
1

Copyright © 2019 by William Lau

Some Rights Reserved. “The Little Book of Algorithms” is licensed under a Creative

Commons Attribution - NonCommercial - ShareAlike 4.0 International License.

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that

suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your

contributions under the same license as the original.

This summary is located here: https://creativecommons.org/licenses/by-nc-sa/4.0/

ISBN: 978-1-9161163-0-6

For the latest free download of this book, go to http://bit.do/LBOA

Email feedback and corrections to the author: william.lau@computingatschool.org.uk

Twitter: @MrLauLearning

I dedicate this book to my colleagues and students at Central Foundation Boys’

School. You have to be brave to choose (to teach or learn) computer science; it

is not easy and it is not for the faint- hearted!

To Lloyd, Leila, Jaime, Gavin and the brave computer science students at CFBS -

this is for you

 Preface……………………………………………………………

1. Lowest number……………………………………………….

2. String slicing and concatenation………………………

3. Area of a circle………………………………….…………….

4. Odd or even………………………………….………………...

5. For Loops………………………………………………….…….

6. While Loops…………………………………………………….

7. Lowest number in a list…………………………...……...

8. Linear search………………………………………………….

9. Linear search in a 2D list…………………………….…..

10. Basic login system……………………………………….....

11. Login system by reading a file………………………….

12. While Loops revisited: Unlimited pin attempts…..

13. Total of a list..….….…………………………………………..

14. Total of a 2D list…..………………………………………….

15. Converting binary to denary…….……………………….

16. Converting denary to binary…….……………………….

17. Challenges…………..………………….………………………

18. Space for further practise and notes….…………….

19. Solutions…………………………………………………………

20. Further reading……………………………………………….

21. Acknowledgements………………………………………….

2

4

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

48

53

63

64

2

This book is designed to help teachers and students build fluency in their

Python programming. It is aimed at students who have already been

introduced to the three basic programming constructs of structured

programming, namely sequence, selection and iteration. The original aim

was to help my Year 11 students with their GCSE Computer Science

programming exam. However I hope many students and teachers will find

this book useful. The algorithms are represented using Python as this is a

popular language with a low threshold for learning.

I was inspired to write this book after reading articles by Scott Portnoff,

Sue Sentance and Richard Pawson; three luminaries in the world of

computer science education. All three have made me ask the question,

 “Why is learning programming so difficult?”

Like many readers, I too found programming challenging and I am still

learning! After teaching programming for the past seven years, I noticed

that only a minority of my students felt confident enough to program

independently after two years of instruction. Upon realising this, I knew I

had to change my pedagogy.

I believe Scott Portnoff is correct; students do need to memorise some

key programming constructs e.g. if statements, while loops and for loops.

This will decrease cognitive load and enable students to practise more

fluently. Portnoff’s work was my starting point for this book. As a student

of b-boy and hip-hop culture, I came across Joseph Schloss’s book

Foundation where he writes about a musical canon that exists for b-boys.

To add to this theory, Jonathan Sacks argues that a literary canon is

essential to a culture. In linking these three ideas together, I thought

about creating a canon for programmers. Perhaps there is a set of

programs which represent algorithms that every computer science

student should familiarise themselves with?

I started to compile a list of programs based on my experience as a

teacher and examiner. Many of the shorter programs are worth repeating

until they are committed to memory and I admit that learning some of the

longer programs by heart is both challenging and futile. Therefore, to

help you develop fluency, I have also written some challenges based on

3

this canon. These challenges should help you understand these

programs by applying them.

Sue Sentance suggested in her introduction to programming courses,

that we should introduce students to subroutines in their very first

program. Richard Pawson goes one step further in edition 07 of the Hello

World magazine; here Pawson puts forward a case for teaching using the

functional programming (FP) paradigm from the outset. He makes a

strong case for using functions which return values rather than

containing inputs and outputs. This seems counterintuitive due to the

perceived complexity of FP syntax, however there are three key

arguments for using functions- unit testing of individual functions, code

reusability and a separation of concerns. I would therefore encourage

readers to write with functions from the very beginning. This seems

daunting at first, however repetition will lead to fluency.

Despite the irrefutable advantages of FP, I have to be pragmatic and will

include procedures (subroutines which do not return values) and also

programs which do not use subroutines at all. Whilst, I recognise this

might be a step away from the FP paradigm; students are likely to

encounter simple structured algorithms up to at least GCSE level. Not

including examples of both structured and FP paradigms would be doing

our students a disservice. For some algorithms, the exclusion of

functions also reduces complexity and cognitive load therefore providing

a shallower learning curve.

In order to keep programs as short as possible and to improve

readability, comments are not generally provided in the programs.

Instead, a more detailed explanation is explained below each program. In

lessons, I have found it useful to go through one or two algorithms at the

front of the book with my students and then go to the associated

challenge at the back. Alternatively, students may choose to work

through the book independently in class or at home.

This book will hopefully help you to practise and develop fluency in your

programming. Learning programming is similar to learning a musical

instrument. Both involve practise and making lots of mistakes. Both

also require perseverance to develop fluency. Keep going!

4

A program which takes two numbers as inputs and outputs the

smallest number.

When you first started programming, you may have produced a

program to ouput a lower number without using subroutines.

You may even be asked to write simple programs like this in your

exams. However, good programmers write code which can be

reused and tested in isolation (known as unit testing). Therefore,

using a subroutine (also known as a subprogram) to create a

procedure would produce a “better” program that is modular:

Whilst the use of a procedure in the second program allows you to

call the subprogram multiple times in the main program, it does not

allow for full code re-use...

1

2

3

4

5

6

7

8

9

num1 = int(input("Enter the first number: "))

num2 = int(input("Enter the second number: "))

if num1 <= num2:

 lowest = num1

else:

 lowest = num2

print("The lowest number is " + str(lowest))

1

2

3

4

5

6

7

8

9

10

11

12

13

def lower_num(num1,num2):

 if num1 <= num2:

 lowest = num1

 else:

 lowest = num2

 print("The lowest number is " + str(lowest))

first_num = int(input("Enter the first number: "))

second_num = int(input("Enter the second number: "))

lower_num(first_num,second_num)

5

...What happens if you wanted to use this lowest number later in

the program? In this case, it makes sense to use a function. The

key differentiator is that functions return values whereas

procedures do not.

 The function lower_num is defined on lines 1-5. We have to

define functions before we can call (use) them.

 Usage of the function is demonstrated on lines 8-13. We still

take two numbers as integer inputs on Lines 8-9.

 Line 11 calls the function lower_num with two arguments: the

contents of first_num and second_num variables.

These arguments are passed into the parameters num1 and

num2 respectively¹. The result is stored in the variable lowest.

 As the returned value is an integer, it is cast to a string on line

13 using str(lowest) so that it can be concatenated (the

technical name for joining text) with the meaningful output

message.

¹ Arguments and parameters should have different names even if they seem to serve the

same purpose. In this case both num1 and first_num store the first number. However, the

argument stored in the variable first_num has global scope, it can be accessed and

changed anywhere in the program. The parameter num1 has local scope, it is a local

variable which can only be accessed in the subroutine.

1

2

3

4

5

6

7

8

9

10

11

12

13

def lower_num(num1,num2):

 if num1 <= num2:

 return num1

 else:

 return num2

first_num = int(input("Enter the first number: "))

second_num = int(input("Enter the second number: "))

lowest = lower_num(first_num,second_num)

print("The lowest number is " + str(lowest))

6

A subprogram which outputs a username based on a student’s

first name, surname and year of enrolment.

E.g. Connor Pearce 2019 should return 19CPearce.

 The procedure user_name is defined on lines 1-4.

 Line 2: Strings can be sliced, with the first index being 0. In this

case for the year, we start at 2 and stop at 4 (exclusive). This

means we would slice year[2] and year[3] i.e. the last two digits

of the year. These are concatenated with the first letter from

the forename and the entire last_name.

 Lines 7-9: This shows how the procedure might be used. First

the user’s details are taken as string inputs .

 Then the procedure is called on line 11 with the user’s details

as arguments.

 The output is shown below:

1

2

3

4

5

6

7

8

9

10

11

def user_name(forename, last_name, year):

 username_out = year[2:4] + forename[0] + last_name

 print("Your user name is " + username_out)

first_name = input("Enter your first name: ")

surname = input("Enter your surname: ")

joined = input("Enter the year you joined the school: ")

user_name(first_name,surname,joined)

Enter your first name: Connor

Enter your surname: Pearce

Enter the year you joined the school: 2019

Your username is 19CPearce

7

If you wanted to use this user_name procedure later to generate

an email address, this would not be possible without duplication of

code, it is therefore wise to rewrite this subprogram as a function.

This is shown below:

Here we introduce a programming convention of placing your main

program in a main function. The main function should be the only

function which contains inputs and ouputs in the entire program.

From this main function you should call other functions, passing

arguments into parameters. This process is known as parameter

passing.

The main function above spans lines 7-13. Lines 16-17 ensure that

your main function will be the first function to be run when the

program is executed. __name__ == '__main__' by default.

However, if the program is imported, the __name__ value

becomes the module name, so you can selectively run or test

functions. This is yet another advantage of using the functional

programming paradigm.

def user_name(forename, last_name, year):

 username_out = year[2:4] + forename[0] + last_name

 return username_out

def main():

 first_name = input("Enter your first name: ")

 surname = input("Enter your surname: ")

 year = input("Enter the year you joined the school: ")

 gen_user_name = user_name(first_name, surname, year)

 print("Your user name is " + gen_user_name)

if __name__ == '__main__':

 main()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

8

A subprogram which calculates the area of a circle.

The example below is a function as it returns a value.

 Line 1: As the value of Pi does not change whilst the program is

running, this is a constant. Programmers sometimes write

constants in capitals and may give them meaningful names as

shown.

 Line 3: The function circle_area is defined and has one

parameter (a placeholder/variable) called radius.

 The area_out is calculated radius**2 may also be written as

radius ^2 in other languages and psuedocode.

 Lines 8-10: This shows how the function may be used.

 Line 9: The circle_area is called and the radius is passed

as an argument. The result is stored in the variable area.

 Line 10: In Python, we can also use a comma to concatenate the

area to the output message. The advantage of using a comma to

concatenate is that casting is done implicitly. This means the str

() function is not necessary. It is worth noting that concatenating

with a comma will automatically add a space between

concatenated strings.

1

2

3

4

5

6

7

8

9

10

CONSTANT_PI=3.14159

def circle_area(radius_in):

 area_out = CONSTANT_PI * radius_in**2

 return area_out

radius = int(input("Enter the radius of the circle: "))

area = circle_area(radius)

print("The area of the circle is", area)

9

A subprogram which checks if a number is odd or even. It will print

a meaningful message accordingly. The program should loop until

the user enters the sentinel value “STOP”

This is a procedure as no value is returned.

 Line 2: The % symbol in Python means MODULO. So when we

MOD2, we are checking for the remainder when dividing by 2

 Line 8: Sets a Boolean flag called again to True.

 Line 9: This is a Pythonic way of writing while again ==

True:

 Lines 11-12: Provided the user does not enter the sentinel value

(also known as a rogue or trip value) of “STOP”, the while loop

will continue to call is_odd with each new number inputted to

check if it is odd or even.

 This program could be improved by using function instead of a

procedure. All inputs and outputs would take place outside of

the function and you could also use a main function as shown

previously on page 7.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

def is_odd(number_in):

 if int(number_in) %2 == 0:

 print("The number is even")

 else:

 print("The number is odd")

again = True

while again:

 number = input("Enter a number")

 if number != "STOP" :

 odd = is_odd(number)

 else:

 again = False

10

A subprogram which outputs all the numbers between a certain

start and stop value (inclusive).

This is a procedure as it does not return a value.

 The procedure number_generator is defined on lines 1-3.

 Line 2: uses a for loop to iterate from the start value to the stop

value. In Python, the stop value is exclusive, so

number_generator(1,10) would only print numbers 1 to 9, this is

why we use stop+1.

 Lines 6-9 show how we would use the procedure.

 Lines 6-7: The user’s details are taken as inputs .

 Then the procedure is called on line 9.

1

2

3

4

5

6

7

8

9

def number_generator(start, stop):

 for count in range(start,stop+1):

 print(count)

start_num = int(input("Enter a start value"))

stop_num = int(input("Enter a stop value"))

number_generator(start_num, stop_num)

11

A program which generates a random number then asks the user

to guess the random number. The program repeats until the

correct number is guessed.

This is a function as the smallest number is returned.

 Line 1: Imports the random module so that we can use the

randint function to generate a random integer between 1

and 10 (inclusive).

 Unlike the previous program, we do not know how many times

we need to repeat; the user could get the answer wrong 8 times

or they could guess it first time. In these situations we use a

conditional loop i.e. a while loop.

 Line 3: Sets an initial value that will never match the random

number. This ensures the while loop runs at least once.

 Lines 8-9: If the user guess is incorrect, we return to the top of

the loop i.e. line 5.

1

2

3

4

5

6

7

8

9

import random

randomNumber = random.randint(1,10)

guess = 99

while guess != randomNumber:

 guess = int(input("Guess the number between 1 and \

10: "))

 if guess == randomNumber:

 print("Correct")

 else:

 print("Try again")

12

A program which iterates through a list of numbers and outputs the

lowest number

 Line 3: We start with the hypothesis that the item at position 0

of numbers_list is the lowest.

 Line 5: We then iterate through the full length of the list,

comparing each position with the initial value stored in lowest.

 Lines 6-7 If the current value is smaller than lowest, this

number replaces the item in lowest.

 Line 9: When the for loop has finished and we have therefore

reached the end of the list, we output the value of lowest.

 This can also be written as a function which takes a list as an

argument.

1

2

3

4

5

6

7

8

9

numbers_list = [9,8,7,5,6,2,1,12,14,0,13]

lowest = numbers_list[0]

for count in range(len(numbers_list)):

 if numbers_list[count] < lowest:

 lowest = numbers_list[count]

print("The lowest number in the list is ", lowest)

def find_lowest(numbers_list_in):

 lowest = numbers_list_in[0]

 for count in range(len(numbers_list_in)):

 if numbers_list_in[count] < lowest:

 lowest = numbers_list_in[count]

 return lowest

numbers_list = [9,8,7,5,6,2,1,12,14,0,13]

lowest_num = find_lowest(numbers_list)

print("The lowest number in the list is ", lowest_num)

1

2

3

4

5

6

7

8

9

10

11

12

13

Iterating through a list from start to finish as seen in the previous

algorithm is effectively a linear search. We start at position 0 and

continue checking each position from left to right until we reach the

end. A meaningful message informs the user whether the item was

found.

 For all searching algorithms, you should start by setting a

Boolean flag to False. We do this on line 6.

 Lines 9-11: If the target matches the item in the array, the name

is outputted and the Boolean flag is set to True.

 Lines 13-14: When we’ve iterated through the entire list, check

to see if found is still False. If so, the item was not in the list.

 Line 18: Notice how we pass the argument stored in the variable

called name into the parameter called target. The argument

and parameter name are different so that we understand that

their scope is different. The footnote on page 5 explains this in

more detail.

def linear_search(target):

 names = ["Rocky", "Connor", "Jawwad",

 "Yacoub", "Cara", "Jess",

 "Jake", "Suki", "Zi", "Q"]

 found = False

 for count in range(len(names)):

 if target == (names[count]):

 print(target, "found at position", count)

 found = True

 if found == False:

 print(target, "was not found")

name = input("Who are you looking for? ")

linear_search(name)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

14

A program which searches for a student’s results within a 2D list of

exam scores.¹

 Line 10: Use a variable to set a Boolean flag to False.

 Lines 12-14: if the name is located, the found flag is set to

True and the result can be found by indexing the 2D list using

the current count and the exam_number.

 Line 18: if we reach the end of the list and found is still False,

then the number was not in the list.

 Lines 16 and 19: Output a meaningful message.

¹Python does not have an array data structure. Instead it uses a list. The main differences

between a list and an array is that lists allow the storage of mixed data types and they are

dynamic (allow appending). I’ve tried to use single data types with the lists in this book so

they appear more like arrays. I have also avoided the use of in-built list functions. This

may seem strange and inefficient in places but it has been done as the GCSE exam will

only feature arrays.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

cs_scores=[["Jo","45","60","72"],["Zi","55","65","70"],

["Ellie","71","78","78"],["Jessica","68","79","80"],

["Abdul","65","70","71"]]

print("We will try to find the result for a given \

student's exam")

name = input("Enter a student name: ")

exam_number = int(input("Enter the exam number: "))

found = False

for count in range(len(cs_scores)):

 if name == cs_scores[count][0]:

 found = True

 result = cs_scores[count][exam_number]

 print(name+ "'s result for exam", exam_number,\

"was", result)

if found == False:

 print(name, "cannot be found")

15

A program which checks to see if the username and password

matches the one in our program. The user gets three attempts.

 Line 3: Initialises a while loop counter called tries to 0.

 Line 5: The while loop provides a maximum of 3 password

attempts. We use a while loop because we do not know how

many attempts the user will need to get the answer correct.

 Lines 10-12: If the correct username and password is

supplied, we output a message and break out of the while loop.

Otherwise, a meaningful error message is shown and the tries

variable is incremented (Line 18).

 Line 18: This is also a common way to increase a score or

counter.

 N.B. Storing the password as plaintext in the program that you

are using is a really bad idea! Curious readers should visit:

http://bit.do/hashing-python-passwords for more info.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

username = "James"

password = "myPasswordIsDog!"

tries = 0

while tries < 3:

 user_in = input("Enter the username")

 pass_in = input("Enter the password")

 if user_in == username:

 if pass_in == password:

 print("Logged in")

 break

 else:

 print("Incorrect password")

 else:

 print("Incorrect username")

 tries = tries+1

16

A procedure which performs a linear search on a 2D list that is

stored in a file.

 Line 5: Opens the file users.txt in read mode.

 Line 6: Reads the file. We have used the eval function which

means that the translator will treat the text file’s contents as a

Python expression if the format is valid. In this case, it converts

the contents of the text file into a 2D list and stores this under

the identifier users_2D.

 Lines 17 and 21: calls the login procedure if the login fails

i.e. it restarts the procedure.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

users.txt

[['lauw', 'insecurePwd'], ['vegaj', 'iLoveWebDesign'],

['lassamil', 'zeroDawn']]

def login():

 username = input("What is your username")

 password = input("What is your password")

 newfile = open("users.txt","r")

 users_2D = eval(newfile.read())

 newfile.close()

 found = False

 for count in range(len(users_2D)):

 if username == users_2D[count][0]:

 found = True

 if password == users_2D[count][1]:

 print("logged in")

 else:

 print("incorrect password")

 login()

 if found==False:

 print("Invalid username")

 login()

login()

17

A program which allows the user to enter a pin number. If the user

gets the pin number wrong, the program keeps asking them to

enter a correct pin.

N.B. An unlimited number of attempts is a bad idea as it allows for

brute force hacking. However, this is a common algorithm that is

used in guessing games e.g. guess the number.

 The program keeps looping while the pin is not equal to 1984. It

is very similar to the program on page 11.

 Line 1: Sets an initial value that is not equal to the pin. This

ensures the while loop runs at least once.

 Line 3 asks the user to enter their pin.

 Lines 5-8 check to see if the pin matches, a meaningful

message is produced depending on the outcome.

1

2

3

4

5

6

7

8

pin = ""

while pin != "1984":

 pin = input("Please enter the pin")

 if pin == "1984":

 print("Logged in")

 else:

 print("Incorrect pin")

18

A program which adds up numbers in a list

 Line 3: Defines the variable total and initialises it to 0.

 Line 5: Iterates through the length of the list, 0 to 9 (exclusive).

 Line 6: Takes the current value of total and adds the current

value in the list to the total. This cumulative total is commonly

used for scores and timers in programs.

 A functional programming approach is also shown below:

1

2

3

4

5

6

7

8

number_list = [9, 8, 3, 5, 4, 1, 8, 4, 1]

total = 0

for count in range(len(number_list)):

 total = total + number_list[count]

print("The total sum of the list is ", total)

def total_list (number_list_in):

 total = 0

 for count in range(len(number_list)):

 total = total + number_list[count]

 return total #the total is returned

def main():

 # The main function contains all inputs and outputs

 number_list = [9, 8, 3, 5, 4, 1, 8, 4, 1]

 op = input("Do you wish to find the mean, lowest \

value, highest value or the total of the list?")

 # Call the relevant function based on the user input

 if op == "total":

 total_out = total_list(number_list)

 print("The total sum of the list is ", total_out)

 # Elifs would go here

Call the main function

main()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

19

A program which adds up each student’s scores in a 2D list i.e. a

row or sub list

 In the program above we are trying to calculate each student’s

total, so the student is in the first loop. This is also known as the

outer loop.

 Line 8: Iterate through 0 to 5 (exclusive) i.e each student .

 Line 9: Now starting with student 0 i.e. Karman, enter the nested

inner loop through exams 1 to 4 (exclusive) i.e. exams 1-3.

 Line 10: Add the score to the running total.

 Line 11: Output the student’s total.

 Line 12: Reset the total variable to 0 so that we can now

start the second iteration of the student loop and calculate the

total of Daniel’s exams.

cs_scores = [["Karman","45","60","72"],

 ["Daniel","55","65","70"],

 ["Giacomo","71","78","78"],

 ["Jessica","68","79","80"],

 ["Edie","98","85","91"]]

total = 0

for student in range(len(cs_scores)):

 for exam in range(1,4):

 total = total + int(cs_scores[student][exam])

 print("Total for",cs_scores[student][0],"=",total)

 total = 0

1

2

3

4

5

6

7

8

9

10

11

12

20

A subprogram which takes a 4-bit binary string as an argument and

returns the denary equivalent

 Lines 17-18: The default value for __name__ in every Python

program is '__main__' and so the main function is called.

 Line 12: Asks the user for a binary string.

 Line 13: Calls the binary_to_denary function, passing the

binary string as an argument. The returned value will be stored

in the denary variable and output on Line 14.

 Line 1: Defines a function called binary_to_denary and

takes the binary_in string as an argument.

 Lines 2-5: Slices each individual digit and multiplies it by its

relevant place value.

 Lines 7-8: The total is calculated and returned.

 Line 14: The denary equivalent is outputted with a meaningful

message.

def binary_to_denary(binary):

 bit1 = int(binary[3])*1

 bit2 = int(binary[2])*2

 bit3 = int(binary[1])*4

 bit4 = int(binary[0])*8

 denary_out = bit1 + bit2 + bit3 + bit4

 return denary_out

def main():

 binary_in = input("Enter the binary string")

 denary = binary_to_denary(binary_in)

 print("The binary value", binary_in, "in denary \

 is", denary)

if __name__ == '__main__':

 main()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

21

A program which converts a denary value between 0-15 to a 4-bit

binary value

 Line 3: With binary numbers, we cannot use the integer data

type. A default string of “0000” also cannot be used as strings in

Python are not mutable. Having four bits like the previous

program could work, but I would have to define and initialise

each bit. This could create up to four lines of extra code. I

therefore decided to use a list as lists are mutable.

 Lines 7-17: This models the “left-to-right” process of checking

how many 8s, 4s, 2s and 1s go into a number between 0-15.

 Lines 19-20: This is a way to iterate through the list and print

each element without commas, brackets and new lines. The

end=“” means at the end of each print, do not add anything, as

a default end=“\n” i.e. a new line at the end of every print.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

denary = int(input("Enter the denary number between \

0 and 15"))

binary = ["0","0","0","0"]

if denary > 15:

 print("error")

if denary >=8 and denary <=15:

 binary[0] = "1"

 denary = denary - 8

if denary >=4:

 binary[1] = "1"

 denary = denary - 4

if denary >=2:

 binary[2] = "1"

 denary = denary - 2

if denary >=1:

 binary[3] = "1"

for count in range(len(binary)):

 print(binary[count],end="")

22

You’ve written a few programs in class and at home. Now is the

time to practise. The challenges will start by getting you to modify

existing programs in this book and progressively get more difficult.

Try to write your answer without looking back at the programs at

the front of this book. If you really need a hint, page numbers are

provided. You can check your answers against the solutions

Pro tip: Always answer in pencil first, you can go over these in pen

afterwards.

1. Highest number……………………………………….…………

2. Unique username…………………………………………..…..

3. Volume of a cuboid……………………………….…………...

4. Roll a double to start……………………….…………………

5. Counting vowels………………………………………………...

6. Highest number in a list…………………………….……….

7. Weak password?……………………………………………..…

8. Grade boundaries……………………………….….………….

9. Penalty shootout………………………………………….…....

10. Register an account ……………………………………….....

11. Average of a list………………………………………………….

12. Total for each exam in a 2D list………….…………..

13. Average for each student in a 2D list…………………..

14. Converting hexadecimal to denary………………………

15. Calculating the file size of a sound file………………..

23

24

28

29

30

34

35

36

37

40

42

43

44

45

46

23

Write a subprogram that has three parameters, num1, num2 and

num3. The program should take three numbers as arguments and

return the highest number.

Hint: You may consult the lowest number program on page 5.

def highest_number (num1, num2, num3):

 if num1 >= num2 and num1 >= num3:

24

Write a subprogram which generates a username for a teacher

based on their first name and surname. The format should be their

surname, followed by the first letter of their first name. The

program should check to see if the username already exists in

users.txt and if so, a unique username should be generated by

appending a “#” symbol. E.g. if a teacher joins the school called

Winnie Lau, their username would be LauW# .

Hint: You may consult programs on page 6 and 16

def generate_username(firstname, lastname):

 username =

 #check to see if the username already exists

 users_file = open(,)

 usernames = eval()

 users_file.close()

 for count in range(len()):

 if ==username:

 username =

 return

users.txt

[['LauW', 'insecurePwd'], ['VegaJ', 'iLoveWebDesign'],

['LassamiL', 'zeroDawn']]

25

Write a program which asks for a teacher’s first name and

surname. Then demonstrate how you would call the function on the

previous page to generate a username and output this in a

meaningful message.

The next two pages are provided so that you can practise Challenges 1

and 2 without the writing frames. It’s important that you keep challenging

yourself and eventually you should be able to write these programs

independently.

26

Write a subprogram that has three parameters, num1, num2 and

num3. The program should take three numbers as arguments and

return the highest number.

27

Write a subprogram which generates a username for a teacher

based on their first name and surname. The format should be their

surname, followed by the first letter of their first name. The

program should check to see if the username already exists in

users.txt and if so, a unique username should be generated by

appending a “#” symbol. E.g. if a teacher joins the school called

Winnie Lau, their username would be LauW# .

users.txt

[['LauW', 'insecurePwd'], ['VegaJ', 'iLoveWebDesign'],

['LassamiL', 'zeroDawn']]

28

Write a subprogram that takes the length, width and height as

arguments and return the volume of the cuboid.

After writing the function, show how you might use the function to

output an answer with a meaningful message.

Hint: You may consult the “area of a circle” program on page 8.

29

Write a program which simulates two dice being rolled. Output the

values of both dice. Keep prompting the user to roll the dice until

the two dice match e.g. Double 6. When the user roles a double,

output the message “Game loading”. For all other combinations,

ask the user to press Enter to roll again.

Hint: You may consult the while loop programs on pages 11 and 17.

30

def vowel_counter(sentence):

 A = 0

 E = 0

 I = 0

 for count in range(

 if sentence[count] == “A”:

Iterate through the sentence below and count how many times

each vowel occurs. At the end of the program, ouput the number of

As, Es, Is, Os and Us with a meaningful message.

sentence = “Learning programming is similar to learning a musical

instrument. Both involve practise and making lots of mistakes.

Both also require perseverance to develop fluency. Keep going!”

hint: See programs on pages 10, 12, 15. You can iterate through

the sentence in the same way you iterate through a list or list.

31

32

Iterate through the sentence below and count how many times

each vowel occurs. At the end of the program, ouput the number of

As, Es, Is, Os and Us with a meaningful message.

sentence = “Learning programming is similar to learning a musical

instrument. Both involve practise and making lots of mistakes.

Both also require perseverance to develop fluency. Keep going!”

#Extra challenge, store the vowel counters in a list or 2D list.

33

34

Write a program which iterates through a list of numbers and

outputs the highest number

I dare you to pass the list into a function!

Hint: Page 10

numbers = [9, 8, 72, 22, 21, 81, 2, 1, 11, 76, 32, 54]

35

Write a program which asks the user to enter a desired password.

Perform a linear search through a list of obvious (weak) passwords.

If the user’s password is found in the obvious passwords list,

output a message to tell them it is weak and would be easily

hacked using a brute force attack.

Extra challenge: You may also want to add in various validation

checks. One example might be a length check, so if the password

does not meet a particular length it is also declared weak.

Meaningful messages are necessary for each different validation

check.

obvious = [“password”, “qwerty”, “hello123”, “letmein”, “123456”]

36

An A-Level student wants to find out how many marks are required

to receive a certain grade. Write a subprogram that takes a user’s

desired grade as an argument and then iterates through the 2D list

to return the number of marks they need for that grade.

Hint: Page 12

def marks():

 grades = [[“A*”, “90”], [“A”, “83”,], [“B”, “72”], [“C”,
“60”], [“D”, “49”], [“E”, “30”]]

37

Write a program which simulates a penalty shootout. The computer

is the goalkeeper and dives a random direction or stays in the

centre each turn. The keeper’s move is generated but not

outputted at first. The user takes a penalty by typing in “left”,

“right” or “centre”. The keeper’s move is then outputted. If the

player typed left and the keeper dives left, the penalty is saved etc.

The program repeats 5 times. After 5 penalties, the winner is

announced with a meaningful message.

Hint: Pages 10 and 11. I strongly advise using a pencil for this one!

import random

keeper = [“left”, “centre”, “right”]

More space on next page...

38

39

40

Write a subprogram to allow a teacher to register a new account.

The subprogram should take the username and password as

arguments and write these details to the existing users.txt file

shown opposite. We can assume this subprogram used the

generate_username function on page 24 to for the username

and a password is inputted separately in the main function.

Hint: Use the comments on the opposite page as skeleton code to

structure your subprogram

def new_user(username_in, password_in):

41

define a function called new_user with two parameters: username and password

#open the file in read mode

#use eval to read in the 2D list

#close the file

#make a new list for the new user

#append the username to the new user list

#append the password to the same list

#append this new user list to the existing 2D list that we read in

#open the file in write mode

#cast the updated 2D list as a string and write this string to the file

#close the file

users.txt

[['lauw', 'insecurePwd'], ['vegaj', 'iLoveWebDesign'],

['lassamil', 'zeroDawn']]

42

Write a subprogram called mean_of_list that takes a list of

numbers as an argument and returns the mean average.

Write the main function which contains your list and which calls the

subprogram (function)

Hint: Pages 7, 18, 20

def mean_of_list(numbers_list_in):

43

cs_scores = [["Karman","45","60","72"],

["Daniel","55","65","70"],

["Giacomo","71","78","78"],

["Jessica","68","79","80"],

["Edie","98","85","91"]]

total = 0

for exam in range():

Recall the program which adds up each student’s scores in a 2D

list i.e. a row or sub list on page 19. Write a program which will

output the total for each exam with a meaningful message.

Hint: As the focus is on each exam rather than each student, the

outer for loop will be for each exam. Remember to reset the total

after each iteration of the inner loop.

44

Write a subprogram that takes the 2D list of exam results as an

argument and outputs the mean average for each student.

Hint: Remember to reset the total to 0 after outputting the average

for each student

cs_scores = [["Karman","45","60","72"],

["Daniel","55","65","70"],

["Giacomo","71","78","78"],

["Jessica","68","79","80"],

["Edie","98","85","91"]]

def mean_student():

45

Write a function which takes in 1 hexadecimal digit as an argument

and returns the denary equivalent.

Write a main function which asks the user to input a hexadecimal

value and then passes this value to the function you have written.

Hint: Pages 7 and 20

46

The size of a sound file can be calculated by using the following

formula:

File size = sampling frequency * bit depth * channels * duration

The answer will be given in bits, therefore we can convert this to

kilobytes by dividing the answer by (8 * 1024.)

Write a subprogram which takes the sampling frequency, bit depth,

channels and duration of a sound file and returns the file size. This

can then be outputted in Kilobytes and Megabytes.

47

Use the space below to finish the function and to show how it may

be called.

48

49

50

51

52

53

Eirini Kolaiti came up with the great idea of putting example solutions to

the challenges at the back of the book. I will also post these solutions

online at: http://bit.do/LBOA

There is always more than one way to solve a problem. Even if the

algorithm is well-defined, there may be alternative programming

approaches. The following pages present examples which you can

compare to your own answers. Comments have been provided to aid your

understanding, you should develop the habit of commenting all your

programs.

Do not worry if you have written an alternative solution. Also be aware

that these solutions were not produced by typing the whole program out

and running them with no syntax and logic errors on the first time! There

was a debugging process as I wrote each line or block of code.

Encountering errors whilst iteratively testing is the “normal” way to

develop programs.

#define a function called highest_num with three parameters

def highest_number (num1, num2, num3):

 # return the highest number

 if num1 >= num2 and num1 >= num3:

 return num1

 elif num2 >= num1 and num2 >= num3:

 return num2

 else:

 return num3

first = int(input("Enter the first number: "))

second = int(input("Enter the second number: "))

third = int(input("Enter the third number: "))

call the highest_number function and pass the contents of

first, second and third variables as arguments into the

parameters num1, num2, num3

highest = highest_number(first,second,third)

#output the highest number with a meaningful message

print("The highest number is " + str(highest))

54

def generate_username (firstname, lastname):

 # create username based on the lastname and first intiial

 username = lastname + firstname[0]

 # open the file in read mode and evaluate its contents

 users_file = open("users.txt","r")

 usernames = eval(users_file.read())

 users_file.close()

 # check the entire 2D array to see if the username exists

 for count in range(len(usernames)):

 # if the username exists, add a # symbol

 if usernames[count][0] == username:

 username = username + "#"

 # return the final username

 return username

forename = input("Enter your first name: ")

surname = input("Enter your surname: ")

username_out = generate_username(forename, surname)

print("Your username is " + str(username_out))

def cuboid_volume (length, width, height):

 volume = length * width * height

 return volume

length_in = int(input("Enter the length of the cuboid: "))

width_in = int(input("Enter the width of the cuboid: "))

height_in = int(input("Enter the height of the cuboid: "))

volume_out = cuboid_volume(length_in, width_in, height_in)

print("The volume of the cuboid is " + str(volume_out))

55

import random

initialise the dice with two different values so the

program runs at least once

dice1 = 1

dice2 = 2

while dice1 != dice2:

 dice1 = random.randint(1,6)

 dice2 = random.randint(1,6)

 print("Dice 1 rolled:" + str(dice1))

 print("Dice 2 rolled:" + str(dice2))

 if dice1 == dice2:

 print("Game loading")

 else:

 # Use input to enable the user to press enter to continue

 # looping

 again = input("Press enter to roll again")

56

def vowel_counter(sentence):

 A = 0

 E = 0

 I = 0

 O = 0

 U = 0

 for count in range(len(sentence)):

 # The .upper() casts the current letter to an upper

case

 # Without .uppper(), we would write

 # if sentence[count] == "A" or sentence[count] ==

"a":

 if sentence[count].upper() == "A":

 A = A+1

 elif sentence[count].upper() == "E":

 E = E+1

 elif sentence[count].upper() == "I":

 I = I+1

 elif sentence[count].upper() == "O":

 O =O+1

 elif sentence [count].upper() == "U":

 U = U+1

 # using comma to concatenate in Python means we can cast

 # the integer values implicitly without using str()

 print("The number of A's:", A)

 print("The number of E's:", E)

 print("The number of I's:", I)

 print("The number of O's:", O)

 print("The number of U's:", U)

sentence = "Learning programming is similar to learning a

musical instrument. Both involve practise and making lots of

mistakes. Both also require perseverence to develop fluency.

Keep going!"

vowel_counter(sentence)

57

numbers = [9, 8, 72, 22, 21, 81, 2, 1, 11, 76, 32, 54]

highest = numbers[0]

for count in range(len(numbers)):

 if highest < numbers[count]:

 highest = numbers[count]

print("The highest number is", highest)

An alternative approach using a function:

numbers = [9, 8, 72, 22, 21, 81, 2, 1, 11, 76, 32, 54]

def highest_num(numbers_in):

 highest = numbers[0]

 for count in range(len(numbers)):

 if highest < numbers[count]:

 highest = numbers[count]

 return highest

highest_out = highest_num(numbers)

print("The highest number is", highest_out)

obvious = ["password", "qwerty", "hello123", "letmein",

"123456"]

password = input("Please enter a password: ")

A basic linear search which iterates through the obvious

list to check for matches against the password

for count in range(len(obvious)):

 if password == obvious[count]:

 print("This password is weak. It uses a common word or \

phrase making it susceptible to a brute force attack")

Length check

if len(password) < 8:

 print("Your password is too short. Please use at least \

8 characters")

58

initialise some counter variables for different types of

characters

char = 0

num = 0

upper = 0

lower = 0

for count in range(len(password)):

 # A linear search to check if the character is a digit

 if password[count].isdigit():

 num = num+1

 # A check to see if the character is an upper or lower char

 elif password[count].isalpha():

 char = char+1

 if password[count].isupper():

 upper = upper+1

 elif password[count].islower():

 lower = lower+1

if num == 0:

 print("To make your password more secure, you could include \

numbers")

if upper == 0 or lower ==0:

 print("To make your password more secure, you could include \

upper and lower case letters")

if char == 0:

 print("To make your password more secure, you could include \

letters")

if num > 0 and char > 0 and upper > 0 and lower > 0:

 print("Your password meets the minimum length requirements \

and contains a mixture of numbers, characters, upper and lower

case letters.")

def marks(grade_in):

 grades = [["A*","90"],["A","83"],["B","72"],["C","60"],

["D","49"],["E","30"]]

 for count in range(len(grades)):

 if grades[count][0] == grade_in:

 return grades[count][1]

grade = input("What grade do you wish to achieve")

mark_req = marks(grade)

print("For grade", grade, "you need to gain", mark_req)

59

import random

keeper = ["left", "centre", "right"]

keeper_score = 0

player_score = 0

for count in range(5):

 dive = random.choice(keeper)

 player = input("Do you wish to shoot to the left, centre or

right: ")

 print("Keeper went to the", dive)

 if keeper == player:

 print("Penalty saved")

 keeper_score = keeper_score+1

 else:

 print("GOAAAAAAL!")

 player_score = player_score+1

if keeper_score > player_score:

 print("Keeper wins", keeper_score, "-", player_score)

else:

 print("You win!", player_score, "-", keeper_score)

def new_user(username_in, password_in):

 users_file = open("users.txt", "r")

 users = eval(users_file.read())

 users_file.close()

 new_user = []

 new_user.append(username_in)

 new_user.append(password_in)

 users.append(new_user)

 users_file = open("users.txt", "w")

 users_file.write(str(users))

 users_file.close()

60

def mean_of_list(numbers_list_in):

 total = 0

 for count in range(len(numbers_list_in)):

 total = total + numbers_list_in[count]

 # divide by the length of the list to find the mean

 average = total / len(numbers_list_in)

 return average

def main():

 numbers_list = [0,7,5,3,22,23,11,34,51,32,5,3,1]

 mean = mean_of_list(numbers_list)

 print("The mean average of", numbers_list, "=", mean)

main()

A better way to call main in case the file is imported:

if __name__ == '__main__':

main()

cs_scores=[["Karman","45","60","72"],

 ["Daniel","55","65","70"],

 ["Giacomo","71","78","78"],

 ["Jessica","68","79","80"],

 ["Edie","98","85","91"]]

total = 0

for exam in range(1,4):

iterate through each exam

 for student in range(len(cs_scores)):

 # update the total by iterating through each student

 total = total + int(cs_scores[student][exam])

 # calculate the total

 print("Total for exam num", exam, "=", total)

 # reset the total before starting on the next exam

 total = 0

61

cs_scores=[["Karman","45","60","72"],["Daniel","55","65","70"],

 ["Giacomo","71","78","78"],["Jessica","68","79","80"],

 ["Edie","98","85","91"]]

def mean_student(scores_in):

 total = 0

 for exam in range(1,4):

 # iterate through each exam

 for student in range(len(cs_scores)):

 # update the total by iterating through each student

 total = total + int(cs_scores[student][exam])

 # calculate and output the mean

 mean = total / len(cs_scores)

 print("Mean average for exam num", exam, "=", mean)

 # reset the total before starting on the next exam

 total = 0

mean_student(cs_scores)

def hex_to_denary(hex_in):

 # only convert values A to F

 hex_A_to_F = [["A","10"],["B","11"],["C","12"],["D","13"],

["E","14"],["F","15"]]

 convert = False

 for count in range(len(hex_A_to_F)):

 if hex_in == hex_A_to_F[count][0]:

 convert = True

 return int(hex_A_to_F[count][1])

 # if values are not A to F i.e. 1 to 9, return these as

 # integers

 if convert == False:

 return int(hex_in)

def main():

 hexi = input("Enter a hex digit to convert: ")

 hex_out = hex_to_denary(hexi)

 print("The denary equivalent is", hex_out)

62

def file_size(frequency, bits, channels, duration):

 size = frequency * bits * channels * duration

 return size

def main():

 freq = int(input("Enter the frequency in Hz: "))

 bit_depth = int(input("Enter the bit depth: "))

 channel = int(input("Enter the number of channels: "))

 length = int(input("Enter the duration of the sound file in \

seconds: "))

 size_out = file_size(freq, bit_depth, channel, length)

 size_kb = size_out / (8 * 1024)

 size_mb = size_kb / 1024

 print("The file size is", size_kb, "KB")

 print("The file size is", size_mb, "MB")

main()

A better way to call main in case the file is imported:

if __name__ == '__main__':

main()

63

¹Two brilliant books for absolute beginners. These “how-to” guides take you step by step

through the basic programming structures required to access most of the material in this

book.

Coding Club Python Basics Level 1 (2012) ¹

Coding Club Next Steps Level 2 (2013)

Chris Roffey

Making Games with Python and Pygame (2012)

Automate The Boring Stuff With Python (2015)

www.inventwithpython.com

Al Sweigart

www.pythonprogramming.net

See also: Youtube channel- sentdex

Sentdex

www.kidscancode.org

See also: Youtube channel- KidsCanCode

Chris and Priya

Bradfield

Youtube channel– MrLauLearning William Lau

Youtube channel– Tech With Tim Tech With Tim

Youtube channel- Corey Schafer Corey Schafer

Youtube channel– Computerphile Computerphile

How We Learn (2014) Benedict Carey

Why We Sleep (2017) Matthew Walker

Teaching Computing in Secondary Schools William Lau

Computer Science Education Edited by Sue Sentance,

Erik Barendsen and

Carsten Schulte

Teach Like a Champion 2.0 Doug Lemov

Tools for Teaching Fred Jones

64

My knowledge and understanding of programming was initially developed

by attending courses run by Ilia Avroutine, Darren Travi, Graham

Bradshaw, David Batty and Sarah Shakibi. I have also benefitted greatly

from the mentoring of Merijn Broeren, Elizabeth Hidson and Andy Swann.

The generosity of those who produce resources to teach programming

such as Chris Roffey, Al Sweigart and Sentdex along with the wider CAS

and Facebook community is also a great source of inspiration. To all of

the aforementioned, I am indebted. You have given me the confidence to

keep developing my programming skills independently and to eventually

share these skills with you on CAS, Facebook, Youtube and in my books.

To further my understanding of programming, I have had the great

privilege of sharing thoughts with Peter Kemp, Alex Parry, Eirini Kolaiti,

Richard Pawson, Scott Portnoff, Sue Sentance and Meg Ray. All of these

brilliant teachers and programmers read early drafts of this book and

their comments have improved the book significantly.

I hope that my compromise of including procedures as well as non-

modular programs is forgiven. I have to be realistic and acknowledge that

for all novices, writing programs without subroutines is a starting point

and an achievement in itself. There are many solutions to a given

algorithm and provided that the output is correct and the algorithm is

reasonably efficient, we should recognise these as correct (up to GCSE

level) even if subroutines are not used.

I thank my colleagues, particularly Lloyd Stevens, Leila Lassami, Jaime

Vega, Gavin Tong, Edward Swire, Pat Cronin and Jamie Brownhill at

Central Foundation Boys’ School (CFBS). They have supported me with

their time, patience and agreeable responses to my (occasionally

unreasonable) demands! I also thank the students at CFBS whose hard

work have provided me with further motivation to improve my teaching .

Our students always inspire us to be better .

To Suki, Zi and Q, this book would not be possible without you. Many

people ask me how I have time to write these books and my answer is, “I

have an understanding family!” Thank you for your continued support.

65

Have you ever wanted to become more fluent at Python programming?

Perhaps you find the prospect of file writing or using 2D data structures

daunting? If so, then this is the book for you!

The Little Book of Algorithms concisely presents sixteen problems which

computer science students will commonly encounter. These problems are

solved efficiently using programs written using Python. However, reading

these programs is not enough, so the second half of the book presents

you with some challenges so that you can apply what you have learnt.

After finishing this book, you should feel more familiar with:

• While loops and For loops

• Concatenating different data types

• Using procedures and functions

• Working with 1D and 2D lists and arrays

• File reading and writing

This book will show you how to write better Python programs and will

expose you to the key skills that are required to do well in any

programming assignment or exam.

