
Prepared exclusively for Sandi Frank

Prepared exclusively for Sandi Frank

Early Praise for Modern Perl, Fourth Edition

A dozen years ago I was sure I knew what Perl looked like: unreadable and obscure.
chromatic showed me beautiful, structured expressive code then. He’s the right
guy to teach Modern Perl. He was writing it before it existed.

➤ Daniel Steinberg
President, DimSumThinking, Inc.

A tour de force of idiomatic code, Modern Perl teaches you not just “how” but also
“why.”

➤ David Farrell
Editor, PerlTricks.com

If I had to pick a single book to teach Perl 5, this is the one I’d choose. As I read
it, I was reminded of the first time I read K&R. It will teach everything that one
needs to know to write Perl 5 well.

➤ David Golden
Member, Perl 5 Porters, Autopragmatic, LLC

I’m about to teach a new hire Perl using the first edition of Modern Perl. I’d much
rather use the updated copy!

➤ Belden Lyman
Principal Software Engineer, MediaMath

It’s not the Perl book you deserve. It’s the Perl book you need.

➤ Gizmo Mathboy
Co-founder, Greater Lafayette Open Source Symposium (GLOSSY)

Prepared exclusively for Sandi Frank

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Prepared exclusively for Sandi Frank

Modern Perl, Fourth Edition

chromatic

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Prepared exclusively for Sandi Frank

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (index)
Linda Recktenwald (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-088-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2015

Prepared exclusively for Sandi Frank

https://pragprog.com
rights@pragprog.com

Contents

Preface ix

1. The Perl Philosophy 1
Perldoc 1
Expressivity 3
Context 5
Implicit Ideas 8

2. Perl and Its Community 13
The CPAN 13
Community Sites 16
Development Sites 16
Events 17
IRC 17

3. The Perl Language 19
Names 19
Variables 22
Values 24
Control Flow 35
Scalars 50
Arrays 52
Hashes 58
Coercion 66
Packages 68
References 71
Nested Data Structures 78

4. Operators 85
Operator Characteristics 85
Operator Types 87

Prepared exclusively for Sandi Frank

5. Functions 91
Declaring Functions 91
Invoking Functions 91
Function Parameters 92
Functions and Namespaces 97
Reporting Errors 98
Advanced Functions 99
Pitfalls and Misfeatures 103
Scope 104
Anonymous Functions 108
Closures 112
State versus Closures 116
State versus Pseudo-State 117
Attributes 118
AUTOLOAD 119

6. Regular Expressions and Matching 125
Literals 125
The qr// Operator and Regex Combinations 126
Quantifiers 127
Greediness 128
Regex Anchors 129
Metacharacters 130
Character Classes 131
Capturing 132
Grouping and Alternation 133
Other Escape Sequences 135
Assertions 135
Regex Modifiers 137
Smart Matching 139

7. Objects 141
Moose 141
Blessed References 155
Reflection 160
Advanced OO Perl 162

8. Style and Efficacy 165
Writing Maintainable Perl 165
Writing Idiomatic Perl 166
Writing Effective Perl 167

Contents • vi

Prepared exclusively for Sandi Frank

Exceptions 168
Pragmas 171

9. Managing Real Programs 175
Testing 175
Handling Warnings 181
Files 184
Modules 192
Distributions 196
The UNIVERSAL Package 199
Code Generation 202
Overloading 207
Taint 210

10. Perl Beyond Syntax 213
Idioms 213
Global Variables 220

11. What to Avoid 225
Barewords 225
Indirect Objects 228
Prototypes 230
Method-Function Equivalence 234
Automatic Dereferencing 236
Tie 237

12. Next Steps with Perl 241
Useful Core Modules 241
What’s Next? 243

Index 245

Contents • vii

Prepared exclusively for Sandi Frank

Preface
Larry Wall released the first version of Perl in 1987. The language grew from
its niche as a tool for system administrators who needed something more
powerful than shell scripting and easier to use than C programming into a
general-purpose programming language. Perl has a solid history of pragmatism
and, in recent years, a disciplined approach to enhancement and backward
compatibility.

Over Perl’s long history—Perl 5 has been continually refined over the past
twenty years—our understanding of what makes great Perl programs has
changed. While you can write productive programs that never take advantage
of all the language has to offer, the global Perl community has invented, bor-
rowed, enhanced, and polished ideas and made them available to anyone
willing to learn them.

Modern Perl is a mindset. It’s an approach to writing great software with the
Perl programming language. It’s how effective Perl programmers write powerful,
maintainable, scalable, concise, and excellent code. It takes advantage of
Perl’s extensive library of free software (the CPAN) and language features
designed to multiply your productivity.

You’ll benefit most from this book if you already have some experience with
Perl or another programming language. If you’re comfortable writing and
executing programs (and happy to consult the documentation when it’s
mentioned), you’ll get the most from this book.

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Running Modern Perl
The Modern::Perl module from the CPAN (see The CPAN, on page 13) tells Perl
to warn you of typos and other potential problems. It also enables new features
introduced in Modern Perl releases. Unless otherwise mentioned, the code
snippets in this book assume you’ve started with this basic program skeleton:

#!/usr/bin/env perl

use Modern::Perl '2015';
use autodie;

If you don’t have Modern::Perl installed, you could write the following instead:

#!/usr/bin/env perl

use 5.016; # implies "use strict;"
use warnings;
use autodie;

Some examples use testing functions such as ok(), like(), and is() (Testing on
page 175). The skeleton for these examples is shown here:

#!/usr/bin/env perl

use Modern::Perl;
use Test::More;

example code here

done_testing();

At the time of writing, the current stable major Perl release is Perl 5.22. If
you’re using an older version of Perl, you may not be able to run all of the
examples in this book unmodified. The examples in this book work best with
Perl 5.16.0 or newer, though we recommend at least Perl 5.20. While the term
Modern Perl has traditionally referred to any version of Perl from 5.10.1, the
language has improved dramatically over the past several years.

Although Perl comes preinstalled on many operating systems, you may need
to install a more modern version. Windows users, download Strawberry Perl
from http://www.strawberryperl.com/ or ActivePerl from http://www.activestate.com/activeperl.
Users of other operating systems with Perl already installed (and a C compiler
and the other development tools), start by installing the CPAN module
App::perlbrew.1

1. http://search.cpan.org/perldoc?App::perlbrew

Preface • x

report erratum • discussPrepared exclusively for Sandi Frank

http://www.strawberryperl.com/
http://www.activestate.com/activeperl
http://search.cpan.org/perldoc?App::perlbrew
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

perlbrew manages multiple Perl installations, so that you can switch between
versions for testing and deployment. You can also install CPAN modules in
your home directory without affecting the system installation. If you’ve ever
had to beg a system administrator for permission to install software, you’ll
appreciate this.

Credits
This book would not have been possible without questions, comments, sug-
gestions, advice, wisdom, and encouragement from many, many people. In
particular, the author thanks this edition’s tech reviewers Andy Lester, Sean
Lindsay, and Mohsen Jokar as well as Michael Swaine, editor of this edition.
Contributors to this and previous editions include the following:

John SJ Anderson, Peter Aronoff, Lee Aylward, Alex Balhatchet, Nitesh Bez-
zala, Ævar Arnfjörð Bjarmason, Matthias Bloch, John Bokma, Géraud
CONTINSOUZAS, Vasily Chekalkin, Dmitry Chestnykh, E. Choroba, Tom
Christiansen, Anneli Cuss, Paulo Custodio, Steve Dickinson, Kurt Edmiston,
David Farrell, Felipe, Shlomi Fish, Jeremiah Foster, Mark Fowler, John
Gabriele, Nathan Glenn, Kevin Granade, Andrew Grangaard, Bruce Gray,
Ask Bjørn Hansen, Tim Heaney, Graeme Hewson, Robert Hicks, Michael
Hicks, Michael Hind, Mark Hindess, Yary Hluchan, Daniel Holz, Mike Huffman,
Gary H. Jones II, Curtis Jewell, Mohammed Arafat Kamaal, James E Keenan,
Kirk Kimmel, Graham Knop, Yuval Kogman, Jan Krynicky, Michael Lang,
Jeff Lavallee, Moritz Lenz, Jean-Baptiste Mazon, Josh McAdams, Gareth
McCaughan, John McNamara, Shawn M Moore, Alex Muntada, Carl Mäsak,
Chris Niswander, Nelo Onyiah, Chas. Owens, ww from PerlMonks, Matt Pettis,
Jess Robinson, Dave Rolsky, Gabrielle Roth, Grzegorz Rożniecki, Jean-Pierre
Rupp, Eduardo Santiago, Andrew Savige, Lorne Schachter, Alex Schroeder,
Steve Schulze, Dan Scott, Alex-ander Scott-Johns, Phillip Smith, Christopher
E. Stith, Mark A. Stratman, Bryan Summersett, Audrey Tang, Scott Thomson,
Ben Tilly, Ruud H. G. van Tol, Sam Vilain, Larry Wall, Lewis Wall, Paul Waring,
Colin Wetherbee, Frank Wiegand, Doug Wilson, Sawyer X, David Yingling,
Marko Zagozen, Ahmad M. Zawawi, harleypig, hbm, and sunnavy.

Any remaining errors are the fault of the stubborn author.

report erratum • discuss

Credits • xi

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CHAPTER 1

The Perl Philosophy
Perl gets things done—it’s flexible, forgiving, and malleable. Capable program-
mers use it every day for everything from one-liners and one-off automations
to multiyear, multiprogrammer projects.

Perl is pragmatic. You’re in charge. You decide how to solve your problems
and Perl will mold itself to do what you mean, with little frustration and no
ceremony.

Perl will grow with you. In the next hour, you’ll learn enough to write real,
useful programs—and you’ll understand how the language works and why
it works as it does. Modern Perl takes advantage of this knowledge and the
combined experience of the global Perl community to help you write working,
maintainable code.

First, you need to know how to learn more.

Perldoc
Perl respects your time; Perl culture values documentation. The language
ships with thousands of pages of core documentation. The perldoc utility is
part of every complete Perl installation. Your OS may provide this as an
additional package; install perldoc on Debian or Ubuntu GNU/Linux, for
example. perldoc can display the core docs as well as the documentation of
every Perl module you have installed—whether a core module or one installed
from the Comprehensive Perl Archive Network (CPAN).

Use perldoc to read the documentation for a module or part of the core docu-
mentation:

$ perldoc List::Util
$ perldoc perltoc
$ perldoc Moose::Manual

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CPAN Documentation

http://perldoc.perl.org/ hosts recent versions of the Perl documentation.
CPAN indexes at http://search.cpan.org/ and http://metacpan.org/ provide
documentation for all CPAN modules. Other distributions such
as ActivePerl and Strawberry Perl provide local documentation in
HTML formats.

The first example displays the documentation of the List::Util module; these
docs are in the module itself. The second example is the table of contents of
the core docs. This file is purely documentation. The third example requires
you to install the Moose (Moose on page 141) CPAN distribution; it displays the
pure-documentation manual. perldoc hides these all of these details for you;
there’s no distinction between reading the documentation for a core library
such as Data::Dumper or one installed from the CPAN. Perl culture values docu-
mentation so much that even external libraries follow the good example of
the core language documentation.

The standard documentation template includes a description of the module,
sample uses, and a detailed explanation of the module and its interface. While
the amount of documentation varies by author, the form of the documentation
is remarkably consistent.

How to Read the Documentation

Perl has lots of documentation. Where do you start?

perldoc perltoc displays the table of contents of the core documenta-
tion, and perldoc perlfaq is the table of contents for Frequently Asked
Questions about Perl. perldoc perlop and perldoc perlsyn document Perl’s
symbolic operators and syntactic constructs. perldoc perldiag explains
the meanings of Perl’s warning messages. perldoc perlvar lists all of
Perl’s symbolic variables.

You don’t have to memorize anything in these docs. Skim them
for a great overview of the language and come back to them when
you have questions.

The perldoc utility can do much, much more (see perldoc perldoc). Use the -q option
with a keyword to search the Perl FAQ. For example, perldoc -q sort returns three
questions: How do I sort an array by (anything)? How do I sort a hash
(optionally by value instead of key)? and How can I always keep my hash
sorted?

Chapter 1. The Perl Philosophy • 2

report erratum • discussPrepared exclusively for Sandi Frank

http://perldoc.perl.org/
http://search.cpan.org/
http://metacpan.org/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The -f option shows the documentation for a built-in Perl function, such as
perldoc -f sort. If you don’t know the name of the function you want, browse the
list of available built-ins in perldoc perlfunc.

The -v option looks up a built-in variable. For example, perldoc -v $PID explains
$PID, which is the variable containing the current program’s process id.
Depending on your shell, you may have to quote the variable appropriately.

The -l option shows the path to the file containing the documentation. (A
module may have a separate .pod file in addition to its .pm file.)

The -m option displays the entire contents of the module, code and all, without
any special formatting.

Perl uses a documentation format called POD, short for Plain Old Documenta-
tion. perldoc perlpod describes how POD works. Other POD tools include podchecker,
which validates the structure of POD documents, and the Pod::Webserver CPAN
module, which displays local POD as HTML through a minimal web server.

Expressivity
Before Larry Wall created Perl, he studied linguistics. Unlike other program-
ming languages designed around a mathematical notion, Perl’s design emu-
lates how people communicate with people. This gives you the freedom to
write programs depending on your current needs. You may write simple,
straightforward code or combine many small pieces into larger programs. You
may select from multiple design paradigms, and you may eschew or embrace
advanced features.

Learning Perl is like learning any spoken language. You’ll learn a few words,
then string together sentences, and then enjoy simple conversations. Mastery
comes from practice of both reading and writing code. You don’t have to
understand every detail of Perl to be productive, but the principles in this
chapter are essential to your growth as a programmer.

Other languages may claim that there should be only one best way to solve
any problem. Perl allows you to decide what’s most readable, most useful,
most appealing, or most fun.

Perl hackers call this TIMTOWTDI, pronounced “Tim Toady,” or There’s more
than one way to do it!

This expressivity allows master craftworkers to create amazing programs but
also allows the unwary to make messes. You’ll develop your own sense of

report erratum • discuss

Expressivity • 3

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

good taste with experience. Express yourself, but be mindful of readability
and maintainability, especially for those who come after you.

Perl novices often find certain syntactic constructs opaque. These idioms (
Idioms on page 213) offer great (if subtle) power to experienced programmers,
but it’s okay to avoid them until you’re comfortable with them.

As another design goal, Perl tries to avoid surprising experienced (Perl) pro-
grammers. For example, adding two variables ($first_num + $second_num) is obvi-
ously a numeric operation (Numeric Operators on page 87). You’ve expressed
your intent to treat the values of those variables as numbers by using a
numeric operator. Perl happily does so. No matter the contents of $first_num
and $second_num, Perl will coerce them to numeric values (Numeric Coercion
on page 67).

Perl adepts often call this principle DWIM, or do what I mean. You could just
as well call this the principle of least astonishment. Given a cursory under-
standing of Perl (especially context; Context on page 5), it should be possible
to understand the intent of an unfamiliar Perl expression. You will develop
this skill as you learn Perl.

Perl’s expressivity allows novices to write useful programs without having to
understand the entire language. This is by design! Experienced developers
often call the results baby Perl as a term of endearment. Everyone begins as
a novice. Through practice and learning from more experienced programmers,
you’ll understand and adopt more powerful idioms and techniques. It’s okay
for you to write simple code that you understand. Keep practicing and you’ll
become a native speaker.

A novice Perl hacker might triple a list of numbers with this:

my @tripled;

for (my $i = 0; $i < scalar @numbers; $i++) {
$tripled[$i] = $numbers[$i] * 3;

}

And a Perl adept might write the following:

my @tripled;

for my $num (@numbers) {
push @tripled, $num * 3;

}

While an experienced Perl hacker could write this:

my @tripled = map { $_ * 3 } @numbers;

Chapter 1. The Perl Philosophy • 4

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Every one of these three programs generates the same result. Each uses Perl
in a different way.

As you get more comfortable with Perl, you can let the language do more for
you. With experience, you can focus on what you want to do rather than how
to do it. Perl doesn’t care if you write baby or expert code. Design and refine
your programs for clarity, expressivity, reuse, and maintainability, in part or
in whole. Take advantage of this flexibility and pragmatism: it’s far better to
accomplish your task effectively now than to write a conceptually pure and
beautiful program next year.

Context
In spoken languages, the meaning of a word or phrase depends on how you
use it; the local context of other grammatical constructs helps clarify the
intent. For example, the inappropriate pluralization of “Please give me one
hamburgers!” sounds wrong (the pluralization of the noun differs from the
amount), just as the incorrect gender of “la gato” (the article is feminine, but
the noun is masculine) makes native speakers chuckle. Some words do double
duty; one sheep is a sheep just as two sheep are also sheep and you program
a program.

Perl uses context to express how to treat a piece of data. This governs the
amount of data as well as the kind of data. For example, several Perl operations
produce different behaviors when you expect zero, one, or many results. A
specific construct in Perl may do something different if you write “Do this,
but I don’t care about any results” compared to “Do this and give me multiple
results.” Other operations allow you to specify whether you expect to work
with numeric, textual, or true or false data.

You must keep context in mind when you read Perl code. Every expression
is part of a larger context. You may find yourself slapping your forehead after
a long debugging session when you discover that your assumptions about
context were incorrect. If instead you’re aware of context, your code will be
more correct—and cleaner, flexible, and more concise.

Void, Scalar, and List Context
Amount context governs how many items you expect an operation to produce.
Think of subject-verb number agreement in English. Even without knowing
the formal description of this principle, you probably understand the error
in the sentence “Perl are a fun language.” (In terms of amount context, you

report erratum • discuss

Context • 5

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

could say that the verb are expects a plural noun or noun phrase.) In Perl,
the number of items you request influences how many you receive.

Suppose the function (Declaring Functions on page 91) called find_chores() sorts
your household todo list in order of priority. The number of chores you expect
to read from your list influences what the function produces. If you expect
nothing, you’re just pretending to be busy. If you expect one task, you have
something to do for the next fifteen minutes. If you have a burst of energy on
a free weekend, you could get all of your chores.

Why does context matter? A context-aware function can examine its calling
context and decide how much work it must do. When you call a function and
never use its return value, you’ve used void context:

find_chores();

Assigning the function’s return value to a single item (Scalars on page 50)
enforces scalar context:

my $single_result = find_chores();

Assigning the results of calling the function to an array (Arrays on page 52)
or a list, or using it in a list, evaluates the function in list context:

my @all_results = find_chores();
my ($single_element, @rest) = find_chores();

list of results passed to a function
process_list_of_results(find_chores());

The parentheses in the second line of the previous example group the two
variable declarations (Lexical Scope on page 104) into a single unit so that
assignment assigns to both of the variables. A single-item list is still a list,
though. You could also correctly write this:

my ($single_element) = find_chores();

In this case the parentheses tell the Perl parser that you intend list context
for the single variable $single_element. This is subtle, but now that you know
about it, the difference of amount context between these two statements
should be obvious:

my $scalar_context = find_chores();
my ($list_context) = find_chores();

Lists propagate list context to the expressions they contain. This often con-
fuses novices until they understand it. Both of these calls to find_chores() occur
in list context:

Chapter 1. The Perl Philosophy • 6

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

process_list_of_results(find_chores());

my %results = (
cheap_operation => $cheap_results,
expensive_operation => find_chores(), # OOPS!

);

Yes, initializing a hash (Hashes on page 58) with a list of values imposes list
context on find_chores. Use the scalar operator to impose scalar context:

my %results = (
cheap_operation => $cheap_results,
expensive_operation => scalar find_chores(),

);

Again, context can help you determine how much work a function should do.
In void context, find_chores() may legitimately do nothing. In scalar context, it
can find only the most important task. In list context, it must sort and return
the entire list.

Numeric, String, and Boolean Context
Perl’s other context—value context—influences how Perl interprets a piece of
data. Perl can figure out if you have a number or a string and convert data
between the two types. In exchange for not having to declare explicitly what
type of data a variable contains or a function produces, Perl’s value contexts
provide hints about how to treat that data.

Perl will coerce values to specific proper types (Coercion on page 66) depending
on the operators you use. For example, the eq operator tests that two values
contain equivalent string values:

say "Catastrophic crypto fail!" if $alice eq $bob;

You may have had a baffling experience where you know that the strings are
different, but they still compare the same:

my $alice = 'alice';
say "Catastrophic crypto fail!" if $alice == 'Bob';

The eq operator treats its operands as strings by enforcing string context on
them, but the == operator imposes numeric context. In numeric context, both
strings evaluate to 0 (Numeric Coercion on page 67). Be sure to use the
proper operator for your desired value context.

Boolean context occurs when you use a value in a conditional statement. In
the previous examples, if evaluated the results of the eq and == operators in
boolean context.

report erratum • discuss

Context • 7

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

In rare circumstances, you may not be able to use the appropriate operator
to enforce value context. To force a numeric context, add zero to a variable.
To force a string context, concatenate a variable with the empty string. To
force a boolean context, double up the negation operator:

my $numeric_x = 0 + $x; # forces numeric context
my $stringy_x = '' . $x; # forces string context
my $boolean_x = !!$x; # forces boolean context

Value contexts are easier to identify than amount contexts. Once you know
which operators provide which contexts (Operator Types on page 87), you’ll
rarely make mistakes.

Implicit Ideas
Perl code can seem dense at first, but it’s full of linguistic shortcuts. These
allow experienced programmers to glance at code and understand its important
implications. Context is one shortcut. Another is default variables—the pro-
gramming equivalent of pronouns.

The Default Scalar Variable
The default scalar variable (or topic variable), $_, is most notable in its absence:
many of Perl’s built-in operations work on the contents of $_ in the absence
of an explicit variable. You can still type $_ if it makes your code clearer to
you, but it’s often unnecessary.

Many of Perl’s scalar operators (including chr, ord, lc, length, reverse, and uc) work
on the default scalar variable if you don’t provide an alternative. For example,
the chomp built-in removes any trailing newline sequence (technically the
contents of $/; see perldoc -f chomp) from its operand:

my $uncle = "Bob\n";
chomp $uncle;
say "'$uncle'";

$_ behaves the same way in Perl as the pronoun it does in English. Without
an explicit variable, chomp removes the trailing newline sequence from $_.
When you write chomp;, Perl will always chomp it. These two lines of code are
equivalent:

chomp $_;
chomp;

say and print also operate on $_ in the absence of other arguments:

print; # prints $_ to the current filehandle
say; # prints $_ and a newline to the current filehandle

Chapter 1. The Perl Philosophy • 8

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Perl’s regular expression facilities (Regular Expressions and Matching on page
125) default to $_ to match, substitute, and transliterate:

$_ = 'My name is Paquito';
say if /My name is/;

s/Paquito/Paquita/;

tr/A-Z/a-z/;
say;

Perl’s looping directives (Looping Directives on page 40) default to using $_ as
the iteration variable, whether for iterating over a list

say "#$_" for 1 .. 10;

for (1 .. 10) {
say "#$_";

}

or while waiting for an expression to evaluate to false

while (<STDIN>) {
chomp;
say scalar reverse;

}

or map transforming a list

my @squares = map { $_ * $_ } 1 .. 10;
say for @squares; # note the postfix for

or grep filtering a list

say 'Brunch is possible!'
if grep { /pancake mix/ } @pantry;

Just as English gets confusing when you have too many pronouns and
antecedents, so does Perl when you mix explicit and implicit uses of $_. In
general, there’s only one $_. If you use it in multiple places, one operator’s $_
may override another’s. For example, if one function uses $_ and you call it
from another function that uses $_, the callee may clobber the caller’s value:

while (<STDIN>) {
chomp;

BAD EXAMPLE
my $munged = calculate_value($_);
say "Original: $_";
say "Munged : $munged";

}

report erratum • discuss

Implicit Ideas • 9

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

If calculate_value() or any other function changed $_, that change would persist
through that iteration of the loop. Using a named lexical is safer and may be
clearer:

while (my $line = <STDIN>) {
...

}

Use $_ as you would the word it in formal writing: sparingly, in small and
well-defined scopes.

The ... Operator

The triple-dot (...) operator is a placeholder for code you intend to
fill in later. Perl will parse it as a complete statement but will throw
an exception that you’re trying to run unimplemented code if you
try to run it. See perldoc perlop for more details.

The Default Array Variables
Perl also provides two implicit array variables. Perl passes arguments to
functions (Declaring Functions on page 91) in an array named @_. Array
operations (Arrays on page 52) inside functions use this array by default.
These two snippets of code are equivalent:

sub foo {
my $arg = shift;
...

}

sub foo_explicit_args {
my $arg = shift @_;
...

}

Just as $_ corresponds to the pronoun it, @_ corresponds to the pronouns
they and them. Unlike $_, each function has a separate copy of @_. The built-
ins shift and pop operate on @_, if provided no explicit operands.

Outside of all functions, the default array variable @ARGV contains the com-
mand-line arguments provided to the program. Perl’s array operations
(including shift and pop) operate on @ARGV implicitly outside of functions. You
can’t use @_ when you mean @ARGV.

Chapter 1. The Perl Philosophy • 10

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

readline

Perl’s <$fh> operator is the same as the readline built-in. readline $fh
does the same thing as <$fh>. A bare readline behaves just like <>.
For historic reasons, <> is still more common, but consider using
readline as a more readable alternative. (What’s more readable, glob
'*.html' to <*.html>? The same idea applies.)

ARGV has one special case. If you read from the null file handle <>, Perl will
treat every element in @ARGV as the name of a file to open for reading. (If @ARGV
is empty, Perl will read from standard input; see Input and Output on page
184.) This implicit @ARGV behavior is useful for writing short programs, such
as a command-line filter that reverses its input:

while (<>) {
chomp;
say scalar reverse;

}

The Double Open Operator

Perl 5.22 made this expression a little safer with the <<>> operator.
If a provided filename contains a special punctuation symbol like
|filename or filename|, Perl would do something special with it. The
double-diamond operator avoids this behavior.

Why scalar? say imposes list context on its operands. reverse passes its context
on to its operands, treating them as a list in list context and a concatenated
string in scalar context. If the behavior of reverse sounds confusing, your
instincts are correct. Perl arguably should have separated “reverse a string”
from “reverse a list.”

If you run it with a list of files

$ perl reverse_lines.pl encrypted/*.txt

the result will be one long stream of output. Without any arguments, you can
provide your own standard input by piping in from another program or typing
directly. That’s a lot of flexibility in a small program—and you’re only getting
started.

report erratum • discuss

Implicit Ideas • 11

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CHAPTER 2

Perl and Its Community
Perl’s greatest accomplishment is the huge amount of reusable libraries it
has available. Larry Wall explicitly encouraged the Perl community to create
and maintain their own extensions to solve every problem imaginable without
fragmenting the language into incompatible pidgins. It worked.

That accomplishment was almost as important as the growth of a community
around Perl. People write libraries. People build on the work of other people.
People make a community worth joining and preserving and expanding.

The Perl community welcomes willing participants at all levels, from novices
to the developers of Perl itself. Take advantage of the knowledge and experience
and code of countless other programmers. It’ll make you a better programmer.

The CPAN
Perl is a pragmatic language. If you have a problem, chances are the global
Perl community has already written—and shared—code to solve it.

Modern Perl programming relies on the CPAN (http://www.cpan.org/). The Compre-
hensive Perl Archive Network is an uploading and mirroring system for
redistributable, reusable Perl code. It’s one of the largest libraries of code in
the world. You can find everything ranging from database access to profiling
tools, to protocols for almost every network device ever created, to sound and
graphics libraries and wrappers for shared libraries on your system.

Modern Perl without the CPAN is just another language. Modern Perl with
the CPAN is a powerful toolkit for solving problems.

The CPAN hosts distributions, or collections of reusable Perl code. A single
distribution can contain one or more modules: self-contained libraries of Perl
code. Each distribution occupies its own CPAN namespace and provides
unique metadata.

report erratum • discussPrepared exclusively for Sandi Frank

http://www.cpan.org/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The CPAN Is Big, Really Big

The CPAN adds hundreds of registered contributors and thousands
of indexed modules in hundreds of distributions every month.
Those numbers don’t take into account updates. In May 2015,
search.cpan.org reported 12207 uploaders, 150552 modules, and
31873 distributions (representing growth rates of 10.8%, 16.7%,
and 9.6% since the previous edition of this book, respectively).

The CPAN itself is merely a mirroring service. Authors upload distributions
to a central service (PAUSE), which replicates them to mirror sites from which
CPAN clients download them. All of this relies on common behavior; commu-
nity standards have evolved to identify the attributes and characteristics of
well-formed CPAN distributions. These include the following:

• The behavior of automated CPAN installers

• Metadata to describe what each distribution provides and expects

• Machine-readable documentation and licensing

Additional CPAN services provide comprehensive automated testing and
reporting across platforms and Perl versions. Every CPAN distribution has
its own ticket queue on http://rt.cpan.org/ for reporting bugs and working with
authors. CPAN sites also link to previous distribution versions, module ratings,
documentation annotations, and more. All of this is available from both
http://search.cpan.org/ and http://metacpan.org/.

Modern Perl installations include a client to connect to, search, download,
build, test, and install CPAN distributions; this is CPAN.pm. With a recent
version (as of this writing, 2.10 is the latest stable release), module installation
is reasonably easy. Start the client with this command:

$ cpan

To install a distribution within the client, use this:

$ cpan
cpan[1]> install Modern::Perl

Or to install directly from the command line, use this:

$ cpan Modern::Perl

Eric Wilhelm’s tutorial on configuring CPAN.pm1 includes a great troubleshoot-
ing section.

1. http://learnperl.scratchcomputing.com/tutorials/configuration/

Chapter 2. Perl and Its Community • 14

report erratum • discussPrepared exclusively for Sandi Frank

http://rt.cpan.org/
http://search.cpan.org/
http://metacpan.org/
http://learnperl.scratchcomputing.com/tutorials/configuration/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CPAN Requirements

Even though the CPAN client is a core module for the Perl distri-
bution, you’ll need to install standard development tools such as
a make utility and possibly a C compiler. Windows users, see
Strawberry Perl2 and Strawberry Perl Professional. Mac OS X users
must install XCode. Unix and Unix-like users often have these
tools available (though Debian and Ubuntu users should install
build-essential).

CPAN Management Tools
If your operating system provides its own Perl installation, it may be out of
date or depend on specific versions of CPAN distributions. Serious Perl
developers often construct virtual walls between the system Perl and their
development Perl installations. Several projects help to make this possible.

The App::cpanminus CPAN client is fast and simple and needs no configuration.
Install it with cpan App::cpanminus or the following:

$ curl -LO http://xrl.us/cpanm
$ less cpanm # review the code before running
$ chmod +x cpanm
$./cpanm

App::perlbrew is a system to manage and to switch between your own installations
of multiple versions and configurations of Perl. Installation is as easy as this:

$ curl -LO http://xrl.us/perlbrew
$ less perlbrew # review the code before running
$ chmod +x perlbrew
$./perlbrew install
$ perldoc App::perlbrew

The local::lib CPAN distribution allows you to install and to manage multiple
Perl installations. This is an effective way to maintain CPAN distributions for
individual users or applications without affecting the system as a whole. See
https://metacpan.org/pod/local::lib and https://metacpan.org/pod/App::local::lib::helper for more
details.

All three projects tend to assume a Unix-like environment. Windows users,
see the Padre all-in-one download (http://padre.perlide.org/download.html).

2. http://strawberryperl.com/

report erratum • discuss

The CPAN • 15

Prepared exclusively for Sandi Frank

https://metacpan.org/pod/local::lib
https://metacpan.org/pod/App::local::lib::helper
http://padre.perlide.org/download.html
http://strawberryperl.com/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Community Sites
Perl’s home page at http://www.perl.org/ links to documentation, source code,
tutorials, mailing lists, and several important community projects, such as
the Perl.org Online Library (https://www.perl.org/books/library.html). If you’re new to
Perl, the Perl beginners mailing list is a friendly place for novices to ask
questions and get accurate and helpful answers. See http://learn.perl.org/faq/
beginners.html.

The home of Perl development is http://dev.perl.org/, which links to relevant
resources for Perl’s core development.

The CPAN’s (The CPAN on page 13) central location is http://www.cpan.org/, though
experienced users spend more time on http://search.cpan.org/ and https://metacpan.org/
. Get used to browsing here for freely available libraries.

Several community sites offer news and commentary. http://blogs.perl.org/ is a
free blog platform open to any Perl community member.

Other sites aggregate the musings of Perl hackers, including http://perlsphere.net/
, http://PerlTricks.com/, and http://ironman.enlightenedperl.org/. The latter is part of an
initiative from the Enlightened Perl Organization (http://enlightenedperl.org/) to
increase the amount and improve the quality of Perl publishing on the web.

Perl Weekly (http://perlweekly.com/) offers a weekly take on news from the Perl
world. @perlbuzz (https://twitter.com/perlbuzz) regularly tweets new Perl links.

Development Sites
Best Practical Solutions (http://bestpractical.com/) maintains an installation of RT,
its popular request-tracking system, for Perl development. Perl’s queue is
http://rt.perl.org/. Every CPAN distribution has its own queue on http://rt.cpan.org/.

The perl5-porters (or p5p) mailing list is the focal point of the development of
Perl. See http://lists.cpan.org/showlist.cgi?name=perl5-porters.

The Perl Foundation (http://www.perlfoundation.org/) exists to support the develop-
ment and promotion of Perl and its community.

Many Perl hackers use GitHub3 to host their projects, including the sources
of this book.4 See especially Gitpan, 5 which hosts Git repositories chronicling
the complete history of every distribution on the CPAN.

3. http://github.com/
4. http://github.com/chromatic/modern_perl_book/
5. http://github.com/gitpan/

Chapter 2. Perl and Its Community • 16

report erratum • discussPrepared exclusively for Sandi Frank

http://www.perl.org/
https://www.perl.org/books/library.html
http://learn.perl.org/faq/beginners.html
http://learn.perl.org/faq/beginners.html
http://dev.perl.org/
http://www.cpan.org/
http://search.cpan.org/
https://metacpan.org/
http://blogs.perl.org/
http://perlsphere.net/
http://PerlTricks.com/
http://ironman.enlightenedperl.org/
http://enlightenedperl.org/
http://perlweekly.com/
https://twitter.com/perlbuzz
http://bestpractical.com/
http://rt.perl.org/
http://rt.cpan.org/
http://lists.cpan.org/showlist.cgi?name=perl5-porters
http://www.perlfoundation.org/
http://github.com/
http://github.com/chromatic/modern_perl_book/
http://github.com/gitpan/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

A Local Git Mirror

Gitpan receives infrequent updates. As an alternative to hacking
CPAN distributions from Gitpan, consider using Yanick Cham-
poux’s wonderful Git::CPAN::Patch module to create local Git reposito-
ries from CPAN distributions.

Events
The Perl community holds countless conferences, workshops, seminars, and
meetings. In particular, the community-run YAPC—Yet Another Perl Confer-
ence—is a successful, local, low-cost conference model held on multiple
continents. See http://yapc.org/.

Hundreds of local Perl Mongers groups get together frequently for technical
talks and social interaction. See http://www.pm.org/.

IRC
When Perl mongers can’t meet in person, many collaborate and chat online
through the textual chat system known as IRC. The main server for the Perl
community is irc://irc.perl.org/. Be aware that the channel #perl is a general-
purpose channel for discussing whatever its participants want to discuss.
Direct questions to #perl-help instead. Many of the most popular and useful
Perl projects have their own IRC channels, such as #moose and #catalyst;
you can find mention of these channels in project documentation.

report erratum • discuss

Events • 17

Prepared exclusively for Sandi Frank

http://yapc.org/
http://www.pm.org/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CHAPTER 3

The Perl Language
The Perl language is a combination of several individual pieces. Although
spoken languages use nuance and tone of voice and intuition to communicate
across gaps in knowledge and understanding, computers and source code
require precision. You can write effective Perl code without knowing every
detail of every language feature, but you must understand how they work
together to write Perl code well.

Names
Names (or identifiers) are everywhere in Perl programs: you choose them for
variables, functions, packages, classes, and even filehandles. All valid Perl
names begin with a letter or an underscore and may optionally include any
combination of letters, numbers, and underscores. When the utf8 pragma (
Unicode and Strings on page 27) is in effect, you may use any UTF-8 word
characters in identifiers. These are valid Perl identifiers:

my $name;
my @_private_names;
my %Names_to_Addresses;
sub anAwkwardName3;

with use utf8; enabled
package Ingy::Döt::Net;

These are invalid Perl identifiers:

my $invalid name; # space is invalid
my @3; # cannot start with number
my %~flags; # symbols invalid in name

package a-lisp-style-name;

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Names exist primarily for your benefit as a programmer. These rules apply
only to literal names that appear in your source code, such as sub fetch_pie or
my $waffleiron.

Only Perl’s parser enforces the rules about identifier names. You may also
refer to entities with names generated at runtime or provided as input to a
program. These symbolic lookups provide flexibility at the expense of safety.
Invoking functions or methods indirectly or looking up symbols in a namespace
lets you bypass Perl’s parser. Symbolic lookups can produce confusing code.
As Mark Jason Dominus recommends,1 prefer a hash (Hashes on page 58)
or nested data structure (Nested Data Structures on page 78) over variables
named, for example, $recipe1, $recipe2, and so on.

Variable Names and Sigils
Variable names always have a leading sigil (a symbol), which indicates the
type of the variable’s value. Scalar variables (Scalars on page 50) use the
dollar sign ($). Array variables (Arrays on page 52) use the at sign (@). Hash
variables (Hashes on page 58) use the percent sign (%):

my $scalar;
my @array;
my %hash;

Sigils separate variables into different namespaces. It’s possible—though
confusing—to declare multiple variables of the same name with different
types:

my ($bad_name, @bad_name, %bad_name);

Perl won’t get confused, though humans will.

The sigil of a variable changes depending on its use; these are called variant
sigils. Just as context determines how many items you expect from an oper-
ation or what type of data you expect to get, so also the sigil governs how you
manipulate the data of a variable. For example, use the scalar sigil ($) to
access a single element of an array or a hash:

my $hash_element = $hash{ $key };
my $array_element = $array[$index]

$hash{ $key } = 'value';
$array[$index] = 'item';

1. http://perl.plover.com/varvarname.html

Chapter 3. The Perl Language • 20

report erratum • discussPrepared exclusively for Sandi Frank

http://perl.plover.com/varvarname.html
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The parallel with amount context is important. Using a scalar element of an
aggregate as an lvalue (the target of an assignment; on the left side of the =
character) imposes scalar context (Context on page 5) on the rvalue (the
value assigned; on the right side of the = character).

Similarly, accessing multiple elements of a hash or an array—an operation
known as slicing—uses the at symbol (@) and imposes list context—even if
the list itself has zero or one element:

my @hash_elements = @hash{ @keys };
my @array_elements = @array[@indexes];

my %hash;
@hash{ @keys } = @values;

Given Perl’s variant sigils, the most reliable way to determine the type of a
variable—scalar, array, or hash—is to observe the operations performed on
it. Arrays support indexed access through square brackets. Hashes support
keyed access through curly brackets. Scalars have neither.

Namespaces
Perl allows you to collect similar functions and variables into their own unique
named spaces—namespaces (Packages on page 68). A namespace is a collec-
tion of symbols grouped under a globally unique name. Perl allows multilevel
namespaces, with names joined by double colons (::). DessertShop::IceCream refers
to a logical collection of related variables and functions, such as scoop() and
pour_hot_fudge().

Within a namespace, you may use the short name of its members. Outside
the namespace, you must refer to a member by its fully qualified name.
Within DessertShop::IceCream, add_sprinkles() refers to the same function as does
DessertShop::IceCream::add_sprinkles() outside the namespace.

Standard identifier rules apply to package names. By convention, the Perl
core reserves lowercase package names for core pragmas (Pragmas on page
171), such as strict and warnings. User-defined packages all start with uppercase
letters. This is a policy enforced primarily by community guidelines.

All namespaces in Perl are globally visible. When Perl looks up a symbol in
DessertShop::IceCream::Freezer, it looks in the main:: symbol table for a symbol rep-
resenting the DessertShop:: namespace, in that namespace for the IceCream::
namespace, and so on. Yet Freezer:: is visible from outside the IceCream::
namespace. The nesting of the former within the latter is only a storage

report erratum • discuss

Names • 21

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

mechanism; it implies nothing about relationships between parent and child
or sibling packages.

Only you as a programmer can make logical relationships between entities
obvious—by choosing good names and organizing them well.

Variables
A variable in Perl is a storage location for a value (Values on page 24). While
a trivial program may manipulate values directly, most programs work with
variables. Think of this like algebra: you manipulate symbols to describe
formulas. It’s easier to explain the Pythagorean theorem in terms of the vari-
ables a, b, and c than by intuiting its principle by producing a long list of valid
values.

Variable Scopes
Your ability to access a variable within your program depends on the variable’s
scope (Scope on page 104). Most variables in modern Perl programs have a
lexical scope (Lexical Scope on page 104) governed by the syntax of the program
as written. Most lexical scopes are either the contents of blocks delimited by
curly braces ({ and }) or entire files. Files themselves provide their own lexical
scopes, such that a package declaration on its own does not create a new scope:

package Store::Toy;

my $discount = 0.10;

package Store::Music;

$discount still visible
say "Our current discount is $discount!";

You may also provide a block to the package declaration. Because this intro-
duces a new block, it also provides a new lexical scope:

package Store::Toy {
my $discount = 0.10;

}

package Store::Music {
$discount not visible

}

package Store::BoardGame;

$discount still not visible

Chapter 3. The Perl Language • 22

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Variable Sigils
The sigil of the variable in a declaration determines the type of the variable:
scalar, array, or hash. The sigil used when accessing a variable varies
depending on what you do to the variable. For example, you declare an array
as @values. Access the first element—a single value—of the array with $values[0].
Access a list of values from the array with @values[@indices]. The sigil you use
determines amount context in an lvalue situation:

imposes lvalue context on some_function()
@values[@indexes] = some_function();

Or it gets coerced in an rvalue situation:

list evaluated to final element in scalar context
my $element = @values[@indices];

Anonymous Variables
Perl variables do not require names. Names exist to help you, the programmer,
keep track of an $apple, @barrels, or %cookie_recipes. Variables created without
literal names in your source code are anonymous. The only way to access
anonymous variables is by reference (References on page 71).

Variables, Types, and Coercion
The relationship between variable types, sigils, and context is key to Perl.

A Perl variable represents both a value (such as a dollar cost, available pizza
toppings, the names and numbers of guitar stores) and the container that
stores that value. Perl’s type system deals with value types and container
types. While a variable’s container type—scalar, array, or hash—cannot
change, Perl is flexible about a variable’s value type. You may store a string
in a variable in one line, append a number to that variable on the next, and
reassign a reference to a function (Function References on page 76) on the
third, though this is a great way to confuse yourself.

Performing an operation on a variable that imposes a specific value type may
cause coercion (Coercion on page 66) of the variable’s existing value type.

For example, the documented way to determine the number of entries in an
array is to evaluate that array in scalar context (Context on page 5). Because
a scalar variable can only ever contain a scalar, assigning an array (the rvalue)
to a scalar (the lvalue) imposes scalar context on the operation, and an array
evaluated in scalar context produces the number of elements in the array:

my $count = @items;

report erratum • discuss

Variables • 23

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Values
New programmers spend a lot of time thinking about what their programs
must do. Mature programmers spend their time designing a model for the
data their programs must understand.

Variables allow you to manipulate data in the abstract. The values held in
variables make programs concrete and useful. These values can be your
aunt’s name and address, the distance between your office and a golf course
on the moon, or the sum of the masses of all of the cookies you’ve eaten in
the past year. Within your program, the rules regarding the format of that
data are often strict.

Effective programs need effective (simple, fast, efficient, easy) ways to represent
their data.

Strings
A string is a piece of textual or binary data with no particular formatting or
contents. It could be your name, an image read from disk, or the source code
of the program itself. A string has meaning in the program only when you
give it meaning.

A literal string appears in your program surrounded by a pair of quoting
characters. The most common string delimiters are single and double quotes:

my $name = 'Donner Odinson, Bringer of Despair';
my $address = "Room 539, Bilskirnir, Valhalla";

Characters in a single-quoted string are exactly and only ever what they appear
to be, with two exceptions. To include a single quote inside a single-quoted
string, you must escape it with a leading backslash:

my $reminder = 'Don\'t forget to escape '
. 'the single quote!';

To include a backslash at the end of a string, escape it with another leading
backslash. Otherwise Perl will think you’re trying to escape the closing
delimiter:

my $exception = 'This string ends with a '
. 'backslash, not a quote: \\';

Any other backslash will be part of the string as it appears, unless you have
two adjacent backslashes, in which case Perl will believe that you intended
to escape the second:

Chapter 3. The Perl Language • 24

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

use Test::More;

is 'Modern \ Perl', 'Modern \\ Perl',
'single quotes backslash escaping';

done_testing();

This example uses Test::More to prove the assertion that Perl considers these
two lines equivalent. See Testing on page 175 for details on how that works.

A double-quoted string gives you more options, such as encoding otherwise
invisible whitespace characters in the string:

my $tab = "\t";
my $newline = "\n";
my $carriage = "\r";
my $formfeed = "\f";
my $backspace = "\b";

You may have inferred from this that you can represent the same logical
string in multiple ways. You can include a tab within a string by typing the
\t escape sequence or by hitting the Tab key on your keyboard. Both strings
look and behave the same to Perl, even though the representation of the string
may differ in the source code.

A string declaration may cross (and include) newlines, so these two declara-
tions are equivalent:

my $escaped = "two\nlines";
my $literal = "two
lines";
is $escaped, $literal, 'equivalent \n and newline';

But the escape sequences are easier for humans to read.

Perl strings have variable—not fixed—lengths. Perl will change their sizes for
you as you modify and manipulate them. Use the concatenation operator . to
combine multiple strings:

my $kitten = 'Choco' . ' ' . 'Spidermonkey';

Although concatenating three literal strings like this is ultimately the same
to Perl as writing a single string.

When you interpolate the value of a scalar variable or the values of an array
within a double-quoted string, the current contents of the variable become
part of the string as if you’d concatenated them:

report erratum • discuss

Values • 25

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

my $factoid = "$name lives at $address!";

equivalent to
my $factoid = $name . ' lives at ' . $address . '!';

Include a literal double-quote inside a double-quoted string by escaping it
with a leading backslash:

my $quote = "\"Ouch,\", he cried. \"That _hurt_!\"";

Repeated backslashing sometimes becomes unwieldy. A quoting operator
allows you to choose an alternate string delimiter. The q operator indicates
single quoting (no interpolation), whereas the qq operator provides double-
quoting behavior (interpolation). The character immediately following the
operator determines the characters used as delimiters. If the character is the
opening character of a balanced pair—such as opening and closing braces—the
closing character will be the final delimiter. Otherwise, the character itself
will be both the starting and ending delimiters.

my $quote = qq{"Ouch", he said. "That _hurt_!"};
my $reminder = q^Don't escape the single quote!^;
my $complaint = q{It's too early to be awake.};

Use the heredoc syntax to assign multiple lines to a string:

my $blurb =<<'END_BLURB';
He looked up. "Change is the constant on which they all can agree. We
instead, born out of time, remain perfect and perfectly self-aware.
We only suffer change as we pursue it. It is against our nature. We
rebel against that change. Shall we consider them greater for it?"
END_BLURB

This syntax has three parts. The double angle brackets introduce the heredoc.
The quotes determine whether the heredoc follows single- or double-quoted
behavior; double-quoted behavior is the default. END_BLURB is an arbitrary
identifier, chosen by the programmer, used as the ending delimiter.

Regardless of the indentation of the heredoc declaration itself, the ending
delimiter must start at the beginning of the line:

sub some_function {
my $ingredients =<<'END_INGREDIENTS';
Two eggs
One cup flour
Two ounces butter
One-quarter teaspoon salt
One cup milk
Season to taste

END_INGREDIENTS
}

Chapter 3. The Perl Language • 26

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

If the identifier begins with whitespace, that same whitespace must be present
before the ending delimiter—that is,

<<' END_HEREDOC';

needs a leading space before END_HEREDOC. Yet if you indent the identifier, Perl
will not remove equivalent whitespace from the start of each line of the heredoc.
Keep that design wart in mind; it’ll eventually surprise you.

Using a string in a non-string context will induce coercion (Coercion on page
66).

Unicode and Strings
Unicode is a system used to represent the characters of the world’s written
languages. Most English text uses a character set of only 127 characters
(which requires 7 bits of storage and fits nicely into 8-bit bytes), but it’s naïve
to believe that you won’t someday need an umlaut.

Perl strings can represent either of two separate but related data types:

Sequences of Unicode characters
Each character has a codepoint, a unique number that identifies it in the
Unicode character set.

Sequences of octets
Binary data in a sequence of octets—8-bit numbers, each of which can
represent a number between 0 and 255.

Words Matter

Why octet and not byte? An octet is unambiguously 8 bits. A byte
can be fewer or more bits, depending on esoteric hardware.
Assuming that one character fits in 1 byte will cause you no end
of Unicode grief. Separate the idea of memory storage from char-
acter representation. Forget that you ever heard of bytes.

Unicode strings and binary strings look superficially similar. Each has a
length(). Each supports standard string operations such as concatenation,
splicing, and regular expression processing (Regular Expressions and
Matching on page 125). Any string that isn’t purely binary data is textual data
and thus should be a sequence of Unicode characters.

However, because of how your operating system represents data on disk or
from users or over the network—as sequences of octets—Perl can’t know if
the data you read is an image file or a text document or anything else. By

report erratum • discuss

Values • 27

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

default, Perl treats all incoming data as sequences of octets. It’s up to you to
give that data meaning.

Character Encodings

A Unicode string is a sequence of octets that represents a sequence of char-
acters. A Unicode encoding maps octet sequences to characters. Some
encodings, such as UTF-8, can encode all of the characters in the Unicode
character set. Other encodings represent only a subset of Unicode characters.
For example, ASCII encodes plain English text (no accented characters
allowed), while Latin-1 can represent text in most languages that use the
Latin alphabet (umlauts, grave and circumflex accents, et cetera).

An Evolving Standard

Perl 5.16 supports the Unicode 6.1 standard, 5.18 the 6.2 stan-
dard, 5.20 the 6.3 standard, and 5.22 the 7.0 standard. See
http://unicode.org/versions/.

To avoid most Unicode problems, always decode to and from the appropriate
encoding at the inputs and outputs of your program. Read that sentence
again. Memorize it. You’ll be glad of it later.

Unicode in Your Filehandles

When you tell Perl that a specific filehandle (Files on page 184) should interpret
data via specific Unicode encoding, Perl will use an IO layer to convert between
octets and characters. The mode operand of the open built-in allows you to
request an IO layer by name. For example, the :utf8 layer decodes UTF-8 data:

open my $fh, '<:utf8', $textfile;

my $unicode_string = <$fh>;

Use binmode to apply an IO layer to an existing filehandle:

binmode $fh, ':utf8';
my $unicode_string = <$fh>;

binmode STDOUT, ':utf8';
say $unicode_string;

If you want to write Unicode to files, you must specify the desired encoding.
Otherwise, Perl will warn you when you print Unicode characters that don’t
look like octets; this is what Wide character in %s means.

Chapter 3. The Perl Language • 28

report erratum • discussPrepared exclusively for Sandi Frank

http://unicode.org/versions/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Enable UTF-8 Everywhere

Use the utf8::all module to add the UTF-8 IO layer to all filehandles
throughout your program. The module also enables all sorts of
other Unicode features. It’s very handy, but it’s a blunt instrument
and no substitute for understanding what your program needs to
do.

Unicode in Your Data

The core module Encode’s decode() function converts a sequence of octets to
Perl’s internal Unicode representation. The corresponding encode() function
converts from Perl’s internal encoding to the desired encoding:

my $from_utf8 = decode('utf8', $data);
my $to_latin1 = encode('iso-8859-1', $string);

To handle Unicode properly, you must always decode incoming data via a
known encoding and encode outgoing data to a known encoding. Again, you
must know what kind of data you expect to consume and to produce. Being
specific will help you avoid all kinds of trouble.

Unicode in Your Programs

The easiest way to use Unicode characters in your source code is with the
utf8 pragma (Pragmas on page 171), which tells the Perl parser to decode the
rest of the file as UTF-8 characters. This allows you to use Unicode characters
in strings and identifiers:

use utf8;

sub pound_to_yen { ... }

my $yen = pound_to_yen('1000pound');

To write this code, your text editor must understand UTF-8 and you must
save the file with the appropriate encoding. Again, any two programs that
communicate with Unicode data must agree on the encoding of that data.

Within double-quoted strings, you may also use a Unicode escape sequence
to represent character encodings. The syntax \x{} represents a single character;
place the hex form of the character’s Unicode number2 within the curly
brackets:

my $escaped_thorn = "\x{00FE}";

2. http://unicode.org/charts/

report erratum • discuss

Values • 29

Prepared exclusively for Sandi Frank

http://unicode.org/charts/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Some Unicode characters have names, which make them easier for other
programmers to read. Use the charnames pragma to enable named characters
via the \N{} escape syntax:

use charnames ':full';
use Test::More tests => 1;

my $escaped_thorn = "\x{00FE}";
my $named_thorn = "\N{LATIN SMALL LETTER THORN}";

is $escaped_thorn, $named_thorn,
'Thorn equivalence check';

You may use the \x{} and \N{} forms within regular expressions as well as
anywhere else you may legitimately use a string or a character.

Implicit Conversion

Most Unicode problems in Perl arise from the fact that a string could be either
a sequence of octets or a sequence of characters. Perl allows you to combine
these types through the use of implicit conversions. When these conversions
are wrong, they’re rarely obviously wrong, but they’re also often spectacularly
wrong in ways that are difficult to debug.

When Perl concatenates a sequence of octets with a sequence of Unicode
characters, it implicitly decodes the octet sequence using the Latin-1 encoding.
The resulting string will contain Unicode characters. When you print Unicode
characters, Perl will encode the string using UTF-8, since Latin-1 cannot
represent the entire set of Unicode characters—because Latin-1 is a subset
of UTF-8.

The asymmetry between encodings and octets can lead to Unicode strings
encoded as UTF-8 for output and decoded as Latin-1 from input. Worse yet,
when the text contains only English characters with no accents, the bug stays
hidden, because both encodings use the same representation for every char-
acter.

You don’t have to understand all of this right now; just know that this
behavior happens and that it’s not what you want.

my $hello = "Hello, ";
my $greeting = $hello . $name;

If $name contains Alice, you’ll never notice any problem, because the Latin-1
representation is the same as the UTF-8 representation. If $name contains
José, $name can contain several possible values:

• $name contains four Unicode characters.

Chapter 3. The Perl Language • 30

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

• $name contains four Latin-1 octets representing four Unicode characters.

• $name contains five UTF-8 octets representing four Unicode characters.

The string literal has several possible scenarios:

• It is an ASCII string literal and contains octets: my $hello = "Hello, ";

• It is a Latin-1 string literal with no explicit encoding and contains octets:
my $hello = "iexclHola, ";

• It is a non-ASCII string literal (the utf8 or encoding pragma is in effect) and
contains Unicode characters: my $hello = "Kuirabá, ";

If both $hello and $name are Unicode strings, the concatenation will produce
another Unicode string.

If both strings are octet sequences, Perl will concatenate them into a new
octet sequence. If both values are octets of the same encoding—both Latin-
1, for example, the concatenation will work correctly. If the octets don’t share
an encoding—for example, a concatenation appending UTF-8 data to Latin-
1 data—then the resulting sequence of octets makes sense in neither encoding.
This could happen if the user entered a name as UTF-8 data and the greeting
were a Latin-1 string literal but the program decoded neither.

If only one of the values is a Unicode string, Perl will decode the other as
Latin-1 data. If this isn’t the correct encoding, the resulting Unicode characters
will be wrong. For example, if the user input were UTF-8 data and the string
literal were a Unicode string, the name would be incorrectly decoded into five
Unicode characters to form JosAtilde© (sic) instead of José because the UTF-
8 data means something else when decoded as Latin-1 data.

Again, you don’t have to follow all of the details here if you remember this:
always decode on input and encode on output.

See perldoc perluniintro for a far more detailed explanation of Unicode, encodings,
and how to manage incoming and outgoing data in a Unicode world. For far
more detail about managing Unicode effectively throughout your programs,
see Tom Christiansen’s answer to “Why does Modern Perl avoid UTF-8 by
default?”3 and his “Perl Unicode Cookbook” series.4

3. http://stackoverflow.com/questions/6162484/why-does-modern-perl-avoid-utf-8-by-default/6163129#6163129
4. http://www.perl.com/pub/2012/04/perlunicook-standard-preamble.html

report erratum • discuss

Values • 31

Prepared exclusively for Sandi Frank

http://stackoverflow.com/questions/6162484/why-does-modern-perl-avoid-utf-8-by-default/6163129#6163129
http://www.perl.com/pub/2012/04/perlunicook-standard-preamble.html
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Unicode Strings

If you work with Unicode in Perl, use at least Perl 5.18 (and ideally
the latest version). See also the feature pragma for information on
the unicode_strings feature.

Numbers
Perl supports numbers as both integers and floating-point values. You may
represent them with scientific notation as well as in binary, octal, and hex-
adecimal forms:

my $integer = 42;
my $float = 0.007;
my $sci_float = 1.02e14;
my $binary = 0b101010;
my $octal = 052;
my $hex = 0x20;

only in Perl 5.22
my $hex_float = 0x1.0p-3;

The numeric prefixes 0b, 0, and 0x specify binary, octal, and hex notation,
respectively. Be aware that a leading zero on an integer always indicates octal
mode.

When 1.99 + 1.99 is 4

Even though you can write floating-point values explicitly with
perfect accuracy, Perl—like most programming languages—repre-
sents them internally in a binary format. This representation is
sometimes imprecise in specific ways; consult perldoc perlnumber for
more details. Perl 5.22 allows you to use a hexadecimal represen-
tation of floating-point values, so as to keep maximum precision.
See “Scalar value constructors” in perldoc perldata for more informa-
tion.

You may not use commas to separate thousands in numeric literals, because
the parser will interpret them as the comma operator. Instead, use under-
scores. These three examples are equivalent, though the second might be the
most readable:

my $billion = 1000000000;
my $billion = 1_000_000_000;
my $billion = 10_0_00_00_0_0_0;

Because of coercion (Coercion on page 66), Perl programmers rarely have to
worry about converting incoming data to numbers. Perl will treat anything

Chapter 3. The Perl Language • 32

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

that looks like a number as a number when evaluated in a numeric context.
In the rare circumstances where you need to know if something looks like a
number without evaluating it in a numeric context, use the looks_like_number
function from the core module Scalar::Util. This function returns a true value
if Perl considers the given argument numeric.

The Regexp::Common module from the CPAN provides several well-tested regular
expressions to identify more specific types of numeric values such as whole
numbers, integers, and floating-point values.

Numeric Size Limits

What’s the maximum size of a value you can represent in Perl? It
depends; you’re probably using a 64-bit build, so the largest
integer is (2**31) - 1 and the smallest is -(2**31)—but see perldoc perl-
number for more thorough details. Use Math::BigInt and Math::BigFloat
to handle larger or smaller or more precise numbers.

Undef
Perl’s undef value represents an unassigned, undefined, and unknown value.
Declared but undefined scalar variables contain undef:

my $name = undef; # unnecessary assignment
my $rank; # also contains undef

undef evaluates to false in a boolean context. Evaluating undef in a string con-
text—such as interpolating it into a string—

my $undefined;
my $defined = $undefined . '... and so forth';

produces an uninitialized value warning:

Use of uninitialized value $undefined in
concatenation (.) or string...

The defined built-in returns a true value if its operand evaluates to a defined
value (anything other than undef):

my $status = 'suffering from a cold';

say defined $status; # 1, which is a true value
say defined undef; # empty string; a false value

The Empty List
When used on the right-hand side of an assignment, the () construct represents
an empty list. In scalar context, this evaluates to undef. In list context, it’s an

report erratum • discuss

Values • 33

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

empty list. When used on the left-hand side of an assignment, the () construct
imposes list context, hence this idiom (Idioms on page 213) to count the
number of elements returned from an expression in list context without using
a temporary variable:

my $count = () = get_clown_hats();

Because of the right associativity (Associativity on page 86) of the assignment
operator, Perl first evaluates the second assignment by calling get_clown_hats()
in list context. This produces a list.

Assignment to the empty list throws away all of the values of the list, but that
assignment takes place in scalar context, which evaluates to the number of
items on the right-hand side of the assignment. As a result, $count contains
the number of elements in the list returned from get_clown_hats().

This idiom often confuses new programmers, but with practice, you’ll under-
stand how Perl’s fundamental design features fit together.

Lists
A list is a comma-separated group of one or more expressions. Lists may
occur verbatim in source code as values

my @first_fibs = (1, 1, 2, 3, 5, 8, 13, 21);

as targets of assignments

my ($package, $filename, $line) = caller();

or as lists of expressions

say name(), ' => ', age();

Parentheses do not create lists. The comma operator creates lists. The
parentheses in these examples merely group expressions to change their
precedence (Precedence on page 85).

As an example of lists without parens, use the range operator to create lists
of literals in a compact form:

my @chars = 'a' .. 'z';
my @count = 13 .. 27;

Use the qw() operator to split a literal string on whitespace to produce a list
of strings. Since this is a quoting operator, you may choose any delimiters
you like:

my @stooges = qw! Larry Curly Moe Shemp Joey Kenny !;

Chapter 3. The Perl Language • 34

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

No Comment Please

Perl will emit a warning if a qw() contains a comma or the comment
character (#), because not only are such characters rare in a qw(),
but their presence is often a mistake.

Lists can (and often do) occur as the results of expressions, but these lists
don’t appear literally in source code.

Lists and arrays aren’t interchangeable in Perl. Lists are values. Arrays are
containers. You may store a list in an array and you may coerce an array to
a list, but they are separate entities. For example, indexing into a list always
occurs in list context. Indexing into an array can occur in scalar context (for
a single element) or list context (for a slice):

don't worry about the details right now
sub context
{

my $context = wantarray();

say defined $context
? $context

? 'list'
: 'scalar'

: 'void';
return 0;

}

my @list_slice = (1, 2, 3)[context()];
my @array_slice = @list_slice[context()];
my $array_index = $array_slice[context()];

say context(); # list context
context(); # void context

Control Flow
Perl’s basic control flow is straightforward. Program execution starts at the
beginning (the first line of the file executed) and continues to the end:

say 'At start';
say 'In middle';
say 'At end';

Perl’s control flow directives change the order of what happens next in the
program.

report erratum • discuss

Control Flow • 35

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Branching Directives
The if directive performs the associated action only when its conditional
expression evaluates to a true value:

say 'Hello, Bob!' if $name eq 'Bob';

This postfix form is useful for simple expressions. Its block form groups
multiple expressions into a unit that evaluates to a single boolean value:

if ($name eq 'Bob') {
say 'Hello, Bob!';
found_bob();

}

The conditional expression may consist of multiple subexpressions that will
be coerced to a boolean value:

if ($name eq 'Bob' && not greeted_bob()) {
say 'Hello, Bob!';
found_bob();

}

The block form requires parentheses around its condition, but the postfix
form does not. In the postfix form, adding parentheses can clarify the intent
of the code at the expense of visual cleanliness:

greet_bob() if ($name eq 'Bob' && not greeted_bob());

The unless directive is the negated form of if. Perl will perform the action when
the conditional expression evaluates to a false value:

say "You're not Bob!" unless $name eq 'Bob';

Like if, unless also has a block form, though many programmers avoid it because
of its potential for confusion:

unless (is_leap_year() and is_full_moon()) {
frolic();
gambol();

}

unless works very well for postfix conditionals, especially parameter validation
in functions (Postfix Parameter Validation on page 218):

sub frolic {
do nothing without parameters
return unless @_;

for my $chant (@_) { ... }
}

Chapter 3. The Perl Language • 36

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The block forms of if and unless both support the else directive, which provides
a block to execute when the conditional expression does not evaluate to the
appropriate value:

if ($name eq 'Bob') {
say 'Hi, Bob!';
greet_user();

}
else {

say "I don't know you.";
shun_user();

}

else blocks allow you to rewrite if and unless conditionals in terms of each other:

unless ($name eq 'Bob') {
say "I don't know you.";
shun_user();

}
else {

say 'Hi, Bob!';
greet_user();

}

However, the implied double negative of using unless with an else block can be
confusing. This example may be the only place you ever see it.

Just as Perl provides both if and unless to allow you to phrase your conditionals
in the most readable way, Perl has both positive and negative conditional
operators:

if ($name ne 'Bob') {
say "I don't know you.";
shun_user();

}
else {

say 'Hi, Bob!';
greet_user();

}

But the double negative implied by the presence of the else block may be dif-
ficult to read.

Use one or more elsif directives to check multiple and mutually exclusive
conditions:

if ($name eq 'Robert') {
say 'Hi, Bob!';
greet_user();

}
elsif ($name eq 'James') {

report erratum • discuss

Control Flow • 37

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

say 'Hi, Jim!';
greet_user();

}
elsif ($name eq 'Armando') {

say 'Hi, Mando!';
greet_user();

}
else {

say "You're not my uncle.";
shun_user();

}

An unless chain may also use an elsif block, but good luck deciphering that.

Perl supports neither elseunless nor else if. Larry prefers elsif for aesthetic reasons,
as well the prior art of the Ada programming language:

if ($name eq 'Rick') {
say 'Hi, cousin!';

}

warning; syntax error
else if ($name eq 'Kristen') {

say 'Hi, cousin-in-law!';
}

The Ternary Conditional Operator
The ternary conditional operator evaluates a conditional expression and
evaluates to one of two alternatives:

my $time_suffix = after_noon($time)
? 'afternoon'
: 'morning';

equivalent to
my $time_suffix;

if (after_noon(time)) {
$time_suffix = 'afternoon';

}
else {

$time_suffix = 'morning';
}

The conditional expression precedes the question mark character (?). The
colon character (:) separates the alternatives. The alternatives are expressions
of arbitrary complexity—including other ternary conditional expressions, but
consider clarity over concision.

Chapter 3. The Perl Language • 38

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Lvalues and the Ternary Conditional

An interesting, though obscure, idiom uses the ternary conditional
to select between alternative variables, not just values:

push @{ rand() > 0.5 ? \@red_team : \@blue_team },
Player->new;

Short Circuiting

Perl exhibits short-circuiting behavior when it encounters complex conditional
expressions. When Perl can determine that a complex expression would suc-
ceed or fail as a whole without evaluating every subexpression, it won’t eval-
uate subsequent subexpressions. This is most obvious with an example:

say 'Both true!' if ok 1, 'subexpression one'
&& ok 1, 'subexpression two';

done_testing();

The return value of ok() (Testing on page 175) is the boolean value produced
by the first argument, so the example prints this:

ok 1 - subexpression one
ok 2 - subexpression two
Both true!

When the first subexpression—the first call to ok—evaluates to a true value,
Perl must evaluate the second subexpression. If the first subexpression had
evaluated to a false value, there would be no need to check subsequent
subexpressions, because the entire expression could not succeed:

say 'Both true!' if ok 0, 'subexpression one'
&& ok 1, 'subexpression two';

This example prints the following:

not ok 1 - subexpression one

Even though the second subexpression would obviously succeed, Perl never
evaluates it. The same short-circuiting behavior is evident for logical-or
operations:

say 'Either true!' if ok 1, 'subexpression one'
|| ok 1, 'subexpression two';

This example prints the following:

ok 1 - subexpression one
Either true!

report erratum • discuss

Control Flow • 39

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Given the success of the first subexpression, Perl can avoid evaluating the
second subexpression. If the first subexpression were false, the result of
evaluating the second subexpression would dictate the result of evaluating
the entire expression.

Besides allowing you to avoid potentially expensive computations, short cir-
cuiting can help you to avoid errors and warnings, as in the case where using
an undefined value might raise a warning:

my $bbq;
if (defined $bbq and $bbq eq 'brisket') { ... }

Context for Conditional Directives
The conditional directives—if, unless, and the ternary conditional operator—all
evaluate an expression in boolean context (Context on page 5). Since com-
parison operators such as eq, ==, ne, and != all produce boolean results when
evaluated, Perl coerces the results of other expressions—including variables
and values—into boolean forms.

Perl has neither a single true value nor a single false value. Any number that
evaluates to 0 is false. This includes 0, 0.0, 0e0, 0x0, and so on. The empty
string ('') and '0' evaluate to a false value, but the strings '0.0', '0e0', and so on
do not. The idiom '0 but true' evaluates to 0 in numeric context—but true in
boolean context due to its string contents.

Both the empty list and undef evaluate to a false value. Empty arrays and
hashes return the number 0 in scalar context, so they evaluate to a false
value in boolean context. An array that contains a single element—even
undef—evaluates to true in boolean context. A hash that contains any ele-
ments—even a key and a value of undef—evaluates to a true value in boolean
context.

Greater Control over Context

The Want module from the CPAN allows you to detect boolean
context within your own functions. The core overloading pragma (
Overloading on page 207) allows you to specify what your own data
types produce when evaluated in various contexts.

Looping Directives
Perl provides several directives for looping and iteration. The foreach-style
loop evaluates an expression that produces a list and executes a statement
or block until it has exhausted that list:

Chapter 3. The Perl Language • 40

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

square the first ten positive integers
foreach (1 .. 10) {

say "$_ * $_ = ", $_ * $_;
}

This example uses the range operator to produce a list of integers from 1 to
10 inclusive. The foreach directive loops over them, setting the topic variable
$_ (The Default Scalar Variable on page 8) to each in turn. Perl executes the
block for each integer and, as a result, prints the squares of the integers.

foreach versus for

Many Perl programmers refer to iteration as foreach loops, but Perl
treats the names foreach and for interchangeably. The parenthesized
expression determines the type and behavior of the loop; the key-
word does not.

Like if and unless, this loop has a postfix form:

say "$_ * $_ = ", $_ * $_ for 1 .. 10;

A for loop may use a named variable instead of the topic:

for my $i (1 .. 10) {
say "$i * $i = ", $i * $i;

}

When a for loop uses an iterator variable, the variable is scoped to the block
within the loop. Perl will set this lexical to the value of each item in the itera-
tion. Perl will not modify the topic variable ($_). If you have declared a lexical
$i in an outer scope, its value will persist outside the loop:

my $i = 'cow';

for my $i (1 .. 10) {
say "$i * $i = ", $i * $i;

}

is $i, 'cow', 'Value preserved in outer scope';

This localization occurs even if you don’t redeclare the iteration variable as
a lexical, but keep the habit of declaring iteration values as lexicals:

my $i = 'horse';

for $i (1 .. 10) {
say "$i * $i = ", $i * $i;

}

is $i, 'horse', 'Value preserved in outer scope';

report erratum • discuss

Control Flow • 41

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Iteration and Aliasing
The for loop aliases the iterator variable to the values in the iteration such
that any modifications to the value of the iterator modify the value in place:

my @nums = 1 .. 10;

$_ **= 2 for @nums;

is $nums[0], 1, '1 * 1 is 1';
is $nums[1], 4, '2 * 2 is 4';

...

is $nums[9], 100, '10 * 10 is 100';

This aliasing also works with the block-style for loop

for my $num (@nums) {
$num **= 2;

}

as well as iteration with the topic variable:

for (@nums) {
$_ **= 2;

}

You cannot use aliasing to modify constant values, however. Perl will produce
an exception about modification of read-only values:

$_++ and say for qw(Huex Dewex Louid);

You may occasionally see the use of for with a single scalar variable:

for ($user_input) {
s/\A\s+//; # trim leading whitespace
s/\s+\z//; # trim trailing whitespace

$_ = quotemeta; # escape non-word characters
}

This idiom (Idioms on page 213) uses the iteration operator for its side effect
of aliasing $_, though it’s clearer to operate on the named variable itself.

Iteration and Scoping
The topic variable’s iterator scoping has a subtle gotcha. Consider a function
topic_mangler() that modifies $_ on purpose. If code iterating over a list called
topic_mangler() without protecting $_, you’d have to spend some time debugging
the effects:

Chapter 3. The Perl Language • 42

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

for (@values) {
topic_mangler();

}

sub topic_mangler {
s/foo/bar/;

}

The s/foo/bar/ in topic_mangler() modifies elements of @values in place. If you must
use $_ rather than a named variable, use the topic aliasing behavior of for:

sub topic_mangler {
was $_ = shift;
for (shift)
{

s/foo/bar/;
s/baz/quux/;
return $_;

}
}

Alternately, use a named iteration variable in the for loop. That’s almost always
the right advice.

The C-Style For Loop
The C-style for loop requires you to manage the conditions of iteration:

for (my $i = 0; $i <= 10; $i += 2) {
say "$i * $i = ", $i * $i;

}

You must explicitly assign to an iteration variable in the looping construct,
since this loop performs neither aliasing nor assignment to the topic variable.
While any variable declared in the loop construct is scoped to the lexical block
of the loop, Perl won’t limit the lexical scope of a variable declared outside
the loop construct:

my $i = 'pig';

for ($i = 0; $i <= 10; $i += 2) {
say "$i * $i = ", $i * $i;

}

isnt $i, 'pig', '$i overwritten with a number';

The looping construct may have three subexpressions. The first subexpres-
sion—the initialization section—executes only once, before the loop body
executes. Perl evaluates the second subexpression—the conditional compari-
son—before each iteration of the loop body. When this evaluates to a true

report erratum • discuss

Control Flow • 43

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

value, iteration proceeds. When it evaluates to a false value, iteration stops.
The final subexpression executes after each iteration of the loop body.

for (
loop initialization subexpression
say 'Initializing', my $i = 0;

conditional comparison subexpression
say "Iteration: $i" and $i < 10;

iteration ending subexpression
say 'Incrementing ' . $i++

) {
say "$i * $i = ", $i * $i;

}

Note the lack of a semicolon after the final subexpression as well as the use
of the comma operator and low-precedence and; this syntax is surprisingly
finicky. When possible, prefer the foreach-style loop to the for loop.

All three subexpressions are optional. One infinite for loop is shown here:

for (;;) { ... }

While and Until
A while loop continues until the loop conditional expression evaluates to a
false value. Here’s an idiomatic infinite loop:

while (1) { ... }

Unlike the iteration foreach-style loop, the while loop’s condition has no side
effects. If @values has one or more elements, this code is also an infinite loop,
because every iteration will evaluate @values in scalar context to a non-zero
value and iteration will continue:

while (@values) {
say $values[0];

}

To prevent such an infinite while loop, use a destructive update of the @values
array by modifying the array within each iteration:

while (@values) {
my $value = shift @values;
say $value;

}

Modifying @values inside the while condition check also works, but it has some
subtleties related to the truthiness of each value:

Chapter 3. The Perl Language • 44

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

while (my $value = shift @values) {
say $value;

}

This loop will exit as soon as the assignment expression used as the conditional
expression evaluates to a false value. If that’s what you intend, add a comment
to the code.

The until loop reverses the sense of the test of the while loop. Iteration continues
while the loop conditional expression evaluates to a false value:

until ($finished_running) {
...

}

The canonical use of the while loop is to iterate over input from a filehandle:

while (<$fh>) {
remove newlines
chomp;
...

}

Perl interprets this while loop as if you had written the following:

while (defined($_ = <$fh>)) {
remove newlines
chomp;
...

}

Without the implicit defined, any line read from the filehandle that evaluated
to a false value in a scalar context—a blank line or a line that contained only
the character 0—would end the loop. The readline (<>) operator returns an
undefined value only when it has reached the end of the file.

Both while and until have postfix forms, such as the infinite loop 1 while 1;. Any
single expression is suitable for a postfix while or until, including the classic
“Hello, world!” example from 8-bit computers of the early 1980s:

print "Hello, world! " while 1;

Infinite loops are more useful than they seem, especially for event loops in
GUI programs, program interpreters, or network servers:

$server->dispatch_results until $should_shutdown;

Use a do block to group several expressions into a single unit:

report erratum • discuss

Control Flow • 45

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

do {
say 'What is your name?';
my $name = <>;
chomp $name;
say "Hello, $name!" if $name;

} until (eof);

A do block parses as a single expression that may contain several expressions.
Unlike the while loop’s block form, the do block with a postfix while or until will
execute its body at least once. This construct is less common than the other
loop forms but very powerful.

Loops Within Loops
You may nest loops within other loops:

for my $suit (@suits) {
for my $values (@card_values) { ... }

}

Note the value of declaring iteration variables! The potential for confusion
with the topic variable and its scope is too great otherwise.

Novices commonly exhaust filehandles accidentally while nesting foreach and
while loops:

use autodie 'open';
open my $fh, '<', $some_file;

for my $prefix (@prefixes) {

while (<$fh>) { # DO NOT USE; buggy code
say $prefix, $_;

}
}

Opening the filehandle outside the for loop leaves the file position unchanged
between each iteration of the for loop. On its second iteration, the while loop
will have nothing to read (the readline will return a false value). You can solve
this problem in many ways: reopen the file inside the for loop (wasteful but
simple), slurp the entire file into memory (works best with small files), or seek
the filehandle back to the beginning of the file for each iteration:

for my $prefix (@prefixes) {
while (<$fh>) {

say $prefix, $_;
}

seek $fh, 0, 0;
}

Chapter 3. The Perl Language • 46

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Loop Control
Sometimes you must break out of a loop before you’ve exhausted the iteration
conditions. Perl’s standard control mechanisms—exceptions and return—work,
but you may also use loop control statements.

The next statement restarts the loop at its next iteration. Use it when you’ve
done everything you need to do in the current iteration. To loop over lines in
a file, skipping those that start with the comment character #, write this:

while (<$fh>) {
next if /\A#/;
...

}

Multiple Exits versus Nested Ifs

Compare the use of next with the alternative: wrapping the rest of
the body of the block in an if. Now consider what happens if you
have multiple conditions that could cause you to skip a line. Loop
control modifiers with postfix conditionals can make your code
much more readable.

The last statement ends the loop immediately. To finish processing a file once
you’ve seen the ending token, write the following:

while (<$fh>) {
next if /\A#/;
last if /\A__END__/
...

}

The redo statement restarts the current iteration without evaluating the
conditional again. This can be useful in those few cases where you want to
modify the line you’ve read in place and then start processing over from the
beginning without clobbering it with another line. To implement a silly file
parser that joins lines that end with a backslash, try this:

while (my $line = <$fh>) {
chomp $line;

match backslash at the end of a line
if ($line =~ s{\\$}{})
{

$line .= <$fh>;
redo;

}
...

}

report erratum • discuss

Control Flow • 47

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Nested loops can be confusing, especially with loop control statements. If you
cannot extract inner loops into named functions, use loop labels to clarify
your intent:

LINE:
while (<$fh>) {

chomp;

PREFIX:
for my $prefix (@prefixes) {

next LINE unless $prefix;
say "$prefix: $_";
next PREFIX is implicit here

}
}

Continue
The continue construct behaves like the third subexpression of a for loop; Perl
executes any continue block before subsequent iterations of a loop, whether
due to normal loop repetition or premature reiteration from next. You may use
it with a while, until, when, or for loop. Examples of continue are rare, but it’s useful
anytime you want to guarantee that something occurs with every iteration of
the loop, regardless of how that iteration ends:

while ($i < 10) {
next unless $i % 2;
say $i;

}
continue {

say 'Continuing...';
$i++;

}

Be aware that a continue block does not execute when control flow leaves a loop
due to last or redo.

Switch Statements
Perl 5.10 introduced a new construct named given as a Perlish switch statement.
It didn’t quite work out; given is still experimental, if less buggy in newer
releases. Avoid it unless you know exactly what you’re doing.

If you need a switch statement, use for to alias the topic variable ($_) and use
when to match it against simple expressions with smart match (Smart
Matching on page 139) semantics. Here’s how to write the Rock, Paper, Scissors
game:

my @options = (\&rock, \&paper, \&scissors);

Chapter 3. The Perl Language • 48

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

my $confused = "I don't understand your move.";

do {
say "Rock, Paper, Scissors! Pick one: ";
chomp(my $user = <STDIN>);
my $computer_match = $options[rand @options];
$computer_match->(lc($user));

} until (eof);

sub rock {
print "I chose rock. ";

for (shift) {
when (/paper/) { say 'You win!' };
when (/rock/) { say 'We tie!' };
when (/scissors/) { say 'I win!' };
default { say $confused };

}
}

sub paper {
print "I chose paper. ";

for (shift) {
when (/paper/) { say 'We tie!' };
when (/rock/) { say 'I win!' };
when (/scissors/) { say 'You win!' };
default { say $confused };

}
}

sub scissors {
print "I chose scissors. ";

for (shift) {
when (/paper/) { say 'I win!' };
when (/rock/) { say 'You win!' };
when (/scissors/) { say 'We tie!' };
default { say $confused };

}
}

Perl executes the default rule when none of the other conditions match. Adding
Spock and Lizard is left as an exercise for the reader.

Tailcalls
A tailcall occurs when the last expression within a function is a call to
another function. The outer function’s return value becomes the inner func-
tion’s return value:

report erratum • discuss

Control Flow • 49

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

sub log_and_greet_person {
my $name = shift;
log("Greeting $name");

return greet_person($name);
}

Returning from greet_person() directly to the caller of log_and_greet_person() is more
efficient than returning to log_and_greet_person() and then from log_and_greet_person().
Returning directly from greet_person() to the caller of log_and_greet_person() is a
tailcall optimization.

Heavily recursive code (Recursion on page 100)—especially mutually recursive
code—can consume a lot of memory. Tailcalls reduce the memory needed for
internal bookkeeping of control flow and can make expensive algorithms
cheaper. Unfortunately, Perl does not automatically perform this optimization,
so you have to do it yourself when it’s necessary.

The built-in goto operator has a form that calls a function as if the current
function were never called, essentially erasing the bookkeeping for the new
function call. The ugly syntax confuses people who’ve heard “Never use goto,”
but it works:

sub log_and_greet_person {
my ($name) = @_;
log("Greeting $name");

goto &greet_person;
}

This example has two important characteristics. First, goto &function_name or
goto &$function_reference requires the use of the function sigil (&) so that the
parser knows to perform a tailcall instead of jumping to a label. Second, this
form of function call passes the contents of @_ implicitly to the called function.
You may modify @_ to change the passed arguments if you desire.

This technique is most useful when you want to hijack control flow to get out
of the way of other functions inspecting caller (such as when you’re implement-
ing special logging or some sort of debugging feature) or when using an algo-
rithm that requires a lot of recursion. Remember it if you need it, but feel free
not to use it.

Scalars
Perl’s fundamental data type is the scalar: a single, discrete value. That value
may be a string, an integer, a floating-point value, a filehandle, or a refer-

Chapter 3. The Perl Language • 50

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

ence—but it’s always a single value. Scalars may be lexical, package, or
global (Global Variables on page 220) variables. You may declare only lexical
or package variables. The names of scalar variables must conform to standard
variable-naming guidelines (Names on page 19). Scalar variables always use
the leading dollar-sign ($) sigil (Variable Sigils on page 23).

Variant Sigils and Context

Scalar values and scalar context have a deep connection; assigning
to a scalar imposes scalar context. Using the scalar sigil with an
aggregate variable accesses a single element of the hash or array
in scalar context.

Scalars and Types
A scalar variable can contain any type of scalar value without special conver-
sions, coercions, or casts. The type of value stored in a scalar variable, once
assigned, can change arbitrarily:

my $value;
$value = 123.456;
$value = 77;
$value = "I am Chuck's big toe.";
$value = Store::IceCream->new;

Even though this code is legal, changing the type of data stored in a scalar
is confusing.

This flexibility of type often leads to value coercion (Coercion on page 66). For
example, you may treat the contents of a scalar as a string, even if you didn’t
explicitly assign it a string:

my $zip_code = 97123;
my $city_state_zip = 'Hillsboro, Oregon' . ' ' . $zip_code;

You may also use mathematical operations on strings:

my $call_sign = 'KBMIU';

update sign in place and return new value
my $next_sign = ++$call_sign;

return old value, *then* update sign
my $curr_sign = $call_sign++;

but *does not work* as:
my $new_sign = $call_sign + 1;

report erratum • discuss

Scalars • 51

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

One-Way Increment Magic

This magical string increment behavior has no corresponding
magical decrement behavior. You can’t restore the previous string
value by writing $call_sign--.

This string increment operation turns a into b and z into aa, respecting char-
acter set and case. Whereas ZZ9 becomes AAA0, ZZ09 becomes ZZ10—numbers
wrap around when there are more significant places to increment, as on a
vehicle odometer.

Evaluating a reference (References on page 71) in string context produces a
string. Evaluating a reference in numeric context produces a number. Neither
operation modifies the reference in place, but you cannot re-create the refer-
ence from either result:

my $authors = [qw(Pratchett Vinge Conway)];
my $stringy_ref = '' . $authors;
my $numeric_ref = 0 + $authors;

$authors is still useful as a reference, but $stringy_ref is a string with no connec-
tion to the reference and $numeric_ref is a number with no connection to the
reference.

To allow coercion without data loss, Perl scalars can contain both numeric
and string components. The internal data structure that represents a scalar
in Perl has a numeric slot and a string slot. Accessing a string in a numeric
context produces a scalar with both string and numeric values.

Scalars don’t contain a separate slot for boolean values. In boolean context,
the empty strings ('') and '0' evaluate to false values. All other strings evaluate
to true values. In boolean context, numbers that evaluate to zero (0, 0.0, and
0e0) evaluate to false values. All other numbers evaluate to true values. undef
is always a false value.

What Is Truth?

Be careful that the strings '0.0' and '0e0' evaluate to true values.
This is one place where Perl makes a distinction between what
looks like a number and what really is a number.

Arrays
Perl’s array data type is a language-supported aggregate that can store zero
or more scalars. You can access individual members of the array by integer

Chapter 3. The Perl Language • 52

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

indexes, and you can add or remove elements at will. Arrays grow or shrink
as you manipulate them.

The @ sigil denotes an array. To declare an array, write this:

my @items;

Array Elements
Use the scalar sigil to access an individual element of an array. $cats[0] refers
unambiguously to the @cats array, because postfix (Fixity on page 87) square
brackets ([]) always mean indexed access to an array.

The first element of an array is at the zeroth index:

@cats contains a list of Cat objects
my $first_cat = $cats[0];

The last index of an array depends on the number of elements in the array.
An array in scalar context (due to scalar assignment, string concatenation,
addition, or boolean context) evaluates to the number of elements in the array:

scalar assignment
my $num_cats = @cats;

string concatenation
say 'I have ' . @cats . ' cats!';

addition
my $num_animals = @cats + @dogs + @fish;

boolean context
say 'Yep, a cat owner!' if @cats;

To get the index of the final element of an array, subtract one from the number
of elements of the array (because array indexes start at 0) or use the unwieldy
$#cats syntax:

my $first_index = 0;
my $last_index = @cats - 1;
or
my $last_index = $#cats;

say "My first cat has an index of $first_index, "
. "and my last cat has an index of $last_index."

Most of the time you care more about the relative position of an array element.
Use a negative array index to refer to elements from the end. The last element
of an array is available at the index -1. The second-to-last element of the array
is available at index -2, and so on:

report erratum • discuss

Arrays • 53

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

my $last_cat = $cats[-1];
my $second_to_last_cat = $cats[-2];

$# has another use: resize an array in place by assigning to $#array. Remember
that Perl arrays are mutable. They expand or contract as necessary. When
you shrink an array, Perl will discard values that don’t fit in the resized array.
When you expand an array, Perl will fill the expanded positions with undef.

Array Assignment
Assign to individual positions in an array directly by index:

my @cats;
$cats[3] = 'Jack';
$cats[2] = 'Tuxedo';
$cats[0] = 'Daisy';
$cats[1] = 'Petunia';
$cats[4] = 'Brad';
$cats[5] = 'Choco';

If you assign to an index beyond the array’s current bounds, Perl will extend
the array for you. As you might expect, all intermediary positions will then
contain undef. After the first assignment, the array will contain undef at positions
0, 1, and 2 and Jack at position 3.

As an assignment shortcut, initialize an array from a list:

my @cats = ('Daisy', 'Petunia', 'Tuxedo', ...);

But remember that these parentheses do not create a list. Without parenthe-
ses, this would assign Daisy as the first and only element of the array, due to
operator precedence (Precedence on page 85). Petunia, Tuxedo, and all of the
other cats would be evaluated in void context and Perl would complain. (So
would all the other cats, especially Petunia.)

You may assign any expression that produces a list to an array:

my @cats = get_cat_list();
my @timeinfo = localtime();
my @nums = 1 .. 10;

Assigning to a scalar element of an array imposes scalar context, while
assigning to the array as a whole imposes list context.

To clear an array, assign an empty list:

my @dates = (1969, 2001, 2010, 2051, 1787);
...
@dates = ();

Chapter 3. The Perl Language • 54

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

This is one of the only cases where parentheses do indicate a list; without
something to mark a list, Perl and readers of the code would get confused.

Arrays Start Empty

my @items = (); is a longer and noisier version of my @items. Freshly
declared arrays start out empty. Not “full of undef” empty. Really
empty.

Array Operations
Sometimes an array is more convenient as an ordered, mutable collection of
items than as a mapping of indices to values. Perl provides several operations
to manipulate array elements.

The push and pop operators add and remove elements from the tail of an array,
respectively:

my @meals;

what is there to eat?
push @meals, qw(hamburgers pizza lasagna turnip);

... but your nephew hates vegetables
pop @meals;

You may push a list of values onto an array, but you may only pop one at a
time. push returns the new number of elements in the array. pop returns the
removed element.

Because push operates on a list, you can easily append the elements of multiple
arrays with this:

push @meals, @breakfast, @lunch, @dinner;

Similarly, unshift and shift add elements to and remove an element from the
start of an array, respectively:

expand our culinary horizons
unshift @meals, qw(tofu spanakopita taquitos);

rethink that whole soy idea
shift @meals;

unshift prepends a list of elements to the start of the array and returns the new
number of elements in the array. shift removes and returns the first element
of the array. Almost no one uses these return values.

report erratum • discuss

Arrays • 55

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The splice operator removes and replaces elements from an array given an
offset, a length of a list slice, and replacement elements. Both replacing and
removing are optional; you may omit either. The perlfunc description of splice
demonstrates its equivalences with push, pop, shift, and unshift. One effective use
is removal of two elements from an array:

my ($winner, $runnerup) = splice @finalists, 0, 2;

or
my $winner = shift @finalists;
my $runnerup = shift @finalists;

The each operator allows you to iterate over an array by index and value:

while (my ($position, $title) = each @bookshelf) {
say "#$position: $title";

}

Array Slices
An array slice allows you to access elements of an array in list context. Unlike
scalar access of an array element, this indexing operation takes a list of zero
or more indices and uses the array sigil (@):

my @youngest_cats = @cats[-1, -2];
my @oldest_cats = @cats[0 .. 2];
my @selected_cats = @cats[@indexes];

Array slices are useful for assignment:

@users[@replace_indices] = @replace_users;

The only syntactic difference between an array slice of one element and the
scalar access of an array element is the leading sigil. The semantic difference
is greater: an array slice always imposes list context. An array slice evaluated
in scalar context will produce a warning:

Scalar value @cats[1] better written as $cats[1]...

An array slice imposes list context on the expression used as its index:

function called in list context
my @hungry_cats = @cats[get_cat_indices()];

A slice can contain zero or more elements—including one:

single-element array slice; *list* context
@cats[-1] = get_more_cats();

single-element array access; *scalar* context
$cats[-1] = get_more_cats();

Chapter 3. The Perl Language • 56

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Arrays and Context
In list context, arrays flatten into lists. If you pass multiple arrays to a normal
function, they will flatten into a single list:

my @cats = qw(Daisy Petunia Tuxedo Brad Jack Choco);
my @dogs = qw(Rodney Lucky Rosie);

take_pets_to_vet(@cats, @dogs);

sub take_pets_to_vet {
BUGGY: do not use!
my (@cats, @dogs) = @_;
...

}

Within the function, @_ will contain nine elements, not two, because list
assignment to arrays is greedy. An array will consume as many elements
from the list as possible. After the assignment, @cats will contain every argu-
ment passed to the function. @dogs will be empty, and woe to anyone who
treats Rodney as a cat.

This flattening behavior sometimes confuses people who attempt to create
nested arrays:

creates a single array, not an array of arrays
my @numbers = (1 .. 10, (11 .. 20, (21 .. 30)));

But this code is effectively the same as either of the following:

parentheses do not create lists
my @numbers = (1 .. 10, 11 .. 20, 21 .. 30);

creates a single array, not an array of arrays
my @numbers = 1 .. 30;

This is because, again, parentheses merely group expressions. They do not
create lists. To avoid this flattening behavior, use array references (Array
References on page 73).

Array Interpolation
Arrays interpolate in strings as lists of the stringification of each item sepa-
rated by the current value of the magic global $". The default value of this
variable is a single space. Its English.pm mnemonic is $LIST_SEPARATOR; thus:

my @alphabet = 'a' .. 'z';
say "[@alphabet]";
[a b c d e f g h i j k l m
n o p q r s t u v w x y z]

report erratum • discuss

Arrays • 57

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Per Mark Jason Dominus, you can localize $" with a delimiter to improve your
debugging:

what's in this array again?
local $" = ')(';
say "(@sweet_treats)";
(pie)(cake)(doughnuts)(cookies)(cinnamon roll)

Hashes
A hash is an aggregate data structure that associates string keys with scalar
values. Just as the name of a variable corresponds to something that holds
a value, so a hash key refers to something that contains a value. Think of a
hash like a contact list: use the names of your friends to look up their birth-
days. Other languages call hashes tables, associative arrays, dictionaries,
and maps.

Hashes have two important properties: they store one scalar per unique key
and they provide no specific ordering of keys. Keep that latter property in
mind. Though it has always been true in Perl, it’s very, very true in Modern
Perl.

Declaring Hashes
Hashes use the % sigil. Declare a lexical hash with this:

my %favorite_flavors;

A hash starts out empty. You could write my %favorite_flavors = ();, but that’s
redundant.

Hashes use the scalar sigil $ when accessing individual elements and curly
braces { } for keyed access:

my %favorite_flavors;
$favorite_flavors{Gabi} = 'Dark chocolate raspberry';
$favorite_flavors{Annette} = 'French vanilla';

You can assign a list of keys and values to a hash in a single expression:

my %favorite_flavors = (
'Gabi', 'Dark chocolate raspberry',
'Annette', 'French vanilla',

);

Hashes store pairs of keys and values. Perl will warn you if you assign an
odd number of elements to a hash. Idiomatic Perl often uses the fat comma
operator (=>) to associate values with keys, because it makes the pairing more
visible:

Chapter 3. The Perl Language • 58

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

my %favorite_flavors = (
Gabi => 'Dark chocolate raspberry',
Annette => 'French vanilla',

);

The fat comma operator acts like the regular comma and also automatically
quotes the previous bareword (Barewords on page 225). The strict pragma won’t
warn about such a bareword—and if you have a function with the same name
as a hash key, the fat comma will not call the function:

sub name { 'Leonardo' }

my %address = (
name => '1123 Fib Place'

);

The key of this hash will be name and not Leonardo. To call the function, make
the function call explicit:

my %address = (
name() => '1123 Fib Place'

);

You may occasionally see undef %hash, but that’s a little ugly. Assign an empty
list to empty a hash:

%favorite_flavors = ();

Hash Indexing
To access an individual hash value, use the keyed access syntax:

my $address = $addresses{$name};

In this example, $name contains a string that’s also a key of the hash. As with
accessing an individual element of an array, the hash’s sigil has changed
from % to $ to indicate keyed access to a scalar value.

You may also use string literals as hash keys. Perl quotes barewords automat-
ically according to the same rules as fat commas:

auto-quoted
my $address = $addresses{Victor};

needs quoting; not a valid bareword
my $address = $addresses{'Sue-Linn'};

function call needs disambiguation
my $address = $addresses{get_name()};

report erratum • discuss

Hashes • 59

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Don’t Quote Me

Novices often always quote string literal hash keys, but experienced
developers elide the quotes whenever possible. If you code this
way, you can use the rare presence of quotes to indicate that you’re
doing something special on purpose.

Even Perl built-ins get the autoquoting treatment:

my %addresses = (
Leonardo => '1123 Fib Place',
Utako => 'Cantor Hotel, Room 1',

);

sub get_address_from_name {
return $addresses{+shift};

}

The unary plus (Unary Coercions on page 219) turns what would be a bareword
(shift) subject to autoquoting rules into an expression. As this implies, you
can use an arbitrary expression—not only a function call—as the key of a
hash:

don't actually do this though
my $address = $addresses{reverse 'odranoeL'};

interpolation is fine
my $address = $addresses{"$first_name $last_name"};

so are method calls
my $address = $addresses{ $user->name };

Hash keys can only be strings. Anything that evaluates to a string is an
acceptable hash key. Perl will go so far as to coerce (Coercion on page 66) an
expression into a string. For example, if you use an object as a hash key,
you’ll get the stringified version of that object instead of the object itself:

for my $isbn (@isbns) {
my $book = Book->fetch_by_isbn($isbn);

unlikely to do what you want
$books{$book} = $book->price;

}

That stringified hash will look something like Book=HASH(0x222d148). Book refers
to the class name. HASH identifies the object as a blessed reference. 0x22d148
is a number used to identify the object (more precisely, it’s the location of the
data structure representing the hash in memory, so it’s neither quite random
nor unique).

Chapter 3. The Perl Language • 60

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Hash Key Existence
The exists operator returns a boolean value to indicate whether a hash contains
the given key:

my %addresses = (
Leonardo => '1123 Fib Place',
Utako => 'Cantor Hotel, Room 1',

);

say "Have Leonardo's address" if exists $addresses{Leonardo};
say "Have Warnie's address" if exists $addresses{Warnie};

Using exists instead of accessing the hash directly avoids two problems. First,
it doesn’t check the boolean nature of the hash value; a hash key may exist
with a value even if that value evaluates to a boolean false (including undef):

my %false_key_value = (0 => '');
ok %false_key_value,

'hash containing false key & value should evaluate to a true value';

Second, exists avoids autovivification (Autovivification on page 80) within
nested data structures (Nested Data Structures on page 78).

If a hash key exists, its value may be undef. Check that with defined:

$addresses{Leibniz} = undef;

say "Gottfried lives at $addresses{Leibniz}"
if exists $addresses{Leibniz} && defined $addresses{Leibniz};

Accessing Hash Keys and Values
Hashes are aggregate variables, but their pairwise nature is unique. Perl
allows you to iterate over a hash’s keys, its values, or pairs of its keys and
values. The keys operator produces a list of hash keys:

for my $addressee (keys %addresses) {
say "Found an address for $addressee!";

}

The values operator produces a list of hash values:

for my $address (values %addresses) {
say "Someone lives at $address";

}

The each operator produces a list of two-element key/value lists:

while (my ($addressee, $address) = each %addresses) {
say "$addressee lives at $address";

}

report erratum • discuss

Hashes • 61

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Unlike arrays, hash elements have no obvious ordering. The ordering depends
on the internal implementation of the hash, the particular version of Perl
you’re using, the size of the hash, and a random factor. Even so, the order of
hash items is consistent among keys, values, and each. Modifying the hash may
change the order, but you can rely on that order if the hash remains the
same. However, even if two hashes have the same keys and values, you cannot
rely on the iteration order between those hashes being the same. They may
have been constructed differently or have had elements removed. Since Perl
5.18, even if you build two hashes in the same way, you cannot depend on
the same iteration order between them.

Read the previous paragraph again. You’ll be glad you did.

Each hash has only a single iterator for the each operator. You cannot reliably
iterate over a hash with each more than once; if you begin a new iteration
while another is in progress, the former will end prematurely and the latter
will begin partway through the iteration. Beware not to call any function that
may itself try to iterate over the hash with each.

This is rarely a problem, but it’s not fun to debug. Reset a hash’s iterator with
keys or values in void context:

reset hash iterator
keys %addresses;

while (my ($addressee, $address) = each %addresses) {
...

}

Hash Slices
A hash slice is a list of keys or values of a hash indexed in a single operation.
Here’s how to initialize multiple elements of a hash at once:

my %cats;
@cats{qw(Jack Brad Mars Grumpy)} = (1) x 4;

This is equivalent to the following initialization:

my %cats = map { $_ => 1 } qw(Jack Brad Mars Grumpy);

Note, however, that the hash slice assignment can also add to the existing
contents of the hash.

Hash slices also allow you to retrieve multiple values from a hash in a single
operation. As with array slices, the sigil of the hash changes to @ to indicate
list context. The use of the curly braces indicates keyed access and makes
the fact that you’re working with a hash unambiguous:

Chapter 3. The Perl Language • 62

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

my @buyer_addresses = @addresses{ @buyers };

Hash slices make it easy to merge two hashes:

my %addresses = (...);
my %canada_addresses = (...);

@addresses{ keys %canada_addresses } = values %canada_addresses;

This is equivalent to looping over the contents of %canada_addresses manually
but is much shorter. Note that this relies on the iteration order of the hash
remaining consistent between keys and values. Perl guarantees this, but only
because these operations occur on the same hash with no modifications to
that hash between the keys and values operations.

What if the same key occurs in both hashes? The hash slice approach always
overwrites existing key/value pairs in %addresses. If you want other behavior,
looping is more appropriate.

The Empty Hash
An empty hash contains no keys or values. It evaluates to a false value in a
boolean context. A hash that contains at least one key/value pair evaluates
to a true value in boolean context even if all of the keys or all of the values
or both would themselves evaluate to boolean false values.

use Test::More;

my %empty;
ok ! %empty, 'empty hash should evaluate false';

my %false_key = (0 => 'true value');
ok %false_key, 'hash containing false key should evaluate to true';

my %false_value = ('true key' => 0);
ok %false_value, 'hash containing false value should evaluate to true';

done_testing();

In scalar context, a hash evaluates to a string that represents the ratio of full
buckets in the hash—internal details about the hash implementation that
you can safely ignore. In a boolean scalar context, this ratio evaluates to a
false value, so remember that instead of the ratio details.

In list context, a hash evaluates to a list of key/value pairs similar to the list
produced by the each operator. However, you cannot iterate over this list the
same way you can iterate over the list produced by each. This loop will never
terminate:

report erratum • discuss

Hashes • 63

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

while (my ($key, $value) = %hash) { # infinite loop for non-empty hashes
...

}

You can loop over the list of keys and values with a for loop, but the iterator
variable will get a key on one iteration and its value on the next, because Perl
will flatten the hash into a single list of interleaved keys and values.

Hash Idioms
Each key exists only once in a hash, so assigning multiple values with the
same key to a hash stores only the most recent value. This behavior has
advantages! For example, you can find unique elements of a list:

my %uniq;
undef @uniq{ @items };
my @uniques = keys %uniq;

Using undef with a hash slice sets the values of the hash to undef. This idiom
is the cheapest way to perform set operations with a hash.

Hashes are useful for counting elements, such as IP addresses in a log file:

my %ip_addresses;

while (my $line = <$logfile>) {
chomp $line;
my ($ip, $resource) = analyze_line($line);
$ip_addresses{$ip}++;
...

}

The initial value of a hash value is undef. The postincrement operator (++)
treats that as zero. This in-place modification of the value increments an
existing value for that key. If no value exists for that key, Perl creates a value
(undef) and immediately increments it to 1, since the numification of undef
produces the value 0.

This strategy provides a useful caching mechanism to store the result of an
expensive operation with little overhead:

{
my %user_cache;

sub fetch_user {
my $id = shift;
$user_cache{$id} //= create_user($id);
return $user_cache{$id};

}
}

Chapter 3. The Perl Language • 64

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

This orcish maneuver (or-cache) returns the value from the hash, if it exists.
Otherwise, it calculates, caches, and returns the value. The defined-or
assignment operator (//=) evaluates its left operand. If that operand isn’t
defined, the operator assigns to the lvalue the value of its right operand. In
other words, if there’s no value in the hash for the given key, this function
will call create_user() with the key and update the hash.

You may see older code that uses the boolean-or assignment operator (||=) for
this purpose. Remember, though, that some valid values evaluate as false in
a boolean context. The defined-or operator usually makes more sense, because
it tests for definedness instead of truthiness.

If your function takes several arguments, use a slurpy hash (Slurping on page
96) to gather key/value pairs into a single hash as named function arguments:

sub make_sundae {
my %parameters = @_;
...

}

make_sundae(flavor => 'Lemon Burst',
topping => 'cookie bits');

This approach allows you to set default values

sub make_sundae {
my %parameters = @_;
$parameters{flavor} //= 'Vanilla';
$parameters{topping} //= 'fudge';
$parameters{sprinkles} //= 100;
...

}

or include them in the hash initialization, because later assignments take
precedence over earlier assignments:

sub make_sundae {
my %parameters = (

flavor => 'Vanilla',
topping => 'fudge',
sprinkles => 100,
@_,

);
...

}

report erratum • discuss

Hashes • 65

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Locking Hashes
Because hash keys are barewords, they offer little typo protection compared
to the function and variable name protection offered by the strict pragma. The
little-used core module Hash::Util can make hashes safer.

To prevent someone from accidentally adding a hash key you didn’t intend
(whether as a typo or from untrusted user input), use the lock_keys() function
to restrict the hash to its current set of keys. Any attempt to add a new key
to the hash will raise an exception. Similarly, you can lock or unlock the
existing value for a given key in the hash (lock_value() and unlock_value()) and
make or unmake the entire hash read-only with lock_hash() and unlock_hash().

This is lax security; anyone can use the appropriate unlocking functions to
work around the locking. Yet it does protect against typos and other unintend-
ed events.

Coercion
Throughout the lifetime of a Perl variable, it may contain values of different
types—strings, integers, rational numbers, and more. Instead of attaching
type information to variables, Perl relies on the context provided by operators
(Numeric, String, and Boolean Context on page 7) to determine how to
handle values. By design, Perl attempts to do what you mean—you may hear
this referred to as DWIM for do what I mean or dwimmery—though you must
be specific about your intentions. If you treat a value as a string, Perl will do
its best to coerce that value into a string.

Boolean Coercion
Boolean coercion occurs when you test the truthiness of a value, such as in
an if or while condition. Numeric 0, undef, the empty string, and the string '0'
all evaluate as false values. All other values—including strings that may be
numerically equal to zero (such as '0.0', '0e', and '0 but true')—evaluate as true
values.

When a scalar has both string and numeric components (Dualvars on page
68), Perl prefers to check the string component for boolean truth. '0 but true'
evaluates to zero numerically, but it’s not an empty string, so it evaluates to
a true value in boolean context.

String Coercion
String coercion occurs when using string operators such as comparisons (eq
and cmp), concatenation, split, substr, and regular expressions, as well as when

Chapter 3. The Perl Language • 66

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

using a value or an expression as a hash key. The undefined value stringifies
to an empty string but produces a “use of uninitialized value” warning.
Numbers stringify to strings containing their values; the value 10 stringifies
to the string 10. You can split a number into individual digits with the following:

my @digits = split '', 1234567890;

Numeric Coercion
Numeric coercion occurs when using numeric comparison operators (such
as == and <=>), when performing mathematic operations, and when using a
value or expression as an array or list index. The undefined value numifies
to zero and produces a “use of uninitialized value” warning. Strings that don’t
begin with numeric portions numify to zero and produce an “argument isn’t
numeric” warning. Strings that begin with characters allowed in numeric lit-
erals numify to those values and produce no warnings, such that 10 leptons
leaping numifies to 10 and 6.022e23 moles marauding numifies to 6.022e23.

The core module Scalar::Util contains a looks_like_number() function, which uses
the same rules as the Perl parser to extract a number from a string.

Mathematicians Rejoice

The strings Inf and Infinity represent the infinite value and behave
as numbers. The string NaN represents the concept “not a number.”
Numifying them produces no “argument isn’t numeric” warning.
Beware that Perl’s ideas of infinity and not a number may not
match your platform’s ideas; these notions aren’t always portable
across operating systems. Perl is consistent even if the rest of the
universe isn’t.

Reference Coercion
Using a dereferencing operation on a nonreference turns that value into a
reference. This process of autovivification (Autovivification on page 80) is
handy when manipulating nested data structures (Nested Data Structures
on page 78):

my %users;

$users{Brad}{id} = 228;
$users{Jack}{id} = 229;

Although the hash never contained values for Brad and Jack, Perl helpfully
created hash references for them and then assigned each a key/value pair
keyed on id.

report erratum • discuss

Coercion • 67

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Cached Coercions
Perl’s internal representation of values stores both string and numeric values.
Stringifying a numeric value does not replace the numeric value. Instead, it
adds a stringified value to the internal representation, which then contains
both components. Similarly, numifying a string value populates the numeric
component while leaving the string component untouched.

Certain Perl operations prefer to use one component of a value over anoth-
er—boolean checks prefer strings, for example. If a value has a cached repre-
sentation in a form you don’t expect, relying on an implicit conversion may
produce surprising results. You almost never need to be explicit about what
you expect—I can recall doing so twice in two decades. Even so, knowing that
this caching occurs may someday help you diagnose an odd situation.

Dualvars
The multi-component nature of Perl values is available to users in the form
of dualvars. The core module Scalar::Util provides a function dualvar(), which
allows you to bypass Perl coercion and manipulate the string and numeric
components of a value separately:

use Scalar::Util 'dualvar';
my $false_name = dualvar 0, 'Sparkles & Blue';

say 'Boolean true!' if !! $false_name;
say 'Numeric false!' unless 0 + $false_name;
say 'String true!' if '' . $false_name;

Packages
A Perl namespace associates and encapsulates various named entities. It’s
like your family name or a brand name. Unlike a real-world name, a names-
pace implies no direct relationship between entities. Such relationships may
exist, but they’re not required to.

A package in Perl is a collection of code in a single namespace. The distinction
is subtle: the package represents the source code and the namespace repre-
sents the internal data structure Perl uses to collect and group that code.

The package built-in declares a package and a namespace:

package MyCode;

our @boxes;

sub add_box { ... }

Chapter 3. The Perl Language • 68

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

All global variables and functions declared or referred to after the package
declaration refer to symbols within the MyCode namespace. You can refer to
the @boxes variable from the main namespace only by its fully qualified name
of @MyCode::boxes. A fully qualified name includes a complete package name,
so that you can call the add_box() function by MyCode::add_box().

The scope of a package continues until the next package declaration or the end
of the file, whichever comes first. You may also provide a block with package
to delineate the scope of the declaration:

package Pinball::Wizard
{

our $VERSION = 1969;
}

The default package is the main package. Without a package declaration, the
current package is main. This rule applies to one-liners, stand-alone programs,
and even .pm files.

Besides a name, a package has a version and three implicit methods: import()
(Importing on page 97), unimport(), and VERSION(). VERSION() returns the package’s
version. This is a series of numbers contained in a package global named
$VERSION. By rough convention, versions are a series of dot-separated integers
such as 1.23 or 1.1.10.

Perl includes a stricter syntax for version numbers, as documented in perldoc
version::Internals. These version numbers must have a leading v character and
at least three integer components separated by periods:

package MyCode v1.2.1;

Combined with the block form of a package declaration, you can write the fol-
lowing:

package Pinball::Wizard v1969.3.7 { ... }

You’re more likely to see the older version of this code, written like this:

package MyCode;

our $VERSION = 1.21;

Every package inherits a VERSION() method from the UNIVERSAL base class. This
method returns the value of $VERSION:

my $version = Some::Plugin->VERSION;

report erratum • discuss

Packages • 69

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

If you provide a version number as an argument, this method will throw an
exception unless the version of the module is equal to or greater than the
argument:

require at least 2.1
Some::Plugin->VERSION(2.1);

die "Your plugin $version is too old" unless $version > 2;

You may override VERSION(), though there are few reasons to do so.

Packages and Namespaces
Every package declaration creates a new namespace, if necessary. After Perl
parses that declaration, it will store all subsequent package global symbols
(global variables and functions) in that namespace.

Perl has open namespaces. You can add functions or variables to a namespace
at any point, either with a new package declaration

package Pack
{

sub first_sub { ... }
}

Pack::first_sub();

package Pack
{

sub second_sub { ... }
}

Pack::second_sub();

or by declaring functions with fully qualified names:

implicit
package main;

sub Pack::third_sub { ... }

You can add to a package at any point during compilation or runtime,
regardless of the current file, but building up a package from multiple decla-
rations in multiple files can make code difficult to spelunk.

Namespaces can have as many levels as your organizational scheme requires,
though namespaces are not hierarchical. The only relationship between sep-
arate packages is semantic, not technical. Many projects and businesses

Chapter 3. The Perl Language • 70

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

create their own top-level namespaces. This reduces the possibility of global
conflicts and helps to organize code on disk, for example:

• StrangeMonkey is the project name.

• StrangeMonkey::UI organizes user interface code.

• StrangeMonkey::Persistence organizes data management code.

• StrangeMonkey::Test organizes testing code for the project.

And so on. This is a convention, but it’s a useful one.

References
Perl usually does what you expect, even if what you expect is subtle. Consider
what happens when you pass values to functions:

sub reverse_greeting {
my $name = reverse shift;
return "Hello, $name!";

}

my $name = 'Chuck';
say reverse_greeting($name);
say $name;

Outside the function, $name contains Chuck, even though the value passed into
the function gets reversed into kcuhC. You probably expected that. The value
of $name outside the function is separate from the $name inside the function.
Modifying one has no effect on the other.

Consider the alternative. If you had to make copies of every value before
anything could possibly change them out from under you, you’d have to write
lots of extra defensive code.

Sometimes it’s useful to modify values in place. If you want to pass a hash
full of data to a function to modify it, creating and returning a new hash for
each change could be tedious and inefficient, at least without some amazing
compiler magic.

Perl provides a mechanism by which to refer to a value without making a
copy. Any changes made to that reference will update the value in place, such
that all references to that value will refer to the modified value. A reference
is a first-class scalar data type that refers to another first-class data type.

report erratum • discuss

References • 71

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Scalar References
The reference operator is the backslash (\). In scalar context, it creates a single
reference that refers to another value. In list context, it creates a list of refer-
ences. To take a reference to $name, do this:

my $name = 'Larry';
my $name_ref = \$name;

You must dereference a reference to evaluate the value to which it refers.
Dereferencing requires you to add an extra sigil for each level of dereferencing:

sub reverse_in_place {
my $name_ref = shift;
$$name_ref = reverse $$name_ref;

}

my $name = 'Blabby';
reverse_in_place(\$name);
say $name;

The double scalar sigil ($$) dereferences a scalar reference.

Parameters in @_ behave as aliases to caller variables (Iteration and Aliasing
on page 42), so you can modify them in place:

sub reverse_value_in_place {
$_[0] = reverse $_[0];

}

my $name = 'allizocohC';
reverse_value_in_place($name);
say $name;

You usually don’t want to modify values this way—callers rarely expect it, for
example. Assigning parameters to lexicals within your functions makes copies
of the values in @_ and avoids this aliasing behavior.

Saving Memory with References

Modifying a value in place or returning a reference to a scalar can
save memory. Because Perl copies values on assignment, you
could end up with multiple copies of a large string. Passing around
references means that Perl will copy only the references—a far
cheaper operation. Before you modify your code to pass only refer-
ences, however, measure to see if this will make a difference.

Chapter 3. The Perl Language • 72

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Complex references may require a curly-brace block to disambiguate portions
of the expression. You may always use this syntax, though sometimes it
clarifies and other times it obscures:

sub reverse_in_place {
my $name_ref = shift;
${ $name_ref } = reverse ${ $name_ref };

}

If you forget to dereference a scalar reference, Perl will likely coerce the refer-
ence into a string value of the form SCALAR(0x93339e8) or a numeric value such
as 0x93339e8. This value indicates the type of reference (in this case, SCALAR)
and the location in memory of the reference (because that’s an unambiguous
design choice, not because you can do anything with the memory location
itself).

References Aren’t Pointers

Perl doesn’t offer native access to memory locations. The address
of the reference is a value used as an identifier. Unlike pointers
in a language such as C, you cannot modify the address of a ref-
erence or treat it as an address into memory. These addresses are
mostly unique because Perl may reuse storage locations as it
reclaims unused memory.

Array References
Array references are useful in several circumstances:

• To pass and return arrays from functions without list flattening

• To create multidimensional data structures

• To avoid unnecessary array copying

• To hold anonymous data structures

Use the reference operator to create a reference to a declared array:

my @cards = qw(K Q J 10 9 8 7 6 5 4 3 2 A);
my $cards_ref = \@cards;

Any modifications made through $cards_ref will modify @cards and vice versa.
You may access the entire array as a whole with the @ sigil, whether to flatten
the array into a list (list context) or count its elements (scalar context):

my $card_count = @$cards_ref;
my @card_copy = @$cards_ref;

report erratum • discuss

References • 73

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Access individual elements with the dereferencing arrow (->):

my $first_card = $cards_ref->[0];
my $last_card = $cards_ref->[-1];

The arrow is necessary to distinguish between a scalar named $cards_ref and
an array named @cards_ref. Note the use of the scalar sigil (Variable Sigils on
page 23) to access a single element.

Doubling Sigils

An alternate syntax prepends another scalar sigil to the array
reference. It’s shorter but uglier to write my $first_card = $$cards_ref[0];.

Use the curly-brace dereferencing syntax to slice (Array Slices on page 56) an
array reference:

my @high_cards = @{ $cards_ref }[0 .. 2, -1];

You may omit the curly braces, but their grouping often improves readability.

To create an anonymous array, surround a list-producing expression with
square brackets:

my $suits_ref = [qw(Monkeys Robots Dinos Cheese)];

This array reference behaves the same as named array references, except
that the anonymous array brackets always create a new reference. Taking a
reference to a named array in its scope always refers to the same array, for
example:

my @meals = qw(soup sandwiches pizza);
my $sunday_ref = \@meals;
my $monday_ref = \@meals;

push @meals, 'ice cream sundae';

Both $sunday_ref and $monday_ref now contain a dessert, whereas

my @meals = qw(soup sandwiches pizza);
my $sunday_ref = [@meals];
my $monday_ref = [@meals];

push @meals, 'berry pie';

neither $sunday_ref nor $monday_ref contains a dessert. Within the square braces
used to create the anonymous array, list context flattens the @meals array into
a list unconnected to @meals.

Chapter 3. The Perl Language • 74

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Hash References
Use the reference operator on a named hash to create a hash reference:

my %colors = (
blue => 'azul',
gold => 'dorado',
red => 'rojo',
yellow => 'amarillo',
purple => 'morado',

);

my $colors_ref = \%colors;

Access the keys or values of the hash by prepending the reference with the
hash sigil %:

my @english_colors = keys %$colors_ref;
my @spanish_colors = values %$colors_ref;

Access individual values of the hash (to store, delete, check the existence of,
or retrieve) by using the dereferencing arrow or double scalar sigils:

sub translate_to_spanish {
my $color = shift;
return $colors_ref->{$color};
or return $$colors_ref{$color};

}

Use the array sigil (@) and disambiguation braces to slice a hash reference:

my @colors = qw(red blue green);
my @colores = @{ $colors_ref }{@colors};

Create anonymous hashes in place with curly braces:

my $food_ref = {
'birthday cake' => 'la torta de cumpleantildeos',
candy => 'dulces',
cupcake => 'bizcochito',
'ice cream' => 'helado',

};

As with anonymous arrays, anonymous hashes create a new anonymous
hash on every execution.

The common novice error of assigning an anonymous hash to a standard
hash produces a warning about an odd number of elements in the hash. Use
parentheses for a named hash and curly brackets for an anonymous hash.

report erratum • discuss

References • 75

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Function References
Perl supports first-class functions; a function is a data type just as is an array
or hash. In other words, Perl supports function references. This enables many
advanced features (Closures on page 112). Create a function reference by using
the reference operator and the function sigil (&) on the name of a function:

sub bake_cake { say 'Baking a wonderful cake!' };

my $cake_ref = \&bake_cake;

Without the function sigil (&), you will take a reference to the function’s return
value or values.

Create anonymous functions with the bare sub keyword:

my $pie_ref = sub { say 'Making a delicious pie!' };

The use of the sub built-in without a name compiles the function but does not
register it with the current namespace. The only way to access this function
is via the reference returned from sub. Invoke the function reference with the
dereferencing arrow:

$cake_ref->();
$pie_ref->();

Perl 4 Function Calls

An alternate invocation syntax for function references uses the
function sigil (&) instead of the dereferencing arrow. Avoid this
&$cupcake_ref syntax; it has subtle implications for parsing and
argument passing.

Think of the empty parentheses as denoting an invocation dereferencing
operation in the same way that square brackets indicate an indexed (array)
lookup and curly brackets a keyed (hash) lookup. Pass arguments to the
function within the parentheses:

$bake_something_ref->('cupcakes');

You may also use function references as methods with objects (Moose on page
141). This is useful when you’ve already looked up the method (Reflection on
page 160):

my $clean = $robot_maid->can('cleanup');
$robot_maid->$clean($kitchen);

Chapter 3. The Perl Language • 76

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Filehandle References
The lexical filehandle form of open and opendir operates on filehandle references.
Internally, these filehandles are objects of the class IO::File. You can call
methods on them directly:

use autodie 'open';

open my $out_fh, '>', 'output_file.txt';
$out_fh->say('Have some text!');

Old code might use IO::Handle;. Older code may take references to typeglobs:

local *FH;
open FH, "> $file" or die "Can't write '$file': $!";
my $fh = *FH;

This idiom predates the lexical filehandles introduced by Perl 5.6 in March
2000. You may still use the reference operator on typeglobs to take references
to package-global filehandles such as STDIN, STDOUT, STDERR, or DATA—but these
are all global names anyhow.

Because lexical filehandles respect explicit scoping, they allow you to manage
the lifespan of filehandles as a feature of Perl’s memory management.

Reference Counts
Perl uses a memory management technique known as reference counting.
Every Perl value has a counter attached to it, internally. Perl increases this
counter every time something takes a reference to the value, whether implic-
itly or explicitly. Perl decreases that counter every time a reference goes away.
When the counter reaches zero, Perl can safely recycle that value. Consider
the filehandle opened in this inner scope:

say 'file not open';

{
open my $fh, '>', 'inner_scope.txt';
$fh->say('file open here');

}

say 'file closed here';

Within the inner block in the example, there’s one $fh. (Multiple lines in the
source code mention it, but there’s only one variable, the one named $fh.) $fh
is only in scope in the block. Its value never leaves the block. When execution
reaches the end of the block, Perl recycles the variable $fh and decreases the
reference count of the filehandle referred to by $fh. The filehandle’s reference

report erratum • discuss

References • 77

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

count reaches zero, so Perl destroys the filehandle to reclaim memory. As
part of the process, it calls close() on the filehandle implicitly.

You don’t have to understand the details of how this works. You only need
to understand that your actions in taking references and passing them around
affect how Perl manages memory (see Circular References on page 82).

References and Functions
When you use references as arguments to functions, document your intent
carefully. Modifying the values of a reference from within a function may
surprise the calling code, which never expected anything else to modify its
data. To modify the contents of a reference without affecting the reference
itself, copy its values to a new variable:

my @new_array = @{ $array_ref };
my %new_hash = %{ $hash_ref };

This is necessary in only a few cases, but explicit cloning helps avoid nasty
surprises for the calling code. If you use nested data structures or other
complex references, consider the use of the core module Storable and its dclone
(deep cloning) function.

Nested Data Structures
Perl’s aggregate data types—arrays and hashes—store scalars indexed by
integer or string keys. Note the word scalar. If you try to store an array in an
array, Perl’s automatic list flattening will make everything into a single array:

my @counts = qw(eenie miney moe);
my @ducks = qw(huey dewey louie);
my @game = qw(duck duck grayduck);

my @famous_triplets = (
@counts, @ducks, @game

);

Perl’s solution to this is references (References on page 71), which are special
scalars that can refer to other variables (scalars, arrays, and hashes). Nested
data structures in Perl, such as an array of arrays or a hash of hashes, are
possible through the use of references. Unfortunately, the reference syntax
can be a little bit ugly.

Use the reference operator, \, to produce a reference to a named variable:

my @famous_triplets = (
\@counts, \@ducks, \@game

);

Chapter 3. The Perl Language • 78

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Or use the anonymous reference declaration syntax to avoid the use of named
variables:

my @famous_triplets = (
[qw(eenie miney moe)],
[qw(huey dewey louie)],
[qw(duck duck goose)],

);

my %meals = (
breakfast => { entree => 'eggs',

side => 'hash browns' },
lunch => { entree => 'panini',

side => 'apple' },
dinner => { entree => 'steak',

side => 'avocado salad' },
);

Commas Are Free

Perl allows an optional trailing comma after the last element of a
list. This makes it easy to add more elements in the future.

Use Perl’s reference syntax to access elements in nested data structures. The
sigil denotes the amount of data to retrieve. The dereferencing arrow indicates
that the value of one portion of the data structure is a reference:

my $last_nephew = $famous_triplets[1]->[2];
my $meal_side = $meals{breakfast}->{side};

The only way to access elements in a nested data structure is through refer-
ences, so the arrow in the previous examples is superfluous. You may omit
it for clarity, except for invoking function references:

my $nephew = $famous_triplets[1][2];
my $meal = $meals{breakfast}{side};

$actions{generous}{buy_food}->($nephew, $meal);

Use disambiguation blocks to access components of nested data structures
as if they were first-class arrays or hashes:

my $nephew_count = @{ $famous_triplets[1] };
my $dinner_courses = keys %{ $meals{dinner} };

Or use them to slice a nested data structure:

my ($entree, $side) = @{ $meals{breakfast} }{ qw(entree side) };

report erratum • discuss

Nested Data Structures • 79

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Whitespace helps but does not entirely eliminate the noise of this construct.
Sometimes a temporary variable provides more clarity:

my $meal_ref = $meals{breakfast};
my ($entree, $side) = @$meal_ref{qw(entree side)};

You can also use for’s implicit aliasing to avoid the use of an intermediate
reference (though note the lack of my):

($entree, $side) = @{ $_ }{qw(entree side)} for $meals{breakfast};

perldoc perldsc, the data structures cookbook, gives copious examples of how to
use Perl’s various data structures.

Autovivification
When you attempt to write to a component of a nested data structure, Perl
will create the path through the data structure to the destination as necessary:

my @aoaoaoa;
$aoaoaoa[0][0][0][0] = 'nested deeply';

After the second line of code, this array of arrays of arrays of arrays contains
an array reference in an array reference in an array reference in an array
reference. Each array reference contains one element.

Similarly, when you ask Perl to treat an undefined value as if it were a hash
reference, Perl will turn that undefined value into a hash reference:

my %hohoh;
$hohoh{Robot}{Santa} = 'mostly harmful';

This behavior is autovivification. While it reduces the initialization code of
nested data structures, it cannot distinguish between the honest intent to
create missing elements in nested data structures and a typo.

You may wonder at the contradiction between taking advantage of autovivifi-
cation while enabling strictures. Is it more convenient to catch errors that
change the behavior of your program at the expense of disabling error checks
for a few well-encapsulated symbolic references? Is it more convenient to
allow data structures to grow or safer to require a fixed size and an allowed
set of keys?

The answers depend on your project. During early development, give yourself
the freedom to experiment. While testing and deploying, maybe increase
strictness to prevent unwanted side effects. The autovivification pragma (Pragmas
on page 171) from the CPAN lets you disable autovivification in a lexical scope

Chapter 3. The Perl Language • 80

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

for specific types of operations. Combined with the strict pragma, you can
enable these behaviors where and as necessary.

You can verify your expectations before dereferencing each level of a complex
data structure, but the resulting code is often lengthy and tedious. It’s better
to avoid deeply nested data structures by revising your data model to provide
better encapsulation.

Debugging Nested Data Structures
The complexity of Perl’s dereferencing syntax combined with the potential for
confusion with multiple levels of references can make debugging nested data
structures difficult. The core module Data::Dumper converts values of arbitrary
complexity into strings of Perl code, which helps visualize what you have:

use Data::Dumper;

my $complex_structure = {
numbers => [1 .. 3];
letters => ['a' .. 'c'],
objects => {

breakfast => $continental,
lunch => $late_tea,
dinner => $banquet,

},
};

print Dumper($my_complex_structure);

This might produce something like the following:

$VAR1 = {
'numbers' => [

1,
2,
3

],
'letters' => [

'a',
'b',
'c'

],
'meals' => {

'dinner' => bless({...}, 'Dinner'),
'lunch' => bless({...}, 'Lunch'),
'breakfast' => bless({...}, 'Breakfast'),

},
};

report erratum • discuss

Nested Data Structures • 81

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Use this when you need to figure out what a data structure contains, what
you should access, and what you accessed instead. As the elided example
alludes, Data::Dumper can dump objects as well as function references (if you
set $Data::Dumper::Deparse to a true value).

While Data::Dumper is a core module and prints Perl code, its output is verbose.
Some developers prefer the use of the YAML::XS or JSON modules for debugging.
They don’t produce Perl code, but their outputs can be much clearer to read
and to understand.

Circular References
Perl’s memory management system of reference counting (Reference Counts
on page 77) has one drawback. Two references that point to each other,
whether directly or indirectly, form a circular reference that Perl cannot destroy
on its own. Consider a biological model, where each entity has two parents
and zero or more children:

my $alice = { mother => '', father => '' };
my $robin = { mother => '', father => '' };
my $cianne = { mother => $alice, father => $robin };

push @{ $alice->{children} }, $cianne;
push @{ $robin->{children} }, $cianne;

Both $alice and $robin contain an array reference that contains $cianne. Because
$cianne is a hash reference that contains $alice and $robin, Perl will never decrease
the reference count of any of these three people to zero. It doesn’t recognize
that these circular references exist, and it can’t manage the lifespan of these
entities.

Either break the reference count manually yourself (by clearing the children
of $alice and $robin or the parents of $cianne), or use weak references. A weak
reference doesn’t increase the reference count of its referent. Use the core
module Scalar::Util’s weaken() function to weaken a reference:

use Scalar::Util 'weaken';

my $alice = { mother => '', father => '' };
my $robin = { mother => '', father => '' };
my $cianne = { mother => $alice, father => $robin };

push @{ $alice->{children} }, $cianne;
push @{ $robin->{children} }, $cianne;

weaken($cianne->{mother});
weaken($cianne->{father});

Chapter 3. The Perl Language • 82

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

$cianne will retain usable references to $alice and $robin, but those weak refer-
ences don’t count toward the number of remaining references to the parents.
If the reference count of $alice reaches zero, Perl’s garbage collector will reclaim
her record, even though $cianne has a weak reference to $alice. When $alice gets
reclaimed, $cianne’s reference to $alice will be set to undef.

Most data structures don’t need weak references, but when they’re necessary,
they’re invaluable.

Alternatives to Nested Data Structures
While Perl is content to process data structures nested as deeply as you can
imagine, the human cost of understanding these data structures and their
relationships—to say nothing of the complex syntax—is high. Beyond two or
three levels of nesting, consider whether modeling various components of
your system with classes and objects (Moose on page 141) will allow for clearer
code.

report erratum • discuss

Nested Data Structures • 83

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CHAPTER 4

Operators
Some people call Perl an operator-oriented language. A Perl operator is a series
of one or more symbols used as part of the syntax of a language. Each operator
operates on zero or more operands. Think of an operator as a special sort of
function the parser understands and its operands as arguments.

You’ve seen how Perl manages context through its operators. To understand
Perl fully, you must understand how operators interact with their operands.

Operator Characteristics
Every operator possesses several important characteristics that govern its
behavior: the number of operands on which it operates, its relationship to
other operators, the contexts it enforces, and the syntax it provides.

perldoc perlop and perldoc perlsyn provide voluminous information about Perl’s
operators, but the docs assume you’re already familiar with a few essential
computer science concepts. Fortunately, you’ll recognize these ideas from
written language and elementary mathematics, even if you’ve never heard
their complicated names before.

Precedence
The precedence of an operator governs when Perl should evaluate it in an
expression. Perl evaluates the operator with the highest precedence first, then
the next highest, all the way to the lowest precedence. Remember basic math?
Multiply and divide before you add and subtract. That’s precedence. Because
the precedence of multiplication is higher than the precedence of addition,
in Perl 7 + 7 * 10 evaluates to 77, not 140.

Use grouping parentheses to force the evaluation of some operators before
others. In (7 + 7) * 10, grouping the addition into a single unit forces its evalu-

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

ation before the multiplication—though Perl wants to perform the multiplica-
tion first, it has to evaluate the grouped subexpression into a single value as
the multiplication operator’s left operand. The result is 140.

perldoc perlop contains a table of precedence. Skim it a few times, but don’t
bother memorizing it (almost no one does). Spend your time simplifying your
code where you can. Then add parentheses where they clarify.

In cases where two operators have the same precedence, other factors such
as associativity (Associativity on page 86) and fixity (Fixity on page 87) break
the tie.

Associativity
The associativity of an operator governs whether it evaluates from left to right
or right to left. Addition is left associative, such that 2 + 3 + 4 evaluates 2 + 3
first and then adds 4 to the result, not that order of evaluation matters.
Exponentiation is right associative, such that 2 ** 3 ** 4 evaluates 3 ** 4 first
and then raises 2 to the 81st power. Use parentheses if you write code like
this.

If you memorize only the precedence and associativity of the common mathe-
matical operators, you’ll be fine. Simplify your code and you won’t have to
memorize other associativities. If you can’t simplify your code (or if you’re
maintaining code and trying to understand it), use the core B::Deparse module
to see exactly how Perl handles operator precedence and associativity.

Run perl -MO=Deparse,-p on a snippet of code. The -p flag adds extra grouping
parentheses, which often clarify evaluation order. Beware that Perl’s optimizer
will simplify mathematical operations using constant values. If you really
need to deparse a complex expression, use named variables instead of constant
values, as in $x ** $y ** $z.

Arity
The arity of an operator is the number of operands on which it operates. A
nullary operator operates on zero operands. A unary operator operates on one
operand. A binary operator operates on two operands. A trinary operator
operates on three operands. A listary operator operates on a list of zero or
more operands.

Arithmetic operators are binary operators and are usually left associative.
This has implications for tie-breaking evaluation order of operands with the
same precedence. For example, 2 + 3 - 4 evaluates 2 + 3 first. Addition and
subtraction have the same precedence, but they’re left associative and binary,

Chapter 4. Operators • 86

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

so the proper evaluation order applies the leftmost operator (+) to the leftmost
two operands (2 and 3) with the leftmost operator (+), and then it applies the
rightmost operator (-) to the result of the first operation and the rightmost
operand (4).

Fixity
Perl novices often find confusion between the interaction of listary opera-
tors—especially function calls—and nested expressions. Where parentheses
usually help, beware of the parsing complexity of

probably buggy code
say (1 + 2 + 3) * 4;

which prints the value 6 and (probably) evaluates as a whole to 4 (the return
value of say multiplied by 4). Perl’s parser happily interprets the parentheses
as postcircumfix operators denoting the arguments to say, not circumfix
parentheses grouping an expression to change precedence.

An operator’s fixity is its position relative to its operands:

• Infix operators appear between their operands. Most mathematical oper-
ators are infix operators, such as the multiplication operator in $length *
$width.

• Prefix operators precede their operands. Postfix operators follow their
operands. These operators tend to be unary, such as mathematic negation
(-$x), boolean negation (!$y), and postfix increment ($z++).

• Circumfix operators surround their operands, as with the anonymous
hash constructor ({ ... }) and quoting operators (qq[...]).

• Postcircumfix operators follow certain operands and surround others, as
seen in hash and array element access ($hash{$x} and $array[$y]).

Operator Types
Perl’s operators provide value contexts (Numeric, String, and Boolean Context
on page 7) to their operands. To choose the appropriate operator, you must
know the values of the operands you provide as well as the value you expect
to receive.

Numeric Operators
Numeric operators impose numeric contexts on their operands. These opera-
tors are the standard arithmetic operators of addition (+), subtraction (-),

report erratum • discuss

Operator Types • 87

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

multiplication (*), division (/), exponentiation (**), and modulo (%), their in-
place variants (+=, -=, *=, /=, **=, and %=), and both postfix and prefix auto-
decrement (--).

The auto-increment operator has special string behavior (Special Operators
on page 89).

Several comparison operators impose numeric contexts upon their operands.
These are numeric equality (==), numeric inequality (!=), greater than (gt), less
than (lt), greater than or equal to (gt=), less than or equal to (lt=), and the sort
comparison operator (lt=gt).

String Operators
String operators impose string contexts on their operands. These operators
are positive and negative regular expression binding (=~ and !~, respectively)
and concatenation (.).

Several comparison operators impose string contexts upon their operands.
These are string equality (eq), string inequality (ne), greater than (gt), less than
(lt), greater than or equal to (ge), less than or equal to (le), and the string sort
comparison operator (cmp).

Logical Operators
Logical operators impose a boolean context on their operands. These operators
are &&, and, ||, and or. These infix operators all exhibit short-circuiting behavior
(Short Circuiting on page 39). The word forms have lower precedence than
the punctuation forms.

The defined-or operator, //, tests the definedness of its operand. Unlike ||,
which tests the truth of its operand, // evaluates to a true value even if its
operand evaluates to a numeric zero or the empty string. This is especially
useful for setting default parameter values:

sub name_pet {
my $name = shift // 'Fluffy';
...

}

The ternary conditional operator (?:) takes three operands. It evaluates the
first in boolean context and evaluates to the second if the first is true and the
third otherwise:

my $truthiness = $value ? 'true' : 'false';

Chapter 4. Operators • 88

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The prefix ! and not operators return the logical opposites of the boolean values
of their operands. not is a lower-precedence version of !.

The xor operator is an infix operator that evaluates to the exclusive-or of its
operands.

Bitwise Operators
Bitwise operators treat their operands numerically at the bit level. These
uncommon operators are left shift (<<), right shift (>>), bitwise and (&), bitwise
or (|), and bitwise xor (^), as well as their in-place variants (<<=, >>=, &=, |=,
and ^=).

Special Operators
The auto-increment operator has special behavior. When used on a value
with a numeric component (Cached Coercions on page 68), the operator
increments that numeric component. If the value is obviously a string (if it
has no numeric component), the operator increments the value’s string
component such that a becomes b, zz becomes aaa, and a9 becomes b0.

my $num = 1;
my $str = 'a';

$num++;
$str++;
is $num, 2, 'numeric autoincrement';
is $str, 'b', 'string autoincrement';

no warnings 'numeric';
$num += $str;
$str++;

is $num, 2, 'numeric addition with $str';
is $str, 1, '... gives $str a numeric part';

The repetition operator (x) is an infix operator with complex behavior. When
evaluated in list context with a list as its first operand, it evaluates to that list
repeated the number of times specified by its second operand. When evaluated
in list context with a scalar as its first operand, it produces a string consisting
of the string value of its first operand concatenated to itself the number of
times specified by its second operand.

In scalar context, the operator repeats and concatenates a string:

my @scheherazade = ('nights') x 1001;
my $calendar = 'nights' x 1001;
my $cal_length = length $calendar;

report erratum • discuss

Operator Types • 89

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

is @scheherazade, 1001, 'list repeated';
is $cal_length, 1001 * length 'nights', 'word repeated';

my @schenolist = 'nights' x 1001;
my $calscalar = ('nights') x 1001;

is @schenolist, 1, 'no lvalue list';
is length $calscalar, 1001 * length 'nights', 'word still repeated';

The infix range operator (..) produces a list of items in list context:

my @cards = (2 .. 10, 'J', 'Q', 'K', 'A');

It can only produce simple, incrementing ranges of integers or strings.

In boolean context, the range operator performs a flip-flop operation. This
operator produces a false value until its left operand is true. That value stays
true until the right operand is true, after which the value is false again until
the left operand is true again. Imagine parsing the text of a formal letter with
this:

while (/Hello, $user/ .. /Sincerely,/) {
say "> $_";

}

The comma operator (,) is an infix operator. In scalar context it evaluates its
left operand then returns the value produced by evaluating its right operand.
In list context, it evaluates both operands in left-to-right order.

The fat comma operator (=>) also quotes any bareword used as its left operand
(Hashes on page 58).

The triple-dot or whatever operator stands in for a single statement. It is
nullary and has neither precedence nor associativity. It parses, but when
executed it throws an exception with the string Unimplemented. This makes a
great placeholder in example code you don’t expect anyone to execute:

sub some_example {
implement this yourself
...

}

Chapter 4. Operators • 90

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CHAPTER 5

Functions
A function (or subroutine) in Perl is a discrete, encapsulated unit of behavior.
A program is a collection of little black boxes where the interaction of these
functions governs the control flow of the program. A function may have a
name. It may consume incoming information. It may produce outgoing
information.

Functions are a prime mechanism for organizing code into similar groups,
identifying individual pieces by name, and providing reusable units of
behavior.

Declaring Functions
Use the sub built-in to declare a function:

sub greet_me { ... }

Now you can invoke greet_me() from anywhere within your program.

Just as you may declare a lexical variable but leave its value undefined, you
may declare a function without defining it. A forward declaration tells Perl to
record that a named function exists. You may define it later:

sub greet_sun;

Invoking Functions
Use postfix (Fixity on page 87) parentheses to invoke a named function. Any
arguments to the function may go within the parentheses:

greet_me('Jack', 'Tuxie', 'Brad');
greet_me('Snowy');
greet_me();

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

While these parentheses are not strictly necessary for these examples—even
with strict enabled—they provide clarity to human readers as well as Perl’s
parser. When in doubt, use them.

Function arguments can be arbitrary expressions—including variables and
function calls:

greet_me($name);
greet_me(@authors);
greet_me(%editors);
greet_me(get_readers());

But Perl’s default parameter handling sometimes surprises novices.

Function Parameters
A function receives its parameters in a single array, @_ (The Default Array
Variables on page 10). When you invoke a function, Perl flattens all provided
arguments into a single list. The function must either unpack its parameters
into variables or operate on @_ directly:

sub greet_one {
my ($name) = @_;
say "Hello, $name!";

}

sub greet_all {
say "Hello, $_!" for @_;

}

@_ behaves as a normal array. Most Perl functions shift off parameters or use
list assignment, but you may also access individual elements by index:

sub greet_one_shift {
my $name = shift;
say "Hello, $name!";

}

sub greet_two_list_assignment {
my ($hero, $sidekick) = @_;
say "Well if it isn't $hero and $sidekick. Welcome!";

}

sub greet_one_indexed {
my $name = $_[0];
say "Hello, $name!";

or, less clear
say "Hello, $_[0]!";

}

Chapter 5. Functions • 92

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

You may also unshift, push, pop, splice, and use slices of @_. Remember that the
array built-ins use @_ as the default operand within functions, so that my $name
= shift; works. Take advantage of this idiom.

To access a single scalar parameter from @_, use shift, an index of @_, or lvalue
list context parentheses. Otherwise, Perl will happily evaluate @_ in scalar
context for you and assign the number of parameters passed:

sub bad_greet_one {
my $name = @_; # buggy
say "Hello, $name; you look numeric today!"

}

List assignment of multiple parameters is often clearer than multiple lines of
shift. Compare the following:

my $left_value = shift;
my $operation = shift;
my $right_value = shift;

to this:

my ($left_value, $operation, $right_value) = @_;

The latter is simpler to read. As a side benefit, it has better runtime perfor-
mance, though you’re unlikely to notice.

Occasionally you may see code that extracts parameters from @_ and passes
the rest to another function:

sub delegated_method {
my $self = shift;
say 'Calling delegated_method()'

$self->delegate->delegated_method(@_);
}

Use shift when your function needs only a single parameter. Use list assignment
when accessing multiple parameters.

Real Function Signatures
Perl 5.20 added built-in function signatures as an experimental feature.
Experimental means that they may change or even go away in future releases
of Perl, so you need to enable them to signal that you accept the possibility
of rewriting code:

use experimental 'signatures';

With that disclaimer in place, you can now write:

report erratum • discuss

Function Parameters • 93

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

sub greet_one($name) {
say "Hello, $name!";

}

which is equivalent to writing the following:

sub greet_one {
die "Too many arguments for subroutine" if @_ < 1;
die "Too few arguments for subroutine" if @_ > 1;
my $name = shift;
say "Hello, $name!";

}

You can make $name an optional variable by assigning it a default value:

sub greet_one($name = 'Bruce') {
say "Hello, $name!";

}

In this case writing greet_one('Bruce') and greet_one() will both ignore Batman’s
crime-fighting identity.

You may use aggregate arguments at the end of a signature:

sub greet_all($leader, @everyone) {
say "Hello, $leader!";
say "Hi also, $_." for @everyone;

}

sub make_nested_hash($name, %pairs) {
return { $name => \%pairs };

}

Or you may indicate that a function expects no arguments

sub no_gifts_please() {
say 'I have too much stuff already.'

}

which means that you’ll get the Too many arguments for subroutine exception by
calling that function with arguments.

These experimental signatures have more features than discussed here. As
you get beyond basic positional parameters, the possibility of incompatible
changes in future versions of Perl increases, however. See perldoc perlsub’s
“Signatures” section for more details, especially in newer versions of Perl.

Signatures aren’t your only options. Several CPAN distributions extend Perl’s
parameter handling with additional syntax and options. Method::Signatures works
as far back as Perl 5.8. Kavorka works with Perl 5.14 and newer.

Chapter 5. Functions • 94

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Flattening
List flattening into @_ happens on the caller side of a function call. Passing
a hash as an argument produces a list of key/value pairs:

my %pet_names_and_types = (
Lucky => 'dog',
Rodney => 'dog',
Tuxedo => 'cat',
Petunia => 'cat',
Rosie => 'dog',

);

show_pets(%pet_names_and_types);

sub show_pets {
my %pets = @_;

while (my ($name, $type) = each %pets) {
say "$name is a $type";

}
}

When Perl flattens %pet_names_and_types into a list, the order of the key/value
pairs from the hash will vary, but the list will always contain a key immedi-
ately followed by its value. Hash assignment inside show_pets() works the same
way as the explicit assignment to %pet_names_and_types.

This flattening is often useful, but beware of mixing scalars with flattened
aggregates in parameter lists. To write a show_pets_of_type() function, where one
parameter is the type of pet to display, pass that type as the first parameter
(or use pop to remove it from the end of @_, if you like to confuse people):

sub show_pets_by_type {
my ($type, %pets) = @_;

while (my ($name, $species) = each %pets) {
next unless $species eq $type;
say "$name is a $species";

}
}

my %pet_names_and_types = (
Lucky => 'dog',
Rodney => 'dog',
Tuxedo => 'cat',
Petunia => 'cat',
Rosie => 'dog',

);

report erratum • discuss

Function Parameters • 95

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

show_pets_by_type('dog', %pet_names_and_types);
show_pets_by_type('cat', %pet_names_and_types);
show_pets_by_type('moose', %pet_names_and_types);

With experimental function signatures, you could write this:

sub show_pets_by_type($type, %pets) {
...

}

Should You Use Signatures?

Despite the experimental nature of function signatures—or the
additional dependencies of the CPAN modules—all of these options
can make your code a little shorter and a little clearer both to read
and to write. By all means experiment with these options to find
out what works best for you and your team. Even sticking with
simple positional parameters can improve your work.

Slurping
List assignment with an aggregate is always greedy, so assigning to %pets
slurps all of the remaining values from @_. If the $type parameter came at the
end of @_, Perl would warn about assigning an odd number of elements to
the hash. You could work around that but at the expense of clarity:

sub show_pets_by_type {
my $type = pop;
my %pets = @_;
...

}

The same principle applies when assigning to an array as a parameter. Use
references (References on page 71) to avoid unwanted aggregate flattening.

Aliasing
@_ contains a subtlety; it aliases function arguments. In other words, if you
access @_ directly, you can modify the arguments passed to the function:

sub modify_name {
$_[0] = reverse $_[0];

}

my $name = 'Orange';
modify_name($name);
say $name;

prints `egnarO`

Chapter 5. Functions • 96

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Modify an element of @_ directly and you’ll modify the original argument. Be
cautious and unpack @_ rigorously—or document the modification carefully.

Functions and Namespaces
Every function has a containing namespace (Packages on page 68). Functions
in an undeclared namespace—functions not declared within the scope of an
explicit package statement—exist in the main namespace. You may also declare
a function within another namespace by prefixing its name:

sub Extensions::Math::add { ... }

This will create the namespace as necessary and then declare the function
within it. Remember that Perl packages are open for modification at any
point—even while your program is running. Perl will issue a warning if you
declare multiple functions with the same name in a single namespace.

Refer to other functions within the same namespace with their short names.
Use a fully qualified name to invoke a function in another namespace:

package main;

Extensions::Math::add($scalar, $vector);

Remember, functions are visible outside their own namespaces through their
fully qualified names. Alternatively, you may import names from other
namespaces.

Lexical Functions

Perl 5.18 added an experimental feature to declare functions lexi-
cally. They’re visible only within lexical scopes after declaration.
See the “Lexical Subroutines” section of perldoc perlsub for details.

Importing
When loading a module with the use built-in (Modules on page 192), Perl
automatically calls a method named import(). Modules can provide their own
import() method, which makes some or all defined symbols available to the
calling package. Any arguments after the name of the module in the use
statement get passed to the module’s import() method. Thus,

use strict;

loads the strict.pm module and calls strict->import() with no arguments, while

use strict 'refs';
use strict qw(subs vars);

report erratum • discuss

Functions and Namespaces • 97

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

loads the strict.pm module, calls strict->import('refs'), and then calls strict->import(
'subs', vars').

use has special behavior with regard to import(), but you may call import()
directly. The use example is equivalent to the following:

BEGIN {
require strict;
strict->import('refs');
strict->import(qw(subs vars));

}

The use built-in adds an implicit BEGIN block around these statements so that
the import() call happens immediately after the parser has compiled the entire
use statement. This ensures that the parser knows about any symbols
imported by strict before it compiles the rest of the program. Otherwise, any
functions imported from other modules but not declared in the current file
would look like barewords and would violate strict, for example.

Of course, strict is a pragma (Pragmas on page 171), so it has other effects.

Reporting Errors
Use the caller built-in to inspect a function’s calling context. When passed no
arguments, caller returns a list containing the name of the calling package,
the name of the file containing the call, and the line number of the file on
which the call occurred:

package main;

main();

sub main {
show_call_information();

}

sub show_call_information {
my ($package, $file, $line) = caller();
say "Called from $package in $file:$line";

}

The full call chain is available for inspection. Pass a single-integer argument
n to caller() to inspect the caller of the caller of the caller n times back. Within
show_call_information(), caller(0) returns information about the call from main().
caller(1) returns information about the call from the start of the program.

This optional argument also tells caller to provide additional return values,
including the name of the function and the context of the call:

Chapter 5. Functions • 98

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

sub show_call_information {
my ($package, $file, $line, $func) = caller(0);
say "Called $func from $package in $file:$line";

}

The standard Carp module uses caller to enhance error and warning messages.
When used in place of die in library code, croak() throws an exception from the
point of view of its caller. carp() reports a warning from the file and the line
number of its caller (Producing Warnings on page 181).

Use caller (or Carp) when validating parameters or preconditions of a function
to indicate that whatever called the function did so erroneously.

Validating Arguments
While Perl does its best to do what you mean, it offers few native ways to test
the validity of arguments provided to a function. Evaluate @_ in scalar context
to check that the number of parameters passed to a function is correct:

sub add_numbers {
croak 'Expected two numbers, received: ' . @_

unless @_ == 2;
...

}

This validation reports any parameter count error from the point of view of
its caller, thanks to the use of croak.

Type checking is more difficult, because of Perl’s operator-oriented type con-
versions (Context on page 5). If you want additional safety of function
parameters, see CPAN modules such as Params::Validate.

Advanced Functions
Functions are the foundation of many advanced Perl features.

Context Awareness
Perl’s built-ins know whether you’ve invoked them in void, scalar, or list
context. So too can your functions. The wantarray built-in returns undef to sig-
nify void context, a false value to signify scalar context, and a true value to
signify list context. Yes, it’s misnamed; see perldoc -f wantarray for proof.

sub context_sensitive {
my $context = wantarray();
return qw(List context) if $context;
say 'Void context' unless defined $context;
return 'Scalar context' unless $context;

}

report erratum • discuss

Advanced Functions • 99

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

context_sensitive();
say my $scalar = context_sensitive();
say context_sensitive();

This can be useful for functions that might produce expensive return values
to avoid doing so in void context. Some idiomatic functions return a list in
list context and the first element of the list or an array reference in scalar
context. However, there exists no single best recommendation for the use of
wantarray. Sometimes it’s clearer to write separate and unambiguous functions,
such as get_all_toppings() and get_next_topping().

Robin Houston’s Want and Damian Conway’s Contextual::Return distributions
from the CPAN offer many possibilities for writing powerful context-aware
interfaces.

Recursion
Suppose you want to find an element in a sorted array. You could iterate
through every element of the array individually, looking for the target, but on
average you’ll have to examine half of the elements of the array. Another
approach is to halve the array, pick the element at the midpoint, compare,
and then repeat with either the lower or upper half. Divide and conquer. When
you run out of elements to inspect or find the element, stop.

An automated test for this technique could be what’s shown here:

use Test::More;

my @elements = (1, 5, 6, 19, 48, 77, 997, 1025, 7777, 8192, 9999);

ok elem_exists(1, @elements), 'found first element in array';
ok elem_exists(9999, @elements), 'found last element in array';
ok ! elem_exists(998, @elements), 'did not find element not in array';
ok ! elem_exists(-1, @elements), 'did not find element not in array';
ok ! elem_exists(10000, @elements), 'did not find element not in array';

ok elem_exists(77, @elements), 'found midpoint element';
ok elem_exists(48, @elements), 'found end of lower half element';
ok elem_exists(997, @elements), 'found start of upper half element';

done_testing();

Recursion is a deceptively simple concept. Every call to a function in Perl
creates a new call frame, an data structure internal to Perl itself that repre-
sents the fact that you’ve called a function. This call frame includes the lexical
environment of the function’s current invocation—the values of all lexical

Chapter 5. Functions • 100

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

variables within the function as invoked. Because the storage of the values
of the lexical variables is separate from the function itself, you can have
multiple calls to a function active at the same time. A function can even call
itself, or recur.

To make the previous test pass, write the recursive function elem_exists():

sub elem_exists {
my ($item, @array) = @_;

break recursion with no elements to search
return unless @array;

bias down with odd number of elements
my $midpoint = int((@array / 2) - 0.5);
my $miditem = $array[$midpoint];

return true if found
return 1 if $item == $miditem;

return false with only one element
return if @array == 1;

split the array down and recurse
return elem_exists(

$item, @array[0 .. $midpoint]
) if $item < $miditem;

split the array and recurse
return elem_exists(

$item, @array[$midpoint + 1 .. $#array]
);

}

Keep in mind that the arguments to the function will be different for every
call; otherwise the function would always behave the same way (it would
continue recursing until the program crashed). That’s why the termination
condition is so important.

Every recursive program can be written without recursion, but this divide-
and-conquer approach is an effective way to manage many similar types of
problems. For more information about recursion, iteration, and advanced
function use in Perl, the free book Higher Order Perl1 is an excellent reference.

1. http://hop.perl.plover.com/

report erratum • discuss

Advanced Functions • 101

Prepared exclusively for Sandi Frank

http://hop.perl.plover.com/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Lexicals
Every invocation of a function creates its own instance of a lexical scope rep-
resented internally by a call frame. Although the declaration of elem_exists()
creates one scope for the lexicals $item, @array, $midpoint, and $miditem, every call
to elem_exists()—even recursively—stores the values of those lexicals separately.

Not only can elem_exists() call itself, but the lexical variables of each invocation
are safe and separate:

use Carp 'cluck';

sub elem_exists {
my ($item, @array) = @_;

cluck "[$item] (@array)";
...

}

Tail Calls
One drawback of recursion is that it’s easy to write a function that calls itself
infinitely. The elem_exists() function has several return statements for this reason.
Perl offers a helpful Deep recursion on subroutine warning when it suspects runaway
recursion. The limit of 100 recursive calls is arbitrary but often useful. Disable
this warning with no warnings 'recursion'.

Because each call to a function requires a new call frame and lexical storage
space, highly recursive code can use more memory than iterative code. Tail
call elimination can help.

A tail call is a call to a function that directly returns that function’s results.
These recursive calls to elem_exists() are candidates for tail call elimination:

return elem_exists(# split the array down and recurse
$item, @array[0 .. $midpoint]

) if $item < $miditem;

return elem_exists(# split the array and recurse
$item, @array[$midpoint + 1 .. $#array]

);

This optimization would avoid returning to the current call and then returning
to the parent call. Instead, it returns to the parent call directly.

Perl doesn’t eliminate tail calls automatically, but you can get the same effect
by using a special form of the goto built-in. Unlike the form that often produces
spaghetti code, the goto function form replaces the current function call with

Chapter 5. Functions • 102

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

a call to another function. You can use a function by name or by reference.
Manipulate @_ to modify the arguments passed to the replacement function:

if ($item < $miditem) { # split the array down and recurse
@_ = ($item, @array[0 .. $midpoint]);
goto &elem_exists;

}
else { # split the array up and recurse

@_ = ($item, @array[$midpoint + 1 .. $#array]);
goto &elem_exists;

}

Sometimes optimizations are ugly, but if the alternative is highly recursive
code that runs out of memory, embrace the ugly and rejoice in the practical.

Pitfalls and Misfeatures
Perl still supports old-style invocations of functions, carried over from ancient
versions of Perl. Previous versions of Perl required you to invoke functions
with a leading ampersand (&) character:

outdated style; avoid
my $result = &calculate_result(52);

very outdated; truly avoid
my $result = do &calculate_result(42);

While the vestigial syntax is visual clutter, the leading ampersand form has
other surprising behaviors. First, it disables any prototype checking. Second,
it implicitly passes the contents of @_ unmodified, unless you’ve explicitly
passed arguments yourself. That unfortunate behavior can be confusing
invisible action at a distance.

A final pitfall comes from leaving the parentheses off function calls. The Perl
parser uses several heuristics to resolve ambiguous barewords and the
number of parameters passed to a function. Heuristics can be wrong:

warning; contains a subtle bug
ok elem_exists 1, @elements, 'found first element';

The call to elem_exists() will gobble up the test description intended as the second
argument to ok(). Because elem_exists() uses a slurpy second parameter, this
may go unnoticed until Perl produces warnings about comparing a non-
number (the test description, which it cannot convert into a number) with
the element in the array.

While extraneous parentheses can hamper readability, thoughtful use of
parentheses can clarify code to readers and to Perl itself.

report erratum • discuss

Pitfalls and Misfeatures • 103

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Scope
Everything with a name in Perl (a variable, a function, a filehandle, a class)
has a scope. This scope governs the lifespan and visibility of these entities.
Scoping helps to enforce encapsulation—keeping related concepts together
and preventing their details from leaking.

Lexical Scope
Lexical scope is the scope apparent to the readers of a program. Any block
delimited by curly braces creates a new scope: a bare block, the block of a
loop construct, the block of a sub declaration, an eval block, a package block,
or any other non-quoting block. The Perl compiler resolves this scope during
compilation.

Lexical scope describes the visibility of variables declared with my—lexical
variables. A lexical variable declared in one scope is visible in that scope and
any scopes nested within it but is invisible to sibling or outer scopes:

outer lexical scope
{

package Robot::Butler

inner lexical scope
my $battery_level;

sub tidy_room {
further inner lexical scope
my $timer;

do {
innermost lexical scope
my $dustpan;
...

} while (@_);

sibling inner lexical scope
for (@_) {

separate innermost scope
my $polish_cloth;
...

}
}

}

$battery_level is visible in all four scopes. $timer is visible in the method, the do
block, and the for loop. $dustpan is visible only in the do block and $polish_cloth
within the for loop.

Chapter 5. Functions • 104

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Declaring a lexical in an inner scope with the same name as a lexical in an
outer scope hides, or shadows, the outer lexical within the inner scope, for
example:

my $name = 'Jacob';

{
my $name = 'Edward';
say $name;

}

say $name;

The silly lexical shadowing example program prints Edward and then Jacob (don’t
worry; they’re family members, not vampires) because the lexical in the
nested scope hides the lexical in the outer scope. Shadowing a lexical is a
feature of encapsulation. Declaring multiple variables with the same name
and type in the same lexical scope produces a warning message.

In real code with larger scopes, this shadowing behavior is often desirable—it’s
easier to understand code when a lexical is in scope only for a couple dozen
lines. Lexical shadowing can happen by accident, though. Limit the scope of
variables and the nesting of scopes to lessen your risk.

Some lexical declarations have subtleties, such as a lexical variable used as
the iterator variable of a for loop. Its declaration occurs outside the block, but
its scope is that within the loop block:

my $cat = 'Brad';

for my $cat (qw(Jack Daisy Petunia Tuxedo Choco)) {
say "Inner cat is $cat";

}

say "Outer cat is $cat";

Functions—named and anonymous—provide lexical scoping to their bodies.
This enables closures (Closures on page 112).

Our Scope
Within a scope you may alias a package variable with the our built-in. Like
my, our enforces lexical scoping of the alias. The fully qualified name is available
everywhere, but the lexical alias is visible only within its scope.

our is most useful with package global variables such as $VERSION and $AUTOLOAD.
You get a little bit of typo detection (declaring a package global with our satisfies
the strict pragma’s vars rule), but you still have to deal with a global variable.

report erratum • discuss

Scope • 105

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Dynamic Scope
Dynamic scope resembles lexical scope in its visibility rules, but instead of
looking outward in compile-time scopes, lookup traverses backward through
all of the function calls you’ve made to reach the current code. Dynamic scope
applies only to global and package global variables (since lexicals aren’t visible
outside their scopes). While a package global variable may be visible within
all scopes, its value may change depending on localization and assignment:

our $scope;

sub inner {
say $scope;

}

sub main {
say $scope;
local $scope = 'main() scope';
middle();

}

sub middle {
say $scope;
inner();

}

$scope = 'outer scope';
main();
say $scope;

The program begins by declaring an our variable, $scope, as well as three
functions. It ends by assigning to $scope and calling main().

Within main(), the program prints $scope’s current value, outer scope, and then
localizes the variable. This changes the visibility of the symbol within the cur-
rent lexical scope as well as in any functions called from the current lexical
scope; that as well as condition is what dynamic scoping does. Thus, $scope
contains main() scope within the body of both middle() and inner(). After main()
returns, when control flow reaches the end of its block, Perl restores the
original value of the localized $scope. The final say prints outer scope once again.

Perl also uses different storage mechanisms for package variables and lexical
variables. Every scope that contains lexical variables uses a data structure
called a lexical pad or lexpad to store the values for its enclosed lexical vari-
ables. Every time control flow enters one of these scopes, Perl creates another
lexpad to contain the values of the lexical variables for that particular call.

Chapter 5. Functions • 106

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

This makes functions work correctly, especially recursive functions (Recursion
on page 100).

Each package has a single symbol table that holds package variables as well
as named functions. Importing (Importing on page 97) works by inspecting
and manipulating this symbol table. So does local. This is why you may localize
only global and package global variables—never lexical variables.

local is most often useful with magic variables. For example, $/, the input record
separator, governs how much data a readline operation will read from a filehan-
dle. $!, the system error variable, contains error details for the most recent
system call. $@, the Perl eval error variable, contains any error from the most
recent eval operation. $|, the autoflush variable, governs whether Perl will flush
the currently selected filehandle after every write operation.

localizing these in the narrowest possible scope limits the effect of your changes.
This can prevent strange behavior in other parts of your code.

State Scope
Perl’s state keyword allows you to declare a lexical that has a one-time initial-
ization as well as value persistence:

sub counter {
state $count = 1;
return $count++;

}

say counter();
say counter();
say counter();

On the first call to counter, Perl initializes $count. On subsequent calls, $count
retains its previous value. This program prints 1, 2, and 3. Change state to my
and the program will print 1, 1, and 1.

You may use an expression to set a state variable’s initial value:

sub counter {
state $count = shift;
return $count++;

}

say counter(2);
say counter(4);
say counter(6);

report erratum • discuss

Scope • 107

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Even though a simple reading of the code may suggest that the output should
be 2, 4, and 6, the output is actually 2, 3, and 4. The first call to the sub counter
sets the $count variable. Subsequent calls will not change its value.

state can be useful for establishing a default value or preparing a cache, but
be sure to understand its initialization behavior if you use it:

sub counter {
state $count = shift;
say 'Second arg is: ', shift;
return $count++;

}

say counter(2, 'two');
say counter(4, 'four');
say counter(6, 'six');

The counter for this program prints 2, 3, and 4 as expected, but the values of
the intended second arguments to the counter() calls are two, 4, and 6—because
the shift of the first argument happens only in the first call to counter(). Either
change the API to prevent this mistake, or guard against it with this:

sub counter {
my ($initial_value, $text) = @_;

state $count = $initial_value;
say "Second arg is: $text";
return $count++;

}

say counter(2, 'two');
say counter(4, 'four');
say counter(6, 'six');

Anonymous Functions
An anonymous function is a function without a name. It behaves exactly like
a named function—you can invoke it, pass it arguments, return values from
it, and take references to it. Yet you can access an anonymous function only
by reference (Function References on page 76), not by name.

A Perl idiom known as a dispatch table uses hashes to associate input with
behavior:

my %dispatch = (
plus => \&add_two_numbers,
minus => \&subtract_two_numbers,
times => \&multiply_two_numbers,

);

Chapter 5. Functions • 108

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

sub add_two_numbers { $_[0] + $_[1] }
sub subtract_two_numbers { $_[0] - $_[1] }
sub multiply_two_numbers { $_[0] * $_[1] }

sub dispatch {
my ($left, $op, $right) = @_;

return unless exists $dispatch{ $op };

return $dispatch{ $op }->($left, $right);
}

The dispatch() function takes arguments of the form (2, 'times', 2), evaluates the
operation, and returns the result. A trivial calculator application could use
dispatch to figure out which calculation to perform based on user input.

Declaring Anonymous Functions
The sub built-in used without a name creates and returns an anonymous
function. Use this function reference where you’d use a reference to a named
function, such as to declare the dispatch table’s functions in place:

my %dispatch = (
plus => sub { $_[0] + $_[1] },
minus => sub { $_[0] - $_[1] },
times => sub { $_[0] * $_[1] },
dividedby => sub { $_[0] / $_[1] },
raisedto => sub { $_[0] ** $_[1] },

);

Defensive Dispatch

Only those functions within this dispatch table are available for
users to call. If your dispatch function used a user-provided string
as the literal name of functions, a malicious user could call any
function anywhere by passing a fully qualified name such as
'Internal::Functions::malicious_function'.

You may also see anonymous functions passed as function arguments:

sub invoke_anon_function {
my $func = shift;
return $func->(@_);

}

sub named_func {
say 'I am a named function!';

}

report erratum • discuss

Anonymous Functions • 109

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

invoke_anon_function(\&named_func);
invoke_anon_function(sub { say 'Who am I?' });

Anonymous Function Names
Use introspection to determine whether a function is named or anonymous,
whether through caller() or the CPAN module Sub::Identify’s sub_name() function:

package ShowCaller;

sub show_caller {
my ($package, $file, $line, $sub) = caller(1);
say "Called from $sub in $package:$file:$line";

}

sub main {
my $anon_sub = sub { show_caller() };
show_caller();
$anon_sub->();

}

main();

The result may be surprising:

Called from ShowCaller::main
in ShowCaller:anoncaller.pl:20

Called from ShowCaller::__ANON__
in ShowCaller:anoncaller.pl:17

The __ANON__ in the second line of output demonstrates that the anonymous
function has no name that Perl can identify. The CPAN module Sub::Name’s
subname() function allows you to attach names to anonymous functions:

use Sub::Name;
use Sub::Identify 'sub_name';

my $anon = sub {};
say sub_name($anon);

my $named = subname('pseudo-anonymous', $anon);
say sub_name($named);
say sub_name($anon);

say sub_name(sub {});

This program produces the following output:

__ANON__
pseudo-anonymous
pseudo-anonymous
__ANON__

Chapter 5. Functions • 110

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Be aware that both references refer to the same underlying anonymous
function. Using subname() on one reference will change that underlying function;
all other references to that function will see the new name.

Implicit Anonymous Functions
Perl allows you to declare anonymous functions as function arguments
without using the sub keyword. Though this feature exists nominally to enable
programmers to write their own syntax such as that for map and eval (Prototypes
on page 230), you can use it for other things, such as to write delayed functions
that don’t look like functions.

Consider the CPAN module Test::Fatal, which takes an anonymous function as
the first argument to its exception() function:

use Test::More;
use Test::Fatal;

my $croaker = exception { die 'I croak!' };
my $liver = exception { 1 + 1 };

like $croaker, qr/I croak/, 'die() should croak';
is $liver, undef, 'addition should live';

done_testing();

You might rewrite this more verbosely as

my $croaker = exception(sub { die 'I croak!' });
my $liver = exception(sub { 1 + 1 });

or to pass named functions by reference:

sub croaker { die 'I croak!' }
sub liver { 1 + 1 }

my $croaker = exception \&croaker;
my $liver = exception \&liver;

like $croaker, qr/I croak/, 'die() should die';
is $liver, undef, 'addition should live';

But you may not pass them as scalar references:

my $croak_ref = \&croaker;
my $live_ref = \&liver;

BUGGY: does not work
my $croaker = exception $croak_ref;
my $liver = exception $live_ref;

report erratum • discuss

Anonymous Functions • 111

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

This is because the prototype changes the way the Perl parser interprets this
code. It cannot determine with 100% clarity what $croaker and $liver will contain,
and so it will throw an exception.

Type of arg 1 to Test::Fatal::exception
must be block or sub {} (not private variable)

A function that takes an anonymous function as the first of multiple argu-
ments cannot have a trailing comma after the function block:

use Test::More;
use Test::Fatal 'dies_ok';

dies_ok { die 'This is my boomstick!' } 'No movie references here';

This is an occasionally confusing wart on otherwise helpful syntax, courtesy
of a quirk of the Perl parser. The syntactic clarity available by promoting bare
blocks to anonymous functions can be helpful, but use it sparingly and doc-
ument the API with care.

Closures
The computer science term higher-order functions refers to functions that
manipulate other functions. Every time control flow enters a function, that
function gets a new environment representing that invocation’s lexical scope
(Scope on page 104). That applies equally well to anonymous functions (
Anonymous Functions on page 108). The implication is powerful, and closures
show off this power.

Creating Closures
A closure is a function that uses lexical variables from an outer scope. You’ve
probably already created and used closures without realizing it:

use Modern::Perl '2015';

my $filename = shift @ARGV;

sub get_filename { return $filename }

If this code seems straightforward to you, good! Of course the get_filename()
function can see the $filename lexical. That’s how scope works!

Suppose you want to iterate over a list of items without managing the iterator
yourself. You can create a function that returns a function that, when invoked,
will return the next item in the iteration:

Chapter 5. Functions • 112

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

sub make_iterator {
my @items = @_;
my $count = 0;

return sub {
return if $count == @items;
return $items[$count++];

}
}

my $cousins = make_iterator(qw(
Rick Alex Kaycee Eric Corey Mandy Christine Alex

));

say $cousins->() for 1 .. 6;

Even though make_iterator() has returned, the anonymous function stored in
$cousins has closed over the values of these variables as they existed within
the invocation of make_iterator()—and their values persist (Reference Counts on
page 77).

Because invoking make_iterator() creates a separate lexical environment, the
anonymous sub it creates and returns closes over a unique lexical environment
for each invocation:

my $aunts = make_iterator(qw(
Carole Phyllis Wendy Sylvia Monica Lupe

));

say $cousins->();
say $aunts->();

Because make_iterator() does not return these lexicals by value or by reference,
only the closure can access them. They’re encapsulated as effectively as any
other lexical is, although any code that shares a lexical environment can
access these values. This idiom provides better encapsulation of what would
otherwise be a file or package global variable:

{
my $private_variable;

sub set_private { $private_variable = shift }
sub get_private { $private_variable }

}

Named functions have package global scope; thus you cannot nest named
functions. Any lexical variables shared between nested functions will go
unshared when the outer function destroys its first lexical environment. Perl
will warn you when this happens.

report erratum • discuss

Closures • 113

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Invasion of Privacy

The CPAN module PadWalker lets you violate lexical encapsulation,
but anyone who uses it gets to fix any bugs that result.

Uses of Closures
Iterating over a fixed-sized list with a closure is interesting, but closures can
do much more, such as iterating over a list that’s too expensive to calculate
or too large to maintain in memory all at once. Consider a function to create
the Fibonacci series as you need its elements (probably so you can check the
output of your Haskell homework). Instead of recalculating the series recur-
sively, use a cache and lazily create the elements you need:

sub gen_fib {
my @fibs = (0, 1);

return sub {
my $item = shift;

if ($item >= @fibs) {
for my $calc (@fibs .. $item) {

$fibs[$calc] = $fibs[$calc - 2]
+ $fibs[$calc - 1];

}
}
return $fibs[$item];

}
}

calculate 42nd Fibonacci number
my $fib = gen_fib();
say $fib->(42);

Every call to the function returned by gen_fib() takes one argument, the nth
element of the Fibonacci series. The function generates and caches all preced-
ing values in the series as necessary and returns the requested element.

Here’s where closures and first-class functions get interesting. This code does
two things; there’s a pattern specific to caching intertwined with the numeric
series. What happens if you extract the cache-specific code (initialize a cache,
execute custom code to populate cache elements, and return the calculated
or cached value) to a function gen_caching_closure()?

sub gen_caching_closure {
my ($calc_element, @cache) = @_;

Chapter 5. Functions • 114

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

return sub {
my $item = shift;

$calc_element->($item, \@cache) unless $item < @cache;

return $cache[$item];
};

}

sub gen_fib {
my @fibs = (0, 1, 1);

return gen_caching_closure(sub {
my ($item, $fibs) = @_;

for my $calc ((@$fibs - 1) .. $item) {
$fibs->[$calc] = $fibs->[$calc - 2]

+ $fibs->[$calc - 1];
}

}, @fibs
);

}

The program behaves as it did before, but now function references and clo-
sures separate the cache initialization behavior from the calculation of the
next number in the Fibonacci series. Customizing the behavior of code—in
this case, gen_caching_closure()—by passing in a function allows tremendous
flexibility and can clean up your code.

Fold, Apply, and Filter

The built-ins map, grep, and sort are themselves higher-order func-
tions.

Closures and Partial Application
Closures can also remove unwanted genericity. Consider the case of a function
that takes several parameters:

sub make_sundae {
my %args = @_;

my $ice_cream = get_ice_cream($args{ice_cream});
my $banana = get_banana($args{banana});
my $syrup = get_syrup($args{syrup});
...

}

report erratum • discuss

Closures • 115

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Myriad customization possibilities might work very well in a full-size ice cream
store, but for an ice cream cart where you only serve French vanilla ice cream
on Cavendish bananas, every call to make_sundae() passes arguments that
never change.

Partial application allows you to bind some of the arguments to a function
now so that you can provide the others later. Wrap the function you intend
to call in a closure and pass the bound arguments. Here’s how to do so for
your ice cream cart:

my $make_cart_sundae = sub {
return make_sundae(@_,

ice_cream => 'French Vanilla',
banana => 'Cavendish',

);
};

Now whenever you process an order, invoke the function reference in
$make_cart_sundae and pass only the interesting arguments. You’ll never forget
the invariants or pass them incorrectly. You can even use Sub::Install from the
CPAN to import $make_cart_sundae function into another namespace.

This is only the start of what you can do with higher-order functions. Mark
Jason Dominus’s Higher Order Perl is the canonical reference on first-class
functions and closures in Perl. Read it online at http://hop.perl.plover.com/.

State versus Closures
Closures (Closures on page 112) use lexical scope (Scope on page 104) to control
access to lexical variables—even with named functions:

{
my $safety = 0;

sub enable_safety { $safety = 1 }
sub disable_safety { $safety = 0 }

sub do_something_awesome {
return if $safety;
...

}
}

All three functions encapsulate that shared state without exposing the lexical
variable outside their shared scope. This idiom works well for cases where
multiple functions access that lexical, but it’s clunky when only one function
does. Suppose every hundredth ice cream parlor customer gets free sprinkles:

Chapter 5. Functions • 116

report erratum • discussPrepared exclusively for Sandi Frank

http://hop.perl.plover.com/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

my $cust_count = 0;

sub serve_customer {
$cust_count++;
my $order = shift;

add_sprinkles($order) if $cust_count % 100 == 0;
...

}

This approach works, but creating a new outer lexical scope for a single
function is a little bit noisy. The state built-in allows you to declare a lexically
scoped variable with a value that persists between invocations:

sub serve_customer {
state $cust_count = 0;
$cust_count++;

my $order = shift;
add_sprinkles($order)

if ($cust_count % 100 == 0);

...
}

state also works within anonymous functions, though there are few obvious
benefits to this approach:

sub make_counter {
return sub {

state $count = 0;
return $count++;

}
}

State versus Pseudo-State
In old versions of Perl, a named function could close over its previous lexical
scope by abusing a quirk of implementation. Using a postfix conditional that
evaluates to false with a my declaration avoided reinitializing a lexical variable
to undef or its initialized value.

Now any use of a postfix conditional expression modifying a lexical variable
declaration produces a deprecation warning. It’s too easy to write inadvertently
buggy code with this technique; use state instead where available or a true
closure otherwise. Rewrite this idiom when you encounter it:

report erratum • discuss

State versus Pseudo-State • 117

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

sub inadvertent_state {
my $counter = 1 if 0; # DEPRECATED; don't use
state $counter = 1; # prefer

...
}

You may only initialize a state variable with a scalar value. To keep track of
an aggregate, use a hash or array reference (References on page 71).

Attributes
Named entities in Perl—variables and functions—can have additional meta-
data attached in the form of attributes. These attributes are arbitrary names
and values used with certain types of metaprogramming (Code Generation
on page 202).

Attribute declaration syntax is awkward, and using attributes effectively is
more art than science. Most programs never use them, but when used well
they offer clarity and maintenance benefits.

A simple attribute is a colon-preceded identifier attached to a declaration:

my $fortress :hidden;

sub erupt_volcano :ScienceProject { ... }

When Perl parses these declarations, it invokes attribute handlers named
hidden and ScienceProject, if they exist for the appropriate types (scalars and
functions, respectively). These handlers can do anything. If the appropriate
handlers don’t exist, Perl will throw a compile-time exception.

Attributes may include a list of parameters. Perl treats these parameters as
lists of constant strings. The Test::Class module from the CPAN uses such
parametric arguments to good effect:

sub setup_tests :Test(setup) { ... }
sub test_monkey_creation :Test(10) { ... }
sub shutdown_tests :Test(teardown) { ... }

The Test attribute identifies methods that include test assertions and option-
ally identifies the number of assertions the method intends to run. While
introspection (Reflection on page 160) of these classes could discover the
appropriate test methods, given well-designed solid heuristics, the :Test
attribute is unambiguous. Test::Class provides attribute handlers that keep
track of these methods. When the class has finished parsing, Test::Class can
loop through the list of test methods and run them.

Chapter 5. Functions • 118

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The setup and teardown parameters allow test classes to define their own support
methods without worrying about conflicts with other such methods in other
classes. This separates the idea of what this class must do from how other
classes do their work. Otherwise a test class might have only one method
named setup and one named teardown and would have to do everything there,
then call the parent methods, and so on.

Drawbacks of Attributes
Attributes have their drawbacks. The canonical pragma for working with
attributes (the attributes pragma) has listed its interface as experimental for
many years, and for good reason. Damian Conway’s core module
Attribute::Handlers is much easier to use, and Andrew Main’s Attribute::Lexical is a
newer approach. Prefer either to attributes whenever possible.

The worst feature of attributes is that they make it easy to warp the syntax
of Perl in unpredictable ways. You may not be able to predict what code with
attributes will do. Good documentation helps, but if an innocent-looking
declaration on a lexical variable stores a reference to that variable somewhere,
your expectations of its lifespan may be wrong. Likewise, a handler may wrap
a function in another function and replace it in the symbol table without your
knowledge—consider a :memoize attribute, which automatically invokes the
core Memoize module.

Attributes can help you to solve difficult problems or to make an API much
easier to use. When used properly, they’re powerful—but most programs
never need them.

AUTOLOAD
Perl doesn’t require you to declare every function before you call it. Perl will
happily attempt to call a function even if it doesn’t exist. Consider this pro-
gram:

use Modern::Perl;

bake_pie(filling => 'apple');

When you run it, Perl will throw an exception due to the call to the undefined
function bake_pie().

Now add a function called AUTOLOAD():

sub AUTOLOAD {}

report erratum • discuss

AUTOLOAD • 119

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

When you run the program now, nothing obvious will happen. Perl will call
a function named AUTOLOAD() in a package—if it exists—whenever normal
dispatch fails. Change the AUTOLOAD() to emit a message to demonstrate that
it gets called:

sub AUTOLOAD { say 'In AUTOLOAD()!' }

The AUTOLOAD() function receives the arguments passed to the undefined
function in @_ and the fully qualified name of the undefined function in the
package global $AUTOLOAD (here, main::bake_pie):

sub AUTOLOAD {
our $AUTOLOAD;

pretty-print the arguments
local $" = ', ';
say "In AUTOLOAD(@_) for $AUTOLOAD!"

}

Extract the method name with a regular expression (Regular Expressions and
Matching on page 125):

sub AUTOLOAD {
my ($name) = our $AUTOLOAD =~ /::(\w+)$/;

pretty-print the arguments
local $" = ', ';
say "In AUTOLOAD(@_) for $name!"

}

Whatever AUTOLOAD() returns, the original call receives:

say secret_tangent(-1);

sub AUTOLOAD { return 'mu' }

So far, these examples have merely intercepted calls to undefined functions.
You have other options.

Redispatching Methods in AUTOLOAD()
A common pattern in OO programming (Moose on page 141) is to delegate or
proxy certain methods from one object to another. A logging proxy can help
with debugging:

Chapter 5. Functions • 120

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

package Proxy::Log;

constructor blesses reference to a scalar

sub AUTOLOAD {
my ($name) = our $AUTOLOAD =~ /::(\w+)$/;
Log::method_call($name, @_);

my $self = shift;
return $$self->$name(@_);

}

This AUTOLOAD() extracts the name of the undefined method. Then it derefer-
ences the proxied object from a blessed scalar reference, logs the method call,
and then invokes that method on the proxied object with the provided
parameters.

Generating Code in AUTOLOAD()
This double dispatch is easy to write but inefficient. Every method call on the
proxy must fail normal dispatch to end up in AUTOLOAD(). Pay that penalty only
once by installing new methods into the proxy class as the program needs
them:

sub AUTOLOAD {
my ($name) = our $AUTOLOAD =~ /::(\w+)$/;
my $method = sub { ... };

no strict 'refs';
*{ $AUTOLOAD } = $method;
return $method->(@_);

}

The body of the previous AUTOLOAD() has become a closure (Closures on page
112) bound over the name of the undefined method. Installing that closure in
the appropriate symbol table allows all subsequent dispatches to that method
to find the created closure (and avoid AUTOLOAD()). This code finally invokes
the method directly and returns the result.

Though this approach is cleaner and almost always more transparent than
handling the behavior directly in AUTOLOAD(), the code called by AUTOLOAD() may
see AUTOLOAD() in its caller() list. Although it may violate encapsulation to care
that this occurs, leaking the details of how an object provides a method may
also violate encapsulation.

Some code uses a tailcall (Tailcalls on page 49) to replace the current invoca-
tion of AUTOLOAD() with a call to the destination method:

report erratum • discuss

AUTOLOAD • 121

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

sub AUTOLOAD {
my ($name) = our $AUTOLOAD =~ /::(\w+)$/;
my $method = sub { ... }

no strict 'refs';
*{ $AUTOLOAD } = $method;
goto &$method;

}

This has the same effect as invoking $method directly, except that AUTOLOAD()
will no longer appear in the list of calls available from caller(), so it looks like
normal method dispatch occurred.

Drawbacks of AUTOLOAD
AUTOLOAD() can be useful, though it’s difficult to use properly. The naïve
approach to generating methods at runtime means that the can() method won’t
report the right information about the capabilities of objects and classes. The
easiest solution is to predeclare all functions you plan to AUTOLOAD() with the
subs pragma:

use subs qw(red green blue ochre teal);

Now You See Them

Forward declarations are useful only in the two rare cases of
attributes (Attributes on page 118) and autoloading (AUTOLOAD
on page 119).

That technique documents your intent well but requires you to maintain a
static list of functions or methods. Overriding can() (The UNIVERSAL Package
on page 199) sometimes works better:

sub can {
my ($self, $method) = @_;

use results of parent can()
my $meth_ref = $self->SUPER::can($method);
return $meth_ref if $meth_ref;

add some filter here
return unless $self->should_generate($method);

$meth_ref = sub { ... };
no strict 'refs';
return *{ $method } = $meth_ref;

}

Chapter 5. Functions • 122

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

sub AUTOLOAD {
my ($self) = @_;
my ($name) = our $AUTOLOAD =~ /::(\w+)$/;>

return unless my $meth_ref = $self->can($name);
goto &$meth_ref;

}

AUTOLOAD() is a big hammer; it can catch functions and methods you had no
intention of autoloading, such as DESTROY(), the destructor of objects. If you
write a DESTROY() method with no implementation, Perl will happily dispatch
to it instead of AUTOLOAD():

skip AUTOLOAD()
sub DESTROY {}

A Very Special Method

The special methods import(), unimport(), and VERSION() never go
through AUTOLOAD().

If you mix functions and methods in a single namespace that inherits from
another package that provides its own AUTOLOAD(), you may see this strange
error:

Use of inherited AUTOLOAD for non-method slam_door() is deprecated

If this happens to you, simplify your code; you’ve called a function that doesn’t
exist in a package that inherits from a class that contains its own AUTOLOAD().
The problem compounds in several ways: mixing functions and methods in
a single namespace is often a design flaw, inheritance and AUTOLOAD() get
complex very quickly, and reasoning about code when you don’t know what
methods objects provide is difficult.

AUTOLOAD() is useful for quick and dirty programming—robust code avoids it.

report erratum • discuss

AUTOLOAD • 123

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CHAPTER 6

Regular Expressions and Matching
Perl is sometimes called the Practical Extraction and Reporting Language.
You’ve seen how control flow, operators, and data structures make Perl
practical and you can imagine how to create reports. What does the Extraction
part mean? Perl is good at text processing, in part due to regular expressions.

A regular expression (also regex or regexp) is a pattern that describes charac-
teristics of a piece of text—to extract an address, replace a misspelling, even
to scrape stock prices off a website to help you figure out what to do with
your investment account. Perl’s regular expression engine applies these pat-
terns to match or to replace portions of text.

While mastering regular expressions is a daunting pursuit, a little knowledge
will give you great power. You’ll build up your knowledge over time, with
practice, as you add more and more features to your toolkit.

This chapter gives an overview of the most important regex features, but it’s
not exhaustive. Perl’s documentation includes a tutorial (perldoc perlretut), a
reference guide (perldoc perlreref), and full documentation (perldoc perlre). If you’re
interested in the theory, Jeffrey Friedl’s book Mastering Regular Expressions
explains the theory and the mechanics of how regular expressions work.

Literals
A regex can be as simple as a substring pattern:

my $name = 'Chatfield';
say 'Found a hat!' if $name =~ /hat/;

The match operator (m/ /, abbreviated / /) identifies a regular expression—in
this example, hat. This pattern is not a word. Instead it means “the h character,
followed by the a character, followed by t.” Each character in the pattern is
an indivisible element (an atom). An atom either matches or it doesn’t.

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The regex binding operator (=~) is an infix operator (Fixity on page 87) that
applies the regex of its second operand to a string provided as its first operand.
When evaluated in scalar context, a match evaluates to a boolean value rep-
resenting the success or failure of the match. The negated form of the binding
operator (!~) evaluates to a true value unless the match succeeds.

Remember index!

The index built-in can also search for a literal substring within a
string. Using a regex engine for that is like flying an autonomous
combat drone to the corner store to buy cheese—but Perl lets you
write code however you find it clear.

The substitution operator, s///, is in one sense a circumfix operator (Fixity on
page 87) with two operands. Its first operand (the part between the first and
second delimiters) is a regular expression. The second operand (the part
between the second and third delimiters) is a substring used to replace the
matched portion of the string operand used with the regex binding operator.
For example, here’s how to cure pesky summer allergies:

my $status = 'I feel ill.';
$status =~ s/ill/well/;
say $status;

The qr// Operator and Regex Combinations
The qr// operator creates first-class regexes you can store in variables. Use
these regexes as operands to the match and substitution operators:

my $hat = qr/hat/;
say 'Found a hat!' if $name =~ /$hat/;

Or use them to combine multiple regex objects into complex patterns:

my $hat = qr/hat/;
my $field = qr/field/;

say 'Found a hat in a field!'
if $name =~ /$hat$field/;

like $name, qr/$hat$field/, 'Found a hat in a field!';

Like is, with More like

Test::More’s like function tests that the first argument matches the
regex provided as the second argument.

Chapter 6. Regular Expressions and Matching • 126

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Quantifiers
Matching literal expressions is good, but regex quantifiers make regexes more
powerful. These metacharacters govern how often a regex component may
appear in a matching string. The simplest quantifier is the zero or one quan-
tifier, or ?:

my $cat_or_ct = qr/ca?t/;

like 'cat', $cat_or_ct, "'cat' matches /ca?t/";
like 'ct', $cat_or_ct, "'ct' matches /ca?t/";

Any atom in a regular expression followed by the ? character means “match
zero or one instance(s) of this atom.” This regular expression matches if zero
or one a characters immediately follow a c character and immediately precede
a t character. This regex matches both the literal substrings cat and ct.

The one or more quantifier, or +, matches at least one instance of its atom:

my $some_a = qr/ca+t/;

like 'cat', $some_a, "'cat' matches /ca+t/";
like 'caat', $some_a, "'caat' matches/";
like 'caaat', $some_a, "'caaat' matches";
like 'caaaat', $some_a, "'caaaat' matches";

unlike 'ct', $some_a, "'ct' does not match";

There’s no theoretical limit to the maximum number of quantified atoms that
can match.

The zero or more quantifier, *, matches zero or more instances of the quantified
atom:

my $any_a = qr/ca*t/;

like 'cat', $any_a, "'cat' matches /ca*t/";
like 'caat', $any_a, "'caat' matches";
like 'caaat', $any_a, "'caaat' matches";
like 'caaaat', $any_a, "'caaaat' matches";
like 'ct', $any_a, "'ct' matches";

As silly as this seems, it allows you to specify optional components of a regex.
Use it sparingly, though: it’s a blunt and expensive tool. Most regular
expressions benefit from using the ? and + quantifiers far more than *. Be
precise about your intent to clarify your code.

Numeric quantifiers express the number of times an atom may match. {n}
means that a match must occur exactly n times:

report erratum • discuss

Quantifiers • 127

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

equivalent to qr/cat/;
my $only_one_a = qr/ca{1}t/;

like 'cat', $only_one_a, "'cat' matches /ca{1}t/";

{n,} matches an atom at least n times:

equivalent to qr/ca+t/;
my $some_a = qr/ca{1,}t/;

like 'cat', $some_a, "'cat' matches /ca{1,}t/";
like 'caat', $some_a, "'caat' matches";
like 'caaat', $some_a, "'caaat' matches";
like 'caaaat', $some_a, "'caaaat' matches";

{n,m} means that a match must occur at least n times and cannot occur more
than m times:

my $few_a = qr/ca{1,3}t/;

like 'cat', $few_a, "'cat' matches /ca{1,3}t/";
like 'caat', $few_a, "'caat' matches";
like 'caaat', $few_a, "'caaat' matches";

unlike 'caaaat', $few_a, "'caaaat' doesn't match";

You may express the symbolic quantifiers in terms of the numeric quantifiers,
but the symbolic quantifiers are shorter and more common.

Greediness
The + and * quantifiers are greedy: they try to match as much of the input
string as possible. This can be particularly pernicious. Consider a naïve use
of the “zero or more non-newline characters” pattern of .*:

a poor regex
my $hot_meal = qr/hot.*meal/;

say 'Found a hot meal!' if 'I have a hot meal' =~ $hot_meal;

say 'Found a hot meal!' if 'one-shot, piecemeal work!' =~ $hot_meal;

Greedy quantifiers start by matching everything at first. If that match does
not succeed, the regex engine will back off one character at a time until it
finds a match.

The ? quantifier modifier turns a greedy quantifier non-greedy:

my $minimal_greedy = qr/hot.*?meal/;

Chapter 6. Regular Expressions and Matching • 128

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

When given a non-greedy quantifier, the regular expression engine will prefer
the shortest possible potential match. If that match fails, the engine will
increase the number of characters identified by the .*? token combination one
character at a time. Because * matches zero or more times, the minimal
potential match for this token combination is zero characters:

say 'Found a hot meal' if 'ilikeahotmeal' =~ /$minimal_greedy/;

Use +? to match one or more items non-greedily:

my $minimal_greedy_plus = qr/hot.+?meal/;

unlike 'ilikeahotmeal', $minimal_greedy_plus;

like 'i like a hot meal', $minimal_greedy_plus;

The ? quantifier modifier applies to the ? (zero or one matches) quantifier as
well as the range quantifiers. It causes the regex to match as little of the input
as possible.

Regexes are powerful, but they’re not always the best way to solve a problem.
This is doubly true for the greedy patterns .+ and .*. A crossword puzzle fan
who needs to fill in four boxes of 7 Down (“Rich soil”) will find too many invalid
candidates with the pattern:

my $seven_down = qr/l$letters_only*m/;

If you run this against all of the words in a dictionary, it’ll match Alabama,
Belgium, and Bethlehem long before it reaches loam, the real answer. Not only are
those words too long, but the matched portions occur everywhere in the word,
not just at the start.

Regex Anchors
It’s important to know how the regex engine handles greedy matches—but
it’s equally as important to know what kind of matches you want. Regex
anchors force the regex engine to start or end a match at a fixed position. The
start of string anchor (\A) dictates that any match must start at the beginning
of the string:

also matches "lammed", "lawmaker", and "layman"
my $seven_down = qr/\Al${letters_only}{2}m/;

The end of line string anchor (\z) requires that a match end at the end of the
string:

also matches "loom", but an obvious improvement
my $seven_down = qr/\Al${letters_only}{2}m\z/;

report erratum • discuss

Regex Anchors • 129

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

You’ll often see the ^ and $ assertions used to match the start and end of
strings. ^ does match the start of the string, but in certain circumstances it
can match the invisible point just after a newline within the string. Similarly,
$ does match the end of the string (just before a newline, if it exists), but it
can match the invisible point just before a newline in the middle of the string.
\A and \z are more specific and thus more useful.

The word boundary anchor (\b) matches only at the boundary between a word
character (\w) and a non-word character (\W). That boundary isn’t a character
in and of itself; it has no width. It’s invisible. Use an anchored regex to find
loam while prohibiting Belgium:

my $seven_down = qr/\bl${letters_only}{2}m\b/;

This anchor has one flaw that may or may not trip you; it doesn’t understand
punctuation such as the apostrophe. Fortunately, Perl 5.22 added the Unicode
word boundary metacharacter \b{wb}, which does understand contractions:

say "Panic" if "Don't Panic" =~ /Don\b/;
say "No Panic" unless "Don't Panic" =~ /Don\b{wb}/;

Metacharacters
Perl interprets several characters in regular expressions as metacharacters,
characters that represent something other than their literal interpretation.
You’ve seen a few metacharacters already (\b, ., and ?, for example).
Metacharacters give regex wielders power far beyond mere substring matches.
The regex engine treats all metacharacters as atoms. See perldoc perlrebackslash
for far more detail about metacharacters.

The . metacharacter means “match any character except a newline.” Many
novices forget that nuance. A simple regex search—ignoring the obvious
improvement of using anchors—for 7 Down might be /l..m/. Of course, there’s
always more than one way to get the right answer:

for my $word (@words) {
next unless length($word) == 4;
next unless $word =~ /l..m/;
say "Possibility: $word";

}

If the potential matches in @words are more than the simplest English words,
you’ll get false positives. . also matches punctuation characters, whitespace,
and numbers. Be specific! The \w metacharacter represents all Unicode
alphanumeric characters (Unicode and Strings on page 27) and the under-
score:

Chapter 6. Regular Expressions and Matching • 130

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

next unless $word =~ /l\w\wm/;

The \d metacharacter matches Unicode digits:

next unless $number =~ /\d{3}-\d{3}-\d{4}/;
say "I have your number: $number";

But in this case, the Regexp::English module has a much better phone number
regex already written for you.

Use the \s metacharacter to match whitespace. Whitespace means a literal
space, a tab character, a carriage return, a form-feed, or a newline:

my $two_three_letter_words = qr/\w{3}\s\w{3}/;

Negated Metacharacters

These metacharacters have negated forms. Use \W to match any
character except a word character. Use \D to match a non-digit
character. Use \S to match anything but whitespace. Use \B to
match anywhere except a word boundary and \B{wb} to match
anywhere except a Unicode word boundary.

Character Classes
When none of those metacharacters is specific enough, group multiple char-
acters into a character class by enclosing them in square brackets. A character
class allows you to treat a group of alternatives as a single atom:

my $ascii_vowels = qr/[aeiou]/;
my $maybe_cat = qr/c${ascii_vowels}t/;

Interpolation Happens

Without those curly braces, Perl’s parser would interpret the
variable name as $ascii_vowelst, which either causes a compile-time
error about an unknown variable or interpolates the contents of
an existing $ascii_vowelst into the regex.

The hyphen character (-) allows you to include a contiguous range of characters
in a class, such as this $ascii_letters_only regex:

my $ascii_letters_only = qr/[a-zA-Z]/;

To include the hyphen as a member of the class, place it at the start or end
of the class:

my $interesting_punctuation = qr/[-!?]/;

Or escape it:

report erratum • discuss

Character Classes • 131

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

my $line_characters = qr/[|=\-_]/;

Use the caret (^) as the first element of the character class to mean “anything
except these characters”:

my $not_an_ascii_vowel = qr/[^aeiou]/;

Use a caret anywhere but the first position to make it a member of the char-
acter class. To include a hyphen in a negated character class, place it after
the caret or at the end of the class—or escape it.

Capturing
Regular expressions allow you to group and capture portions of the match
for later use. To extract an American telephone number of the form (202) 456-
1111 from a string, use this:

my $area_code = qr/\(\d{3}\)/;
my $local_number = qr/\d{3}-?\d{4}/;
my $phone_number = qr/$area_code\s?$local_number/;

Note the escaped parentheses within $area_code. Parentheses are special in
Perl regular expressions. They group atoms into larger units and capture
portions of matching strings. To match literal parentheses, escape them with
backslashes as seen in $area_code.

Named Captures
Named captures allow you to capture portions of matches from applying a
regular expression and access them later. Here’s an example of extracting a
phone number from contact information:

if ($contact_info =~ /(?<phone>$phone_number)/) {
say "Found a number $+{phone}";

}

Named capture syntax has this form:

(?<capture name> ...)

Parentheses enclose the capture. The ?< name > construct immediately follows
the opening parenthesis and provides a name for this particular capture. The
remainder of the capture is a regular expression.

When a match against the enclosing pattern succeeds, Perl updates the
magic variable %+. In this hash, the key is the name of the capture and the
value is the portion of the string that matched the capture.

Chapter 6. Regular Expressions and Matching • 132

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Numbered Captures
Perl also supports numbered captures:

if ($contact_info =~ /($phone_number)/) {
say "Found a number $1";

}

This form of capture provides no identifying name and does nothing to %+.
Instead, Perl stores the captured substring in a series of magic variables. The
first matching capture goes into $1, the second into $2, and so on. Capture
counts start at the opening parenthesis of the capture. Thus the first left
parenthesis begins the capture into $1, the second into $2, and so on.

While the syntax for named captures is longer than for numbered captures,
it provides additional clarity. Counting left parentheses is tedious, and com-
bining regexes that each contain numbered captures is difficult. Named cap-
tures improve regex maintainability—though name collisions are possible,
they’re relatively infrequent. Minimize the risk by using named captures only
in top-level regexes rather than in smaller regexes composed into larger ones.

In list context, a regex match returns a list of captured substrings:

if (my ($number) = $contact_info =~ /($phone_number)/) {
say "Found a number $number";

}

Numbered captures are also useful in simple substitutions, where named
captures may be more verbose:

my $order = 'Vegan brownies!';

$order =~ s/Vegan (\w+)/Vegetarian $1/;
or
$order =~ s/Vegan (?<food>\w+)/Vegetarian $+{food}/;

Grouping and Alternation
Previous examples have all applied quantifiers to simple atoms. You may
apply them to any regex element:

my $pork = qr/pork/;
my $beans = qr/beans/;

like 'pork and beans', qr/\A$pork?.*?$beans/,
'maybe pork, definitely beans';

If you expand the regex manually, the results may surprise you:

report erratum • discuss

Grouping and Alternation • 133

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

my $pork_and_beans = qr/\Apork?.*beans/;

like 'pork and beans', qr/$pork_and_beans/,
'maybe pork, definitely beans';

like 'por and beans', qr/$pork_and_beans/,
'wait... no phylloquinone here!';

Sometimes specificity helps pattern accuracy:

my $pork = qr/pork/;
my $and = qr/and/;
my $beans = qr/beans/;

like 'pork and beans', qr/\A$pork? $and? $beans/,
'maybe pork, maybe and, definitely beans';

Some regexes need to match either one thing or another. The alternation
metacharacter (|) indicates that either possibility may match:

my $rice = qr/rice/;
my $beans = qr/beans/;

like 'rice', qr/$rice|$beans/, 'Found rice';
like 'beans', qr/$rice|$beans/, 'Found beans';

While it’s easy to interpret rice|beans as meaning ric, followed by either e or b,
followed by eans, alternations always include the entire fragment to the nearest
regex delimiter, whether the start or end of the pattern, an enclosing paren-
thesis, another alternation character, or a square bracket.

Alternation has a lower precedence (Precedence on page 85) than even atoms:

like 'rice', qr/rice|beans/, 'Found rice';
like 'beans', qr/rice|beans/, 'Found beans';
unlike 'ricb', qr/rice|beans/, 'Found hybrid';

To reduce confusion, use named fragments in variables ($rice|$beans) or group
alternation candidates in non-capturing groups:

my $starches = qr/(?:pasta|potatoes|rice)/;

The (?:) sequence groups a series of atoms without making a capture.

Non-captured for Your Protection

A stringified regular expression includes an enclosing non-captur-
ing group; qr/rice|beans/ stringifies as (?^u:rice|beans).

Chapter 6. Regular Expressions and Matching • 134

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Other Escape Sequences
To match a literal instance of a metacharacter, escape it with a backslash (\).
You’ve seen this before, where \(refers to a single left parenthesis and \] refers
to a single right square bracket. \. refers to a literal period character instead
of the “match anything but an explicit newline character” atom.

Remember to escape the alternation metacharacter (|) as well as the end-of-
line metacharacter ($) and the quantifiers (+, ?, *) if you want to match their
symbols literally.

The metacharacter disabling characters (\Q and \E) disable metacharacter
interpretation within their boundaries. This is especially useful when you
don’t control the source of the match text:

my ($text, $literal_text) = @_;

return $text =~ /\Q$literal_text\E/;

The $literal_text argument can contain anything—the string ** ALERT **, for
example. Within the fragment bounded by \Q and \E, Perl will interpret the
regex as ** ALERT ** and attempt to match literal asterisk characters instead
of treating the asterisks as greedy quantifiers.

Regex Security

Be cautious when processing regular expressions from untrusted
user input. A malicious regex master can craft a regular expres-
sion, which may take years to match input strings, creating a
denial-of-service attack against your program.

Assertions
Regex anchors such as \A, \b, \B, and \Z are regex assertions. These assertions
don’t match individual characters within the string. Instead they match spe-
cific conditions of the string. For example, no matter what the string contains,
the regex qr/\A/ will always match.

Zero-width assertions match a pattern. Most importantly, they do not consume
the portion of the pattern that they match. For example, to find a cat on its
own, you might use a word boundary assertion:

my $just_a_cat = qr/cat\b/;

or
my $just_a_cat = qr/cat\b{wb}/;

report erratum • discuss

Other Escape Sequences • 135

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

But to find a non-disastrous feline, you could use a zero-width negative look-
ahead assertion:

my $safe_feline = qr/cat(?!astrophe)/;

The construct (?!...) matches the phrase cat only if the phrase astrophe does not
immediately follow. The zero-width positive look-ahead assertion

my $disastrous_feline = qr/cat(?=astrophe)/;

matches the phrase cat only if the phrase astrophe immediately follows. Although
a normal regular expression can accomplish the same thing, consider a regex
to find all non-catastrophic words in the dictionary that start with cat:

my $disastrous_feline = qr/cat(?!astrophe)/;

while (<$words>) {
chomp;
next unless /\A(?<cat>$disastrous_feline.*)\Z/;
say "Found a non-catastrophe '$+{cat}'";

}

The zero-width assertion consumes none of the source string, which leaves
the anchored fragment .*\Z to match. Otherwise, the capture would only cap-
ture the cat portion of the source string.

To assert that your feline never occurs at the start of a line, use a zero-width
negative look-behind assertion. These assertions must have fixed sizes, and
thus you may not use quantifiers:

my $middle_cat = qr/(?<!\A)cat/;

The construct (?<!...) contains the fixed-width pattern. You could also express
that the cat must always occur immediately after a space character with a
zero-width positive look-behind assertion:

my $space_cat = qr/(?<=\s)cat/;

The construct (?<=...) contains the fixed-width pattern. This approach can be
useful when combining a global regex match with the \G modifier.

Perl also includes the keep assertion, \K. This zero-width positive look-behind
assertion can have a variable length:

my $spacey_cat = qr/\s+\Kcat/;

like 'my cat has been to space', $spacey_cat;
like 'my cat has been to doublespace', $spacey_cat;

Chapter 6. Regular Expressions and Matching • 136

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

\K is surprisingly useful for certain substitutions that remove the end of a
pattern. It lets you match a pattern but remove only a portion of it:

my $exclamation = 'This is a catastrophe!';
$exclamation =~ s/cat\K\w+!/./;

like $exclamation, qr/\bcat\./, "That wasn't so bad!";

Everything until the \K assertion matches, but only the portion of the match
after the assertion will be substituted away.

Regex Modifiers
Several modifiers change the behavior of the regular expression operators.
These modifiers appear at the end of the match, substitution, and qr// opera-
tors. For example, here’s how to enable case-insensitive matching:

my $pet = 'ELLie';

like $pet, qr/Ellie/, 'Nice puppy!';
like $pet, qr/Ellie/i, 'shift key br0ken';

The first like() will fail because the strings contain different letters. The second
like() will pass, because the /i modifier causes the regex to ignore case distinc-
tions. L and l are effectively equivalent in the second regex due to the modifier.

You may also embed regex modifiers within a pattern:

my $find_a_cat = qr/(?<feline>(?i)cat)/;

The (?i) syntax enables case-insensitive matching only for its enclosing
group—in this case, the named capture. You may use multiple modifiers with
this form. Disable specific modifiers by preceding them with the minus
character (-):

my $find_a_rational = qr/(?<number>(?-i)Rat)/;

The multiline operator, /m, allows the ̂ and $ anchors to match at any newline
embedded within the string.

The /s modifier treats the source string as a single line such that the .
metacharacter matches the newline character. Damian Conway suggests the
mnemonic that /m modifies the behavior of multiple regex metacharacters,
while /s modifies the behavior of a single regex metacharacter.

The /r modifier causes a substitution operation to return the result of the
substitution, leaving the original string unchanged. If the substitution suc-
ceeds, the result is a modified copy of the original. If the substitution fails

report erratum • discuss

Regex Modifiers • 137

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

(because the pattern does not match), the result is an unmodified copy of the
original:

my $status = 'I am hungry for pie.';

my $newstatus = $status =~ s/pie/cake/r;
my $statuscopy = $status =~ s/liver and onions/bratwurst/r;

is $status, 'I am hungry for pie.',
'original string should be unmodified';

like $newstatus, qr/cake/, 'cake wanted';
unlike $statuscopy, qr/bratwurst/, 'wurst not want not';

The /x modifier allows you to embed additional whitespace and comments
within patterns. With this modifier in effect, the regex engine ignores whites-
pace and comments, so your code can be more readable:

my $attr_re = qr{
\A # start of line

(?:
[;\n\s]* # spaces and semicolons
(?:/*.*?*/)? # C comments

)*

ATTR

\s+
(U?INTVAL
| FLOATVAL
| STRING\s+*

)
}x;

This regex isn’t simple, but comments and whitespace improve its readability.
Even if you compose regexes together from compiled fragments, the /x modifier
can still improve your code.

The /g modifier matches a regex globally throughout a string. This makes
sense when used with a substitution:

appease the Mitchell estate
my $contents = slurp($file);
$contents =~ s/Scarlett O'Hara/Mauve Midway/g;

When used with a match—not a substitution—the \G metacharacter allows
you to process a string within a loop one chunk at a time. \G matches at the
position where the most recent match ended. To process a poorly encoded
file of American telephone numbers in logical chunks, you might write this:

Chapter 6. Regular Expressions and Matching • 138

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

while ($contents =~ /\G(\w{3})(\w{3})(\w{4})/g) {
push @numbers, "($1) $2-$3";

}

Be aware that the \G anchor will begin at the last point in the string where
the previous iteration of the match occurred. If the previous match ended
with a greedy match such as .*, the next match will have less of the string
available to match. Lookahead assertions can also help.

The /e modifier lets you write arbitrary code on the right side of a substitution
operation. If the match succeeds, the regex engine will use the return value
of that code as the substitution value. The earlier global substitution example
could be simpler with code like the following:

appease the Mitchell estate
$sequel =~ s{Scarlett(O'Hara)?}

{
'Mauve' . defined $1

? ' Midway'
: ''

}ge;

Each additional occurrence of the /e modifier will cause another evaluation
of the result of the expression, though only Perl golfers use anything beyond
/ee.

Smart Matching
The smart match operator, ~~, compares two operands and returns a true
value if they match. The type of comparison depends on the type of both
operands. given (Switch Statements on page 48) performs an implicit smart
match.

This feature is experimental. The details of the current design are complex
and unwieldy, and no proposal for simplifying things has gained enough
popular support to warrant the feature’s overhaul. The more complex your
operands, the more likely you are to receive confusing results. Avoid comparing
objects and stick to simple operations between two scalars or one scalar and
one aggregate for the best results.

The smart match operator is an infix operator:

use experimental 'smartmatch';

say 'They match (somehow)' if $l_operand ~~ $r_operand;

The type of comparison generally depends first on the type of the right operand
and then on the left operand. For example, if the right operand is a scalar

report erratum • discuss

Smart Matching • 139

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

with a numeric component, the comparison will use numeric equality. If the
right operand is a regex, the comparison will use a grep or a pattern match.
If the right operand is an array, the comparison will perform a grep or a
recursive smart match. If the right operand is a hash, the comparison will
check the existence of one or more keys. A large and intimidating chart in
perldoc perlsyn gives far more details about all the comparisons smart match
can perform.

These examples are deliberately simple, because smart match can be confus-
ing:

use experimental 'smartmatch';

my ($x, $y) = (10, 20);
say 'Not equal numerically' unless $x ~~ $y;

my $z = '10 little endians';
say 'Equal numeric-ishally' if $x ~~ $z;

my $needle = qr/needle/;

say 'Pattern match' if 'needle' ~~ $needle;
say 'Grep through array' if @haystack ~~ $needle;
say 'Grep through hash keys' if %hayhash ~~ $needle;
say 'Grep through array' if $needle ~~ @haystack;

say 'Array elements exist as hash keys' if %hayhash ~~ @haystack;
say 'Smart match elements' if @straw ~~ @haystack;
say 'Grep through hash keys' if $needle ~~ %hayhash;
say 'Array elements exist as hash keys' if @haystack ~~ %hayhash;

say 'Hash keys identical' if %hayhash ~~ %haymap;

Smart match works even if one operand is a reference to the given data type:

say 'Hash keys identical' if %hayhash ~~ \%hayhash;

It’s difficult to recommend the use of smart match except in the simplest
circumstances, but it can be useful when you have a literal string or number
to match against a variable.

Chapter 6. Regular Expressions and Matching • 140

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CHAPTER 7

Objects
Every large program has several levels of design. At the bottom, you have
specific details about the problem you’re solving. At the top levels, you have
to organize the code so it makes sense. Your only hope to manage this com-
plexity is to exploit abstraction (treating similar things similarly) and encap-
sulation (grouping related details together).

Functions alone are insufficient for large problems. Several techniques group
functions into units of related behaviors; you’ve already seen higher-order
functions. Another popular technique is object orientation (OO), or object ori-
ented programming (OOP), where programs work with objects—discrete, unique
entities with their own identities.

Moose
Perl’s default object system is minimal but flexible. Its syntax is a little clunky,
and it exposes how an object system works. You can build great things on
top of it, but it doesn’t give you what many other languages do by default.

Moose is a complete object system for Perl. It’s a complete distribution available
from the CPAN—not a part of the core language but worth installing and using
regardless. Moose offers both a simpler way to use an object system and
advanced features of languages such as Smalltalk and Common Lisp.

Moose objects work with plain-vanilla Perl. Within your programs, you can
mix and match objects written with Perl’s default object system and Moose.

Moose Documentation

See Moose::Manual on the CPAN for comprehensive Moose documen-
tation.

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Classes
A Moose object is a concrete instance of a class, which is a template
describing data and behavior specific to the object. A class generally belongs
to a package (Packages on page 68), which provides its name:

package Cat {
use Moose;

}

This Cat class appears to do nothing, but that’s all Moose needs to make a
class. You can create objects (or instances) of the Cat class with this syntax:

my $brad = Cat->new;
my $jack = Cat->new;

In the same way that this arrow operator dereferences a reference, it calls a
method on Cat.

Methods
A method is a function associated with a class. In the same way that a function
belongs to a namespace, a method belongs to a class.

When you call a method, you do so with an invocant. When you call new() on
Cat, the name of the class, Cat, is new()’s invocant. Think of this as sending a
message to a class: “do whatever new() does.” In this case, calling the new()
method—sending the new message—returns a new object of the Cat class.

When you call a method on an object, that object is the invocant:

my $choco = Cat->new;
$choco->sleep_on_keyboard;

A method’s first argument is its invocant ($self, by convention). Suppose a Cat
can meow():

package Cat {
use Moose;

sub meow {
my $self = shift;
say 'Meow!';

}
}

Now any Cat instance can wake you for its early morning feeding:

the cat always meows three times at 6 am
my $fuzzy_alarm = Cat->new;
$fuzzy_alarm->meow for 1 .. 3;

Chapter 7. Objects • 142

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Every object can have its own distinct data. Methods that read or write the
data of their invocants are instance methods; they depend on the presence of
an appropriate invocant to work correctly. Methods (such as meow()) that don’t
access instance data are class methods. You may invoke class methods on
classes and class and instance methods on instances, but you cannot invoke
instance methods on classes.

Class methods are effectively namespaced global functions. Without access
to instance data, they have few advantages over namespaced functions. Most
OO code uses instance methods to read and write instance data.

Constructors, which create instances, are class methods. When you declare
a Moose class, Moose provides a default constructor named new().

Attributes
Every Perl object is unique. Objects can contain private data associated with
each unique object—often called attributes, instance data, or object state.
You define an attribute by declaring it as part of the class:

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
}

Moose exports the has() function for you to use to declare an attribute. In
English, this code reads “Cat objects have a name attribute. It’s read-only, and
it’s a string.” The first argument, 'name', is the attribute’s name. The is => 'ro'
pair of arguments declares that this attribute is read only, so you cannot
modify the attribute’s value after you’ve set it. Finally, the isa => 'Str' pair
declares that the value of this attribute can only be a String.

From this code Moose creates an accessor method named name() and allows
you to pass a name parameter to Cat’s constructor:

for my $name (qw(Tuxie Petunia Daisy)) {
my $cat = Cat->new(name => $name);
say "Created a cat for ", $cat->name;

}

Moose’s uses parentheses to separate attribute names and characteristics:

has 'name' => (is => 'ro', isa => 'Str');

This is equivalent to the following:

has('name', 'is', 'ro', 'isa', 'Str');

report erratum • discuss

Moose • 143

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Moose’s approach works nicely for complex declarations:

has 'name' => (
is => 'ro',
isa => 'Str',

advanced Moose options; perldoc Moose
init_arg => undef,
lazy_build => 1,

);

But this book prefers a low-punctuation approach for simple declarations.
Choose the style that offers you the most clarity.

When an attribute declaration has a type, Moose will attempt to validate all
values assigned to that attribute. Sometimes this strictness is invaluable.
While Moose will complain if you try to set name to a value that isn’t a string,
attributes don’t require types. In that case, anything goes:

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'age', is => 'ro';

}

my $invalid = Cat->new(name => 'bizarre', age => 'purple');

If you mark an attribute as readable and writable (with is => rw), Moose will
create a mutator method that can change that attribute’s value:

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'age', is => 'ro', isa => 'Int';
has 'diet', is => 'rw';

}

my $fat = Cat->new(name => 'Fatty',
age => 8,
diet => 'Sea Treats');

say $fat->name, ' eats ', $fat->diet;

$fat->diet('Low Sodium Kitty Lo Mein');
say $fat->name, ' now eats ', $fat->diet;

An ro accessor used as a mutator will throw the exception Cannot assign a value
to a read-only accessor at

Chapter 7. Objects • 144

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Using ro or rw is a matter of design, convenience, and purity. Moose enforces
no single philosophy here. Some people suggest making all instance data ro
such that you must pass instance data into the constructor (Immutability on
page 164). In the Cat example, age() might still be an accessor, but the construc-
tor could take the year of the cat’s birth and calculate the age itself based on
the current year. This approach consolidates validation code and ensures
that all objects have valid data after creation.

This illustrates a subtle but important principle of object orientation. An
object contains related data and can perform behaviors with and on that data.
A class describes that data and those behaviors. You can have multiple
independent objects with separate instance data and treat all of those objects
the same way; they will behave differently depending on their instance data.

Encapsulation
Moose allows you to declare which attributes class instances possess (a cat
has a name) as well as the attributes of those attributes (you can name a cat
once and thereafter its name cannot change). Moose itself decides how to
store those attributes—you access them through accessors. This is encapsu-
lation: hiding the internal details of an object from external users of that
object.

Consider the aforementioned idea to change how Cats manage their ages by
passing in the year of the cat’s birth and calculating the age as needed:

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw';
has 'birth_year', is => 'ro', isa => 'Int';

sub age {
my $self = shift;
my $year = (localtime)[5] + 1900;

return $year - $self->birth_year;
}

}

While the syntax for creating Cat objects has changed, the syntax for using
Cat objects has not. Outside of Cat, age() behaves as it always has. How it works
is a detail hidden inside the Cat class.

This change offers another advantage; a default attribute value will let users
construct a new Cat object without providing a birth year:

report erratum • discuss

Moose • 145

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw', isa => 'Str';

has 'birth_year',
is => 'ro',
isa => 'Int',
default => sub { (localtime)[5] + 1900 };

}

The default keyword on an attribute uses a function reference (or a literal string
or number) that returns the default value for that attribute when constructing
a new object. If the code creating an object passes no constructor value for
that attribute, the object gets the default value:

my $kitten = Cat->new(name => 'Hugo');

And that kitten will have an age of 0 until next year.

Compatibility and APIs

Retain the old syntax for creating Cat objects by customizing the
generated Cat constructor to allow passing an age parameter. Cal-
culate birth_year from that. See perldoc Moose::Manual::Attributes.

Polymorphism

The real power of object orientation goes beyond classes and encapsulation.
A well-designed OO program can manage many types of data. When well-
designed classes encapsulate specific details of objects into the appropriate
places, something curious happens: the code often becomes less specific.

Moving the details of what the program knows about individual Cats (the
attributes) and what the program knows that Cats can do (the methods) into
the Cat class means that code that deals with Cat instances can happily ignore
how Cat does what it does.

Consider a function that displays details of an object:

sub show_vital_stats {
my $object = shift;
say 'My name is ', $object->name;
say 'I am ', $object->age;
say 'I eat ', $object->diet;

}

Chapter 7. Objects • 146

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

This function obviously works if you pass it a Cat object. It will also do the
right thing for any object with the appropriate three accessors, no matter
how that object provides those accessors and no matter what kind of object
it is—Cat, Caterpillar, or Catbird—or even if the class uses Moose at all.
show_vital_stats() cares that an invocant is valid only in that it supports three
methods, name(), age(), and diet(), which take no arguments and each return
something that can concatenate in a string context. Your code may have a
hundred different classes with no obvious relationship among them, but they
will all work with this function if they support the behavior it expects.

This property is polymorphism: you can substitute an object of one class for
an object of another class if they provide the same external interface.

Duck Typing

Some languages and environments require you to imply or declare
a formal relationship between two classes before allowing a pro-
gram to substitute instances for each other. Perl makes no such
requirement. You may treat any two instances with methods of
the same name as equivalent. Some people call this duck typing,
arguing that any object that can quack() is sufficiently duck-like
that you can treat it as a duck.

Without object polymorphism, enumerating a zoo’s worth of animals would
be tedious. Similarly, you may already start to see how calculating the age of
an ocelot or octopus should be the same as calculating the age of a Cat. Hold
that thought.

Of course, the mere existence of a method called name() or age() does not by
itself imply the behavior of that object. A Dog object may have an age(), which
is an accessor such that you can discover $rodney is 13 but $lucky is 8. A Cheese
object may have an age() method that lets you control how long to store
$cheddar to sharpen it. age() may be an accessor in one class but not in another:

how old is the cat?
my $years = $zeppie->age;

store the cheese in the warehouse for six months
$cheese->age;

Sometimes it’s useful to know what an object does and what that means.

report erratum • discuss

Moose • 147

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Roles
A role is a named collection of behavior and state.1 Whereas a class organizes
behaviors and state into a template for objects, a role organizes a named
collection of behaviors and state. You can instantiate a class but not a role.
A role is something a class does.

Given an Animal that has an age and a Cheese that can age, one difference may
be that Animal does the LivingBeing role, while Cheese does the Storable role:

package LivingBeing {
use Moose::Role;
requires qw(name age diet);

}

The requires keyword provided by Moose::Role allows you to list methods that
this role requires of its composing classes. Anything that performs this role
must supply the name(), age(), and diet() methods. The Cat class must declare
that it performs the role:

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw', isa => 'Str';

has 'birth_year',
is => 'ro',
isa => 'Int',
default => sub { (localtime)[5] + 1900 };

with 'LivingBeing';

sub age { ... }
}

The with line causes Moose to compose the LivingBeing role into the Cat class.
Composition ensures all of the attributes and methods of the role are part of
the class. LivingBeing requires any composing class to provide methods named
name(), age(), and diet(). Cat satisfies these constraints. If LivingBeing were composed
into a class that didn’t provide them, Moose would throw an exception.

Now all Cat instances will return a true value when queried if they provide the
LivingBeing role. Cheese objects should not:

say 'Alive!' if $fluffy->DOES('LivingBeing');
say 'Moldy!' if $cheese->DOES('LivingBeing');

1. Many of the ideas come from Smalltalk traits: http://scg.unibe.ch/research/traits

Chapter 7. Objects • 148

report erratum • discussPrepared exclusively for Sandi Frank

http://scg.unibe.ch/research/traits
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

This design technique separates the capabilities of classes and objects from
the implementation of those classes and objects. As implied earlier, the birth
year calculation behavior of the Cat class could itself be a role:

package CalculateAge::From::BirthYear {
use Moose::Role;

has 'birth_year',
is => 'ro',
isa => 'Int',
default => sub { (localtime)[5] + 1900 };

sub age {
my $self = shift;
my $year = (localtime)[5] + 1900;

return $year - $self->birth_year;
}

}

Extracting this role from Cat makes the useful behavior available to other
classes. Now Cat can compose both roles:

package Cat {
use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw';

with 'LivingBeing', 'CalculateAge::From::BirthYear';
}

The age() method of CalculateAge::From::BirthYear satisfies the requirement of the
LivingBeing role. Extracting the CalculateAge::From::BirthYear role has only changed
the details of how Cat calculates an age. It’s still a LivingBeing. Cat can choose
to implement its own age or get it from somewhere else. All that matters is
that it provides an age() that satisfies the LivingBeing constraint.

While polymorphism means that you can treat multiple objects with the same
behavior in the same way, allomorphism means that an object may implement
the same behavior in multiple ways. Pervasive allomorphism can reduce the
size of your classes and increase the amount of code shared between them.
It also allows you to name specific and discrete collections of behaviors—very
useful for testing for capabilities instead of implementations.

report erratum • discuss

Moose • 149

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Roles and DOES()

When you compose a role into a class, the class and its instances will return
a true value when you call DOES() on them:

say 'This Cat is alive!' if $kitten->DOES('LivingBeing');

Order Matters!

The with keyword used to apply roles to a class must occur after
attribute declaration so that composition can identify any generat-
ed accessor methods. This is a side effect of the implementation
of Moose and not an intrinsic feature of roles.

Inheritance
Perl’s object system supports inheritance, which establishes a parent and
child relationship between two classes such that a child specializes its parent.
The child class behaves the same way as its parent—it has the same number
and types of attributes and can use the same methods. It may have additional
data and behavior, but you may substitute any instance of a child where code
expects its parent. In one sense, a subclass provides the role implied by the
existence of its parent class.

Consider a LightSource class that provides two public attributes (enabled and
candle_power) and two methods (light and extinguish):

package LightSource {
use Moose;

has 'candle_power', is => 'ro',
isa => 'Int',
default => 1;

has 'enabled', is => 'ro',
isa => 'Bool',
default => 0,
writer => '_set_enabled';

sub light {
my $self = shift;
$self->_set_enabled(1);

}

sub extinguish {
my $self = shift;
$self->_set_enabled(0);

}
}

Chapter 7. Objects • 150

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Note that enabled’s writer option creates a private accessor usable within the
class to set the value.

Roles versus Inheritance

Should you use roles or inheritance? Roles provide composition-
time safety, better type checking, better factoring of code, and
finer-grained control over names and behaviors, but inheritance
is more familiar to experienced developers of other languages. Use
inheritance when one class truly extends another. Use a role when
a class needs additional behavior, especially when that behavior
has a meaningful name.

Roles compare favorably to other design techniques such as mixins,
multiple inheritance, and monkeypatching.2

Inheritance and Attributes

A subclass of LightSource could define an industrial-strength super candle with
a hundred times the luminance:

package SuperCandle {
use Moose;

extends 'LightSource';

has '+candle_power', default => 100;
}

extends takes a list of class names to use as parents of the current class. If
that were the only line in this class, SuperCandle objects would behave in the
same ways as LightSource objects. A SuperCandle instance would have both the
candle_power and enabled attributes as well as the light() and extinguish() methods.

The + at the start of an attribute name (such as candle_power) indicates that
the current class does something special with that attribute. Here the super
candle overrides the default value of the light source, so any new SuperCandle
created has a light value of 100 regular candles.

When you invoke light() or extinguish() on a SuperCandle object, Perl will look in
the SuperCandle class for the method. If there’s no method by that name in the
child class, Perl will look at the parent class, then grandparent, and so on.
In this case, those methods are in the LightSource class.

Attribute inheritance works similarly (see perldoc Class::MOP).

2. http://www.modernperlbooks.com/mt/2009/04/the-why-of-perl-roles.html

report erratum • discuss

Moose • 151

Prepared exclusively for Sandi Frank

http://www.modernperlbooks.com/mt/2009/04/the-why-of-perl-roles.html
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Method Dispatch Order

Perl’s dispatch strategy controls how Perl selects the appropriate method to
run for a method call. As you may have gathered from roles and polymorphism,
much of OO’s power comes from method dispatch.

Method dispatch order (or method resolution order or MRO) is obvious for single-
parent classes. Look in the object’s class, then its parent, and so on until you
find the method—or run out of parents. Classes that inherit from multiple
parents (multiple inheritance), such as a Hovercraft, which extends both Boat
and Car, require trickier dispatch. Reasoning about multiple inheritance is
complex, so avoid multiple inheritance when possible.

Perl uses a depth-first method resolution strategy. It searches the class of
the first named parent and all of that parent’s parents recursively before
searching the classes of the current class’s immediate parents. The mro
pragma (Pragmas on page 171) provides alternate strategies, including the C3
MRO strategy, which searches a given class’s immediate parents before
searching any of their parents.

See perldoc mro for more details.

Inheritance and Methods

As with attributes, subclasses may override methods. Imagine a light that
you cannot extinguish:

package Glowstick {
use Moose;

extends 'LightSource';

sub extinguish {}
}

Calling extinguish() on a glowstick does nothing, even though LightSource’s method
does something. Method dispatch will find the subclass’s method. You may
not have meant to do this. When you do, use Moose’s override to express your
intention clearly.

Within an overridden method, Moose’s super() allows you to call the overridden
method:

package LightSource::Cranky {
use Carp 'carp';
use Moose;

extends 'LightSource';

Chapter 7. Objects • 152

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

override light => sub {
my $self = shift;

carp "Can't light a lit LightSource!" if $self->enabled;

super();
};

override extinguish => sub {
my $self = shift;

carp "Can't extinguish unlit LightSource!" unless $self->enabled;

super();
};

}

This subclass adds a warning when trying to light or extinguish a light source
that already has the current state. The super() function dispatches to the
nearest parent’s implementation of the current method, per the normal Perl
method resolution order. (See perldoc Moose::Manual::MethodModifiers for more dis-
patch options.)

Inheritance and isa()

Perl’s isa() method returns true if its invocant is or extends a named class.
That invocant may be the name of a class or an instance of an object:

say 'Looks like a LightSource' if $sconce->isa('LightSource');

say 'Hominidae do not glow' unless $chimpy->isa('LightSource');

Moose and Perl OO
Moose provides many features beyond Perl’s default OO system. Although
you can build everything you get with Moose yourself (Blessed References on
page 155) or cobble it together with a series of CPAN distributions, Moose is
worth using. It’s a coherent whole, with documentation, a mature and attentive
development community, and a history of successful use in important projects.

Moose provides constructors, destructors, accessors, and encapsulation. You
must do the work of declaring what you want, and you get safe and useful
code in return. Moose objects can extend and work with objects from the
vanilla Perl system.

While Moose is not a part of the Perl core, its popularity ensures that it’s
available on many OS distributions. Perl distributions such as Strawberry

report erratum • discuss

Moose • 153

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Perl and ActivePerl also include it. Even though Moose is a CPAN module and
not a core library, its cleanliness and simplicity make it essential to modern
Perl programming.

Moose also allows metaprogramming—manipulating your objects through
Moose itself. If you’ve ever wondered which methods are available on a class
or an object or which attributes an object supports, this information is
available:

my $metaclass = Monkey::Pants->meta;

say 'Monkey::Pants instances have the attributes:';
say $_->name for $metaclass->get_all_attributes;
say 'Monkey::Pants instances support the methods:';
say $_->fully_qualified_name for $metaclass->get_all_methods;

You can even see which classes extend a given class:

my $metaclass = Monkey->meta;

say 'Monkey is the superclass of:';
say $_ for $metaclass->subclasses;

See perldoc Class::MOP::Class for more information about metaclass operations
and perldoc Class::MOP for Moose metaprogramming information.

Moose and its meta-object protocol (or MOP) offers the possibility of a better
syntax for declaring and working with classes and objects in Perl. This is valid
code:

use MooseX::Declare;

role LivingBeing { requires qw(name age diet) }

role CalculateAge::From::BirthYear {
has 'birth_year',

is => 'ro',
isa => 'Int',
default => sub { (localtime)[5] + 1900 };

method age {
return (localtime)[5] + 1900 - $self->birth_year;

}
}

class Cat with LivingBeing with CalculateAge::From::BirthYear {
has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw';

}

Chapter 7. Objects • 154

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The MooseX::Declare CPAN distribution adds the class, role, and method keywords
to reduce the amount of boilerplate necessary to write good object-oriented
code in Perl. Note specifically the declarative nature of this example, as well
as the lack of my $self = shift; in age().

Another good option is Moops, which allows you to write the following:

use Moops;

role LivingBeing {
requires qw(name age diet);

}

role CalculateAge::From::BirthYear :ro {
has 'birth_year',

isa => Int,
default => sub { (localtime)[5] + 1900 };

method age {
return (localtime)[5] + 1900 - $self->birth_year;

}
}

class Cat with LivingBeing with CalculateAge::From::BirthYear :ro {
has 'name', isa => Str;
has 'diet', is => 'rw';

}

The Svelte Alces

Moose isn’t a small library, but it’s powerful. The most popular
alternative is Moo, a slimmer library that’s almost completely
compatible with Moose. Many projects migrate some or all code
to Moo, where speed or memory use is an issue. Start with Moose;
then see if Moo makes sense for you.

Blessed References
Perl’s core object system is deliberately minimal. It has only three rules:

• A class is a package.
• A method is a function.
• A (blessed) reference is an object.

You can build anything else out of those three rules. This minimalism can
be impractical for larger projects—in particular, the possibilities for greater
abstraction through metaprogramming (Code Generation on page 202) are
awkward and limited. Moose (Moose on page 141) is a better choice for modern

report erratum • discuss

Blessed References • 155

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

programs larger than a couple hundred lines, although plenty of legacy code
uses Perl’s default OO.

You’ve seen the first two rules already. The bless built-in associates the name
of a class with a reference. That reference is now a valid invocant. Perl will
perform method dispatch on it.

A constructor is a method that creates and blesses a reference. By convention,
they are named new(). Constructors are also almost always class methods.

bless takes two operands, a reference and a class name, and evaluates to the
reference. The reference may be any valid reference, empty or not. The class
does not have to exist yet. You may even use bless outside a constructor or a
class, but you’d violate encapsulation to expose the details of object construc-
tion outside a constructor. A constructor can be as simple as this:

sub new {
my $class = shift;
bless {}, $class;

}

By design, this constructor receives the class name as the method’s invocant.
You may also hard-code the name of a class at the expense of flexibility. A
parametric constructor—one that relies on the invocant to determine the class
name—allows reuse through inheritance, delegation, or exporting.

The type of reference used is relevant only to how the object stores its own
instance data. It has no other effect on the resulting object. Hash references
are most common, but you can bless any type of reference:

my $array_obj = bless [], $class;
my $scalar_obj = bless \$scalar, $class;
my $func_obj = bless \&some_func, $class;

Moose classes define object attributes declaratively, but Perl’s default OO is
lax. A class representing basketball players that stores jersey number and
position might use a constructor like this:

package Player {
sub new {

my ($class, %attrs) = @_;
bless \%attrs, $class;

}
}

And it might create players with the following:

my $joel = Player->new(number => 10, position => 'center');
my $damian = Player->new(number => 0, position => 'guard');

Chapter 7. Objects • 156

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The class’s methods can access object attributes as hash elements directly:

sub format {
my $self = shift;
return '#' . $self->{number}

. ' plays ' . $self->{position};
}

But so can any other code, so any change to the object’s internal representa-
tion may break other code. Accessor methods are safer:

sub number { return shift->{number} }
sub position { return shift->{position} }

And now you’re starting to write yourself what Moose gives you for free. Better
yet, Moose encourages people to use accessors instead of direct attribute
access by generating the accessors itself. You won’t see them in your code.
Goodbye, temptation.

Method Lookup and Inheritance
Given a blessed reference, a method call of the form

my $number = $joel->number;

looks up the name of the class associated with the blessed reference $joel—in
this case, Player. Next, Perl looks for a function named number() in Player.
(Remember that Perl makes no distinction between functions in a namespace
and methods.) If no such function exists and if Player extends a parent class,
Perl looks in the parent class (and so on and so on) until it finds a number().
If Perl finds number(), it calls that method with $joel as an invocant. You’ve seen
this before with Moose; it works the same way here.

Keeping Namespaces Clean

The namespace::autoclean CPAN module can help avoid unintentional
collisions between imported functions and methods.

Moose provides extends to track inheritance relationships, but Perl uses a
package global variable named @ISA. The method dispatcher looks in each
class’s @ISA to find the names of its parent classes. If InjuredPlayer extends Player,
you might write this:

package InjuredPlayer {
@InjuredPlayer::ISA = 'Player';

}

The parent pragma (Pragmas on page 171) is cleaner:

report erratum • discuss

Blessed References • 157

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

package InjuredPlayer {
use parent 'Player';

}

Moose has its own metamodel that stores extended inheritance information.
This allows Moose to provide additional metaprogramming opportunities.

You may inherit from multiple parent classes:

package InjuredPlayer; {
use parent qw(Player Hospital::Patient);

}

However, the caveats about multiple inheritance and method dispatch com-
plexity apply. Consider instead roles (Roles on page 148) or Moose method
modifiers.

AUTOLOAD
If there’s no applicable method in the invocant’s class or any of its superclass-
es, Perl will next look for an AUTOLOAD() function (AUTOLOAD on page 119) in
every applicable class according to the selected method resolution order. Perl
will invoke any AUTOLOAD() it finds.

In the case of multiple inheritance, AUTOLOAD() can be very difficult to under-
stand.

Method Overriding and SUPER
As with Moose, you may override methods in basic Perl OO. Unlike Moose,
Perl provides no mechanism for indicating your intent to override a parent’s
method. Worse yet, any function you predeclare, declare, or import into the
child class may silently override a method in the parent class. Even if you
forget to use Moose’s override system, at least it exists. Basic Perl OO offers no
such protection.

To override a parent method in a child class, declare a method of the same
name. Within an overridden method, call the parent method with the SUPER::
dispatch hint:

sub overridden {
my $self = shift;
warn 'Called overridden() in child!';
return $self->SUPER::overridden(@_);

}

The SUPER:: prefix to the method name tells the method dispatcher to dispatch
to an overridden method of the appropriate name. You can provide your own

Chapter 7. Objects • 158

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

arguments to the overridden method, but most code reuses @_. Be careful to
shift off the invocant if you do.

The Brokenness of SUPER::

SUPER:: has a confusing misfeature: it dispatches to the parent of
the package into which the overridden method was compiled. If
you’ve imported this method from another package, Perl will hap-
pily dispatch to the wrong parent. The desire for backward com-
patibility has kept this misfeature in place. The SUPER module from
the CPAN offers a workaround. Moose’s super() doesn’t suffer the
same problem.

Strategies for Coping with Blessed References
Blessed references may seem simultaneously minimal and confusing. Moose
is much easier to use, so use it whenever possible. If you do find yourself
maintaining code that uses blessed references, or if you can’t convince your
team to use Moose in full yet, you can work around some of the problems of
blessed references with a few rules of thumb:

• Don’t mix functions and methods in the same class.

• Use a single .pm file for each class, unless the class is a small, self-con-
tained helper used from a single place.

• Follow Perl standards, such as naming constructors new() and using $self
as the invocant name.

• Use accessor methods pervasively, even within methods in your class. A
module such as Class::Accessor helps to avoid repetitive boilerplate.

• Avoid AUTOLOAD() where possible. If you must use it, use function forward
declarations (Declaring Functions on page 91) to avoid ambiguity.

• Expect that someone, somewhere will eventually need to subclass (or
delegate to or reimplement the interface of) your classes. Make it easier
for them by not assuming details of the internals of your code, by using
the two-argument form of bless, and by breaking your classes into the
smallest responsible units of code.

• Use helper modules such as Role::Tiny to allow better use and reuse.

report erratum • discuss

Blessed References • 159

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Reflection
Reflection (or introspection) is the process of asking a program about itself as
it runs. By treating code as data you can manage code in the same way that
you manage data. That sounds like a truism, but it’s an important insight
into modern programming. It’s also a principle behind code generation (Code
Generation on page 202).

Moose’s Class::MOP (Class::MOP on page 206) simplifies many reflection tasks
for object systems. Several other Perl idioms help you inspect and manipulate
running programs.

Checking That a Module Has Loaded
If you know the name of a module, you can check that Perl believes it has
loaded that module by looking in the %INC hash. When Perl loads code with
use or require, it stores an entry in %INC where the key is the file path of the
module to load and the value is the full path on disk to that module. In other
words, loading Modern::Perl effectively does the following:

$INC{'Modern/Perl.pm'} = '.../lib/site_perl/5.22.1/Modern/Perl.pm';

The details of the path will vary depending on your installation. To test that
Perl has successfully loaded a module, convert the name of the module into
the canonical file form and test for that key’s existence within %INC:

sub module_loaded {
(my $modname = shift) =~ s!::!/!g;
return exists $INC{ $modname . '.pm' };

}

As with @INC, any code anywhere may manipulate %INC. Some modules (such
as Test::MockObject or Test::MockModule) manipulate %INC for good reasons.
Depending on your paranoia level, you may check the path and the expected
contents of the package yourself.

The Class::Load CPAN module’s is_class_loaded() function does all of this for you
without making you manipulate %INC.

Checking That a Package Exists
To check that a package exists somewhere in your program—if some code
somewhere has executed a package directive with a given name—check that
the package inherits from UNIVERSAL. Anything that extends UNIVERSAL must
somehow provide the can() method (whether by inheriting it from UNIVERSAL or

Chapter 7. Objects • 160

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

overriding it). If no such package exists, Perl will throw an exception about
an invalid invocant, so wrap this call in an eval block:

say "$pkg exists" if eval { $pkg->can('can') };

An alternate approach is to grovel through Perl’s symbol tables. You’re on
your own here.

Checking That a Class Exists
Because Perl makes no strong distinction between packages and classes, the
best you can do without Moose is to check that a package of the expected
class name exists. You can check that the package can() provide new(), but
there’s no guarantee that any new() found is either a method or a constructor.

Checking a Module Version Number
Modules don’t have to provide version numbers, but every package inherits
the VERSION() method from the universal parent class UNIVERSAL (The UNIVERSAL
Package on page 199):

my $version = $module->VERSION;

VERSION() returns the given module’s version number, if defined. Otherwise it
returns undef. If the module doesn’t exist, the method will likewise return undef.

Checking That a Function Exists
To check whether a function exists in a package, call can() as a class method
on the package name:

say "$func() exists" if $pkg->can($func);

Perl will throw an exception unless $pkg is a valid invocant; wrap the method
call in an eval block if you have any doubts about its validity. Beware that a
function implemented in terms of AUTOLOAD() (AUTOLOAD on page 119) may
report the wrong answer if the function’s package hasn’t predeclared the
function or overridden can() correctly. This is a bug in the other package.

Use this technique to determine if a module’s import() has imported a function
into the current namespace:

say "$func() imported!" if __PACKAGE__->can($func);

As with checking for the existence of a package, you can root around in
symbol tables yourself, if you have the patience for it.

report erratum • discuss

Reflection • 161

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Checking That a Method Exists
There is no foolproof way for reflection to distinguish between a function or
a method.

Rooting Around in Symbol Tables
A symbol table is a special type of hash where the keys are the names of
package global symbols and the values are typeglobs. A typeglob is an internal
data structure that can contain a scalar, an array, a hash, a filehandle, and
a function—any or all at once.

Access a symbol table as a hash by appending double colons to the name of
the package. For example, the symbol table for the MonkeyGrinder package is
available as %MonkeyGrinder::.

You can test the existence of specific symbol names within a symbol table
with the exists operator (or manipulate the symbol table to add or remove
symbols, if you like). Yet be aware that certain changes to the Perl core have
modified the details of what typeglobs store and when and why.

See the “Symbol Tables” section in perldoc perlmod for more details; then consider
the other techniques explained earlier instead. If you really need to manipulate
symbol tables and typeglobs, use the Package::Stash CPAN module.

Advanced OO Perl
Creating and using objects in Perl with Moose (Moose on page 141) is easy.
Designing good programs is not. It’s as easy to overdesign a program as it is
to underdesign it. Only practical experience can help you understand the
most important design techniques, but several principles can guide you.

Favor Composition over Inheritance
Novice OO designs often overuse inheritance to reuse code and to exploit
polymorphism. The result is a deep class hierarchy with responsibilities
scattered all over the place. Maintaining this code is difficult—who knows
where to add or edit behavior? What happens when code in one place conflicts
with code declared elsewhere?

Inheritance is only one of many tools for OO programmers. It’s not always
the right tool. It’s often the wrong tool. A Car may extend Vehicle::Wheeled (an is-
a relationship), but Car may better contain several Wheel objects as instance
attributes (a has-a relationship).

Chapter 7. Objects • 162

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Decomposing complex classes into smaller, focused entities improves encap-
sulation and reduces the possibility that any one class or role does too much.
Smaller, simpler, and better encapsulated entities are easier to understand,
test, and maintain.

Single Responsibility Principle
When you design your object system, consider the responsibilities of each
entity. For example, an Employee object may represent specific information
about a person’s name, contact information, and other personal data, while
a Job object may represent business responsibilities. Separating these entities
in terms of their responsibilities allows the Employee class to consider only the
problem of managing information specific to who the person is and the Job
class to represent what the person does. (Two Employees may have a Job-sharing
arrangement, for example, or one Employee may have the CFO and the COO
Jobs.)

When each class has a single responsibility, you reduce coupling between
classes and improve the encapsulation of class-specific data and behavior.

Don’t Repeat Yourself
Complexity and duplication complicate development and maintenance. The
DRY (Don’t Repeat Yourself) principle is a reminder to seek out and eliminate
duplication within the system. Duplication exists in data as well as in code.
Instead of repeating configuration information, user data, and other important
artifacts of your system, create a single, canonical representation of that
information from which you can generate the other artifacts.

This principle helps you to find the optimal representation of your system
and its data and reduces the possibility that duplicate information will get
out of sync.

Liskov Substitution Principle
The Liskov substitution principle suggests that you should be able to substi-
tute a specialization of a class or a role for the original without violating the
original’s API. In other words, an object should be as or more general with
regard to what it expects and at least as specific about what it produces as
the object it replaces.

Imagine two classes, Dessert and its child class PecanPie. If the classes follow
the Liskov substitution principle, you can replace every use of Dessert objects

report erratum • discuss

Advanced OO Perl • 163

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

with PecanPie objects in the test suite, and everything should pass. See Reg
Braithwaite’s “IS-STRICTLY-EQUIVALENT-TO-A”3 for more details.

Subtypes and Coercions
Moose allows you to declare and use types and extend them through subtypes
to form ever more specialized descriptions of what your data represents and
how it behaves. These type annotations help verify that the function and
method parameters are correct—or can be coerced into the proper data types.

For example, you may wish to allow people to provide dates to a Ledger entry
as strings while representing them as DateTime instances internally. You can
do this by creating a Date type and adding a coercion from string types. See
Moose::Util::TypeConstraints and MooseX::Types for more information.

Immutability
With a well-designed object, you tell it what to do, not how to do it. If you find
yourself accessing object instance data (even through accessor methods)
outside the object itself, you may have too much access to an object’s internals.

OO novices often treat objects as if they were bundles of records that use
methods to get and set internal values. This simple technique leads to the
unfortunate temptation to spread the object’s responsibilities throughout the
entire system.

You can prevent inappropriate access by making your objects immutable.
Provide the necessary data to their constructors; then disallow any modifica-
tions of this information from outside the class. Expose no methods to mutate
instance data—make all of your public accessors read-only and use internal
attribute writers sparingly. Once you’ve constructed such an object, you know
it’s always in a valid state. You can never modify its data to put it in an invalid
state.

This takes tremendous discipline, but the resulting systems are robust,
testable, and maintainable. Some designs go as far as to prohibit the modifi-
cation of instance data within the class itself.

3. http://weblog.raganwald.com/2008/04/is-strictly-equivalent-to.html.

Chapter 7. Objects • 164

report erratum • discussPrepared exclusively for Sandi Frank

http://weblog.raganwald.com/2008/04/is-strictly-equivalent-to.html
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CHAPTER 8

Style and Efficacy
To program well, we must find the balance between getting the job done on
time and doing the job right. We must balance time, resources, and quality.
Programs have bugs. Programs need maintenance and expansion. Programs
have multiple programmers. A beautiful program that never delivers value is
worthless, but an awful program that cannot be maintained is a risk waiting
to happen.

Skilled programmers understand their constraints and write the right code.

To write Perl well, you must understand the language. You must also cultivate
a sense of good taste for the language and the design of programs. The only
way to do so is to practice—not just writing code but maintaining and reading
good code.

This path has no shortcuts, but it does have guideposts.

Writing Maintainable Perl
Maintainability is the nebulous measurement of how easy it is to understand
and modify a program. Write some code. Come back to it in six months (or
six days). How long does it take you to find and fix a bug or add a feature?
That’s maintainability.

Maintainability doesn’t measure whether you have to look up the syntax for
a built-in or a library function. It doesn’t measure how someone who has
never programmed before will or won’t read your code. Assume you’re talking
to a competent programmer who understands the problem you’re trying to
solve. How much work does she have to put in to understand your code?
What problems will she face in doing so?

To write maintainable software, you need experience solving real problems,
an understanding of the idioms and techniques and style of your programming

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

language, and good taste. You can develop all of these by concentrating on a
few principles:

• Remove duplication. Bugs lurk in sections of repeated and similar
code—when you fixed a bug in one piece of code, did you fix it in others?
When you updated one section, did you update the others?

Well-designed systems have little duplication. They use functions, modules,
objects, and roles to extract duplicate code into distinct components that
accurately model the domain of the problem. The best designs sometimes
allow you to add features by removing code.

• Name entities well. Your code tells a story. Every name you choose for a
variable, function, module, class, and role allows you to clarify or obfuscate
your intent. Choose your names carefully. If you’re having trouble
choosing good names, you may need to rethink your design or study your
problem in more detail.

• Avoid unnecessary cleverness. Concise code is good when it reveals the
intention of the code. Clever code hides your intent behind flashy tricks.
Perl allows you to write the right code at the right time. Choose the most
obvious solution when possible. Experience and good taste will guide you.

Some problems require clever solutions. When this happens, encapsulate
this code behind a simple interface and document your cleverness.

• Embrace simplicity. If everything else is equal, a simpler program is easier
to maintain than a complex program. Simplicity means knowing what’s
most important and doing just that.

Sometimes you need powerful, robust code. Sometimes you need a one-liner.
Simplicity means building only what you need. This is no excuse to avoid
error checking or modularity or validation or security. Simple code can use
advanced features. Simple code can use CPAN modules—and many of them.
Simple code may require work to understand. Yet simple code solves problems
effectively, without unnecessary work.

Writing Idiomatic Perl
Perl borrows liberally from other languages. Perl lets you write the code you
want to write. C programmers often write C-style Perl, just as Java program-
mers write Java-style Perl and Lisp programmers write Lispy Perl. Effective
Perl programmers write Perlish Perl by embracing the language’s idioms:

Chapter 8. Style and Efficacy • 166

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

• Understand community wisdom. Perl programmers often debate techniques
and idioms fiercely. Perl programmers also often share their work, and
not just on the CPAN. Pay attention; there’s not always one and only one
best way to do things. The interesting discussions happen about the trade-
offs between various ideals and styles.

• Follow community norms. Perl is a community of toolsmiths who solve
broad problems, including static code analysis (Perl::Critic), reformatting
(Perl::Tidy), and private distribution systems (CPAN::Mini, Carton, Pinto). Take
advantage of the CPAN infrastructure; follow the CPAN model of writing,
documenting, packaging, testing, and distributing your code.

• Read code. Join a mailing list such as Perl Beginners (http://learn.perl.org/faq/
beginners.html) and otherwise immerse yourself in the community.1 Read
code and try to answer questions—even if you never post your answers,
writing code to solve one problem every workday will teach you an enor-
mous amount very quickly.

CPAN developers, Perl mongers, and mailing list participants have hard-won
experience solving problems in myriad ways. Talk to them. Read their code.
Ask questions. Learn from them and let them guide—and learn from—you.

Writing Effective Perl
Writing maintainable code means designing maintainable code. Good design
comes from good habits:

• Write testable code. Writing an effective test suite (Testing on page 175)
exercises the same design skills as writing effective code. Code is code.
Good tests also give you the confidence to modify a program while keeping
it running correctly.

• Modularize. Enforce encapsulation and abstraction boundaries. Find the
right interfaces between components. Name things well and put them
where they belong. Modularity forces you to think about similarities and
differences and points of communication where your design fits together.
Find the pieces that don’t fit well. Revise your design until they do fit.

• Follow sensible coding standards. Effective guidelines discuss error han-
dling, security, encapsulation, API design, project layout, and other facets
of maintainable code. Excellent guidelines help developers communicate
with each other with code. If you look at a new project and find nothing

1. http://www.perl.org/community.html

report erratum • discuss

Writing Effective Perl • 167

Prepared exclusively for Sandi Frank

http://learn.perl.org/faq/beginners.html
http://learn.perl.org/faq/beginners.html
http://www.perl.org/community.html
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

surprises you, that’s great! Your job is to solve problems with code. Let
your code—and the infrastructure around it—speak clearly.

• Exploit the CPAN. Perl programmers solve problems and then share those
solutions. The CPAN is a force multiplier; search it first for a solution or
partial solution to your problem. Invest time in research to find full or
partial solutions you can reuse. It will pay off.

If you find a bug, report it. Patch it, if possible. Submit a failing test case. Fix
a typo. Ask for a feature. Say “Thank you!” Then, when you’re ready—when
you create something new or fix something old in a reusable way—share your
code.

Exceptions
Good programmers anticipate the unexpected. Files that should exist won’t.
A huge disk that should never fill up will. The network that never goes down
stops responding. The unbreakable database crashes and eats a table.

The unexpected happens.

Perl handles exceptional conditions through exceptions: a dynamically scoped
control flow mechanism designed to raise and handle errors. Robust software
must handle them. If you can recover, great! If you can’t, log the relevant
information and retry.

Throwing Exceptions
Suppose you want to write a log file. If you can’t open the file, something has
gone wrong. Use die to throw an exception (or see The autodie Pragma on page
242):

sub open_log_file {
my $name = shift;
open my $fh, '>>', $name or die "Can't open log to '$name': $!";
return $fh;

}

die() sets the global variable $@ to its operand and immediately exits the current
function without returning anything. This is known as throwing an exception.
A thrown exception will continue up the call stack (Controlled Execution on
page 217) until something catches it. If nothing catches the exception, the
program will exit with an error.

Exception handling uses the same dynamic scope (Dynamic Scope on page
106) as local symbols.

Chapter 8. Style and Efficacy • 168

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Catching Exceptions
Sometimes allowing an exception to end the program is useful. A program
run from a timed process might throw an exception when the error logs are
full, causing an SMS to go out to administrators. Other exceptions might not
be fatal—your program might be able to recover from one. Another might give
you a chance to save the user’s work and exit cleanly.

Use the block form of the eval operator to catch an exception:

log file may not open
my $fh = eval { open_log_file('monkeytown.log') };

If the file open succeeds, $fh will contain the filehandle. If it fails, $fh will remain
undefined and program flow will continue.

The block argument to eval introduces a new scope, both lexical and dynamic.
If open_log_file() called other functions and something eventually threw an
exception, this eval could catch it.

An exception handler is a blunt tool. It will catch all exceptions thrown in its
dynamic scope. To check which exception you’ve caught (or if you’ve caught
an exception at all), check the value of $@. Be sure to localize $@ before you
attempt to catch an exception, because $@ is a global variable:

local $@;

log file may not open
my $fh = eval { open_log_file('monkeytown.log') };

caught exception
if (my $exception = $@) { ... }

Copy $@ to a lexical variable immediately to avoid the possibility of subsequent
code clobbering the global variable $@. You never know what else has used
an eval block elsewhere and reset $@.

$@ usually contains a string describing the exception. Inspect its contents to
see whether you can handle the exception:

if (my $exception = $@) {
die $exception unless $exception =~ /^Can't open logging/;
$fh = log_to_syslog();

}

Rethrow an exception by calling die() again. Pass the existing exception or a
new one as necessary.

report erratum • discuss

Exceptions • 169

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Applying regular expressions to string exceptions can be fragile, because error
messages may change over time. This includes the core exceptions that Perl
itself throws. Instead of throwing an exception as a string, you may use a
reference—even a blessed reference—with die. This allows you to provide much
more information in your exception: line numbers, files, and other debugging
information. Retrieving information from a data structure is much easier than
parsing data out of a string. Catch these exceptions as you would any other
exception.

The CPAN distribution Exception::Class makes creating and using exception
objects easy:

package Zoo::Exceptions {
use Exception::Class

'Zoo::AnimalEscaped',
'Zoo::HandlerEscaped';

}

sub cage_open {
my $self = shift;

Zoo::AnimalEscaped->throw unless $self->contains_animal;
...

}

sub breakroom_open {
my $self = shift;
Zoo::HandlerEscaped->throw unless $self->contains_handler;
...

}

Another fine option is Throwable::Error.

Exception Caveats
Though throwing exceptions is simple, catching them is less so. Using $@
correctly requires you to navigate several subtle risks:

• Unlocalized uses in the same or a nested dynamic scope may modify $@.

• $@ may contain an object that returns a false value in boolean context.

• A signal handler (especially the DIE signal handler) may change $@.

• The destruction of an object during scope exit may call eval and change
$@.

Chapter 8. Style and Efficacy • 170

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Modern Perl has fixed some of these issues. Though they rarely occur, they’re
difficult to diagnose. The Try::Tiny CPAN distribution improves the safety of
exception handling and the syntax:

use Try::Tiny;

my $fh = try { open_log_file('monkeytown.log') }
catch { log_exception($_) };

try replaces eval. The optional catch block executes only when try catches an
exception. catch receives the caught exception as the topic variable $_.

Built-in Exceptions
Perl itself throws several exceptional conditions. perldoc perldiag lists several
“trappable fatal errors.” Some are syntax errors that Perl produces during
failed compilations, but you can catch the others during runtime. The most
interesting are these:

• Using a disallowed key in a locked hash (Locking Hashes on page 66)
• Blessing a nonreference (Blessed References on page 155)
• Calling a method on an invalid invocant (Moose on page 141)
• Failing to find a method of the given name on the invocant
• Using a tainted value in an unsafe fashion (Taint on page 210)
• Modifying a read-only value
• Performing an invalid operation on a reference (References on page 71)

You can also catch exceptions produced by autodie (The autodie Pragma on
page 242) and any lexical warnings promoted to exceptions (Registering Your
Own Warnings on page 184).

Pragmas
Most Perl modules provide new functions or define classes (Moose on page
141). Others, such as strict or warnings, influence the behavior of the language
itself. This second type of module is a pragma. By convention, pragma names
are written in lowercase to differentiate them from other modules.

Pragmas and Scope
Pragmas work by exporting specific behavior or information into the lexical
scopes of their callers. You’ve seen how declaring a lexical variable makes a
symbol name available within a scope. Using a pragma makes its behavior
effective within a scope as well:

report erratum • discuss

Pragmas • 171

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

{
$lexical not visible; strict not in effect
{

use strict;
my $lexical = 'available here';
$lexical is visible; strict is in effect

}
$lexical again invisible; strict not in effect

}

Just as lexical declarations affect inner scopes, pragmas maintain their effects
within inner scopes:

file scope
use strict;

{
inner scope, but strict still in effect
my $inner = 'another lexical';

}

Using Pragmas
use a pragma as you would any other module. Pragmas may take arguments,
such as a minimum version number to use or a list of arguments to change
their behaviors:

require variable declarations, prohibit barewords
use strict qw(subs vars);

rely on the semantics of the 2014 book
use Modern::Perl '2014';

Sometimes you need to disable all or part of those effects within a further
nested lexical scope. The no built-in performs an unimport (Importing on page
97), which reverses some or all effects of a well-behaved pragma. For example,
here’s how to disable the protection of strict when you need to do something
symbolic:

use Modern::Perl; # or use strict;

{
no strict 'refs';
manipulate the symbol table here

}

Useful Pragmas
Perl includes several useful core pragmas:

Chapter 8. Style and Efficacy • 172

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

• The strict pragma enables compiler checking of symbolic references, bare-
word use, and variable declaration.

• The warnings pragma enables optional warnings for deprecated, unintended,
and awkward behaviors.

• The utf8 pragma tells Perl’s parser to understand the source code of the
current file with the UTF-8 encoding.

• The autodie pragma enables automatic error checking of system calls and
built-ins.

• The constant pragma allows you to create compile-time constant values
(but see the CPAN’s Const::Fast for an alternative).

• The vars pragma allows you to declare package global variables, such as
$VERSION or @ISA (Blessed References on page 155).

• The feature pragma allows you to enable and disable newer features of Perl
individually. Where use 5.18; enables all of the Perl 5.18 features and the
strict pragma, use feature ':5.18'; does the same. This pragma is more useful
to disable individual features in a lexical scope.

• The experimental pragma enables or disables experimental features such
as function signatures or postfix dereferencing.

• The less pragma demonstrates how to write a pragma.

As you might suspect from less, you can write your own lexical pragmas in
pure Perl. perldoc perlpragma explains how to do so, while the explanation of $^H
in perldoc perlvar explains how the feature works.

The CPAN has begun to gather non-core pragmas:

• autovivification disables autovivification (Autovivification on page 80).

• indirect prevents the use of indirect invocation (Indirect Objects on page
228).

• autobox enables object-like behavior for Perl’s core types (scalars, references,
arrays, and hashes).

• perl5i combines and enables many experimental language extensions into
a coherent whole.

These tools aren’t widely used yet, but they have their champions. autovivification
and indirect can help you write more correct code. autobox and perl5i are experi-
ments with what Perl might one day become; they’re worth playing with in
small projects.

report erratum • discuss

Pragmas • 173

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CHAPTER 9

Managing Real Programs
You can learn a lot of syntax from a book by writing small programs to solve
the example problems. Writing good code to solve real problems takes more
discipline and understanding. You must learn to manage code. How do you
know that it works? How do you organize it? What makes it robust in the face
of errors? What makes code clean? Clear? Maintainable?

Modern Perl helps you answer all those questions.

Testing
You’ve already tested your code.

If you’ve ever run it, noticed that something wasn’t quite right, made a change,
and then ran it again, you’ve tested your code. Testing is the process of veri-
fying that your software behaves as intended. Effective testing automates that
process. Rather than relying on humans to perform repeated manual checks
perfectly, let the computer do it.

Perl’s tools help you write the right tests.

Test::More
The fundamental unit of testing is a test assertion. Every test assertion is a
simple question with a yes or no answer: does this code behave as I intended?
Any condition you can test in your program can (eventually) become one or
more assertions. A complex program may have thousands of individual con-
ditions. That’s fine. That’s testable. Isolating specific behaviors into individual
assertions helps you debug errors of coding and errors of understanding, and
it makes your code and tests easier to maintain.

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Perl testing begins with the core module Test::More and its ok() function. ok()
takes two parameters, a boolean value and a string that describes the test’s
purpose:

ok 1, 'the number one should be true';
ok 0, '... and zero should not';
ok '', 'the empty string should be false';
ok '!', '... and a non-empty string should not';

done_testing();

The function done_testing() tells Test::More that the program has executed all of
the assertions you expected to run. If the program exited unexpectedly (from
an uncaught exception, a call to exit, or whatever), the test framework will
notify you that something went wrong. Without a mechanism like done_testing(),
how would you know? While this example code is too simple to fail, code that’s
too simple to fail fails far more often than you might expect.

Test::More allows an optional test plan to count the number of individual
assertions you plan to run:

use Test::More tests => 4;

ok 1, 'the number one should be true';
ok 0, '... and zero should not';
ok '', 'the empty string should be false';
ok '!', '... and a non-empty string should not';

The tests argument to Test::More sets the test plan for the program. This is a
safety net. If fewer than four tests ran, something went wrong. If more than
four tests ran, something went wrong. done_testing() is easier, but sometimes
an exact count can be useful (when you want to control the number of
assertions in a loop, for example).

Running Tests
This example test file is a complete Perl program that produces the output
shown:

ok 1 - the number one should be true
not ok 2 - ... and zero should not
Failed test '... and zero should not'
at truth_values.t line 4.
not ok 3 - the empty string should be false
Failed test 'the empty string should be false'
at truth_values.t line 5.
ok 4 - ... and a non-empty string should not
1..4
Looks like you failed 2 tests of 4.

Chapter 9. Managing Real Programs • 176

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

This output uses a test output format called TAP, the Test Anything Protocol.1

Failed TAP tests produce diagnostic messages for debugging purposes.

This program is easy enough to read, but it’s only four assertions. A real
program may have thousands of assertions. In most cases, you want to know
either that everything passed or the specifics of any failures. The core module,
the program prove—built on the core module TAP::Harness—runs tests, interprets
TAP, and displays only the most pertinent information:

$ prove truth_values.t
truth_values.t .. 1/?
Failed test '... and zero should not'
at truth_values.t line 4.

Failed test 'the empty string should be false'
at truth_values.t line 5.
Looks like you failed 2 tests of 4.
truth_values.t .. Dubious, test returned 2 (wstat 512, 0x200)
Failed 2/4 subtests

Test Summary Report

truth_values.t (Wstat: 512 Tests: 4 Failed: 2)

Failed tests: 2-3

That’s a lot of output to display what’s already obvious: the second and third
tests fail because zero and the empty string evaluate to false. Fortunately,
it’s easy to fix those failing tests (Boolean Coercion on page 66):

ok ! 0, '... and zero should not';
ok ! '', 'the empty string should be false';

With those two changes, prove now displays the following:

$ prove truth_values.t
truth_values.t .. ok
All tests successful.

See perldoc prove for other test options, such as running tests in parallel (-j),
automatically adding the relative directory lib/ to Perl’s include path (-l),
recursively running all test files found under t/ (-r t), and running slow tests
first (--state=slow,save).

The Bash shell alias proveall combines many of these options:

alias proveall='prove -j9 --state=slow,save -lr t'

1. http://testanything.org/

report erratum • discuss

Testing • 177

Prepared exclusively for Sandi Frank

http://testanything.org/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Better Comparisons
Even though the heart of all automated testing is the boolean condition “is
this true or false?” reducing everything to that boolean condition is tedious
and produces awkward diagnostics. Test::More provides several other convenient
assertion functions.

The is() function compares two values using Perl’s eq operator. If the values
are equal, the test passes:

is 4, 2 + 2, 'addition should work';
is 'pancake', 100, 'pancakes are numeric';

The first test passes and the second fails with a diagnostic message:

t/is_tests.t .. 1/2
Failed test 'pancakes are numeric'
at t/is_tests.t line 8.
got: 'pancake'
expected: '100'
Looks like you failed 1 test of 2.

Whereas ok() provides only the line number of the failing test, is() displays the
expected and received values.

is() applies implicit scalar context to its values (Prototypes on page 230). This
means, for example, that you can check the number of elements in an array
without explicitly evaluating the array in scalar context, and it’s why you can
omit the parentheses:

my @cousins = qw(Rick Kristen Alex Kaycee Eric Corey);
is @cousins, 6, 'I should have only six cousins';

But some people prefer to write scalar @cousins for the sake of clarity.

Test::More’s corresponding isnt() function compares two values using the ne
operator and passes if they’re not equal. It also provides scalar context to its
operands.

Both is() and isnt() apply string comparisons with the eq and ne operators. This
almost always does the right thing, but for strict numeric comparisons or
complex values such as objects with overloading (Overloading on page 207) or
dual vars (Dualvars on page 68), use the cmp_ok() function. This function takes
the first value to compare, a comparison operator, and the second value to
compare:

cmp_ok 100, '<=', $cur_balance, 'I should have at least $100';
cmp_ok $monkey, '==', $ape, 'Simian numifications should agree';

Chapter 9. Managing Real Programs • 178

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

If you’re concerned about string equality with numeric comparisons—a rea-
sonable concern—then use cmp_ok() instead of is().

Classes and objects provide their own interesting ways to interact with tests.
Test that a class or object extends another class (Inheritance on page 150) with
isa_ok(). isa_ok() provides its own diagnostic message on failure.

my $chimpzilla = RobotMonkey->new;

isa_ok $chimpzilla, 'Robot';
isa_ok $chimpzilla, 'Monkey';

can_ok() verifies that a class or object can perform the requested method (or
methods):

can_ok $chimpzilla, 'eat_banana';
can_ok $chimpzilla, 'transform', 'destroy_tokyo';

The is_deeply() function compares two references to ensure that their contents
are equal:

use Clone;

my $numbers = [4, 8, 15, 16, 23, 42];
my $clonenums = Clone::clone($numbers);

is_deeply $numbers, $clonenums, 'clone() should produce identical items';

If the comparison fails, Test::More will do its best to provide a reasonable diag-
nostic indicating the position of the first inequality between the structures.
See the CPAN modules Test::Differences and Test::Deep for more configurable tests.

Test::More has several other more specialized test functions.

Organizing Tests
CPAN distributions should include a t/ directory containing one or more test
files named with the .t suffix. When you build a distribution, the testing step
runs all of the t/*.t files, summarizes their output, and succeeds or fails based
on the results of the test suite as a whole. Two organization strategies are
popular:

• Each .t file should correspond to a .pm file.
• Each .t file should correspond to a logical feature.

A hybrid approach is the most flexible; one test can verify that all of your
modules compile, while other tests demonstrate that each module behaves
as intended. As your project grows, the second approach is easier to manage.
Keep your test files small and focused and they’ll be easier to maintain.

report erratum • discuss

Testing • 179

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Separate test files can also speed up development. If you’re adding the ability
to breathe fire to your RobotMonkey, you may want to run only the t/robot_mon-
key/breathe_fire.t test file. The feature is working to your satisfaction, run the
entire test suite to verify that local changes have no unintended global effects.

Other Testing Modules
Test::More relies on a testing back end known as Test::Builder, which manages
the test plan and coordinates the test output into TAP. This design allows
multiple test modules to share the same Test::Builder back end. Consequently,
the CPAN has hundreds of test modules available—and they can all work
together in the same program:

• Test::Fatal helps test that your code throws (and does not throw) exceptions
appropriately. You may also encounter Test::Exception.

• Test::MockObject and Test::MockModule allow you to test difficult interfaces by
mocking (emulating behavior to produce controlled results).

• Test::WWW::Mechanize helps test web applications, while Plack::Test,
Plack::Test::Agent, and the subclass Test::WWW::Mechanize::PSGI can do so without
using an external live web server.

• Test::Database provides functions to test the use and abuse of databases.
DBICx::TestDatabase helps test schemas built with DBIx::Class.

• Test::Class offers an alternate mechanism for organizing test suites. It allows
you to create classes in which specific methods group tests. You can
inherit from test classes just as your code classes inherit from each other.
This is an excellent way to reduce duplication in test suites. See Curtis
Poe’s excellent Test::Class series.2 The newer Test::Routine distribution offers
similar possibilities through the use of Moose (Moose on page 141).

• Test::Differences tests strings and data structures for equality and displays
any differences in its diagnostics. Test::LongString adds similar assertions.

• Test::Deep tests the equivalence of nested data structures (Nested Data
Structures on page 78).

• Devel::Cover analyzes the execution of your test suite to report on the amount
of your code your tests actually exercise. In general, the more coverage
the better—although 100% coverage is not always possible, 95% is far
better than 80%.

2. http://www.modernperlbooks.com/mt/2009/03/organizing-test-suites-with-testclass.html

Chapter 9. Managing Real Programs • 180

report erratum • discussPrepared exclusively for Sandi Frank

http://www.modernperlbooks.com/mt/2009/03/organizing-test-suites-with-testclass.html
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

• Test::Most gathers several useful test modules into one parent module. It
saves time and effort.

See the Perl QA project3 for more information about testing in Perl.

Handling Warnings
While there’s more than one way to write a working Perl program, some of
those ways can be confusing, unclear, and even incorrect. Perl’s warnings
system can help you avoid these situations.

Producing Warnings
Use the warn built-in to emit a warning:

warn 'Something went wrong!';

warn prints a list of values to the STDERR filehandle (Input and Output on page
184). Perl will append the filename and line number of the warn call unless the
last element of the list ends in a newline.

The core Carp module extends Perl’s warning mechanisms. Its carp() function
reports a warning from the perspective of the calling code. Given a function
like

use Carp 'carp';

sub only_two_arguments {
my ($lop, $rop) = @_;
carp('Too many arguments provided') if @_ > 2;
...

}

the arity (Arity on page 86) warning will include the filename and line number
of the calling code, not only_two_arguments(). Carp’s cluck() is similar, but it produces
a backtrace of all function calls that led to the current function.

Carp’s verbose mode adds backtraces to all warnings produced by carp() and
croak() (Reporting Errors on page 98) throughout the entire program:

$ perl -MCarp=verbose my_prog.pl

Use Carp when writing modules (Modules on page 192) instead of warn or die.

3. http://qa.perl.org/

report erratum • discuss

Handling Warnings • 181

Prepared exclusively for Sandi Frank

http://qa.perl.org/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Injecting Carp

Sometimes you’ll have to debug code written without the use of
carp() or cluck(). In that case, use the Carp::Always module to add
backtraces to all warn or die calls: perl -MCarp::Always some_program.pl.

Enabling and Disabling Warnings
The venerable -w command-line flag enables warnings throughout the program,
even in external modules written and maintained by other people. It’s all or
nothing—though it can help you if you have the time and energy to eliminate
warnings and potential warnings throughout the entire codebase. This was
the only way to enable warnings in Perl programs for many years.

The modern approach is to use the warnings pragma (or an equivalent such as
use Modern::Perl;). This enables warnings in lexical scopes. If you use warnings in
a scope, you’re indicating that the code should not normally produce warnings.

Global Warnings Flags

The -W flag enables warnings throughout the program unilaterally,
regardless of any use of warnings. The -X flag disables warnings
throughout the program unilaterally. Neither is common.

-w, -W, and -X all affect the value of the global variable $^W. Code written before
the warnings pragma came about in spring 2000 may localize $^W to suppress
certain warnings within a given scope.

Disabling Warning Categories
Use no warnings; with an argument list to disable selective warnings within a
scope. Omitting the argument list disables all warnings within that scope.

perldoc perllexwarn lists all of the warnings categories your version of Perl
understands. Most of them represent truly interesting conditions, but some
may be actively unhelpful in your specific circumstances. For example, the
recursion warning will occur if Perl detects that a function has called itself more
than a hundred times. If you’re confident in your ability to write recursion-
ending conditions, you may disable this warning within the scope of the
recursion—though tail calls may be better (Tail Calls on page 102).

If you’re generating code (Code Generation on page 202) or locally redefining
symbols, you may wish to disable the redefine warnings.

Some experienced Perl hackers disable the uninitialized value warnings in string-
processing code that concatenates values from many sources. If you’re careful

Chapter 9. Managing Real Programs • 182

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

about initializing your variables, you may never need to disable this warning,
but sometimes the warning gets in the way of writing concise code in your
local style.

Making Warnings Fatal
If your project considers warnings as onerous as errors, you can make them
fatal. Here’s how to promote all warnings into exceptions within a lexical
scope:

use warnings FATAL => 'all';

You may also make specific categories of warnings fatal, such as the use of
deprecated constructs:

use warnings FATAL => 'deprecated';

With proper discipline, this can produce very robust code—but be cautious.
Many warnings come from conditions that Perl can detect only when your
code is running. If your test suite fails to identify all of the warnings you might
encounter, fatalizing these warnings may cause your program to crash.
Newer versions of Perl often add new warnings. Upgrading to a new version
without careful testing might cause new exceptional conditions. More than
that, any custom warnings you or the libraries you use will also be fatal (
Registering Your Own Warnings on page 184).

If you enable fatal warnings, do so only in code that you control and never in
library code you expect other people to use.

Catching Warnings
If you’re willing to work for it, you can catch warnings as you would exceptions.
The %SIG variable (see perldoc perlvar) contains handlers for out-of-band signals
raised by Perl or your operating system. Assign a function reference to
$SIG{__WARN__} to catch a warning:

{
my $warning;
local $SIG{__WARN__} = sub { $warning .= shift };

do something risky
...

say "Caught warning:\n$warning" if $warning;
}

Within the warning handler, the first argument is the warning’s message.
Admittedly, this technique is less useful than disabling warnings lexically—but

report erratum • discuss

Handling Warnings • 183

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

it can come to good use in test modules such as Test::Warnings from the CPAN,
where the actual text of the warning is important.

%SIG is a global variable, so localize it in the smallest possible scope.

Registering Your Own Warnings
The warnings::register pragma allows you to create your own warnings that users
can enable and disable lexically. From a module, use the pragma:

package Scary::Monkey;

use warnings::register;

This will create a new warnings category named after the package Scary::Monkey.
Enable these warnings with use warnings 'Scary::Monkey' and disable them with no
warnings 'Scary::Monkey'.

Use warnings::enabled() to test if the caller’s lexical scope has enabled a warning
category. Use warnings::warnif() to produce a warning only if warnings are in
effect. For example, to produce a warning in the deprecated category, write:

package Scary::Monkey;

use warnings::register;

sub import {
warnings::warnif('deprecated',

'empty imports from ' . __PACKAGE__ . ' are now deprecated'
) unless @_;

}

See perldoc perllexwarn for more details.

Files
Most programs interact with the real world mostly by reading, writing, and
otherwise manipulating files. Perl began as a tool for system administrators
and is still a language well suited for text processing.

Input and Output
A filehandle represents the current state of one specific channel of input or
output. Every Perl program starts with three standard filehandles, STDIN (the
input to the program), STDOUT (the output from the program), and STDERR (the
error output from the program). By default, everything you print or say goes to
STDOUT, while errors and warnings go to STDERR. This separation of output

Chapter 9. Managing Real Programs • 184

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

allows you to redirect useful output and errors to two different places—an
output file and error logs, for example.

Use the open built-in to initialize a filehandle. To open a file for reading, use:

open my $fh, '<', 'filename' or die "Cannot read '$filename': $!\n";

The first operand is a lexical that will contain the filehandle. The second
operand is the file mode, which determines the type of file operation (reading,
writing, appending, et cetera). The final operand is the name of the file on
which to operate. If the open fails, the die clause will throw an exception, with
the reason for failure in the $! magic variable.

You may open files for writing, appending, reading and writing, and more.
Here are some of the most important file modes:

• <, which opens a file for reading

• >, which opens a file for writing, clobbering existing contents if the file
exists or creating a new file otherwise

• >>, which opens a file for writing, appending to any existing contents or
creating a new file otherwise

• +<, which opens a file for both reading and writing

• -|, which opens a pipe to an external process for reading

• |-, which opens a pipe to an external process for writing

You may also create filehandles that read from or write to plain Perl scalars,
using any existing file mode:

open my $read_fh, '<', \$fake_input;
open my $write_fh, '>', \$captured_output;

do_something_awesome($read_fh, $write_fh);

perldoc perlopentut explains in detail more exotic uses of open, including its ability
to launch and control other processes, as well as the use of sysopen for finer-
grained control over input and output. perldoc perlfaq5 includes working code
for many common IO tasks.

Remember autodie?

Assume the examples in this section have use autodie; enabled so
as to elide explicit error handling. If you choose not to use autodie,
check the return values of all system calls to handle errors
appropriately.

report erratum • discuss

Files • 185

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Unicode, IO Layers, and File Modes

In addition to the file mode, you may add an IO encoding layer, which allows
Perl to encode to or decode from a Unicode encoding. For example, to read a
file written in the UTF-8 encoding, use this:

open my $in_fh, '<:encoding(UTF-8)', $infile;

Or to write to a file using the UTF-8 encoding, use this:

open my $out_fh, '>:encoding(UTF-8)', $outfile;

Two-Argument open
Older code often uses the two-argument form of open(), which jams the file
mode with the name of the file to open:

open my $fh, "> $file" or die "Cannot write to '$file': $!\n";

Perl must extract the file mode from the filename. That’s a risk; anytime Perl
has to guess at what you mean, it may guess incorrectly. Worse, if $file came
from untrusted user input, you have a potential security problem, because
any unexpected characters could change how your program behaves.

The three-argument open() is a safer replacement for this code.

The Many Names of DATA

The special package global DATA filehandle represents the current
file of source code. When Perl finishes compiling a file, it leaves
DATA open and pointing to the end of the compilation unit if the
file has a __DATA__ or __END__ section. Any text that occurs after that
token is available for reading from DATA. The entire file is available
if you use seek to rewind the filehandle. This is useful for short,
self-contained programs. See perldoc perldata for more details.

Reading from Files

Given a filehandle opened for input, read from it with the readline built-in, also
written as <>. A common idiom reads a line at a time in a while() loop:

open my $fh, '<', 'some_file';

while (<$fh>) {
chomp;
say "Read a line '$_'";

}

In scalar context, readline reads a single line of the file and returns it or returns
undef if it has reached the end of file (test that condition with the eof built-in).

Chapter 9. Managing Real Programs • 186

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Each iteration in this example returns the next line or undef. This while idiom
explicitly checks the definedness of the variable used for iteration, so only
the end-of-file condition will end the loop. This idiom is equivalent to the fol-
lowing:

open my $fh, '<', 'some_file';

while (defined($_ = <$fh>)) {
chomp;
say "Read a line '$_'";
last if eof $fh;

}

Why Use while and Not for?

for imposes list context on its operands. When in list context,
readline will read the entire file before processing any of it. while
performs iteration and reads a line at a time. When memory use
is a concern, use while.

Every line read from readline includes the character or characters that mark
the end of a line. In most cases, this is a platform-specific sequence consisting
of a newline (\n), a carriage return (\r), or a combination of the two (\r\n). Use
chomp to remove it.

The cleanest way to read a file line by line in Perl is like this:

open my $fh, '<', $filename;

while (my $line = <$fh>) {
chomp $line;
...

}

Perl assumes that files contain text by default. If you’re reading binary data—a
media file or a compressed file, for example—use binmode before performing
any IO. This will force Perl to treat the file data as pure data, without modifying
it in any way, such as translating \n into the platform-specific newline
sequence. While Unix-like platforms may not always need binmode, portable
programs play it safe (Unicode and Strings on page 27).

Writing to Files

Given a filehandle open for output, print or say to write to the file:

open my $out_fh, '>', 'output_file.txt';

print $out_fh "Here's a line of text\n";
say $out_fh "... and here's another";

report erratum • discuss

Files • 187

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Note the lack of comma between the filehandle and the next operand.

Filehandle Disambiguation

Damian Conway’s Perl Best Practices recommends enclosing the
filehandle in curly braces as a habit. This is necessary to disam-
biguate parsing of a filehandle contained in anything other than
a plain scalar—a filehandle in an array or hash or returned from
an object method—and it won’t hurt anything in the simpler cases.

Both print and say take a list of operands. Perl uses the magic global $, as the
separator between list values. Perl uses any value of $\ as the final argument
to print (but always uses \n as an implicit final argument to say). Remember
that $\ is undef by default. These two examples produce the same result:

my @princes = qw(Corwin Eric Random ...);
local $\ = "\n\n";

prints a list of princes, followed by two newlines
print @princes;

local $\ = '';
print join($,, @princes) . "\n\n";

Closing Files

When you’ve finished working with a file, close its filehandle explicitly or allow
it to go out of scope. Perl will close it for you. The benefit of calling close
explicitly is that you can check for—and recover from—specific errors, such
as running out of space on a storage device or a broken network connection.

As usual, autodie handles these checks for you:

use autodie qw(open close);

open my $fh, '>', $file;

...

close $fh;

Special File-Handling Variables

For every line read, Perl increments the value of the variable $., which serves
as a line counter.

readline uses the current contents of $/ as the line-ending sequence. The value
of this variable defaults to the most appropriate line-ending character sequence
for text files on your current platform. The word line is a misnomer, however.
$/ can contain any sequence of characters (but not a regular expression). This

Chapter 9. Managing Real Programs • 188

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

is useful for highly structured data in which you want to read a record at a
time.

Given a file with records separated by two blank lines, set $/ to \n\n to read a
record at a time. Use chomp on a record read from the file to remove the double-
newline sequence.

Perl buffers its output by default, performing IO only when the amount of
pending output exceeds a threshold. This allows Perl to batch up expensive
IO operations instead of always writing very small amounts of data. Yet
sometimes you want to send data as soon as you have it without waiting for
that buffering—especially if you’re writing a command-line filter connected
to other programs or a line-oriented network service.

The $| variable controls buffering on the currently active output filehandle.
When set to a non-zero value, Perl will flush the output after each write to
the filehandle. When set to a zero value, Perl will use its default buffering
strategy.

Automatic Flushing

Files default to a fully buffered strategy. STDOUT when connected
to an active terminal—but not another program—uses a line-
buffered strategy, where Perl flushes STDOUT every time it encoun-
ters a newline in the output.

Instead of cluttering your code with a global variable, use the autoflush() method
to change the buffering behavior of a lexical filehandle:

open my $fh, '>', 'pecan.log';
$fh->autoflush(1);

You can call any method provided by IO::File on a filehandle. For example, the
input_line_number() and input_record_separator() methods do the job of $. and $/ on
individual filehandles. See the documentation for IO::File, IO::Handle, and
IO::Seekable.

Directories and Paths
Working with directories is similar to working with files, except that you
cannot write to directories. Open a directory handle with the opendir built-in:

opendir my $dirh, '/home/monkeytamer/tasks/';

The readdir built-in reads from a directory. As with readline, you may iterate
over the contents of directories one entry at a time or you may assign every-
thing to an array in one swoop:

report erratum • discuss

Files • 189

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

iteration
while (my $file = readdir $dirh) {

...
}

flatten into a list, assign to array
my @files = readdir $otherdirh;

In a while loop, readdir sets $_:

opendir my $dirh, 'tasks/circus/';

while (readdir $dirh) {
next if /^\./;
say "Found a task $_!";

}

The curious regular expression in this example skips so-called hidden files
on Unix and Unix-like systems, where a leading dot prevents them from
appearing in directory listings by default. It also skips the two special files .
and .. (the current directory and the parent directory, respectively).

The names returned from readdir are relative to the directory itself. (Remember
that an absolute path is a path fully qualified to its filesystem.) If the tasks/
directory contains three files named eat, drink, and be_monkey, readdir will return
eat, drink, and be_monkey instead of tasks/eat, tasks/drink, and tasks/be_monkey.

Close a directory handle with the closedir built-in or by letting it go out of scope.

Manipulating Paths

Perl offers a Unixy view of your filesystem and will interpret Unix-style paths
appropriately for your operating system and filesystem. If you’re using
Microsoft Windows, you can use the path C:/My Documents/Robots/Bender/ just as
easily as you can use the path C:\My Documents\Robots\Caprica Six\.

Even though Perl uses Unix file semantics consistently, cross-platform file
manipulation is much easier with a module. The core File::Spec module family
lets you manipulate file paths safely and portably. It’s a little clunky, but it’s
well documented.

The Path::Class distribution on the CPAN has a nicer interface. Use the dir()
function to create an object representing a directory and the file() function to
create an object representing a file:

use Path::Class;

my $meals = dir('tasks', 'cooking');
my $file = file('tasks', 'health', 'robots.txt');

Chapter 9. Managing Real Programs • 190

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

You can get file objects from directories and vice versa:

my $lunch = $meals->file('veggie_calzone');
my $robots_dir = $robot_list->dir;

You can even open filehandles to directories and files:

my $dir_fh = $dir->open;
my $robots_fh = $robot_list->open('r') or die "Open failed: $!";

Both Path::Class::Dir and Path::Class::File offer further useful behaviors—though
beware that if you use a Path::Class object of some kind with an operator or
function that expects a string containing a file path, you need to stringify the
object yourself. This is a persistent but minor annoyance. (If you find it bur-
densome, try Path::Tiny as an alternative.)

my $contents = read_from_filename("$lunch");

File Manipulation
Besides reading and writing files, you can also manipulate them as you would
directly from a command line or a file manager. The file test operators, collec-
tively called the -X operators, examine file and directory attributes. To test
that a file exists, try this:

say 'Present!' if -e $filename;

The -e operator has a single operand, either the name of a file or a handle to
a file or directory. If the file or directory exists, the expression will evaluate
to a true value. perldoc -f -X lists all other file tests.

-f returns a true value if its operand is a plain file. -d returns a true value if
its operand is a directory. -r returns a true value if the file permissions of its
operand permit reading by the current user. -s returns a true value if its
operand is a non-empty file. Look up the documentation for any of these
operators with perldoc -f -r, for example.

The rename built-in can rename a file or move it between directories. It takes
two operands, the old path of the file and the new path:

rename 'death_star.txt', 'carbon_sink.txt';
rename 'death_star.txt' => 'carbon_sink.txt'; # (if you're stylish)

There’s no core built-in to copy a file, but the core File::Copy module provides
both copy() and move() functions. Use the unlink built-in to remove one or more
files. (The delete built-in deletes an element from a hash, not a file from the
filesystem.) These functions and built-ins all return true values on success
and set $! on error.

report erratum • discuss

Files • 191

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Path::Class also provides convenience methods to remove files completely and
portably as well as to check certain file attributes.

Perl tracks its current working directory. By default, this is the active directory
from where you launched the program. The core Cwd module’s cwd() function
returns the name of the current working directory. The built-in chdir attempts
to change the current working directory. Working from the correct directory
is essential to working with files with relative paths.

The CPAN module File::chdir makes manipulating the current working directory
easier. If you’re a fan of the command line and use pushd and popd, see also
File::pushd.

Modules
You’ve seen functions, classes, and data structure used to organize code.
Perl’s next mechanism for organization and extension is the module. A module
is a package contained in its own file and loadable with use or require. A module
must be valid Perl code. It must end with an expression that evaluates to a
true value so that the Perl parser knows it has loaded and compiled the
module successfully.

There are no other requirements—only strong conventions.

When you load a module, Perl splits the package name on double colons (::)
and turns the components of the package name into a file path. This means
that use StrangeMonkey; causes Perl to search for a file named StrangeMonkey.pm in
every directory in @INC in order, until it finds one or exhausts the list.

Similarly, use StrangeMonkey::Persistence; causes Perl to search for a file named
Persistence.pm in every directory named StrangeMonkey/ present in every directory
in @INC, and so on. use StrangeMonkey::UI::Mobile; causes Perl to search for a relative
file path of StrangeMonkey/UI/Mobile.pm in every directory in @INC.

The resulting file may or may not contain a package declaration matching its
filename—there’s no such technical requirement—but you’ll cause confusion
without that match.

perldoc Tricks

perldoc -l Module::Name will print the full path to the relevant .pm file,
if that file contains documentation in POD form. perldoc -lm Mod-
ule::Name will print the full path to the .pm file. perldoc -m Module::Name
will display the contents of the .pm file.

Chapter 9. Managing Real Programs • 192

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Organizing Code with Modules
Perl doesn’t require you to use modules, packages, or namespaces. You may
put all of your code in a single .pl file or in multiple .pl files you require as nec-
essary. You have the flexibility to manage your code in the most appropriate
way, given your development style, the formality and risk and reward of the
project, your experience, and your comfort with deploying code.

Even so, a project with more than a couple hundred lines of code benefits
from module organization:

• Modules help to enforce a logical separation between distinct entities in
the system.

• Modules provide an API boundary, whether procedural or OO.

• Modules suggest a natural organization of source code.

• The Perl ecosystem has many tools devoted to creating, maintaining,
organizing, and deploying modules and distributions.

• Modules provide a mechanism of code reuse.

Even if you don’t use an object-oriented approach, modeling every distinct
entity or responsibility in your system with its own module keeps related code
together and separate code separate.

Using and Importing
When you load a module with use, Perl loads it from disk and then calls its
import() method with any arguments you provided. That import() method takes
a list of names and exports functions and other symbols into the calling
namespace. This is merely convention; a module may decline to provide an
import(), or its import() may perform other behaviors. Pragmas (Pragmas on page
171) such as strict use arguments to change the behavior of the calling lexical
scope instead of exporting symbols:

use strict;
... calls strict->import()

use File::Spec::Functions 'tmpdir';
... calls File::Spec::Functions->import('tmpdir')

use feature qw(say unicode_strings);
... calls feature->import(qw(say unicode_strings))

report erratum • discuss

Modules • 193

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The no built-in calls a module’s unimport() method, if it exists, passing any
arguments. This is most common with pragmas that introduce or modify
behavior through import():

use strict;
no symbolic references or barewords
variable declaration required

{
no strict 'refs';
symbolic references allowed
strict 'subs' and 'vars' still in effect

}

Both use and no take effect during compilation, such that

use Module::Name qw(list of arguments);

is the same as

BEGIN {
require 'Module/Name.pm';
Module::Name->import(qw(list of arguments));

}

Similarly,

no Module::Name qw(list of arguments);

is the same as

BEGIN {
require 'Module/Name.pm';
Module::Name->unimport(qw(list of arguments));

}

including the require of the module.

Missing Methods Never Missed

If import() or unimport() doesn’t exist in the module, Perl will produce
no error. These methods are truly optional.

You may call import() and unimport() directly, though outside a BEGIN block it
makes little sense to do so; after compilation has completed, the effects of
import() or unimport() may have little effect (given that these methods tend to
modify the compilation process by importing symbols or toggling features).

Portable programs are careful about case even if they don’t have to be.

Chapter 9. Managing Real Programs • 194

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Both use and require are case sensitive. While Perl knows the difference between
strict and Strict, your combination of operating system and filesystem may not.
If you were to write use Strict;, Perl would not find strict.pm on a case-sensitive
filesystem. With a case-insensitive filesystem, Perl would happily load Strict.pm,
but nothing would happen when it tried to call Strict->import(). (strict.pm declares
a package named strict. Strict does not exist and thus has no import() method,
which is not an error.)

Exporting
A module can make package global symbols available to other packages
through a process known as exporting—often by calling import() implicitly or
directly.

The core module Exporter is the standard way to export symbols from a module.
Exporter relies on the presence of package global variables such as @EXPORT_OK
and @EXPORT, which list symbols to export when requested.

Consider a StrangeMonkey::Utilities module, which provides several stand-alone
functions:

package StrangeMonkey::Utilities;

use Exporter 'import';

our @EXPORT_OK = qw(round translate screech);

...

Any other code can now use this module and, optionally, import any or all of
the three exported functions. You may also export variables:

push @EXPORT_OK, qw($spider $saki $squirrel);

You can export symbols by default by listing them in @EXPORT instead of
@EXPORT_OK

our @EXPORT = qw(monkey_dance monkey_sleep);

so that any use StrangeMonkey::Utilities; will import both functions. Be aware that
specifying symbols to import will not import default symbols; you get only
what you request. To load a module without importing any symbols, use an
explicit empty list:

make the module available, but import() nothing
use StrangeMonkey::Utilities ();

report erratum • discuss

Modules • 195

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Regardless of any import lists, you can always call functions in another
package with their fully qualified names:

StrangeMonkey::Utilities::screech();

Simplified Exporting

The CPAN module Sub::Exporter provides a nicer interface to export
functions without using package globals. It also offers more pow-
erful options. However, Exporter can export variables, while
Sub::Exporter exports only functions. The CPAN module Moose::Exporter
offers a powerful mechanism to work with Moose-based systems,
but the learning curve is not shallow.

Distributions
A distribution is a collection of metadata and modules (Modules on page 192)
in a single redistributable, testable, and installable unit. The easiest way to
configure, build, package, test, and install Perl code is to follow the CPAN’s
conventions. These conventions govern how to package a distribution, how
to resolve its dependencies, where to install the code and documentation,
how to verify that it works, how to display documentation, and how to manage
a repository. These guidelines have arisen from the rough consensus of
thousands of contributors working on tens of thousands of projects.

A distribution built to CPAN standards can be tested on several versions of
Perl on several different hardware platforms within a few hours of its
uploading, with errors reported automatically to authors—all without human
intervention. When people talk about CPAN being Perl’s secret weapon, this
is what they mean.

You may choose never to release any of your code as public CPAN distribu-
tions, but you can use CPAN tools and conventions to manage even private
code. The Perl community has built an amazing infrastructure. Take advantage
of it.

Attributes of a Distribution
Besides modules, a distribution includes several files and directories:

• Build.PL or Makefile.PL, a driver program used to configure, build, test, bundle,
and install the distribution.

• MANIFEST, a list of all files contained in the distribution. This helps tools
verify that a bundle is complete.

Chapter 9. Managing Real Programs • 196

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

• META.yml and/or META.json, a file containing metadata about the distribution
and its dependencies.

• README, a description of the distribution, its intent, and its copyright and
licensing information.

• lib/, the directory containing Perl modules.

• t/, a directory containing test files.

• Changes, a human-readable log of every significant change to the distribu-
tion.

A well-formed distribution must contain a unique name and single version
number (often taken from its primary module). Any distribution you download
from the public CPAN should conform to these standards. The public CPANTS
service4 evaluates each uploaded distribution against packaging guidelines
and conventions and recommends improvements. Following the CPANTS
guidelines doesn’t mean the code works, but it does mean that CPAN packag-
ing and installation tools should understand the distribution.

CPAN Tools for Managing Distributions
The Perl core includes several tools to manage distributions:

• CPAN.pm is the official CPAN client. While by default this client installs
distributions from the public CPAN, you can also use your own repository
instead of or in addition to the public repository.

• ExtUtils::MakeMaker is a complex but well-used system of modules used to
package, build, test, and install Perl distributions. It works with Makefile.PL
files.

• Test::More (Testing on page 175) is the basic and most widely used testing
module used to write automated tests for Perl software.

• TAP::Harness and prove (Running Tests on page 176) run tests and interpret
and report their results.

In addition, several non-core CPAN modules make your life easier as a
developer:

• App::cpanminus is a configuration-free CPAN client. It handles the most
common cases, uses little memory, and works quickly.

4. http://cpants.perl.org/

report erratum • discuss

Distributions • 197

Prepared exclusively for Sandi Frank

http://cpants.perl.org/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

• App::perlbrew helps you to manage multiple installations of Perl. Install new
versions of Perl for testing or production or to isolate applications and
their dependencies.

• CPAN::Mini and the cpanmini command allow you to create your own (private)
mirror of the public CPAN. You can inject your own distributions into this
repository and manage which versions of the public modules are available
in your organization.

• Dist::Zilla automates away common distribution tasks. While it uses either
Module::Build or ExtUtils::MakeMaker, it can replace your use of them directly.
See http://dzil.org/ for an interactive tutorial.

• Test::Reporter allows you to report the results of running the automated test
suites of distributions you install, giving their authors more data on any
failures.

• Carton and Pinto are two newer projects that help manage and install
code’s dependencies. Neither is in widespread use yet, but they’re both
under active development.

• Module::Build is an alternative to ExtUtils::MakeMaker, written in pure Perl.
Although it has advantages, it’s not as widely used or maintained.

Designing Distributions
The process of designing a distribution could fill a book (such as Sam Tregar’s
Writing Perl Modules for CPAN), but a few design principles will help you. Start
with a utility such as Module::Starter or Dist::Zilla. The initial cost of learning the
configuration and rules may seem like a steep investment, but the benefit of
having everything set up the right way (and in the case of Dist::Zilla, never going
out of date) relieves you of tedious busywork.

A distribution should follow several non-code guidelines:

• Each distribution performs a single, well-defined purpose, possibly
including gathering several related distributions into a single installable
bundle. Decompose your software into individual distributions to manage
their dependencies appropriately and to respect their encapsulation.

• Each distribution contains a single version number. Version numbers must
always increase. The semantic versioning policy5 is sane and compatible
with Perl’s approach.

5. http://semver.org/

Chapter 9. Managing Real Programs • 198

report erratum • discussPrepared exclusively for Sandi Frank

http://dzil.org/
http://semver.org/
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

• Each distribution provides a well-defined API. A comprehensive automated
test suite can verify that you maintain this API across versions. If you use
a local CPAN mirror to install your own distributions, you can reuse the
CPAN infrastructure for testing distributions and their dependencies. You
get easy access to integration testing across reusable components.

• Distribution tests are useful and repeatable. The CPAN infrastructure
supports automated test reporting. Use it!

• Interfaces are simple and effective. Avoid the use of global symbols and
default exports; allow people to use only what they need. Don’t pollute
their namespaces.

The UNIVERSAL Package
Perl’s built-in UNIVERSAL package is the ancestor of all other packages—it’s the
ultimate parent class in the object-oriented sense (Moose on page 141). UNIVERSAL
provides a few methods for its children to use, inherit, or override.

The VERSION() Method
The VERSION() method returns the value of the $VERSION variable of the invoking
package or class. If you provide a version number as an optional parameter,
the method will throw an exception if the queried $VERSION is not equal to or
greater than the parameter.

Given a HowlerMonkey module of version 1.23, its VERSION() method behaves as
follows:

my $hm = HowlerMonkey->new;

say HowlerMonkey->VERSION; # prints 1.23
say $hm->VERSION; # prints 1.23
say $hm->VERSION(0.0); # prints 1.23
say $hm->VERSION(1.23); # prints 1.23
say $hm->VERSION(2.0); # exception!

There’s little reason to override VERSION().

The DOES() Method
The DOES() method supports the use of roles (Roles on page 148) in programs.
Pass it an invocant and the name of a role, and the method will return true
if the appropriate class somehow does that role through inheritance, delega-
tion, composition, role application, or any other mechanism.

report erratum • discuss

The UNIVERSAL Package • 199

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The default implementation of DOES() falls back to isa(), because inheritance
is one mechanism by which a class may do a role. Given a Cappuchin, its DOES()
method behaves as follows:

say Cappuchin->DOES('Monkey'); # prints 1
say $cappy->DOES('Monkey'); # prints 1
say Cappuchin->DOES('Invertebrate'); # prints 0

Override DOES() if you manually consume a role or otherwise somehow provide
allomorphic equivalence.

The can() Method
The can() method takes a string containing the name of a method or function.
It returns a function reference, if it exists. Otherwise, it returns a false value.
You may call this on a class, an object, or the name of a package.

Given a class named SpiderMonkey with a method named screech, get a reference
to the method with the following:

if (my $meth = SpiderMonkey->can('screech')) {...}

This technique leads to the pattern of checking for a method’s existence before
dispatching to it:

if (my $meth = $sm->can('screech') {
method; not a function
$sm->$meth();

}

Use can() to test if a package implements a specific function or method:

use Class::Load;

die "Couldn't load $module!" unless load_class($module);

if (my $register = $module->can('register')) {
function; not a method
$register->();

}

Module::Pluggable

The CPAN module Class::Load simplifies the work of loading classes
by name. Module::Pluggable makes it easier to build and manage
plugin systems. Get to know both distributions.

Chapter 9. Managing Real Programs • 200

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The isa() Method
The isa() method takes a string containing the name of a class or the name of
a core type (SCALAR, ARRAY, HASH, Regexp, IO, and CODE). Call it as a class method
or an instance method on an object. isa() returns a true value if its invocant
is or derives from the named class, or if the invocant is a blessed reference
to the given type.

Given an object $pepper (a hash reference blessed into the Monkey class, which
inherits from the Mammal class), its isa() method behaves like this:

say $pepper->isa('Monkey'); # prints 1
say $pepper->isa('Mammal'); # prints 1
say $pepper->isa('HASH'); # prints 1
say Monkey->isa('Mammal'); # prints 1

say $pepper->isa('Dolphin'); # prints 0
say $pepper->isa('ARRAY'); # prints 0
say Monkey->isa('HASH'); # prints 0

Any class may override isa(). This can be useful when working with mock
objects (Test::MockObject and Test::MockModule, for example) or with code that does
not use roles (Roles on page 148). Be aware that any class that does override
isa() generally has a good reason for doing so.

Does a Class Exist?

While both UNIVERSAL::isa() and UNIVERSAL::can() are methods (Method-
Function Equivalence on page 234), you may safely use the latter
as a function solely to determine whether a class exists in Perl. If
UNIVERSAL::can($classname, 'can') returns a true value, someone
somewhere has defined a class of the name $classname. That class
may not be usable, but it does exist.

Extending UNIVERSAL
It’s tempting to store other methods in UNIVERSAL to make them available to
all other classes and objects in Perl. Avoid this temptation; this global
behavior can have subtle side effects, especially in code you didn’t write and
don’t maintain.

With that said, occasional abuse of UNIVERSAL for debugging purposes and to
fix improper default behavior may be excusable. For example, Joshua ben
Jore’s UNIVERSAL::ref distribution makes the nearly useless ref() operator usable.
The UNIVERSAL::can and UNIVERSAL::isa distributions can help you debug anti-

report erratum • discuss

The UNIVERSAL Package • 201

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

polymorphism bugs (Method-Function Equivalence on page 234). Perl::Critic can
detect those and other problems.

Outside of very carefully controlled code and very specific, very pragmatic
situations, there’s no reason to put code in UNIVERSAL directly, especially given
the other design alternatives.

Code Generation
Novice programmers write more code than they need to write. They start with
long lists of procedural code and then discover functions, then parameters,
then objects, and—perhaps—higher-order functions and closures.

As you improve your skills, you’ll write less code to solve the same problems.
You’ll use better abstractions. You’ll write more general code. You can reuse
code—and when you can add features by deleting code, you’ll achieve some-
thing great.

Writing programs to write programs for you—metaprogramming or code gen-
eration—allows you to build reusable abstractions. While you can make a
huge mess, you can also build amazing things. Metaprogramming techniques
make Moose possible, for example (Moose on page 141).

The AUTOLOAD technique (AUTOLOAD on page 119) for missing functions and
methods demonstrates this technique in a specific form: Perl’s function and
method dispatch system allows you to control what happens when normal
lookup fails.

eval
The simplest code-generation technique is to build a string containing a
snippet of valid Perl and compile it with the string eval operator. Unlike the
exception-catching block eval operator, string eval compiles the contents of
the string within the current scope, including the current package and lexical
bindings.

A common use for this technique is providing a fallback if you can’t (or don’t
want to) load an optional dependency:

eval { require Monkey::Tracer } or eval 'sub Monkey::Tracer::log {}';

If Monkey::Tracer is not available, this code defines a log() function that will do
nothing. This simple example is deceptive; getting eval right takes effort. You
must handle quoting issues to include variables within your evald code. Add
more complexity to interpolate some variables but not others:

Chapter 9. Managing Real Programs • 202

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

sub generate_accessors {
my ($methname, $attrname) = @_;

eval <<"END_ACCESSOR";
sub get_$methname {

my \$self = shift;
return \$self->{$attrname};

}

sub set_$methname {
my (\$self, \$value) = \@_;
\$self->{$attrname} = \$value;

}
END_ACCESSOR
}

Woe to those who forget a backslash! Good luck convincing your syntax
highlighter what’s happening! Worse yet, each invocation of string eval builds
a new data structure representing the entire code, and compiling code isn’t
free. Yet even with its limitations, this technique is simple and useful.

Parametric Closures
While building accessors and mutators with eval is straightforward, closures
(Closures on page 112) allow you to add parameters to generated code at
compilation time without requiring additional evaluation:

sub generate_accessors {
my $attrname = shift;

my $getter = sub {
my $self = shift;
return $self->{$attrname};

};

my $setter = sub {
my ($self, $value) = @_;
$self->{$attrname} = $value;

};

return $getter, $setter;
}

This code avoids unpleasant quoting issues and compiles each closure only
once. It limits the memory used by sharing the compiled code among all clo-
sure instances. All that differs is the binding to the $attrname lexical. In a long-
running process or a class with a lot of accessors, this technique can be very
useful.

report erratum • discuss

Code Generation • 203

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Installing into symbol tables is reasonably easy, if ugly:

my ($get, $set) = generate_accessors('pie');

no strict 'refs';
*{ 'get_pie' } = $get;
*{ 'set_pie' } = $set;

Think of the asterisk as a typeglob sigil, where a typeglob is Perl jargon for
“symbol table.” Dereferencing a string like this refers to a symbol in the current
symbol table, which is the section of the current namespace that contains
globally accessible symbols such as package globals, functions, and methods.
Assigning a reference to a symbol table entry installs or replaces that entry.
To promote an anonymous function to a method, store that function’s reference
in the symbol table.

Assigning to a symbol table symbol with a string, not a literal variable name,
is a symbolic reference. You must disable strict reference checking for the
operation. Many programs have a subtle bug in similar code, because they
assign and generate in a single line:

no strict 'refs';

*{ $methname } = sub {
subtle bug: strict refs disabled here too

};

This example disables strictures for the outer block as well as the body of the
function itself. Only the assignment violates strict reference checking, so dis-
able strictures for that operation alone:

{
my $sub = sub { ... };

no strict 'refs';
*{ $methname } = $sub;

}

If the name of the method is a string literal in your source code, rather than
the contents of a variable, you can assign to the relevant symbol directly:

{
no warnings 'once';
(*get_pie, *set_pie) = generate_accessors('pie');

}

Assigning directly to the glob doesn’t violate strictures, but mentioning each
glob only once does produce a “used only once” warning you can disable with
the warnings pragma.

Chapter 9. Managing Real Programs • 204

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Symbol Tables Simplified

Use the CPAN module Package::Stash to modify symbol tables for
you.

Compile-Time Manipulation
Unlike code written explicitly as code, code generated through string eval gets
compiled while your program is running. Where you might expect a normal
function to be available throughout the lifetime of your program, a generated
function might not be available when you expect it.

Force Perl to run code—to generate other code—during compilation by
wrapping it in a BEGIN block. When the Perl parser encounters a block labeled
BEGIN, it parses and compiles the entire block and then runs it (unless it has
syntax errors). When the block finishes running, parsing will continue as if
there had been no interruption.

The difference between writing

sub get_age { ... }
sub set_age { ... }

sub get_name { ... }
sub set_name { ... }

sub get_weight { ... }
sub set_weight { ... }

and

sub make_accessors { ... }

BEGIN {
for my $accessor (qw(age name weight)) {

my ($get, $set) = make_accessors($accessor);

no strict 'refs';
*{ 'get_' . $accessor } = $get;
*{ 'set_' . $accessor } = $set;

}
}

is primarily one of maintainability. You could argue for and against either.

Any code in a module outside functions executes when you use the module,
because of the implicit BEGIN Perl adds around the require and import (Importing
on page 97). Any code outside a function but inside the module will execute

report erratum • discuss

Code Generation • 205

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

before the import() call occurs. If you require the module, there’s no implicit BEGIN
block. After parsing finishes, Perl will run code outside the functions.

Beware of the interaction between lexical declaration (the association of a
name with a scope) and lexical assignment. The former happens during
compilation, while the latter occurs at the point of execution. This code has
a subtle bug:

use UNIVERSAL::require;

buggy; do not use
my $wanted_package = 'Monkey::Jetpack';

BEGIN {
$wanted_package->require;
$wanted_package->import;

}

The BEGIN block will execute before the assignment of the string value to
$wanted_package occurs. The result will be an exception from attempting to
invoke the require() method on an undefined value.

The UNIVERSAL::require CPAN distribution adds a require() method to UNIVERSAL.

Class::MOP
Unlike installing function references to populate namespaces and to create
methods, there’s no simple way to create classes dynamically in Perl. Moose
comes to the rescue, with its bundled Class::MOP library. It provides a meta
object protocol—a mechanism for creating and manipulating an object system
by manipulating objects.

Rather than writing your own fragile string eval code or trying to poke into
symbol tables manually, you can manipulate the entities and abstractions of
your program with objects and methods.

Here’s how to create a class:

use Class::MOP;

my $class = Class::MOP::Class->create('Monkey::Wrench');

Add attributes and methods to this class when you create it:

my $class = Class::MOP::Class->create(
'Monkey::Wrench' => (

attributes => [
Class::MOP::Attribute->new('$material'),
Class::MOP::Attribute->new('$color'),

Chapter 9. Managing Real Programs • 206

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

],
methods => {

tighten => sub { ... },
loosen => sub { ... },

},
),

);

Or add them to the metaclass (the object that represents that class) once it’s
created:

$class->add_attribute(
experience => Class::MOP::Attribute->new('$xp')

);

$class->add_method(bash_zombie => sub { ... });

A MOP gives you more than the ability to create new entities as the program
runs. You get to look inside existing (MOP-aware) code. For example, to
determine the characteristics of the class, use the Class::MOP::Class methods:

my @attrs = $class->get_all_attributes;
my @meths = $class->get_all_methods;

Similarly Class::MOP::Attribute and Class::MOP::Method allow you to create, manipulate,
and introspect attributes and methods.

Overloading
Perl isn’t a pervasively object-oriented language. Its core data types (scalars,
arrays, and hashes) are not objects with methods, but you can control the
behavior of your own classes and objects, especially when they undergo
coercion or contextual evaluation. This is overloading.

Overloading is subtle but powerful. Consider how an object behaves in boolean
context. In boolean context, an object will evaluate to a true value unless you
overload boolification. Why would you do this? Suppose you’re using the Null
Object pattern6 to make your own objects appear false in boolean context.

You can overload an object’s behavior for almost every operation or coercion:
stringification, numification, boolification, iteration, invocation, array access,
hash access, arithmetic operations, comparison operations, smart match,
bitwise operations, and even assignment. Stringification, numification, and
boolification are the most important and most common.

6. http://www.c2.com/cgi/wiki?NullObject

report erratum • discuss

Overloading • 207

Prepared exclusively for Sandi Frank

http://www.c2.com/cgi/wiki?NullObject
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Overloading Common Operations
The overload pragma associates functions with overloadable operations. Pass
the pragma argument pairs, where the key is the name of a type of overload
and the value is a function reference. A Null class that overloads boolean
evaluation so that it always evaluates to a false value might resemble the
following:

package Null {
use overload 'bool' => sub { 0 };

...
}

It’s easy to add a stringification:

package Null {
use overload

'bool' => sub { 0 },
'""' => sub { '(null)' };

}

Overriding numification is more complex, because arithmetic operators tend
to be binary ops (Arity on page 86). Given two operands both with overloaded
methods for addition, which overloading should take precedence? The answer
needs to be consistent, easy to explain, and understandable by people who
haven’t read the source code of the implementation.

perldoc overload attempts to explain this in the sections labeled “Calling Conven-
tions for Binary Operations” and “MAGIC AUTOGENERATION,” but the easiest
solution is to overload numification (keyed by '0+') and tell overload to use the
provided overloads as fallbacks:

package Null {
use overload

'bool' => sub { 0 },
'""' => sub { '(null)' },
'0+' => sub { 0 },
fallback => 1;

}

Setting fallback to a true value gives Perl the option to use any other defined
overloads to perform an operation. If that’s not possible, Perl will act as if
there were no overloads in effect. This is often what you want.

Without fallback, Perl will use only the specific overloadings you’ve provided.
If someone tries to perform an operation you haven’t overloaded, Perl will
throw an exception.

Chapter 9. Managing Real Programs • 208

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Overload and Inheritance
Subclasses inherit overloadings from their ancestors. They may override this
behavior in one of two ways. If the parent class defines overloadings in terms
of function references, a child class must do the same to override its parent’s
behavior.

The alternative is to define overloadings in terms of method name. This allows
child classes to customize their behavior by overriding those methods:

package Null {
use overload

'bool' => 'get_bool',
'""' => 'get_string',
'0+' => 'get_num',
fallback => 1;

sub get_bool { 0 }
}

Any child class can do something different for boolification by overriding
get_bool():

package Null::ButTrue {
use parent 'Null';

sub get_bool { 1 }
}

Uses of Overloading
Overloading may seem like a tempting tool to use to produce symbolic
shortcuts for new operations. The IO::All CPAN distribution pushes this idea
to its limit to produce a simple and elegant API. Yet for every brilliant API
refined through the appropriate use of overloading, a dozen more messes
congeal. Sometimes the best code eschews cleverness in favor of simplicity.

Overriding addition, multiplication, and even concatenation on a Matrix class
makes sense because the existing notation for those operations is pervasive.
A new problem domain without that established notation is a poor candidate
for overloading, as is a problem domain where you have to squint to make
Perl’s existing operators match a different notation.

Damian Conway’s Perl Best Practices suggests one other use for overloading:
to prevent the accidental abuse of objects. For example, overloading numifi-
cation to croak() for objects that have no reasonable single numeric represen-
tation can help you find and fix real bugs.

report erratum • discuss

Overloading • 209

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Taint
Some Perl features can help you write secure programs. These tools are no
substitute for careful thought and planning, but they reward caution and
understanding and can help you avoid subtle mistakes.

Taint mode (or taint) is a sticky piece of metadata attached to all data that
comes from outside your program. Any data derived from tainted data is also
tainted. You may use tainted data within your program, but if you use it to
affect the outside world—if you use it insecurely—Perl will throw a fatal
exception.

Using Taint Mode
perldoc perlsec explains taint mode in copious detail.

Launch your program with the -T command-line argument to enable taint
mode. If you use this argument on the #! line of a program, you must run the
program directly. If you run it as perl mytaintedappl.pl and neglect the -T flag, Perl
will exit with an exception—by the time Perl encounters the flag on the #!
line, it’s missed its opportunity to taint the environment data in %ENV, for
example.

Sources of Taint
Taint can come from two places: file input and the program’s operating envi-
ronment. The former is anything you read from a file or collect from users in
the case of web or network programming. The latter includes any command-
line arguments, environment variables, and data from system calls. Even
operations such as reading from a directory handle produce tainted data.

The tainted() function from the core module Scalar::Util returns true if its argument
is tainted:

die 'Oh no! Tainted data!' if Scalar::Util::tainted($sketchy_data);

Removing Taint from Data
To remove taint, you must extract known-good portions of the data with a
regular expression capture. That captured data will be untainted. For example,
if your user input consists of a U.S. telephone number, you can untaint it
with this:

die 'Number still tainted!' unless $number =~ /(\(/d{3}\) \d{3}-\d{4})/;

my $safe_number = $1;

Chapter 9. Managing Real Programs • 210

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The more specific your pattern is about what you allow, the more secure your
program can be. The opposite approach of denying specific items or forms
runs the risk of overlooking something harmful. Far better to disallow some-
thing that’s safe but unexpected than to allow something harmful that appears
safe. Even so, nothing prevents you from writing a capture for the entire
contents of a variable—but in that case, why use taint?

Removing Taint from the Environment
The superglobal %ENV represents the environment variables of the system
where you’re running your program. This data is tainted because forces outside
the program’s control can manipulate values there. Any environment variable
that modifies how Perl or the shell finds files and directories is an attack
vector. A taint-sensitive program should delete several keys from %ENV and
set $ENV{PATH} to a specific and well-secured path:

delete @ENV{ qw(IFS CDPATH ENV BASH_ENV) };
$ENV{PATH} = '/path/to/app/binaries/';

If you don’t set $ENV{PATH} appropriately, you’ll receive messages about its
insecurity. If this environment variable contained the current working direc-
tory, or if it contained relative directories, or if the directories could be modified
by anyone else on the system, a clever attacker could perpetrate mischief.

For similar reasons, @INC doesn’t contain the current working directory under
taint mode. Perl will also ignore the PERL5LIB and PERLLIB environment variables.
Use the lib pragma or the -I flag to perl to add library directories to the program.

Taint Gotchas
Taint mode is all or nothing. It’s either on or off. This sometimes leads people
to use permissive patterns to untaint data and thus gives the illusion of
security. In that case, taint is busywork that provides no real security. Review
your untainting rules carefully.

Unfortunately, not all modules handle tainted data appropriately. CPAN
authors should take this bug more seriously. If you have to make legacy code
taint-safe, consider the use of the -t flag, which enables taint mode but reduces
taint violations from exceptions to warnings. This isn’t a substitute for full
taint mode, but it allows you to secure existing programs without the all-or-
nothing approach of -T.

report erratum • discuss

Taint • 211

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CHAPTER 10

Perl Beyond Syntax
Simple means different things to different people. Effective programmers
understand how Perl’s features interact and combine. Their code takes
advantage of language patterns and idioms. The result of this Perlish thinking
is concise, powerful, fluent, and useful code—and it’s simple when you
understand it.

Idioms
Every language has common patterns of expression, or idioms. The earth
revolves, but we speak of the sun rising or setting. We brag about clever hacks
but cringe at nasty hacks and code smells.

Perl has idioms; they’re both language features and design techniques. They’re
mannerisms and mechanisms that give your code a Perlish accent. You don’t
have to use them to get your job done, but they play to Perl’s strengths.

The Object as $self
Perl’s object system (Moose on page 141) treats the invocant of a method as a
mundane parameter. Regardless of whether you invoke a class or an instance
method, the first element of @_ is always the invocant. By convention, most
Perl code uses $class as the name of the class method invocant and $self as
the name of the object invocant. This convention is strong enough that useful
extensions such as Moops assume you will use $self as the name of object
invocants.

Named Parameters
Perl loves lists. Lists are a fundamental element of Perl. List flattening and
binding let you chain together multiple expressions to manipulate data in
every way possible.

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

While Perl’s argument-passing simplicity (everything flattens into @_) is
occasionally too simple, assigning from @_ in list context allows you to unpack
named parameters as pairs. The fat comma (Declaring Hashes on page 58)
operator turns an ordinary list into an obvious list of pairs of arguments:

make_ice_cream_sundae(
whipped_cream => 1,
sprinkles => 1,
banana => 0,
ice_cream => 'mint chocolate chip',

);

You can unpack these parameters into a hash and treat that hash as if it
were a single argument:

sub make_ice_cream_sundae {
my %args = @_;
my $dessert = get_ice_cream($args{ice_cream});
...

}

Hash or Hash Ref?

Perl Best Practices suggests passing hash references instead. This
allows Perl to perform caller-side validation of the hash reference.
If you pass the wrong number of arguments, you’ll get an error
where you call the function.

This technique works well with import() (Importing on page 97) or other methods;
process as many parameters as you like before slurping the remainder into
a hash:

sub import {
my ($class, %args) = @_;
my $calling_package = caller();
...

}

The Schwartzian Transform
The Schwartzian transform is an elegant demonstration of the pervasive list-
handling idiom borrowed from Lisp. Suppose you have a Perl hash that
associates the names of your co-workers with their phone extensions:

my %extensions = (
'000' => 'Damian',
'002' => 'Wesley',
'042' => 'Robin',
'088' => 'Nic',

);

Chapter 10. Perl Beyond Syntax • 214

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Hash Key Quoting Rules

Fat comma hash key quoting works only on things that look like
barewords. With the leading zero, these keys look like octal num-
bers. Everyone makes this mistake at least once.

To sort this list by name alphabetically, you must sort the hash by its values,
not its keys. Getting the values sorted correctly is easy:

my @sorted_names = sort values %extensions;

But you need an extra step to preserve the association of names and exten-
sions, hence the Schwartzian transform. First, convert the hash into a list of
data structures that will be easier to sort—in this case, two-element anony-
mous arrays:

my @pairs = map { [$_, $extensions{$_}] } keys %extensions;

sort takes this list of anonymous arrays and compares their second elements
(the names) as strings:

my @sorted_pairs = sort { $a->[1] cmp $b->[1] } @pairs;

The block provided to sort receives arguments in two package-scoped (Scope
on page 104) variables: $a and $b. (See perldoc -f sort for an extensive discussion
of the implications of this scoping.) The sort block takes its arguments two at
a time. The first becomes the content of $a and the second the content of $b.
If $a should sort ahead of $b in the results, the block must return -1. If both
values sort to the same position, the block must return 0. Finally, if $a should
sort after $b in the results, the block should return 1. Any other return values
are errors.

Know Your Data

Reversing the hash in place would work if no one had the same
name. This particular data set presents no such problem, but code
defensively.

The cmp operator performs string comparisons and the <=> performs numeric
comparisons. Given @sorted_pairs, a second map operation converts the data
structure to a more usable form:

my @formatted_exts = map { "$_->[1], ext. $_->[0]" } @sorted_pairs;

And now you can print the whole thing:

say for @formatted_exts;

report erratum • discuss

Idioms • 215

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The Schwartzian transformation chains all of these expressions together to
elide those temporary variables:

say for
map { " $_->[1], ext. $_->[0]" }
sort { $a->[1] cmp $b->[1] }
map { [$_ => $extensions{$_}] }
keys %extensions;

Read the expression from right to left, in evaluation order. For each key in
the extensions hash, make a two-item anonymous array containing the key
and the value. Sort that list of anonymous arrays by their second elements,
the hash values. Format a string of output from those sorted arrays.

The Schwartzian transform pipeline of map-sort-map transforms a data structure
into another form easier for sorting and then transforms it back into the first
form—or another form.

While this sorting example is simple, consider the case of calculating a cryp-
tographic hash for a large file. The Schwartzian transform is especially useful
because it effectively caches any expensive calculations by performing them
once in the first-executed map.

Easy File Slurping
local is essential to managing Perl’s magic global variables. You must under-
stand scope (Scope on page 104) to use local effectively—but if you do, you can
use tight and lightweight scopes in interesting ways. For example, you can
slurp files into a scalar in a single expression like this:

my $file = do { local $/; <$fh> };

or
my $file; { local $/; $file = <$fh> };

$/ is the input record separator. localizing it sets its value to undef, pending
assignment. Since the value of the separator is undefined, Perl happily reads
the entire contents of the filehandle in one swoop. Because a do block evaluates
to the value of the last expression evaluated within the block, this evaluates
to the data read from the filehandle: the contents of the file. At the end of the
expression, $/ has reverted to its previous state and $file contains the contents
of the file.

The second example avoids a second copy of the string containing the file’s
contents; it’s not as pretty, but it uses the least amount of memory.

Chapter 10. Perl Beyond Syntax • 216

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

File::Slurper

This useful example is admittedly maddening for people who don’t
understand both local and scoping. The File::Slurper module from the
CPAN is a worthy (and often faster) alternative.

Handling main
Many programs commonly set up several file-scoped lexical variables before
handing off processing to other functions. It’s tempting to use these variables
directly, rather than passing values to and returning values from functions,
especially as programs grow. Unfortunately, these programs may come to rely
on subtleties of what happens during Perl’s compilation process—a variable
you thought would be initialized to a specific value may not get initialized
until much later. Remember that Perl requires no special syntax for creating
closures (Closures on page 112)—you can close over a lexical variable inadver-
tently.

To avoid this, wrap the main code of your program in a single function, main().
Encapsulate your variables to their proper scopes. Then add a single line to
the beginning of your program, after you’ve used all the modules and pragmas
you need:

#!/usr/bin/perl

use Modern::Perl;

exit main(@ARGV);

sub main {
...
successful exit
return 0;

}

sub other_functions { ... }

Calling main() before anything else in the program forces you to be explicit
about initialization and compilation order. Calling exit with main()’s return
value prevents any other bare code from running.

Controlled Execution
The effective difference between a program and a module is in its intended
use. Users invoke programs directly, while programs load modules after exe-
cution has already begun. Yet both modules and programs are merely Perl

report erratum • discuss

Idioms • 217

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

code. Making a module executable is easy. So is making a program behave
like a module (useful for testing parts of an existing program without formally
making a module). All you need to do is to discover how Perl began to execute
a piece of code.

caller’s single optional argument governs the number of call frames (Recursion
on page 100) to look back through. caller(0) reports information about the current
call frame. To allow a module to run correctly as a program or a module, put
all executable code in functions, add a main() function, and write a single line
at the start of the module:

main() unless caller(0);

If there’s no caller for the module, someone invoked it directly as a program
(with perl path/to/Module.pm instead of use Module;).

Improved Caller Inspection

The eighth element of the list returned from caller in list context is
a true value if the call frame represents use or require and undef
otherwise. While that’s more accurate, few people use it.

Postfix Parameter Validation
The CPAN has several modules that help verify the parameters of your func-
tions; Params::Validate and MooseX::Params::Validate are two good options. Simple
validation is easy even without those modules.

Suppose your function takes exactly two arguments. You could write the fol-
lowing:

use Carp 'croak';

sub groom_monkeys {
if (@_ != 2) {

croak 'Can only groom two monkeys!';
}
...

}

But from a linguistic perspective, the consequences are more important than
the check and deserve to be at the start of the expression:

croak 'Can only groom two monkeys!' unless @_ == 2;

This early return technique—especially with postfix conditionals—can simplify
the rest of the code. Each such assertion is effectively a single row in a truth

Chapter 10. Perl Beyond Syntax • 218

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

table. Alternately, function signatures (Real Function Signatures on page 93)
of some kind will handle this case for you.

Regex en Passant
Many Perl idioms rely on the fact that expressions evaluate to values:

say my $ext_num = my $extension = 42;

That clunky code demonstrates how to use the value of one expression in
another expression. This isn’t a new idea; you’ve likely used the return value
of a function in a list or as an argument to another function before. You may
not have realized its implications.

Suppose you want to extract a first name from a first name plus surname
combination with a precompiled regular expression in $first_name_rx:

my ($first_name) = $name =~ /($first_name_rx)/;

In list context, a successful regex match returns a list of all captures (Captur-
ing on page 132, and Perl assigns the first one to $first_name.

To remove all non-word characters to create a useful username for a system
account, you could write this:

(my $normalized_name = $name) =~ tr/A-Za-z//dc;

Nondestructive Substitutions

Newer code can use the nondestructive substitution modifier /r:
my $normalized_name = $name =~ tr/A-Za-z//dcr;.

First, assign the value of $name to $normalized_name. The parentheses change
precedence so that assignment happens first. The assignment expression
evaluates to the variable $normalized_name. That variable becomes the first
operand to the transliteration operator.

This technique works on other in-place modification operators:

my $age = 14;
(my $next_age = $age)++;

say "I am $age, but next year I will be $next_age";

Unary Coercions
Perl’s type system almost always does the right thing when you choose the
correct operators. Use the string concatenation operator and Perl will treat

report erratum • discuss

Idioms • 219

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

both operands as strings. Use the addition operator and Perl will treat both
operands as numeric.

Occasionally you have to give Perl a hint about what you mean with a unary
coercion to force a specific evaluation of a value.

Add zero to treat a value as numeric:

my $numeric_value = 0 + $value;

Double negate a value to treat it as a boolean:

my $boolean_value = !! $value;

Concatenate a value with the empty string to treat it as a string:

my $string_value = '' . $value;

The need for these coercions is vanishingly rare, but it happens. While it may
look like it would be safe to remove a “useless” + 0 from an expression, doing
so may well break the code.

Global Variables
Perl provides several super global variables. They’re not scoped to a package
or file. They’re really, truly global. Unfortunately, any direct or indirect modi-
fications of these variables may change the behavior of other parts of the
program. Experienced Perl hackers have memorized some of them. Few people
have memorized all of them—they’re terse. Only a handful are regularly useful.
perldoc perlvar contains the exhaustive list of these variables.

Managing Super Globals
As Perl evolves, it moves more global behavior into lexical behavior, so that
you can avoid many of these globals. When you must use them, use local in
the smallest possible scope to constrain any modifications. You’re still sus-
ceptible to any changes made to these variables from code you call, but you
reduce the likelihood of surprising code outside your scope. As the easy file-
slurping idiom (Easy File Slurping on page 216) demonstrates, local is often the
right approach:

my $file; { local $/; $file = <$fh> };

The effect of localizing $/ lasts only through the end of the block. There’s a low
chance that any Perl code will run as a result of reading lines from the file-
handle and change the value of $/ within the do block.

Chapter 10. Perl Beyond Syntax • 220

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Not all cases of using super globals are this easy to guard, but this often
works.

Other times you need to read the value of a super global and hope that no
other code has modified it. Catching exceptions with an eval block is suscep-
tible to at least one race condition where DESTROY() methods invoked on lexicals
that have gone out of scope may reset $@:

local $@;

eval { ... };

if (my $exception = $@) { ... }

Copy $@ immediately after catching an exception to preserve its contents. See
also Try::Tiny instead (Exception Caveats on page 170).

English Names
The core English module provides verbose names for punctuation-heavy super
globals. Import them into a namespace with this:

use English '-no_match_vars'; # unnecessary in 5.20 and 5.22

This allows you to use the verbose names documented in perldoc perlvar within
the scope of this pragma.

Three regex-related super globals ($&, $`, and $') used to impose a global per-
formance penalty for all regular expressions within a program. This has been
fixed in Perl 5.20. If you forget the -no_match_vars import, your program will
suffer the penalty even if you don’t explicitly read from those variables. Modern
Perl programs can use the @- variable instead of them.

Useful Super Globals
Most programs can get by with using only a couple of the super globals. You’re
most likely to encounter only a few of these variables.

$/ (or $INPUT_RECORD_SEPARATOR from the English pragma) is a string of zero or
more characters that denotes the end of a record when reading input a record
at a time. By default, this is your platform-specific newline character sequence.
If you undefine this value, Perl will attempt to read the entire file into memory.
If you set this value to a reference to an integer, Perl will try to read that many
bytes per record (so beware of Unicode concerns). If you set this value to an
empty string (''), Perl will read in a paragraph at a time, where a paragraph
is a chunk of text followed by an arbitrary number of newlines.

report erratum • discuss

Global Variables • 221

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

$. ($INPUT_LINE_NUMBER) contains the number of records read from the most
recently accessed filehandle. You can read from this variable, but writing to
it has no effect. Localizing this variable will localize the filehandle to which it
refers. Yes, that’s confusing.

$| ($OUTPUT_AUTOFLUSH) governs whether Perl will flush everything written to the
currently selected filehandle immediately or only when Perl’s buffer is full.
Unbuffered output is useful when writing to a pipe or socket or terminal that
should not block waiting for input. This variable will coerce any values
assigned to it to boolean values.

@ARGV contains the command-line arguments passed to the program.

$! ($ERRNO) is a dualvar (Dualvars on page 68) that contains the result of the
most recent system call. In numeric context, this corresponds to C’s errno value,
where anything other than zero indicates an error. In string context, this
evaluates to the appropriate system error string. Localize this variable before
making a system call (implicitly or explicitly) to avoid overwriting the errno
value for other code elsewhere. Perl’s internals sometimes make system calls,
so the value of this variable can change out from under you. Copy it immedi-
ately after causing a system call for accurate results.

$" ($LIST_SEPARATOR) contains the string used to separate array and list elements
interpolated into a string.

%+ contains named captures from successful regular expression matches (
Named Captures on page 132).

$@ ($EVAL_ERROR) contains the value thrown from the most recent exception (
Catching Exceptions on page 169).

$0 ($PROGRAM_NAME) contains the name of the program currently executing. You
may modify this value on some Unix-like platforms to change the name of
the program as it appears to other programs on the system, such as ps or top.

$$ ($PID) contains the process id of the currently running instance of the pro-
gram as the operating system understands it. This will vary between fork()ed
programs and may vary between threads in the same program.

@INC holds a list of filesystem paths in which Perl will look for files to load
with use or require. See perldoc -f require for other items this array can contain.

%SIG maps OS and low-level Perl signals to function references used to handle
those signals. Trap the standard Ctrl-C interrupt by catching the INT signal,
for example. See perldoc perlipc for more information about signals and signal
handling.

Chapter 10. Perl Beyond Syntax • 222

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Alternatives to Super Globals
IO and exceptions are the worst perpetrators of action at a distance. Use
Try::Tiny (Exception Caveats on page 170) to insulate yourself from the tricky
semantics of proper exception handling. localize and copy the value of $! to
avoid strange behaviors when Perl makes implicit system calls. Use IO::File
and its methods on lexical filehandles (Special File Handling Variables on
page 188) to limit unwanted global changes to IO behavior.

report erratum • discuss

Global Variables • 223

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CHAPTER 11

What to Avoid
Perl is a malleable language. You can write programs in whatever creative,
maintainable, obfuscated, or bizarre fashion you prefer. Good programmers
write code that they want to maintain, but Perl won’t decide for you what you
consider maintainable.

Perl isn’t perfect. Some features are difficult to use correctly. Others seem
great but don’t work all that well. Some have strange edge cases. Knowing
what to avoid in Perl—and when to avoid it—will help you write robust code
that survives the twin tests of time and real users.

Barewords
Perl’s parser understands Perl’s built-ins and operators. It uses sigils to
identify variables and other punctuation to recognize function and method
calls. Yet sometimes the parser has to guess what you mean, especially when
you use a bareword—an identifier without a sigil or other syntactically signif-
icant punctuation.

Good Uses of Barewords
Though the strict pragma (Pragmas on page 171) rightly forbids ambiguous
barewords, some barewords are acceptable.

Bareword Hash Keys

Hash keys in Perl are usually not ambiguous because the parser can identify
them as string keys; pinball in $games{pinball} is obviously a string.

Occasionally this interpretation isn’t what you want, especially when you
intend to evaluate a built-in or a function to produce the hash key. To make
these cases clear, pass arguments to the function, use parentheses, or prepend
a unary plus to force the evaluation of the built-in:

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

the literal 'shift' is the key
my $value = $items{shift};

the value produced by shift is the key
my $value = $items{shift @_}

the function returns the key
my $value = $items{myshift(@_)}

unary plus indicates the builtin shift
my $value = $items{+shift};

Bareword Package Names

Package names are also barewords. If your naming conventions rule that
package names have initial capitals and functions do not, you’ll rarely
encounter naming collisions. Even still, Perl must determine how to parse
Package->method. Does it mean “Call a function named Package() and call method()
on its return value” or “Call a method named method() in the Package names-
pace”? The answer depends on the code Perl has already compiled when it
encounters that method call.

Force the parser to treat Package as a package name by appending the package
separator (::) or make it a literal string:

probably a class method
Package->method;

definitely a class method
Package::->method;

a slightly less ugly class method
'Package'->method;

package separator
my $q = Plack::Request::->new;

unambiguously a string literal
my $q = 'Plack::Request'->new;

Almost no real code does this, but it’s unambiguous, so you should be able
to read it.

Bareword Named Code Blocks

The special named code blocks AUTOLOAD, BEGIN, CHECK, DESTROY, END, INIT, and
UNITCHECK are barewords that declare functions without the sub built-in. You’ve
seen this before (Code Generation on page 202):

Chapter 11. What to Avoid • 226

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

package Monkey::Butler;

BEGIN { initialize_simians(__PACKAGE__) }

sub AUTOLOAD { ... }

While you can declare AUTOLOAD() without using sub, few people do.

Bareword Constants

Constants declared with the constant pragma are usable as barewords:

don't use this for real authentication
use constant NAME => 'Bucky';
use constant PASSWORD => '|38fish!head74|';

return unless $name eq NAME && $pass eq PASSWORD;

These constants do not interpolate in double-quoted strings.

Constants are a special case of prototyped functions (Prototypes on page 230).
When you predeclare a function with a prototype, the parser will treat all
subsequent uses of that bareword specially—and will warn about ambiguous
parsing errors. All other drawbacks of prototypes still apply.

Ill-Advised Uses of Barewords
No matter how cautiously you code, barewords still produce ambiguous code.
You can avoid the worst abuses, but you’ll encounter several types of bare-
words in legacy code.

Bareword Hash Values

Some old code may not take pains to quote the values of hash pairs:

poor style; do not use
my %parents = (

mother => Annette,
father => Floyd,

);

When neither the Floyd() nor Annette() functions exist, Perl will interpret these
barewords as strings. strict 'subs' will produce an error in this situation.

Bareword Function Calls

Code written without strict 'subs' may use bareword function names. Adding
parentheses will make the code pass strictures. Use perl -MO=Deparse,-p (see
perldoc B::Deparse) to see how Perl parses them; then parenthesize accordingly.

report erratum • discuss

Barewords • 227

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Bareword Filehandles

Prior to lexical filehandles (Filehandle References on page 77), all file and
directory handles used barewords. You can almost always safely rewrite this
code to use lexical filehandles. Perl’s parser recognizes the special exceptions
of STDIN, STDOUT, and STDERR.

Bareword Sort Functions

The second operand of the sort built-in can be the name of a function to use
for sorting. While this is rarely ambiguous to the parser, it can confuse human
readers. Providing a function reference in a scalar is little better:

bareword style
my @sorted = sort compare_lengths @unsorted;

function reference in scalar
my $comparison = \&compare_lengths;
my @sorted = sort $comparison @unsorted;

The second option avoids the use of a bareword, but the result is longer.
Unfortunately, Perl’s parser does not understand the single-line version due
to the special parsing of sort; you cannot use an arbitrary expression (such
as taking a reference to a named function) where a block or a scalar might
otherwise go:

does not work
my @sorted = sort \&compare_lengths @unsorted;

In both cases, the way sort invokes the function and provides arguments can
be confusing (see perldoc -f sort for the details). Where possible, consider using
the block form of sort instead. If you must use either function form, add a
comment about what you’re doing and why.

Indirect Objects
Perl is not a pure object-oriented language. It has no operator new; a construc-
tor is anything that returns an object. By convention, constructors are class
methods named new(), but you can name these methods anything you want
or even use functions. Several old Perl OO tutorials promote the use of C++
and Java-style constructor calls

my $q = new Alces; # DO NOT USE

instead of the obvious method call

my $q = Alces->new;

These examples produce equivalent behavior, except when they don’t.

Chapter 11. What to Avoid • 228

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Bareword Indirect Invocations
In the indirect object form (more precisely, the dative case) of the first example,
the method precedes the invocant. This is fine in spoken languages where
verbs and nouns are more obvious, but it introduces parsing ambiguities in
Perl.

Because the method’s name is a bareword (Barewords on page 225), the parser
uses several heuristics to figure out the proper interpretation of this code.
While these heuristics are well tested and almost always correct, their failure
modes are confusing. Things get worse when you pass arguments to a con-
structor:

my $obj = new Class(arg => $value); # DO NOT USE

In this example, the name of the class looks like a function call. Perl can and
does often get this right, but its heuristics depend on which package names
the parser has seen, which barewords it has already resolved, how it resolved
those barewords, and the names of functions already declared in the current
package. For an exhaustive list of these conditions, you have to read the
source code of Perl’s parser—not something the average Perl programmer
wants to do (see intuit_method in toke.c, if you’re really curious—but feel free to
forget this suggestion ever existed).

Imagine running afoul of a prototyped function (Prototypes on page 230) with
a name that just happens to conflict somehow with the name of a class or a
method called indirectly, such as a poorly named JSON() method in the same
file where the JSON module is used, to pick an example that actually happened.
This is rare, but it’s very unpleasant to debug. Avoid indirect invocations
instead.

Indirect Notation Scalar Limitations
Another danger of the indirect syntax is that the parser expects a single scalar
expression as the object. Printing to a filehandle stored in an aggregate variable
seems obvious, but it isn’t:

DOES NOT WORK
say $config->{output} 'Fun diagnostic message!';

Perl will attempt to call say on the $config object.

print, close, and say—all built-ins that operate on filehandles—operate in an
indirect fashion. This was fine when filehandles were package globals, but
lexical filehandles (Filehandle References on page 77) make the indirect object

report erratum • discuss

Indirect Objects • 229

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

syntax problems obvious. To solve this, disambiguate the subexpression that
produces the intended invocant:

say {$config->{output}} 'Fun diagnostic message!';

Alternatives to Indirect Notation
Direct invocation notation doesn’t suffer this ambiguity problem. To construct
an object, call the constructor method on the class name directly:

my $q = Plack::Request->new;
my $obj = Class->new(arg => $value);

This syntax still has a bareword problem in that if you have a function named
Request in the Plack namespace, Perl will interpret the bareword class name as
a call to the function:

sub Plack::Request;

you wrote Plack::Request->new, but Perl saw
my $q = Plack::Request()->new;

Disambiguate this syntax as usual (Bareword package names on page 226).

For the limited case of filehandle operations, the dative use is so prevalent
that you can use the indirect invocation approach if you surround your
intended invocant with curly brackets. You can use methods on lexical file-
handles, though almost no one ever does this for print and say.

The CPAN module Perl::Critic::Policy::Dynamic::NoIndirect (a plugin for Perl::Critic) can
analyze your code to find indirect invocations. The CPAN module indirect can
identify and prohibit their use in running programs:

warn on indirect use
no indirect;

throw exceptions on their use
no indirect ':fatal';

Prototypes
A prototype is a piece of metadata attached to a function or variable. A function
prototype changes how Perl’s parser understands it.

Prototypes allow you to define your own functions that behave like built-ins.
Consider the built-in push, which takes an array and a list. While Perl would
normally flatten the array and list into a single list passed to push, Perl knows
to treat the array as a container and does not flatten its values. In effect, this

Chapter 11. What to Avoid • 230

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

is like passing a reference to an array and a list of values to push—because
Perl’s parser understands this is what push needs to do.

Function prototypes attach to function declarations:

sub foo (&@);
sub bar ($$) { ... }
my $baz = sub (&&) { ... };

Any prototype attached to a forward declaration must match the prototype
attached to the function declaration. Perl will give a warning if this isn’t true.
Strangely, you may omit the prototype from a forward declaration and include
it for the full declaration—but the only reason to do so is to win a trivia con-
test.

The built-in prototype takes the name of a function and returns a string repre-
senting its prototype.

To see the prototype of a built-in, prepend CORE:: to its name for prototype’s
operand:

$ perl -E "say prototype 'CORE::push';"
\@@
$ perl -E "say prototype 'CORE::keys';"
\%
$ perl -E "say prototype 'CORE::open';"
*;$@

prototype will return undef for those built-ins whose functions you cannot
emulate:

say prototype 'CORE::system' // 'undef'
undef; cannot emulate builtin `system`

say prototype 'CORE::prototype' // 'undef'
undef; builtin `prototype` has no prototype

Remember push?

$ perl -E "say prototype 'CORE::push';"
\@@

The @ character represents a list. The backslash forces the use of a reference
to the corresponding argument. This prototype means that push takes a refer-
ence to an array and a list of values. You might write mypush as this:

sub mypush (\@@) {
my ($array, @rest) = @_;
push @$array, @rest;

}

report erratum • discuss

Prototypes • 231

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Other prototype characters include $ to force a scalar argument, % to mark
a hash (most often used as a reference), and & to identify a code block. See
perldoc perlsub for more information.

The Problem with Prototypes
Prototypes change how Perl parses your code and how Perl coerces arguments
passed to your functions. While these prototypes may superficially resemble
function signatures (Real Function Signatures on page 93) in other languages,
they’re very different. They don’t document the number or types of arguments
functions expect, nor do they map arguments to named parameters.

Prototype coercions work in subtle ways, such as enforcing scalar context on
incoming arguments:

sub numeric_equality($$) {
my ($left, $right) = @_;
return $left == $right;

}

my @nums = 1 .. 10;

say 'They're equal, whatever that means!' if numeric_equality @nums, 10;

But they work only on simple expressions:

sub mypush(\@@);

compilation error: prototype mismatch
(expects array, gets scalar assignment)
mypush(my $elems = [], 1 .. 20);

To debug this, users of mypush must know both that a prototype exists and
the limitations of the array prototype. That’s a lot of cognitive burden to put
on a user—and if you think this error message is inscrutable, wait until you
see the complicated prototype errors.

Good Uses of Prototypes
Prototypes do have a few good uses that outweigh their problems. For example,
you can use a prototyped function to override one of Perl’s built-ins. First
check that you can override the built-in by examining its prototype in a small
test program. Then use the subs pragma to tell Perl that you plan to override
a built-in. Finally declare your override with the correct prototype:

use subs 'push';

sub push (\@@) { ... }

Chapter 11. What to Avoid • 232

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Beware that the subs pragma is in effect for the remainder of the file, regardless
of any lexical scoping.

Prototypes are also used to define compile-time constants. When Perl
encounters a function declared with an empty prototype (as opposed to no
prototype) and this function evaluates to a single constant expression, the
optimizer will replace calls to that function with constants:

sub PI () { 4 * atan2(1, 1) }

All subsequent code will use the calculated value of pi in place of the bareword
PI or a call to PI(), with respect to scoping and visibility.

The core pragma constant handles these details for you. The Const::Fast module
from the CPAN creates constant scalars that you can interpolate into strings.

A reasonable use of prototypes is to extend Perl’s syntax to operate on blocks
as anonymous functions. The CPAN module Test::Exception uses this to good
effect to provide a nice API with delayed computation. Its throws_ok() function
takes three arguments: a block of code to run, a regular expression to match
against the string of the exception, and an optional description of the test:

use Test::More;
use Test::Exception;

throws_ok
{ my $unobject; $unobject->yoink }
qr/Can't call method "yoink" on an undefined/,
'Method on undefined invocant should fail';

done_testing();

The exported throws_ok() function has a prototype of &$;$. Its first argument is
a block, which becomes an anonymous function. The second argument is a
scalar. The third argument is optional.

Careful readers may have spotted the absence of a comma after the block.
This is a quirk of Perl’s parser, which expects whitespace after a prototyped
block, not the comma operator. This is a drawback of the prototype syntax.
If that bothers you, use throws_ok() without taking advantage of the prototype:

throws_ok(
sub { my $unobject; $unobject->yoink() },
qr/Can't call method "yoink" on an undefined/,
'Method on undefined invocant should fail');

Test::Fatal allows similar testing and uses a simpler approach to avoid this
ambiguity.

report erratum • discuss

Prototypes • 233

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Ben Tilly suggests a final good use of prototypes, to define a custom named
function to use with sort:

sub length_sort ($$) {
my ($left, $right) = @_;
return length($left) <=> length($right);

}

my @sorted = sort length_sort @unsorted;

The prototype of $$ forces Perl to pass the sort pairs in @_. sort’s documentation
suggests that this is slightly slower than using the package globals $a and $b,
but using lexical variables often makes up for any speed penalty.

Method-Function Equivalence
Perl’s object system is deliberately minimal (Blessed References on page 155).
A class is a package, and Perl doesn’t distinguish between a function and a
method stored in a package. The same built-in, sub, declares both. Perl will
happily dispatch to a function called as a method. Likewise, you can invoke
a method as if it were a function—fully qualified, exported, or as a reference—if
you pass in your own invocant manually.

Invoking the wrong thing in the wrong way causes problems.

Caller Side
Consider a class with several methods:

package Order {
use List::Util 'sum';

sub calculate_price {
my $self = shift;
return sum(0, $self->get_items);

}
...

}

Given an Order object $o, the following invocations of this method may seem
equivalent:

my $price = $o->calculate_price;

broken; do not use
my $price = Order::calculate_price($o);

Though in this simple case, they produce the same output, the latter violates
object encapsulation by bypassing method lookup.

Chapter 11. What to Avoid • 234

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

If $o were instead a subclass or allomorph (Roles on page 148) of Order that
overrode calculate_price(), that example just called the wrong method. Any change
to the implementation of calculate_price(), such as a modification of inheritance
or delegation through AUTOLOAD()—might break calling code.

Perl has one circumstance where this behavior may seem necessary. If you
force method resolution without dispatch, how do you invoke the resulting
method reference?

my $meth_ref = $o->can('apply_discount');

There are two possibilities. The first is to discard the return value of the can()
method:

$o->apply_discount if $o->can('apply_discount');

The second is to use the reference itself with method invocation syntax:

if (my $meth_ref = $o->can('apply_discount')) {
$o->$meth_ref();

}

When $meth_ref contains a function reference, Perl will invoke that reference
with $o as the invocant. This works even under strictures, as it does when
invoking a method with a scalar containing its name:

my $name = 'apply_discount';
$o->$name();

There’s one small drawback in invoking a method by reference; if the structure
of the program changes between storing the reference and invoking the refer-
ence, the reference may no longer refer to the most appropriate method. If
the Order class has changed such that Order::apply_discount is no longer the right
method to call, the reference in $meth_ref will not have updated.

That’s an unlikely circumstance, but limit the scope of a method reference
when you use this invocation form just in case.

Callee Side
Because it’s possible (however inadvisable) to invoke a given function as a
function or a method, it’s possible to write a function callable as either.

The CGI module has these two-faced functions. Every one of them must apply
several heuristics to determine whether the first argument is an invocant.
This causes problems. It’s difficult to predict exactly which invocants are
potentially valid for a given method, especially when you may have to deal
with subclasses. Creating an API that users cannot easily misuse is more

report erratum • discuss

Method-Function Equivalence • 235

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

difficult too, as is your documentation burden. What happens when one part
of the project uses the procedural interface and another uses the object
interface?

If you must provide a separate procedural and OO interface to a library, create
two separate APIs.

Automatic Dereferencing
Perl can automatically dereference certain references on your behalf. Given
an array reference in $arrayref, you can write this:

push $arrayref, qw(list of values);

Given an expression that returns an array reference, you can do the same:

push $houses{$location}[$closets], \@new_shoes;

The Autoderef Experiment

After Perl 5.18, you must enable this feature with use experimental
'autoderef';. That should be a sign to tread carefully here.

The same goes for the array operators pop, shift, unshift, splice, keys, values, and
each and the hash operators keys, values, and each. If the reference provided is
not of the proper type—if it does not dereference properly—Perl will throw an
exception. While this may seem more dangerous than explicitly dereferencing
references directly, it is in fact the same behavior:

my $ref = sub { ... };

will throw an exception
push $ref, qw(list of values);

will also throw an exception
push @$ref, qw(list of values);

Unfortunately, this automatic dereferencing has two problems. First, it works
only on plain variables. If you have a blessed array or hash, a tied hash, or an
object with array or hash overloading, Perl will throw a runtime exception
instead of dereferencing the reference.

Second, remember that each, keys, and values can operate on both arrays and
hashes. You can’t look at

my @items = each $ref;

Chapter 11. What to Avoid • 236

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

and tell whether @items contains a list of key/value pairs or index/value pairs,
because you don’t know whether you should expect $ref to refer to a hash or
an array. Yes, choosing good variable names will help, but this code is
intrinsically confusing.

Neither of these drawbacks make this syntax unusable in general, but its
rough edges and potential for confusing readers make it less useful than it
could be.

Tie
Where overloading (Overloading on page 207) allows you to customize the
behavior of classes and objects for specific types of coercion, a mechanism
called tying allows you to customize the behavior of primitive variables (scalars,
arrays, hashes, and filehandles). Any operation you might perform on a tied
variable translates to a specific method call on an object.

For example, the tie built-in allows the core Tie::File module to treat files as if
they were arrays of records, letting you push and pop and shift as you see fit.
(tie was intended to use file-backed stores for hashes and arrays, so that Perl
could use data too large to fit in available memory. RAM was more expensive
twenty years ago.)

The class to which you tie a variable must conform to a defined interface for
a specific data type. Read perldoc perltie for an overview; then see the core
modules Tie::StdScalar, Tie::StdArray, and Tie::StdHash for specific details. Start by
inheriting from one of those classes; then override any specific methods you
need to modify.

When Class and Package Names Collide

If tie weren’t confusing enough, Tie::Scalar, Tie::Array, and Tie::Hash
define the necessary interfaces to tie scalars, arrays, and hashes,
but Tie::StdScalar, Tie::StdArray, and Tie::StdHash provide the default
implementations.

Tying Variables
To tie a variable, use this:

use Tie::File;
tie my @file, 'Tie::File', @args;

The first operand is the variable to tie. The second is the name of the class
into which to tie it. @args is an optional list of arguments required for the tying
function. In the case of Tie::File, @args should contain a valid filename.

report erratum • discuss

Tie • 237

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Tying functions resemble constructors: TIESCALAR, TIEARRAY(), TIEHASH(), or
TIEHANDLE() for scalars, arrays, hashes, and filehandles, respectively. Each
function returns a new object that represents the tied variable. Both tie and
tied return this object, though most people use tied in a boolean context.

Implementing Tied Variables
To implement the class of a tied variable, inherit from a core module such as
Tie::StdScalar, Then override the specific methods for the operations you want
to change. In the case of a tied scalar, these are likely FETCH and STORE, possibly
TIESCALAR(), and probably not DESTROY().

Here’s a class that logs all reads from and writes to a scalar:

package Tie::Scalar::Logged {
use Tie::Scalar;
use parent -norequire => 'Tie::StdScalar';

sub STORE {
my ($self, $value) = @_;
Logger->log("Storing <$value> (was [$$self])", 1);
$$self = $value;

}

sub FETCH {
my $self = shift;
Logger->log("Retrieving <$$self>", 1);
return $$self;

}
}

Assume that the Logger class method log() takes a string and the number of
frames up the call stack of which to report the location.

Within the STORE() and FETCH() methods, $self works as a blessed scalar.
Assigning to that scalar reference changes the value of the scalar. Reading
from it returns its value.

Similarly, the methods of Tie::StdArray and Tie::StdHash act on blessed array and
hash references, respectively. Again, perldoc perltie explains the methods tied
variables support, such as reading or writing multiple values at once.

Isn’t tie Fun?

The -norequire option prevents the parent pragma from attempting to
load a file for Tie::StdScalar, since that module is part of the file
Tie/Scalar.pm. That’s right, there’s no .pm file for Tie::StdScalar. Isn’t this
fun?

Chapter 11. What to Avoid • 238

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

When to Use Tied Variables
Tied variables seem like fun opportunities for cleverness, but they can produce
confusing interfaces. Unless you have a very good reason for making objects
behave as if they were built-in data types, avoid creating your own ties without
good reason. tied variables are also much slower than built-in data types.

With that said, tied variables can help you debug tricky code (use the logged
scalar to help you understand where a value changes) or to make certain
impossible things possible (access large files without running out of memory).
Tied variables are less useful as the primary interfaces to objects; it’s often
too difficult and constraining to try to fit your whole interface to that supported
by tie().

A final word of warning is a sad indictment of lazy programming: a lot of code
goes out of its way to prevent the use of tied variables, often by accident. This
is unfortunate, but library code is sometimes fast and lazy with what it
expects, and you can’t always fix it.

report erratum • discuss

Tie • 239

Prepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

CHAPTER 12

Next Steps with Perl
Perl isn’t perfect, but it is malleable—because no single configuration is ideal
for every programmer and every purpose. Some useful behaviors are available
as core libraries. More are available from the CPAN. Effective Perl programmers
take full advantage of the options available to them.

Useful Core Modules
Perl’s language design process has always tried to combine practicality with
expandability. Perl 5 expanded the language and made the CPAN possible,
but it also retained backward compatibility with most Perl 1 code written as
far back as 1987.

The best Perl code of 2015 is very different from the best Perl code of 1994
or the best Perl code of 1987, and part of that is due to its core library.

The strict Pragma
The strict pragma (Pragmas on page 171) allows you to forbid (or reenable) var-
ious powerful language constructs that offer potential for accidental abuse.

strict forbids symbolic references, requires variable declarations (Lexical Scope
on page 104), and prohibits the use of undeclared barewords (Barewords on
page 225). While symbolic references are occasionally necessary (Using and
Importing on page 193), using a variable as a variable name invites subtle
errors of action at a distance—or, worse, the possibility of poorly validated
user input manipulating private data for malicious purposes.

Requiring variable declarations helps to detect typos in variable names and
encourages proper scoping of lexical variables. It’s easier to see the intended
scope of a lexical variable if all variables have my or our declarations.

strict takes effect in lexical scopes. See perldoc strict for more details.

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

The warnings Pragma
The warnings pragma (Handling Warnings on page 181) controls the reporting
of various warning classes, such as attempting to stringify the undef value or
using the wrong type of operator on values. It also warns about the use of
deprecated features.

The most useful warnings explain that Perl had trouble understanding what
you meant and had to guess at the proper interpretation. Even though Perl
often guesses correctly, disambiguation on your part will ensure that your
programs run correctly.

The warnings pragma takes effect in lexical scopes. See perldoc perllexwarn and
perldoc warnings for more details.

Asking for More Help

If you use both warnings with diagnostics, you’ll get expanded diagnos-
tic messages for each warning present in your programs, straight
out of perldoc perldiag. It’s a great help when learning Perl, but be
sure to disable diagnostics before deploying your program, lest you
fill up your logs or expose debugging information to users.

The autodie Pragma
Perl leaves error handling (or error ignoring) up to you. If you forget to check
the return value of every open() call, for example, you could try to read from
a closed filehandle—or worse, lose data as you try to write to one. The autodie
pragma changes this for you. If you write

use autodie;
open my $fh, '>', $file;

an unsuccessful open() call will throw an exception. Given that the most
appropriate approach to a failed system call is throwing an exception, this
pragma can remove a lot of boilerplate code and allow you the peace of mind
of knowing that you haven’t forgotten to check a return value.

One caveat of autodie is that it can be a sledgehammer when you need a finish-
ing hammer; if you need only a couple of system calls checked for you, you
can limit its imports accordingly. See perldoc autodie for more information.

Perl Version Numbers
If you encounter a piece of Perl code without knowing when it was written or
who wrote it, can you tell which version of Perl it requires? If you have a lot

Chapter 12. Next Steps with Perl • 242

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

of experience with Perl both before and after the release of Perl 5.10, you
might remember which version added say and when autodie entered the core.
Otherwise, you might have to guess, trawl through perldelta files, or use
CPAN::MinimumVersion from the CPAN.

There’s no requirement for you to add the minimum required Perl version
number to all new code you write, but it can clarify your intentions. For
example, if you’ve tested your code with Perl 5.18 and use only features
present in Perl 5.18, write

use 5.018;

and you’ll document your intent. You’ll also make it easier for tools to identify
the particular features of Perl you may or may not use in this code. If someone
comes along later and proves that the code works just fine on Perl 5.14, you
can change the version number—and you’ll do so based on practical evidence.

What’s Next?
Although Perl includes an extensive core library, it’s not comprehensive. Many
of the best modules are available outside the core, from the CPAN (The CPAN
on page 13). The Task::Kensho meta-distribution includes several other distribu-
tions that represent the best the CPAN has to offer. When you need to solve
a problem, look there first.

The CPAN has plenty of other gems, though. For example, if you want to

• Access a database via SQL, use the DBI module.
• Embed a lightweight, single-file database, use the DBD::SQLite module.
• Manage your database schemas, use Sqitch.
• Represent database entities as objects, use DBIx::Class.
• Perform basic web programming, use Plack.
• Use a powerful web framework, use Mojolicious, Dancer, or Catalyst.
• Process structured data files, use Text::CSV_XS (or Text::CSV).
• Manage module installations for applications, use Carton.
• Manipulate numeric data, use PDL.
• Manipulate images, use Imager.
• Access shared libraries, use FFI::Platypus.
• Extract data from XML files, use XML::Rabbit.
• Keep your code tidy, use Perl::Tidy.
• Watch for problems beyond strictures and warnings, use Perl::Critic.

And the list goes on. Skim the CPAN recent uploads page (http://search.cpan.org/
recent) frequently to see what’s new and what’s updated.

report erratum • discuss

What’s Next? • 243

Prepared exclusively for Sandi Frank

http://search.cpan.org/recent
http://search.cpan.org/recent
http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Thinking in Perl
As is true of any creative endeavor, learning Perl never stops. While Modern
Perl describes how the best Perl programmers approach their craft, their
techniques and tools always evolve. What’s great in 2015 and 2016 might not
have been imagined even five years ago—and the greatness of 2020 and
beyond might be mere inklings in the mind of an enterprising Perl hacker
right now.

You have the chance to shape that future. It’s up to you to continue discover-
ing how to make Perl work for you and how to make Perl better, whether
learning from the global Perl community, perusing the documentation of the
core and CPAN modules, or by careful practice discovering what works for
you and what helps you write the right code.

Perl’s not perfect (though it improves, year after year, release after release).
It can be as clean or as messy as you need it to be, depending on the problems
you have to solve. It’s up to you to use it well.

As a wise person once said, “May you do good things with Perl.”

Chapter 12. Next Steps with Perl • 244

report erratum • discussPrepared exclusively for Sandi Frank

http://pragprog.com/titles/swperl/errata/add
http://forums.pragprog.com/forums/swperl

Index

SYMBOLS
! operator, 89

!= operator, 88

!~ operator, 88, 126

" (double quotes)
escaping, 26, 29
heredoc syntax, 26
interpolation, 25
string delimiters, 24–26
Unicode escape sequence,

29

(comment character), qw()
operator, 35

$ (dollar sign)
prototypes, 232, 234
regex matching, 130
scalar sigil, 20, 50, 53,

58, 72, 74–75

$! (variable), 107, 222

$" (global variable), 57, 222

$# syntax, 53

$$ (global variable)
dereferencing, 72, 74–75
process ID, 222
prototypes, 234

$& (super global variable), 221

$' (super global variable), 221

$, (global variable), 188

$. (global variable), 222

$/ (global variable)
about, 221
localizing, 220
reading files, 107, 188
reading one record at a

time, 188
slurping files, 216

$@ (global variable), 107,
168, 170, 221–222

$\ (global variable), writing to
files, 188

$^H (global variable), writing
pragmas, 173

$^W (global variable), 182

$` (super global variable), 221

$| (variable), 107, 189, 222

% (percent sign)
hash sigil, 20, 58, 75
modulo operator, 87
prototypes, 232

%+ (global variable), named
captures, 132, 222

& (ampersand)
bitwise and operator, 89
function sigil, 50, 76
invoking functions, 103
prototypes, 232, 234

&& operator, 88

' (single quotes), string delim-
iters, 24, 26

() (parentheses)
associativity, 86
attributes, 143
directives, 36
empty lists, 33
escaping, 132
foreach and for, 41
function parameters, 93
function references, 76
functions, 91, 103, 227
grouping with -p flag, 86
hashes, 75
list context, 6
lists, 34, 54–55

operator precedence, 85
regular expressions, 132–

133

(?!...) (zero-width positive look-
ahead assertion), 136

(?:) (non-capturing group se-
quence), 134

(?<!...) (zero-width negative
look-behind assertion), 136

(?<=...) zero-width positive
look-behind assertion, 136

(?i) case-insensitive matching
syntax, 137

* (asterisk)
multiplication operator,

87
parametric closures, 204
zero or more regex quan-

tifier, 127–128

** exponentiation operator, 87

+ (plus sign)
addition operator, 87
attributes, 151
one or more regex quanti-

fier, 127–128

++ (postincrement operator),
undef hash values, 64

+<, opening files, 185

+? regex quantifier, 129

, (comma)
about, 90
anonymous functions,

112
C-style for loop, 44
context, 90
lists, 34, 79
numeric literals, 32

Prepared exclusively for Sandi Frank

prototypes, 233
qw() operator, 35

- (hyphen)
character classes, 131
disabling modifiers, 137
subtraction operator, 87

-> (dereferencing arrow)
array references, 74
functions, 76
hash references, 75
nested data structures,

79

-|, opening files, 185

. (dot character)
regex metacharacter, 130
string concatenation, 25,

88

.*? regex quantifier, 129

.. (range operator)
about, 90
flip-flop operation, 90
foreach directive, 41

... operator, placeholder, 10,
90

// (defined-or operator)
caching hashes, 65
defined, 88

// (match operator), strings,
125

: (colon)
conditional expressions,

38
namespace notation, 21
package separator, 226

:: (double colon)
namespace notation, 21
package separator, 226

< (left arrow), opening files,
185

<< heredoc syntax, 26

<< left shift operator, 89

<<>> (double open operator),
11

<=> operator, 215

<> operator
readability, 11
reading from files, 186
while loop, 45

== operator, context, 7, 88

=> (fat comma operator)
about, 90
hash key-value pairs, 58,

214–215

=~ (binding operator), 88, 126

> (right arrow), opening files,
185

>> (double right arrows),
opening files, 185

>> right shift operator, 89

? (question mark)
conditional expressions,

38
zero or one regex quantifi-

er, 127–128

?: (ternary conditional opera-
tor), 38–40, 88

@ (at sign)
array sigil, 20, 53, 56,

72–73, 75, 79
prototypes, 231

@- variable, 221

[] (square brackets)
arrays, 21, 53, 74
character classes, 131

\ (backslash)
division operator, 87
escaping with, 24, 26,

132, 135
reference operator, 72–

73, 75–76, 78

^ (caret)
bitwise xor operator, 89
character classes, 132
regex matching, 130, 132

@_ (default array variable)
about, 10
aliasing, 96
function parameters, 92–

97
goto, 50
named parameters, 214
overriding methods, 158
validating arguments, 99

$_ (default scalar variable)
about, 8–10
aliasing, 42
switch statements, 48
try, 171

_ (underscore), numeric liter-
als, 32

{} (curly brackets)
anonymous hashes, 75
filehandles, 188
hashes, 21, 58, 62
lexical scope, 22
references, 73–75

| character
alternation metacharac-

ter, 134
bitwise or operator, 89

|-, opening files, 185

|| operator, 88

||= (boolean-or operator), 65

~~ (smart match operator),
139

DIGITS
$0 (global variable), 222

0 numeric prefix, 32

'0.0' and '0e0' true values, 52

0b numeric prefix, 32

0x numeric prefix, 32

A
\A (start of string anchor), 129

abstraction
defined, 141
maintainability, 167

accessor methods, 143–144,
150, 157, 159

ActivePerl, x, 153

addition
operator, 87
overloading, 208–209

aliasing
directives, 42
function parameters, 96
nested data structures,

80
scalar references, 72
scope, 105

allomorphism, 149

alternation
metacharacter, 134
regular expressions, 133,

135

amount context
about, 5
sigils and, 21

ampersand sign
bitwise and operator, 89
function sigil, 76
invoking functions, 103
prototypes, 232, 234

anchors, regular expressions,
129, 135, 137

and operator, 88

and syntax, C-style for loop, 44

anonymous arrays, 73–74

anonymous functions, 108–
112

creating, 76
declaring, 109
defined, 108

Index • 246

Prepared exclusively for Sandi Frank

implicit, 111
lexical scope, 105
names, 110
promoting to methods,

204
prototypes, 233
state, 117

anonymous hashes, 75

anonymous variables, 23, 79

APIs
compatibility and objects,

146
distributions, 199
modules as boundaries,

193
two-faced functions, 236

App::cpanminus, 15, 197

App::perlbrew, xi, 15, 198

appending, opening files for,
185

@args, tying variables, 237

arguments
pragmas, 172
validating, 99

@ARGV (global variable), 10,
222

arity
operators, 86
warning, 181

array references, 73–74

arrays, 52–58, 244, see al-
so default array variables

anonymous, 73–74
assignment, 54, 57, 92
clearing, 54
context, 54, 56–57
defined, 52
elements, 53, 55
interpolation, 57
vs. lists, 35
operations, 55
references, 57, 73–74
resizing, 54
sigils, 20, 23, 53, 56, 72–

73, 75, 79
slicing, 21, 56
square brackets, 21, 53,

74
tying, 237

ASCII, 28, 31

assertions
defined, 175
regular expressions, 135–

137
testing, 118

assignment
arrays, 54, 57, 92
empty lists, 34
function parameters, 92,

96
hashes, 58, 64
lexical, 206
lists, 57, 96
resizing arrays, 54

associative arrays, see hashes

associativity
empty lists, 34
operators, 86

asterisk
multiplication operator,

87
parametric closures, 204
zero or more regex quan-

tifier, 127–128

at sign
array sigil, 20, 53, 56,

72–73, 75, 79
prototypes, 231

atoms, 125, 127, 130–131

Attribute::Handlers, 119

Attribute::Lexical, 119

attributes
declaring, 143
default attribute value,

145
encapsulation, 145–147
forward declarations, 122
functions, 118–119
inheritance, 151
MOP, 206
objects, 143–147
testing, 118

attributes pragma, 119

auto-increment operator, 88–
89

autobox pragma, 173

autoclean, 157

autoderef, 236

autodie pragma
about, 173
closing files, 188
IO operations, 185
uses, 171, 242

autoflush variable, 107

autoflush(), 189

AUTOLOAD(), 119–123, 158–
159, 161, 226

autoloading functions, 119–
123

automated distributions, 198

automated testing, 14

automatic flushing, 107,
189, 222

autovivification
avoiding with exists, 61
defined, 80
disabling, 173
reference coercion, 67

autovivification pragma, 80, 173

B
\b (word boundary anchor),

130

\B metacharacter, 131

B::Deparse, 86

baby Perl, 4

backslash
division operator, 87
escaping with, 24, 26,

132, 135
reference operator, 72–

73, 75–76, 78

backtraces, warnings, 181

barewords, 225–228
caveats, 227
code blocks, 226
constants, 227
defined, 225
fat comma hash key

quoting, 59, 90, 215
filehandles, 228
functions, 227
hash keys, 59, 66
hashes, 59, 66, 90, 225,

227
indirect objects, 229
legacy code, 227
methods, 229
package names, 226
sort functions, 228
strict, 59, 225, 227, 241

BEGIN block, 205, 226

ben Jore, Joshua, 201

Best Practical Solutions, 16

binary data, reading from,
187

binary numbers, 32

binary operators, 86

binding, 88, 126

binmode, 28, 187

bitwise operators, 89

bless, 156–159

blessed references, 155–159,
170–171

Index • 247

Prepared exclusively for Sandi Frank

blessed scalars, 238

blocks
lexical scope, 22
prototypes, 232

blogs, 16

boolean coercion, 66

boolean context
about, 7
conditionals, 40
detecting in functions, 40
empty hashes, 63
logical operators, 88
range operator, 90
scalars, 52
ternary conditional opera-

tor, 88
undef, 33

boolean values
directives, 36
ternary conditional opera-

tor, 38–40
unary coercion, 220

boolean-or operator, 65

boolification, overloading,
207, 209

brackets, see curly brackets;
square brackets

Braithwaite, Reg, 163

branching directives, 36–38

buffering files, 189, 222

build-essential, 15

Build.PL, 196

bytes
ignoring, 27
reading from files, 221

\b{wb} (word boundary
metacharacter), 130

\B{wb} metacharacter, 131

C
C++ constructor calls, 228

C-style for loop, 43

C3 MRO strategy, 152

caching
coercions, 68
hashes, 64
state, 108

call frame, recursion, 100,
102

caller, 98, 110, 218

can()
checking existence, 160–

161, 200–201
overriding, 122

can_ok(), 179

capturing
named captures, 132,

222
regular expressions, 132

caret
bitwise xor operator, 89
character classes, 132
regex matching, 130, 132

Carp, 99, 181

carp() function, 181

Carp::Always, 182

Carton, 198, 243

case
-insensitive matching,

137
use and require, 195

Catalyst, 243

CGI, 235

Champoux, Yanick, 17

Changes, 197

character classes, 131

character encodings,
see ASCII; Latin-1; Unicode

characters, see metacharac-
ters

charnames pragma, 30

CHECK, 226

checking, see reflection

child and parent, see inheri-
tance

chomp, 8, 187, 189

Christiansen, Tom, 31

circular references, 82

circumfix operators, 87, 126

class methods, 143

Class::Load, 160, 200

Class::MOP, 160, 206

Class::MOP::Attribute, 207

Class::MOP::Method, 207

classes
blessed references, 156
character, 131
checking existence, 161,

201
creating with MOP, 206
loading, 200
metaclasses, 154, 207
Moose, 142
overloading and inheri-

tance, 209
packages, 142
test classes, 180

clearing
arrays, 54
hashes, 59

cleverness and maintainabili-
ty, 166

cloning, references, 78

close, 188

closedir, 190

closing
directories, 190
files, 188

closures, 112–116
AUTOLOAD() as, 121
creating, 112
parametric, 203
partial application, 115
uses, 114

cluck(), 181

cmp operator, 88, 215

cmp_ok(), 178

code
compile-time manipula-

tion, 205
legacy code and bare-

words, 227
organizing with modules,

193
reading to learn, 167
reusing with modules,

193
skeletons, x
standards, 167

code generation, 202–207
AUTOLOAD(), 121, 202
disabling warnings, 182
eval, 202
parametric closures, 203
reflection, 160

codepoints, Unicode, 27

coercion, 66–68
boolean, 66
caching, 68
conditionals, 40
context, 7, 23
dualvars, 66, 68
hash keys, 60
numeric, 4, 67
prototypes, 232
reference, 67
references, 73
scalar references, 73
scalars, 51, 73
strings, 27, 51, 66
subtypes, 164

Index • 248

Prepared exclusively for Sandi Frank

unary, 60, 219
variable types and sigils,

23

collisions, avoiding, 157,
226, 229

colon
conditional expressions,

38
namespace notation, 21
package separator, 226

comma, see also fat arrow
comma

about, 90
anonymous functions,

112
C-style for loop, 44
context, 90
lists, 34, 79
numeric literals, 32
prototypes, 233
qw() operator, 35

comments
embedding in regex, 138
qw() operator, 35

community, see also CPAN
contributing to, 168
learning from, 167
resources, 13–17
web sites, 16

comparison operators, 88

compile-time manipulation,
205

composition
over inheritance, 162
roles, 148

Comprehensive Perl Archive
Network, see CPAN

concatenation
operator, 25, 88
overloading, 209
repetition operator, 89

conditionals
branching directives, 36–

38
context, 40
looping directives, 40–50
short-circuiting, 39
ternary conditional opera-

tor, 38–40, 88

conferences, 17

Const::Fast, 173, 233

constant pragma, 173, 227, 233

constant values
aliasing, 42
barewords, 227

constant pragma, 173
prototypes, 227, 233

constructors
blessed references, 156–

159
as class methods, 143
defined, 156
documentation, 2
encapsulation, 156
indirect objects, 230
naming, 228
parametric, 156

container types, 23

context, see also Boolean
context; list context; numer-
ic context; scalar context;
string context; value con-
text; void context
== operator, 88
about, 5–8
amount context, 5, 21
arrays, 54, 56–57
awareness, 99
coercion, 7, 23
comma, 90
conditionals, 40
empty hashes, 63
empty lists, 33
eq operator, 7, 88
forcing, 8
functions, 5–8, 98
hash slices, 62
regular expressions, 126,

219
reverse, 11
undef, 33

Contextual::Return, 100

continue, 48

contractions, regular expres-
sions, 130

control flow, 35–50
branching directives, 36–

38
looping directives, 40–50
short-circuiting, 39, 88
ternary conditional opera-

tor, 38–40

controlled execution idiom,
217

conversion, implicit Unicode,
30

Conway, Damian, 100, 119,
137, 188, 209

copy(), 191

copying, files, 191

CORE::, 231

CPAN
Carton, 198, 243
Catalyst, 243
Class::Load, 160, 200
Const::Fast, 173, 233
Contextual::Return, 100
Dancer, 243
DBI, 243
DBIx::Class, 180, 243
distribution tools, 197
distributions, 13, 196–

199
documentation, 1–3, 14,

243
Exception::Class, 170
FFI::Platypus, 243
File::chdir, 192
File::Slurper, 217
Imager, 243
indirect, 230
installing modules, xi, 14
IO::All, 209
list of modules, 243
management tools, 15
Method::Signatures, 94
mirroring, 198
Mojolicious, 243
Moose, 141
Moose::Exporter, 196
MooseX::Declare, 155
namespace::autoclean, 157
non-core pragmas, 173
Package::Stash, 162, 205
PadWalker, 114
parameter handling, 94
Path::Class, 190–191
PDL, 243
Perl::Critic, 243
Perl::Critic::Policy::Dynam-
ic::NoIndirect, 230

Perl::Tidy, 243
Plack, 180, 243
postfix parameter valida-

tion, 218
Regexp::Common, 33
request tracking, 16
requirements, 15
size, 14
Sqitch, 243
SQLite, 243
standards, 196
Sub::Exporter, 196
Sub::Identify, 110
SUPER, 159
Task::Kensho, 243
Test::Class, 118, 180
Test::Exception, 180, 233
Test::Fatal, 111, 180, 233
testing modules, 14, 180

Index • 249

Prepared exclusively for Sandi Frank

Text::CSV, 243
Text::CSV_XS, 243
Try::Tiny, 171, 221, 223
UNIVERSAL::require, 206
uploads page, 243
using, 168
Want, 40, 100
web sites, 16
XML::Rabbit, 243

CPAN.pm, 14, 197

CPAN::Mini, 198

cpanmini, 198

cpanminus, 15, 197

CPANTS, 197

croak(), 99, 181

curly brackets
anonymous hashes, 75
filehandles, 188
hashes, 21, 58, 62
lexical scope, 22
references, 73–75

current directory, skipping,
190

D
\D metacharacter, 131

\d metacharacter, 131

-d operator, file tests, 191

Dancer, 243

data
context and, 5
numeric, 243
structured data files, 243
structures documenta-

tion, 80
taint, 210
Unicode in, 29

DATA filehandle, 186

Data::Dumper, 81

databases
modules, 243
SQL, 243
testing, 180

DBI, 243

DBICx::TestDatabase, 180

DBIx::Class, 180, 243

dclone, 78

Debian, CPAN requirements,
15

debugging
logging proxy, 120
nested data structures,

81

with tied variables, 239
with UNIVERSAL, 201

decode(), 29

deep cloning, 78

Deep recursion on subroutine warn-
ing, 102

default array variable
about, 10
aliasing, 96
function parameters, 92–

97
goto, 50
>named parameters, 214
validating arguments, 99

default attribute value, 145

default keyword, 146

default scalar variable
about, 8–10
aliasing, 42
switch statements, 48
try, 171

default value with state, 108

defined, 33, 61

defined-or operator, 65, 88

delayed functions, 111

delegating methods, 120

delete, 191

deleting, files, 191

dereferencing
array references, 74
automatic, 236
coercion, 67
functions, 76
hash references, 75
nested data structures,

79
to evaluate values, 72

dereferencing arrow
array references, 74
functions, 76
hash references, 75
nested data structures,

79

design
avoiding surprises, 4
community learning, 167
composition over inheri-

tance, 162
distributions, 198
DRY principle, 163
DWIM principle, 4, 66
exceptions, 168–171
expressivity, 3–5
idioms, 166
immutability, 164

Liskov substitution prin-
ciple, 163

maintainability, 165–168
OO principles, 162–164
principles, 162–168
single responsibility prin-

ciple, 163
style and efficacy, 165–

173

DESTROY block and barewords,
226

DESTROY(), 221

destroying
object destruction and

exceptions, 170
race condition, 221

destructive updates, 44

Devel::Cover, 180

developer web sites, 16

diagnostics, 242

dictionaries, see hashes

die, 99, 168, 182, 185

digits metacharacter, 131

dir(), 190

directives, 35–50
aliasing, 42
branching, 36–38
C-style for loop, 43
context, 40
continue, 48
default scalar variable, 9
looping, 40–50
nested loops, 46, 48
scope, 42
short-circuiting, 39
switch statements, 48
tailcalls, 49
ternary conditional opera-

tor, 38–40
until, 44–45
while, 44

directories
adding library, 211
closing, 190
distributions, 196
manipulating, 192
moving files, 191
opening, 189
opening filehandles to,

191
reading from, 189
skipping, 190
test directories, 177, 179
working directory, 192

disabling
autovivification, 173

Index • 250

Prepared exclusively for Sandi Frank

diagnostics, 242
features, 173
modifiers, 137
pragmas, 172
recursion warnings, 102
strict, 204
“used only once” warning,

204
warning categories, 182
warnings, 102, 182, 204

dispatch tables, 108–109

dispatch(), 109

Dist::Zilla, 198

distributions, 196–199
automating, 198
components, 196
CPAN, 13, 196–199
defined, 13, 196
management tools, 15
Moose, 141, 153
standards, 14, 196
tests, 199

do block, grouping expres-
sions in loops, 45

do what I mean principle, 4,
66

documentation
attributes, 146
autodie, 242
barewords, 227
constructors, 2
context awareness, 99
CPAN, 1–3, 14, 243
DATA filehandle, 186
data structures, 80
diagnostics, 242
distributions, 196
exceptions, 171
file tests, 191
file-handling variables,

189
floating-point values, 32
functions, 3
@INC, 222
lexical functions, 97
maintainability, 166
metacharacters, 130
metaprogramming, 154
modules, 3, 192
Moose, 141, 146
mro, 152
numbers, 33
objects, 146
open, 185
operators, 85
overloading, 208
perldoc perlpragma, 173

prototypes, 232
regular expressions, 125,

130, 139
signals, 222
smart matching, 139
sort, 215, 228
strict, 241
super global variables,

220
symbol tables, 162
taint, 210
testing, 177, 181
tying variables, 237–238
Unicode, 31
using, 1–3
variables, 2–3
version numbers, 69, 243
warnings, 2, 182–184,

242
warnings pragma, 242

DOES(), 150, 199

dollar sign
prototypes, 232, 234
regex matching, 130
scalar sigil, 20, 50, 53,

58, 72, 74–75

Dominus, Mark Jason, 20,
58, 116

Don’t Repeat Yourself princi-
ple, 163

done_testing(), 176

dot character
regex metacharacter, 130
string concatenation, 25,

88

double colon
namespace notation, 21
package separator, 226

double open operator, 11

double quotes
escaping, 26, 29
heredoc syntax, 26
interpolation, 25
string delimiters, 24–26
Unicode escape sequence,

29

driver programs, 196

DRY principle, 163

dualvar() function, 68

dualvars
$! as, 222
coercion, 66, 68
testing, 178

duck typing, 147

duplication
DRY principle, 163

maintainability, 166
test suites, 180

DWIM principle, 4, 66

dynamic scope, 106, 168

E
\E (metacharacter disabling

character), 135

/e modifier, regular expres-
sions, 139

-e operator, file tests, 191

each operator
arrays, 56
hashes, 61

elements
accessing with dereferenc-

ing arrow, 74
arrays, 53, 55
nested data structures,

79

else, 37

else if, 38

elseunless, 38

elsif, 37

embedding regex modifiers,
137

empty hash, 63

empty lists
about, 33
clearing arrays, 54–55
hashes, 59

encapsulation, 145–147
constructors, 156
defined, 104, 141
main(), 217
maintainability, 166–167
PadWalker, 114
scope, 104
shadowing, 105

Encode, 29

encodings, see ASCII; Latin-
1; Unicode

END block, 226

end of line string anchor, 129

English, 221

Enlightened Perl Organiza-
tion, 16

%ENV superglobal, 211

environment, taint, 210–211

$ENV{PATH}, 211

eof, 186

eq operator
context, 7, 88
is() function, 178

Index • 251

Prepared exclusively for Sandi Frank

$ERRNO, 222

errors, see exceptions

escaping
metacharacters, 135
parentheses, 132
quotes, 24, 26, 29
regular expressions, 30,

131–132, 135
Unicode escape sequence,

29

eval
catching exceptions,

169, 221
code generation, 202
error variable, 107
race condition, 221

exception(), 111

Exception::Class, 170

exceptions
$! variable, 107, 222
alternatives to super

global variables, 223
autodie, 242
AUTOLOAD(), 123
automatic dereferencing,

236
built-in, 171
catching, 169, 171, 173,

221
caveats, 170
design, 168–171
promoting warnings to,

171, 183
prototypes, 233
race condition, 221
reporting, 98, 181
throwing, 168
Too many arguments for subrou-
tine, 94

value of most recent, 222

exclusive-or operator, 89

existence, checking, 61, 160,
200

exists, 61, 162

exit, 217

experimental features
attributes pragma, 119
automatic dereferencing,

236
experimental pragma, 173
lexical functions, 97
list of pragmas, 173
signatures, 93
smart matching, 139

experimental pragma, 173

exponentiation operator, 87

@EXPORT, 195

@EXPORT_OK, 195

Exporter, 195

exporting, modules, 195

expressivity, 3–5

extends, 151, 157

ExtUtils::MakeMaker, 197–198

F
-f operator, file tests, 191

-f option, documentation, 3

fallback, overloads as, 208

FAQs, 2

fat comma operator
about, 90
hash key-value pairs, 58,

214–215

fatal warnings, 183

feature pragma, 32, 173

FETCH(), 238

FFI::Platypus, 243

$fh, catching exceptions, 169

Fibonacci series, 114

file modes, 185

file test operators, 191

file() function, 190

File::chdir, 192

File::Copy, 191

File::pushd, 192

File::Slurper, 217

File::Spec, 190

filehandles, see also files
@ARGV (default array vari-

able), 11
barewords, 228
catching exceptions, 169
curly brackets, 188
defined, 184
flushing, 107
indirect objects, 228–230
initializing, 185
nesting loops, 46
opening to directories

and files, 191
references, 77
rewinding, 186
slurping, 216
tying, 238
Unicode, 28–29
while loop, 45

files, 184–192, 244, see al-
so directories; filehandles

buffering, 189, 222

checking existence, 191
closing, 188
copying, 191
distributions, 196
file test operators, 191
file-handling modules,

243
file-handling variables,

188
hidden, 190
input/output, 184–189
lexical scope, 22
manipulation, 191
moving, 191
opening, 11, 185
permissions, 191
reading from, 107, 186,

221
renaming, 191
slurping, 216
writing to, 187

first-class functions, 76

fixity, operators, 87–90

flattening
avoiding with array refer-

ences, 73
avoiding with references,

96
lists, 57, 92, 95

flip-flop operation, 90

floating-point values, 32

flushing
automatic, 107, 189, 222
controlling, 189

for
about, 41
aliasing, 42
C-style loop, 43
lexical scope, 105
vs. while, 187

forcing
bareword package names,

226
compile-time manipula-

tion, 205
context, 8
method resolution, 235
operator precedence, 85
unary coercion, 220

foreach directive, 40, 44

forward declarations, 91,
122, 231

Friedl, Jeffrey, 125

fully qualified names, 21, 69,
97, 120, 196

Index • 252

Prepared exclusively for Sandi Frank

function references, 76, 222,
235

function signatures, 93–94,
96, 218

functions, 91–123, 244, see
also closures; methods

advanced, 99–103
anonymous, 76, 105,

108–112, 117, 204,
233

attributes, 118–119
autoloading, 119–123
barewords, 227
boolean context, 40
call frame, 100, 102
calling vs. importing, 196
cautions, 103
checking existence, 161,

200
cloning for references, 78
collision avoidance, 157
context, 5–8, 40, 98–99
declaring, 91
defined, 91
delayed, 111
documentation, 3
encapsulation, 218
exporting, 195
first-class, 76
importing, 97, 196
invoking, 91, 103
lexical, 97
lexical scope, 102
listing, 3
-method equivalence,

234–236
namespaces, 97
nesting, 113
parameters, 92–97, 218
prototypes, 103, 227,

230–234
recursion, 100–103, 106
references, 76, 222, 235
reporting errors, 98
scope, 104–108
sigils, 50, 76
signatures, 93–94, 96,

218
slurping, 96
tail calls, 102
validating arguments, 99

G
\G modifier, 136, 138

/g modifier, 138

ge operator, 88

Git::CPAN::Patch, 17

GitHub, 16

Gitpan, 16–17

given, 48, 139

global variables
scope, 105
super, 220–223

goto, 50, 102

greater than operator, 88

greediness
list assignment, 57, 96
regular expressions

quantifiers, 128

grep
default scalar variable, 9
as higher-order function,

115

grouping
non-capturing groups,

134
with -p flag, 86
regular expressions, 133

gt operator, 88

gt= operator, 88

H
has(), 143

hash references, 75, 214

Hash::Util, 66

hashes, 58–66
accessing keys and val-

ues, 61
anonymous, 75
barewords, 59, 66, 90,

225, 227
blessed references, 156
clearing, 59
coercion, 60
curly brackets, 21, 58,

62, 75
declaring, 58
defined, 58
empty, 63
exists, 61
flattening, 95
vs. hash references, 214
idioms, 64–66, 214
indexing, 59
locking, 66, 171
prototypes, 232
references, 75, 214
resetting, 62
Schwartzian transform,

214–216
sigils, 20, 23, 58–59, 75
slicing, 21, 62
vs. symbolic lookup, 20
tying, 237

heredoc syntax, 26–27

hexadecimal numbers, 32

hidden files, skipping, 190

Higher Order Perl, 101, 116

higher-order functions
closures, 112
grep, 115
map, 115
sort, 115

Houston, Robin, 100

HTML, documentation in, 3

hyphen
character classes, 131
disabling modifiers, 137
subtraction operator, 87

I
-I flag, 211

identifiers, see names

idioms, 213–220
aliasing, 42
controlled execution, 217
defined, 213
dispatch table, 108
empty lists, 33
file slurping, 216
handling main(), 217
hashes, 64–66, 214
named parameters, 213
object as $self, 213
postfix parameter valida-

tion, 218
principles, 166
reading from files, 186
regular expressions as,

219
Schwartzian transform,

214–216
unary coercions, 219
understanding, 4

if directive, 36, 40, 47

Imager, 243

images, 243

immutability, OO design, 164

implicit Unicode conversion,
30

implicit anonymous func-
tions, 111

import()
AUTOLOAD(), 123, 161
compile-time manipula-

tion, 205
exporting with, 195
modules, 193–195

Index • 253

Prepared exclusively for Sandi Frank

named parameters, 214
package and implicit

methods, 69, 97

importing
disabling effects, 172
functions, 97
methods, 214
modules, 193–195
package symbol table

and, 107

@INC
filesystem paths list, 222
taint, 211

%INC hash, 160

indentation, heredoc syntax,
26–27

index built-in, searching
strings, 126

indexes
arrays, 52, 56
function parameters, 92
hashes, 59
searching strings, 126

indirect, 173, 230

indirect objects, 173, 228–
230

Inf, 67

infinite loops, 44–45

infinite values, 67

Infinity, 67

infix operators, 87

inheritance, 150–153
over composition, 162
methods, 152, 157
multiple, 152, 158
overloading, 209
overriding, 152
roles, 151, 200

INIT, 226

initializing
filehandles, 185
handling main(), 217

input
files, 184–189
input record separator,

107, 189

$INPUT_LINE_NUMBER, 222

input_line_number(), 189

input_record_separator(), 189

installing
automated, 14
CPAN modules, xi, 14
management tools, 15,

243

multiple installations, xi,
15, 198

Perl, x, 15
perldoc, 1

instance data, see attributes

instance methods, 143

interpolating
arrays, 57
double-quoted strings, 25

introspection, see reflection

intuit_method, 229

invocants, 142, 171

invoking, functions, 91, 103

IO layers, 28–29, 186

IO::All, 209

IO::File, 77, 189, 223

IO::Handle, 189

IO::Seekable, 189

IRC, 17

ironman.enlightened.org, 16

is => 'ro' argument, 143

is => rw argument, 144

is() function, 178

“IS-STRICTLY-EQUIVALENT-
TO-A”, 163

is_class_loaded(), 160

is_deeply(), 179

@ISA global package variable,
157

isa(), 153, 200–201

isa_ok(), 179

isnt() function, 178

J
-j parallel testing option, 177

Java-style constructor calls,
228

JSON, 82, 197

JSON module, 82

K
\K (keep assertion), 136

Kavorka, 94

keep assertion, 136

keyed access syntax, 59

keys operator, 61

L
-l option

documentation, 3
testing, 177

labels, loop, 48

last loop statement, 47

Latin-1, 28, 30

le operator, 88

left arrow, opening files, 185

left shift operator, 89

legacy code, barewords, 227

less pragma, 173

less than operator, 88

lexical assignment, 206

lexical declaration, 206

lexical filehandles, 228

lexical functions, 97

lexical pad, 106

lexical scope
about, 22
anonymous functions,

105
C-style for loop, 43
closures, 112–116
defined, 104
disabling features, 173
dynamic scope, 106
exceptions, 169
for, 41, 43
functions, 102
pragmas, 171, 193
recursion, 100, 102
strict, 241
warnings, 105, 182, 242
warnings pragma, 182, 242

lexpad, 106

lib
multiple installations, 15
taint mode, 211

lib/ directory, 197

libraries
accessing shared, 243
adding library directories,

211
lib/ directory, 197
multiple installations, 15
taint mode, 211

licensing, 14

like, 126

Liskov substitution principle,
163

list context
about, 6
array slices, 56
arrays, 54, 57
comma operator, 90
context awareness, 99
empty hashes, 63
empty lists, 33

Index • 254

Prepared exclusively for Sandi Frank

for, 187
named parameters, 214
numbered captures, 133
range operator, 90
readline, 187
references, 72
regular expressions, 219
repetition operator, 89
reverse, 11
slicing, 21

$LIST_SEPARATOR, 222

listary operators, 86

lists, see also list context
$" ($LIST_SEPARATOR), 222
vs. arrays, 35
arrays assignment, 54,

92
assignment, 57, 96
comma, 34, 90
default scalar variable, 9
defined, 34
empty, 33, 54–55, 59
flattening, 57, 73, 92, 95–

96
listary operators, 86
named parameters, 213
precedence, 34
push, 55
range operator, 90
repetition operator, 89
Schwartzian transform,

214–216
sorting, 215
splitting from strings, 34
trailing comma, 79
values from an array, 23

loading
checking, 160
classes, 200

local, 106, 216, 220

local::lib, 15

localizing
catching warnings, 184
dynamic scope, 106
exception handling, 169
for loops, 41
super global variables,

220

lock_hash(), 66

lock_keys(), 66

lock_value(), 66

locking hashes, 66, 171

logging proxy, 120

logical operators, 88

looks_like_number, 32

looks_like_number(), 67

looping, 40–50
C-style for loop, 43
continue, 48
control statements, 47–

50
default scalar variable, 9
ending loops, 47
infinite, 44–45
labels, 48
nested loops, 46, 48
restarting loops, 47
scope, 42
until, 44–45
while, 44

lt operator, 88

lt= operator, 88

lt=gt operator, 88

lvalue
context, 21
sigil, 23
ternary conditional opera-

tor, 39

M
/m (multiline operator), regex

modifiers, 137

-m option, documentation, 3

m// (match operator), strings,
125

Mac OS X, CPAN require-
ments, 15

magic variables
captures, 132
slurping files, 216

mailing lists, 16, 167

main namespace, 97

main package, 69

main()
dynamic scope, 106
handling, 217
inspecting call chain, 98

Main, Andrew, 119

maintainability
design, 165–168
expressivity and, 3
forcing compile-time ma-

nipulation, 205

make_iterator(), 113

Makefile.PL, 196–197

MANIFEST, 196

map
default scalar variable, 9
as higher-order function,

115
transforms, 215

maps, see hashes

Mastering Regular Expres-
sions, 125

matching
list context, 219
smart match operator,

139
strings match operator,

125
switch statements, 48

math operators
characteristics, 85–87
overloading, 208–209
types, 87–90

Math::BigFloat, 33

Math::BigInt, 33

Matrix, 209

memory
locations, 73
nesting loops, 46
parametric closures, 203
reading files, 187, 221
recursion, 102
reference counting, 77,

82
references, 72, 82
slurping, 216
tailcalls, 50
tying variables, 237, 239

meta-object protocol, 154,
206

META.json, 197

META.yml, 197

metacharacters
disabling characters, 135
escaping, 135
negating, 131
regular expressions, 130,

134–135

metaclasses, 154, 207

metadata, distributions, 14,
197

metaprogramming, 154, 158,
244, see also code genera-
tion

method dispatch order, 152

method resolution order,
see method dispatch order

Method::Signatures, 94

methods, see also functions
accessor, 143–144, 150,

157, 159
barewords, 229
blessed references, 156–

159

Index • 255

Prepared exclusively for Sandi Frank

checking existence, 162,
200

class, 143
collision avoidance, 157
defined, 142
delegating, 120
dispatch order, 152
extracting with regular

expressions, 120
forcing resolution without

dispatch, 235
-function equivalence,

234–236
function references as, 76
importing, 214
inheritance, 152, 157
instance, 143
invocant exception, 171
metaprogramming, 154,

158
Moose, 142
MOP, 206
mutator, 144
overloading, 209
overriding, 152, 158
promoting anonymous

functions to, 204
references, 235

mocking
overriding isa(), 201
testing with, 180

mode operand, IO layers, 28

Modern::Perl, x
modifiers, regular expres-

sions, 136–139

Module::Build, 198

Module::Pluggable, 200

Module::Starter, 198

modules, 192–196, 244, see
also pragmas

checking loading, 160
checking version num-

bers, 161
core, 241
defined, 13, 192
documentation, 1–3, 192
exporting, 195
import(), 97
importing, 97, 193–195
importing without sym-

bols, 195
installing CPAN, xi, 14
modularization and de-

sign, 167
names, 192
organizing code with, 193

vs. programs, 217
warnings, 181

modulo operator, 87

Mojolicious, 243

Moo, 155

Moops, 155

Moose, 141–155
advantages, 153
attributes, 143–147
Class::MOP, 160, 206
classes, 142
distributions, 141, 153
documentation, 141, 146
encapsulation, 145–147
exporting modules, 196
inheritance, 150–153,

157
metaprogramming, 154,

158
methods, 142
object as $self, 213
OO features, 153–155
polymorphism, 146
roles, 148–150
subtypes and coercion,

164
Test::Routine, 180

Moose::Exporter, 196

Moose::Manual, 141

MooseX::Declare, 155

MooseX::Params::Validate, 218

MOP (meta-object protocol),
154, 206

move(), 191

moving files, 191

MRO, see method dispatch
order

mro pragma, 152

multiple inheritance, 152,
158

multiplication
operator, 87
overloading, 209

mutator methods, 144

N
\n marker

reading from files, 187,
189

writing to files, 188

{n,m} (numeric regex quantifi-
er), 128

\n\n marker, reading from files,
189

name() method, 143

named captures, 132, 222

named parameters, 213

names, 19–22, 244, see al-
so namespaces

anonymous functions,
110

blessed references, 159
conflicts, 229
constructors, 228
conventions, 19, 21,

159, 228
distributions, 197
fully qualified, 21, 69,

97, 120, 196
maintainability, 166–167
modules, 192
object attributes, 143
packages, 21, 226
pragmas, 21, 171
programs, 222
renaming files, 191
scalars, 50
symbolic lookups, 20
UTF-8, 19
variables, 20, 86
verbose super global

variables, 221

namespace::autoclean, 157

namespaces
AUTOLOAD(), 123
collision avoidance, 157
defined, 21, 68
functions, 97
levels, 70
open, 70
packages, 68, 70, 97
variables separation with

sigils, 20

NaN (not a number) string, 67

ne operator
context, 88
isnt() function, 178

negated character classes,
132

negative array index, 53

nested data structures, 78–83
alternatives to, 83
autovivification, 61, 67,

80
debugging, 81
vs. symbolic lookup, 20
testing, 180

nesting
loops, 46, 48
named functions, 113
scopes, 105

Index • 256

Prepared exclusively for Sandi Frank

newlines
escaping strings, 25
regular expression an-

chors, 130, 137
removing trailing, 8

next loop statement, 47

no, 172, 194

no warnings 'recursion', 102

no warnings;, 182

-no_match_vars, 221

non-capturing groups, 134

non-word boundary anchor,
130

non-word characters, remov-
ing, 219

nondestructive substitutions,
219

-norequire option, 238

not operator, 89

Null, overloading, 208

Null Object pattern, 207

nullary operators, 86

numbered captures, 133

numbers
about, 32
maximum size, 33
numeric comparisons,

178, 215
numeric operators, 87
regular expressions, 33
unary coercion, 220

numeric coercion, 4, 67

numeric context
about, 7
errors, 222
operators, 87
references, 52

numeric data and PDL, 243

numeric equality, 88

numeric inequality, 88

numeric prefixes, 32

numeric regex quantifier, 127

numification, overloading,
207

\N{} escape syntax, 30

{n} (numeric regex quantifier),
127

O
object orientated program-

ming, see objects

object orientation, see objects

objects, 141–164
attributes, 143–147
blessed references, 155–

159
Class::MOP, 206
classes, 142
compatibility, 146
creating, 142
design principles, 162–

164
destruction and excep-

tions, 170
encapsulation, 145–147
function references as

methods, 76
indirect, 173, 228–230
inheritance, 150–153
as invocants, 142
metaprogramming, 154,

158
method dispatch order,

152
methods, 142
overloading, 207–209
Perl OO features, 153–

155
polymorphism, 146
reflection, 160–162
roles, 148–150
as $self, 213
taint, 210–211

octal numbers, 32

octets, 27–30

ok(), 176

one or more quantifier, 127–
128

OO, see objects

open
file input/output, 184–

189
filehandle references, 77
initializing filehandles,

185
IO layers, 28, 186
three-argument form,

186
two-argument form, 186

opendir, 77, 189

opening
filehandles, 191
files, 11, 185

operators
arity, 86
associativity, 86
auto-increment operator,

88–89
binary, 86

bitwise, 89
characteristics, 85–87
comparison, 88
defined, 85
documentation, 85
fixity, 87–90
listary, 86
logical, 88
nullary, 86
numeric, 87
operators, 2
precedence, 85
regular expressions, 125–

126
repetition operator, 89
string, 88, 126
trinary, 86
types, 87–90

or operator, 88

or operators
bitwise or, 89
bitwise xor, 89
boolean-or, 65
defined-or, 65
or operator, 88
or-cache, 65

or-cache, 65

orcish maneuver, 65

order
hashes, 58, 62
with keyword, 150
methods, 152
operators, 85

our, 105

output
buffering, 189
files, 184–189

$OUTPUT_AUTOFLUSH, 222

overload pragma, 208

overloading, 207–209
context and, 40
inheritance, 209
testing, 178
uses, 209

overloading pragma, 40

override, 152

overriding
can(), 122
DOES(), 200
isa(), 201
methods, 152, 158
with prototypes, 232
VERSION(), 199

Index • 257

Prepared exclusively for Sandi Frank

P
-p flag, grouping parentheses,

86

p5p, 16

package built-in, 68

package global variables
exporting modules, 195
scope, 105
vars pragma, 173

Package::Stash, 162, 205

packages, 68–71
:: package separator, 226
accessing symbol table,

162
checking existence, 160,

200
default, 69
defined, 68
module names, 192
Moose objects, 142
names, 21, 226
namespaces, 68, 70, 97
symbol table, 107, 121,

161–162
versions, 69, 199

Padre, 15

PadWalker, 114

paragraphs, reading one at a
time, 221

parallel testing, 177

parameters
attributes, 118
functions, 92–97, 218
named, 213
postfix validation, 218
unless, 36

parametric closures, 203

parametric constructors, 156

Params::Validate, 218

parent and child, see inheri-
tance

parent directory, skipping,
190

parent pragma, 157, 238

parentheses
associativity, 86
attributes, 143
directives, 36
empty lists, 33
escaping, 132
foreach and for, 41
function parameters, 93
function references, 76
functions, 91, 103, 227
grouping with -p flag, 86

hashes, 75
list context, 6
lists, 34, 54–55
operator precedence, 85
regular expressions, 132–

133

partial application with clo-
sures, 115

Path::Class, 190, 192

Path::Class::Dir, 191

Path::Class::File, 191

Path::Tiny, 191

paths
documentation, 3
list, 222
manipulating, 190
moving files, 191
.pm files, 192
taint, 211
testing options, 177

patterns, see regular expres-
sions

PAUSE, 14

PDL, 243

percent sign
hash sigil, 20, 58, 75
modulo operator, 87
prototypes, 232

Perl
advantages, 1
baby, 4
community, 13–17, 167–

168
history, ix
installing, x, 15, 198
multiple installations, xi,

15, 198
philosophy, 1–11
versions, x, 241–242
web sites, 16

perl -MO=Deparse,-p, 227

#perl IRC channel, 17

Perl Beginners, 167

Perl Best Practices, 188, 209,
214

Perl Foundation, 16

Perl Mongers, 17, 167

“Perl Unicode Cookbook”, 31

Perl Weekly, 16

#perl-help IRC channel, 17

perl5-porters, 16

perl5i pragma, 173

PERL5LIB environment variable,
211

Perl::Critic, 243

Perl::Critic::Policy::Dynamic::NoIndi-
rect, 230

Perl::Tidy, 243

perlbrew, xi, 15, 198

@perlbuzz, 16

perldoc, using, 1–3

perldoc -f -X, 191

perldoc -f require, 222

perldoc -f sort, 215, 228

perldoc -f wantarray, 99

perldoc -l Module::Name, 192

perldoc -lm Module::Name, 192

perldoc -m Module::Name, 192

perldoc B::Deparse, 227

perldoc Class::MOP, 154

perldoc Class::MOP::Class, 154

perldoc Moose::Manual::Attributes,
146

perldoc autodie, 242

perldoc mro, 152

perldoc overload, 208

perldoc perldata, 32, 186

perldoc perldiag, 2, 171, 242

perldoc perldsc, 80

perldoc perlfaq, 2
perldoc perlfaq5, 185

perldoc perlfunc, 3
perldoc perlipc, 222

perldoc perllexwarn, 182, 184,
242

perldoc perlmod, 162

perldoc perlnumber, 32–33

perldoc perlop, 2, 10, 85–86

perldoc perlopentut, 185

perldoc perlpod, 3
perldoc perlpragma, 173

perldoc perlre, 125

perldoc perlrebackslash, 130

perldoc perlreref, 125

perldoc perlretut, 125

perldoc perlsec, 210

perldoc perlsub, 94, 97, 232

perldoc perlsyn, 2, 85, 139

perldoc perltie, 237–238

perldoc perltoc, 2
perldoc perluniintro, 31

perldoc perlvar, 2, 173, 183, 220

perldoc prove, 177

Index • 258

Prepared exclusively for Sandi Frank

perldoc strict, 241

perldoc version::Internals, 69

perldoc warnings, 242

PERLLIB environment variable,
211

perlsphere.net, 16

PerlTricks.com, 16

permissions, file, 191

phone numbers, 131–132

$PID, 222

Pinto, 198

pipes
opening files, 185
Schwartzian transform,

216

placeholders, triple-dot opera-
tor, 10, 90

Plack, 243

Plack::Test, 180

Plack::Test::Agent, 180

Plain Old Documentation, 3,
192

platforms, reporting across,
14

plus sign
addition operator, 87
attributes, 151
one or more regex quanti-

fier, 127–128

.pm files
blessed references, 159
paths, 192

POD format, 3, 192

Pod::Webserver, 3
podchecker, 3
Poe, Curtis, 180

polymorphism, 146, 201

pop, 10, 55, 93

popd, 192

postcircumfix operators, 87

postfix form
directives, 36, 41, 45
operators, 87
parameter validation, 218

postincrement operator, undef
hash values, 64

pragmas, 171–173
attributes, 119
autobox, 173
autodie, 171, 173, 185,

188, 242
autovivification, 80, 173
charnames, 30

constant, 173, 227, 233
defined, 171
disabling, 172
experimental, 173
feature, 32, 173
indirect, 173
less, 173
lexical scope, 171, 193
lib, 15, 211
list, 172
mro, 152
names, 21, 171
overload, 208
overloading, 40
parent, 157, 238
perl5i, 173
scope, 171, 193
strict, 59, 97, 172–173,

204, 225, 227, 241
subs, 122, 232
using, 172
utf8, 19, 29, 173
vars, 173
warnings, 173, 182, 184,

204, 242
warnings::register, 184
writing, 173

precedence
alternation, 134
lists, 34
operators, 85
table, 86

prefix operators, 87

print, 8, 187

process ID, 222

$PROGRAM_NAME, 222

prototype built-in, 231

prototypes, 103, 227, 230–
234

prove, 177, 197

proveall, 177

proxy methods, 120

pseudo-state, 117

punctuation, super global
variables, 221

push, 55, 93, 230

pushd, 192

Q
\Q (metacharacter disabling

character), 135

q operator, 26

-q option, documentation, 2

qq operator, 26

qr// operator, 126

quantifiers, regular expres-
sions, 127–129, 135

question mark
conditional expressions,

38
zero or one regex quantifi-

er, 127–128

quotes
escaping, 24, 26, 29
hash keys, 60
heredoc syntax, 26
quoting operator, 26
strings, 24–26

qw() operator, splitting strings
into lists, 34–35

R
\r marker, reading from files,

187

/r modifier, regular expres-
sions, 137, 219

-r operator, file tests, 191

-r t testing option, 177

\r\n marker, reading from files,
187

race condition, exceptions,
221

range operator
about, 90
flip-flop operation, 90
foreach directive, 41

read-only
attributes, 143
hashes, 66
values and exceptions,

171

readability
<> operator, 11
expressivity and, 3
regular expressions, 138

readdir, 189

reading
attributes, 144
binary data, 187
code to learn, 167
from directories, 189
file permissions, 191
from files, 107, 186, 221
one record at a time,

188, 221
opening files for, 185
super global variable val-

ues, 221

readline
$/ as line-ending se-

quence, 188

Index • 259

Prepared exclusively for Sandi Frank

<> operator, 11, 45, 186
input record separator,

107
reading a record at a

time, 188
using, 186

README, 197

records, reading one at a
time, 188, 221

recursion
functions, 100–103, 106
runaway, 102
tail calls, 102
tailcalls, 50
warnings, 102, 182

recursion warning, 182

redefine warning, 182

redo loop statement, 47

ref(), 201

reference counting, 77, 82

references, 71–78, 244, see
also dereferencing

anonymous functions,
108, 111

anonymous variables,
23, 79

arrays, 57, 73–74
blessed, 155–159, 170–

171
circular, 82
cloning, 78
coercion, 67, 73
counting, 77, 82
exceptions, 170–171
filehandles, 77
function, 76, 222, 235
function parameters, 96
hashes, 75, 214
list context, 72
memory, 72, 82
methods, 235
nested data structures,

78–83
numeric context, 52
prototypes, 231
scalar, 72
string context, 52
string exceptions, 170
weak, 82

reflection, 160–162

regex, see regular expressions

regexp, see regular expres-
sions

Regexp::Common, 33

Regexp::English, 131

registering warnings, 184

regular expressions, 125–140
alternation, 133, 135
anchors, 129, 135, 137
assertions, 135–137
binding and context, 88,

126
capturing, 132, 219
case-insensitive match-

ing, 137
character classes, 131
combinations, 126
context, 126, 219
default scalar variable, 9
defined, 125
escaping, 30, 131–132,

135
exceptions, 170
extracting methods, 120
greediness, 128
grouping, 133
as idiom, 219
like, 126
metacharacters, 130,

134–135
modifiers, 136–139
named captures, 222
numeric values, 33
operators, 125–126
quantifiers, 127–129, 135
smart match operator,

139
string literals, 125
super global variables,

221
taint, 210

rename, 191

repetition operator, 89

reporting
across platforms and ver-

sions, 14
distributions test, 198–

199
exceptions, 98, 181

repositories
creating local Git from

CPAN, 17
creating own, 197

require
caller, 218
checking loading, 160
compile-time manipula-

tion, 205
importing modules, 194

require() method, 206

requires, 148

resetting hashes, 62

resizing arrays, 54

resources, see CPAN; docu-
mentation

resources for this book, 16

responsibility, single responsi-
bility principle, 163

restarting loops, 47

reverse, 11

rewinding filehandles, 186

right arrow, opening files, 185

right shift operator, 89

ro accessor, 144

rock, scissors, paper, 48

Role::Tiny, 159

roles, 148–150, 199

RT queue, 16

runaway recursion, 102

rvalue
context, 21
sigil, 23

rw accessor, 144

S
\s, regex metacharacter, 131

\S metacharacter, 131

/s modifier, regular expres-
sions, 137

-s operator, file tests, 191

s/// (substitution operator),
126

say
context, 11
default scalar variable, 8
writing to files, 187

scalar context
about, 6–7
array slices, 56
arrays, 53–54
coercion, 23
comma operator, 90
context awareness, 99
empty hashes, 63
empty lists, 33
is() function, 178
isnt() function, 178
readline, 186
references, 72
regular expressions, 126
repetition operator, 89
reverse, 11
sigils and, 21, 51
validating arguments, 99

scalar operator, 7

Index • 260

Prepared exclusively for Sandi Frank

scalar operators
context, 7
default scalar variable, 8

scalar references, 72

scalar variable, see default
scalar variable

Scalar::Util
dualvar(), 68
looks_like_number function,

32
looks_like_number(), 67
tainted(), 210
weaken(), 82

scalars, see also arrays; coer-
cion; hashes; scalar context

anonymous functions,
111

blessed, 238
coercion, 51, 73
defined, 50
flattening lists and, 95
indirect objects, 229
for loop, 42
prototypes, 232
references, 72
repetition operator, 89
scalar operators, 7
sigils, 20, 23, 50, 53, 58,

72, 74–75
tying, 237
types, 51
undef, 33

Schwartzian transform, 214–
216

scope
C-style for loop, 43
defined, 104
disabling warning cate-

gories, 182
dynamic, 106, 168
exceptions, 168
for, 41
functions, 104–108
local, 216
looping, 42
packages, 69
pragmas, 171, 193
shadowing, 105
state, 107, 116
super global variables,

220
variables, 22, 105

$scope variable, 106

searching
documentation, 2
strings with index, 126

security
dispatch tables, 109
locking hashes, 66
open, 186
regular expressions, 135
taint, 210–211

seek, 46, 186

$self
object as, 213
tied variables, 238

setup, 119

shadowing, 105

shift
default array variables,

10
elements, 55
function parameters, 92

short-circuiting, 39, 88

show_call_information(), 98

%SIG variable, 183, 222

sigils
array variables, 20
arrays, 20, 23, 53, 56,

72–73, 75, 79
coercion, 23
dereferencing, 72
functions, 50, 76
goto, 50
hashes, 20, 58–59, 75
scalars, 20, 23, 50, 53,

58
slicing, 21, 62
variables, 20, 23
variant, 20

signals
%SIG variable, 222
signal handlers and ex-

ceptions, 170

signatures, 93–94, 96, 218

simplicity and maintainabili-
ty, 166

single false/true value, 40

single quotes
escaping, 24
hash keys, 60
heredoc syntax, 26
string delimiters, 24, 26

single responsibility principle,
163

skipping hidden files, 190

slicing
array references, 74
arrays, 21, 56
function parameters, 93
hash references, 75

hashes, 21, 62
nested data structures,

79
sigils and context, 21, 62

slow testing, 177

slurping
files, 216
function parameters, 96
hashes, 65
nesting loops, 46

Smalltalk traits, 148

smart match operator, 139

sort
barewords, 228
documentation, 215, 228
as higher-order function,

115
prototypes, 234
Schwartzian transform,

215

sorting
comparison operators, 88
lists, 215

splice, 56, 93

split, 66

splitting strings into lists, 34

Sqitch, 243

SQL, 243

SQLite, 243

square brackets
arrays, 21, 53, 74
character classes, 131

start of string anchor, 129

state, see also attributes
vs. closures, 116
immutability and design,

164
vs. pseudo-state, 117
roles, 148–150
scope, 107, 116
slow tests, 177

--state=slow,save testing option,
177

STDERR, 181, 184

STDIN, 184

STDOUT, 184, 189

stopping recursion, 101

Storable, 78

STORE(), 238

Strawberry Perl, x, 15, 153

Strawberry Perl Professional,
15

strict 'subs', barewords, 227

Index • 261

Prepared exclusively for Sandi Frank

strict pragma
about, 173
barewords, 59, 225, 227,

241
disabling, 172, 204
importing functions, 97
parametric closures, 204
uses, 241

string context
about, 7
errors, 222
operators, 88
references, 52

string operators, 88, 126

stringification, overloading,
207

strings, 24–31, 244, see al-
so hashes; string context
'0.0' and '0e0' true values,

52
array interpolation, 57
coercion, 27, 51, 66
comparison, 215
comparisons and testing,

178, 180
concatenation, 25, 88–89
defined, 24
delimiters, 24, 26
as hash keys, 59
heredoc syntax, 26
incrementing, 51–52
overloading, 207
path manipulation, 191
regular expression an-

chors, 129
regular expressions, 125
repetition operator, 89
searching with index, 126
splitting into lists, 34
string operators, 88, 126
unary coercion, 220
undef value, 33
Unicode, 27–31
unicode_strings, 32

structured data files, 243

sub
anonymous functions,

76, 109
declaring functions, 91

Sub::Exporter, 196

Sub::Identify, 110

sub_name(), 110

subroutines, see functions

subs pragma
AUTOLOAD(), 122
overriding with proto-

types, 232

substitutions
keep assertion, 137
Liskov substitution prin-

ciple, 163
modifiers, 137, 139
nondestructive, 219
numbered captures, 133
operator, 126

subtraction operator, 87

subtypes, coercion, 164

super global variables, 220–
223

SUPER module, 159

super(), 159

SUPER:: prefix, 158–159

surprises, avoiding, 4

switch statements, 48

symbol tables
accessing, 162
avoiding AUTOLOAD(), 121
checking existence, 161–

162
defined, 162
importing package, 107
modifying, 205
parametric closures, 204

symbolic lookup, 20, 214

symbolic operators, documen-
tation, 2

symbolic quantifiers, 128

symbolic references, forbid-
ding, 241

symbolic variables, documen-
tation, 2

symbols
checking existence, 162
documentation, 2
exporting, 195
forbidding symbolic refer-

ences, 241
pragmas and scope, 171
symbolic lookup, 20, 214

syntactic constructors, docu-
mentation, 2

sysopen, 185

system error variable, 107

T
-T flag, taint mode, 210–211

-t flag, taint mode, 211

.t suffix, 179

t/ directory, 179, 197

table of contents, documenta-
tion, 2

tables, see hashes

tabs, escaping in strings, 25

tailcalls
AUTOLOAD(), 121
defined, 49
elimination, 102
optimization, 50

taint, 171, 210–211

tainted(), 210

TAP (Test Anything Protocol),
177

TAP::Harness, 177, 197

Task::Kensho, 243

teardown, 119

termination condition, recur-
sion, 101

ternary conditional operator,
38–40, 88

Test Anything Protocol, 177

test plan, 176

Test::Builder, 180

Test::Class, 118, 180

Test::Database, 180

Test::Deep, 179–180

Test::Differences, 179–180

Test::Exception, 180, 233

Test::Fatal, 111, 180, 233

Test::LongString, 180

Test::MockModule, 180, 201

Test::MockObject, 180, 201

Test::More, 126, 175–180, 197

Test::Most, 181

Test::Reporter, 198

Test::Routine, 180

Test::WWW::Mechanize, 180

Test::WWW::Mechanize::PSGI, 180

testing, 175–181, 244, see al-
so autovivification

assertions, 118
attributes, 118
automated, 14
better comparisons, 178
coverage, 180
CPAN, 14
design, 167
distributions, 199
documentation, 177, 181
dualvars, 178
file test operators, 191
list of testing modules,

180
maintainability, 167
organizing tests, 179–180

Index • 262

Prepared exclusively for Sandi Frank

in parallel, 177
prototypes, 233
reporting, 198–199
running tests, 176
slow, 177
t/ directory, 197
TAP (Test Anything Proto-

col), 177
test classes, 180
test directories, 177,

179, 197
test plan, 176
Test::More, 175–180, 197

Text::CSV, 243

Text::CSV_XS, 243

Throwable::Error, 170

throws_ok(), 233

tie, 237–239

Tie::Array, 237

Tie::File, 237

Tie::Hash, 237

Tie::Scalar, 237

Tie::StdArray, 237

Tie::StdHash, 237

Tie::StdScalar, 237

TIEARRAY(), 238

tied, 238

TIEHANDLE(), 238

TIEHASH(), 238

TIESCALAR(), 238

Tilly, Ben, 234

TIMTOWTDI, 3

toke.c, 229

Too many arguments for subroutine
exception, 94

topic variable, see default
scalar variable

transforms, Schwartzian,
214–216

trappable fatal errors, 171,
244, see also exceptions

Tregar, Sam, 198

trinary operators, 86

triple-dot operator, placehold-
er, 10, 90

try, 171

Try::Tiny, 171, 221, 223

Twitter, 16

tying variables, 237–239

type checking, 99

typeglobs
defined, 162

filehandle references, 77
parametric closures, 204

types
duck typing, 147
Moose declarations, 144
subtypes and coercion,

164
value types, 23

U
Ubuntu, CPAN requirements,

15

unary coercion, 60, 219

undef
about, 33
arrays assignment, 54
caller, 218
checking version num-

bers, 161
context, 99
hash slices, 64
hashes, 59, 61
reading from files, 186

undef value, context, 33

underscore, numeric literals,
32

Unicode, see also UTF-8
data, 29
defined, 27
documentation, 31
escape syntax, 29
implicit conversion, 30
IO encoding layer, 186
metacharacters, 130
strings, 27–31
unicode_strings, 32
warnings, 28

unicode_strings, 32

unimport(), 69, 123, 194

unimporting, 69, 172, 194

uninitialized value warning, 33,
182

UNITCHECK, 226

UNIVERSAL, 160, 199–202, 206

UNIVERSAL::can, 201

UNIVERSAL::isa, 201

UNIVERSAL::ref, 201

UNIVERSAL::require, 206

Unix, CPAN requirements, 15

unless directive, 36, 40

unlink, 191

unlock_hash(), 66

unlock_value(), 66

unshift, 55, 93

untainting, 210

until, 44–45

use
caller, 218
checking loading, 160
compile-time manipula-

tion, 205
import(), 97, 193
modules, 193, 195
pragmas, 172

use IO::Handle;, 77

“used only once” warning,
204

UTF-8
about, 28
enabling, 29
filehandles, 28
names, 19
utf8 pragma, 19, 29, 173
writing files, 186

utf8 pragma, 19, 29, 173

utf8::all module, 29

V
-v option, documentation, 3

validation
arguments, 99
parameter, 36
postfix parameter, 218

value context, 7

values, 24–35, 244, see al-
so coercion; lists; numbers;
scalars; strings; variables
'0.0' and '0e0', 52
aliasing, 42
constant, 42, 173
context, 5–8
default value with state,

108
dereferencing sigils to

find, 72
empty lists, 33
floating-point, 32
hashes values operator, 61
infinite, 67
maximum size, 33
most recent exception,

222
push and pop, 55
tainted, 171
unary coercion, 220
undef value, 33
using named variables vs.

constant values, 86
value types, 23

values operator, hashes, 61

Index • 263

Prepared exclusively for Sandi Frank

@values[@indices], 23

$values[0], 23

variables, 22–23, 244, see al-
so default array variables;
default scalar variable; val-
ues

anonymous, 23, 79
automatic dereferencing,

236
coercion, 23
container types, 23
defined, 22
documentation, 2–3
exporting, 195
file-handling, 188
list context and parenthe-

ses, 6
localizing magic, 107
names, 20, 86
regular expression stor-

age, 126
requiring declaration,

241
scope, 22, 105
ternary conditional opera-

tor, 39
tying, 237–239
uninitialized value warnings,

182
using named variables vs.

values, 86
value types, 23

variant sigils, 20

vars pragma, 173

$VERSION package global, 69,
199

VERSION(), 69, 123, 161, 199

versions
backward compatibility,

241
checking module version

numbers, 161
CPAN, 14
distributions, 197–198
finding version number,

242
packages, 69, 199
Perl, x, 241–242
reporting across, 14
Unicode, 28, 32
warnings, 183

void context
about, 6
context awareness, 99

W
\w (word boundary anchor),

130

-W flag, 182

-w flag, 182

\W metacharacter, 130–131

Wall, Larry, ix, 3, 13

Want, 40, 100

wantarray, 99

warn, 181–182

warnings, 181–184
Carp, 99
catching, 183
coercion, 66
Deep recursion on subroutine,

102
disabling and enabling,

102, 182
disabling categories, 182
documentation, 2, 182–

184
fatal, 183
lexical scope, 105, 242
listing, 182
nested named functions,

113
producing, 181
promoting to exceptions,

171, 183
prototypes, 231
pseudo-state, 117
recursion, 102, 182
redefine, 182
registering, 184
Unicode, 28
uninitialized value, 33, 182
“used only once”, 204
versions, 183
warnings pragma, 173,

182, 184, 204, 242

warnings pragma
about, 173
lexical scope, 182, 242
registering, 184
“used only once” warning,

204
uses, 242

warnings::enabled(), 184

warnings::register pragma, 184

warnings::warnif(), 184

weak references, 82

weaken(), 82

web applications
modules, 243
testing, 180

web servers
HTML documentation, 3
testing, 180

web sites, community, 16

whatever operator, see triple
dot operator

when, switch statements, 48

while
about, 44
default scalar variable, 9
vs. for, 187
reading from directories,

190
reading from files, 186

whitespace
double-quoted strings, 25
embedding in regex, 138
heredoc syntax, 27
nested data structures,

80
prototypes, 233
regex metacharacter, 131
splitting strings into lists,

34

Wide character in %s, 28

Wilhelm, Eric, 14

Windows
CPAN management tools,

15
CPAN requirements, 15
installing Perl, x
manipulating paths, 190

with, roles, 148, 150

word boundary anchor, 130

word boundary metacharac-
ters, 130–131

working directory, 192

writeable attributes, 144

writing
opening files for, 185
pragmas, 173
to files, 187

Writing Perl Modules for CPAN,
198

X
x (repetition operator), 89

-X flag, 182

/x modifier, regular expres-
sions, 138

-X operators, 191

XML files, 243

XML::Rabbit, 243

Index • 264

Prepared exclusively for Sandi Frank

xor operator, 89

\x{} Unicode escape syntax,
29

Y
YAML, 82, 197

YAML::XS, 82

Yet Another Perl Conference
(YAPC), 17

Z
\z (end of line string anchor),

129

zero or more quantifier, 127–
128

zero or one quantifier, 127–
128

zero-width assertions, 135–
136

zero-width negative look-
ahead assertion, 136

zero-width negative look-be-
hind assertion, 136

zero-width positive look-
ahead assertion, 136

zero-width positive look-be-
hind assertion, 136

Index • 265

Prepared exclusively for Sandi Frank

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux
Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. Learn how to
customize, script, and leverage tmux’s unique abilities
and keep your fingers on your keyboard’s home row.

Brian P. Hogan
(88 pages) ISBN: 9781934356968. $16.25
https://pragprog.com/book/bhtmux

Practical Vim, Second Edition
Vim is a fast and efficient text editor that will make
you a faster and more efficient developer. It’s available
on almost every OS, and if you master the techniques
in this book, you’ll never need another text editor. In
more than 120 Vim tips, you’ll quickly learn the editor’s
core functionality and tackle your trickiest editing and
writing tasks. This beloved bestseller has been revised
and updated to Vim 7.4 and includes two brand-new
tips and five fully revised tips.

Drew Neil
(320 pages) ISBN: 9781680501278. $29
https://pragprog.com/book/dnvim2

Prepared exclusively for Sandi Frank

https://pragprog.com/book/bhtmux
https://pragprog.com/book/dnvim2

Seven in Seven
You need to learn at least one new language every year. Here are fourteen excellent sugges-
tions to get started.

Seven Languages in Seven Weeks
You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’ll learn
something new from each, and best of all, you’ll learn
how to learn a language quickly.

Bruce A. Tate
(330 pages) ISBN: 9781934356593. $34.95
https://pragprog.com/book/btlang

Seven More Languages in Seven Weeks
Great programmers aren’t born—they’re made. The
industry is moving from object-oriented languages to
functional languages, and you need to commit to radi-
cal improvement. New programming languages arm
you with the tools and idioms you need to refine your
craft. While other language primers take you through
basic installation and “Hello, World,” we aim higher.
Each language in Seven More Languages in Seven
Weeks will take you on a step-by-step journey through
the most important paradigms of our time. You’ll learn
seven exciting languages: Lua, Factor, Elixir, Elm,
Julia, MiniKanren, and Idris.

Bruce Tate, Fred Daoud, Jack Moffitt, Ian Dees
(318 pages) ISBN: 9781941222157. $38
https://pragprog.com/book/7lang

Prepared exclusively for Sandi Frank

https://pragprog.com/book/btlang
https://pragprog.com/book/7lang

Seven in Seven
From Web Frameworks to Concurrency Models, see what the rest of the world is doing with
this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks
Whether you need a new tool or just inspiration, Seven
Web Frameworks in Seven Weeks explores modern
options, giving you a taste of each with ideas that will
help you create better apps. You’ll see frameworks that
leverage modern programming languages, employ
unique architectures, live client-side instead of server-
side, or embrace type systems. You’ll see everything
from familiar Ruby and JavaScript to the more exotic
Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud
(302 pages) ISBN: 9781937785635. $38
https://pragprog.com/book/7web

Seven Concurrency Models in Seven Weeks
Your software needs to leverage multiple cores, handle
thousands of users and terabytes of data, and continue
working in the face of both hardware and software
failure. Concurrency and parallelism are the keys, and
Seven Concurrency Models in Seven Weeks equips you
for this new world. See how emerging technologies
such as actors and functional programming address
issues with traditional threads and locks development.
Learn how to exploit the parallelism in your computer’s
GPU and leverage clusters of machines with MapRe-
duce and Stream Processing. And do it all with the
confidence that comes from using tools that help you
write crystal clear, high-quality code.

Paul Butcher
(296 pages) ISBN: 9781937785659. $38
https://pragprog.com/book/pb7con

Prepared exclusively for Sandi Frank

https://pragprog.com/book/7web
https://pragprog.com/book/pb7con

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang.

Programming Elixir
You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Maybe you need something that’s closer to Ruby, but
with a battle-proven environment that’s unrivaled for
massive scalability, concurrency, distribution, and
fault tolerance. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

Dave Thomas
(340 pages) ISBN: 9781937785581. $36
https://pragprog.com/book/elixir

Metaprogramming Elixir
Write code that writes code with Elixir macros. Macros
make metaprogramming possible and define the lan-
guage itself. In this book, you’ll learn how to use
macros to extend the language with fast, maintainable
code and share functionality in ways you never thought
possible. You’ll discover how to extend Elixir with your
own first-class features, optimize performance, and
create domain-specific languages.

Chris McCord
(128 pages) ISBN: 9781680500417. $17
https://pragprog.com/book/cmelixir

Prepared exclusively for Sandi Frank

https://pragprog.com/book/elixir
https://pragprog.com/book/cmelixir

The Joy of Math and Healthy Programming
Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take
a healthier approach to programming.

Good Math
Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
https://pragprog.com/book/mcmath

The Healthy Programmer
To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
https://pragprog.com/book/jkthp

Prepared exclusively for Sandi Frank

https://pragprog.com/book/mcmath
https://pragprog.com/book/jkthp

Pragmatic Programming
We’ll show you how to be more pragmatic and effective, for new code and old.

Your Code as a Crime Scene
Jack the Ripper and legacy codebases have more in
common than you’d think. Inspired by forensic psychol-
ogy methods, this book teaches you strategies to pre-
dict the future of your codebase, assess refactoring
direction, and understand how your team influences
the design. With its unique blend of forensic psychology
and code analysis, this book arms you with the
strategies you need, no matter what programming
language you use.

Adam Tornhill
(218 pages) ISBN: 9781680500387. $36
https://pragprog.com/book/atcrime

The Nature of Software Development
You need to get value from your software project. You
need it “free, now, and perfect.” We can’t get you there,
but we can help you get to “cheaper, sooner, and bet-
ter.” This book leads you from the desire for value down
to the specific activities that help good Agile projects
deliver better software sooner, and at a lower cost.
Using simple sketches and a few words, the author
invites you to follow his path of learning and under-
standing from a half century of software development
and from his engagement with Agile methods from their
very beginning.

Ron Jeffries
(178 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjnsd

Prepared exclusively for Sandi Frank

https://pragprog.com/book/atcrime
https://pragprog.com/book/rjnsd

Make it Work
Do retrospectives the right way, and see how to get new ideas accepted.

Agile Retrospectives
See how to mine the experience of your software devel-
opment team continually throughout the life of the
project. The tools and recipes in this book will help
you uncover and solve hidden (and not-so-hidden)
problems with your technology, your methodology, and
those difficult “people issues” on your team.

Esther Derby and Diana Larsen, Foreword by Ken
Schwaber
(176 pages) ISBN: 9780977616640. $29.95
https://pragprog.com/book/dlret

Driving Technical Change
If you work with people, you need this book. Learn to
read co-workers’ and users’ patterns of resistance and
dismantle their objections. With these techniques and
strategies you can master the art of evangelizing and
help your organization adopt your solutions.

Terrence Ryan
(146 pages) ISBN: 9781934356609. $32.95
https://pragprog.com/book/trevan

Prepared exclusively for Sandi Frank

https://pragprog.com/book/dlret
https://pragprog.com/book/trevan

Explore Testing and Cucumber
Explore the uncharted waters of exploratory testing and beef up your automated testing
with more Cucumber.

Explore It!
Uncover surprises, risks, and potentially serious bugs
with exploratory testing. Rather than designing all tests
in advance, explorers design and execute small, rapid
experiments, using what they learned from the last
little experiment to inform the next. Learn essential
skills of a master explorer, including how to analyze
software to discover key points of vulnerability, how
to design experiments on the fly, how to hone your
observation skills, and how to focus your efforts.

Elisabeth Hendrickson
(186 pages) ISBN: 9781937785024. $29
https://pragprog.com/book/ehxta

Cucumber Recipes
You can test just about anything with Cucumber. We
certainly have, and in Cucumber Recipes we’ll show
you how to apply our hard-won field experience to your
own projects. Once you’ve mastered the basics, this
book will show you how to get the most out of Cucum-
ber—from specific situations to advanced test-writing
advice. With over forty practical recipes, you’ll test
desktop, web, mobile, and server applications across
a variety of platforms. This book gives you tools that
you can use today to automate any system that you
encounter, and do it well.

Ian Dees, Matt Wynne, Aslak Hellesøy
(274 pages) ISBN: 9781937785017. $33
https://pragprog.com/book/dhwcr

Prepared exclusively for Sandi Frank

https://pragprog.com/book/ehxta
https://pragprog.com/book/dhwcr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/swperl
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/swperl

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

Prepared exclusively for Sandi Frank

https://pragprog.com/book/swperl
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/swperl
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Preface
	Running Modern Perl
	Credits

	1. The Perl Philosophy
	Perldoc
	Expressivity
	Context
	Implicit Ideas

	2. Perl and Its Community
	The CPAN
	Community Sites
	Development Sites
	Events
	IRC

	3. The Perl Language
	Names
	Variables
	Values
	Control Flow
	Scalars
	Arrays
	Hashes
	Coercion
	Packages
	References
	Nested Data Structures

	4. Operators
	Operator Characteristics
	Operator Types

	5. Functions
	Declaring Functions
	Invoking Functions
	Function Parameters
	Functions and Namespaces
	Reporting Errors
	Advanced Functions
	Pitfalls and Misfeatures
	Scope
	Anonymous Functions
	Closures
	State versus Closures
	State versus Pseudo-State
	Attributes
	AUTOLOAD

	6. Regular Expressions and Matching
	Literals
	The qr// Operator and Regex Combinations
	Quantifiers
	Greediness
	Regex Anchors
	Metacharacters
	Character Classes
	Capturing
	Grouping and Alternation
	Other Escape Sequences
	Assertions
	Regex Modifiers
	Smart Matching

	7. Objects
	Moose
	Blessed References
	Reflection
	Advanced OO Perl

	8. Style and Efficacy
	Writing Maintainable Perl
	Writing Idiomatic Perl
	Writing Effective Perl
	Exceptions
	Pragmas

	9. Managing Real Programs
	Testing
	Handling Warnings
	Files
	Modules
	Distributions
	The UNIVERSAL Package
	Code Generation
	Overloading
	Taint

	10. Perl Beyond Syntax
	Idioms
	Global Variables

	11. What to Avoid
	Barewords
	Indirect Objects
	Prototypes
	Method-Function Equivalence
	Automatic Dereferencing
	Tie

	12. Next Steps with Perl
	Useful Core Modules
	What's Next?

	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

