
Perl 6 Fundamentals
A Primer with Examples,  

Projects, and Case Studies

Moritz Lenz



Perl 6 Fundamentals: A Primer with Examples, Projects, and Case Studies

Moritz Lenz    
Fürth, Bayern, Germany   

ISBN-13 (pbk): 978-1-4842-2898-2  ISBN-13 (electronic): 978-1-4842-2899-9
DOI 10.1007/978-1-4842-2899-9

Any source code or other supplementary material referenced by the author in this book is 
available to readers on GitHub via the book’s product page, located at www.apress.com/ 
9781484228982. For more detailed information, please visit http://www.apress.com/
source-code.

Library of Congress Control Number: 2017948406

Copyright © 2017 by Moritz Lenz



Contents at a Glance

 ■Chapter 1: What Is Perl 6? �������������������������������������������������������������� 1

 ■Chapter 2: Running Rakudo Perl 6 ������������������������������������������������� 5

 ■Chapter 3: Formatting a Sudoku Puzzle ����������������������������������������� 9

 ■Chapter 4: Datetime Conversion for the Command Line ��������������� 23

 ■Chapter 5: Testing say( ) ��������������������������������������������������������������� 39

 ■Chapter 6: Silent-Cron, a Cron Wrapper ��������������������������������������� 43

 ■Chapter 7: Stateful Silent-Cron ����������������������������������������������������� 61

 ■Chapter 8: Review of the Perl 6 Basics ���������������������������������������� 67

 ■Chapter 9: Parsing INI Files Using Regexes and Grammars ��������� 73

 ■Chapter 10: A File and Directory Usage Graph ����������������������������� 95

 ■Chapter 11: A Unicode Search Tool ��������������������������������������������� 113

 ■Chapter 12: Plotting Using Inline::Python and Matplotlib ������������ 119

 ■Chapter 13: What’s Next? ����������������������������������������������������������� 135

Index ���������������������������������������������������������������������������������������������� 139

Foreword ��������������������������������������������������������������������������������������� xvii



Contents

 ■Chapter 1: What Is Perl 6? �������������������������������������������������������������� 1

1.1  Perl 5, the Older Sister ................................................................... 1

1.2  Library Availability .......................................................................... 2

1.3  Why Should I Use Perl 6? ............................................................... 2

1.4  Summary ........................................................................................ 3

 ■Chapter 2: Running Rakudo Perl 6 ������������������������������������������������� 5

2.1  Installers ........................................................................................ 5

2.2  Docker ............................................................................................ 6

2.3  Building from Source ..................................................................... 7

2.4  Testing Your Rakudo Star Installation ............................................. 8

2.5  Documentation ............................................................................... 8

2.6  Summary ........................................................................................ 8

 ■Chapter 3: Formatting a Sudoku Puzzle ����������������������������������������� 9

3.1  Making the Sudoku Playable ........................................................ 12

3.2  Shortcuts, Constants, and More Shortcuts ................................... 16

Foreword ��������������������������������������������������������������������������������������� xvii



3.3  I/O and Other Tragedies ................................................................ 18

3.4  Get Creative! ................................................................................ 20

3.5  Summary ...................................................................................... 21

 ■Chapter 4: Datetime Conversion for the Command Line ��������������� 23

4.1  Libraries to the Rescue ................................................................ 23

4.2  DateTime Formatting ................................................................... 26

4.3  Looking the Other Way ................................................................. 28

4.4  Dealing with Time ........................................................................ 30

4.5  Tighten Your Seat Belt .................................................................. 31

4.6  MAIN Magic .................................................................................. 33

4.7  Automated Tests ........................................................................... 34

4.8  Summary ...................................................................................... 38

 ■Chapter 5: Testing say( ) ��������������������������������������������������������������� 39

5.1  Summary ...................................................................................... 42

 ■Chapter 6: Silent-Cron, a Cron Wrapper ��������������������������������������� 43

6.1  Running Commands Asynchronously ........................................... 43

6.2  Implementing Timeouts ................................................................ 46

6.3  More on Promises ........................................................................ 48

6.4  Possible Extensions ..................................................................... 51

6.5  Refactoring and Automated Tests ................................................ 51

6.5.1  Refactoring ................................................................................................. 51

6.5.2  Mocking and Testing ................................................................................... 53

6.5.3  Improving Reliability and Timing ................................................................ 58

6.5.4  Installing a Module ..................................................................................... 58

6.6  Summary ...................................................................................... 59



 ■Chapter 7: Stateful Silent-Cron ����������������������������������������������������� 61

7.1  Persistent Storage ........................................................................ 61

7.2  Developing the Storage Back End ................................................ 62

7.3  Using the Storage Back End ......................................................... 65

7.4  Room for Expansion ..................................................................... 66

7.5  Summary ...................................................................................... 66

 ■Chapter 8: Review of the Perl 6 Basics ���������������������������������������� 67

8.1  Variables and Scoping .................................................................. 67

8.2  Subroutines .................................................................................. 67

8.3  Classes and Objects ..................................................................... 69

8.4  Concurrency ................................................................................. 71

8.5  Outlook ......................................................................................... 71

 ■Chapter 9: Parsing INI Files Using Regexes and Grammars ��������� 73

9.1  Regex Basics ................................................................................ 74

9.1.1  Character Classes....................................................................................... 75

9.1.2  Quantifiers .................................................................................................. 75

9.1.3  Alternatives................................................................................................. 76

9.2  Parsing the INI Primitives ............................................................. 76

9.3  Putting Things Together................................................................ 79

9.4  Backtracking ................................................................................ 80

9.5  Grammars .................................................................................... 82

9.6  Extracting Data from the Match ................................................... 83

9.7  Generating Good Error Messages ................................................. 88

9.7.1  Failure Is Normal ........................................................................................ 88

9.7.2  Detecting Harmful Failure .......................................................................... 89

9.7.3  Providing Context ....................................................................................... 90

9.7.4  Shortcuts for Parsing Matching Pairs ......................................................... 92



9.8  Write Your Own Grammars ........................................................... 93

9.9  Summary ...................................................................................... 93

 ■Chapter 10: A File and Directory Usage Graph ����������������������������� 95

10.1  Reading File Sizes ...................................................................... 95

10.2  Generating a Tree Map ............................................................... 97

10.3  Flame Graphs ........................................................................... 101

10.4  Functional Refactorings ........................................................... 103

10.5  More Language Support for Functional Programming ............. 109

10.6  More Improvements ................................................................. 110

10.7  Explore! .................................................................................... 111

10.8  Summary .................................................................................. 112

 ■Chapter 11: A Unicode Search Tool ��������������������������������������������� 113

11.1 Code Points, Grapheme Clusters, and Bytes ............................ 115

11.2  Numbers ................................................................................... 116

11.3  Other Unicode Properties ......................................................... 117

11.4  Collation ................................................................................... 117

11.5  Summary .................................................................................. 118

 ■Chapter 12: Plotting Using Inline::Python and Matplotlib ������������ 119

12.1  Extracting the Stats .................................................................. 119

12.2  Plotting with Python ................................................................. 120

12.3  Bridging the Gap ...................................................................... 122

12.4  Using the Bridge to Plot ........................................................... 123

12.5  Stacked Plots ........................................................................... 125



12.6  Idiomatic Use of Inline::Python ................................................. 129

12.6.1  Types of Python APIs ............................................................................... 129

12.6.2  Mapping the Function API ....................................................................... 130

12.6.3  An Object-Oriented Interface .................................................................. 132

12.7  Summary .................................................................................. 134

 ■Chapter 13: What’s Next? ����������������������������������������������������������� 135

13.1  Scaling Your Code Base............................................................ 135

13.2  Packaging Your Application ...................................................... 136

13.2.1  Packaging as a Traditional Perl 6 Module ............................................... 136

13.2.2  Deploying with Docker ........................................................................... 137

13.2.3  Windows Installers ................................................................................. 137

13.3  Closing Thoughts ...................................................................... 137

Index ���������������������������������������������������������������������������������������������� 139



Foreword

The reason I’m writing this (and perhaps why you’re reading it), is that people 
just give me way too much credit. Yeah, sure, I invented Perl 30 years ago, and I 
coded the first five versions all by myself, pretty much. But for the last 20 years, 
the vast majority of the work has been done by other members of the industrious 
Perl community, who get far too little credit. To be sure, I don’t mind getting 
extra credit: I’m human enough to enjoy the undue adulation, and I understand 
how communities want—and possibly even need—to have a figurehead who 
represents the whole.

I will gladly take credit, however, for the idea that a computer language must 
have a vibrant community in order to thrive. From the beginning, that was the 
intent of Perl. It all comes down to linguistics: Perl was designed to work like a 
natural language on many levels, not just the syntactic level. In particular, every 
living language is symbiotic with the culture that conveys it forward into the 
future. More generally, natural languages are responsive to context on every 
level, and some of those levels are anthropological. People provide context to 
Perl, which in turn is designed to respond productively to that context.

This may seem simple, but it’s a surprisingly tricky concept to bake into 
a programming language and its culture. Just look at how many computer 
languages fail at it. In most programming cultures, you are a slave to the 
computer language. Rarely, if ever, do you get the feeling that the computer 
language is there to work for you.

We’re trying to change all that. So when the Perl community, back in 2000, 
decided to do a major redesign of Perl 5 to clean up the cruftier bits, we not only 
wanted to fix things that we already knew were suboptimal, but we also wanted 
to do a better job of responding to cultural change, because we simply don’t 
know what we’ll want in the future. So we thought about how best to future-
proof a computer language; much of the current design is about maintaining 
careful control of identity, mutability, dimensionality, typology, and extensibility 
over time, so we could isolate changes to minimize collateral damage. Other 
than worrying about that, my main contribution as language designer was to 
unify the community’s contradictory desires into a coherent whole.

All that being said, it’s still all about the community: nearly all the 
implementation work was done by others, and most of the features that ended 
up in Perl 6 can be traced back through various revisions to the community’s 



original RFCs. True, many of those original designs we deemed inadequate, 
but we never lost sight of the pain points those original suggestions were trying 
to address. As a result, even though Perl 6 ended up to be quite a different 
language than Perl 5, it is still essentially Perl in spirit. We now think of Perl 6 
as the “younger sister” to Perl 5, and we expect the sisters will get along well in 
the future. You’re allowed to be friends with either or both. They only squabble 
occasionally, as family do.

Since 2000, we’ve had over 800 contributors to the Perl 6 effort, one way or 
another. Some folks come and go, and that’s fine. We welcome the occasional 
contributor. On the other hand, we also honor those who strove greatly but paid 
the price of burnout. And we deeply revere those who have already passed on, 
who contributed, in some cases, knowing they would never see the final result.

But then there are those who have stuck with the Perl 6 effort through 
thick and thin, through joy and frustration, who have patiently (or at least 
persistently!) risen to the challenge of building a better Perl community around 
the revised Perl language, and who have gladly taken on the hard work of making 
other people’s lives easy.

One such is my friend Moritz Lenz, your author, and a much-respected 
member of our not-so-secret Perl 6 Cabal. Well, some days it’s more like the Perl 
6 Comedy Club.

While thinking about this foreword, I guessed (and Moritz confirmed) that 
he has a background in the performance arts. One can tell, because he seems 
to have a natural feel for when to blend in as part of the ensemble, when to step 
forward and take a solo lead, and when to step back again and let someone else 
come to the fore. In many ways, the Perl 6 effort has been like a jazz jam session, 
or like improv comedy, the kind of art where part of it is showing how cleverly we 
learn to work together and trade off roles on the fly.

I’ve had to learn some of that myself. Good leaders don’t try to lead all the 
time. That’s what bad leaders try to do. Often, a good leader is just “following 
out in front,” sensing when the group behind wants a change of direction, and 
then pretending to lead the group in that direction. Moritz knows how to do 
that too.

Hence, this book. It’s not just a reference, since you can always find such 
materials online. Nor is it just a cookbook. I like to think of it as an extended 
invitation, from a well-liked and well-informed member of our circle, to people 
like you who might want to join in on the fun. Because joy is what’s fundamental 
to Perl. The essence of Perl is an invitation to love, and to be loved by, the Perl 
community. It’s an invitation to be a participant of the gift economy, on both the 
receiving and the giving end.



Since Herr Doktor Professor Lenz is from Deutschland, I think it’s 
appropriate to end with one of my favorite German sayings:

Liebe ist arm und reich,

Fordert und gibt zugleich.

Oder auf Englisch:

Love is poor and rich,

Taking and giving as one.

Larry Wall, May 2017



1© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_1

CHAPTER 1

What Is Perl 6?

Perl 6 is a programming language. It is designed to be easily learned, read, and 
written by humans, and is inspired by natural language. It allows the beginner 
to write in “baby Perl,” while giving the experienced programmer freedom of 
expression, from concise to poetic.

Perl 6 is gradually typed. It mostly follows the paradigm of dynamically 
typed languages in that it accepts programs whose type safety it can’t guarantee 
during compilation. However, unlike many dynamic languages, it accepts and 
enforces type constraints. Where possible, the compiler uses type annotations 
to make decisions at compile time that would otherwise only be possible at 
runtime.

Many programming paradigms have influenced Perl 6. You can write 
imperative, object-oriented, and functional programs in Perl 6. Declarative 
programming is supported through features like multiple-dispatch, sub-typing, 
and the regex and grammar engine.

Most lookups in Perl 6 are lexical, and the language avoids global state. This 
makes parallel and concurrent execution of programs easier, as does Perl 6’s 
focus on high-level concurrency primitives. When you don’t want to be limited 
to one CPU core, instead of thinking in terms of threads and locks, you tend to 
think about promises and message queues.

Perl 6 as a language is not opinionated about whether Perl 6 programs should be 
compiled or interpreted. Rakudo Perl 6—the main implementation—precompiles 
modules on the fly and interprets scripts.

1.1  Perl 5, the Older Sister
Around the year 2000, Perl 5 development faced major strain from the 
conflicting desires to evolve and to keep backward compatibility.

Perl 6 was the valve to release this tension. All the extension proposals that 
required a break in backward compatibility were channeled into Perl 6, leaving it 
in a dreamlike state where everything was possible and nothing was fixed. It took 
several years of hard work to get into a more solid state.



Chapter 1 ■ What Is perl 6?

2

During this time, Perl 5 also evolved, and the two languages are different 
enough that most Perl 5 developers don’t consider Perl 6 a natural upgrade path 
anymore, to the point that Perl 6 does not try to obsolete Perl 5 (at least not more 
than it tries to obsolete any other programming language :-), and the first stable 
release of Perl 6 in 2015 does not indicate any lapse in support for Perl 5.

Perl 5 is developed by a separate community of enthusiasts, who keep an 
eye on Perl 6 to find features worth adopting into Perl 5. So while the Perl 5 and 
Perl 6 communities have a certain overlap and communicate with each other, 
both thrive mostly independently.

1.2  Library Availability
Being a relatively young language, Perl 6 lacks the mature module ecosystem 
that languages such as Perl 5 and Python provide.

To bridge this gap, interfaces exist that allow you to call into libraries 
written in C, Python, Perl 5, and Ruby. The Perl 5 and Python interfaces are 
sophisticated enough that you can write a Perl 6 class that subclasses a class 
written in either language, and the other way around.

So if you like a particular Python library, for example, you can simply load it 
into your Perl 6 program through the Inline::Python module.

1.3  Why Should I Use Perl 6?
If you like the quick prototyping experience from dynamically typed 
programming languages, but you also want enough safety features to build big, 
reliable applications, Perl 6 is a good fit for you. Its gradual typing allows you to 
write code without having a full picture of the types involved, and later introduce 
type constraints to guard against future misuse of your internal and external APIs.

Perl has a long history of making text processing via regular expressions 
(regexes) very easy, but more complicated regexes have acquired a reputation 
of being hard to read and maintain. Perl 6 solves this by putting regexes on the 
same level as code, allowing you to name them like subroutines, and even to 
use object-oriented features such as class inheritance and role composition to 
manage code and regex reuse. The resulting grammars are very powerful and 
easy to read. In fact, the Rakudo Perl 6 compiler parses Perl 6 source code with a 
Perl 6 grammar!

Speaking of text, Perl 6 has amazing Unicode support. If you ask your user 
for a number, and they enter it with digits that don’t happen to be the Arabic 
digits from the ASCII range, Perl 6 still has you covered. And if you deal with 
graphemes that cannot be expressed as a single Unicode code point, Perl 6 still 
presents it as a single character.



Chapter 1 ■ What Is perl 6?

3

There are more technical benefits that I could list, but more importantly, 
the language is designed to be fun to use. An important aspect of that is good 
error messages. Have you ever been annoyed at Python for typically giving just 
SyntaxError: invalid syntax when something’s wrong? This error could 
come from forgetting a closing parenthesis, for example. In this case, a Perl 6 
compiler says

Unable to parse expression in argument list; couldn't find final ')'

which actually tells you what’s wrong. But this is just the tip of the iceberg. The 
compiler catches common mistakes and points out possible solutions, and 
even suggests fixes for spelling mistakes. The Perl 6 community considers error 
messages that are less than awesome, short LTA, to be worthy of bug reports, and 
much effort is spent into raising the bar for error messages.

Finally, Perl 6 gives you the freedom to express your problem domain and 
solution in different ways and with different programming paradigms. And if 
the options provided by the core language are not enough, it is designed with 
extensibility in mind, allowing you to introduce both new semantics for  
object-oriented code and new syntax.

1.4  Summary
Perl 6 is a flexible programming language that offers many cool and convenient 
features to both beginners and experts. It offers flexibility, type checking, and 
powerful Unicode and text processing support.



5© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_2

CHAPTER 2

Running Rakudo Perl 6

Before we start exploring Perl 6, you should have an environment where you 
can run Perl 6 code. So you need to install Rakudo Perl 6, currently the only 
actively developed Perl 6 compiler. Or even better, install Rakudo Star, which is a 
distribution that includes Rakudo itself, a few useful modules, and a tool that can 
help you install more modules.

Installing Rakudo itself gives you just the compiler. It follows a monthly 
release cycle, so it allows you to keep up to date with the latest developments.

When you choose to install Rakudo Star, which is typically released every 
three months, you get a more stable base for development, and some tools like a 
debugger and a module installer. You can use the module installer to make use 
of prepackaged software libraries that are included neither in Rakudo itself nor 
in Rakudo Star.

The following sections discuss a few options for installing Rakudo Star. 
Choose whatever works for you.

The examples in this book use Rakudo 2017.04.03 or Rakudo Star 2017.04 
(which is built on top of Rakudo 2017.04.03) and should work with this or any 
newer version of Rakudo, as long as it supports Perl 6 version 6.c.

 ■ Note The examples and source code used in this book can be accessed via the 
Download Source Code button at https://www.apress.com/9781484228982.

2.1  Installers
You can download installers from https://rakudo.perl6.org/downloads/
star/ for Mac OS (.dmg) and Windows (.msi). After download, you can launch 
them, and they walk you through the installation process.

Prebuilt Linux packages are available from https://github.com/nxadm/
rakudo-pkg/releases/ for Debian, Ubuntu, CentOS, and Fedora.

In both cases, use version 2017.04 to get the best compatibility with the 
examples used in this book.

https://www.apress.com/9781484228982
https://rakudo.perl6.org/downloads/star/
https://rakudo.perl6.org/downloads/star/
https://github.com/nxadm/rakudo-pkg/releases/
https://github.com/nxadm/rakudo-pkg/releases/


ChapTer 2 ■ running rakuDo perl 6

6

Note that Rakudo is not relocatable, which means you have to install to 
a fixed location that was decided by the creator of the installer. Moving the 
installation to a different directory is not possible.

On Windows, the installer (Figure 2-1) offers to add C:\rakudo\bin and  
C:\rakudo\share\perl6\site\bin to your PATH environment. You should 
choose that option, as it allows you to execute Rakudo perl6 (and programs that 
the module installer installs on your behalf) without specifying full paths.

2.2  Docker
On platforms that support Docker, you can pull an existing Docker container 
from the docker hub:

$ docker pull rakudo-star

Then you can get an interactive Rakudo shell with this command:

$ docker run -it rakudo-star perl6:2017.04

But that alone won’t work for executing scripts, because the container has 
its own separate file system. To make scripts available inside the container, you 
need to tell Docker to make the current directory available to the container:

$ docker run -v $PWD:/perl6 -w /perl6 -it rakudo-star perl6

Figure 2-1. The Rakudo Star installer consists of four easy screens



ChapTer 2 ■ running rakuDo perl 6

7

The option -v $PWD:/perl6 instructs Docker to mount the current working 
directory ($PWD) into the container, where it’ll be available as /perl6. To make 
relative paths work, -w /perl6 instructs Docker to set the working directory of 
the Rakudo process to /perl6.

Since this command line starts to get unwieldy, I created an alias (this is 
Bash syntax; other shells might have slightly different alias mechanisms):

alias p6d='docker run -v $PWD:/perl6 -w /perl6 -it rakudo-star perl6'

I put this line into my ∼/.bashrc file, so new shell instances have a p6d 
command, short for “Perl 6 docker.”

As a short test to see if it works, you can run

$ p6d -e 'say "hi"'
hi

If you go the Docker route, use the p6d alias instead of perl6 to run scripts.

2.3  Building from Source
To build Rakudo Star from source, you need make, the GNU C Compiler1 (GCC), 
or clang and Perl 5 installed. This example installs into $HOME/opt/rakudo-star:

$ wget https://rakudo.perl6.org/downloads/star/rakudo-star-2017.04.
tar.gz
$ tar xzf rakudo-star-2017.04.tar.gz
$ cd rakudo-star-2017.04/
$ perl Configure.pl --prefix=$HOME/opt/rakudo-star --gen-moar
$ make install

You should have about 2GB of RAM available for the last step; building a 
compiler is a resource-intensive task.

You need to add paths to two directories to your PATH environment variable, 
one for Rakudo itself and one for programs installed by the module installer:

PATH=$PATH:$HOME/opt/rakudo-star/bin/:$HOME/opt/rakudo-star/share/perl6/
site/bin

If you are a Bash user, you can put that line into your ∼/.bashrc file to make 
it available in new Bash processes.

1http://gcc.gnu.org/

http://gcc.gnu.org/


ChapTer 2 ■ running rakuDo perl 6

8

2.4  Testing Your Rakudo Star Installation
You should now be able to run Perl 6 programs from the command line and ask 
Rakudo for its version:

$ perl6 --version
This is Rakudo version 2017.04.2 built on MoarVM version 2017.04
implementing Perl 6.c.

$ perl6 -e "say <hi>"
hi

If, against all odds, all of these approaches have failed to produce a usable 
Rakudo installation, you should describe your problem to the friendly Perl 
6 community, which can usually provide some help. https://perl6.org/
community/ describes ways to interact with the community.

2.5  Documentation
Rakudo itself has little documentation, since most of the interesting material is 
about the Perl 6 language. But Rakudo does come with a summary of command-
line options that you can access by calling perl6 --help.

The official place for Perl 6 language documentation is at https://docs.
perl6.org/, which aims to provide both reference and tutorial-style material. 
Other good resources are listed at https://perl6.org/resources/, many of 
which are created and maintained by members of the Perl 6 community.

2.6  Summary
On most platforms, you can install Rakudo Star from prebuilt binary installers.  
Where this doesn’t work, Docker images are available. Finally, Rakudo Star can 
be built from its sources.

https://perl6.org/community/
https://perl6.org/community/
https://docs.perl6.org/
https://docs.perl6.org/
https://perl6.org/resources/
https://perl6.org/resources/


9© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_3

CHAPTER 3

Formatting a Sudoku Puzzle

As a gentle introduction to Perl 6, let’s consider a small task that I recently 
encountered while pursuing one of my hobbies.

Sudoku is a number-placement puzzle played on a grid of 9×9 cells, 
subdivided into blocks of 3×3 (Figure 3-1). Some of the cells are filled out with 
numbers from 1 to 9, some are empty. The objective of the game is to fill out the 
empty cells so that in each row, column, and 3×3 block, each digit from 1 to 9 
occurs exactly once.

Figure 3-1. A Sudoku puzzle in its unsolved form



Chapter 3 ■ Formatting a Sudoku puzzle

10

An efficient storage format for a Sudoku is simply a string of 81 characters, 
with 0 for empty cells and the digits 1 to 9 for prefilled cells. The task I want to 
solve is to bring this into a friendlier format.

The input could be

00000007500008009400050060001000020000090005700600304000100002308000
0006063240000

On to our first Perl 6 program:

# file sudoku.p6
use v6;
my $sudoku = ' 000000075000080094000500600010000200000900057006003040 

001000023080000006063240000';
for 0..8 -> $line-number {
    say substr $sudoku, $line-number * 9, 9;
}

You can run it like this:

$ perl6 sudoku.p6
000000075
000080094
000500600
010000200
000900057
006003040
001000023
080000006
063240000

There’s not much magic in there, but let’s go through the code one line at a time. 
The first line, starting with a #, is a comment that extends to the end of the line.

use v6;

This line is not strictly necessary, but good practice anyway. It declares 
the Perl version you are using, here v6; in other words, any version of the Perl 
6 language. We could be more specific and say use v6.c to require exactly the 
version discussed here. If you ever accidentally run a Perl 6 program through 
Perl 5, you’ll be glad you included this line, because it’ll tell you the following:

$ perl sudoku.p6
Perl v6.0.0 required--this is only v5.22.1, stopped at sudoku.p6 line 1.
BEGIN failed--compilation aborted at sudoku.p6 line 1.



Chapter 3 ■ Formatting a Sudoku puzzle

11

instead of the much more cryptic

syntax error at sudoku.p6 line 4, near "for 0"
Execution of sudoku.p6 aborted due to compilation errors.

The first interesting line is

my $sudoku = '00000007500...';

my declares a lexical variable. It is visible from the point of the declaration to the 
end of the current scope, which means either to the end of the current block 
delimited by curly braces, or to the end of the file if it’s outside any block, as it is 
in this example.

Variables start with a sigil, here a $. Sigils are what gave Perl the reputation 
of being line noise, but there is signal in the noise. The $ looks like an S, which 
stands for scalar. If you know some math, you know that a scalar is just a single 
value, as opposed to a vector or even a matrix.

This variable doesn’t start its life empty, because there’s an initialization 
right next to it. The value it starts with is a string literal, as indicated by the 
quotes.

Note that there is no need to declare the type of the variable beyond the 
very vague “it’s a scalar” implied by the sigil. If we wanted, we could add a type 
constraint:

my Str $sudoku = '00000007500...';

But when quickly prototyping, I tend to forego type constraints, because I 
often don’t know yet how exactly the code will work out.

The actual logic happens in the next lines, by iterating over the line numbers 
0 to 8:

for 0..8 -> $line-number {
    ...
}

The for loop has the general structure for ITERABLE BLOCK. Here the 
iterable is a range,1 and the block is a pointy block. The block starts with ->, 
which introduces a signature. The signature tells the compiler what arguments 
the block expects, here a single scalar called $line-number.

1https://docs.perl6.org/type/Range.html

https://docs.perl6.org/type/Range.html


Chapter 3 ■ Formatting a Sudoku puzzle

12

Perl 6 allows the use of dash - or a single quote ' to join multiple simple 
identifiers into a larger identifier. That means you can use them inside an 
identifier as long as the following character is a letter or an underscore.

Again, type constraints are optional. If you chose to include them, it would 
be for 0..8 -> Int $line-number { ... }.

$line-number is again a lexical variable and visible inside the block that 
comes after the signature. Blocks are delimited by curly braces.

say substr $sudoku, $line-number * 9, 9;

Both say2 and substr3 are functions provided by the Perl 6 standard library.
substr($string, $from, $num-chars) extracts a substring from $string. 

It starts from a zero-based index $from and takes the number of characters 
specified by $num-chars. Oh, and in Perl 6 one character is truly one character, 
even if it is made up of multiple codepoints like an accented Roman letter.

say then prints this substring, followed by a line break.
As you can see from the example, function invocations don’t need 

parentheses, though you can add them if you want:

say substr($sudoku, $line-number * 9, 9);

or even

say(substr($sudoku, $line-number * 9, 9));

3.1  Making the Sudoku Playable
As the output of our script stands now, you can’t play the resulting Sudoku even 
if you printed it on paper. All those pesky zeros get in the way of actually entering 
your carefully deduced numbers!

So, let’s substitute each 0 with a blank so you can solve the puzzle:

# file sudoku.p6
use v6;

my $sudoku = ' 000000075000080094000500600010000200000900057006003040 
001000023080000006063240000';

$sudoku = $sudoku.trans('0' => ' ');

for 0..8 -> $line-number {

2https://docs.perl6.org/routine/say#(IO)_sub_say
3https://docs.perl6.org/type/Str#routine_substr

https://docs.perl6.org/routine/say#(IO)_sub_say
https://docs.perl6.org/type/Str#routine_substr


Chapter 3 ■ Formatting a Sudoku puzzle

13

    say substr $sudoku, $line-number * 9, 9;
}

trans4 is a method of the Str class. Its argument is a Pair.5 The boring way 
to create a Pair would be Pair.new('0', ' '), but since it’s so commonly 
used, there is a shortcut in the form of the fat arrow, =>. The method trans 
replaces each occurrence of the pair’s key with the pair’s value and returns 
the resulting string.

Speaking of shortcuts, you can also shorten $sudoku = $sudoku.
trans(...) to $sudoku.=trans(...). This is a general pattern that turns 
methods that return a result into mutators.

With the new string substitution, the result is playable, but ugly:

$ perl6 sudoku.p6
       75
    8  94
   5  6
 1    2
   9   57
  6  3 4
  1    23
 8      6
 6324

A bit of ASCII art makes it bearable:

+---+---+---+
|   | 1 |   |
|   |   |79 |
| 9 |   | 4 |
+---+---+---+
|   |  4|  5|
|   |   | 2 |
|3  | 29|18 |
+---+---+---+
|  4| 87|2  |
|  7|  2|95 |
| 5 |  3|  8|
+---+---+---+

4https://docs.perl6.org/type/Str.html#method_trans
5https://docs.perl6.org/type/Pair

https://docs.perl6.org/type/Str.html#method_trans
https://docs.perl6.org/type/Pair


Chapter 3 ■ Formatting a Sudoku puzzle

14

To get the vertical dividing lines, we need to subdivide the lines into smaller 
chunks. And since we already have one occurrence of dividing a string into 
smaller strings of a fixed size, it’s time to encapsulate it into a function:

sub chunks(Str $s, Int $chars) {
    gather loop (my $idx = 0; $idx < $s.chars; $idx += $chars) {
        take substr($s, $idx, $chars);
    }
}

for chunks($sudoku, 9) -> $line {
    say chunks($line, 3).join('|');
}

The output is

$ perl6 sudoku.p6
   |   | 75
   | 8 | 94
   |5  |6
 1 |   |2
   |9  | 57
  6|  3| 4
  1|   | 23
 8 |   |  6
 63|24 |

But how did it work? Well, sub (SIGNATURE) BLOCK declares a subroutine, 
short sub. Here I declare it to take two arguments, and since I tend to confuse the 
order of arguments to functions I call, I’ve added type constraints to make it very 
likely that Perl 6 catches the error for me.

gather and take work together to create a list. gather is the entry point and 
each execution of take adds one element to the list. So

gather {
    take 1;
    take 2;
}

would return the list 1, 2. Here gather acts as a statement prefix, which means 
it collects all takes from within the loop.

The loop statement takes the form loop (INITIAL, CONDITION, POST) 
BLOCK and works like a for loop in C and related languages. It first executes 
INITIAL, and then while CONDITION is true, first the BLOCK and then POST.



Chapter 3 ■ Formatting a Sudoku puzzle

15

A subroutine returns the value from the last expression,6 which here is the 
gather loop ... construct discussed above.

Coming back to the program, the for loop now looks like this:

for chunks($sudoku, 9) -> $line {
    say chunks($line, 3).join('|');
}

First the program chops up the full Sudoku string into lines of nine 
characters, and then for each line chops it up again into a list of three strings 
each with a length of three characters. The join method7 turns it back into a 
string, but with pipe symbols inserted between the chunks.

There are still vertical bars missing at the start and end of the line, which can 
easily be hard-coded by changing the last line:

say '|', chunks($line, 3).join('|'), '|';

Now the output is

|   |   | 75|
|   | 8 | 94|
|   |5  |6  |
| 1 |   |2  |
|   |9  | 57|
|  6|  3| 4 |
|  1|   | 23|
| 8 |   |  6|
| 63|24 |   |

Only the horizontal lines are missing, which aren’t too hard to add:

my $separator = '+---+---+---+';
my $index = 0;
for chunks($sudoku, 9) -> $line {
    if $index++ %% 3 {
        say $separator;
    }
    say '|', chunks($line, 3).join('|'), '|';
}
say $separator;

6You can also use return EXPRESSION to return a value, and exit the subroutine 
immediately.
7https://docs.perl6.org/type/List#routine_join

https://docs.perl6.org/type/List#routine_join


Chapter 3 ■ Formatting a Sudoku puzzle

16

Et voilà:

+---+---+---+
|   |   | 75|
|   | 8 | 94|
|   |5  |6  |
+---+---+---+
| 1 |   |2  |
|   |9  | 57|
|  6|  3| 4 |
+---+---+---+
|  1|   | 23|
| 8 |   |  6|
| 63|24 |   |
+---+---+---+

There are some new aspects here: the if conditional, which structurally 
very much resembles the for loop, and the divisibility operator, %%. From other 
programming languages you probably know % for modulo, but since $number 
% $divisor == 0 is such a common pattern, $number %% $divisor is Perl 6’s 
shortcut for it.

Finally, you might know the ++ postfix operator from programming 
languages such as C or Perl 5. It increments the variable by one, but returns the 
old value, so

my $x = 0;
say $x++;
say $x;

first prints 0 and then 1.

3.2  Shortcuts, Constants, and More Shortcuts
Perl 6 is modeled after human languages, which have some kind of compression 
scheme built in, where commonly used words tend to be short, and common 
constructs have shortcuts.

As such, there are lots of ways to write the code more succinctly. The first 
is basically cheating, because the sub chunks can be replaced by a built-in 
method in the Str class, comb8:

# file sudoku.p6
use v6;

8https://docs.perl6.org/type/Str#routine_comb

https://docs.perl6.org/type/Str#routine_comb


Chapter 3 ■ Formatting a Sudoku puzzle

17

my $sudoku = ' 000000075000080094000500600010000200000900057006003040 
001000023080000006063240000';

$sudoku = $sudoku.trans('0' => ' ');

my $separator = '+---+---+---+';
my $index = 0;
for $sudoku.comb(9) -> $line {
    if $index++ %% 3 {
        say $separator;
    }
    say '|', $line.comb(3).join('|'), '|';
}
say $separator;

The if conditional can be applied as a statement postfix:

say $separator if $index++ %% 3;

Except for the initialization, the variable $index is used only once, so there’s 
no need to give it a name. Yes, Perl 6 has anonymous variables:

my $separator = '+---+---+---+';
for $sudoku.comb(9) -> $line {
    say $separator if $++ %% 3;
    say '|', $line.comb(3).join('|'), '|';
}
say $separator;

Since $separator is a constant, we can declare it as one:

constant $separator = '+---+---+---+';

If you want to reduce the line noise factor, you can also forego the sigil, so 
constant separator = '...'.

Finally, there is another syntax for method calls with arguments: instead 
of $obj.method(args) you can say $obj.method: args, which brings us to the 
idiomatic form of the small Sudoku formatter:

# file sudoku.p6
use v6;



Chapter 3 ■ Formatting a Sudoku puzzle

18

my $sudoku = ' 000000075000080094000500600010000200000900057006003040 
001000023080000006063240000';

$sudoku = $sudoku.trans: '0' => ' ';

constant separator = '+---+---+---+';
for $sudoku.comb(9) -> $line {
    say separator if $++ %% 3;
    say '|', $line.comb(3).join('|'), '|';
}
say separator;

The output remains unchanged by these changes to the Perl 6 code.

3.3  I/O and Other Tragedies
A practical script doesn’t contain its input as a hard-coded string literal, but 
reads it from the command line, standard input, or a file.

If you want to read the Sudoku from the command line, you can declare a 
subroutine called MAIN, which gets all command-line arguments passed in:

# file sudoku.p6
use v6;

constant separator = '+---+---+---+';

sub MAIN($sudoku) {
    my $substituted = $sudoku.trans: '0' => ' ';

    for $substituted.comb(9) -> $line {
        say separator if $++ %% 3;
        say '|', $line.comb(3).join('|'), '|';
    }
    say separator;
}

This is how it’s called:

$ perl6-m sudoku-format-08.p6 0000000750000800940005006000100002000009
00057006003040001000023080000006063240000



Chapter 3 ■ Formatting a Sudoku puzzle

19

+---+---+---+
|   |   | 75|
|   | 8 | 94|
|   |5  |6  |
+---+---+---+
| 1 |   |2  |
|   |9  | 57|
|  6|  3| 4 |
+---+---+---+
|  1|   | 23|
| 8 |   |  6|
| 63|24 |   |
+---+---+---+

And you even get a usage message for free if you use it incorrectly, for 
example by omitting the argument:

$ perl6-m sudoku.p6
Usage:
  sudoku.p6 <sudoku>

You might have noticed that the last example uses a separate variable for the 
substituted Sudoku string. This is because function parameters (aka variables 
declared in a signature) are read-only by default. Instead of creating a new 
variable, I could have also written sub MAIN($sudoku is copy) { ... }.

Classic UNIX programs, such as cat and wc, follow the convention of reading 
their input from file names given on the command line, or from standard input if 
no file names are given on the command line.

If you want your program to follow this convention, lines() provides a 
stream of lines from either of these sources:

# file sudoku.p6
use v6;

constant separator = '+---+---+---+';

for lines() -> $sudoku {
    my $substituted = $sudoku.trans: '0' => ' ';

    for $substituted.comb(9) -> $line {
        say separator if $++ %% 3;
        say '|', $line.comb(3).join('|'), '|';
    }
    say separator;

}



Chapter 3 ■ Formatting a Sudoku puzzle

20

3.4  Get Creative!
You won’t learn a programming language from reading a book; you have to 
actually use it, tinker with it. If you want to expand on the examples discussed 
earlier, I’d encourage you to try to produce Sudokus in different output formats.

SVG9 is a text-based vector graphics format that offers all the primitives 
necessary for rendering a Sudoku: rectangles, lines, text, and much more. You 
can use it if you want to achieve relatively good output with little effort.

This is the rough skeleton of an SVG file for a Sudoku:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/
Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="304" height="304" version="1.1"
xmlns="http://www.w3.org/2000/svg">
     <line x1="0" x2="300" y1="33.3333" y2="33.3333" 

style="stroke:grey" />
     <line x1="0" x2="300" y1="66.6667" y2="66.6667" 

style="stroke:grey" />
     <line x1="0" x2="303" y1="100" y2="100" style="stroke:black; 

stroke-width:2" />
     <line x1="0" x2="300" y1="133.333" y2="133.333" 

style="stroke:grey" />
    <!-- more horizontal lines here -->
     <line y1="0" y2="300" x1="33.3333" x2="33.3333" 

style="stroke:grey" />
    <!-- more vertical lines here -->

    <text x="43.7333" y="124.5"> 1 </text>
    <text x="43.7333" y="257.833"> 8 </text>
    <!-- more cells go here -->
     <rect width="304" height="304" style="fill:none;stroke-width: 

1;stroke:black;stroke-width:6"/>
</svg>

If you have a Firefox or Chrome browser or a dedicated vector graphics 
program such as Inkscape,10 you can use it to open the SVG file (Figure 3-2).

9https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
10https://inkscape.org/

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://inkscape.org/


Chapter 3 ■ Formatting a Sudoku puzzle

21

3.5  Summary
The first Perl 6 example introduced literals, variables, and control flow.

You have also seen basic input and output primitives, and a MAIN subroutine 
that lets you easily accept command-line arguments.

Figure 3-2. The SVG skeleton when viewed in Chrome. You can see the placement 
both of the grid lines and of some initial letters.



23© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_4

CHAPTER 4

Datetime Conversion for  
the Command Line

Occasionally I work with a database that stores dates and datetimes as UNIX 
timestamps, a.k.a. the number of seconds since midnight 1970-01-01. Unlike the 
original author of the database and surrounding code, I cannot convert between 
UNIX timestamps and human-readable date formats in my head, so I write tools 
for that.

Our goal here is to write a small tool that converts back and forth between 
UNIX timestamps and dates/times:

$ autotime 2015-12-24
1450915200
$ autotime 2015-12-24 11:23:00
1450956180
$ autotime 1450915200
2015-12-24
$ autotime 1450956180
2015-12-24 11:23:00

4.1  Libraries to the Rescue
Date and time arithmetic is surprisingly hard to get right, and at the same time 
rather boring, hence I’m happy to delegate that part to libraries.

Perl 6 ships with DateTime1 (somewhat inspired by the Perl 5 module of 
the same name) and Date2 (mostly blatantly stolen from Perl 5’s Date::Simple 
module) in the core library. These two will handle the actual conversions. Our 
focus will be on creating a friendly user experience for the input and output of 
the conversions.

1https://docs.perl6.org/type/DateTime
2https://docs.perl6.org/type/Date

https://docs.perl6.org/type/DateTime
https://docs.perl6.org/type/Date


Chapter 4 ■ Datetime Conversion for the CommanD Line 

24

For the conversion from a UNIX timestamp to a date or datetime, the 
DateTime.new constructor comes in handy. It has a variant that accepts a single 
integer as a UNIX timestamp:

$ perl6 -e "say DateTime.new(1450915200)"
2015-12-24T00:00:00Z

Looks like we’re almost done with one direction, right?

#!/usr/bin/env perl6
sub MAIN(Int $timestamp) {
    say DateTime.new($timestamp)
}

Let’s run it:

$ autotime 1450915200
Invalid DateTime string '1450915200'; use an ISO 8601 timestamp 
(yyyy-mm-ddThh:mm:ssZ or yyyy-mm-ddThh:mm:ss+01:00) instead
  in sub MAIN at autotime line 2
  in block <unit> at autotime line 2

Oh no, what happened? It seems that the DateTime constructor views the 
argument as a string, even though the parameter to sub MAIN is declared as an 
Int. How can that be? Let’s add some debugging output:

#!/usr/bin/env perl6
sub MAIN(Int $timestamp) {
    say $timestamp.^name;
    say DateTime.new($timestamp)
}

Running it now with the same invocation as before, there’s an extra line of 
output before the error:

IntStr

$thing.ˆname is a call to a method of the meta class of $thing, and name 
asks it for its name (in other words, the name of the class). IntStr3 is a subclass of 
both Int and Str, which is why the DateTime constructor legitimately considers 
it a Str. The mechanism that parses command-line arguments before they are 
passed on to MAIN converts the string from the command line to IntStr instead 
of Str, in order to not lose information in case we do want to treat it as a string.

3https://docs.perl6.org/type/IntStr

https://docs.perl6.org/type/IntStr


Chapter 4 ■ Datetime Conversion for the CommanD Line 

25

Cutting a long story short, we can force the argument into a “real” integer by 
adding a + prefix, which is the general mechanism for conversion to a numeric 
value:

#!/usr/bin/env perl6
sub MAIN(Int $timestamp) {
    say DateTime.new(+$timestamp)
}

A quick test shows that it now works:

$ ./autotime-01.p6 1450915200
2015-12-24T00:00:00Z

The output is in the ISO 8601 timestamp format,4 which might not be the 
easiest on the eye. For a date (when hour, minute, and second are zero), we 
really want just the date:

#!/usr/bin/env perl6
sub MAIN(Int $timestamp) {
    my $dt = DateTime.new(+$timestamp);
    if $dt.hour == 0 && $dt.minute == 0 && $dt.second == 0 {
        say $dt.Date;
    }
    else {
        say $dt;
    }
}

Better:

$ ./autotime 1450915200
2015-12-24

But the conditional is a bit clunky. Really, three comparisons to 0?
Perl 6 has a neat little feature that lets you write this more compactly:

if all($dt.hour, $dt.minute, $dt.second) == 0 {
    say $dt.Date;
}

4https://www.iso.org/iso-8601-date-and-time-format.html

https://www.iso.org/iso-8601-date-and-time-format.html


Chapter 4 ■ Datetime Conversion for the CommanD Line 

26

all(...) creates a Junction,5 a composite value of several other values, 
that also stores a logical mode. When you compare a junction to another value, 
that comparison automatically applies to all the values in the junction. The if 
statement evaluates the junction in a boolean context, and in this case only 
returns True if all comparisons returned True as well.

Other types of junctions exist: any, all, none, and one. Considering that 
0 is the only integer that is false in a boolean context, we could even write the 
preceding statement as

if none($dt.hour, $dt.minute, $dt.second) {
    say $dt.Date;
}

Neat, right?
But you don’t always need fancy language constructs to write concise 

programs. In this case, approaching the problem from a slightly different angle 
yields even shorter and clearer code. If the DateTime object round-trips a 
conversion to Date and back to DateTime without loss of information, it’s clearly 
a Date:

if $dt.Date.DateTime == $dt {
    say $dt.Date;
}
else {
    say $dt;
}

4.2  DateTime Formatting
For a timestamp that doesn’t resolve to a full day, the output from our script 
currently looks like this:

2015-12-24T00:00:01Z

where “Z” indicates the UTC or “Zulu” timezone.
Instead I’d like it to be

2015-12-24 00:00:01

5https://docs.perl6.org/type/Junction

https://docs.perl6.org/type/Junction


Chapter 4 ■ Datetime Conversion for the CommanD Line 

27

The DateTime class supports custom formatters, so let’s write one:

sub MAIN(Int $timestamp) {
    my $dt = DateTime.new(+$timestamp, formatter => sub ($o) {
            sprintf '%04d-%02d-%02d %02d:%02d:%02d',
                    $o.year, $o.month, $o.day,
                    $o.hour, $o.minute, $o.second,
    });
    if $dt.Date.DateTime == $dt {
        say $dt.Date;
    }
    else {
        say $dt.Str;
    }
}

Now the output looks better:

./autotime 1450915201
2015-12-24 00:00:01

You can replace the format string with your own if you want to produce 
output in a different format, like DD.MM.YYYY.

The syntax formatter => ... in the context of an argument denotes a 
named argument, which means the name and not the position in the argument 
list decides which parameter to bind to. This is very handy if there are a bunch of 
parameters.

I don’t like the code anymore, because the formatter is inline in the 
DateTime.new(...) call, which I find unclear.

Let’s make this a separate routine:

#!/usr/bin/env perl6
sub MAIN(Int $timestamp) {
    sub formatter($o) {
        sprintf '%04d-%02d-%02d %02d:%02d:%02d',
                $o.year, $o.month, $o.day,
                $o.hour, $o.minute, $o.second,
    }
    my $dt = DateTime.new(+$timestamp, formatter => &formatter);
    if $dt.Date.DateTime == $dt {
        say $dt.Date;
    }



Chapter 4 ■ Datetime Conversion for the CommanD Line 

28

    else {
        say $dt.Str;
    }
}

Yes, you can put a subroutine declaration inside the body of another 
subroutine declaration; a subroutine is just an ordinary lexical symbol, like a 
variable declared with my.

In the line my $dt = DateTime.new(+$timestamp, formatter => 
&formatter);, the syntax &formatter refers to the subroutine as an object, 
without calling it.

This being Perl 6, formatter => &formatter has a shortcut: :&formatter. 
As a general rule, if you want to fill a named parameter whose name is the name 
of a variable, and whose value is the value of the variable, you can create it by 
writing :$variable. And by extension, :thing is short for thing => True.

4.3  Looking the Other Way
Now that the conversion from timestamps to dates and times works fine, let’s 
look in the other direction. Our small tool needs to parse the input and decide 
whether the input is a timestamp or a date and optionally a time.

The boring way would be to use a conditional:

sub MAIN($input) {
    if $input ~~ / ^ \d+ $ / {
        # convert from timestamp to date/datetime
    }
    else {
        # convert from date to timestamp

    }
}

But I hate boring, so I want to look at a more exciting (and extensible) approach.
Perl 6 supports multiple dispatch. That means you can have multiple 

subroutines with the same name, but different signatures. And Perl 6 
automatically decides which one to call. You have to explicitly enable this 
feature by writing multi sub instead of sub, so that Perl 6 can catch accidental 
redeclaration for you.

#!/usr/bin/env perl6

multi sub MAIN(Int $timestamp) {
    sub formatter($o) {



Chapter 4 ■ Datetime Conversion for the CommanD Line 

29

        sprintf '%04d-%02d-%02d %02d:%02d:%02d',
                $o.year, $o.month, $o.day,
                $o.hour, $o.minute, $o.second,
    }
    my $dt = DateTime.new(+$timestamp, :&formatter);
    if $dt.Date.DateTime == $dt {
        say $dt.Date;
    }
    else {
        say $dt.Str;
    }
}

multi sub MAIN(Str $date) {
    say Date.new($date).DateTime.posix
}

Let’s see it in action:

$ ./autotime 2015-12-24
1450915200
$ ./autotime 1450915200
Ambiguous call to 'MAIN'; these signatures all match:
:(Int $timestamp)
:(Str $date)
  in block <unit> at ./autotime line 17

Not quite what I had envisioned. The problem is again that the integer 
argument is converted automatically to IntStr, and both the Int and the Str 
multi (or candidate) accept that as an argument.

The easiest approach to avoiding this error is narrowing down the kinds of 
strings that the Str candidate accepts. The classical approach would be to have a 
regex that roughly validates the incoming argument:

multi sub MAIN(Str $date where /^ \d+ \- \d+ \- \d+ $ /) {
    say Date.new($date).DateTime.posix
}

And indeed it works, but why duplicate the logic that Date.new already has 
for validating date strings? If you pass a string argument that doesn’t look like a 
date, you get an error like this:

Invalid Date string 'foobar'; use yyyy-mm-dd instead



Chapter 4 ■ Datetime Conversion for the CommanD Line 

30

We can use this behavior to constrain the string parameter of the MAIN multi 
candidate:

multi sub MAIN(Str $date where { try Date.new($_) }) {
    say Date.new($date).DateTime.posix
}

The additional try in here is because subtype constraints behind a where 
are not supposed to throw an exception, just return a false value.

And now it works as intended:

$ ./autotime 2015-12-24;
1450915200
$ ./autotime 1450915200
2015-12-24

4.4  Dealing with Time
The only feature left to implement is conversion of date and time to a timestamp. 
In other words, we want to handle calls like autotime 2015-12-24 11:23:00:

multi sub MAIN(Str $date where { try Date.new($_) }, Str $time?) {
    my $d = Date.new($date);
    if $time {
        my ( $hour, $minute, $second ) = $time.split(':');
         say DateTime.new(date => $d, :$hour, :$minute, :$second).

posix;
    }
    else {
        say $d.DateTime.posix;
    }
}

The new second argument is optional by virtue of the trailing ?. If it is 
present, we split the time string on the colon to get hour, minute, and second. 
My first instinct while writing this code was to use shorter variable names, 
my ($h, $m, $s) = $time.split(':'), but then the call to the DateTime 
constructor would have looked like this:

DateTime.new(date => $d, hour => $h, minute => $m, second => $s);

So the named arguments to the constructor made me choose more self-
explanatory variable names.



Chapter 4 ■ Datetime Conversion for the CommanD Line 

31

So, this works:

./autotime 2015-12-24 11:23:00
1450956180

And we can check that it round-trips:

$ ./autotime 1450956180
2015-12-24 11:23:00

4.5  Tighten Your Seat Belt
Now that the program is feature complete, we should strive to remove some 
clutter, and explore a few more awesome Perl 6 features.

The first feature that I want to exploit is that of an implicit variable or topic. A 
quick demonstration:

for 1..3 {
    .say
}

produces the output

1
2
3

There is no explicit iteration variable, so Perl implicitly binds the current 
value of the loop to a variable called $_. The method call .say is a shortcut 
for $_.say. And since there is a subroutine that calls six methods on the same 
variable, using $_ here is a nice visual optimization:

sub formatter($_) {
    sprintf '%04d-%02d-%02d %02d:%02d:%02d',
            .year, .month, .day,
            .hour, .minute, .second,
}

If you want to set $_ in a lexical scope without resorting to a function 
definition, you can use the given VALUE BLOCK construct:

given DateTime.new(+$timestamp, :&formatter) {
    if .Date.DateTime == $_ {
        say .Date;
    }



Chapter 4 ■ Datetime Conversion for the CommanD Line 

32

    else {
        .say;
    }
}

And Perl 6 also offers a shortcut for conditionals on the $_ variable, which 
can be used as a generalized switch statement:

given DateTime.new(+$timestamp, :&formatter) {
    when .Date.DateTime == $_ { say .Date }
    default { .say }
}

If you have a read-only variable or parameter, you can do without the $ sigil, 
though you have to use a backslash at declaration time:

multi sub MAIN(Int \timestamp) {
    ...
    given DateTime.new(+timestamp, :&formatter) {
    ...
    }
}

So now the full code looks like this:

#!/usr/bin/env perl6

multi sub MAIN(Int \timestamp) {
    sub formatter($_) {
        sprintf '%04d-%02d-%02d %02d:%02d:%02d',
                .year, .month, .day,
                .hour, .minute, .second,
    }
    given DateTime.new(+timestamp, :&formatter) {
        when .Date.DateTime == $_ { say .Date }
        default { .say }
    }
}

multi sub MAIN(Str $date where { try Date.new($_) }, Str $time?) {
    my $d = Date.new($date);
    if $time {
        my ( $hour, $minute, $second ) = $time.split(':');



Chapter 4 ■ Datetime Conversion for the CommanD Line 

33

         say DateTime.new(date => $d, :$hour, :$minute, :$second).
posix;

    }
    else {
        say $d.DateTime.posix;
    }
}

4.6  MAIN Magic
The magic that calls sub MAIN for us also provides us with an automagic usage 
message if we call it with arguments that don’t fit any multi; for instance with no 
arguments at all:

$ ./autotime
Usage:
  ./autotime <timestamp>
  ./autotime <date> [<time>]

We can add a short description to these usage lines by adding semantic 
comments before the MAIN subs:

#!/usr/bin/env perl6

#| Convert timestamp to ISO date
multi sub MAIN(Int \timestamp) {
    ...
}

#| Convert ISO date to timestamp
multi sub MAIN(Str $date where { try Date.new($_) }, Str $time?) {
    ...
}

Now the usage message becomes

$ ./autotime
Usage:
  ./autotime <timestamp> -- Convert timestamp to ISO date
  ./autotime <date> [<time>] -- Convert ISO date to timestamp



Chapter 4 ■ Datetime Conversion for the CommanD Line 

34

4.7  Automated Tests
We’ve seen some code go through several iterations of refactoring. Refactoring 
without automated tests tends to make me uneasy, so I actually had a small shell 
script that called the script under development with several different argument 
combinations and compared it to an expected result.

Let’s now look at a way to write test code in Perl 6 itself.
In the Perl community it’s common to move logic into modules to make it 

easier to test with external test scripts. In Perl 6, that’s still common, but for small 
tools such as this, I prefer to stick with a single file containing code and tests, and 
to run the tests via a separate test command.

To make testing easier, let’s first separate I/O from the application logic:

#!/usr/bin/env perl6

sub from-timestamp(Int \timestamp) {
    sub formatter($_) {
        sprintf '%04d-%02d-%02d %02d:%02d:%02d',
                .year, .month, .day,
                .hour, .minute, .second,
    }
    given DateTime.new(+timestamp, :&formatter) {
        when .Date.DateTime == $_ { return .Date }
        default { return $_ }
    }
}

sub from-date-string(Str $date, Str $time?) {
    my $d = Date.new($date);
    if $time {
        my ( $hour, $minute, $second ) = $time.split(':');
        return DateTime.new(date => $d, :$hour, :$minute, :$second);
    }
    else {
        return $d.DateTime;
    }
}

#| Convert timestamp to ISO date
multi sub MAIN(Int \timestamp) {
    say from-timestamp(+timestamp);
}



Chapter 4 ■ Datetime Conversion for the CommanD Line 

35

#| Convert ISO date to timestamp
multi sub MAIN(Str $date where { try Date.new($_) }, Str $time?) {
    say from-date-string($date, $time).posix;
}

With this small refactoring out of the way, let’s add some tests:

#| Run internal tests
multi sub MAIN('test') {
    use Test;
    plan 4;
    is-deeply from-timestamp(1450915200), Date.new('2015-12-24'),
        'Timestamp to Date';;

    my $dt = from-timestamp(1450915201);
    is $dt, "2015-12-24 00:00:01",
        'Timestamp to DateTime with string formatting';

    is from-date-string('2015-12-24').posix, 1450915200,
        'from-date-string, one argument';
    is from-date-string('2015-12-24', '00:00:01').posix, 1450915201,
        'from-date-string, two arguments';
}

And you can run it:

./autotime test
1..4
ok 1 - Timestamp to Date
ok 2 - Timestamp to DateTime with string formatting
ok 3 - from-date-string, one argument
ok 4 - from-date-string, two arguments

The output format is that of the Test Anything Protocol (TAP),6 which is the de 
facto standard in the Perl community,7 but is now also used in other communities. 
For larger output strings it is a good idea to run the tests through a test harness. 
For our four lines of test output, this isn’t yet necessary, but if you want to do that 
anyway, you can use the prove program that’s shipped with Perl 5:

$ prove -e "" "./autotime test"
./autotime-tested.p6 test .. ok

6https://testanything.org/
7http://testanything.org/testing-with-tap/perl.html

https://testanything.org/
http://testanything.org/testing-with-tap/perl.html


Chapter 4 ■ Datetime Conversion for the CommanD Line 

36

All tests successful.
Files=1, Tests=4, 0 wallclock secs ( 0.02 usr 0.01 sys + 0.23 cusr 
0.02 csys = 0.28 CPU)
Result: PASS

In a terminal, this even colors the “All tests successful” output in green, to 
make it easier to spot. Test failures are marked up in red.

How does the testing work? The first line of code uses a new feature we haven’t 
seen yet:

multi sub MAIN('test') {

What’s that, a literal instead of a parameter in the subroutine signature? 
That’s right. And it’s a shortcut for

multi sub MAIN(Str $anon where {$anon eq 'test'}) {

except that it does not declare the variable $anon. So it’s a multi candidate that 
you can only call by supplying the string 'test' as the sole argument.

The next line, use Test;, loads the test module8 that’s shipped with Rakudo 
Perl 6. It also imports into the current lexical scope all the symbols that Test 
exports by default. This includes the functions plan, is, and is-deeply that are 
used later on.

plan 4; declares that we want to run four tests. This is useful for detecting 
unplanned, early exits from the test code, or errors in looping logic in the test 
code that leads to running fewer tests than planned. If you can’t be bothered 
to count your tests in advance, you can leave out the plan call, and instead call 
done-testing after your tests are done.

Both is-deeply and is expect the value to be tested as the first argument, 
the expected value as the second argument, and an optional test label string as 
the third argument. The difference is that is() compares the first two arguments 
as strings, whereas is-deeply uses a deep equality comparison logic using the 
eqv operator.9 Such tests only pass if the two arguments are of the same type, and 
recursively are (or contain) the same values.

More testing functions are available, like ok(), which succeeds for a true 
argument, and nok(), which expects a false argument. You can also nest tests 
with subtest:

#| Run internal tests
multi sub MAIN('test') {
    use Test;
    plan 2;

8https://docs.perl6.org/language/testing
9https://docs.perl6.org/routine/eqv

https://docs.perl6.org/language/testing
https://docs.perl6.org/routine/eqv


Chapter 4 ■ Datetime Conversion for the CommanD Line 

37

    subtest 'timestamp', {
        plan 2;
        is-deeply from-timestamp(1450915200), Date.new('2015-12-24'),
            'Date';;

        my $dt = from-timestamp(1450915201);
        is $dt, "2015-12-24 00:00:01",
            'DateTime with string formatting';
    };

    subtest 'from-date-string', {
        plan 2;
        is from-date-string('2015-12-24').posix, 1450915200,
            'one argument';
         is from-date-string('2015-12-24', '00:00:01').posix, 

1450915201,
            'two arguments';
    };
}

Each call to subtest counts as a single test to the outer test run, so plan 4; 
has become plan 2;. The subtest call has a test label itself, and then inside a 
subtest, you have a plan again, and calls to test functions as in the following. This 
is very useful when writing custom test functions that execute a variable number 
of individual tests.

The output from the nested tests looks like this:

1..2
    1..2
    ok 1 - Date
    ok 2 - DateTime with string formatting
ok 1 - timestamp
    1..2
    ok 1 - one argument
    ok 2 - two arguments
ok 2 - from-date-string

The test harness now reports just the two top-level tests as the number of 
run (and passed) tests. And yes, you can nest subtests within subtests, should 
you really feel the urge to do so.



Chapter 4 ■ Datetime Conversion for the CommanD Line 

38

4.8  Summary
We’ve seen a bit of Date and DateTime arithmetic, but the exciting part is 
multiple dispatch, named arguments, subtype constraints with where clauses, 
given/when and the implicit $_- variable, and some serious magic when it 
comes to MAIN subs.

Finally, we learned about automated tests using the Test module that’s 
shipped with Rakudo Perl 6.

Take some time to read the documentation on what you’ve worked with so 
far. See if you can find a place in your code to swap an if for a where10 statement. 
Be sure to take advantage of the lexical scope that where introduces.

10https://docs.perl6.org/language/control#with,_orwith,_without

https://docs.perl6.org/language/control#with,_orwith,_without


39© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_5

CHAPTER 5

Testing say( )

In the previous chapter, I changed some code so that it wouldn’t produce output, 
and instead did the output in the MAIN sub, which conveniently went untested.

Changing code to make it easier to test is a legitimate practice. But if you do 
have to test code that produces output by calling say, there’s a small trick you 
can use: say works on a file handle, and you can swap out the default file handle, 
which is connected to standard output. Instead of the default, you can put a 
dummy file handle in its place that captures the lower-level commands issued to 
it, and record this for testing.

There’s a ready-made module for that, IO::String,1 but for the sake of 
learning we’ll look at how it works:

use v6;

# function to be tested
sub doublespeak($x) {
    say $x ~ $x;
}

use Test;
plan 1;

my class OutputCapture {
    has @!lines;
    method print(\s) {
        @!lines.push(s);
    }
    method captured() {
        @!lines.join;
    }
}

1http://modules.perl6.org/dist/IO::String

http://modules.perl6.org/dist/IO::String


Chapter 5 ■ testing say( )

40

my $output = do {
    my $*OUT = OutputCapture.new;
    doublespeak(42);
    $*OUT.captured;
};

is $output, "4242\n", 'doublespeak works';

The first part of the code is the function we want to test, sub doublespeak. It 
concatenates its argument with itself using the ∼ string concatenation operator. 
The result is passed to say.

Under the hood, say does a bit of formatting and then looks up the variable 
$*OUT. The * after the sigil marks it as a dynamic variable. The lookup for the 
dynamic variable goes through the call stack, and in each stack frame looks for 
a declaration of the variable, taking the first it finds. say then calls the method 
print on that object.

Normally, $*OUT contains an object of type IO::Handle,2 but the say function 
doesn’t really care about that, as long as it can call a print method on that 
object. That’s called duck typing: we don’t really care about the type of the 
object, as long as it can quack like a duck. Or in this case, print like a duck.

Then comes the loading of the test module,3 followed by the declaration of 
how many tests to run:

use Test;
plan 1;

You can leave out the second line, and instead call done-testing after your 
tests. But if there’s a chance that the test code itself might be buggy, and not run 
tests it’s supposed to, it’s good to have an upfront declaration of the number of 
expected tests, so that the Test module or the test harness can catch such errors.

The next part of the example is the declaration of a type which we can use to 
emulate the IO::Handle:

my class OutputCapture {
    has @!lines;
    method print(\s) {
        @!lines.append(s);
    }
    method captured() {
        @!lines.join;
    }
}

2https://docs.perl6.org/type/IO::Handle
3https://docs.perl6.org/language/testing.html

https://docs.perl6.org/type/IO::Handle
https://docs.perl6.org/language/testing.html


Chapter 5 ■ testing say( )

41

class introduces a class, and the my prefix makes the name lexically scoped, 
just like in a my $var declaration.

has @!lines declares an attribute, that is, a variable that exists separately for 
each instance of class OutputCapture. The ! marks it as an attribute. We could 
leave it out, but having it right there means you always know where the name 
comes from when reading a larger class.

The attribute @!lines starts with an @, not a $ as other variables we have 
seen so far. The @ is the sigil for an array variable.

Sigil Type Constraint Default Type Explanation

$ Mu Any Single values and objects

@ Positional Array Integer-Indexed compounds

% Associative Hash String- or Object-Indexed 
compounds

& Callable Code objects you can call

You might be seeing a trend now: the first character of a variable or attribute 
name denotes its rough type (scalar, array, & for routines, and later we’ll learn 
about % for hashes), and if the second character is not a letter, it specifies its 
scope. We call this second character a twigil. So far, we’ve seen * for dynamic 
variables and ! for attributes. There are more:

Twigil Description

* Dynamically scoped variables

! Attributes in OO land

ˆ Implicit positional parameters

: Implicit named parameters

? Compiler-provided constants

= Pod (documentation) variables

The penultimate block of our example is this:

my $output = do {
    my $*OUT = OutputCapture.new;
    doublespeak(42);
    $*OUT.captured;
};



Chapter 5 ■ testing say( )

42

do { ... } just executes the code inside the curly braces and returns the 
value of the last statement. Like all code blocks in Perl 6, it also introduces a new 
lexical scope.

The new scope comes in handy in the next line, where my $*OUT declares 
a new dynamic variable $*OUT, which is however only valid in the scope of 
the block. It is initialized with OutputCapture.new, a new instance of the class 
declared earlier. new isn’t magic, it’s simply inherited from OutputCapture’s 
superclass. We didn’t declare one, but by default, classes get type Any4 as 
a superclass, which provides (among other things) the method new as a 
constructor.

The call to doublespeak calls say, which in turn calls $*OUT.print. And 
since $*OUT is an instance of OutputCapture in this dynamic scope, the string 
passed to say lands in OutputCapture’s attribute @!lines, where $*OUT.
captured can access it again.

The final line,

is $output, "4242\n", 'doublespeak works';

calls the is function from the Test module.
In good old testing tradition, this produces output in the TAP format:

1..1
ok 1 - doublespeak works

5.1  Summary
We’ve seen that say() uses a dynamically scoped variable, $*OUT, as its output 
file handle. For testing purposes, we can substitute that with an object of our 
making, which made us stumble upon the first glimpses of how classes are 
written in Perl 6.

4https://docs.perl6.org/type/Any

https://docs.perl6.org/type/Any


43© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_6

CHAPTER 6

Silent-Cron, a Cron Wrapper

On Linux and UNIX-like systems, a program called cron1 periodically executes  
user-defined commands in the background. It is used for system maintenance tasks 
such as refreshing or removing caches, rotating and deleting old log files, and so on.

If such a command produces any output, cron typically sends an e-mail 
containing the output so that an admin can look at it and judge if some action is 
required.

But not all command-line programs are written for usage with cron. For 
instance, they might produce output even on successful execution, and indicate 
failure through a nonzero exit code. Or they might hang, or otherwise misbehave.

To deal with such commands, we’ll develop a small program called silent-
cron, which wraps such commands and suppresses output when the exit code 
is zero. It also allows you to specify a timeout that kills the wrapped program if it 
takes too long:

$ silent-cron -- command-that-might-fail args
$ silent-cron --timeout=5 -- command-that-might-hang

6.1  Running Commands Asynchronously
When you want to run external commands, Perl 6 gives you basically two choices: 
run,2 a simple, synchronous interface; and Proc::Async,3 an asynchronous and 
slightly more complex option. Even though we will omit the timeout in the first 
iteration, we need to be aware that implementing the timeout is easier in the 
asynchronous interface, so that’s what we’ll use:

#!/usr/bin/env perl6

sub MAIN(*@cmd) {
    my $proc = Proc::Async.new(|@cmd);

1https://en.wikipedia.org/wiki/Cron
2https://docs.perl6.org/routine/run
3https://docs.perl6.org/type/Proc\protect\char"0024\relaxCOLON\protect\
char"0024\relaxCOLONAsync

https://en.wikipedia.org/wiki/Cron
https://docs.perl6.org/routine/run
https://docs.perl6.org/type/Proc  "0024 COLON  "0024 COLONAsync
https://docs.perl6.org/type/Proc  "0024 COLON  "0024 COLONAsync


Chapter 6 ■ Silent-Cron, a Cron Wrapper

44

    my $collector = Channel.new;
    for $proc.stdout, $proc.stderr -> $supply {
        $supply.tap: { $collector.send($_) }
    }
    my $result = $proc.start.result;
    $collector.close;
    my $output = $collector.list.join;
    my $exitcode = $result.exitcode;
    if $exitcode != 0 {
        say "Program @cmd[] exited with code $exitcode";
        print "Output:\n", $output if $output;
    }
    exit $exitcode;
}

There’s a big chunk of new features and concepts in here, so let’s go through 
the code bit by bit.

sub MAIN(*@cmd) {

The first thing you should notice is *@cmd. The * in front of the variable 
indicates a slurpy parameter.4 It is so named because it slurps up any number of 
arguments. The * is only needed in the parameter declaration.

So *@cmd collects all the command-line arguments in the array variable  
@cmd, where the first element is the command to be executed, and any further 
elements are arguments passed to this command.

my $proc = Proc::Async.new(|@cmd);

The next line creates a new Proc::Async instance with the commands 
passed in, but doesn’t yet run anything. Proc::Async.new doesn’t expect us 
to pass an array, but it expects us to pass any number of values as arguments. 
Therefore we use the | vertical bar5 before @cmd to flatten our array so that we are 
sending Proc::Async.new multiple values instead of one array value.

For our program, we need to capture all output from $proc; thus we capture 
the output of the STDOUT and STDERR streams (file handles 1 and 2 on Linux), 
and combine it into a single string. In the asynchronous API, STDOUT and 
STDERR are modeled as objects of type Supply,6 and hence are streams of events. 
Since supplies can emit events in parallel, we need a thread-safe data structure for 
collecting the result, and Perl 6 conveniently provides a Channel for that:

my $collector = Channel.new;

4https://docs.perl6.org/type/Signature#Slurpy_(A.K.A._Variadic)_Parameters
5https://docs.perl6.org/routine/\protect\char"0024\
relaxVERTICAL_LINE#language_documentation_Operators
6https://docs.perl6.org/type/Supply

https://docs.perl6.org/type/Signature#Slurpy_(A.K.A._Variadic)_Parameters
https://docs.perl6.org/routine/  "0024 VERTICAL_LINE#language_documentation_Operators
https://docs.perl6.org/routine/  "0024 VERTICAL_LINE#language_documentation_Operators
https://docs.perl6.org/type/Supply


Chapter 6 ■ Silent-Cron, a Cron Wrapper

45

To actually get the output from the program, we need to tap into the 
STDOUT and STDERR streams:

for $proc.stdout, $proc.stderr -> $supply {
    $supply.tap: { $collector.send($_) }
}

Each $supply executes the block { $collector.send($_) } for each string 
it receives. The string can be a character, a line, or something larger if the stream 
is buffered. All we do with it is put the string into the channel $collector via the 
send method.

Note that the preceding code is equivalent to

$proc.stdout.tap: { $collector.send($_) }
$proc.stderr.tap: { $collector.send($_) }

When running a simple script, you will often see normal output and error 
output both printed to the terminal together. Our code is interleaving STDOUT 
and STDERR output into $collector pretty much the same way.

Now that the streams are tapped and wired to our collector, we can start the 
program and wait for it to finish:

my $result = $proc.start.result;

Proc::Async.start executes the external process and returns a Promise.7 
A promise wraps a piece of code that potentially runs on another thread, has 
a status (Planned, Kept or Broken), and once it’s finished, a result. Accessing 
the result automatically waits for the wrapped code to finish. Here the code is 
the one that runs the external program, and the result is an object of type Proc8 
(which happens to be the same as the run() function from the synchronous 
interface).

After this line, we can be sure that the external command has terminated 
and thus no more output will come from $proc.stdout and $proc.stderr. 
Hence we can safely close the channel and access all its elements through 
Channel.list:

$collector.close;
my $output = $collector.list.join;

7https://docs.perl6.org/type/Promise
8https://docs.perl6.org/type/Proc

https://docs.perl6.org/type/Promise
https://docs.perl6.org/type/Proc


Chapter 6 ■ Silent-Cron, a Cron Wrapper

46

Finally, it’s time to check if the external command was successful—by 
checking its exit code—and to exit the wrapper with the command’s exit code:

my $exitcode = $result.exitcode;
if $exitcode != 0 {
    say "Program @cmd[] exited with code $exitcode";
    print "Output:\n", $output if $output;
}
exit $exitcode;

Inside the output string:

say "Program @cmd[] exited with code $exitcode";

The variable $exitcode is interpolated, that is, its name is replaced with 
its value at runtime. This happens in double-quoted strings, "...", but not in 
single-quoted strings, '...'. Only scalar variables are interpolated in "..."; 
other variables (arrays, hashes, code objects) are only interpolated when they 
are followed by some kind of bracketing construct. That’s why @cmd is followed 
by [], which we call a Zen slice. An array or hash index that returns more than 
one value is generally called a slice; for example, @cmd[0, 1] returns the first two 
values. Leaving the index empty returns the whole array.

Another way to achieve interpolation is to add a method call to the variable 
that ends in parentheses, so it could have also been written as

say "Program @cmd.join(' ') exited with code $exitcode";

See the documentation9 for more in-depth information about ".." 
interpolation.

6.2  Implementing Timeouts
The idiomatic way to implement timeouts in Perl 6 is to use the Promise.anyof 
combinator together with a timer:

sub MAIN(*@cmd, :$timeout) {
    my $proc = Proc::Async.new(|@cmd);
    my $collector = Channel.new;
    for $proc.stdout, $proc.stderr -> $supply {
        $supply.tap: { $collector.send($_) }
    }

9https://docs.perl6.org/language/quoting#Interpolation:_qq

https://docs.perl6.org/language/quoting#Interpolation:_qq


Chapter 6 ■ Silent-Cron, a Cron Wrapper

47

    my $promise = $proc.start;
    my $waitfor = $promise;
    $waitfor = Promise.anyof(Promise.in($timeout), $promise)
        if $timeout;
    await $waitfor;

The initialization of $proc hasn’t changed. But instead of accessing $proc.
start.result, we store the promise returned from $proc.start. If the user 
specified a timeout, we run this piece of code:

$waitfor = Promise.anyof(Promise.in($timeout), $promise)

Promise.in($seconds) returns a promise that will be fulfilled in $seconds 
seconds. It’s basically the same as start { sleep $seconds }, but the scheduler 
can be a bit smarter about not allocating a whole thread just for sleeping.

Promise.anyof($p1, $p2) returns a promise that is fulfilled as soon as one 
of the arguments (which should also be promises) is fulfilled. So we wait either 
until the external program finishes, or until the sleep promise is fulfilled.

With await $waitfor; the program waits for the promise to be fulfilled 
(or broken). When that is the case, we can’t simply access $promise.result as 
before, because $promise (which is the promise for the external program) might 
not be fulfilled in the case of a timeout. So we have to check the status of the 
promise first and only then can we safely access $promise.result:

if !$timeout || $promise.status ~~ Kept {
    my $exitcode = $promise.result.exitcode;
    my $output = $collector.list.join;

    if $exitcode != 0 {
        say "Program @cmd[] exited with code $exitcode";
        print "Output:\n", $output if $output;
    }
    exit $exitcode;
}
else {
    ...
}

The expression $promise.status ∼∼ Kept uses the ∼∼ smart matching 
operator to check if the promise status is that of the constant Kept. Smart 
matching is a pretty generic operator, and the semantics depend on the 
right-hand side of the expression. For a number on the right-hand side, the 
comparison is a numerical one. For types on the right-hand side, it’s a type 
check. Refer to the official documentation10 for more.

10https://docs.perl6.org/language/operators#infix_~~

https://docs.perl6.org/language/operators#infix_~~


Chapter 6 ■ Silent-Cron, a Cron Wrapper

48

In the else { ... } branch, we need to handle the timeout case. This might 
be as simple as printing a statement that a timeout has occurred, and when 
silent-cron exits immediately afterward, that might be acceptable. But we 
might want to do more in the future, so we should kill the external program. And 
if the program doesn’t terminate after the friendly kill signal, it should receive a 
kill(9), which on UNIX systems forcefully terminates the program:

else {
    $proc.kill;
    say "Program @cmd[] did not finish after $timeout seconds";
    sleep 1 if $promise.status ~~ Planned;
    $proc.kill(9);
    await $promise;
    exit 2;
}

await $promise returns the result of the promise; here a Proc object. Proc 
has a safety feature built in that if the command returned with a nonzero exit 
code, evaluating the object in void context throws an exception.

Since we explicitly handle the nonzero exit code in the code, we can suppress 
the generation of this exception by assigning the return value from await to a 
dummy variable:

my $dummy = await $promise

Since we don’t need the value, we can also assign it to an anonymous 
variable instead:

$ = await $promise

6.3  More on Promises
If you have worked with concurrent or parallel programs in other languages, you 
might have come across threads, locks, mutexes, and other low-level constructs. 
These exist in Perl 6 too, but their direct usage is discouraged.

The problem with such low-level primitives is that they don’t compose 
well. You can have two libraries that use threads and work fine on their own, 
but lead to deadlocks when combined within the same program. Or different 
components might launch threads on their own, which can lead to too many 
threads and high memory consumption when several such components come 
together in the same process.



Chapter 6 ■ Silent-Cron, a Cron Wrapper

49

Perl 6 provides higher-level primitives. Instead of spawning a thread, you 
use start to run code asynchronously and the scheduler decides which thread 
to run this on. If more start calls happen that ask for threads to schedule things 
on, some will run serially.

Here is a very simple example of running a computation in the background:

sub count-primes(Int $upto) {
    (1..$upto).grep(&is-prime).elems;
}

my $p = start count-primes 10_000;
say $p.status;
await $p;
say $p.result;

It gives this output:

Planned
1229

You can see that the main line of execution continued after the start call, 
and $p immediately had a value—the promise, with status Planned.

As we’ve seen before, there are combinators for promises, anyof and allof. 
You can also chain actions to a promise using the then method:

sub count-primes(Int $upto) {
    (1..$upto).grep(&is-prime).elems;
}

my $p1 = start count-primes 10_000;
my $p2 = $p1.then({ say .result });
await $p2;

If an exception is thrown inside asynchronously executing code, the status 
of the promise becomes Broken, and calling its .result method rethrows the 
exception.

To demonstrate the scheduler distributing tasks, let’s consider a small 
Monte Carlo simulation to calculate an approximation for π. A Monte Carlo 
simulation is just a program that uses random numbers to explore a space of 
possible values and comes to a deterministic output (Figure 6-1).



Chapter 6 ■ Silent-Cron, a Cron Wrapper

50

We generate a pair of random numbers between zero and one, and interpret 
them as dots in a square. A quarter circle with radius one covers the area of π/4, 
so the ratio of randomly placed dots within the quarter circle to the total number 
of dots approaches π/4, if we use enough dots.

sub pi-approx($iterations) {
    my $inside = 0;
    for 1..$iterations {
        my $x = 1.rand;
        my $y = 1.rand;
        $inside++ if $x * $x + $y * $y <= 1;
    }
    return ($inside / $iterations) * 4;
}
my @approximations = (1..1000).map({ start pi-approx(80) });
await @approximations;

say @approximations.map({.result}).sum / @approximations;

Figure 6-1. When placing random points in a square, the ratio of points inside a 
quarter circle to the total number of points approaches π/4



Chapter 6 ■ Silent-Cron, a Cron Wrapper

51

The program starts one thousand computations asynchronously, but if you 
look at a system monitoring tool while it runs, you’ll observe only 16 threads 
running. This magic number comes from the default thread scheduler and we can 
override it by providing our own instance of a scheduler above the previous code:

my $*SCHEDULER = ThreadPoolScheduler.new(:max_threads(3));

For CPU-bound tasks like this Monte Carlo simulation, it is a good idea to 
limit the number of threads roughly to the number of (possibly virtual) CPU 
cores; if many threads are stuck waiting for I/O, a higher number of threads can 
yield better performance.

6.4  Possible Extensions
If you want to play with silent-cron, you could add a retry mechanism. If a 
command fails because of an external dependency (like an API or an NFS share), 
it might take time for that external dependency to recover. Hence you should add 
a quadratic or exponential backoff; that is, the wait time between retries should 
increase quadratically (1, 2, 4, 9, 16, ...) or exponentially (1, 2, 4, 8, 16, 32, ...).

6.5  Refactoring and Automated Tests
Before we extend silent-cron a bit more in the next chapter, it’s time to refactor 
it a bit and write some tests for it.

6.5.1  Refactoring
As a short reminder, this is what the program looks like:

#!/usr/bin/env perl6

sub MAIN(*@cmd, :$timeout) {
    my $proc = Proc::Async.new(|@cmd);
    my $collector = Channel.new;
    for $proc.stdout, $proc.stderr -> $supply {
        $supply.tap: { $collector.send($_) }
    }
    my $promise = $proc.start;
    my $waitfor = $promise;
    $waitfor = Promise.anyof(Promise.in($timeout), $promise)
        if $timeout;
    $ = await $waitfor;



Chapter 6 ■ Silent-Cron, a Cron Wrapper

52

    $collector.close;
    my $output = $collector.list.join;

    if !$timeout || $promise.status ~~ Kept {
        my $exitcode = $promise.result.exitcode;
        if $exitcode != 0 {
            say "Program @cmd[] exited with code $exitcode";
            print "Output:\n", $output if $output;
        }
        exit $exitcode;
    }
    else {
        $proc.kill;
        say "Program @cmd[] did not finish after $timeout seconds";
        sleep 1 if $promise.status ~~ Planned;
        $proc.kill(9);
        $ = await $promise;
        exit 2;
    }
}

There’s logic in there for executing external programs with a timeout as well 
as logic for dealing with two possible outcomes. In terms of both testability and for 
future extensions it makes sense to factor out the execution of external programs into 
a subroutine. The result of this code is not a single value; we’re potentially interested 
in the output it produced, the exit code, and whether it ran into a timeout.

We could write a subroutine that returns a list or a hash of these values, but 
here I chose to write a small class instead, which the new subroutine will return:

class ExecutionResult {
    has Int $.exitcode = -1;
    has Str $.output is required;
    has Bool $.timed-out = False;
    method is-success {
        !$.timed-out && $.exitcode == 0;
    }
}

We’ve seen classes before, but this one has a few new features. Attributes 
declared with the .twigil automatically get an accessor method, so

has Int $.exitcode;



Chapter 6 ■ Silent-Cron, a Cron Wrapper

53

is roughly the same as

has Int $!exitcode;
method exitcode() { $!exitcode }

It allows a user of the class to access the value in the attribute from the 
outside. As a bonus, you can also initialize it from the standard constructor as a 
named argument, ExecutionResult.new( exitcode => 42 ). The exit code is 
not a required attribute, because we can’t know the exit code of a program that 
has timed out. So with has Int $.exitcode = -1 we give it a default value that 
applies if the attribute hasn’t been initialized.

The output is a required attribute, so we mark it as such with is required. 
That’s a trait. Traits are pieces of code that modify the behavior of other things, 
here of an attribute. They crop up in several places, for example in subroutine 
signatures (is copy on a parameter), variable declarations, and classes. If you 
try to call ExecutionResult.new() without specifying an output, you get an 
error like this:

The attribute '$!output' is required, but you did not provide a value 
for it.

6.5.2  Mocking and Testing
Now that we have a convenient way to return more than one value from a 
hypothetical subroutine, let’s look at what this subroutine might look like:

sub run-with-timeout(@cmd, :$timeout) {
    my $proc = Proc::Async.new(|@cmd);
    my $collector = Channel.new;
    for $proc.stdout, $proc.stderr -> $supply {
        $supply.tap: { $collector.send($_) }
    }
    my $promise = $proc.start;
    my $waitfor = $promise;
    $waitfor = Promise.anyof(Promise.in($timeout), $promise)
        if $timeout;
    $ = await $waitfor;

    $collector.close;
    my $output = $collector.list.join;

    if !$timeout || $promise.status ~~ Kept {
        say "No timeout";
        return ExecutionResult.new(



Chapter 6 ■ Silent-Cron, a Cron Wrapper

54

            :$output,
            :exitcode($promise.result.exitcode),
        );
    }
    else {
        $proc.kill;
        sleep 1 if $promise.status ~~ Planned;
        $proc.kill(9);
        $ = await $promise;
        return ExecutionResult.new(
            :$output,
            :timed-out,
        );
    }
}

The usage of Proc::Async11 has remained the same, but instead of producing 
output when an error occurs, the routine now returns ExecutionResult objects.

This simplifies the MAIN sub quite a bit:

multi sub MAIN(*@cmd, :$timeout) {
    my $result = run-with-timeout(@cmd, :$timeout);
    unless $result.is-success {
        say "Program @cmd[] ",
            $result.timed-out ?? "ran into a timeout"
                               !! "exited with code $result.

exitcode()";

        print "Output:\n", $result.output if $result.output;
    }
    exit $result.exitcode // 2;
}

A new syntactic feature here is the ternary operator, CONDITION ??  
TRUE-BRANCH !! FALSE-BRANCH, which you might know from other programming 
languages such as C or Perl 5 as CONDITION ? TRUE-BRANCH : FALSE-BRANCH.

Finally, the logical defined-or operator LEFT // RIGHT returns the LEFT side 
if it’s defined, and if not, runs the RIGHT side and returns its value. It works like 
the || and or infix operators, except that those check for the boolean value of the 
left, not whether they are defined.

11https://docs.perl6.org/type/Proc\protect\char"0024\relaxCOLON\protect\
char"0024\relaxCOLONAsync

https://docs.perl6.org/type/Proc  "0024 COLON  "0024 COLONAsync
https://docs.perl6.org/type/Proc  "0024 COLON  "0024 COLONAsync


Chapter 6 ■ Silent-Cron, a Cron Wrapper

55

 in perl 6, we distinguish between defined and true values. By default, all instances are 
true and defined, and all type objects are false and undefined.

Several built-in types override what they consider to be true. numbers that equal 0 evaluate 
to False in a boolean context, as do the empty strings and empty containers such as 
arrays, hashes, and sets.

on the other hand, only the built-in type Failure12 overrides definedness.

You can override the truth value of a custom type by implementing a method Bool (which 
should return True or False), and the definedness with a method defined.

We could start testing the sub run-with-timeout by writing custom external 
commands with defined characteristics (output, runtime, exit code), but that’s 
rather fiddly to do in a reliable, cross-platform way. So instead I want to replace 
Proc::Async with a mock implementation, and give the sub a way to inject that:

sub run-with-timeout(@cmd, :$timeout, :$executer = Proc::Async) {
    my $proc = $executer.defined ?? $executer !! $executer.new(|@cmd);
    # rest as before

Looking through sub run-with-timeout, we can make a quick list of 
methods that the stub Proc::Async implementation needs: stdout, stderr, 
start, and kill. Both stdout and stderr need to return a Supply.13 The simplest 
thing that could possibly work is to return a Supply that will emit just a single 
value:

my class Mock::Proc::Async {
    has $.out = '';
    has $.err = '';
    method stdout {
        Supply.from-list($.out);
    }
    method stderr {
        Supply.from-list($.err);
    }

Supply.from-list14 returns a Supply that will emit all the arguments passed to 
it; so here just a single string.

12https://docs.perl6.org/type/Failure
13https://docs.perl6.org/type/Supply
14https://docs.perl6.org/type/Supply#method_from-list

https://docs.perl6.org/type/Supply#method_from-list
https://docs.perl6.org/type/Failure
https://docs.perl6.org/type/Supply
https://docs.perl6.org/type/Supply#method_from-list


Chapter 6 ■ Silent-Cron, a Cron Wrapper

56

The simplest possible implementation of kill just does nothing:

method kill($?) {}

$? in a signature is an optional argument ($foo?) without a name.
Only one method remains that needs to be stubbed: start. It’s supposed to 

return a Promise that, after a defined number of seconds, returns a Proc object 
or a mock thereof. Since the code only calls the exitcode method on it, writing a 
stub for it is easy:

has $.exitcode = 0;
has $.execution-time = 1;
method start {
    Promise.in($.execution-time).then({
        (class {
            has $.exitcode;
        }).new(:$.exitcode);
    });
}

Since we don’t need the class for the mock Proc anywhere else, we don’t 
even need to give it a name. class { ... } creates an anonymous class, and the 
.new call on it creates a new object from it.

As mentioned before, a Proc with a nonzero exit code throws an exception 
when evaluated in void context, or sink context as we call it in Perl 6. We can 
emulate this behavior by extending the anonymous class a bit:

class {
    has $.exitcode;
    method sink() {
        die "mock Proc used in sink context";
    }
}

With all this preparation in place, we can finally write some tests:

multi sub MAIN('test') {
    use Test;

    my class Mock::Proc::Async {
        has $.exitcode = 0;
        has $.execution-time = 0;
        has $.out = '';
        has $.err = '';
        method kill($?) {}



Chapter 6 ■ Silent-Cron, a Cron Wrapper

57

        method stdout {
            Supply.from-list($.out);
        }
        method stderr {
            Supply.from-list($.err);
        }
        method start {
            Promise.in($.execution-time).then({
                (class {
                    has $.exitcode;
                    method sink() {
                        die "mock Proc used in sink context";
                    }
                }).new(:$.exitcode);
            });
        }
    }

    # no timeout, success
    my $result = run-with-timeout([],
        timeout => 2,
        executer => Mock::Proc::Async.new(
            out => 'mocked output',
        ),
    );
    isa-ok $result, ExecutionResult;
    is $result.exitcode, 0, 'exit code';
    is $result.output, 'mocked output', 'output';
    ok $result.is-success, 'success';

    # timeout
    $result = run-with-timeout([],
        timeout => 0.1,
        executer => Mock::Proc::Async.new(
            execution-time => 1,
            out => 'mocked output',
        ),
    );
    isa-ok $result, ExecutionResult;
    is $result.output, 'mocked output', 'output';
    ok $result.timed-out, 'timeout reported';
    nok $result.is-success, 'success';
}



Chapter 6 ■ Silent-Cron, a Cron Wrapper

58

This runs through two scenarios, one where a timeout is configured but 
not used (because the mocked external program exits first), and one where the 
timeout takes effect.

6.5.3  Improving Reliability and Timing
Relying on timing in tests is always unattractive. If the times are too short (or 
too slow together), you risk sporadic test failures on slow or heavily loaded 
machines. If you use more conservative temporal spacing of tests, the tests can 
become very slow.

There’s a module (not distributed with Rakudo) to alleviate this pain: 
Test::Scheduler15 provides a thread scheduler with virtualized time, allowing you 
to write the tests like this:

use Test::Scheduler;
my $*SCHEDULER = Test::Scheduler.new;
my $result = start run-with-timeout([],
    timeout => 5,
    executer => Mock::Proc::Async.new(
        execution-time => 2,
        out => 'mocked output',
    ),
);
$*SCHEDULER.advance-by(5);
$result = $result.result;
isa-ok $result, ExecutionResult;
# more tests here

This installs a custom scheduler, and $*SCHEDULER.advance-by(5) instructs 
it to advance the virtual time by 5 seconds, without having to wait five actual 
seconds. At the time of writing (December 2016), Test::Scheduler is a rather new 
module, and has a bug that prevents the second test case from working this way.16

6.5.4  Installing a Module
If you want to try out Test::Scheduler, you need to install it first. If you run 
Rakudo Star, it has already provided you with the zef module installer. You can 
use that to download and install the module for you:

$ zef install Test::Scheduler

15https://github.com/jnthn/p6-test-scheduler
16https://github.com/jnthn/p6-test-scheduler/issues/1

https://github.com/jnthn/p6-test-scheduler
https://github.com/jnthn/p6-test-scheduler/issues/1


Chapter 6 ■ Silent-Cron, a Cron Wrapper

59

If you don’t have zef available, you can download, bootstrap, and use it:

$ git clone https://github.com/ugexe/zef.git
$ cd zef
$ perl6 -Ilib bin/zef install.
$ zef install Test::Scheduler

6.6  Summary
We’ve seen an asynchronous API for running external programs and how to 
use Promises to implement timeouts. We’ve also discussed how promises are 
distributed to threads by a scheduler, allowing you to start an arbitrary number 
of promises without overloading your computer.

During testing, we’ve seen attributes with accessors, the ternary operator 
and anonymous classes. Testing of threaded code has been discussed, as has the 
way in which a third-party module can help. Finally, we had a very small glimpse 
at the module installer zef.



61© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_7

CHAPTER 7

Stateful Silent-Cron

In the last chapter, we looked at silent-cron, a wrapper around external 
programs that silences them in case their exit status is zero. But to make it really 
practical, it should also silence occasional failures.

External APIs fail, networks become congested, and other things happen 
that prevent a job from succeeding, so some kind of retry mechanism is 
desirable. In case of a cron job, cron already takes care of retrying a job on a 
regular basis, so silent-cron should just suppress occasional errors. On the 
other hand, if a job fails consistently, this is usually something that an admin or 
developer should look into, so it’s a problem worth reporting.

To implement this functionality, silent-cron needs to store persistent state 
between separate runs. It needs to record the results from the current run and 
then decide if the failure history qualifies as “occasional.”

7.1  Persistent Storage
The storage back end needs to write and retrieve structured data, and protect 
concurrent access to the state file with locking. A good library for such a storage 
back end is SQLite,1 a zero-maintenance SQL engine that’s available as a C 
library. It’s public domain software and in use in most major browsers, operating 
systems, and even some airliners.2

Perl 6 gives you access to SQLite’s functionality through DBIish,3 a generic 
database interface with back-end drivers for SQLite, MySQL, PostgreSQL, 
and Oracle DB. To use it, first make sure that SQLite3 is installed, including its 
header files. On a Debian-based Linux system, for example, you can achieve 
this with apt-get install libsqlite3-dev. If you are using the Rakudo Star 
distribution, DBIish is already available. If not, you can use one of the module 
installers to retrieve and install it: zef install DBIish.

1https://www.sqlite.org/
2http://www.sqlite.org/famous.html
3https://github.com/perl6/DBIish/

https://www.sqlite.org/
http://www.sqlite.org/famous.html
https://github.com/perl6/DBIish/


Chapter 7 ■ Stateful Silent-Cron

62

To use the DBIish’s SQLite back end, you first have to create a database 
handle by selecting the back end and supplying connection information:

use DBIish;
my $dbh = DBIish.connect('SQLite', :database('database-file.sqlite3'));

Connecting to a database file that does not yet exist creates that file.
One-off SQL statements can be executed directly on the database handle:

$dbh.do('INSERT INTO player (name) VALUES ?', 'John');

The ? in the SQL is a placeholder that is passed out-of-band as a separate 
argument to the do method, which avoids potential errors such as SQL injection 
vulnerabilities.

Queries tend to work by first preparing a statement which returns a 
statement handle. You can execute a statement once or multiple times, and 
retrieve result rows after each execute call:

my $sth = $dbh.prepare('SELECT id FROM player WHERE name = ?');

my %ids;
for <John Jack> -> $name {
    $sth.execute($name);
    %ids{ $name } = $sth.row[0];
}
$sth.finish;

7.2  Developing the Storage Back End
We shouldn’t just stuff all the storage-handling code into sub MAIN; we should 
instead carefully consider the creation of a useful API for the storage back 
end. At first, we need only two pieces of functionality: insert the result of a job 
execution, and retrieve the most recent results.

Since silent-cron can be used to guard multiple cron jobs on the same 
machine, we might need something to distinguish the different jobs so that one 
of them succeeding doesn’t prevent error reporting for one that is constantly 
failing. For that we introduce a job name, which can default to the command 
(including arguments) being executed but which can be set explicitly on the 
command line.

The API for the storage back end could look something like this:

my $repo = ExecutionResultRepository.new(
    jobname => 'refresh cache',
    statefile => 'silent-cron.sqlite3',
);



Chapter 7 ■ Stateful Silent-Cron

63

$repo.insert($result);
my @last-results = $repo.tail(5);

This API isn’t specific to the SQLite back end at all; a storage back end that 
works with plain text files could have the exact same API.

Let’s implement this API. First we need the class and the two attributes that 
should be obvious from the preceding usage example:

class ExecutionResultRepository {
    has $.jobname   is required;
    has $.statefile is required;
    # ... more code

To implement the insert method, we need to connect to the database and 
create the relevant table if it doesn’t exist yet.

has $!db;
method !db() {
    return $!db if $!db;
    $!db = DBIish.connect('SQLite', :database($.statefile));
    self!create-schema();
    return $!db;
}

This code uses a private attribute $!db to cache the database handle and a 
private method !db to create the handle if it doesn’t exist yet.

Private methods are declared like ordinary methods, except that the name 
starts with an exclamation mark. To call one, substitute the method call dot for 
the exclamation mark; in other words, use self!db() instead of self.db().

The !db method also calls the next private method, !create-schema, which 
creates the storage table and some indexes:

constant $table = 'job_execution';
method !create-schema() {
    $!db.do(qq:to/SCHEMA/);
        CREATE TABLE IF NOT EXISTS $table (
            id          INTEGER PRIMARY KEY,
            jobname     VARCHAR NOT NULL,
            exitcode    INTEGER NOT NULL,
            timed_out   INTEGER NOT NULL,
            output      VARCHAR NOT NULL,
            executed    TIMESTAMP NOT NULL DEFAULT (DATETIME('NOW'))
        );



Chapter 7 ■ Stateful Silent-Cron

64

    SCHEMA
    $!db.do(qq:to/INDEX/);
         CREATE INDEX IF NOT EXISTS {$table}_jobname_exitcode ON 

$table ( jobname, exitcode );
    INDEX
    $!db.do(qq:to/INDEX/);
         CREATE INDEX IF NOT EXISTS {$table}_jobname_executed ON 

$table ( jobname, executed );
    INDEX
}

Multiline string literals are best written with the heredoc4 syntax. qq:to/
DELIMITER/ tells Perl 6 to finish parsing the current line so that you can still close 
the method call parenthesis and add the statement-ending semicolon. The next 
line starts the string literal, which goes on until Perl 6 finds the delimiter on a line 
on its own. Leading whitespace is stripped from each line of the string literal by as 
much as the closing delimiter is indented.

Thus,

print q:to/EOS/;
    Not indented
        Indented four spaces
    EOS

produces the output

Not indented
    Indented four spaces

Now that we have a working database connection and know that the 
database table exists, inserting a new record becomes easy:

method insert(ExecutionResult $r) {
     self!db.do(qq:to/INSERT/, $.jobname, $r.exitcode, $r.timed-out, 

$r.output);
        INSERT INTO $table (jobname, exitcode, timed_out, output)
        VALUES(?, ?, ?, ?)
    INSERT
}

4https://docs.perl6.org/language/quoting#Heredocs:_:to

https://docs.perl6.org/language/quoting#Heredocs:_:to


Chapter 7 ■ Stateful Silent-Cron

65

Selecting the most recent records is a bit more work, partially because we 
need to convert the table rows into objects:

method tail(Int $count) {
    my $sth = self!db.prepare(qq:to/SELECT/);
        SELECT exitcode, timed_out, output
          FROM $table
         WHERE jobname = ?
      ORDER BY executed DESC
         LIMIT $count
    SELECT
    $sth.execute($.jobname);
    $sth.allrows(:array-of-hash).map: -> %h {
        ExecutionResult.new(
            exitcode  => %h<exitcode>,
            timed-out => ?%h<timed_out>,
            output    => %h<output>,
        );
    }
}

The last statement in the tail method deserves a bit of extra attention.  
$sth.allrows(:array- of-hash) produces the database rows as a list of hashes. 
This list is lazy, that is, it’s generated on-demand. Lazy lists are a very convenient 
feature because they allow you to use iterators and lists with the same API. For 
instance when reading lines from a file, you can write for $handle.lines -> 
$line { ... }, and the lines method doesn’t have to load the whole file into 
memory; instead it can read a line whenever it is accessed.

$sth.allrows(...) is lazy, and so is the .map call that comes after it. map 
transforms a list one element at a time by calling the code object that’s passed to 
it. And that is done lazily as well. So SQLite only retrieves rows from the database 
file when elements of the resulting list are actually accessed.

7.3  Using the Storage Back End
With the storage API in place, it’s time to use it:

multi sub MAIN(*@cmd, :$timeout, :$jobname is copy,
               :$statefile='silent-cron.sqlite3', Int :$tries = 3) {
    $jobname //= @cmd.Str;
    my $result = run-with-timeout(@cmd, :$timeout);
    my $repo = ExecutionResultRepository.new(:$jobname, :$statefile);
    $repo.insert($result);



Chapter 7 ■ Stateful Silent-Cron

66

    my @runs = $repo.tail($tries);

    unless $result.is-success or @runs.grep({.is-success}) {
         say "The last @runs.elems() runs of @cmd[] all failed, the 

last execution ",
            $result.timed-out ?? "ran into a timeout"
                              !! "exited with code $result.exitcode()";

        print "Output:\n", $result.output if $result.output;
    }
    exit $result.exitcode // 2;
}

Now a job that succeeds a few times and then fails up to two times in a 
row doesn’t produce any error output; only the third failed execution in a row 
produces output. You can override that on the command line with --tries=5.

The MAIN subroutine uses the construct $var //= EXPR. The // stands for 
defined-OR, so it returns the left-hand side if it has a defined value. Otherwise, it 
evaluates and returns the value of EXPR. Combined with the assignment operator, 
it evaluates the right-hand side only if the variable is undefined and then stores 
the value of the expression in the variable. This is a handy way to ensure that a 
variable gets a value, or even a short way to write a cache.

7.4  Room for Expansion
A system administrator who has to investigate why a cron job failed might be 
interested in a history of that job. You could implement a command that lists the 
last job runs, their success or failure, exit code, or possibly their runtime, and so on.

Or you could investigate a different back end. What if you wanted to store 
the state in JSON files instead of SQLite? Or enable both? (Hint: you could use 
the JSON::Tiny5 or JSON::Fast6 modules.)

7.5  Summary
We’ve discussed DBIish, a database API with a pluggable back end, and explored 
using it with SQLite to store persistent data. In the process, we also came across 
lazy lists and a new form of string literals called heredocs.

5https://github.com/moritz/json
6https://github.com/timo/json_fast

https://github.com/moritz/json
https://github.com/timo/json_fast


67© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_8

CHAPTER 8

Review of the Perl 6 Basics

In the previous chapters, we discussed some examples interleaved with the 
Perl 6 mechanics that make them work. Here I want to summarize and deepen 
the Perl 6 knowledge that we’ve touched on so far, removed from the original 
examples.

8.1  Variables and Scoping
In Perl 6, variable names are made of a sigil, $, @, %, or &, followed by an identifier. 
The sigil implies a type constraint, where $ is the most general one  
(no restriction by default), @ is for arrays, % for hashes (associative arrays/maps), 
and & for code objects.

Identifiers can contain - and ' characters, as long as the character after it is a 
letter. Identifiers must start with a letter or underscore.

Subroutines and variables declared with my are lexically scoped. They are 
visible from the point of the declaration to the end of the current {}-enclosed 
block (or the current file, in case the declaration is outside a block). Subroutine 
parameters are visible in the signature and block of the subroutine.

An optional twigil between the sigil and identifier can influence the scoping. 
The * twigil marks a dynamically scoped variable; thus, lookup is performed in 
the current call stack. ! marks attributes, that is, a per-instance variable that’s 
attached to an object.

8.2  Subroutines
A subroutine, or sub for short, is a piece of code with its own scope and usually 
also a name. It has a signature that specifies what kind of values you have to pass 
in when you call it:

sub chunks(Str $s, Int $chars) {
#         ^^^^^^^^^^^^^^^^^^^^ signature
#   ^^^^^^ name



Chapter 8 ■ review of the perl 6 BasiCs

68

    gather for 0 .. $s.chars / $chars - 1 -> $idx {
        take substr($s, $idx * $chars, $chars);
    }
}

The variables used in the signature are called parameters, whereas we call 
the values that you pass in arguments.

To refer to a subroutine without calling it, put an ampersand (&) in front of it, 
like so:

say &chunks.name;     # Output: chunks

To call it, simply use its name, followed by the list of arguments, which can 
optionally be in parentheses:

say chunks 'abcd', 2;   # Output: (ab cd)
say chunks('abcd', 2);  # Output: (ab cd)

You only need the parentheses if some other construct would otherwise 
interfere with the subroutine call. Hence, if you intend to write

say chunks(join('x', 'ab', 'c'), 2);

and you leave out the inner pair of parentheses

say chunks(join 'x', 'ab', 'c', 2);

then all the arguments go to the join function, leaving only one argument 
to the chunks function. On the other hand, it is fine to omit the outer pair of 
parentheses and write

say chunks join('x', 'ab', 'c'), 2;

because there’s no ambiguity here.
One case worth noting is that if you call a subroutine without arguments as 

the block of an if condition or a for loop (or similar constructs), you have to 
include the parentheses, because otherwise the block is parsed as an argument 
to the function.

sub random-choice() {
    Bool.pick;
}

# right way:
if random-choice() {
    say 'You were lucky.';
}



Chapter 8 ■ review of the perl 6 BasiCs

69

# wrong way:
if random-choice {
    say 'You were lucky.';
}

If you do happen to make this mistake, the Perl 6 compiler tries very hard to 
detect it. In the preceding example, it says

Function 'random-choice' needs parens to avoid gobbling block

and when it tries to parse the block for the if-statement, it doesn’t find one:

Missing block (apparently claimed by 'random-choice')

When you have a sub called MAIN, Perl 6 uses its signature to parse the 
command-line arguments and pass those command-line arguments to MAIN.

multi subs are several subroutines with the same name but different 
signatures. The compiler decides at runtime which of the candidates it calls 
based on the best match between arguments and parameters.

8.3  Classes and Objects
Class declarations follow the same syntactic schema as subroutine declarations: 
the keyword class, followed by the name, followed by the body in curly braces:

class OutputCapture {
    has @!lines;
    method print(\s) {
        @!lines.push(s);
    }
    method captured() {
        @!lines.join;
    }
}

By default, type names are scoped to the current namespace; however, you 
can make it lexically scoped by adding a my in front of class:

my class OutputCapture { ... }

Creating a new instance generally works by calling the new method on the 
type object. The new method is inherited from the implicit parent class Any that 
all types get:

my $c = OutputCapture.new;



Chapter 8 ■ review of the perl 6 BasiCs

70

Per-instance state is stored in attributes, which are declared with the has 
keyword, as seen in the preceding has @!lines. Attributes are always private, 
as indicated by the ! twigil. If you use the dot . twigil in the declaration instead, 
you have both the private attribute @!lines and a public, read-only accessor 
method:

my class OutputCapture {
    has @.lines;
    method print(\s) {
        # the private name with ! still works
        @!lines.push(s);
    }
    method captured() {
        @!lines.join;
    }
}
my $c = OutputCapture.new;
$c.print('42');
# use the `lines` accessor method:
say $c.lines;       # Output: [42]

When you declare attributes with the dot twigil, you can also initialize the 
attributes from the constructor through named arguments, as in OutputCapture.
new( lines => [42] ).

Private methods start with a ! and can only be called from inside the class 
body as self!private-method.

Methods are basically just subroutines, with two differences. The first is 
that they get an implicit parameter called self, which contains the object the 
method is called on (which we call the invocant). The second is that if you call a 
subroutine, the compiler searches for this subroutine in the current lexical scope 
as well as the outer scopes. On the other hand, method calls are looked up only 
in the class of the object and its superclasses.

The subroutine lookup can happen at compile time, because lexical scopes 
are immutable at runtime, so the compiler has knowledge of all lexical symbols. 
However, even in the presence of type constraints, the compiler can’t know if the 
type of an object is possibly a subtype of a type constraint, which means method 
lookups must be deferred to runtime.



Chapter 8 ■ review of the perl 6 BasiCs

71

8.4  Concurrency
Perl 6 provides high-level primitives for concurrency and parallel execution. 
Instead of explicitly spawning new threads, you are encouraged to run a 
computation with start, which returns a Promise.1 This is an object that 
promises a future computation will yield a result. The status can thus be 
Planned, Kept, or Broken. You can chain promises, combine them, and wait for 
them.

In the background, a scheduler distributes such computations to operating 
system–level threads. The default scheduler is a thread pool scheduler with an 
upper limit to the number of threads available for use.

Communication between parallel computations should happen through 
thread-safe data structures. Foremost among them are Channel2 (a thread-safe 
queue), and Supply3 (Perl 6’s implementation of the Observer Pattern4). Supplies 
are very powerful, because you can transform them with methods such as 
map, grep, throttle, or delayed, and use their actor semantic5 to ensure that a 
consumer is run in only one thread at a time.

8.5  Outlook
When you understand the topics discussed in this chapter, and dig a bit into 
the built-in types, you should be familiar with the basics of Perl 6 and be able to 
write your own programs.

Next we will look into one of the strengths of Perl 6: parsing, via regexes and 
grammars.

1https://docs.perl6.org/type/Promise
2https://docs.perl6.org/type/Channel
3https://docs.perl6.org/type/Supply
4https://en.wikipedia.org/wiki/Observer_pattern
5https://docs.perl6.org/type/Supply#method_act

https://docs.perl6.org/type/Promise
https://docs.perl6.org/type/Channel
https://docs.perl6.org/type/Supply
https://en.wikipedia.org/wiki/Observer_pattern
https://docs.perl6.org/type/Supply#method_act


73© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_9

CHAPTER 9

Parsing INI Files Using 
Regexes and Grammars

You’ve probably seen .ini files before; they are quite common as configuration 
files on the Microsoft Windows platform, but are also found in many other 
places such as ODBC configuration files, Ansible’s inventory files,1 and so on.

This is what they look like:

key1=value2

[section1]
key2=value2
key3 = with spaces
; comment lines start with a semicolon, and are
; ignored by the parser

[section2]
more=stuff

Perl 6 offers regexes for parsing, and grammars for structuring and reusing 
regexes.

You could use the Config::INI2 module (after installing with zef install 
Config::INI) to parse files INI files like so:

use Config::INI;
my %hash = Config::INI::parse($ini_string);

Under the hood it uses regexes and grammars. Here we will explore how we 
could write our own INI parser.

1http://docs.ansible.com/ansible/intro_inventory.html
2https://modules.perl6.org/dist/Config::INI

http://docs.ansible.com/ansible/intro_inventory.html
https://modules.perl6.org/dist/Config::INI


Chapter 9 ■ parsing ini Files Using regexes and grammars

74

9.1  Regex Basics
A regex is a piece of code that acts as a pattern for strings with a common 
structure. It’s derived from the computer science concept of a regular expression3 
but adapted to provide more constructs than pure regular expressions allow and 
extended with some features that make them easier to use.

We’ll use named regexes to match the primitives and then use regexes that 
call these named regexes to build a parser for the INI files. Since INI files have no 
universally accepted, formal grammar, we have to make stuff up as we go.

Let’s start with parsing value pairs, like key1=value1. First let’s consider just 
the key. It may contain letters, digits, and the underscore _. There’s a shortcut to 
match such characters, \w, and matching one or more works by appending a + 
character:

use v6;

my regex key { \w+ }

multi sub MAIN('test') {
    use Test;
    ok 'abc'    ~~ /^ <key> $/, '<key> matches a simple identifier';
     ok '[abc]' !~~ /^ <key> $/, '<key> does not match a section 

header';
    done-testing;
}

my regex key { \w+ } declares a lexically (my) scoped regex called key 
that matches one or more word characters.

There is a long tradition in programming languages to support so-called 
Perl-Compatible Regular Expressions (PCRE). Many programming languages 
support some deviations from PCRE, including Perl itself, but common syntax 
elements remain throughout most implementations. Perl 6 still supports some of 
these elements, but deviates substantially in others.

Here \w+ is the same as in PCRE, but the fact that whitespace around the  
\w+ is ignored is not. In the testing routine, the slashes in 'abc' ∼∼ /ˆ <key> $/ 
delimit an anonymous regex. In this regex, ˆ and $ stand for the start and the 
end of the matched string, respectively, which is familiar from PCRE. However, 
in contrast to PCRE, the <key> subrule calls the named regex key from earlier. 
This is a Perl 6 extension. In PCRE, the < in a regex matches a literal <. In Perl 6 
regexes, it introduces a subrule call.

3https://en.wikipedia.org/wiki/Regular_expression

https://en.wikipedia.org/wiki/Regular_expression


Chapter 9 ■ parsing ini Files Using regexes and grammars

75

In general, all nonword characters are reserved for “special” syntax and  
you have to quote or backslash them to get the literal meaning. For example  
\< or '<' in a regex matches a less-than sign. Quoting can apply to more than one 
character, so 'a+b' in a regex matches an a, followed by a plus +, followed by a b.

Word characters (letters, digits, and the underscore) always match literally.

9.1.1  Character Classes
Besides literals, character classes are a common building block of regexes. There 
are many predefined character classes in the form of a backslash followed by 
a lowercase single letter; for example, \d matches a digit. Its inverse uses the 
uppercase letter, so \D matches any character that is not a digit.

Character Class Negation Matches

\d \D a digit

\w \W a word character (letter, digit, underscore)

\s \S whitespace, blanks, newlines, etc.

\h \H horizontal whitespace

\v \V vertical whitespace

\n \N logical newline (carriage return, line feed)

. any character

You can also build your own character classes by enumerating characters or 
ranges of characters:

Method Example Matches

enumeration <[abc]> a, b, or c

negation <-[abc]> anything except a, b, 
or c

range <[a..c]> a, b, or c

9.1.2  Quantifiers
Matching only one repetition of anything is boring, so regexes offer quantifiers.  
A quantifier states how often the previous regex must match.



Chapter 9 ■ parsing ini Files Using regexes and grammars

76

Quantifier Matches how many characters?

* 0..Inf

+ 1..Inf

? 0..1

** 1..5 1..5

So for example ab+ matches the strings ab, abb, aab, but not a.

9.1.3  Alternatives
Either-or alternatives are separated by the vertical bar |. For example, \d+ | x 
matches either a sequence of one or more digits, or the character x.

If more than one path of an alternative matches, Perl 6 prefers the longest 
match. If that behavior is not desired, || takes the first alternative that matches.

9.2  Parsing the INI Primitives
Coming back to INI parsing, we have to think about what characters are allowed 
inside a value. Listing allowed characters seems to be like a futile exercise, since 
we are very likely to forget some. Instead, we should think about what’s not 
allowed in a value. Newlines certainly aren’t, because they introduce the next 
key/value pair or a section heading. Neither are semicolons allowed, because 
they introduce a comment.

We can formulate this exclusion as a negated character class: <-[ \n ; ]> 
matches any single character that is neither a newline nor a semicolon. Note 
that inside a character class, nearly all characters lose their special meaning. 
Only backslash, whitespace, two dots, and the closing bracket stand for anything 
other than themselves. Inside and outside of character classes alike, \n matches 
a single newline character, and \s whitespace. The uppercase inverts that, so 
that for example \S matches any single character that is not whitespace.

This leads us to a version of a regex to match a value in an INI file:

my regex value { <-[ \n ; ]>+ }

There is one problem with this regex: it also matches leading and trailing 
whitespace, which we don’t want to consider as part of the value:

my regex value { <-[ \n ; ]>+ }
if ' abc ' ~~ /<value>/ {
    say "matched '$/'";           # matched ' abc '
}



Chapter 9 ■ parsing ini Files Using regexes and grammars

77

If Perl 6 regexes were limited to a regular language in the computer science 
sense, we’d have to do something like this:

my regex value {
    # match a first non-whitespace character
    <-[ \s ; ]>
    [
        # then arbitrarily many that can contain whitespace
        <-[ \n ; ]>*
        # ... terminated by one non-whitespace
        <-[ \s ; ]>
    ]?  # and make it optional, in case the value is only
        # only one non-whitespace character
}

And now you know why people respond with “And now you have two 
problems”4 when proposing to solve problems with regexes. A simpler solution 
is to match a value as introduced first and then to introduce a constraint that 
neither the first nor the last character may be whitespace:

my regex value { <!before \s> <-[ \n ; ]>+ <!after \s> }

along with accompanying tests:

is ' abc ' ~~ /<value>/, 'abc', '<value> does not match leading or 
trailing whitespace';
is ' a' ~~ /<value>/, 'a', '<value> matches single non-whitespace too';
ok "a\nb" !~~ /^ <value> $/, '<value> does not match \n';

<!before regex> is a negated look-ahead, that is, the following text must not 
match the regex and the text isn’t consumed while matching. Unsurprisingly, 
<!after regex> is the negated look-behind, which tries to match text that has 
already been matched, and must not succeed in doing so for the whole match to 
be successful.

This being Perl 6, there is of course yet another way to approach this 
problem. If you formulate the requirements as “a value must not contain a 
newline or semicolon and start with a non-whitespace and end with a  
non-whitespace,” it becomes obvious that if we just had an AND operator in 
regexes, this could be easy. And it is:

my regex value { <-[ \n ; ]>+ & \S.* & .*\S }

4http://regex.info/blog/2006-09-15/247

http://regex.info/blog/2006-09-15/247


Chapter 9 ■ parsing ini Files Using regexes and grammars

78

The & operator delimits two or more smaller regex expressions that must 
all match the same string successfully for the whole match to succeed. \S.* 
matches any string that starts with a non-whitespace character (\S), followed by 
any character (.) any number of times *. Likewise .*\S matches any string that 
ends with a non-whitespace character.

Who would have thought that matching something as seemingly simple as a 
value in a configuration file could be so involved? Luckily, matching a key/value 
pair is much simpler now that we know how to match each on their own:

my regex pair { <key> '=' <value> }

And this works great, as long as there are no blanks surrounding the equality 
sign. If there are, we have to match them separately:

my regex pair { <key> \h* '=' \h* <value> }

\h matches a horizontal whitespace, that is, a blank, a tabulator character, or any 
other fancy spacelike thing that Unicode has in store for us (for example, also the 
nonbreaking space), but not a newline.

Speaking of newlines, it’s a good idea to match a newline at the end of regex 
pair, and since we ignore empty lines, let’s match more than one as well:

my regex pair { <key> \h* '=' \h* <value> \n+ }

Time to write some tests:

ok "key=value\n" ~~ /<pair>/, 'simple pair';
ok "key = value\n\n" ~~ /<pair>/, 'pair with blanks';
ok "key\n= value\n" !~~ /<pair>/, 'pair with newline before 
assignment';

A section header is a string in square brackets, so the string itself shouldn’t 
contain brackets or a newline:

my regex header { '[' <-[ \[ \] \n ]>+ ']' \n+ }

# and in multi sub MAIN('test'):
ok "[abc]\n"    ~~ /^ <header> $/, 'simple header';
ok "[a c]\n"    ~~ /^ <header> $/, 'header with spaces';
ok "[a [b]]\n" !~~ /^ <header> $/, 'cannot nest headers';
ok "[a\nb]\n"  !~~ /^ <header> $/, 'No newlines inside headers';



Chapter 9 ■ parsing ini Files Using regexes and grammars

79

The last remaining primitive is the comment

my regex comment { ';' \N*\n+ }

\N matches any character that’s not a newline, so the comment is just a 
semicolon, and then anything until the end of the line.

9.3  Putting Things Together
A section of an INI file is a header followed by some key/value pairs or comment 
lines:

my regex section {
    <header>
    [ <pair> | <comment> ]*
}

[...] groups a part of a regex, so that the quantifier * after it applies to the 
whole group, not just to the last term.

The whole INI file consists of potentially some initial key/value pairs or 
comments followed by some sections:

my regex inifile {
    [ <pair> | <comment> ]*
    <section>*
}

The avid reader has noticed that the [ <pair> | <comment> ]* part of a 
regex has been used twice, so it’s a good idea to extract it into a stand-alone 
regex:

my regex block   { [ <pair> | <comment> ]* }
my regex section { <header> <block> }
my regex inifile { <block> <section>* }

It’s time for the “ultimate” test:

my $ini = q:to/EOI/;
key1=value2

[section1]
key2=value2
key3 = with spaces



Chapter 9 ■ parsing ini Files Using regexes and grammars

80

; comment lines start with a semicolon, and are
; ignored by the parser

[section2]
more=stuff
EOI

ok $ini ~~ /^<inifile>$/, 'Can parse a full INI file';

9.4  Backtracking
Regex matching seems magical to many programmers. You just state the pattern 
and the regex engine determines for you whether a string matches the pattern or 
not. While implementing a regex engine is a tricky business, the basics aren’t too 
hard to understand.

The regex engine goes through the parts of a regex from left to right, trying to 
match each part of the regex. It keeps track of what part of the string it matched 
so far in a cursor. If a part of a regex can’t find a match, the regex engine tries to 
alter the previous match to take up fewer characters and then retry the failed 
match at the new position.

For instance, if you execute the regex match

'abc' ~~ /.* b/

the regex engine first evaluates the .*. The . matches any character. The * 
quantifier is greedy, which means it tries to match as many characters as it can. 
It ends up matching the whole string, abc. Then the regex engine tries to match 
the b, which is a literal. Since the previous match gobbled up the whole string, 
matching c against the remaining empty string fails. So the previous regex part, 
.*, must give up a character. It now matches ab, and the literal matcher for the b 
compares b and c, and fails again. So there is a final iteration where the .* once 
again gives up one character it matched, and now the b literal can match the 
second character in the string.

This back and forth between the parts of a regex is called backtracking. It’s 
a great feature when you search for a pattern in a string. But in a parser, it is 
usually not desirable. If, for example, the regex key matched the substring key2 
in the input key2=value2, you don’t want it to match a shorter substring just 
because the next part of the regex can’t match.

There are three major reasons why you don’t want that. The first is that it 
makes debugging harder. When humans think about how a text is structured, 
they usually commit pretty quickly to basic tokenization, such as where a word 
or a sentence ends. Thus backtracking can be very unintuitive. If you generate 



Chapter 9 ■ parsing ini Files Using regexes and grammars

81

error messages based on which regexes failed to match, backtracking basically 
always leads to the error message being pretty useless.

The second reason is that backtracking can lead to unexpected regex 
matches. For example, you want to match two words, optionally separated by 
whitespace, and you try to translate this directly to a regex:

say "two words" ~~ /\w+\s*\w+/;     # ｢two words｣

This seems to work: the first \w+ matches the first word, the second one 
matches the second word, all fine and good. Until you find that it actually 
matches a single word too:

say "two" ~~ /\w+\s*\w+/;           # ｢two｣

How did that happen? Well, the first \w+ matched the whole word, \s* 
successfully matched the empty string, and then the second \w+ failed, forcing 
the previous two parts of the regex to match differently. So in the second 
iteration, the first \w+ only matches tw, the \s* matches the empty string 
between tw and o, and the second \w+ matches o. And then you realize that 
if two words aren’t delimited by whitespace, how do you even tell where one 
word ends and the next one starts? With backtracking disabled, the regex fails to 
match instead of matching in an unintended way.

The third reason is performance. When you disable backtracking, the regex 
engine has to look at each character only once, or once for each branch it can 
take in the case of alternatives. With backtracking, the regex engine can be stuck 
in backtracking loops that take overproportionally longer with increasing length 
of the input string.

To disable backtracking, you simply have to replace the word regex by token 
in the declaration, or by using the :ratchet modifier inside the regex.

In the INI file parser, only the regex value needs backtracking (though other 
formulations discussed in the preceding don’t need it); all the other regexes can 
be switched over to tokens safely:

my token key     { \w+ }
my regex value   { <!before \s> <-[\n;]>+ <!after \s> }
my token pair    { <key> \h* '=' \h* <value> \n+ }
my token header  { '[' <-[ \[ \] \n ]>+ ']' \n+ }
my token comment { ';' \N*\n+  }
my token block { [ <pair> | <comment> ]* }
my token section { <header> <block> }
my token inifile { <block> <section>* }



Chapter 9 ■ parsing ini Files Using regexes and grammars

82

9.5  Grammars
This collection of regexes that parse INI files is not the pinnacle of encapsulation 
and reusability.

Hence we’ll explore grammars, a feature that groups regexes into a class-like 
structure, and how to extract structured data from a successful match.

A grammar is a class with some extra features that makes it suitable for 
parsing text. Along with methods and attributes, you can put regexes into a 
grammar.

This is what the INI file parser looks like when formulated as a grammar:

grammar IniFile {
    token key     { \w+ }
    token value   { <!before \s> <-[\n;]>+ <!after \s> }
    token pair    { <key> \h* '=' \h* <value> \n+ }
    token header  { '[' <-[ \[ \] \n ]>+ ']' \n+ }
    token comment { ';' \N*\n+  }
    token block   { [<pair> | <comment>]* }
    token section { <header> <block> }
    token TOP     { <block> <section>* }
}

You can use it to parse some text by calling the parse method, which uses 
regex or token TOP as the entry point:

my $result = IniFile.parse($text);

Besides the standardized entry point, a grammar offers more advantages. 
You can inherit from it like from a normal class, thus bringing even more 
reusability to regexes. You can group extra functionality together with the 
regexes by adding methods to the grammar. There are also some mechanisms in 
grammars that can make your life as a developer easier.

One of them is dealing with whitespace. In INI files, horizontal whitespace 
is generally considered to be insignificant, in that key=value and key = value 
lead to the same configuration of the application. So far we’ve dealt with that 
explicitly by adding \h* to token pair. But there are places we haven’t actually 
considered. For example, it’s OK to have a comment that’s not at the start of the 
line.

The mechanism that grammars offer is that you can define a rule called ws, 
and when you declare a token with rule instead of token (or enable this feature 
in regex through the :sigspace modifier), Perl 6 inserts implicit <ws> calls for 
you where there is whitespace in the regex definition:



Chapter 9 ■ parsing ini Files Using regexes and grammars

83

grammar IniFile {
    token ws { \h* }
    rule pair { <key>    '='    <value> \n+ }
    # rest as before
}

This might not be worth the effort for a single rule that needs to parse 
whitespace, but when there are more, this really pays off by keeping whitespace 
parsing in a single location.

Note that you should only parse insignificant whitespace in token ws. In the 
case of INI files, newlines are significant, so ws shouldn’t match them.

9.6  Extracting Data from the Match
So far the IniFile grammar only checks whether a given input matches the 
grammar or not. However, when it does match, we really want the parse result in 
a data structure that’s easy to use. For instance, we could translate this example 
INI file:

key1=value2

[section1]
key2=value2
key3 = with spaces
; comment lines start with a semicolon, and are
; ignored by the parser

[section2]
more=stuff

into this data structure of nested hashes:

{
      _ => {
          key1 => "value2"
      },
      section1 => {
          key2 => "value2",
          key3 => "with spaces"
      },
      section2 => {
          more => "stuff"
      }
}



Chapter 9 ■ parsing ini Files Using regexes and grammars

84

Note that key/value pairs from outside any section show up in  
the _ top-level key.

The result from the IniFile.parse call is a Match5 object that has (nearly) 
all the information necessary to extract the desired match. If you turn a Match 
object into a string, it becomes the matched string. But there’s more. You can  
use it like a hash to extract the matches from named submatches. Hence, if the 
top-level match from

token TOP { <block> <section>* }

produces a Match object $m, then $m<block> is again a Match object, this one 
from the match of the call of token block. And $m<section> is a list of Match 
objects from the repeated calls to token section. So a Match is really a tree of 
matches (Figure 9-1).

5https://docs.perl6.org/type/Match

Figure 9-1. Match tree from parsing the example INI file

We can walk this data structure to extract the nested hashes. The header 
token matches a string like "[section1]\n" and we’re only interested in 
"section1". To get to the inner part, we can modify header by inserting a pair of 
parentheses around the subregex whose match we’re interested in:

token header { '[' ( <-[ \[ \] \n ]>+ ) ']' \n+ }
#                   ^^^^^^^^^^^^^^^^^^^^ a capturing group

https://docs.perl6.org/type/Match


Chapter 9 ■ parsing ini Files Using regexes and grammars

85

That’s a capturing group, and we can get its match by using the top-level 
match for header as an array and access its first element. This leads us to the full 
INI parser:

sub parse-ini(Str $input) {
    my $m = IniFile.parse($input);
    unless $m {
        die "The input is not a valid INI file.";
    }

    sub block(Match $m) {
        my %result;
        for $m<block><pair> -> $pair {
            %result{ $pair<key>.Str } = $pair<value>.Str;
        }
        return %result;
    }

    my %result;
    %result<_> = block($m);
    for $m<section> -> $section {
        %result{ $section<header>[0].Str } = block($section);
    }
    return %result;
}

This top-down approach works, but it requires a very intimate 
understanding of the grammar’s structure. This means that if you change the 
structure during maintenance, you’ll have a hard time figuring out how to 
change the data extraction code.

Perl 6 offers a bottom-up approach as well. It allows you to write a data 
extraction or action method for each regex, token, or rule. The grammar 
engine passes in the match object as the single argument and the action 
method can call the routine make to attach a result to the match object. The 
result is available through the .made method on the match object.

This execution of action methods happens as soon as a regex matches 
successfully; thus, an action method for a regex can rely on the fact that the 
action methods for subregex calls have already run. For example, when the rule 
pair { <key> '=' <value> \n+ } is being executed, first token key matches 
successfully and its action method runs immediately. Then, token value 
matches and its action method runs too. Finally, the rule pair itself can match 
successfully, so its action method can rely on $m<key>.made and $m<value>.
made being available, assuming that the match result is stored in variable $m.



Chapter 9 ■ parsing ini Files Using regexes and grammars

86

Speaking of variables, a regex match implicitly stores its result in the special 
variable $/ and it is customary to use $/ as a parameter in action methods. There 
is also a shortcut for accessing named submatches: instead of writing $/<key>, 
you can write $<key>. With this convention in mind, the action class becomes

class IniFile::Actions {
    method key($/)     { make $/.Str }
    method value($/)   { make $/.Str }
    method header($/)  { make $/[0].Str }
    method pair($/)    { make $<key>.made => $<value>.made }
    method block($/)   { make $<pair>.map({ .made }).hash }
    method section($/) { make $<header>.made => $<block>.made }
    method TOP($/)     {
        make {
            _ => $<block>.made,
            $<section>.map: { .made },
        }
    }
}

The first two action methods are really simple. The result of a key or value 
match is simply the string that matched. For a header, it’s just the substring 
inside the brackets. Fittingly, a pair returns a Pair6 object, composed from key 
and value. The block method constructs a hash from all the lines in the block 
by iterating over each pair submatch and extracting the already attached Pair 
object. One level above that in the match tree, section takes that hash and pairs 
it with the name of section, extracted from $<header>.made. Finally, the  
top-level action method gathers the sectionless key/value pairs under the key _ as  
well as all the sections and returns them in a hash.

In each method of the action class, we only rely on the knowledge of the 
first level of regexes called directly from the regex that corresponds to the action 
method and the data types that they .made. Thus, when you refactor one regex, 
you also have to change only the corresponding action method. Nobody needs 
to be aware of the global structure of the grammar.

Now we just have to tell Perl 6 to actually use the action class:

sub parse-ini(Str $input) {
    my $m = IniFile.parse($input, :actions(IniFile::Actions));
    unless $m {
        die "The input is not a valid INI file.";
    }

    return $m.made
}

6https://docs.perl6.org/type/Pair

https://docs.perl6.org/type/Pair


Chapter 9 ■ parsing ini Files Using regexes and grammars

87

If you want to start parsing with a different rule than TOP (which you might 
want to do in a test, for example), you can pass a named argument rule to 
method parse:

sub parse-ini(Str $input, :$rule = 'TOP') {
    my $m = IniFile.parse($input,
        :actions(IniFile::Actions),
        :$rule,
    );
    unless $m {
        die "The input is not a valid INI file.";
    }

    return $m.made
}

say parse-ini($ini).perl;

use Test;

is-deeply parse-ini("k = v\n", :rule<pair>), 'k' => 'v',
    'can parse a simple pair';
done-testing;

To better encapsulate all the parsing functionality within the grammar, we 
can turn parse-ini into a method:

grammar IniFile {
    # regexes/tokens unchanged as before

    method parse-ini(Str $input, :$rule = 'TOP') {
        my $m = self.parse($input,
            :actions(IniFile::Actions),
            :$rule,
        );
        unless $m {
            die "The input is not a valid INI file.";
        }

        return $m.made
    }
}

# Usage:

my $result = IniFile.parse-ini($text);



Chapter 9 ■ parsing ini Files Using regexes and grammars

88

To make this work, the class IniFile::Actions either has to be declared 
before the grammar, or needs to be predeclared with class IniFile::Action 
{ ... } at the top of the file (with the literal three dots to mark it as a forward 
declaration).

9.7  Generating Good Error Messages
Good error messages are paramount to the user experience of any product. 
Parsers are no exception to this. Consider the difference between the message 
Square bracket [ on line 3 closed by curly bracket } on line 5, in 
contrast to Python’s lazy and generic SyntaxError: invalid syntax.

In addition to the textual message, knowing the location of the parse error 
helps tremendously in figuring out what’s wrong.

We’ll explore how to generate better parsing error messages from a Perl 6 
grammar, using our INI file parser as an example.

9.7.1  Failure Is Normal
Before we start, it’s important to realize that in a grammar-based parser, it’s 
normal for a regex to fail to match, even in an overall successful parse.

Let’s recall a part of the parser:

token block { [<pair> | <comment>]* }
token section { <header> <block> }
token TOP { <block> <section>* }

When this grammar matches against the string

key=value
[header]
other=stuff

then TOP calls block, which calls both pair and comment. The pair match 
succeeds, the comment match fails. No big deal. But since there is a * quantifier 
in token block, it tries again to match pair or comment. Neither succeeds, but the 
overall match of token block still succeeds.



Chapter 9 ■ parsing ini Files Using regexes and grammars

89

A nice way to visualize passed and failed submatches is to install the 
Grammar::Tracer module (zef install Grammar::Tracer) and simply add the 
statement use Grammar::Tracer before the grammar definition. This produces 
debug output showing which rules matched and which didn’t:

TOP
|  block
|  |  pair
|  |  |  key
|  |  |  * MATCH "key"
|  |  |  ws
|  |  |  * MATCH ""
|  |  |  ws
|  |  |  * MATCH ""
|  |  |  value
|  |  |  * MATCH "value"
|  |  |  ws
|  |  |  * MATCH ""
|  |  |  ws
|  |  |  * MATCH ""
|  |  * MATCH "key=value\n"
|  |  pair
|  |  |  key
|  |  |  * FAIL
|  |  * FAIL
|  |  comment
|  |  * FAIL
|  * MATCH "key=value\n"
|  section
...

9.7.2  Detecting Harmful Failure
To produce good parsing error messages, you must distinguish between expected 
and unexpected parse failures. As explained in the preceding, a match failure of a 
single regex or token is not generally an indication of a malformed input. But you 
can identify points where you know that once the regex engine got this far, the rest 
of the match must succeed.

If you recall pair:

rule pair { <key>  '='  <value> \n+ }



Chapter 9 ■ parsing ini Files Using regexes and grammars

90

we know that if a key was parsed, we really expect the next character to be an 
equals sign. If not, the input is malformed.

In code, this written like so:

rule pair {
    <key>
    [ '=' || <expect('=')> ]
    <value> \n+
}

|| is a sequential alternative, which first tries to match the subregex on the left-
hand side and only executes the right-hand side if that failed.

So now we have to define expect:

method expect($what) {
    die "Cannot parse input as INI file: Expected $what";
}

Yes, you can call methods just like regexes, because regexes really are 
methods under the hood. die throws an exception, so now the malformed 
input justakey produces the error

Cannot parse input as INI file: Expected =

followed by a backtrace. That’s already better than “invalid syntax,” though the 
position is still missing. Inside method expect, we can find the current parsing 
position through the method pos, which is supplied by the implicit parent class 
Grammar7 that the grammar declaration brings with it.

We can use that to improve the error message a bit:

method expect($what) {
     die "Cannot parse input as INI file: Expected $what at character 

{self.pos}";
}

9.7.3  Providing Context
For larger inputs, we really want to print the line number. To calculate that, we 
need to get hold of the target string, which is available via the method target:

7https://docs.perl6.org/type/Grammar

https://docs.perl6.org/type/Grammar


Chapter 9 ■ parsing ini Files Using regexes and grammars

91

method expect($what) {
    my $parsed-so-far = self.target.substr(0, self.pos);
    my @lines = $parsed-so-far.lines;
    die "Cannot parse input as INI file: Expected $what at line  
@lines.elems(), after '@lines[*-1]'";
}

This brings us from the “meh” realm of error messages to quite good. Thus,

IniFile.parse(q:to/EOI/);
key=value
[section]
key_without_value
more=key
EOI

now dies with

Cannot parse input as INI file: Expected = at line 3, after  
'key_without_value'

You can further refine the expect method by providing context both before 
and after the position of the parse failure. And of course you have to apply the  
[ thing || <expect('thing')> ] pattern at more places inside the regex to get 
better error messages.

Finally, you can provide different kinds of error messages too. For example 
when parsing a section header, once the initial [ is parsed, you likely don’t want 
an error message “expected rest of section header”, but rather “malformed section 
header, at line …”:

rule pair {
    <key>
    [ '=' || <expect('=')> ]
    [ <value> || <expect('value')>]
     \n+
}
token header {
     '['
     [ ( <-[ \[ \] \n ]>+ )    ']'
         || <error("malformed section header")> ]
}
...



Chapter 9 ■ parsing ini Files Using regexes and grammars

92

method expect($what) {
    self.error("expected $what");
}

method error($msg) {
    my $parsed-so-far = self.target.substr(0, self.pos);
    my @lines = $parsed-so-far.lines;
     die "Cannot parse input as INI file: $msg at line @lines.

elems(), after '@lines[*-1]'";
}

Since Rakudo Perl 6 uses grammars to parse Perl 6 input, you can use 
Rakudo’s own grammar8 as a source of inspiration for more ways to make error 
reporting even better.

9.7.4  Shortcuts for Parsing Matching Pairs
Since it’s such a common task, Perl 6 grammars have a special goal-matching 
syntax for matching a pair of delimiters with something between them. In the 
INI file example, that’s a pair of brackets with a section header between them.

We can change

token header { '[' ( <-[ \[ \] \n ]>+ ) ']' \n+ }

to read

token header { '[' ~ ']' ( <-[ \[ \] \n ]>+ ) \n+ }

Not only does this have the aesthetic benefit of putting the matching 
delimiters closer together, it also calls a method FAILGOAL for us if everything 
except the closing delimiter matched. We can use this to generate better error 
messages for parse failures of matched pairs:

method FAILGOAL($goal) {
    my $cleaned-goal = $goal.trim;
    $cleaned-goal = $0 if $goal ~~ / \' (.+) \' /;
    self.error("Cannot find closing $cleaned-goal");
}

8https://github.com/rakudo/rakudo/blob/nom/src/Perl6/Grammar.nqp

https://github.com/rakudo/rakudo/blob/nom/src/Perl6/Grammar.nqp


Chapter 9 ■ parsing ini Files Using regexes and grammars

93

The argument passed to FAILGOAL is the string of the regex source code that 
failed to match the closing delimiter, here ']' (with a trailing space). From that 
we want to extract the literal ] for the error message, hence the regex match in the 
middle of the method. If that regex matches successfully, the literal is in $/[0], for 
which $0 is a shortcut.

All parsing constructs using ∼ can benefit from such a method FAILGOAL, so 
writing one is worth the effort in a grammar that parses several distinct quoting 
or bracketing constructs.

9.8  Write Your Own Grammars
Parsing is a skill that must be learned, mostly separately from your ordinary 
programming skills. So I encourage you to start with something small, like a 
parser for CSV, or comma-separated values.9 It’s tempting to write a whole 
grammar for that in one go, but instead I recommend starting with parsing 
some atoms (like a cell of data between two commas), testing it, and only then 
proceeding to the next one.

And even in something as deceptively simple as CSV, some complexity lurks. 
For example, you could allow quoted strings that themselves can contain the 
separator character, and an escape character that allows you to use the quoting 
character inside a quoted string.

If you are interested in a deeper treatment of regexes, I highly recommend 
Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly Media, 2008). It 
does not handle Perl 6 regexes, but the concepts translate well to Perl 6 regexes.

9.9  Summary
Perl 6 allows regex reuse by treating them as first-class citizens, allowing them 
to be named and called like normal routines. Further clutter is removed by 
allowing whitespace inside regexes.

These features allow you to write regexes to parse proper file formats 
and even programming languages. Grammars let you structure, reuse, and 
encapsulate regexes.

The result of a regex match is a Match object, which is really a tree with 
nodes for each named submatch and for each capturing group. Action methods 
make it easy to decouple parsing from data extraction.

To generate good error messages from a parser, you need to distinguish 
between expected and unexpected match failures. The sequential alternative || 
is a tool you can use to turn unexpected match failures into error messages by 
raising an exception from the second branch of the alternative.

9https://en.wikipedia.org/wiki/Comma-separated_values

https://en.wikipedia.org/wiki/Comma-separated_values


95© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_10

CHAPTER 10

A File and Directory Usage 
Graph

You bought a shiny new 2TB disk just a short while ago and you’re already 
getting low disk space warnings. What’s taking up all that space?

To answer this question, and experiment a bit with data visualization, let’s 
write a small tool that visualizes which files use up how much disk space. We 
also get to explore some functional programming concepts in the process.

10.1  Reading File Sizes
To visualize file usage, we must first recursively read all directories and files 
in a given directory, and record their sizes. To get a listing of all elements in 
a directory, we can use the dir1 function, which returns a lazy list of IO::Path2 
objects.

We distinguish between directories, which can have child entries, and files, 
which can’t. Both can have a direct size, and in the case of directories also a total 
size, which includes files and subdirectories, recursively:

class File {
    has $.name;
    has $.size;
    method total-size() { $.size }
}

1https://docs.perl6.org/routine/dir
2https://docs.perl6.org/type/IO\protect\char"0024\relaxCOLON\protect\
char"0024\relaxCOLONPath

https://docs.perl6.org/routine/dir
https://docs.perl6.org/type/IO  "0024 COLON  "0024 COLONPath
https://docs.perl6.org/type/IO  "0024 COLON  "0024 COLONPath


Chapter 10 ■ a File and direCtory Usage graph

96

class Directory {
    has $.name;
    has $.size;
    has @.children;
    has $!total-size;
    method total-size() {
        $!total-size //= $.size + @.children.map({.total-size}).sum;
    }
}

sub tree(IO::Path $path) {
    if $path.d {
        return Directory.new(

            name     => $path.basename,
            size     => $path.s,
            children => dir($path).map(&tree),
        );
    }
    else {
        return File.new(
            name => $path.Str,
            size => $path.s,
        );
    }
}

The code for reading a file tree recursively uses the d and s methods on 
IO::Path. d returns True for directories and False for files. s returns the size.3

Just to check that we’ve got a sensible data structure, we can write a short 
routine that prints it recursively, with indentation to indicate nesting of directory 
entries:

sub print-tree($tree, Int $indent = 0) {
     say ' ' x $indent, format-size($tree.total-size), ' ',  

$tree.name;
    if $tree ~~ Directory {
        print-tree($_, $indent + 2) for $tree.children
    }
}

3Note that .s on directories used to throw an exception in older Rakudo versions. You 
must use Rakudo 2017.02 or newer for this to work; if you are stuck on an older version 
of Rakudo, you could hard-code the size of a directory to a typical block size, like 4096 
bytes. It typically won’t skew your results too much.



Chapter 10 ■ a File and direCtory Usage graph

97

sub format-size(Int $bytes) {
    my @units = flat '', <k M G T P>;
    my @steps = (1, { $_ * 1024 } ... *).head(6);
    for @steps.kv -> $idx, $step {
        my $in-unit = $bytes / $step;
        if $in-unit < 1024 {
            return sprintf '%.1f%s', $in-unit, @units[$idx];
        }
    }
}

sub MAIN($dir = '.') {
    print-tree(tree($dir.IO));
}

The subroutine print-tree is pretty boring, if you’re used to recursion. 
It prints out the name and size of the current node and, if the current node is 
a directory, recurses into each children with an increased indentation. The 
indentation is applied through the x string repetition operator, which when 
called as $string x $count repeats the $string $count times. It uses the ∼∼ 
smart matching operator to perform a type check; it tests if $tree is a Directory.

To get a human-readable representation of the size of a number, format-
size knows a list of six units: the empty string for one, k (kilo) for 1024, M (mega) 
for 1024×1024, and so on. This list is stored in the array @units. The multiple 
associated with each unit is stored in @steps, which is initialized through the 
series operator .... Its structure is INITIAL, CALLABLE ... LIMIT, where it 
applies CALLABLE first to the initial value, and then to the next value generated, 
and so on, until it hits LIMIT. The limit here is *, a special term called Whatever, 
which means it’s unlimited. Thus, the sequence operator returns a lazy, 
potentially infinite, list and the trailing .head(6) call limits it to six values.

To find the most appropriate unit to print with the size, we have to iterate 
over both the values and the indices of the array, which for @steps.kv -> 
$idx, $step { .. } accomplishes. sprintf, known from other programming 
languages, does the actual formatting to one digit after the dot and appends the 
unit.

10.2  Generating a Tree Map
One possible visualization of file and directory sizes is a tree map, which 
represents each directory as a rectangle and each file inside it as a rectangle 
within the directory’s rectangle. The size of each rectangle is proportional to the 
size of the file or directory it represents.



Chapter 10 ■ a File and direCtory Usage graph

98

We’ll generate an SVG file containing all those rectangles. Modern browsers 
support displaying such files and also show mouse-over texts for each rectangle. 
This alleviates the burden of actually labeling the rectangles, which can be quite 
a hassle.

To generate the SVG, we’ll use the SVG module, which you can install with

$ zef install SVG

This module provides a single static method, into which you pass nested 
pairs. Pairs whose values are arrays are turned into XML tags; other pairs are 
turned into attributes. As an example, this Perl 6 script

use SVG;
print SVG.serialize(
    :svg[
        width => 100,
        height => 20,
        title => [
            'example',
        ]
    ],
);

produces this output:

<svg xmlns="http://www.w3.org/2000/svg"
     xmlns:svg="http://www.w3.org/2000/svg"
     xmlns:xlink="http://www.w3.org/1999/xlink"
     width="100"
     height="20">
        <title>example</title>
</svg>

(without the indentation). The xmlns-tags are helpfully added by the SVG module 
and are necessary for programs to recognize the file as SVG.

Returning to the tree maps (Figure 10-1), a very simple way to lay out 
the rectangle is to recurse into areas and for each area subdivide it either 
horizontally or vertically, depending upon which axis is longer:

sub tree-map($tree, :$x1!, :$x2!, :$y1!, :$y2) {
    # do not produce rectangles for small files/dirs
    return if ($x2 - $x1) * ($y2 - $y1) < 20;

    # produce a rectangle for the current file or dir



Chapter 10 ■ a File and direCtory Usage graph

99

    take 'rect' => [
        x      => $x1,
        y      => $y1,
        width  => $x2 - $x1,
        height => $y2 - $y1,
        style  => "fill:" ~ random-color(),
        title  => [$tree.name],
    ];
    return if $tree ~~ File;

    if $x2 - $x1 > $y2 - $y1 {
        # split along the x-axis
        my $base = ($x2 - $x1) / $tree.total-size;
        my $new-x = $x1;
        for $tree.children -> $child {
            my $increment = $base * $child.total-size;
            tree-map(
                $child,
                x1 => $new-x,
                x2 => $new-x + $increment,
                :$y1,
                :$y2,
            );
            $new-x += $increment;
        }
    }
    else {

         # split along the y-axis
         my $base = ($y2 - $y1) / $tree.total-size;
         my $new-y = $y1;
         for $tree.children -> $child {
             my $increment = $base * $child.total-size;
             tree-map(
                 $child,
                 :$x1,
                 :$x2,
                 y1 => $new-y,
                 y2 => $new-y + $increment,
             );
             $new-y += $increment;
         }
    }
}



Chapter 10 ■ a File and direCtory Usage graph

100

Figure 10-1. Tree map of an example directory, with a mouse-over hover 
identifying one of the files

sub random-color {
    return 'rgb(' ~ (1..3).map({ (^256).pick }).join(',') ~ ')';
}

sub MAIN($dir = '.') {
    my $tree = tree($dir.IO);
    use SVG;
    my $width = 1024;
    my $height = 768;
    say SVG.serialize(
        :svg[
            :$width,
            :$height,
             | gather tree-map $tree, x1 => 0, x2 => $width, y1 => 0,  

y2 => $height
        ]
    );
}



Chapter 10 ■ a File and direCtory Usage graph

101

The generated file is not pretty, due to the random colors and due to some 
files being identified as very narrow rectangles. But it does make it obvious 
that there are a few big files and many mostly small files in a directory (which 
happens to be the .git directory of a repository). Viewing a file in a browser 
shows the name of the file on mouse-over.

How did we generate this file?
Sub tree-map calls take to add elements to a result list, so it must be called 

in the context of a gather statement. gather { take 1; take 2 } returns a lazy 
list of two elements, 1, 2. But the take calls don’t have to occur in the lexical 
scope of the gather; they can be in any code that’s directly or indirectly called 
from the gather. We call that the dynamic scope.

The rest of sub tree-map is mostly straightforward. For each direction in 
which the remaining rectangle can be split, we calculate a base unit that signifies 
how many pixels a byte should occupy. This is used to split up the current canvas 
into smaller ones and use those to recurse into tree-map.

The random color generation uses ˆ256 to create a range from 0 to 256 
(exclusive) and .pick returns a random element from this range. The result is a 
random CSS color string like rgb(120,240,5).

In sub MAIN, the gather returns a list, which would normally be nested 
inside the outer array. The pipe symbol | in :svg[ ..., | gather ... ] before 
the gather prevents the normal nesting and flattens the list into the outer array.

10.3  Flame Graphs
The disadvantage of tree maps as generated in the preceding is that the human 
brain isn’t very good at comparing the sizes of rectangles with different aspect 
ratios, especially if their widths are very different from their heights (i.e., very tall 
or very flat rectangles). Flame graphs prevent this perception error by showing 
file sizes as horizontal bars. The vertical arrangement indicates the nesting of 
directories and files inside other directories. The disadvantage is that less of the 
available space is used for visualizing the file sizes.

It is easier to generate flame graphs than tree maps, because you only need 
to subdivide in one direction, whereas the height of each bar is fixed. Here it is 
set to 15 pixels:

sub flame-graph($tree, :$x1!, :$x2!, :$y!, :$height!) {
    return if $y >= $height;
    take 'rect' => [
        x      => $x1,
        y      => $y,
        width  => $x2 - $x1,
        height => 15,
        style  => "fill:" ~ random-color(),
        title  => [$tree.name ~ ', ' ~ format-size($tree.total-size)],
    ];



Chapter 10 ■ a File and direCtory Usage graph

102

    return if $tree ~~ File;

    my $base = ($x2 - $x1) / $tree.total-size;
    my $new-x = $x1;

    for $tree.children -> $child {
        my $increment = $base * $child.total-size;
        flame-graph(
            $child,
            x1 => $new-x,
            x2 => $new-x + $increment,
            y => $y + 15,
            :$height,
        );
        $new-x += $increment;
    }
}

We can add a switch to sub MAIN to call either tree-map or flame-graph, 
depending on a command-line option:

sub MAIN($dir = '.', :$type="flame") {
    my $tree = tree($dir.IO);
    use SVG;
    my $width = 1024;
    my $height = 768;
    my &grapher = $type eq 'flame'
            ?? {  flame-graph $tree, x1 => 0, x2 => $width, y => 0, 

:$height }
            !! {  tree-map    $tree, x1 => 0, x2 => $width, y1 => 0, 

y2 => $height }
    say SVG.serialize(
        :svg[
            :$width,
            :$height,
            | gather grapher()
        ]
    );
}



Chapter 10 ■ a File and direCtory Usage graph

103

Since SVG’s coordinate system places the zero of the vertical axis at the top, 
this actually produces an inverted flame graph, sometimes called an icicle graph 
(Figure 10-2):

This graph was generated by calling dirstat --type=flame src/
perl6book/.

10.4  Functional Refactorings
There’s a pattern that occurs three times in the code for generating tree maps 
and flame graphs: dividing an area based on the size of the files and directories 
in the tree associated with the area.

Extracting such common code into a function is a good idea, but it’s slightly 
hindered by the fact that there is custom code inside the loop that’s part of the 
common code. Functional programming offers a solution: put the custom code 
inside a separate function and have the common code call it.

Applying this technique to the tree graph flame graph looks like this:

sub subdivide($tree, $lower, $upper, &todo) {
    my $base = ($upper - $lower ) / $tree.total-size;
    my $var  = $lower;
    for $tree.children -> $child {
        my $incremented = $var + $base * $child.total-size;
        todo($child, $var, $incremented);
        $var = $incremented,
    }
}

sub flame-graph($tree, :$x1!, :$x2!, :$y!, :$height!) {
    return if $y >= $height;
    take 'rect' => [
        x      => $x1,
        y      => $y,
        width  => $x2 - $x1,

Figure 10-2. Inverted flame graph, where the width of each bar represents a file/
directory size and the vertical position the nesting inside a directory



Chapter 10 ■ a File and direCtory Usage graph

104

        height => 15,
        style  => "fill:" ~ random-color(),
        title  => [$tree.name ~ ', ' ~ format-size($tree.total-size)],
    ];
    return if $tree ~~ File;
    subdivide( $tree, $x1, $x2, -> $child, $x1, $x2 {
        flame-graph( $child, :$x1, :$x2, :y($y + 15), :$height );
    });
}

sub tree-map($tree, :$x1!, :$x2!, :$y1!, :$y2) {
    return if ($x2 - $x1) * ($y2 - $y1) < 20;
    take 'rect' => [
        x      => $x1,
        y      => $y1,
        width  => $x2 - $x1,
        height => $y2 - $y1,
        style  => "fill:" ~ random-color(),
        title  => [$tree.name],
    ];
    return if $tree ~~ File;

    if $x2 - $x1 > $y2 - $y1 {
        # split along the x-axis
        subdivide $tree, $x1, $x2, -> $child, $x1, $x2 {
            tree-map $child, :$x1, :$x2, :$y1, :$y2;
        }
    }
    else {
        # split along the y-axis
        subdivide $tree, $y1, $y2, -> $child, $y1, $y2 {
            tree-map $child, :$x1, :$x2, :$y1, :$y2;
        }
    }
}

The newly introduced subroutine subdivide takes a directory tree, a start 
and end point, and finally a code object &todo. For each child of the directory 
tree it calculates the new coordinates and then calls the &todo function.

The usage in subroutine flame-graph looks like this:

subdivide( $tree, $x1, $x2, -> $child, $x1, $x2 {
    flame-graph( $child, :$x1, :$x2, :y($y + 15), :$height );
});



Chapter 10 ■ a File and direCtory Usage graph

105

The code object being passed to subdivide starts with ->, which introduces 
the signature of a block. The code block recurses into flame-graph, adding some 
extra arguments and turning two positional arguments into named arguments 
along the way.

This refactoring shortened the code and made it overall more pleasant 
to work with. But there’s still quite a bit of duplication between tree-map 
and flame-graph: both have an initial termination condition, a take of a 
rectangle, and then a call or two to subdivide. If we’re willing to put all the small 
differences into small, separate functions, we can unify it further.

If we were to pass all those new functions as arguments to each call, we 
would create an unpleasantly long argument list. Instead, we can use those 
functions to generate the previous functions flame-graph and tree-map:

sub svg-tree-gen(:&terminate!, :&base-height!, :&subdivide-x!, 
:&other!) {
    sub inner($tree, :$x1!, :$x2!, :$y1!, :$y2!) {
        return if terminate(:$x1, :$x2, :$y1, :$y2);
        take 'rect' => [
            x      => $x1,
            y      => $y1,
            width  => $x2 - $x1,
            height => base-height(:$y1, :$y2),
            style  => "fill:" ~ random-color(),
             title  => [$tree.name ~ ', ' ~ format-size($tree.total-

size)],
        ];
        return if $tree ~~ File;
        if subdivide-x(:$x1, :$y1, :$x2, :$y2) {
            # split along the x-axis
            subdivide $tree, $x1, $x2, -> $child, $x1, $x2 {
                inner($child, :$x1, :$x2, :y1(other($y1)), :$y2);
            }
        }

        else {
            # split along the y-axis
            subdivide $tree, $y1, $y2, -> $child, $y1, $y2 {
                inner($child, :x1(other($x1)), :$x2, :$y1, :$y2);
            }
        }
    }
}



Chapter 10 ■ a File and direCtory Usage graph

106

my &flame-graph = svg-tree-gen
    terminate   => -> :$y1, :$y2, | { $y1 > $y2 },
    base-height => -> | { 15 },
    subdivide-x => -> | { True },
    other       => -> $y1 { $y1 + 15 },
    ;

my &tree-map = svg-tree-gen
     terminate   => -> :$x1, :$y1, :$x2, :$y2 { ($x2 - $x1) * ($y2 - $y1) 

< 20 },
    base-height => -> :$y1, :$y2 { $y2 - $y1 },
    subdivide-x => -> :$x1, :$x2, :$y1, :$y2 { $x2 - $x1 > $y2 - $y1 },
    other       => -> $a { $a },
    ;

Now we have a new function svg-tree-gen, which returns a function. The 
behavior of the returned function depends on the four small functions that  
svg-tree-gen receives as arguments.

The first argument, terminate, determines under what condition the inner 
function should terminate early. For tree-map, that’s when the area is below  
20 pixels; for flame-graph, that's when the current y-coordinate $y1 exceeds 
the height of the whole image (stored in $y2). svg-tree-gen always calls this 
function with the four named arguments x1, x2, y1, and y2, so the terminate 
function must ignore the x1 and x2 values. It does this by adding | as a 
parameter, which is an anonymous capture. Such a parameter can bind arbitrary 
positional and named arguments, and since it’s an anonymous parameter, it 
discards all the values.

The second configuration function, base-height, determines the 
height of the rectangle in the base case. For flame-graph it’s a constant, so 
the configuration function must discard all arguments, again with a |. For 
tree-graph, it must return the difference between $y2 and $y1, as before the 
refactoring.

The third function determines when to subdivide along the x axis. Flame 
graphs always divide along the x axis, so -> | { True } accomplishes that. Our 
simplistic approach to tree graphs divides along the longer axis, so only along 
the x axis if $x2 – $x1 > $y2 – $y1.

The fourth and final function we pass to svg-tree-gen calculates the 
coordinate of the axis that isn’t being subdivided. In the case of flame-graph that’s 
increasing over the previous value by the height of the bars, and for tree-map it’s 
the unchanged coordinate, so we pass the identity function -> $a { $a }.

The inner function only needs a name because we need to call it from itself 
recursively; otherwise an anonymous function sub ($tree, :$x1!, :$x2!, 
:$y1!, :$y2!) { ... } would have worked fine.



Chapter 10 ■ a File and direCtory Usage graph

107

This refactoring also unifies the names of the arguments to flame-graph and 
tree-map (previously, tree-map had :$y2 and flame-graph had :$height), so 
the call can now be simplified to

my &grapher = $type eq 'flame' ?? &flame-graph !! &tree-map;
say SVG.serialize(
    :svg[
        :$width,
        :$height,
         | do gather grapher $tree, x1 => 0, x2 => $width, y1 => 0, 

y2 => $height
    ]
);

Now that we have very compact definitions of flame-graph and tree-map, 
it’s a good time to play with some of the parameters. Let’s introduce a bit of 
margin in the flame graph by having the increment in other greater than the bar 
height in base-height:

my &flame-graph = svg-tree-gen
    base-height => -> | { 15 },
    other       => -> $y1 { $y1 + 16 },
    # rest as before

Another knob to turn is to change the color generation to something more 
deterministic and make it configurable from the outside:

sub svg-tree-gen(:&color=&random-color, :&terminate!, :&base-
height!,
                 :&subdivide-x!, :&other!) {
    sub inner($tree, :$x1!, :$x2!, :$y1!, :$y2!) {
        return if terminate(:$x1, :$x2, :$y1, :$y2);
        take 'rect' => [
            x      => $x1,
            y      => $y1,
            width  => $x2 - $x1,
            height => base-height(:$y1, :$y2),
            style  => "fill:" ~ color(),
            title  => [ $tree.name ~ ', ' ~ format-size($tree.total-

size)],
        ];
        # rest as before
}



Chapter 10 ■ a File and direCtory Usage graph

108

We can, for instance, keep state within the color generator and return a 
slightly different color during each iteration:

sub color-range(|) {
    state ($r, $g, $b) = (0, 240, 120);
    $r = ($r + 5) % 256;
    $g = ($g + 10) % 256;
    $b = ($b + 15) % 256;
    return "rgb($r,$g,$b)";
}

State variables keep their values between calls to the same subroutine 
and their initialization runs only on the first call. Hence this function slightly 
increases the lightness in each color channel for each invocation, except when it 
reaches 256, where the modulo operator % resets it back to a small value.

If we plug this into our functions by passing color => &color-range to the 
calls to svg-tree-gen, we get much less chaotic-looking output (Figures 10-3 
and 10-4):

Figure 10-3. Tree map with deterministic color generation



Chapter 10 ■ a File and direCtory Usage graph

109

We could also pass in the coordinates to the &color routine, which would 
make it possible to write a color generator that produces a nice gradient.

10.5  More Language Support for Functional 
Programming

As you’ve seen in the preceding examples, functional programming typically 
involves writing lots of small functions. Perl 6 has some language features that 
make it very easy to write such small functions.

A common task is to write a function that calls a particular method on its 
argument, as we’ve seen here:

method total-size() {
    $!total-size //= $.size + @.children.map({.total-size}).sum;
    #                                        ^^^^^^^^^^^^^
}

This can be abbreviated to *.total-size:

method total-size() {
    $!total-size //= $.size + @.children.map(*.total-size).sum;
}

This works for chains of method calls too, so you could write @.children.
map(*.total-size.round) if total-size returned a fractional number and you 
wanted to call the .round method on the result.

There are more cases where you can replace an expression with the 
“Whatever” star (*) to create a small function. To create a function that adds 15 
to its argument, you can write * + 15 instead of -> $a { $a + 15 }.

If you need to write a function to just call another function, but pass  
more arguments to the second function, you can use the method assuming.4  

4https://docs.perl6.org/routine/assuming

Figure 10-4. Flame graph with deterministic color generation and one pixel 
margin between bars

https://docs.perl6.org/routine/assuming


Chapter 10 ■ a File and direCtory Usage graph

110

For example -> $x { f(42, $x } can be replaced with &f.assuming(42). This 
works also for named arguments, so -> $x { f($x, height => 42 ) } can be 
replaced with &f.assuming(height => 42).

10.6  More Improvements
The classes File and Directory have some common functionality, like the  
size and the name attributes, and the fact that they both have a method called 
total-size. A good way to factor out common behavior of classes is to put the 
common behavior into a role:

role Path {
    has $.name;
    has $.size;
    method total-size() { ... }
}

class File does Path {
    method total-size() { $.size }
}

class Directory does Path {
    has @.children;
    has $!total-size;
    method total-size() {
        $!total-size //= $.size + @.children.map(*.total-size).sum;
    }
}

A role looks structurally similar to a class, and using the does keyword in 
the class declaration applies the role to the class. This role application copies 
attributes and methods into the target class, but with some additional compile-
time checks. One such check is that a class must implement stubbed-out methods 
like method total-size, where the ... as the method body marked it as a stub. 
In addition, when you apply multiple roles to the same class, name clashes are 
detected and throw an error unless you implement the method in the class for 
disambiguation.

Roles are the preferred method of code reuse (apart from delegation) in  
Perl 6, because of the safety features mentioned previously.

Now that File and Directory have a common role, you can use that role 
as a type constraint for subroutines that expect one of these types, such as sub 
subdivide(Path $tree, $lower, $upper, &todo).



Chapter 10 ■ a File and direCtory Usage graph

111

5https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

Finally, the type argument to sub MAIN can have two possible values: 
flame for flame graphs or tree for tree maps. A data structure that models this 
behavior is an enum or enumeration:

enum GraphType <flame tree>;

sub MAIN($dir = '.', GraphType :$type=flame) {
    my $tree = tree($dir.IO);

    use SVG;
    my $width = 1024;
    my $height = 768;
    my &grapher = $type == flame ?? &flame-graph !! &tree-map;
    say SVG.serialize(
        :svg[
            :$width,

            :$height,
             | do gather grapher $tree, x1 => 0, x2 => $width,  

y1 => 0, y2 => $height
        ]
    );
}

The values of an enum are integers starting from zero, hence the 
comparison with == instead of eq. You can access the possible values of an enum 
either as short identifiers (flame) or through the namespace of the enum type, 
GraphType::flame.

Now if you obtain a help message from the script (by running it with 
the --help option), the type argument is automatically documented: 
--type=<GraphType> (flame tree).

10.7  Explore!
To get familiar with the functional programming concept, I encourage you to 
look through the code you’ve written so far and refactor near-duplicate code 
blocks into a common base and to swap out the code that differs into callbacks.

More importantly, try to find abstractions that make sense. In the 
visualization examples, the underlying principle is divide and conquer.5 Can you 
come up with a general divide and conquer implementation that is still useful?

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm


Chapter 10 ■ a File and direCtory Usage graph

112

Thinking back to the tree map and flame graphs, maybe you can separate 
the logic for sizing rectangles from the logic for placing the rectangles?

10.8  Summary
Functional programming offers techniques for extracting common logic into 
separate functions. The desired differences in behavior can be encoded in more 
functions that you pass in as arguments to other functions.

Perl 6 supports functional programming by making functions first class, so 
you can pass them around as ordinary objects. It also offers closures (access to 
outer lexical variables from functions) and various shortcuts that make it more 
pleasant to write short functions.



113© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_11

CHAPTER 11

A Unicode Search Tool

Every so often, I have to identify or research some Unicode characters. There’s 
a tool called uni1 in the Perl 5 distribution App::Uni,2 developed by Audrey Tang 
and Ricardo Signes.

Let’s reimplement its basic functionality in a few lines of Perl 6 code and use 
that as an occasion to talk about Unicode support in Perl 6.

If you give it one character on the command line, it prints out a description 
of the following character:

$ uni њ
њ - U+0045a - CYRILLIC SMALL LETTER NJE

If you give it a longer string instead, it searches in the list of Unicode 
character names and prints out the same information for each character whose 
description matches the search string:

$ uni third|head -n3
⅓ - U+02153 - VULGAR FRACTION ONE THIRD
⅔ - U+02154 - VULGAR FRACTION TWO THIRDS
↉ - U+02189 - VULGAR FRACTION ZERO THIRDS

Each line corresponds to what Unicode calls a “code point,” which is usually 
a character on its own, but occasionally also something like U+00300-COMBINING 
GRAVE ACCENT, which, combined with a-U+00061-LATIN SMALL LETTER A makes 
the character à.

Perl 6 offers a method uniname in both the classes Str and Int that produces 
the Unicode code point name for a given character, either in its direct character 

1https://metacpan.org/pod/uni
2https://metacpan.org/release/App-Uni

https://metacpan.org/pod/uni
https://metacpan.org/release/App-Uni


Chapter 11 ■ a UniCode SearCh tool

114

form, or in the form of its code point number. With that, the first part of uni’s 
desired functionality looks like this:

#!/usr/bin/env perl6

use v6;

sub format-codepoint(Int $codepoint) {
    sprintf "%s - U+%05x - %s\n",
        $codepoint.chr,
        $codepoint,
        $codepoint.uniname;
}

multi sub MAIN(Str $x where .chars == 1) {
    print format-codepoint($x.ord);
}

Let’s look at it in action:

$ uni ø
ø - U+000f8 - LATIN SMALL LETTER O WITH STROKE

The chr method turns a code point number into the character and ord is the 
reverse: in other words, from character to code point number.

The second part, searching in all Unicode character names, works by brute-
force enumerating all possible characters and searching through their uniname:

multi sub MAIN($search is copy) {
    $search.=uc;
    for 1..0x10FFFF -> $codepoint {
        if $codepoint.uniname.contains($search) {
            print format-codepoint($codepoint);
        }
    }
}

Since all character names are in uppercase, the search term is first converted 
to uppercase with $search.=uc, which is short for $search = $search.uc. By 
default, parameters are read-only, which is why its declaration here uses is 
copy to prevent that.

Instead of this rather imperative style, we can also formulate it in a more 
functional style. We could think of it as a list of all characters, which we whittle 



Chapter 11 ■ a UniCode SearCh tool

115

down to those characters that interest us, to finally format them the way we 
want:

multi sub MAIN($search is copy) {
    $search.=uc;
    print (1..0x10FFFF).grep(*.uniname.contains($search))
                       .map(&format-codepoint)
                       .join;
}

To make it easier to identify (rather than search for) a string of more than 
one character, an explicit option can help disambiguate:

multi sub MAIN($x, Bool :$identify!) {
    print $x.ords.map(&format-codepoint).join;
}

Str.ords returns the list of code points that make up the string. With this 
multi candidate of sub MAIN in place, we can do something like

$ uni --identify øre
ø - U+000f8 - LATIN SMALL LETTER O WITH STROKE
r - U+00072 - LATIN SMALL LETTER R
e - U+00065 - LATIN SMALL LETTER E

11.1 Code Points, Grapheme Clusters, and Bytes
As alluded to in the preceding, not all code points are fully fledged characters 
on their own. Or put another way, some things that we visually identify as a 
single character are actually made up of several code points. Unicode calls such 
sequences of one base character and potentially several combining characters as 
a grapheme cluster.

Strings in Perl 6 are based on these grapheme clusters. If you get a list 
of characters in a string with $str.comb, or extract a substring with $str.
substr(0, 4), match a regex against a string, determine the length, or do any 
other operation on a string, the unit is always the grapheme cluster. This best 
fits our intuitive understanding of what a character is and avoids accidentally 
tearing apart a logical character through a substr, comb, or similar operation:

my $s = "ø\c[COMBINING TILDE]";
say $s;         # Output: ø̃
say $s.chars;   # Output: 1



Chapter 11 ■ a UniCode SearCh tool

116

The Uni3 type is akin to a string and represents a sequence of codepoints. It 
is useful in edge cases, but doesn’t support the same wealth of operations as Str.4 
The typical way to go from Str to a Uni value is to use one of the NFC, NFD, NFKC, 
or NFKD methods, which yield a Uni value in the normalization form of the same 
name.

Below the Uni level, you can also represent strings as bytes by choosing an 
encoding. If you want to get from the string to the byte level, call the encode5 
method:

my $bytes = 'Perl 6'.encode('UTF-8');   # utf8:0x<50 65 72 6c 20 36>

UTF-8 is the default encoding and also the one Perl 6 assumes when reading 
source files. The result is something that does the Blob6 role: you can access 
individual bytes with positional indexing, such as $bytes[0]. The decode 
method7 helps you convert a Blob to a Str.

If you print out a Blob with say(), you get a string representation of the 
bytes in hexadecimal. Accessing individual bytes produces an integer, and thus 
will typically be printed in decimal.

If you want to print out the raw bytes of a blob, you can use the write 
method of an I/O handle:

$*OUT.write('Perl 6'.encode('UTF-8'));

11.2  Numbers
Number literals in Perl 6 aren’t limited to the Arabic digits we are so used to in 
the English-speaking part of the world. All Unicode code points that have the 
Decimal_Number (short Nd) property are allowed, so you can for example use 
Eastern Arabic numerals,8 or from many other scripts:

say ٤٢;             # 42

The same holds true for string-to-number conversions:

say "٤٢".Int;       # 42

3https://docs.perl6.org/type/Uni
4https://docs.perl6.org/type/Str
5https://docs.perl6.org/type/Str#method_encode
6https://docs.perl6.org/type/Blob.html
7https://docs.perl6.org/type/Blob.html#method_decode
8https://en.wikipedia.org/wiki/Eastern_Arabic_numerals

https://docs.perl6.org/type/Uni
https://docs.perl6.org/type/Str
https://docs.perl6.org/type/Str#method_encode
https://docs.perl6.org/type/Blob.html
https://docs.perl6.org/type/Blob.html#method_decode
https://en.wikipedia.org/wiki/Eastern_Arabic_numerals


Chapter 11 ■ a UniCode SearCh tool

117

For other numeric code points, you can use the unival method to obtain its 
numeric value:

say "\c[TIBETAN DIGIT HALF ZERO]".unival;

which produces the output –0.5 and also illustrates how to use a codepoint by 
name inside a string literal.

11.3  Other Unicode Properties
The uniprop method9 in type Str returns the general category by default:

say "ø".uniprop;                            # Ll
say "\c[TIBETAN DIGIT HALF ZERO]".uniprop;  # No

The return value needs some Unicode knowledge in order to make sense 
of it, or one could read Unicode’s Technical Report 4410 for the gory details. Ll 
stands for Letter_Lowercase, No is Other_Number. This is what Unicode calls 
the General Category, but you can ask the uniprop (or uniprop-bool method if 
you’re only interested in a boolean result) for other properties as well:

say "a".uniprop-bool('ASCII_Hex_Digit');   # True
say "ü".uniprop-bool('Numeric_Type');      # False
say ".".uniprop("Word_Break");             # MidNumLet

11.4  Collation
Sorting strings starts to become complicated when you’re not limited to ASCII 
characters. Perl 6’s sort method uses the cmp infix operator, which does a pretty 
standard lexicographic comparison based on the codepoint number.

If you need to use a more sophisticated collation algorithm, Rakudo 2017.02 
and newer offer the Unicode Collation Algorithm11 as an experimental feature:

my @list = <a ö ä Ä o ø>;
say @list.sort;                      # (a o Ä ä ö ø)

use experimental :collation;
say @list.collate;                   # (a ä Ä o ö ø)

9https://docs.perl6.org/type/Str#(Cool)_method_uniprop
10http://unicode.org/reports/tr44/#Properties
11http://unicode.org/reports/tr10/

https://docs.perl6.org/type/Str#(Cool)_method_uniprop
http://unicode.org/reports/tr44/#Properties
http://unicode.org/reports/tr10/


Chapter 11 ■ a UniCode SearCh tool

118

$*COLLATION.set(:tertiary(False));
say @list.collate;                   # (a Ä ä o ö ø)

The default sort considers any character with diacritics to be larger than 
ASCII characters, because that’s how they appear in the code point list. On the 
other hand, collate knows that characters with diacritics belong directly after 
their base character, which is not perfect in every language, but internally a good 
compromise.

For Latin-based scripts, the primary sorting criterion is alphabetic, the 
secondary is diacritics, and the third is case. $*COLLATION.set(:tertiary(False)) 
thus makes .collate ignore case, so it doesn’t force lowercase characters to come 
before uppercase characters anymore.

At the time of writing, language-specific collation has not yet been 
implemented in Perl 6.

11.5  Summary
Perl 6 takes languages other than English very seriously, and goes to great 
lengths to facilitate working with them and the characters they use.

This includes basing strings on grapheme clusters rather than code points, 
support for non-Arabic digits in numbers, and access to large parts of the 
Unicode database through built-in methods.



119© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_12

CHAPTER 12

Plotting Using Inline::Python 
and Matplotlib

Occasionally I come across git repositories where I want to know how active they 
are and who the main developers are.

Let’s develop a script that plots the commit history, and explore how to use 
Python modules in Perl 6.

12.1  Extracting the Stats
We want to plot the number of commits by author and date. We can get this 
information easily by passing some options to git log:

my $proc = run :out, <git log --date=short --pretty=format:%ad!%an>;
my (%total, %by-author, %dates);
for $proc.out.lines -> $line {
    my ( $date, $author ) = $line.split: '!', 2;
    %total{$author}++;
    %by-author{$author}{$date}++;
    %dates{$date}++;
}

run executes an external command and :out tells it to capture the 
command’s output, making it available as $proc.out. The command is a list, with 
the first element being the actual executable and the rest being command-line 
arguments to this executable.

Here git log gets the options --date short --pretty=format:%ad!%an, 
which instructs it to produce lines like 2017-03-01!John Doe. This line can be 
parsed with a simple call to $line.split: '!', 2, which splits on the ! and 
limits the result to two elements. Assigning it to a two-element list ( $date, 
$author ) unpacks it. We then use hashes to count commits by author (in 
%total), by author and date (%by-author), and finally by date. In the second case,  



Chapter 12 ■ plotting Using inline::python and Matplotlib

120

%by-author{$author} isn’t even a hash yet and we can still hash-index it. This is 
due to a feature called autovivification, which automatically creates (“vivifies”) 
objects where we need them. The use of ++ creates integers, {...} indexing 
creates hashes, [...] indexing, .push creates arrays, and so on.

To get from these hashes to the top contributors by commit count, we can 
sort %total by value. Since this sorts in ascending order, sorting by the negative 
value returns the list in descending order. The list contains Pair1 objects, where 
we only want the first five, and only their keys:

my @top-authors = %total.sort(-*.value).head(5).map(*.key);

For each author, we can extract the dates of their activity and their commit 
counts like this:

my @dates  = %by-author{$author}.keys.sort;
my @counts = %by-author{$author}{@dates};

The last line uses slicing, that is, indexing a hash with a list to return a list of 
elements.

12.2  Plotting with Python
Matplotlib is a very versatile library for all sorts of plotting and visualization 
tasks. It is based on NumPy,2 a Python library for scientific and numeric 
computing.

Matplotlib3 is written in Python and for Python programs, but that won’t 
stop us from using it in a Perl 6 program.

But first, let’s take a look at a basic plotting example that uses dates on the  
x axis:

import datetime
import matplotlib.pyplot as plt

fig, subplots = plt.subplots()
subplots.plot(
     [datetime.date(2017, 1, 5), datetime.date(2017, 3, 5),  

datetime.date(2017, 5, 5)],
    [ 42, 23, 42 ],
    label='An example',
)

1https://docs.perl6.org/types/Pair
2http://www.numpy.org/
3https://matplotlib.org/

https://docs.perl6.org/types/Pair
http://www.numpy.org/
https://matplotlib.org/


Chapter 12 ■ plotting Using inline::python and Matplotlib

121

subplots.legend(loc='upper center', shadow=True)
fig.autofmt_xdate()
plt.show()

To make this run, you have to install Python 2.7 and matplotlib.4 You can do this 
on Debian-based Linux systems with apt-get install -y python-matplotlib. 
The package name is the same on RPM-based distributions such as CentOS or 
SUSE Linux. MacOS users are advised to install Python 2.7 through homebrew or 
macports and then use pip2 install matplotlib or pip2.7 install matplotlib 
to get the library. Windows installation is probably easiest through the conda5 
package manager, which offers prebuilt binaries of both Python and matplotlib.

When you run this script with python2.7 dates.py, it opens a GUI window, 
showing the plot and some controls, which allow you to zoom, scroll, and write 
the plot graphic to a file (Figure 12-1):

Figure 12-1. Basic matplotlib plotting window

4The reason why Python 2.7 has to be used is that, at the time of writing, 
Inline::Python does not yet support Python 3.
5https://conda.io/docs/

https://conda.io/docs/


Chapter 12 ■ plotting Using inline::python and Matplotlib

122

12.3  Bridging the Gap
The Rakudo Perl 6 compiler comes with a handy library for calling foreign 
functions6—called ‘NativeCall’—which allows you to call functions written in C, 
or anything with a compatible binary interface.

The Inline::Python7 library uses the native call functionality to talk to 
Python’s C API and offers interoperability between Perl 6 and Python code. At 
the time of writing, this interoperability is still fragile in places, but can be worth 
using for some of the great libraries that Python has to offer.

To install Inline::Python, you must have a C compiler available, and  
then run

$ zef install Inline::Python

Now you can start to run Python 2 code in your Perl 6 programs:

use Inline::Python;

my $py = Inline::Python.new;
$py.run: 'print("Hello, Perl 6")';

Besides the run method, which takes a string of Python code and executes it, 
you can also use call to call Python routines by specifying the namespace, the 
routine to call, and a list of arguments:

use Inline::Python;

my $py = Inline::Python.new;
$py.run('import datetime');
my $date = $py.call('datetime', 'date', 2017, 1, 31);
$py.call('__builtin__', 'print', $date);    # 2017-01-31

The arguments that you pass to call are Perl 6 objects, such as the three Int 
objects in this example. Inline::Python automatically translates them into the 
corresponding Python built-in data structure. It translates numbers, strings, arrays, 
and hashes. Return values are also translated in the opposite direction, though 
since Python 2 does not distinguish properly between byte and Unicode strings, 
Python strings end up as buffers in Perl 6.

6https://docs.perl6.org/language/nativecall
7https://github.com/niner/Inline-Python

https://docs.perl6.org/language/nativecall
https://github.com/niner/Inline-Python


Chapter 12 ■ plotting Using inline::python and Matplotlib

123

Objects that Inline::Python cannot translate are handled as opaque 
objects on the Perl 6 side. You can pass them back into Python routines  
(as shown with the preceding print call) and you can call methods on them:

say $date.isoformat().decode;               # 2017-01-31

Perl 6 exposes attributes through methods, so Perl 6 has no syntax for 
accessing attributes from foreign objects directly. For instance, if you try to 
access the year attribute of datetime.date through the normal method call 
syntax, you get an error:

say $date.year;

dies with

'int' object is not callable

Instead, you have to use the getattr builtin:

say $py.call('__builtin__', 'getattr', $date, 'year');

12.4  Using the Bridge to Plot
We need access to two namespaces in Python, datetime and matplotlib.pyplot, 
so let’s start by importing them and writing some short helpers:

my $py = Inline::Python.new;
$py.run('import datetime');
$py.run('import matplotlib.pyplot');
sub plot(Str $name, |c) {
    $py.call('matplotlib.pyplot', $name, |c);
}

sub pydate(Str $d) {
    $py.call('datetime', 'date', $d.split('-').map(*.Int));
}

We can now call pydate('2017-03-01') to create a Python datetime.
date object from an ISO-formatted string and call the plot function to access 
functionality from matplotlib:

my ($figure, $subplots) = plot('subplots');
$figure.autofmt_xdate();

my @dates = %dates.keys.sort;



Chapter 12 ■ plotting Using inline::python and Matplotlib

124

$subplots.plot:
    $[@dates.map(&pydate)],
    $[ %dates{@dates} ],
    label     => 'Total',
    marker    => '.',
    linestyle => '';

The Perl 6 call plot('subplots') corresponds to the Python code fig, 
subplots = plt.subplots(). Passing arrays to Python functions needs a bit of 
extra work, because Inline::Python flattens arrays. Using an extra $ sigil in front 
of an array puts it into an extra scalar and thus prevents the flattening.

Now we can actually plot the number of commits by author, add a legend, 
and plot the result:

for @top-authors -> $author {
    my @dates = %by-author{$author}.keys.sort;
    my @counts = %by-author{$author}{@dates};
    $subplots.plot:
        $[ @dates.map(&pydate) ],
        $@counts,
        label     => $author,
        marker    =>'.',
        linestyle => '';
}

$subplots.legend(loc=>'upper center', shadow=>True);
plot('title', 'Contributions per day');
plot('show');

When run in the zef git repository,8 it produces the plot shown in Figure 12-2:

8https://github.com/ugexe/zef

https://github.com/ugexe/zef


Chapter 12 ■ plotting Using inline::python and Matplotlib

125

12.5  Stacked Plots
I am not yet happy with the plot, so I want to explore using stacked plots for 
presenting the same information. In a regular plot, the y coordinate of each 
plotted value is proportional to its value. In a stacked plot, it is the distance to the 
previous value that is proportional to its value. This is nice for values that add up 
to a total that is also interesting.

Matplotlib offers a method called stackplot9 for this task. Contrary to multiple 
plot calls on a subplot object, it requires a shared x axis for all data series. Hence we 
must construct one array for each author of git commits, where dates with no value 
are set to zero.

This time we have to construct an array of arrays where each inner array has 
the values for one author:

my @dates = %dates.keys.sort;
my @stack = $[] xx @top-authors;

for @dates -> $d {
    for @top-authors.kv -> $idx, $author {
        @stack[$idx].push: %by-author{$author}{$d} // 0;
    }
}

Figure 12-2. Contributions to zef, a Perl 6 module installer

9http://matplotlib.org/devdocs/api/_as_gen/matplotlib.axes.Axes. 
stackplot.html

http://matplotlib.org/devdocs/api/_as_gen/matplotlib.axes.Axes.stackplot.html
http://matplotlib.org/devdocs/api/_as_gen/matplotlib.axes.Axes.stackplot.html


Chapter 12 ■ plotting Using inline::python and Matplotlib

126

Now plotting becomes a simple matter of a method call, followed by the 
usual commands to add a title and show the plot:

$subplots.stackplot($[@dates.map(&pydate)], @stack);
plot('title', 'Contributions per day');
plot('show');

The result (again run on the zef source repository) is shown in Figure 12-3:

Figure 12-3. Stacked plot of zef contributions over time

Comparing this to the previous visualization reveals a discrepancy: there 
were no commits in 2014, and yet the stacked plot makes it appear this way. In 
fact, the previous plots would have shown the same “alternative facts” if we had 
chosen lines instead of points. It comes from matplotlib (like nearly all plotting 
libraries) interpolating linearly between data points. But in our case, a date with 
no data points means zero commits happened on that date.

To communicate this to matplotlib, we must explicitly insert zero values for 
missing dates. This can be achieved by replacing

my @dates = %dates.keys.sort;



Chapter 12 ■ plotting Using inline::python and Matplotlib

127

with the line

my @dates = %dates.keys.minmax;

The minmax method10 finds the minimal and maximal values, and returns 
them in a Range.11 Assigning the range to an array turns it into an array of all 
values between the minimal and the maximal value. The logic for assembling 
the @stack variable already maps missing values to zero.

The result looks a bit better, but still far from perfect (Figure 12-4):

Figure 12-4. Stacked plot of zef contributions over time, with missing dates 
mapped to zero

10https://docs.perl6.org/routine/minmax#class_Any
11https://docs.perl6.org/type/Range

Thinking more about the problem, contributions from separate days should 
not be joined together, because it produces misleading results. Matplotlib 
doesn’t support adding a legend automatically to stacked plots, so this seems to 
be to be a dead end.

https://docs.perl6.org/routine/minmax#class_Any
https://docs.perl6.org/type/Range


Chapter 12 ■ plotting Using inline::python and Matplotlib

128

Since a dot plot didn’t work very well, let’s try a different kind of plot that 
represents each data point separately: a bar chart, or more specifically, a stacked 
bar chart. Matplotlib offers the bar plotting method where the named parameter 
bottom can be used to generate the stacking:

my @dates = %dates.keys.sort;
my @stack = $[] xx @top-authors;
my @bottom = $[] xx @top-authors;

for @dates -> $d {
    my $bottom = 0;
    for @top-authors.kv -> $idx, $author {
        @bottom[$idx].push: $bottom;
        my $value = %by-author{$author}{$d} // 0;
        @stack[$idx].push: $value;
        $bottom += $value;
    }
}

We need to supply color names ourselves and set the edge color of the bars 
to the same color, otherwise the black edge color dominates the result:

my $width = 1.0;
my @colors = <red green blue yellow black>;
my @plots;

for @top-authors.kv -> $idx, $author {
    @plots.push: plot(
        'bar',
        $[@dates.map(&pydate)],
        @stack[$idx],
        $width,
        bottom => @bottom[$idx],
        color => @colors[$idx],
        edgecolor => @colors[$idx],
    );
}
plot('legend', $@plots, $@top-authors);

plot('title', 'Contributions per day');
plot('show');



Chapter 12 ■ plotting Using inline::python and Matplotlib

129

As shown in Figure 12-5, this produces the first plot that’s actually 
informative and not misleading (provided you’re not colorblind):

If you want to improve the result further, you could experiment with limiting 
the number of bars by lumping together contributions by week or month (or maybe 
$n-day period).

12.6  Idiomatic Use of Inline::Python
Now that the plots look informative and correct, it’s time to explore how to better 
emulate the typical Python APIs through Inline::Python.

12.6.1  Types of Python APIs
Python is an object-oriented language, so many APIs involve method calls, 
which Inline::Python helpfully automatically translates for us.

But the objects must come from somewhere and typically this is by calling a 
function that returns an object, or by instantiating a class. In Python, those two are 
really the same under the hood, since instantiating a class is the same as calling the 
class as if it were a function.

Figure 12-5. Stacked bar plot of zef contributions over time



Chapter 12 ■ plotting Using inline::python and Matplotlib

130

An example of this (in Python) would be

from matplotlib.pyplot import subplots
result = subplots()

But the matplotlib documentation tends to use another, equivalent syntax:

import matplotlib.pyplot as plt
result = plt.subplots()

This uses the subplots symbol (class or function) as a method on the 
module matplotlib.pyplot, which the import statement aliases to plt. This is a 
more object-oriented syntax for the same API.

12.6.2  Mapping the Function API
The previous code examples used this Perl 6 code to call the subplots symbol:

my $py = Inline::Python.new;
$py.run('import matplotlib.pyplot');
sub plot(Str $name, |c) {
    $py.call('matplotlib.pyplot', $name, |c);
}

my ($figure, $subplots) = plot('subplots');

If we want to call subplots() instead of plot('subplots'), and bar(args) 
instead of plot('bar', args), we can use a function to generate wrapper 
functions:

my $py = Inline::Python.new;

sub gen(Str $namespace, *@names) {
    $py.run("import $namespace");

    return @names.map: -> $name {
        sub (|args) {
            $py.call($namespace, $name, |args);
        }
    }
}



Chapter 12 ■ plotting Using inline::python and Matplotlib

131

my (&subplots, &bar, &legend, &title, &show)
    = gen('matplotlib.pyplot', <subplots bar legend title show>);

my ($figure, $subplots) = subplots();

# more code here

legend($@plots, $@top-authors);
title('Contributions per day');
show();

This makes the functions’ usage quite nice, but comes at the cost of 
duplicating their names. One can view this as a feature, because it allows the 
creation of different aliases, or as a source for bugs when the order is messed up, 
or a name misspelled.

How could we avoid the duplication should we choose to create wrapper 
functions?

This is where Perl 6’s flexibility and introspection abilities pay off. There are 
two key components that allow a nicer solution: the fact that declarations are 
expressions, and that you can introspect variables for their names.

The first part means you can write mysub my ($a, $b), which declares 
the variables $a and $b, and calls a function with those variables as arguments. 
The second part means that $a.VAR.name returns a string '$a', the name of the 
variable.

Let’s combine this to create a wrapper that initializes subroutines for us:

sub pysub(Str $namespace, |args) {
    $py.run("import $namespace");

    for args[0] <-> $sub {
        my $name = $sub.VAR.name.substr(1);
        $sub = sub (|args) {
            $py.call($namespace, $name, |args);
        }
    }
}

pysub 'matplotlib.pyplot',
    my (&subplots, &bar, &legend, &title, &show);



Chapter 12 ■ plotting Using inline::python and Matplotlib

132

This avoids duplicating the name, but forces us to use some lower-level  
Perl 6 features in sub pysub. Using ordinary variables means that accessing their 
.VAR.name results in the name of the variable, not the name of the variable that’s 
used on the caller side. So we can’t use slurpy arguments as in

sub pysub(Str $namespace, *@subs)

Instead we must use |args to obtain the rest of the arguments in a Capture.12 
This doesn’t flatten the list of variables passed to the function, so when we 
iterate over them, we must do so by accessing args[0]. By default, loop variables 
are read-only, which we can avoid by using <-> instead of -> to introduce the 
signature. Fortunately, that also preserves the name of the caller side variable.

12.6.3  An Object-Oriented Interface
Instead of exposing the functions, we can also create types that emulate the 
method calls on Python modules. For that, we can implement a class with a 
method FALLBACK, which Perl 6 calls for us when calling a method that is not 
implemented in the class:

class PyPlot is Mu {
    has $.py;
    submethod TWEAK {
        $!py.run('import matplotlib.pyplot');
    }
    method FALLBACK($name, |args) {
        $!py.call('matplotlib.pyplot', $name, |args);
    }
}

my $pyplot = PyPlot.new(:$py);
my ($figure, $subplots) = $pyplot.subplots;
# plotting code goes here
$pyplot.legend($@plots, $@top-authors);

$pyplot.title('Contributions per day');
$pyplot.show;

12https://docs.perl6.org/type/Capture.html

https://docs.perl6.org/type/Capture.html


Chapter 12 ■ plotting Using inline::python and Matplotlib

133

Class PyPlot inherits directly from Mu, the root of the Perl 6 type hierarchy, 
instead of Any, the default parent class (which in turn inherits from Mu). Any 
introduces a large number of methods that Perl 6 objects get by default, and 
since FALLBACK is only invoked when a method is not present, this is something 
to avoid.

The method TWEAK is another method that Perl 6 calls automatically for us, 
after the object has been fully instantiated. All-caps method names are reserved 
for such special purposes. It is marked as a submethod, which means it is not 
inherited into subclasses. Since TWEAK is called at the level of each class, if it were 
a regular method, a subclass would call it twice implicitly. Note that TWEAK is only 
supported in Rakudo version 2016.11 and later.

There’s nothing specific to the Python package matplotlib.pyplot in 
class PyPlot, except the namespace name. We could easily generalize it to any 
namespace:

class PythonModule is Mu {
    has $.py;
    has $.namespace;
    submethod TWEAK {
        $!py.run("import $!namespace");
    }
    method FALLBACK($name, |args) {
        $!py.call($!namespace, $name, |args);
    }
}

my $pyplot = PythonModule.new(:$py, :namespace<matplotlib.pyplot>);

This is one Perl 6 type that can represent any Python module. If instead we 
want a separate Perl 6 type for each Python module, we could use roles, which 
are optionally parameterized:

role PythonModule[Str $namespace] is Mu {
    has $.py;
    submethod TWEAK {
        $!py.run("import $namespace");
    }
    method FALLBACK($name, |args) {
        $!py.call($namespace, $name, |args);
    }
}

my $pyplot = PythonModule['matplotlib.pyplot'].new(:$py);



Chapter 12 ■ plotting Using inline::python and Matplotlib

134

Using this approach, we can create type constraints for Python modules in 
Perl 6 space:

sub plot-histogram(PythonModule['matplotlib.pyplot'], @data) {
    # implementation here
}

Passing in any wrapped Python module other than matplotlib.pyplot 
results in a type error.

12.7  Summary
We’ve explored several ways to represent commit occurrence in plots and 
utilized Inline::Python to interface with a Python-based plotting library.

A bit of Perl 6 metaprogramming allowed us to emulate different kinds of 
Python APIs pretty directly in Perl 6 code, allowing a fairly direct translation of 
the original library’s documentation into Perl 6 code.



135© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9_13

CHAPTER 13

What’s Next?

If you got this far reading this book, you likely have a solid grasp on the basics of 
Perl 6 by now.

The examples and discussions have touched on a wide variety of topics. We 
started with what Perl 6 is, and how you can run Perl 6 programs. Next up were 
the basic lexical structure of Perl 6 programs, variables, control flow, and I/O. 
The more advanced topics include object orientation, persistence, regexes and 
grammars, Unicode support, concurrency, and finally the use of foreign libraries 
through Inline::Python.

But there’s more to writing successful Perl 6 code than learning about the 
language itself. In this final chapter, I want to hint at some topics that you might 
want to pursue to help you keep your code base maintainable, and to get it 
successfully in front of users.

13.1  Scaling Your Code Base
When your code base grows, it is often advisable to split it into separate files. 
You can create modules that contain your logic, organized by namespace and 
functionality. The scripts then tend to become shallow entry points that parse 
the command-line arguments, load the modules, and then call a function or 
method from a method to do the actual work.

In this scenario, tests are written as separate scripts, usually in a directory 
named t, that load and test the same modules.

The official documentation at https://docs.perl6.org/language/modules 
explains how you can write modules, as well as the standard directory layout and 
metadata that the module installer zef (and other tooling) relies on.

As your code base grows, type annotations can help you to keep track 
of what arguments routines accept, and what they return. I tend to use type 
annotations mostly in signatures that are part of a public API. With “public” I 
mean routines that can be accessed from outside the module they are in. Inside 
the routines, I tend to omit them for brevity and flexibility.

https://docs.perl6.org/language/modules


Chapter 13 ■ What’s Next?

136

To make type constraints more reusable, you can define create subset types.  
For example we’ve seen an example with an ad hoc–type constraint:

multi sub MAIN(Str $date where /^ \d+ \- \d+ \- \d+ $ /) { ... }

Instead you could create a subset type, and use it several times:

subset DateStr of Str where /^ \d+ \- \d+ \- \d+ $ /;

multi sub MAIN(DateStr $date) { ... }
sub parse-date(DateStr) returns Date { ... }

You can collect several of these types in a module, and import them 
wherever you need them.

13.2  Packaging Your Application
In order to deploy your application to users, you typically put it in some kind of  
self-contained archive or package.

Independent of the desired distribution format, the starting point is always 
the directory layout and metadata that the zef module installer uses, which is 
described at https://docs.perl6.org/language/modules.

Perl 6 packaging is still in active development, so instead of giving recipes,  
I want to briefly mention some options that you might find worth exploring.

13.2.1  Packaging as a Traditional Perl 6 Module
Traditionally, Perl 6 modules and software are distributed as tar archives1 that 
contain the source code and some metadata, like a META6.json file.

Users need to have a Perl 6 binary and zef installed. They can then unpack 
the archive, go into the newly created directory, and install the software with zef 
install.

If your software is open source, you can add it to the official Perl 6 ecosystem 
by sending a pull request against the Perl 6 ecosystem git repository on GitHub.2 
In this pull request, you simply add a link to your META6.json file by editing 
the file META.list in said repository. After the pull request is accepted (which 
typically only takes a few hours or minutes), users can install your software 
through zef without having to download any package themselves.

1https://www.gnu.org/software/tar/
2https://github.com/perl6/ecosystem

https://docs.perl6.org/language/modules
https://www.gnu.org/software/tar/
https://github.com/perl6/ecosystem


Chapter 13 ■ What’s Next?

137

13.2.2  Deploying with Docker
Traditional Perl 6 module distribution relies on a preinstalled Rakudo Perl 6 
compiler, which might not be available on all platforms.

If you choose to distribute your application in a Docker image, you can 
base your image on the rakudo-star image, and simply zef install your 
application into the Docker container.

This is the most basic Dockerfile that builds on a preexisting image and 
installs that Perl 6 application from the current working directory:

FROM rakudo-star:2017.04
COPY myapp /tmp/install
RUN zef install /tmp/install
ENTRYPOINT ["/usr/share/perl6/site/bin/myapp"]

Running docker build -t myapp . creates a Docker image myapp, which 
you can then distribute, with all dependencies included.

13.2.3  Windows Installers
The module App::InstallerMaker::WiX3 can help you create a Windows .msi 
installer that creates a build of Rakudo, zef, and your application. It requires the 
Microsoft Visual C++ build tools and WiX.4 You create a YAML file that describes 
your application, and then run the script make-perl6-wix-installer to create a 
stand-alone .msi file.

13.3  Closing Thoughts
Perl 6 is a big language, embedded in an even bigger community and ecosystem. 
A book such as this one cannot cover everything, but hopefully it helped 
you learn enough to perform most programming tasks in Perl 6, and more 
importantly, got you excited and motivated to explore, and to learn more.

3https://modules.perl6.org/dist/App::InstallerMaker::WiX
4http://wixtoolset.org/releases/

https://modules.perl6.org/dist/App::InstallerMaker::WiX
http://wixtoolset.org/releases/


139© Moritz Lenz 2017 
M. Lenz, Perl 6 Fundamentals, DOI 10.1007/978-1-4842-2899-9

��������� A
Action methods, 85
Alternatives, 76
APIs

mapping function, 130–132
types of python, 129

App::InstallerMaker::WiX, 137
ASCII characters, 117–118
Attributes, 70
Automated tests, 34–37
Autovivification, 120

��������� B
Back end

DBIish, 61
storage

develop, 62–65
persistent, 61–62
SQLite, 61
using, 65–66

Backtracking
defined, 80
demerits, 80–81
disable, 81

Bar plotting method, 128–129
Blob role, 116
Block method, 86
Bottom-up approach, 85

��������� C
Capture, 132
Character class, 75

Class, 69–70
directory, 110
enum, 111
file, 110

Classical approach, 29
Code base, 135
Code points, 113, 115
*@cmd, 44
Concurrency

channel, 71
observer pattern, 71
promise, 71
supply, 71

Conda package  
manager, 121

Cron
silent (see Silent-cron)
uses, 43

��������� D
Datetime

formatting, 26–27
from UNIX, 24

DBIish, 61
!db method, 63–64
Debian-based  

Linux system, 61
Decode method, 116
Directory, 95–97, 110
Docker, 6–7, 137
Duck typing, 40
Dummy variable, 48
Dynamic scope, 101

Index



■ INDEX

140

��������� E
Eastern Arabic numerals, 116
Encode method, 116
Enumeration (enum), 111

��������� F
File sizes, 95–97
Flame graph

with color generation, 109
functional programming, 103–107
functional refactorings, 105
icicle graph, 103
set to 15 pixels, 101–102

Functional programming
classes, 110–111
common code, 103
flame graph, 103–107
language support for, 109
tree-map, 105–107

��������� G
GitHub, 136
Git repository, 136
Goal-matching syntax, 92
Good error messages

context, 90–91
detecting harmful failure, 89–90
failure is normal, 88
parsing matching pairs, 92

Grammars, 82–83, 93
Grapheme cluster, 115

��������� H
Heredocs, 64, 66

��������� I
Icicle graph, 103
INI files

capturing group, 85
example, 83–84
key/value pairs, 79
match object, 84
parsing primitives, 76–78
regex, 74

Inline::Python, 124
APIs

mapping function, 130–132
types of, 129

install, 122
object-oriented interface, 132–134
translates, 122

Insert method, 63
IntStr, 24–26
Is expect, 36
Is-deeply, 36
ISO 8601 timestamp format, 25

��������� J
Junctions, 26

��������� K, L
key/value pairs, 79, 84
kill(9), 48

��������� M
MacOS, 121
Magic, 33
MAIN magic, 33
Matplotlib, 120–121, 125–127
Minmax method, 127
Monte Carlo simulation, 49–51

��������� N
Nested tests, 37
Number, 116
NumPy, 120

��������� O
Object-oriented  

language, 129, 132–134
Objects, 69–70

��������� P
Packaging, 136
Parameters, 68
Parse error, 88



■ INDEX

141

Perl 5, 1–2
Perl 6

defined, 1
gradually typed, 1
library availability, 2
lookups in, 1
Perl 5, 1–2
Rakudo, 1
regexes, 2
text, 2

Perl-Compatible Regular  
Expressions (PCRE), 74

Private methods, 63, 70
Proc::Async

*@cmd, 44
promise, 45
result, 45
silent-cron, 54–56
STDERR streams, 45
STDOUT streams, 45
supply, 44
vertical bar, 44

Promise
anyof, 47
await, 48
Proc::Async, 45
result, 47
seconds, 47
status, 47
then method, 49
waits, 47

Python
Inline::Python (see Inline::Python)
namespaces, 123
plotting, 120–121
types of APIs, 129

��������� Q
Quantifiers, 75–76

��������� R
Rakudo Perl 6, 1–2

build, 7
compiler, 122
docker, 6–7

documentation, 8
grammars, 92
installation, 8
installers, 5–6
test module, 36

Rakudo Star
build, 7
install, 5
installation process, 8

Ready-made module, 39–40
Refactoring, 34
Regular expressions (regexes), 2, 74

action methods, 85
backtracking, 80–81
basics

character classes, 75
INI files, 74
PCRE, 74

INI files, 76
variables, 86

Retry mechanism, 51

��������� S
Scheduler distributing  

tasks, 49–51
Scoping, 67
Sub. See Subroutines
Sigil, 67
Silent-cron

install module, 58
mocking and testing, 53–56, 58
Proc::Async, 54–56
refactor, 51–52
reliability and timing, 58
retry mechanism, 51
wrapped program, 43

Sink context, 56
Slice, 46, 120
Slurpy parameter, 44
Sort method, 117
SQLite, 61
Stacked plots

bar plotting method, 128–129
matplotlib, 125–127
minmax method, 127
range, 127



■ INDEX

142

Static method, 98
Stats, 119
Storage back end

develop, 62–65
persistent, 61–62
SQLite, 61
using, 65–66

Strings, 115, 117
Subplots symbol, 130
Subroutines, 67

arguments, 68
multi subs, 69
parameters, 68
signature, 36, 67

Sudoku
constants, 16–18
convert to playable, 12–16
input and output, 18–19
program, 10–12
shortcuts, 16–18
storage format, 10
SVG file, 20–21
unsolved form, 9

SVG file, 20–21

��������� T
Tar archives, 136
Test Anything Protocol (TAP), 35
Testing say(), 39–42
Test module, 36, 40
Test::Scheduler, 58
Then method, 49
Threads, 48
Time, dealing with, 30
Timeouts, implementing, 46–47
Top-down approach, 85
Total-size method, 110
Traits, 53
Tree map

with color generation, 108
disadvantage, 101
functional programming, 105–107
generate, 97–101

TWEAK method, 133
Twigil, 41, 67
TypeAny, 42

��������� U
Unicode

character, 113
chr method, 114
code point, 113
uni, 113, 116
uniname, 114
uniprop-bool method, 117
uniprop method, 117

Unicode Collation  
Algorithm, 117–118

Unicode’s Technical Report 44, 117
Unival method, 117
UNIX

cron, 43
to date/datetime, 24
kill(9), 48
timestamp

date and time to, 30
DateTime formatting, 26–28

UTF-8, 116

��������� V
Variables, 67, 86
Vertical bar (|), 44
Void context, 56

��������� W, X, Y
Windows installers, 137
Wrapped program, 43
Wrapper functions, 131

��������� Z
Zef git repository, 124–125
Zef source repository, 126–127
Zen slice, 46


	Brief Contents
	Contents
	Foreword
	What is Perl 6
	Perl 5, the Older Sister
	Library  Availability
	Why Should I Use Perl 6?
	Summary

	Running Rakudo Perl 6
	Installers
	Docker
	Building from Source
	Testing Your Rakudo Star Installation
	Documentation
	Summary

	Formatting Sudoku Puzzle
	Making the Sudoku Playable
	Shortcuts, Constants, and More Shortcuts
	I/O and Other Tragedies
	Get  Creative!
	Summary

	Datetime Conversion for Command Line
	Libraries to the Rescue
	DateTime  Formatting
	Looking the Other Way
	Dealing  with  Time
	Tighten Your Seat Belt
	MAIN  Magic
	Automated  Tests
	Summary

	Testing say()
	Summary

	Silent-Cron - Cron Wrapper
	Running  Commands  Asynchronously
	Implementing  Timeouts
	More on Promises
	Possible  Extensions
	Refactoring and Automated Tests
	Summary

	Stateful Silent-Cron
	Persistent  Storage
	Developing the Storage Back End
	Using the Storage Back End
	Room for Expansion
	Summary

	Review of Perl 6 Basics
	Variables and Scoping
	Subroutines
	Classes and Objects
	Concurrency
	Outlook

	Parsing INI Files using Regexes & Grammars
	Regex  Basics
	Parsing the INI Primitives
	Putting Things Together
	Backtracking
	Grammars
	Extracting Data from the Match
	Generating Good Error Messages
	Write Your Own Grammars
	Summary

	File & Directory usage Graph
	Reading File Sizes
	Generating a Tree Map
	Flame  Graphs
	Functional  Refactorings
	More Language Support for Functional  Programming
	More  Improvements
	Explore!
	Summary

	Unicode Search Tool
	Code Points, Grapheme Clusters, and Bytes
	Numbers
	Other Unicode Properties
	Collation
	Summary

	Plotting using Inline::Python & Matplotlib
	Extracting the Stats
	Plotting with Python
	Bridging the Gap
	Using the Bridge to Plot
	Stacked  Plots
	Idiomatic Use of Inline::Python
	Summary

	What's next
	Index



