

Book Description

This book discusses the intricacies of the internal workings of a deep learning
model. It addresses the techniques and methods that can not only boost the
productivity of your machine learning architectural skills, but also introduces
new concepts. Implemented correctly, these can set your deep learning model
a league apart from all other models.

This book not only focuses on theoretical and conceptual realms of such
knowledge, but also gives equal importance to putting this information to the
test. We do this by including some common practical examples and
demonstrations that you would normally build deep learning for, hence
giving you the best of both worlds. The main features of this book include:

Refreshing the fundamentals of a deep learning model and neural
networks and connecting them with the advanced knowledge laid
out in this book, reinforcing the reader’s prior knowledge and
transforming it into an expert-level understanding.

Emphasizing those tasks that are commonly demanded from deep
learning models and breathing new life into them by introducing
new techniques, methods, and elements that enable the model to
drastically improve the performance of deep learning models on
such tasks.
Discussing experimentally tested methods that are known to have
a positive impact on the model’s effectiveness.

No usage of mathematical notations in the examples detailed in
this book so that the concepts can be readily assimilated and
mastered by programmers that do not have a mathematical
background, hence prioritizing clarity of concepts.

Keeping this requirement in mind, the examples use Numpy code
throughout as it best represents what the code actually means and
its purpose.

If you want to learn advanced strategies for Python this is the book for you.
Click the Buy Now button to get started today!

Deep Learning With Python
Advanced and Effective Strategies of

Using Deep Learning with Python
Theories

© Copyright 2020 - All rights reserved.
The content contained within this book may not be reproduced, duplicated, or
transmitted without direct written permission from the author or the
publisher.
Under no circumstances will any blame or legal responsibility be held against
the publisher, or author, for any damages, reparation, or monetary loss due to
the information contained within this book, either directly or indirectly.

Legal Notice:

This book is copyright protected. It is only for personal use. You cannot
amend, distribute, sell, use, quote or paraphrase any part, or the content
within this book, without the consent of the author or publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational
and entertainment purposes only. All effort has been executed to present
accurate, up to date, reliable, complete information. No warranties of any
kind are declared or implied. Readers acknowledge that the author is not
engaging in the rendering of legal, financial, medical, or professional advice.
The content within this book has been derived from various sources. Please
consult a licensed professional before attempting any techniques outlined in
this book.

By reading this document, the reader agrees that under no circumstances is
the author responsible for any losses, direct or indirect, that are incurred as a
result of the use of the information contained within this document,
including, but not limited to, errors, omissions, or inaccuracies.

Table of Contents

Introduction

Chapter 1: A General Overview of Deep Learning
Artificial Intelligence, Machine Learning, and Deep Learning

Modeling of Machine Learning
Foreseeable Benefits of Deep Learning

Chapter 2: The Arithmetic Foundations of a Neural Network
A Peek into a Neural Network

Data Attributes of Neural Networks
Gearing the Neural Network through Tensor Operations
Gradient-Based Optimization in Neural Networks

Chapter 3: Starting Our Tasks with Neural Networks
Inspection of a Neural Network

What is Keras?
The Pre-requisites for a Deep Learning Workstation
Deep Learning Binary Classification Example
Deep Learning Multiclass Classification Example
Deep Learning Regression Example

Chapter 4: Using Deep Learning for Computer Vision
What is Convnet? Working with Convolution Operations

Training a Convnet
Working with a Pretrained Convnet

Chapter 5: Mastering Advanced Practices in Deep Learning
Keras Functional API
Inspection of Deep Learning Models Using Keras Callbacks and
Tensorboards
Tensorboard: The TensorFlow Visualization Network
Working with Advanced Methods and Getting Optimized Results

Conclusion

Introduction
In this book, we will explore the advanced theories relating to Deep learning
in Python and reinforce these theoretical concepts on some fundamental
experiments and practices to build a better understanding of the intricate
workings of these theories. As such, we will not only learn about useful tools,
functions, techniques, and methods that can be used in deep learning models.
We will also put this knowledge into a practical demonstration as it would
clarify arbitrary concepts that would otherwise be impossible to convey
through the use of words. We will start our exploration of these concepts in
an orderly fashion and subtly explain new concepts and link them with our
existing background knowledge regarding models, networks, and such to
build a steady and clear comprehension. The initial part of this book focuses
more on theoretical discourse. As we move on, we will begin immersing
ourselves in solving some common real-world problems that use deep
learning models to resolve, strengthening not only the knowledge of theories
but also giving due importance to the practical implementation of this
information.

The goal of each chapter is to take the concepts that the readers might be
familiar with and, after briefly explaining them, introduce new concepts that
offer advanced functionality, enabling the readers to understand what exactly
has changed and how it impacts the network’s and the model’s working. By
building up a strong baseline in the beginning chapters, we pick up the pace
and learn more than before by the ending chapter.

Chapter 1: A General Overview of Deep Learning
The main focus of this chapter is to provide the reader with a general outline
of the roadmap of Deep Learning through an informative discussion while
journeying through the first chapter of the book. Moreover, the primary
concern of this chapter is to address some of the most common
misconceptions about what Deep Learning really is, along with refreshing the
reader’s concept as we proceed.

Artificial Intelligence, Machine Learning, and Deep Learning
When talking about Artificial Learning and Deep Learning, it becomes
compulsory to include Machine Learning into the discussion because these
three are related to each other. As such, we will steer the direction of our
discussion towards discerning whether the difference between these three
types of learning is evidently pronounced or just subtle. The diagram below
depicts the relationship between Artificial Intelligence (Artificial Learning),
Machine Learning, and Deep Learning.

Artificial Intelligence
Let’s discuss Artificial Intelligence first. Artificial Intelligence is basically
referred to as the development of an Artificial Intelligence System all by
itself, imitating the learning pattern of human beings. In other words, A.I is a
computer system that can harness the human learning prowess and perform
tasks without any output from human operators. Artificial Intelligence is
actually a scientific endeavor that was pioneered by a handful of computer
scientists back in the 1950s, and the main goal of this endeavor is to enable
computers to automate all those tasks which are by nature, intellectual, and

performed by humans. Hence, due to the nature of Artificial Intelligence, it
encompasses Machine Learning as well as Deep Learning, along with many
other techniques and approaches which don’t involve any learning
whatsoever. The field and concept of A.I is still largely unexplored even after
so many years of its introduction because of modern hardware limitations.
However, this does not insinuate that Artificial Intelligence is just pure
science fiction; on the contrary, A.I has many promising prospects and is
currently a field of extensive research and experimentation.

Machine Learning

The concept of machine learning goes far back to the early 19th century when
the advent of the first general-purpose computer, the “Analytical Engine,”
was realized. Although this machine wasn’t meant as a “general-purpose
computer” because the very concept of general computation was not present
at the time. Hence, the major purpose of this machine was to be a tool that
could automate certain computations in mathematical analysis. Due to this,
the machine was given the name of “Analytical Engine.” Now the reason we
are discussing such an early invention is because of a remark made by a
certain lady on this very machine. The name of this woman was Lady Ada
Lovelace, and she was an acquaintance and a collaborator of the inventor of
the Analytical Engine, Charles Babbage. The main idea of the remark was
that the Analytical Engine was just a piece of machinery that could only
assist us in matters which we already know of and just automate some
mathematical functions and calculations through our input.

The reason why this remark is so important in the history of Machine
Learning is that the pioneer of Artificial Intelligence, Alan Turing quoted
Lady Ada Lovelace’s remark as a “Lady Ada Lovelace’s objection,” in his
paper when he introduced the Turing Test for the first time. He concluded
that general-purpose machines (computers) did have the potential for
originality and learning, much like human beings.
We have briefly discussed some boring and seemingly irrelevant history of a
general-purpose computer. Still, it is quite the contrary, the very concept of
Machine Learning arises from this question that we have just outlined and
that question is this:

“Is it possible for a computer to perform a task or solve a problem in a way
that is beyond what we know and also learn to perform certain specific tasks

independently without any human input?

Is it possible for a computer, a machine made by humans, and programmed
by humans with functioning that is pre-determined and predicted to surprise
us? Instead of being inputted with rules of data-processing by programmers,
is a computer capable of just looking at the sample data and learning the rules
by itself?

These very questions have brought into existence an entirely new and
ambitiously unique programming paradigm. To get a better understanding of
the potentials of Machine Learning, let’s make a simple contrast between the
working of an A.I system and a Machine Learning system on data-
processing. In a system using Artificial Intelligence (symbolic A.I), the user
basically inputs a program that contains specific rules for data processing.
Then data is introduced, which is to be processed according to the specified
rules. Hence we obtain a result showing us the answers. However, in a
Machine Learning system, we do not provide the rules. Instead, the system is
given the data as well as a result (answers), which are expected from this
sample data. The Machine Learning system then proceeds to infer and learn
the rules through which the corresponding result can be obtained. Once the
system has learned the rules, it can be applied to new data and produce
entirely original results.

To sum it up, the major feature which distinguishes Machine Learning from
Artificial Intelligence is that the former is systematically trained rather than
being explicitly programmed, as is the case in Artificial Intelligence. So, a
system using Machine Learning is simply given a bundle of examples that are
relevant to the primary task. The system then figures out the underlying
statistical structure of these examples and then figures out the rules governing

the end results of these examples. Once the system has learned the rules,
corresponding tasks can now be automated by the system.

In conclusion, Machine Learning is a sub-field of Artificial Intelligence that
gained popularity and flourished ever since the 1990s to this day. As new
computer hardware started to be developed and existing technologies saw
major upgrades and improvements, a trend has been set for faster hardware
and larger datasets paving the way for exploring more possibilities in
Machine Learning. Machine Learning, along with Deep Learning, is more
focused on being practical rather than theoretical as very little mathematical
theory is involved. Hence, this discipline is geared towards proving ideas
empirically rather than theoretically.

Deep Learning

Just as how Machine Learning is a sub-field of Artificial Intelligence,
similarly, Deep Learning is a sub-field of Machine Learning. The primary
aspect which sets the two apart is that Deep Learning employs an entirely
new learning representation from data. Deep Learning majorly emphasizes
the idea of successive layers in a data sample, which gives a model of
increasingly meaningful representations. In other words, this learning model
takes into account the multiple layers of data representation while analyzing
the sample. In addition, there is another terminology used for the data sample
in Deep Learning, known as the “depth of the model,” this basically refers to
the number of layers that are contributing to a model of the data.
Today, the Deep Learning system uses models of data which consist of tens
to thousands of successive layers of representation. This widens the scope of
the system as it can handle the learning process involving so many layers. On
the other hand, Machine Learning often uses learning approaches which only
involve one or two layer of representations of data (due to which they are
termed as shallow learning).

To further understand Deep Learning, we need to understand the mechanism
through which the system actually “learns,” and this learning is done through
networks that are structured in such a way that they have layers piled upon
one another. This network is known as a neural network. It is also important
to clear a major misunderstanding that Deep Learning imitates the working of
our brain. While it is true that the neural network used in Deep Learning does
draw some inspiration from the human brain, but that is the extent of it. On

the contrary, Deep Learning is essentially a mathematical framework that is
designed to learn representations from data. Neural Networks have no
relevance to the concepts described in Neurobiology, and hence, associating
Deep Learning to it would mislead the general masses.

We have been discussing the layers of representations from data, however, to
reinforce our understanding of this concept, we will proceed to examine how
a neural network of a Deep Learning system learns to recognize and
distinguish a digit. An image first represents the digit, and this image is then
transformed into a different form of representation when passed through each
successive layer as shown below:

In other words, the original image has been converted into representations
that are entirely different from the original image. Hence, we can consider the
Neural Network of a Deep Learning system as a distilling apparatus that
distills information through a multi-stage process to produce a concentrated
representation of the sample data, as shown below in detail.

Modeling of Machine Learning
In this section, we will discuss the classical machine learning approaches that
hold conceptual and contextual importance when understanding deep
learning, however, we will not include the details of such topics as they are
an entirely separate topic of discussion.

Probabilistic Modeling

Probabilistic modeling is basically defined as employing the fundamental
principles of statistics to a Machine learning system’s method of data
analysis. Probabilistic modeling gave birth to one of the most premature
forms of Machine learning, but due to its practicality, it is still viable to this
day and age. For instance, the Naive Bayes Algorithm is a prominent
algorithm that stands out within the category of Probabilistic modeling.

To understand why this algorithm holds prominence and importance within
Probabilistic modeling, let’s discuss some of its features. This algorithm
utilizes Bayes’ theorem, and the basic assumption of this theorem is that the
input data’s basic characteristic upholds that its features are all independent.
Hence, to use the Naive Bayes machine-learning classifier, this characteristic
is all you need to understand.
Logistic Regression

Despite its name, Logistic Regression is essentially a classification algorithm,
while many would-be misled towards thinking that it is a regression
algorithm. Logistic Regression is closely related to the Probabilistic model in
the sense that Logistic Regression also predates the advent of computers by
quite a mile. Because of its simplistic nature and versatility, it has found its
way to be useful to machine learning to this day. Moreover, Logistic
Regression is the go-to model for a data scientist to try on a given dataset to
understand and get a grasp of the classification task in front of him.

Early Neural Networks

Although newer and more efficient modern versions have replaced the early
versions of the Neural networks, understanding their origin will also provide
us with a better understanding of the advent of Deep Learning. The core
concept of Neural networks had already surfaced as early as the 1950s.
However, it was not until a decade later that the concept was adopted, and the
approach was given serious attention. At the beginning of the life-cycle of
Neural networks, the major problem which puzzled computer scientists was
the method through which they could efficiently train large Neural networks.
The missing piece of the puzzle was discovered as the resurfacing of the
Backpropagation algorithm, which gave wonderous results as soon as it was
implemented in the Neural networks.

The very first successful and practical application of a Neural network was
seen in the 1990s, developed by Bell Labs. They used a combination of
convolutional neural networks and backpropagation to achieve this.
It was designed primarily to address the problem of classifying handwritten
digits. It was this characteristic that led to the United States Postal Service
using it to enable computers to easily read and identify the ZIP codes on mail
envelopes, making their work much easier.

Kernel Methods

Due to the first successful application of Neural networks, it gained
recognition among the research community, but its fame was overshadowed
by another approach known as Kernel methods.

Kernel methods are essentially a group made up of classification algorithms,
and the most commonly referred to Kernel method is the “SVM” or, in other
words, the Support Vector Machine.

Support Vector Machine algorithms are mainly used to solve classification
problems. They work by focusing their goal towards formulating unique
decision boundaries in between the two different points and elements within a
data sample. These decision boundaries can be interpreted as basically just a
line that separates the data sample into different corresponding categories. A
visual representation of this would look something like this:

(A Decision Boundary)

An SVM formulates a typical data boundary by following these two steps:

1. The SVM analyzes the data sample and maps it to an entirely new
and unique representation of a higher dimension. In this
representation, we can describe the decision boundary as a
hyperplane. Moreover, the hyperplane is expressed as a straight
line if the SVM is forming a representation of a two-dimensional
data sample.

2. Maximizing the distance of the data points from the decision
boundary. The further data points are from the hyperplane
(decision boundary), the better the quality of the decision
boundary. This step is also commonly known as “maximizing the
margin,” and it enables the decision boundary to effectively
generalize data samples that are not included in the training data
set.

In addition to forming a data boundary and mapping data points onto a high-
dimensional representation, the essence of the Kernel method is incorporating
a key idea known as the “kernel trick” (on which the whole name of the

method is based on).

Here’s a brief explanation of how this “kernel trick” actually works. Let’s
consider a scenario where we want to know about the good decision
hyperplanes in any new representation space. There are two ways to go about
this - we can compute and explicitly specify the coordinates of the data points
within this representation space, or we could simply just compute how far the
pairs of data points are from each other by using a kernel function. Hence,
this is why this trick is known as the kernel trick.

Foreseeable Benefits of Deep Learning
Although the key concepts that laid a strong foundation for deep learning
were already present and well understood in 90s such as:

The Convolutional Neural Networks
Backpropagation

And not only these important concepts, but the LTSM algorithm, also known
as the Long Short-Term Memory algorithm, which is present even today, was
developed for the first time in the year 1997, and this algorithm has seen
minor changes over the coming decades. With such mathematical and
functional resources at hand, Deep Learning took flight only after two
decades in 2012. The reason for this delayed awakening is because of the
rapid advancement in technologies such as:

Hardware
Datasets and benchmarks
Algorithmic optimization

Another reason for Deep Learnings' rapid development in this day and age is
because this field is focused primarily on practical findings rather than
theoretical conjecture. Hence, finding new algorithms or optimizing existing
ones can only be done when the appropriate hardware and datasets are
accessible for experimentation. In short, with technological advancement, the
prospects of Deep learning are not only unlimited, but the scale of
improvement and development of this field is also inevitably profound
because Deep learning is an engineering science. Like all engineering
sciences, the prospects of this discipline grow vastly as technology keeps
removing bottlenecks and paves the way for innumerable possibilities.

Chapter 2: The Arithmetic Foundations of a Neural
Network
Before we can explore advanced concepts and practical examples of Deep
learning, we must first familiarize ourselves with the mathematical ideas that
are the foundations of the Neural networks making up the Deep learning
system. These mathematical concepts include:

Tensors
Tensor operations
Differentiation
Gradient descent, and many more.

The main focus of this chapter will be to structure our discussion to
encompass the core ideas and workings of these mathematical concepts, all
while keeping our discussion from becoming too technical. In other words,
this chapter will cater to the needs of the readers by building up an intuitive
understanding of these important concepts and refrain from using
mathematical notations. This way, the readers who do not have over the top
mathematical prowess can also benefit and build a good understanding
relating to the topic.

This chapter is essential to understand as it is the blueprint for understanding
the practical examples, which will be detailed in the later sections of this
book. As such, the chapter will take off by introducing a practical example of
a Neural network, and then we will work our way through it to understand the
corresponding concepts.

A Peek into a Neural Network
For our example, we will discuss a Neural network that utilizes the “Keras”
library (a Python library to be exact). The main concern of this Neural
network is learning on how to classify handwritten digits. For now, it is not
necessary to be familiar with the Keras library as we will discuss the details
of every element of this example in the following chapters. Right now, it is
necessary to understand the fundamentals of what makes up this Neural
network.

In this example of a Neural network, we are concerned with classifying
handwritten digits. These handwritten digits are in the form of grayscale

images with a resolution of 28x28 pixels. The job of the Neural network is to
classify these images of handwritten digits into their respective categories of
0 to 9 (in short, classify them into 10 categories). The dataset which will be
used in this example is none other than the classic MNIST dataset because
this specific dataset has been intensively studied in the Machine-learning
community, making it a suitable choice for our example. Hence, solving this
classic dataset can also be considered as making your very first program
(Hello World!). Below are sample digits that are taken from the MNIST
dataset.

One more reason why we have used the Keras Python library in our
demonstrative Neural network is that the MNIST dataset (set of four NumPy
Arrays) comes preloaded with this library.

The following lines of code shown below depict how you can load the
MNIST dataset into the Keras library:

from keras.datasets import mnist

(train_images, train_labels), (test _images, test_labels) = mnist.load_data()

The train_images and train_labels are basically the resources which the
model will use as learning material, and later onwards, it will be tested on the
test_images and test_labels. In other words, the MNIST dataset includes a
training set and a test set.

The learning process works in this way that the model establishes a mirrored
correspondence to the images (encoded as NumPy arrays) and the labels
(array of digits).

The resulting training data obtained would look like this:

>>> train_images.shape

(60000, 28, 28)

>>> len(train_labels)

60000

>>> train_labels

array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)

Similarly, the corresponding test data is:

>>> test_images.shape

(10000, 28, 28)

>>> len(test_labels)

10000

>>> test_labels

array([7, 2, 1, ..., 4, 5, 6], dtype=uint8)

Now proceeding to explain the workflow of the model as it trains itself using
the training set and later tests itself through the test set. As it is obvious, we
are providing the Neural network with data to train it by using the
train_images and train_labels from the training set of the MNIST dataset.
After the Neural network has learned how to identify and associate the
corresponding images and labels, we move on to testing its capability by
exposing it to the data from test_images and ask it to predict what labels do
these images correspond to. After this, the predictions produced by the
Neural network are matched with the test_labels to check whether they are
accurate or completely off the mark.

Now, we will proceed to build the Neural network even further. The
architecture of the network will look like this:

from keras import models

from keras import layers

network = models.Sequential()

network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

network.add(layers.Dense(10, activation='softmax'))

From the above Neural network architecture, we get to see the following
important terms:

Layers: The layer is considered as the most important building
block of any Neural network. Layers are basically modules that are
concerned with data processing, and they act as filters for data, in
the sense that when a layer processes data, the resulting data is in a
form that is more useful and effective than it previously was. In
other words, the specific function of a layer is to take the sample
data and extract the representations from it. In short, layers are
essentially just data filters.
Data Distillation: Data distillation is a progressive process that
takes shape when multiple simple layers are chained together.
Dense Layers: Dense layers are basically neural layers that are
completely connected (densely connected).
Softmax Layer: The network sequence shown above details a 10-
way softmax layer, which is actually a probability layer, i.e., it
functions to return an array that consists of 10 probability scores.
Each of these 1o scores gives us a probability of how the active
(current) digit is actually part of one of the 10 digit classes.

Even now, our network is still not ready for training. We still need three vital
elements that will essentially make up the compilation step:

Loss Function: This details the way through which the network
will be able to gain an idea of its performance, and in this way, it
will be able to shift the direction of its work towards the right
direction.
Optimizer: This is a mechanism that allows the network to update
itself corresponding to two elements: the analyzed data and the
loss function.
Metrics: These metrics are to be used for monitoring the network
during its training and testing stages, and the main concern of this
step is the accuracy of the Neural network by which it can

correctly classify the images.

Although the purpose of the loss function and optimizer may seem unclear
right now, however, the practical examples and explanations in the coming
chapters will address their workings in more detail.

Now, we will implement the compilation step into our Neural network:

network.compile(optimizer='rmsprop',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

However, our Neural network is still not ready for training. There are still
quite a few steps required before we can proceed to train the method in Keras
by using a method known as “fit” (which will be explained shortly). Hence,
the first thing we need to do here is to pre-process the data. This is done by
reshaping the data into a form that is expected by the network. In addition,
we also need to scale the data to bring all the corresponding values into an
interval of [0, 1]. For example, consider the very first example we discussed
in this chapter, if you look at it closely, you will notice that the training
images are a unit8 type and not only that, but they are also stored in an array
of (6000, 28, 28). Moreover, the values were unscaled and in an interval of
[0, 255]. Hence, we will transform this example in the following parameters:

Array type from unit8 to float32
Array shape from (6000, 28, 28) to (6000, 28 * 28)
Values in [0, 255] interval to [0, 1] interval

The lines of code to do this are:

train_images = train_images.reshape((60000, 28 * 28))

train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))

test_images = test_images.astype('float32') / 255

The last step left to do is that the labels are needed to be encoded
categorically, which can be done as shown below:

from keras.utils import to_categorical

train_labels = to_categorical(train_labels)

test_labels = to_categorical(test_labels)

Finally, we are now all set up to proceed with training the Neural network by
using the Keras library. To do this, we will call to a method known as the
“network.fit”. This basically fits the network’s model to the corresponding
training data, as shown below:

>>> network.fit(train_images, train_labels, epochs=5, batch_size=128)

Epoch 1/5

60000/60000 [==============================] - 9s - loss:
0.2524 - acc: 0.9273

Epoch 2/5

51328/60000 [========================>.....] - ETA: 1s - loss:
0.1035 - acc: 0.9692

Now, if we take a closer look at the result, we can see that two quantities are
being displayed in the training session. These quantities of the network over
the training data respectively are:

The Loss
The Accuracy

In the training session, we observe an accuracy of 98.9%. We will now
proceed to determine whether the model performs similarly on the test
dataset.

>>> test_loss, test_acc = network.evaluate(test_images, test_labels)

>>> print('test_acc:', test_acc)

test_acc: 0.9785

The accuracy shown in the test session is actually lower than the accuracy

shown in the training session, i.e., 97.8% and 98.9%, respectively. This gap
of accuracy is termed as “overfitting.” This reinforces the fact that the
Machine-learning models do not perform at the same level when exposed to
new data as compared to their performance with the training dataset.

Data Attributes of Neural Networks
In this section, we will be focusing on the attributes of the most common data
structure, tensors. Tensors are basically data storage containers as the very
NumPy arrays in which multi-dimensional data is stored itself called a tensor.
The type of data stored in tensors is usually numerical data. Hence it is also
technically plausible to consider tensors as storage containers for numbers.
Also, it is important to remember that in the context of a tensor, a dimension
is basically referring to an axis.

Based on the dimensions, there are four common types of tensors used in
Machine learning, namely:

1. Scalars (0D tensors)
2. Vectors (1D tensors)
3. Matrices (2D tensors)
4. 3D tensors and higher dimensional tensors

Scalars (0D tensors)

Scalars are basically those tensors that only have one number stored. Other
names for scalars are scalar tensors, 0-dimensional tensor, or 0D tensor.
Scalar tensors are represented by both floath32 and float64 numbers in
NumPy. Moreover, a “rank” basically refers to the number of axes that are
within a tensor. We can also find out the number of axes within a NumPy
tensor by using an attribute known as the ndim attribute. (Remember that as
Scalars are zero-dimensional, their ndim attribute will always be 0). Below is
an example of a NumPy scalar:

>>> import numpy as np

>>> x = np.array(12)

>>> x

array(12)

>>> x.ndim

0

Vectors (1D tensors)

Vectors are those tensors that contain an array of numbers while having only
one axis, hence the name “1D tensor”. A NumPy vector is shown below:

>>> x = np.array([18, 5, 9, 11])

>>> x

array([18, 5, 9, 11])

>>> x.ndim

1

Upon careful inspection, we can see that a vector consists of 5 entries and
because of this we can call such a vector a 5-dimensional vector. It is
important to note that a 5-dimensional vector is not the same as a 5D tensor,
as a dimension can both refer to the number of entries and the number of axes
in a tensor. As such, it is when faced with such confusing scenarios, it is
better to refer to a 5D tensor as a tensor of rank 5).

Matrices (2D tensors)

Matrices are those tensors that contain an array of vectors. A matrix is also
known as a 2D tensor because it consists of two axes (the rows and columns).
A NumPy matrix is shown below:

>>> x = np.array([[2, 52, 8, 22, 9],

 [4, 2 12, 23, 5],

 [8, 11, 33, 98, 5]])

>>> x.ndim

2

In this example, the horizontal entries (the x-axis) are considered as the rows,
for instance, in the above example, the entry [2, 52, 8, 22, 9] is the first axis

(the row) and the vertical entry [2, 4, 8] is the second axis (the column).

3D Tensors and Higher-Dimensional Tensors

3D tensors are basically a bunch of matrices packed in such a way that they
are visually interpreted as a cube of numbers. For example, a typical 3D
tensor looks like this:

>>> x = np.array([[[5, 78, 2, 34, 0],

 [6, 79, 3, 35, 1],

 [7, 80, 4, 36, 2]],

 [[5, 78, 2, 34, 0],

 [6, 79, 3, 35, 1],

 [7, 80, 4, 36, 2]],

 [[5, 78, 2, 34, 0],

 [6, 79, 3, 35, 1],

 [7, 80, 4, 36, 2]]])

>>> x.ndim

3

Just as how we created a 3D tensors by packing multiple matrices in an array,
similarly, we can obtain a 4D tensor by packing multiple 3D tensors in an
array and the same process holds for obtaining 5D tensors and so on.
Generally we are only required to manipulate tensors from 0D to 4D when
using them in deep learning, however, we may also need to go to 5D tensors
if we are dealing with the processing of video data.
The Key Attributes of Tensors

Generally, a tensor has three defining key attributes. These attributes are:

1. The Rank: Rank refers to the number of axes a tensor has. For
example, we discussed a Matrix that has two axes; hence it has a

rank of 2. Similarly, a 3D tensor has three axes, so it has a rank of
1. Ranks are referred to as ndim in the NumPy library.

2. Shape: A shape is the computing structure that defines the number
of dimensions that a tensor has along each axis. For instance,
consider the above examples of different types of tensors. A scalar
tensor has no dimension; hence its shape is (), a vector has only
one dimension, so its shape is (3,) and a matrix has two
dimensions, so its shape is (2, 6). A 3D tensor has three
dimensions; hence, it has a shape of (1, 2, 3) and so on.

3. Data Type: Data type is commonly referred to as “dtype,”
specifically in the Python libraries. As the name suggests, this
refers to the very type of data that is being stored in the tensor
itself, for example, unit8, float32, and float64 are all data types.

Let’s take this discussion a bit further and explain these attributes more
clearly by looking at a demonstration of the data we processed previously in
our MNIST example. To start, we will first load up the MNIST data set by:

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Now, by using the ndim attribute, we will proceed to display the number of
axes that the tensor (train_images) currently has:

>>> print(train_images.ndim)

3

Now to display the shape attribute of the tensor:

>>> print(train_images.shape)

(30000, 18, 18)

And finally, the dtype attribute or the data type of the tensor:

>>> print(train_images.dtype)

uint8

From the above results, we come to know that the tensor is, in fact, a 3D
tensor, specifically of 8-bit integers. Furthermore, the shape of this tensor is

that of an array of 30000 matrices with 18x8 integers.

We can also display any digit within this 3D tensor. This can be done by
utilizing the Matplotlib library. For instance, the example below depicts the
lines through which we are displaying the fourth digit in our 3D tensor:

digit = train_images[4]

import matplotlib.pyplot as plt

plt.imshow(digit, cmap=plt.cm.binary)

plt.show()

Gearing the Neural Network through Tensor Operations
Technically, if we begin to break down any computer program to its
fundamentals, then we will ultimately come down to a mere set of binary
operations on binary inputs. This includes the AND, OR, NOR logic inputs,
etc.. Similarly, we can do the same thing to the transformations that have
been learned by the Neural networks. The difference over here is that instead
of binary operations, we come across a bunch of “tensor operations.” These
tensor operations are applied to tensors of numeric data. Hence, the network
can perform arithmetic functions on it by multiplying tensors or even adding
tensors with each other. In other words, tensors are literally the cogs and
gears of any Neural network.

Looking back to our very first example, we notice that the way we have been
building a Neural network is by assembling “Dense” layers in such a way that
they pile up on each other. An instance of the resulting Keras layer would
look like this:

keras.layers.Dense(512, activation='relu')

Now, an interpretation of such a layer results in revealing it as a function,
basically taking input and output both as a 2D tensor (takes in 2D tensor,
gives out 2D tensor), providing us with an entirely new representation of the
original inputted tensor. This function has also been depicted below for better
understanding:

output = relu(dot(W, input) + b)

Upon careful inspection, we come to know that this function itself has three
tensor operations namely:

dot (product of the input tensor and the “W” tensor)
addition (addition of a 2D tensor that resulted from the product
and the vector “b”)
relu operation

We will now proceed towards discussing the details and some advanced
concepts of these three outline tensor operations.

Element-Wise Operations

Element-wise operations basically refer to the relu and addition operations.
The reason as to why they are termed as “Element-wise operations” is
because of their character according to which we observe that to each entry in
the tensor which we are analyzing, these operations are always applied
independently to the entries mentioned above. Due to this characteristic,
element-wise operations are incredibly responsive to huge implementations
that are vectorized (parallel implementations). If we wish to create an
implementation for an element-wise operation, especially a naive Python
implementation, then we can do so by using a “for” loop. For example:

def naive_relu(x):

assert len(x.shape) == 2 (over here, x is a 2D NumPy
tensor)

x = x.copy() (always refrain from
overwriting input tensor)

for i in range(x.shape[0]):

for j in range(x.shape[1]):

 x[i, j] = max(x[i, j], 0)

return x

The same can be done for the addition tensor operation as shown below:

def naive_add(x, y):

assert len(x.shape) == 2 (over here, “x” and “y” are 2D
NumPy tensors)

assert x.shape == y.shape

x = x.copy() (Avoid overwriting the input
tensor)

for i in range(x.shape[0]):

for j in range(x.shape[1]):

 x[i, j] += y[i, j]

return x

By following the same principles, we can also perform other element-wise
operations such as multiplication and subtraction.

In practical implementations, when we are working with NumPy arrays, we
can increase the speed of the NumPy arrays by an incredible amount by using
these very operations. The reason for this is that the element-wise operations
are actually preloaded as optimized NumPy functions. These functions shift
all of the heavy workloads onto the BLAS implementation as these
implementations are characterized as:

Low-level
Highly parallel
Efficient tensor manipulation routines

Moreover, BLAS (Basic Linear Algebra Subprograms) are commonly used
and implemented in Fortran or C.

Coming back to the main topic, in a NumPy array, by using the element-wise
operations shown below, we can optimize the array to a great extent:

import numpy as np

z=x+y (element-wise addition operation)

z = np.maximum(z, 0.) (element-wsie relu operation)

Broadcasting

Broadcasting basically refers to the phenomenon of tensor addition,
specifically in the case where the two tensors being added are different from
each other with regards to their shape. Obviously, a conflict arises during the
addition operation. Hence, this is remedied by the phenomenon of
broadcasting, which involves broadcasting the shape of the smaller tensor to
match with the shape of the bigger and larger tensor.

Broadcasting is essentially done in two steps:

1. The first step is adding axes to the tensor being broadcasted. These
axes are known as broadcast axes, and by adding them, the smaller
tensor can match the ndim of the bigger tensor.

2. The second step is to repeat the smaller tensor beside these new
axes such that the shape of the tensor matches with the entire shape
of the big tensor.

To understand the concept of broadcasting even better, let’s consider an
example. We are working with two tensors, “x” and “y.” The shape of the “x”
tensor is as follows: (22, 5), and the shape of the “y” tensor is (5). The shapes
of these two tensors differ from each other clearly as the “x” tensor is bigger.
We cannot add these two tensors. Hence to make the shapes match with each
other, the “y” tensor is broadcasted as follows:

1. An empty first axis is added, and the resulting shape of the “y”
tensor becomes (1, 5)

2. The original y tensor is repeated for a total of 22 times besides this

new axis, and the resulting shape of the “y” tensor afterward would
become (22, 5)

Where y[i, :] == y for i in range (0, 22). Now we can proceed with adding the
“x” and “y” tensors as they now have identical shapes.

Furthermore, it is also very important to clarify that this procedure does not
result in the making of a new 2D tensor as if this were the case, then it would
be horridly inefficient. To make things more clear, note that this outlined
operation of repetition is, in fact, all virtual, meaning that it actually takes
place on an algorithmic level instead of a memory level. Still, there is a
benefit for conceptual clarity and understanding if we consider the repetition
of a vector for a total of 15 times beside a new axis. A naive implementation
of such a situation would be like this:

def naive_add_matrix_and_vector(x, y):

assert len(x.shape) == 2 (x is a 2D NumPy tensor)

assert len(y.shape) == 1 (y is a NumPy vector)

assert x.shape[1] == y.shape[0]

x = x.copy() (avoid overwriting the
input tensor)

for i in range(x.shape[0]):

for j in range(x.shape[1]):

 x[i, j] += y[j]

return x

Here’s a cool trick, it is possible to apply two-tensor element-wise operations
along with broadcasting. The only pre-requisite for this to work is that if one
of the two tensors has a shape of (a, b, … n, n+1, … m) and the shape of the
second tensor is (n, n+1, … m), if this condition is fulfilled then for axes “a”
through “n-1”, they will be broadcasted automatically. For instance, the
demonstration shown below is applicable for two tensors that have different
shapes, in addition, we will see the element-wise “maximum” operation

being applied on the tensors above:

import numpy as np

x = np.random.random((60, 4, 37, 12))

y = np.random.random((27, 15))

z = np.maximum(x, y)

In the above example, “x” is a random tensor with shape (60, 4, 37, 12)
while “y” is also a random tensor but with a different shape (27, 15). Finally,
the “z” is an output tensor that has the same shape as the “x” tensor.

Tensor Dot

The tensor dot or more commonly known as “tensor product” is arguably the
most used tensor operation. However, it is important to clarify that a tensor
product and an element-wise product are not the same. A tensor product is a
tensor operation, while the latter is an element-wise operation. In addition,
the tensor product also works contrary to the element-wise product in the
sense that the tensor product combines the entries that we find in the input
tensors.

Besides the difference in function, the syntax of an element-wise product is
also different than a tensor product. The syntax of an element-wise product in
different libraries (NumPy, Keras, Theano, and TensorFlow) is the same, i.e.,
the “*” operator. While the tensor product has a different syntax in
TensorFlow, its syntax is the same for NumPy and Keras, i.e., the “dot”
operator, as shown below:

import numpy as np

z = np.dot(x, y)

If we want to denote the dot operation mathematically, then we would do so
by using a dot (.):

z=x.y

Let’s proceed to discuss the mathematical functions of a dot operation by
computing the dot product of two vectors, namely “x” and “y”:

def naive_vector_dot(x, y):

assert len(x.shape) == 1

assert len(y.shape) == 1

assert x.shape[0] == y.shape[0]
z = 0.

for i in range(x.shape[0]):

 z += x[i] * y[i]

return z

Upon analyzing this example, we conclude that the compatibility for a dot
product largely depends on the aspect that vectors are similar in terms of
elements. Moreover, the dot product of two vectors always results in a scalar.

Let’s discuss a dot product between two matrices. These matrices are labeled
“x” and “y” respectively. If we apply a dot product between these two
matrices, then we will be given a vector and the coefficients of this retrieved
vector as basically the result of a dot product of “y” and the rows of “x.” This
will be implemented as follows:

import numpy as np

def naive_matrix_vector_dot(x, y):

assert len(x.shape) == 2

assert len(y.shape) == 1

assert x.shape[1] == y.shape[0]

z = np.zeros(x.shape[0])

for i in range(x.shape[0]):

for j in range(x.shape[1]):

 z[i] += x[i, j] * y[j]

return z

In the above demonstration, there is a very key concept which we need to
keep in mind whenever working with the dot tensor operation is that the first
dimension of the tensor x must be the same as the 0th dimension of the tensor
y.

Furthermore, in the previous sections of this chapter, we have discussed an
example regarding naive implementations of tensors. We can use the codes
written in these examples to specifically bring the relationship of matrix-
vector product and vector product to the spotlight, as shown below:

def naive_matrix_vector_dot(x, y):

z = np.zeros(x.shape[0])

for i in range(x.shape[0]):

z[i] = naive_vector_dot(x[i, :], y)

return z

If we analyze this block of code carefully, we conclude that the dot operation
is not commutative, i.e., dot(x, y) is not the same as the dot(y, x). This is
because the dot operation loses its symmetry as soon as the ndim of any of
the two tensors becomes greater than 1.

The shape compatibility between tensors for dot product operations can be
very confusing and misleading at times. Below is a box diagram that is aimed
at improving the reader’s visualization of the input and output tensors.

In this diagram, the tensors x, y, and z have been depicted as rectangles. For a
dot product, the rows of the tensor “x” must be matching in size with the
columns of the tensor “y,” hence this would insinuate that in the above box
diagram, the width of the “x” rectangle should match the height of the “y”
rectangle.

In the case of tensors that are of higher-dimensions, the dot product between
these tensors would follow the shape compatibility rules as in the case for 2D
tensors:

(a, b, c, d) . (d,) -> (a, b, c)

(a, b, c, d) . (d, e) -> (a, b, c, e)

Tensor Reshaping

The third tensor operation which we will be discussing is the tensor
reshaping. We did not use tensor reshaping in the example of the Neural
network, which was using dense layers. However, the tensor reshaping
operation was used for preprocessing data pertaining to the digits prior to
giving it to the Neural network, this example was:

train_images = train_images.reshape((60000, 28 * 28))

The term reshaping is self-explanatory. The tensor on which this operation is
applied is basically reshaped (basically rearrangement of the rows and
columns) to match the desired shape, which is detailed beside the operation.
Furthermore, it is important to keep in mind that tensor reshaping only
rearranges the rows and columns, not change them. Hence, the total number
of coefficients (of the original tensor) remains the same for the reshaped
tensor. Here’s a simple example to better understand reshaping:

>>> x = np.array([[0., 1.],

 [2., 3.],

 [4., 5.]])

>>> print(x.shape)

(3, 2)

>>> x = x.reshape((6, 1))

>>> x

array([[0.],

[1.],

[2.],

[3.],

[4.],

[5.]])

>>> x = x.reshape((2, 3))

>>> x

array([[0., 1., 2.],

[3., 4., 5.]])

Aside from simply rearranging the rows and columns of a tensor in
reshaping, another type of reshaping is also very common, known as
transposition. Unlike reshaping where the shape of a tensor is changed by
rearrangement, transposition basically exchanges the position of the rows
with the columns, hence turning rows into columns and columns into rows. In
transposition, a tensor

y[j, :] becomes

y[:, j]

>>> x = np.zeros((150, 10))

>>> x = np.transpose(x)

>>> print(x.shape)

(10, 150)

Gradient-Based Optimization in Neural Networks
In the preceding sections, specifically in the element-wise operation section,
the data inputted in a Neural network is transformed by each layer of the
network as shown below:

output = relu(dot(W, input) + b)

We will now analyze the elements of this expression. Two attributes are very
interesting. These attributes are “W” and “b” respectively. They are known as
the “weight” and “trainable parameters” of any layer, and in more technical
terms, they are referred to as the kernel and bias attributes of a layer,
respectively. The weights essentially store the data, which is learned by the
system during training.
In the beginning, the weight matrices are observed to have a bunch of random
values filling them. These random values are generated through a step known
as random initialization. Although the above expression will not yield any
useful results as the parameters of the attributes generated are random.
However, everything needs to have a starting point, and for machine learning,
this is the starting point because of the fact that the system will respond to the
feedback signal and adjust these weights accordingly. Hence, we have now

discussed what training is, the gradual adjustment of weights according to a
feedback signal is called training, and this is the essence of machine learning.

The training of a network is done in training loops. The following steps
outlined below explain a typical training loop routine, and they are repeated
as long as necessary:

1. Take a collection of training samples labeled “x” along with the
corresponding targets of these samples labeled “y.”

2. This step is known as the forward pass. Once the batch of the
samples and targets have been drawn, proceed to get the
predictions y_pred by running the Neural network on the training
sample “x.”

3. Measure the results with the prediction and note any mismatch and
discrepancies between the two values. This is basically computing
the loss of the network.

4. Update the weights of the Neural network. Keep in mind that the
weights should be updated in a way to lower the loss on this
collection or batch.

Through this training loop, we will eventually obtain a network that exhibits
considerably low levels of discrepancies and mismatching between the
predictions and targets, i.e., a mismatch between y_pred and y, respectively.
Hence, the network has essentially learned how to map the data inputs to the
corresponding correct targets correctly.

Chapter 3: Starting Our Tasks with Neural
Networks
In this chapter, we will discuss the practical applications of Neural networks
in more detail and incorporate the concepts we went through in the previous
chapters. Moreover, the main focus of this chapter will be a chance for the
reader to reinforce his knowledge of deep learning and neural network while
going through problems that address the most common practical uses of
Neural networks which are:

Binary classification
Multiclass classification
Scalar regression

In addition, this chapter will give an introduction to the deep learning
libraries we will be using throughout this book, namely the Python and Keras
deep learning libraries. The topics will include a closer and detailed
inspection of some of the core components discussed in the previous chapter
such as:

Layers, networks, objective functions and optimizers
Before we proceed with the chapter, here are the practical examples which
we will be a demonstration on how we can use Neural networks
to solve real-world issues:

1. Identifying if the movie reviews are either positive or negative
(Category: of binary classification)

2. Cataloging the new wires according to the topic (Category:
Multiclass classification)

3. By inputting real-estate data to the network, we procure price
estimations for houses (Category: Scalar regression)

After concluding this chapter, the reader will be able to make use of Neural
networks and implement it to solve machine problems of simple nature; for
instance, the classification and regression over vector data.

Inspection of a Neural Network
From our preceding discussions we have concluded that the Neural network’s

training essentially depends upon the following objects:

Layers that have been merged together forming a network (or in
other words, a model)
The data which has been inputted into the Neural network and the
targets which correspond to this input data
The loss function (this function essentially the defining factor for
the feedback signal that is purposed for learning)
The optimizer (the determinant of the learning procedure)

Below is a figure which emphasizes the relationship between these objects
(the network, the layers, the loss function, and the optimizer):

Before moving further, let’s discuss these anatomical elements of a Neural
network in more detail.

Layers

By now, we have become familiar with the importance of layers as the
building blocks of deep learning. To reiterate the concept in brief and simple
terms, a data-processing module that receives an input in the form of a tensor
(can be one or two tensors) and gives an output in the form of a tensor as well

can be one or two tensors) is known as a layer. In addition to this, we
discussed the attributes of a layer, such as the “weight briefly.” The weight of
a layer refers to its state. While some layers may be stateless, most of the
layers possess a state (several tensors that are learned with stochastic gradient
descent, these tensors as a group form what we term as, the network’s
knowledge).

Aside from this, different types of layers are suitable for different purposes
(different tensor formats and different types of data processing needs). The
types of layers we have discussed so far include:

Densely connected layers
Recurrent layers
Convolution layers

To elaborate further, we can consider an example of a simple vector data
which is contained within a 2D tensor of shape (samples, features). Dense
layers will process such a tensor. Similarly, a 3D tensor with a shape of
(samples, timestamps, features) storing a type of data known as a “sequence
data,” will be processed by a recurrent layer (for instance, an LTSM layer).
Furthermore, if we are dealing with image data, then the corresponding
container will be a 4D tensor, and such a tensor is typically processed by a
layer known as CONV2D, which is basically a 2D convolution layer.

In the Keras framework, building a deep-learning model is just like joining
pieces of a puzzle together. To be more specific, deep-learning models are
built upon data-transformation pipelines that are actually made by putting
together compatible layers. In this context, compatibility refers to the ability
of a specific type of layer to be able to accept tensors that have a specific
shape as input and return corresponding tensors of a specific shape. For
example:

from keras import layers

layer = layers.Dense(32, input_shape=(770,))

In this example, we have created a dense layer that is specified only to accept
2D tensor inputs in which the very first dimension is 770. Moreover, we have
left the batch dimension as unspecified and because of this the layer will
accept any value. Hence, the input tensor will be a 2D tensor with a shape of

(770,) and the output tensor will have its first dimension changed to 32.
Meaning that the layer we have built above is only able to be connected to a
downstream layer, which is specified to accept vector inputs that are 32
dimensional. In Keras, the hassle of considering each layer’s compatibility
becomes non-existent because of the fact that each layer added to the model
is built dynamically so that it can match with the shape of the next layer. For
example, we have added another layer on top of an existing one while using
Keras:

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(32, input_shape=(770,)))

model.add(layers.Dense(32))

We can see that the layer succeeding the last one is devoid of any input shape
argument. Regardless of not receiving an input shape argument, the second
layer has inferred that its input shape should be the output shape of the
preceding layer.

Models

Deep learning models are essentially a network of layers directed into an
acyclic graphical form. The simplest form of a deep learning model would be
one that is made up of a linear network of layers. Such a model is capable of
only single mapping tensors, i.e., one input to one corresponding output.

However, as we progress further understanding the anatomical features of
Neural networks, we come to know that there is a large variety of topologies
for Neural networks, which in turn, form a variety of deep learning models.
Following are the most common:

Two-branch networks
Multihead networks
Inception blocks

Now let’s elaborate on the concept of Neural network topologies. Basically, a
Neural network works in a pre-defined space of possibilities, and it is within

this space that the network looks for viable representations of data. Hence, a
topology essentially defines a constrained and pre-defined space for a Neural
network, and because of this, a Neural network topology is also termed as a
“hypothesis space.” Hence, selecting a specific topology will essentially limit
the network’s hypothesis space to only a particular set of tensor operations.
Hence, the main focus of your job would be to simply look for the optimal set
of values for the specific topology’s corresponding weight tensors.

As such, selecting the most optimal network architecture for your deep
learning model is closer to being an artistic choice rather than a logically
sound decision. This is because no defined parameter dictates whether a
network topology is superior to the other or if it is the right one for your
model. This is why a good neural-network architect can only develop a good
intuition for choosing network architectures through repeated practice.

Loss Functions and Optimizers

Now, after deciding on network architecture and successfully defining it for
the deep learning model, there are still two things that are missing and require
our immediate attention, namely:

1. The Loss Function: also known as the objective function. This
represents the minimized quantity in the training session of a
model. In other words, the success rate of the task which the
network is working on.

2. Optimizer: It works according to the results of the loss function in
the sense that the Neural network’s data update is done according
to the loss function, hence controlled by the optimizer. The
optimizer uses an implementation of a variant of an SGD
(stochastic gradient descent).

One interesting point to note about the loss functions and the gradient descent
process is that within a Neural network that is architecture as a multi loss
network, there can be multiple loss functions to accommodate the multiple
outputs of the network. However, the same thing does not apply to a gradient
descent process. Instead, the gradient descent process is always based upon
one singular scalar loss value, therefore in multi loss networks, a technique
known as “averaging” is used to merge the multiple losses into a singular
scalar value.

A very important point to always keep in mind when working with Neural
networks is always to try to select the most optimal and correct objective
function for a given problem. The reason for this is because a Neural network
will always look for shortcuts and choose that path to keep the loss at a
minimum. Hence, if we do not make sure of the clarity of the objective and
its correlation to the success of the given task, the Neural network will
perform actions that are either unnecessary or unwanted. So choosing a
correct objective will save one from facing these unpredictable side-effects.

What is Keras?
In the previous sections of this book, we have studied demonstrations and
examples of code that are using Keras. In this section, we will discuss what
Keras actually is in detail. To define Keras, it is simply a framework for
Python, which is specialized for deep-learning projects. Due to this, Keras
provides programmers with a simple and convenient route towards being able
to define and train deep-learning models of almost any kind. Although this
framework was originally developed for people that were researchers to
facilitate them with fast-experimentation, its functionality made it suitable for
being used in deep-learning models as well.

The core features of the Keras framework include:

Allows code to be cross-run between the GPU and CPU. Meaning
that the source code is compatible with both of the components
without needing to make any changes to it.
By featuring a user-friendly API, Keras makes it easier for users to
prototype deep-learning models with incredible convenience.
Keras also conveniently features native support for both
convolutional and recurrent networks or any combination of these
two types of networks. By having built-in support for these
networks, Keras indirectly provides native support for computer
vision and sequence processing.
The reason why Keras can be used for almost any type of Neural
network is because it supports arbitrary network architectures. In
other words, if you are looking to build a generative adversarial
network to even a Turing machine, Keras remains relevant and
appropriate for the task.

Keras and the Backend Engines

A distinctive feature of Keras is that being a model-level library in Python, it
is associated with the supply of high-level basic elements and operations to
develop a deep learning model. On the other hand, Keras does not associate
itself with low tier operations (for example, tensor manipulation and
differentiation). To make up for this, Keras includes a well-optimized tensor
library specialized just for this purpose, and such libraries serve the purpose
of being the backend engines of Keras. Moreover, Keras does not include a
single exclusive backend engine. Instead, Keras supports multiple different
backend engines with seamless support. Following are the three most popular
backend engines supported by Keras:

1. TensorFlow backend
2. Theano backend
3. Microsoft Cognitive Toolkit (CTNK) backend

The modular architecture of Keras is shown in a visual representation below:

In addition, the code written on Keras is capable of being executed by these
backends without any changes made to the source code, and the different
backends can be swapped out if a specific backend proves to be more
efficient and faster for a specific task. The TensorFlow backend enables the
Keras framework to run on both CPUs and GPUs efficiently. This is possible
as TensorFlow uses further smaller libraries as its own backend, and these
backends are different for when running code on a CPU and for a GPU. For a
CPU, TensorFlow uses a low tier library known as “Eigen” for performing
tensor operations. At the same time, in a GPU, TensorFlow utilizes the
popular cuDNN (Nvidia Cuda Deep Neural Network) library developed and
optimized by NVIDIA.

A Short Overview of Deep Learning Development with Keras

If we look back, we will see that in the MNIST example demonstrated in the
early chapters of this book, are also an example of a Keras model. Keeping
this example in mind, a standard Keras workflow is exactly the same as
shown in that demonstration. Here’s a quick and brief overview of the
elements of a Keras workflow:

1. Specifying the input tensors and the corresponding target tensors
(collectively known as the training data).

2. Build a deep learning model that optimally maps the input tensors
to the target tensors. Remember that a model is just a combination
of layers in a network.

3. Select the elements (loss function, optimizer, and metrics to
monitor) through which the network’s process of learning can be
configured and customized.

4. Keep repeating the fit() method of the deep learning model on the
training data.

A deep learning model can be defined and specified by using either of the
two methods (depending on how many layers a model has):

Using the Sequential class. This method is viable only for models
that are built up from linear stacks of layers.
Using the functional API. This method is viable for models that
are made up of an acyclic graph of layers supporting arbitrary
model architectures.

To refresh our memory, below is an example of a model being defined by the
Sequential class. Note that the deep learning model has a linear stack of two
layers:

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(32, activation='relu', input_shape=(770,)))

model.add(layers.Dense(10, activation='softmax'))

Similarly, an example is shown below that shows a deep learning model
being defined by a functional API:

input_tensor = layers.Input(shape=(770,))

x = layers.Dense(32, activation='relu')(input_tensor)

output_tensor = layers.Dense(10, activation='softmax')(x)

model = models.Model(inputs=input_tensor, outputs=output_tensor)

If we examine this demonstration, then we can see that the functional API is
essentially concerned with manipulating the data tensors. Now, these data
tensors are the ones that the deep learning model processes, and as such, the
functional API manipulates them and applies layers to these tensors, treating
them as functions rather than tensors.
Once we have specified and defined the architecture of our deep learning
model, the notion of having used either the sequential class or the functional
API no longer holds any importance. This is due to the reason that the steps
which come after this will be the same regardless of the method used for
defining the model.

In the compilation step, we proceed to choose the loss function and optimizer
and hence, configuring the learning process of the deep learning model. In
addition, we can also select some metrics that we want to monitor in the
training session of the model. Now let’s see a simple and common example
of a model in the compilation step being specified one loss function:

from keras import optimizers

model.compile(optimizer=optimizers.RMSprop(lr=0.001),

 loss='mse',

 metrics=['accuracy'])

Now, the last thing left to do is using the fit() method to pass the NumPy

arrays of training data (the input data and the corresponding target data) to
the deep learning model, as shown below:

model.fit(input_tensor, target_tensor, batch_size=128, epochs=10)

The Pre-requisites for a Deep Learning Workstation
In this section, we will discuss what you need to set up your deep learning
workstation. We will look at what is necessary, what is optional and what can
speed up your work and what can slow it down, all of the aspects you would
want to know about when putting together your workstation for deep
learning.
The first point of discussion is the importance of a GPU in a deep learning
workstation. While you may think that a deep learning code run on multicore
and fast CPU seems adequate, that is not the case. A GPU is highly
recommended for running deep learning code because it not only increases
the speed factor by a whopping five or even 10. Moreover, deep learning
code for applications, such as image processing (made up of a convolutional
Neural network,) will be immensely slow and time-consuming. In such cases,
a GPU proves to be the ideal contender as it not only increases the speed of
the entire work process, but modern NVIDIA GPUs also feature well-
optimized and dedicated “Tensor” cores developed for such tasks. In short,
using a NIVIDA GPU is highly recommended for your deep learning
workstation. Although there are cloud solutions, such as Google’s cloud
platform, it can prove to be very expensive and inefficient in the long run.

Furthermore, the recommended operating system for a deep learning
workstation, regardless of the GPU you are using (Nvidia or a Cloud
solution), the recommended OS is Unix. Although the Keras backends do
support Windows, it is still desirable if you choose Unix, or just install an
Ubuntu OS as a dual boot alongside the Windows OS in your machine -
Ubuntu will save a huge chunk of your time and resource later as compared
to Windows so keep this in mind. In addition, before you can use Keras, you
will also need to install its backend engines, i.e., TensorFlow, Theano,
CNTK, or even all of them (if you intend to switch between the backend
engines more often). However, be mindful that this book will focus primarily
on TensorFlow and occasionally discuss Theano; however, we will discuss
CNTK.

If you have the budget, go for the latest Nvidia Quadro GPUs as they have
the most vRAM in the current GPU industry and dedicated tensor cores for
such experiments. Moreover, Nvidia is the only company that has heavily
invested in the deep learning market, hence the support and compatibility it
provides for deep learning projects are outstanding and the best at the
moment.

Jupyter Notebooks

Arguably the most efficient way to run any deep learning experiment is by
using a Jupyter notebook. The Jupyter notebook is an application that
generates a file known as a “notebook.” This file can easily be edited in the
browser, giving the best of both worlds, being able to execute Python code
while also having the ability to annotate (what you are doing in) the code
with rich text-editing features of the Jupyter notebook. This is why Jupyter
Notebooks is so popular among the communities of data science and machine
learning niche.

You can easily turn long experiments into smaller components with the
ability to execute each small component independently, meaning that if you
come across a problem in the later parts of your code, you can just execute
the smaller components to find where the problem is instead of executing the
entire code from the beginning to the end.
Jupyter Notebooks is not a necessary requirement for setting up your deep
learning workstation as you can just execute the deep learning code from the
standalone Python scripts within the IDE. Still, it is recommended to use this
application for the sake of your convenience.

Deep Learning Binary Classification Example
We will now discuss the examples which we briefly discussed in the
introduction of this chapter. The first example will be a machine learning
problem that is most common in the real world, binary classification. The
situation we will consider for the demonstration is that we need to set up a
deep learning model to classify movie reviews as either positive or negative
by giving it input data of the text content of the reviews being classified.

Dataset to be Used
The dataset we will be using for our deep learning model is the Internet
Movie Database (IMDB), which consists of a set of fifty thousand (50,000)

reviews that are highly polarized. Moreover, this set of reviews is split into
two equal parts. One part consists of 25,000 reviews for training the deep
learning Neural network and the other part consists of 25,000 reviews for
testing the deep learning network; each of these parts has a percentage of
50% negative and 50% positive reviews.

The reason we always use a separate test for testing the deep learning model
is that using the same set it has been trained on is practically useless as the
machine, as well as the user already knows the labels of the training set.
Moreover, our main concern is to use this deep learning model for helping us
with data that neither the machine has seen nor the user has sorted before.

Similar to when we used the MNIST dataset, it came preloaded with the
Keras framework. The IMDB dataset also comes packaged with the same
Keras framework. Hence we do not need to load it up separately. Moreover,
the IMBD dataset already has preprocessed data, i.e., the sequence of words
in the reviews has already been transformed into the corresponding sequence
of integers (each of these integers corresponds to a word in the system’s
defined dictionary).

We will now proceed to load the IMDB dataset into our workstation. To do
this, we will use the following lines of code:

from keras.datasets import imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(

num_words=10000)

If you look at the above lines of code, you’ll see that there is an argument
num_words=10000. This argument tells the system only to retain 10000
words that are the most frequently occurring in the dataset. By doing this, we
discard the rare words used in the dataset and keep the size of vector data
within a manageable range.

In the dataset, the labels (train_labels and test_labels) are basically the
preprocessed integers 0 and 1 that indicate the corresponding annotation of
the words. A word with a label integer “0” is a word with negative
annotation, and a word with a label integer “1” is a word with positive
annotation.

>>> train_data[0]

[1, 14, 22, 16, ... 178, 32]

>>> train_labels[0]

1

As we have already restricted the system to the top 10,000 most frequently
used words, hence it is a given that no word index will exceed past this limit.

>>> max([max(sequence) for sequence in train_data])

9999

To decode the preprocessed reviews back into English, use the following
lines of code (this is just for informative purposes, it’s not necessary to
perform this step in the usual sequence of things):

word_index = imdb.get_word_index()

reverse_word_index = dict(

[(value, key) for (key, value) in word_index.items()])

decoded_review = ' '.join(

[reverse_word_index.get(i - 3, '?') for i in train_data[0]])

In the first line, the argument word_index is the dictionary responsible for
mapping the corresponding words to integers.
Preparing to Feed Data into the Neural Network

The data we have so far is still not ready to be fed into the Neural network
yet. What we have is data in the form of integers, and what we need is data in
the form of tensors. Hence the next plan of action is to convert this list of
integers into tensors. This can be done in two ways which are:

1. First, we convert the data lists such that all of the lists are of the
same length. This is done by padding them. After this, we proceed
to convert the same length integer lists into integer tensors. Be
mindful that the shape of these tensors should be (samples,

word_indices). We will now use the embedding layer as the first
layer in the Neural network because it can handle these integer
tensors.

2. The second method is to turn the data lists which we are working
with into vectors. These vectors would be 0s and 1s, and this
conversion can is done by one-hot encoding the data lists. The
practical meaning of what this insinuates is that a sequence let's
say [2, 4] is converted into a vector that is 10,000 dimensional.
This vector would be largely 0s, with the exception of the two
indices, 2 and 4. These indices would be vector 1s, and the rest of
the indices would be vector 0s. To handle such type of floating
data, we will use a dense layer as the first layer in the Neural
network.

In this example, we will use the second method to convert the list of integers
into tensors (vectorizing the source data). This will be done manually as
follows:

import numpy as np

def vectorize_sequences(sequences, dimension=10000):

results = np.zeros((len(sequences), dimension))

for i, sequence in enumerate(sequences):

results[i, sequence] = 1.

return results

x_train = vectorize_sequences(train_data)

x_test = vectorize_sequences(test_data)

After performing this step, the data samples would now look like this:

>>> x_train[0]

array([0., 1., 1., ..., 0., 0., 0.])

Apart from vectorizing the train_data and test_data, we should also vectorize
the train_labels and test_labels. This is not hard, on the contrary, it is actually
pretty straightforward as you can see from the two lines of code below:

y_train = np.asarray(train_labels).astype('float32')

y_test = np.asarray(test_labels).astype('float32')

Now, our data is ready to be inputted into the Neural network of the deep
learning model.

Establishing the Neural Network

Here’s a summary of the ingredients we are working with so far to build our
Neural network. Our training data is made up of vectors (the input data) and
scalars (the labels).

Now, we have to choose a type of network that works best with our
ingredients, and so far, the choice is very straightforward and simple because
we know that with such type of data, a dense layer will work best. Hence, our
Neural network will be one that has completely connected stacks of layers
featuring relu activations. Hence the argument to define such a network
would be:

Dense(16, activation='relu').

The above argument is specifying the number of hidden units (16) of layers
that are to be passed to each dense layer. To refresh our memory below is the
chain of tensor operation that is typically implemented by a dense layer with
a relu activation:

output = relu(dot(W, input) + b)

Since we have a total of 16 hidden units, the above matrix W (also known as
the weight matrix) will be shaped as (input_dimension, 16). Similarly, if we
consider a dot product of this weight matrix W, the input data will end up
being projected onto representation space that is actually 16-dimension.
It is also important to understand the meaning of a representation’s space
dimensionality. In essence, the dimensionality of a representation space
defines the freedom with which you allow the Neural network to learn
internal representations. So, if we have a greater number of hidden units, this

means that we are allowing for a bigger high-dimensional space of
representation. Thus, the Neural network has more freedom in regards to
being able to learn representations that are even more complex; however,
with more freedom to learn comes greater risks. It becomes harder to control
what the network learns, and may lead to the Neural network learning
patterns that are useless or may even harm the success potential, so be wise
when making such a network.

Regarding the network architecture, you should always ask yourself these
two questions when implementing a stack of dense layers into the Neural
network:

1. How many layers should I use?
2. What’s the optimal number of hidden units that I should appoint to

each layer?
In this example, we sought the following answers to the questions above:

1. About two intermediate layers, each having a total of 16 hidden
units.

2. A third layer, whose job will be to take the scalar predictions as its
output. The prediction will be the annotation of the current review
being analyzed (if the review is positive or negative).

In addition, the activation functions for the intermediate and third (final) layer
are also different. The intermediate layer uses relu as the activation function
while the third layer is using the sigmoid as the activation function. This is
down to the nature of its job (outputting a probability value of either 0 or 1,
for instance, a probability value of 1 depicts the likelihood of a review of
being positive and vice versa).

The job of the relu function is to take the negative values and convert them
into zeroes. On the other hand, a sigmoid function basically forces all
arbitrary values into an interval of the shape [0, 1], giving us an output which
can then be interpreted as a probability.

A Rectified Linear Unit Function (relu)

A Sigmoid Function

The Keras implementation of the building this network is shown below:

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(16, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

The final step to complete the Neural network is to select a suitable loss
function and an optimizer. Before making your choice, analyze the network
you have built so far and ponder on what type of loss function would be the
most optimal considering the type of problem we are tackling. In this case, as
we are dealing with a problem relating to binary classification and the output
of our network is in the form of a probability value, then the ideal choice
would be to go for a binary_crossentropy loss function. While there are
other choices available such as the mean_squred_error loss function, we
will still go for the former as we are working with a network that gives an
output of probability values. Cross-entropy is the most suitable for such
situations. The reason why cross-entropy is a good contender is because of its
function - it basically measures the distance between the probability
distributions and the predictions.
So we are going with the cross-entropy loss function, and the optimizer we
are choosing is the rmsprop optimizer. The metric which we will monitor
during the training is the “accuracy.” To implement these elements into the
network, we will use the following lines of code:

model.compile(optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['accuracy'])

We can pass off these elements as strings due to the fact all of them
(binary_crossentropy, rmsprop, and accuracy) are basically part of the Keras
framework.

We can also configure our optimizer (its parameters) according to our needs
by simply passing the optimizer class as an argument. Pretty simple as shown
below:

from keras import optimizers

model.compile(optimizer=optimizers.RMSprop(lr=0.001),

loss='binary_crossentropy',

metrics=['accuracy'])

We can also use custom loss functions and metrics as shown below:

from keras import losses

from keras import metrics

model.compile(optimizer=optimizers.RMSprop(lr=0.001),

loss=losses.binary_crossentropy,

metrics=[metrics.binary_accuracy])

Validating the Approach

To monitor the accuracy of the deep learning model during its training, we
need to create a “validation set” by setting aside a portion of samples from
the training dataset. Let’s set aside 10,000 samples for our validation dataset
as shown below:

x_val = x_train[:10000]

partial_x_train = x_train[10000:]

y_val = y_train[:10000]

partial_y_train = y_train[10000:]

Repeating the training process for a dataset is known as an epoch. Once we
have created a validation set, we will proceed with training the deep learning
model for a total of 15 epochs on the samples x_train and y_train. This
training will be done in batches with a size of 256 samples per batch.
Moreover, the accuracy and loss of the samples we previously set aside (the

10,000 samples) will also be monitored. To do this, we will simply pass the
set as an argument, i.e., validation_data as shown below:

model.compile(optimizer='rmsprop',

 loss='binary_crossentropy',

 metrics=['acc'])

history = model.fit(partial_x_train,

 partial_y_train,

 epochs=15,

 batch_size=256,

 validation_data=(x_val, y_val))

It takes for an epoch to complete on a CPU is roughly 2 seconds or even less
than 2 seconds. The entire process of training is completed in a timeframe of
15 seconds, and when an epoch is completed, there is a brief pause before the
next epoch starts. This pause happens so that the model can easily compute
the loss and accuracy (in our case, it is computed on the validation dataset,
which consists of ten thousand samples).

One more noticeable aspect of the model’s working is that when we use the
function model.fit(), we get a history object. The specialty of this “history”
object is that it holds the data pertaining to everything that happened in the
training process in the form of a dictionary.

>>> history_dict = history.history

>>> history_dict.keys()

[u'acc', u'loss', u'val_acc', u'val_loss']

Upon further analysis, we come to know that there are four distinct entries
within the dictionary, and each entry is a per metric record of their values in
the training session and validation session. We will now proceed to use the
Matplotlib library to plot the losses and accuracy of both training and
validation datasets beside each other.

import matplotlib.pyplot as plt

history_dict = history.history

loss_values = history_dict['loss']

val_loss_values = history_dict['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, loss_values, 'bo', label='Training loss')

plt.plot(epochs, val_loss_values, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

In the above demonstration, the label “bo” basically refers to a blue dot in the
resulting graphical representation, and the label “b” refers to a static blue line
in the same graph as shown below:

Now for plotting the accuracy of the training and validation datasets:

plt.clf() ‘clearing the figure’

acc_values = history_dict['acc']

val_acc_values = history_dict['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

plt.title('Training and validation accuracy')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

From these two graphs, we can clearly see the trend that with every training
epoch, there is a visible decrease in loss and an increase in accuracy as we
move through epochs. This is the essence of gradient descent optimization,
which basically decreases the quantity which we want to minimize every
epoch or iteration. However, the trend seems to take the opposite turn in the
cases of validation loss and accuracy.

Both the loss and accuracy are seen to peak out at the 4th epoch. This is an
accurate representation of the warnings given to learning programmers that a
deep learning model performing outstandingly on a training dataset is not
sure to have to the same success on a new dataset, such as the validation
dataset in our case. The exact phenomenon that we are dealing with is
basically “overfitting,” in other words, the training has become over-
optimized, and the representations being learned by the model are too
specific. Hence, there is no generalization to account for data that is outside
the training dataset.

There is a range of techniques through which overfitting can be mitigated,
which we will discuss in the coming chapters. For now, we could tackle the
issue of overfitting by just stopping the training session just before it peaks,
i.e., after three epochs.
Now let’s train a new Neural network for four epochs and observe the results
when testing it on new data:

model = models.Sequential()

model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(16, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',

 loss='binary_crossentropy',

 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=4, batch_size=256)

results = model.evaluate(x_test, y_test)

The end results are as shown below:

>>> results

[0.2929924130630493, 0.88327999999999995]

With such an ordinary approach, we scored an accuracy of 88%. Hence, if we
use top of the line approaches, scoring accuracy of 95% would be fairly easy.
Using this Trained Network for New Data

After we have trained the Neural network, we can now use it for our own
practical purposes, which was to classify the reviews as positive or negative.
To do this, we will be using the predict method as shown below:

>>> model.predict(x_test)

array([[0.98006207]

[0.99758697]

[0.99975556]

...,

[0.82167041]

[0.02885115]

[0.65371346]], dtype=float32)

This shows the predictive results of the likelihood of a review to be positive
or negative.

We cannot go into the very fundamental details of the following examples, as
you should already have an idea of what’s happening in the lines of code. We
will be giving brief explanations and go through these examples to save our
resources for more important discussions in the following chapters.

Deep Learning Multiclass Classification Example
In this example, the task faced by the Neural network will be to classify the
newswires of Reuter into 46 mutually exclusive topics. The classes in this
example are 46, making it a multiclass classification problem, more
specifically a single-label multiclass classification problem because each
class is exclusive from one another.

The Reuters Dataset

For this example, we will be working with the Reuters dataset. It comes
preloaded with the Keras library, so it is easy to use as shown below:

from keras.datasets import reuters

(train_data, train_labels), (test_data, test_labels) = reuters.load_data(

num_words=10000)

The number for samples for train_data and test_data are as follows:

>>> len(train_data)

8982

>>> len(test_data)

2246

The word indices are in the form of a list of integers, just like the IMDB
reviews in the previous example.

>>> train_data[10]

[1, 245, 273, 207, 156, 53, 74, 160, 26, 14, 46, 296, 26, 39, 74, 2979,

3554, 14, 46, 4689, 4329, 86, 61, 3499, 4795, 14, 61, 451, 4329, 17, 12]

These list of integers can be decoded as follows:

word_index = reuters.get_word_index()

reverse_word_index = dict([(value, key) for (key, value) in
word_index.items()])

decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in

train_data[0]])

Preparing the Data

We will now proceed to vectorize the data by using the same code we
outlined in the previous example:

import numpy as np

def vectorize_sequences(sequences, dimension=10000):

results = np.zeros((len(sequences), dimension))

for i, sequence in enumerate(sequences):

results[i, sequence] = 1.

return results

x_train = vectorize_sequences(train_data)

x_test = vectorize_sequences(test_data)

As discussed earlier, data can be vectorized either by label listing it as an
integer tensor or by one-hot encoding (mainly used for categorical encoding).
The method of one-hot encoding is shown below:

def to_one_hot(labels, dimension=46):

results = np.zeros((len(labels), dimension))

for i, label in enumerate(labels):

results[i, label] = 1.

return results

one_hot_train_labels = to_one_hot(train_labels)

one_hot_test_labels = to_one_hot(test_labels)

This can also be done natively in Keras, as we did in the MNIST example in
the beginning:

from keras.utils.np_utils import to_categorical

one_hot_train_labels = to_categorical(train_labels)

one_hot_test_labels = to_categorical(test_labels)

Building the Neural Network

This case is similar to the binary classification problem; however, the
methods and parameters used will be completely different because adopting
the same procedure, and choosing the same attributes would lead to big
information bottlenecks.
For this scenario, we will be using a larger layer with 64 unit

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(46, activation='softmax'))

Since the output of the layers is in the form of a probability, hence we will be
using the categorical_crossentropy as our loss function. We can improve the
result by minimizing the distance between the probability distribution output
of the network and the true distribution of the labels.

model.compile(optimizer='rmsprop',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

Validating the Approach

The validation dataset for this network will consist of 1,000 samples.

x_val = x_train[:1000]

partial_x_train = x_train[1000:]

y_val = one_hot_train_labels[:1000]

partial_y_train = one_hot_train_labels[1000:]

We will train the network for 15 epochs (be mindful that the graphical
representation will show upto 20 epochs so don’t be bothered by that):

history = model.fit(partial_x_train,

 partial_y_train,

 epochs=15,

 batch_size=512,

 validation_data=(x_val, y_val))

We will now move towards showcasing the graphical representation of the
loss and accuracy metrics.

For the loss of the training and validation sets:

import matplotlib.pyplot as plt

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'bo', label='Training loss')

plt.plot(epochs, val_loss, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

For the accuracy of the training and validation sets:

plt.clf()

acc = history.history['acc']

val_acc = history.history['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

plt.title('Training and validation accuracy')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

From the graphical representation, we can see that the overfitting
phenomenon comes into play after 9 epochs. So we will train a new network
for only 9 epochs and then test it on the testing dataset:

model = models.Sequential()

model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(46, activation='softmax'))

model.compile(optimizer='rmsprop',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

model.fit(partial_x_train,

partial_y_train,

epochs=9,

batch_size=512,

validation_data=(x_val, y_val))

results = model.evaluate(x_test, one_hot_test_labels)

After training, the results we obtain are shown below:

>>> results

[0.9565213431445807, 0.79697239536954589]

We obtain an accuracy of approximately 80% by using this approach. When
compared to a random baseline, these results are good. The results shown by
a random baseline would be as follows:

>>> import copy

>>> test_labels_copy = copy.copy(test_labels)

>>> np.random.shuffle(test_labels_copy)

>>> hits_array = np.array(test_labels) == np.array(test_labels_copy)

>>> float(np.sum(hits_array)) / len(test_labels)

0.18655387355298308

Hence, 19% would be the accuracy.
Generating Predictions on New Data

We will now take all of the data from the testing set and generate topic
predictions for it. Each entry in the predictions method will be a 46 length
vector with coefficients summing to 1 along with the last line of code
showcasing the class with the highest probability:

predictions = model.predict(x_test)

>>> predictions[0].shape

(46)

>>> np.sum(predictions[0])

1.0

>>> np.argmax(predictions[0])

4

Deep Learning Regression Example
In the previous examples, we dealt with problems relating to binary
classification and multiclass classification, which was solved by training a
Neural network such that when it would be given an input data point, it
would be able to predict its discrete label.

This example relates to an entirely different machine learning problem known
as regression. Instead of predicting a discrete label, the Neural network is
required to predict a continuous value (for instance, meteorological
predictions).

This example will focus on predicting house prices.

The Boston Housing Price Dataset
The dataset we will be using is the Boston Housing Price dataset, which

features data points of the Boston suburb in the era of the mid-1970s. The
goal is to predict the median house prices while taking into consideration
other factors such as crime rates and tax rates. Moreover, unlike the datasets
used in the previous example, this one has a relatively small pool of data
points, i.e., a total of 506 data points split into 404 training samples and 102
test samples.

We will now proceed to load the Boston Housing Price dataset into Keras:

from keras.datasets import boston_housing

(train_data, train_targets), (test_data, test_targets) =

➥ boston_housing.load_data()

After loading, let’s take a glance at the data:

>>> train_data.shape

(404, 13)

>>> test_data.shape

(102, 13)

Each of the data samples comes with a total of 13 numerical features, such as
crime rate, average rooms, and accessibility, etc.

The targets data points are in reality the median prices of the homes whose
tenants are the owners themselves:

>>> train_targets

[15.2, 42.3, 50. ... 19.4, 19.4, 29.1]

The average price is seen to be anywhere from $10,000 and $50,000.

Preparing the Data
This time, the data we are dealing with features values that have different
ranges. This makes learning very hard for the network even if it manages to
adapt to the heterogeneous data. To prepare it for feeding into the
network, we will perform a feature-wise normalization. This process
basically takes each feature of the input data and performs a series of

arithmetic functions, specifically subtracting the feature’s mean value and
then dividing it by the standard deviation, as shown below:

mean = train_data.mean(axis=0)

train_data -= mean

std = train_data.std(axis=0)

train_data /= std

test_data -= mean

test_data /= std

Always remember that the quantities which are used for feature-wise
normalizing the testing dataset are the ones that have already been computed
from the training dataset.

Building the Neural Network

As we are working with a smaller sample size this time, i.e., a total of 506
samples, a small network will suffice. The makeup of this network will be a
total of two hidden layers, and each of these hidden layers will have 64 units.
Moreover, by using a small network, we will automatically lessen the
overfitting in our Neural network. The deep learning Neural network will be
built as follows:

from keras import models

from keras import layers

def build_model():

model = models.Sequential()

model.add(layers.Dense(64, activation='relu',

 input_shape=(train_data.shape[1],)))

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(1))

model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

return model

The above setup is a typical build for dealing with scalar regression
problems. Our Neural network will end up a linear layer (single unit without
any activation function). The reason why we did not add any activation
function is because it would lead to only restraining the range that the output
can take. As we have set the last layer of the network to be linear, in return,
the network has more freedom in regard to predicting values in any range,
instead of a constrained range with an activation sequence.

The loss function we are using in this network is the mse function or the
mean squared error function. This function is related to the compilation of the
network by taking the difference between the predictions and the target and
squaring it.

Apart from this, we are now monitoring an entirely new metric during the
training process, which is the “Mean Absolute Error” (MAE). This takes the
difference between the predictions and the target and provides a
corresponding absolute value, for instance, an MAE of 0.5 in this example
would insinuate that the predictions of the house prices are deviating by an
amount of $500.

Validating the Approach

The method of validation we will be using in this example is the K-Fold
validation. First things first, we will set aside a portion of samples as our
validation dataset. While we are already dealing with a small number of data
samples, hence the validation dataset will also be considerably smaller, i.e., a
dataset of only 100 samples. In turn, our validation scores will be more prone
to changes depending on the data points being used for validation and
training. Hence we will be using the K-Fold validation to cover this
discrepancy. In K-Fold validation, we basically split the data, which is
currently available into partitions known as K-Partitions (K = 4 or 5). After
partitioning, we make identical K-models and train the Neural Network on
parameters such as K-1 partitions and the evaluations are done on the rest of
the partitions, to understand this better, take a look at the demonstration

below:

We have coded a K-Fold validation below:

import numpy as np

k=4

num_val_samples = len(train_data) // k

num_epochs = 100

all_scores = []

for i in range(k):

print('processing fold #', i)

val_data = train_data[i * num_val_samples: (i + 1) *
num_val_samples]

val_targets = train_targets[i * num_val_samples: (i + 1) *
num_val_samples]

partial_train_data = np.concatenate(

[train_data[:i * num_val_samples],

 train_data[(i + 1) * num_val_samples:]],

axis=0)

partial_train_targets = np.concatenate(

[train_targets[:i * num_val_samples],

 train_targets[(i + 1) * num_val_samples:]],

axis=0)

model = build_model()

model.fit(partial_train_data, partial_train_targets,

 epochs=num_epochs, batch_size=1, verbose=0)

val_mse, val_mae = model.evaluate(val_data, val_targets,
verbose=0)

all_scores.append(val_mae)

We will specify the number of epochs as 100 by the argument num_epochs =
100. The corresponding results are shown below:

>>> all_scores

[2.588258957792037, 3.1289568449719116, 3.1856116051248984,
3.0763342615401386]

>>> np.mean(all_scores)

2.9947904173572462

Different number of epochs are giving different results, in our case, ranging
from 2.6 to 3.2. The entire purpose of the K-Fold validation is to give a mean
of these different scores, which is 3.0 in our case. However, we are still
deviating by an average of $3,000 and this is very significant.
We will now try training the network longer, this time for 500 epochs. In
addition, we will modify the training session loops such that the performance
of the model one each epoch is recorded in a validation score log.

The code to save the validation logs a each fold is as shown below:

num_epochs = 500

all_mae_histories = []

for i in range(k):

print('processing fold #', i)

val_data = train_data[i * num_val_samples: (i + 1) *
num_val_samples]

val_targets = train_targets[i * num_val_samples: (i + 1) *
num_val_samples]

partial_train_data = np.concatenate(

[train_data[:i * num_val_samples],

 train_data[(i + 1) * num_val_samples:]],

axis=0)

partial_train_targets = np.concatenate(

[train_targets[:i * num_val_samples],

 train_targets[(i + 1) * num_val_samples:]],

axis=0)

model = build_model()

history = model.fit(partial_train_data, partial_train_targets,

 validation_data=(val_data, val_targets),

 epochs=num_epochs, batch_size=1, verbose=0)

mae_history = history.history['val_mean_absolute_error']

all_mae_histories.append(mae_history)

To compute and find out the average MAE scores of all the K-Folds, we will

use the following lines of code:

average_mae_history = [

np.mean([x[i] for x in all_mae_histories]) for i in
range(num_epochs)]

We will now plot the validation scores we have obtained from the Neural
network’s training so far and plot it into a graph to analyze the results with
more clarity:

import matplotlib.pyplot as plt

plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)

plt.xlabel('Epochs')

plt.ylabel('Validation MAE')

plt.show()

The graphical representation is still unclear because of the issues relating to
scaling and frequent variance. To remedy this, we will do the following:

1. We will take the initial data points and omit the first 10 that are
already on a different scale as compared to the rest of the curve

2. We will replace each point in the curve with an exponential

moving average. This average is taken from the previous points
and will give us a smooth curve.

Now, we will use the following lines of code to plot the validation scores by
omitting the initial 10 data points:

def smooth_curve(points, factor=0.9):

smoothed_points = []

for point in points:

if smoothed_points:

previous = smoothed_points[-1]

smoothed_points.append(previous * factor + point * (1 -
factor))

else:

smoothed_points.append(point)

return smoothed_points

smooth_mae_history = smooth_curve(average_mae_history[10:])

plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)

plt.xlabel('Epochs')

plt.ylabel('Validation MAE')

plt.show()

In this graphical representation, we can see that after 80 epochs, the
improvement of the validation MAE comes to a halt, and past that, the
network experiences overfitting.

Once we have tuned the network on our desired parameters, we can begin
testing it with these optimal parameters and check the performance on the
testing dataset.

model = build_model()

model.fit(train_data, train_targets,

epochs=80, batch_size=16, verbose=0)

test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)

The final result obtained is:

>>> test_mae_score

2.5532484335057877

We can see that even after all this, the Neural network’s predictions are still
off by a value of $2,550.

Chapter 4: Using Deep Learning for Computer
Vision
In this chapter, our discussion will revolve around the understanding and
visualization of convnets, which are known as convolutional neural networks.
The importance of convnets can be estimated from the fact that its use
stretches out universally to every computer vision application. After
understanding the conceptual realms surrounding convnets, we will proceed
to use them practically in problems relating to image-classification. The
dataset we will be using in these practical demonstrations will be small, and
almost anyone can practice light on computational resources. As such, an
example, without needing to arrange resources that are typically available in a
big tech company.

What is Convnet? Working with Convolution Operations
Before we begin discussing the details of a convnet, we will first look at a
practical demonstration of a deep learning model using a convnet. We will
solve the problem of classifying digits in the MNIST dataset (the same task
which we demonstrated previously in the second chapter and received an
accuracy of 97.8% by using a densely connected Neural network). Compared
to the previous method we used for performing this task, implementing a
convnet is relatively simple. We will also see how the results of a convnet
hold up to a densely connected Neural network.

The following lines of code show how we can instantiate a small convnet in
our deep learning model:

from keras import layers

from keras import models

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28,
1)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

From the above lines of code, we can see that a typical small convnet is just a
stack of two types of layers, namely the Conv2D and MaxPooling2D layers.
Regarding the input data, a convnet only accepts tensors that are of the
following shape: (image_height, image_width, image_channels). Now we
know the shape of the input tensors required, we will configure the convnet
accordingly to make it process tensor inputs corresponding to the format of
the MNIST images dataset, of the size (28, 28, 1). This can be easily done by
using an argument on the first layer. This argument is input_shape (28, 28, 1).

The Network’s architecture will look like this according to the changes we
just mentioned:

>>> model.summary()

__

Layer (type) Output Shape Param #

==

conv2d_1 (Conv2D) (None, 26, 26, 32) 320

__

maxpooling2d_1 (MaxPooling2D) (None, 13, 13, 32) 0

__

conv2d_2 (Conv2D) (None, 11, 11, 64) 18496

__

maxpooling2d_2 (MaxPooling2D) (None, 5, 5, 64) 0

__

conv2d_3 (Conv2D) (None, 3, 3, 64) 36928

==

Total params: 55,744

Trainable params: 55,744

Non-trainable params: 0

From the network’s architectrure displayed above, we can see that the
Conv2D and MaxPooling2D layers output a 3D tensor and the shape of this
tensor is (height, width, channels). One more thing to point out is that as we
move deeper into the Neural network, the dimensions of width and height
will consequently shrink, in addition, the very first argument which we
passed on to the layer Conv2D is responsible for controlling the amount of
channels in the network.
The next plan of action is to take the output tensor of the last layer and feed it
into a classifier network. This classifier network is made up of a stack of
dense layers and what they essentially do is take the 1D vectors and process
them even though the network is outputting 3D tensors. So, we will proceed
to convert the 3D tensors into a 1D tensor and after doing this, we will also
throw in a bunch of dense layers, as shown below:

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10, activation='softmax'))

In the above lines of code, we are performing a 10-way classification with a
softmax activation. Moreover, the classification is being done with the last
layer giving 10 outputs. The Neural network thus far looks like this:

>>> model.summary()

Layer (type) Output Shape Param #

==

conv2d_1 (Conv2D) (None, 26, 26, 32) 320

__

maxpooling2d_1 (MaxPooling2D) (None, 13, 13, 32) 0

__

conv2d_2 (Conv2D) (None, 11, 11, 64) 18496

__

maxpooling2d_2 (MaxPooling2D) (None, 5, 5, 64) 0

__

conv2d_3 (Conv2D) (None, 3, 3, 64) 36928

__

flatten_1 (Flatten) (None, 576) 0

__

dense_1 (Dense) (None, 64) 36928

__

dense_2 (Dense) (None, 10) 650

==

Total params: 93,322

Trainable params: 93,322

Non-trainable params: 0

We will now start training of the convnet Neural network on the MNIST
training set. You will notice most of the code being repeated from the
example in chapter 2.

from keras.datasets import mnist

from keras.utils import to_categorical

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28, 28, 1))

train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28, 28, 1))

test_images = test_images.astype('float32') / 255

train_labels = to_categorical(train_labels)

test_labels = to_categorical(test_labels)

model.compile(optimizer='rmsprop',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5, batch_size=64)

Now to evaluate the deep learning model after training it:

>>> test_loss, test_acc = model.evaluate(test_images, test_labels)

>>> test_acc

0.99080000000000001

So from the above results, we can see that by using a convnet on the same
MNIST dataset, we get an accuracy of 99.3% as compared to the 97.8%
accuracy by using a densely connected network.

The reason for this improvement in accuracy is because of the Conv2D and
MaxPooling2D layers, and to understand this better, we will discuss these
two layers in detail.

The Convolution Operation (CONV2D)

Let’s talk about what makes a convolution layer different from a densely
connected layer. The most fundamental difference between these two comes
in their learning patterns. While a dense layer takes the approach of learning a
global pattern within the input space, on the other hand, a convolution layer
does the opposite, i.e., it learns a local pattern.

Due to this characteristic of convnets, they have developed the following two
important properties:

1. The patterns learned by convnets are translation invariant. This
means that when a convnet is finished with learning a particular
pattern, let’s say, in the upper-left corner of a drawing or a picture,
it can then detect and recognize this particular pattern in any
location of the picture. This is where a densely connected network
falls behind as for it to recognize the same pattern in a new
location, it will have to learn it from scratch. Hence, in terms of
image processing, convnets are not only data efficient, but they are
also resource-efficient as well as they only require a small number
of training samples to learn those representations that have a
much-needed generalization power.

2. Convnets can learn the spatial hierarchies of patterns. The visual
world is in nature, spatially hierarchical, hence making this
property of convnets very important. The learning process works
as follows: in a convnet, there are several convolution layers.
Based on the hierarchical position of these layers, they learn
different patterns.

The first convolutional layer will only learn small local patterns, while
the second convolutional layer will learn bigger local patterns that have
the same features as the smaller ones. In this way, a convnet is capable
of not only learning increasingly complex patterns, but it can also learn
abstract concepts.

Convolutional operations work on 3D tensors. This tensor is known as a
“feature map.” This tensor has two spatial axes and a depth axis. In other
words, a convolution operation takes out a patch from this inputted feature
map and applies this transformation on all of the other patches. In this way,

the network obtains an output feature map from an input feature map.

Furthermore, the following two parameters define convolutions:

1. Size of the patches taken from the input feature map. This size is
either 3x3 or 5x5.

2. The output feature map’s depth refers to the number of filters that
have been computed by the convolution operation.

You can see these parameters in Keras as well so much so that they are the
very first arguments which are passed to the convolution layers as:

Conv2D(output_depth, (window_height, window_width))

The size of the windows, as shown in the argument above, can be either 3x3
or 5x5. What the convolution operation does in this argument is that it
“slides” the windows mentioned above over a given 3D input feature map.
During the sliding, the operation searches for 3D patches that have the
corresponding features (shape (window_height, window_width,
input_depth)), and wherever it finds such a 3D patch, it stops and extracts this
3D patch. Once a 3D patch has been extracted, it is converted into a 1D
vector with shape (output_depth). Once enough 3D patches have been
extracted and converted into 1D vectors, the next plan of action is for the
convolution is to reassemble them into a 3D feature map spatially. This is the
output feature map. The shape of this 3D feature map would be (height,
width, output_depth). To understand this concept better, take a look at the
visualization of how convolutions work.

(The Working of a Convolution)

Some characteristics of the output feature map may be different from the
input feature map, such as the height and width, this is because of two main
reasons:

1. Border effects (This can be remedied by padding the input feature
map).

2. Using strides.
The MaxPooling2D Operation

The main job of the MaxPooling2D operation is to downsample the feature
maps. In the previous examples of convolution operations, we can see that
initially, the size of the feature map was 26x26, but as soon as it passed
through the maxpooling2D layer, the size of the feature map was

downsampled to 13x13.

Conceptually, the max-pooling operation is similar to the convolution
operation, the point where this similarity comes to an end is when both of the
operations need to convert the local patches. A convolution operation does
this by using a convolution kernel (basically an already learned linear
transformation) while, on the other hand, a max-pooling operation performs
this transformation by using a max tensor operation, which is hardcoded. One
more big difference between the two operations is that max-pooling is most
of the time, done with windows of the size 2x2 and stride 2 while a
convolution is done with a window that has a size of 3x3. Moreover, no stride
is used (stride 1).

You might be wondering that what is the point of even downsampling the
feature maps in the first place. To answer this, let’s look at a convolutional
base model without a downsized feature map:

model_no_max_pool = models.Sequential()

model_no_max_pool.add(layers.Conv2D(32, (3, 3), activation='relu',

 input_shape=(28, 28, 1)))

model_no_max_pool.add(layers.Conv2D(64, (3, 3), activation='relu'))

model_no_max_pool.add(layers.Conv2D(64, (3, 3), activation='relu'))

The summary of this model is as follows:

>>> model_no_max_pool.summary()

Layer (type) Output Shape Param #

==

conv2d_4 (Conv2D) (None, 26, 26, 32) 320

__

conv2d_5 (Conv2D) (None, 24, 24, 64) 18496

__

conv2d_6 (Conv2D) (None, 22, 22, 64) 36928

==

Total params: 55,744

Trainable params: 55,744

Non-trainable params: 0

After analyzing this model, we come to know that two major things are
wrong with this particular setup:

1. This setup is not optimal in regards to learning a feature’s spatial
hierarchy. This is because the window in the network’s third layer
is of the size 3x3, and it will only contain information that is
coming from the initial input, and the size of this window is 7x7.
Hence, we require the features of the convolution layer to store the
information pertaining to the input’s totality.

2. The setup is unnecessarily large for our purposes of a small deep
learning model. This setup’s final feature map has an enormous
number of coefficients, i.e., 22 x 22 x 64 which per sample, equals
to a total of 30,976 coefficients. Now, if we want to add a dense
layer on this model, then we would first need to flatten the feature
map. So let’s say we do flatten it out and put a size 512 dense layer
on top of it, the resulting parameters of the layer would be around
15.8 million. This would result in overfitting of the model.

So, the essence of downsampling is just to cut down the number of
coefficients our feature map has, besides, downsampling also creates a kind
of filter for spatial hierarchies. This is done by arranging successive
convolutional layers in such a way that they progressively deal with larger
windows.

Training a Convnet
In computer vision, the most common task for which deep learning models
are used for is image-classification. Hence, we will be training our deep
learning model using a convnet on a dataset consisting of 4,000 picture
samples of cats and dogs. The task which is to be performed by the network

is to learn to recognize dogs and cats separately in the picture samples. As
always, we divide the 4,000 samples between training, validation, and testing.
2,000 samples will be used for training the network, 1,000 samples will be
used as the validation set, and the remaining 1,000 samples will be used as
the testing set.

As we are working with a considerably small dataset, we will need to
strategize the training of the network accordingly. At first, we will not
consider any regularization while training the convnet with the 2,000 sample
training dataset. By doing so, we will essentially establish a baseline detailing
the limits of what is the network is capable of. The classification accuracy
thus obtained will be a measly 71%, with the main point of concern being
overfitting. We will then proceed to diminish this overfitting as much as
possible by using a rather robust and potent technique known as “data
augmentation.” This will bring the classification accuracy of the convnet up
to 81%, a sizeable difference as compared to before.

This is all which will be covered in this section. In the following sections of
this chapter, we will discuss another pair of techniques that help us
implement deep learning models on small datasets which are:

1. Feature extraction with a pertained network. (Accuracy of 90-
96%)

2. Fine-tuning a pertained network. (Accuracy of 97%).
By combining these two techniques with the one we have just discussed, you
can develop a very powerful toolbox for handling image-classification
problems anytime and anywhere.

Downloading the Data

The very first thing to do is to obtain the data on which we will train and
build our deep learning model’s network. We will be using a dataset released
by Kaggle, and this dataset is known as the Dogs vs. Cats dataset. This
dataset does not come packaged in Keras. Hence we will need to download it
from Kaggle’s website. Also, before you can download the dataset, you will
need to create a Kaggle account if you don’t have one.

www.kaggle.com/c/dogs-vs-cats/data

The pictures included in this dataset are in a JPEG format, and they are of

medium resolution. Some examples of the pictures included in this dataset
are shown below (the pictures shown are not modified or edited, they differ
in sizes to make the dataset heterogenous):

Although the dataset consists of a total of 25,000 pictures (12,500 dogs and
12,500 cats), we will be only using a total of 4,000 samples in accordance to
the training, validation and testing sets we discussed beforehand. If we work
with a large dataset, then it would defeat the purpose of using deep learning
for small datasets.

Hence, we will divide the dataset accordingly: 1,000 samples of each class
(dogs and cats) for our training dataset, 500 samples of each class for our
validation dataset, and 500 samples of each class for the testing dataset.
To copy these samples to their corresponding training, validation and testing
directories, we will use the following lines of code:

import os, shutil

original_dataset_dir = '/Users/fchollet/Downloads/kaggle_original_data'

base_dir = '/Users/fchollet/Downloads/cats_and_dogs_small'

os.mkdir(base_dir)

train_dir = os.path.join(base_dir, 'train')

os.mkdir(train_dir)

validation_dir = os.path.join(base_dir, 'validation')

os.mkdir(validation_dir)

test_dir = os.path.join(base_dir, 'test')

os.mkdir(test_dir)

train_cats_dir = os.path.join(train_dir, 'cats')

os.mkdir(train_cats_dir)

train_dogs_dir = os.path.join(train_dir, 'dogs')

os.mkdir(train_dogs_dir)

validation_cats_dir = os.path.join(validation_dir, 'cats')

os.mkdir(validation_cats_dir)

validation_dogs_dir = os.path.join(validation_dir, 'dogs')

os.mkdir(validation_dogs_dir)

test_cats_dir = os.path.join(test_dir, 'cats')

os.mkdir(test_cats_dir)

test_dogs_dir = os.path.join(test_dir, 'dogs')

os.mkdir(test_dogs_dir)

fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]

for fname in fnames:

src = os.path.join(original_dataset_dir, fname)

dst = os.path.join(train_cats_dir, fname)

shutil.copyfile(src, dst)

fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]

for fname in fnames:

src = os.path.join(original_dataset_dir, fname)

dst = os.path.join(validation_cats_dir, fname)

shutil.copyfile(src, dst)

fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]

for fname in fnames:

src = os.path.join(original_dataset_dir, fname)

dst = os.path.join(test_cats_dir, fname)

shutil.copyfile(src, dst)

fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]

for fname in fnames:

src = os.path.join(original_dataset_dir, fname)

dst = os.path.join(train_dogs_dir, fname)

shutil.copyfile(src, dst)

fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]

for fname in fnames:

src = os.path.join(original_dataset_dir, fname)

dst = os.path.join(validation_dogs_dir, fname)

shutil.copyfile(src, dst)

fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]

for fname in fnames:

src = os.path.join(original_dataset_dir, fname)

dst = os.path.join(test_dogs_dir, fname)

shutil.copyfile(src, dst)

We will now double check number of pictures in each directory:

>>> print('total training cat images:', len(os.listdir(train_cats_dir)))

total training cat images: 1000

>>> print('total training dog images:', len(os.listdir(train_dogs_dir)))

total training dog images: 1000

>>> print('total validation cat images:', len(os.listdir(validation_cats_dir)))

total validation cat images: 500

>>> print('total validation dog images:',
len(os.listdir(validation_dogs_dir)))

total validation dog images: 500

>>> print('total test cat images:', len(os.listdir(test_cats_dir)))

total test cat images: 500

>>> print('total test dog images:', len(os.listdir(test_dogs_dir)))

total test dog images: 500

So far, everything looks good and in place. We will now proceed to build the
network as we have obtained the necessary data.

Building the Network

As we have already built a small yet simple convnet for an MNIST dataset,
we will be using the same general structure, i.e., the stack of layers being
used will be an alternating arrangement of Conv2D and MaxPooling2D
layers. The convolution operation will be using a relu activation function.
However, we will be adding another Conv2D and MaxPooling2D layer to
make the network larger because, unlike before, we are now dealing with a
more complex problem and larger images. By doing so, we will not only be
augmenting the capacity of the network we are building, but we will also be
able to reduce the size of the feature maps even further before we reach the
point of the flatten layer. Following this concept, we will be starting from
inputs with a size of 150x150 and ending up feature maps of the size 7x7
right before the flatten layer.
By using common sense, we can see that the nature of the problem we are
tackling is, in essence, a binary classification problem. Just as how we dealt
with such problems in the previous chapters, we will be using a size 1 dense
layer with a sigmoid activation function to end our network, hence encoding
the probability of whether the network is looking at a picture of a dog or a
cat.

The network will be built as follows:

from keras import layers

from keras import models

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu',

 input_shape=(150, 150, 3)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(128, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(128, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())

model.add(layers.Dense(512, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

While we are at it, let’s take a sneak peek at how the dimensions of the
feature maps are changing through every succeeding layer they go through:

>>> model.summary()

Layer (type) Output Shape Param #

==

conv2d_1 (Conv2D) (None, 148, 148, 32) 896

__

maxpooling2d_1 (MaxPooling2D) (None, 74, 74, 32) 0

__

conv2d_2 (Conv2D) (None, 72, 72, 64) 18496

__

maxpooling2d_2 (MaxPooling2D) (None, 36, 36, 64) 0

__

conv2d_3 (Conv2D) (None, 34, 34, 128) 73856

__

maxpooling2d_3 (MaxPooling2D) (None, 17, 17, 128) 0

__

conv2d_4 (Conv2D) (None, 15, 15, 128) 147584

__

maxpooling2d_4 (MaxPooling2D) (None, 7, 7, 128) 0

__

flatten_1 (Flatten) (None, 6272) 0

__

dense_1 (Dense) (None, 512) 3211776

__

dense_2 (Dense) (None, 1) 513

==

Total params: 3,453,121

Trainable params: 3,453,121

Non-trainable params: 0

We are using a network that ends with a singular sigmoid unit, hence the loss
function which we will be using for the network is crossentropy. The
optimizer used will be rmsprop.

We will configure the network accordingly:

from keras import optimizers

model.compile(loss='binary_crossentropy',

optimizer=optimizers.RMSprop(lr=1e-4),

metrics=['acc'])

Preprocessing the Data

As is the case with building Neural networks, we will now proceed to convert
the data into the appropriate preprocessed floating-point tensors. This will be
done as follows:

1. Go through the pictures in the sample data
2. Decode these pictures which are in a JPEG format into pixels on

RGB grids
3. Convert these pixels into floating-point tensors
4. Rescale the values of the resulting pixels into the (0, 1) interval

Fortunately, we will not have to perform these steps entirely manually. Keras
has the necessary utilities to help us perform these steps as shown in the code
below:

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale=1./255)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(150, 150)

batch_size=20,

class_mode='binary')

validation_generator = test_datagen.flow_from_directory(

validation_dir,

target_size=(150, 150),

batch_size=20,

class_mode='binary')

The image data generator used in this code will keep generating these data
batches infinitely. Now we will break the generating loop once we have
gotten the converted data:

>>> for data_batch, labels_batch in train_generator:

>>> print('data batch shape:', data_batch.shape)

>>> print('labels batch shape:', labels_batch.shape)

>>> break

data batch shape: (20, 150, 150, 3)

labels batch shape: (20,)

Now, to fit the deep learning model using a batch generator:

history = model.fit_generator(

train_generator,

steps_per_epoch=100,

epochs=30,

validation_data=validation_generator,

validation_steps=50)

Never a bad idea to save the model:

model.save('cats_and_dogs_small_1.h5')

We will now plot the loss and accuracy data of this deep learning model to
analyze it and make changes to the model accordingly:

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

plt.title('Training and validation accuracy')

plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')

plt.plot(epochs, val_loss, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.show()

By running this code, we get the following graphical representations of the
loss and accuracy data of the model:

In our current model, the problem of overfitting is the main concern at this
point. We have learned several techniques to deal with overfittings, such as
the weight decay method and the dropout method. However, in this example,
we will be using a new technique known as data augmentation, and this
technique is used almost universally for deep learning models that are dealing
with image-classification tasks.

Mitigating Overfitting by Data Augmentation

Overfitting is very prominent in models that are using a small number of

samples for training their Neural network. Data augmentation diminishes
overfitting by opting for the approach that, if we have a larger number of
training samples, then there will be less overfitting. Hence data augmentation
generates new training samples from the existing set of training samples
through randomly transforming data into similarly structured data (known as
augmentation).

We will now establish a data augmentation configuration for our model using
the ImageDataGenerator function:

datagen = ImageDataGenerator(

rotation_range=40,

width_shift_range=0.2,

height_shift_range=0.2,

shear_range=0.2,

zoom_range=0.2,

horizontal_flip=True,

fill_mode='nearest')

Now to display some of the augmented images which we have created for the
network’s training:

from keras.preprocessing import image

fnames = [os.path.join(train_cats_dir, fname) for

fname in os.listdir(train_cats_dir)]

img_path = fnames[3]

img = image.load_img(img_path, target_size=(150, 150))

x = image.img_to_array(img)

x = x.reshape((1,) + x.shape)

i=0

for batch in datagen.flow(x, batch_size=1):

plt.figure(i)

imgplot = plt.imshow(image.array_to_img(batch[0]))

i += 1

if i % 4 == 0:

break

plt.show()

These are the cat pictures that have been generated through data
augmentation. However, this will not completely diminish overfitting
because we are just remixing the existing information and training the
network on it, so no new data is being produced. To further reduce overfitting
in the model, we will add in a dropout layer and place it just before the
densely connected classifier.

We will now define a convnet and this time, it will include the dropout layer:

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu',

 input_shape=(150, 150, 3)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(128, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(128, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())

model.add(layers.Dropout(0.5))

model.add(layers.Dense(512, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',

 optimizer=optimizers.RMSprop(lr=1e-4),

 metrics=['acc'])

Now to train the network by using data augmentation and dropout:

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=40,

width_shift_range=0.2,

height_shift_range=0.2,

shear_range=0.2,

zoom_range=0.2,

horizontal_flip=True,)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(150, 150),

batch_size=32,

class_mode='binary')

validation_generator = test_datagen.flow_from_directory(

validation_dir,

target_size=(150, 150),

batch_size=32,

class_mode='binary')

history = model.fit_generator(

train_generator,

steps_per_epoch=100,

epochs=100,

validation_data=validation_generator,

validation_steps=50)

A very important note, never augment the validation data.

Let’s save the model in case we need it for future purposes:

model.save('cats_and_dogs_small_2.h5')

The following are the results plotted onto a graph:

We can see that the training curves are closely following the validation
curves, and we have eradicated overfitting from our deep learning model by
using data augmentation and dropout.

Working with a Pretrained Convnet
This another effective, efficient, and very commonly practiced approach for
people using deep learning models in computer vision. This approach is self-
definitive. We are using a convnet that has already been trained on a large-
scale dataset used primarily for tackling a complex and huge image-
classification task, and later, this network has been saved. We can use this
network for small datasets with a little change here and there. Moreover, a
pre-trained convnet most probably has a sizable spatial hierarchy learned,

meaning that it can perform general classification.

A pre-trained network can be used by following either of the two ways;

1. Feature Extraction
2. Fine Tuning

Feature Extraction

In feature extraction, we use representations of the pre-trained convnet to
extract some new features in the current dataset we are working on. Once the
features have been extracted, we then train a new classifier and run these
features through it.

To refresh our memory, a typical convnet begins with a bunch of convolution
and max-pooling layers and end with a densely connected classifier. In
feature extraction, we will use the convolutional base of the pre-trained
convnet and run our data through it. Afterward, we will train a new classifier
and put it on top of the output yielded by the pre-trained convnets
convolutional base.

We are essentially swapping out the pre-trained convnet's classifier with a
newly trained classifier while keeping the same convolutional base as shown
below;

Let’s being using a pre-trained convnet. There are several pre-trained
convnets models available in Keras which are;

1. Xception
2. Inception V3
3. ResNet50
4. VGG16
5. VGG19
6. MobileNet

We will be using a VGG16 convnet, which has been pre-trained on the
ImageNet dataset. As per feature extraction, we will be extracting the features
of cats and dogs from this convnet’s convolutional base. After extracting the
features, we will train a dog vs. cat classifier and place it on these extracted
features.

We do not need to download the VGG16 model as it is already available for
use in Keras. To import it, we will use the module keras.applications.

We will now proceed to begin instantiating the convolutional base of
VGG16;

from keras.applications import VGG16

conv_base = VGG16(weights='imagenet',

 include_top=False,

 input_shape=(150, 150, 3))

To understand the VGG16’s convolutional base better, take a look at a
detailed architecture of it;

>>> conv_base.summary()

Layer (type) Output Shape Param #

==

input_1 (InputLayer) (None, 150, 150, 3) 0

__

block1_conv1 (Convolution2D) (None, 150, 150, 64) 1792

__

block1_conv2 (Convolution2D) (None, 150, 150, 64) 36928

__

block1_pool (MaxPooling2D) (None, 75, 75, 64) 0

__

block2_conv1 (Convolution2D) (None, 75, 75, 128) 73856

__

block2_conv2 (Convolution2D) (None, 75, 75, 128) 147584

__

block2_pool (MaxPooling2D) (None, 37, 37, 128) 0

__

block3_conv1 (Convolution2D) (None, 37, 37, 256) 295168

__

block3_conv2 (Convolution2D) (None, 37, 37, 256) 590080

__

block3_conv3 (Convolution2D) (None, 37, 37, 256) 590080

__

block3_pool (MaxPooling2D) (None, 18, 18, 256) 0

__

block4_conv1 (Convolution2D) (None, 18, 18, 512) 1180160

__

block4_conv2 (Convolution2D) (None, 18, 18, 512) 2359808

__

block4_conv3 (Convolution2D) (None, 18, 18, 512) 2359808

__

block4_pool (MaxPooling2D) (None, 9, 9, 512) 0

__

block5_conv1 (Convolution2D) (None, 9, 9, 512) 2359808

__

block5_conv2 (Convolution2D) (None, 9, 9, 512) 2359808

__

block5_conv3 (Convolution2D) (None, 9, 9, 512) 2359808

__

block5_pool (MaxPooling2D) (None, 4, 4, 512) 0

==

Total params: 14,714,688

Trainable params: 14,714,688

Non-trainable params: 0

As we can see the final block has a feature map of (4, 4, 512). We will place
a densely connected classifier on top of this feature map.

Now we can proceed with feature extraction in two ways;

Feature extraction without data augmentation
Feature extraction with data augmentation

Feature Extraction Without Data Augmentation

This method is particularly suitable in cases where you do not have access to

a GPU, or you can only run your code on the CPU. First of all, we will begin
by extracting the images along with their labels as NumPy arrays by using the
ImageDataGenerator. The features will be extracted by using the predict
method of the conv_base model.

import os

import numpy as np

from keras.preprocessing.image import ImageDataGenerator

base_dir = '/Users/fchollet/Downloads/cats_and_dogs_small'

train_dir = os.path.join(base_dir, 'train')

validation_dir = os.path.join(base_dir, 'validation')

test_dir = os.path.join(base_dir, 'test')

datagen = ImageDataGenerator(rescale=1./255)

batch_size = 20

def extract_features(directory, sample_count):

features = np.zeros(shape=(sample_count, 4, 4, 512))

labels = np.zeros(shape=(sample_count))

generator = datagen.flow_from_directory(

directory,

target_size=(150, 150),

batch_size=batch_size,

class_mode='binary')

i=0

for inputs_batch, labels_batch in generator:

features_batch = conv_base.predict(inputs_batch)

features[i * batch_size : (i + 1) * batch_size] = features_batch

labels[i * batch_size : (i + 1) * batch_size] = labels_batch

i += 1

if i * batch_size >= sample_count:

break

return features, labels

train_features, train_labels = extract_features(train_dir, 2000)

validation_features, validation_labels = extract_features(validation_dir,
1000)

test_features, test_labels = extract_features(test_dir, 1000)

Since we are now going to use a densely connected classifier on the extracted
features, we will first need to flatten their shape. The shape of the extracted
features is (4, 4, 512) and we will flatten this shape into (samples, 8192) as
shown below;

train_features = np.reshape(train_features, (2000, 4*4* 512))

validation_features = np.reshape(validation_features, (1000, 4*4* 512))

test_features = np.reshape(test_features, (1000, 4*4* 512))

Now that we have the required form of input for the densely connected
classifier, we can now define it and use the training data and labels we
recently recorded for training this classifier;

from keras import models

from keras import layers

from keras import optimizers

model = models.Sequential()

model.add(layers.Dense(256, activation='relu', input_dim=4 * 4 * 512))

model.add(layers.Dropout(0.5))

model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer=optimizers.RMSprop(lr=2e-5),

 loss='binary_crossentropy',

 metrics=['acc'])

history = model.fit(train_features, train_labels,

 epochs=30,

 batch_size=20,

 validation_data=(validation_features,
validation_labels))

Since we are only using two dense layers, hence, the speed of the training is
very speedy such that the time taken by each epoch to complete is lesser than
a second even though we are running our code only on the CPU.

Now, we will analyze the loss and accuracy of the model by plotting it
graphically;

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

plt.title('Training and validation accuracy')

plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')

plt.plot(epochs, val_loss, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.show()

By using a pre-trained convnet, we reached a validation accuracy of 90% on
our first go without using data augmentation for eradicating the overfitting.
Feature Extraction with Data Augmentation

Apart from the fact that in this method, we will implement data augmentation
into the convnet, this method is recommended to be used only if the machine
has access to a GPU as it is very resource-intensive. Generally, feature
extraction is a slower and expensive process, but the upside to this method is
that we can use data augmentation. Feature extraction without data
augmentation is faster, and a little less resource-intensive, so bear this in
mind when choosing which method to go for.

We will first add the conv_base model to the sequential models just as how
we would add layers on top of each other;

from keras import models

from keras import layers

model = models.Sequential()

model.add(conv_base)

model.add(layers.Flatten())

model.add(layers.Dense(256, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

The architecture summary of the model so far is;

>>> model.summary()

Layer (type) Output Shape Param #

==

vgg16 (Model) (None, 4, 4, 512) 14714688

__

flatten_1 (Flatten) (None, 8192) 0

__

dense_1 (Dense) (None, 256) 2097408

__

dense_2 (Dense) (None, 1) 257

==

Total params: 16,812,353

Trainable params: 16,812,353

Non-trainable params: 0

From the model summary, we can see that the VGG16 model’s convolutional
base has over a million parameters and the densely connected classifier we
are adding has 2 million parameters. In such a scenario, we can just freeze the
convolutional base before proceeding with the training and compilation of the
model.

Freezing a network can be done in Keras by simply setting the trainable
attribute of the network to false as shown below;

>>> print('This is the number of trainable weights '

'before freezing the conv base:', len(model.trainable_weights))

This is the number of trainable weights before freezing the conv base: 30

>>> conv_base.trainable = False

>>> print('This is the number of trainable weights '

'after freezing the conv base:', len(model.trainable_weights))

This is the number of trainable weights after freezing the conv base: 4

To bring the changes we just made into effect, we first need to compile the
model; otherwise, the changes will be ignored. After compiling and applying
this change to the model, we will now start training the model with a frozen
convolutional base;

from keras.preprocessing.image import ImageDataGenerator

from keras import optimizers

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=40,

width_shift_range=0.2,

height_shift_range=0.2,

shear_range=0.2,

zoom_range=0.2,

horizontal_flip=True,

fill_mode='nearest')

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(150, 150),

batch_size=20,

class_mode='binary')

validation_generator = test_datagen.flow_from_directory(

validation_dir,

target_size=(150, 150),

batch_size=20,

class_mode='binary')

model.compile(loss='binary_crossentropy',

optimizer=optimizers.RMSprop(lr=2e-5),

metrics=['acc'])

history = model.fit_generator(

train_generator,

steps_per_epoch=100,

epochs=30,

validation_data=validation_generator,

validation_steps=50)

Now let’s see the results after plotting the loss and accuracy of the model;

From the above curves, we can see that the validation accuracy of the model

is a whopping 96%. Really big improvement as compared to the convnet we
trained on a small dataset.

Fine Tuning

We will try to keep this as brief and to the point as possible because it
correlates to the concepts we discussed previously in feature extraction.

A pre-trained convnet can be used by the method of fine-tuning, which is
essentially the unfreezing of the top layers which have been frozen when
using the feature extraction method. After unfreezing, we train these top
layers and the new fully-connected classifier. In essence, we are taking the
pre-trained convnet and adjusting its abstract representations ever so slightly
to increase the relevance of the representations for the current task.
Here’s a visual representation of how a last convolutional block of the
VGG16 convnet is fine-tuned;

An important note to remember in fine-tuning is that it is necessary to train
the classifier before adding it to the top layers. Otherwise, during training,
there will be a huge error signal propagating through the entire network,
eradicating the representations which have been previously learned by the
layers that we are fine-tuning. Hence, it is important to follow these steps to
fine-tune a pre-trained convnet properly;

1. When taking a pre-trained network, put in your custom network on

top of it.
2. Then proceed to freeze the first network (the base).
3. Proceed with training the custom network which you recently

added.
4. Go to the frozen base network and unfreeze some of the layers in

there.
5. Finally, train these unfrozen layers and the recently added custom

network together.
In feature extraction, we performed the initial 3 steps, in fine-tuning we will
have to perform all of these steps. As we already know how to perform the
first 3 steps, let’s start directly on step 4 i.e, unfreezing the conv_base and
freezing some of the individual layers of this model. The summary of our
model so far should look like this;

>>> conv_base.summary()

Layer (type) Output Shape Param #

==

input_1 (InputLayer) (None, 150, 150, 3) 0

__

block1_conv1 (Convolution2D) (None, 150, 150, 64) 1792

__

block1_conv2 (Convolution2D) (None, 150, 150, 64) 36928

__

block1_pool (MaxPooling2D) (None, 75, 75, 64) 0

__

block2_conv1 (Convolution2D) (None, 75, 75, 128) 73856

__

block2_conv2 (Convolution2D) (None, 75, 75, 128) 147584

__

block2_pool (MaxPooling2D) (None, 37, 37, 128) 0

__

block3_conv1 (Convolution2D) (None, 37, 37, 256) 295168

__

block3_conv2 (Convolution2D) (None, 37, 37, 256) 590080

__

block3_conv3 (Convolution2D) (None, 37, 37, 256) 590080

__

block3_pool (MaxPooling2D) (None, 18, 18, 256) 0

__

block4_conv1 (Convolution2D) (None, 18, 18, 512) 1180160

__

block4_conv2 (Convolution2D) (None, 18, 18, 512) 2359808

__

block4_conv3 (Convolution2D) (None, 18, 18, 512) 2359808

__

block4_pool (MaxPooling2D) (None, 9, 9, 512) 0

__

block5_conv1 (Convolution2D) (None, 9, 9, 512) 2359808

__

block5_conv2 (Convolution2D) (None, 9, 9, 512) 2359808

__

block5_conv3 (Convolution2D) (None, 9, 9, 512) 2359808

__

block5_pool (MaxPooling2D) (None, 4, 4, 512) 0

==

Total params: 14714688

From this model, we will be fine-tuning only the ending three layers and
freeze the rest of the layers up till block4_pool will be frozen.

We will now freeze all of the layers until the block5_conv1 layer;

conv_base.trainable = True

set_trainable = False

for layer in conv_base.layers:

if layer.name == 'block5_conv1':

set_trainable = True

if set_trainable:

layer.trainable = True

else:

layer.trainable = False

We will now proceed with fine-tuning the deep learning model;

model.compile(loss='binary_crossentropy',

 optimizer=optimizers.RMSprop(lr=1e-5),

 metrics=['acc'])

history = model.fit_generator(

train_generator,

steps_per_epoch=100,

epochs=100,

validation_data=validation_generator,

validation_steps=50)

Let’s check the results by plotting the model’s loss and accuracy

Let’s smoothen out these curves by replacing each instance of loss and

accuracy with the exponential moving averages to make the data more
understandable;

def smooth_curve(points, factor=0.8):

smoothed_points = []

for point in points:

if smoothed_points:

previous = smoothed_points[-1]

smoothed_points.append(previous * factor + point * (1 -
factor))

else:

smoothed_points.append(point)

return smoothed_points

plt.plot(epochs,

smooth_curve(acc), 'bo', label='Smoothed training acc')

plt.plot(epochs,

smooth_curve(val_acc), 'b', label='Smoothed validation acc')

plt.title('Training and validation accuracy')

plt.legend()

plt.figure()

plt.plot(epochs,

smooth_curve(loss), 'bo', label='Smoothed training loss')

plt.plot(epochs,

smooth_curve(val_loss), 'b', label='Smoothed validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.show()

The curves look more readable and clean, moreover, the accuracy has
increased from 96% to more than 97%

Finally, we can now check the performance of this model on a testing dataset;

test_generator = test_datagen.flow_from_directory(

test_dir,

target_size=(150, 150),

batch_size=20,

class_mode='binary')

test_loss, test_acc = model.evaluate_generator(test_generator, steps=50)

print('test acc:', test_acc)

The results of the evaluation of the model on entirely new data will come in
as an accuracy of 97%.

Chapter 5: Mastering Advanced Practices in Deep
Learning
So far, we have discussed the various uses of deep learning in solving real-
world problems and demonstrated we could set up a model for solving some
of the most common real-world problems. In this chapter, we will take our
discussion to the next level and begin exploring some amazing tools with
advanced usability. These tools will help us lay the foundation for building
some amazing and high caliber deep learning models with which we can deal
with some very difficult problems. We will focus our discussion on a variety
of these advanced practices such as;

Batch normalization
Residual connections
Hyperparameter optimization
Model ensembling

Keras Functional API
A functional API is an alternative to using sequential deep learning models.
A sequential model assumes that the Neural network of the deep learning
model has been architected in such a way that it receives only one input and
gives a corresponding single output.

Moreover, it also assumes that the network is made up of layers in the form
of a single stack, as shown in the figure below;

Notice that up until this point in the book, all the deep learning models we
have seen are sequential models. Although this is assumption is true in most
of the cases for deep learning models. However, it is still a fact that this
assumption is inflexible when considering difficult problems to solve. For
instance, a network can need multiple inputs to perform a task effectively, or
it can require multiple outputs too. This case is observed in problems that can
only be solved by using multimodal inputs (the data coming for various input
sources are merged, and each type of data is then processed accordingly by
different types of layers).

Using the Keras Functional API

A functional API allows us to a direct influence on how the tensors are being
manipulated. In other words, we are controlling the tensors directly, and the
layers serve the purpose of functions. In functional API, a layer is given a
tensor input, and a corresponding tensor is given as an output as shown
below;

from keras import Input, layers

input_tensor = Input(shape=(32,))

dense = layers.Dense(32, activation='relu')

output_tensor = dense(input_tensor)

To understand how functional API is different from a Sequential model, let’s
make a comparison between how the two networks;

A sequential model;

from keras.models import Sequential, Model

from keras import layers

from keras import Input

seq_model = Sequential()

seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,)))

seq_model.add(layers.Dense(32, activation='relu'))

seq_model.add(layers.Dense(10, activation='softmax'))

A functional API which is the equivalent of the model detailed above;

input_tensor = Input(shape=(64,))

x = layers.Dense(32, activation='relu')(input_tensor)

x = layers.Dense(32, activation='relu')(x)

output_tensor = layers.Dense(10, activation='softmax')(x)

model = Model(input_tensor, output_tensor)

model.summary()

By opening the model summary, here’s what we get;

Layer (type) Output Shape Param #

===

input_1 (InputLayer) (None, 64) 0

dense_1 (Dense) (None, 32) 2080

dense_2 (Dense) (None, 32) 1056

dense_3 (Dense) (None, 10) 330

===

Total params: 3,466

Trainable params: 3,466

Non-trainable params: 0

Moreover, the functional API is essentially the same as the sequential model
when we talk about the process of compilation, training, and evaluation:

model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

import numpy as np

x_train = np.random.random((1000, 64))

y_train = np.random.random((1000, 10))

model.fit(x_train, y_train, epochs=10, batch_size=128)

score = model.evaluate(x_train, y_train)

Multi-Input Models

The main feature of the functional API is its ability to lay a foundation for the
network to build into a deep learning model that has multiple input sources.
In such models, the input branches are later merged into a single entity,
which is essentially combining multiple tensors deeper into the Neural

network. This merging is usually done by methods such as addition,
concatenation, etc. by calling upon the merge operation in Keras such as;

keras.layers.add
keras.layers.concatenate

To understand this concept better, let’s talk about an actual multi-input model
like the question-answering model. A question answering model has two
input sources. These two inputs are;

1. Question
2. Text snippet

These two input sources collectively provide the model with the necessary
information so that it can answer the question. The next plan of action for the
model is to provide an answer to the question being posed. In a very plain
and simple multi-input, the output is given in the form of an answer
consisting of only a single word by utilizing a softmax function with a
preloaded dictionary. The figure below depicts a question-answering model;

To build a multi-input question answering model by using a Functional API,
we will need to define two input sources as independent branches. One

branch will be responsible for encoding the text input, and the other will
encode the question input. The data will be encoded into representation
vectors, and these vectors will then be concatenated. Afterward, a softmax
classifier will be on these representations. The code for doing this is as
follows;

from keras.models import Model

from keras import layers

from keras import Input

text_vocabulary_size = 10000

question_vocabulary_size = 10000

answer_vocabulary_size = 500

text_input = Input(shape=(None,), dtype='int32', name='text')

embedded_text = layers.Embedding(

64, text_vocabulary_size)(text_input)

encoded_text = layers.LSTM(32)(embedded_text)

question_input = Input(shape=(None,),

dtype='int32',

name='question')

embedded_question = layers.Embedding(

32, question_vocabulary_size)(question_input)

encoded_question = layers.LSTM(16)(embedded_question)

concatenated = layers.concatenate([encoded_text, encoded_question],

axis=-1)

answer = layers.Dense(answer_vocabulary_size,

activation='softmax')(concatenated)

model = Model([text_input, question_input], answer)

model.compile(optimizer='rmsprop',

loss='categorical_crossentropy',

metrics=['acc'])

In regards to training this model, we can do so by either of the two
approaches;

1. Feeding the model inputs in the form of NumPy arrays lists.
2. Feeding the model a dictionary that automatically maps the input

names to the corresponding NumPy arrays (can only be done if
you already named the inputs).

We will now demonstrate both of these approaches;

import numpy as np

num_samples = 1000

max_length = 100

text = np.random.randint(1, text_vocabulary_size,

 size=(num_samples, max_length))

question = np.random.randint(1, question_vocabulary_size,

 size=(num_samples, max_length))

answers = np.random.randint(0, 1,

 size=(num_samples,
answer_vocabulary_size))

model.fit([text, question], answers, epochs=10, batch_size=128)

model.fit({'text': text, 'question': question}, answers,

epochs=10, batch_size=128)

The first model.fit argument shows how you can feed a list of NumPy arrays
as input and the last model.fit argument shows how you can feed a dictionary
of inputs respectively.

Multi-Output Models

So far, we have talked about multi-input models, such as the question-answer
model. Similarly, a functional API can also be used to construct a deep
learning model that has multiple outputs, also referred to as heads. For
instance, a multi-output model can be a deep learning model that analyzes the
social media posts of an unknown person and give multiple predictions
regarding the person’s age, profession, and gender, etc. These multiple
predictions are, in essence, multiple outputs of the model.

Let’s see how a multi-output model of a maximum of three outputs can be
built by using the functional API;

from keras import layers

from keras import Input

from keras.models import Model

vocabulary_size = 50000

num_income_groups = 10

posts_input = Input(shape=(None,), dtype='int32', name='posts')

embedded_posts = layers.Embedding(256, vocabulary_size)(posts_input)

x = layers.Conv1D(128, 5, activation='relu')(embedded_posts)

x = layers.MaxPooling1D(5)(x)

x = layers.Conv1D(256, 5, activation='relu')(x)

x = layers.Conv1D(256, 5, activation='relu')(x)

x = layers.MaxPooling1D(5)(x)

x = layers.Conv1D(256, 5, activation='relu')(x)

x = layers.Conv1D(256, 5, activation='relu')(x)

x = layers.GlobalMaxPooling1D()(x)

x = layers.Dense(128, activation='relu')(x)

age_prediction = layers.Dense(1, name='age')(x)

income_prediction = layers.Dense(num_income_groups,

 activation='softmax',

 name='income')(x)

gender_prediction = layers.Dense(1, activation='sigmoid', name='gender')
(x)

model = Model(posts_input,

 [age_prediction, income_prediction, gender_prediction])

A figurative representation of this model is shown below;

In such deep learning models, we have to specify a different loss function for
each corresponding output or the head of the network. Take the gender
prediction output given by the model, for the Neural network; this is a binary
classification task. At the same time, giving an age prediction output is a
scalar regression task, and the training process is also entirely different.
Hence the nature of the task being performed by the model is different for
each head, and that is why each head requires a specific loss function.
Moreover, a primary requirement of gradient descent is the minimizing of the
scalar. To do this, we will have to merge these different losses into a singular
value, and only then can we proceed to train the model.

The most straight-forward and simple approach towards combining the losses
is just to sum them up and to do so, Keras gives us the option of using the
lists or dictionary of the ‘compile’ function so that we can specify the
multiple outputs to the corresponding object. Afterward, we take the loss
values from the outputs and sum them up into one global loss value. This can
be then minimized, and the model can be trained.

The two options through which we can compile the losses of the multi-output
model are as follows;

model.compile(optimizer='rmsprop',

 loss=['mse', 'categorical_crossentropy',
'binary_crossentropy'])

model.compile(optimizer='rmsprop',

 loss={'age': 'mse',

 'income': 'categorical_crossentropy',

 'gender': 'binary_crossentropy'})

The latter is only possible if you have tagged the output layers with specific
names.

A very important thing to note regarding losses in a multi-output model is
that if there is an imbalance loss contribution, the representations of the deep
learning model will inherently be optimized for the task that has the current
biggest individual loss value. This optimization comes at the expense of other
tasks. We can avoid this by taking the multiple loss values and assigning each
value with a level of importance, which defines its contribution to the global
loss value.

The following lines of code show the loss weighting option in the
compilation of a multi-output model;

model.compile(optimizer='rmsprop',

 loss=['mse', 'categorical_crossentropy',
'binary_crossentropy'],

 loss_weights=[0.25, 1., 10.])

model.compile(optimizer='rmsprop',

 loss={'age': 'mse',

 'income': 'categorical_crossentropy',

 'gender': 'binary_crossentropy'},

 loss_weights={'age': 0.25,

 'income': 1.,

 'gender': 10.})

To train the model, we can use the same two approaches defined for multi-
input models, i.e; using a list of NumPy arrays or using a dictionary of

NumPy arrays;

model.fit(posts, [age_targets, income_targets, gender_targets],

epochs=10, batch_size=64)

model.fit(posts, {'age': age_targets,

 'income': income_targets,

 'gender': gender_targets},

epochs=10, batch_size=64)

The latter is only possible if you have tagged the output layers with specific
names.

Directed Acyclic Graphs of Layers

Apart from being used as the gateway for building models that have multiple
inputs and multiple outputs, the functional API is also capable of allowing the
user to implement neural networks that feature a complex internal topology.
This makes the full use of Keras’s ability to support arbitrary neural
networks. Moreover, the conceptual foundation of such a network is
“acyclic,” meaning that no tensor will become the input of the layer that
generated it.
The two notable neural network components which are implemented as
graphs are;

1. Inception Modules
2. Residual connections

Understanding these two components is key to learning how we can
implement a functional API to build a graph of layers.

Inception Modules
Inception is actually a network architecture which is chiefly used in
convolutional neural networks. The architecture is made up of a stack of
modules that break into several parallel branches. A basic setup of an
inception module is as follows;

Three or four branches, beginning with 1x1 convolution.
Following up with a 3x3 convolution.
Finishing with the result, which is an overall concatenation of the
results accumulated from the convolutions.

The setup described enables the neural network to learn the two features;
spatial and channel-wise features in a separate manner; this is way more
efficient for the network rather than learning these features jointly. An
inception module can be set up to be even more complex by adding in some
pooling operations, making the sizes of the convolutions different, and using
branches that do not have a spatial convolution. The figure below shows a
module that has been taken from the Inception V3 model;

To implement this module, we will use a functional API and assume that
there is an input tensor ‘x,’ which is a 4D tensor. The following lines of code
demonstrate this assumption;

from keras import layers

branch_a = layers.Conv2D(128, 1,

 activation='relu', strides=2)(x)

branch_b = layers.Conv2D(128, 1, activation='relu')(x)

branch_b = layers.Conv2D(128, 3, activation='relu', strides=2)(branch_b)

branch_c = layers.AveragePooling2D(3, strides=2)(x)

branch_c = layers.Conv2D(128, 3, activation='relu')(branch_c)

branch_d = layers.Conv2D(128, 1, activation='relu')(x)

branch_d = layers.Conv2D(128, 3, activation='relu')(branch_d)

branch_d = layers.Conv2D(128, 3, activation='relu', strides=2)(branch_d)

output = layers.concatenate(

[branch_a, branch_b, branch_c, branch_d], axis=-1)

If you want to analyze this module even further, you can access the full
architecture of the Inception V3 model in Keras by using the argument;

keras.applications.inception_v3.InceptionV3

This architecture includes pre-trained weights.

Residual Connections

Residual connections are basically one of the common components found in a
graph-like network; for instance, in deep learning models such as Xception,
residual connections can be found in the architecture of the network. This
component is an effective solution to the most observed problems that are
found in most large-scale deep learning models;

1. Vanishing gradients
2. Representational bottlenecks

In any model that features more than ten layers in its network architecture,
residual connections can benefit the model in one way or the other.

Residual connections essentially function to give the layers easy access to the
output of a layer preceding it. This output is taken as input by this layer easily
because of residual connections. In other words, a residual connection creates

shortcuts between the layers in a sequential model.

Let’s consider a network which has same sized feature maps and implement a
residual connection. For its implementation, we will be using identity
residual connections. Note that this demonstration has an assumption that
there is a 4D input tensor ‘x’;

from keras import layers

x = ...

y = layers.Conv2D(128, 3, activation='relu', padding='same')(x)

y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)

y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)

y = layers.add([y, x])

The above lines of code is for using residual connections with feature maps
that are of the same size. A residual connection can also be implemented in a
network when the feature maps are of different sizes, for such a case we
simply use linear residual connection instead of identity;

from keras import layers

x = ...

y = layers.Conv2D(128, 3, activation='relu', padding='same')(x)

y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)

y = layers.MaxPooling2D(2, strides=2)(y)

residual = layers.Conv2D(128, 1, strides=2, padding='same')(x)

y = layers.add([y, residual])

Layer Weight Sharing

Another one of functional API’s notable features is layer weight sharing. This
basically refers to the API’s ability to reusing a certain layer many times.
This is evident when we proceed to call on a layer two times. Normally, we
would instantiate the layer on each call; however, in this case, we call on
them without instantiating, and this results in the usage of the same weights
on each call. By doing this, we can construct deep learning models that
shared branches.

Let’s make this concept even more clear by discussing an example. Let’s say
we have a model that is given a task to identify the similarity between two
sentences in terms of semantics. In such a scenario, the model is dealing with
two inputs, and the output is given either 0 or 1, meaning unrelated sentences
and identical or reformulated sentences, respectively. In such a setup, the two
inputs we are dealing with are interchangeable because the semantic
relationship of sentences is commutative. Hence we do not need to build two
separate models for dealing with the processing of each of these two inputs.
In such a case, we would use a single layer to process both of these inputs,
and this layer would be the LTSM layer. The representations of the LTSM
layers are learned while taking both of the inputs into consideration. This is
also known as the “Siamese LTSM model” or a “Shared LTSL model.”

The following lines of code detail how you can implement such a model
using functional API;

from keras import layers

from keras import Input

from keras.models import Model

lstm = layers.LSTM(32)

left_input = Input(shape=(None, 128))

left_output = lstm(left_input)

right_input = Input(shape=(None, 128))

right_output = lstm(right_input)

merged = layers.concatenate([left_output, right_output], axis=-1)

predictions = layers.Dense(1, activation='sigmoid')(merged)

model = Model([left_input, right_input], predictions)

model.fit([left_data, right_data], targets)

Using Models as Layers

Another ability of the functional API is allowing models to be effectively
used as layers, as is in the case for sequential and model classes.
Consequently, we can use an input tensor and call on a model, in turn,
receiving an output tensor. This can be done by using the following
argument;

y = model(x)

If the model we are using as a layer itself has several inputs and outputs
tensors, then the method to call such a model should be through a list of
tensors as shown below;

y1, y2 = model([x1, x2])

Similar to when we call an instance of a layer, calling upon an instance of a
model uses the same weights the model has been trained upon. In other
words, no matter if we call upon a layer or a model, the representations will
remain the same and can be reused.

An example of what we can do by reusing a model is building a ‘vision’
model. This model has two inputs by using a dual camera as its source. To
process the data coming from the two cameras, we don’t need to build two
separate models and then merge them later on. A simple stream of data like
this can be easily handled by using a low-tier processing technique, such as
using layers that have them weights and representations. To implement a
Siamese vision model, follow the lines of code shown below;

from keras import layers

from keras import applications

from keras import Input

xception_base = applications.Xception(weights=None,

 include_top=False)

left_input = Input(shape=(250, 250, 3))

right_input = Input(shape=(250, 250, 3))

left_features = xception_base(left_input)

right_input = xception_base(right_input)

merged_features = layers.concatenate(

[left_features, right_input], axis=-1)

Inspection of Deep Learning Models Using Keras Callbacks
and Tensorboards
This section will primarily focus on the ways through which we can better
control the processes within our deep learning model and access its
components more easily. In other words, we will explore the ways that will
help us manipulate deep learning models more effectively. The reason why
this is important is because when training deep learning models on large
datasets with many epochs, we mainly use the model.fit() and
model.fit_generator() arguments to control it. However, beyond the initial
impulse, we do not have any control over the model, and hence, it is
impossible always to avoid bad outcomes. The techniques detailed in this
section will turn this model.fit() argument from a passively uncontrollable
mechanism to a useful and autonomously smart enough argument that can
deter bad outcomes

Using Callbacks to Act on an In-Training Model

Training a model is never a predictable process. We do not know how many
epochs are needed for an optimal validation loss beforehand; we can only
come to know after some trial and error. So far, we have practiced the
approach of training the model just before it beings overfitting by plotting the
validation and loss data to determine the number of epochs required to do so.
This approach is inefficient and takes up a lot of resources.

So, an alternative to this approach is that instead of completing the entire
training process to find out where the overfitting begins, we can just stop the
training at the point where the validation loss values no longer show any
improvement, saving us a lot of time and effort. To do this, we will need to
use the Keras callback. Callbacks are basically objects which are given to the
fit argument. The deep learning model then calls upon this object at different
points during the training process. The features which make a callback so
useful are;

They have access to data which details the information regarding
the model’s current state and performance
It has the authorization of acting according to the situation, such as
stop the training, save the model’s current state, bring in some
other set of weights for the model to use, or even change the
current state of the deep learning model.

Keeping these features of a callback in mind, we can use it for the following
purposes;

1. As Checkpoints, as a callback, has the capability of saving a
model’s current state by simply saving its current weight set, it can
make frequent saves giving us a checkpoint to revert the model if
something goes wrong.

2. Premature Interruption; a callback can step in and stop the
training process of the model. This can be used for stopping the
training of the model as soon as the improvement of the validation
loss becomes stagnant.

3. Dynamic Adjustment; a callback can change the values of certain
parameters during the training process to make necessary
adjustments, for instance, adjusting the learning rate of the
optimizer during the network’s training.

4. Remember the Keras bar? This is a practical implementation of a
callback as it can log data and visualize representations.

Here’s a list of callbacks that are included in the keras.callback module;

keras.callbacks.ModelCheckpoint

keras.callbacks.EarlyStopping

keras.callbacks.LearningRateScheduler

keras.callbacks.ReduceLROnPlateau

keras.callbacks.CSVLogger

We will just explain only a select few of these different callbacks.
The ModelCheckpoint and EarlyStopping Callbacks

The primary purpose of the EarlyStopping callback is to make the approach
of achieving optimal validation loss, viable. In essence, we define a metric
for the callback to monitor during the training. As soon as it detects that the
metric value has reached its optimal point and can no longer improve, then it
immediately interrupts the training. The EarlyStopping callback is commonly
used in pairs with the ModelCheckpoint callback, the latter basically creating
saved model checkpoints.

To understand these two callbacks better, let’s see how they are implemented
in code;

import keras

callbacks_list = [

keras.callbacks.EarlyStopping(

monitor='acc',

patience=1,

),

keras.callbacks.ModelCheckpoint(

filepath='my_model.h5',

monitor='val_loss',

save_best_only=True,

)

]

model.compile(optimizer='rmsprop',

 loss='binary_crossentropy',

 metrics=['acc'])

model.fit(x, y,

epochs=10,

batch_size=32,

callbacks=callbacks_list,

validation_data=(x_val, y_val))

The ReduceLROnPlateau Callback

A common use of this callback is to reduce the model’s rate of learning when
it detects that the metric being monitored, in this case, the validation loss, has
stagnated in terms of improvement. This sets up for a very effective strategy
of escaping the in-training local minima as we can control the learning rate in
a loss plateau. Here’s an example of how we can use this callback;

callbacks_list = [

keras.callbacks.ReduceLROnPlateau(

monitor='val_loss'

factor=0.1,

patience=10,

)

]

model.fit(x, y,

epochs=10,

batch_size=32,

callbacks=callbacks_list,

validation_data=(x_val, y_val))

Writing a Custom Callback

If you’re looking for a callback that can do a specific function but can’t find
one in the Keras’ list of callbacks, then you can just create a custom callback
specifically for your purpose. A callback is basically implemented in a
network by simply sub-classing the keras.callbacks.Callback class. A
callback can be implemented at any point in the training by using these
prenamed methods;

on_epoch_begin; gets called on at the start of every iterating epoch
on_epoch_end; gets called on at the end of every iterating epoch
on_batch_begin; gets called on just before each batch’s processing
on_batch_end; gets called on as soon as the processing of a batch
is finished
on_train_beign; gets called on at the start of the training
on_training_end; gets called on at the end of the training

All of these methods, which are listed above, are called along with a logs
argument (a dictionary that has data about the preceding batch, epoch, or
training iteration).

Moreover, the two attributes listed below are easily accessible by a callback;

1. self.model; the instance of the deep learning model from where the

callback is being called upon.
2. self.validation_data; the value of the validation data, which was

passed onto the fit argument.
Let’s look at the following example of a custom-made callback. This callback
takes the activation values of the layers at the end of every epoch and saves
them on a disk as NumPy arrays;

import keras

import numpy as np

class ActivationLogger(keras.callbacks.Callback):

def set_model(self, model):

self.model = model

layer_outputs = [layer.output for layer in model.layers]

self.activations_model = keras.models.Model(model.input,

 layer_outputs)

def on_epoch_end(self, epoch, logs=None):

if self.validation_data is None:

raise RuntimeError('Requires validation_data.')

validation_sample = self.validation_data[0][0:1]

activations = self.activations_model.predict(validation_sample)

f = open('activations_at_epoch_' + str(epoch) + '.npz', 'w')

np.savez(f, activations)

f.close()

With regards to conceptual knowledge to use callbacks, up until now we have
covered it, the remaining details are basically technical details and you can
look them up easily.

Tensorboard: The TensorFlow Visualization Network
The key element in building an effective deep learning model for any
experiment is to be aware of the internal situation of the model’s current
state. Moreover, this is the exact purpose of experiments, which is to find out
how effective is the deep learning model at handling the information and
performing the required tasks. Similarly, a model’s improvement is an
iterative process, not a defined process that you architect it one time, and it
turns out to be either good or bad. Instead, you come up with an idea; you
build a suitable experiment to test that idea. You perform this experiment and
check the resulting information you obtain, and from this, you get another
idea and repeat the process. In this way, you iterate this entire process and
refine your deep learning model with even more powerful and effective ideas
being the foundation of the model. The reason we discussed this topic is
because of the role the Tensorboard plays here; it basically fulfills the job of
processing the experimental results in this iterative process.

A TensorBoard is a visualization tool that comes prepackaged in the Keras
framework, and this tool is browser-based. However, this tool is only
accessible if the deep learning model is using the Keras framework along
with a TensorFlow backend engine. Tensorboards are mainly used for
displaying what is actually happening in the model during the training
session.

Furthermore, using the Tensorboard to monitor several other metrics apart
from the validation loss will provide a better insight into how your model is
working and a better understanding of how it can be improved. Tensorboard
gives convenient access right on the browser to several features such as;

1. Displaying visualizations of the in-training metrics to monitor
them.

2. Displaying the makeup of the deep learning model.
3. Displaying both the activation and gradient histograms.
4. 3D surveying the embeddings.

Lets put these features to use in a 1D convnet being trained on the IMDB
sentiment analysis task.

The makeup of the deep learning model will be primarily to make the word
embeddings visualizations more tractable. ;

import keras

from keras import layers

from keras.datasets import imdb

from keras.preprocessing import sequence

max_features = 2000

max_len = 500

(x_train, y_train), (x_test, y_test) =
imdb.load_data(num_words=max_features)

x_train = sequence.pad_sequences(x_train, maxlen=max_len)

x_test = sequence.pad_sequences(x_test, maxlen=max_len)

model = keras.models.Sequential()

model.add(layers.Embedding(max_features, 128,

 input_length=max_len,

 name='embed'))

model.add(layers.Conv1D(32, 7, activation='relu'))

model.add(layers.MaxPooling1D(5))

model.add(layers.Conv1D(32, 7, activation='relu'))

model.add(layers.GlobalMaxPooling1D())

model.add(layers.Dense(1))

model.summary()

model.compile(optimizer='rmsprop',

 loss='binary_crossentropy',

 metrics=['acc'])

Before we can start using the Tensorboard, we first need to define a directory
for it to store the log files generated by the Tensorboard;

$ mkdir my_log_dir

We will now begin the training for the model by using the Tensorboard
callback. The purpose of this callback is to take the log event files generated
and save them at the specified directory on the disk.

callbacks = [

keras.callbacks.TensorBoard(

log_dir='my_log_dir',

histogram_freq=1,

embeddings_freq=1,

)

]

history = model.fit(x_train, y_train,

 epochs=20,

 batch_size=128,

 validation_split=0.2,

 callbacks=callbacks)

If you have installed the TensorFlow backend engine, then the tensorboard
utility has also been automatically installed on your system. We can now
proceed to open the Tensorboard utility by using the command line.

$ tensorboard --logdir=my_log_dir

To see the visualized training session of the deep learning model, open the
browser and enter the address;

http://localhost:6006

You can see all kinds of useful metric visualizations and other stuff as shown
in the figures below;

(Tensorboard Metric Monitoring)

(Tensorboard Visualizing the Activation of Histograms)

If we go the embeddings tab in the Tensorboard, we can easily analyze the
attributes of the ten thousand word vocabulary input of our model such as;

Embedding locations
Spatial relationships

One more point to note is that originally, the embedding space is of a higher
dimension, i.e., 128-dimensional. To visualize and display it, the Tensorboard
reduces the dimensional size down to either 2D or 3D. This is done by using
algorithms such as the ‘dimensionality-reduction.’

Moreover, you can choose which dimensionality reduction algorithm you
want to use as the Tensorboard offers two choices in this regard, namely the
PCA (Principal Component Analysis) or the t-SNE (t-distributed Stochastic
Neighbor Encoding). In the figure below, we can see a visualization of the
embedding space of the words with positive and negative connotations.

Just as how we accessed to useful information by going to the embedding tab
in the Tesnorboard, you can explore the other tabs and see what kind of
information they have to offer.

Working with Advanced Methods and Getting Optimized
Results
Most of the time, programmers tend to try out various deep learning models
without using any proper techniques or methods just to find something that
simply works. In this section, we will explore the advanced methods, which
are essentially the building blocks or the foundation of making amazing and
effective deep learning models.

The Advanced Architecture Patterns

In the preceding sections, we explored a very important and effective network
architecture for building competitive deep learning models, and this design
pattern is the ‘residual connections.’ Apart from this pattern, we will discuss
two more architecture patterns, namely;

1. Normalization

2. Depthwise separable convolution
Although these architecture patterns are also commonly found in good deep
learning models, they basically set up the foundation for a flagship tier deep
learning convnets.

Batch Normalization

Normalization does not refer to one specific pattern or method. Instead, it
covers a broad range of methods. However, the goal of these methods is
essentially the same, i.e., to normalize the various samples being inputted into
the deep learning model. In other words, it takes different samples and
converts them into similar samples for the model to train on. In this way, the
model copes well when dealing with new data and generalizing predictions
effectively and accordingly.

Out of this broad category of methods, the most common normalization
method we have seen being used not only in the examples demonstrated in
this book but also in some exemplary deep learning models as well and this
normalization method is the one where we consider a data sample and take
out the mean value from the data, hence centering it on 0. Afterward, we
equip this data with a ‘unit standard deviation,’ and this is obtained by simply
taking the standard deviation and dividing the data on it. The result is an
assumption that considers the data to now be following a gaussian
distribution (a normal distribution) while being centered and scaled to unit
variance.

normalized_data = (data - np.mean(data, axis=...)) / np.std(data, axis=...)

Previously, we saw that the examples using normalization would only feed
the data to the network only after it had been normalized. However, for it to
be more effective, data normalization should be done after every
transformation that is functioned by the neural network.

Batch normalization is essentially a type of layer in Keras
(BatchNormalization) that can adapt to the shifting mean and variance
attributes during the training session and manage to normalize the data even
then. Its working is basically dependant on being the maintainer of a steady
exponential moving average of the two internal metrics; the mean (according
to each batch) and the data being learned during training’s variance. The
primary goal of a batch normalizer is similar to the residual connections in

the sense that batch normalization tends to facilitate the gradient propagation,
making it possible to build even deeper neural networks for a model.
Similarly, certain phenomenally deep neural networks can only go through
training if there are several BatchNormalization layers present. Otherwise, it
cannot be trained. We also see the use of this batch normalization layers in
the architectures of the popular advanced convnets such as ResNet50,
Inception V3, and Xception.

Usually, a BatchNormalization layer is implemented in such a way that it
either succeeds a convolutional layer or a densely connected layer as shown
below;

conv_model.add(layers.Conv2D(32, 3, activation='relu'))

conv_model.add(layers.BatchNormalization())

dense_model.add(layers.Dense(32, activation='relu'))

dense_model.add(layers.BatchNormalization())

From the lines of code, you can see that the first one shows a batch
normalization layer coming after a convolutional layer and the second shows
it coming after a desenly connected layer.

Furthermore, this normalization layer identifies and specifies the feature axis
to be normalized by using the axis argument with a default value set to -1
(this value refers to the very last layer in the input tensor). This specific value
is accurate for using after layers after the following layers; ‘Dense’ layers,
‘Conv1D’ layers, ‘RNN’ layers, and ‘Conv2D’ layers (with a pre-requisite
that the argument data_format is specified to “channels_last”). However,
when using this normalization layer in niche cases, the axis argument’s value
is set to 1 instead of -1. In this case, the data_format argument of the Conv2D
layers should be inverted, i.e., set to “channels_first.”

Depthwise Separable Convolution

In topic, we will explore a unique layer that, when added to a network by
replacing the convolutional layer Conv2D, can not only improve the speed of
the network in which it is being used but also make it several degrees lighter.
The network becomes faster because are now lesser floating-point operations,

and it becomes lighter as there now is a smaller set of trainable weight
parameters, making it perform better by several percentages on specific tasks.
A layer with such properties is none other than the depthwise separable
convolution layer, also known as SeperableConv2D.

The way this layer operates is that it takes each independent channel of the
input and executes spatial convolution on each of the corresponding channels
preceding the use of pointwise convolution to mix the output channels
(essentially a 1x1 convolution). This process is the alternative equivalent of
segregating two features - the spatial and channel-wise features. This step is
sensible under the assumption that although the spatial locations are
intricately correlated in the input, the varying channels remain independent.
This ultimately results in a lighter requirement for the network to use fewer
representations and learn better, perform convolutions and ultimately,
resulting in a high-performance deep learning model by hardly requiring any
parameters and even involving a lesser number of computations, making up a
model that is small yet speedy.

(A Depthwise Convolution Followed by a Pointwise Convolution)
The usability, effectiveness, and importance of this convolution layer become

evident when we are working with small models and training on them from
the ground up on a limited amount of data. To understand depthwise
separable convolutional layers even better, let’s see a demonstration of how a
lightweight deep learning model can be built by using a depthwise separable
convnet and train it for the task of image-classification (in essence, softmax
categorical classification) on a limited dataset;

from keras.models import Sequential, Model

from keras import layers

height = 64

width = 64

channels = 3

num_classes = 10

model = Sequential()

model.add(layers.SeparableConv2D(32, 3,

 activation='relu',

 input_shape=(height, width, channels,)))

model.add(layers.SeparableConv2D(64, 3, activation='relu'))

model.add(layers.MaxPooling2D(2))

model.add(layers.SeparableConv2D(64, 3, activation='relu'))

model.add(layers.SeparableConv2D(128, 3, activation='relu'))

model.add(layers.MaxPooling2D(2))

model.add(layers.SeparableConv2D(64, 3, activation='relu'))

model.add(layers.SeparableConv2D(128, 3, activation='relu'))

model.add(layers.GlobalAveragePooling2D())

model.add(layers.Dense(32, activation='relu'))

model.add(layers.Dense(num_classes, activation='softmax'))

model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

Depthwise separable convolutional layers are not exclusive to being only
used in small deep learning models. On the contrary, the depthwise
convolutions are also the building blocks network architectures for large
scale deep learning models such as the Xception model, a high-speed convnet
that can be accessed through the Keras framework as it comes pre-packaged
in it.

Hyperparameter Optimization
The process of building a deep learning model and architecting a neural
network usually involves arbitrary decisions and guess-work. For example,
you might ask yourself how many stack layers does the model need, what’s
the optimum number of units and filters for each layer I am using? You might
find yourself choosing between a relu activation or some other function for
the best result, the decision of either using a BatchNormalization layer or
not or even the number of dropouts you should use and this list continues. All
of these parameters, you are pondering on come under the category of
“Hyperparameters.” The reason why they are termed as such is for avoiding
confusion between these architecture-level parameters and a model’s
parameters that are trained using backpropagation.

Architecting a good neural network can be done by intuition, and such
intuition can only be developed by repeated practice and experience. This
leads to the development of skills for hyperparameter tuning.

However, there are no set rules for doing this. If we want to push our model
to its very limits and get the most out of it, we cannot settle for arbitrary

choices defining our deep learning model as human choices are always
subject to fallacy and error in one way or the other. In other words, even if a
person ends up developing a commendable intuition, in the end, the initial
decision will always end up being sub-optimal. In such a scenario, the
engineers and researchers of machine learning will have to grind their time in
repeatedly improving their deep learning model. At the end of the day, the
task of tweaking the hyperparameters to optimize them is not suitable for
humans and is best left to machines themselves.

In short, the jobs we should spend our time perfecting is the exploration of
the realm of possible decisions in a systematic and principled way. To do so,
we are required to scavenge through the network’s architecture and look for
the most optimally functioning space empirically. This is the essence and
core of hyperparameter optimization, a critical and effective field of research.
A typical hyperparameter optimization procedure is as follows;

1. Automating the nomination of a hyperparameter.
2. Constructing the deep learning model accordingly.
3. Proceeding to fit these parameters to the input training data and

calculating the model’s performance on the corresponding
validation dataset.

4. Automating the nomination of another set of hyperparameters for
the model to try out.

5. Repeating steps 2 and 3.
6. Gradually moving on to analyzing the model’s performance on the

testing dataset.
The key to performing the hyperparameter optimization process successfully
is twofold:

The algorithm is not responsible for nominating the sets of
hyperparameters for the model to try

Careful consideration is given to the historical validation
performance for the different hyperparameters sets used so far.

As such, there are several techniques available to use, such as Bayesian
optimization, genetic algorithms, simple random search, etc.

Training the model’s weight is comparatively easy and simple. All you have

to do is just calculate the loss functions on the current mini-batch data and
use the backpropagation algorithm so that you can push these weights in the
right direction. On the other hand, updating a hyperparameter is anything but
easy. To understand this, try to analyze these two situations;

1. It can be expensive in resource terms to calculate a feedback signal
to determine whether the current set of hyperparameters creates an
optimal model for the task at hand. This means that it will require
the machine learning engineer to repeatedly build and train new
models from the ground up on the given dataset.

2. A hyperparameter space is essentially a network of discrete
decisions. This means that it cannot be differentiable or
continuous. Due to this, the gradient descent optimization is not an
option for use with a hyperparameter space. Hence, we are left
with using optimization methods and techniques that are gradient-
free, and these techniques are inefficient as compared to gradient
descent.

Due to the great difficulty of these challenges being faced by machine
learning engineers while the field is relatively is young and not well-
explored, we are stuck with using only a limited set of tools to optimize deep
learning models with. Most of the time, random search becomes the only
viable option. However, it is a very naïve technique as we are essentially
choosing random hyperparameters to try out and keep on repeating this
process. However, a tool more reliable than random search and can perform
arguably better than it is a Python library for hyperparameter optimization
that predicts a set of hyperparameters likely to be optimal for the model by
using Parzen estimators is the Hyperopt tool and this tool can be accessed
from;

https://github.com/hyperopt/hyperopt

In Keras deep learning models, there is a similar tool that essentially
integrates Hyperopt so that they can be used with deep learning models using
Keras and this library is known as Hyperas and can be accessed from;

https://github.com/maxpumperla/hyperas

In short, hyperparameter optimization is an essential and very important tool
for building top tier and high-performance deep learning models.

Model Ensembling

The last technique we will be discussing for this book is the model
ensembling, a robust tool that can bring out the maximum potential of your
deep learning model. Model ensembling involves taking the predictions of
different models and pooling them to produce an overall better prediction.

The core idea of model ensembling that all the good models are designed to
be optimal in their own ways. For example, each of them looks at a certain
aspect of the data to give good predictions, by combining these predictions
looking at different aspects together, we can produce an even better
prediction that includes all these different aspects of the data. For example,
let's look at a typical classification task. To ensemble the different sets of
classifiers, we can just average their predictions by setting up a meantime;

preds_a = model_a.predict(x_val)

preds_b = model_b.predict(x_val)

preds_c = model_c.predict(x_val)

preds_d = model_d.predict(x_val)

final_preds = 0.25 * (preds_a + preds_b + preds_c + preds_d)

This is only viable if all the classifiers have more or less the same level of
performance. If one is worse than the rest, the resulting prediction will be
heavily affected.

A more efficient and optimal method of ensembling different classifiers is by
performing a weighted average in such a way that good classifiers are given a
heavier weight set, and bad classifiers are given low weight sets. To find an
optimal set of ensembling weights, we can either use the random search or a
simple optimization algorithm like the Nelder-Mead;

preds_a = model_a.predict(x_val)

preds_b = model_b.predict(x_val)

preds_c = model_c.predict(x_val)

preds_d = model_d.predict(x_val)

final_preds = 0.5 * preds_a + 0.25 * preds_b + 0.1 * preds_c + 0.15 *
preds_d

The methods through which we can approach model ensembling is very
diverse. However, the method shown above is seen to be a very strong
foundation for performing a good model ensembling.

Conclusion
Until now, we have discussed the majority of the techniques, concepts, and
methods that fall into the realm of advanced practices when building deep
learning models for Python. We have explored the intricacies of the neural
network in a mode. We also explored its internal realms by experimenting on
how we can change its structure, add in different layers, functions, and
arguments and other such elements to build a model that effectively works to
perform the task at hand efficiently and optimally. To wrap things up, we
introduced a final bundle of techniques that require practice to master and
ingenuity to implement correctly, but when used correctly, they will prove to
be the building blocks of a deep learning model that will foster the aspirations
of the engineer in its truest form.

As a final note, we could only cover so many topics in the span of one book,
in the upcoming series we will delve even deeper into the complex and
intricate understandings of deep learning systems and rebuild our current
understanding into something even grander.

References
1). Deep Learning with python by Author Francois Chollet; ISBN:
9781617294433
https://people.sc.fsu.edu/~jburkardt/keras_src/newswire/newswire.py

2). Python Script using Data from Hate Crimes in India by Regression
Models (Mohamed Khalid);
https://www.kaggle.com/khalidative/regressionmodels

3). Dog vs Cat: How is the data labelled? By Petezurich and Peyman. H
(Stackoverflow) https://stackoverflow.com/a/52201865

4). Docker example by Oliver LeDiouris;
https://github.com/OlivierLD/raspberry-coffee/blob/master/docker/

https://people.sc.fsu.edu/~jburkardt/keras_src/newswire/newswire.py
https://www.kaggle.com/khalidative/regressionmodels
https://stackoverflow.com/a/52201865
https://github.com/OlivierLD/raspberry-coffee/blob/master/docker/

	Introduction
	Chapter 1: A General Overview of Deep Learning
	Artificial Intelligence, Machine Learning, and Deep Learning
	Modeling of Machine Learning

	Foreseeable Benefits of Deep Learning

	Chapter 2: The Arithmetic Foundations of a Neural Network
	A Peek into a Neural Network
	Data Attributes of Neural Networks

	Gearing the Neural Network through Tensor Operations
	Gradient-Based Optimization in Neural Networks

	Chapter 3: Starting Our Tasks with Neural Networks
	Inspection of a Neural Network
	What is Keras?

	The Pre-requisites for a Deep Learning Workstation
	Deep Learning Binary Classification Example
	Deep Learning Multiclass Classification Example
	Deep Learning Regression Example

	Chapter 4: Using Deep Learning for Computer Vision
	What is Convnet? Working with Convolution Operations
	Training a Convnet
	Working with a Pretrained Convnet

	Chapter 5: Mastering Advanced Practices in Deep Learning
	Keras Functional API
	Inspection of Deep Learning Models Using Keras Callbacks and Tensorboards
	Tensorboard: The TensorFlow Visualization Network
	Working with Advanced Methods and Getting Optimized Results

	Conclusion

