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In appreciation of
the incomparable Martin Gardner





Martin Gardner has turned dozens of innocent young-
sters into math professors and thousands of math pro-
fessors into innocent youngsters.

Persi Diaconis

Medicine makes people ill, mathematics makes them sad,
and theology makes them sinful.

Martin Luther

I am a mathematician to this extent: I can follow triple
integrals if they are done slowly on a large blackboard by
a personal friend.

J. W. McReynolds

I know that you believe that you understood what you
think I said, but I am not sure you realize that what you
heard is not what I meant.

Robert McCloskey

All truth passes through three stages. First, it is ridiculed.
Second, it is violently opposed. Third, it is accepted as
being self-evident.

Arthur Schopenhauer

First you’re an unknown, then you write a book and move
up to obscurity.

Martin Myers
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Introduction

A paradox,
A most ingenious paradox!
We’ve quips and quibbles heard in flocks,
But none to beat this paradox!

The Pirates of Penzance

We begin with a classic puzzle.

Imagine a rope just long enough to wrap tightly around the
equator of a perfectly spherical Earth. Now imagine that the
length of the rope is increased by 1 metre and again wrapped
around the Earth, supported in a regular way so that it forms
an annulus. What is the size of the gap formed between the
Earth and the extended rope?

The vast Earth, the tiny 1 metre—surely the rope will be in effect
as tight after its extension as before it? Yet, let us perform a
small calculation: in standard notation, if C = 2πr for the Earth
and the original length of the rope and C+1 = 2πR for the rope
lengthened, we require the size of

R − r = C + 1
2π

− C
2π

= 1
2π

.

The Cs have cancelled, leaving 1/2π = 0.159 . . . m ≈ 16 cm as
the gap. The Earth could have been replaced by any other planet,
an orange or a ping-pong ball and the result would have been the
same: a fact which is hard to accept even though the reasoning
is irrefutable.

In Nonplussed! we gathered together a variety of counterintu-
itive situations and in this sequel we chronicle eighteen more
mathematical phenomena which, if allowed to do so, confound
one’s reason. The criterion for inclusion has been, as it was
in Nonplussed!, that, in the recent or distant past, the matter
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2 I N T R O D U C T I O N

has caused the author surprise. We hope that the reader expe-
riences surprise too, although we must once again accept the
subjectivity of the reaction.

Again, probability and statistics show themselves to be fertile
ground for the counterintuitive, constituting about half of the
material of the book, but the remainder is again eclectic and
again meant to be so. Some of the material has an interesting
history and where possible we have tried to detail this, and some
has far-reaching consequences, extending significantly beyond
our treatment here, and we have tried to indicate this too. All-in-
all, we have collected together and attempted to explain a medley
of the confusing.

The mathematical level varies considerably and we have tried
to arrange the chapters so that there is a progression, although
this has been particularly difficult to achieve with such a col-
lection of material. Sometimes, in order to include a result at
all, it has been necessary to sidestep full mathematical rigour
and to be content with what we hope is an illuminating argu-
ment, convincing if not fully complete. It is not the sole instance,
but perhaps the definitive example of this is the Banach–Tarski
paradox, which is utterly profound and about which research
papers and books have been written; it lives in the heart of
abstract mathematics but to have omitted it completely would
have been a greater sin than including it, if somewhat super-
ficially. It is utterly unbelievable. As with all the ideas we intro-
duce, the reader can delve deeper if they desire and we have tried
to include appropriate references where possible.

We hope that, as these pages are turned, the reader will
be reminded of old favourites or informed of new favourites-
in-waiting—and that Simon Newcomb’s observation about his
tables of logarithms, which we discuss in chapter 16, will not
prevail here!



Chapter 1

IT ’S COMMON KNOWLEDGE

Mathematics is the science which uses easy words for hard
ideas.

Edward Kasner and James Newman

Part of Stevie Nicks’s 2003 lyrics of the Fleetwood Mac song
‘Everybody Finds Out’ might describe the reader’s reaction to
the subject matter of this first chapter:

I know you don’t agree…
Well, I know you don’t agree.

The song’s title also finds its way into the title of an episode of
the NBC sitcom television series Friends, ‘The One Where Every-
body Finds Out’, which was first aired in February 1999 and
which contains the following dialogue:

Rachel: Phoebe just found out about Monica and Chandler.
Joey: You mean how they’re friends and nothing more?

[Glares at Rachel]
Rachel: No. Joey, she knows! We were at Ugly Naked Guy’s

apartment and we saw them doing it through the win-
dow. [Joey gasps] Actually, we saw them doing it up
against the window.

Phoebe: Okay, so now they know that you know and they
don’t know that Rachel knows?

3



4 CHAPTER 1

Joey: Yes, but y’know what? It doesn’t matter who knows
what. Now, enough of us know that we can just tell
them that we know! Then all the lying and the secrets
would finally be over!

Phoebe: Or, we could not tell them we know and have a
little fun of our own.

Rachel: Wh-what do you mean?

We will consider what brings together pop lyrics, popular televi-
sion and an important idea which purveys a considerable body
of mathematics and its applications.

Common and Mutual Knowledge

It seems unlikely that the above discourse was meant to plumb
the depths of mathematical logic but it does draw an impor-
tant distinction between two superficially equivalent concepts:
mutual knowledge and common knowledge. We might, for exam-
ple, suggest that in everyday language it is common knowledge
that the capital city of Australia is Canberra and mean that all
people who know of the country will reasonably be aware of that
fact. As another example, we might say that it is common know-
ledge that all road users know that a red traffic light means ‘stop’
and a green traffic light ‘go’. The usage of an ordinary expression
such as ‘common knowledge’ is fine in normal circumstances but
we are going to deal with a stricter interpretation of the term and
distinguish it from its cousin, mutual knowledge.

Mathematics is given to using ordinary words for technical
purposes: group, ring, field, rational, transcendental, etc., each
have their standard dictionary definitions yet each of them
means something entirely different, precise and technical within
the mathematical world. The same is true of the phrase com-
mon knowledge, the everyday use of which suggests that what
is being referred to is known to all. The crucial point is that it
would not matter very much whether or not an individual knows
that another knows that the capital city of Australia is Canberra,
but in order to ensure safe traffic flow it is not sufficient that
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all road users are aware of the colour convention used with traf-
fic lights; it must be the case that they know that all other road
users are aware of the convention, otherwise a driver might see a
car approaching a red light and wonder whether or not its driver
is aware of the convention to stop there.

So, we make two definitions. The first is that of mutual know-
ledge. A statement S is said to be mutual knowledge among a
group of people if each person in that group knows S. Mutual
knowledge by itself implies nothing about what, if any, know-
ledge anyone attributes to anyone else. It is sufficient that the
Canberra example is one of mutual knowledge. The technical
definition of common knowledge brings about a deeper implica-
tion: that everyone knows that everyone knows (and everyone
knows that everyone knows that everyone knows, and so on) S.
The traffic light example requires common knowledge.

In the dialogue above, Phoebe’s statement,

Okay, so now they know that you know and they don’t know
that Rachel knows?

distinguishes between the common knowledge shared between
Joey and the couple Monica and Chandler and the mutual know-
ledge shared between Rachel and them.

It is possible to convert mutual into common knowledge. For
example, we could assemble a group of strangers in a room and
then make the statement: the capital city of Australia is Can-
berra. If we assume that each individual already knew the fact
(and therefore it was already mutual knowledge), at first glance
the announcement seems to add nothing, but it has transformed
mutual knowledge into common knowledge, with everybody in
the room now knowing that everybody in the room knows that
the capital city of Australia is Canberra. It is this feature that is
central to the main conundrum of the chapter.

There is a well-known example of the phenomenon in chil-
dren’s literature. In Hans Christian Andersen’s fable The Emper-
or’s New Clothes, two scoundrels convince the vain emperor that
they could make a magnificent cloth of silk and gold threads
which would be ‘invisible to everyone who was stupid or not fit
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for his post’. After the emperor gave them money and materi-
als to make the royal garments, they dressed him in nothing at
all. Not even the emperor, much less his courtiers, dared admit
to not seeing any clothes for fear of being branded stupid or
incompetent. A ceremonial parade was arranged in order to dis-
play the wondrous new clothes and the public applauded as the
emperor passed by.

All the people standing by and at the windows cheered and
cried, ‘Oh, how splendid are the emperor’s new clothes.’

Then a child commented,

But he hasn’t got anything on.

From that moment, what had been the mutual knowledge that
the emperor was naked became common knowledge.

This is more than semantic pedantry and we will consider an
infamous example of the implication of converting mutual to
common knowledge. The technique of mathematical induction
will be used and this is reviewed in the appendix (page 221).

A Case of Red and Blue Hats

Suppose that a group of people is assembled in a room and also a
number of hats, one for each, coloured either red or blue (accept-
ing that all could be of one colour). For definiteness we will sup-
pose that exactly fifteen of the hats are red, which means that
the remainder are blue, although the participants are not aware
of this distribution. We will also suppose that each individual is
a perfect logician.

A hat is placed on each person’s head in such a way that its
colour is unknown to that individual but is seen by everyone
else. The group of people then sits in the room looking at each
other, without communication, and with a clock, which strikes
every hour on the hour, available for all to see and hear. Each is
instructed to leave the room immediately after the clock strike
after which they are certain that they are wearing a red hat.

The group will simply sit in the room, waiting as the clock
strikes hour after hour. Those wearing a red hat will see fourteen
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red hats and those wearing a blue hat will see fifteen red hats;
with no extra information, none of them can be certain of the
colour of the hat they are wearing: are there fourteen, fifteen
or sixteen red hats? Fortunately, a visitor arrives in the room,
looks around at the hats being worn and announces, ‘At least
one person here is wearing a red hat.’

This hardly seems revelatory. Notwithstanding the seeming
irrelevance of the announcement, once it is made it is certain
that after the subsequent fifteenth strike of the clock, all fifteen
people who are wearing red hats will simultaneously walk out of
the room.

To consider the reasoning it will be convenient to adopt some
notation. Represent the statement ‘at least one person is wearing
a red hat’ by the symbol R1 and the statement ‘A knows X’ by
the expression A→ X.

First, consider the case of one red hat. Before the statement
the wearer, A, sees all blue hats and can have no idea of the
colour of his own hat; that is, A �→ R1. After the announcement
A→ R1 and he will be certain that his hat is red and will walk out
after the next clock strike, the first after the announcement. The
information that was conveyed by the announcement results in
an immediate resolution of the situation.

Now we will deal with two red hats. Before the announcement,
R1 is mutual but not common knowledge. That is, everyone can
see at least one red hat and, if the wearers of the red hats are A
and B, then A → R1 and B → R1, since each can see the other’s
red hat. Yet, A �→ (B → R1), since B → R1 is a direct result of
B seeing A’s red hat and A has no idea whether or not his hat
is indeed red. The announcement tells everybody that R1 is true
and so it is now the case that A → (B → R1) (and B → (A →
R1)). Information has been acquired by the announcement; what
was mutual knowledge among the red-hat wearers has become
common knowledge among them. Now the clock strikes for the
first time and none can conclude the colour of their hat: it could
be that there is one red hat, in which case, from A’s point of
view, B is wearing it. Then it strikes a second time and matters
change. A argues that, since B did not leave after the first strike
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of the clock, it must be that he saw a red hat and therefore that
there are two such, one on each of the heads of A and B: both
will leave the room.

With three red hats, before the announcement the following
typifies the situation for red-hat wearers A, B and C : B → R1, as
B can see red hats on both A and C ; A→ (B → R1), as A can see
a red hat on C , but C �→ (A → (B → R1)), since C has no idea
whether his hat is red or blue.

After the announcement, R1 again becomes common know-
ledge and so C → (A → (B → R1)) and once again information
is contained within the seemingly innocent statement and the
same argument as above establishes that all three leave after
the third strike of the clock.

The reasoning continues with ever deeper levels of knowledge
gained as the number of red hats grows with the announcement
causing the strike-out of the first arrow in the knowledge chain to
disappear in every case: everybody knows that everybody knows
that… there is at least one red hat. From this, it is a matter of
waiting in order to exclude all possibilities until in the end only
one remains; in our case, that all fifteen red head wearers know
that there are precisely fifteen red hats.

The ‘reasoning continues’ type of argument is one which is
normally susceptible to proof by induction and we give one such
below.

The induction is taken over the clock strike, with Ri taken to
mean ‘at least i people are wearing red hats’. Now suppose that
at the ith strike of the clock Ri is common knowledge. If no red-
hatted individual can tell if his hat is red, it must be that Ri+1 is
true since each must be seeing at least i red hats, otherwise he
will be able to tell that his hat is red; this together with his own
red hat gives the result. This means that on the fifteenth strike
of the clock that there are at least fifteen red hats is common
knowledge; but the red-hat wearers can only see fourteen red
hats and so they must conclude that their hat is indeed red, and
will walk out.

The puzzle is one of many variants—with luminaries such
as John Edensor Littlewood giving their names to some of
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them—they all reduce to the same fundamental concept and they
are all very, very confusing!

The importance of common knowledge extends far and wide
in mathematical application, including the fields of economics,
game theory, philosophy, artificial intelligence and psychology.
Perhaps the concept dates back as far as 1739 when, in his
Treatise of Human Nature, the Scottish philosopher David Hume
argued that, in order to engage in coordinated activity, all par-
ticipants must know what behaviour to expect from each other.
It is not difficult for the modern author to have empathy with
Hume when he (too critically) judged the initial public reaction
to the work as such that it ‘fell dead-born from the press, with-
out reaching such distinction as even to excite a murmur among
the zealots.’ It is now generally considered to be one of the most
important books in the development of modern philosophy.

As a final problem, we will consider a situation reminiscent of
the above in that a striking clock counts out seemingly irrelevant
time periods but in which a seemingly irrelevant statement is
replaced by a seemingly unhelpful condition.

Consecutive Integers

Two people, A and B, are assigned positive integers; secretly,
they are each told their integer and also that the two integers
are consecutive. The two sit in a room in which there is a clock,
which strikes every hour on the hour. They may not communi-
cate in any way, but they are instructed to wait in the room until
one knows the other’s number and then to announce that num-
ber after the strike of the clock following the revelation of that
information.

Both seem destined to stay in the room forever. The clock will
relentlessly strike the hour with the two participants seemingly
waiting for help that never comes: imagine sitting in the room
with, for example, the knowledge that your number is 57; you
can have no idea whether the other number is 56 or 58—or can
you?

In fact, there is a hidden advantage in the clock striking and
knowing that the numbers are consecutive, which our intuition
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can easily fail to exploit. A careful use of induction can succeed
in that exploitation, and having done so should convince us that
at some stage one of the two people will leave the room.

To get a feel for what is really happening, suppose that A’s
number is 1, then it must be that B’s number is 2 and after the
first strike of the clock A will announce that B has the number 2.
Now take the next case and suppose that A’s number is 2. This
means that B’s number is either 1 or 3. If it is 1, B will announce
after the first strike of the clock, as above; if the announcement
is not made, A will know that B’s number is 3 and announce this
fact after the second strike of the clock. The argument can be
continued methodically and is best done so using induction to
give the remarkable result that the person whose number is n
will announce that the other player’s number is n + 1 after the
nth strike of the clock.

In fact, the proof is easy. We have already argued that the state-
ment is true if the lower number is 1. Now let us suppose that the
statement is true when the lower number is k and that A is given
the number k+1. Then if B holds k, by the induction hypothesis
he will announce A’s number after the kth strike of the clock,
otherwise B holds k+2 and A will know this to be the case after
the kth strike of the clock and so announce B’s number after the
(k+ 1)th strike of the clock, and the induction is complete.



Chapter 2

SIMPSON’S PARADOX

Statistics are like bikinis. What they reveal is suggestive, but
what they conceal is vital.

Aaron Levenstein

Apocryphal Stories

It is difficult for the non-cricket fanatic to appreciate the trauma
associated with the biannual cricket competition between the
arch-rivals England and Australia, universally known as the
Ashes. On 29 August 1882 (at home) a full-strength England
cricket side was for the first time beaten by Australia, which
caused the British publication The Sporting Times to run an obit-
uary for English cricket which included the words ‘The body will
be cremated and the Ashes taken to Australia’. On the return fix-
ture (in Australia) England regained the upper hand and a small
urn was presented to the captain, Lord Darnley, in commemora-
tion; and so the uncompromisingly fierce competition began for
the notional possession of a tiny urn of questionable contents
which hardly ever leaves London no matter who wins it.

11
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A chance hit on a Queensland educational website1 revealed
a little apocryphal story based on the two former Australian
batsmen, the brothers Steve and Mark Waugh. In paraphrase it
read

Steve and Mark decided to have a little wager on who would
have the better overall batting average over the two upcom-
ing Ashes series, the first in England and the second in
Australia.

After the first Ashes series, Steve said to Mark, ‘You’ve got
your work cut out for you, mate. I have scored 500 runs for
10 outs, for an average of 50. You have 270 runs for 6 outs,
for an average of 45.’

After the second Ashes series, Steve continued by saying,
‘Ok, mate, pay up. In this series I scored 320 runs for 4 outs,
an average of 80, while you had 700 runs for 10 outs, which
is only an average of 70. I topped you in each of the Series.’

‘Hold on,’ said Mark, ‘The wager was for the better batting
average overall, not series by series. As I reckon it, you have
scored 820 runs for 14 outs, and I have scored 970 runs for
16 outs. Your average is 58.6, while my average is 60.6. I
win.’

How is this possible, that Steve could have the better average
in each of the two tests but a lower average overall?

The matter at hand has nothing to do with the intricacies of
cricket. The Ask Marilyn column in Parade Magazine (a supple-
ment to many American Sunday newspapers) provides a forum
for readers to ask questions and give opinions on a wide variety
of matters and often generates a great deal of reader response.
Sometimes readers send in questions for the column’s editor,
Marilyn Vos Savant, to contemplate—and since she is listed in
the Guinness Book of World Records Hall of Fame as the indi-
vidual with the highest IQ, they can reasonably expect thought-
provoking answers. The following question was posed by a
reader in the Ask Marilyn column in the 28 April 1996 issue
of Parade Magazine:

1http://exploringdata.cqu.edu.au/sim_par.htm.
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Table 2.1.

Death rate
Population Deaths per 100 000︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

NY R’d NY R’d NY R’d

Caucasians 4 675 174 80 895 8365 131 179 162
African Americans 91 709 46 733 513 155 560 332

Totals 4 766 833 127 268 8881 286 187 226

A company decided to expand, so it opened a factory gener-
ating 455 jobs. For the 70 white collar positions, 200 males
and 200 females applied. Of the females who applied, 20%
were hired, while only 15% of the males were hired. Of the
400 males applying for the blue collar positions, 75% were
hired, while 85% of the 100 females who applied were hired.

A federal Equal Employment enforcement official noted
that many more males were hired than females, and decided
to investigate. Responding to charges of irregularities in
hiring, the company president denied any discrimination,
pointing out that in both the white collar and blue collar
fields, the percentage of female applicants hired was greater
than it was for males.

But the government official produced his own statistics,
which showed that a female applying for a job had a 58%
chance of being denied employment while male applicants
had only a 45% denial rate. As the current law is written, this
constituted a violation. Can you explain how two opposing
statistical outcomes are reached from the same raw data?

The reader may wish to check the arithmetic but Marilyn cor-
rectly noted that, even though all the figures presented are
correct, the two outcomes are not, in fact, opposing. Nor is it
the case that such conflicting data are necessarily contrived.
Consider the following true story.

In 1934 Morris Cohen and Ernst Nagel cited actual 1910 death
rates from tuberculosis in two cities (Richmond, Virginia, and
New York, New York). Table 2.1 shows their data. From it we
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can see that the death rates for Caucasians and African Ameri-
cans were each individually lower in Richmond than in New York,
yet the death rate for the total combined population of African
Americans and Caucasians was higher in Richmond than in New
York.

Simpson’s Paradox

All of the above are examples of sets of data separately support-
ing a certain hypothesis but, when combined, support the oppo-
site hypothesis. The phenomenon is known as Simpson’s Para-
dox, after E. H. Simpson, who discussed it in a 1951 article (The
interpretation of interaction in contingency tables, Journal of the
Royal Statistical Society B 13:238–41). As is so often the case, the
person after whom a result is named is not the person who first
considered it. G. Udny Yule preceded Simpson in 1903 (Notes on
the theory of association of attributes in statistics, Biometrika
2:121–34) and he was preceded by Karl Pearson, A. Lee and L.
Bramley-Moore in 1899 (Genetic (reproductive) selection: inheri-
tance of fertility in man, Philosophical Transactions of the Royal
Statistical Society A 173:534–39): Yule described the association
as ‘spurious’ or ‘illusory ’. Yet, it was Simpson’s witty and sur-
prising illustrations of the phenomenon which earned the name
and the clear view that something peculiar but explicable was
happening.

As our contender for a witty illustration, consider the follow-
ing factual case, which demonstrates the process in reverse.

An argument to substantiate the claim that foreigners were
more likely to be insane than native-born Americans was ad-
vanced in Massachusetts in 1854 and table 2.2 shows the figures
that were given in justification. These show that the probability
that a foreign-born individual was deemed insane was 625

230 000 =
2.7× 10−3, whereas for a native-born individual the probability
reduces to 2007

894 676 = 2.2×10−3. There might be something in the
claim.

Now let us agree to divide the data according to an accepted
social hierarchy of the time: rather strange to the modern eye
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Table 2.2. Whole population.

Insane Not insane Totals

Foreign born 625 229 375 230 000
Native born 2007 892 669 894 676

Totals 2632 1 122 044 1 124 676

Table 2.3. Pauper class.

Insane Not insane Totals

Foreign born 182 9 090 9 272
Native born 250 12 513 12 763

Totals 432 21 603 22 035

Table 2.4. Independent class.

Insane Not insane Totals

Foreign born 443 220 285 220 728
Native born 1757 880 156 881 913

Totals 2200 1 100 441 1 102 641

the division is into the pauper class and the independent class.
We then arrive at tables 2.3 and 2.4.

Within the pauper class we have that the probability of a for-
eign-born person being deemed insane is 182

9272 = 0.02, which is
the same as a native-born person, with the calculation 250

12 763 =
0.02. The same is true for the independent class, where the prob-
abilities are both 2.0×10−3; so, if an adjustment is made for the
status of the individuals, we see that there is no relationship at
all between sanity and origin.

An Analysis

For the purposes of illustration we will detail a final, theoretical
example of the phenomenon.
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Table 2.5. Effects of the drugs on men.

C ∼ C
X 40 160 200
Y 30 170 200

70 330 400

Table 2.6. Effects of the drugs on women.

C ∼ C
X 85 15 100
Y 300 100 400

385 115 500

Suppose that two new drugs, X and Y , are tested on a sample
of the population suffering from a particular ailment and that
tables 2.5 and 2.6 show the comparison of the effectiveness of
the two drugs on men and women separately, giving frequencies
of curing the patient (C) and otherwise (∼ C). Since 40

200 >
30

200 and
85
100 >

300
400 the tables show that for both males and females drug

X is more effective than drug Y .
Now combine the data to arrive at table 2.7, which shows the

comparative effect of each drug for the population as a whole.
Since 330

600 >
125
300 , drug Y is now more effective than drugX. Which

is better, drug X or drug Y ?
The structure of the process is encapsulated in tables 2.8–2.10.
We can see that the basis for the paradox is the simple arith-

metical fact that, for positive numbers, if

a
b
>
c
d

and
p
q
>
r
s
,

it is not necessarily the case that

a+ p
b + q >

c + r
d+ s ,

and vice versa. For example, 1
2 >

3
7 and 1

5 >
1
6 but

1+1
2+5 =

2
7 <

4
13 =

3+1
7+6 .
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Table 2.7. Effects of the drugs on both sexes combined.

C ∼ C
X 125 175 300
Y 330 270 600

455 445 900

Table 2.8. Subcollection 1.

Possess Do not possess
attribute attribute Totals

Attribute a b − a b
Alternative attribute c d− c d

Totals a+ c b − a+ d− c b + d

Table 2.9. Subcollection 2.

Possess Do not possess
attribute attribute Totals

Attribute p q − p q
Alternative attribute r s − r s

Totals p + r q − p + s − r q + s

Table 2.10. Total sample.

Possess Do not possess
attribute attribute Totals

Attribute a+ p b − a+ q − p b + q
Alternative attribute c + r d− c + s − r d+ s
Totals a+ c q − p + s − r b + d

+ p + r + b − a+ d− c + q + s

In the hypothetical case above, 40
200 >

30
200 and 85

100 >
300
400 but

40+30
200+200 =

70
400 <

385
500 =

85+300
100+400 .
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a
q

b

c

d

r

s

p

Figure 2.1.

If we use matrix notation to summarize the data sets with

X =
(
a b
c d

)
and Y =

(
p q
r s

)

representing the two subcollections, then

X + Y =
(
a b
c d

)
+
(
p q
r s

)
=
(
a+ p b + q
c + r d+ s

)
,

in which case the above conditions on inequalities translate to
the equally obvious statement that, if detX > 0 and detY > 0,
it is not necessarily the case that det(X + Y) > 0: matrix
determinants are not additive.

Alternatively, we can use figure 2.1 to provide a geometric ex-
planation of how the reversal can occur, taking lines the slopes
of which are the fractions we are comparing: the slopes of
the dashed lines are in the reverse order to the slopes of the
comparable full lines.

As an aid to constructing paradoxical data we can argue as
follows.

Since we assume that

p
q
>
r
s
,
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we have

p > q
r
s
,

and if the paradox is to exist we reverse the third inequality to
get

a+ p
b + q <

c + r
d+ s

and so

p <
c + r
d+ s (b + q)− a.

These combine to bounds on p of

q
r
s
< p <

c + r
d+ s (b + q)− a.

For example, we can determine the boundaries for p which allow
the paradox to exist using the data from the theoretical example
to get 75 < p < 125, and the actual value of p = 85 sits nicely
in that interval.

To find a lower bound on q we can eliminate p above to give

q
r
s
<
c + r
d+ s (b + q)− a

and therefore we have

q
(
r
s
− c + r
d+ s

)
< b

c + r
d+ s − a

or

q(r(d+ s)− s(c + r)) < s(b(c + r)− a(d+ s)),

which means that q(dr − cs) < s(b(c + r)− a(d+ s)).
If, for the sake of definiteness, we take

r
s
>
c
d
,

and so dr − cs > 0, we can now divide to get our inequality

q <
s(b(c + r)− a(d+ s))

dr − cs .
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Again, from the theoretical example we get q < 285.7 and q =
100 again fits the inequality.

Finally, it might be of interest to consider the smallest popu-
lation in which the paradox can exist. If we assume that no cat-
egory can have a zero entry, then Thomas Bending has shown
that

a = 1, b = 2, c = 3, d = 7,
p = 1, q = 5, r = 1, s = 6

gives a paradoxical situation with a total population of b + d +
q + s = 20; whether or not this is minimal, as he says, is quite
another matter.

Examples of the occurrence of Simpson’s Paradox are legion
in areas ranging from SAT scores divided into ethnic groups
(D. Berliner, 1993, Educational Reform in an Era of Disinforma-
tion. Educational Policy Analysis Archives), through growth of
children in South Africa (Christopher H. Morrell, 1999, Simp-
son’s Paradox: an example from a longitudinal study in South
Africa, Journal of Statistics Education, volume 7(3)) to the much
publicized Berkeley sex bias case of 1973 in which the Univer-
sity of California at Berkeley was sued for bias against women
applying to graduate school (P. J. Bickel, E. A. Hammel and J. W.
O’Connell, 1975, Sex bias in graduate admissions: data from
Berkeley, Science 187:398–404).
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THE IMPOSSIBLE PROBLEM

If you think it’s simple, then you have misunderstood the
problem.

Bjarne Strustrup

Double Dutch

The Dutch mathematician, mathematical historian and educa-
tor Hans Freudenthal was an original and inspirational thinker.
Radio telescopes are pretty complicated mechanisms. Freuden-
thal therefore (and reasonably) argued that electronic communi-
cation with extraterrestrial life would require of them the capac-
ity to count and to recognize that 2 + 2 = 4 and from this
conviction he created a mathematically based interstellar lan-
guage called Lingua Cosmica (the language of the cosmos, which
was published in his book LINCOS: Design of a Language for Cos-
mic Intercourse in 1960). It seems that he also created a remark-
able logical puzzle, which we will consider in this chapter. It was
published in 1969 as problem number 223 in the Dutch Nieuw

21
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Archief voor Wiskunde (New Archive for Mathematics), and in its
original form looked like:

No. 223. A zegt tot S en P : Ik heb twee gehele getallen x,
y gekozen met 1 < x < y en x + y � 100. Straks deel ik
s = x + y aan S alleen mee, en p = xy aan P alleen. Deze
mededelingen blijven geheim. Maar jullie moeten je inspannen
om het paar {x,y} uit te rekenen.

Hij doet zoals aangekondigd. Nu volgt dit gesprek:

1. P zegt: Ik weet het niet.

2. S zegt: Dat wist ik al.

3. P segt: Nu weet ik het.

4. S zegt: Nu weet ik het ook.

Bepaal het paar {x,y}. (H. Freudenthal)

The reader may appreciate the following translation:

No. 223. A says to S and P : I have chosen two integers x, y
such that 1 < x < y and x + y � 100. In a moment I will
inform S only of s = x + y , and P only of p = xy . These
announcements will be private. You are required to deter-
mine the pair {x,y}. He acts as promised. Then the following
conversation takes place:

1. P says: I do not know the pair.

2. S says: I knew you didn’t.

3. P says: I now know it.

4. S says: I know it too.

Determine the pair {x,y}. (H. Freudenthal)

Other and Later Versions

The puzzle in its English form above reappeared as problem 977
in the Problem section of the March 1976 issue of Mathemat-
ics Magazine (volume 49(2)), submitted by David J. Sprows. An
editor’s footnote describes it as



THE IMPOSSIBLE PROBLEM 23

A succinct variation of some past problems in the American
Mathematical Monthly, especially E776, E1126 and E1156,

an observation which dates the problem’s variations at 1948,
1955 and 1956 respectively, and assuredly they are significant
variations, which as we will see is a highly noteworthy matter.
It is almost inevitable that Martin Gardner was responsible for
bringing the problem to the greater mathematical puzzling pub-
lic and certainly to the attention of this author. In the Mathe-
matical Games section of the December 1979 issue of Scientific
American, which he subtitled, ‘A pride of problems, including
one that is virtually impossible’, Gardner listed several short,
unrelated problems to challenge his readers, the first of which
is his version of Freudenthal’s puzzle, told to him by the late
Canadian puzzle and magic genius Mel Stover. The statement
was preceded by the opening paragraph:

It is hoped that the following unrelated problems will be new
and challenging to most readers. Number 1 is so difficult,
with a solution that would take up an inordinate amount
of space next month that it is answered at the end of the
column. Readers who relish a tough challenge are urged to
work on the problem before they read the solution. If there
is a simpler solution to the problem than the one given, I
should like to know about it. The other problems will be
answered at the end of next month’s column.

He termed number 1 ‘The impossible problem’.
Gardner’s original version is as follows:

Two numbers (not necessarily different) are chosen from the
range of positive integers greater than 1 and not greater than
20. Only the sum of the two numbers is given to mathemati-
cian S. Only the product of the two is given to mathematician
P.

On the telephone S says to P, ‘I see no way you can deter-
mine my sum.’

An hour later P calls him back to say, ‘I know your sum.’

Later S calls P again to report, ‘Now I know your product.’

What are the two numbers?
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He continued by remarking:

To simplify the problem, I have given it here with an upper
bound of 20 for each of the two numbers. This means that
the sum cannot be greater than 40 or the product greater
than 400. If you succeed in finding the unique solution, you
will see how easily the problem can be extended by raising
the upper bound. Surprisingly, if the bound is raised to 100,
the answer remains the same.

We can see that Gardner’s version is a variant of the original,
most particularly and significantly because of the number and
order of the statements. Over the years the problem has spawned
any number of other variants each of which continues to main-
tain an air of mystery and surprise; it simply does not seem pos-
sible to solve any of its forms with the information given, but
the solutions do exist, and involve the use of one of the great
conjectures of mathematics, the Goldbach Conjecture, which is
described in the appendix (page 224) (see Torsten Sillke’s page
www.mathematik.uni-bielefeld.de/˜sillke/).

The exact wording of any variant is critical. Lee Sallows consid-
ered Gardner’s version in great detail in his article ‘The impossi-
ble problem’ (1995, The Mathematical Intelligencer 17(1):27–33)
and we will look at a particular formulation which has, for rea-
sons of the names’ first letters, been framed in terms of the two
perfect logicians Polly and Sam. Notice the upper bound.

Polly and Sam are visited by a friend. The friend, hav-
ing thought of two integers between 2 and 800 inclusive,
whispers their product to Polly and their sum to Sam. The
following dialogue results:

1. Polly: I don’t know the two numbers.

2. Sam: I know that and neither do I.

3. Polly: I know the two numbers.

4. Sam: So do I.

What are the two numbers?

We will draw inferences from the information contained within
Polly’s and Sam’s statements, but it should be made clear that,
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in all likelihood, other inferences than those which we make can
be made, which could lead to the elimination process behaving
in a different manner to the one described below. This is not so
much a puzzle to solve, but one to investigate.

First, although the emphasis it provides is useful, the ‘and nei-
ther do I’ part of Sam’s response is redundant. The only way Sam
could know the numbers at this stage is if they are the pair (2,3)
and this possibility has already been eliminated by Polly.

Keeping track of the consequences of the deductive processes
is greatly assisted by the use of a computer and the prob-
lem has long been used as an opportunity for Artificial Intel-
ligence programming, with many programs having been written
in languages such as Lisp and Prologue. We will give a general
schema in a pseudo-code, which can be translated into a specific
language.

An Analysis

If we call the two integers x and y , we can make the following
deductions:

After statement 1.
x and y cannot both be prime. If they were, the given product

could be factored in only one way and Polly would know the
numbers, which would contradict her first statement.
x × y cannot be the cube of a prime p otherwise Polly would

know that the numbers are p and p2.

After statement 2.
x +y must be odd. This is where we need the Goldbach Con-

jecture. If x+y is even, using the conjecture, it is possible for it
to be written as the sum of two primes. If this were the case, it
would again mean that both x and y would be prime, in which
case Sam could not be certain that Polly could not deduce the
values of x and y .
x + y is not 2 more than a prime. If it were, then x could be

2 and y could be prime, in which case the product would be 2y
and again Sam could not be certain that Polly could not deduce
the values of x and y .
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x + y < 403. If not, x + y � 403 and this means that x (say)
could be the prime 401 with y ∈ {2,4,6, . . . ,800} even, since
x+y is odd. This means that the product known to Polly would
be 401y with the smallest factor of y being 2. It must then be
that x = 401, otherwise x � 2×401 = 802 and that is out of the
allowed range. Therefore, if Sam were in possession of the sum
x + y � 403, again he could not be certain that Polly could not
deduce the values of x and y .

Using this information a list of allowed number pairs can be
formed; call it L.

After statement 3.
Since Polly tells Sam that she can now deduce the two numbers,

it must be that her product appears uniquely in the products of
the members of L. Polly can look at L, form the products and
identify the unique pair that generates her given product.

After statement 4.
Since Sam tells Polly that he can now deduce the two numbers,

it must be that his sum is uniquely formed from L. He can do
for the sum what Polly did for the product.

With our analysis in place we can develop our pseudo-code
and detail the results of a computer program based on it. Before
we do this we can reduce the size of the list from its original
7992 = 638 401 entries by assuming that x � y , since addition
and multiplication are commutative operations.

Pseudo-Code

Array A := {(x,y) : {x,2,800}, {y,x,800}}
A := {(2,2), (2,3), (2,4), . . . , (799,799), (799,800), (800,800)}
LENGTH[A] = 319,600.

After statement 1.
A→ SELECT[A] : {(x,y) : (NOT[PRIME[x]&PRIME[y]])

&(x ×y �= prime3)}



THE IMPOSSIBLE PROBLEM 27

A := {(2,6), (2,8), (2,9), (2,10), (2,12), . . . ,
(798,800), (799,800), (800,800)}

LENGTH[A] = 309,861.

After statement 2.
A→ SELECT[A] : {(x,y) : (x +y ODD)&(x +y < 403)

&(x +y �= prime+ 2)}
A := {(2,9), (2,15), (2,21), (2,25), . . . ,

(198,199), (198,203), (199,202)}, (200,201)
LENGTH[A] = 12,996.

This is list L.

After statement 3.
A→ SELECT[A] : {(x,y) : x ×y is unique}
A := {(2,9), (2,25), (2,27), (2,49), . . . ,

(198,199), (198,203), (199,202), (200,201)}
LENGTH[A] =4,471

Polly searches L for her known product, which must be unique.

After statement 4.
A→ SELECT[A] : {(x,y) : x +y is unique}
A := {(4,13)}
LENGTH[A] = 1.

Sam searches L for his sum.
The unique solution is the pair (4,13).
With a mathematical programming language available, there

are functions which will greatly help with this sifting; otherwise
some judicious programming is needed!

Further Thoughts

There is significance in there being just one member in the final
list in the pseudo-code. It not only means that the provider of the
numbers has no choice in them if the dialogue is to be correct,
but also that an observer who has listened to Polly and Sam’s
conversation could also identify the two numbers. To under-
stand the problem completely, it is important to distinguish
between what Polly and Sam know and what an observer knows
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from listening to them. The first two statements make no use of
the specific numbers that Polly and Sam have been given and the
listening observer could make the same deductions and arrive
at the list L. L has many number pairs and Polly uses her know-
ledge of her number to pick the only pair in it that will do. Sam
then does the same with ‘product’ replaced by ‘sum’. In fact, now
neither has need of the precise number that was given them as
each could both add and multiply the number pairs and arrive
at the unique (4,13). Since this is true the observer could have
solved the problem himself and told Polly and Sam what the two
numbers are.

We have given the upper bound as 800; now let us vary it. There
is an important event when the upper bound is 123. The pair
(4,61)makes a first appearance in L, since it just passes through
the sieve made by the first two statements. Having made its
appearance, (4,61) continues to be eliminated, with 4+61 = 65
not unique—until the upper bound is 867—when the pairs that
sum to 65 and which cause (4,61) to be eliminated are them-
selves eliminated, leaving that pair to pass through, and for the
first time. The final list scrutinized by Polly and Sam is then
{(4,13), (4,61)}. Now Polly and Sam have to use their knowledge
of the exact value to arrive at the answer. For the first time, the
provider of the numbers could have chosen a second number
pair and the observer is not able to solve the problem.

Notice that (4,61) cannot be eliminated by Polly since the only
possible other pair multiplying to 244 is (2,122) which has both
entries even.

This is no more than a special case of the form (2n,p), where
p is prime, with (4,13) the first example of it. The product of
the two numbers is 2np, which cannot be duplicated in L since
to do so would mean moving a 2 across to the prime, and again
this makes both numbers even. These numbers can only be elim-
inated from L by Sam. If other number pairs in L sum to 2n+p,
the pair will be eliminated, otherwise Sam will have to use his
knowledge of the exact value of the sum to make his second
statement. In this sense pairs of numbers of this type are the
most difficult to eliminate from L and as we increase the upper
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bound we see more and more of them appear, but to do this we
need to generalize the third conclusion we made from statement
2. The earlier argument resulting in the bound of 443 is a special
case of the following: if x and y each have an upper bound of n,
then x+y < 1

2n+2, where N is the smallest prime greater than
or equal to N .

The justification is really the same as before. If x+y � 1
2n+2,

one of x or y (say x) might be 1
2n and y must be an even integer

2 or greater. Polly would then be in possession of the product
y 1

2n. She would therefore know the two numbers, since the only
possible ambiguity would be in moving a factor from y to 1

2n
and the smallest factor that y can have is 2 and that would make
x = 2× 1

2n > n.
If we run the program for the upper bound of 2000, the final

list is

{{4,13}, {4,61}, {16,73}, {32,131}},

and if we go as far as an upper bound of 5000, it becomes

{{4,13}, {4,61}, {4,229}, {16,73}, {16,111},
{32,131}, {32,311}, {64,73}, {64,309}, {67,82}}.

And this brings us to the end of our own investigation into the
problem!

Three Variants

Finally, we offer the reader three standard but lesser-known
variants—but without answers.

Variant 1. Three people V, C and X are joined by another person
M, who holds hidden the sixteen cards: A, Q, 4 (♥); J, 8,7, 4, 3, 2
(♠); K, Q, 6, 5, 4 (♣); A, 5 (♦).

M selects a card at random and tells V the card’s value and C
its colour. After this, in X’s hearing, he asks them the question,
‘Do you know which card I have?’ The following conversation
ensues:
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V : I don’t know what the card is.
C : I knew that you didn’t know.
V : I know the card now.
C : I know it too.

X thinks for a moment, and concludes correctly what M’s card
is. How is this possible?

Variant 2. Each of A, B and C is wearing a hat on which a posi-
tive number is printed. Each can see the numbers on the others’
hats but not their own number. All are told that one of the num-
bers is the sum of the other two. The following statements are
made in the hearing of all:

A : I cannot deduce what my number is.
B : I cannot deduce what my number is.
C : I cannot deduce what my number is.
A : I can deduce that my number is 50.

What are the numbers on the other two hats?

Variant 3. A person M joins two others, A and B. M whispers
to A the sum of two natural numbers and to B the sum of
the squares of the same two natural numbers. Each knows the
nature but not the detail of the information being conveyed. The
following conversation takes place:

B : I do not know the numbers.
A : I do not know the numbers.
B : I do not know the numbers.
A : I do not know the numbers.
B : I do not know the numbers.
A : I do not know the numbers.
B : I know the numbers.

What are the two natural numbers?



Chapter 4

BRAESS’S PARADOX

People take different roads seeking fulfillment and happi-
ness. Just because they’re not on your road doesn’t mean
they’ve gotten lost.

H. Jackson Browne

A Road to Nowhere

In the 1969 publication ‘Graphentheoretische Methoden und ihre
Anwendungen’, W. Knödel remarked that

…major road investment in Stuttgart’s city centre, in the
vicinity of the Schlossplatz, failed to yield the benefits
expected. They were only obtained when a cross street, the
lower part of Königstrasse, was subsequently withdrawn
from traffic use....

Eliminating a road, rather than building a road, improved traffic
flow.

31
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Figure 4.1.

Figure 4.1 shows a map of the relevant part of the city, with
part of Königstrasse now a pedestrian precinct.

When 42nd Street in New York City was temporarily closed to
traffic, rather than the expected gridlock resulting, traffic flowed
more easily; in fact, it was reported in the 2 September 2002 edi-
tion of The New Yorker that in the twenty-three American cities
that added the most new roads per person during the 1990s,
traffic congestion rose by more than 70%.

These observed phenomena would have been no surprise to
the German mathematician Dietrich Braess, who had published
the article ‘Über ein Paradoxon aus der Verkehrsplanung’ in
Unternehmenstorchung (12:258–68) in 1968, in which he made
exactly that point: under the appropriate conditions, building
new roads to ease congestion actually makes the problem worse.
He made the point by use of a simple, hypothetical road network
which deteriorated when a bypass link was added to it.

The Grip of an Invisible Hand

Figure 4.2 shows Braess’s hypothetical system of one-way roads
from A to B, via alternatives X and Y. The arrows indicate the
direction in which travel is possible and the expressions labelling
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A B

X

Y

10x1

10x5

x4 + 50

x2 + 50

Figure 4.2.

the four routes are the ‘cost functions’ for that route. Here we
can think of the ‘cost’ of following a particular route as the time
taken for it to be traversed, given that a certain number of vehi-
cles are using it; the driver will, we assume, wish to minimize this
and the assumption is that he or she will be completely aware of
the traffic situation at all times, selfishly choosing the route that
is most beneficial to that individual. The determination of such
cost functions is a complicated example of mathematical mod-
elling but Braess suggested the simplest model of all: a linear
function of the number of vehicles xr using a particular route,
which might be thought of as a loading influenced by the nature
of the road in question and which uses up time, fuel, etc.

If we take the traffic load from A to B to be n vehicles (per-
haps an hour), the costs of using route X and route Y are clearly
10x1 + x4 + 50 and 10x5 + x2 + 50, respectively, and since any
vehicle which committed to using the first part of a route must
use the second part, x1 = x4 and x2 = x5. This means that
the cost functions simplify to 11x1 + 50 and 11x2 + 50, respec-
tively. The knowledgeable drivers will decide to use a partic-
ular route depending on the relative sizes of x1 and x2. The
first driver in the system will have a choice of either route, the
second will switch to the other route, the third is in the same
position as the first, etc.: equilibrium is reached with the n
drivers split into two sets of 1

2n, with equal cost functions of
C = 11× 1

2n+ 50 = 1
2(11n+ 100).
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With this entirely selfish model in place, the natural equilib-
rium position is reached with the load equally shared between
the two alternatives.

Now let us suppose that the authorities intervene by introduc-
ing a mechanism which routes traffic so that the average cost
function is minimized, thereby bringing about a collective rather
than individual benefit.

With the distribution shown in figure 4.2, the average cost
function is given by

A = 1
n
(x1(11x1 + 50)+ x2(11x2 + 50))

= 1
n
(11(x2

1 + x2
2)+ 50(x1 + x2))

= 1
n
(11(x1 + x2)2 + 50(x1 + x2)− 22x1x2)

= 1
n
(11n2 + 50n− 22x1(n− x1)),

since x1 + x2 = n.
A little extra algebra allows us to rewrite the expression as

A = 1
n
(11

2 n
2 + 50n+ 22(x1 − 1

2n)
2)

and this is clearly minimized when x1 = 1
2n and so, once again,

we have the result that an equally shared load provides the solu-
tion to the problem. The selfish approach has done as much
as one which possesses corporate responsibility, with individ-
ual optimization aggregating to collective optimization: Adam
Smith’s invisible hand has taken its grip.1 Yet, Smith’s invisible

1In his 1776 book, The Wealth of Nations, the economist Adam Smith wrote:

Every individual necessarily labours to render the annual revenue of
the society as great as he can. He generally indeed neither intends
to promote the public interest, nor knows how much he is promot-
ing it. He intends only his own gain, and he is in this, as in many
other cases, led by an invisible hand to promote an end which was
no part of his intention. By pursuing his own interest he frequently
promotes that of the society more effectually than when he really
intends to promote it. I have never known much good done by those
who affected to trade for the public good.
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Figure 4.3.

A B

X
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x
 

y

x − y

n − x + yn −x

Figure 4.4.

hand sometimes loses its grip—and we are about to approach
one such example.

The Grip Loosens

Suppose that, with a view to easing congestion, a one-way relief
road is built joining X and Y, with a cost function of x3 + 10, as
shown in figure 4.3.

We can no longer conclude that x1 = x4 and x2 = x5 and we
will study the behaviour of the network by adopting the notation
that, of the n vehicles entering A, x of them choose path AX
and y of those subsequently choose path XY. This means that
x1 = x, x2 = n− x, x3 = y , x4 = x − y and x5 = n− x + y , as
in figure 4.4.
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Now we can compute the cost functions for each of the three
routes from A to B via X or via Y or via X and Y:

CX = 10x + (x −y)+ 50

= 11x −y + 50,
CY = (n− x)+ 50+ 10(n− x +y)
= −11x + 10y + 11n+ 50,

CXY = 10x + (y + 10)+ 10(n− x +y)
= 11y + 10n+ 10.

Equilibrium will be reached when all three cost functions are
equal, with no route being better than any other. Setting CX = CY

and CX = CXY results in the two equations 2x − y = n and
11x − 12y = 10n− 40, which have solutions

x = 2(n+ 20)
13

and y = 80− 9n
13

.

It must be that x � n and 0 � y � n for the solutions to make
sense, and these inequalities reduce to n � 40

11 and 40
11 � n � 80

9 ,
respectively.

So, provided that 40
11 � n � 80

9 we have meaningful solutions
for the equilibrium position. Finally, substituting these values
of x and y back into the original cost functions results in the
equilibrium position of

CX = CY = CXY = 31n+ 1010
13

.

Recall that, with no relief road, the cost equilibrium function C =
1
2(11n+ 100). Braess’s Paradox emerges when CX > C , which
is when 1

13(31n+ 1010) > 1
2(11n+ 100), and this means that

again we need n < 80
9 = 88

9 .
Braess’s Paradox will appear for any n which allows the

equilibrium to be realized: n = 4,5,6,7,8.
In fact, Braess took n = 6 to demonstrate the point, which

caused the traffic flow to be as in figure 4.5 and the equilibrium
cost of travel before the relief road was built to be

C = 1
2(11× 6+ 100) = 83
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Figure 4.5.

and the cost afterwards to be

CX = CY = CXY = 1
13(31× 6+ 1010) = 92.

The building of the extra road has made things worse!
We can also see that the invisible hand has indeed lost its grip.

Now the average cost is the more formidable expression

A = 1
n
(x × 10x + (n− x)(n− x + 50)+y(y + 10)

+ (x −y)((x −y)+ 50)+ (n− x +y)× 10(n− x +y)),

which simplifies to

A = 1
n
(12y2+ (20n−22x−40)y+22x2−22nx+11n2+50n)

and which we will consider as a function of y for any given x,
again completing the square to get

A = 12
[(
y + 10n− 11x − 20

12

)2

−
(

10n− 11x − 20
12

)2]
+ 22x2 − 22nx + 11n2 + 50n

= 12
(
y + 10n− 11x − 20

12

)2

− 12
(

10n− 11x − 20
12

)2

+ 22x2 − 22nx + 11n2 + 50n.

Now we have isolated y we can see that A will achieve its
minimum value when y = 1

12(11x − 10n+ 20) for any given x.
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In the selfish case, we saw that equilibrium is achieved when
x = 2

13(n+ 20), which would now make y = 1
39(175− 27n),

which we can compare with the original y = 1
13(80− 9n). The

invisible hand has indeed disappeared.
There now exist any number of formulations of the phe-

nomenon, using networks which are ever more complicated, with
cost functions linear or otherwise. As a first step, in the origi-
nal Braess form that we have looked at we might imagine that
making XY two-way would make a difference but, although the
numbers change, the paradox stubbornly reemerges.

We have framed the paradox, as Braess originally framed it, in
terms of traffic flow and we have mentioned two cases where it
might have a real impact on a road system. The article ‘The preva-
lence of Braess’s Paradox’ by R. Steinberg and W. I. Zangwill in
the journal Transportation Science (17:301–18, 1983) provides
more examples. That said, the paradox is essentially about flow
in a network in which there are varied cost functions associated
with its arcs, and as such it is not restricted to traffic flow: exam-
ples of it appear in cases of water flow, computer data transfer,
mechanical and electrical networks and telephone exchanges. In
1990 the British Telecom network suffered in such a way when
its ‘intelligent’ exchanges reacted to blocked routes by rerout-
ing calls along ‘better’ paths. This in turn caused later calls to be
rerouted with the cascade effect leading to a catastrophic change
in the network’s behaviour.

Braess’s Paradox is a manifestation of small local changes
unpredictably resulting in large global effects and has become a
force to be reckoned with.



Chapter 5

THE POWER OF COMPLEX NUMBERS

Imagine a person with a gift of ridicule. [He might say] First
that a negative quantity has no logarithm; secondly that a
negative quantity has no square root; thirdly that the first
nonexistent is to the second as the circumference of a circle
is to the diameter.

Augustus De Morgan

Strange Happenings

Apart from admiration for the committed effort and ingenu-
ity displayed in a note to the American Mathematical Monthly
by H. S. Uhler, the casual reader might be surprised by the
approximate value

0.207 879 576 350 761 908 546 955 619 834 978 770 033 877 841 631 769 614

the author gives to ii = √−1
√−1

: a real number.1 The purpose of
the note was to give high-order decimal approximations to eight
numbers, each of which is a power of e; two of those numbers

1H. S. Uhler, 1921, On the numerical value of ii, American Mathematical
Monthly 28(3):114–16.

39
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were eπ , the Gelfond constant, which we will mention later, and
e−π/2, which was written alternatively as ii. The remarkable fact
that

√−1
√−1 = e−π/2 together with a look at De Morgan’s quo-

tation above and some material underlying them will occupy us
over the next few pages.

Throughout their history, complex numbers have caused con-
ceptual and philosophical difficulty, and their logarithms grave
confusion. For example, in the mathematical ferment of the eigh-
teenth century it was of natural and considerable importance to
reconcile the two different answers to the integral (omitting the
arbitrary constant)

tan−1 x =
∫

1
x2 + 1

dx =
∫

1
(x + i)(x − i)

dx

= 1
2i

∫
1

x − i
− 1
x + i

dx = 1
2i

ln
x − i
x + i

,

which meant giving a sensible meaning to the logarithm of com-
plex numbers, and, in particular, to ln i. Johann Bernoulli argued
that, since (−x)2 = x2, ln(−x)2 = lnx2 and so 2 ln(−x) = 2 lnx,
which means that ln(−x) = lnx, and in particular ln(−1) =
ln 1 = 0; this of course would mean that 1

2 ln(−1) = ln
√−1 =

ln i = 0. The great Leibniz disagreed, arguing that, if y = lnx,
then

x = ey = 1+y + y
2

2!
+ y

3

3!
+ · · ·

and putting x = −1 and y = 0 would result in −1 = 1. It was
Leibniz’s belief that ln(−1) had to be an imaginary number and
it was the genius Leonard Euler’s arguments that were to find in
his favour and also resolve the seeming contradiction. In a 1728
letter to Bernoulli he provided arguments that easily led to the
expression 1

2π = −
√−1 ln

√−1 and in his 1749 article (published
in 1751), ‘Recherches sur les racines imaginaries des equations’
(Memoires de l’Academy de Science de Berlin 5(1749):222–88),
in attempting to prove that the complex numbers were com-
plete, and as a special case of a general formula, he evaluated√−1

√−1
as 0.207 879 576 350 7, remarking
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Qui est d’autant plus remarquable, qu’elle est réelle, et
qu’elle renferme même une infinite de valeurs réelles dif-
férentes.

(What is all the more remarkable is that it is real, and it has
an infinity of different actual values.)

It was the multivalued nature of the logarithm of complex
numbers that was the key to resolving the Bernoulli–Leibniz
conundrum.

Chapter 7 of Nonplussed! referred to the distinguished eigh-
teenth-century British mathematician Augustus De Morgan (ac-
tually born in India) and the paradoxers who plagued him. This
chapter’s opening quotation might suggest that paradoxers had
been at work, but De Morgan knew better and offered his obser-
vation as an amusing example of the subtlety which is inherent
in the study of complex numbers.

Complex numbers are, perhaps, well named, although subtle
numbers might be a better alternative: at least the phrase would
sidestep the suggestion of frightening difficulty and hint at the
inherent beauty of this ‘ultimate’ extension of the number sys-
tem. (The use of the quoted adjective must be tentative, with the
existence of Hamilton’s quaternions, Conway’s surreal numbers
and Cantor’s transfinite numbers, etc.

The ‘Ultimate’ Extension

The fundamental need to solve equations has brought with it
successive, natural extensions of the natural number system
N = {1,2,3, . . . }.

For a simple equation likex+2 = 5, where all of the coefficients
belong to N, there is no difficulty; its solution is x = 3, and 3 ∈ N:
an equation which exists in N has its solution in N.

Now consider the following alternatives, each of which is an
equation framed in N, but in order to find solutions(s) we need
to move to an extended number system:

• x+5 = 2: to solve this we need to extend N to the set of all
integers Z = {. . . ,−3,−2,−1,0,1,2,3, . . . }, or Zahlen, the
German word for number ;
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RQZN

Figure 5.1.

• 5x = 2 requires a further extension to Q = {Fractions}, or
quotients, for its solution;

• x2 = 2 requires the extension to the real numbers R, and
so include the irrationals like ±√2, and we have captured
its two solutions.

These extensions are represented by the schema shown in fig-
ure 5.1. Each progressively fills up the number line, which we can
picture as the x-axis, and once R has been rigorously defined
(and that is not at all a simple matter), it can be shown that the
number line is full: there is no more room for more extensions
to solve more equations.

So, what about the equation x2 = −1?
The long, tortuous and mathematically painful story of the

extension to the complex number system C cannot occupy us
here, but the inclusion of a single new number i = √−1 brings
about the more general numbers x + iy , for x,y ∈ R, and
extends figure 5.1 by one final, enclosing circle. It proves to be
the final extension that is necessary to solve all polynomial equa-
tions. To be precise, any polynomial of degree n with coefficients
in C has all of itsn solutions in C; a result of such importance that
it is universally known as the Fundamental Theorem of Algebra,
first proved in 1799 by the inimitable Gauss.
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Early Problems

As the number system is progressively extended—natural num-
bers, integers, rationals and reals—nothing very surprising hap-
pens. This is not to say that the rigorous definitions of some
of these extensions are not themselves challenging, but more
that the new numbers behave themselves ‘properly’. The ‘final’
extension to the complex numbers, C, brings with it beauty, great
utility and the genesis of counterintuitivity. We will mention two
early problems.

First, the concept of order is lost; that is, it is no longer pos-
sible to ask the seemingly reasonable question, ‘which of two
numbers is the greater?’ To see this, since i �= 0, we can ask the
question, is i > 0 or is i < 0? If i > 0 we can multiply both sides of
the inequality by i and preserve it to give i2 > 0i, this means that
−1 > 0. Alternatively, it must be that i < 0 and this time mul-
tiplying both sides by i it must therefore reverse the inequality
to give i2 > 0i once more and again −1 > 0. The assumption of
order brings with it an irreconcilable contradiction and so must
be abandoned.

To approach the second difficulty, we need to consider the
Fundamental Theorem of Arithmetic : any natural number can
be factorized in a unique way into the product of primes. For
example, 504 can be decomposed into the product 23 × 32 × 7
and no other combination of primes can be chosen. Notice that it
is a theorem—and so needs proof. To be exact, it is two theorems:

(1) Any natural number can be factorized into primes.

(2) The factorization is unique (which denies 1 being consid-
ered as a prime).

The equivalent result appears in Book VII of Euclid’s Elements as
a combination of three propositions:

Proposition 30. If two numbers multiplied by one another
make some number, and any prime number measures the prod-
uct, then it also measures one of the original numbers.

Proposition 31. Any composite number is measured by some
prime number.
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Proposition 32. Any number is either prime or is measured by
some prime number.

Whatever the provenance of the result, it is important and often
taken for granted—but its veracity is entirely dependent on the
nature of the natural numbers and its associated set of prime
numbers. We can easily change matters. Take as an example the
set S of natural numbers of the form 3n+1, n = 0,1,2, . . . ; that
is, S = {1,4,7,10, . . . }. This set is closed under multiplication;
that is, the product of two such numbers is itself such a number.
It also has its set of prime numbers: for example, 4, 10 and 25
have no factors within the system and so must be considered as
prime; yet 100 = 4× 25 = 10× 10.

Now consider the set of complex numbers a+ b√−5, where a
and b are real numbers, and the associated set of (what are called
algebraic) integers a+ b√−5 for a and b ordinary integers. It is
the case (and it is not at all obvious) that 2, 3, (1+√−5) and
(1−√−5) are all primes in the system, yet

6 = 2× 3 = (1+
√
−5)(1−

√
−5).

Unique factorization by primes is no longer valid.
Now that we have complex numbers properly placed and our

mind receptive to lurking difficulty, we will consider what should
be a simple computation for a calculator.

A Calculator’s Dilemma

Calculators are becoming ever more sophisticated and for very
little money we can buy one which is capable of giving many
answers in exact form, and of dealing with expressions which are
complex in both senses of the word. Such sophisticates should
have no difficulty in dealing with (−1)2/3 or (−1)3/2 but even they
might not tell the whole story—and as we write there are plenty
of calculators in circulation which would simply announce ‘Math
Error’ as their answer.
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Using the standard laws of indices, we can achieve the evalua-
tions with ease:

(−1)2/3 = ((−1)1/3)2 = (−1)2 = 1

and

(−1)3/2 = ((−1)3)1/2 = (−1)1/2 = i.

Of course, we could have evaluated the expressions by splitting
them in the alternative way with the first becoming

(−1)2/3 = ((−1)2)1/3 = (1)1/3 = 1.

The symbol (−1)2/3 really does seem to have the value 1. But
now look at the result of doing this to the second expression:

(−1)3/2 = ((−1)1/2)3 = (i)3 = −i.

In a way we can provide a sort of explanation of this second
phenomenon: i = √−1 for sure, but −1 has two square roots, ±i.
Interpreting the symbols one way round seems to choose one
of the roots and the other way round the other root. But why?
And what, if anything, has the evaluation of (−1)2/3 to do with
complex numbers?

What Is ab?

If we wish to evaluate, for example, 34, we can write it as
3× 3× 3× 3 and evaluate the expression to 81 (even without a
calculator!). The likes of 27314 would have us reach for electronic
help but there would be no surprise that the help was effective
and that we have been saved the drudgery of performing thirteen
long multiplications. But what about, for example, 2

√
2? Since we

cannot write the number 2 down
√

2 times we reach for our cal-
culator, press the buttons and magically it seems to be able to as
it comes up with the answer to the degree of accuracy of which
it is capable: 2.665 144 142 690 225 188 650 297 249 87 . . . .

In fact, this particular number has a famous history and a name
to convince one of its importance: it is the Gelfond–Schneider
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constant and its nature was the subject matter of the seventh
of the great David Hilbert’s famous 1900 list of unsolved prob-
lems. It took until 1934 before Aleksandr Gelfond and Theodor
Schneider independently proved that

If α( �= 0,1) and β are algebraic numbers and if β is not a
real rational, then any value of αβ is transcendental.

The calculator has done its best but is doomed to give a mere
approximation to the actual value of the expression.

Of course, 2
√

2 is simply an example of an awkward power; we
could ask the value of any other difficult expression: uninter-
estingly, 3.8274.916, or, very much more interestingly, eπ or πe.
In fact, the nature of πe remains an unsolved problem, yet the
Gelfond–Schneider theorem establishes the transcendence of eπ ,
even though e itself is transcendental—for reasons we shall see.

In fact, all exponential expressions, whether simple or com-
plicated, are evaluated in the same manner, using the identity
ab = eb lna, where both the exponential and logarithmic func-
tions are evaluated using numerical methods based on the stan-
dard Taylor Series. A somewhat heavy approach for the likes
of 34, one might think, but it does allow the standard calcu-
lator to cope with the formidable 2

√
2: what it might not cope

with is (−1)2/3 or (−1)3/2 and the reason for this failure is
exposed by the rewrites (−1)2/3 = e(2/3) ln(−1) and (−1)3/2 =
e(3/2) ln(−1). We are forced to confront the same dilemma as
those eighteenth-century luminaries: ascribing a value to ln(−1).
Recall De Morgan’s quip: ‘a negative quantity, (which) has no
logarithm’.

The Calculator Problem Solved

The standard representation of a complex number in rectangular
and polar forms has us write z = x + iy = r cosθ + ir sinθ =
r(cosθ + i sinθ) = reiθ. If we are to give a meaning to w = lnz,
then it must be that ew = z, and choosing the rectangular form
for w and the polar form for z we have eu+iv = reiθ and so
eueiv = reiθ, which means that eu = r and v = θ. All of this
results in the observation that u = ln r = ln |z| and v = θ =
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argz and the fact that lnz = ln |z| + i argz. Evidently, z = −1
is a complex number with |−1| = 1 and arg(−1) = π and using
the above we have that

ln(−1) = ln |−1| + i arg(−1) = 0+ iπ = iπ.

This means that

(−1)2/3 = e(2/3) ln(−1) = e(2/3)(ln |−1|+i arg(−1))

= e(2/3)(0+iπ) = e(2/3)iπ

= cos(2
3π)+ i sin(2

3π)

= −1
2 + i

√
3

2 ,

which is great, but it is not the 1 it evidently should be.
One way of achieving reconciliation is to look at the equation

z = (−1)2/3 and its equivalent form z3 = (−1)2 = 1. In asking
for the value of (−1)2/3 we are asking for a cube root of 1, and
Gauss’s Fundamental Theorem tells us that there are precisely
three of them. Factorizing the cubic results in the equation

z3 − 1 = (z − 1)(z2 + z + 1) = 0,

which generates our long-desired z = 1 as well as

z = −1±√1− 4
2

= −1±√−3
2

= −1± i
√

3
2

.

Another (more useful) approach is to realize that the polar form
of a complex number is many valued. For example, 1 = e2π i =
e4π i = e6π i = · · · ; in each case the modulus is 1 but the argu-
ments differ by multiples of 2π . In our example above, we are
dealing with the complex number −1, which has the polar forms
−1 = eiπ = e3iπ = e5iπ = · · · and, taking the general case, we
have that

(−1)2/3 = e(2/3) ln(−1) = e(2/3)(ln |−1|+i arg(−1)) = e(2/3)(0+i(2k+1)π)
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for any integral k = 0,1,2, . . . . If we start to enumerate the
possibilities, we have that

(−1)2/3 = e(2/3)(0+i(2k+1)π)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(2/3)iπ = cos(2
3π)+ i sin(2

3π)
= −1

2 + i
√

3
2 , k = 0,

e(6/3)iπ = e2iπ

= cos(2π)+ i sin(2π) = 1, k = 1,

e(10/3)iπ = cos(10
3 π)+ i sin(10

3 π)
= −1

2 − i
√

3
2 , k = 2,

with the natural value appearing in the second row and two alter-
natives either side of it. Of course, there are an infinite number of
choices for arg(−1) but that Fundamental Theorem holds sway
since moving to the next value of k = 4,

(−1)2/3 = e14iπ/3 = e12iπ/3 × e2iπ/3 = 1× e2iπ/3,

starts to repeat the values.

A Remarkable Result

Now that the evaluation of powers has been discussed and an
anomaly explained, we move to the meaning of ii.

Since |i| = 1 and the fundamental value of arg(i) = 1
2π , we

have that

ii = ei ln i = ei(ln 1+iπ/2) = e−π/2,

and we have that striking result: ii = √−1
√−1 = e−π/2.

That said, we know that the full story has not been told, since
arg(i) = (1

2π + 2kπ).
The complete form of the expression is

ii = ei ln i = ei(ln 1+i(π/2+2kπ)) = e−(π/2+2kπ) for all k = 0,1,2, . . . .

So, the exotic
√−1

√−1
has an infinite number of values, each of

which is real and each of which involves the ubiquitous e and π .
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Now, perhaps, the reader can cope with the puzzling

− 1 = −1,
√
−1 =

√
−1,

√
−1
1
=
√

1
−1
,

√−1√
1
=
√

1√−1
, (

√
−1)2 = (

√
1)2, −1 = 1.

And we should conclude by addressing the De Morgan quotation
with which the chapter began. His words translate into symbols
as

ln(−1)√−1
= ln |−1| + i arg(−1)

i
= iπ

i
= π = 2πr

2r
= C
D
,

at least as a principal value!



Chapter 6

BUCKING THE ODDS

It is better to do the right problem the wrong way than to
do the wrong problem the right way.

Richard Hamming

In this chapter we will consider two problems, each of which
caused large-scale consternation and disbelief when they came
to the attention of the public. The first had academic origins, the
second was inspired by a popular American television show.

The Three-Hat Problem

We have already considered matters relating to red- and blue-
hat wearers not knowing the colour of the hat each is wearing.
Chapter 1 had a group of them sitting listening to the chiming
of a clock, waiting for revelation. Here we will give each of them
a more active role: guessing the colour of their hat, but under
the following conditions.

• The players act as a team. The team wins or loses, not
individuals.

50
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• When the hats have been placed on the heads there must
be no communication between team members.

• All must answer simultaneously.

• Each is allowed to pass rather than guess a colour.

• The team wins if at least one player guesses correctly and
none guess incorrectly. Otherwise, or if they all pass, it
loses.

Note that it is perfectly permissible for the team to discuss a
strategy before the placement of the hats; the question is, what
strategy will maximize their chance of success?

Strategies

Initially, we will look at the problem in its original form, where
there are three players in the team: A, B and C.

Strategy 1. Each chooses red or blue randomly. With eight pos-
sible triplets of colours this would result in the probability of
success of 1

8 = 0.125, with each team member having to guess
correctly.

Strategy 2. Include the possibility of a pass and randomly
choose one of the three possibilities red, blue or pass. Here the
calculation is a little more delicate and it is best to separate the
33 = 27 possibilities according to whether the combination has
3, 2, 1 or 0 passes. The eight possible triplets of hats that we
have mentioned above are, of course,

RRR, RRB, RBR, RBB, BRR, BRB, BBR, BBB.

If all players pass, PPP, the team loses.
If there are two passes, they can occur in six ways, with the

other hat coloured either red or blue. In every case there are
four possibilities when the other player guesses correctly. For
example, PPR wins if the hat combination happened to be RRR,
RBR, BRR or BBR.
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If there is one pass, it can occur in twelve ways among the
remaining red and/or blue hats. In every case there are two pos-
sibilities when the other players both guess correctly. For exam-
ple, PRR wins if the hat combination happened to be RRR or
BRR.

If there are no passes, we revert to strategy 1.
Putting all of this together, the probability of the team winning

is

1
27 × 0+ 1

27 × 6× 4
8 +

1
27 × 12× 2

8 +
1
27 × 8× 1

8 =
7
27 = 0.259.

Strategy 3. Agree that two of the team pass and the third
guesses randomly. The probability of team success is clearly
1
2 = 0.5.

Things improve as we change strategies and we have reached the
level of a single random guess, but here is where matters take a
surprising turn. It does not seem possible that looking at the oth-
ers’ hat colours can yield any useful information and, therefore,
there can be no prior strategy that can increase the possibility of
success above that of random chance: but then, Hamming Codes
do not seem to have much to do with hat colours.

Genesis and Malachi

The problem is attributed to Dr Todd Ebert, a computer science
instructor at the University of California at Irvine, who included
it in his PhD thesis while studying at the University of California
at Santa Barbara in 1998. He resurrected it as a problem offer-
ing extra credit to his students for solving a seven-player ver-
sion, which he called the ‘seven prisoners’ puzzle’. From there it
passed to the internet and to the science section of the New York
Times (on 10 April 2001) and so to the world as a whole. Interest
was shown by many university mathematics departments and
major corporations, one of which, Bell Labs of Lucent Technolo-
gies, had Dr Peter Winkler as director of fundamental mathemat-
ics research. Dr Winkler met Dr Elwyn Berlekamp, then Profes-
sor of Mathematics and of Electrical Engineering and Computer
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Table 6.1.

A B C A B C Outcome

Red Red Red GBW GBW GBW Lose
Red Red Blue Pass Pass GBC Win
Red Blue Red Pass GBC Pass Win
Red Blue Blue GRC Pass Pass Win
Blue Red Red GBC Pass Pass Win
Blue Red Blue Pass GRC Pass Win
Blue Blue Red Pass Pass GRC Win
Blue Blue Blue GRW GRW GRW Lose

GBW, guess blue: wrong; GBC, guess blue: correct; GRW, guess red:
wrong; GRC, guess red: correct.

Science at the University of California at Berkeley, at a confer-
ence in New Orleans. It was Berlekamp’s extensive expertise in
coding theory that caused him to make the connection that was
to lead to the remarkable resolution that it is possible for the
three-person team to achieve a probability of success of 3

4 and
the general n-person team that of n/(n+ 1).

So what is this strategy for three players that Elwyn Berlekamp
took about half an hour to find? It was, for each member of the
team, as follows:

1. If you see two hats that have the same colour, guess the
other colour.

2. If you see two hats of different colour, pass.

Table 6.1 details the strategy for each player and gives the
outcome in each of the possible eight cases. In spite of the indi-
viduals guessing correctly six times and incorrectly six times,
the group accumulates six wins and two losses, giving the
probability of winning as 6

8 =
3
4 = 0.75.

Notice that the correct guesses are sparsely spread out (recall
that we only need one of them for team success) and that
the incorrect guesses are bunched together. Put succinctly, to
increase the chances of success the team must adopt the some-
what counterintuitive strategy of being wrong together, not
correct together.
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This strategy for three players is easy enough to implement,
but how did Elwyn Berlekamp come up with it so quickly and why
did Todd Ebert test his students with a seven-player variant?

The Seven-Hat Problem

With three hats the strategy is meaningful since among any
triplet of hats there must be at least two the same colour and this
event is the trigger for action. With seven hats we are assured
that at least four of them will have the same colour and we could
use the equivalent trigger to adapt the strategy to:

1. If you see four hats that have the same colour, guess the
other colour.

2. Otherwise, pass.

To see how this strategy affects the team’s chances of success,
suppose that four hats are coloured red, then all of the red-
hatters will pass and each of the other three players will choose
blue. Therefore, the team will win only if there are precisely four
red hats and three blue hats.

The four red hats can be distributed among the seven places
in

(
7
4

)
ways and, taking into account that they could have been

blue, we have that the probability of the team winning is

2×
(

7
4

)
27

= 35
64

= 0.55.

This is better than the single, random guess strategy but it
certainly is not the

7
7+ 1

= 7
8
= 0.875

which was heralded earlier. This is where Hamming Codes come
in.

Protective Codes

Codes are easily associated with the desire to transmit messages
between friends which cannot be read by an intercepting enemy;
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one immediately thinks of war, government agencies and com-
mercial companies. Yet, there are other codes too, which are just
as crucial in their own way: error-protecting codes. Electronic
transmission of binary data is not error free and the desire to
have our data protected is a reasonable one and as a conse-
quence, many codes have been invented to provide that protec-
tion. They take two forms: error detecting or error correcting;
the former will flag a transmission error, the latter automatically
correct it. Here we are interested in the latter type.

One key to the various methods of error correction is to build
in redundancy and to use the technique of nearest-neighbour
decoding, which takes a received, corrupted vector to the code-
word nearest to it. An illustrative example is provided by the
binary repetition codes. If we wanted to transmit the single dig-
its 0 and 1, we could do so simply by sending 0 as 0 and 1 as
1, which would not cope at all with corruption. Alternatively, we
could consider all triplets of binary digits

(000 001 010 100 : 111 110 101 011)

two of which, (000 111), are our codewords for 0 and 1 respec-
tively; that is, if we wish to transmit a 0, we actually transmit 000
and to transmit 1 we send 111. If a single error occurs during
transmission, we know that the received vector is incorrect and
we replace it by the nearer of the two codewords, to the left of
the colon for 0 and to the right for 1. So, we are sending more
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data but enjoy the benefit of the error protection. To judge the
level of improvement, if p is the constant (small) probability of
corruption of a single digit (i.e. transforming 0 to 1 or vice versa),
then we will decode a message correctly if it incurs no errors or
just one error. The probability of this is

P = (1− p)3 + 3p(1− p)2 = (1− p)2(1+ 2p),

which should be compared with P = 1 − p for the single-digit
transmission. Figure 6.1 shows the plot of the two functions
and shows that we have an improvement (since p is assumed
small). For the method to work it is crucial that the set of eight
possible received vectors is partitioned into the two subsets of
four; the one representing the codeword and its three satellite
nearest neighbours. We can see that this will happen for any odd
number of repetitions but no even number (what is the nearest
neighbour to 01 or to 0011?) and binary repetition does provide
the protection we seek—but it is not very efficient.

At the end of World War II Richard Hamming moved from
the Manhattan Project to Bell Telephone Laboratories, where he
worked with both Claude Shannon and John Tukey, from which
collaboration the vast and crucial subject of information theory
came into being. Hamming was concerned with data integrity in
the ancient IBM computers that he was bound to use and devel-
oped what have become known as Hamming Codes with a view
to protecting his programs and data (it remains a good choice
for randomly occurring errors in modern computer RAM).

An H(n,d) code uses binary vectors of length n to code data
of length d. This means that there are 2d codewords protected
by 2n−2d vectors. Our binary repetition code is really a H(3,1)
code, but here our interest lies with the H(7,4) code, a version
of which has codewords⎛

⎜⎜⎜⎜⎝
0000000 0001011 0010111 0011100
0100101 0101110 0101110 0111001
1000110 1001101 1010001 1011010
1011010 1101000 1110100 1111111

⎞
⎟⎟⎟⎟⎠ .
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All vectors differ from each other in three places; it can there-
fore detect up to three errors and it can also correct a single
error, which is all we need. The 27 = 128 possible vectors are
divided into sixteen lots of eight: the appropriate codeword and
the seven satellite vectors which differ from it in precisely one
place. For example, the top left codeword of 0000000 yields(

0000000 0000001 0000010 0000100
0001000 0010000 0100000 1000000

)
.

Hamming and Hats

If we have n hat wearers and code a red hat by a 0 and a blue
hat by a 1, any hat configuration can be thought of as a vector
of length n. If we consider the Hamming Code of that length,
the hat configuration may be represented by a codeword or a
satellite, and that fact determines the strategy to use.

If we consider the original three-hat puzzle and the H(3,1)
code above, we can make the following transition.

The original strategy

1. If you see two hats that have the same colour, guess the
other colour.

2. If you see two hats of different colour, pass.

becomes

1. If you see a vector which could be a codeword, choose your
digit to ensure that it is not a codeword.

2. Otherwise, pass.

If it happens that the chosen vector is a codeword, say 000 (i.e.
all hats are red), then each of the three players will see the pos-
sibility and choose so as to avoid the codeword and say blue (i.e.
a 1): all three will be wrong in one place. If it happens not to be
a codeword, only one player will think that it could be; he will
choose the appropriate nearest neighbour and be correct and
the other two will pass: the team wins.

For their extra credit, Todd Ebert’s students would have had
to consider the H(7,4) code and exactly the same translation.
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Strategy.

1. If you see a vector which could be a codeword, choose your
digit to ensure that it is not a codeword.

2. Otherwise, pass.

Exactly the same reasoning as before ensures that all choose
incorrectly if the configuration is a codeword and otherwise all
pass but one, who avoids the codeword and chooses the appro-
priate nearest neighbour to it. This means that the probability
of the team winning is

27 − 24

27
= 7

8
.

And finally, why were there seven hatters? For this approach to
work we need the partitioning of the vectors as we have had
them: for a given number of hat wearers (length of codeword) n,
the set of 2n vectors formed from 0s and 1s needs to divide into
clusters, each of which contains a codeword at its centre and
the n vectors which differ from it in a single place. The clusters,
therefore, have n+1 vectors in each of them and therefore n+1
must be a factor of 2n and so itself be a power of 2, let us say
2m. Therefore, n + 1 = 2m and n = 2m − 1. Notice that, if the
number of codewords is C , then we have that (n+1)C = 2n and
so 2mC = 2n and C = 2n−m.

With m = 2 we have the original three-hat problem and with
m = 3 we have the problem for extra credit. (Actually, it is pos-
sible to adapt the method for other values of n.) In general, with
n hat wearers we must consider H(n,n −m), which has 2n−m

codewords and 2n vectors, so the probability of the team being
successful is

2n − 2n−m

2n
= 1− 1

2m
= 2m − 1

2m
= n
n+ 1

.

To solve our intriguing problem we have touched the surface of
a vast and vastly important area of mathematical application,
deliberately avoiding the associated definitions and results. We
needed Hamming Codes and for many, often hidden purposes,
we need others too. Here are just three examples. A Reed–Muller
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code was used to send photographs back from Mars by Mariner 9
in 1972; it has 64 codewords, each of length 32, and all are a dis-
tance 16 from each other; it can correct up to seven errors. Cross-
leaved Reed–Solomon codes are used to protect information on
CDs. They can correct 4000 consecutive errors, corresponding to
a 2.5 mm long scratch. And the lowly, easily ignored, length 10
ISBN code can detect a single error or a single transposition in
a book’s code number.

Now we move to the second example in which a probability is
not what it ‘should’ be.

Let’s Make a Deal

We referred to the Ask Marilyn column of Parade Magazine in
chapter 2. The 9 September 1990 issue had Marilyn respond to a
reader’s query inspired by the television game show Let’s Make a
Deal, which for many years had been hosted by Monty Hall: her
answer to the query brought her nearly 10 000 responses from
readers, most of them disagreeing with her; a number were from
mathematicians and scientists whose responses ranged from
hostility to disappointment at the nation’s lack of mathemati-
cal skills. In 1991 the New York Times published a large front
page article in a Sunday issue which declared:

Her answer…has been debated in the halls of the C.I.A. and
the barracks of fighter pilots in the Persian Gulf. It has been
analyzed by mathematicians at M.I.T. and computer pro-
grammers at Los Alamos National Laboratory in New Mex-
ico. It has been tested in classes ranging from second grade
to graduate level at more than 1,000 schools across the
country.

More recently, the CBS drama series NUMB3RS featured it in its
13 May episode of 2005, entitled ‘Manhunt’, and the Financial
Times published a column about it on 16 August 2005, written by
John Kay; this resulted in the publication of several letters on its
‘Leaders and Letters’ page on 18 and 22 August, and two follow-
up columns on 23 August (‘So you think you know the odds’) and
31 August (‘The Monty Hall problem—a summing up’) in which it
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was acknowledged that there had been ‘a large correspondence’.
To put matters into a stark perspective, Kay noted that the late
great Paul Erdős (reputedly) died still musing on it!

The whole confusing matter has understandably become asso-
ciated with Monty Hall and is indeed commonly known as The
Monty Hall Problem, which states:

Suppose that you are on a game show, and that you are given
the choice of three doors. You know that behind one door
is a car and behind the others, goats. You are allowed to
pick any single door and keep whatever lies behind it. Now
suppose that you pick door number 1, but do not yet open it.
The host, who knows what is behind all of the doors, then
opens door number 2, which he knows has the remaining
goat behind it. He then says to you, ‘Do you want to swap to
door number 3 or keep your first choice of door?’

The question is: Does it matter if you stick or you switch?
Marilyn’s answer was that the contestant should switch doors.

Surely, since the contestant knows that behind at least one
of the doors there is a goat, the revelation of the goat provides
no further information: it will make no difference whether one
switches or not. So many, many people thought.

In fact, the problem was not a new one.
As with so many intriguing puzzles Martin Gardner had dis-

cussed a version of it (the three prisoners’ problem) in his Scien-
tific American column (in 1959) and again in The Second Scientific
American Book of Mathematical Puzzles and Diversions, which
first appeared in 1961. In his Aha! Gotcha book (published in
1982) he describes the following Three Shell Game variant:

Operator: Step right up, folks. See if you can guess which
shell the pea is under. Double your money if you win.

After playing the game a while, Mr Mark decided he couldn’t
win more than once out of three.

Operator: Don’t leave, Mac. I’ll give you a break. Pick any
shell. I’ll turn over an empty one. Then the pea has to be
under one of the other two, so your chances of winning go
way up.



BUCKING THE ODDS 61

Table 6.2.

Original door selection A A A B B B C C C
Car location A B C A B C A B C
Door Monty can open B, C C B C A, C A B A A, B
Contestant does not switch W L L L W L L L W
Contestant does switch L W W W L W W W L

Poor Mr Mark went broke fast. He did not realize that turning
an empty shell had no effect on his chances. Do you see why?

The situation is not quite the same as Monty Hall in that the
player is not given the opportunity to change his selection; as
Gardner argues, the new information provided is valueless. Now
we will see what happens if that opportunity to switch is pro-
vided and therefore analyse what Gardner called ‘a wonderfully
confusing little problem’.

Behind Closed Doors

Many analyses have been made of a problem which intrinsically
relies on conditional probability, but let us first simply list the
possibilities as shown in table 6.2, where we have labelled the
doors A, B and C. The penultimate row shows us that, if the
contestant does not switch, his probability of winning is 3

9 =
1
3 ,

whereas the probability of his winning by switching is shown in
the last row to be 6

9 =
2
3 .

It is critical that Monty knows where the car is. If he does not,
he could open the door with the car behind it and, if under this
circumstance we consider the game void, modifying the above
table it is easy to see that it no longer matters whether the
contestant switches or not.

The formalists would, perhaps, be better satisfied by recourse
to the result of the eighteenth-century Presbyterian minister,
Thomas Bayes, whose solution to the problem of inverse prob-
ability appeared in his ‘Essay towards solving a problem in
the doctrine of chances’ of 1763, which was published posthu-
mously in the Philosophical Transactions of the Royal Society of
London. It was in this essay that Bayes’s theorem made its first
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public appearance and reversing the conditional became part of
mathematical literature. At the time it was well understood that,
given an urn containing a known numberw of white and b black
balls, the probability of drawing a white ball is w/(w + b). The
reverse problem which asks what can be said of an unknown dis-
tribution of white and black balls given that one or more balls
had been drawn and their colour identified was quite another
matter.

The conditional probability P(X | Y) (the probability of X
given Y ) of two events X and Y is defined by the formula
P(X ∩ Y) = P(X | Y)P(Y) (the probability of X and Y equals
the probability of X given Y times the probability of Y ) and the
simplest form of Bayes’s result (which is all we will need) is, given
two events X and Y , then

P(Y | X) = P(X | Y)P(Y)
P(X)

.

It is often useful to expand the bottom probability, in this case
into three parts, defined in terms of three mutually exclusive
events R, S and T :

P(X) = P(X ∩ R)+ P(X ∩ S)+ P(X ∩ T)
= P(X | R)P(R)+ P(X | S)P(S)+ P(X | T)P(T).

In the case of Monty Hall we can define the following events:

A the event ‘the car is behind door A’,
B the event ‘the car is behind door B’,
C the event ‘the car is behind door C ’,
MA the event ‘Monty opens door A’, etc.

If doorA is chosen initially by the competitor, then we know that
Monty has a choice of doors B and C to open and we have

P(MB | A) = 1
2 , P(MB | B) = 0, P(MB | C) = 1.
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So,

P(MB) = P(MB | A)P(A)+ P(MB | B)P(B)+ P(MB | C)P(C)
= 1

2 ×
1
3 + 0× 1

3 + 1× 1
3 =

1
2 .

Now the contestant can stick or change. If he keeps to door A,
his probability of winning the car is

P(A | MB) = P(MB | A)P(A)
P(MB)

=
1
2 ×

1
3

1
2

= 1
3 ,

whereas, if he switches to door C , the probability becomes

P(C | MB) = P(MB | C)P(C)
P(MB)

= 1× 1
3

1
2

= 2
3 .

Variants on the theme are legion and we will look at a few nat-
ural extensions culled from the article ‘Generalising Monty’s
dilemma’, by John P. Georges and Timothy V. Craine, which
appeared in the 1995 March/April issue of Quantum Magazine
(5(4):16–21).

One Car and Many Goats

Consider the less appealing case for the contestant of there being
n doors, behind one of which is the car andn−1 of which a goat.

If the contestant sticks with the original choice of door, the
probability of winning the car is 1/n. Now suppose that Monty
opens a door, behind which is a goat. There are now n−2 doors
which remain unopened and to calculate the probability of the
contestant winning by switching doors we need to evaluate the
expression

(Probability of a goat behind the first door)

× (Probability of a car behind the second door

given there was a goat behind the first door)

= n− 1
n

× 1
n− 2

= n− 1
n− 2

× 1
n
>

1
n
,
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since (n−1)/(n−2) > 1. It is always the case that the switching
strategy is better than the sticking strategy and with n = 3 we
resurrect the previous numbers.

Many Cars and Many Goats

Suppose now that there are n doors behind which there are c
(� 1) cars and thereforen−c goats. We will assume that the con-
testant has no idea of the value of c, in which case it is possible
for Monty to show a car or a goat without revealing all.

Notice that, if Monty reveals a goat, then 1 � c � n − 2,
whereas, if he reveals a car, 2 � c � n − 1. In either case the
probability of winning a car by sticking is c/n.

Now suppose that Monty reveals a goat. If the contestant is to
win using a switching strategy, it must be the case either that a
goat was picked first and a car second or that a car was picked
first and another car second.

The probabilities of these events are

n− c
n

× c
n− 2

and
c
n
× c − 1
n− 2

,

which combine to a total probability of

n− c
n

× c
n− 2

+ c
n
× c − 1
n− 2

= c
n(n− 2)

(n− c + c − 1)

= (n− 1)
(n− 2)

c
n
>
c
n
.

Now suppose that Monty reveals a car. If the contestant is to win
using a switching strategy, it must be the case either that a goat
was picked first and a car second or a car was picked first and
another car second.

The probability of each of these events is

n− c
n

× c − 1
n− 2

and
c
n
× c − 2
n− 2

.
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The probabilities of these events are

n− c
n

× c − 1
n− 2

+ c
n
× c − 2
n− 2

= c − 1
n

× n− c
n− 2

+ c
n
× c − 2
n− 2

<
c
n
× n− c
n− 2

+ c
n
× c − 2
n− 2

= c
n

(
n− c
n− 2

+ c − 2
n− 2

)

= c
n
.

So, if Monty reveals a goat, the contestant should switch, but if
he reveals a car the contestant should stay with the first choice.

Finally, we will consider a variant which has its own intrigue.

Multi-Stage Monty Hall Dilemma

The original game show had three doors from which the con-
testant could pick. The rules of the show gave the contestant
two decision stages: the initial choice and then the decision
of whether to stick with that choice or change. Now suppose
there are four doors, with a car behind one of them, and a game
structured in the following manner.

Monty Hall says:

You select one of the doors, and I will open another door
behind which is a goat. Then you decide whether you wish
to stick with your original selection or switch to one of the
remaining doors. I will then open another door behind which
is a goat. Finally, once again you can decide whether or not
to stick or switch to the only other remaining door.

Now the contestant had three decision stages: the first pick,
the first stick–change decision and the second stick–change
decision.

As an example, the following could take place.

First pick for the contestant. Contestant chooses door A so
doors B, C and D are available to Monty. Monty opens door B
and doors A, C and D are available to contestant.
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Table 6.3.

Probability of
Stage 1 Stage 2 Stage 3 winning the car

Pick Stick Stick 0.250
Pick Switch Stick 0.375
Pick Stick Switch 0.750
Pick Switch Switch 0.625

First stick–change decision for the contestant (who switches).
Contestant chooses door C so doors A and D are available to
Monty. Monty opens door D so doors A and C are available to
contestant.

Second stick–change decision for the contestant (who sticks).
Contestant chooses door C. The contestant has, in this case,
chosen to switch and then stick.

M. Bhaskara Rao of the Department of Statistics at the North
Dakota University has analysed this situation (‘On a game-show
problem of Marilyn Vos Savant and its extensions’, 1992, Ameri-
can Statistician 46:241–42) and, more generally, for n doors and
n− 1 decision points for the contestant. Table 6.3 summarizes
the results of his analysis for the four-door example above.

It would be easy, having accepted the optimal switch solution
in the basic Monty Hall dilemma, to assume that the contes-
tant would do best by switching in both Stage 2 and Stage 3.
However, as table 6.3 shows, the counterintuitive solution to the
three-stage Monty Hall dilemma is to stick in Stage 2 and switch
in Stage 3. Generally, in a multi-stage Monty Hall dilemma, the
contestant should stick with the initial choice until the very last
stage and then switch.

The perplexing nature of the problem is touchingly recorded
in Mark Haddon’s remarkable book, The Curious Incident of the
Dog in the Night-time, where he writes:

It also shows that Mr Jeavons was wrong and numbers are
sometimes very complicated and not very straightforward
at all. And that is why I like the Monty Hall Problem.
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And so our brief investigation into this most controversial of
ideas is at an end—unless the reader is a bridge player. An obser-
vation that can be made is that, since two times out of three the
contestant will choose a door with a goat behind it, two times
out of three Monty will have no choice as to which door to open
to reveal a goat. This observation translates to the bridge princi-
ple of restricted choice, which causes optimum play for the N–S
holding of A J 10 7 6—5 4 3 2 to be finesse both the J and the
10, whereas, with the holding A Q 10 7 6—5 4 3 2, it is finesse
the queen and then play the ace. We will leave it to the inter-
ested bridge-playing reader to see why and perhaps the late
bridge expert Alan Truscott’s New York Times bridge column
of 4 August 1991 might be a starting point; in it he points out
that he had explained the principle in bridge terms forty years
earlier. But perhaps Zen philosophy provides the best answer: It
makes no difference which you choose. If you desire to win, you
have already lost.



Chapter 7

CANTOR’S PARADISE

Not everything that counts can be counted. Not everything
that can be counted counts.

Albert Einstein

Jane Muir began the final chapter of her delightfully written book
Of Men and Numbers with typically elegant prose:

There are times in history—the history of a man as well as
a civilization—when one can look back and say, ‘So this is
where it’s all been leading. It seems so obvious now, why
didn’t I realize before?’ A man or a civilization comes to the
end of a road; the journey is over; all the wanderings and
travels down dead ends and over highways have led to this
particular place and suddenly he realizes that he is at the
end, the trip is over, the journey completed. Such was the
feeling mathematicians had after Georg Cantor guided them
over the last stretch of land.

They could rest. Their doubts and fears and wonders
of where the road would lead were satisfied. But another
road stretched out before them, an ill-defined, treacherous-
looking path that both repelled and beguiled—and soon

68
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another journey began. The end of one trip suddenly became
the beginning of another. Such, too, was the feeling mathe-
maticians had after Georg Cantor opened their eyes to a new
and foreign world.

Cantor’s eminent contemporary Leopold Kronecker was more
repelled than beguiled at this particular realization of his famous
dictum God made the integers, all else is the work of man. We
will look at the bare rudiments of Cantor’s seminal ideas, ideas
which followed paths from the obvious to the unbelievable, the
elementary to the most profound.

To begin with, since we will make essential use of it, we will
mention Euclid’s fifth postulate and, since we are interested in
that part of Cantor’s work which contradicts the fifth common
notion, we will mention that too.

Obvious Ideas

Euclid’s Elements has claim to be the second bestselling book
of all time (surpassed by the Bible). Written around 300 b.c. it
chronicled much of the known mathematics of the time and is
particularly (though by no means exclusively) regarded for its
treatment of geometry, which begins with a set of twenty-three
definitions, five postulates and five common notions; all seem
at least very reasonable, if not self-evident. That said, the fifth
postulate was at least cumbersome:

That, if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles,
the two straight lines, if produced indefinitely, meet on that
side on which are the angles less than the two right angles.

It means that, in figure 7.1, if a + b < 180 the two lines will
eventually meet.

In his Commentary on the Elements, the revered commenta-
tor Proclus (411–85) mentioned that the postulate was attacked
from the outset and wrote ‘this postulate ought even to be struck
out of postulates altogether; for it is a theorem’. Among all
of those definitions, postulates and common notions, it alone
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a

b

Figure 7.1.

.

Figure 7.2.

raised suspicion. The equivalent formulation, attributed to the
eighteenth-century Scottish mathematician John Playfair (but
known to Proclus) is even more disarming:

Through a given point not on the line, there is one and only
one line which can be drawn through that point parallel to
the line.

Figure 7.2 shows the point and a finite segment of the line: the
statement is surely obviously true.

It was not until Proposition 29 of Book 1 of the Elements
that the fifth postulate was first used (and from there on used
frequently in Book 1 and in later books):

Proposition 29: A straight line falling on parallel straight
lines makes the alternate angles equal to one another, the
exterior angle equal to the interior and opposite angle, and
the sum of the interior angles on the same side equal to two
right angles.

Referring to figure 7.3, this means thata = b, b = c and b+d =
180, respectively. The proof is brief and clear, but contains the
statement:
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a

b  

c

d

Figure 7.3.

But straight lines produced indefinitely from angles less
than two right angles meet.

In fact, the great Proclus was wrong (as were many others): the
fifth postulate is not a theorem but an independent statement,
alternatives to which (there are no parallel lines or there is more
than one parallel line through the point) are perfectly valid. It
is a stark fact that those many propositions from 29 onwards
(including the Pythagorean theorem) are true only of Euclidean
geometry, defined as the geometry which arises from those pre-
cise definitions, postulates and common notions. Change the
fifth postulate to ‘no parallel lines’ and we have spherical geome-
try, change it to ‘more than one parallel line’ and we have hyper-
bolic geometry, famously developed independently by the Rus-
sian mathematicians Nikolai Lobachevsky and János Bolyai. The
model of spherical geometry is (unsurprisingly) the surface of
a sphere (with ‘straight lines’ as the great circles); hyperbolic
geometry fits less comfortably into our Euclidean space viewed
through our Euclidean eyes: famous representations of it are the
Klein–Beltrami disc and the Poincaré disc (explored with such
wonder by the Dutch artist Maurits Escher) and the geometry of
the pseudosphere. Here there are an infinite number of lines par-
allel to the given one, the Pythagorean theorem does not hold,
the sum of the angles of a triangle is less than 180◦, triangles
with the same corresponding angles have the same area, not all
triangles have the same angle sum and there are no similar trian-
gles, etc. Jane Muir’s words are as appropriate to this as they are
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to the work of Georg Cantor, to which we will now turn since
it was he who called into question the fifth common notion,
which, over the centuries, had itself seemed to be completely
self-evident: ‘The whole is greater than the part’ or, moving to
its commonly used Latin equivalent, ‘Totem parte maius’.

It remained self-evidently true until the late nineteenth cen-
tury, when Cantor’s controversial work brought about results
which confounded it, one of which so surprised him that, in an
1877 letter to his frequent correspondent, Richard Dedekind, he
wrote, ‘Je le vois, mais je ne le crois pas!’ (‘I see it, but I don’t
believe it!’) We shall look at that result and some others of its
type, but first we need a definition.

One-to-One Correspondence

Intuition, as is so often the case, will prove to be an unreliable
guide and to counter its misleading ways we need a careful defi-
nition of how to compare the size of two infinite sets of objects,
and that definition comes from one of the alternative ways we
have of comparing two finite sets. If we have two bags of marbles
and we are asked whether there is the same number of marbles
in each bag, we could empty each bag and count the contents
of each; if the two numbers tally, the bags did contain the same
number of marbles. Yet, although this does answer the question,
it does so by doing too much; we were not asked how many mar-
bles were in each bag, just whether there is the same number. To
answer the question directly we could repeatedly put one hand
in each bag and remove marbles in pairs; if one bag empties
before the other, they had different numbers of marbles inside
them, otherwise the marbles were paired perfectly—or, using a
more mathematical terminology, they were put in one-to-one cor-
respondence. It is this idea of a one-to-one correspondence that
Cantor used in dealing with the comparison of infinite sets. It
is important to realize that the nature of the association mat-
ters not at all, it simply needs us to count off in pairs, just as
the removal of marbles in each hand does so. For example, it is
small surprise that the correspondence n → −n demonstrates
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the equivalence of the positive and negative integers but, hav-
ing accepted that, the correspondence n → 2n brings about the
equivalence of the positive integers and the even positive inte-
gers with equal alacrity; already Euclid’s fifth common notion
has been contradicted. In fact Cantor soon realized that it is
characteristic of infinite sets that they do contradict the fifth
notion and avoided powerful criticism by defining an infinite set
as one which can be put into one-to-one correspondence with a
proper subset of itself; any infinite set which can be put into one-
to-one correspondence with the natural numbers was to become
known as a ‘countable’ set and its ‘size’ (or cardinality) written
as ℵ0 (aleph null, or aleph zero).

The Rationals are Countable

With that definition surprises began to tumble from his pen.
For example, using the property of unique factorization, if we
consider the set

Nn = {(m1,m2,m3, . . . ,mn) : m1,m2,m3, . . . ,mn ∈ N},

it can be put in one-to-one correspondence with an infinite sub-
set of N by the association (m1,m2,m3, . . . ,mn)→ 2m1 ×3m2 ×
5m3 × · · · × (nth prime)mn . Dimension has nothing to do with
size: Nn is countable; that is, the cardinality of Nn is ℵ0.

If we take n = 2 in the above result and agree that the dif-
ference between (a, b) and a/b is merely notational, we can see
that this establishes the fact that the rationals are countable. Yet
another way of looking at a set’s countability is to reason that
its elements can be listed, but if we try to list them, then we nat-
urally encounter the problem of missing out numbers; after all,
between every two rationals there is another rational. How can
we possibly list them in an exhaustive manner?

Cantor wondered this too and, in 1873, made a listing using
a ‘diagonal array’. Figure 7.4(a) displays the rationals as an infi-
nite two-dimensional array with the first row consisting of those
which have a numerator of 1, the second row those which have
a numerator of 2, etc.
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Figure 7.4.

Moving in the diagonal manner suggested in figure 7.4(b)
brings about the following listing of the rationals:

1
1
,

2
1
,

1
2
,

1
3
,

2
2
,

3
1
,

4
1
,

3
2
,

2
3
,

1
4
,

1
5
,

2
4
, . . . .

Clearly, every rational number (repeatedly) appears (with, for
example, 1

1 =
2
2 =

3
3 = · · · ) and we can extract from this list

the distinct rationals simply by moving from left to right; in this
way every rational number is counted once and only once and
therefore put into one-to-one correspondence with the natural
numbers.

The listing is made explicit, although it is a little ragged and it
could be held to be unsatisfactory that the original list is pop-
ulated with an infinite number of repeats which we have to sift
through. Do ‘natural’ listings exist which dispense with this? The
answer is ‘yes’ and two such are noted in the Neil Calkin and Her-
bert Wilf article ‘Recounting the rationals’ (2000, American Math-
ematical Monthly 107:360–64) as listed on The On-Line Encyclo-
pedia of Integer Sequences website as sequences A038568 and
A020651. A third is the subject of the article itself, which uses
an elegant and beautifully elementary argument (highly related
to Farey sequences and Stern–Brocot trees) to establish the fact.
We will take the trouble to present it below.

The argument relies on a particular tree diagram, with the frac-
tion 1

1 as its top node and with the structure that each node a/b
has two children:
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• the left child, which is defined as a/(a+ b)
• the right child, which is defined as (a+ b)/b

That is,

a
b
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��

��
��

�

��
��

��
��

�

a
a+ b

a+ b
b

So the tree starts as follows:

1
1
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3
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We construct a list of fractions from the nodes of the tree by
traversing the tree from top to bottom, left to right to get

1
1
,

1
2
,

2
1
,

1
3
,

3
2
,

2
3
,

1
4
,

4
3
, . . . .

It is not immediately apparent but, in fact, the process lists them
all and the nice thing about it is that it does so by having each
one of them appear precisely once. This is truly a ‘proper’ listing
of the rationals.

Three elementary results combine to establish this and to
consider them it is useful to make a definition.

Definition 7.1. A fraction a/b is called reduced if a and b have
no prime factors in common. (Note that, by this definition, 1

1 is
reduced.) In fact, reduced is the same as coprime once we are
past 1

1 .

Result 1. Every node is reduced.
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To show this, suppose that a/b is a reduced node.
The left child is made up of a and a+b, and if these were not

coprime there would exist k, c and d such that

a = ck and a+ b = dk,

which means that

ck+ b = dk and so b = k(d− c)

and so b divides k, which means that it must divide a = ck,
which is a contradiction.

Precisely the same argument establishes that the components
of the right child (a+ b)/b must also be coprime.

Since 1
1 is reduced we have an inductive proof of the result.

Result 2. Every positive reduced fraction appears as a node.

Consider the element a/b and define its sum as a+b. Assume
the result holds for all fractions whose sum is k. We prove all
fractions with the sum k+ 1 must be on the tree.

Consider a fraction r/s such that r + s is k + 1; it must be
that r � k and s � k. Further, r �= s since the fraction must be
reduced, so either r > s or r < s.

For r > s, evidently r − s > 0, and so (r − s)/s > 0. The sum
of this fraction is (r − s)+ s = r � k and so (r − s)/s must be a
node by assumption; its right-hand child is ((r − s)+ s)/s = r/s
and so is a node.

For r < s, s − r > 0, and so r/(s − r) > 0. The sum of the
fraction is (r + s) − r = s � k so r/(s − r) must be a node by
assumption; its left-hand child is r/((s − r) + r) = r/s, which
again is a node.

The starting condition r + s = 2 yields the unique positive
fraction 1

1 , which is by definition a node, and the induction is
once again complete.

Result 3. Every reduced fraction appears at most once.

We know that every fraction is reduced.
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Suppose that the fraction j/k appears at least twice and call
its two parents a/b and c/d. Obviously, a/b �= c/d because then
j/k would be a left and a right child of the same node, but for
integers a and b, (a+ b)/b > a/(a+ b).

If j/k is a left child of both a/b and c/d, then a/(a + b) =
c/(c + d) and so a/b = c/d: the same argument ensures that
both a/b and c/d cannot be a right child of the same parent.
Therefore, one must be the left child of one parent and the right
child of another.

Without loss of generality, we can assume j/k is the left child
of a/b and the right child of c/d. Therefore, j/k = a/(a + b)
and j/k = (c + d)/d.

Because all fractions are reduced, this implies

j = a, k = a+ b, j = c + d, k = d,

and so

a = c + d and d = a+ b

and c + b = 0. Since b, c > 0 we have the contradiction.
The result is then established.
The process generates the sequence of numerators 1, 1, 2, 1,

3, 2, . . . , which might be written as b(n) and, since it can also
be shown that the denominator of the nth fraction in the list
equals the numerator of the (n+ 1)th, the list of fractions is of
the form

b(n)
b(n+ 1)

.

And we even have a nice recursive formula for the nth fraction
on the list a(n):

a(1) = 1
1 ,

a(n+ 1) = 1
�a(n)� − (a(n)− �a(n)�)+ 1

, n � 1,

where ‘�·�’ is the floor function.
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A Bigger Set

So, increasing dimension has no effect on countability, neither,
as we have seen already, does increasing ‘size’: Q, a set strictly
containing N, is countable. If we increase size again and con-
sider the algebraic numbers which include the likes of

√
2 and

all other numbers which are the roots of polynomial equations
with integer coefficients, we get no further; a clever argument of
Cantor showed that they are countable too. And so the adven-
ture continued until intuition was for once shown to be a reli-
able guide: the whole real number system, R, is not countable.
Including the likes of π and e pushed matters too far, but if Q is
countable and R not so, then what has been added—the tran-
scendental numbers—must not be countable. In 1844 Joseph
Liouville established an infinite class of transcendental numbers
and in 1851 he managed to manufacture a particular number
(now known as the Liouville number) which was provably tran-
scendental, but finding such numbers proved to be extremely
difficult. Now, with Cantor’s result, there was the frustrating
realization that ‘almost all’ numbers were one of these elusive
transcendentals.

In fact, the proof that R is not countable is quite easy if the
‘listability’ of countable sets is utilized: more than this, [0,1] is
easily seen not to be listable. First, a small ambiguity is removed
if we insist that finite decimals are represented by their infinite,
0.9 recurring, equivalent. For example, 0.284 = 0.283 999 . . . .
Now suppose that [0,1] is listable. But then consider the num-
ber 0.a1a2a3 . . . , which is formed by making a1 anything other
than the first decimal place of the first number in the list, a2 any-
thing other than the second decimal place of the second number
in the list, etc.; by its construction, such a number is different
from every number in the list and so the list cannot exhaust all
numbers in the interval—and the required contradiction is in
place.

With this result it is clear that any finite interval is uncount-
able, but to make things explicit we can do the following. If we
restrict ourselves to the Euclidean world and so allow ourselves
to accept the fifth postulate, we can see that two finite intervals
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of arbitrary length can be put into one-to-one correspondence
by matching two line segments of their lengths, point for point.

Figure 7.5 shows two such segments, AB and BC, in line. Now
fold the line, as shown in figure 7.6, to form an acute angle ∠ABC
and then join A and C. The Playfair reformulation of the fifth
postulate guarantees that there is one and only one line through
any point on AB which is parallel to AC; this line provides the
one-to-one correspondence that we need.

All finite subintervals of R are therefore uncountable and we
can establish a one-to-one correspondence of [0,1] with R using
the function f(x) = tan(π(x + 0.5)), as figure 7.7 suggests.
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Cantor’s Result

Returning to the earlier quotation of Cantor on page 72, what he
had seen, and what he could not believe, was the resolution of
a question articulated in an earlier, 1874 letter to Dedekind, in
which Cantor asked:

Can a surface (say a square that includes the boundary) be
uniquely referred to a line (say a straight line segment that
includes the end points) so that for every point on the sur-
face there is a corresponding point of the line and, con-
versely, for every point of the line there is a corresponding
point of the surface? I think that answering this question
would be no easy job, despite the fact that the answer seems
so clearly to be ‘no’ that proof appears almost unnecessary.

We have already seen on page 73 that Nn is countable, but that
1877 letter contained a proof which confounded the obvious by
showing that there was a one-to-one correspondence of points
on the interval [0,1] and points in n-dimensional space Rn or,
equivalently, there is a one-to-one correspondence between R

and Rn: the whole is once again not necessarily greater than the
part.

To set up the required one-to-one correspondence take any
point (x,y) in the unit square, with the numbers given their
infinite decimal form, and construct the decimal whose first dec-
imal place is that of x, whose second decimal place is that of y ,
whose third decimal place the second of x, whose fourth deci-
mal place the second of y , and so on. Such a number is unique in
[0,1] and, conversely, any number in [0,1] can be disseminated
uniquely into two numbers which are the x and y coordinates
of a point in the unit square: the one-to-one correspondence is
thereby established and the concept of dimension again brought
into uncomfortable scrutiny. The same argument can be easily
adapted to higher dimensions.

The whole theory is a firmament of fantastic results, most of
which confound intuition, and some of which hit at the very
heart of mathematical foundations, bringing with them genuine
paradoxes which have shaken the assumed firm foundations of
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the subject. One infamous example concerned the great logi-
cian Gottlob Frege, who had worked for a quarter of a century
on developing arithmetic from the basic logical foundations of
mathematics, as he defined them to be. The thesis was to occupy
two large volumes, with the first already published when Frege
received a letter from the august Bertrand Russell detailing his
own recent observations about set theory which were inspired
by Cantor’s work. At the end of the second volume Frege had
added a footnote, which began:

A scientist can hardly meet with anything more undesirable
than to have the foundation give way just as the work is fin-
ished. In this position I was put by a letter from Mr. Bertrand
Russell as the work was nearly through the press.

Untold mathematicians and logicians have been deceived by the
implications of Cantor’s work: arguments have raged and sides
have been taken. We will end the chapter on a positive note, with
the words of another German mathematician, David Hilbert (the
greatest of them all in that era): ‘No one shall expel us from the
paradise that Cantor has created.’



Chapter 8

GAMOW–STERN ELEVATORS

For every complex problem, there is a solution that is simple,
neat, and wrong.

H. L. Mencken

Gamow and Stern at Work

If we work on the middle floor of a building with one elevator
and assume that floor usage is uniform, symmetry dictates that,
if the elevator is not stationary on our floor, it will arrive at our
floor with a probability 1

2 of going up or down. Similar reasoning
was used by George Gamow and Marvin Stern when, in 1956, they
worked in a building of seven floors, with lowest floor numbered
1 and the highest numbered 7; Gamow’s office was on the second
floor and Stern’s the sixth. Whenever Gamow decided to visit
Stern the elevator almost always appeared as it was going down,
and so the journey would be a frustrating ‘down and then up’;
a reciprocal situation was encountered by Stern as he tried to
visit Gamow. With these numbers we can see from figure 8.1

82
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Gamow

Stern

Figure 8.1.

why they reasoned that, for Gamow, the probability is 1
6 of the

elevator arriving on the way up and 5
6 of it arriving going down;

Stern’s situation was, of course, the opposite of this.
This is all very reasonable, but they wrote a little book of puz-

zles, called Puzzle Math, which was published in 1958. The ele-
vator story is mentioned in the introduction and developed as
a puzzle later in the book, with up-and-down elevators replaced
by eastbound and westbound trains travelling between Chicago
and Los Angeles. An argument based on a single train is given
to conclude that an observer’s proximity to each city determines
the frequency with which eastbound and westbound trains are
observed by him and concludes with the statement:

If there are many trains travelling between Chicago and Cal-
ifornia, as is actually the case, the situation will, of course,
remain the same, and the first train passing our city after
any given time is still most likely to be an eastbound one.

The implication for the elevator problem is that, with any num-
ber of them in the building, the 1

6 and 5
6 probabilities would

remain valid; actually, they do not. Whenever a mathematical
statement contains the phrase ‘of course’ it lays itself open
to particular scrutiny and in this case Donald Knuth provided
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that scrutiny and published his argument in a 1969 paper in
the Journal of Recreational Mathematics (2:131–37). The argu-
ment demonstrates that, even though the elevators are moving
independently of each other, Gamow’s and Stern’s probabilities
change with their number—and, as that number increases, each
probability approaches 1

2 .

Knuth’s Argument

We will study the problem in the more general context of Gamow
being a floors from the bottom of the building, which is taken
to be b floors high, as in figure 8.2.

The case of the single elevator is easily established. The prob-
ability that the elevator will be descending as it arrives on
Gamow’s floor is P1 = (b − a)/b = 1− p if we write p = a/b. In
the Gamow–Stern case, p = 1

6 .
The subtlety begins to emerge when we consider a building

with two elevators. We will consider the case p � 1
2 , thereby

keeping G in the lower half of the building, supported by the
reasoning that it is ‘of course’ clear that the alternative case is
symmetrical to this one.
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A natural way to look at the problem is to argue that, if both
elevators are above G, necessarily the next elevator will be trav-
elling down; this occurs with a probability of ((b − a)/b)2 =
(1−p)2. The only other way that the next elevator could be trav-
elling down is when one elevator is above and the other below
G; this occurs with a probability

a
b
× b − a

b
+ b − a

b
× a
b
= 2p(1− p).

To calculate the contribution of this to the full probability, we
need to multiply by the probability that the one above is close
enough to compete successfully with the one below, that is, it is
between G and X; this probability is

a
b − a =

p
1− p ;

then we must multiply by 1
2 , as both elevators are in equal com-

petition, to give the total probability of the next elevator going
down as

P2 = (1− p)2 + 2p(1− p)× p
1− p ×

1
2

= 1− 2p + p2 + p2 = 1− 2p + 2p2.

Figure 8.3 is a plot of P1 and P2 against p and we can see that
P1 > P2, apart from the extreme values.
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The generalization of the result to n elevators can be pursued
in several ways. The one we will adopt is to notice that the two
results that we have so far can be rewritten as

P1 = 1− p = 1
2 +

1
2(1− 2p),

P2 = 1− 2p + 2p2 = 1
2 +

1
2(1− 2p)2,

which could suggest that Pn = 1
2 +

1
2(1 − 2p)n for all positive

integers n.
In this new form, the arguments used to arrive at P1 and P2

change to the following.
With one elevator, the elevator could be above X and so would

assuredly be coming down; this occurs with a probability

b − 2a
b

= 1− 2p.

Alternatively, it could be below X, which occurs with a probability
1− (1− 2p), and there is an even chance of it then being above
G or below it and hence going up or down, so this probability
becomes 1

2(1− (1− 2p)) and so

P1 = (1− 2p)+ 1
2(1− (1− 2p)) = 1

2 +
1
2(1− 2p).

Similarly, with two elevators, both of them could be above X,
with a probability of

(
b − 2a
b

)2

= (1− 2p)2

or at least one of them will be below X, with a probability 1−(1−
2p)2, in which case there is an even chance of the next elevator
being above X, which gives

P2 = (1− 2p)2 + 1
2(1− (1− 2p)2) = 1

2 +
1
2(1− 2p)2.

With this in mind, the general case can be argued in precisely
the same way, with n replacing 2, to give

Pn = (1− 2p)n + 1
2(1− (1− 2p)n) = 1

2 +
1
2(1− 2p)n.
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The formula for Pn can easily be modified to allow p to take
values greater than 1

2 , and it becomes

Pn = 1
2 +

1
2(1− 2p)|(1− 2p)|n−1,

the plot of which is shown in figure 8.4, with n taken as a
continuous variable.

With n = 1, we can see at the rear of the graph the straight
line P1 = 1 − p and as n increases, Pn becomes the plateau at
height 1

2 for all values of p.
We will leave the elevator paradox at this point, but the reader

may wish to pursue matters further and could do so, for exam-
ple, by reading A. Wuffle’s article ‘The pure theory of elevators’
(1982, Mathematics Magazine 55(1):30–37) or, unsurprisingly,
Martin Gardner with his chapter discussing elevators in Knot-
ted Doughnuts and Other Mathematical Entertainments. A more
gentle pursuit would be afforded by watching the CBS televi-
sion series NUMB3RS, which we have already mentioned in chap-
ter 6; the 14 December 2007 episode ‘Chinese Box’ has Alan and
Charlie suffering from its effect.
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THE TOSS OF A COIN

Constant repetition carries conviction.

Robert Collier

A Modern Matter

If the reader was asked to judge whether the following 1679 bits
of binary data is random or could possibly contain a message,
the answer would most probably be the latter: the eye discerns
some sort of ‘lack of randomness’ with those sequences of 0s
surely too long for mere chance to have created them. Think
of tossing a coin 1679 times and writing a 0 if a head appears
uppermost and a 1 otherwise: such long runs of heads would
surely cause us to suspect the coin’s fairness. If the reader agrees
with this, he or she will be acting precisely as the Communication
with Extra Terrestrial Intelligence (CETI) group would wish. This

88
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Arecibo Message was beamed into space by them in the direction
of the 25 000 light years distant globular star cluster M13 to
commemorate the remodelling of the Arecibo radio telescope in
1974:

00000010101010000000000001010000010100000001001000100010001001
01100101010101010101010010010000000000000000000000000000000000
00011000000000000000000011010000000000000000000110100000000000
00000001010100000000000000000011111000000000000000000000000000
00000110000111000110000110001000000000000011001000011010001100
01100001101011111011111011111011111000000000000000000000000001
00000000000000000100000000000000000000000000001000000000000000
00111111000000000000011111000000000000000000000001100001100001
11000110001000000010000000001000011010000110001110011010111110
11111011111011111000000000000000000000000001000000110000000001
00000000000110000000000000001000001100000000001111110000011000
00011111000000000011000000000000010000000010000000010000010000
00110000000100000001100001100000010000000000110001000011000000
00000000011001100000000000001100010000110000000001100001100000
01000000010000001000000001000001000000011000000001000100000000
11000000001000100000000010000000100000100000001000000010000000
10000000000001100000000011000000001100000000010001110101100000
00000010000000100000000000000100000111110000000000001000010111
01001011011000000100111001001111111011100001110000011011100000
00001010000011101100100000010100000111111001000000101000001100
00001000001101100000000000000000000000000000000000111000001000
00000000000111010100010101010101001110000000001010101000000000
00000001010000000000000011111000000000000000011111111100000000
00001110000000111000000000110000000000011000000011010000000001
01100000110011000000011001100001000101000001010001000010001001
00010010001000000001000101000100000000000010000100001000000000
00010000000001000000000000001001010000000000011110011111010011
1100

Any intelligent extraterrestrial life (or reader!) would soon factor
1679 into primes as 23 × 73 to suggest a rectangular grid with
23 rows and 73 columns or 73 rows and 23 columns, filling in
the 1 squares and leaving the 0 squares blank. Figure 9.1 shows
the result of the former decomposition, which might dampen
the spirit, but figure 9.2 shows the latter as one which contains
(albeit somewhat elusive) information and the reader might wish
to pursue the matter further to find out just what that message
is. Having made the point that intuition has guided us correctly,
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Figure 9.1.

Figure 9.2.

we will not pursue the details of the 1999 Encounter 2001 Mes-
sage to a giant star cluster in Hercules—with its error-protected
∼400 000 binary digits!

More modestly, consider the two 200 bits of binary data:

01000000111000110000111010000110000010110100000000110101110000
11001000101101101010000101010011101101110000110000110101110000
11110001000111110001001001101101111110111001000001111100001001
01001001010011

and
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10110001010110100010111100001000010101001100100011100110100111
01101011110001111010011011100111011010111101010110110100110000
10011001100100100101010000111101011100001010111100110101111000
10010011000100

The test is sterner but one of the sets is random, the other not
so: which of the two might contain information? Using the same
intuition and analogy, the first data set would have us believe
that the coin came up heads eight times in a row whereas the
second at most four times in a row: the second is random data,
the first not, then. Not so.

Associating 0s and 1s with heads and tails, the reader who
chose the wrong sequence might seek comfort in the words of
the late, celebrated, former Harvard statistician Fred Mosteller;
he is quoted by Victor Cohn in his book News & Numbers: A
Guide to Reporting Statistical Claims and Controversies in Health
and Other Fields (Iowa State University Press, 1989) as follows:

If you toss a coin repeatedly in a college class and after
each toss ask the class if there is anything suspicious going
on, ‘hands suddenly go up all over the room’ after the fifth
head or tail in a row. There happens to be only 1 chance in
16 (0.0625)—not far from 0.05, or 5 chances in 100—that 5
heads or tails in a row will show up in five tosses, ‘so there
is some empirical evidence that the rarity of events in the
neighbourhood of 0.05 begins to set people’s teeth on edge’.

If we continue with the model of coin tossing, we shall see that
the behaviour of sequences of heads (or tails) is rather different
to what one might reasonably imagine.

An Enlightened Approach

The investigation is not a new one and we will first look at
the approach of the eighteenth-century French mathematician
Abraham De Moivre, of whom Isaac Todhunter said of proba-
bility theory that it ‘owes more to [De Moivre] than any other
mathematician, with the single exception of Laplace.’

The opinion appeared in his vastly influential book A History of
the Mathematical Theory of Probability from the Time of Pascal
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to that of Laplace (1865, reprinted 1965): in the same volume
he dated the beginnings of the modern theory of probability to
1654, born of a late summer exchange of letters between Pierre
Fermat and Blaise Pascal. This formative interchange was partly
inspired by The Problem of Points put to Pascal by the notable
gambling aristocrat Antoine Gombaud, chevalier de Méré, sieur
de Bassay. De Méré had asked another far-from-new question,
which is naturally phrased in terms of the toss of a coin:

Suppose two players A and B stake equal money on being
the first to win n points in a game in which the winner of
each point is decided by the toss of a fair coin, heads for
A and tails for B. If such a game is interrupted when A still
lacks a points and B lacks b points, how should the total
stake be divided between them?

After several special cases had been dealt with, the general solu-
tion to the problem was eventually decided upon, which brought
to the mathematical world the first association of the name of
Pascal with the famous numerical triangle. For interest (and with-
out proof) the solution is that, from the (a + b − 1)th row of
Pascal’s triangle, player A should receive

Sum of the first b entries
Sum of the entire row

×n

= 1
2a+b−1

((
a+ b − 1

0

)
+
(
a+ b − 1

1

)
+ · · ·

+
(
a+ b − 1
b − 2

)
+
(
a+ b − 1
b − 1

))
×n

and player B should receive

Sum of the remaining entries
Sum of the entire row

×n

= 1
2a+b−1

((
a+ b − 1

b

)
+
(
a+ b − 1
b + 1

)
+ · · ·

+
(
a+ b − 1
a+ b − 2

)
+
(
a+ b − 1
a+ b − 1

))
×n.
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For example, if n = 10 and the play stops when A has accumu-
lated eight points and B seven points, we have

a = 10− 8 = 2, b = 10− 7 = 3, a+ b − 1 = 4.

Thus, player A should receive

1
24

((
4
0

)
+
(

4
1

)
+
(

4
2

))
× 10 = 6.875

and player B should receive

1
24

((
4
3

)
+
(

4
4

))
× 10 = 3.125.

Another luminary whose light shone with fierce brightness in the
probabilistic firmament (and equally pretty much everywhere
else) was the Swiss mathematician Jacob Bernoulli, whose fun-
damental result connected with summing elements of the rows
of Pascal’s triangle will occupy us a little later (and we will meet
him again in chapter 11), but now we will concern ourselves with
De Moivre. What started out as a submission to the Royal Society
in 1711 was developed into the volume The Doctrine of Chances
of 1718, reprinted in 1738 and again in a third edition in 1756.
The title page of this last edition has it that its content is ‘Fuller,
Clearer, and more Correct than the Former’.

We will see that the considerable problems associated with
ordinary calculation continued to be costly, but it is from this
edition that we will discuss his investigation into repetition when
a coin is tossed. The majority of the book is devoted to the state-
ment of and answers to a series of problems, with the last one of
the ‘Chance’ section (immediately proceeding the second part of
the book, which is devoted to ‘A Treatise of Annuities on Lives’)
the following, which we have modernized slightly.

Problem LXXIV

To find the probability of throwing a chance assigned a given
number of times without intermission, in any given number of
trials (that is, the probability of achieving a given number of
repetitions in a given number of trials).
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Solution. Let the probability of throwing the chance in any one
trial be represented by a/(a+b) and the probability of the con-
trary by b/(a+ b). Suppose n to represent the number of trials
given, and p the number of times that the chance is to come up
without intermission; then supposing b/(a + b) = x, take the
quotient of unity divided by

1− x − axx − aax3 − a3x4 − a4x5 − · · · − ak−1xk,

and having taken as many terms of the series resulting from
that division as there are units in n− k+ 1, multiply the sum of
the whole by akxk/bk, or by ak/(a+ b)k, and that product will
express the probability required.

Example 1. Let it be required to throw the chance assigned three
times together, in 10 trials, when a and b are in a ratio of equal-
ity, otherwise when each of them is equal to unity; then having
divided 1 by 1−x−xx−x3, the quotient continued to so many
terms as there are units in n − k + 1, that is, in this case to
10− 3+ 1 = 8, will be

1+ x + 2xx + 4x3 + 7x4 + 13x5 + 24x6 + 44x7.

Where x being interpreted by b/(a + b), that is, in this case by
1
2 , the series will become

1+ 1
2 +

2
4 +

4
8 + 〈

7
8〉 +

7
16 +

13
32 +

24
64 +

44
128 ,

of which the sum is 520
128 =

65
16 , and this being multiplied by

akxk/bk, that is, in this case by 1
8 , the product will be 65

128 , and
therefore ’tis something more than an equal chance that the
chance assigned will be thrown three times together some time
in 10 trials, the odds for it being 65 to 63.

In modern terms, the odds of there being a sequence of at least
three heads in ten tosses of a fair coin are 65:63. First, notice
any author’s nightmare, the typo ‘7

8 ’. To the modern eye this is
all very confusing and we will try to remove the contortions by
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using modern notation. Consider the expression

E = 1
1−x −axx −aax3 −a3x4 −a4x5 − · · · −ak−1xk

× a
kxk

bk

= 1
1− x − ax2 − a2x3 − a3x4 − a4x5 − · · · − ak−1xk

× a
kxk

bk

and, using the formula for the sum of a geometric series,

E = 1
1− x(1− (ax)k)/(1− ax) ×

akxk

bk

= 1− ax
1− ax − x + akxk+1

× a
kxk

bk
.

Our principal interest lies with a fair coin, for which a = b = 1,
and the expression becomes

E = 1− x
1− 2x + xk+1

× xk = xk(1− x)
1− 2x + xk+1

.

If we write P(n, k) as the probability that, in n tosses of a fair
coin, a sequence of heads of length at least k appears, we have
the compact pseudo-expression

P(n, k) = Expand
[

xk(1− x)
1− 2x + xk+1

: up to xn, x = 1
2

]
.

His example asks for the value of P(10,3) and, as he says,

E = x3(1− x)
1− 2x + x4

= x3(1+x+2x2+4x3+7x4+13x5+24x6+44x7+O(x8)),

and evaluating the significant part of this at x = 1
2 gives

P(10,3) = 1
8(1+

1
2 +

2
4 +

4
8 +

7
16 +

13
32 +

24
64 +

44
128) =

65
128 ≈ 0.508.

His formula, which is a type of generating function, is deeply
mysterious and offered without any justification, although he
does continue ‘to consider of Expedients to make the Calculation
more easy’, illustrating his point with reference to P(21,4). The
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essence of the computational difficulty is in the expansion of
1/(1 − 2x + x5), which to the required degree of accuracy is
given as

1+ 2x + 4x2 + 8x3 + 16x4 + 31x5 + 60x6 + 116x7 + 224x8

+ 432x9 + 833x10 + 1606x11 + 3096x12 + 5968x13

+ 〈11 494x14 + 22 155x15 + 42 704x16 + 82 312x17〉

with our angled brackets indicating a calculative error. The accu-
rate expression, again produced by a computer in the blink of
an eye, is

1+ 2x + 4x2 + 8x3 + 16x4 + 31x5 + 60x6 + 116x7 + 224x8

+ 432x9 + 833x10 + 1606x11 + 3096x12 + 5968x13

+ 11 504x14 + 22 175x15 + 42 744x16 + 82 392x17.

A single error in calculation at the x14 term has compounded
itself throughout the remainder of the expression by his expedi-
ent use of a mysterious recursion:

Now although these Terms may seem at first sight to be
acquired by very great labour, yet if we consider what has
been explained before concerning the nature of a recurring
Series, we shall find that each Coefficient of the Series is
generated from the double of the last, subtracting once the
Coefficient of that Term which stands 5 places from the last
inclusive; so that for instance if we wanted one Term more,
considering that the last Coefficient is 82 312, and that the
Coefficient of that Term which stands five places from the
last inclusive is 5968, then the Coefficient required will be
twice 82 312, wanting once 5968, which will make it 158 656,
so that the Term following the last will be 158 656x18.

The prescription works but one is often left to wonder what these
great mathematicians would have done with modern computing
power, which gives the instant answer P(21,4) = 0.497.
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A Modern Approach

With a computer, De Moivre’s method provides an extremely
easy, yet puzzling, way of computing the probabilities but, for
the sake of mathematical probity, we will use more rigorous
methods to develop a recurrence relation in n for P(n, k).

That sequence of k heads might occur within the first n − 1
tosses or it might not. If it does, it does so with a probability of
P(n−1, k); if it does not, the final coin toss must be included in
the sequence and probability that this happens can be calculated
in the following way: there must have been no sequence of k
heads in the first n − k tosses and the (n − k)th toss must be
a tail, which is followed by the sequence of k heads. This gives
rise to the probability

P(No sequence of k heads in first n− k tosses)
× P(A sequence of k heads which includes the nth toss)

= [1− P(n− k, k)]× 1
2(

1
2)
k = [1− P(n− k, k)]× (1

2)
k+1.

We then have

P(n, k)
= P(That the sequence of heads occurs within the first tosses)

+ P(That the sequence of heads includes the final toss)

and so

P(n, k) = P(n− 1, k)+ [1− P(n− k, k)]× (1
2)
k+1.

Evidently, we also have the boundary conditions

P(0, k) = P(1, k) = P(2, k) = · · · = P(k− 1, k) = 0

and

P(k, k) = (1
2)
k

Using these we can generate the probabilities recursively and so
arrive at table 9.1.
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Table 9.1. P(n, k).

k︷ ︸︸ ︷
n 3 4 5 6 7 8

10 0.508 0.245 0.109 0.047 0.020 0.008
20 0.787 0.478 0.250 0.122 0.058 0.027
30 0.908 0.639 0.368 0.192 0.095 0.046
40 0.960 0.750 0.468 0.256 0.131 0.065
50 0.983 0.827 0.552 0.315 0.165 0.084

100 1 0.973 0.810 0.546 0.318 0.170
200 1 1 0.966 0.801 0.544 0.320

We see De Moivre’s value for P(10,3) appearing; also, we see
that the event that the eight consecutive heads appear in 200
tosses of the coin, P(200,8), is not negligible.

Heads or Tails

Of course, it is the fact that a ‘long’ repetition appears that
causes surprise, whether it be wholly heads or wholly tails. For a
complete resolution of the situation we really need to be able to
find what we will write as Q(n,k), the probability of a sequence
of heads or tails of length k appearing in n tosses of a fair coin.

To achieve this we could revert to the previous method, but
there is another, neater approach.

A run of heads or tails continues with the appearance of the
pairs HH or TT and ends with the appearance of the opposite out-
come and so with the sequence HT or TH—each of the four possi-
bilities appearing with equal likelihood. Represent the event that
a consecutive pair are the same by S and that they are different
by D and consider the sequence of Ss and Ds so generated. For
example, consider the sequence of Hs and Ts

HHHTTHTHHTTTTHH.

This generates the associated sequence of Ss and Ds

H H H T T H T H H T T T T H H
S S D S D D D S D S S S D S
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Table 9.2. Q(n,k).

k︷ ︸︸ ︷
n 3 4 5 6 7 8

10 0.826 0.465 0.217 0.094 0.039 0.016
20 0.950 0.720 0.458 0.237 0.115 0.054
30 0.994 0.879 0.625 0.357 0.185 0.092
40 0.999 0.948 0.741 0.459 0.250 0.128
50 1 0.981 0.821 0.544 0.309 0.162

100 1 1 0.972 0.807 0.542 0.315
200 1 1 0.999 0.965 0.799 0.542

The three consecutive Ss guarantee four consecutive Ts. If we
recognize that the length of this new sequence is precisely one
less than the original, our problem of what is

Q(n,k) = the probability of a sequence of H or T of
length k appearing in n tosses of a fair coin

reduces to what is

Q(n,k) = the probability of a sequence of Ss of
length k− 1 appearing in the generated
sequence of n− 1 Ss and Ds.

This means that we haveQ(n,k) = P(n−1, k−1) and using this
we can compile table 9.2.

Now we see that getting a run of length 8 in 200 tosses of the
coin is more likely than not! It is not unusual for instructors to
bring the phenomenon to the attention of students by asking
half the class to toss a fair coin (say) 100 times and to record the
outcome on a named sheet of paper and the other half to make
up the data, as if they has tossed the coin. Not many would be
brave enough to make up a sequence of either H or T of length
5 or greater, yet the chance of this happening we can see is 97%:
the instructor can hand back the sheets with just a 3% chance of
being wrong in each case. Reverting to the Arecibo data, there is
a sequence of 0s of length 37 and Q(1679,37) = 1.2× 10−8, so
intuition is not always confounded!
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Figure 9.3.

Figure 9.3 indicates the trends of P(n, k) and Q(n,k) using
the data of the previous tables.

Asymptotic Behaviour

We can ask the question: how long do we expect to wait for a run
of n consecutive heads? If we write En for the expected number
of tosses to achieve a run of n consecutive heads, we can form
a recurrence relation in the following way.

We can achieve the n consecutive heads by realizing n − 1
consecutive heads and then another head or by failing by getting
a tail at the final toss of the coin, and then starting over again.
This brings about the relation

En = 1
2(En−1 + 1)+ 1

2(En−1 + 1+ En)
and this easily reduces to En = 2En−1 + 2.
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There is a standard theory that deals with what is character-
ized as a linear nonhomogeneous recurrence relation but we will
assume an answer of En = 2n+1 − 2 and show it to be so using
induction.

The relation tells us that E1 = 21+1 − 2 = 2 = 1/(1
2) and from

the theory of the geometric random variable, or using common
sense, this is clearly true. Now assume it true for n = k and so
Ek = 2k+1 − 2. Then Ek+1 = 2Ek + 2 = 2(2k+1 − 2)+ 2 = 2k+2 − 2
and the induction step is successfully taken.

Much more challenging is the question of the expected maxi-
mal length of a run of heads in n tosses of a coin. If Rn is defined
as the random variable, the maximum length of a run of heads
in n tosses of a coin, then Mark Schilling et al. (L. Gordon, M. F.
Schilling and M. S. Waterman, 1986, An extreme value theory for
long head runs, Probability Theory and Related Fields 72:279–87,
and M. F. Schilling, 1990, The longest run of heads, The College
Mathematics Journal 21(3):196–207) have shown that

E[Rn] = log2
n
2
+ γ

ln 2
− 1

2
+ r1(n)+ ε1(n),

V[Rn] = π
2

6
× 1
(ln 2)2

+ 1
12
+ r2(n)+ ε2(n),

where γ = 0.577 . . . is Euler’s constant (the reader can find out
about this mysterious number by consulting an earlier book by
this author, Gamma: Exploring Euler’s Constant, Princeton Uni-
versity Press, 2003). Also, |r1(n)| � 0.000 016 and |r2(n)| �
0.000 06 for all n and ε1(n), ε2(n)→ 0 as n→∞.

So, as n increases we have the estimate that

E[Rn] = log2n− 2
3 .

And since we have the remarkable fact that the variance is
virtually constant at

V[Rn] ≈ π
2

6
× 1
(ln 2)2

+ 1
12

≈ 3.507

and the standard deviation at 1.873, we can see that the esti-
mated length of the longest run is very accurate.
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Schilling points out in the later article that

The variety of potential applications of runs theory is virtu-
ally boundless. Some of the more intriguing include hand-
writing analysis by means of digitized scanning, hydrologic
runs (floods and droughts) and studies of the pattern of
capture of prey species.



Chapter 10

WILD-CARD POKER

These results, which are partly combinatorial and partly real
mathematics…

A. Joseph

Poker Hands

Since its invention somewhere in the Louisiana Territory around
1800, poker has evolved into a vastly complex contest of skill
and chance. Acknowledged experts spread across the globe, even
the late and acclaimed bridge expert, Terence Reese, coauthored
a book entitled Poker: Game of Skill. The game exists in many
variants, which add novelty and subtlety to the standard rules,
but whatever the details of the particular variant there is a rank-
ing of the winning hands. To begin with we list the standard
hands, in the order of their rankings (see also table 10.1):

Straight flush: all five cards in a consecutive sequence in the
same suit.

Four of a kind: four cards of one denomination and a fifth odd
card.

Full house: three cards of one denomination and two of another.

103
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Table 10.1. Standard poker-hand rankings.

Royal flush 10 ♠ J ♠ Q ♠ K ♠ A ♠
Straight flush 3 ♣ 4 ♣ 5 ♣ 6 ♣ 7 ♣
Four of a kind K ♥ K ♦ K ♣ K ♠ 4 ♥
Full house 10 ♦ 10 ♥ 10 ♠ A ♣ A ♠
Flush 8 ♠ Q ♠ 2 ♠ 5 ♠ 6 ♠
Straight 6 ♥ 7 ♣ 8 ♠ 9 ♣ 10 ♦
Three of a kind 7 ♠ 7 ♥ 7 ♦ J ♠ A ♠
Two pairs A ♣ A ♥ 6 ♠ 6 ♣ J ♠
One pair J ♠ J ♦ 2 ♥ 5 ♣ 9 ♠

Flush: all five cards in the same suit but not consecutive.

Straight: all five cards consecutive but not of the same suit.

Three of a kind: three cards of the same denomination and two
odd cards.

Two pairs: two cards of the same denomination twice and an
odd card.

One pair: two cards of the same denomination.

Card high: anything else.

These rankings are decided by the likelihood of each hand being
dealt to a player. To investigate the idea we will take the sim-
plest form of poker, in which five cards are dealt to each player
from a standard pack of fifty-two cards. The whole analysis is
simply a counting exercise, which is made easier by the use of
the standard combination formula(

n
r

)
= n!
r !(n− r)!

for the number of ways of choosing r objects from n without
regard to order.

Creating the Hierarchy

Straight flush

The whole hand is determined by the smallest card, which can
be any of ace, 2, 3, up to 10, and each of these cards has four
possible suits, which means that there are 10× 4 = 40 possible
straight flushes.
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Four of a kind

We can build four of a kind by first picking the card to match with
the three others, and then pick the odd card out. Since we can
pick the first card in 13 ways (without regard to suit), leaving 48
cards remaining after its removal and that of its three matching
cards, we have 13× 48 = 624 possible hands.

Full house

We pick the three of a kind, by picking the card to match with the
two others, which can be done in 13 ways, and then multiplying
by the number of ways the three suits can be chosen from the
four possible, that is,

(
4
3

)
ways: this gives us 13×

(
4
3

)
possibili-

ties. The first of the two remaining cards can then be picked in
12 ways and again we have to count the number of ways the two
suits of the pair can be chosen; this is

(
4
2

)
ways, which gives us

12×
(

4
2

)
possibilities. The total number of possibilities is then

13×
(

4
3

)
× 12×

(
4
2

)
= 3744.

Flush

There are four ways of choosing the suit and having done so
there are

(
13
5

)
ways of choosing the five cards and so 4×

(
13
5

)
possibilities. From this total we have to subtract the 40 straight
flushes to finish with the total number of possibilities 4×

(
13
5

)
−

40 = 5108.

Straight

We will take the case of ‘round the corner’ straights (e.g. JQKA2)
not being allowed. The straight is determined by its lowest card,
just as with the straight flush, and we have 40 possibilities for
this. The remaining four cards have their denomination deter-
mined but each can come from any of the four suits, which
means that we have 40 × 44 possibilities, 40 of which will be
straight flushes. The final total is then 40× 44 − 40 = 10 200.
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Three of a kind

As with the full house, the three cards can be chosen in 13×
(

4
3

)
ways and since we may not choose the fourth of the same denom-
ination we have 48 cards left from which to choose the remaining
two cards; this can be done in

(
48
2

)
ways. This total will include

the full houses and so we must subtract the 3744 of those to
leave 13×

(
4
3

)
×
(

48
2

)
− 3744 = 54 912 different hands.

Two pairs

To get two pairs, we first choose one pair by picking the first
card, then a second card to match it from the remaining three
suits, which can be done in 13×

(
4
2

)
ways. Then, we pick the

second pair, making sure we do not match the first pair chosen,
by picking one of the 48 remaining cards. We match it by picking
another suit, which can be done in 12×

(
4
2

)
ways. The last card

we pick must not match either of the first pairs, and so we are
left with 44 cards from which to choose. Lastly, the two pairs
can appear in either order and so we must divide this total by 2
to finish with 13×

(
4
2

)
× 12×

(
4
2

)
× 44× 1

2 = 123 552 ways.

One pair

To get a single pair and nothing else, we first pick one pair in
13×

(
4
2

)
ways and then pick the next three cards, making sure

that there is no match. To do this we successively pick a card
and then discard all cards of that denomination and this can be
done in 48× 44× 40 ways. The total number of ways of picking
two pairs is then 13×

(
4
2

)
× 48× 44× 40 = 1 098 240.

Odd card

The remaining alternative is that the hand contains five odd
cards and we can calculate the number of ways of achieving this
by subtracting the total of all of the above from the total number
of possible hands to get(

52
5

)
−624−3744−5108−10 200−54 912−123 552 = 1 302 540

ways.
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Table 10.2. Natural frequencies of poker hands.

Hand Frequency Probability Odds

Straight flush 40 0.000 015 4 64 973 : 1
Four of a kind 624 0.000 240 4 164 : 1
Full house 3 744 0.001 44 693 : 1
Flush 5 108 0.001 97 508 : 1
Straight 10 200 0.003 92 254 : 1
Three of a kind 54 912 0.021 1 46 : 1
Two pairs 123 552 0.047 5 20 : 1
One pair 1 098 240 0.423 1.37 : 1
Odd card 1 302 540 0.501 0.995 : 1

This is all summarized in table 10.2, where the probability is
computed simply by dividing each frequency by

(
52
5

)
and the

hands are listed in descending order of value, measured by the
probability of them occurring. The odds are calculated with the
understanding that, if the odds of an event happening are given
as a : b, it means that the probability of that event happening is
b/(a+b). In our case, b = 1 and so p = 1/(a+1), which makes
a = 1/p − 1.

Wild-card poker

So far we have nothing more than a rather messy set of calcu-
lations which justify the standard hand ranking. Now suppose
that we consider one of the most common variants of the stan-
dard game: the introduction of wild cards. Again, there are many
possibilities and we will choose to add a single joker to the pack
and allow it to count for any card. We need to recompute the
probabilities, which is a little more delicate than before.

Five of a kind

This new possibility occurs precisely when the hand is four of
a kind together with the joker. This occurs in thirteen possible
ways.
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Straight flush

Care must be taken with the card the joker replaces. The hands
with lowest card an ace to a 9 all behave in the same way, taking
the ace as typical and using ‘∗’ for joker, we have⎛

⎜⎜⎜⎜⎝
A234∗
A23∗5
A2∗45
A∗345

⎞
⎟⎟⎟⎟⎠

as possible straight flushes in any of the four suits. The fifth
possibility of ∗2345 would be counted as the superior hand
2345∗ or 23456. This rollover of the final possibility does not
take place with the final possibility, where the lowest card is a
10; this will simply count as the fifth way of achieving that hand
(recall that ‘round the corner’ straights are not permitted). The
count becomes

4× (9× 4+ 5) = 164

possible ways. Add this to the 40 without a joker and the grand
total becomes 204 ways.

Four of a kind

We already know that there are 624 ways without a joker; with it
we need three of a kind, the joker and an odd card. This means
that there are

624+
(

13
1

)
×
(

4
3

)
× 1×

(
48
1

)
= 3120

ways.

Full house

Now we have to start being very careful. We can achieve the hand
naturally in 3744 ways or with the joker added to two pairs;
notice that we would not add the joker to three of a kind as that
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would make up the higher hand of four of a kind. The count is
then

3744+
(

13
2

)
×
(

4
2

)
×
(

4
2

)
× 1 = 3744× 6× 6 = 6552.

Flush

The reasoning is much the same as before, we simply need four
cards of the same suit. This is achieved in 4×

(
13
4

)
= 2860 ways.

Now subtract the straight flushes to get 2860−164 = 2696 ways
and then add in the natural ways to get 2696+5108 = 7804 ways.

Straight

Once again we need to treat the cases where the lowest card
is ace to 9 as one and the highest straight separately. For the
nine lowest straights there are each 44 ways of choosing the four
cards needed and they can each come from any of the four suits,
with nine possible lowest cards we have 9× 4× 44 possibilities.
There will be 44×5 possibilities for that. Now we have to subtract
the straight flushes to get 9×4×44+44×5−164 = 10 332 ways.
Finally, adding in the natural possibilities gives a grand total of
10 332+ 10 200 = 20 532.

Three of a kind

To add to the 54 912 natural possibilities, we need one pair, the
joker and two odd cards, to get

54 912+
(

13
1

)
×
(

4
2

)
× 1×

(
12
2

)
×
(

4
1

)
×
(

4
1

)
= 137 280

ways.

Two pairs

To achieve this, the hand must not contain the joker, since a pair
and the joker would make the higher hand of three of a kind. The
number of ways is therefore unchanged and remains as 123 552.
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Card high

We will deal with this out of turn so that the more difficult cal-
culation for one pair can be easily performed. The hand is only
possible if it does not contain the joker and is naturally card
high; we saw that this happens in 1 302 540 possible ways.

One pair

We can now calculate this by using the subtraction principle:

(
53
5

)
− 13− 204− 3120− 6552− 7804− 20 532

− 137 280− 123 552− 1 302 540 = 1 268 088

ways.
The calculations result in table 10.3, where the frequencies are

now divided by
(

53
5

)
= 2 869 685 to arrive at the probabilities.

Certainly, the odds have changed and, most significantly, for
two pairs and three of a kind: these have been altered from 20 : 1
and 46 : 1 to 22 : 1 and 20 : 1 respectively. Three of a kind is now
more likely than two pairs! If we are to rank the hands according
to the likelihood of them being dealt we must then reverse their
places in the table. But look at the effect that this would have
on the player being dealt a hand which, with the joker, would
count as three of a kind; it would be sensible for him to forgo
the three-of-a-kind interpretation of the hand in favour of the
two pairs alternative. This would mean that the only achievable
three of a kind is the natural one, possible in 54 912 ways, whilst
two pairs would now be achievable in 82 368 extra ways to add to
the natural 123 552. The odds for two pairs and three of a kind
then become 13 : 1 and 34 : 1 respectively, and again the order
is reversed. We are left with an irreconcilable dilemma: based on
frequency of occurrence, the hands cannot be properly ordered.

With two jokers the situation is even worse, as we can see from
table 10.4. Once again three of a kind and two pairs are in the
wrong order, but then so are one pair and a hand holding just
an odd card. Added to this, four of a kind and a full house are
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Table 10.3. Frequencies of poker hands with a single joker.

Hand Frequency Probability Odds

Five of a kind 13 0.000 004 5 220 744 : 1
Straight flush 204 0.000 071 14 083 : 1
Four of a kind 3 120 0.001 087 919 : 1
Full house 6 552 0.002 283 437 : 1
Flush 7 804 0.002 72 367 : 1
Straight 20 532 0.007 15 139 : 1
Three of a kind 137 280 0.047 83 20 : 1
Two pairs 123 552 0.043 05 22 : 1
One pair 1 268 088 0.441 89 1.26 : 1
Odd card 1 302 540 0.453 90 1.20 : 1

Table 10.4. Frequencies of poker hands with two jokers.

Hand Frequency Probability Odds

Five of a kind 78 0.000 025 39 999 : 1
Straight flush 564 0.000 179 5 586 : 1
Four of a kind 9 360 0.002 960 337 : 1
Full house 9 360 0.002 960 337 : 1
Flush 11 448 0.003 620 275 : 1
Straight 30 540 0.009 657 103 : 1
Three of a kind 233 584 0.073 860 12.5 : 1
Two pairs 123 552 0.039 068 24.6 : 1
One pair 1 440 464 0.455 481 1.2 : 1
Odd card 1 303 560 0.412 192 1.4 : 1

of equal precedence. As before, a player taking into account any
of these facts will cause chaos in the ranking of the hands.

Of course, other options for wild cards are possible; ‘deuces
(twos) wild’, for example; whatever the system in use, the prob-
lem remains that a player often has a choice of how to declare
a hand, and that choice will invariably produce the strongest
possible combination according to the accepted rules. Just how
much wild cards alter the game has been analysed many times.
An example in an article in Chance magazine (J. Emert and
D. Umbach, 1996, Inconsistencies of ‘wild-card’ poker, Chance
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9(3):17). The authors’ analysis of wild-card poker variants con-
cludes with the statement

When wild cards are allowed, there is no ranking of the
hands that can be formed for which more valuable hands
occur less frequently.

For example, with deuces wild, they show that four of a kind
occurs more than twice as often as a full house, yet modifying
the rules as above leads to the same contradictory situation. That
said, the authors examine several wild-card options and find that
the standard ranking proves to have fewer inconsistencies than
other possible ranking schemes.

Does an acceptable ranking scheme exist which is not marred
by these problems? Emert and Umbach propose one based on
what they define as ‘the inclusion frequency’ of a hand, which
is a measure of the number of different winning combinations
that can be declared from a given hand. Their method leads to
the traditional rankings in poker without wild cards and does
deal with the ambiguity introduced with the introduction of wild
cards—but whether it will ever catch on with poker players is
quite another matter!



Chapter 11

TWO SERIES

As the finite encloses an infinite series
And in the unlimited limits appear,
So the soul of immensity dwells in minutia
And in narrowest limits no limits inhere.
What joy to discern the minute in infinity!
The vast to perceive in the small, what divinity!

Jacob Bernoulli

Torricelli’s Tower

In chapter 8 of Nonplussed! we considered the paradoxical solid
known (in particular) as Torricelli’s Trumpet. Figure 11.1 shows
what this remarkable object looks like. It is formed as the solid of
revolution of the curve y = 1/x for (say) x � 1 and calculus was
used to show that the trumpet had a finite volume but infinite

113
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surface area, the required computations being as follows: the
volume is

lim
N→∞

π
∫ N

1

(
1
x

)2

dx = lim
N→∞

π
∫ N

1

1
x2

dx

= lim
N→∞

π
[
− 1
x

]N
1

= lim
N→∞

π
(

1− 1
N

)
= π

and the surface area is

lim
N→∞

∫ N
1

1
x

√
1+ 1

x4
dx

= lim
N→∞

∫ N
1

√
x4 + 1
x3

dx

= lim
N→∞

{
− 1

2N2

√
N4 + 1+ 1

2 ln(N2 +
√
N4 + 1)

+
√

2
2
− 1

2 ln(1+
√

2)
}
,

which does not exist, since the second term is unbounded for
large N .

The first calculation is easy and the second comparatively
hard, requiring the techniques of integration by parts and sub-
stitution, and it is true that (as we observed) we could have made
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life easier for ourselves in the second integral by noting that∫ N
1

1
x

√
1+ 1

x4
dx >

∫ N
1

1
x

dx = [lnx]N1 ,

which assures the divergence.
In fact, we could have avoided calculus altogether if we wished

to establish the nature (but not the exact value) of the volume
and surface area by enclosing the trumpet in a horizontal tower,
reminiscent of a tiered wedding cake laid on its side, generated
by the piecewise function

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 1 � x < 2,
1
2 , 2 � x < 3,
1
3 , 3 � x < 4,
...

...
1
n
, n � x < n+ 1,

rotated about the x-axis. Figure 11.2 shows this function (with
the vertical line segments included) superimposed on a drawing
of y = 1/x and figure 11.3 shows the infinite tower generated
by rotation about the x-axis.

Each horizontal line segment generates an element of surface
area strictly less than the corresponding segment of the curve
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Figure 11.3.

and so calculating the surface area of the tower will be under-
estimating the surface area of the trumpet. This computation
is

Surface area of trumpet >
∞∑
n=1

2π
(

1
n

)
× 1 = 2π

∞∑
n=1

1
n
.

If we wish to be precise and add in the areas of the annular tops
of the sections, we simply add in the full area of the base of the
first section—and so add in π .

To deal with the volume we realize that the trumpet is entirely
contained in the tower and so the volume of the tower is a strict
overestimate of the volume of the trumpet (which we know to
be π anyway). Now the computation is

Volume of trumpet <
∞∑
n=1

π
(

1
n

)2

× 1 = π
∞∑
n=1

1
n2
.

The estimates reduce the summation of two infinite series:

∞∑
n=1

1
n

and
∞∑
n=1

1
n2
.

The first sum is universally known as the harmonic series, since
every term beyond the first is the harmonic mean of its two
neighbours, where the harmonic mean of x and y is defined
to be

2
1/x + 1/y

.
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Here we have

2
1

1/(n− 1)
+ 1

1/(n+ 1)

= 2
n− 1+n+ 1

= 1
n
.

The second sum has no standardized name but can reasonably
be called Euler’s series.

Since the advent of Zeno’s dichotomy paradox, the idea of an
infinite series converging to a finite sum has tested the mathe-
matical philosopher—that its terms can become arbitrarily small
and yet its sum can become arbitrarily large has tested the under-
standing of the infinite more deeply still. Zeno’s simple argu-
ment that, before an object can travel a given distance d, it must
travel a distance d/2 and to do this it must first travel a dis-
tance 1

2(d/2) = d/4 can be continued indefinitely to the conclu-
sion that the full distance can never be traversed. The apparent
paradox was eventually resolved using the theory of infinite geo-
metric series giving

∑∞
r=1 1/2r to be exactly 1. The infinite num-

ber of ‘half-steps’ needed is balanced by the progressively lesser
amount of time needed to traverse the increasingly shorter dis-
tances and eventually the pure mathematical model of a physi-
cal situation breaks down. The two series mentioned above have
their own place in the history of the infinite and the gallery of
the surprising.

The Harmonic Series

Today I said to the calculus students, ‘I know, you’re looking
at this series and you don’t see what I’m warning you about.
You look at it and you think, “I trust this series. I would
take candy from this series. I would get in a car with this
series.” But I’m going to warn you, this series is out to get
you. Always remember: The harmonic series diverges. Never
forget it.’

So wrote the Manchester University mathematician Alexandre
Borovik of the series H∞ = 1+ 1

2 +
1
3 +

1
4 +

1
5 +· · · . It is this series

that is unveiled to almost every student beginning a course on
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real analysis as the canonical example of a series whose terms
approach zero yet which diverges. It is also peculiarly difficult
in that there is no usable, explicit formula for the exact sum to
any given number of terms. The distinguished mathematician
James Gregory, who for his time enjoyed a deep understanding
of infinite series and their convergence, wrote in a letter dated
15 February 1671:

As to yours, dated 24 Dec., I can hardly beleev, till I see
it, that there is any general, compendious & geometrical
method for adding an harmonical progression....

It is obvious that H1 = 1, H2 = 1.5 and H6 = 2.45, but it takes
progressively and noticeably more computer power to deter-
mine that H100 = 5.187 . . . , H1000 = 7.486 . . . and H1 000 000 =
14.392 . . . .

Notice the three dots at the end of each of the last three sums;
they are correct as far as they go but none can be written exactly
since it can be proved that for all n other than 1, 2 and 6, Hn is
always a nonterminating decimal. Above all, notice that the sums
are small, a fact forcefully emphasized by the work of John W.
Wrench Jr and Ralph. P. Boas Jr, who found the smallest n such
that Hn > 100; that n is

15 092 688 622 113 788 323 693 563 264 538 101 449 859 497

(Partial sums of the harmonic series, 1971, American Mathemati-
cal Monthly 78:864–70). This glacially slow increase in the size of
Hn strongly encourages the thought that it must converge, and
to a pretty small number. That it does not was first established by
the fourteenth-century French polymath Nicholas Oresme and
subsequently by numerous others.

The Harmonic Series Diverges

We will give something of a flavour of the way in which the diver-
gence has been approached over the centuries by reproducing
four proofs, dating from the original to the modern day.
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Oresme’s fourteenth-century proof was as follows. Write the
infinite sum with its terms collected as

H∞ = 1+ 1
2 + (

1
3 +

1
4)+ (

1
5 +

1
6 +

1
7 +

1
8)

+ (1
9 +

1
10 +

1
11 +

1
12 +

1
13 +

1
14 +

1
15 +

1
16)+ · · · ,

where the brackets consist of the 2n terms which end with
1/2n+1 for n = 1,2,3, . . . . This means that, taking the smallest
term in each bracket,

H∞ > 1+ 1
2 + (

1
4 +

1
4)+ (

1
8 +

1
8 +

1
8 +

1
8)

+ ( 1
16 +

1
16 +

1
16 +

1
16 +

1
16 +

1
16 +

1
16 +

1
16)+ · · ·

= 1+ 1
2 +

2
4 +

4
8 +

8
16 + · · ·

= 1+ 1
2 +

1
2 +

1
2 +

1
2 + · · · ,

which is, of course, divergent.
Moving to the seventeenth century, Pietro Mengoli made im-

plicit use of the harmonic relationship between consecutive
terms, with the harmonic mean of a set of distinct numbers
strictly less than their arithmetic mean. If the series is grouped
as

H∞ = 1+ (1
2 +

1
3 +

1
4)+ (

1
5 +

1
6 +

1
7)+ (

1
8 +

1
9 +

1
10)+ · · · ,

then, since

1
n− 1

+ 1
n+ 1

= 2n
n2 − 1

>
2n
n2

= 2
n
,

the sum of the two outer terms in each triple is greater than
twice the middle term, and this means that

H∞ > 1+ 3
3 +

3
6 +

3
9 + · · · = 1+ 1+ 1

2 +
1
3 + · · · = 1+H∞,

which yields an obvious contradiction.
In the eighteenth century, Jacob Bernoulli wrote the harmonic

series, truncated by its first term, as the letter A. So,

A = 1
2 +

1
3 +

1
4 +

1
5 +

1
6 + · · ·
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and, somewhat unnecessarily, the letter B as this series with
numerators 1,2,3,4,5, . . . . So,

B = 1
2 +

2
6 +

3
12 +

4
20 +

5
30 + · · · .

We will ignore this labelling and refer to both series as A.
Then he used the result of Leibniz that

1+ 1
3 +

1
6 +

1
10 +

1
15 + · · · = 2,

which means that

1
2 +

1
6 +

1
12 +

1
20 +

1
30 + · · · = 1.

Subsequent letters were defined as follows:

C = 1
2 +

1
6 +

1
12 +

1
20 +

1
30 + · · · = 1,

D = 1
6 +

1
12 +

1
20 +

1
30 + · · · = C − 1

2 = 1− 1
2 = 1

2 ,

E = 1
12 +

1
20 +

1
30 + · · · = D − 1

6 = 1
2 −

1
6 = 1

3 ,

F = 1
20 +

1
30 + · · · = E − 1

12 =
1
3 −

1
12 =

1
4 ,

G = 1
30 + · · · = F − 1

20 =
1
4 −

1
20 =

1
5 ,

...
...

Adding the left-hand column vertically, the middle column
diagonally and the far right column vertically gives

C +D + E + F +G + · · ·
= 1

2 + (
1
6 +

1
6)+ (

1
12 +

1
12 +

1
12)+ (

1
20 +

1
20 +

1
20 +

1
20)

+ ( 1
30 +

1
30 +

1
30 +

1
30 +

1
30)+ · · ·

= 1
2 +

2
6 +

3
12 +

4
20 +

5
30 + · · ·

= A = 1+ 1
2 +

1
3 +

1
4 +

1
5 + · · ·

= 1+A.

Bernoulli concluded from this that ‘the whole equals the part’.
Although we saw in chapter 7 that this is possible, here he had
an inescapable contradiction. This result appeared in the posthu-
mously published Ars Conjectandi, together with the significant
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realization that ‘the sum of an infinite series whose final term
vanishes perhaps is infinite, perhaps finite’, an uncomfortable
realization that acted as muse for the verse at the head of this
chapter.

As a final, modern demonstration, Ross Honsberger in his
1976 publication Mathematical Gems II (Mathematical Associa-
tion of America) had the reader consider the following argument:

eHn = e1+1/2+1/3+1/4+1/5+···+1/n

= e1 × e1/2 × e1/3 × e1/4 × · · · × e1/n.

Since, for x > 0, ex > 1+ x, it must be that

eHn > (1+ 1)×
(

1+ 1
2

)
×
(

1+ 1
3

)
×
(

1+ 1
4

)
× · · · ×

(
1+ 1

n

)

=
(

2
1

)
×
(

3
2

)
×
(

4
3

)
× · · · ×

(
n+ 1
n

)
= n+ 1,

which means that eHn and therefore Hn are unbounded as n
increases.

The fact that the harmonic series diverges has surprised and
sometimes shocked many from the fourteenth to the twenty-first
centuries, with repercussions extending far beyond Torricelli’s
trumpet, as the reader may wish to investigate.

Euler’s Series

The volume of the trumpet involved our second series, which,
curiously, has no generally accepted name. In this case it is easy
to see that it does converge:

S∞ = 1+ 1
22
+ 1

32
+ 1

42
+ · · ·

= 1+
(

1
22
+ 1

32

)
+
(

1
42
+ 1

52
+ 1

62
+ 1

72

)
+ · · · ,

where the brackets consist of the 2n terms that begin with 1/22n.
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This means that

S∞ < 1+ 2
22
+ 4

42
+ · · ·

= 1+ 1
2
+
(

1
2

)2

+
(

1
2

)3

+ · · · = 1
1− 1/2

= 2

with the final series an infinite geometric one of common ratio
1
2 . So, the series does converge, and to a number less than 2. The
natural question to then ask is: what is the exact sum to infinity?

The problem of summing this series dates back to 1644 when
Pietro Mengoli was once more involved when he asked what, pre-
cisely, that sum is. Subsequently, the problem was attacked by a
veritable Who’s Who of mathematicians, including John Wallis,
Gottfried von Leibnitz and Jacob Bernoulli, who wrote in his 1689
publication Tractatus de Seriebus Infinitis, published in Basel,

If anyone finds and communicates to us that which thus far
has eluded our efforts, great will be our gratitude

and so the problem of identifying the exact sum of the infinite
series has become known as the ‘Basel Problem’, ‘the scourge of
analysts’, according to Montuela.

Once again, there is no explicit formula for the sum to n
terms and the convergence is very slow indeed, which makes
an accurate estimate of the sum difficult to find—and this
makes the recognition of the number to which it is converg-
ing itself very difficult. John Wallis, the best British mathemati-
cian before Newton, had calculated its value as 1.645, which
was extremely impressive since, simply by evaluating the sum,
modern mathematical software demonstrates that with

Sn = 1+ 1
22
+ 1

32
+ 1

42
+ 1

52
+ · · · + 1

n2
,

S100 = 1.634 98 . . . ,
S1000 = 1.643 93 . . . ,

S1 000 000 = 1.644 93 . . . .

How easy the identification is for the modern researcher with
such software and the use of N. J. A. Sloane’s On-Line Ency-
clopedia of Integer Sequences (http: //research.att.com/˜njas/
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sequences/). Typing in 1, 6, 4, 4, 9, 3 returns the only entry
containing that sequence of digits: ζ(2) = π2/6.

It took the remarkable efforts of the Swiss genius Leonhard
Euler to provide the astonishing answer, which he achieved in
1735, and so we will refer to the series using his name. The
quite amazing fact that the sum involves π was as surprising
to him as it is to the modern eye on first sight of it. Euler wrote,
‘quite unexpectedly I have found an elegant formula involving
the quadrature of the circle’, by which he meant π .

Euler arrived at his solution only after Jacob Bernoulli’s death,
which, after having seen the resolution of the problem, brought
the comment from his younger brother Johann (who had been
mentor to the 28-year-old Euler): ‘If only my brother were alive!’

Euler’s Famous Proof

The Fundamental Theorem of Algebra has already appeared sev-
eral times in these pages and, moving to the nineteenth century,
Karl Weierstrass extended it to ‘well-behaved’ functions defined
over complex numbers with the Weierstrass Factorization The-
orem. In essence this tells us that we can, under certain con-
ditions, ‘factorize’ such a function using its infinite number of
zeros, as we can a polynomial with its finite number of them. In
particular,

sinπz = πz
∞∏
n=1

(
1− z2

n2

)
for z ∈ C.

Euler foreshadowed the result with the typical nineteenth-cen-
tury Weierstrassian mathematical rigour replaced by typical
eighteenth-century Eulerian mathematical flamboyance. In fact,
this was the third of the four proofs of the result that Euler
produced and the first of elegance and significance.

We then have it that, if α1, α2, α3, . . . , αn are the roots of a
polynomial Pn(x) of degree n, then x − α1, x − α2, x − α3, . . . ,
x −αn are its factors, and so we have the identity

Pn(x) = A(x −α1)(x −α2)(x −α3) · · · (x −αn).
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Working in radians, Euler argued that the function sinx has the
infinite set of roots 0,±π,±2π,±3π, . . . and so, if we treat the
function as a polynomial of ‘infinite degree’,

sinx
= Ax(x −π)(x +π)(x − 2π)(x + 2π)(x − 3π)(x + 3π) · · ·
= Ax(x2 −π2)(x2 − 4π2)(x2 − 9π2) · · · .

Now rewrite this as

Bx
(

1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)
· · · ,

where B is a constant to be determined. With the angle measured
in radians we have the result that

sinx
x

→ 1 as x → 0.

Dividing both sides by x and taking the limit across that infinite
product of terms(!) allow us to evaluate B as 1, consequently,

sinx = x
(

1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)
· · · .

Having developed this infinite product form of sinx he then
used the infinite series form of the function, the Taylor expan-
sion, which is valid for all x:

sinx = x − x
3

3!
+ x

5

5!
− x

7

7!
+ · · · .

sinx has now done its job and he equated the series and the
product to finish with

x−x
3

3!
+x

5

5!
−x

7

7!
+· · · = x

(
1− x

2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)
· · · .

We can easily see that the x terms on both sides are the same; it
is the x3 terms that are of real interest, with the series telling us
that the coefficient is − 1

3! and the product (more subtly) telling
us that it is the infinite series

− 1
π2

− 1
22π2

− 1
32π2

− 1
42π2

− · · · ;
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the two must be the same and so

− 1
3!
= − 1

π2
− 1

22π2
− 1

32π2
− 1

42π2
− · · · ;

and tidying this up results in the final expression

1
12
+ 1

22
+ 1

32
+ · · · = π

2

6
.

How very remarkable.
Ten years after the proof, Euler wrote, ‘The method was new

and never used yet for such a purpose’, but subsequently use it
he did—many times over and some results gleaned from its use
added weight to it.

For example, putting x = π/2 in his identity for sinx gives

sin
π
2
= π

2

(
1− 1

4

)(
1− 1

16

)(
1− 1

36

)
· · ·

and so

1 = π
2
× 3

4
× 15

16
× 35

36
× · · · ,

which can be rewritten as

2
π
= 1× 3× 3× 5× 5× 7× 7× · · ·

2× 2× 4× 4× 6× 6× · · · ,

a result known to John Wallis a century earlier and here arrived
at by this novel method quite unknown to Wallis.

The function f(x) = 1 − sinx provided another justification.
It has its zeros at repeated multiples of π/2, as is demonstrated
in figure 11.4.

Factorizing 1− sinx as before we then have

1− sinx = A
(
x − π

2

)2(
x + 3π

2

)2(
x − 5π

2

)2(
x + 7π

2

)2

· · · ,

which can be transformed to

1− sinx = B
(

1− 2x
π

)2(
1+ 2x

3π

)2(
1− 2x

5π

)2(
1+ 2x

7π

)2

· · · .
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Figure 11.4.

And so, again using Taylor expansion,

1− x + x
3

3!
− x

5

5!
+ x

7

7!
− · · ·

= B
(

1− 2x
π

)2(
1+ 2x

3π

)2(
1− 2x

5π

)2(
1+ 2x

7π

)2

· · · ,

from which it is clear that B must be 1 and, comparing coeffi-
cients of x, gives

−1 = − 4
π
+ 4

3π
− 4

5π
+ 4

7π
− · · ·

and so

π
4
= 1− 1

3
+ 1

5
− 1

7
+ 1

9
− · · · ,

a result which had already been established quite independently
(and rigorously) by Leibniz. From this Euler commented:

For our method, which may appear to some as not reliable
enough, a great confirmation here comes to light.

Although there is mathematical alchemy here, and Euler well
knew it, the signs were right that all was well—and eventually
Weierstrass et al. would show it to be so.
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A Criticism and a Rebuttal

Of the many arguments railed against Euler’s novel but effective
method, one of the most subtle was advanced by Daniel Bernoulli
(Johann’s son, friend and long-term correspondent of Euler), who
suggested that sinx = 0 may have complex roots and therefore
the factorization may not be complete. This at a time, as we
saw in chapter 5, when such things were far from understood.
We cannot pass without looking at Euler’s remarkable response,
which provided the following (nearly complete) argument.

First, he needed his result that

lim
n→∞

(
1+ x

n

)n
= ex

and second that

sinx = 1
2i
(eix − e−ix) and cosx = 1

2
(eix + e−ix);

these are discussed in the appendix (page 225).
Now define

Pn(x) = 1
2i

[(
1+ ix

n

)n
−
(

1− ix
n

)n]
,

then sinx = limn→∞ Pn(x).
He argued that this polynomial can have no complex roots

since

Pn(x) = 0 ⇐⇒
(

1+ ix
n

)n
=
(

1− ix
n

)n
⇐⇒ 1+ ix

n
= e2kπ i/n

(
1− ix

n

)
.

This gives

x = n
i

ekπ i/n − e−kπ i/n

ekπ i/n + e−kπ i/n = n
(ekπ i/n − e−kπ i/n)/2i
(ekπ i/n + e−kπ i/n)/2

= n tan
kπ
n
,

which is real!
His extrapolation to the limit is again slightly shaky but it is a

marvellous rebuttal.
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A Rigorous Proof

To answer his critics in 1741 he published a fourth and more
acceptable proof, which we give below. Certainly, it is more
secure and in looking at it we can taste the nectar of mathematics
produced by one of its master practitioners.

His method was to change the problem to one of summing
over the odd terms of the series and then finding an expression
for that sum. So,

S∞ = 1
12
+ 1

22
+ 1

32
+ 1

42
+ 1

52
+ 1

62
+ · · ·

=
(

1
12
+ 1

32
+ 1

52
+ · · ·

)
+
(

1
22
+ 1

42
+ 1

62
+ · · ·

)

=
(

1
12
+ 1

32
+ 1

52
+ · · ·

)
+ 1

4

(
1+ 1

22
+ 1

32
+ · · ·

)

=
(

1
12
+ 1

32
+ 1

52
+ · · ·

)
+ 1

4
S∞,

which means that

S∞ = 4
3

(
1
12
+ 1

32
+ 1

52
+ · · ·

)

and this changes the problem to finding an exact expression for

1
12
+ 1

32
+ 1

52
+ · · · .

To do this, he considered the integral

∫ 1

0

sin−1 t√
1− t2

dt,

which can be evaluated exactly to give

∫ 1

0

sin−1 t√
1− t2

dt = [1
2(sin−1 t)2]10 = 1

2(sin−1 1)2 = π
2

8

and also, by use of the Taylor Series for the inverse sine function,

sin−1 t = t + t
3

6
+ 3t5

40
+ 5t7

112
+ 35t9

1152
+ · · · ,
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giving

∫ 1

0

sin−1 t√
1− t2

dt

=
∫ 1

0

1√
1− t2

(
t + t

3

6
+ 3t5

40
+ 5t7

112
+ 35t9

1152
+ · · ·

)
dt

=
∫ 1

0

t√
1− t2

dt + 1
6

∫ 1

0

t3
√

1− t2
dt + 3

40

∫ 1

0

t5
√

1− t2
dt

+ 5
112

∫ 1

0

t7
√

1− t2
dt + 35

1152

∫ 1

0

t9
√

1− t2
dt + · · ·

and there is an infinite series of similar integrals to perform.
Writing the general integral as

In =
∫ 1

0

tn√
1− t2

dt, n ∈ {1,3,5,7, . . . },

we can use integration by parts to find a recurrence relation

In+2 =
∫ 1

0

tn+2
√

1− t2
dt

=
∫ 1

0
tn+1{t(1− t2)−1/2}dt

= [−tn+1
√

1− t2]10 + (n+ 1)
∫ 1

0
tn
√

1− t2 dt

= (n+ 1)
∫ 1

0
tn

1− t2
√

1− t2
dt

= (n+ 1)
∫ 1

0

tn√
1− t2

dt − (n+ 1)
∫ 1

0

tn+2
√

1− t2
dt

= (n+ 1)In − (n+ 1)In+2

and so

In+2 = n+ 1
n+ 2

In, n � 1.

We now need to evaluate

I1 =
∫ 1

0

t√
1− t2

dt = [−
√

1− t2]10 = 1
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and use the recurrence relation repeatedly to find that

π2

8
=
∫ 1

0

sin−1 t√
1− t2

dt

= I1 + 1
6
I3 + 3

40
I5 + 5

112
I7 + 35

1152
I9 + · · ·

= 1+ 1
6
× 2

3
+ 3

40
× 4

5
× 2

3
+ 5

112
× 6

7
× 4

5
× 2

3

+ 35
1152

× 8
9
× 6

7
× 4

5
× 2

3
× · · ·

= 1+ 1
32
+ 1

52
+ 1

72
+ 1

92
+ · · · .

The series of odd terms is summed and so we have

S∞ = 4
3
× π

2

8
= π

2

6
.

Now everyone is satisfied.



Chapter 12

TWO CARD TRICKS

A mathematician is a conjurer who gives away his secrets.

John Conway

The bewilderment that accompanies a well-performed, good
card trick relies greatly on the expertise of the conjurer—the
ability to misdirect, to manipulate both cards and observer—and
sometimes an underlying principle which is surprising in itself.
We are interested in two such principles, both of which are the
basis of numerous effects and both of which were discovered by
academics.

The Kruskal Principle

The second chapter of Genesis continues the story of the cre-
ation of Heaven and Earth and begins (King James Version):

131
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Thus the heavens and the earth were finished and all the
host of them And on the seventh day God ended his work
which he had made and he rested on the seventh day from
all his work which he had made And God blessed the sev-
enth day and sanctified it because that in it he had rested
from all his work which God created and made These are the
generations of the heavens and of the earth when they were
created in the day that the LORD God made the earth and
the heavens And every plant of the field before it was in the
earth and every herb of the field before it grew for the LORD
God had not caused it to rain upon the earth and there was
not a man to till the ground But there went up a mist from
the earth and watered the whole face of the ground And
the LORD God formed man of the dust of the ground and
breathed into his nostrils the breath of life and man became
a living soul…

and we can use the text to engage in a little ‘Bible code’ numer-
ology.

Start at the first word (Thus) and count along one word for each
of its four letters (to reach the); then count along one word for
each of its letters (to reach finished) and continue the process;
eventually the bold and underlined word God will be reached.
Coincidence perhaps? Now start at any word in (say) the first
six lines of the text and the same will happen: the sequence will
reach the same occurrence of the word God. In fact, if we start
at any word up to and including the of the same thing will hap-
pen. That all paths lead to God is comforting, but is this more
than coincidence? Actually, a nonmystical explanation is per-
fectly simple: the chains of words generated in the above manner
all have an instance of the word earth as a first common link, and
of course from that point on the chains are identical and since
one of them has God as a link, all must do so. The passage is
repeated below with that first common link and all subsequent
links emboldened:

Thus the heavens and the earth were finished and all the
host of them And on the seventh day God ended his work
which he had made and he rested on the seventh day from
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all his work which he had made And God blessed the sev-
enth day and sanctified it because that in it he had rested
from all his work which God created and made These are
the generations of the heavens and of the earth when they
were created in the day that the LORD God made the earth
and the heavens And every plant of the field before it was
in the earth and every herb of the field before it grew for
the LORD God had not caused it to rain upon the earth and
there was not a man to till the ground But there went up
a mist from the earth and watered the whole face of the
ground And the LORD God formed man of the dust of the
ground and breathed into his nostrils the breath of life and
man became a living soul…

This matter was discussed in the August 1998 issue of Scientific
American but the underlying principle dates back further—and
was discussed in quite another context.

An article entitled ‘Sum total’ appeared in the December 1957
issue of the magic periodical Ibidem, written by the magician
Alexander F. Kraus, and which brought to the world of card
magic the ‘Kraus Principle’.

The magician M asks a member of the audience A to shuffle
a standard pack of 52 playing cards, then secretly to pick an
integer between 1 and 10. A is then asked to deal the cards, one
by one and face up, to form a pile and while doing so to count
them silently in the following way.

Suppose that the chosen number is 6. The sixth card dealt
becomes a ‘key’ card, and its face value dictates how many more
cards must be dealt to arrive at the next key card. For example,
if the first key card happens to be 3, that many cards are dealt to
arrive at the next key card. The procedure is repeated, generating
a chain of key cards, until the pack is exhausted, and when this
happens it is likely that the count dictated by the final key card
will prove impossible to complete; this final key card is the secret
chosen card.

Of course, the magician’s task is to identify that secret card
chosen by this random process, which seems a very big ask.
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In the 1970s the Kraus Principle became the ‘Kruskal Princi-
ple’, when the late Princeton physicist Martin Kruskal rediscov-
ered the novelty that the magician has a very good chance of
amazing the audience by announcing that secret card. The fact
is that any two such chains will, in all likelihood, come together
at some point, which means of course that they remain together
from that point on—and inevitably end with the same card. The
second chain is generated by the magician.

If we refer back to the ‘Bible code’ example, the passage may be
thought of as a set of cards with each card numbered according
to the number of letters in each word. Each starting word gen-
erates its own chain—and each chain meets at the ‘card’ named
‘earth’.

In order to make headway with an analysis we will generalize to
a set of n cards which are numbered {c1, c2, c3, . . . , cn}, and this
is, of course, the list of possible step sizes. Further, we will make
the simplifying assumption that the two chains are equally likely
to intersect at any of the n cards, with a constant probability
which, for later convenience, we will write as p2. If we write q =
1 − p2 and I ∈ {1,2,3, . . . , n} as the random variable which is
the card position at which they intersect, we have the standard
geometric probability distribution

P(I = r) = qr−1p2 for r = 1,2,3, . . . .

If we invoke a standard result of a geometric random variable
(which is easy to prove), we have that

P(I > r) = qr .

This means that the probability that the magician succeeds with
the trick is

P = 1− P(I > n) = 1− qn = 1− (1− p2)n.

Now we have to find a reasonable estimate for p2 and to do this
we find such for p. For each of the two chains, the average step
size is (1/n)

∑n
r=1 cr , which naturally generates a probability of

1/((1/n)
∑n
r=1 cr ), and we will call p this probability. That is,
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we will estimate the probability that the two chains meet on any
card using the assumption that they are ‘on average’ realizing
their average step lengths and so ‘on average’ will meet in such
a manner. Actually, the technical analysis belongs to the world of
Markov chains and the interested reader might wish to consult
the October 2001 paper of J. Lagarias, E. Rains and R. Vanderbei,
The Kruskal count.1

The Lagarias et al. argument is firmer and we produce a variant
of part of it for later convenience.

Recall from chapter 6 the definition of conditional probability
and the dissection of an event into its component parts to write

P(A | B) = P(A∩ B)
P(B)

and

P(E) = P(E | A)P(A)+ P(E | B)P(B)
+ P(E | C)P(C)+ P(E | D)P(D).

Then, for r > s, we have

P(I > r | I � s) = P(I > r ∩ I � s)
P(I � s)

= P(I > r)
P(I � s)

= (1− p2)r

(1− p2)s−1

= (1− p2)r−s+1 = P(I > r − s + 1).

With all of this in place we examine the event that the two
sequences have not intersected before the nth card, that is, we
will find an expression for P(I > n) (the event E above). To do
this, define the random variables M1 and A1 to be the position
of the first card chosen by the magician and the member of the
audience respectively and divide all possibilities into the four
categories (the events A, B, C and D) above:

A = (M1 � 2∩A1 � 2), B = (M1 = 1∩A1 � 2),
C = (M1 � 2∩A1 = 1), D = (M1 = 1∩A1 = 1).

1http://front.math.ucdavis.edu/search?a=lagarias&t=&q=&c=&n=40&s=
Listings.
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This results in the decomposition

P(I > n)
= [P(I > n | (M1 � 2∩A1 � 2))]× P(M1 � 2∩A1 � 2)

+ [P(I > n | (M1 = 1∩A1 � 2))]× P(M1 = 1∩A1 � 2)
+ [P(I > n | (M1 � 2∩A1 = 1))]× P(M1 � 2∩A1 = 1)
+ [P(I > n | (M1 = 1∩A1 = 1))]× P(M1 = 1∩A1 = 1).

The event A = (M1 � 2∩A1 � 2) is precisely the event I � 2 and
so, using the above result,

P(I > n | (M1 � 2∩A1 � 2)) = P(I > n | I � 2)
= P(I > n− 2+ 1)
= P(I > n− 1).

The same argument holds for each of the next two terms and
the last term is 0 since

P(I > n | (M1 = 1∩A1 = 1)) = P(I > n | I = 1) = 0.

The expression therefore reduces to

P(I > n) = P(I > n− 1)[P(M1 � 2∩A1 � 2)
+ P(M1 = 1∩A1 � 2)
+ P(M1 � 2∩A1 = 1)]

and since the bracketed expression is simply P(I > 1)we are left
with the recurrence relation

P(I > n) = P(I > n− 1)[P(I > 1)] = P(I > n− 1)[1− p2]

and chasing this down results in

P(I > n) = P(I > n− 1)[P(I > 1)]

= P(I > 1)[1− p2]n−1

= (1− p2)n,

which means that the probability P of the magician performing
the trick successfully is given by P = 1− (1− p2)n.
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Now we can calculate these theoretical probabilities, making
n = 52 and giving a value to p, which is, of course, entirely
dependent on what values we ascribe to the cards. We will look
at five reasonable alternatives.

• The spot cards are given their natural values and the jack,
queen and king are given values 11, 12 and 13 respec-
tively. The card values will be among {1,2,3, . . . ,13} and
the average is 7. We take p = 1

7 to get

P = 1− P(I > 52) = 1− [1− (1
7)

2]52

= 1− (48
49)

52 = 0.6577 . . . ,

which means that the chances of the chains meeting is
about 66%.

• The spot cards are given their natural values and the court
cards each count as 10. The card values will be among
{1,2,3, . . . ,10,10,10,10} and the average is 85

13 . We take

p = 13
85 to get

P = 1− P(I > 52) = 1− [1− (13
85)

2]52

= 1− (7056
7225)

52 = 0.7080 . . . ,

which means that the chances of the chains meeting is
about 71%.

• The spot cards are given their natural values and the
court cards each count as 5. The values will be among
{1,2,3, . . . ,9,10,5,5,5} and the average is 70

13 . We take p =
13
70 to get

P = 1− P(I > 52) = 1− [1− (13
70)

2]52

= 1− (4731
4900)

52 = 0.8388 . . . ,

which means that the chances of the chains meeting is now
about 84%.

• The spot cards are given their natural values and the
court cards each count as 1. The values will be among
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{1,2,3, . . . ,10,1,1,1} and the average is 58
13 . We take p = 13

58
to get

P = 1− P(I > 52) = 1− [1− (13
58)

2]52

= 1− (3195
3364)

52 = 0.9315 . . .

and the chances of the chains meeting becomes a very
impressive 93%.
As the average value of the cards decreases, so (very rea-
sonably) the chances of two chains meeting increases and
with this in mind we can consider a particularly deceptive
card assignment.

• Ignore the numbers on the cards and use the number of let-
ters in the card names for the card numbers (ace = 3, two =
3, . . . ,queen = 5,king = 4). Now the values will be among
{3,3,5,4,4,3,5,5,4,3,4,5,4} and the average is 52

13 = 4. We

take p = 1
4 in our estimate to get

P = 1− P(I > 52) = 1− [1− (1
4)

2]52

= 1− (15
16)

52 = 0.9651 . . .

and the chances of the chains meeting becomes an even
more impressive 97%.

A little extra edge can be gained by the magician if he selects the
top card of the pack, and we can use the Lagarias et al. argument
to establish the details:

P(I > n)
= [P(I > n | (M1 = 1∩A1 � 2))]× P(M1 = 1∩A1 � 2)
= P(I > n− 1)[P(I > 1)]

as before. Chasing this down results in

P(I > n) = P(I > 1)[1− p2]n−1

but now P(I > 1) = 1−p since only one of the sequences has an
arbitrary start and this means that P(I > n) = (1−p)[1−p2]n−1

and

P = 1− (1− p)[1− p2]n−1.
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Table 12.1. Theoretical probabilities.

Magician starts
Picture cards Value with any of the Magician starts
count as of p first 10 cards with first card

11, 12, 13 1
7 65.77 70.05

10, 10, 10 13
85 70.80 74.67

5, 5, 5 13
70 83.88 86.41

1, 1, 1 13
58 93.15 94.40

Letter count 1
4 96.51 97.21

Table 12.2. Empirical probabilities.

Magician starts
Picture cards Value with any of the Magician starts
count as of p first 10 cards with first card

11, 12, 13 1
7 67.93 69.46

10, 10, 10 13
85 70.27 72.46

5, 5, 5 13
70 84.29 85.35

1, 1, 1 13
58 93.66 94.30

Letter count 1
4 95.23 95.84

The same calculations as above give rise to the final column of
table 12.1, which gives the chances of the chains meeting under
the various card enumerations, given as a percentage.

With this mixture of exactitude and heuristics it can only be
right to test the model with a computer simulation and table 12.2
shows the results of such a simulation over 100 000 trials in each
case.

As we have said, more sophisticated mathematical techniques
can be utilized to make more firm the heuristic parts of the
argument but they are rather specialized and, without consid-
erable preparation, rather opaque. We have already mentioned
the CBS series NUMB3RS in chapters 6 and 8; the 16 February
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2007 episode ‘Contenders’ had Amita and Charlie use (a modi-
fied form of) the Kruskal count to help hunt down the killer of
two boxers. Armed with this material, the reader might wish to
revisit that DVD with renewed insight!

The Gilbreath Principle. The magician sits at a table opposite
a spectator. He produces a pack of cards and casually spreads
them face up to prove that they are properly mixed; he gath-
ers them up, places them face down in a pack, cuts the pack
and is just about to riffle shuffle the two parts together when
he declares that the spectator should do this instead and then
cut the pack and complete the cut a few times. However well
or badly, the cards are riffle shuffled together, cut and returned
to the magician. He conceals the pack behind his back and pro-
ceeds to bring cards four at a time to the front and place them
in face-down piles on the table. When all thirteen piles of four
cards have been formed each pile is turned over, and in each
pile there is precisely one spade, one heart, one diamond and
one club.

The spectator shuffled and cut the cards, so how could the
magician tell which suit each is, even if he had arranged them
in some order not obvious as they were spread? The answer is
that the cards were indeed arranged and that the magician does
not know the suit of each card, but he does know how to utilize
Gilbreath’s Principle.

In February 1957 an American magician with the name John
Russell Duck produced the first edition of his magic magazine
The Cardiste in which he included the article entitled ‘The Rus-
duck stay-stack system’. It was the observation that, with any
number of perfect riffle shuffles of the top and bottom halves
of the pack (one in which cards from each of the two halves are
alternately placed one upon the other) some of the original order
is preserved. For example, if the cards were originally ordered as
ace to king in spades, hearts, clubs and diamonds, the following
would still be the case:

• each half of the pack will contain two cards of the same
denomination;
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• each half of the pack will contain thirteen red cards and
thirteen black cards;

• each half of the pack will contain one red-suited and one
black-suited card of all thirteen denominations;

• the top card will be the same denomination as the bottom
card, the second from top card will be the same denomina-
tion as the second from bottom card and so on throughout
the pack.

We can see that a sequence of perfect riffle shuffles does preserve
a great deal of order, and magicians over the years have put this
fact to bewildering use. In fact, if we distinguish between the
perfect out-shuffle (in which the top card stays on top of the
pack) and the perfect in-shuffle (in which the top card moves
to the second position down), just 8 perfect out-shuffles or 52
perfect in-shuffles will return the pack to its original order.

What if the riffle shuffles are not perfect? Bayer and Diaconis
(D. Bayer and P. Diaconis, 1992, Trailing the dovetail shuffle to its
lair, Annals of Applied Probability 2:294–313) proved the surpris-
ing result that it takes about eight riffle shuffles to make every
configuration of the cards (approximately) equally likely and so
randomize the pack (compare this number with the approxi-
mately 2500 overhand shuffles that are needed to randomize
to the same extent); if we think of the 52! = 8.07 × 1067 possi-
ble orderings of the cards, these small numbers are themselves
surprising. Riffle shuffling more than eight times does not sig-
nificantly increase the randomness, and riffle shuffling less than
eight times is insufficient to ensure randomness. This last point
is elegantly demonstrated by the following argument that five
riffle shuffles are insufficient to randomize a pack of cards:

• We take the definition of random to be that every config-
uration is (approximately) equally likely and show that a
particular configuration is not reachable by the process.

• Number the original cards 1 to 52, starting at the top.

• At any stage of the shuffling, a rising sequence in the pack
is defined to be a (possibly broken) increasing sequence of
consecutive integers of maximal length, so the original pack
has just one rising sequence 1,2,3, . . . ,51,52.
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• As the original pack is randomly cut into two parts, two
rising sequences are created: the top pack and the bottom
pack. Riffle shuffling the two packs together simply inter-
sperses one rising sequence with the other; as a demonstra-
tion, consider a pack of just eight cards {1,2,3,4,5,6,7,8}
cut as {1,2,3,4,5} and {6,7,8} and riffle shuffle together
to form the pack {1,6,7,2,3,4,8,5}.

• After the second riffle shuffle the number of rising se-
quences is as most 2 × 2 = 4, since each of the two ris-
ing sequences from the first shuffle has a chance of being
cut into two. For example, {1,6,7,2,3,4,8,5} might be
cut as {1,6,7,2} and {3,4,8,5} and shuffled together as
{1,3,4,8,6,7,5,2} to result in the four rising sequences:
{1,2}, {3,4,5}, {8}, and {6,7}.

• The same arguments holds for subsequent riffle shuffles
and we conclude that a riffle shuffle at most doubles the
number of rising sequences; after five riffle shuffles there
will then be at most 32 rising sequences.

• Now consider the pack reversed, with card 52 at the top
and card 1 at the bottom; this has 52 rising sequences, each
of 1 card, and cannot possibly be reached in the five riffle
shuffles.

It was the amateur magician Norman L. Gilbreath who deliber-
ated on what structure remains after a single, imperfect riffle
shuffle. In the June 1966 edition of another magicians’ publica-
tion, Linking Rings, there appeared descriptions by him of what
have become known as ‘Gilbreath’s first and second principles’,
which identify something which can be salvaged from the order
of a pack of cards if the riffle shuffle is not perfect. In (nearly)
his own words, his stated first principle was:

If a deck of cards, ordered in alternating colours, is cut
into two parts with the bottom cards of the two parts hav-
ing opposite colours, and the two parts are riffle shuffled
together then each successive pair of cards is composed of
one red card and one black card.

And then:
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If two groups of similar cards, one in the reverse order of
the other, are riffle shuffled together the two halves of the
resulting group of cards are similar to the original group.

First, let us look at this second observation. By it he meant that,
if we take a set of n different cards, ordered in some way, and
then a second such pack but arranged in the opposite order,
riffle shuffle the two of them together and separate the pack
into the top and bottom equal piles, each pile will contain those
n different cards in some order; there will be no omissions or
repeats.

The reader might wish to experiment with this by, for example,
taking the two packs of 13 cards ace to king of spades and then
king to ace of hearts and riffling them together. Each half will
then contain both hearts and spades, but also the full set of ace
to king. Notice that the reversal of order can be accomplished
subtly by having the two half packs arranged in the same order,
one on top of the other, and then counting through the top half
pack one card at a time, placing the cards face down on top of
each other.

The analysis of this is not too hard. If we call the first pack
of cards, from top to bottom, {X1, X2, . . . , Xn} and the second
{Xn,Xn−1, . . . , X1}, they will combine to form a new pack of 2n
cards which we then divide into the top half A and the bottom
half B. Now suppose thatXk is the last element from the reversed
pack {Xn,Xn−1, . . . , X1} to appear in A, then so must all of the
set {Xn,Xn−1, . . . , Xk}; this is n−k+1 elements. It must be that
{X1, X2, . . . , Xn} contributes n− (n− k+ 1) = k− 1 elements to
A, and these must be {X1, X2, . . . , Xk−1}. This means that Amust
consist of the distinct elements {X1, X2, . . . , Xn} and, of course,
so must B. It is clear that the whole matter depends on the fact
that a riffle shuffle may well mix cards up but it does preserve
relative order.

This analysis does not cope with the first principle, where there
is a repeated pattern of red and black cards, not two blocks of
identical cards in reverse order. In fact, Gilbreath’s Principle (and
in reality there is only one) is precisely defined by the following
statement.
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Suppose that S = {X1, X2, X3, . . . , Xn} is a set of n cards which
are, in some agreed way, different from each other. Now take
multiple copies of S and form a pack by stacking them one
upon the other. Form a second pack by taking (not necessar-
ily the same number of) multiple copies, but arranging each
copy of S in reverse order. Now there are two face-down packs,
not necessarily of the same size; one consisting of repeats of
{X1, X2, X3, . . . , Xn} and the other of {Xn,Xn−1, Xn−2, . . . , X1}.
Riffle shuffle the two packs together and divide the combined
pack back into the sets of n cards, counting from the top. Within
each set of these n cards, {X1, X2, X3, . . . , Xn} will again appear
in some order.

For example, if n = 2, {X1, X2}might be the pairing {red card,
black card}, which accounts for Gilbreath’s first statement. With
n = 4, {X1, X2, X3, X4} might be the set {♣,♥,♠,♦}, and the
secret behind the magician’s trick described earlier is revealed.

In fact, in the August 1966 issue of Linking Rings, one Charles
Hudson really said just that:

When a repeating series of cards is riffle shuffled into itself,
with one of the packets to be shuffled being in reverse order
to the other, the contents of each group in the series do not
change—they are only disordered.

Again, the reader might wish to experiment with these black and
red combinations or with the arrangement of the four suits; it
does work, and again it is not too hard to see why. Whenever a
last elementXk of a reversed pack is inserted into one of the non-
reversed packs, then so is all of {Xn,Xn−1, . . . , Xk} and exactly
that set of cards forms the final n − k + 1 cards of the forward
pack and these are forced to the top of the next forward pack
of n cards—and so the cascade continues. All that remains is
to explain why, in Gilbreath’s first statement about the red and
black effect, the bottom pack is not reversed. In fact it is, by
the statement ‘is cut into two parts with the bottom card of the
two parts having opposite colours’. Of course, this means that
all corresponding pairs have opposite colours and that is just
a special case of a reversal! The cutting of the pack has no real
effect.
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Finally, if the pack is arranged in any suitable multiply struc-
tured manner, the magician can wreak even greater havoc with
the spectator’s thoughts. For example, the repeated {♣,♥,♠,♦}
arrangement automatically allows for the magician to inter-
sperse the production of red–black pairs with quartets of cards
of each suit. Additionally, if a particular selection of denom-
inations is chosen for the first thirteen cards and repeated
three times, each consecutive set of thirteen cards will contain
one card of each denomination: such an arrangement is shown
below:

A♣, 8♥, 5♠, 4♦, J♣, 2♥, 9♠, 3♦, 7♣, Q♥, K♠, 6♦, T♣,
A♥, 8♠, 5♦, 4♣, J♥, 2♠, 9♦, 3♣, 7♥, Q♠, K♦, 6♣, T♥,
A♠, 8♦, 5♣, 4♥, J♠, 2♦, 9♣, 3♥, 7♠, Q♦, K♣, 6♥, T♠,
A♦, 8♣, 5♥, 4♠, J♦, 2♣, 9♥, 3♠, 7♦, Q♣, K♥, 6♠, T♦.

With the cards so arranged, top to bottom, a multiple effect
would be:

• Have the spectator cut the cards and complete the cut at
will.

• Ask for the cards to be dealt face down on top of each other
until there is a decent pack on the table.

• Ask for the two packs to be riffle shuffled together.

• The magician produces pairs of red–black cards and quar-
tets of different suits for the first twenty-six cards, after
which the top remaining thirteen cards are dealt face up
to reveal one card of each denomination, which is repeated
with the final thirteen cards.

It’s all a matter of where the magician places the emphasis.



Chapter 13

THE SPIN OF A NEEDLE

Geometry is the science of correct reasoning on incorrect
figures.

George Pólya

In Nonplussed! we considered some consequences of tossing a
needle, in particular, onto a set of equally spaced parallel lines.
The fact, surprising and historically significant, that the prob-
ability of the needle landing across a line involved π was first
investigated by the eighteenth-century French scientist Georges
Louis Leclerc, Comte de Buffon: hence the name Buffon’s Nee-
dle. Here we move to the twentieth century to consider a simple
question about spinning the needle, which has its own intriguing
and important answer.

A Japanese Question from Japan

In 1922–23 the eminent American mathematician George Birkoff
(and father of Garrett) gave a series of lectures on the theory
of relativity at the Lowell Institute and at the ‘southern branch’

146
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of the University of California (now the University of California
at Los Angeles). Their unsurprising success led to him ‘revis-
ing, extending, and unifying the material in book form’, which
brought about the 1925 volume, The Origin, Nature and Influ-
ence of Relativity, the first chapter of which (‘Euclid, Newton,
Faraday and Einstein’) contains the following:

It may not be amiss to note in passing that not all ele-
mentary geometric conundrums have yet been answered
by professional mathematicians. Thus, map-makers have
noted that apparently any imaginable map on the plane or
sphere can be coloured in only four colours in such wise that
two countries with a common boundary line have different
colours. Despite persistent efforts, the truth of this conjec-
ture has not yet been established, although five colours are
known to be enough. Of like intriguing simplicity is the ques-
tion raised a few years ago by the Japanese mathematician
Kakeya as to the least area within which a line of given length
can be turned around in a plane. An area only half as great
as that of the circle with this length for diameter will suffice.
No one has as yet been able to prove that this is the least
possible area.

It took until 1976 for K. Appel and W. Haken to provide their
controversial, computer-assisted proof of the four-colour theo-
rem: Birkoff, one of the foremost mathematicians of his time,
could not have known it, but the second question had in effect
been answered almost as soon as it had been asked, with that
answer shrouded behind an impenetrable political veil.

In 1917 the Japanese mathematician Soichi Kakeya had asked
the question:

In the class of all figures in which a segment of length 1 unit
can be turned through 180◦, remaining always within the
figure, which one has the smallest area?

Also in 1917 the Russian mathematician Abram Besicovitch had
solved a seemingly different problem of his own. It would take
several years before Besicovitch became aware of Kakeya’s prob-
lem of ‘intriguing simplicity’ and so provide a resolution which
is entirely remarkable and was entirely unexpected.
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Elementary Evidence

Our ‘needle’ will be ‘a segment of length 1 unit’.
The 180◦ rotation is easily achieved. Take a semicircular disc

of diameter 2 units with the needle OA as a radius, as shown in
figure 13.1.

Rotate OA by 180◦ about the centre O so that the arrowhead
coincides with B and then translate the line horizontally to the
left by 1 unit; the reversal has been accomplished in an area of
1
2(π × 12) = 1

2π = 1.5707 . . . . (Note that the translation in the
line of the needle has not taken up area.)

Yet the rotation can be achieved in half the area if we consider
the needle as the diameter of a circular disc, as in figure 13.2.

Rotating the needle about its centre (the centre of the circle)
achieves the desired result without translation, in an area of π×
(1

2)
2 = 1

4π = 0.7853 . . . .
We can improve matters still further using an equilateral

triangle of height 1 unit, as shown in figure 13.3.
Place the needle AB along the side XZ, with A at X. Rotate

AB 60◦ anticlockwise about A/X so that it lies along the side
XY, then translate AB along its direction so that B is at Y. Now
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Figure 13.3.

repeat the rotation, this time about B/Y, and translate so that A
is at Z. One final rotation about A/Z and a translation so that
B coincides with X will have the needle to its original position
and completely turned it around. Has this extra complication
paid dividends? The answer is yes, since the side of the trian-
gle is of length 2/ tan 60◦ = 2√

3
and so the area of the triangle is

evidently 1
2 ×

2√
3
× 1 = 1√

3
= 0.5773 . . . (once again note that the

translations along the lines of the needle have not taken up any
area).

It is with this equilateral triangle that a part of the story ends.

A Hungarian Solution from Denmark

In 1919 Julius Pál, a highly gifted and ambitious Hungarian
Jew, finally moved from Pozsony in his native Hungary to
Copenhagen in Denmark, which was free from redolent politi-
cal intrigue and in which he could find the position he sought
to enable him to carry out his research. Harold Bohr (brother of
Neils) was an influential sponsor and a link between Pál and that
other major character in this story, Abram Besicovitch.

Kakeya, his collaborator M. Fujiwara and others had immedi-
ately conjectured that the equilateral triangle was the convex
shape of minimal area to achieve the required purpose and Fuji-
wara or possibly Bohr communicated the problem to Pál, who
published a proof of the conjecture in 1921 (Ein Minimumprob-
lem für Ovale, 1921, Mathematische Annalen 83:311–19) which
put the problem to rest, but only for convex regions. The non-
convex version of the problem still remained open, and it was
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this to which Birkoff referred in his book with his comment: ‘An
area only half as great as that of the circle with this length for
diameter will suffice’, referring rather obliquely to the deltoid,
which is a particular member of the family of hypocycloids.

The Deltoid

A hypocycloid is a plane curve which is the locus of a fixed point
P on the perimeter of a small circle as it rolls without slipping
within a larger circle as in figure 13.4. The ratio of the radius of
the larger circle to the radius of the smaller circle determines
the number of cusps of the curve and if this ratio is an integer
(and therefore the ratio of the circumferences is an integer) as
the small circle rotates to cover the circumference of the larger
circle once, there will be a precise number of cusps generated.
For example, this occurs in figure 13.5, where the hypocycloid
has three cusps, with a/b = 3; this has been given the special



THE SPIN OF A NEEDLE 151

B

A
P

Figure 13.6.

name deltoid, and was first studied in 1745 by the incomparable
Leonard Euler in connection with caustics.

The standard parametric form of the deltoid is

x = 2b cosθ + b cos 2θ,
y = 2b sinθ − b sin 2θ

for 0 � θ � 2π .
And from this all of its properties can be deduced, the two of

which we need are

• the length of the tangent contained within the curve is
constant and equal to 4b;

• the area of the deltoid is (a− b)(a− 2b)π .

Figure 13.6 shows the tangent to the deltoid at a point P inter-
secting the curve at the two points A and B. If we force the tan-
gent to be of length 1, it must be that 4b = 1 and since a/b = 3
we have a = 3

4 and b = 1
4 . Our needle is AB and we can reverse it

within the deltoid by letting A trace the curve while keeping AB
as a tangent to it; this guarantees that B is also on the curve, and
as A moves from a cusp to the midpoint of the opposite side so
AB inevitably reverses.

The area of the deltoid in which this reversal has been achieved
is (

3
4
− 1

4

)(
3
4
− 2× 1

4

)
π = π

8
= 0.3926 · · · < 1√

3
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and, as Birkoff mentioned,

π
8
= 1

2
× π

4
.

A Russian Solution from England

It was another émigré, this time from Russia, who continues
the story. Abram Besicovitch had endured the devastating reper-
cussions of the civil war that had erupted in Russia in 1917 as
the Tzar’s White Army and the Bolshevik Red Army repeatedly
swapped control of the city of Perm, whose university boasted
Vinogradov, Friedman and himself as professors. In 1920 a
return to the devastated St Petersburg (now renamed Petrograd
and where he had studied as a young man under Markov) with its
vastly diminished university preceded his illicit escape in 1924—
again to Copenhagen and again with the considerable and influ-
ential help of Bohr. From Copenhagen he went to Liverpool for
a year (this time with the help of the great Hardy) and then to
Cambridge, where he remained for the rest of his life. It is an
eloquent measure of his quality that in 1950 he succeeded Little-
wood to the prestigious Rouse Ball chair, which he occupied until
his retirement in 1958. But we must return to war-torn Perm in
1917, when Besicovitch was working on a problem in Riemann
integration (reproduced in the box below), which he reduced to
the existence of planar sets of measure 0 which contain a unit
line segment in each direction.

Given a Riemann-integrable function f on R2, must there exist
a rectangular coordinate system (x,y) such that f(x,y) is
Riemann integrable as a function of x for each y , and that the
two-dimensional integral of f is equal to the iterated integral∫∫
f(x,y)dx dy?

The intricacies of the problem’s statement and the reasoning
behind his reduction of it is of no concern to us here, it is only
important to our story that he constructed such a set, the detail
of which he published in 1919 in a Russian journal (Sur deux
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questions d’intégrabilité des fonctions, 1919, Journal of the Soci-
ety of Physics and Mathematics 2:105–23). Unfortunately, the
civil war and the ensuing international blockade ensured there
was hardly any communication between Russia and the rest of
the world at the time: Besicovitch had not heard of Kayeka and
assuredly not of his problem. It was only after his escape to
the West that he became aware of the problem, and possibly
from Birkoff’s 1925 book, mentioned earlier. An adaptation of
his 1919 proof provided the astonishing answer to the Kakeya
problem, which we restate below:

In the class of all figures in which a segment of length 1 unit
can be turned through 180◦, remaining always within the
figure, which one has the smallest area?

Besicovitch’s answer is: there isn’t one.
Kayeka would probably not have been too devastated had

someone discovered another figure, perhaps esoteric, of area
less than 1

8π in which the rotation could be accomplished but the
result in Besicovitch’s 1928 paper (A. S. Besicovitch, On Kakeya’s
problem and a similar one, 1928, Mathematische Zeitschrift
27:312–20) was altogether different. In short, he showed that
there is no figure of smallest area; the task can be accomplished
within any area we care to prescribe, no matter how small.

It has been said of Kayeka that he would jokingly think of the
needle as a lance wielded by the ancient Japanese knights, the
Samurai, commenting:

The Samurai had a lance for protection, which he needed to
be able to use freely in any room no matter what the size—
even if the size of a lavatory.

Besicovitch’s result had made the smallest room in the house a
whole lot smaller. We will consider a version of his reasoning.

The Besicovitch Set

First, a Besicovitch set is a subset of the plane which contains
a needle in every direction. (In fact, the idea easily extends to
higher dimensions, a generalization which attracts extremely
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difficult questions: for example, with a careful definition of the
word, what is the minimum dimension of such a set?) Our inter-
est is with such a planar set which has an arbitrarily small
area. Besicovitch’s original construction has undergone numer-
ous improvements by him and others; we will consider one of the
more modern approaches and start with a right-angled isosceles
triangle of height 1 unit, as shown in figure 13.7.

We imagine the needle hinged at the right angle, sweeping out
90◦ as it swings anticlockwise from the left side of the triangle
to the right: that the height of the triangle is 1 unit ensures that
the needle when vertical is fully contained within the triangle.
The figure contains all directions throughout the 90◦.

Now we begin a sequence of constructions, the first of which
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is to cut the triangle along its median, as shown in figure 13.8(a),
to make two smaller triangles and then slide the right of the two
a distance to the left, as shown in figure 13.8(b). This new figure
has the following properties:

• We can fancifully (and usefully) think of it as a ‘batman
cloak’.

• It can be thought of as a single triangle similar to the orig-
inal (the body and triangular ‘wings’), together with two
‘ears’. (The similarity is caused by the two base angles of
the triangles being correspondingly equal and so the top
angles must be the same.)

• The area of the figure is strictly less than that of the original.

• When thought of as two overlapping triangles, one side of
one triangle is parallel to one side of the other triangle.
(At this stage these are the two vertical sides but, more
generally, they will be the ‘cut line(s)’ along the median.)

The needle hinged at the top vertex of the left-hand triangle,
lying along its left side, can be made to sweep out anticlockwise
the first 45◦ of the 90◦ until it is vertical and lies along the right
side of the triangle. Then it can be translated to the left to the top
of the right-hand triangle and anticlockwise rotated by the sec-
ond 45◦: this means that the figure also contains every direction
over the 90◦ interval—and has a smaller area than the original
figure, although we need extra area for that translation.

The process continues as follows.
Take each overlapping triangle and divide each in two by draw-

ing the medians, as shown in figure 13.9(a). Translate the right
part of the right triangle to the left and the left part of the left
triangle to the right, as shown in figure 13.9(b). Now there are
four triangles with which to repeat the procedure, always trans-
lating the right parts of the right triangles to the left and the left
parts of the left triangles to the right. Figure 13.10 shows the
next two stages of the procedure.

After each stage the figure is becoming ever more complicated
but, because of the overlap, ever smaller in area, and it contin-
ues to contain all directions in the 90◦. To be clear about this,
the left side of the original triangle remains in the figure and if
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Figure 13.11.

the needle starts there we can rotate it anticlockwise by a small
number of degrees until it reaches the right side of that first
triangle, which has a matching parallel side in another triangle.
Translate the needle to that triangle and continue the rotation:
repeat the process for each small triangle and we will eventually
reach the last one, the right side of which is the right side of the
original triangle: having done so, we will have rotated the nee-
dle through 90◦, if somewhat exotically. The figure really does
contain all directions in that 90◦ interval and assuredly the area
of it is strictly decreasing and it is a reasonable assumption that
it is bounded below by zero. (Technically, the limiting figure is
compact and has Lebesgue measure zero.)

A Calculation

For the sake of mathematical comfort, we will take a few lines to
show that the area of such a figure can be made to decrease to
zero.

If we take a typical triangular region of vertical height 1
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Figure 13.12.

and divide it by its median, we will have something like fig-
ure 13.11(a) and translating the right triangle to the left by a dis-
tanceαb (where 0 < α < 1) brings about figure 13.11(b). We wish
to calculate the area of the slanted ‘batman cloak’ consisting
of the triangle (similar to the original) and the two ‘ears’. Since
shearing preserves area we can perform a horizontal shear with
the base contained within the invariant line and which makes
the two parallel sides vertical, as shown in figure 13.12(a).

If the triangle forming the cloak and the head has heightH and
that forming the head itself has height h, using similar triangles
we have from figure 13.12 that

1
2b

= H
2b −αb =

h
αb

and this makes H = 1
2(2−α) and h = 1

2α and so the area of the
figure is

A = 1
2(2b −αb)×H + 2× 1

2 × 2h× 1
2 ×αb

= 1
4(2−α)2b +

1
2α

2b

= 1
4(4− 4α+α2 + 2α2)b

= 1
4(3α

2 − 4α+ 4)b

and this, of course, is the area of the original slanted figure.
Since the area of the original triangle is 1

2 × 2b × 1 = b we see
that the ratio of the areas of the figure to the original triangle
is r = 1

4(3α
2 − 4α + 4), which is reassuringly at most 1, as we

can see from figure 13.13. Each repetition of the process dou-
bles the number of triangles and creates a ‘batman’ figure, the
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area of which we have calculated. The area of the whole figure
is strictly less than the sum of the areas of the ‘batman’ figures,
since they are themselves made to overlap. We can, therefore,
form an upper bound on the area of the figure aftern repetitions
by realizing that the base length satisfies

bn = αbn−1, n = 2,3, . . . ,
b1 = b

for each of the 2n−1 triangles and so the upper estimate of the
area is

An = 2n−1 × 1
4(3α

2 − 4α+ 4)bn
= 2n−1 × 1

4(3α
2 − 4α+ 4)× (αn−1b)

= (2α)n−1 × 1
4(3α

2 − 4α+ 4)b.

Provided 2α < 1 as n → ∞ it must be that An → 0 and so the
area of the figure must do so too.

Here we have the essence of Besicovitch’s 1917 result, but to
solve the Kayeka problem that needle needs to be rotated within
the figure to achieve each of the directions and those translations
from one parallel side to the next require us to move outside it
and inevitably increase the area required to achieve our purpose.
We will now consider the amount by which we need to increase
the area.
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Clever Translations

Figure 13.14(a) represents a translation of a unit needle by a
vertical distance H. In undergoing the translation the needle
will have traversed the area of the parallelogram shown in fig-
ure 13.14(b) and that area is 1×H = H, which can be arbitrarily
big.

Now let us consider an alternative approach to the translation.
Suppose that we start with the needle and translate it in the
direction of its length to the right by some distance R, rotate
it anticlockwise about its centre by some angle (less than 1

2π ),
translate the rotated needle downwards in the direction of its
length and finally rotate the needle about its centre by the same
angle clockwise. The effect of all of this is that a translation has
been effected, as shown in a special case in figure 13.15.

We only need the two angles of rotation to be the same for
the needle to be translated as desired, but let us suppose that
the two translations described above are themselves the same
distance R and that the angle of rotation is 1/R radians. Since
we need 1/R < 1

2π , it must be that

R >
2
π
= 0.6366 . . . .

Using the formula for the area of a sector and this method, the
total area traversed in achieving the translation is

2×
(

2× 1
2
×
(

1
2

)2

× 1
R

)
= 1

2R
.
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R

1 / R

1 / R

R

Figure 13.15.

R

R
h

1 / R

Centre of horizontal
needle at the start

Centre of horizontal
needle at the end

Figure 13.16.

Again, translating in the direction of the needle takes up no area.
Now let us compare this expression with the area of the paral-
lelogram which would have to be traversed to achieve the same
translation.

If we form an isosceles triangle by joining the midpoints of
the horizontal needle positions, we arrive at figure 13.16, where
h is the distance the needle moves in the direction of motion.
Elementary trigonometry shows that h = 2× R × sin(1/2R).
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Figure 13.17.

The horizontal shift of the needle is then

h× sin
(

1
2R

)
= 2R sin2

(
1

2R

)

and the vertical shift is

h× cos
(

1
2R

)
= 2× R × sin

(
1

2R

)
× cos

(
1

2R

)
= R sin

(
1
R

)
,

which makes the area of the parallelogram traversed by the
needle

1× R sin
(

1
R

)
= R sin

(
1
R

)
.

In summary, by the rotation method, we achieve the same trans-
lation as a shift to the right by 2R sin2(1/2R) and down by
R sin(1/R) but traverse an area of 1/2R rather than R sin(1/R).

Figure 13.17 shows a combined plot of R sin(1/R) and 1/2R,
which intersect at R = 0.712 04 . . . , and makes clear that, for
R > 0.712 04 . . . ,

1
2R

< R sin
(

1
R

)
.

We can achieve a translation with an increasingly significant sav-
ing of area as R increases if we adopt this more complicated
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1

1

Figure 13.18.

technique. That said, the translation is special since

lim
R→∞

{
2R sin2

(
1

2R

)}
= 0 and lim

R→∞

{
R sin

(
1
R

)}
= 1

means that the process progressively tends to translate the
needle vertically down by 1 unit.

This special case of achieving a translation using an arbitrarily
small area points the way to the final step needed to solve the
Kayeka problem. The Besicovitch set comprises many triangles,
one of which (TL) originated from the left side of the original
triangle and another (TR) from the right side. To alter the direc-
tion of the needle by 90◦ we need to move it from the left side
of (TL) to the right side of (TR) using the rest of the triangles
as stepping stones. Movement within any triangle is achieved
by anticlockwise rotation about its top vertex and movement
between triangles by translation from the right side of one of
them to the parallel left side of another: these translations can
be made within an arbitrarily small area by adapting the above
procedure, choosing two points A and B on the extended lines
of the needle and its target side sufficiently far apart so that the
rotation of the needle can be as small as required. Figure 13.18
represents this procedure.

The Kakeya Problem Solved

To solve the Kakeya problem we need to adopt the following
strategy:

(i) Let the needle lie on the left side of TL with one end at the
upper vertex.
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(ii) Rotate the needle anticlockwise about the upper vertex until
it lies along the right side of TL.

(iii) Locate the triangle with a side parallel to this side.

(iv) Perform the translation procedure to bring the needle to
the left side of that triangle.

(v) Continue until the needle lies on the right side of TR.

Adding the arbitrarily small area of the Besicovitch set to the
sum of the arbitrarily small areas needed to perform the rota-
tions succeeds in rotating the needle through 90◦ in an arbitrar-
ily small area; attach another right-angled triangle and the nee-
dle can be rotated through 180◦ and translated along its own line
back to its original position, in reverse order. Problem solved!

Littlewood, in his famous Miscellany, comments of his succes-
sor that in establishing Kakeya’s result Besicovitch established
the first of two counterintuitive phenomena. The second was in
1947 when he rediscovered a proof of Crum’s problem, which
asks for the maximum number of convex polyhedra for which
every pair has at least part of their faces in common: the answer
in two dimensions is 4 and it was thought that for three dimen-
sions it would be 10 or 12. In fact for three dimensions Besicov-
itch (and Tietze before him) proved that the answer is that there
is no limit to the number of them. To one reasonable question
Besicovitch found the unreasonable answer to be zero and to
another the equally unreasonable answer infinity.

So, is the problem completely solved? The answer is no, even
for two dimensions. Moving from the equilateral triangle to
the deltoid sacrifices convexity and moving from the deltoid to
Besicovitch sets sacrifices another important topological prop-
erty: simple connectedness. (This important term distinguishes
between areas in which simple closed curves can be shrunk to a
point and those for which this is not always possible; for exam-
ple, a standard jam doughnut has no hole and so is simply con-
nected, whereas the ring doughnut with the hole is not.) The
deltoid is obviously simply connected and it is hardly surprising
that Besicovitch sets are not. Is there a simply connected region
with an area less than 1

8π? No one knows. A move to higher
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dimensions creates enormous difficulties which, at the time of
writing, remain unresolved. Over to the reader!

And is it more than a puzzle with a clever and surprising solu-
tion? We will leave it to a recent Field’s Medallist to give his
view:

At first glance, Kakeya’s problem and Besicovitch’s resolu-
tion appear to be little more than mathematical curiosities.
However, in the last three decades it has gradually been
realized that this type of problem is connected to many
other, seemingly unrelated, problems in number theory,
geometric combinatorics, arithmetic combinatorics, oscilla-
tory integrals, and even the analysis of dispersive and wave
equations.

The words are those of Terence Tao, who is considered a world
authority on the subject.

With these words in mind we will leave Kakeya’s problem with
a final extract from Birkoff’s book:

Since all physical science depends upon the foundation of
mathematical truth, of which the discovery has been has-
tened by intellectual curiosity, a high place can be granted
such curiosity for its proved value to mankind.
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THE BEST CHOICE

My advice to you is to get married. If you find a good wife,
you’ll be happy; if not, you’ll become a philosopher.

Socrates

Natural Selection

The German mathematician and astronomer Johannes Kepler
was married twice, once in 1597 to Barbara Muhleck and, after
her death from cholera, to Susanna Reuttinger in 1613: the first
marriage was arranged by friends and matchmakers, the sec-
ond by Kepler himself, who had assessed eleven possible can-
didates. Since he pondered the relative merits of the individu-
als for nearly two years, weighing parental standing, dowry size
and conflicting advice each against the other he must be judged
as a careful suitor. Eventually his decision was made and he
explained his ultimate choice to one Baron Strahlendorf in a let-
ter of 23 October 1613 of some dozen pages: in it he wrote that
the lady had ‘won me over with love, humble loyalty, economy
of household, diligence, and the love she gave the stepchildren’

165
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(of which there were three, not counting a child of his late wife
from a previous marriage) and that ‘God had led him to choose
the fifth’.

Here we are concerned with a very particular selection pro-
cess, its rather surprising resolution and a currently inexplicable
connection with the convergents of the partial fraction form of
1/e.

The problem is most commonly expressed in terms of inter-
viewing a list of individuals in order to select the best of them
and has been given names such as the secretary problem, the
sultan’s dowry problem and, most appropriately for Kepler, the
fussy suitor problem. In its generic form there is a collection of
size n and it is desired to choose the best individual from it.
In a random order, each individual is assessed and if rejected
plays no further part; when one individual is selected the pro-
cess ends with that selection; the hoped-for best from the list. If
all are rejected up to the last, that last individual must be chosen.

The question is: what strategy could be adopted to maximize
the chances of picking the best individual?

For example, if there is to be a 50% chance of choosing the best
individual, it is intuitively reasonable that half of them should be
assessed and the best one of these chosen; if the best candidate
is in that half, that candidate will be chosen, and the probability
of that happening is 1

2 . So for a probability of 1
2 of choosing the

best candidate there seems to have to be 1
2n interviews. We will

look more deeply.
The origins of the problem are somewhat obscure but it may

be reasonably argued that the distinguished and most prolific
English mathematician, Arthur Cayley, may have been the first
to articulate a version of it. Of the 966 papers attributed to him,
paper 705 contains 50 pages of problems and solutions that he
had submitted to the Educational Times between 1871 and 1894.
One of the 1875 submissions was the following:

4528. (Proposed by Professor Cayley) A lottery is arranged as
follows: There are n tickets representing a,b, c, . . . pounds
respectively. A person draws once; looks at his ticket; and if
he pleases, draws again (out of the remaining n−1 tickets);
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and so on, drawing in all not more than k times; and he
receives the value of the last ticket drawn. Supposing that
he regulates his drawings in the manner most advantageous
to him according to the theory of probabilities, what is the
value of his expectation?

The similarity to the generic problem is clear enough, but it is
not precisely the same as it; here the payoff is whatever num-
ber of pounds is associated with the selected ticket yet with the
generic example it is 1 or 0, depending on whether the best can-
didate is picked or not. As the years have passed the variants
have grown in number and complexity until we have reached the
stage at which the literature about it and its relatives is quite sim-
ply vast. This is a view borne out in Thomas S. Ferguson’s com-
prehensive article ‘Who solved the secretary problem?’ (1989,
Statistical Science 4(3):282–89), where he wrote:

Since that time the problem has been extended and gen-
eralized in many different directions, so that now one can
say that it constitutes a ‘field’ of study within mathematics–
probability–optimization. One can see from the review paper
by Freeman (1983) how extensive and vast the field has
become; moreover, the field has continued its exponential
growth in the years since that paper appeared.

The reference is to the article by P. R. Freeman ‘The secretary
problem and its extensions: a review’ (1983, International Statis-
tical Review 51(2):189–206) in which ‘all published work to date
on the problem and its extensions is reviewed’.

Strategy

The strategy we will consider for the interviewer is the following.
Interview and discard the first r candidates on the list and then
choose the first candidate better than the best reject.

The big question is, given that this is a sensible strategy at all,
what is this value of r?

We can analyse the strategy in terms of the parameter r in the
following way.
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Suppose that the best individual is B. If this best individual
happens to be in the (r +1)th position, we will choose B for cer-
tain; this happens with probability 1/n. Now suppose that B is
in the (r + 2)th position, then, if the occupant of the (r + 1)th
position is the best yet, we will fail in our goal of choosing B,
otherwise we will still choose B; the alternative is that the occu-
pant is not the best yet, which means that the best yet among
the first r +1 choices lies among the first r of them; this occurs
with probability r/(r + 1). We do need B to be in the (r + 2)th
position, and this happens with that same probability of 1/n, so
the total probability of success in this case is

1
n
× r
r + 1

.

Now the process continues, supposing that B is in the (r + 3),
(r + 4), . . . , nth position, giving the probabilities of success as

1
n
× r
r + 2

,
1
n
× r
r + 3

, . . . ,
1
n
× r
n− 1

.

Adding these up then gives the probability of choosing the best
candidate as

P(n, r) = 1
n

(
1+ r

r + 1
+ r
r + 2

+ r
r + 3

+ · · · + r
n− 1

)
.

Table 14.1 shows the values of P(n, r) for n = 1,2,3, . . . ,11
and reveals the fact that, had Kepler used this technique (which
undoubtedly he did not), he should have chosen the fourth
suitor, where P(11,4) = 0.398 413, rather than the fifth, where
P(11,5) = 0.384 38. Actually, history reveals that his friends
intervened here, as Susanna Reuttinger was an orphan who
lacked dowry and social standing, and they persuaded him to
offer his hand to none other than candidate number 5: this he
did—and was rejected. So, it was to be number 4, but all was well
as they enjoyed a happy and fruitful time together, parenting six
more children.

Computing the optimal r for a given n is so far a simple
but unsatisfactory numerical exercise and we can make pleas-
ing headway by once again using the harmonic series, which we
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Figure 14.1.

mentioned in chapter 11. Recall that it is defined by

Hn = 1+ 1
2
+ 1

3
+ 1

4
+ · · · + 1

n

and that the infinite series diverges. In terms of it, the probability
becomes

P(n, r) = 1
n
(1+ r(Hn−1 −Hr)).

Now we can replace the harmonic series itself by its logarithmic
approximation Hn ≈ lnn+ γ, where γ = 0.577 216 . . . is Euler’s
constant, which we have already seen on page 101.

The expression then becomes

P(n, r) ≈ 1
n
{1+ r([ln(n− 1)+ γ]− [ln r + γ])}

= 1
n

(
1+ r ln

(n− 1)
r

)
.

Figure 14.1 shows a plot of P(100, r ) against r , which typifies
the general behaviour of the function.

We seek the value of r which maximizes the function for a
given value of n and, if we treat r as a continuous variable, we
can use calculus to look at the growth of the function and arrive
at the expression

dP(n, r)
dr

= 1
n

(
ln
n− 1
r

− r × 1
r

)
= 1
n

(
ln
n− 1
r

− 1
)
.
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For a maximum we require

dP(n, r)
dr

= 0,

which means that

ln
n− 1
r

= 1 and
n− 1
r

= e.

So the maximum is achieved at r = (n− 1)/e, or, to be precise,
at an integer either side of this value. The maximum value of the
probability is then

P
(
n,
n− 1

e

)
= 1
n

(
1+ n− 1

e
ln e

)

= 1
n

(
1+ n− 1

e

)
−−−−→
n large

1
n
× n

e
= 1

e
= 0.3678 . . . .

Figure 14.2 shows this asymptotic behaviour of the maximum
value of the function

P
(
n,
n− 1

e

)

as a function of n and makes clear that it settles to the constant
value of 1/e.

In summary, if about the first 37% of the individuals are
assessed and rejected, then there is about a 37% chance of
choosing the best candidate.
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It is that number 1/e that we are interested in; to be ac-
curate we are interested in particularly important fractional
approximations to it.

Continued Fractions

A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

,

where a0 is an integer (possibly negative or zero) and a1, a2, . . .
are nonzero positive integers; the expression could be finite or it
could go on forever. Standard fractional notation is cumbersome
and has given way to the alternative [a0;a1, a2, . . . ], in which
the semicolon separates the number’s integer from its fractional
part and the commas separate what are known as its ‘partial
quotients’.

For example,

3+ 1

2+ 1

5+ 1
4

= 3+ 1

2+ 1

(21
4 )

= 3+ 1

2+ 4
21

= 3+ 1

(46
21)

= 3+ 21
46 =

159
46

or, in a more compact notation, [3; 2,5,4] = 159
46 .

If we build up the expression one term at a time, we get

3+ 1
2 =

7
2 and 3+ 1

2+ 1
5

= 38
11 ,

thereby generating the ‘convergents’ of the partial fraction. Put
another way, 159

46 is approximately 7
2 and also 38

11 , with the lat-
ter the better approximation. Clearly, any finite continued frac-
tion can be telescoped into an ordinary fraction in this way, with
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each of the convergents successively better approximants to that
fraction. Converting an ordinary fraction to its continued form
simply requires us to strip off the integer part, invert and repeat
the process; for example,

18
13 = 1+ 5

13 = 1+ 1

(13
5 )

= 1+ 1

2+ 3
5

= 1+ 1

2+ 1

(5
3)

= 1+ 1

2+ 1

1+ 2
3

= 1+ 1

2+ 1

1+ 1

(3
2)

= 1+ 1

2+ 1

1+ 1

(1+ 1
2)

or [1; 2,1,1,2], and, in the same way, 18
13 is successively (and

more accurately) approximated by 3
2 , 5

3 and 7
5 .

The process of converting an irrational number to a contin-
ued fraction simply requires the decimal part to be dealt with in
much the same way as a rational number. For example,

π = 3+ 0.141 59 · · · = 3+ 1
7.062 513 . . .

= 3+ 1

7+ 1

15.996 594 . . .

= 3+ 1

7+ 1

15+ 1

1.003 417 . . .

= 3+ 1

7+ 1

15+ 1

1+ 1

292+ 0.654 . . .

,

which continues as π = [3; 7,15,1,292,1,1,1,2,1,3,1,14,2,1,
1,2,2,2,2,1,84, . . . ], with initial convergents 22

7 , 333
106 , 355

113 and
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103 993
33102 : the first, of course, is the entirely familiar rational

approximation to π .
It is also true that π4 = [97; 2,2,2,2,16539,1, . . . ], which

makes the fifth convergent 3 544 4733
363 875 a particularly accurate

rational approximation to π4 (and therefore its fourth root a
particularly accurate decimal approximation to π—differing in
the thirteenth decimal place).

The continued fraction form for other numbers can be found
in the same way and can reveal an otherwise hidden pattern. For
example,
√

2 = [1; 2,2,2,2, . . . ] with convergents 3
2 ,

7
5 ,

10
7 , . . . ,

e = [2; 1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12, . . . ]

with convergents 5
2 ,

8
3 ,

11
4 ,

19
7 ,

73
32 , . . . ,

the ‘Golden Ratio’

ϕ = 1+√5
2

= [1; 1,1,1,1, . . . ] with convergents 2
1 ,

3
2 ,

5
3 ,

8
5 , . . . .

This last example points us in the direction in which we wish
to head. If we consider the numerator and denominator of the
convergents of ϕ separately, they are consecutive terms in the
Fibonacci sequence 1,1,2,3,5,8,13, . . . . We will look at the con-
sequences of separating the convergents of our key number 1/e
in the same way.

The continued fraction form of 1/e is

{0; 2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1, . . . }

with convergents

1
2 ,

1
3 ,

3
8 ,

4
11 ,

7
19 ,

32
87 ,

39
106 ,

71
193 ,

465
1264 ,

536
1457 , . . . .

The reader will discern a pattern beginning to emerge in the con-
tinued fraction form of the number, but it is with the successive
fractional approximations that we are concerned.

Returning to our interview list and to table 14.1, we recall that,
for a list of length 2, the optimal number to interview is 1, for
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Table 14.2.

n Optimal r max P(n, r)

2 1 0.500
3 1 0.500
8 3 0.409 8

11 4 0.398 4
19 7 0.385 0
87 32 0.371 5

106 39 0.370 9
193 71 0.369 5

1264 465 0.368 13
1457 536 0.368 10

a list of length 3 the optimal number to interview is 1, for a list
of length 8 the optimal number to interview is 3, for the Keple-
rian list of length 11 the optimal number to interview is 4, etc.
These pairs of numbers are the denominators and numerators
respectively of the convergents of 1/e.

Table 14.2 shows some more examples of the denominators
(n) and numerators (r) of the convergents of 1/e providing the
optimal combination. A sterner test is n = 14 665 106, which is
the denominator of the twentieth convergent of 1/e; its numer-
ator is 5 394 991, and that is precisely the optimal value of r .
Put another way, we know that the optimal r for a given n sat-
isfies the approximation r ≈ (1/e) × n; if n happens to be a
denominator of a continued fraction approximant of 1/e, then
r is precisely the numerator of that fraction. Does this continue
forever? We have no idea and, as far as we can tell, neither has
anybody else. It is most peculiar.



Chapter 15

THE POWER OF POWERS

Sometimes it is useful to know how large your zero is.

Anon

Given its importance to the chapter, ‘Some consequences of the
irrationality of log10 2’ could have been a reasonable alternative
title. Yet the title stands, as the subject matter that follows con-
centrates on some rather surprising consequences relating to
the decimal expansion of 2n; we prove the elementary result that
log10 2 is indeed irrational in the appendix (page 226), expending
our efforts over the next few pages appealing to that result.

A Great Deal of Nothing

In a note to the journal Mathematics of Computation (E. and U.
Karst, The first power of 2 with 8 consecutive zeroes, July 1964,
18(87):508) the authors provided what the note’s title suggests:

176
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Table 15.1.

Consecutive
zeros Power of 2

2 53
3 242
4 377
5 1 491
6 1 492
7 6 801
8 14 007

the first power of 2 which contains precisely eight consecutive
zeros. They acknowledged that their work built on that of F. Gru-
enberger, who had computed the first power of 2 to contain 4, 5,
6 and 7 consecutive zeros, which, together with the Karsts’ and
the cases 2 and 3, are listed in table 15.1.

To be explicit, taking the first case,

253 = 9 007 199 254 740 992

is the first power of 2 to contain two consecutive zeros; the 4217
digits of 214 007 would take up too much space to write out, but
the relevant part of the decimal expansion is

· · ·6 603 000 000 003 213 · · · .
The Karsts’ IBM 1620 computer took 1 hour 18 minutes to

find those eight consecutive zeros on 1 January 1964 and they
reported that, on 1 May of the same year, they had tested up to
the power 60 000 without finding the elusive nine-zero repeti-
tion; perhaps the interested reader might wish to use more mod-
ern technology to perform their own search. One thing is certain
though: theoretically that search will not be in vain, since it is a
fact that any number of repetitions is possible, 9, 900, 9000, or
whatever number one wishes—although the numbers involved
will assuredly be fantastically large.

To establish this peculiar fact we will look to the Elemen-
tary Problems and Solutions section of the American Mathemat-
ical Monthly (December 1963, 70(10):1101–2), wherein E. J. Burr
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(in particular) provided a succinct argument which we expand
below.

First we need a result from the theory of rational approxi-
mation of irrational numbers, which is proved in the appendix
(page 231):

Given any irrational number λ and any positive integer k,
there is a rational number m/n with n � k such that 0 <
λ−m/n < 1/nk.

In particular, since log10 2 is irrational this result becomes

0 < log10 2− m
n
<

1
nk
,

0 < n log10 2−m <
1
k

and, since 10x is monotone increasing,

100 < 10n log10 2−m < 101/k,

1 < 2n × 10−m < 101/k,

10m < 2n < 10m × 101/k.

Now take k large enough so that, for some chosen positive inte-
ger s, 101/k � 1+10−(s+1), then 10m < 2n < 10m×(1+10−(s+1)),
i.e. 10m < 2n < 10m+10m−s−1, which ensures that 2n starts with
a 1 followed by at leastm−(m−s−1)−1 = s consecutive zeros.

The Start of Something Big

The above proof locates the zeros after an initial digit 1 at the
start of the decimal expansion yet we have seen evidence that
the consecutive zeros can exist anywhere within the body of the
number (and there are proofs for this too). This specialization
suits our purpose though, since the main thrust of this chapter is
that, no matter what sequence of whatever length of nonnegative
integers we choose, there is at least one power of 2 which starts
with that sequence.

If we start simply and require a power of 2 to start with the
single digits 1,2,3, . . . ,9 in turn we arrive at table 15.2: notice
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Table 15.2.

The first digit The power of 2 2 to the power

1 4 16
2 1 2
3 5 32
4 2 4
5 9 512
6 6 64
7 46 7.036 · · · × 1013

8 3 8
9 53 9.0072 · · · × 1015

how hard we have to work for 7 and 9, the latter achieved by that
same power to first contain two consecutive zeros.

If we become more ambitious and ask for the decimal expan-
sion to start with the year of publication of this book, 2008, we
require 2197 = 2008 . . . . Higher ambition still yields the following
sequence:

247 = 14 . . . , 2243 = 141 . . . ,

26 651 = 1414 . . . , 235 389 = 14142 . . .

and we are beginning to generate the most significant part of the
decimal expansion of

√
2. If we tame the gargantuan number so

generated by dividing it by the appropriate power of 10, we have

235 389

10�35 389 log 2�−1
= 1.414 12 · · · ∼

√
2.

If we wish to demand more and boast further decimal places we
can have them—as many as we please, although the numbers
involved will be vast. (Here, �x� is the ceiling of x, discussed in
the appendix (page 227).)

Moving to other attractive examples we also have

251 684

10�51 684 log 2�−1
= 2.7182 · · · ∼ e,

255 046

10�55 046 log 2�−1
= 3.1415 · · · ∼ π.
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Of course these powers of 2 do make the numbers generated
vastly big; to get some sort of idea how big, if we take a sheet of
paper 0.1 mm thick and double it over 100 times(!) the thickness,
0.1 × 2100 mm, will be greater than the distance to the furthest
galaxy.

Now we need to prove the fact that any sequence of digits what-
soever can form the most significant digits of some power of 2 and
to achieve this we will appeal to an argument provided by Yaglom
and Yaglom in the first of their two books of mathematical prob-
lems (Challenging Mathematical Problems with Elementary Solu-
tions, 1987, A. M. Yaglom and I. M. Yaglom, Dover), expanded by
Ross Honsberger in his volume Ingenuity in Mathematics (Math-
ematical Association of America, 1970). We will expand further;
the argument is indeed elementary, as it is ingenious—and one
could also argue that it is extremely subtle and instructive. First,
we will restate the proposition in an equivalent form.

The Restatement

If we consider the
√

2 example above, we can rephrase matters
by asking the question: is there a positive integer n so that

14 142 · · · � 2n < 14 143 . . .?

If such an n exists, we will assuredly have 2n beginning with
the digits 14 142. Now replace the ellipses . . . by an appropriate
power of 10 to get

14 142× 10k � 2n < 14 143× 10k.

Generally, if we wish a power of 2 to start with the sequence
M , we require positive integers k and n so that

M × 10k � 2n < (M + 1)× 10k

and applying the monotone increasing log10 function through-
out gives

log10(M × 10k) � log10 2n < log10((M + 1)× 10k).
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0 l1 r1 l2 r2 li ril r . . .

Figure 15.1.

Using the standard laws of logs the restatement is then the
following.

For a given positive integer M we require positive integers k
and n so that

k+ log10M � n log10 2 < k+ log10(M + 1).

The Proof

To show that such k and n exist we will need two results.
An application of the pigeon-hole principle, discussed in the
appendix (page 228) and a fact arising from the interrelationship
between logs and the floor function (discussed in the appendix
(page 230)):

�log10(M + 1)� = �log10M� : M + 1 not a power of 10,
�log10(M + 1)� = �log10M� + 1: M + 1 a power of 10.

With these parts in place we can proceed to the very devious
proof.

Write l = log10M and r = log10(M + 1) and so define the
semi-open interval [l, r) whose interval length is

r − l = log10(M + 1)− log10M = log10

(
M + 1
M

)

= log10

(
1+ 1

M

)
< log10 2 < 1

since M � 1.
Now translate copies of this interval (whose length is strictly

less than 1) repeatedly to the right by 1 unit to get the infinite
set of nonoverlapping, semi-open intervals [li, ri) = [i+ l, i+ r)
for i = 1,2,3, . . . , as shown in figure 15.1.
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L

R

O

Figure 15.2.

Having done this, we will use the device of wrapping the whole
of the infinite positive number line anticlockwise onto a circle of
circumference 1 unit, which means that the line repeatedly and
indefinitely overlaps. Numbers on the number line which differ
by an integer will be mapped to the same point on the circle
by this process and vice versa; in particular, all of the li will be
mapped onto the same point L and all of the ri onto the same
point R. The situation is shown in figure 15.2, where the origin is
at point O. It is these L and R that will provide the outside values
of our double inequality.

Now we need to fit that multiple of log10 2 at the centre of the
double inequality and to achieve that consider the infinite set of
numbers on the number line

log10 2, 2 log10 2, 3 log10 2, . . . , n log10 2, . . .

and denote their images on the circle by C1, C2, C3, . . . , Cn, . . . .
These go round and round the circle in steps of arc length log10 2
and no two of them coincide, for if two did then

a log10 2− b log10 2 =m

for some integerm, which would mean log10 2 =m/(a−b) and
would therefore be rational, and the irrationality of this number
appears crucially for a second time.

We then have an infinite sequence of distinct points on the
circle of (evidently) finite length and this means that there must
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O

L

R
Cp + rq

Cp

Cp + q

Figure 15.3.

exist a pair of them whose distance apart is smaller than any
given number, which is simply an application of the pigeon-hole
principle mentioned above. Let us then require two such to be
closer together than the points L and R and label such a pair as
CpCp+q, as shown in figure 15.3: if we define the function A to
mean arc length, we have that A(CpCp+q) < A(LR).

Now consider the infinite sequence of points Cp, Cp+q, Cp+2q,
. . . , Cp+rq, . . . that correspond to the numbers p log10 2, (p +
q) log10 2, (p+2q) log10 2, . . . , (p+rq) log10 2, . . . on the number
line; then

A(CpCp+q) = A(Cp+qCp+2q) = A(Cp+2qCp+3q) = · · ·
= A(Cp+(r−1)qCp+rq) = · · · = q log10 2 < A(LR)

since each adjacent pair is a distance q log10 2 apart on the circle.
Since this sequence of points is going around the circle in steps

of length less thanA(LR) on each revolution, at least one of them
must lie in the arc LR; let one such be Cp+rq, then

A(OL) � A(OCp+rq) < A(OR).

Now we will convert this inequality of arc lengths to the corre-
sponding inequality of the numbers on the number line, realizing
that, if x = OX on the number line, its image on the circle is the
point X on it so that A(OX) = the fractional part of x = {x} =
x − �x�.
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Apply this to the points l = OL, r = OR and (p+ rq) log10 2 =
OCp+rq on the number line to get

l− �l� � (p + rq) log10 2− �(p + rq) log10 2� < r − �r�,
log10M − �log10M� � (p + rq) log10 2− �(p + rq) log10 2�

< log10(M + 1)− �log10(M + 1)�,
�(p + rq) log10 2� − �log10M� + log10M � (p + rq) log10 2

< �(p + rq) log10 2� − �log10(M + 1)� + log10(M + 1).
(15.1)

Our k in the restatement of the result on page 181 is defined as

k = �(p + rq) log10 2� − �log10M�

and to ensure that it is positive we choose an r so big that this
is certain.

Finally, we need to deal with that term �log10(M + 1)� on the
right of this double inequality and do so by considering two
cases.

M + 1 is not a power of 10. Using the first result on page 181,
�log10(M + 1)� = �log10M� and the inequality can be written

�(p + rq) log10 2� − �log10M�
+ log10M � (p + rq) log10 2

< �(p + rq) log10 2� − �log10M� + log10(M + 1)

and so as

k+ log10M � (p + rq) log10 2 < k+ log10(M + 1),

which is exactly what we want.

M + 1 is a power of 10. Since {x} = x − �x� = fractional part
of x, the middle part of equation (15.1) must be less than 1 and
so the inequality can be rewritten

log10M − �log10M� � (p + rq) log10 2− �(p + rq) log10 2� < 1.
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Now we use the second result on page 181 to get

�log10(M + 1)� − �log10M� = 1

and so

log10M − �log10M� � (p + rq) log10 2− �(p + rq) log10 2�
< �log10(M + 1)� − �log10M�.

But now log10(M + 1) is an integer and so

log10(M + 1) = �log10(M + 1)�,

which means that

log10M − �log10M� � (p + rq) log10 2− �(p + rq) log10 2�
< log10(M + 1)− �log10M�

and

�(p + rq) log10 2� − �log10M� + log10M � (p + rq) log10 2

< �(p + rq) log10 2� − �log10M� + log10(M + 1),

and again

k+ log10M � (p + rq) log10 2 < k+ log10(M + 1).

Recall that the restatement of the result was that, for a given
positive integer M , we require positive integers k and n so that

k+ log10M � n log10 2 < k+ log10(M + 1)

is true: with n = p + rq and k = �(p + rq) log10 2� − �log10M�
we have precisely that!

Equal Distribution and Probabilities

If we look back to table 15.2, we can allow its scant information to
guide us in addressing a reasonable question: of all of the infinite
possibilities, what proportion of the numbers 2n start with each
of the digits from 1 to 9?

Perhaps it is natural to take one of two views:
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• In the long run things will even out and so the proportion
of first digits will be constant across the nine possibilities:
the answer is 1

9 .

• I am not sure, but that behaviour of 7 and 9 is suspicious:
possibly, for some reason, the other digits occur with equal
likelihood and those two are special.

In fact, neither answer is correct and we will need that irrational-
ity of log10 2 one last time to establish the truth of the matter—
and also a result known as Weyl’s Equidistribution Theorem,
which is an important theorem in analytic number theory and
was established by the eminent early twentieth-century mathe-
matician Herman Weyl. In its original form it can be stated as
follows:

For any irrational number α, the sequence {{nα} =
nα− �nα� : n = 1,2,3, . . . } is equidistributed modulo 1.

A precise (and technical) definition is that the sequence {xn :
n = 1,2,3, . . . } is equidistributed modulo 1 if for every interval
(a, b) ⊂ [0,1]

lim
n→∞

N[{{x1}, {x2}, {x3}, . . . , {xn}} ∩ (a, b)]
n

= b − a.

In other words, in the long run the proportion of fractional
parts of thexn that fall in any subinterval is just the length of the
subinterval. For example, since the interval (0.6,0.8) occupies
20% of the whole interval (0,1), the proportion of members of
the sequence xn whose fractional part falls between 0.6 and 0.8
will approach 0.2.

Note that the irrationality of α is crucial. Consider, for exam-
ple, α = 4

9 , then the sequence

{{n× 4
9} : n = 1,2,3, . . . } = {4

9 ,
8
9 ,

3
9 ,

7
9 ,

2
9 ,

6
9 ,

1
9 ,

5
9 ,0,

4
9 , . . . }

repeats, generating a set of nine fractions (including 0) appear-
ing with equal likelihood, which evidently do not satisfy equal
distribution. (In fact, it is easy to show that this finite repetition
is necessary and sufficient for α to be rational.)
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Now we will see how all this helps with the distribution of
those first digits of 2N .

We know that 2N begins with a digit d if

d× 10n � 2N < (d+ 1)× 10n.

From this we can find n in terms of N as follows:

d � 2N

10n
< (d+ 1).

Again, using the increasing monotonicity of log10,

log10 d � log10

(
2N

10n

)
< log10(d+ 1),

0 � log10 d � log10

(
2N

10n

)
< log10(d+ 1) � 1,

0 � log10

(
2N

10n

)
< 1,⌊

log10

(
2N

10n

)⌋
= 0,

�log10 2N −n� = 0,

which means that the difference between the two is less than 1
and, since n is an integer, it must be that

n = �log10 2N�.

Now we return to the original inequality to arrive at

log10(d× 10n) � log10 2N < log10((d+ 1)× 10n),

log10(d× 10n) � �log10 2N� + {log10 2N}
< log10((d+ 1)× 10n),

log10 d+n− �log10 2N� � {log10 2N}
< log10(d+ 1)+n− �log10 2N�,

log10 d � {N log10 2} < log10(d+ 1),

since n = �log10 2N�.
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Table 15.3.

d Probability

1 0.301 03
2 0.176 09
3 0.124 93
4 0.096 91
5 0.079 18
6 0.066 94
7 0.057 99
8 0.051 15
9 0.045 75

Since by Weyl’s Equidistribution Theorem {N log10 2} is equi-
distributed modulo 1,

P[log10 d � {N log10 2} < log10(d+ 1)]

= log10(d+ 1)− log10 d = log10

(
d+ 1
d

)
= log10

(
1+ 1

d

)

and so we have the remarkable fact that

P[First digit of 2N = d] = log10

(
1+ 1

d

)
.

Table 15.3 shows these probabilities.
This done, the same argument applies for any set of digits M

and so we have the general result that

P[2N starts with the digit sequence M] = log10

(
1+ 1

M

)
.

Reverting to our earlier examples:

P[2N starts with 2008] = log10

(
1+ 1

2008

)
= 0.000 216 2 . . . ,

P[2N starts with 14 142] = log10

(
1+ 1

14 142

)
= 0.000 030 70 . . . ,
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P[2N starts with 27 182] = log10

(
1+ 1

27 182

)
= 0.000 015 976 . . . ,

P[2N starts with 31 415] = log10

(
1+ 1

31 415

)
= 0.000 013 82 . . . .

Now look back over the arguments of this chapter and the reader
will see that the number 2 is not intrinsic to the results; any num-
ber a would do provided that log10 a is irrational, which means
any a that is not a rational power of 10. In particular, this means
that this final section of the distribution of most significant dig-
its is more general than at first it might seem—and far more gen-
eral than one could ever imagine. And that fact takes us nicely
to the next chapter.



Chapter 16

BENFORD’S LAW

Major paradoxes provide food for logical thought for
decades and sometimes centuries.

Nicholas Bourbaki

First Digits

At the end of the previous chapter, with the use of the potent
Weyl Equidistribution Theorem, we saw that the first digit of
powers of 2 are not distributed uniformly over {1,2,3, . . . ,9}
but rather according to the law

P[First digit of 2n = d] = log10

(
1+ 1

d

)
.

Moreover, we argued that the phenomenon exists equally with
2 replaced by any number that is not a rational power of 10.
Perhaps this behaviour is then a property of powers of integers,
but then consider the consumption (measured in kilowatt hours)
of the 1243 users of electricity of Honiara in the British Solomon

190
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Table 16.1.

d Logarithmic Solomon

1 0.301 03 0.316
2 0.176 09 0.167
3 0.124 93 0.116
4 0.096 91 0.087
5 0.079 18 0.085
6 0.066 94 0.064
7 0.057 99 0.057
8 0.051 15 0.050
9 0.045 75 0.057

Islands in October 1969. Table 16.1 shows the proportion of use
beginning with a first digit 1, etc., together with those numbers
generated by the logarithmic formula.

Of course, the fit is not exact but it is markedly closer than the
uniform 0.1111 . . . : something seems to connect mathematical
and electrical power. Something does: Benford’s Law.

In 1881 the American mathematician and astronomer Simon
Newcomb wrote to the American Journal of Mathematics (Note
on the frequency of use of the different digits in natural num-
bers, 1881, 4(1):39–40) an article which began:

That the ten digits do not occur with equal frequency must
be evident to any one making much use of logarithmic
tables, and noticing how much faster the first pages wear
out than the last ones. The first significant figure is oftener
1 than any other digit, and the frequency diminishes up to 9.

This era, long before the invention of the electronic chip, de-
pended on tables of logarithms for anything other than the sim-
plest calculations; compiled into books these would have been
a common sight in any mathematician’s or scientist’s place of
work. Newcomb had noticed that the books of logarithms that he
shared with other scientists showed greater signs of use at their
beginning than they did at their end, but since logarithm tables
were arranged in ascending numeric order, this suggested that
more numbers with small rather than large first digits were being
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used for calculation. In the article he suggested an empirical law
that the fraction of numbers that start with the digit d is not
that intuitively reasonable 1

9 but that remarkable log10(1+1/d).
There was no rigorous justification provided and the idea lan-

guished in the mathematical shadows until 1938. It was then that
Frank Benford, a physicist at G.E.C., published the paper ‘The law
of anomalous numbers’ (Proceedings of the American Philosoph-
ical Society, 1938, 78:551–72). In it he had compiled a table of
frequency of occurrence of first digits of 20 229 naturally occur-
ring numbers, which is reproduced in table 16.2, and which he
had extracted from a wide variety of sources ranging from arti-
cles in a selection of newspapers to the size of town populations;
the logarithmic not the uniform law held the more convincingly.
In particular the penultimate row, which averages the data, is
a most excellent fit to the logarithmic model. The phenomenon
has subsequently become known as Benford’s Law.

Some Rationale

Two significant and reasonable observations have been made.
One, that if Benford’s Law does hold, it must do so as an intrin-

sic property of the number systems we use. It must, for example,
apply to the base 5 system of counting of the Arawaks of North
America, the base 20 system of the Tamanas of the Orinoco and
to the Babylonians with their base 60, as well as to the exotic
Basque system, which uses base 10 up to 19, base 20 from 20
to 99 and then reverts to base 10. The law must surely be base
independent.

The second is that changing the units of measurement must
not change the frequency of first significant digits. Ralph A.
Raimi, in his survey of progress on the matter (The first digit
problem, American Mathematical Monthly, 1976, 83:521–38)
wrote the following:

Roger S. Pinkham attributing the basic idea to R. Hamming,
put forward an invariance principle attached to another sort
of probability model, sufficient to imply Benford’s Law. If
(say) a table of physical constants or of the surface areas
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of a set of nations or lakes, is rewritten in another system
of units of measurement, ergs for foot-pounds or acres for
hectares, the result will be a rescaled table whose every entry
is the same multiple of the corresponding entry in the orig-
inal table. If the first digits of all the tables in the universe
obey some fixed distribution law, Stigler’s or Benford’s or
some other, that law must surely be independent of the sys-
tem of units chosen, since God is not known to favour either
the metric system or the English system. In other words, a
universal first digit law, if it exists, must be scale-invariant.

Recalling our earlier example of electricity consumption, it
should not matter whether kilowatt hours were used as a unit
or any other alternative. Roger Pinkham, then a mathematician
at Rutgers University in New Brunswick (New Jersey), had writ-
ten a paper demonstrating that scale invariance implies Ben-
ford’s Law (On the distribution of first significant digits, Annals
of Mathematical Statistics, 1961, 32:1223–30).

In 1995, Theodore Hill of the Georgia Institute of Technol-
ogy approached matters differently. He showed that, if distri-
butions are selected at random and random samples are taken
from each of these distributions, the significant-digit frequen-
cies of the combined sample would converge to conform to Ben-
ford’s Law, even though the individual distributions selected
may not; a result consistent with that penultimate row of Ben-
ford’s table (A statistical derivation of the significant-digit law,
Statistical Science, 1995, 10:354–63). In a sense, Benford’s Law is
the distribution of distributions.

All of this said, many sets of numbers certainly do not obey
Benford’s Law: random numbers at one extreme and numbers
that are governed by some other statistical distribution on the
other, perhaps uniform or normal. It seems that, for data to
conform to the law, they need just the right amount of structure.

An Argument

‘Proving’ Benford’s Law is not like proving a standard mathe-
matical theorem: even stating it properly is difficult, but we will
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Table 16.3.

First significant
Interval digit after ×2

[1,1.5) 2
[1.5,2) 3
[2,2.5) 4
[2.5,3) 5
[3,3.5) 6
[3.5,4) 7
[4,4.5) 8
[4.5,5) 9
[5,10) 1

0
9

After scaling
Before scaling

1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

Figure 16.1.

approach it by following the scale-invariance property that it
must, in all reason, adhere to.

A change of units is achieved by multiplying by some scal-
ing number. Let us assume that the first significant digits of
some measurable quantity are originally uniformly distributed
and then let us suppose that we change the units by (say) multi-
plying everything by 2. If the first significant digit of the number
in the original units is one of 5, 6, 7, 8, 9, the scaled number must
begin with 1, otherwise, the behaviour is shown in table 16.3,
which is displayed in the bar chart in figure 16.1. Even if the
frequency of first significant digits was uniform before the scal-
ing, it will not be afterwards and we are bound to conclude that
equally likely digits are not scale invariant.
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We can put forward a general argument using the standard
theory of statistical distributions.

Recall that a continuous, nonnegative function ϕ(x) is the
probability density function of a continuous random variable X
if P(a � X � b) =

∫ b
a ϕ(x)dx. Of course, we require that the

total area under ϕ(x) must be 1.
The cumulative density function Φ(x) is then defined by

Φ(x) = P(X � x) =
∫ x ϕ(t)dt for an arbitrary lower limit, which

means that

dΦ(x)
dx

=ϕ(x)

and

P(a � X � b) =
∫ b
a
ϕ(x)dx = Φ(b)−Φ(a).

Now we will make precise the idea of a random variable being
scale invariant and say that if it is so, the probabilities that it
lies in some interval before and after scaling are the same. For
our later convenience we will write the interval as [α,x] and the
scale factor as 1/a. Then scale invariance means

P(α < X < x) = P
(
α <

1
a
X < x

)
= P(aα < X < ax).

This means that Φ(ax) − Φ(aα) = Φ(x) − Φ(α) or Φ(ax) =
Φ(x)+K for all a.

So, assuming scale invariance, we have that Φ(ax) = Φ(x)+K
and differentiating both sides with respect to x gives aϕ(ax) =
ϕ(x) and therefore ϕ(ax) = (1/a)ϕ(x).

Now consider the random variable Y = logb X with ψ(y) and
Ψ(y) defined analogously. Then

Ψ(y) = P(Y � y) = P(logb X � y) = P(X � by)
= Φ(by) = Φ(x).

This means that

ψ(y) = d
dy

Ψ(y) = d
dy

Φ(x) = d
dx
Φ(x)× dx

dy
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and

ψ(y) =ϕ(x)× dx
dy

= xϕ(x) lnb

so

ψ(logb x) =ϕ(x)×
dx
dy

= xϕ(x) lnb,

which means that

ψ(logb ax) = axϕ(ax) lnb.

Using the definition of scale invariance we then have

ψ(logb ax) = axϕ(ax) lnb

= ax 1
a
ϕ(x) lnb

= xϕ(x) lnb
= ψ(logb x).

Therefore,

ψ(logb x + logb a) = ψ(logb x) and ψ(y + logb a) = ψ(y).

Since a can be chosen to be anything we wish, ψ(y) repeats
itself over arbitrary intervals and it can only be that it is con-
stant. The logarithm of a scale invariant variable has a constant
probability density function.

We can now relate this to the first digit phenomenon by
expressing the numbers in scientific notation x × 10n, where
1 � x < 10: the first a significant digit d of the number is simply
the first digit of x. As we scale the number, we scale x, adjust-
ing its value modulo 10. In this way, we can always think that
1 � x < 10 whether scaled or not and if we take the base of the
logarithms to be 10, y = log10 x will have a constant probability
density function of 1 defined on [0,1]. Therefore, assuming the
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Table 16.4.

Digit First digit Second digit

0 — 0.1197
1 0.3010 0.1139
2 0.1761 0.1088
3 0.1249 0.1043
4 0.0969 0.1003
5 0.0792 0.0967
6 0.0669 0.0934
7 0.0580 0.0904
8 0.0512 0.0876
9 0.0458 0.0850

scale invariance above and for n ∈ {1, . . . ,9},

P(d = n) = P(n � x < n+ 1)
= P(log10n � log10 x < log10(n+ 1))
= P(log10n � y < log10(n+ 1))
= (log10(n+ 1)− log10n)1

= log10

(
n+ 1
n

)

= log10

(
1+ 1

n

)
,

which is Benford’s Law.
The reader may well detect the Weyl Equidistribution Theorem

lurking here!

Extending the Law

Newcomb’s general arguments in the paper mentioned earlier,
which understandably he framed in terms of logarithms, led him
to a table, described by the phrase

We thus find the required probabilities of occurrence in the
case of the first two significant digits of a natural number
to be [as reproduced in table 16.4].
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We can see that his first column heralded the Benford Law
figures that we have derived: to establish the second we can
proceed as follows.

If we isolate the first two significant digits of a number by
writing the number as x1x2 × 10n, where 10 � x1x2 � 99, and
define the random variable X accordingly, we have

P(First significant digit is x1 and the second is x2)
= P(x1x2 � X < x1x2 + 1)

= log10

(
1+ 1

x1x2

)
.

Now observe that

P(Second digit is x2)
= P(first significant digit is 1 and the second is x2)

+ P(first significant digit is 2 and the second is x2)
+ · · ·
+ P(first significant digit is 9 and the second is x2)

and we have the result

P(Second digit is x2) =
9∑
r=1

log10

(
1+ 1

xrx2

)
.

A small computation yields the second column of the table and
the reader may wish to pursue matters further to establish the
truth of another of his statements in the paper:

In the case of the third figure the probability will be nearly
the same for each digit, and for the fourth and following
ones the difference will be inappreciable.

Other results can be inferred too. For example, using that stan-
dard definition of conditional probability once again,

P(A | B) = P(A and B)
P(B)

,

P(2nd s.d. is x2 | 1st s.d. is x1)

= log10

(
1+ 1

x1x2

)/
log10

(
1+ 1

x1

)
.
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So, for example, the probability that the second digit of a number
is 5 given that its first digit is 6 is log10(1+ 1

65)/ log10(1+ 1
6) =

0.0990, whereas if it started with 9 the probability is log10(1 +
1
95)/ log10(1+ 1

9) = 0.0994.
The most likely start to a number turns out to be 10, with a

probability of log10(1+ 1
10)/ log10(1+ 1

1) = 0.1375.
Finally, this has been seen to be more than a theoretical curios-

ity. Most particularly, Mark Nigrini has pioneered its use in
accounting. Quoting from him:

Here are some possible practical applications for Benford’s
Law and digital analysis.

• Accounts payable data.

• Estimations in the general ledger.

• The relative size of inventory unit prices among loca-
tions.

• Duplicate payments.

• Computer system conversion (for example, old to new
system; accounts receivable files).

• Processing inefficiencies due to high quantity/low dol-
lar transactions.

• New combinations of selling prices.

• Customer refunds.

Which is rather more than Newcomb envisaged, to judge by this
final quotation from his paper:

It is curious to remark that this law would enable us to
decide whether a large collection of independent numerical
results were composed of natural numbers or logarithms.
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GOODSTEIN SEQUENCES

Bigger than the biggest thing ever and then some. Much big-
ger than that in fact, really amazingly immense, a totally
stunning size, real ‘wow, that’s big’, time… Gigantic multi-
plied by colossal multiplied by staggeringly huge is the sort
of concept we’re trying to get across here.

Douglas Adams, The Restaurant at the End of the Universe

Exponential notation deals with very big numbers very effi-
ciently. For example, 2222

has about one million digits in it
(and happens to be the biggest number which can be manufac-
tured from four 2s using the standard arithmetic operations). In
Adams’s original book of the Hitchhiker series, The Hitchhiker’s
Guide to the Galaxy, appears what might be the biggest number
ever used in a work of fiction: 2260 199, the quoted odds against
Arthur Dent and Ford Prefect being rescued by a passing space-
ship, having been thrown out of an airlock. (In fact, they were

201
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rescued by a spaceship—powered by an ‘infinite improbability
drive’.)

Exponential notation can be thought to be the third in the
progression of the basic arithmetical operations, as addition is
built on by multiplication and that in turn by exponentiation:
(2× 5 = 2+ 2+ 2+ 2+ 2) and (25 = 2× 2× 2× 2× 2). It seems
natural to extend the process to a fourth operation by defining
repeated exponentiation: that operation is commonly given the
name tetration (tetra- the Greek for four together with a part of
the word iteration). A notation that has been commonly used is
to put the power to the left of the base number, so, for example,

32 = 2(2
2) = 24 = 16,

42 = 2(2
(22)) = 216 = 65 536,

52 = 2(2
(2(2

2))) = 265 536 = a very large number indeed.

Notice that these ‘power towers’ are evaluated unambiguously
from the highest power down.

Alternative names and notations exist which replace and
extend the above, for example, Knuth’s up-arrow and Conway’s
chained-arrow notations, but it was the English mathematical
logician, philosopher and teacher Reuben Goodstein who coined
the term tetration and it was he who discovered a most remark-
able fact involving fantastically large numbers—and also a proof
which is equally remarkable.

Goodstein Sequences

We count in base 10. This means that, for example, the num-
ber 2136 has the natural decomposition

2136 = 2× 103 + 1× 102 + 3× 101 + 6× 100

and, generally, that (a1a2a3 · · ·an)10 =
∑n
r=1 ar × 10n−r for

positive integers a1, a2, a3, . . . , an < 10.
Evidently, we could use any positive integer for the base: with

base 2 we have

2136 = 211 + 26 + 24 + 23,
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where the nonzero ar are necessarily 1. We can ‘complete’
this binary representation by writing the powers themselves in
binary to arrive at a first stage of

2136 = 223+2+1 + 222+2 + 222 + 22+1

and a second of

2136 = 222+1+2+1 + 222+2 + 222 + 22+1,

which is known as the complete base 2 representation of 2136.
Now we move to the more esoteric and define a set of ‘base

bumping’ functions, starting with B3, which acts on the complete
base 2 representation of 2136 by replacing each 2 with a 3, to
give

B3(2136) = 333+1+3+1 + 333+3 + 333 + 33+1 ≈ 3.6× 1040,

a number vastly bigger than the original.
From this we will define the Goodstein sequence Gr(n) by

Gr(n) =
⎧⎨
⎩n written in complete base 2, r = 2,
Br (n)− 1 (simplified), r > 2,

which means that we subtract 1 from our number to get

G3(2136) = 333+1+3+1 + 333+3 + 333 + 33+1 − 1,

and to maintain the proper base representation we have to re-
arrange the 33+1 term a bit, a task achieved by noting that from
the theory of geometric series, for any positive integer b,

bn − 1 = (b − 1)
n∑
r=1

br−1 = (b − 1)
n∑
r=1

bn−r =
n∑
r=1

(b − 1)bn−r .

This makes

33+1 − 1 = 2× 33 + 2× 32 + 2× 3+ 2

and

G3(2136) = 333+1+3+1 + 333+3 + 333 + 2× 33 + 2× 32 + 2× 3+ 2.
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We continue the process with 2136 to get

G4(2136) = B4(2136)− 1

= 444+1+4+1 + 444+4 + 444 + 2× 43 + 2× 42 + 2× 4+ 1

≈ 3.3× 10619

and

G5(2136) = B5(2136)− 1

= 555+1+5+1 + 555+5 + 555 + 2× 53 + 2× 52 + 2× 5

≈ 4.0× 1010 925.

It seems evident that, as the iteration continues, the resulting
Goodstein number will become greater and greater, but let us
see what happens as we start with the smallest positive integers.

First, G2(1) = 1 and so G3(1) = 1− 1 = 0 and we are finished.
Now consider the Goodstein sequence generated by 2:

G2(2) = 21, G3(2) = 31 − 1 = 2, G4(2) = 2− 1 = 1

and finally G5(2) = 1− 1 = 0.
Again, the sequence collapses to 0. We have to work a little

harder with 3: G2(3) = 21 + 1, G3(3) = 31, G4(3) = 41 − 1 = 3,
G5(3) = 2, G6(3) = 1 and finally G7(3) = 0 and the collapse
occurs once more.

A Rather Big Surprise

How big must the integer be before these fantastically large num-
bers appear? Let us see what happens with 4. G2(4) = 22 = 4,
G3(4) = 33−1 = 2×32+2×3+2 = 26,G4(4) = 2×42+2×4+1 =
41 and continuing the procedure leads to the extended sequence:

r = 2 3 4 5 6 7 8 · · · ,
Gr (4) = 4 26 41 60 83 109 139 · · · .

The values of the Goodstein sequence are now growing, albeit
slowly, and we have a start—which continues in a manner rather
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stranger than one might imagine. After precisely 3×2402 653 211−
1 ≈ 10121 210 695 steps the sequence once again collapses to 0.

That is, if r = 3× 2402 653 211 − 1, Gr(4) = 0, vastly big though
the terms become!

David Williams has provided an argument to establish this
remarkable fact, based on observations of the patterns in the
Goodstein sequence of the number 4. The reader may wish to
check his observations that:

1. For r � 27, if m = 3× 2r − 1, then Gm(4) = 1×m2+ (27−
r)×m.

2. This means that, if a = 3× 227 − 1, then Ga(4) = a2.

3. Write b = a+ 1 = 3× 227 and this result becomes Gb(4) =
b2 − 1 = (b − 1)b + (b − 1).

4. For r � b − 1, this pattern continues to Gb+r (4) = (b −
1)(b + r)+ b − (r − 1).

5. This means that G2b−1(4) = (b − 1)(2b − 1).

6. If g = 2sb − 1, this pattern continues to Gg(4) = (b − s)g.

7. This means that, when s = b, Gg(4) = 0.

8. Which means that Gg(4) = 0 for the first time when

g = 2bb − 1 = 23×227 × (3× 227)− 1 = 3× 2402 653 211 − 1.

Now that we have the Goodstein sequence for 4 (eventually)
reaching 0 we will make the vast jump to the earlier sequence
generated by 2136. Is it possible that this would eventually finish
at 0 too, huge though the numbers become? Astonishingly, the
answer is yes, in fact every such sequence would do the same.
This 1944 result of Reuben Goodstein (On the restricted ordi-
nal theorem, Journal of Symbolic Logic 9:33–41) is, understand-
ably, known as Goodstein’s Theorem and simply states that every
Goodstein sequence converges to 0.

‘Bumping the base’ seems inevitably to increase the size of the
number hugely and subtracting 1 hardly seems to compensate
for this—but the process is deceptive!
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Axioms and Ordinals

The result is included here because of its surprising nature, but
its importance to mathematical logic is of vastly greater moment
since it provides an example of what have become known as
naturally independent phenomena, which have come about as a
by-product of the seminal work of Kurt Gödel. At a conference
in Königsberg in September 1930, he announced his first incom-
pleteness theorem, which destroyed the long-cherished notion of
the great David Hilbert that mathematics was complete within
itself; that is, that every statement expressible within it can be
proved or disproved within it. Yet there remained a degree of
dissatisfaction. Gödel’s construction of an undecidable state-
ment was ‘meta-mathematical’ and there was felt to be a need
for an example of such a statement which was not peculiar or
contrived, one which occurs ‘naturally’ and which we would rea-
sonably expect to be decidable one way or the other: that need
was fulfilled by versions of Ramsey’s Theorem, Kruskal’s Tree
Theorem and Goodstein’s Theorem, which had to wait until 1982
for J. Paris and L. Kirby to show that it is not provable within ordi-
nary arithmetic. Since Goodstein had indeed proved his theorem
back in 1944 we seem to have irreconcilable statements:

• It is true, I just proved it (Goldstein 1944).

• It is not provable one way or the other (Paris and Kirby
1982).

Of course, the reconciliation exists and it is found in a clear def-
inition of what we mean by mathematics in this context and the
somewhat exotic nature of Goodstein’s proof: the use of trans-
finite ordinals. The ‘ordinary arithmetic’ involved in Paris and
Kirby’s argument is formally defined by the Peano axioms, which
include all of the familiar rules of algebra together with the prin-
ciple of induction; it is all that we need to cope with everyday
mathematics. Set theory is not part of it and, most particularly,
infinite sets are not accounted for; there is no place in it for Can-
tor’s transfinite ordinals. We saw some of the wonder of Cantor’s
work in chapter 6, now we will very briefly look at some more
products of his original mathematical mind.
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His construction of transfinite numbers distinguishes between
the use of the positive integers as a measure of size (for example,
there are five elements in the set) and order (for example, that
is the fifth element of the set) and here we are concerned with
this latter interpretation.

Set theory (using the empty set∅, a letter from the Norwegian
alphabet apparently chosen by Andre Weil as part of the remark-
able Bourbaki initiative) can be used to define the finite ordinals
in the following recursive way:

0 ≡ ∅, 1 ≡ {∅} ≡ {0}, 2 ≡ {∅, {∅}} ≡ {0,1},
3 ≡ {∅, {∅}, {∅, {∅}}} ≡ {0,1,2}, etc.,

and this suggests the orderinga � b if and only ifa ⊆ b and with
this we retrieve the familiar, natural ordering 0,1,2,3,4, . . . .

Things become a little more interesting when we consider the
whole set of natural numbers {0,1,2,3, . . . } and define the first
transfinite ordinal ω = {0,1,2,3, . . . } and the extended ordinal
sequence 0,1,2,3,4, . . . ,ω. Thisω is distinguished in that it has
no immediate predecessor and it is clear from the definition that
n < ω for all integers n. The process continues as we define
ω+ 1 ≡ {0,1,2,3, . . . ,ω}, etc., to achieve the sequence

{0,1,2,3,4, . . . ,ω,ω+ 1,ω+ 2,ω+ 3, . . . },
which itself continues to

{0,1,2,3,4, . . . ,ω,ω+ 1,ω+ 2,ω+ 3, . . . ,ω+ω ≡ω× 2}
and thence to

{0,1,2,3,4, . . . ,ω,ω+ 1,ω+ 2,ω+ 3, . . . ,
ω+ω =ω× 2,ω× 2+ 1, . . . ,ω× 2+ω =ω× 3, . . . ,

ω× 4, . . . ,ω×ω =ω2,ω2 + 1, . . . ,ω2 +ω, . . . ,
ω2 +ω× 2, . . . ,ω3, . . . ,ω4, . . . ,ωω, . . . }

with the sequence continuing to (and beyond) the power-tower
limit ε0 =ωωωω

...

, which is designated ‘epsilon zero’. The famil-
iar notation used to represent this ordinal sequence is decep-
tively subtle; for example, 1+ω =ω ≠ω+ 1 and 2×ω =ω ≠
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ω×2, but we sidestep this important matter (it depends on what
is meant by ‘=’) to concentrate on a crucially important property
of the set of transfinite ordinals: with the ordering above they
are well ordered by �, a condition defined on all ordinals a, b
and c by

1. a � a.

2. If a � b and b � c, then a � c.

3. If a � b and b � a, then a = b.

4. Either a � b or b � a.

5. Every nonempty subset of the ordinals has a least element.

These seemingly innocent conditions on a set, and in particular
on the set of ordinals, conceal an important consequence: in such
a set there can be no infinite descending chains, that is, a � b �
c � · · · must be of finite length.

Goodstein’s Argument

With the Goodstein process acting on a positive integer, we have
a procedure which is plainly number theoretic. The assertion
that the sequence inevitably converges to 0 seems to be one
which can be resolved using the many powerful results of num-
ber theory, but Paris and Kirby proved otherwise: to prove the
result we have to move to these transfinite ordinals, and that
is what Goodstein did. The following argument puts all of the
pieces in place.

First, every transfinite ordinal a < ε0 can be written in a man-
ner rather like the complete base representation of integers,
using base ω; for example, ωωω +ωω+1 + ω. This is called
Cantor’s normal form of the ordinal.

Now we define the sequence Gωr (n) parallel to the Goodstein
sequence Gr(n) to be the sequence of transfinite ordinals gen-
erated by replacing the base of the Goodstein number with
ω.

For example, since G2(2136) = 222+1+2+1 + 222+2 + 222 + 22+1,

Gω2 (2136) =ωωω+1+ω+1 +ωωω+ω +ωωω +ωω+1.
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Now let us begin to get a feel for this new sequence by looking
at what form it takes with the number 4. The previous results
were that G2(4) = 22, G3(4) = 2 × 32 + 2 × 3 + 2, G4(4) = 2 ×
42 + 2× 4+ 1, . . . and this means that

Gω2 (4) =ωω, Gω3 (4) = 2×ω2 + 2×ω+ 2,

Gω4 (4) = 2×ω2 + 2×ω+ 1.

Notice that this sequence of ordinals is descending:

ωω > 2×ω2 + 2×ω+ 2 > 2×ω2 + 2×ω+ 1 · · · .

If the Goodstein sequence were of infinite length, it would gener-
ate this parallel sequence of descending ordinals which is infinite
in length… and that contradicts the well-ordering result stated
on page 207. Of course, this means that the Goodstein sequence
of 4 must terminate in 0.

It is not very difficult to generalize the process to any Good-
stein sequence

G2(n), G3(n), G4(n), G5(n), . . . , Gk(n), . . .

being paralleled by the decreasing ordinal sequence

Gω2 (n), G
ω
3 (n), G

ω
4 (n), G

ω
5 (n), . . . , G

ω
k (n), . . .

to provide proof of the theorem.
The result provides a striking realization of Cantor’s own view

that ‘the essence of mathematics lies in its freedom’.



Chapter 18

THE BANACH–TARSKI PARADOX

God exists since mathematics is consistent, and the Devil
exists since we cannot prove it.

Andre Weil

The subject matter of this last chapter simply has to rank as
the most counterintuitive result in mathematics and is a fitting
finalé to a book devoted to mathematical surprise.

Stefan Banach and Alfred Tarski brought to the world an
improvement on a paradox devised by the great topologist Felix
Hausdorff, the formalized form of which is often replaced by
something fanciful such as:

A solid sphere can be dissected into five pieces and the
pieces reassembled to form two complete spheres of exactly
the same size as the original.

Or, alternatively:

210
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A solid sphere the size of a pea can be dissected into finitely
many pieces which can be rearranged using rotations and
translations to form a solid sphere the size of the Sun.

To those who have not seen the result(s) before, it must seem as
if there is a misprint—or that the author has allowed himself to
become a little too carried away. Actually, what has been written
above is true and we will attempt to give the reader some flavour
of why it is so.

Formalization

We must formalize things, and to that end we define the Euclid-
ean ‘3 ball’ of radius r , Br , by Br = {x ∈ R3 : |x| � r} and agree
that a rigid motion of R3 is a transformation R which preserves
Euclidean distance (i.e. is such that for all points x,y ∈ R3,
|x −y| = |R(x)− R(y)|. Now we can state the results more
formally as:

There exists a decomposition of Br into five pairwise disjoint
sets A1, A2, A3, A4, A5 (of which the last is a single point)
such that there exist rigid motions R1, R2, R3, R4, R5 with
Br = R1(A1)∪ R2(A2) and Br = R3(A3)∪ R4(A4)∪ R5(A5),
where all unions are disjoint.

Or:

For any two distinct positive integers m and n, Bm can be
split into a disjoint union of sets A1, . . . , An such that there
exist rigid motionsR1, . . . , Rn so that Bn = R1(A1)∪R2(A2)∪
· · · ∪ Rn(An), where all the unions are disjoint.

There is also its most general form in R3:

Any two bounded subsets of R3 (with nonempty interior)
can be dissected and reassembled each to form the other.

Given that these three statements are true (and indeed they are),
one must expect a catch (otherwise it would not have taken Jesus
Christ to supposedly feed the five thousand with five loaves and
eight fishes): the catch is that in this case the proof is non-
constructive, it demonstrates existence without revealing how
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to achieve the aim. It also demonstrates that this is intrinsi-
cally a mathematical result and it cannot actually be realized.
Put another way, in the decomposition, the pieces will not be
measurable and so they will not have reasonable boundaries or
a well-defined volume in the accepted sense of the term. More
plainly, it is impossible to carry out the dissection since cutting
with a knife creates only measurable sets.

The Axiom of Choice

At the heart of the proof of the result lies the axiom of choice.
This most deceptive statement, formulated about a century ago
by the mathematical logician Ernst Zermelo, simply states that

In any collection of nonempty sets, we can form a new set
by choosing a member from each set in that collection.

It seems very obvious that such a thing is possible, but every-
thing depends on what we mean by the word choosing. For exam-
ple, for any finite collection of nonempty sets we can form a
new set by choosing the first element of each of the sets. Mov-
ing to infinite sets could be more problematic, but consider
the collection of all nonempty subsets of the natural numbers
{0,1,2,3, . . . }, then we can form our new set by choosing the
smallest element in each set. A little more subtly, consider the
collection of all nonempty subintervals of (0,1), there remains
no problem since we can form our new set by choosing the mid-
point of each interval. So where is the problem? Actually, so far
there isn’t one, since the axiom of choice has not come into
play; in each case we had a rule for doing the choosing. Now,
for example, take the collection of all nonempty subsets of R,
in which case there is no consistent procedure for choosing the
elements and thereby populating our set from the infinite num-
ber of subsets. Now we need that guarantee, provided by the
axiom of choice, which simply states that there is some proce-
dure which allows us to choose an element from each set in the
collection—and never mind what the procedure is; it gives no
indication of how the choosing would be done; it simply guaran-
tees the existence of that choice. Notice also that it is called an
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axiom; that is, it is an assumption. It has been shown that, if the
standard axioms of set theory are consistent without the axiom
of choice, they remain so if it is included. This means that we can
have one system of mathematical logic in which the axiom fea-
tures and a completely different one in which it does not (rather
like the geometries arising for the parallel postulate, mentioned
on page 70).

The axiom has many equivalent forms, some (subjectively)
more ‘obviously true’ than others, possibly the most important
of which are the well-ordering principle and the considerably
more enigmatic Zorn’s Lemma:

The well-ordering principle. A set is said to be well ordered
if every subset of it has a first element. The well-ordering
principle states that every set can be well ordered (which we
came across in the previous chapter).

Zorn’s Lemma. Every partially ordered set in which every
totally ordered subset has an upper bound contains at least
one maximal element.

We will leave the interested reader to dissect this, but this is
enough to appreciate mathematician Jerry Bona’s quip about
these entirely equivalent statements:

The axiom of choice is obviously true, the well-ordering
principle obviously false, and who can tell about Zorn’s
Lemma?

Groups

The axiom of choice is not alone sitting at the heart of the proof
of the paradox; that proof also relies fundamentally on the con-
cept of a group, and in particular a free group on two generators
and also that of a rotation group—and here is where problems
of exposition begin to become overwhelming. It is impossible in
such a tiny space to give anything like a representative overview
of the fundamental algebraic abstraction of a group, the minimal
system required for useful abstract algebra to exist. The defini-
tion is itself minimal though, but it efficiently conceals the great
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significance of the idea: a group G is any set of objects, together
with a law of combination (∗), which satisfy:

1. For all a,b ∈ G, a∗ b ∈ G (closure).

2. For all a ∈ G, there exists an element ε ∈ G so that a∗ ε =
ε ∗ a = a (identity element).

3. For each a ∈ G, there exists an element a−1 ∈ G so that
a∗ a−1 = a−1 ∗ a = ε (inverse elements).

4. For all a,b, c ∈ G, a∗ (b ∗ c) = (a∗ b)∗ c (associativity).

As the prototype case just consider the set of all integers with
∗ replaced by +, ε by 0 and a−1 by −a.

Notice that the definition does not include the assumption
of commutivity, that is, it is not assumed that a ∗ b = b ∗ a,
although this might be the case.

A particular case of a group is one which is formed by for-
mally combining any number of abstract symbols (generators),
with or without a law or laws which specify how combinations
of elements should be simplified; if no such law exists such a
group has the name of a free group on however many generators
there might be. For example, the free group on two generators
a and b consists of all finite strings that can be formed from
the five symbols ε, a, a−1, b, b−1 (inverses have to be included)
such that no a appears directly next to an a−1 and no b appears
directly next to a b−1 (since these must both simplify to ε). Two
such strings can be concatenated and simplified to a string of
this type by repeatedly making use of the cancellation brought
about by combining an element with its inverse wherever pos-
sible. For instance, aba−1b−1a concatenated on the right with
a−1ba−1b−1a results in

aba−1b−1aa−1ba−1b−1a = aba−1a−1b−1a.

We will represent this group by the letter G; it is such a group
that is required for the Banach–Tarski paradox to be established.
(For the sake of contrast, a condition that might be placed on a
group on two generators might be a way of rewriting the element
ba, for example, ba = a2b.)
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The Paradox

The group G can be ‘paradoxically decomposed’ as follows. Let
S(a) be the set of all strings that start with a and define S(a−1),
S(b) and S(b−1) similarly. Since every element of G must either
be ε or start with one of these four symbols, it must be the case
that

G = {ε} ∪ S(a)∪ S(a−1)∪ S(b)∪ S(b−1),

but notice that G can also be divided into S(a) and the rest of
the elements—and that these are all elements which do not begin
witha and which can therefore be written asaS(a−1); this means
that G can also be written in the form G = aS(a−1)∪ S(a) and
for the same reason G = bS(b−1)∪ S(b). This seemingly simple
observation will bring about the paradox.

Now we realize G as a group of rotations of R3 by choosing
two perpendicular axes and defining element a to be a rotation
of cos−1 1

3 about the first and b to be a rotation of cos−1 1
3 about

the second—a step which cannot be performed in two dimen-
sions. It is not obvious but these do form our free group on two
generators and the paradoxical decomposition above applies to
this form of G.

Now apply G to the sphere Sr = {x ∈ R3 : |x| = r} by taking
points on it and rotating them accordingly and collect together
all points x1, x2 which are such that x1 = gx2 for some g ∈ G;
that is, we partition the sphere into orbits brought about by the
action of G, with two points belonging to the same orbit if and
only if there is a rotation in G which moves the first point into
the second. Now we need that axiom of choice. Use it to pick
exactly one point from every orbit and let these points form a
set X. It is the case that almost every point in Sr can be reached
in exactly one way by applying the proper rotation from G to
the proper element from X and, because of this, the paradoxi-
cal decomposition of G then yields a paradoxical decomposition
of Sr .

Finally, connect every point on Sr with a ray to the origin
and so generate an infinite number of spheres; the paradoxical
decomposition of Sr then yields a paradoxical decomposition of
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the solid unit ball—minus the origin, but that is where ε comes
in.

And there is the famous Banach–Tarski paradox ‘proved’!
There may not be any holes left in the decomposition of the
sphere, but there are a number in the details of the above, but
they are matters of detail and can be patched up to a complete
and rigorous proof.

It is interesting to note that the proof depends on three dimen-
sions (with that group of rotations); while intuitively the two-
dimensional case seems to be easier, it is in fact not true that all
bounded subsets of the plane with nonempty interior are capa-
ble of being dissected one to the other. There is one in particular
which does exist though: a circular disc can be cut into finitely
many pieces and reassembled to form a square of equal area—
the ‘circle-squares’ were in some sense correct after all. The chal-
lenge to establish a way of doing this was posed by Tarski in
1925 and it took until 1990 to answer it, when Miklos Laczkovich
proved it possible—using about 1050 different pieces.

So, the result is not practical, but the late Ralph P. Boas Jr
found a use for it in his amusing and eclectic book (published
in 1996 by Mathematical Association of America) Lion Hunting
and Other Mathematical Pursuits. A Collection of Mathematics,
Verse and Stories, in which over thirty different ‘proven’ meth-
ods are given to capture a lion. (The book was an expansion of the
famous spoof paper ‘A contribution to the mathematical theory
of big game hunting’ by one H. Petard, 1938, American Mathe-
matical Monthly 45:446–47.) The one relevant to us is his idea
to apply the Banach–Tarski decomposition to the lion, put the
pieces back together to form a feline the size of a domesticated
cat (from which we may expect only minor harm). Then hunt it
fearlessly, capture it and after caging the beast, use the Banach–
Tarski decomposition once again to rearrange the pieces into
their original configuration!

If nothing else in this book was considered Impossible by the
reader, it is hoped that this result might just have saved the
author’s day.



The Motifs

For some minutes Alice stood without speaking, looking out
in all directions over the country—and a most curious coun-
try it was. There were a number of tiny little brooks run-
ning straight across it from side to side, and the ground
between was divided up into squares by a number of little
green hedges, that reached from brook to brook.

‘I declare it’s marked out just like a large chessboard!’
Alice said at last.

Through the Looking-Glass, and What Alice Found There

Lewis Carroll

The design of the chapter motifs did not demand Carroll’s fan-
tastic, mutually perpendicular brooks and hedges but a pair of
infinite invisible lines, intersecting at an arbitrary angle, and
repeated at regular intervals. By this means the plane is divided
into an infinite number of congruent parallelograms, the ver-
tices of which form an infinite, regular lattice. The two lines
determine two independent directions of translation and the
lengths of the sides of the parallelograms the fundamental trans-
lation distances, which must be bounded below by a number
ε > 0. It is with these two independent translations that the
study of the wallpaper groups begins; informally, we may think
of them as determining the possible ways of generating infinite
two-dimensional patterns using those translations and the other
isometries of the plane: rotations, reflections and glide reflec-
tions. The lattice points are obvious choices for centres of rota-
tion and the lines for mirror lines, but there are other possi-
bilities too and using them brings about the remarkable fact
that there are just seventeen essentially different patterns pos-
sible: no matter how different one wallpaper design looks from
another, if it is regular it must be of one of these types. Chapter 1

217



218 THE MOTIFS

Full HM Short HM
Chapter notation notation Brief description

1 Basic pattern

2 p1 p1 Consists only of translations.

3 p211 p2 Contains 180◦ rotations.

4 p1m1 pm Contains reflections. One mirror line
is parallel to one translation direc-
tion and the other mirror line is per-
pendicular to the other translation
direction.

5 p1g1 pg Contains glide reflections. The direc-
tion of the glide reflections is parallel
to one translation direction and per-
pendicular to the other translation
direction.

6 p2mm pmm Contains reflections with perpendic-
ular mirror lines.

7 p2mg pmg Contains both a reflection and a rota-
tion of order 2. The centres of rota-
tions do not lie on the mirror lines.

8 p2gg pgg Contains glide reflections and half-
turns. The glide reflections have per-
pendicular axes and the centres of
the half-turns do not lie on these
axes.

9 c1m1 cm Contains reflections and glide reflec-
tions with parallel axes. The mirror
lines bisect the angle formed by the
translation directions.

10 c2mm cmm Contains reflection with perpendicu-
lar axes and also rotations of order 2.
The centres of the rotations do not lie
on the mirror lines.

11 p4 p4 Contains a rotation of orders 2 and 4.
The centres of the order 2 rotations
are midway between the centres of
the order 4 rotations.

12 p4mm p4m As p4 but it also contains reflections.
The mirror lines are inclined at 45◦ to
each other so that four mirror lines
pass through the centres of the order
4 rotations.
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Full HM Short HM
Chapter notation notation Brief description

13 p4gm p4g Contains reflections and rotations of
orders 2 and 4. The mirror lines are
perpendicular, and none of the rota-
tion centres lie on these mirror lines.

14 p3 p3 Contains a 120◦ rotation.

15 p3m1 p3m1 Contains reflections and rotations of
order 3. The mirror lines are inclined
at 60◦ to one another, and all of the
centres of rotation lie on the mirror
lines.

16 p31m p31m Contains reflections whose axes are
inclined at 60◦ to one another and
rotations of order 3. Some of the cen-
tres of rotation lie on the mirror lines
and some do not.

17 p6 p6 Contains rotations of orders 2, 3 and
6.

18 p6mm p6m Contains rotations of order 2, 3 and 6
as well as reflections. The mirror lines
meet at all the centres of rotation. At
the centres of the order 6 rotations,
six mirror lines meet and are inclined
at 30◦ to one another.

begins with a basic design, a simple figure based on an equilat-
eral triangle; the following seventeen chapters each begin with
a design generated from the figure by the action of one of the
seventeen possible wallpaper transformations.

It seems to have been the French eclectic Camille Jordan who
first catalogued wallpaper groups in 1869, through his investi-
gations into crystallographic structure: he identified sixteen of
the seventeen possibilities: the full set was listed by the Russian
crystallographer E. S. Federov in 1891.

The seemingly innocent ε condition on the translations is
called the discreteness condition, which ensures that the funda-
mental parallelogram has a well-defined, finite area. This and
the independence of the two translations carries another impor-
tant and nontrivial consequence: the crystallographic restriction
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theorem, which states that, if there are rotations in a wallpaper
pattern, they must be of order 2, 3, 4 or 6; that is, every rotation
must be by 180◦, 120◦, 90◦ or 60◦.

A representative discussion of the matter would occupy too
much space here but we encourage the interested reader to pur-
sue the matter further, as there are plenty of sources avail-
able, for example, the classic books Geometry and the Imag-
ination by David Hilbert and Stephan Cohn-Vossen and Intro-
duction to Geometry by H. S. M. Coxeter deal with the matter
superbly and, for those who would enjoy a completely rigorous
if abstract approach, then the article by R. L. E. Schwarzenberger
(The 17 plane symmetry groups, 1974, The Mathematical Gazette
58(404):123–31) might well suit.

The different patterns are coded by what is called Hermann–
Mauguin (HM) notation, named after the German crystallogra-
pher Carl Hermann and the French mineralogist Charles-Victor
Mauguin. We will content ourselves with the table on pages 218
and 219, which identifies the patterns chapter by chapter.
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Principle of Induction

In Singapore, on Monday 18 August 2003, the South Korean
ambassador to Singapore knocked over the first of more than
303 000 dominos to create a new world record for the longest
solo dominoes topple. A Chinese lady, Ma Li Hua, had created
the arrangement, having spent six weeks, working twelve hours
a day doing so; they took just six minutes to fall.

The success of the attempt required two things: Ms Li Hua’s
prodigious industry in ensuring that, if one domino should top-
ple, the one following would topple too and the ambassador’s
contribution in toppling the first domino. With these two actions
assured, so was the success of the endeavour. There is a mathe-
matical equivalent, a jewel in the crown of mathematical tech-
niques: induction, which this section will attempt briefly to
explain. In its most basic form, the principle of induction states:

Suppose that a proposition P(n) is defined for all positive
integersn (or some ordered infinite subset of them) and that
we know P(1) to be true. If we assume that P(r) is true (for
some r > 1) and can conclude that P(r+1) is therefore true,
then P(n) is true for all integers.

To prove the result in each case we need to ‘knock over the first
domino’ by showing that P(n) is true for n = 1 and, having done
that, ensure that if one domino falls, so does the next one; that
is, if P(n) is true for n = k it must be true for n = k+ 1.

221
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Figure 1.

Figure 2.

Although there is evidence that the principle was understood
several centuries before, the first accepted proof by mathemat-
ical induction appears in 1575 in Francesco Maurolico’s Arith-
meticorum Libri Duo, where he established that the sum of the
first n odd integers is n2.

Here P(n) is the proposition

1+ 3+ 5+ · · · + (2n− 1) = n2.

Since 1 = 12, P(1) is true and we have ‘knocked over the first
domino’.

Now suppose that the kth domino falls, that is, P(k) is true
and therefore that

1+ 3+ 5+ · · · + (2k− 1) = k2

and consider

[1+ 3+ 5+ · · ·+ (2k− 1)]+ (2k+ 1) = k2+ (2k+ 1) = (k+ 1)2

and this means that the (k+ 1)th domino falls and so P(k+ 1)
is true: all dominos fall and the statement is true for all natural
numbers.
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To gain something of an appreciation for the diversity of the
technique, we will look at two further examples of its use for
statements defined on the natural numbers:

(i) P(n) is the statement, ‘If y = xn, dy/dx = nxn−1’ for n a
positive integer.

Since

y = x1 ⇒ dy
dx

= 1 = 1x0,

we have P(1) is true. Now suppose that P(k) is true, that is,

y = xk ⇒ dy
dx

= kxk−1.

Now consider y = xk+1 = x × xk. Using the product rule
and our inductive assumption,

dy
dx

= 1× xk + x × kxk−1 = xk + kxk = (k+ 1)xk,

which makes P(k+ 1) true.

(ii) P(n) is the statement, ‘A 2n × 2n chessboard with any one
square deleted can be covered with 2 × 1 L-shaped pieces
as shown in figure 1’.

Here, P(1) is the proposition that a 2×2 chessboard with any
square missing can be covered with such a 2×1 L-shaped piece;
this is obvious, as the chessboard becomes the piece. Now sup-
pose that P(k) is true, that is, a 2k × 2k chessboard with any
one square deleted can be covered with 2 × 1 L-shaped pieces
and consider a 2k+1 × 2k+1 chessboard with a square missing.
Now divide this chessboard into four equal quadrants, as shown
in figure 2, each of size 2k × 2k, and place one of the L-shaped
pieces at the centre so that it lies within the three quadrants
not containing the empty square. By the inductive hypothesis, it
is possible to tile each of the four quadrants: the one with the
square missing and the three with a square effectively missing
since it has already been covered. This means that the induction
is complete, with P(k+ 1) true.
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Figure 3.

The Goldbach Conjecture

On 7 June 1742 Leonard Euler, one of the greatest mathemati-
cians of all time—and arguably the most prolific—received a let-
ter, shown in figure 3, from one Christian Goldbach, a Prussian
amateur mathematician and historian, with whom Euler had a
regular correspondence.

The margin of the letter contains the sentence:

Es scheinet wenigstens, daß eine jede Zahl, die größer ist als
2, ein aggregatum trium numerorum primorum sey.
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This translates as ‘the conjecture that every number greater than
2 is the sum of three primes.’ For this to be sensible, it must have
been the case that Goldbach considered 1 to be prime, a conven-
tion that is no longer followed (since unique factorization of inte-
gers is greatly important). Its most common, modern equivalent
form is that every even positive integer greater than or equal
to 4 can be written as the sum of two primes. At the time of
this book going to print it remains a conjecture, although there
has been at least one ‘proof’. However, this has not met with
general acceptance (the publisher Faber has offered $1,000,000
for an accepted proof). The strongest result to date is one of
L. G. Schnirelman, when in 1939 he proved that every even posi-
tive integer can be written as the sum of not more than 300 000
primes! It is known that the conjecture holds for integers less
than 1018 and that will be plenty big enough for the purposes to
which we put the conjecture.

The Exponential and Trigonometric Functions

In the binomial expansion

(1+ x)n = 1+nx +n(n− 1)
x2

2!
+n(n− 1)(n− 2)

x3

3!
+ · · ·

we replace x by x/n to get

(
1+ x

n

)n
= 1+nx

n
+n(n− 1)

1
2!

(
x
n

)2

+n(n− 1)(n− 2)
1
3!

(
x
n

)3

+ · · ·

= 1+ x + n(n− 1)
n2

x2

2!
+ n(n− 1)(n− 2)

n3

x3

3!
+ · · · .

If we now take the limit as n→∞ of both sides, the expressions
involving n on the right-hand side of the expression approach 1
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and we have

lim
n→∞

(
1+ x

n

)n

= lim
x→∞

(
1+ x + n(n− 1)

n2

x2

2!
+ n(n− 1)(n− 2)

n3

x3

3!
+ · · ·

)

= 1+ x + x
2

2!
+ x

3

3!
+ · · · = ex.

The Taylor expansions,

ex = 1+ x + x
2

2!
+ x

3

3!
+ · · · ,

sinx = x + x
3

3!
+ x

5

5!
+ · · · ,

cosx = 1+ x
2

2!
+ x

4

4!
+ · · · ,

can be extended to complex numbers by replacing x ∈ R by
z ∈ C and, in particular, by replacing x by ix. This results in

eix = 1+ (ix)+ (ix)
2

2!
+ (ix)

3

3!
+ · · ·

= 1+ ix − x
2

2!
− ix3

3!
+ · · ·

=
(

1− x
2

2!
+ · · ·

)
+ i

(
x − x

3

3!
+ · · ·

)

= cosx + i sinx.

Now replace ix by −ix to get e−ix = cosx− i sinx and therefore

sinx = 1
2i
(eix − e−ix) and cosx = 1

2
(eix + e−ix).

log10 2 Is Irrational

Here we prove that log10 2 is irrational. In fact, log10 a is irra-
tional for all a not a rational power of 10, but we will satisfy
ourselves with the special case we need in the text.
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The standard argument is to assume otherwise and so write

log10 2 = p
q
,

where p and q are integers.
This means that 10p/q = 2 and so 10p = 2×10q and this means

that 2p×5p = 2×2q×5q = 2q+1×5q, which means that p = q+1
and p = q, which is an obvious contradiction.

Floor and Ceiling Functions

The floor function �x� is defined as the greatest integer not
exceeding x and the ceiling function �x� as the smallest integer
greater than or equal to x.

For example:

�8.15� = 8,
�8.15� = 9,

�−8.15� = −9,
�−8.15� = −8,

�8� = 8,
�8� = 8.

Figure 4 shows the ‘staircase’ behaviour of each of the func-
tions, with the rises occurring in intervals of length 1 on the
horizontal axis.

We list several basic properties:

•

�x� =
⎧⎨
⎩x = �x�, x an integer

�x� + 1, x not an integer.

• If {x} denotes the decimal part of the real number x, {x} =
x − �x�,

• �x + k� = �x� + k, �x + k� = �x� + k, for any integer k,

• x < y ⇒ �x� � �y� and �x� � �y�.
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Figure 4.

The Pigeon-Hole Principle

Otherwise known as the Dirichlet drawer principle (named after
Lejeune Dirichlet, who in 1834 mentioned it under the name
Schubfachprinzip and not to be confused with the Dirichlet prin-
ciple in potential theory). In modern times its familiar name read-
ily suggests the imagery that is used to express the result. There
are two forms, the first of which is:

If n+1 pigeons are distributed among n holes, then at least
two of them occupy the same hole.

The obvious truth of the statement encourages the thought that
it is no more than a trivial observation—but that is very far
indeed from reality. We give just two examples of it being put to
subtle use.
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Prove that if seven distinct numbers are selected from
{1,2,3,4,5,6,7,8,9,10,11}, then two of them will sum to
12.

The list {1,11}, {2,10}, {3,9}, {4,8}, {5,7}, {6} exhausts the
possible ways of choosing pairs of the numbers which sum to
12; it also contains the single number, 6.

Here the ‘holes’ are these six subsets in the list and the
‘pigeons’ the seven chosen numbers: since we are choosing seven
different numbers, at least two must come from the same subset
containing a pair of numbers—and therefore sum to 12.

If each point of the plane is randomly coloured red or blue,
then there exists a rectangle with all four vertices of the
same colour.

We will find a rectangle whose sides are horizontal and vertical.
First, draw any three horizontal lines. Any vertical line drawn
intersects these three horizontal lines in three points and these
may be coloured with two colours in 23 = 8 different ways (the
pigeon holes). Choose any nine vertical lines (the pigeons), then
there are bound to be at least two triplets of points coloured in
the same manner (for example, RRB and RRB): select two such
triplets to define the vertical sides. In any triplet, at least two
points are of the same colour. Select two such and we have the
horizontal sides.

The more general form of the principle is:

If n or more pigeons are distributed among k(< n) holes,
then at least one hole contains at least �n/k� pigeons.

To prove this, suppose that each pigeon hole contains at most
�n/k� − 1 pigeons. Then the total number of pigeons is at most

k
(⌈
n
k

⌉
− 1

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
k
(
n
k
− 1

)
,
n
k

an integer,

k
⌊
n
k

⌋
,

n
k

not an integer.

In either case, this is strictly less than n and we have a contra-
diction.

Two examples of the use of this follow:
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Suppose there are 49 people in a room, then at least five of
them must have their birthday in the same month.

Here, the 49 pigeons are to be placed in 12 holes (one for each
month). Using the above principle, there must be at least �49

12� = 5
pigeons in the same hole—or birthdays in the same month.

How many cards must be selected from a pack of 52 to
guarantee that at least three cards of the same suit are
chosen?

Here, there are n pigeons to fit into four holes (one for each
suit). We require least n so that �n/4� � 3. A small exercise in
arithmetic reveals that this is n = 9.

Logs and Floors

In chapter 15 we needed that, if M � 1 is a positive integer,

�log10(M + 1)� =
⎧⎨
⎩�log10M�, M + 1 not a power of 10,
�log10M� + 1, M + 1 a power of 10.

This can be proved as follows:

0 < log10

(
1+ 1

M

)
< 1

and so

0 < log10

(
M + 1
M

)
< 1,

0 < log10(M + 1)− log10M < 1,
log10M < log10(M + 1) < log10M + 1.

Using the properties of the floor function,

�log10M� � �log10(M + 1)� � �log10M + 1�,
�log10M� � �log10(M + 1)� � �log10M� + 1.

This means that the middle integer is sandwiched between the
two consecutive outside integers and this can only be reconciled
by one or other of the two alternatives:

�log10(M+1)� = �log10M� or �log10(M+1)� = �log10M�+1.
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With �x� the rises appear in intervals of 1 unit; the log10 func-
tion changes this to intervals that are integer powers of 10, as
indicated in figure 5. From these facts the result follows.

A Rational Approximation to an Irrational Number

Here we will prove the approximation theorem of a rational num-
ber to an irrational number which was used in chapter 15. Its
statement is:

Given any irrational number λ and any positive integer k,
there is a rational number m/n with n � k such that 0 <
λ−m/n < 1/nk.

The proof is as follows.
For the given k consider the set of k irrational numbers {nλ :

n = 1,2,3, . . . , k} and write αn = �nλ� and βn = {nλ} for n =
1,2,3, . . . , k. This means that 0 < βn < 1 and, sincenλ = αn+βn,
βn = nλ−αn.

Now divide the unit interval into k equal subintervals I1, I2,
I3, . . . , Ik, as shown in figure 4. Evidently each of the βn is
irrational and so cannot be any of the subinterval endpoints

0,
1
k
,

2
k
,

3
k
, . . . ,

k
k
,

which means that they lie strictly within the intervals.
Now take two cases.
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At least one of the βn lies in I1. For that βn it must be that
0 < βn < 1/k and so 0 < nλ−αn < 1/k and

0 < λ− αn
n
<

1
nk
.

Take αn =m and we have what is required.
Now suppose that none of the βn lie in I1.
This means that all k of them lie in the k − 1 subintervals

I2, I3, . . . , Ik and so, by the pigeon-hole principle, at least two of
them must lie in the same subinterval: let us write two such as
βp and βq, with βp > βq. Since both of these numbers lie inside
an interval of length 1/k, their positive difference must satisfy
0 < βp − βq < 1/k and so

0 < (pλ−αp)− (qλ−αq) < 1
k

and this means that

0 < (p − q)λ− (αp +αq) < 1
k

and

0 < λ− αp +αq
p − q <

1
k(p − q).

Take αp + αq =m and p − q = n and once more we have what
we require.

This is not the tightest bound for such an approximation, but
it is the one we want!
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