassy quad, sitting together
in the warm sun, holding forth on grand ideas and helping each other
learn.

As with many ideas in education technology, this dream is actually
quite old. When Sidney Pressey presented the first mechanical
teaching machines in the 1930s, students at the Ohio State
University student-run publication the Ohio State University Monthly
wrote that if someone could build a second machine that
automatically depressed the correct keys on Pressey’s mechanical
multiple-choice machine, then the future of education would be
“perfect in the eyes of the student.”23



Autograders in Computer Programming

Perhaps the most complex human performances that we can
automatically grade reasonably well are computer programs. The
field of computer programming has evolved in part through the
development of tools that give feedback to computer programmers
on their software. Many computer programmers write in what are
called integrated development environments, or IDEs, that perform
certain kinds of automated work for computer programmers. For
instance, a computing script might include a number of variables that
need to be modified and called on through a program, and an IDE
might track those variables for programmers and let them select a
variable from a list rather than needing to remember the exact right
string of characters. Many IDEs have auto-complete functions that
let programmers type the first few characters in a string or function
and then select the right string or function from a list. Integrated
development environments also have features that give
programmers feedback on errors that are triggered in running a
program; when a program fails to run properly because logic breaks
down somewhere, IDEs automatically parse the code to identify
possible sources of error. In a sense, every time a computer
programmer runs a program, it is a kind of formative assessment
task, and good IDEs give programmers feedback about what is
working and what is not.

Given that automatically providing feedback on code is central to
the development of computer programming as a discipline and
profession, it is perhaps no surprise that online education systems
have a powerful suite of tools for evaluating computer programs. As
assignments, students write computer programs, and then
instructors create other computer programs that evaluate the quality
of students’ programs along a number of dimensions: Does the
submission meet engineering requirements? How quickly does it
run? How many or how few lines of code are required? Does the
code meet design specifications? Even if the code that students are
submitting is relatively complex, automated grading tools can
evaluate many important dimensions of the quality of that human
performance. Computer programming probably represents the



pinnacle of computational assessment of complex human
performance.

For all that, however, the reification fallacy looms just as large
over computer science as over any other domain. Writing computer
programs that pass engineering tests is only a fraction of what good
computer programmers do. As Hal Abelson, a longtime computer
science professor at MIT and collaborator of Seymour Papert, once
argued (with collaborators Gerald and Julie Sussman), “We want to
establish the idea that a computer language is not just a way of
getting a computer to perform operations but rather that it is a novel
formal medium for expressing ideas about methodology. Thus,
programs must be written for people to read, and only incidentally for
machines to execute.” Abelson’s point is that it is not enough to write
a computer program that passes an engineering test; the code
should be written in such a way that another reader should be able
to understand how the programmer has gone about solving a
problem. This information is conveyed in the order of operations, the
naming of variables, how the code is structured, and how comments
within the code explain how the program proceeds. In Ableson’s
framing, everything that can be computationally evaluated by
autograders is the “incidental” part of programming. Autograders that
evaluate for “style” can evaluate whether a given code snippet
adheres to certain well-established conventions, but only another
human programmer can determine if a given code submission is
written in such a way as to be parsable to other human beings as a
medium for expressing ideas about methods.24

Along the same lines, computer programming is about
understanding the needs of human systems, balancing engineering
demands with broader societal concerns, collaborating among teams
to weigh priorities, and a thousand other concerns that are both
common to other engineering disciplines and unique to software
engineering. As marvelous as our autograders are for evaluating
computer programming, they still can evaluate only a fraction of the
knowledge, skills, and dispositions required to be a good software
engineer. To say that someone has “aced” a computer-graded exam
in a computer programming class doesn’t mean that he or she has
all the skills to be a good software engineer, only that he or she has



demonstrated proficiency in the skills that we can currently assess
using autograders.



Escaping the Trap of Routine Assessment, One Innovation at
a Time

The trap of routine assessment has two interlocking components: as
automation technologies advance, the labor market and civic sphere
will put a premium on non-routine skills that computers cannot do. At
the same time, computers mostly assess the routine skills that
humans no longer need to do. As educators, there is probably little
that we can do to stem the tide of automation technologies reshaping
the workplace, but it may be possible to continue to develop
assessment technologies that slowly expand the range of complex
human performances that can be automatically assessed.

As one example, MIT math educators have developed for their
calculus MOOCs a new assessment tool for evaluating how students
draw curves on a graph. In learning calculus, students are often
tasked with evaluating functions and then drawing those functions as
curves on a Cartesian plane or drawing their integral or derivative.
The goal is not necessarily to perfectly plot these curves but rather to
make sure that they cross the x axis and the y axis at roughly the
right spot, that they go up or down when they are supposed to go up
or down, and that they approach an asymptote at roughly the right
point.25

Drawing these curves is essential to learning the basics of
calculus, so the MOOC team in the Mathematics Department at MIT
developed a system to analyze student submissions and evaluate
their quality with enough confidence to assign them a grade. Before
this innovation, one of the only options for an automated assessment
to test students on their conceptual understanding of derivatives and
integrals would have been a multiple-choice item displaying four
graphs and asking students to recognize the right one. The new tool
allows instructors to evaluate students’ ability to draw, rather than
just recognize, curves. It opens up a wider space for math instructors
to computationally assess increasingly complex human performance.

Every assessment involves sampling from a domain. Because no
test can cover all the knowledge, skills, and dispositions required for
success in a domain, test designers try to choose items that form a
representative sample of skills. In this one example, the MIT calculus



team expanded the proportion of the full domain of calculus skills
and knowledge that could be sampled by test designers relying on
autograders. If we go back to our framing of mathematical modeling
as consisting of five steps, then this particular advancement stands
out because it allows students to demonstrate their proficiency with a
dimension of problem representation, not just another form of
calculation. It is through these kinds of steady, incremental advances
that assessment technologies will allow for a greater range of human
performances to be evaluated by machines. And as the field
improves its capacity for assessment, these kinds of performances
are more likely to appear in curricula, to be taught, and to be learned
by more people. The pathway beyond the trap of routine assessment
involves developing thousands of other applications like the calculus
curve grader, each tackling the evaluation of some new element of
complex human performance.



Stealth Assessment

One of the most intriguing lines of research into automated
assessment is called “stealth assessment,” or assessing students as
they go about performing learning tasks rather than during special
activities called “assessment.” Typical assessment exercises can
feel disconnected from the act of learning; learning stops on Friday
so that students can take a quiz. What if classroom assessment
could look more like formative assessment in apprenticeships?
Consider, for instance, an apprentice woodworker turning a chair leg
on a lathe while a nearby journeyman offers tips and feedback as the
apprentice goes about the task. In this context, assessment naturally
is part of the process of building a chair in the woodworking shop.

What might such assessment look like in physics or math?
Several researchers, notably Valerie Shute at the University of
Florida, have created online games where gameplay requires
developing an understanding of mathematical or scientific
phenomena, and as players engage in the game, they create log
data that can be analyzed for patterns of play that correlate with
other measures of scientific understanding. In the game Newton’s
Playground, players engage in tasks that require an understanding
of Newtonian motion. In the research study, students do a pre-test
about Newtonian motion, play the games, and then do a post-test.
These tests effectively serve to “label” the gameplay data, since
patterns found in log data can be correlated with scores afterward on
a test. The goal is to have the patterns of effective play be identified
with sufficient reliability that in the future, it would become
unnecessary to give the test. A student who demonstrated sufficient
understanding of Newtonian physics through a video game could be
evaluated by gameplay rather than a distinct evaluation event.26

Though the notion is promising, implementation proves to be quite
difficult. Developing playful learning experiences where students
demonstrate important mathematical or scientific reasoning skills is
quite hard, and substantial investment can be required in developing
the game and the associated assessment engine for a handful of
content standards. Researchers have explored the promise of using
stealth assessment to evaluate competencies that aren’t traditionally



assessed by tests, such as creativity, patience, or resilience in
solving problems. These kinds of assessments might provide a
comparative advantage in the future, but as of yet, these systems
remain research pilots rather than widely deployed assessment
systems.27

Perhaps the biggest hurdle is that gameplay data in these virtual
assessments often don’t reliably correlate with competencies or
understanding. When students are tested in a game environment,
their behavior is shaped by the novelty of the environment. A student
who appears inefficient, hesitant, or confused might understand the
content quite well but not the new environment, and their patterns of
play might have enough similarities with students who don’t
understand the content to make distinguishing patterns difficult. It
may be possible with more research and development to overcome
these kinds of hurdles so that rather than stopping learning to make
time for assessment, online learning environments can simply track
student problem solving as it happens and make inferences about
student learning as the learning is happening.



The Future of Assessment in Learning at Scale

Is the trap of routine assessment a set of temporary hurdles that will
be overcome by more advanced technologies or a more permanent
and structural feature of automated computer assessment? Techno-
optimists will point to the extraordinary gains made by artificial
intelligence systems that can identify photos online, play chess or Go
at superhuman levels, or schedule an appointment with a hair salon
over the phone. These are examples of impressive technological
innovation, but each of them has features that are not easily
replicated in education.28 Automated photo classifiers depend upon
training data from the billions of photos that have been put online
with a caption written by humans. There simply are no equivalent
datasets in education where humans naturalistically engage in a
labeling activity that distinguishes effective and ineffective teaching
practice. The most advanced chess engines use a kind of
reinforcement learning whereby the software plays millions of games
of chess against itself, and the highly structured nature of the game
—pieces with specific movement rules, an 8 × 8 board, a well-
defined winning state—is well suited to automated assessment.
Reinforcement learning systems cannot write millions of essays and
grade them against other essays, because there is no defined quality
state in writing as there is in chess. The advance of computer-voice
assistants—such as the kind that can book an appointment at a hair
salon over the phone—is impressive, but each individual task that an
assistant is trained to do involves extensive data, training, and
adjustment. Computer-voice tutors might be developed in limited
areas with well-defined right and wrong answers and carefully
studied learning progression, but trying to develop such systems for
the highly granular goals we have in educational systems—adding 1-
digit numbers, adding 2-digit numbers, subtracting 1-digit numbers,
and on and on ad infinitum—makes the bespoke nature of those
innovations incompatible with systemwide change.29

The history of essay autograders in the first part of the twenty-first
century is instructive. As natural language-processing software
improved, autograders have been more widely adopted by the
Graduate Record Exam (for graduate school admissions), state



standardized tests, and some limited classroom applications. When
MOOCs were at their peak of public discourse in 2013, assessment
designers explored implementing essay autograders in courses, and
some limited experiments took place. Despite the technological
expertise of developers and strong incentives to expand assessment
tools, not much progress was made, and today, few MOOCs use
automated essay scoring. This activity coincided roughly with the
development of the PARCC (Partnership for Assessment of
Readiness for College and Careers) and Smarter Balanced testing
consortiums, and the Hewlett Foundation funded an automated
essay grader competition with eight entrants from research labs and
private firms. Since those efforts in the early 2010s, no major
changes or advancements in essay-scoring technologies have been
implemented in the PARCC or Smarter Balanced assessments.
Advocates claiming that massive improvements in automated
assessment technologies are just around the corner would need to
explain why the last decade has shown such modest progress
despite substantial investment by very smart, very devoted teams in
academia and in industry.30

The problems of assessment are hard. The examples that are
featured in this chapter—assessing computer programs, graphical
calculus functions, pronunciation, and standardized essays—all
represent areas where assessment designers are pushing the
boundaries of what can be assessed in human performance. The
modest, incremental progress of these innovations and the limited
domains where they appear valuable also show how resistant those
boundaries are to substantial advancement.

With known technologies, large-scale learning environments will
remain bound by the trap of routine assessment in our lifetime. Much
of what we can assess at large scale are routine tasks, as opposed
to the complex communication and unstructured problem-solving
tasks that will define meaningful and valuable human work in the
future. Computers can mostly assess what computers are good at
doing, and these are things we do not need humans to do in the
labor market. Innovations in assessment technology will push gently
on these boundaries, and the incremental advances that emerge will
make marginal, useful expansions of what can be automatically



assessed, but they will not fundamentally reshape automated
assessment. There are millions of dollars invested, countless smart
and talented people working on this problem, and strong incentives
in educational marketplaces for finding new solutions. But progress
remains slow, and for the foreseeable future, if we want to assess
people on the kinds of performances that are most worthwhile for
people to learn, we’ll have to depend heavily on bespoke
assessments evaluated individually by teachers and other educators.
The human-scale limits on the assessment of complex performance
will remain one of the most important strict limits on how widely
large-scale learning environments can be adopted throughout
educational systems.



 



8
THE TOXIC POWER OF DATA AND EXPERIMENTS

ALL STORIES HAVE heroes and villains, exemplars and cautionary tales.
In this history of the last few decades of learning at scale, the ignoble
characters are the charismatic techno-evangelists who promised that
technology would lead to revolutionary changes in educational
systems. The heroes of this story have been the patient optimists,
tinkerers who have been steadily studying one or two of those
particular niches and incrementally, iteratively developing
technologies that can improve learning for students in specific
contexts. Of all these quiet heroes, I most admire technology
developers and advocates who subject their designs and
interventions to rigorous study, then take the evidence from those
studies to improve their products. Improving complex systems
through technology will not come via lightning-bolt breakthroughs but
rather from these kinds of shoulder-to-the-wheel approaches,
especially when conducted in close partnership with practicing
educators.

Large-scale learning environments have a series of characteristics
that make them well suited for this kind of ongoing investigation and
continuous improvement. Across instructor-guided, algorithm-guided,
and peer-guided technologies, some unifying features of large-scale
learning environments are the data and data structures that underlie
these systems. At any given moment, a large-scale learning system
must have a model of all possible actions that a learner can take—a
model of the system—and a model of a student’s state within this
system. In Scratch, this might be all of the blocks assembled into a
Scratcher’s program at that particular moment; in a MOOC, this
might mean tracking every assignment a student has completed to
date and every assignment that is currently available but not yet
completed. All of these data can be harnessed to create a complete
record of what every learner has ever done within the system, a



longitudinal record collected keystroke by keystroke and click by
click for millions of learners around the world. Large-scale learning
environments are generating datasets that are orders of magnitude
larger than what educational researchers have traditionally studied.

Moreover, learning-at-scale systems are amenable not just to
observational data collection, but also to experimentation. As
anthropologist Shreeharsh Kelkar has observed, learning scientists
(including myself) who are interested in MOOCs and other large-
scale platforms are fond of making comparisons between large-scale
learning environments and other major software platforms, such as
Google, Facebook, and Amazon, that constantly conduct
experiments on their users.1 One way these large internet platforms
have improved so rapidly over past decades is by deploying
experiments called A / B tests, in which different users are shown
slightly different versions of the same website. A “Buy Now” button
might be red in one version and blue in another so that retail
researchers can incrementally increase their knowledge about
designing online environments that encourage more shopping.
Large-scale learning platforms can be studied in the same way with
pedagogical and content experiments to allow course designers and
technology developers to continually improve learning environments.

Data collection and experimentation hold great promise as means
by which large-scale learning environments can become ever more
effective, efficient, and successful. But with this promise comes risk.
To describe this risk, I borrow the term toxic from computer security
researcher Bruce Schneier. Schneier has described corporate data
as a “toxic asset” because simply holding it poses risks for both
companies and users.2 Toxic assets, like radioactive materials—
which can both saves lives and cause cancer—must be used with
great care. Researchers like me are excited about the power of data
and experimentation because it may be possible to use large-scale
learning environments to speed up our cycles of continuous
improvement and to research online learning while students go
about typical activities. Advocates for student privacy and autonomy,
however, raise serious, valid concerns about the risks of data
breaches, about the dangers of quantifying human performance,
about who gets to decide what experiments are conducted and,



perhaps most importantly, upon whom. Successfully harnessing the
power of data and experiments in learning at scale will involve
balancing the potential rewards of research for incrementally
improving learning technologies and learning science with the risks
and harms that might accompany such research. That navigation
starts by understanding these potential risks and rewards.



Large-Scale Learning Data: From Sentences to Stories

Most online learning systems record a history of all user actions.
Within MOOCs, the learning management system tracks nearly
every action a learner takes in the environment: every page visited,
video watched, video paused, problem attempted, and progress
status checked. Within Scratch, the system records the state of
every Scratch program, including each programming “brick,” its
location relative to other bricks, comments from other Scratchers on
the program, and so on. These data are stored in structured data
files in the online servers associated with their respective learning
environments, and they are “machine readable” in the sense that
they can be systematically manipulated by software programs.3

To track an action, learning software often produces a record that
functionally operates as a kind of one-sentence description of a
learner’s action: “On January 6, 2017, at 10:34:17 p.m. UTC, learner
number 234,439,009 submitted an answer (‘greater than’) to problem
Unit4Question3, and that answer was incorrect, and a hint was
displayed to the learner.” The sentences aren’t written in English but
rather recorded in a structured data format: [“DateTime, UserId,
ActionType, ContentID, AnswerCorrect?”]. Researchers can
aggregate these “sentences” into different kinds of stories. Some
stories might be about individual learners (“User 009 logs in once a
week, usually during lunchtime in Egypt, for the duration of a twelve-
week course”) and others might be stories about elements of the
learning experience (“Sixty-three percent of learners answered
Unit4Question3 correctly on the first attempt” or “Only 4 percent of
learners ever try using one of our new programming bricks).”4

As millions of learners around the world click their way through
various online learning platforms, trillions of these individual data
records—these structured sentences about learning—are generated
and stored. In platforms with a global reach, these data repositories
might include people from nearly every country on Earth, working at
all hours of the day and night, in an incredible panoply of patterns:
Khan Academy learners who skim a few videos about differential
equations and others who plunge in and systematically work their



way through problem sets; MOOC participants who dip into a single
class and those who complete whole degree programs.

Because these stories are compiled through “structured
sentences” of data, they can be aggregated and analyzed in nearly
infinite ways. These data logs can also be combined with other
datasets, such as self-reported data from learners about their
background, goals, or experience in the course. Researchers and
developers can then link data about learner characteristics with data
about learner behavior and performance to look for patterns.
Researchers can also attempt to follow learners across different
environments. For instance, researchers at Delft University of
Technology in the Netherlands offered a functional programming
MOOC on edX and then searched repositories of open-source
projects on GitHub (a globally popular software-development
platform) to see if learners in their online course made more
contributions to open-source projects after taking the class. They did
this by looking for people who used the same email in both
environments (edX and GitHub). By connecting internal MOOC data
logs with publicly available data, the researchers hoped to gain new
insights into how learners deploy new skills in real-world contexts.5

The data records collected by large-scale learning environments
are both wide and deep, and they allow researchers to study
learning through “microscopes and telescopes.” For the microscopic
view, we can examine detailed records from individual students. In
2014, Thomas Mullaney examined learning trajectories of six
students who earned certificates in a single MOOC. He identified
students whose patterns of behavior varied substantially, from
steadily working every week as new content was released, to joining
late and catching up, to working in spurts at several instances
throughout a course, to waiting until the very last moment.6
Previously, these kind of individual learner histories could only be
captured through close anthropological observation of learners, but
now researchers can examine these patterns across millions of
learners. A telescopic view is also possible by aggregating data
across learners to examine change over time in whole systems. For
instance, when the researchers in the Lifelong Kindergarten group
add new blocks or features to Scratch, they can aggregate the



patterns of many thousands of participants to make claims about
how the new activity is being deployed across the whole system.7

These new data have inspired new subspecialties of learning
science, such as learning analytics and educational data mining. In
these subfields, researchers use techniques from computer science,
data science, and statistics to analyze data from trillions of entries of
individual actions from millions of participants. This analysis can then
be used to advance our understanding about learning in large-scale
systems and thus how those systems can be improved. For
instance, Ryan Baker and colleagues studied the classroom
behavior and tracking log data of students using adaptive tutors in
order to identify when students were engaged, bored, confused, or
frustrated. They then developed “detectors” that could recognize
these states based on learner activity. Boredom, confusion, and
frustration each call for different kinds of supports for students, and
emotion detectors in adaptive tutors might help make learning and
practice more engaging and less dreary.8

Large-scale learning environments are developed by researchers
using very different technologies and implementing very different
pedagogical visions, but they can all be studied using the detailed
data that systems collect. This data-based analysis may provide a
bridge that can unite researchers from the different communities
studying instructor-guided, algorithm-guided, and peer-guided
learning at scale. It is through these data that diverse researchers
can make joint progress toward the as-yet-intractable dilemmas that
I have described in the previous three chapters.



A History of Improving Education by Analyzing Data

Almost from the beginning of public schooling in America, schools
have compelled students to generate data for the purpose of system
evaluation and improvement. In the mid-nineteenth century, Boston’s
School Committee sent examiners to schools across the district to
quiz students about what they were learning. The examiners
observed that students “for the most part, learned to recite the words
of the textbook, without having had its spirit illustrated, and without
having been accustomed to think about the meaning of what they
had learned.” Asked “What is History?,” eleven of the sixteen
answers quoted the textbook verbatim and without elaboration:
“History is a narrative of past events.”9 The examiners asked
students about the date of Thomas Jefferson’s embargo and then
asked students to define embargo. Many could produce the date
(which was in the textbook), but didn’t know what an embargo was
(which was not in the textbook). Students who took the test gained
no particular advantages themselves. But the data they generated
were used by the visiting committee to recommend improvements to
history instruction, which benefited students generally.10

In the middle of the twentieth century, the United States
implemented nationwide tests to evaluate the country’s education
system, sometimes called the nation’s “report card.” Under the
National Assessment of Educational Progress (NAEP), schools,
classes, and students are randomly sampled from all fifty US states
to participate in annual tests of various subjects. Individual students
and teachers are not identified, as the NAEP is an assessment of
systems rather than people. The test dates back to the Elementary
and Secondary Education Act of 1965. Senator Robert Kennedy
thought that additional funding for schools should be tied to ongoing
monitoring of improvements, including analyses of racial subgroups,
so that policymakers and community members could track whether
additional federal funds and programs were improving learning. Ever
since, the NAEP has been an important tool for understanding how
children from different backgrounds receive unequal educational
experiences in the United States.11



In some respects, efforts at educational data science build upon
this long history of collecting data from students, classrooms, and
schools to improve educational systems. In previous chapters, I have
described several studies and design research projects that might be
at the top of the list of “Best Outcomes from Education Technology
Research Requiring Large-Scale Data.” The development of
Carnegie Learning’s Cognitive Tutors over more than twenty years
and their promising results on algebra learning outcomes represent
one high point in K–12 educational data science. The Open Learning
Initiative statistics course, where college students completed
introductory statistics in 20 percent less time than students in
traditional classes, represents an important benchmark in higher
education research. Studies that disprove exaggerated claims about
large-scale learning environments also contribute to the literature on
education policy. From my own work, I am proud that research with
my collaborators on MOOCs helped people question narratives of
“democratizing education,” recognize the specific fields in higher
education where learners were finding success, measure how well
learners progressed toward their educational goals, and identify
strategies that may help more people achieve their goals. These
studies may not have not dramatically improved MOOCs, but they
have helped policymakers better understand how MOOCs might or
might not fit into educational systems.12

As a researcher, I am enthusiastic about these efforts, but I also
recognize that evidence for the benefits of data-driven educational
research remains less than overwhelming. In 2014, a group of
educational researchers and higher education administrators met at
Asilomar State Park in California to discuss how to build continued
public support for research that would improve online learning and
learning science. Several attendees turned to the metaphor of
finding a “cure for cancer” (genomic data science enjoys widespread
public support because of the potential to find new cures disease).
What are the triumphant successes that online learning researchers
could trumpet to excite policymakers enough to provide funding?
The answer to that question was not obvious to those assembled. Of
course, the attendees could brainstorm future goals—completing
college in three years instead of four or learning two years of math in



one year, for example—but it was not clear what promises or
proposals we could make to the public that would obviously justify
our stewardship of large quantities of data or what previous studies
we could present to the public that would intuitively and compellingly
describe what learning analytics research had already
accomplished.13



Critiques of Student Data Collection: Scope and Compulsion

Putting student data to work to improve education is a worthy goal.
Critics, however, raise valid concerns about the current scope of
data collection in education systems. In my undergraduate seminars
at MIT, I ask students to make a list of all the data that schools
collect about them. The discussion often starts with registrar data:
name, date of birth, transcript data (courses, grades), placement test
scores, address, social security number, and residency. But students
rapidly come to understand that schools and their private
subcontractors have data far beyond what first comes to mind.
Schools collect data from individualized education plans, which have
detailed information about student disabilities and accommodation
plans. School health systems have personal data about medical
visits, diagnoses, medications, and vaccinations. Learning-
management systems maintain records of learning activities,
assignments, and grades for those assignments. School computers
log browser histories and website cookies. School email systems
and shared workspaces such as Google Docs track student
communications. Identity cards, building entry cards, and Wi-Fi
connection points can track a student’s movement throughout a
campus. As schools provide more digitally mediated services for
students and families—such as letting parents log on to portals to
see grades or sending notification texts to students when a dryer
finishes a run in the college laundry room—schools are choosing to
collect ever-growing amounts of data about students.

Critics point out that massive data collection regimes are
violations of student privacy because long-term storage of large
volumes of student data puts students at risk of disclosure, and
students who are compelled to provide their data cannot provide a
truly voluntary, informed consent to subsequent research.
Intentional, accidental, or criminal release of data about student
disabilities, student performance, or other characteristics can also
lead to real harms.14

Even if worst-case scenarios can be avoided, schools are public
institutions that teach students through their actions and procedures
as much as they do through their instruction. For critics, forcing



students to participate in widespread data collection is training them
for docile acceptance of participation in the surveillance capitalism of
advertising technology networks and the growing surveillance state.
These concerns become increasingly salient in public discourse as
social media companies leak, misuse, and illegally share data; as
China and other states build widespread online surveillance and
citizen-rating systems; and as foreign governments, national security
apparatus, commercial data aggregators, and criminal actors buy,
steal, sell, and share data.15

In the public marketplace of data-based services, individuals
nominally have some degree of choice about exchanging access to
their data for a company’s services. When young people log on to
their Instagram accounts, they agree to terms of service and a
privacy policy that describes the conditions under which data will be
used and shared, though it is widely acknowledged that no one
reads those long and unwieldy documents. But students are
compelled to attend public schools in the United States and many
other countries, and when schools require students to engage in
online learning activities, they are requiring students to make data
available to schools and their commercial partners. To some extent,
students in higher education have more autonomy, but compulsion is
a central feature of higher education as well. A student often cannot
opt out of an identity card for entering a building if they want to
attend classes there; a student choosing a particular major may have
to complete the online activities of a required course. A principled
student might be able to avoid certain data collection activities, but
many academic pathways coerce students to submit to data
collection as a condition of attending an institution.16

One area in which data collection has become particularly
invasive is in technologies to prevent cheating. As online learning in
higher education expands, institutions are looking to technology to
provide surveillance of students who are taking exams on their own
computers at home, with access to textbooks, friends, and the entire
internet. Anti-cheating software can record a student’s eye
movement, body movement, keystrokes, and web use during an
exam. Some software prevents a student from opening new browser
windows or even from copying and pasting text. Requiring students



to install anti-cheating software on their machines is requiring
students to install powerful surveillance tools on their personal
computers, and some students are vigorously pushing back.

In 2015, Rutgers student Betsy Chao led a campus-wide protest
against the anti-cheating software Proctortrack. Chao and her peers
in Rutger’s online courses were required to download Proctortrack
onto their machines, show their face and knuckles for recording and
scanning, and have the software running during exams. As Natasha
Singer of the New York Times wrote, “Once her exam started, Ms.
Chao said, a red warning band appeared on the computer screen
indicating that Proctortrack was monitoring her computer and
recording video of her. To constantly remind her that she was being
watched, the program also showed a live image of her in miniature
on her screen.”17 Rutgers added the requirement to use Proctortrack
mid-semester. Students who had already enrolled in courses on the
basis of syllabi and other agreements were told that they now
needed to pay $37 for the software, install it, and use it—a
particularly egregious form of compulsion for students already
invested in their courses. In response to student protest, the
university offered to allow students to take human proctored exams
for $40 per exam, an example of a growing trend in many sectors of
society where people are charged extra for services that maintain
their privacy.

The earlier discussion about the history of data collection
demonstrates that not all data collection is pernicious. The NAEP
program has been compelling students to take tests as part of data
collection exercises for over fifty years, and it has not generated any
widespread or volatile public objections during that time. Under the
right circumstances, stakeholders in education will consent to
compulsory data collection from students. But as the critics point out,
emerging technologies raise different questions. New data collection
enterprises via large-scale learning technologies are massive, much
more so than previous efforts. The time has come to rethink our
guidelines for the collection, storage, and use of student data.



Contextual Integrity: A Framework to Reason about Privacy

Information science professor Helen Nissenbaum has developed the
idea of contextual integrity to provide a new intellectual foundation
for setting boundaries around data usage and privacy. Contextual
integrity advocates argue that privacy norms should be developed
and analyzed while taking the values of users into account. A recent
controversy at MIT illustrates some of the potential conflicts between
typical uses of data and participant expectations. To better
understand students’ well-being, the administration asked students
to complete an anonymous survey. Some student leaders
encouraged their peers to complete the survey to better inform
student leadership and the administration about how to support
students. The survey did not ask about student housing, and
students perceived that decision as protecting student anonymity—
certain dorms were perceived as having much higher rates of drug
usage and behaviors considered problematic, and some students
would not have answered drug questions candidly if they also
believed that administrators were asking them about their dorms. But
administration researchers had given residence hall information of
individual students to the third party administering the study, which
allowed residence information to be associated with individual
responses without the knowledge of students. Those data were used
as part of the evidence in an administrative decision to close a dorm
reported to have widespread issues with drug use. Administrators
used this information in a good-faith effort to support student well-
being, and they did not violate specific agreements about privacy
and confidentiality, but students felt that their contextual privacy was
violated.18

This case illustrates a common challenge for privacy and
contextual integrity: information that is not available through a single
dataset can be revealed by combining datasets. Thus, a survey
about individual health issues provided data to MIT administrators on
residence hall–level issues by combining the survey data with
residence hall data. Moreover, as new statistical methods are
developed, there are new ways of analyzing data that might give
survey makers far more information than respondents realize. For



instance, in the years ahead, more advanced sentiment analysis
techniques might be developed that will allow researchers to
estimate student mood or emotional state from snippets of text. What
can be learned from surveys when they are distributed is only a
portion of what can be learned from the data in the future.

The potential for novel insight, the potential for beneficial new
findings, and the potential for privacy risks and violations grow as
data are retained over time and combined with other sources of data.
Part of the compelling nature of characterizing data as a “toxic asset”
is that the toxicity of data grows over time. As time passes,
researchers develop more powerful techniques for linking and
analyzing large data sources, and thus existing data sources
become potentially more revealing.



Studying MOOC Learners through Their Home Address:
Balancing Privacy with Advancing Policy Research

In Chapter 1, I described how my colleagues and I used home
addresses from MOOC students to better understand how learners
from different neighborhoods interacted with MOOCs in different
ways. We discovered that in the United States, people from more
affluent neighborhoods were more likely to register for and complete
courses on HarvardX and MITx than people from less affluent
neighborhoods. This study is a useful illustration of the tradeoffs
between privacy and research insights.19

From the beginning of edX, the process of site registration
included an address field where registrants entered their mailing
address in open text (rather than through dropdown menus). It has
never been clear to me why this information was collected or why it
was collected in this format. After entering their name, address,
email address, gender, age, and level of education, users agreed to
a terms of service and privacy policy that grants researchers wide
latitude to use their data. From a legalistic perspective anchored on
terms of service agreements, we might say that users consented
from that point forward (usually without reading the terms) to
researchers like me using any and all of their data to advance
research. From the lens of contextual integrity, we might ask, “What
would a reasonable person expect that their address would be used
for in research by an education technology non-profit (edX)
supported by research universities (Harvard and MIT)?”

There cannot be any single answer to that question, as the
millions of people from all walks of life from around the world who
have entered text in that field assuredly do not share a conception of
what the addresses were for. For a residential address, did people
expect edX to mail paper certificates? To better understand
geographic adoption of the service? To organize local meetups?
What fraction of the millions of people who entered the text expected
that a researcher would connect their residential address to census
databases in order to make inferences about their neighborhood
income and level of education? Of those who might expect such
behavior, how many would find my behavior acceptable because I’m



a researcher, even if they might object to commercial uses?
HarvardX, MITx, and edX have all tried, through publications,
interactions with the press, and messaging inside HarvardX and
MITx courses, to make clear that research is considered a
fundamental purpose of edX and that part of the rationale for offering
free online learning is to research learning within these
environments. Are these communication efforts effective at shaping
people’s contextual understanding? Contextual integrity theory asks
that powerful stakeholders in a system attend to the voices, beliefs,
and considerations of users, but users have a range of beliefs that
defy easy consensus. In addition, novelty is fundamental to the
research enterprise—to conduct research is almost by definition to
use data in ways that have not yet been attempted.20

As a researcher, I think the risks of violating contextual integrity
should be weighed against the potential benefits of the research.
The motivation behind my research on MOOC demographics was to
understand inequalities in online education and to raise the concern
that online learning might expand rather than ameliorate inequality.
In my view, our research questions provided important insight on a
widespread and potentially misleading public narrative that MOOCs
would “democratize education” by disproportionately benefiting folks
with limited access to higher education. That claim gave insufficient
consideration to how people from different backgrounds used
technology differently, and I believed that my research would provide
important data about just how that usage varied. I’m confident that
my colleagues and I, and our supervisors who supported the
research, made the right choice in proceeding with the work.

But the autonomy that I had as an individual research scientist to
decide whether and how to use home address data gave me pause
then, and it still does. We wrote a deliberately broad research
prospectus to Harvard’s Committee on the Use of Human Subjects,
the Institutional Review Board (IRB) that monitors human subjects
research, that asked for wide latitude to use data from edX under the
research permissions granted in the terms of service. I remember
personally checking with our IRB contact to ask whether we needed
any special review to connect our address data with census data.
She said that we did not, because we met the criteria for research



review guided by federal law and Harvard policy. But that policy
could not provide a full set of ethical guidelines in a new field. The
decision was up to me. When faced with an ever-growing list of
datasets to merge and new techniques to try, I am confident that
most of my research colleagues will try to make good decisions that
respect learners and learning systems, but without a doubt, our field
will make mistakes as well.



Calculating the Cost-Benefit Ratio of Educational Research
and Data Collection

Making good judgments about how to collect, store, and analyze
educational research data can be understood as a cost-benefit
calculation. Can we design a system where harms from disclosure
and use are minimized and benefits to students from educational
research are assured? Perhaps. But right now, the magnitude of
harms and benefits are difficult to measure.

Granting that data from large-scale learning environments have
the potential to be beneficial, just how beneficial are they? In
previous chapters, I’ve described how large-scale learning systems
have incrementally improved over decades, and log data from these
systems are an important part of the research behind that
development. Online learning has unquestionably enriched the lives
of many millions of learners of all ages, but education systems are,
on their face, not profoundly changed. Humans have been trying to
use computers to teach mathematics to other humans for sixty
years, and most kids still reach algebra in eighth or ninth grade; we
haven’t achieved some step-change breakthrough in mathematics
instruction such that middle school students are ready for calculus or
statistics. We still cannot download kung fu, or anything else, directly
into people’s brains.

As with the benefits, the risks of data-intensive educational
research are not yet wholly clear. People in the networked world are
increasingly familiar with massive data breaches: financial and credit
data from Equifax, passport data from Marriott, personal data from
Facebook, passwords from countless websites. While edtech hasn’t
yet identified its “cure for cancer” mission, it also has yet to
experience an Equifax-level breach where widespread public harm
has resulted from a data hack or data exposure. That’s not to say
substantial breaches, hacks, ransomware attacks, and other
assaults on student data haven’t occurred. In her “2017 Year in
Edtech” roundup, Audrey Watters listed a fraction of the hacks
reported in the past year:



In education, there were breaches at colleges and universities, breaches at
K–12 schools, breaches at the Department of Education, breaches at
education technology companies, and breaches with software schools
commonly use. 77 million users accounts stolen from Edmodo. A file
configuration error at Schoolzilla that exposed the data of some 1.3 million
students. A ransomware attack at a school system in Maine. A ransomware
attack at a community college in Texas. Computers affected by the
WannaCry virus at the Massachusetts Institute of Technology, Trinity College,
the University of Washington, North Dakota State University, the University of
Maine, and elsewhere. 14 million college email username and passwords for
sale on “the dark Web.” W2 phishing scams at a school district in Texas. W2
phishing scams at a school district in Connecticut. W2 phishing scams at a
school district in Minnesota. Phishing emails posing as Ofsted. Phishing
emails posing as the University of California student health plan. $11.8
million scammed from MacEwan University. Keyloggers at the University of
Iowa. Keyloggers at the University of Kansas. A hacked school Twitter
account in Florida. A privacy breach at Stanford. Data stolen from a
community college’s health clinic. A data breach at a school board in Ontario.
A data breach at the Chicago Public Schools. A malware attack at the
University of Alberta. And then there was the ominously named “Dark
Overlord,” who held the data of multiple school districts for ransom, in one
case sending parents text messages threatening to kill their children if they
did not pay up.21

The magnitude of the harms to students that these breaches
caused remains unclear, however. Writing this book from the end of
the first Trump term, risks to undocumented students and their
families from school data seem particularly acute, and cooperation
between school districts and Immigration and Customs Enforcement
is bitterly contested in many communities. Broader public outcries
against the collection and use of student data, however, have
generally not emerged from these incidents; they are mostly treated
as nuisances in the digital world rather than acute threats to schools
and students.22

Harms are possible not just from malicious attacks but also from
well-meaning attempts to use data to support student learning. One
risk is that software can use algorithms trained on historical data to
make recommendations, and these recommendation then reinforce
structural biases in the educational system. One place where this
risk is acute is in academic counseling services that are based on
data and algorithms. For instance, Naviance is a college and



postsecondary counseling services platform that is widely adopted in
American high schools (used by perhaps 40 percent of high school
students). Students in most American high schools are woefully
under supported by guidance counselors, with hundreds or
thousands of students sharing a single counselor. In the absence of
funding for human support to help students prepare for college,
schools are turning to computers and algorithmic recommendations.
Enter Naviance, which aggregates data about colleges, students,
and high schools to provide algorithmically generated advice.
Students can query the database to find out how previous applicants
with similar characteristics have fared in applying to a wide variety of
postsecondary institutions.23

In the best of all possible worlds, Naviance would help students
discover postsecondary opportunities that they were unfamiliar with,
pair students with schools and programs that could advance their
interests and opportunities, and provide students with suggestions
for schools that could stretch their imagination (“reach” schools and
programs) and schools that were likely to admit them (“safety”
schools and programs). More realistically but still optimistically, the
software could help human counselors serve more students
effectively. In the worst-case scenarios, these programs might
reinforce and reproduce structural biases in education. The software
might detect that students with certain course-taking patterns are
unlikely to gain admission to certain programs and steer students
away from those opportunities. But course-taking patterns could
certainly be correlated with race or other dimensions of
socioeconomic status. These kinds of recommendation engines that
are based primarily on historical data might offer recommendations
that reinforce historically inequitable patterns.

Unfortunately, despite the astounding reach of Naviance,
educational research has almost nothing to say about student
experiences and outcomes with Naviance or other college
recommendation software. Naviance is a strong contender for the
most consequential piece of software in American schools. But a
search of Google Scholar for the term Naviance reveals only a
handful of peer-reviewed research studies, leading with a 2017 study
called “Increasing College Access through Implementation of



Naviance: An Exploratory Study.” In a working paper currently under
review, Christine Mulhern, a doctoral student at the Harvard
Kennedy School, shows that information from Naviance about state
colleges increases attendance among disadvantaged students but
also deters them from applying to more selective colleges.24

In this case as in many others, implementation of large-scale
learning tools runs far faster than the research needed to assess
them. This makes Naviance a tantalizing illustration of both the
benefit and cost of large-scale learning environments. We need data
and research to study Naviance to determine if it is a worthy
complement to high school counselors or if it is reinforcing structural
biases—and if it is reinforcing structural biases, to determine how it
could be improved. Without this research, Naviance potentially
harms students by posing as a valid substitute for human guidance.
And if Naviance suffered a data breach, additional harms could
result. Within one product, the potential for both real benefit and
significant harm coexist.

Complicating the quest to calculate the cost-benefit ratio of
educational research and data collection is the fact that there is
limited funding available for education research, and what funding
there is tends to go to pilot novel projects rather than analyze
existing ones. The National Science Foundation will award millions
of dollars this year to support the development of edtech prototypes
and small field trials, many of which will engage only a few classes
or a handful of students. At the same time, the most widely adopted
software tools in schools—learning-management systems, college-
recommendation systems, student-information systems—go
dramatically understudied. Identifying the cost-benefit or risk-reward
ratios of data collection and education technology, and creating
sensible policies and practices in response to these assessments,
will be almost impossible if education researchers do not study the
tools that people and schools actually use.



Maximizing the Value of Learning-at-Scale Data via
Experimentation

At the dawn of the MOOC era, a common refrain from computer
scientists who were turning their attention to online learning was that
education research was poised to make a giant leap forward
because “we finally have data.” In this view, educational research
had been constrained by a lack of robust data about learner
behaviors. Now that educational technologies were collecting
massive trace logs of learner activity, breakthroughs in our
understanding of learning were on the horizon. Computer scientists
and data scientists would run new machine-learning algorithms over
these vast new data sources, identify correlations between specific
instructional practices and student outcomes, and determine which
educational practices are most effective.25

But as argued in the first half of this book, these observational
approaches have not led to breakthrough insights that have
revolutionized our understanding of how people learn. Typically,
when researchers comb backward over educational data collected
during routine learning experiences, they find some version of
Reich’s Law: “People who do stuff do more stuff, and people who do
stuff do better than people who don’t do stuff.” This is the
commonsense observation that people who do more of any type of
learning activity—answer problems, watch videos, submit homework,
contribute to discussion forums—are more likely to do other types of
activities because they are more engaged or more committed to
participation. Not surprisingly, these people who complete more
learning activities typically do better on measures of learning and
persistence. Hoarding data from online platforms in the hopes that
new insights will later emerge is a strategy that is incomplete at best
and misguided at worst. The much more promising approach to
developing powerful large-scale environments is improving them
through systematic experimentation.26

Online learning environments are particularly well suited to
conducting experimental research. They allow researchers to control
many aspects of the learning experience since the environment can
be held constant in ways that are not possible in physical



classrooms. They keep detailed records of how students respond to
changes. And in environments where many thousands of learners
are engaging online, it is possible to conduct large-scale
experiments that are sensitive to detecting small effects that might
not make much difference on their own but could be combined with
many other small changes to lead to substantial improvements. If
large-scale learning leads to substantial breakthroughs in human
development, it will be through constant testing, evaluation, and
refinement. Though experimentation is not the only way forward—
Scratch stands out as a platform on which designers and
researchers have systematically introduced design changes without
much randomization and with an emphasis on qualitative user
research to evaluate results—randomized control trials are among
the most promising ways for large-scale learning environments to
continuously get better.

My own experiments with MOOCs illustrate the types of insights
that this research method can provide. With colleagues, I spent two
years investigating how different kinds of interventions inspired by
social psychology and behavioral economics affected student
persistence and performance in MOOCs. The interventions were
short writing exercises to help learners start the course with
productive mental frames, such as asking learners to write about
how taking the course aligns with their values or how they were
planning to complete coursework. After testing our interventions in
pilot studies, we implemented them in nearly 250 courses on
HarvardX, MITx, and Stanford’s OpenEdX, assigning more than
250,000 students to one of our treatment arms. We chose our
interventions because they worked well in pilot studies, but early on
in our research, we found that when we tested the interventions at
larger scales across multiple courses, the average effects tended to
be null (sometimes they had positive average effects in courses, and
other times they had negative average effects, and there is a good
chance that these findings are just sampling error rather than
indications of real harm or gains). Over time, however, we found that
our interventions did improve average outcomes in certain contexts
for certain students. The interventions worked best for students from
countries with low scores on the UN Human Development Index



(HDI), and they worked only in courses in which there was a
substantial gap in completion rates between learners from developed
and developing countries (or countries with high and low scores on
the HDI). We recognized relatively early on that our interventions
seemed to work better on particular students. But it was only after
three years and having implemented our approach in hundreds of
particular courses that we realized that our interventions worked for
certain kinds of people (from developing countries) only in certain
kinds of contexts (courses that people from developing courses
completed at lower rates than other students). Through these kinds
of experiments, we may be able to develop tailored supports for
particular students.27



Concerns and Critiques of Educational Experiments

For me as a researcher, the phrase “experimenting on students” is a
positive one—it means that educators are systematically figuring out
how to improve student learning and well-being. Of course, for many
people in the public—probably many readers of this book
—“experimenting on students” may not sound so great.

In 2018, publishing giant Pearson conducted a study, somewhat
similar to the one I described above, to determine whether growth-
mindset interventions improve learning in a software product to teach
computer science. Mindset theory holds that students learn better
when they adopt a growth mindset (“If I keep trying, I can get better
at math”) rather than a fixed mindset (“I am good / bad at math”).
Pearson tested these methods using a randomized controlled trial in
which some nine thousand students received a growth-mindset
message while a control group of similar students did not. Several
observers objected to educational publishers conducting this kind of
research. Kate Crawford, the founder of AI Now, a research institute
examining the social implications of artificial intelligence, tweeted
out, “Ed tech company experiments on 9000 kids without anyone’s
consent or knowledge to see if they test differently when ‘social-
psychological’ messaging is secretly inserted? HARD NO.” Crawford
is a brilliant researcher and critic, so her strong objection was a good
opportunity for me to reflect on why I see this kind of research
differently.28

From my point of view, every classroom teacher, educational
publisher, and instructional designer implements variation in teaching
practices over time to improve teaching. There are virtually no actors
in education who do the exact same thing year after year, decade
after decade. Instead, they introduce variation, examine whether the
variation leads to better outcomes, and make adjustments
accordingly. In 2016–2017, students used the old version of the
Pearson product, which led to certain educational outcomes. In
2017–2018, Pearson conducted an experiment in which some
students were given a new version and some students the old
version. If Pearson had rolled out the new version to all the 2017–
2018 students, there would still have been a group of students



(those from 2016–2017) who had received the old version. But this
scenario would not have caused such ire.

I infer two objections in Crawford’s comment. The first is an
objection to “social-psychological messaging,” perhaps because it
appears that a publisher is venturing out of its lane by attempting to
manipulate students’ psychology. But every learning interaction is
social-psychological. When a student gets an answer right or wrong
in an adaptive tutor, the system needs to somehow inform the
student—with a hint, or a symbol (green check, red X), or other
feedback. All of these responses are social-psychological to the
extent that they both inform students academically and shape, at
least in some small way, their self-perception. There is no way to
remove the social-psychological from education; rather, we should
figure out how to do it well. I thus take Pearson’s research goal as a
worthy one.

The second objection has to do with randomly assigning kids to
different learning experiences. Social science researchers have
identified an “experimentation aversion” found in health care,
education, and other fields, where “people often approve of untested
policies or treatments (A or B) being universally implemented but
disapprove of randomized experiments (A / B tests) to determine
which of those policies or treatments is superior.”29 When educators
use Method A in 2016 and Method B in 2017, it is very hard to figure
out which approach is better, because the learners are different from
year to year. When researchers use random assignment—testing
Method A and Method B each with a random half of students from
the same year—we can better control for those kinds of contextual
factors; thus, we can make more robust claims about whether
changes are improvements. Put another way, educators are
constantly introducing variation into classrooms that advantage
some students and disadvantage others, but they almost never do
so in a way that can tell us which students were advantaged and
which were not. Experimental studies are powerful tools for making
those kinds of robust inferences, but unfortunately, they also raise
serious concerns about student autonomy and the power of
institutions—schools, colleges, publishers, tech companies—to
unliterally subject students to new experiments.30



In my view, Pearson’s goal was admirable. They took a well-
established line of research (growth-mindset messages have been
shown to have small positive effects on student learning, especially
for low-achieving students), and before integrating mindset
messages with all students, Pearson tested the messages in a
particular product to see if they worked in this particular context. The
relative technical ease of integrating these kinds of tests into online
platforms, the high volume of students participating in large-scale
learning projects, and the structure of digital data all combine to
make online environments potentially promising places to continue
these kinds of experiments that help researchers and educators
better understand what kinds of practices support student learning.31

If online learning leads to better outcomes from students, it will be
through the amalgamation of a thousand or ten thousand studies like
this one that incrementally accrete a knowledge base about effective
online learning. But if researchers, technology developers,
publishers, and educators cannot earn the public trust, if we cannot
be trusted to wield the toxic power of data and experimentation
wisely, then these kinds of research initiatives will collapse, and
some of the potential benefits of learning-at-scale technologies will
not be realized.



Mitigating and Managing the Toxic Power of Data and
Experiments

The risks of data collection and experimentation in large-scale
learning environments are unclear. We know that many data privacy
breaches have occurred, but the harms from those breaches are not
well documented. No doubt some experimental interventions that
have been conducted have disadvantaged some students, but
students are regularly advantaged and disadvantaged by the year-
to-year unsystematic variation in our education system. Some of the
most diffuse long-term risks of large-scale data collection seem quite
severe—we don’t want public education systems training students
for lives in a surveillance state—but they could be avoided with legal
and cultural regulations of data usage that balance autonomy and
experimental science. We have some studies that show the value of
this kind of research for advancing our understanding of learning
technology and the science of learning, but no advances have been
so dramatic as to make the need for continuing such research self-
evident.

Even if as policymakers or citizens we have to make our cost-
benefit calculations about education-technology data through a haze
of uncertainty, we can still work to mitigate risks and maximize the
value of data that we do collect. One of the most unfortunate
features of our current infrastructure of educational data is that data
collection happens through schools, but then data flow to private
subcontractors without the same accountability or incentives. State
law and your local school district compel your child to go to school,
and then they make that child sign up for a Google education
account, a Naviance account, a PowerSchool account to check
grades, a Pearson account or Khan Academy account for homework
problems and readings—maybe even an account from a single sign-
on provider like Clever that helps your student log on to all these
different services. Great quantities of data about students—grades,
activity in the online platform, performance—are thus accessible to
all of those different organizations. The legal protections for student
information once it makes its way from the schools out to those



companies, which may number in the dozens or hundreds in some
school districts, are hazy.32

One effort to address this state of affairs was a $100 million Bill
and Melinda Gates Foundation initiative called inBloom, funded in
2011 and launched in 2013. The idea of inBloom was to create a
trusted non-profit data intermediary between schools and for-profit
industry. Schools would partner with inBloom to store student data,
firms would partner with inBloom to access data, and inBloom would
be responsible for sharing only what firms needed when they needed
it. At the same time, by centralizing certain data collection and
storage functions, inBloom might also have created new
opportunities for research that examined technology use and
learning outcomes across schools, districts, and states. But the core
value proposition of inBloom was that through its non-profit status, it
could strike a better balance between allowing the use of student
data for learning and research and protecting students from the risks
of disseminating those data widely among firms.33

Right from its announcement, inBloom was beset with critics. The
Bill and Melinda Gates Foundation is a large, high-profile, and often
controversial funder of education policies, and several of their
signature initiatives, such as breaking large high schools into smaller
ones or creating nationwide curriculum standards—the Common
Core—have been critiqued on both their premise and their
execution. While the slow accumulation of student data by districts
and corporate partners has happened invisibly over the last two
decades, inBloom appeared very rapidly, had a controversial funding
source, and drew attention to its intentions of accumulating massive
stores of student data. Critics raised concerns at the national, state,
and local level to this new initiative, with the result that states
introduced over four hundred pieces of student-privacy legislation. It
is not clear how successful all of these pieces of legislation were or
what their effects will be over time, but a little over a year after the
launch, inBloom shut down. One feature that favors the status quo in
student privacy is that any new effort to address these issues is
more likely to raise concerns than the invisible, mostly dysfunctional,
but not yet disastrous baseline that already exists.34



If a national data repository is not the answer, what could improve
data privacy and protections by schools, edtech providers, and
researchers? One approach is better contracting between schools
and providers that provides explicit limits on what firms can and
cannot do with data and how long they can store data. Another
approach is to encourage schools to recognize student data as a
toxic asset and to delete data regularly while respecting statutory
obligations to maintain records. (This would be a loss for researchers
interested in longitudinal studies, who use data collected over long
periods of time to understand how initiatives in early elementary
grades affect students’ long-term trajectories.) But these approaches
require an expertise that school officials in America’s thirteen
thousand school districts nearly universally do not have. In an era of
constantly tightening budgets, school districts have barely enough
administrators to meet the daily requirements of supporting teachers,
keeping buildings and vehicles operating, and performing all the
other myriad responsibilities necessary to keep schools functioning.
Schools are unlikely to be able to develop their own expertise in the
nuances of data privacy management and vendor relations.
Government regulation might be able to limit the kinds of things that
firms can do with student data, and public interest groups—like
membership organizations representing school technologists—might
be able to pool resources to develop model contracts and terms of
service and then pressure edtech firms to adopt best practices.35

Another approach is to maintain learning data for long periods but
only after stripping the data of identifying information. This is the
approach taken in many of the databases maintained in the
DataShop repository, from the Pittsburgh Science of Learning
Center. Datashop hosts publicly available datasets, primarily from
intelligent tutors, that researchers can use to test new theories and
conduct new analyses. Some of the datasets have no demographic
identifiers, and others that do have access restricted to researchers
who can meet standards of data protection. Removing sensitive
demographic information does, of course, limit the utility of those
datasets; researchers cannot examine important questions of how
students from different backgrounds use technology differently. A
healthy educational ecosystem will probably have a range of



different approaches to storing data and protecting privacy, with
different data available for different purposes and stakeholders. The
National Center for Education Statistics, for instance, collects large
amounts of student data from schools, districts, the NAEP tests, and
other initiatives. They make summaries of the data available to the
public and datasets with various levels of protection available to
researchers, providing one model for how we can protect and use
student data. Through a combination of better contracting,
regulation, data storage, and retention and deletion practices,
schools and systems can reduce some of the risks of data collection
while still using data for continuous improvement and long-term
research.36

Ultimately, the role of experimentation and continuous
improvement in edtech development will depend upon public support
and public dialogue. Researchers interested in powerful new sources
of data and experimentation need to continuously earn the public’s
trust that they will use that power wisely. As experimental research in
learning technologies becomes more common, both transparency
and public engagement will be crucial. Publishers, technology
developers, and researchers should hold public forums to explain
their research interests, gather feedback about how best to protect
learner autonomy, and identify the kinds of learning challenges that
communities are most interested in seeing progress on. Researchers
who conduct experiments should be transparent about their methods
and results, reporting positive, negative, or null effects. If this
reporting on experimental results leads to public criticism,
researchers should lean into that criticism, listen carefully, and
consider how concerns can be addressed. Large-scale learning
environments have the potential to be powerful sources of new
insights about human learning, and public trust will be a crucial
resource if the potential benefits of data and experimentation are to
be realized.



 



CONCLUSION

Preparing for the Next Learning-at-Scale Hype Cycle



The Next Robot Tutor in the Sky

PREDICTIONS OF IMMINENT TRANSFORMATION are among the most reliable
refrains in the history of education technology. In 1913, Thomas
Edison declared that the age of books was about to give way to the
age of motion pictures. He told an interviewer, “Books will soon be
obsolete in the public schools. Scholars will be instructed through the
eye. It is possible to teach every branch of human knowledge with
the motion picture. Our school system will be completely changed
inside of ten years.” When Edison’s ten-year prediction failed to
come to pass, he simply gave himself more time. In 1923, speaking
before the Federal Trade Commission, Edison explained, “I made an
experiment with a lot of pictures to teach children chemistry. I got
twelve children and asked them to write down what they had
learned, from the pictures. I was amazed that such a complicated
subject as chemistry was readily grasped by them to a large extent
through pictures. The parts of the pictures they did not understand I
did over and over again until they finally understood the entire
picture. I think motion pictures have just started and it is my opinion
that in 20 years children will be taught through pictures and not
through textbooks.”1

One hundred years after Edison, technologists are still promising
that new inventions can instantly solve challenges that education
systems have faced for hundreds of years. The 2010s were a banner
decade for charismatic technologists, from Knewton founder Jose
Ferreira’s adaptive robot tutor in the sky to Udacity founder
Sebastian Thurn’s magic formula for low-cost, global-scale learning
with MOOCs. My sense at the end of the decade was that some
sobriety had seeped into public conversations about the limits of
learning technologies. But even at the nadir of this decade’s hype
cycle, wishful thinking continued. In 2019, Dan Goldsmith, then the
CEO of Instructure, the company that provides the Canvas learning
management system, boasted that his company’s new learning
analytics program would drive student success, make teachers more
productive, and increase student retention:



We have the most comprehensive database on the educational experience
in the globe. So, given that information that we have, no one else has those
data assets at their fingertips to be able to develop those algorithms and
predictive models. What’s even more interesting and compelling is that we
can take that information, correlate it across all sorts of universities, curricula,
etc., and we can start making recommendations and suggestions to the
student or instructor in how they can be more successful. Watch this video,
read this passage, do problems 17–34 in this textbook, spend an extra two
hours on this or that.2

As someone who had spent much of the decade on MOOC
research, I was taken aback by this particular claim. This prediction
of a data-driven revolution in personalized learning was exactly what
early MOOC advocates promised. After hundreds of millions of
dollars in investments in massive courses and platforms and
research across some of the world’s leading universities, nothing like
what Goldsmith imagined has been accomplished. Despite the
examples of the developers of Knewton, Udacity, and other
technologists who had to walk back early claims of transformation,
here was yet another CEO borrowing the same rhetorical tropes
about how massive datasets would be transformed into revolutionary
learning insights, like piles of straw spun into gold. In the years
ahead, no doubt, entrepreneurs will make these same kinds of
promises about artificial intelligence and virtual reality and 5G and
whatever new technologies Silicon Valley unleashes upon the world.
Educators should be ready.

When new education technologies fail to meet their lofty
expectations, a common rhetorical move is to claim that not enough
time has passed for the true effects of new technologies to be
revealed. The futurist Roy Amara is credited with the claim that “we
tend to overestimate the effect of a technology in the short run and
underestimate the effect in the long run.”3 Edison’s hundred-year-old
claims about motion pictures are good test cases for this theory. If
we look at learning in its broadest view, some of what Edison
predicted has come to pass. Video has become a dominant medium
for informal learning, from the crafters of Rainbow Loom to the
creators of Minecraft and in many fields beyond. But within the
complex ecologies of formal educational systems, textbooks remain



central to learning experiences and video remains a supplemental
resource. I suspect that in the years after 2110 when we celebrate
the two-hundredth anniversary of Edison’s predictions and the
hundredth anniversary of Sal Khan’s TED talk “Let’s Use Video to
Reinvent Education,” educational film and video will still play a
secondary role in most formal educational systems.

The rhetorical tropes of disruption and charismatic technologies
center around a heroic developer creating a new technology that
leads to the transformation of educational systems (Edison invents
the motion picture, and textbooks are replaced in a decade by more
effective instructional films). This doesn’t happen. Let me propose
three essential shifts to the stories that we tell about how technology
can improve learning. First, change won’t come from heroic
developers or even technology firms, but from communities of
educators, researchers, and designers oriented toward innovative
pedagogy and a commitment to educational equity. We need
villages, not heroes. Second, technology won’t transform teaching
and learning. Our best hope is that technologies open up new
spaces for the work of holistically improving curricula, pedagogy,
instructional resources, student support, teacher professional
development, policy, and other critical facets of school systems.
Technology, at best, has a limited role to play in the broader work of
systems change. Finally, we must let go of the hope for the kinds of
dramatic shifts that sometimes do happen in consumer technologies
and instead envision the work of systems change as a long process
of tinkering and continuous improvement.

Promises and predictions for the transformative power of large-
scale learning technologies are not going away. The task for
educators in the decades ahead will be to examine new technologies
as they emerge, to look past overwrought rhetoric and to dismiss
egregious hype, while remaining open to possibilities for how new
tools might prove useful in specific contexts, for certain subjects, or
for particular students. After a century of edtech hype cycles, my
dream is that educators will now have enough experience, enough
data, and enough history at their disposal to defend against the next
wave of overly optimistic claims by crafting their own more realistic,
historically grounded predictions for the future of learning at scale.



Four Questions for Probing Learning at Scale

Policymakers, administrators, teachers, and students are asked to
predict the future of learning technology all the time. The principal
asks, “Are there any new software subscriptions that I can buy for
my teachers that would improve student learning?” The policymaker
asks, “What portion of state aid for schools or universities should be
designated specifically for technologies in order to improve
graduation rates or retention?” The teacher asks, “Will adopting a
new technology help my students learn?” The learner asks, “Is it
worth spending time on this MOOC, and what will the certificate be
worth years later?”

When encountering a new large-scale learning technology, I have
found four questions particularly useful in situating a new product in
the long history of education technology:

1. What’s new?
2. Who is guiding the learning experience—an instructional designer, an

adaptive learning algorithm, or a community of peers?
3. Pedagogically, is this attempting to fill pails or kindle flames?
4. What existing technologies does this adopt?

Claims of novelty are central to the charismatic rhetoric of
technology evangelists. Canvas’s Goldsmith claimed that “no one
else” had the data assets that they do, and thus their unique data
resources would usher in a new era of personalized learning. The
question “What’s actually new here?” invites comparisons to related
efforts and a skeptical orientation. MOOC researchers have similarly
massive datasets, which have proven useful for some policy insights
but have not enabled breakthrough research in personalized
learning, despite extensive efforts. The Pittsburgh Science of
Learning Center’s Datashop has reams of data on adaptive tutors;
there are researchers using huge datasets from Scratch, Khan
Academy, and all kinds of learning management systems. Strictly
speaking, it is absolutely true that Canvas is the only company with
the exact data assets of Canvas, but plenty of other large datasets of
online learning behavior exist. If these older datasets haven’t led to a



sea change in personalized learning, it is reasonable to expect that
Canvas’s new data won’t either.

Even though edtech evangelists often seem unaware of the long
history of education technology, I have found history to be a reliable
and useful guide for predicting the future of learning at scale. If you
can figure out where a new technology fits in the genealogy of large-
scale learning technologies, you have a good chance of predicting
how a new technology will operate in schools based on the track
records of the ancestors of that new technology. Armed with this
understanding, you can then probe the potential value of incremental
contributions: Is there anything about Canvas’s dataset that differs
from prior datasets used for educational data science that might lead
to some incremental advance in the field? Answering probing
questions like these requires situating new entrants in the long
history of education technology.

Most new large-scale learning technologies fit reasonably well into
one of the three genres of learning at scale that I described in the
first half of this book. After asking, “What’s new?,” a trio of questions
about sequencing, pedagogy, and technology should follow. Ask
about who guides the learner’s sequence of actions, what
pedagogical traditions are enacted in the learning activities, and
what technologies are used to engage the learner.

If an instructor determines the sequence of learning for students, if
the pedagogy appears instructionist (with experts directly
transmitting new knowledge to learners), and if the technology is a
combination of a learning management system combined with
autograders to assess and track learner progress, then the long
history of distance education and the more recent history of MOOCs
can provide some useful guidance for predicting the future of a new
instructor-guided technology. Since autograders can reliably
evaluate human performance only in a few domains where the
structure of human performance can be quantified and analyzed by a
computer program, then you can predict that the new technology will
be most helpful in science, technology, engineering, and math fields
and less useful in the humanities and social sciences. If the new
system you are examining doesn’t include substantial human
coaching and advising, then it will probably serve well only a narrow



slice of learners—those who have developed the self-regulation
skills to navigate and persist through self-paced learning
experiences. The students who tend to thrive in these kinds of
environments are those who have already demonstrated academic
proficiency, since most people develop self-regulated learning
through an apprenticeship in the formal educational system. For
those learners, self-paced learning can provide powerful, flexible
learning experiences at low marginal (per-student) costs. But the
risks that these kinds of technologies will accelerate rather than
alleviate gaps in educational opportunity are quite high.

If an algorithm decides the sequence of learning activities, then
your new specimen may belong in the long history of adaptive tutors
and computer assisted instruction. Again, since these systems
depend upon autograders, their utility is typically limited to a few
fields—in the K–12 system, mostly math, early reading, language
acquisition, and computer programming—where domain knowledge
is amenable to computer assessment. Meta-analyses of adaptive
tutors suggest that they can have positive effects in mathematics,
and individual studies have shown benefits in other subjects. In
particular, recent studies of Carnegie Learning: Cognitive Tutor and
ASSISTments suggest that individual instruction with adaptive tutors
might accelerate math learning; some studies suggest that it may
even be possible to use adaptive tutors to address learning gaps
between high- and low-achieving students. But because these gains
are limited to a few subject areas, there is no realistic pathway to
recreating whole-school curricula around these tools.4

If a community of peers creates the resources available to
learners, the new technology that emerges from their efforts belongs
to the peer-guided genre of learning at scale. In the world at large,
these communities have dramatically reshaped how people
participate in lifelong learning; in schools, the effects of these
approaches have been more muted. The most powerful experiences
in peer-guided learning at scale tend to be deep, collaborative,
sustained, and interest driven. These characteristics, however, are at
odds with the pedagogical approach of most schools, which usually
require that learning experiences are pursued individually (not
collectively), along a set of mandated curriculum guidelines (not



determined by students’ interests), and for uniform timespans—the
class period, the marking period, the semester (not sustained over
time). The disjunction between the culture of informal online learning
and the culture of formal educational systems means that schools
struggle to integrate peer-guided, interest-driven technologies.
Programs like Scratch or a Domain of One’s Own can gain a toehold
in the periphery of educational systems, but the fit is often uneasy.
The most powerful implementations tend to be in small pockets of
innovation in a few classrooms rather than as part of schoolwide
changes. These technologies can introduce new pedagogical ideas
to schools, and they can spark dialogue about how best to prepare
young people for a future of lifelong learning, but that is at best a
starting point. Making open, networked, apprenticeship learning a
central part of schooling requires rethinking all aspects of the
ecology of schools, from curricula to assessment to schedules to
teacher professional development and beyond.

Across all three learning-at-scale genres, predictions of disruption,
transformation, and democratizing education through technology
have fared poorly over the last decade, and indeed over the last
century. Each of these genres has particular technologies that have
proven useful in certain fields or for certain students, but new
technologies do not disrupt existing educational systems. Rather,
existing educational systems domesticate new technologies, and in
most cases, they use such technologies in the service of the well-
established goals and structures of schools. Two of the most reliable
findings from the history of education technology are that educators
use new technologies to extend existing practices and that new
technologies tend to accrue most of their benefits to already-
advantaged learners. With these two fact patterns in mind, and after
using the four questions above, the analysis of a new learning
technology can usually proceed on solid footing.



Complexity, Unevenness, and Inequality

For all their differences, the three genres of learning at scale all
interact with the same formal school system ecology. This
intersection, between learning-at-scale technologies and formal
education as it exists today, has three reoccurring features:
complexity, inequality, and unevenness. These features help explain
why learning-at-scale technologies do not simply improve learning
for all students in all schools, and they are the source of the thorniest
challenges in learning at scale.

Schools are complex systems, and many stakeholders in school
systems—teachers, students, parents, administrators, and
policymakers—are often quite committed to various aspects of the
status quo. The schools that exist today are an assemblage of
features designed to balance competing visions of the purpose of
schooling: inspiring lifelong learning, helping learners pass through
gatekeeping exams, preparing people for their lives as citizens. As a
result of these varied purposes, schools are tasked with an almost
inconceivable array of often competing functions: to teach people to
read, to do math, to understand science, to stay healthy, to abstain
from sex before marriage, to practice safe sex, to learn history, to
love their country, to question their country, to play sports, to make
art, to sing songs, to program computers, to work well with others, to
become actualized individuals, and on and on. Each of these goals
requires different kinds of curricula, learning environments,
schedules, and instructional approaches. All schools choose to
invest more resources in some of these goals than others. The utility
of new technologies is uneven across these various goals;
technologies have more traction in some domains than others. And
on top of all of this complexity, our society allocates very different
levels of resources to schools serving more and less affluent
learners, and our schools all too often offer learning experiences of
lesser quality to students from poverty-impacted neighborhoods or
from ethno-racial minorities.

When emerging technologies are viewed against this background
of social, cultural, political, and pedagogical complexity, it becomes
clear why the gains and successes of learning at scale have a



mishmash pattern—useful in this subject but not that one, with these
learners but not those learners, in some contexts but not others. In
most places, these complex forces conspire to limit the impact of
emerging technologies. But there are certainly breakthroughs where
thoughtful design, careful refinement, public demand, and other
factors intersect in just the right way for massive numbers of learners
to benefit from learning at scale. The online master of science
program in computer science at Georgia Tech—the MOOC-based,
asynchronous, online master’s that has become the largest
computer science degree program in the country—appears to be
effectively serving a population of working professional students who
by all accounts wouldn’t or couldn’t pursue a master’s otherwise. The
Scratch programming community has introduced millions of young
people around the world—in schools and beyond—to computational
creativity. Findings from large randomized control trials of
ASSISTments suggest that it may be a lightweight online math
homework helper that can lead to learning gains for all students,
especially those who have previously fared poorly in math, with
relatively modest investments of technology and time.

These exemplars are useful guides to future success stories in
particular niches, but they are not harbingers of a transformation.
One MOOC-based master’s program in computer science seems to
be working, but great success seems far less likely from MOOC-
based master’s programs in creative writing, nursing, teaching, or
many other fields. The Scratch online community has made
impressive inroads in schools. There are other online communities
where young people develop new skills—the millions of young
writers who engage in fan fiction creation stands out as a useful
point of comparison—but I think it’s unlikely that many of these other
online communities will find the same inroads in schools as Scratch
has. Even if ASSISTments is a great homework helper for math, it is
unlikely that it would work equally well as a homework helper for
history, biology, or art class.

These exemplars and other efforts like them are limited by a
common set of challenges to improving human well-being through
learning at scale. In the second half of this book, I described these
“as-yet intractable dilemmas,” which can also be framed as a set of



questions that designers, policymakers, funders, and educators can
use to forecast the challenges of improving learning with technology:

1. How will existing stakeholders in a learning ecosystem see this
technology? In particular, how will they use it to extend existing practices?

2. What kinds of learning can and cannot be assessed with this technology?
3. How would learners from different backgrounds and different life

circumstances access or use these technologies differently?
4. How could experimentation and data analysis improve this technology,

and how might those data collection and experimentation efforts
contribute to a culture of surveillance?

The curse of the familiar describes the challenges of introducing
novel learning experiences into complex, conservative systems.
Technologies that digitize existing school routines are easier to
adopt, but they are less likely to meaningfully change schools;
technologies that could meaningfully change and improve schools
are hard for conservative systems to adopt. ASSISTments works in
schools because it is designed to fit in typical schooling routines. But
this alignment is also a limit; ASSISTments is helpful to math in
schools to the extent that mathematics education is more about rote
procedural fluency than more sophisticated mathematical reasoning.
When a new learning technology does not reproduce typical
schooling routines, educators often have trouble incorporating it into
the curriculum. Scratch is designed to help learners and educators
imagine computing as something much more creative than the
procedure-heavy, syntax-heavy ways it is often taught in schools, but
educators struggle to figure out how to make room for passion-
driven, playful, time-consuming Scratch projects in the confines of a
typical school day. The most promising approaches to these
challenges have less to do with scaling technology and more to do
with scaling communities of educators who can work together and
learn together to do the hard work of reforming complex systems so
that technologies can have greater impact.

The fact that large-scale learning technologies have an uneven
impact across subjects can be traced to the trap of routine
assessment. MOOCs, adaptive tutors, and other technologies that
seek to assess and credential learners at scale depend upon
autograders to computationally evaluate human performance.



Autograders are unevenly useful across the curriculum. They are
mostly useful in fields in which desired human performance is
sufficiently routine for algorithms to reliably identify the features of
high-quality and low-quality performance and to assign grades and
scores accordingly—in math, quantitative parts of science, early
language acquisition, and computer programming. Much of what we
want students to learn, however, cannot be demonstrated through
performances that adhere to these kinds of rigid structures. Indeed,
in a world where humans are ever more rapidly transitioning routine
tasks to robots and AI bots, the premium on creative problem solving
and complex communication is growing. Our large-scale learning
systems may be growing most rapidly in domains that will be least
useful in the future, unless we can develop new ways to expand the
subjects, disciplines, and skills that can be assessed meaningfully at
scale.

The curse of the familiar and the trap of routine assessment help
explain why learning-at-scale technology is difficult to integrate into
the complexity of the current education system and why, when it is
integrated, its impact is uneven across subjects and disciplines. The
edtech Matthew effect helps explain why learning-at-scale
technologies have uneven impact across people from different
backgrounds. Across all three genres of learning at scale, when
researchers evaluate how learners from different backgrounds
access and use new technologies, it is common to find that the
benefits of new technologies—even free technologies—accrue most
rapidly to the already-advantaged. Early adopters of Scratch were
likely to have parents who had some experience with computing.
MOOC providers have shifted their focus to providing lower-cost
master’s degrees because students who already have bachelor’s
degrees are easier to educate than students looking for new
pathways into higher education. This fact pattern is not an inevitable
destiny, and designers can and should be exploring how to design
technologies that are best at serving the students who have the least
opportunity. But by the same token, educators should be wary of
approaches that claim to rectify deep-seated structural inequalities
through new technologies. Perhaps new technologies can play a role



in creating more equitable ecologies of learning, but technology
alone will not democratize education.

For education researchers, one of the most exciting features of
large-scale learning technologies is that they can be changed and
improved systematically; we can closely examine and digitally record
how learners interact with digital platforms, and we can
systematically test instructional variations within those platforms to
see how competing approaches might benefit or harm learners. Yet
some of the most promising approaches to this kind of research
raise serious ethical questions: When should learners or schools
consent to participating in educational experiments or assessments?
Who should steward data from digital platforms, and what limits
should be put on their use? Perhaps the most urgent question is,
How might these systems of data collection and experimentation
inculcate young people into accepting a culture of digital surveillance
that could ultimately impinge on human autonomy even as it
promises new freedoms and benefits? The toxic power of data and
experimentation highlights that even if questions about edtech’s
possibilities and potential are technical in nature, the questions of
what we should do with technology are irreducibly political. In the
long run, the best future for improving learning technologies through
research will involve greater community involvement in addressing
these tradeoffs.

I view these as-yet intractable dilemmas not as immutable barriers
but as challenges for designers, developers, funders, researchers,
and educators to rally around. What are viable design principles for
digital equity? How could new assessment technologies provide
more learners more useful feedback in more domains at scale?
What are effective strategies for building communities of change
agents devoted to improving teaching and learning through new
technologies? How do we balance the possibilities of improving
technology through continuous experimentation with the risks
inherent in large-scale data collection and threats to the autonomy
and dignity of learners? As I examine new announcements from
edtech startups, research projects, and other new forays into
learning at scale, I use these and similar questions as guides to
identify what kinds of projects might be most likely to offer new



designs or new insights that can address complexity, unevenness,
and inequality and therefore could change the direction of learning at
scale.



Tinkering Toward the Future of Learning at Scale

Improvements in education very rarely, perhaps never, come by way
of dramatic transformations. They come through deep, long-term
commitment to the plodding work of building more robust systems.
Large-scale learning technologies absolutely can improve learning
opportunities both in informal learning and in educational institutions,
but lasting and meaningful change is unlikely to emerge through
technologies alone, especially for learners with the least opportunity.
Nearly all learning is situated in social communities—online
networks, community centers, schools, and colleges—and learning
improvements in those communities typically come from many
interlocking adjustments; a new technology can be of value when
schedules are adjusted to accommodate the technology, when goals
and assessments are modified to align with what technologies are
good at, when community leaders (teachers, moderators, coaches)
develop new proficiencies with integrating technologies into their
educational practice, and when the developers or peer contributors
to a technology improve the product through iterative development
cycles.

Consider Wikipedia, one of the most important learning resources
in the world, with 18 billion views per month of more than 40 million
article entries in 293 languages. It represents one of humanity’s most
extraordinary achievements, a community-generated repository of
global knowledge of almost incomprehensible scale: 27 billion words
written, managed, and edited almost entirely by volunteers. When
Wikipedia first found its way into schools, usually through students
citing it or copying from it for homework, it was treated with deep
suspicion; educators didn’t know exactly what it was, but they knew
they hated it. But over time, reference librarians started peeking at
Wikipedia to help address patron questions and sharing their insights
with open-minded teachers, and slowly, the world’s encyclopedia has
been accepted by many educators. The utility of Wikipedia has
increased over time as the encyclopedia has grown, but also as
communities of educators and learners have better understood how
to use the resource.



Educators and experts periodically get together to improve
specific elements of Wikipedia. For instance, Mike Caulfield, the
director of online learning at Washington State University at
Vancouver, recently led an initiative to expand Wikipedia’s entries on
local and regional papers. Caulfield had observed a surge in viral
fake news stories, circulated on Facebook and other social networks,
that were crafted to look like stories from local or regional
newspapers. Often, those fake news articles were attributed to
publications that didn’t actually exist. Caulfield decided to strengthen
Wikipedia’s entries on local newspapers so that citations claiming to
be from newspapers that do not actually exist could be more easily
and reliably vetted. Through a tiny, volunteer, citizen-educator-led
effort, Wikipedia got slightly better, and the US information literacy
infrastructure got ever so slightly stronger.5

Some communities work on the encyclopedia itself. Others work
on curricula and pedagogical approaches to using the encyclopedia.
Still others work on professional development for teachers and
librarians about how to use the resource or how search engines like
Google use Wikipedia as a framing device for many search
resources. Through all these efforts, Wikipedia is becoming an
increasingly valuable resource for learning and research inside
schools and beyond. Whether this represents an educational
breakthrough is up for debate—having this quantity of mostly well-
edited information available in the pockets of most people in the
networked world is an extraordinary achievement—but at the same
time, it turns out that learning processes are so complex that having
all of these facts in one place does not dramatically accelerate
learning. It helps—it’s a valuable addition to our global learning
ecology, and very few projects are likely to be as incredible a boon to
learning globally as Wikipedia—but it is hard to make the case that
young people in the United States or around the world are much
smarter, wiser, more ethical, or better prepared for the world
because of Wikipedia.

If you are hoping that new technologies will be able to radically
accelerate human development, the conclusion that change happens
incrementally is probably a disappointment. But if you think that
global human development is a game of inches—a slow, complex,



maddening, plodding process with two steps back for every three
steps forward—then Wikipedia is about as good as it gets. New
technologies get introduced into complex learning ecologies, and
those complex learning ecologies require multiple changes at
multiple levels to take advantage of new technologies. You can give
people every fact in the world through Wikipedia, but people cannot
make much use of those facts without improvements in instruction in
literacy, math, research, self-regulated learning, and information
literacy. As a result, changes in educational systems are necessarily
incremental, but step change is what continuous, incremental
change looks like from a distance.

New technologies can contribute to this ongoing march in two
important ways. First, the technologies themselves can aid learning,
be it in informal contexts or in formal settings. New technologies are
rarely as transformative as we might hope (or as evangelists might
promise), but to critique them for bringing only incremental change is
not to diminish (all of) their value. If you believe, as I do, that
educational improvement is a long, slow journey, it would be unwise
to turn away from anything that might take us another step, and
another step, and another along the path.

Second, the novelty of education technologies opens space for
new conversations about the practice of teaching. The arrival of new
learning technologies can be an invitation for communities of
educators to look up from their critically important and engrossing
day-to-day work and to imagine how a new tool might reinvigorate
their practice. Techno-optimists will imagine new ways that learners
can interact with content and peers, skeptics will point to the value in
practices honed over generations, and in the conversations that
emerge, we can find the particular places where specific
technologies can provide some additional value and opportunities for
learners that were not present before.

I find these kinds of conversations enormously enriching. In the
K–12 system, new technologies for learning about computer
programming—Scratch, Code.org, and others—have inspired
schools and school systems to ask a whole range of important
questions about who gets access to educational opportunities
around computer programming, where computer science should fit



into established curricula, how computer science teachers should be
trained and licensed, how non-specialist elementary teachers can be
supported in effectively introducing young children to computer
programming, and on and on. One of the most generative things to
come out of the surge of enthusiasm for MOOCs was a renewed
interest in interrogating teaching and learning in higher education. At
both Harvard and MIT, the arrival of MOOCs sparked or invigorated
organizations such as Harvard’s Initiative on Learning and Teaching
and MIT’s Office of Open Learning. At MIT, I recently helped teach a
course called Designing the First Year Experience, in which MIT
undergraduates participated in design efforts to reimagine the
freshman year at MIT. The new possibilities of technologies opened
broader conversations about learning across the institution. My
lifelong commitment to understanding education technology is
nourished not so much from the technologies themselves, but rather
from the dialogue about pedagogy and curriculum that new
technologies provoke.

If the energy and excitement generated by new technologies
could be applied not just to technology, but to technology and system
change combined, that would provide the best possible chance for
the field of learning at scale to meaningfully improve how people
learn in schools and beyond.
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