Python for Data
Mining Quick
Syntax Reference

Valentina Porcu

ApPress’

Python for Data
Mining Quick Syntax
Reference

Valentina Porcu

Apress’

Python for Data Mining Quick Syntax Reference

Valentina Porcu
Nuoro, Italy

ISBN-13 (pbk): 978-1-4842-4112-7 ISBN-13 (electronic): 978-1-4842-4113-4
https://doi.org/10.1007/978-1-4842-4113-4

Library of Congress Control Number: 2018966554

Copyright © 2018 by Valentina Porcu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green

Development Editor: James Markham

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484241127.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4113-4

Table of Contents

About the AUthorccccsmiemmsmm s —————— ix
About the Technical REVIEWETccuuessssmsssmsssmsssmssssssmsssssssssssssnssssssanss xi
Introduction.........ccccsnimmnn s ————— xiii
Chapter 1: Getting Started.........cccuscmmmininennmmnssennmnnnsssnnmsssns————.. 1
InStalling PYtoN ... 1
Editor and IDES..........ooviineniniss s 2
Differences between Python2 and Python3...........cccceevvvnvninnnsensene s sensenennns 7
L1 (0] QT (=T (0] 8
UL T I T 1 S 10
L1114 S 11
Chapter 2: Introductory Notesuummmmmmmmmmmmmmmssssssssnsssssssssssssssssnens 13
0bjects in PYEhON ... e 13
Reserved Terms for the SyStem ... 14
Entering Comments in the COdeovvvvriervninsniene e sesennens 14
TYPES OF DALAceecireree s 15
File FOrMat........ccooiiiiir s 16
L0 TCT L0 S 16
Mathematical Operators..........c.cuvvvninmnssn i —————— 17
Comparison and Membership Operators.........c.ccovrevrnresnnesnesesnsesessesesennes 18
BitwiSe OPEratorscccvereririeriere s s 21
AsSignment OPErators.........oucvvcernerenesessse e 22

iii

TABLE OF CONTENTS
00 T=T = (0 0] (o T R 24
INdeNtation ... ———————— 25
QUOTALION MAIKS......cceccecesesessii s 26
1] 4= 26
Chapter 3: Basic Objects and Structures..........cccernssnnnnrsssssnnnssssssnnns 27
NUMDEIS ..o 27
CoNtAINEr ODJECTS....ccvveerrrerrreserre s e 28
L]0 TS 29
LISES vt ——————— 32
DICHIONAMES .. ———— 37
GBS i ———————————————————————— 42
SHMINGS. e ————————————— 44
FIIBS ottt 52
IMMUEADITIY ... ——————— 53
Converting FOrmats.........cccvivninini s 56
SUMMANY....ceiierrcsere s e s e p e e 57
Chapter 4: FUNCLIONScccvissemmmmnssssnnnmmssssnnnmsssssssnssssssssssssssssnssssssnnnnss 59
Some words about functions in PYthonccceeevverevnnnsnienesessessesessesessensenes 59
Some Predefined Built-in FUNCHONS..........covinssnns 60
Obtain Function Information ... 62
Create Your Own FUNCHONS ... 65
Save and run Your Own Modules and Files...........counnn: 67
SUMMANY..c..citiirsirere e e b e b e s b e e e aenrs 68

iv

TABLE OF CONTENTS

Chapter 5: Conditional Instructions and Writing Functions................ 69
Conditional INStrUCLIONSccoviriiir e ————— 69
T et ———————————————— 70
1 T 70
Blif. ettt 7
LOOPS ottt e n e e 73
B0 e ———————————————— 73
WHIIE ..ttt 78
continue and DBre@kK.........cocurnn e ————— 80
Extend Functions with Conditional INStructions...........c.coounnnnnnnnnnnsnnnnnnenenenns 84
map() and filter() FUNCHONS.........cccvvicrcrr e 84
The l[ambda FUNCHION ... 86
010 0O 87
11T 1117 o O 88
Chapter 6: Other Basic CONCEPLScccurvsssnmmmmssssnnnnssssssnnssssssnnnssssssnnnnss 89
Object-oriented Programmingccucvveresenennsesnsesssesessse e sessesenns 89
MOre 0N ODJECES .vvverereerre s s 89
ClASSESucucerrsrsssie e s 90
INNEIILANCEvvcccir e ——— 90
MOGUIEScvrvriiiirtrr s ————————————— 92
MEENOMS ..o —————————— 96
List COMPreNeNSIONccveriririiriene s ssesnens 98
Regular EXPrESSIONScvvererrerersersersessesessessesssssssessessesssssssessesssssssessessesssssssessens 99
USEE INPUL.....otercc s e s 106
Errors and EXCEPLIONSccevvvnini e 108
SUMMAIY.c.veiteitrerere s s e e s s s e e s s s sa e e e e s aeeaesee e s e saesae s e e naennees 111

TABLE OF CONTENTS

Chapter 7: Importing FileS.......ccccunnmmmmmmsssnnsmmsssssssssssssnssssssssssssssssnns 113
LSV FOrMaL ... ———————— 117
From the Web ... 118
I JSON .t 119
Other FOrmats ... 120
10T 111 17 o SRS 120

Chapter 8: pandascccruunsssmnnmmssssnnnmmsssssssnmsssssnsssssssssssesssssnnnssssnnns 121
Libraries for Data Miningcccvvnvnnninnnne e ssessessee s sssssessessens 121
PANUAS ...cueieiecir e ———————— 122

PANAAS: SEIIESccviirerer - 122
pandas: Data Frames...........ccccurninnnininsnnes e snes 130
pandas: Importing and Exporting Dataccccceivvnvninieninsnsnnenesensenennn, 147
pandas: Data Manipulation..........cccoccvvrininnnnin s, 153
pandas: MisSing ValUEScccvievnrnininnsnsesese s snes 162
pandas: Merging Two Datasets..........ccccvvvvninininnnsnnsesssnsese s 169
pandas: Basic StatistiCsccocvivvnrnininnsnn s, 174
SUMMANY....ceiveerireresese s s s se e sr s s se e nensenenns 176

Chapter 9: SciPy and NUMPY.......ccccccmmmmsssemmmmmssssnnmmmssssssnssssssssssssssnns 177
SCIPY ettt 177
NUMPY . 179

NumPy: Generating Random Numbers and Seedsccoevvrveriernseniennens 191
SUMMANY....ceiiierrnesrsese e s e e p e e e e 200

Chapter 10: Matplotlib.........ccvsmnismmimmsmmmnmnms s —————— 201
BaSIC PIOLS ..o - 201
Pie ChartS........ccovrirniiii s 215
Other Plots and Charts ... 218

TABLE OF CONTENTS

Saving Plots and ChartS..........ccvvvrerennnnienienssensesse s ses s sessessessesnessssessessens 228
Selecting Plot and Chart StYlEs..........ccoveerereresereecrerese e 229
More on HiStOgrams........c.cucceverernnmnnesnssse s s s sessssessnnes 231
SUMMAIY.c.veitetrierere e sere e sesse s e sa e e s e saessese s e saesaese e e saesaesaesensenaesaessesennessess 234
Chapter 11: Scikit-learnccccirnisnmmmmssssnnmmsssssnmmsssssesssssmmnn. 235
What Is Machine Learning?..........c.ccoeoeeererernscresneneseseressesesesessesessssesessesessenens 235
Import Datasets Included in Scikit-learn.........ccccovvvninininsnnnnnesnseniennn, 237
Creation of Training and Testing Datasetsccccocvvvirininincninesnseniennn, 239
PrepProCESSING.....coeiriiirirere s e nne 240
REQIESSION......ccierieriesirer s s r e nne 240
K-Nearest Neighhors ... sesesnens 242
CroSS-validation...........cccocerererererese e 243
Support Vector Machine ... 243
DECISION TFEES ...ceveeeeereecrerncerre e se e 244

=T TR 244
Managing DALESccvvrererrermrenerrnse s 245
Data SOUICES......cccrererriiicri s 251
INA@X...ciiiisnmnsmssssnnnnnssssnnnsnssssnnnnsssssnnnssssssnnnnsssssnnnssnsssnnnnnnsssnnnnnnnssnnnnss 255

vii

About the Author

Valentina Porcu is a computer geek with a passion for data mining

and research, and a PhD in communication and complex systems. She
has years of experience in teaching in universities in Italy, France, and
Morocco—and online, of course! She works as a consultant in the field

of data mining and machine learning, and enjoys writing about new
technologies and data mining. She spent the past nine years working as
freelancer and researcher in the field of social media analysis, benchmark
analysis, and web scraping for database building, in particular in the field
of buzz analysis and sentiment analysis for universities, startups, and

web agencies across the United Kingdom, France, the United States, and
Italy. Valentina is the founder of Datawiring, a popular Italian data science

resource.

ix

About the Technical Reviewer

Karpur Shukla is a research fellow at the
Centre for Mathematical Modeling at Flame
University in Pune, India. His current research
interests focus on nonequilibrium fluctuation
theorems for models of topological quantum
field theories (with application to topological
quantum computing) and models of reversible

computing. He received an MS in physics

from Carnegie Mellon University, with a
background in theoretical analysis of materials for spintronics applications
as well as Monte Carlo simulations for the renormalization group of finite-
temperature spin lattice systems.

Introduction

Translated by Nicola Menicacci

Python is an interpreted, interactive, and object-oriented language. It
features a library of functions, is extendable (as it can be used to create
new modules easily), and is available for all operating systems. For these
and other reasons, it is also one of the most used programming languages
when it comes to data mining and machine learning.

My goal is to accompany you as you start to study this programming
language, show you basic concepts, and then help you move on to data
mining. We'll begin by looking at how to use Python and its structures,
how to install Python, and how to determine which tools are best suited for
data analysis, and then switch to an introduction to data mining packages.
Python for Data Mining Quick Syntax Reference is an introductory book.

It provides guidance—from taking your first programming steps with
Python, to manipulating and importing datasets, to examining examples of
data analysis. It does not explain fully topics such as machine learning and
statistics using Python, which are beyond the scope of this volume.

Who This Book Is For

This book is intended for those of you who want to gain a better
understanding of the Python programming language from a data analysis
perspective. We will start by reviewing Python’s basic concepts, then
focus on the most used packages for data analysis. To download the code,
to delve more deeply into some topics, and to acquire more practical

xiii

INTRODUCTION

information about Python and data mining, please visit my website
(Datawiring.me). From the site’s home page, you can subscribe to my
newsletter to receive updates about the latest in Python coding and other
news. My advice for those of you who are beginning programmers is to

write the code manually to gain a greater understanding of it.

How This Book Is Organized

Python for Data Mining Quick Syntax Reference consists of 11 chapters.
In Chapter 1, we look at some basic installation concepts and the tools
available for programming in Python. We also examine differences
between Python2 and Python3 and learn how to set up a work folder.

In Chapter 2, we study some basic concepts about creating objects,
entering comments, and reserving words for the system; and look at the
various types of operators that are part of the grammar of the Python
programming language.

In Chapter 3, we extend our work with basic Python structures—such
as tuples, lists, dictionaries, sets, strings, and files—and learn how to create
and convert them.

In Chapter 4, we create small, basic functions and learn how to save
them.

Chapter 5 deals with conditional instructions that allow us to extend
the power of a function. In addition, we review other important functions
as well.

In Chapter 6, we investigate basic concepts related to object-oriented
programming and examine the concepts of modules, methods, and error
handling.

Chapter 7 is dedicated to importing files using some of the basic
features we have learned. We learn how to open and edit text files in .csv
format, in addition to various other formats.

Xiv

http://datawiring.me/

INTRODUCTION

Chapters 8 through 11 explain Python’s most important data mining
packages: NumPy and SciPy for mathematical functions and random
data generation, pandas for dataframe management and data import,
Matplotlib for drawing charts, and scikit-learn for machine learning. With
regard to scikit-learn, the discussion is limited to basic coverage of the
code of the various algorithms. Because of the complexity of the topic, we
do not examine the details for the various techniques.

CHAPTER 1

Getting Started

Python is one of the most important programming languages used in data
science. In this chapter, you'll learn how to install Python and review some
of the integrated development environments (IDEs) used for data analysis.
You'll also learn how to set up a working directory on your computer.

Installing Python

Python2 and Python3 can be downloaded easily from https://www.
python.org/downloads/ (Figure 1-1) and then installed. Note that if you
are working on a Unix system using a Mac or Linux, Python is preinstalled.
Simply type “python” to load the program.

Download Python

Figure 1-1. Python home page

© Valentina Porcu 2018 1
V. Porcu, Python for Data Mining Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4113-4_1

https://www.python.org/downloads/
https://www.python.org/downloads/

CHAPTER 1 GETTING STARTED

From the python.org (http://python.org/) website, click Downloads
then select the appropriate version to use based on your operating system.
Then, follow the on-screen instructions to install Python.

Editor and IDEs

There are many ways to use a programming language such as Python. To
start, type the word “python” followed immediately by its version number.
There is no space before the number. For example, in Figure 1-2, I've typed

“python2.”

. _ .activate the programming
Last login: Wed Dec 5 18:23:23 on ttyseee language by typing “p-_ytho.n"

You have new mail.

[MacBook-Pro-2:~ valentinaporc - - 1
Python 2.7.12 (v2.7.12:d33c0cymeopmmm., ;fOllowed immediately by its

[6CC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
elp", "copyright", "credits" or "licen'\Y@ISION :number

">>>" means we are using Python - in this case,

Python2

Figure 1-2. Terminal with Python open

http://python.org/
http://python.org/

CHAPTER 1 GETTING STARTED

Writing code this way may prove to be somewhat cumbersome, so we
use text editors or IDEs to facilitate the process.

There are many editors (those that are free and those that can be
purchased) that differ in their completeness, scalability, and ease of use.
Some are simple and some are more advanced. The most used editors
include Sublime Text, Text Wrangler (http://www.barebones.com/),
Notepad++ (http://notepad-plus-plus.org/download/v7.3.1.html)
(for Windows), or TextMate (http://macromates.com/) (for Mac).

As for Python-specific IDEs, Wingware (http://wingware.com/),
Komodo (http://www.activestate.com/komodo-ide), Pycharm, and
Emacs (http://www.gnu.org/software/emacs/) are popular, but

there are plenty of others. They provide tools to simplify work, such
as self-completion, auto-editing and auto-indentation, integrated
documentation, syntax highlighting, and code folding (the ability to
hide some pieces of code while you works on others), and to support
debugging.

Spyder (which is included in Anaconda (http://www.continuum.io/
downloads)) and Jupyter (http://jupyter.readthedocs.io/en/latest/),
that you can download from the website www.anaconda. com, are the IDEs
used most in data science, along with Canopy. A useful tool in Jupyter is
nbviewer, which allows the exchange of Jupyter’s .ipynb files, and can be
downloaded from http://nbviewer. jupyter.org. nbviewer can also be
linked to GitHub.

As for Anaconda, which is a very useful tool because it also features
Jupyter, it can be downloaded from http://www.continuum/. A partial
list of resources installed with Anaconda (which contains more than 100
packets for data mining, math, data analysis, and algebra) is presented
in Figure 1-3. You can view the complete list by opening the a terminal
window shown in Figure 1-3 and then typing:

conda list

http://www.barebones.com/
http://www.barebones.com/
http://notepad-plus-plus.org/download/v7.3.1.html
http://notepad-plus-plus.org/download/v7.3.1.html
http://macromates.com/
http://macromates.com/
http://wingware.com/
http://wingware.com/
http://www.activestate.com/komodo-ide
http://www.activestate.com/komodo-ide
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://www.continuum.io/downloads
http://www.continuum.io/downloads
http://www.continuum.io/downloads
http://jupyter.readthedocs.io/en/latest/
http://jupyter.readthedocs.io/en/latest/
https://www.anaconda.com
http://nbviewer.jupyter.org
http://www.continuum/

CHAPTER 1 GETTING STARTED

packages in environment at /Users/valentinaporcu/anaconda:

#

_license 1.1 py35_1
_nb_ext_conf e.3.8 py35_8
alabaster 8.7.9 py35_@
alembic 9.8.8 <pip>
anaconda custom py35_@
anaconda-clean 1.0.9 py35_8@
anaconda-client 1.5.1 py35_8@
anaconda-navigator 1.3.1 py35_8@
appnope e.1.e py35_8@
appscript 1.8.1 py35_@
argcomplete 1.0.9 py35_1
astroid 1.4.7 py35_@
astropy 1.2.1 nplilpy35_8@
babel 2.3.4 py35_@
backports 1.0 py35_8@
beautifulsoup4 4.5.1 py35_8
bitarray e.8.1 py35_e
blaze 8.18.1 py35_8
bokeh 9.12.2 py35_@
boto 2.42.0 py35_8@
bottleneck 1.1.e npllilpy35_8
cffi 1.7.8 py35_8@
chardet 2.3.8 py35_8
chest 8.2.3 py35_8@
click 6.6 py35_@
cloudpickle 8.2.1 py35_8@
clyent 1.2.2 py35_8
colorama 8.3.7 py35_8
conda 4.3.11 py35_8@
conda-build 2.8.2 py35_@
conda-env 2.6.8 8
configobj 5.08.6 py35_8

Figure 1-3. Part of the resources installed with Anaconda

We can program with Python using one or more of these tools,
depending on our habits and what we want to do. Spyder (Figure 1-4)
and Jupyter (Figure 1-5) are very common for data mining. Both can
be used and installed individually. For example, Jupyter can be tested
using http://try. jupyter.org/. However, both Spyder and Jupyter are
available after Anaconda is installed.

CHAPTER 1 GETTING STARTED

& mywen S 1 Bah Baers Ban Detg Cowel Srmscn fesk Vs Hew Pmioe DTl DD o oK
O S Py 381
Dbam-o baaeéuul‘-r»nlx £ P& D ierien e e CLE)
p—— os e
SRR o
e e

¥
Freatod on Toe ot 28 t5eRd 20T

os R
Cormse w1

TS V3T AR (N (oMM (TN, L2 IR, 331
Wroe SoigpTghe” SoTAla e *Licese” fer sarn

Figure 1-4. Spyder home screen
B Bl e G Ve ey Beraan Ceiep Wi WD vﬂmns.@nthwnu@«.l
- = - e o 6 &
e 7!
= JUBYIO pandes - | Ae1BTBME L crecpur: 1 s e maseant P

e I

lass tusaroume spustas coc. prancLe.E T
! 1 wipesiiais, iy bearermss e Gt

| mn 0 MaE e ke L kb, COf B hiagas F 48 & sieratine
Lan shiecie. T privary

Patdus duns sirasiere

“Laare’, ‘mary’, “fulis’s hesis'ls
e

m

“plesa”, “evsiablen’, CsbmA’, “ssadcod’l,

Figure 1-5. Example of open script on Jupyter IDE

CHAPTER 1 GETTING STARTED

Python code can be run directly from a computer terminal or saved
as a .py file and then run from these other editors. As mentioned earlier,
“>>>" (displayed in Figure 1-6) tells us we are running Python code.

Python 2.7.12 (v2.7.12:d33e8cf91556, Jun 26 2016, 12:10:39)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "hel "copyright", "credits" or "license" for more information.
>>> i &—

Figure 1-6. The command prompt in Python

To follow the examples presented in this book, I recommend you
install Anaconda (Figure 1-7) from the AAnaconda.com web site and
use Jupyter. Because Anaconda automatically includes (and installs) a set
of packages and modules that we will use later, we won'’t have to install
packages or modules separately thereafter; we’ll already have them loaded

and ready to use.

e g R
{) ANACONDA NAVIGATOR Sigr 9 to Anscond Cloud
A Home T g 5 =
Applcationson | oot ~| Channels Refresh
@ Ervironments
L]] o
i
S
= projects (beta) Jupyter IPry
o
* i i glueviz notebock qurensole
[L] EXER] a2
rm.nd menonel deta visvalization across | Webrbased, i sting notedook PyQt GLA that line figures, proper
s les. Explore relationships within and among | | enviranmest. E6it and run b i L h h
. Community relaed catasets. ‘docs whie describing the cata analyss. graphical cattigs, uv:lr::":; -
Lauech | Lanch aunc
o L4 =
= Fa
%
L] RN
rstudio spyder anaconda-fusion
10 A LT
Aset of Integratid tools esigned to bl Sciantfic FYthen Dy Legrtion between Bxcel @ and Anatonda
yoube moce procuttive with 2 includes & Endfisnmens Powsr with Frun data aciy '
Decumerzation essentiais and notebooks, diting, i %, results and o dvanced
dabugging and inbrospection features wiaisalizatiors in 3 code-fres apa insice Excal
Developer Blog
Launch Lasanch Il
Feednack
Yy & ¢

Figure 1-7. Anaconda’s main screen
6

CHAPTER 1 GETTING STARTED

Differences between Python2 and Python3

Python was released in two different versions: Python2 and Python3. Python2
was born in 2000 (currently, the latest release is 2.7) and its support is expected
to continue until 2020. It is the historical and most complete version.

Python3 was released in 2008 (current version is 3.6). There are many
libraries in Python3, but not all of them have been converted from Python2
for Python3.

The two versions are very similar but feature some differences. One
example includes mathematical operations:

Listing 1-1. Mathematical Operations in Python 2.7

>>> 5/2
2

Python2 performs division by breaking the decimal.

Listing 1-2. Mathematical Operations in Python 3.5.2

>>> 5/2
2.5

To get the correct result in Python2, we have to specify the decimal as

>>> 5.0/2
2.5

or like this

>>> 5/2.0
2.5

or specify we are talking about a decimal (float)

>>> float(5)/2
2.5

CHAPTER 1 GETTING STARTED

To keep the two versions of Python together, you can also import
Python into a form called future, which allows you to import Python3
functions into Python2:

>>> from _ future__ import division
>>> 5/2
2.5

For a closer look at the differences between the two versions of
Python, access this online resource (http://sebastianraschka.com/
Articles/2014 python_2 3 key diff.html).

Why choose one version of Python over the other? Python2 is the best-
defined and most stable version, whereas Python3 represents the future of
the language, although the two versions may not always coincide. In the
first part of this book, I highlight the differences between the two versions.
However, beginning with Chapter 7 and moving to the end of the book, we
will use Python3.

Let’s start by setting up a work directory. This directory will house
our files.

Work Directory

A work directory stores our scripts and our files. It is where Python
automatically looks when we ask it to import a file or run a script. To set up
a work directory, type the following in the Python shell:

>>> import os

>>>> os.getcwd()
"~/mypc’

to edit the work directory, we use the following notation,
inserting the new directory in parentheses

http://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html
http://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html
http://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html

CHAPTER 1 GETTING STARTED

>>> os.chdir("/~/Python script")
then we determine whether it is correct

>>> os.getcwd()
'~/Python_script’

Now, when we want to import a file in our workbook, we simply type
the name of the file followed by the extension, all surrounded by double
quotation marks:

"file_name.extension"
For instance,
"dataframe_data_collectioni.csv"

Python checks whether there is a file with that name inside that folder
and imports it. The same thing happens when we save a Python file by
typing it on a computer. Python automatically puts it in that folder. Even
when we run a Python script, as we will see, we have to access the folder
where the script (the work directory or another one) is located directly
from the terminal.

If we want to import a file that is not in the work directory but is
elsewhere on our computer or on the Web, we do this by entering the full
file address:

"complete address.file name.extension"
For instance,
"/~/dataframe_datal.csv"

Now let’s make sure that you understand the difference between
using a the terminal and starting a session in our favorite programming

language.

CHAPTER 1 GETTING STARTED

Using a Terminal

To run Python scripts, we first open a terminal window, as shown in
Figure 1-8.

78 1
Last login: Mon Apr 16 B87:56:44 on console

You have new mail.
MacBook-Pro:~ valentinaporcu$ []

Figure 1-8. My terminal

Asyou can see, the dollar symbol ($) is displayed, not the Python shell
symbol (>>>). To view a list of our folders and files, use the “Is” command
(Figure 1-9).

10

Last login: Mon Apr 16 B7:56:44 on console

You have new mail.

[MacBook-Pro:~ valentinaporcu$ 1ls

CHAPTER 1

GETTING STARTED

Applications Pictures include

Calibre Library Public lib

Desktop Python_test log

Documenti R_test macchine virtuali
Documents Sites metastore_db
Downloads anaconda3 my_schedule.cron
Dropbox bin my_tweets

Ebooks bxs nltk_data

GitHub derby.log pip-selfcheck.json
Library dwhelper recensioni

Movies eclipse spark

Music helloworld.RData trace.pcap
NOAAFiles iMacros

MacBook-Pro:~ valentinaporcu$ []|

Figure 1-9. List of resources on my computer

At this point, we can move to the Python_test folder by typing
cd Python_test

In that folder, I find my Python scripts—that is, the .py files I can run
by typing
python test.py

test.py is the name of the script I am going to run.

Summary

In this chapter we learned how to install Python and I reviewed some of
the various IDEs we can use for data analysis. We also examined Python2
and Python3, and learned how to set up a work directory on a terminal.

11

CHAPTER 2

Introductory Notes

In this chapter we examine Python objects and operators, and learn how

to write comments in our code. Including comments in your code is very
important for two reasons. First, they serve as a reminder of our thought
processes on the work we did weeks or months after we’ve created a script.
Second, they help other programmers understand why we did what we did.

Objects in Python

In Python, any item is considered an object, a container to place data.
Python objects include tuples, lists, sets, dictionaries, and containers.
Python processing is based on objects.

Each object is distinguished by three properties:

1. Aname
2. Atype
3. AnID

Object names consist of alphanumeric characters and underscores—in
other words, all characters from A through Z, a through z, 0 through 9, and _.
“Type” is the type of object, such as string, numeric, or Boolean. “ID” is a
number that identifies the object uniquely.

© Valentina Porcu 2018 13
V. Porcu, Python for Data Mining Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4113-4_2

CHAPTER 2 INTRODUCTORY NOTES

Objects remain inside computer memory and can be retrieved. When
no longer needed, a garbage-collecting feature frees up the space.

Some IDs and types are assigned automatically. With regard to names,
however, note there are some names that cannot be used for objects.

Reserved Terms for the System

Python has a set of words that is reserved for the system and cannot be
used in names for objects or functions. These words are the following:

and, as, assert, break, class, continue, def, del, elif, else,
except, exec, False, finally, for, from, global, if, import, in,
is, lambda, None, not, or, pass, print, raise, return, True,
try, while, with, yield

In addition, object names in R are subject to some rules:
o They must begin with a letter or underscore.

o They must contain only letters, numbers, and

underscores.

» They are case sensitive. For example, a test object is not
the same as a TEST object or a Test object.

Entering Comments in the Code

In Python, any comment preceded by the # symbol is not read by the
program as code; it is ignored. This feature is useful for commenting on
code and refreshing our memories later. Comments can be written both in
the code and to the side.

comment no. 1
>>> print("Hello World") # comment no. 2

14

CHAPTER 2 INTRODUCTORY NOTES

To write a comment on multiple lines, we can also use three quotation

marks, like this:

comment line 1

comment line 2

comment line 3

Types of Data

Python data are various types and are summarized in Table 2-1.

Table 2-1. Python Data Types

Data Type Example

Integer (int) 1,20,-19

Float 1.7,12.54

Complex 657.23e+34

String (str) "Hello World", 'stringi',""" string2 """

List list = ['a', 'b', 'c']

Tuple tuple = ('Laura', 29, 'Andrea’, 4)

Dictionary dictionary = {'name' : 'Simon', 'key': 'D007'}

15

CHAPTER 2 INTRODUCTORY NOTES

To determine object type, we use the type() function:
we create an x object

>>> X =1
>>> type(x)
<class 'int'>

a y object

>>> y = 20.75

>>> type(y)
<class 'float'>

and a z object

>>> z = "test"
>>> type(z)
<class 'str'>

File Format

After you create a script in Python, you need to save it with a .py extension.
Typically, when it comes to complex scripts, you create a script on an
editor that you then run. A .py script can be written using any one of the
different editors discussed earlier—even a normal text editor—and then
can be renamed with .py extension.

Operators

Python includes a series of operators that are divided into several groups:
e Mathematical
o Comparison

e Membership

16

Bitwise
Assignment
Logical
Identity

CHAPTER 2 INTRODUCTORY NOTES

Beside these operators, there is also a hierarchy that marks the order in

which they are used. Operators are very important for arithmetic, or even

to extract some data with specific characteristics.

Mathematical Operators

When we open Python, the simplest thing we can do is use it to perform

mathematical operations, for which we use the mathematical operators
shown in Table 2-2.

Table 2-2. Mathematical Operators

Operator Description Example

+ Addition 3+2=5

- Subtraction 10-4=6

* Multiplication 4*3=12

/ Division 20/2=10

% Modulo 21/2 =1

> Exponentiation 3**2=9

I Floor 10.5//2=5.0

17

CHAPTER 2 INTRODUCTORY NOTES
Let’s open Python and perform some mathematical operations:

>>> 10+7
17

>>> 15-2
13

>>> 2%*3
>>> 10/2
>>> 3%*3
27

>>> 10/3
>>> 25//7

Comparison and Membership Operators

In Python we also have comparison operators (comparators) and
membership operators (Table 2-3).

18

CHAPTER 2 INTRODUCTORY NOTES

Table 2-3. Comparison and Membership Operators

Operator Description

> Greater than

< Less than

== Equal to

>= Greater than or equal to
<= Less than or equal to
I= Different

is Identity

is not Non identity

in Exists in

not in Does not exist in

These operators are used to test relationships between objects. For
example,

we create two objects

> X =5
>>> y = 10

let us verify that x is greater thany

> X >y
False

the output is a logical vector that tells us x is not greater
than y

19

CHAPTER 2 INTRODUCTORY NOTES

let us see if x is less thany

> X <Ky
True

this time the answer is affirmative

we create another object, z, with the same value as x
>»> 2z =75

let us verify with the equality operator whether z is equal to x

>>> 7Z ==X

True
in this case, the output is positive
let us verify whether z is different from y

»>zl=y
True

in this case, the output is also positive

let us create a tuple

>>> v1 = (1,2,3,4,5,6,7)

and verify whether the number 2 is in the tuple

>>> 2 in vi
True

let us verify whether the number 8 is NOT in tuple vi

>>> 8 not in vi1
True

let us verify whether the number 7 is NOT in tuple vi

>>> 7 not in v1
False

20

CHAPTER 2 INTRODUCTORY NOTES

Python compares text strings lexicographically using, for example, the
ASCII value of the characters. We cannot compare strings and numbers
because we would throw an error.

Bitwise Operators

The bitwise operators shown in Table 2-4 are useful when specifying more
than one condition. An example is when we need to extract data from an
object, such as a dataset.

Table 2-4. Bitwise Operators

Operator Description
& or and And

| or or Or

A Xor

~ Bitwise not
<< Left shift
>> Right shift

Bitwise operators can be used together with comparators. Let’s look at
some examples:

>»>3<4and 4 >3
True

and also

>>>3<48&4 >3
True

21

CHAPTER 2 INTRODUCTORY NOTES
here is an example with or (|)

>»>3< 4] 4>3
True

at least one of the statements must be valid

>»> 3 =401 4 > 3
True

Assignment Operators

Assignment operators are used to assign a name to a given object (Table 2-5).

Table 2-5. Assignment Operators

Operator Description Example
= Basic assignment operator X=5+6
+= Adds an element and assigns X +=1y (correspondsto x =X +Y)

the result to the name

-= Subtracts an element and assigns x -=y (corresponds to x = x —y)
the result to the name

/= Divides an element and assigns X /=y (corresponds to x = x/y)
the result to the name

= Multiplies an element and assigns X *=y (correspondsto x = x *y)
the result to the name

%= Modulo and reassignment X %=y (correspondsto x=x % y)

= Exponentiation and reassignment x **=y (corresponds to x = x ** y)

/= Floor division and reallocation X//=y (corresponds to x = x//y)

22

CHAPTER 2 INTRODUCTORY NOTES
Let’s look at some examples:
we create an x object with the value 10
>>> x = 10
sum x and overwrite the variable x again with the same name

>>> X

X+ 5
>>> X

15

let's try "+="
>>> X 4= 5
>>> X

20

and now "-=
>»> X -= 5
>>> X

15

now let's use the operator "*="
>>> X *= 3

>>> X

45

23

CHAPTER 2 INTRODUCTORY NOTES
and the operator "/="
>»> x /=3

>>> X

15

then the operator "**="
>>> x ¥*= 2

>>> X

225

and finally the operator "//="
>> X //= 2

>>> X

112

Each time, Python performs the operation and records the resultin
the x object.

Operator Order

When it comes to mathematical operators, we must be aware that

there is an order priority that must be observed when case brackets

are not inserted. This is similar to mathematical operations in which
multiplication takes precedence over addition. Table 2-6 lists some of the
priority rules that govern the order of operations.

24

CHAPTER 2 INTRODUCTORY NOTES

Table 2-6. Priority Rules for Operators

Operator Priority (highest to lowest)

> Exponentiation has the highest priority

- Denial

111 % Multiplication, division, modulo, floor division
+- Addition and subtraction

>> << Bitwise right and left

& Bitwise AND

A Bitwise OR

<=, >, <, >= Less than, more than, smaller, bigger than

=== Equal, different

=+=-="=/=%=""=//= Assignment operators
is / is not Comparison
in/notin Comparison

not/ or/ and Comparison
Indentation

Python uses indentation to limit blocks of instructions, which makes
the code more readable. Code blocks are thus defined by indentation.
Typically an indentation corresponds to four spaces.

Let’s look at an example of indentation in a function:

>>> def multiply xy(x, y):
"'let's multiply x and y

return(x*y)

>>> multiply xy(5,6)
30

25

CHAPTER 2 INTRODUCTORY NOTES

Quotation Marks

Quotation marks in R are used primarily to define strings. They can be
single, double, or triple. Triple quotation marks are used to wrap words
and insert comments on multiple lines. An example of this is when we
wish to include documentation within a function we are creating.

>>> ex1 = 'single quote’
>>> ex2 = "double quote"
>>> ex3 - mmn

text string 1
text string 2
text string 3

We examine string management in Chapter 5.

Summary

In this chapter, we studied commenting and operators. When we write
code for data analysis, it is important that we include comments not only
as areminder to ourselves but also as a guide for other programmers.
Operators, and their ranking, help us create and define our code.

26

CHAPTER 3

Basic Objects and
Structures

One of the most important features of Python is managing data structures.
Let’s take a look at them.

Numbers

The numbers in Python can be any of the following:

o Integers, or int

o Floating points, or float

e Complex

¢ Booleans—thatis, True or False

Let’s look at some examples:

create an object containing an integer (int)
>>> nl = 19
>>> type(n1)

<type 'int'>

© Valentina Porcu 2018 27
V. Porcu, Python for Data Mining Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4113-4_3

CHAPTER 3 BASIC OBJECTS AND STRUCTURES
a float

>>> N2 = 7.5

>>> type(n2)

<type 'float'>

a Boolean (True/False)
>>> n3 = True

>>> type(n3)

<type 'bool'>

a complex number

>>> nd = 3j

>>> type(n4)

<type 'complex'>

Container Objects

At the heart of Python are the various types of objects that can be created
(Table 3-1).

28

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

Table 3-1. Python Container Objects

Container Delimited by
Tuples ()

Lists [1
Dictionaries {}

Sets {1

Strings e

Let’s examine each of them in turn.

Tuples

The tuples, as well as strings and lists, are part of the sequence category.
Sequences are iterative objects that represent arbitrary-length containers.
Tuples are sequences of heterogeneous and immutable objects, and are
identified by parentheses. The fact that they are immutable means that
after we have created a tuple, we cannot alter it; we cannot replace one of
its elements with another. Tuples are very efficient with regard to memory
consumption and runtime.

Let’s create a tuple:

>»>> t1 = (1,2,3,4,5)

we interrogate with the type() function based on the object
type we created

>>> type(t1)
<class 'tuple'>

Python tells us we created a tuple, so we have created the
right data structure

29

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

Common operations for sequences are indexing and slicing, and
concatenation and repetition. As mentioned, we cannot modify a tuple after
it has been created, but we can extract, concatenate, or repeat its elements.

we create another tuple

>>> t2 - (lla", Ilbll) "C"’ "dll)
>>> type(t2)
<class 'tuple'>

we extract the first element of tuple t2

>>> t2[0]

d

to count the elements of a tuple, we start with zero; to

extract "a", which is the first element, we use square brackets
for slicing and insert the number 0 between them

we can also use the minus sign to extract elements of a
tuple; these elements are counted from the last to the first

>»> t2[-1]
1 d 1
we can extract more than one element using a colon
>>> t2[1:3]
(1 bl , 1 Cl)
To determine whether an item is present in a tuple, we use the “in”

operator:

>>> 'a' in t2
True

>>> 'z" in t2
False

30

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

As mentioned, tuples are immutable. If we try to replace one element
of a tuple with another, we get an error message:

>>> t2['a'] = 15
Traceback (most recent call last):
File "<stdin»", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

To display the functions available for tuples, type

>>> dir(t2)

[' add ', ' class ', ' contains ', ' delattr ',

' dir ', ' doc_"', ' eq ', ' format ', ' ge ',

' getattribute ', ' getitem ', ' getnewargs ', ' gt ',

' _hash_ ', ' init ', ' diter ', ' le ', ' len ', '
It 'y mul ', ' ne ', ' new ', ' reduce ', ' reduce_
ex ', ' repr ', ' rmul ', ' setattr ', ' sizeof ',

' str ', ' subclasshook ', 'count', 'index']

We can add elements to tuples by using the functions available for
them:

>>> t2 = t2. _add_ (('xyz',))
let's see our tuple again

>>> t2
(Ial, lbl’ lcl, Idl’ IXyZI)

Last, we can create tuples that contain more than one type of object:
>»> t3 = (1,2,3,4,5, "test", 20.75, "string2")

>>> t3
(1, 2, 3, 4, 5, "test', 20.75, 'string2')

31

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

Lists

Python lists include items of various types. They are similar to tuples,
with the difference that they are mutable; you can add or delete items
from a list.

To create a list we include its elements in square brackets, separated by

acomma:
>>> list1 = ["jan", "feb", "mar", "apr"]

type(list1)
<class 'list'>

We can also create lists that contain numerical, logical, or string values,
or we can mix multiple data types:

>>> list2 = ["one", 25, True]

>>> type(list2)
<class 'list'>

We can display a list using the print() function:
>>> print(list1)
['jan', 'feb', 'mar', 'apr']
Or we can determine its length with the len() function:

>>> len(list1)
4

We can also print a single list item according to is location:

>>> listi1[0]

jan

>>> listi1[-2]

mar

32

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

if we insert a position that does not match any item in the
list, we get an error

>>> list1[7]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

We can select some items from a list:
>>> listl = ["jan", "feb", "mar", "apr"]
>>> lista[1:]
['feb', 'mar', 'apr']
>>> lista[:3]
['jan", 'feb', "mar']
We can multiply a list:

>>> list1*2
['jan', 'feb', 'mar', 'apr', 'jan', 'feb', 'mar', 'apr']

Or we can create a new list by combining two lists:
>>> list3 = list1 + list2

>>> list3
['jan', 'feb', 'mar', 'apr', 'one', 25, True]

We can even extract some items and save them to another list, which
really means we are talking about slicing.

>>> list4 = 1list3[2:6]
>>> list4

['mar', 'apr', 'one', 25]

33

CHAPTER 3 BASIC OBJECTS AND STRUCTURES
We can also delete an item from a list like this:
>>> del listi[1]

>>> list1
['jan', 'mar', 'apr']

By typing the dir() function with a list, we can see all the operations we
can do on that list:

>>> dir(list1)

[' add ', ' class ', ' contains ', ' delattr ', '
delitem ', ' dir ', ' doc_', ' eq_ ', ' format ', '
ge ', ' getattribute ', ' getitem ', ' gt ', ' hash_ ',
' _dadd__ "', '_dimul_ ‘', ' init_ "', ' iter ', ' le ', '
len_ ', " 1t ', " mul ', " ne ', ' new ', ' reduce ',
' reduce ex ', ' repr ', ' reversed ', ' rmul ',

' setattr ', ' setitem ', ' sizeof ‘', ' str ', '

subclasshook ', 'append', 'clear', 'copy', 'count', 'extend',
'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
Some of the most important functions include the following:

o append() Adds elements to our list

o clear() Removes all items in a list

o copy() Makes a copy of the list

o extend() Combines two lists

o insert() Adds an item to a specific location in the list

« pop() Removes an item from the list

« remove() Removes an item from a specific location of
the list

34

CHAPTER 3 BASIC OBJECTS AND STRUCTURES
Let’s use some of these operations on list3.
>>> list3
['jan', 'feb', 'mar', 'apr', 'one', 25, True]
we can add an element with the append() method

>>> list3.append(7)
>>> list3
['jan', 'feb', 'mar', 'apr', 'one', 25, True, 7]

reverse the order of the list items with reverse()

>>> list3.reverse()
>>> list3
[7, True, 25, 'one', 'apr', 'mar', 'feb', 'jan']

delete the last element with pop()

>>> list3.pop()

jan
>>> list3

[7, True, 25, 'one', 'apr', 'mar', 'feb']

reorder items of a list in ascending order with sort()

>>> lists = [100, 12, 45, 67, 89, 7, 19]
>>> list5.sort()

>>> lists

[7, 12, 19, 45, 67, 89, 100]

extend a list with another list with extend()
>>> list5.extend([260, 35, 98, 124])

>>> lists
[7, 12, 19, 45, 67, 89, 100, 260, 35, 98, 124]

35

CHAPTER 3 BASIC OBJECTS AND STRUCTURES
last, we can delete items in a list with the clear function

>>> list5.clear()
>>> lists

[]
We can also create lists that contain sublists:
>>> list6 = [(5:7)) (9J2)J (2)3): (14127)]

>>> listé
[(5, 7), (9, 2), (2, 3), (14, 27)]

in this case, let's select the third element of the listé6
object:

>>> list6[2]
(2, 3)

let's select only the second element of the third element of
list6:

>>> list6[2][1]

3

We can create a list that features a series of numbers by using the
range() function.

the range function()creates a list of numbers from 1 to 19:

>>> 1ist7 = range(20)
let us check the type of object

>>> type(list7)
<type 'list'>

36

CHAPTER 3 BASIC OBJECTS AND STRUCTURES
we print the object

>>> print(list7)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19]

Dictionaries

Another Python data structure includes dictionaries. They are containers
that store key-value pairs and are distinguished by the use of braces and
two points. Dictionaries are mutable but cannot be ordered. We cannot
extract items from a dictionary as we did with lists and tuples.

In our first example, let’s look at a dictionary that records the names
and heights of subjects:

>>> dict1 = {'Laura': 163, 'Francis': 169, 'Kate': 165}

>>> type(dict1)
<type 'dict'>

We can query the dictionary for a given value:

>>> print dicti['Francis']
169

We can also add an element to our dictionary and rewrite it:
>>> dict1['Simon'] = '180'

>>> dict1
{'Laura': 163, 'Simon': '180', 'Francis': 169, 'Kate': 165}

To list dictionary keys, we use the .keys method:
>>> dicti.keys()

['Laura', 'Simon', 'Francis', 'Kate']

37

CHAPTER 3 BASIC OBJECTS AND STRUCTURES
To get only the values, we use the .values method:

>>> dicti.values()
[163, 169, 165]

To determine whether a given key is in our dictionary, we use the “in”
operator:

>>> 'Laura' in dict1
True

>>> 'Stephanie' in dict1
False

We can delete a dictionary element with the del command:
>>> del dicti1['Simon']

>>> dict1
{'Laura': 163, 'Francis': 169, 'Kate': 165}

We can delete all dictionary elements with the .clear method:
>>> dicti.clear()

>>> dict1

{}

Now, let’s create another dictionary:

>>> dict2 = {'Statistics':28, 'Machine Learning':30,
'‘Marketing':27, 'Analysis':29}

>>> dict2

{'Marketing':27, 'Statistics':28, 'Analysis':29,
'Machine Learning':30}

38

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

We can verify the number of elements that make up the dictionary
with len():

>>> len(dict2)
4

Dictionary dict2 features four key-value pairs.
We can query a dictionary about a given element even without the
print() function:

>>> dict2['Marketing']
27

Let’s check the keys with the list() function:

>>> list(dict2)
['Marketing', 'Statistics', 'Analysis', 'Machine Learning']

We can place the keys in alphabetical order:

>>> sorted(list(dict2))
['Analysis', 'Machine Learning', 'Marketing', 'Statistics']

We can display values only with the .values method:

>>> dict2.values()
[27, 28, 29, 30]

And can we display all items with the .items method:
>>> dict2.items()

[('Marketing', 27), ('Statistics', 28), ('Analysis’, 29),
("Machine Learning', 30)]

39

CHAPTER 3 BASIC OBJECTS AND STRUCTURES
We can list the elements in our dictionary by creating a function:
>>> for i in dict2: print(i)
Marketing
Statistics

Analysis
Machine Learning

We can also delete one of the items with the .pop method:

>>> dict2.pop('Marketing")
27

>>> dict2
{'Statistics': 28, 'Analysis': 29, 'Machine Learning': 30}

The .popitem method, on the other hand, deletes a random element
from the dictionary:

>>> dict2.popitem()
('Statistics', 28)

>>> dict2
{'Analysis': 29, 'Machine Learning': 30}

There are now two elements in the dictionary dict2. We can update one
of the values—for example, 29—by subtracting:

>>> dict2
{"Analysis': 29, 'Machine Learning': 30}

>>> dict2['Analysis'] -2
27

40

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

In this case, we did not overwrite the value with the new one. Let’s add
1 to 29. To do this, we need to use the following notation:

>>> dict2['Analysis'] = dict2['Analysis'] + 1

>>> dict2
{'Analysis': 30, 'Machine Learning': 30}

We can also use assignment operators presented in Chapter 2. In this
case, we can subtract 2 from 30:

>>> dict2['Analysis'] -= 2

>>> dict2
{'Analysis': 28, 'Machine Learning': 30}

We can also create an empty dictionary and fill it:
>>> dict3 = {}
>>> dict3['key1'] = ['valuel']

>>> dict3
{"key1': ['value1']}

>>> dict3['key2'] = ['value2']

>>> dict3
{"key2': ['value2'], 'key1': ['value1']}

One of the properties of dictionaries is called nesting. With nesting, we
insert one dictionary into another dictionary:

>>> dict4 = {'key1': { 'nested1': { 'subnested1':'valuel'}}}
At this point to get the value value, we have to subset like this:
>>> dict4['key1']['nested1’]['subnested1’]

'value1'

41

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

Sets

Sets are another Python structure. They are unordered, unduplicated items
containers. They are also immutable and support typical set operations,
such as union, intersection, and difference.

we create a set
>>> set1 = {2, 5, 7, 9, 15}
check its type of structure

>>> type(set1)
<type 'set'>

and check its length

>>> len(set1)
5

Sets do not support indexing:
>>> set1[2]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'set' object does not support indexing

But, they do tell us whether an item is within the set:

>>> 9 in set1
True

>>> 17 in set1
False

42

CHAPTER 3
We can also create an empty set:
>>> set2 = set()

>>> type(set2)
<type 'set'>

To fill it, we use the .add method:
>>> set2.add(17)

>>> set2
set([17])

>>> set2.add(24)

>>> set2
set([24, 17])

>>> set2.add(36)

>>> set2
set([24, 17, 36])

type(set2)
<type 'set'>

>>> len(set2)
3

Let’s make another set:

BASIC OBJECTS AND STRUCTURES

>>> set3 = {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,5}

>>> set3
Set([l) 2’ 3) 4) 5])

as you can see, a set consists of unique elements

43

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

Strings

Strings are character sequences that are enclosed in single or double
quotation marks. They are immutable objects, but they can be repeated
and combined, and parts can be extracted. We write a string like this:

>>> stringl = "Hil!"
and print it

>>> stringl
"Hil'
or write it this way with the single quotes

>>> string2 = 'Hello'

>>> string2
"Hello'

we can print a string by writing its name or using the
print() function

>>> print(stringl)
Hi!

A string can be composed of single words, parts of sentences, or whole
sentences. Be careful when using single quotes because they may create
confusion, for example, with apostrophes:

>>> string3 = 'I'd like to code in Python'
File "<stdin>", line 1
string3 = 'I'd like to code in Python'

N

SyntaxError: invalid syntax

44

CHAPTER 3 BASIC OBJECTS AND STRUCTURES
>>> string4 = "I'd like to code in Python"

>>> string4
"I'd like to code in Python"

However, we can include quotation marks with a backslash as follows:
>>> haml = "Hamlet said: \"to be or not to be ...\". Oratio answered "

>>> haml
'"Hamlet said: "to be or not to be ...". Oratio answered '

There are some control characters that could be also useful. For
example, “\n” indicates a new line:

>>> haml2 = "Hamlet said: to be or not to be \n Oratio answered

>>> print(haml2)
Hamlet said: to be or not to be
Oratio answered ...

In addition, “\t” indicates a tab:
>>> haml3 = "Hamlet said: to be or not to be \t Oratio answered ..."

>>> print(haml3)
Hamlet said: to be or not to be Oratio answered ...

Operators that can be used when referring to strings, including the

w o,

concatenation operator "+:

>>> stringl + string2
"HilHello'

Or repetition operator “*”:
>>> string1*10
"Hi!Hi!Hi!Hi!Hi!Hi!HilHi!HilHi!"

45

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

We can enter three quotation marks to mark the beginning and end of
a string that extends over several lines:

>>> string5 = """I'd
. like
. to
. code
. in Python

>>> print(strings)
I'd

like

to

code

in Python

We verify the class of a string with the type() function:

>>> type(string1)
<class 'str'>

And check the length with the 1en() function:

>>> len(string1)
3

To verify the object id, we use the id() function:

>>> id(string1)
4321859488

We can also display parts of a string:

>>> string1[0]
IHI

46

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

>>> string2[2]
I1I

>>> string4[-1]

n

>>> haml[1:10]
"amlet sai'

>>> haml[5:]
't said: "to be or not to be ...". Oratio answered '

>>> haml[:10]
"Hamlet sai'

>>> haml[:-2]
'Hamlet said: "to be or not to be ...". Oratio answere'

the following notation is used to reverse a string (or even
just a part of it)

>>> haml[::-1]
' derewsna oitarO ."... eb ot ton ro eb ot" :dias telmaH'

The most important functions associated with strings allow you
to start, for example, an uppercase string. We can do this by using the
capitalize() method:

>>> stringb = "let's do a little test"
>>> string6.capitalize()
"Let's do a little test”

47

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

Other functions allow you to put an entire string in uppercase or
lowercase letters:

>>> string6.upper()
"LET'S DO A LITTLE TEST"

>>> string7 = string6.upper()

>>> string7
"LET'S DO A LITTLE TEST"

>>> string7.lower()
"let's do a little test"

The .find method, the .index method, and the .count method are used
to look for one or more characters in a string:

>>> string7.find("TT")
13

>>> string7.index('D")
6

>>> string7.count('L")
3

The strip() functions removes blank spaces at the beginning and end of
a string:

>>> string8 = " test
>>> string8.strip()
"test’

48

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

The replace() function allows us to replace part of a string with another
element:

>>> string9 = "Let's do some tests"

>>> string9.replace("some", "a couple of")
"Let's do a couple of tests"

We can verify the presence of a substring in our string like this:

>>> "do" in string9
True

>>> "ueioua" in string9
False

With the split() function, we can break a string into a list of multiple
elements:

>>> string9.split()
["Let's", 'do', 'a', 'little', 'test']
The join() function allows us to group a list into a single string:

>>> "_".join(["03", "01", "2017H])
'03-01-2017"

In the previous example, a hyphen has been inserted as a separator.
The following example does not include a separator. The items are thus
listed consecutively:

>>> "".join(["a", "b"’ "c", "d"])
"abcd’

in this case we insert a space

>>> n Il.join([llall, Ilbll, llcll, Ildll])
'abcd'

49

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

Strings are subject to immutability—meaning, they cannot be
modified. Even if we can always reuse a name and overwrite it with
another object inside it, but it will be a different object for all it means.
Let’s look at an example:

we create a string

>>> stringl = "abcde fg"

we try to replace the first element "a" with "x"
>>> stringi[o] = 'x

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

as you can see, we get an error because we can't change the
string this way

The % modulus operator allows advanced string formatting. The %
operator is used to search in the string for elements preceded by % and
replaces them with the value or values contained in the list that follows it.
The % symbol must be followed by a character that indicates the type of
data we are entering in the string. To print the contents of two strings, we
use “%s” like this:

we create a first string
>>> stringl = 'test'

if we want to print this part of the text and merge our
string, we enter %s before closing the quotation marks and then
insert % (string)

>>> print 'my string says: %s' %(string1)
my string says: test

50

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

We can use a loop to scroll a string:

>>> for letter in stringl: print(letter)

+ n D + -

We can count the number of letters in a string:

>>> word = "string test"
>>> count = 0

>>> for letter in word :
count = count + 1
print(count)

OW 60 N O U1 & W N B

[N
L O

Caution Python2 and Python3 manage strings a bit differently. In
Python3, in fact, print() is a function and requires parentheses.

51

CHAPTER 3 BASIC OBJECTS AND STRUCTURES
string management in Python2

>>> print 'Hello world'
Hello world

string management in Python3

>>> print 'Hello world'
File "<stdin>", line 1
print 'Hello world'

A

SyntaxError: Missing parentheses in call to 'print'

>>> print('Hello world")
Hello world

to handle strings in Python2 as they are handled in Python3,
we can import the future module:

use of future module in Python2
>>> from _ future__ import print_function

>>> print('Hello world")
Hello world

Files

In addition to the features we examined, we also typically import files to
analyze from our computer or from the Internet. Files are often structured
as dataframes, but we can also import images, audio, binary, text, or other
proprietary formats, such as SPSS, SAS, a database, and so on. We learn
how to import the simplest formats, such as .csv, in Chapter 6.

52

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

Immutability

As mentioned, immutability is a characteristic of some Python structures:
Once created, the structure cannot be modified (see Table 3-2). We can
reuse a name and overwrite the structure with another object inside it, but
it will be different for all intents and purposes.

Table 3-2. Data Structures and
Immutability

Structure Mutable

Lists /
Dictionaries /
Tuples x
Sets x
Strings x

Let’s look at more examples. We start first with a list, which is a

mutable object:

we create a list

>>> listl = ["jan", "feb", "mar", "apr"]
we check the type of object

>>> type(list1)
<class 'list'>

53

CHAPTER 3 BASIC OBJECTS AND STRUCTURES
and check the ID of the created list

>>> id(list1)
4302269184

we add an element
>>> list1l.append("oct")
we reprint the list

>>> list1
['jan', 'feb', 'mar', 'apr', 'oct']

and check the ID again

>>> id(1list1)
4302269184

as you can see, the ID is identical

Now, let’s create a tuple, which is an immutable object:
>>> tuplel = (1,2,3,4)
we check the object class

>>> type(tuplel)
<type 'tuple'>

and verify the ID

>>> id(tuplel)
4302119432

we then try to add an element

>>> tuplel.append(5)

54

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

Traceback (most recent call last):
File "<stdin»", line 1, in <module>
AttributeError: 'tuple' object has no attribute ‘append’

we recreate the tuple that also contains the last object
>>> tuple1l = (1,2,3,4,5)
and print its contents

>>> tuplel
(1J 2) 3) 4) 5)

and verify the ID

>>> id(tuple1)
4301382000

as seen, we did not overwrite the first object; we created a
second object with the same name (the first tuple1l object is no
longer available)

Last, let’s examine some examples with strings, which are immutable:
we create a string
>>> stringl = "abcde fg"

and try to replace the first element "a" with "x" Stringl [0]

= 'x

Traceback (most recent call last):
File "<stdin»", line 1, in <module>
TypeError: 'str' object does not support item assignment

we get an error

55

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

Converting Formats

We can transform one structure to another quite easily with the help of
some functions.

let's create some objects

>>> tuple1l = (1,2,3,4,5)

>>> listl = ["jan", "feb", "mar", "apr"]
>>> stringl = "2017"

>>> int1 = 67

we check the type of objects

>>> type(tuple1)
<type 'tuple'>

>>> type(list1)
<type 'list'>

>>> type(string1)
<type 'str'>

>>> type(int1)
<type 'int'>

To convert formats, we use the following functions:
list() converts, for example, a tuple to a list
>>> convtl = list(tuplel)

it is necessary to save the result to a new object; let's do
it again and recheck the type

>>> type(convt1)
<type 'list'>

56

CHAPTER 3 BASIC OBJECTS AND STRUCTURES

from list to tuple
>>> conv_to list = tuple(list1)

>>> type(conv_to list)
<type 'tuple'>

from string to integer
>>> conv_to_int = int(string1)

>>> type(conv_to_int)
<type 'int'>

Summary

In this chapter we learned how to create and manipulate the most important
basic data structures in Python. An object-oriented programming language
like Python is based on two main features: objects and actions. In this
chapter we learned more about the objects; in Chapter 4, we focus on
actions by creating functions.

57

CHAPTER 4

Functions

An object-based programming language is structured around two major
concepts: objects and functions. An object is everything we create in a
work session using a programming language such as Python. Functions
allow us to assign one or more actions to these objects. Let’s learn how to
create a function.

Some words about functions in Python

With Python, we basically have two types of functions:

1. The built-in functions that are part of Python and
are loaded automatically when we run Python

2. The functions we can build and use (user defined)

A function is a piece of code that performs one or more operations
on an object and returns an output result. Functions are especially useful
when we have to do the same thing over multiple objects. We can do this
without repeating the same line of code several times.

The two types of functions are also supported by those in the many
libraries available for installation on Python. Whenever we need a
particular function (or a package, that is a family of functions), we can
install it and use it. Anaconda does not allow us to install many of the
packages we need because they already exist in the suite.

© Valentina Porcu 2018 59
V. Porcu, Python for Data Mining Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4113-4_4

CHAPTER 4 FUNCTIONS

If a package is not included in Anaconda, we can always install it using
generic terms:

$ conda install package_name
Or, we can use pip:
$ pip install package_name

In any case, the exact wording for installing a package is always
included in the official documentation of the package itself.

Some Predefined Built-in Functions

Default functions are within the builtins module. Although there are
many, some of the most commonly used ones are dir, help, type, and
print. We can display them by typing

>>> dir(__builtins_)

['ArithmeticError', 'AssertionError', 'AttributeError',
'BaseException’, 'BlockingIOError', 'BrokenPipeError',
'BufferError', 'BytesWarning', 'ChildProcessError’,
"ConnectionAbortedError', 'ConnectionError',
"ConnectionRefusedError', 'ConnectionResetError',
'DeprecationWarning', 'EOFError', 'Ellipsis’,
"EnvironmentError', 'Exception', 'False', 'FileExistsError’,
'FileNotFoundError', 'FloatingPointError', 'FutureWarning',
'CeneratorExit', 'IOError', 'ImportError', 'ImportWarning',
'IndentationError', 'IndexError', 'InterruptedError',
'IsADirectoryError', 'KeyError', 'KeyboardInterrupt',
"LookupError', 'MemoryError', 'NameError', 'None',
'NotADirectoryError', 'NotImplemented', 'NotImplementedError’,
'OSError', 'OverflowError', 'PendingDeprecationWarning’,
"PermissionError', 'ProcessLookupError', 'RecursionError',

60

CHAPTER 4 FUNCTIONS

'ReferenceError', 'ResourceWarning', 'RuntimeError’,
'RuntimeWarning', 'StopAsyncIteration', 'StopIteration’,
'‘SyntaxError', 'SyntaxWarning', 'SystemError’,

'SystemExit', 'TabError', 'TimeoutError', 'True',

'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',
"UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
‘UnicodeWarning', 'UserWarning', 'ValueError', 'Warning',

'ZeroDivisionError', ' build class ', ' debug ',

doc_ ', ' import ', ' loader ', ' name_ ', ' package ',
' spec_ ', 'abs', 'all', 'any', 'ascii', 'bin', 'bool’,
'bytearray', 'bytes', 'callable', 'chr', 'classmethod’,
‘compile', 'complex', 'copyright', 'credits', 'delattr’,
"dict', 'dir', 'divmod', 'enumerate', ‘'eval', 'exec',

'exit', 'filter', 'float', 'format', 'frozenset', 'getattr’,
'‘globals', 'hasattr', 'hash', 'help', 'hex', 'id', ‘'input',

int', 'isinstance', 'issubclass', 'iter', 'len', 'license’,

'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next’',
'‘object', 'oct', 'open', 'ord', 'pow', 'print', 'property’,
'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr',
‘slice', 'sorted', 'staticmethod', 'str', 'sum', 'super’,
"tuple', "type', 'vars', 'zip']

The dir() function is important because it allows us to display a list of

the attributes or methods of the objects we insert inside it. For example,

>>> testl = ["object1", "object2", "object3", "object4",
"object5"]
>>> dir(test1)

[' add ', ' class ', ' contains ', ' delattr ', '
delitem ', ' delslice ', ' doc_', ' eq ', ' format ',
' _ge ', ' getattribute ', ' getitem ', ' getslice ',
‘gt ', ' hash ', ' iadd ‘', ' dimul ', ' init ',

61

CHAPTER 4 FUNCTIONS

' iter ', ' le ', ' len ', " 1t ', ' mul ', "
ne_ ', ' new ', ' reduce ', ' reduce ex ', ' repr ',
' reversed ', ' rmul ', ' setattr ', ' setitem ',
' _setslice ', ' sizeof ', ' str ', ' subclasshook ',

"append', ‘'count', 'extend', 'index', 'insert', 'pop',
'remove', 'reverse', 'sort']

Attributes or methods are nothing more than actions we can take
on that particular object, such as adding an item to a list, as we saw in
Chapter 3:

>>> testl.append("pippo")
>>> test1
['object1', 'object2', 'object3', 'object4', 'objects',
"pippo’]
We can use the type() function, which shows the type of object inserted
inside it.

>>> type(test1)
<type 'list'>

It is important to remember that when bracketing an object (such as
a list, tuple, dictionary, and so on) using the dir() function, we get a list of
actions we can assign to that particular object.

When we work with packages and functions written by other data
scientists, it is useful to obtain information about their functions and their
parameters. Let’s see how to do this.

Obtain Function Information

Within a function, we can find all the parameters specific to that function.
To get information about a function and its parameters, type

62

CHAPTER 4 FUNCTIONS

>>> help(print)
Help on built-in function print in module builtins:
print(...)
print(value, ..., sep='
flush=False)
Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file: a file-like object (stream); defaults to the current
sys.stdout.
sep: string inserted between values, default a space.

, end="\n', file=sys.stdout,

end: string appended after the last value, default a
newline.
flush: whether to forcibly flush the stream.

the help() function is only available for Python3

Thus, we get a series of information about that function. To quit,
press q. We can also get help regarding a particular method:

>>> help(testi.append)
Help on built-in function append:

append(...)
L.append(object) -- append object to end

You can find the built-in functions for Python 2.7 at https://
docs.python.org/2/1ibrary/functions.html. You can find the built-
in features for version 3 at https://docs.python.org/3/1library/
functions.html.

If you are using Jupyter, you can display the methods by pressing the
Tab key. Press Shift+Tab to display the parameters of a function (Figures 4-1
and 4-2).

63

https://docs.python.org/2/library/functions.html
https://docs.python.org/2/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

CHAPTER 4 FUNCTIONS

data.

—data.DataReader -
|data.EdgarIndexReader

|data.EnigmaReader

|data.EurostatReader

‘data.FamaFrenchReader

|data.FredReader

|data.get_components_yahoo
|data.get_data_enigma
|data.get_data_famafrench
data.get_data_fred

Figure 4-1. Methods in Jupyter 1

data.DataReader (|

-~ &R
Signature: data.DataReader(name, data source=Hone, start=None, end=Mone,
retry_count=3, pause=0.001, session=None, access_key=None)
Docstring:

Imports data from a number of online sources.

Figure 4-2. Parameters of a function in Jupyter 2

When using Spyder, the information in Figures 4-3 and 4-4 appears
automatically.

data.

@ DataReader

EdgarIndexReader
EnigmaReader
EurostatReader

FamaF renchReader
FredReader
get_components_yahoo
get_data_enigma
get_data_famafrench
get_data_fred

Figure 4-3. Methods in Spyder 1

64

CHAPTER 4 FUNCTIONS

data.DataReader()

Arguments

DataReader(name, data_source=None, start=None,
end=None, retry_count=3, pause=9.001,
session=None, access_key=None)

Figure 4-4. Parameters of a function in Spyder 1

Create Your Own Functions

In addition to using the default features or importing them from other
libraries, we can also create our own functions. As mentioned, functions
are pieces of code that tell Python how to do something. A function has
three parts: name, parameters, and body (Figure 4-5). The statement that
allows us to create a function is def:

>>> def goal fun(x):
"(x) >y
here we will write the documentation of the
function, then
what the function performs

return(x+y)

65

CHAPTER 4 FUNCTIONS

name

parameter
def goal_fun(x): (

x) >y
here we will write the documentation of the function,then
what the function performs

return(x+y)

body

Figure 4-5. How to write a function
Let’s create a function that sums the number 5 to any x value:

>>> def sumi(x):
"'sum x to 5

return(x+5)

>>> sum1(10)
15

>>> sum1(130)
135

In this function, we entered one parameter, but we can enter more
than one:

>>> def mult xy(x, y):
“'multiply x and y

return(x*y)

>>> mult xy(5,6)
30

66

CHAPTER 4 FUNCTIONS

To help us see the path taken by one of our functions, we can use
online tools such as Python Tutor (http://pythontutor.com/).

Save and run Your Own Modules and Files

We've seen how to create .py scripts and put them in a work directory,
which we can find by importing the os module and typing the following:

>>> import os
>>> os.getcwd()

We can create a file from any text editor, which we must rename so it

includes .py:
example_script.py
After the script is placed in the work directory, we run it by typing

type on the computer terminal
$ python example script.py

If the script is not in the work directory, we need to change the
directory from the computer terminal:

type on the terminal
$ cd directory address

For instance,

type on the terminal
$ cd /~/Downloads

After the directory has changed, proceed as we did earlier:

$ python example script.py

67

http://pythontutor.com/

CHAPTER 4 FUNCTIONS

The Python shell is convenient for testing on the fly, but for a complex
script, it is always better to write it using an editor and then run it that way,
or copy the script and run it in the Python shell.

Summary

Writing functions is a very important task for a data scientist. Languages
such as R have a large number of packages and functions for every
statistical need. With Python, however, we often need to write our
functions, as detailed in this chapter. In Chapter 5, we look at more tools
that we can use to build a useful function.

68

CHAPTER 5

Conditional
Instructions and
Writing Functions

In this chapter we explore the ways to create a function and a loop in
Python. We may need to create a loop to iterate an action over a list, or to
create a function to extract some cases from a dataset. Writing functions is
very important to automating data analysis.

Conditional Instructions

Conditional instructions are structures used to manage conditions when
we create a function. Depending on certain values or the results of an
operation, we implement different actions on our data using the following

conditional instructions.

o if
o elif
o else
© Valentina Porcu 2018 69

V. Porcu, Python for Data Mining Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4113-4_5

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

These structures, along with those for creating loops, are indispensable
for creating features that allow us to create special instructions, such as
performing recursive operations on multiple rows of a dataset, establishing

conditions, and so on.

if
Let’s look at some examples of the uses of if:

>»> X =75
>y =17

>»> if x < y:
print("x is less than y")

>>> x 1s less than y

Now let’s create objects and set a condition. The previous condition is
fulfilled and the required sentence is printed.

>>> z = 700
>>> h =20
>>> if h > z:

print("h is bigger than z")

In this second case, the condition is not fulfilled, therefore nothing is
printed.

if + else

if can also work with else to give us more flexibility. For instance,

>> z
>>> h

700
20

70

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

>>> if h > z:

print("h is bigger than z")
...else:

print("h is not bigger than z")

h is not bigger than z

elif

We reach maximum flexibility for if by using elif, which establishes
intermediate conditions in a function. For instance, let’s create a program
that asks us what our score was. We then fit this into a scoring class, which
we call result. Let us proceed as follows using Python2 (we might need to
enter the encoding):

#!/usr/bin/env python
-*- coding: utf-8 -*-

>>> print "Enter your score:
>>> mark = int(raw_input())
>>> if 90 <= mark <= 100:

output = "A"
...elif 80 <= mark <= 89:
output = "B"

..elif 70 <= mark <= 79:
output = "C"

..elif 60 <= mark <= 69:
output = "D"

..elif mark <= 59:
output = "F"
..else:

print "I don't understand, try again"

..print "Your result is " + output

71

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

We can save the script (I named it mark2, and you can find it in the code
folder or create by yourself by opening a .txt file and renaming it with a .py
extension) and proceed by running it from Jupyter as shown in Figure 5-1.

"

In [1]): print "Enter your score:
mark = int(raw_input())
if 90 <= mark <= 100:
output = "A"

elif 80 <= mark <= 89:
output = "B"

elif 70 <= mark <= 79:
output = "C"

elif 60 <= mark <= 69:
output = "D"

elif mark <= 59:
output = "F"

else:
print "I don’t understand, try again”

print "Your result is " + output

Enter your score:
70
Your result is C

Figure 5-1. Running mark2 in Jupyter

Caution Python2 and Python3 manage user input differently.

In Python 3, we simply use input() instead of raw_input():

>>> print("Enter your score: ")
>>> score = int(input())
>>> if 90 <= score <= 100:

output = "A"
...elif 80 <= score <= 89:
output = "B"
...elif 70 <= score <= 79:
output = "C"

72

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

..elif 60 <= score <= 69:

output = "D"
..elif score <= 59:

output = "F"
..else:

print("I don't understand, try again")
..print("Your result is " + output)

Enter your score:
80

Your resultis B

Loops

Loops identify structures that allow you to repeat a certain portion of code,
for a number of times or under certain conditions. The most important
instructions in Python that allow you to tweak actions are

o for
¢ while

¢ continue and break

for

The Python instruction for allows the definition of iterations. for is an
iterator, so it is able to go through a sequence and perform actions on it, or
perform operations. The format of for instructions is as follows:

for item in object:
run action on item

73

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS
For instance,

we create an object (in this case, a tuple) and print every
element

>»> X = (1:2:3:4)5)6:7)
check the type of object

type(x)
<type 'tuple'>

>>> for n in x:
print(n)

~N O U1 B WN

we create an object and, for each element of the object, we
print a sentence together with the element

>»> x = (1,2,3,4,5,6,7)

>>> for n in x:
print("this is the number", n)

("this is the number", 1)
("this is the number", 2)
("this is the number", 3)
("this is the number", 4)
("this is the number", 5)

74

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

("this is the number", 6)
("this is the number", 7)

we can also print the elements of a string
>>> stringl = "example"

>>> for s in stringi:
print(s)

™ T 3 9 X 0

>>> for s in stringi:
print(s.capitalize())

m m— © 2 > X m

>>> for s in stringi:
print(s*s5)

eeeee
XXXXX
ddaaad

75

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

mmmmm

Ppppp
11111

eeeee

What happens if, for example, we have a list that contains sublists and
we want to print some of its elements? Let’s look at an example:

we create a list containing pairs of elements
>>> listl = [(5)7)) (9)2)) (2)3): (14)27)]

>>> list1
[(5, 7), (9, 2), (2, 3), (14, 27)]

We want to print only the first element of each of the pairs, as shown in
Figure 5-2.

>>> for (el1, el2) in lista:
print el1

14

Vv

listl = [(5,7), (9,2), (2,3), (14,27)]

Figure 5-2. Print the first element only

76

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS
If we want to, we can also carry out operations on couples—for example,

>>> for (el1, el2) in lista:
print eli+el2

12
11
5

4

In Python3, we add parentheses to the function print()

>>> for (el1, el2) in lista:
print(eli+el2)

12
11
5

41

As for dictionaries, we can proceed as follows:
>>> dict1 = {"k1":1, "k2":2, "k3":3}

>>> for key, value in dicti.items():
print("the key value "
str(...value))

+ str(key) + " is " +

the key value k3 is 3
the key value k2 is 2
the key value k1 is 1

77

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

Clearly, we can also print a single key or the only value:

python2
>>> for key,

k3
k2
k1

>>> for key,

1
python3
>>> for key,

k3
k2
k1

>>> for key,

while

value

value

value

value

in dict1.

in dict1.

in dict1.

in dict1.

items(): print key

items(): print value

items(): print(key)

items(): print(value)

The instruction while executes actions if a certain condition is met. It is used

in cases when we do not know with certainty how many times an iteration

has to be processed, so we run it until it satisfies a specific condition.

78

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

Python2

»> x =1

>>> while x < 5:
print x
X = X+1

1

2

3

4

Python3

»> x =1

>>> while x < 5:
print(x)
X = X+1

With the while instruction, it is necessary to be careful not to start an
infinite loop, which would then require you to force the program to close.
For instance, if we set this type of loop we will get a list of “1” until we stop
the execution:

nb: don't run

»> X =1
>>> while x < 2:
print x

Let’s look at another example of while:
Python2
»>y =1

>>> while y < 10:
print "the y value is " ,y

y =y +1

79

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

the y value is 1
the y value is 2
the y value is 3
the y value is 4
the y value is 5
the y value is 6
the y value is 7
the y value is 8
the y value is 9

in this case, we print a sentence with each of the y values,
which increases at each new step

continue and break

continue and break are two instructions that allow you to end a cycle or to
continue passing to the next iteration. Let’s look at an example of continue:

we create a list

>>> list1 = ['item1', 'item2', 'item3', 'cat', 'item4', 'items5']

we create a for loop that prints each items in the list

>>> for item in listi:
if item in list1:

if item == 'cat':
continue
print(item)
item1
item2
item3
item4
items

80

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

the for loop must skip the element that is unlike the others;

to get this result, we use continue, thus "skipping"' the element

break works in a similar way, although unlike continue, it interrupts the
for cycle:

>>> for item in listi:
if item in list1:

if item == 'cat':
break
print(item)
item1
item2
item3
range()

As we have seen for lists, range() is a function in Python2 (in Python3, it is
a built-in method) and not a conditional instruction. This function allows
you to create lists bounded by an upper limit and a lower limit (a range).

Python2
we create a list of numbers from 1 to 49 (included)
>>> list = range(1, 50)

>>> list

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]

check the object type

>>> type(list)
<type 'list'>

81

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS
we create a list of numbers from 30 to 44 (included)

>>> list2 = range(30, 45)
>>> list2
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]

if we do not specify the lower limit, but only the upper
limit, the list starts at O:

>>> list3 = range(14)

>>> list3
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

We can also add the range we want to include, for example, of three
elements, as the third argument: so the first parameter will be the number
from to start with (20), the second the end of the list (40) and the third will
be the step (3)

>>> list4 = range(20, 40, 3)

>>> list4
[20, 23, 26, 29, 32, 35, 38]

this way, we can, for example, create lists for odd or even numbers

>>> range(0,10,2)
[OJ 2) 4’ 6) 8]

>>> range(1,10,2)
[1, 3, 5, 7, 9]

We can also create two objects and require a range between the two
objects. For example,

>>> X = 17
>>>y =39

82

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

>>> range(x, y)
[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38]

Also, we can incorporate lists created with range()within another loop.
For example,

>>> for el in range(1,10): print el

0O N O U1 B~ W N

O

for example, instead of passing an object in the for loop, we
pass a list created with range()

Caution In Python2 and Python3, range() is used differently.

To get a list of numbers in Python3, we write

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(2,10))

[2, 3, 4, 5, 6, 7, 8, 9]

if we use the same name as Python2, we get this result in
Python3

>>> range(10)
>>> range(0, 10)

83

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

Extend Functions with Conditional
Instructions

The conditional and loop instructions we just studied allow us to extend
our capabilities in writing functions. Let’s look at an example:

we create an example function

>>> def ex1(x):
y =20
while(y < x):
print('Add one!")
y=y+1
return('Stop now!")

>>> ex1(0)
"Stop now!'

ex1(5)

Add one!
Add one!
Add one!
Add one!
Add one!
"Stop now!'

map() and filter() Functions

The map() function takes two objects, a function, and a sequence of data,
and applies the function to the data sequence. Here is an example:

map()
Python2

84

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS
we create a function that squares a number

>>> def square(x):
return x*x

check if the function does what it is supposed to do

>>> square(9)
81

now let us create a list of numbers
>>> num = [2, 5, 7, 10, 15]

we apply the map() function to our list to square all list
numbers with only one operation

>>> map(square, num)
[4, 25, 49, 100, 225]

Python3

we use the list() function to get the desired result, as we
did with range()

>>> list(map(square, num))

The filter() function applies a function to an object and returns the
results that meet a particular criterion. Let’s create a second list of numbers:

>>> num2 = range(1,15)

>>> num2
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

we create a function that allows us to distinguish
even numbers

85

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

>>> def even(x):
if x % 2 ==
return True
else:
return False

we apply the filter() function to the function even() and a
list of numbers, like num2

>>> filter(even, num2)
[2, 4, 6, 8, 10, 12, 14]

The lambda Function

The lambda function is a Python construct with a particular syntax that
simplify a function construction allowing us to reduce one function in one
line, thus making the code more simple but less powerful than creating

a function with the construct def. For instance, to create a function that
squares a number, we did this:

we create a function that squares a number

>>> def square(x):
return x*x

we check if the function does what it is supposed to do

>>> square(9)
81

Now we use the lambda function to create the same function:
>>> sq2 = lambda x : Xx*x

>>> 5q2(127)
16129

86

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

As you can see, we can create a similar function in a single line.

Let’s return to a list of numbers:
>>> num =[2, 5, 7, 10, 15]

now we use the second function we created to apply the
function to the entire list

>>> map(sq2, num)
[4, 25, 49, 100, 225]

it is not necessary to create a function; we can integrate
the lambda function directly within the process. In this case,
if we want to use the same lambda function over there, we will
rewrite it instead than recalling it by its name

>>> map(lambda x: x*x, num)
[4, 25, 49, 100, 225]

Scope

When writing a function, we can define an object within the function itself
or relate to an object created externally by the function. In the first case, we
speak of a global variable; in the second case, a local variable. With respect
to a function, we therefore have three elements:

1. Formal parameters: the arguments present in the
definition of the function

2. Local variables: which are defined by evaluating
expressions in the body of the function and have
visibility only within the function itself

3. Global variables: which do not belong to either the
first or the second group, but are looked for outside
the function

87

CHAPTER 5 CONDITIONAL INSTRUCTIONS AND WRITING FUNCTIONS

So far we have worked with global variables, defining them first and then
applying various operations through some functions. In the following case,
however, let’s define a global test variable external to the function and a local
test function within the function. The function calls the local variable.

>>> test = "hello"

>>> def funi():
test = "hi"
print(test)

>>> funi()
hi

In this next case, however, let’s refer to a variable external to the
function itself. In so doing, the calculation is performed correctly:

numl = 5§

def fun2():
global numi
num2 = numl + 1
print(num2)

fun2(num1)
6

Summary

In this chapter we examined conditional instructions, which are structures
used to manage conditions when we create functions. We also looked at
extending our functions.

88

CHAPTER 6

Other Basic Concepts

In this chapter, we learn about some important programming concepts
(such as modules and methods), list comprehension and class creation,
regular expressions, and management of errors and exceptions.

Object-oriented Programming

As mentioned, Python is an object-oriented programming language, so
let’s look at some basic concepts of object-oriented programming. Some
important concepts are

e Objects
e Classes

o Inheritance

More on Objects

Objects are all the data structures we have created, from smaller ones
containing only a single number to larger ones containing large datasets.
We apply objects to operations using features or methods that are
preinstalled in libraries, that we 'import, or that we create.

© Valentina Porcu 2018 89

V. Porcu, Python for Data Mining Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4113-4_6

CHAPTER6 OTHER BASIC CONCEPTS

Classes

As far as the class concept is concerned, this is a new topic for us in this
book; one we have not yet examined. Python allows us to create structures
linked to our needs through the class concept. Classes are abstract
representations of an object that we can fill with real instances from time
to time. When a new class is defined, we can define instances of that class.
A class is defined by its own characteristics. For example, if we create a Dog
class, we can stipulate that it be defined by features such as the shape of
the head, muzzle, hair type (short or long), and so on. A Book class could
include features such as book genre, the number of pages, the main topic,
the type of cover, ISBN and so on.

Inheritance

Another concept behind object-oriented programming is inheritance. It

is possible to create new classes from existing classes. New classes inherit

the characteristics of the original classes, but they can extend them with

new features. Inheritance is convenient, because it allows us to extend

old classes without having to change them. Inheritance can be single and

multiple. Through single inheritance, a subclass can inherit member data

and methods from one existing class; in the case of multiple inheritance, a

subclass can inherit characteristics from more than one existing class.
Let’s look at a simple example that creates a Cat class.

>>> class Cat:
. def _init (self, name, color, age, race):
self.name = name
self.color = color
self.age = age
self.race = race

90

CHAPTER6 OTHER BASIC CONCEPTS

Cat is defined by name, color, age, and breed. We can create a cat
instance:

>>> catl = Cat("Fuffy", "white", 3, "tabby")
which let’s see its features:

>>> print(cati.name)
Fuffy
>>> print(cati.color)
white

We can modify the class by adding methods:

>>> class Cat:
. def _init_ (self, name, color, age, race):
self.name = name
self.color = color
self.age = age
self.race = race

. def cry(self):
cen print("meow")
. def purr(self):
print("purr")
we create a cat instance with this new class
>>> cat2 = Cat("Candy", "Red", "6", "Balinese")

Now we can query the instance not only on the basis of the features, as
we did in the first example,

>>> print(cat2.age)
6

91

CHAPTER 6 OTHER BASIC CONCEPTS
but also by using the methods:

>>> cat2.cry()
meow

>>> cat2.purr()
purr

Let’s create a subclass for tabby, a cat breed, so it inherits its features.

>>> class tabby(Cat):
def character(self):
print("warm")

we create a tabby instance

>>> tabbyl = tabby("Pallina", "black", 4, "tabby")
>>> tabbyl.purr()

purr

>>> tabby1l.character()
warm

Thus we can query the instance not only with regard to the characteristics
of the tabby subclass but also with regard to the existing Cat class.

Modules

Modules are collections of functions that are generally related to a given
topic (graphics, data analysis). Forms can belong to one of the following
categories:

e Python modules
e Precompiled modules

e Built-in modules

92

CHAPTER6 OTHER BASIC CONCEPTS

To use a module, we must first import it by using the import
instruction:

import ...
For instance,
import numpy

un: »n

Using “”import,” we imported the entire module.

However, we can import part of a module:
from ... import ...

For example,
from matplotlib import cm

To simplify and speed up the writing of code, we can import a form
with another name:

import numpy as np
We can then check our modules with the following command:

help('modules')

After a module is imported—say, in Jupyter—we can access the help
section by displaying all the methods of that particular module by pressing
the Tab key (Figure 6-1).

93

CHAPTER6 OTHER BASIC CONCEPTS

In [1]: 4import pandas as pd

In [): pd.]

-pd.algos
pd.bdate_range
pd.Categorical
pd.CategoricalIndex
pd.compat
pd.computation
pd.concat
pd.core
pd.crosstab
pd.cut

Figure 6-1. pandas’ methods on Jupyter

In addition, we can import very specific elements of a module. For

instance:
from math import sqrt

In this case, we are not importing the entire module—only the function
for the square root. In this case, we don’t need to call sqrt as a method of
the math module. We can call the square root directly:

>>> sqrt(9)
3.0

If we import the entire module, we must specify sqrt as the math
module method:

>>> import math
>>> math.sqrt(12)
3.4641016151377544

94

CHAPTER6 OTHER BASIC CONCEPTS

Some programming languages, such as Anaconda, install a whole
series of modules and packages automatically (Figure 6-2). However, if
we need to install a particular module, we can do it from the computer
terminal by typing:

$ pip install nome_modulo

o
s

Macintosh-2:~ valentinaporcu$ pip install djange []

Figure 6-2. Installing a package on the computer

As you can see in Figure 6-2, we are on the terminal, not in a Python
window, because as the “>>>" symbol is missing at the prompt. The “$”
symbol indicates that the terminal is being used.

Depending on the package we are installing (for example, from
GitHub), we may find different instructions for installation in the package
documentation itself. Packages are a collection of modules, often on the
same subject. For instance, SciPy and NumPy contain dozens of data
analysis modules.

95

CHAPTER6 OTHER BASIC CONCEPTS

Methods

In Python, everything is an object and, depending on the type to which it
belongs, different methods (or functions) can be applied to each object.
Methods are sort of like functions, but they are related to particular
classes. This means that lists have their own methods, tuples have different
methods, and so on. Each method performs an operation on an object,
similar to a function.

Depending on the tool we use to program or for our Python data
analyses, we may have some suggestions on methods associated with a
particular object. This is the case when using Spyder and Jupiter. Figure 6-3
displays an example of methods for an object using Spyder; Figure 6-4 shows
the methods using Jupyter.

x = 11,2,3,4,5,6]
type(x)

X

| @ clear
copy
count
extend
index
insert
pop
remove
reverse

Figure 6-3. Example on Spyder

96

CHAPTER6 OTHER BASIC CONCEPTS

In [2): x = [1,2,3,4,5,6]

In [3]): |ix
out(3): [1,2, 3, 4, 5, 6)

In []: X.
'X.append
|x.count
x.extend
|Xx.index
X.insert
X.pop
X.remove
X.reverse
|x.sort

Figure 6-4. Example on Jupyter
An example of a function is print(); an example of a method is .upper.
Let’s look at an example:

>>> stringl = "this is a string"”
>>> print(stringl)
this is a string

>>> stringl.upper()
"THIS IS A STRING"

97

CHAPTER6 OTHER BASIC CONCEPTS

To get information about a specific method, we use the help() function.
For example, we can create a list and activate help with the .append
method:

>»> X = [1)2)3J4)5)6]
>>> help(x.append)

Help on built-in function append:

append(...)
L.append(object) -- append object to end

Figure 6-5. Output of the code above

List Comprehension

List comprehension is a syntax construct that allows us to create new lists
from other lists. Let’s create a list and then apply a function to the elements
of another list. We can do this using a for loop:

we create a number list
>>> numbers = [12, 23, 34, 57, 89, 97]
in Python2
using the for loop we add the number 10 to each item on the
list
>>> for i in range(len(numbers)):
numbers[i] = numbers[i] + 10
>>> numbers
[22, 33, 44, 67, 99, 107]

we can create a new list by adding a certain number even
through the list comprehension

we will overwrite the first list, number, with a new one
where every item is added to 10 using Python3

>>> numbers = [number + 10 for number in numbers]

98

CHAPTER6 OTHER BASIC CONCEPTS

[32, 43, 54, 77, 109, 117]

the way we call each element of the list is random
>>> numbers = [n + 10 for n in numbers]

>>> numbers

[42, 53, 64, 87, 119, 127]

Thus, list comprehension allows us to simplify an iteration that
turns our list into a new one. We can apply list comprehension to a list of
numbers, as we just saw, we can also apply it to strings. For example, we
can iterate the operation and turn everything in it into uppercase type:

>>> strings = ['this', 'is' ,'a"', 'string']
>>> strings2 = [string.upper() for string in strings]

>>> strings2
['THIS', 'IS', 'A', 'STRING']

Regular Expressions

Imagine trying to search for a word in a text document. When we do the
search, it returns all instances of the word we are looking for. However, if
we do this type of search, we may skip some occurrences—for example, if
they start with an uppercase letter or if they are followed or preceded by
punctuation. If the word we are looking for also exists within another word,
we must also consider the empty spaces of the word itself to find it.

The use of regular expressions, also known as regex, makes it much
easier to identify all these options. Regular expressions are patterns that
allow us to describe generic strings, which make this type of search more
elaborate. They are very useful for searching, replacing, or extracting strings
or substrings. Regular expressions can, for example, be used to extract
dates, e-mail addresses, and physical mail addresses, because they do not

just extract the single e-mail address. For example, we can insert an e-mail

99

CHAPTER6 OTHER BASIC CONCEPTS

address in a search box with a structure similar to address@email. com,
which identifies the structure of an e-mail address and extracts multiple
e-mail addresses from the same document according to its structure.

In Python, regular expressions are handled via the module re, which
we can import:

>>> import re

we create a sample string

>>> strl = "Try searching for a word using regular expressions
and the Python module kernel"

We search for an occurrence using re.search():

>>> re.search('word', stri1)

<_sre.SRE_Match object at 0x10280bed0>

this result tells us that the word we were looking for is
present in the string

to get the same result in its simplest form, save the
previous line of code in an object and query it with the bool()
function:

>>> exrel = re.search('word', stri)

>>> bool(exrel)

True

We can search for an occurrence by using .findall():

>>> re.findall('Try', stri)

[ITIyI]

if the item is not present, we receive an empty list
>>> re.findall('some', str1)

[]

this function is case sensitive, so

""some"' is different

from "'Some

100

CHAPTER 6 OTHER BASIC CONCEPTS
We can also divide a string into the elements that comprise it:

>>> re.split(' ', stri)

['Try', 'searching', 'for', 'a', 'word', 'using', 'regular’,
"expressions’, 'and', 'the', 'Python', 'module’, 'kernel']

in the previous code, we used a space as a splitting element;
next we split the string into words using the conjunction '
and ' (and insert spaces on either side to avoid searching for
internal recurrences of a word)

>>> re.split(' and ', stri)

['Try searching for a word using regular expressions', 'the
Python module kernel']

we get the previous result by dividing the string in two

according to the position of the conjunction "'and"'"

Regular expression symbols (such as *, +, and ?) allow us to search for a
character one or more times, or followed by other letters:

>>> re.findall('ea*', str1)

['ea’, 'e', 'e', 'e', 'e', 'e', 'e', 'e']
>>> re.findall('ea+', stri)

['ea’]

>>> re.findall('ea?', stri1)

['ea', 'e', 'e', 'e', 'e', 'e', 'e', 'e']
>>> re.findall('ea+?"', stri)

['ea’]

we can, for instance, extract all the words with a capital
letter

>>> re.findall('[A-Z][a-z]*', stri)

['Try', 'Python']

101

CHAPTER6 OTHER BASIC CONCEPTS

or all the words in lowercase letters
>>> re.findall('[a-z]*', str1)

["s
|I_y|,

n
)

'searching’,

n
)

"for',

'word',
n
)

‘using',
n
)

'‘regular’,
ll,

"expressions’,

n
)

‘and',
n
)

"the’,

n
)

"ython',

n
)

"module’,

n
)

'kernel',

"]

102

CHAPTER6 OTHER BASIC CONCEPTS

or all uppercase or lowercase words
>>> re.findall('[a-z]*', str1, re.IGNORECASE)
["Try’,

II,

'searching’,

n
)

"for',

'word',
n
)

‘using',
n
)

'regular’,
ll,

"expressions’,

or we can do this

>>> re.findall('[*.\-!]+', str1) >>> ['Try', 'searching',
‘for', 'a', 'word', 'using', 'regular', 'expressions', 'and',
"the', 'Python', 'module’, 'kernel']

\d find the numbers

>>> str2 = "We are going to meet today at 14:15"

>>> re.findall('\d", str2)

we can use other symbols to help us target the extraction
more explicitly

>>> re.findall('\d+', str2)

['14", "15']

for example, let's look for all the words that include p
>>> re.findall(xr'[p]\S*', str1)

103

CHAPTER6 OTHER BASIC CONCEPTS

['pressions’']

or for the letter 'p' in either lowercase or uppercase letters
>>> re.findall(r'[p]\S*', stri, re.IGNORECASE)

['pressions', 'Python']

or we can extract e-mails from a string

>>> str3 = "my email is mail@mail.com, my second email is
test2@ex.com”

>>> re.findall("[\w\.-]+@[\w\.-]+", str3, re.IGNORECASE)
['mail@mail.com', 'test2@ex.com']

We can perform a regular expression test by using tools on the Web,
such as http://pythex.org. (http://pythex.org/)More information
about regular expressions can be found at https://docs.python.org/2/
library/re.html for the re module. Table 6-1 lists the various symbols of
regular expressions.

Table 6-1. Symbols and Regular Expressions

Symbol Description

\\d Digit, 0,1,2,...9
\\D Not digit

\\s Space

\\S Not space

\\w Word

\\W Not word

\\t Tab

\\n New line

A Beginning of the string
$ End of the string

(continued)

104

http://pythex.org/
http://pythex.org/
https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html

CHAPTER6 OTHER BASIC CONCEPTS

Table 6-1. (continued)

Symbol Description

\ Escape special characters—for example,\\ is “\”, \+ is “+”
I Alternation match—for example /(eld)n/ is “”en”” and “”dn””
* Any character, except \n or a line terminator
[ab] aorb

[~ab] Any character excepta and b

[0-9] All digits

[A-Z] All uppercase letters from Ato Z

[a-Z] All lowercase letters from a to z

[A-Z] All uppercase and lowercase letters from a to z
i+ i at least one time

i* i zero or more times

i? i zero or one time

i{n} i that occurs n times in sequence

i{n1,n2} i that occurs n1 - n2 times in sequence
i{n1,n2}? Nongreedy match, see previous example

i{n,} i occurs >n times

[:alnum:] Alphanumerical characters: [:alpha:] and [:digit:]
[:alpha] Alphabetical characters: [:lower:] and [:upper:]
[:blank:] Blank characters, such as space and tab
[:entrl:] Control characters

[digit] Digits:0123456789

[:graph:] Graphical characters: [:alnum:] and [:punct:]

(continued)

105

CHAPTER6 OTHER BASIC CONCEPTS

Table 6-1. (continued)

Symbol Description

[:lower:] Lowercase letters in the current locale
[:print:] Printable characters: [:alnum:], [:punct:] and space

[punct:] Punctuation characterssuchas!“’ #$% &“()*+,-./:;<=>7?

@[\]~_“{I}~
[:space:] Space characters: tab, new line, vertical tab, form feed, carriage return,
space

[:upper:] Uppercase letters in the current locale
[:xdigit:] Hexadecimal digits: 0123456 789ABCDEFabcdef

User Input

The input function (raw_input in Python2) is used to let us talk to a
program that has to handle responses depending on the type of input (we
studies this when setting functions). In Python2, we handle user input with
the raw_input() function:

>>> name = raw_input("What is your name? ")
What is your name? Valentina

>>> print(name)

Valentina

>>> print("Nice to meet you, " + name)
Nice to meet you, Valentina

106

CHAPTER6 OTHER BASIC CONCEPTS

Caution Python2 and Python3 handle user input differently.

In Python3, we use input() instead of raw_input():

>>> name = input("What is your name? ")
What is your name? Valentina

>>> print(name)

Valentina

>>> print("Nice to meet you, " + name)

Nice to meet you, Valentina

When input is entered in this way, it is read as a string. So, for example,
if we want to enter a number, we have to write the code a bit differently. We
must specify that what we are entering must be read as a number:

>>> numl = input('add a number: ")

>>> num2 = input('add a second number ")

>>> print(numi + num2)

the result will be an integer number resulting from the
addition and depending from the number you choose:

3725

Numbers are not summed; they are attached, as happens with two
strings. To add them, specify that the value we are entering is a number,
and proceed as follows:

>>> numl = int(input('enter a number: "))
>>> num2 = int(input('add a second number "))
>>> print(numi + num2)

107

CHAPTER6 OTHER BASIC CONCEPTS

Errors and Exceptions

Errors and exceptions in Python are nothing more than abnormal or
unexpected events that change the normal running of our code. An
exception may be the result of invalid inputs (for example, we ask users to
enter a number and they enter a letter), hardware issues, or files or objects
are not found. There are three main types of errors:

1. Syntactic
2. Semantic
3. Logical

Syntax errors are mistakes we make when writing code. They are either
spelling mistakes or syntax errors in the code.

example of a syntax error message due to the absence of the
quotation mark at the bottom of the string
>>> print 'Hello World
File "<stdin»", line 1
print 'Hello World

A

SyntaxError: EOL while scanning string literal

Errors and exceptions usually cause error messages, which we can
then use to identify the error and determine whether we can remedy it by
modifying the code or handling an exception.

When we expect an exception to occur (called a handled exception),
the way to remedy it is to write suitable code. Unexpected exceptions are
called unhandled exceptions.

To handle errors and exceptions in Python, we typically use try(),
except(), and raise().

108

CHAPTER6 OTHER BASIC CONCEPTS

For example, let’s sum two items that cannot be summed, such as a
number and a string:

>>> 37 + 'string'

TypeError Traceback (most
recent call last)

<ipython-input-1-5dc2db43a4bf> in <module>()

----> 1 37 + 'string’

TypeError: unsupported operand type(s) for +: 'int' and 'str

clearly, the result is an error

Let’s look at the type of error in the message: TypeError. We need to
create a way to handle this error. For example, let’s ask users to enter two
numbers and then return the sum of the two numbers.

>>> try:
. numi

int(input('enter a number: "))
. num2 = int(input('enter a second number '))

... print(numl + num2)
except TypeError:

... print("There is something wrong! Check again!")
>>> enter a number: 37
>>> enter a second number 25
62

We managed the TypeError error. If users insert two numbers, they are
summed correctly.

Let’s see what happens if an incorrect value is entered rather than a
number:

>>> try:
. huml

int(input('enter a number: '))
. num2 = int(input('enter a second number '))
... print(numl + num2)

109

CHAPTER6 OTHER BASIC CONCEPTS

except TypeError:

... print("There is something wrong! Check again!")
>>> enter a number: 37
>>> enter a second number string

ValueError Traceback (most
recent call last)
<ipython-input-16-566345f8fed9> in <module>()

1 try:

2 numl = int(input('enter a number: "))
---->3 num2 = int(input('enter a second number "))

4 print(numl + num2)

5 except TypeError:
ValueError: invalid literal for int() with base 10: 'string'

There is a problem! We managed the TypeError error, but now there is
a different error. We can handle this as follows:

>>> try:
. huml
. num2

int(input('enter a number: "))
int(input('enter a second number "))
... print(numl + num2)

except TypeError:

... print("There is something wrong! Check again!")
except ValueError:

... print("There is something wrong! Check again!")
enter a number: 37
enter a second number string
There is something wrong! Check again!

110

CHAPTER6 OTHER BASIC CONCEPTS

Or, we manage the exception with Exception:

>>>try:
. numl = int(input('enter a number: "))
. num2 = int(input('enter a second number '))

... print(numl + num2)
except Exception:
... print("There is something wrong! Check again!")
>>> enter a number: 37
>>> enter a second number test
There is something wrong! Check again!

Exception is a class of basic errors that includes most errors. Other
common types, as we just saw, are TypeError and ValueError, but there
are others: AttributeError, EOFError, IOError, IndexError, KeyError,
KeyboardInterrupt, NameError, Stoplteration, and ZeroDivisionError.

Summary

In this chapter we studied basic concepts of programming in Python:
modules and methods, list comprehension and class creation, regular
expressions, and errors and exceptions. In Chapter 7, we learn about
importing files.

111

CHAPTER 7

Importing Files

Importing a file to Python is important to learning how to manage datasets.
In this chapter we examine the basics. We can import many types of data
to Python: from the most canonical format (.csv) or Excel data formats, to
text formats for text mining, and to binary files such as images, video and
audio. First, let’s look at some basic ways to import files. Sometimes the
process for doing so may seem a bit tricky. The pandas package, which we
examine in Chapter 8, makes importing datasets for analysis much easier.
The basic structure for importing files is as follows:

file1 = open("file.name", mode)
“mode” represents the way we open a file. The most important ways are
e Readonly (“1”)
e Write (“w”
e Append some text at the end of the document (“a”)
¢ Read and write (“r+”

We use the open() function to open the file. If the file does not exist, it
is created in the work directory.

we open (or create) the file
>>> file1l = open("file1l.txt","w")

at the moment, the file was created in our work directory but
it is empty

© Valentina Porcu 2018 113
V. Porcu, Python for Data Mining Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4113-4_7

CHAPTER 7 IMPORTING FILES

we are in write mode; we then add text this way
>>> filel.write("Add line n.1 to the file1")

we close the file

>>> file1.flush()
>>> filel.close()

we open the file in read mode
>>> file1l = open("file1l.txt", "r")

we create an object that contains our file and display it
with the print() function

>>> text1l = filel.read()

>>> print(text1)
Add line 1 to filea

we close the file
>>> filel.close()
we reopen the file in write mode

>>> filel = open("filel.txt","w")

if we write the new text now, the line we had written
previously is replaced

>>> filel.write("Let's replace the first line with this new one")
we test

>>> file1.flush()
>>> filel.close()

114

CHAPTER 7 IMPORTING FILES

>>> file1l = open("file1.txt", "r")

>>> text2 = filel.read()

>>> print(text2)
Let's replace the first line with this new one

>>> filel.close()
to add text without overwriting, we open the file in append mode
>>> file1l = open("file1l.txt", "a")

>>> filel.write("\n Add a second line to this new version of
the file")

>>> filel.close()

>>> file1

open("filel.txt", "r")

>>> text3 = filel.read()

>>> print(text3)
We replace the first line with this new one
Add a second line to this new version of the file

we can verify the length of the text with the len function()

len(text3)
105

We can also create a small function that reads every line of the file:
>>> file1l = open("file1l.txt", "r")

>>> for line in file1:
print(line, end = "")

115

CHAPTER 7 IMPORTING FILES
Or proceed as follows:

>>> with open("filel.txt", "a") as file:
filel.write("this is the third line")

Table 7-1 provides a summary of the modes used to open a file.

Table 7-1. Modes for Opening a File

Mode Description

Read only, default mode

b’ Read only in binary format

r+’ Read and write

‘rh+’ Read and write in binary format

‘w’ Write

‘wb’ Write in binary format only. Overwrites an existing file. If the file does not
exist, a new one is created.

‘w4’ Read and write. Overwrites an existing file. If the file does not exist, a new
one is created.

‘wh+’ Read and write in binary format. Overwrites an existing file. If the file
does not exist, a new one is created.

‘@ Adds to an existing file without overwriting. If the file does not exist, a
new one is created.

‘ab’ Adds to an existing file or creates a new binary file

‘a+’ Reads, adds, and overwrites a new file (or creates a new one)

‘ab+’ Reads and adds in binary format; overwrites a new file or creates a
new one

116

CHAPTER 7 IMPORTING FILES

.csv Format

Files in .csv or .tsv format are those used most frequently in data mining.
Later, we look at some packages (such as pandas) that make it easier

to import and manage files. For now, however, we study some basic
procedures that do not require separate installation.

we import csv
import csv

next, I generate a random csv file that I save in the work
directory and call it 'df'. The second argument, 'r', means we
are accessing the file in read mode.

csvl = open('df', 'r'")

if we want to import a file that is not in the work
directory, we can include the entire address, for example:

csv2 = open('/Users/valentinaporcu/Desktop/df2", 'r')
we go on reading the first file
read = csv.reader(csvl)
for row in read:
print row
[ll, IOI’ lll’ I2I) l3l’ I4I]
['0', "15.982938813888007', '96.04182101708831",
'74.68301929612825"', '31.670249691004994"', '50.37042800222742"']

[...]

117

CHAPTER 7 IMPORTING FILES

From the Web

The basic methods also allow us to read a file from the Web. For example:
Python2
we import csv and urllib2

import csv
import urllib2

we create an object that contains the address

url = "https://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.data"

we create a connection

conn = urllib2.urlopen(url)

we create an object containing the .csv file
file = csv.reader(conn)

we print the file

for row in file:

print row
['5.12', "3.5", "1.4", '0.2', 'Iris-setosa']
['4.9', '3.0", "1.4", '0.2', 'Iris-setosa']
['4.7', "3.2", "1.3", '0.2', 'Iris-setosa']
['4.6", '3.1", '1.5", '0.2", 'Iris-setosa']
['5.0', "3.6', "1.4", '0.2', 'Iris-setosa']
['5.4", '3.9', '1.7"', '0.4"', 'Iris-setosa']

118

CHAPTER 7 IMPORTING FILES

In JSON

Let’s see how to import a test file in JSON. Some JSON test files can be
downloaded from https://www.jsonar.com/resources/.

import json
jfile = open('zips.json').read()
print(jfile)

{ "city" : "AGAWAM", "loc" : [-72.622739, 42.070206], "pop" :
15338, "state" : "MA", " id" : "01001" }

{ "city" : "CUSHMAN", "loc" : [-72.51564999999999, 42.377017
1, "pop" : 36963, "state" : "MA", " id" : "01002" }

{ "city" : "BARRE", "loc" : [-72.10835400000001, 42.409698],
"pop" : 4546, "state" : "MA", " id" : "01005" }

{ "city" : "BELCHERTOWN", "loc" : [-72.41095300000001,
42.275103], "pop" : 10579, "state" : "MA", " id" : "01007" }
{ "city" : "BLANDFORD", "loc" : [-72.936114, 42.182949],
"pop" : 1240, "state" : "MA", " id" : "01008" }

{ "city" : "BRIMFIELD", "loc" : [-72.188455, 42.116543],
"pop" : 3706, "state" : "MA", " id" : "o01010" }

{ "city" : "CHESTER", "loc" : [-72.988761, 42.279421],
"pop" : 1688, "state" : "MA", " id" : "01011" }

{ "city" : "CHESTERFIELD", "loc" : [-72.833309, 42.38167 |,
"pop" : 177, "state" : "MA", " id" : "01012" }

{ "city" : "CHICOPEE", "loc" : [-72.607962, 42.162046],
"pop" : 23396, "state" : "MA", " id" : "01013" }

{ "city" : "CHICOPEE", "loc" : [-72.576142, 42.176443],
"pOp" 1 31495, "state" : "MA", "_id" : "01020" }

{ "city" : "WESTOVER AFB", "loc" : [-72.558657, 42.196672 |,
"pop" : 1764, "state" : "MA", " id" : "01022" }

{ "city" : "CUMMINGTON", "loc" : [-72.905767, 42.435296 |,
"pop" : 1484, "state" : "MA", " id" : "01026" }

119

https://www.jsonar.com/resources/

CHAPTER 7 IMPORTING FILES

In Chapter 8, we learn how to use pandas to create and export data
frames in JSON.

Other Formats

We’ve now seen how to import files and data using some of the most
common formats in Python. Other formats include the following:

e Ixml—particularly the objectify module—allows you to
import files into XML.

o SQLite3 allows you to import SQL databases.
o PyMongo allows you to manage Mongo databases

o feedparser allows you to process feeds in many formats,
including RSS

« xlIrd allows you to import files into Excel (note, however,
that pandas is much easier to use)

Summary

Importing a file and a dataset in multiple formats is one of the most
important things in data analysis. The procedures described in this chapter
are important because we don’t need a library to import files and data. We
can use the basic functions in Python.

120

CHAPTER 8

pandas

In Chapter 7, we learned how to import a generic file using basic functions.

Here we explore pandas—one of the most important libraries for dataset

management.

Libraries for Data Mining

From this point onward, including the following chapters, we examine the

most important and most used data mining libraries:

pandas: imports, manages, and manipulates data
frames in various formats, extracts part of the data,
combines two data frames, and also contains some
basic statistical functions

NumPy: a package for scientific computing, contains
several high-level mathematical and algebraic
functions, and random number generation; and allows
the creation of arrays

Matplotlib: a library that allows the creation charts
from datasets

SciPy: contains more than 60 statistical functions
related to mathematical and statistical analysis

scikit-learn: the most important tool for machine
learning and data analysis.

© Valentina Porcu 2018
V. Porcu, Python for Data Mining Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4113-4_8

121

CHAPTER 8 PANDAS

pandas

In this chapter, we move away from discussions of Python structures and
start to look at the most important data mining packages, beginning with
the pandas library.

pandas is an open-source Python library that contains various tools for
importing, managing, and manipulating data. It has a number of high-level
features for manipulating, reorganizing and scanning structured data,
including slicing, managing missing values, restructuring data, extracting
dataset parts, and importing and data parsing from the Web. pandas is one
of the most important data mining libraries. We can

¢ Read and import structured data

e Organize and manipulate them

e Calculate some basic statistics
We can import the whole library:

>>> import pandas as pd

or import only primary structures in pandas, which are Series and
DataFrame:

>>> from pandas import Series, DataFrame

As we shall see, pandas, NumPy, SciPy, and Matplotlib typically work
together. I present them in the best possible way—separately at first—to
effect clarity.

pandas: Series

As a first action, we always download and install the package or packages
we need—in this case, pandas. pandas is part of the Anaconda suite, so
you do not have to install it if you have Anaconda installed. Call it this way:

>>> import pandas as pd
122

CHAPTER 8 PANDAS

As you can see, we import the package by creating a shortcut: pd. To
call a pandas function at this point, we simply write

pd.function_name()
We can also import specific structures, such as Series and DataFrames:
>>> from pandas import Series, DataFrame

In this case, when we call up or create one of these two structures, we
need not specify “pd” at the beginning.

The first pandas structure is Series—a one-dimensional array
characterized by an index. Let’s create our first series:

>>> seriesl = Series([25, 27, 28, 30],
index = ["student1", "student2", "student3", "student4"])

>>> print(seriesi1)

student1 25
student2 27
student3 28
student4 30
dtype: int64

we then use the .describe() function to get some statistical
information about the series

>>> seriesi.describe()

count 4.000000
mean 27.500000
std 2.081666
min 25.000000
25% 26.500000
50% 27.500000

123

CHAPTER 8 PANDAS

75% 28.500000
max 30.000000
dtype: float64

Let’s look at the first element of the series:
>>> series1[0]

25

We can also extract multiple elements:
>>> seriesi[[2,3]]

student3 28
student4 30
dtype: int64

Or elements from the index:

>>> seriesi|["student1"]
25

>>> seriesi[["student1", "student4"]]

student1 25
student4 30
dtype: int64

The .index method allows us to index the series:
>>> seriesl.index

Index(['student1', 'student2', 'student3', 'student4'],
dtype="object")
We can also verify the presence of an element in a series:

>>> 'student2' in seriesi

True

124

CHAPTER 8 PANDAS

If we did not import series and data frames separately, we can create a
series by specifying that we are using the pandas library:

>>> series2 = pd.Series([40, 20, 35, 70],
index = ["price1", "price2", "price3", "price4"])

if we did not import pandas as pd, we can specify the full
package name
>>> pandas.Series([40, 20, 35, 70],

index = ["price1", "price2", "price3", "price4"])

The pandas series are marked by indexes. If we do not specify the
index, it is created automatically:

>>> series3 = Series([25, 27, 28, 30])

series3
0 25
1 27
2 28
3 30

dtype: int64

To replace some of the elements in a series, we use the .replace
method.

>>> series3.replace([25, 27], [125, 127])

0 125
1 127
2 28
3 30

dtype: int64

125

CHAPTER 8 PANDAS

Let’s create another series: one with random numbers. To do this, we
need to load the NumPy library:

>>> import numpy as np

we create a series of random numbers

>>> series4 = pd.Series(np.random.randn(7))
we print it and examine the index

series4
-0.227393
-1.079208
0.101591
0.157502
1.541307
-0.182501
-0.247327
dtype: float64

S v b W N RO

we can modify the index with the .index() method
>>> series4.index = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
and check the index again

series4
a -0.227393
b -1.079208
C 0.101591
d 0.157502
e 1.541307
f -0.182501
g -0.247327
dtype: float64

126

CHAPTER 8 PANDAS
we create another random series
>>> series5 = pd.Series(np.random.randn(7))
and then merge the two series using the .concat() method
>>> s45 = pd.concat([series4, series5])
we print the created series
>>> s45

-0.227393
-1.079208
0.101591
0.157502
1.541307
-0.182501
.247327
-0.610507
0.282318
-1.142692
-1.081449
-1.818420
-1.133354
0.804213
dtype: float64

SV W N PO D QAN T W
1
o

we check one of the created structures
>>> type(s45)

>>> pandas.core.series.Series

127

CHAPTER 8 PANDAS

we remove some elements of the series
>>> >>> del(s45[5])
>>> S45

-0.227393
-1.079208
0.101591
0.157502
1.541307
-0.182501
.247327
-0.610507
0.282318
-1.142692
-1.081449
-1.818420
0.804213
: float64

SN B W N P O LD QO N T W
1
o

Q.

-+
<
e

)

>>> del(s45['f'])
>>> s45

-1.079208
0.101591
1.541307
-0.247327
-0.610507
.282318
-1.142692
-1.081449
-1.818420
0.804213
: float64

AN B~ W N P O D N T
o

Q.

~+
<
o

D

128

CHAPTER 8 PANDAS
we slice some elements from the series
>>> s45[0]
-0.61050680805211532
>>> s45[2:4]

e 1.541307
g -0.247327
dtype: float64

we can perform object slicing up to the fourth position
>>> s45[:4]

or from the fifth position onward

>>> s45[5:]

or we can extract the last three items

>>> s45[-3:]

we can extract the first and last elements using with the
.head() and .tail() methods

>>> s45.head(2)

>>> s45.tail(3)

we can reverse the series

>>> s45[::-1]

last, we can create a copy of the series with the .copy() method

>>> copys45 = s45.copy()

129

CHAPTER 8 PANDAS

pandas: Data Frames

The most important structure in pandas is the DataFrame, a structure
which extends the capabilities of the Series and allows us to manage our
datasets. Let’s create a small data frame with pandas:

we import pandas
>>> import pandas as pd

we use the DataFrame functions to create or import a dataset
or file from the computer

to get help with a particular function, we type

>>> help(pd.DataFrame())

Help on DataFrame in module pandas.core.frame object:

class DataFrame(pandas.core.generic.NDFrame)
| Two-dimensional size-mutable, potentially heterogeneous
| tabular data structure with labeled axes (rows and columns).
| Arithmetic operations align on both row and column labels.
| Can be thought of as a dict-like container for Series objects.
| The primary pandas data structure

|

|

Parameters
data : numpy ndarray (structured or homogeneous), dict, or
DataFrame

Dict can contain Series, arrays, constants, or list-like
objects

130

CHAPTER 8 PANDAS

index : Index or array-like
Index to use for resulting frame. Will default to
np.arange(n) if no indexing information part of input
data and no index provided

|

|

|

|

| columns : Index or array-like

| Column labels to use for resulting frame. Will default to
| np.arange(n) if no column labels are provided

|

dtype : dtype, default None
we create our first dataset

>>> df1 = pd.DataFrame({'Names': ['Simon', 'Kate', 'Francis',
"Laura’, 'Mary', 'Julian’, 'Rosie'],
'Height':[180, 165, 170, 164, 163, 175, 166],
'Weight':[85, 65, 68, 45, 43, 72, 46],
'Pref food':['steak', 'pizza', 'pasta', 'pizza', 'veget
ables', 'steak', 'seafood'],
"Sex':['m"', "f','m"'," ", 'F', 'm", "f'1})

caution: we cannot create variables with names that contain
a space; for instance, we can create the variable 'Var 1', but
naming a variable 'Var 1' returns an error

we print the data frame

>>> df1

Height Names Pref food Sex Weight
0 180 Simon steak m 85
1 165 Kate pizza f 65
2 170 Francis pasta m 68
3 164 Laura pizza f 45
4 163 Mary vegetables f 43
5 175 Julian steak m 72
6 166 Rosie seafood f 46

131

CHAPTER 8 PANDAS

it may be useful to conduct an analysis of our data, which we
can do using the .describe() method

>>> dfi.describe()

Height Weight
count 7.000000 7.000000
mean 169.000000 60.571429
std 6.377042 16.154021
min 163.000000 43.000000
25% 164.500000 45.500000
50% 166.000000 65.000000
75% 172.500000 70.000000
max 180.000000 85.000000

we can recall variable names
>>> df1.columns

Index(['Height', 'Names', 'Pref food', 'Sex', 'Weight'],
dtype="object")

At this point, we can continue by setting a variable—in this case,
‘Names’'—as index in this way:

>>> dfi.set_index('Names")

Height Pref food Sex Weight

Names

Simon 180 steak m 85

Kate 165 pizza f 65

Francis 170 pasta m 68

Laura 164 pizza f 45

Mary 163 vegetables f 43

Julian 175 steak m 72
f

Rosie 166 seafood 46

132

CHAPTER 8 PANDAS
to consolidate the index, we use the argument inplace = True
>>> dfi.set_index('Names', inplace = True)
we can reset the index as follows:
>>> dfi.reset index()
We can continue to explore our data.
we check the number of cases and variables

>>> print(dfi.shape)
(7, 4)

and determine variable type

>>> print(df1.dtypes)

Height int64
Pref food object
Sex object
Weight int64

dtype: object

Here, too, we can see the first and the last elements using the head()
and tail() functions. We may want to specify the number of cases we want
to display. In this case, we would use parentheses:

>>> dfi.head()
>>> df1.tail(3)

We can also get information about variables using the .info() method:
>>> df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7 entries, 0 to 6
Data columns (total 5 columns):

133

CHAPTER 8 PANDAS

Height 7 non-null int64
Names 7 non-null object
Pref food 7 non-null object
Sex 7 non-null object
Weight 7 non-null int64
dtypes: int64(2), object(3)

memory usage: 360.0+ bytes

We can then rearrange the data according to one of the variables:

>>> dfi.sort values(by = 'Weight")

Height Pref food Sex Weight

Names

Mary 163 vegetables f 43
Laura 164 pizza f 45
Rosle 166 seafood f 46
Kate 165 pizza f 65
Francis 170 pasta m 68
Julian 175 steak m 72
Simon 180 steak m 85

we rearranged our data based on weight, from the lowest to
the highest value. To reverse these values, from highest to
lowest, we specify the ascending argument as False

>>> dfi.sort values(by = 'Weight', ascending = False)

Height Pref food Sex Weight

Names

Simon 180 steak m 85
Julian 175 steak m 72
Francis 170 pasta m 68
Kate 165 pizza b 65
Rosie 166 seafood f 46
Laura 164 pizza £ 45
Mary 163 vegetables f 43

134

CHAPTER 8 PANDAS

if there are any missing values in our dataset (in particular,
in the variable used as the index), we can put them all at the
beginning or end of our display in the following ways

>>> dfl.sort_values(by = 'Weight', na_position = "last")

>>> dfil.sort_values(by

'Weight', na_position

"first")

to rearrange the dataset by index, we can use sort index,
instead of sort values, to sort the data in an ascending or
descending way

>>> dfi.sort_index()

>>> dfl.sort_index(ascending= False)

Names Eeight Pref_food Sex Weight

6 Rosie 166 seafood f 46
5 Julian 175 steak m 72
4 Mary 163 vegetables £ 43
3 Laura 164 pizza £ 45
2 Francis 170 pasta m 68
1 Kate 165 pizza £ 65
0 Simon 180 steak m 85

Let’s look at some examples of slicing items from a data frame:

from the first column (Python starts counting from 0, so we
use the 0 column), let's slice the first three cases:

>>> df1[:3]

Names Height Pref food Sex Weight
0 Simon 180 steak m 85
1 Kate 165 pizza f 65
2 Francis 170 pasta m 68

or slice from the fourth case to the end

135

CHAPTER 8 PANDAS

>>> df1[4:]

Names Heigth Pref food Sex Weight
4 Mary 163 vegetables f 43
5 Julian 175 steak m 72
6 Rosie 166 seafood f 46

or slice one of the columns
>>> df1["Names']

Simon
Kate
Francis
Laura
Mary
Julian

SOV AW N B O

Rosie
Name: Names, dtype: object

by using single square brackets, as we just did, we can
extract a variable like a Series

here's another way to do this
>>> df1.Names

Simon
Kate
Francis
Laura
Mary
Julian

o v B W N RO

Rosie
Name: Names, dtype: object

136

CHAPTER 8 PANDAS

a third way is to use double square brackets to we select a
data frame

>>> df1[['Names']]

Names

o

Simon

Kate

Francis

Laura

Mary

Julian

||~ W N =

Rosie

we can also select more columns
>>> df1[['Names', 'Sex']]

We can select the value of a variable for a particular element—for
example, the third value:

>>> df1["Sex'][2]

m
or some values of some variables

>>> df1['Names'][1:4]

1 Kate
2 Francis
3 Laura

Name: Names, dtype: object

137

CHAPTER 8 PANDAS

To select items from a data frame we can also use the .loc, .iloc, and .ix
methods:

e .loc: works through the index
o .iloc: extracts via position

e .ix:takes both into account

.loc

>>> df1.loc[1]

Names Kate
Height 165
Pref food pizza
Sex f
Weight 65

Name: 1, dtype: object
we can extract the elements from the first to the fourth
>>> df1.loc[:3]

.iloc

we can extract the element found in the first case and in the
third variable

>>> df1.iloc[0,2]
'steak’

an alternative to .iloc is the .iat method

>>> dfi.iat[1,3]
I-FI

the .at and .iat methods are based on the index

>>> dfi.at[2, 'Sex']

m

138

CHAPTER 8 PANDAS

to the left of the comma, we indicate the cases to be
extracted; to the right, the columns or variables (table not
shown). To extract all elements, we use a colon

what if we wanted to extract every other case?

>>> df1[::2]
Names Height Pref food Sex Weight
0 Simon 180 steak m 85
2 Francis 170 pasta m 68
B Mary 163 vegetables f 43
6 Rosie 166 seafood f 46

Through Boolean operators we can specify extracting conditions. For
instance, we can extract the cases of the dataset in which the height of the
subjects (Height) is greater than 170:

>>> dfi1[df1.Height > 170]

Names Height Pref food Sex Weight
0 Simon 180 steak m 85
5 Julian 175 steak m 72

We can also specify multiple conditions, such as extracting all females
who weigh more than 163:

>>> df1[(df1.Height > 163) & (df1.Sex == 'f')]
Alternatively, we can also use the .query() method:
>>> dfi.query("Sex != '"f'")

Names Height Pref food Sex Weight

0 Simon 180 steak m 85
2 Francis 170 pasta m 68
5 Julian 175 steak m 72

139

CHAPTER 8 PANDAS

Now let’s look at how to rename a column:
>>> df1l = dfi.rename(columns = {'Pref food': 'Food'})

>>> dfi.head(2)
Names Height Food Sex Weight
Simon 180 steak m 85
Kate 165 pizza f 65

We can create a copy of our data frame:
>>> df2 = dfi.copy()

>>> df2

Names Height Pref food Sex Weight

0 Simon 180 steak m 85
1 Kate 165 plzza f 65
2 Francis 170 pasta m 68
3 Laura 164 pizza f 45
4 Mary 163 vegetables f 43
5 Julian 175 steak m 72
6 Rosie 166 seafood f 46

We can also add a column. For example, let’s add a column to the df2
dataset that contains height in centimeters:

>>> df2['new_col'] = df2.Height/100

>>> df2

Names Heigth Food Sex Weight new col
0 Simon 180 steak m 85 1.80
1 Kate 165 pizza f 65 1.65
2 Francis 170 pasta m 68 1.70
3 Laura 164 pizza f 45 1.64
4 Mary 163 vegetables f 43 1.63
5 Julian 175 steak m 72 1.75
6 Rosie 166 seafood f 46 1.66

140

CHAPTER 8 PANDAS

We can also add a column using the .insert() method. The first
element, 5, marks the location where we want to insert the new column
(the sixth position), the second is the name of the new column, and the
third is the value of the new column:

>>> df2.insert(5, column = 'new col2', value = df2.Height/100)
>>> print(df2.head(2))

Names Heigth Pref food Sex Weight new col2 new col
Simon 180 steak m 85 1.80 1.80
Kate 165 pizza f 65 1.65 1.65

Let’s return to the df1 dataset without additions. By using .groupby(),
we can also aggregate the dataset around one or more variables.

>>> df1.groupby('Sex")
<pandas.core.groupby.DataFrameGroupBy object at 0x10c8b2be0>

We can create an object that contains aggregated groups according to
the ‘Sex’ variable:

>>> groupedl = df1.groupby('Sex")
to view the groups, we use group_name.groups
>>> grouped1l.groups
{"f': [1, 3, 4, 6], 'm": [0, 2, 5]}
We can visualize the number of cases labeled in one way or another.
to see the cases, proceed as follows

>>> for names, groups in groupedi:
print(names)
print(groups)

141

CHAPTER 8 PANDAS

f
Names Height Food Sex Weight
1 Kate 165 pizza b3 65
3 Laura 164 pizza £ 45
4 Mary 163 vegetables f 43
6 Rosie 166 seafood f 46
m
Names Height Food Sex Weight
0 Simon 180 steak m 85
2 Francis 170 pasta m 68
5 Julian 175 steak m 72

note that we only get data belonging to a group
>>> groupedl.get group('f")

we can aggregate cases according to two variables
>>> grouped2 = dfi.groupby(['Sex', 'Pref food'])
>>> grouped2.groups

{("f", '"pizza"): [1, 3],
('f', 'seafood'): [6],
('f', 'vegetables'): [4],
(‘'m', ‘'pasta'): [2],
('m", 'steak'): [0, 5]}
we can also determine how many cases fall into each of the groups

>>> grouped2.size()

Sex Pref food

f pizza 2
seafood 1
vegetables 1

m pasta 1
steak 2

dtype: inté64

142

CHAPTER 8 PANDAS

we can obtain some descriptive statistics about the data

>>> grouped2.describe()

Height

Weight

Sex | Pref_food

pizza

count

2.000000

2.000000

mean

164.500000

55.000000

std

0.707107

14.142136

min

164.000000

45.000000

25%

164.250000

50.000000

50%

164.500000

55.000000

75%

164.750000

60.000000

max

165.000000

65.000000

f seafood

count

1.000000

1.000000

mean

166.000000

46.000000

std

NaN

NaN

min

166.000000

46.000000

25%

166.000000

46.000000

50%

166.000000

46.000000

75%

166.000000

46.000000

max

166.000000

46.000000

We can also count the frequency of a variable using the .value counts()

method.

>>> df1['Sex'].value counts()

f 4
m 3
Name: Sex, dtype: int64

143

CHAPTER 8 PANDAS

Returning to the df1 dataset, we can acquire information about the
variables using the .info() method.

>>> print(dfi)
>>> df1.info()

With the .astype() method, we can change the nature of a variable. For
example, we can overwrite a variable from int (a numeric variable) to an
object variable, such as a string:

>>> df1['Weight'] = dfi['Weight'].astype('object")
>>> dfi.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7 entries, 0 to 6

Data columns (total 5 columns):
Height 7 non-null int64

Names 7 non-null object

Pref food 7 non-null object

Sex 7 non-null object

Weight 7 non-null object
dtypes: int64(1), object(4)

memory usage: 360.0+ bytes

We can delete cases and variables with the .drop() method:

>>> df1.drop(0)

Names Height Food Sex Weight
1 Kate 165 pizza f 65
2 Francis 170 pasta m 68
3 Laura 164 pizza f 45
4 Mary 163 vegetables f 43
5 Julian 175 steak m 72
6 Rosie 166 seafood £ 46

144

CHAPTER 8 PANDAS

if, on the other hand, we set and consolidate the index, we
eliminate the case based on the value of the index

>>> dfl.set_index('Names', inplace = True)
>>> dfi.drop("Laura")

Height Pref food Sex Weight

Names

Simon 180 steak m 85
Kate 165 pizza f 65
Francis 170 pasta m 68
Mary 163 vegetables f 43
Julian 175 steak m 72
Rosie 166 seafood f 46

we can remove more than one element at a time
>>> print(dfi.drop(["Mary", "Francis"]))
or remove an entire column

to do this, we must specify axis 1 (the default axis 0
indicates rows)

>>> dfi.drop("Height", axis = 1)

Names Pref food Sex Weight

Simon steak m 85
Kate pizza f 65
Francis pasta m 68
Laura pizza f 45
Mary vegetables f 43
Julian steak m 72
Rosie seafood f 46

145

CHAPTER 8 PANDAS
To remove multiple columns, include them in a list:
>>> df.drop(["column1", "column2"], axis = 1)

instead of specifying the axis as 1, we can also specify
"columns”

>>> df.drop(["column1", "column2"], axis = "columns")

The pandas package also allows us to create cross-tabs with the same
function. For instance, in the df1 dataset, we can create a cross-tab that
correlates gender with favorite food:

>>> pd.crosstab(df1.Sex, dfi.Pref food)

Pref food pasta pizza seafood steak vegetables
Sex

f 0 2 1 0

m 1 0 0 2 0

When we add the margins parameter, we also get the row with the
totals:

>>> pd.crosstab(df1.Sex, dfi.Pref food, margins = True)

Pref food pasta pizza seafood steak vegetables All
Sex

f 0 2 1 0 1 4
m 1 0 0 2 0 3
All 1 2 1 2 1

146

CHAPTER 8 PANDAS

pandas: Importing and Exporting Data

The pandas library is also very important with regard to importing files

from your computer in various formats, including .csv:
import pandas as pd
>>> df2 = pd.read csv("file address.csv")

we can import a file by specifying that the first line does
NOT contain variable names

>>> df2 = pd.read csv("file address.csv", header = None)

or by specifying which row contains variable names

0)
1)

>>> df2
>>> df2

pd.read csv("file address.csv", header
pd.read csv("file address.csv", header

we can also specify column names

>>> df2 = pd.read _csv("file address.csv"”, names = ['vari',
'var2, 'var3, 'var4])

or we can import only a part of the columns

>>> df2 = pd.read csv("file address.csv", usecols = [1,2,3])

we can also specify the element separating our data

>>> df2 = pd.read csv("file address.csv", sep = " ")

we can now take a look at the first records of the data frame

>>> df2.head()

147

CHAPTER 8 PANDAS
or the last
>>> df2.tail()

we use parentheses to specify the number of cases to be
displayed

>>> df2.head(9)
>>> df2.tail(5)

and we can see a summary of the dataset
>>> df2.describe()

>>> df2.info()

>>> df.dtypes() # it tells us our data type

The pd.read_csv() function can also be used to import files from the
Web. The UCI machine learning repository (https://archive.ics.uci.
edu/ml/index.php) features several data sets used for machine learning.

Let’s look at an iris dataset. Figures 8-1 through 8-3 and the following
steps help us navigate to its tab and copy the link featuring the dataset.

Most Popular Data Sets (hits since 2007):

1223849: Iris *—

Figure 8-1. Iris dataset on the UCI machine learning web site
click on ‘Iris’ to get description page

w

148

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php

CHAPTER 8 PANDAS

Iris Data Set
Download: Data Folder, Data Set Description

Abstract: Famous datab: m Fisher, 1936
Data Set Characteristics: | Multivariate Number of Instances: | 150 | Area: Life
Attribute Characteristics: | Real Number of Attributes: | 4 Date Donated 1988-07-01
Associated Tasks: Classification | Missing Values? No | Number of Web Hits: | 1223849

Figure 8-2. Iris dataset on the UCI machine learning web site

Index of /ml/machine-learning-databases/iris

Name Last modified ~ Size Description
» Parent Directory -
[2) Index 03-Dec-1996 04:01 105
[?) bezdekiris data 14-Dec-1999 12:12 44K
[?) iris.data 6:27 44K
&) iris.names 11-Jul-2000 21:30 2.9K

Apachel/2.2.15 (CentOS) Server at archive.ics.uci.edu Port 443

Figure 8-3. Iris dataset on the UCI machine learning web site click
on ‘Data Folder’ to access the page containing the dataset

First, we copy the link featuring the dataset.
we import pandas
>>> import pandas as pd

we create an object featuring the dataset, which we are
importing with pd.read csv()

>>> iris = pd.read_csv("https://archive.ics.uci.edu/ml/machine-
learning-databases/iris/iris.data")

149

CHAPTER 8 PANDAS

we check data accuracy by displaying some occurrences using
the function .head()

>>> iris.head(3)
5.1 3.5 1.4 0.2 Iris-setosa
4.9 3.0 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa
4.6 3.1 1.5 0.2 Iris-setosa

The structure of the pandas function we used, pd.read_csv(), also
includes other arguments we did not use for this import:

pd.read_csv(filepath, sep = ',', dtype = None, skiprows = None,
index_col = None, skip_blank_lines = True, na_filter = True)

filepath the address of the file (on the computer or
externally)

sep = ', the separator dividing data, such as a
comma or semicolon

dtype= a means of specifying column format
header= names of variables in the first line, if any

skiprows= a means of importing only one part of
cases—for example, skiprows = 50 reads data from
the 51st case onward

index_col= a means of setting a column as a data
index

skip_blank_lines= a means of removing any blank
lines in the dataset

na_filter= a means of identifying the missing values
in the dataset and, if set to False, removing them

150

CHAPTER 8 PANDAS

In addition, the usecols= argument can be used to import only a few
columns in a dataset. For instance, let’s say we have the small dataset
shown in Figure 8-4, from which we want to extract the following variables:

>>> df3 = pd.read csv("~students.csv",usecols =["ID", "marki"],
index col= ["ID"])

we verify data

df3

marki
ID
1 17.0
2 24.0
3 17.0
4 27.0
5 30.0
6 30.0
7 23.0
8 17.0
9 21.0
10 24.0
11 24.0
12 25.0
13 24.0
14 NaN
15 22.0
16 30.0
17 29.0
18 29.0
19 NaN

correctly, we only loaded the 'marki' variable

151

CHAPTER 8 PANDAS

,"ID", "gender"”,"subject","markl", "mark2","mark3","fres"
1,"M",1,17,20,15, " neg"
'F",2,24,30,23,"pos"

+1,17,16,NA, "neg"

,21,"pos"

,24,"pos"

,25,"pos"

24, "pos"
3 ,28,"neg"

",1,21,24,24,"pos"

,24,25,24, "pos"

S AD DU d LR E

R, 2
11",11,"F",2,24,22,25,"pos"
12",12,"M",1,25,27,24, "pos”
13",13,"F",2,24,24,25,"pos"
14",14,"M",3,NA, 17,15, "neg"
15",15,"M",2,22,27,24, "pos"
16",16,"F",1,30,24,27,"pos"
17",17,"F",2,29,27,23,"pos"
"M",3,29,26,22,"pos"
SF1

'
",1,NA, 17,15, "neg"

Figure 8-4. Dataset students.csv

One specular function is df.to_csv(“filename”), which allows us to
write a .csv file into our work directory. We can specify the index=False
argument to avoid downloading the index together with data.

As an alternative to this file import function, we can use the pd.read_
table(filepath, sep = ,") function, which sets both the file path (filepath)
and the separator.

Other pandas features allow us to read Excel .xIs or .xlsx files. To do
this, we use a generic formula:

df = pd.read_excel(filepath, "sheet_name")

In this case, not only must we specify the address of the file, but also
whether the Excel file features more than one data sheet, and the name of
the sheet from which we want to read data. As with .csv, for Excel formats
we also have a formula that allows us to write an Excel file in the work
directory of our computer: df.to_excel(). The pandas package also contains
a function for reading files in JSON—pd.read_json()—and also allows us to
access Web data via the pd.read_html(url) function and to convert a data
frame to an HTML table via pd.to_html().

152

CHAPTER 8 PANDAS
Let’s look at an example of creating and exporting a file in JSON:

>>> jf = pd.DataFrame(np.arange(16).reshape(4,4), index = ['A',
'B', 'C', 'D'], columns = ['vari', 'var2', 'var3', 'var4'l])

>> jf

varl var2 var3 var4
A 0 1 2 3
B 4 5 6 7
C 8 9 10 11
D 12 13 14 15

>>> jf.to_json('jf.json")

all that is left is to check that the file has been created
correctly in our work directory

pandas: Data Manipulation

We have seen how to create groups and manipulate data frames. Now let’s
look at more manipulation elements through pandas. First, let’s import
pandas and create a small dataset:

>>> df2 = pd.DataFrame({'Names': ['Simon', 'Kate', 'Francis',
"Laura', 'Mary', 'Julian', 'Rosie', 'Simon', 'Laura'],
'Height':[180, 165, 170, 164, 163, 175, 166,
180, 164],
"Weight':[85, 65, 68, 45, 43, 72, 46, 85, 45],
"Pref food': ['steak', 'pizza', 'pasta’,
'pizza', 'vegetables', 'steak', 'seafood',
"steak', 'pizza'l,
"Sex': ['m', ', 'm" L ', 'mY, T]))

153

CHAPTER 8 PANDAS

Starting with the ‘Sex’ variable, let’s create two dummy variables and

continue with pandas:

>>> df dummy = pd.get dummies(df2['Sex'], prefix

>>> df_dummy

Sex f Sex m

0O N O VT B W N B O

0.

B O Rr O R KB O B,

0

O O O ©O O O o o

1.

O b O B O O +» O

O O O ©O O o o o o

"Sex")

At this point, we can join these two dummy variables to the

original dataset:

>>> df2.join(df_dummy)

Unnamed: 0 Height

0 N O U1 B~ W N P O

154

0

w O o Ui »p W N R

180
165
170
164
163
175
166
180
164

Names
Simon steak
Kate pizza
Francis pasta
Laura pizza
Mary vegetables
Julian steak
Rosie seafood
Simon steak
Laura pizza

m

- = -+ = -+ - = -

85
65
68
45
43
72
46
85
45

L O P O P P O B,
O O O O O O o o

0

1.

o BB O B O O k»r O

Food Sex Weight Sex_f Sex_m
0.

O O O O O o o o o

CHAPTER 8 PANDAS

We save the joined dataset featuring the dummy variables in a new
object:

>>> df3 = df2.join(df_dummy)
let's check
>>> print(df3.head(2))

Height Names Pref food Sex Weight Sex f Sex m
0 180 Simon steak m 85 0.0 1.0
165 Kate pizza f 65 1.0 0.0

Now let’s remove the original ‘Sex’ variable:
>>> del df3['Sex']
double-check
>>> print(df3.head(2))

Height Names Pref food Weight Sex f Sex m
0 180 Simon steak 85 0.0 1.0
165 Kate pizza 65 1.0 0.0

As you can see, there are a couple of duplicate cases inside our dataset.
First, we need to identify them:

>>> df2.duplicated()
False
False
False
False
False
False

S U1 B~ W N RO

False

155

CHAPTER 8 PANDAS

7 True
8 True
dtype: bool

our dataset has two duplicate cases
To remove duplicate cases, we use .drop_duplicates():
>>> df2.drop_duplicates()

To get a dataset without duplicates, we overwrite the old one or create
another object:

>>> df3 = df2.drop duplicates()
We can also delete a case, this time using drop:
>>> df2.drop(2)

Height Names Pref food Sex Weight

0 180 Simon steak m 85
1 165 Kate pizza f 65
3 164 Laura pizza f 45
4 163 Mary vegetables f 43
5 175 Julian steak m 72
6 166 Rosie seafood f 46
7 180 Simon steak m 85
8 164 Llaura pizza f 45

in this case, we delete the third case

156

CHAPTER 8 PANDAS

The stack() and unstack() functions allow us to reorganize our data in a
different way:

>>> df3.stack()

0 Height 180
Names Simon
Pref food steak
Sex m
Weight 85

1 Height 165
Names Kate
Pref food pizza
Sex f
Weight 65

2 Height 170
Names Francis
Pref food pasta
Sex m
Weight 68

3 Height 164
Names Laura
Pref food pizza
Sex f
Weight 45

4 Height 163
Names Mary
Pref_food vegetables
Sex f
Weight 43

..

157

CHAPTER 8 PANDAS
we save the result in an object
>>> stacked = df3.stack()

and now we can return it to its
unstacked()

>>> unstacked = stacked.unstack()
>>> print(unstacked)

Height Names Pref food Sex

0 180 Simon steak m
1 165 Kate pizza f
2 170 Francis pasta m
3 164 Laura pizza f
4 163 Mary vegetables f
5 175 Julian steak m
6 166 Rosie seafood f

original format using

Weight
85
65
68
45
43
72
46

We can also reorganize our data via the melt() function:

>>> pd.melt(df3)

variable value
0 Height 180
1 Height 165
2 Height 170
3 Height 164
4 Height 163
5 Height 175
6 Height 166
7 Names Simon
8 Names Kate
9 Names Francis

158

CHAPTER 8 PANDAS

10 Names Laura
11 Names Mary
12 Names Julian
13 Names Rosie

[...]

Let’s go back to the initial dataset

>>> df2.head(2)
Height Names Pref food Sex Weight
0 180 Simon steak m 85
165 Kate pizza f 65

and use the .T() function to transpose rows and columns:

we invert rows and columns

>>> df2.T
0 1 2 3 4 5 6 7 8
Height 180 |165 (170 164 |[163 175 |166 180 |164
Names Simon | Kate | Francis | Laura | Mary Julian | Rosie | Simon | Laura

Pref_food |steak |pizza|pasta |pizza |vegetables |steak |seafood |steak |pizza

Sex m f m f f m f m f

Weight 85 65 |68 45 43 72 46 85 45

We can also extract a random sample of our data using the .sample()

function:
>>> df2.sample(n=2)

Height Names Pref food Sex Weight
6 166 Rosie seafood f 46
163 Mary vegetables f 43

159

CHAPTER 8 PANDAS

In parentheses (n=2), we inserted the number of cases to be extracted.
How can we always extract the same cases randomly, so that extraction can
be repeated? We use the np.random.seed() function. The number included
in parentheses in this function does not really matter, but if two people use
the same dataset and use the same number, they will extract the same cases.

To do this, we need to import the NumPy package:

>>> import numpy as np
>>> np.random.seed(1)
>>> df2.sample(n=2)

Height Names Pref food Sex Weight
3 164 Laura pizza f 45
7 180 Simon steak m 85

>>> np.random.seed(1)
>>> df2.sample(n=2)

Height Names Pref food Sex Weight
3 164 Laura pizza f 45
7 180 Simon steak m 85

Instead of extracting a number of cases, we can extract a percentage,
with the argument frac= instead of n=

.1)
.5)

Using the argument frac =, we specified the percentage; 0.1 is 10%, 0.5

>>> df2.sample(frac

>>> df2.sample(frac

is 50%, and so on.

we can view cases with the highest values for a certain
variable by specifying the number of cases (in this case, 3)
and the column (in this case, Weight)

160

CHAPTER 8 PANDAS
let's consider the df3 dataset, which does not feature duplicates

>>> df3.nlargest(3, "Weight")
Height Names Pref food Sex Weight

0 180 Simon steak m 85
175 Julian steak m 72
2 170 Francis pasta m 68

Let’s now call the cases with the lowest values for a certain variable,
and specify the number of cases:

>>> df3.nsmallest(4, "Weight")

Height Names Pref food Sex Weight

4 163 Mary vegetables f 43
3 164 Laura pizza f 45
6 166 Rosie seafood f 46
1 165 Kate pizza f 65

Last, we can create a small dataset and reorganize data with the pivot_
table() function:

>>> df4 = pd.DataFrame({'Date': ['2017-01-01", '2017-01-01",
'2017-01-02', '2017-01-01', '2017-01-02', '2017-01-02', '2017-
01-03', '2017-01-02', '2017-01-03', '2017-01-03'],
'Typelz[lxl) X, Iyl) X', 'Y': x', 'z,
'y, 'zt Yy
'Value':[185, 265, 168, 245, 143, 172, 346,
285, 145, 128],

1)
>>> print(df4)

161

CHAPTER 8 PANDAS

Date Type Value

0 2017-01-01 x 185
1 2017-01-01 x 265
2 2017-01-02 y 168
3 2017-01-01 x 245
4 2017-01-02 y 143
5 2017-01-02 x 172
6 2017-01-03 z 346
7 2017-01-02 y 285
8 2017-01-03 z 145
9 2017-01-03 y 128

>>> print(pd.pivot table(df4, index = "Date", values = "Value",
columns = "Type"))

Type X y z
Date

2017-01-01 231.666667 NaN NaN
2017-01-02 172.000000 198.666667 NaN
2017-01-03 NaN 128.000000 245.5

we aggregate the values around the dates

pandas: Missing Values

Now let’s examine how we can manage datasets with missing data. After
importing pandas, we load a dataset that has missing values:

>>> import pandas as pd
>>> df missing = pd.read csv('df missing.csv')

I created this tiny dataset with missing data, as you can see

>>> df missing

162

O 60N O LT & W N B O

A B C
15 96.0 74.0
41 27.0 74.0
21 32.0 NaN
48 97.0 50.0
63 98.0 74.0
43 11.0 80.0
39 38.0 81.0
58 31.0 NaN
85 94.0 37.0
98 NaN 19.0

We can verify the number of cases and variables:

D
31.0
279.0
99.0
NaN
44.0
74.0
20.0
76.0
65.0
43.0

E
50
57
96
69
55
33
41
91
60
32

>>> print(df_missing.shape)
(10, 5)

We can check the complete cases:

>>> print(df_missing.dropna().shape)
(6, 5)

We can also use .isnull(), which answers the question: Is a value missing?

>>> pd.isnull(df missing)

O 60N O U1 B W N B O

A
False
False
False
False
False
False
False
False
False
False

B
False
False
False
False
False
False
False
False
False

True

C
False
False

True
False
False
False
False

True
False
False

D
False
False
False

True
False
False
False
False
False
False

E
False
False
False
False
False
False
False
False
False
False

CHAPTER 8 PANDAS

163

CHAPTER 8 PANDAS
The converse, .notnull(), answers the question: Is a value not missing?

>>> pd.notnull(df missing)

A B C D E
True True True True True
True True True True True
True True False True True
True True True False True
True True True True True
True True True True True
True True True True True
True True False True True
True True True True True

O 60N O LT B W N B O

True False True True True
We can add the missing values per column:

>>> df missing.isnull().sum()

A 0
B 1
C 2
D 1
E 0

or determine the total of missing data

>>> df missing.isnull().sum().sum()
4

164

CHAPTER 8 PANDAS

Missing values can be treated by deletion (or by deleting the cases that
contain them) or imputation (that is, by replacing missing values with
other values, such as a fixed value or an average). To perform a deletion,
proceed as follows:

>>> df missing.dropna()

A B C D E
0 15 96.0 74.0 31.0 50
1 41 27.0 74.0 279.0 57
4 63 98.0 74.0 44.0 55
5 43 11.0 80.0 74.0 33
6 39 38.0 81.0 20.0 41
8 85 94.0 37.0 65.0 60

We eliminated the lines containing missing values. We can also delete
the columns with missing values:

>>> df_missing.dropna(axis = 1, how = 'any")
A E
15 50
41 57
21 96
48 69
63 55
43 33
39 41
58 91
85 60
98 32

O 60N O VT &~ W N B O

165

CHAPTER 8 PANDAS

As mentioned, using imputation methods, we can replace a missing
value with another value. Let’s replace all missing values with a fixed
value—in this case, zero:

>>> df missing.fillna(0)

A B C D E
0 15 96.0 74.0 31.0 50
1 41 27.0 74.0 279.0 57
2 21 32.0 0.0 99.0 96
3 48 97.0 50.0 0.0 69
4 63 98.0 74.0 44.0 55
5 43 11.0 80.0 74.0 33
6 39 38.0 81.0 20.0 41
7 58 31.0 0.0 76.0 91
8 85 94.0 37.0 65.0 60
9 98 0.0 19.0 43.0 32

We can also replace missing values with a word, such as “missing”:

>>> df_missing.fillna('missing")

A B C D E
0 15 96 74 31 50
1 41 27 74 279 57
2 21 32 missing 99 96
3 48 97 50 missing 69
4 63 98 74 44 55
5 43 11 80 74 33
6 39 38 81 20 41
7 58 31 missing 76 91
8 85 94 37 65 60
9 98 missing 19 43 32

166

Or impute missing values to the average:

>>> df missing.fillna(df missing.mean())

A
15
41
21
48
63
43
39
58
85
98

O 60N O LT & W N B O

96.
27.
32.
97.
98.
11.
38.
31.
9.
58.

B
000000
000000
000000
000000
000000
000000
000000
000000
000000
222222

74.
74.
61.
50.
74.
80.
81.
61.
37.
19.

C
000
000
125
000
000
000
000
125
000
000

31
279

99.
81.
44.
74.
20.
76.
65.
43.

D
.000000
.000000
000000
222222
000000
000000
000000
000000
000000
000000

E
50
57
96
69
55
33
41
91
60
32

CHAPTER 8 PANDAS

Let’s consider a variable, such as variable ‘C’. The following line of code

will replace every missing value in the variable C with the mean of C:

>>> df missing['C'].fillna(df missing['C'].mean())

O 60N O VT &~ W N B O

74.
74.
61.
50.
74.
80.
81.
61.
37.
19.

000
000
125
000
000
000
000
125
000
000

Name: C, dtype: float64

167

CHAPTER 8 PANDAS

Two important .fillna methods can be used to impute missing values:
ffill and backfill:

>>> df missing['C'].fillna(method = 'ffill")
74.0

74.
74.
50.
74.
80.
81.
81.
37.
19.
Name: C, dtype: float64

O 60N O LT B W N B O
O O O O O O O o o

>>> df missing['C'].fillna(method = 'backfill")
74.0

74.
50.
50.
74.
80.
81.
37.
37.
19.
Name: C, dtype: float64

O 60N O U1 &~ W N B O
O O O O ©O O o o o

ffill replaces the missing value with the default value
preceding it, whereas backfill replaces it with the nonmissing
value that follows it. To save the results of one of these
insertion or replacement operations, we must create a new data
frame or overwrite the initial one.

168

CHAPTER 8 PANDAS

pandas: Merging Two Datasets

There are many ways to combine two data frames. We can delete
overlapping cases, juxtapose two files, and join new cases or new
variables. Let’s look at some pandas examples. First, we need to create
sample data frames:

>>> df1 = pd.DataFrame({'id': ['A"', 'B', 'C', 'D'], 'vari' :
[37, 36, 43, 23], 'var2': [120, 117, 230, 315]})

>>> df1

id varl var2
0 A 37 120
1 B 36 117
2 C 43 230
3 D 23 315

>>> df2 = pd.DataFrame({'id': ['A"', 'B', 'C', 'D'], 'var3' :
[12, 16, 13, 18], 'var4': [75, 54, 21, 36]})

>>> df2

id var3 var4
0 A 12 75
1 B 16 54
2 C 13 21
3 D 18 36

>>> df3 = pd.DataFrame({'id': ['A"', 'A"', 'B', 'B'], 'var3' :
[2) 6) 3’ 8]) Ivar4': [7J 5) 2) 6]})

id var3 var4
A 2 7

6 5
3 2
8 6

169

CHAPTER 8 PANDAS
The easiest way to merge two datasets is to use the .append() method:

>>> dfi.append(df2)

.
Q.

varl var2 var3 var4
37.0 120.0 NaN NaN
36.0 117.0 NaN NaN
43.0 230.0 NaN NaN
23.0 315.0 NaN NaN
NaN NaN 12.0 75.0
NaN NaN 16.0 54.0
NaN NaN 13.0 21.0
NaN NaN 18.0 36.0

w N P O W N BB O
O N ™ > O N 0 >

>>> df3.append(df1)

e
[«

varl var2 var3 var4
NaN NaN 2.0 7.0
NaN NaN 6.0 5.0
NaN NaN 3.0 2.0
NaN NaN 8.0 6.0
37.0 120.0 NaN NaN
36.0 117.0 NaN NaN
43.0 230.0 NaN NaN
23.0 315.0 NaN NaN

w N B O W N R O
O N @™ > W W > >

As you can see, the two datasets are juxtaposed every time, without the
system taking into account and adjusting the index . To merge more than
two datasets, we can use .concat():

>>> pd.concat([df1, df2, df3])

170

CHAPTER 8 PANDAS

id varla var2 var3 var4
0 A 37.0 120.0 NaN NaN
1 B 36.0 117.0 NaN NaN
2 C 43.0 230.0 NaN NaN
3 D 23.0 315.0 NaN NaN
0 A NaN NaN 12.0 75.0
1 B NaN NaN 16.0 54.0
2 C NaN NaN 13.0 21.0
3 D NaN NaN 18.0 36.0
0 A NaN NaN 2.0 7.0
1 A NaN NaN 6.0 5.0
2 B NaN NaN 3.0 2.0
3 B NaN NaN 8.0 6.0

In this way, we concatenated the datasets horizontally. We can also
concatenate them vertically by specifying the axis as 1 (in the previous
example, the axis was not specified so it defaulted to zero):

>>> pd.concat([df1, df2, df3], axis = 1)
the code above and this line below will give us the same result
>>> pd.concat([df1, df2, df3], axis = 'columns")

id wvarl wvar2 id var3 var4 id var3 var4g

0 A 37 120 A 12 75 A 2 7
1 B 36 117 B 16 54 A 6 5
2 C 43 230 C 13 21 B 3 2
3 D 23 315 D 18 36 B 8 6

171

CHAPTER 8 PANDAS

We can combine two datasets in an even more advanced way, starting
from two tables that have some rows and columns in common, and
merging them through shared data. The pandas function that allows us to
make this type of join is merge(). First, we need to create two datasets:

>>> studl = pd.DataFrame({'ID': [1,2,3,4,5], 'names' : ['John',
'‘Greta', 'Francis', 'Laura', 'Charles'], 'Logic': [28, 27, 23,
25, 30]})

>>> stud2 = pd.DataFrame({'ID': [1,6,3,4,7], "names' : ['John',
'Kate', 'Francis', 'Laura', 'Simon'], 'Analysis': [23, 24, 28,
29, 22]})

by default, the merge() function extracts common cases to the
two datasets, so it is 'inner' by default. Inner join selects
records that have matching values in both datasets

>>> pd.merge(studl, stud2, on = 'ID")

ID Logic names x Analysis names_y

0 1 28 John 23 John
1 3 23 Francis 28 Francis
2 4 25 Laura 29 Laura

There are other means of merging two datasets: ‘left, ‘right’, and
‘outer’. We use the dataset index—in this case, the ID column—as a key
(index) to merge the datasets.

>>> print(pd.merge(studi, stud2, on = 'ID', how = 'left"))

ID Logic names_x Analysis names_y

0 1 28 John 23.0 John
1 2 27 Greta NaN NaN
2 3 23 Francis 28.0 Francis
3 4 25 Laura 29.0 Laura
4 5 30 Charles NaN NaN

172

CHAPTER 8 PANDAS

The ‘left’ parameter allows us to merge the second dataset into
the first, taking only the cases of the first dataset and the cases that are
common to the second and the first dataset.

>>> print(pd.merge(stud1, stud2, on = "ID', how = 'right'))

ID Logic names_x Analysis names_y

0 1 28.0 John 23 John
1 3 23.0 Francis 28 Francis
2 4 25.0 Laura 29 Laura
3 6 NaN NaN 24 Kate
4 7 NaN NaN 22 Simon

The ‘right’ parameter allows to merge the first dataset into the second,
taking only the cases of the second and those that are common to the
second and the first at the same time.

>>> print(pd.merge(stud1, stud2, on = "ID', how = ‘outer'))

ID Logic names x Analysis names_y

0 1 28.0 John 23.0 John
1 2 27.0 Greta NaN NaN
2 3 23.0 Francis 28.0 Francis
3 4 25.0 Laura 29.0 Laura
4 5 30.0 Charles NaN NaN
5 6 NaN NaN 24.0 Kate
6 7 NaN NaN 22.0 Simon

When we use ‘outer, we merge the cases of the two data frames,
holding only a copy of the double cases, but without losing data from one
of the two initial datasets.

173

CHAPTER 8 PANDAS

pandas: Basic Statistics

The pandas library has a lot of methods for statistics, which we can use to
get descriptive statistical information. As always, we use our data frame:

>>> df = pd.DataFrame({'Names': ['Simon', 'Kate', 'Francis’,
"Laura', 'Mary', 'Julian', 'Rosie'],
"Height':[180, 165, 170, 164, 163, 175, 166],
'Weight':[85, 65, 68, 45, 43, 72, 46],
"Pref food':['steak', 'pizza', 'pasta', 'pizza’,
'vegetables', 'steak', 'seafood'],
"Sex':['m"', '"f','m'," £, £, 'm', "£']})

some information on numeric data

>>> df.describe()

Height Weight
count 7.000000 7.000000
mean 169.000000 60.571429
std 6.377042 16.154021
min 163.000000 43.000000
25% 164.500000 45.500000
50% 166.000000 65.000000
75% 172.500000 70.000000
max 180.000000 85.000000

we can also rearrange the statistics with the .transpose
method to make it more readable

>>> df.describe().transpose()

count mean std min 25% 50% 75% max
Height 7.0 169.000000 6.377042 163.0 164.5 166.0 172.5 180.0
Weight 7.0 60.571429 16.154021 43.0 45.5 65.0 70.0 85.0

174

value counts

>>> df.count()

Height 7
Names 7
Food 7
Sex 7
Weight 7

dtype: int64
median calculation

>>> df['Height'].median()
166.0

average calculation

>>> df['Height'].mean()
169.0

minimum value

>>> df["Height'].min()
163

maximum value

>>> df['Height'].max()
180

CHAPTER 8 PANDAS

175

CHAPTER 8 PANDAS

Table 8-1 provides a summary of statistical methods.

Table 8-1. Statistical Methods

Method Description

.describe Provides some descriptive statistics

.count Returns the number of values per variable

.mean Returns the average

.median Returns the median

.mode Returns the mode

.min Returns the lowest value

.max Returns the highest value

.std Returns the standard deviation

var Returns the variance

.skew Returns skewness

Kkurt Returns Kkurtosis
Summary

In this chapter, we learned some easier ways to import and manage

our data using pandas—one of the most important libraries for data
manipulation and data science. In Chapter 9, we examine another package
that is important for data manipulation: NumPy.

176

CHAPTER 9

SciPy and NumPy

Although pandas is a very important package for data analysis, it can work
in conjunction with two other packages: SciPy and NumPy.

SciPy

SciPy is one of the most important packages for mathematical and statistical
analysis in Python, and it is linked closely to NumPy. SciPy contains more
than 60 statistical functions organized in families of modules:

e scipy.cluster

e scipy.constants

o scipy.fftpack

e scipy.integrate

e scipy.interpolate
e scipy.io

o scipy.lib

e scipy.linalg

e Scipy.misc

e scipy.optimize

© Valentina Porcu 2018 177
V. Porcu, Python for Data Mining Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4113-4_9

CHAPTER9 SCIPY AND NUMPY

e scipy.signal
e scipy.sparse
e scipy.spatial
e scipy.special
e scipy.stats

e scipy.weave

>>> import scipy as sp
>>> from scipy import stats
>>> from scipy import cluster
We can get help with these modules by typing, for example:
>>> help(sp.cluster)
or
>>> help(scipy.cluster)

Documentation opens directly in the window, from which we can exit
by pressing q.

For instance, SciPy can be used to measure probability density on a
number or distribution

>>> from scipy.stats import norm

>>> norm.pdf(5)
1.4867195147342979¢e-06

or an allotment function

>>> norm.cdf(x)

178

CHAPTER9 SCIPY AND NUMPY

SciPy features very technical modules. For the purposes of this book,
we are particularly interested in combining with NumPy, so the focus of
this chapter is on this second package primarily.

NumPy

At the beginning of Python's development, programmers soon found
themselves having to incorporate tools for scientific computation. Their
first attempt resulting in the Numeric package, which was developed in
1995, followed by an alternative package called Numarray. The merging of
the functions of these two packages came to life in 2006 with NumPy.

NumPy stands for “numeric Python” and is an open-source library
dedicated to scientific computing, especially with regard to array
management. It is sometimes considered as MATLAB version for Python,
and features several high-level mathematical functions in algebra and
random number generation.

>>> import numpy as np
>>> from numpy import *

NumPy’s most important structure is a particular type of
multidimensional array, called ndarray. ndarray consists of two elements:
data (the true ndarray) and metadata describing data (dtype or data type).
Each ndarray is associated with one and only one dtype. We can have one-
dimension arrays:

>>> arrl = np.array([0,1,2,3,4])

>>> arril
array([o, 1, 2, 3, 4])

179

CHAPTER9 SCIPY AND NUMPY
Or multidimensional arrays:
>>> arr2 = np.array([[5,6,7,8,9], [10,11,12,13,14]])

>>> arr2
array([[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])

>>> arr2 1 = np.array([[5,6,7,8,9], [10,11,12,13,14], [2,5,7]])
the important thing is that data have the same type
We can display the data type using the .dtype() function.

>>> arril.dtype
dtype('int64")

the amount of items in the array

>>> arril.size
5

the number of bits

>>> arrl.itemsize
8

For instance, by using the NumPy arrange() function, we can create a
list of numbers—in the following case, from 0 to 100:

>>> arr3 = np.arange(100)

>>> arr3
array([o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50,

180

CHAPTER9 SCIPY AND NUMPY

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84,

85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])

arange also allows us to set a range of numbers

>>> np.arange(1,10)
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
Let’s create a fourth array:

>>> arr4 = np.array([['a','b"','c"','d","'e"], ['f"', 'g', 'h",
Iil,lll]’ [Iml, Inl, lol, Ipl)lql]])
>>> arr4
array([[lal’ Ibl) lcl’ ldl’ |el]’

[lfl, Igl, lhl’ lil, |1|]’

[lml, Inl, lol’ Ipl, Iql]]’

dtype="<U1")

We can select, for example, the first element (0):

>>> arr4[o0]

array([lal’ Ibl, ICI, ldl’ Iel]’

dtype="<U1")

If we want to select the third element of the first element, we proceed
as follows:

>>> arr4[0][3]
g

181

CHAPTER9 SCIPY AND NUMPY

Remember that, in Python, we start counting from zero, not one. So, if
we select the first element, we actually get the second:

>>> arr4[1]
aIIay(["F" Igl, lhl’ lil, Ill]’
dtype="<U1")

>>> arr4[1][1]

g

We can also use a negative index and rotate the array as follows:

>>> arr4[::-1]

aIIay([['m" Inl) 'O') lp‘) lq'])
['fl) Igl) 'h'J lil) l]"]’
['a" Ibl) 'C') ldl) 'e']]’
dtype="|S1")

The arr4 array is composed of three different elements. To merge them,
we can use the .ravel() method:

>>> arr4.ravel()
array([lal, Ibl, lcl’ ldl, Iel) lfl, Igl, lhl’ lil, |1|’ lml,
Inl, Iol’lpl, Iql])
dtype="|S1")
Let's create another array, arr5:

>>> arr5 = np.array([19, 76, 2, 13, 48, 986, 1, 18])

>>> arrh
array([19, 76, 2, 13, 48, 986, 1, 18])

we can reorder it from the lowest value to the highest

>>> np.msort(arrs)
array([1, 2, 13, 18, 19, 48, 76, 986])

182

CHAPTER9 SCIPY AND NUMPY

We can reorganize the data of an array using various functions. Let’s
use the last array created, arr5:

reshape() allows us to reorganize the data of an array-in the
following example, in four cases of two columns each

>>> arr5.reshape(4,2)

>>> array([[19, 76],

[2, 13],
[48, 986],
[1, 18]])

>>> arr5.reshape(8,1)
array([[19],

[761,

[2],

[13],

[48],

[986],

[1],

[18]])

we create two more arrays, organizing them in three columns
from three cases

>>> x = np.array([20, 42, 17, 3, 7, 12, 14, 70, 9])
>>> x = x.reshape(3,3)

>>> X

array([[20, 42, 17],

[3) 7) 12])
[14, 70, 9]])

»>y=x%*3

183

CHAPTER9 SCIPY AND NUMPY

>>y

array([[60, 126, 51],
[9, 21, 36],
[42, 210, 27]])

similar to reshape is the resize() function

>>> z = np.array([120, 72, 37, 43, 57, 12, 54, 20, 9])
z
array([120, 72, 37, 43, 57, 12, 54, 20, 9])

>>> z.resize(3,3)

> Z

array([[120, 72, 37],
[43, 57, 12],
[54, 20, 9]])

we can concatenate two arrays horizontally

>>> np.hstack((x, y))

array([[20, 42, 17, 60, 126, 51],
[3, 7, 12, 9, 21, 36],
[14, 70, 9, 42, 210, 27]])

we get the same result using the function .concatenate() by
specifying the axis

>>> np.concatenate((x,y), axis = 1)

array([[20, 42, 17, 60, 126, 51],
[3, 7, 12, 9, 21, 36],
[14, 70, 9, 42, 210, 27]])

or we arrange the data vertically

184

CHAPTER9 SCIPY AND NUMPY

>>> np.vstack((x,y))

array([[20, 42, 17],
[3, 7, 12
[14, 70,
[60, 126,
[9, 21,
[42, 210,

=

-

O

-

1
6
7

(9]
-

N W

]
]
]
]
]
]

)
D
we get the same result with the concatenate() function,
without specifying the axis, or by specifying it as zero

>>> np.concatenate((x,y))
array([[20, 42, 17],

[3) 7) 12]

[14, 70, 9]

[60, 126, 51]

]

]

)

-

(9,

-

[9, 21, 36
[42, 210, 27

w

)
D
the function .dstack() divides the array into tuples along
the third axis

>>> np.dstack((x,y))

array([[[20, 60],
[42, 126],
[17, 51]],

(L 3 9
[7, 21],
[12, 36]],

[[14, 42],
[70, 210]

[9, 27]1D)

185

CHAPTER9 SCIPY AND NUMPY

the .hsplit() function divides the array into equal parts by
size and shape (in this case, three parts)

>>> np.hsplit(x, 3)
[array([[20],
[3],
[14]]), array([[42],
[7],
[70]1), array([[17],
[12],

[91D]

we can also use the .split() function

>>> np.split(x, 3)

[array([[20, 42, 17]]), array([[3, 7, 12]]), array([[14,
70, 9]1)]

or the .vsplit() function, which means vertical splitting

we can also convert an array to a list

>>> z.tolist()
[[120, 72, 37], [43, 57, 12], [54, 20, 9]]

As we have seen, NumPy handles both numeric data in various formats
and strings, but we can also generate random data. The zeros() and ones()
functions create arrays with zeros or ones only.

the first element indicates the number of cases; the second,
the number of variables

>>> np.zeros((4,3))
array([[0., 0., o0.],

[0., 0., o0.],
[0., 0., o0.],
[0., 0., 0.]])

186

CHAPTER9 SCIPY AND NUMPY

>>> np.ones((5,2))

array([[
[

[
[
[

1

[O A\

°)

)

)

°)

)

1.1,

)

-

-]
-]
-]
-]

1
1
1
1

D

NumPy has many ways to store data. Table 9-1 includes some of them

from documentation available at https://docs.scipy.org/doc/.

Table 9-1. Options for Storing Data

Data Type Description

bool_ Boolean (True or False), stored as a byte

int_ Default integer type (same as C long; normally either int64 or int32)

intc Identical to C int (normally int32 or int64)

intp Integer used for indexing (same as C ssize_t; normally either int32
or int64)

int8 Byte (-128 to 127)

int16 Integer (-32768 to 32767)

int32 Integer (-2147483648 to 2147483647)

int64 Integer (-9223372036854775808 to 9223372036854775807)

uint8 Unsigned integer (0 to 255)

uint16 Unsigned integer (0 to 65535)

uint32 Unsigned integer (0 to 4294967295)

uint64 Unsigned integer (0 to 18446744073709551615)

float_ Shorthand for float64

(continued)

187

https://docs.scipy.org/doc/

CHAPTER9 SCIPY AND NUMPY

Table 9-1. (continued)

Data Type Description

float16 Half-precision float: sign bit, 5-bit exponent, 10-bit mantissa
float32 Single-precision float: sign bit, 8-bit exponent, 23-bit mantissa
float64 Double-precision float: sign bit, 11-bit exponent, 52-bit mantissa
complex_ Shorthand for complex128

complex64 Complex number, represented by two 32-bit floats (real and
imaginary components)

complex128 Complex number, represented by two 64-bit floats (real and
imaginary components)

When we create an object, we can specify which type of object we want
to create:

>>> 0ol = np.arange(10, dtype = 'int16")

>>> o1
array([o, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int16)

NumPy can also be used to create matrices and matrix calculations.
we create two matl and mat2 matrices

>>> matl = np.matrix([[10, 11, 12, 13, 14], [15, 16, 17, 18,
19], [20, 21, 22, 23, 24]])

>>> mat1l

matrix([[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])

>>> mat2 = np.matrix([[25, 26, 27, 28, 29], [30, 31, 32, 33,
34], [35, 36, 37, 38, 39]])

188

>>> mat2

CHAPTER9 SCIPY AND NUMPY

matrix([[25, 26, 27, 28, 29],
[30, 31, 32, 33, 34],
[35, 36, 37, 38, 39]])

we can do some mathematical operations

>>> matl + mat2

matrix([[35, 37, 39,
[45, 47, 49,
[55, 57, 59,

>>> mat2 - mati1

matrix([[15, 15, 15,
[15, 15, 15,
[15, 15, 15,

>>> mat2 / matl
matrix([[2.5
[2. , 1
[1.75 >

-
N

I

>>> mat1l * 3

matrix([[30, 33, 36,
[45, 48, 51,
[60, 63, 66,

41,
51,
61,

15,
15,
15,

43],
531,
6311)

15],
15],
1511)

.36363636, 2.25 , 2.15384615, 2.07142857],

9375

, 1.88235294, 1.83333333, 1.78947368]

)
.71428571, 1.68181818, 1.65217391, 1.625 11

39,
54,
69,

42],
571,
7211)

Numpy lets you calculate the mean

>>> np.mean(mat1)
17.0

maximum value

>>> np.max(mat1)
24

189

CHAPTER 9 SCIPY AND NUMPY
minimum value

>>> np.min(mat1)
10

median

>>> np.median(mat1)
17.0

variance

>>> np.var(mat1)
18.666666666666668

standard deviation

>>> np.std(mat1)
4.3204937989385739

covariance can be calculated by np.cov()

NumPy also allows you to import numeric data using the loadtxt()

function:

>>> upl = np.loadtxt('~/Python_test/df2', delimiter = ',’,
usecols = (1,), unpack = True)

upl

array([oO. , 15.98293881, 41.7360094 , 21.02081375,

54.06254967, 6.68691812, 43.83810058, 39.55058136,
58.04370289, 85.02891662, 98.25872709])

to import more columns, we change the usecols argument:

np.loadtxt('~/Python_test/df2', delimiter = ',",
(1,2,3,4,5), unpack = True)

>>> upl
usecols

190

CHAPTER9 SCIPY AND NUMPY

NumPy: Generating Random Numbers and Seeds

To generate random numbers, we need to import the NumPy package.
>>> import numpy as np
We can generate a random number as follows:

>>> np.random.rand()
0.992777076172216

or specify in parentheses the number of rows and columns to
be generated automatically

>>> np.random.rand(2,3)
array([[0.39352349, 0.57116926, 0.88967038],
[0.76375617, 0.24620255, 0.17408501]])

We can create multidimensional arrays of random numbers :

to a size (10 is the upper limit from which the distribution
is extracted)

>>> np.random.randint(10, size= 8)
array([5, 8, 3, 7, 6, 8, 5, 3])

next we create an array with four cases and five variables

>>> np.random.randint(10, size=(4, 5))
arraY([[4J 71 1) 9) 8])

(7, 4, 0, 3, 7],

[3, 6, 9, 3, 4],

(4, 7, 3, 3, 911)

191

CHAPTER9 SCIPY AND NUMPY

and then we create a three-dimensional array

>>> np.random.randint(10, size=(4, 5, 6))

array([[[7,

(3, 2

(S,
[1,
[1,

[[o,

[2, 6

[2,
[1,

[8,
[9,
[3,

6,
b

55

6, 2

5,

1,

)

3,

3,

1,
3,
6,

)

3,

9,
6,
7,

9,

o,

5, 2

1,
9,
0,
9,

R O N O
- - - -

-

- -

N O O B N
.

-

with random.rand() we

2],
2]J
2])
O]J
611,

3])
2])
51,
3])
611,

6])
7])
7])
8])
7115

6])
4],
O]J
0])
9111)

generate real numbers; with random.

randint() we generate whole numbers

192

CHAPTER9 SCIPY AND NUMPY

We can set a seed to be sure to generate the same random numbers
and then repeat the examples:

>>> np.random.seed(12345)

>>> np.random.rand()
0.9296160928171479

>>> np.random.rand()
0.3163755545817859

>>> np.random.seed(12345)

>>> np.random.rand()
0.9296160928171479

>>> np.random.rand()
0.3163755545817859

We can generate random numbers using integers with random.
randint():

>>> print(random.randint(0, 100))
27

>>> print(random.randint(0, 100))
32

0 and 100 are the limits within which we can extract
elements. In this case, the number 100 cannot be extracted.
This means that if we want to simulate, for example,
crapshooting, we set the limits between 1 and 7.

193

CHAPTER9 SCIPY AND NUMPY
We can also create an object and extract the elements randomly:

>>> testl = ["object1", "object2", "object3", "object4",
"object5"]

>>> print(random.choice(test1))
object2

>>> print(random.choice(test1))
object4

We can create another random object using np.random.randn(), which
generates a normal distribution.

>>> X = np.random.randn(1000)

we import matplotlib (described in Chapter 10)
>>> import matplotlib.pyplot as plt

and create a histogram of the x object

>>> plt.hist(x, bins = 100)

we display the histogram

>>> plt.show()

NumPy can also be used to generate random datasets, like the one
plotted in Figure 9-1. But, we must also load the pandas package. We've
already loaded the NumPy package, so let’s proceed as follows:

we import pandas

>>> import pandas as pd

194

CHAPTER9 SCIPY AND NUMPY

40 -

30 A

20 A

10 -

0 B
-3 -2 -1 0 1 2 3

Figure 9-1. Plot of a casual dataset created with NumPy and pandas
We create a data frame using the pandas DataFrame() function. We

identify a function immediately as belonging to a package, because the
function is a method of that package:

package name.function name()

we use the DataFrame () function of the pandas (pd) package
to create the datagram, and the random.randn() function of the
Numpy package (np) to generate random data. In brackets, we
first put the number of cases to be generated (in this case,
10) followed by the number of variables (in this case, 5)

>>> rdf = pd.DataFrame(np.random.randn(10,5))

>>> rdf

195

CHAPTER9 SCIPY AND NUMPY

0 1 2 3 4
0.669980 0.626433 -0.693932 -0.841258 -0.165200
0.108567 -0.743791 0.367369 0.645242 -0.297283
1.674781 0.241534 -0.403371 0.175751 0.274626
-2.339962 -0.083003 -1.387095 1.559257 -1.025012
0.383104 0.968755 0.236508 0.186294 0.094319
.956150 -1.366423 0.694575 -0.107877 1.727657
-0.699931 -1.184346 0.581632 0.333015 -1.137382
0.867757 -0.872935 0.417772 -0.045722 0.432780
-0.685488 1.046816 0.465459 -0.446164 0.227635

1

-0.019854 0.643384 1.459784 0.559970 -0.358676

O o~ OU1 B~ W N B O
o

If we recreate a data frame using the same instructions, we will almost
certainly get different data. To get the same data, we need to use a function
that allows us to set a seed. In this way, we replicate the data.

we set the seed

>>> np.random.seed(12345)

we create the data frame

>>> rdf = pd.DataFrame(np.random.randn(10,5))

we visualize the data frame

rdf
0 1 2 3 4
-0.204708 0.478943 -0.519439 -0.555730 1.965781
1.393406 0.092908 0.281746 0.769023 1.246435
1.007189 -1.296221 0.274992 0.228913 1.352917
0.886429 -2.001637 -0.371843 1.669025 -0.438570
-0.539741 0.476985 3.248944 -1.021228 -0.577087
.124121 0.302614 0.523772 0.000940 1.343810
-0.713544 -0.831154 -2.370232 -1.860761 -0.860757
0.560145 -1.265934 0.119827 -1.063512 0.332883
-2.359419 -0.199543 -1.541996 -0.970736 -1.307030
0.286350 0.377984 -0.753887 0.331286 1.349742

O o N OYU1T B W N BB O
o

196

CHAPTER9 SCIPY AND NUMPY

we reinsert the same seed

>>> np.random.seed(12345)

we recreate a dataset

>>> rdf2 = pd.DataFrame(np.random.randn(10,5))
the generated data are identical

>>> rdf2

0 1 2 3 4
0 -0.204708 0.478943 -0.519439 -0.555730 1.965781
1 1.393406 0.092908 0.281746 0.769023 1.246435
2 1.007189 -1.296221 0.274992 0.228913 1.352917
3 0.886429 -2.001637 -0.371843 1.669025 -0.438570
4 -0.539741 0.476985 3.248944 -1.021228 -0.577087
5 0.124121 0.302614 0.523772 0.000940 1.343810
6 -0.713544 -0.831154 -2.370232 -1.860761 -0.860757
7 0.560145 -1.265934 0.119827 -1.063512 0.332883
8 -2.359419 -0.199543 -1.541996 -0.970736 -1.307030
9 0.286350 0.377984 -0.753887 0.331286 1.349742

>>> np.random.seed(12345)
>>> rdf = pd.DataFrame(np.random.rand(10,5))

>>> rdf

0 1 2 3 4
-0.204708 0.478943 -0.519439 -0.555730 1.965781
1.393406 0.092908 0.281746 0.769023 1.246435
1.007189 -1.296221 0.274992 0.228913 1.352917
0.886429 -2.001637 -0.371843 1.669025 -0.438570
-0.539741 0.476985 3.248944 -1.021228 -0.577087
0.124121 0.302614 0.523772 0.000940 1.343810
-0.713544 -0.831154 -2.370232 -1.860761 -0.860757
0.560145 -1.265934 0.119827 -1.063512 0.332883
-2.359419 -0.199543 -1.541996 -0.970736 -1.307030
0.286350 0.377984 -0.753887 0.331286 1.349742

O 0o U1 & W N P O

197

CHAPTER9 SCIPY AND NUMPY

Note that our completely random variables do not have a name; they
are identified merely by numbers. Let’s change the column names:

we create a list that contains the names of the variables
>>> var_names = ['vari', 'var2', 'var3', 'var4', 'var5']
we use the .columns method

>>> rdf2.columns = var_names

we check the first cases of the data frame
>>> rdf2.head(2)

varil var2 vars3 var4 vars
0 -0.204708 0.478943 -0.519439 -0.555730 1.965781
1 1.393406 0.092908 0.281746 0.769023 1.246435

the variable names are correct

We can acquire other types of distributions using other NumPy functions.
binomial distribution
>>> rdf_bin = pd.DataFrame(np.random.binomial(100, 0.5, (10,5)))

>>> rdf bin

o 1 2 3 4
47 56 48 42 53
43 56 51 56 46
50 42 40 55 46
46 43 54 51 53
41 48 47 45 42
53 55 51 50 58
51 57 46 53 48
56 53 46 54 54
53 50 52 53 46
50 46 54 57 56

O oo ~N OV » W N BB O

Poisson distribution

198

CHAPTER9 SCIPY AND NUMPY
>>> rdf poi = pd.DataFrame(np.random.poisson(100, (10,5)))

>>> rdf poi

0 1 2 3 4
109 107 98 111 95
115 109 101 108 95
105 97 102 100 94
94 93 94 122 96
117 85 135 90 83
103 106 105 93 116
111 95 100 95 80
81 75 84 93 101
105 109 104 104 113
97 120 90 98 95

O 60N O LT B W N B O

uniform distribution
>>> rdf un = pd.DataFrame(np.random.uniform(1, 100,(10,5)))

>>> rdf_un

0 1 2 3 4
49.139046 98.433411 60.777590 76.202858 68.767153
93.309206 95.028762 99.021002 13.489383 97.683461
23.681460 19.419586 51.411931 53.519271 28.981285
31.705992 31.678553 27.372500 59.749684 22.496303
40.835909 29.567563 18.210241 23.345639 98.875500
43.971084 82.990738 57.678770 65.538128 73.244077
39.737081 39.893383 86.095572 81.191942 83.817845
19.610805 36.600078 48.716414 96.641192 56.768005
82.922981 8.534653 55.760657 55.246106 90.638916
37.579379 90.215102 14.922471 10.818199 97.345143

OW 60N O U1 » W N B O

How do we save a data frame or array created in NumPy? First, we
create a data frame

199

CHAPTER9 SCIPY AND NUMPY
>>> tos = pd.DataFrame(np.random.randn(10,5))
then save it with the NumPy save() function.
>>> np.save('tos saved', tos)
we can check it in our work directory
To load our saved file, we use the load() function in NumPy.
>>> loadl = np.load('tos_saved.npy"')

NumPy contains other advanced mathematics modules, such as
numPy.linalg for linear algebra, fft for Fourier transform, and a number
functions for financial analysis, such as interest and futures calculations.
You can find all the necessary documentation about NumPy features at
https://docs.scipy.org/doc/.

Summary

NumPy and SciPy are two very important packages used by data analysts.
Each has a variety of features, but the packages can be combined to create
random datasets, for example.

200

https://docs.scipy.org/doc/

CHAPTER 10

Matplotlib

Creating graphs is an important step in exploratory analysis, and one of the
first stages in data analysis. We can use Matplotlib to construct a variety of
analytical graphs that display our data in different ways.

Basic Plots

To represent our data graphically, we can use the Matplotlib library,
one of the most used graphics representation software packages. Its
documentation can be found at https://matplotlib.org. The section
gallery of the Matplotlib site (at https://matplotlib.org/gallery.html)
features a series of examples of charts with code.

Matplotlib is installed with Anaconda, so we have to import it.

we import the Matplotlib library
>>> import matplotlib as mlp

>>> import matplotlib.pyplot as plt
>>> %matplotlib inline

this last line of code allows us to view the charts directly
using Jupyter

© Valentina Porcu 2018 201
V. Porcu, Python for Data Mining Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4113-4_10

https://matplotlib.org
https://matplotlib.org/gallery.html

CHAPTER 10 MATPLOTLIB

We can represent elements by inserting them directly into the
function, in the form of a list. The following code produces the plot in the
Figure 10-1.

0.0 05 10 15 20 25 30
Figure 10-1. A plotted list

>>> plt.plot([5,7,2,4])
>>> plt.plot([5,7,2,4], [4,6,9,2], 'ro")

'ro' stands for round object

202

CHAPTER 10 MATPLOTLIB

The plot of round objects is shown in Figure 10-2.

94 @

2 3 - 5 6 7

Figure 10-2. A plotted list of round objects

As shown in Figure 10-1, we can create a line. But, we can also
customize color and type of representation by modifying arguments.
Let’s can create two objects and represent them.

we create two objects

>>> X
>y

[50, 70, 90, 65]
[129, 192, 163, 172]

>>> plt.plot(x, y, linewidth = 4.0)

203

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-3.

190 -

180 -

170 -

160 -

150 -

140 A

130 -

Figure 10-3. A custom plot

As you can see, we changed the line thickness with the line width
argument. We can also modify the line with the linestyle argument, or Is:

>>> plt.plot(x, y, linewidth = 2.0, linestyle = '--")

204

The plot is shown in Figure 10-4.

CHAPTER 10 MATPLOTLIB

190 | ¥ e
4 e
! -~
’ e
180 - / o
s \-\
S S
170 A S Nl T %
’ bl 1 P
’ R
160 - /
’,
s
150 | F 4
’
'f
140 - /
7’
,
1304{ /
0 S5 6 6 70 75 8 8 90
Figure 10-4. Modified line style
We can add markers to highlight data better:
>>> plt.plot(x, y, linewidth = 1.0, 1s = '-', marker = "o",

markersize = 10)

205

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-5.

190 -

180 -

170 -

160 -

150 -

140 A

130 -

50 55 60 65 70 75 80 85 90

Figure 10-5. Plot with markers

We can customize the markers even more further by editing, for

example, the inner color:

>>> plt.plot(x, y, linewidth = 1.0, 1s = '-', marker = "o",
markersize = 10, markerfacecolor = 'white')

206

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-6.

190 -
180 -
170 - O
160 -
150 -
140 -

130 -

50 55 60 65 70 75 80 85 90

Figure 10-6. Plot with altered marker color

More information on how to customize a chart can be found using
>>> help(plt.plot)
Next we can add parameters to add a title and axes names.

>>> plt.plot(x, y)

>>> plt.title("TITLE")
>>> plt.xlabel("Axis X")
>>> plt.ylabel("Axis Y")

207

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-7.

TITLE

190 4

180 4

170

160 -

y axis

150

140

130

50 55 6 6 70 75 80 8 90
X axis

Figure 10-7. Plot with a title and axes labels

We can customize a chart even further by changing colors for all chart
elements:

>>> plt.plot(x, y, color = "yellow")

>>> plt.title("TITLE", color = "blue")

>>> plt.xlabel("Axis X", color = "purple")
>>> plt.ylabel("Axis Y", color = "green")

208

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-8.

TITLE

190 -

180 1

170 1

160 -

y axis

150 -

140

130 A

L] L L L]

S0 55 60 65 70 75 80 85 %0
X axis

Figure 10-8. Altering plot element colors

We can also add a grid by using the ‘grid’ parameter, and a legend by
using the ‘legend’ parameter.

>>> plt.plot(x, y)

>>> plt.title("TITLE", color = "blue")

>>> plt.xlabel("Axis X", color = "purple")
>>> plt.ylabel("Axis Y", color = "green")
>>> plt.grid(True)

>>> plt.legend(['Legend1l'])

209

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-9.

TITLE

190 4 — Legendl
180 1
170 1

160 4

y axis

150

140

130

Ll L L] L] L] T L] L]

50 55 60 65 70 75 80 85 %0
X axis

Figure 10-9. A plot with a grid and a legend

We can move the legend into the chart by changing the ‘loc’ parameter:

>>> plt.plot(x, y)

>>> plt.title("TITLE", color = "blue")

>>> plt.xlabel("Axis X", color = "purple")
>>> plt.ylabel("Axis Y", color = "green")
>>> plt.grid(True)

>>> plt.legend(['Legend2'], loc = 2)

210

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-10.
TITLE

190 4 — Legendl

180 4

130

5 55 6 6 70 75 8 8 9%
X axis

Figure 10-10. A plot with a repositioned legend

These are the possible positions of the legend:
0
1 =top right
2 =top left
3 = bottom right
4 =lower left
5 =to the right
6 = centered left
7 = centered right
8 = centered low
9 = centered high

10 = centered
211

CHAPTER 10 MATPLOTLIB

The codes for color are as follows:
b =blue
c=cyan
g =green
m = magenta
r=red
y =yellow
k =black
w = white
We can also change the shapes used in a plot:
>>> plt.plot([1,2,3,4],[1,4,8,15], 'b*")
>>> plt.plot([1,3,5,7],[1,4,8,12],"'g"")

>>> plt.plot([1,2,3,5],[2,5,4,12], 'r0")
>>> plt.legend(['First','Second', 'Third'],loc=0)

The plot is shown in Figure 10-11.

* First *
141 A second
® Third
12 - @
10 -
8 * A
6 -
@
4 * <]
24 @
x
1 2 3 4 5 : '

Figure 10-11. A plot with points of different shape
212

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

CHAPTER 10 MATPLOTLIB

Now let’s create subcharts using the subplot() function:

plt.
plt.

plt.
.plot([1,3,5,7],[1,4,8,12],"'g"")

plt

plt.
plt.

plt.
plt.

subplot(2,2,1)
plot([1,2,3,4],[1,4,8,15],'b*")

subplot(2,2,2)

subplot(2,2,3)
plot([1,2,3,5],[2,5,4,12], 'r0")

subplot(2,2,4)
plot([1,2)3,5],[2,5,4)12]’ 'b.)

The plot is shown in Figure 10-12.

15 A + A
10
10 - A
+
5 4
5 - " A
-F T] L -‘ L L]]
1 2 3 4 2 4 6
[]
10 - 10 A
5 L 5 1
®
1 2 3 4 5 1 2 3 4 s

Figure 10-12. Creation of subplots

213

CHAPTER 10 MATPLOTLIB

We can indicate how many charts we want (in this case, two) and how
they are placed (in this case, side by side):

>>> plt.subplot(1,2,1)
>>> plt.plot([1,2,3,4],[1,4,8,15], 'b*")

>>> plt.subplot(1,2,2)
>>> plt.plot([1,3,5,7],[1,4,8,12],"'g"")

The plot is shown in Figure 10-13.

*| 12 A A
14 -
1 10 A
10 - 8 4 A
8 - >
6 -
6.
4 4 A
4 - *
2 21
- &
1 2 3 4 2 4 6

Figure 10-13. Creation of two subplots set side by side

214

CHAPTER 10 MATPLOTLIB

Pie Charts

Now let’s see how to create pie charts: a pie chart can be used to show the
composition of something (like a market). To plot a pie we can use the
plt.pie() function:

>>> plt.pie(x)

The plot is shown in Figure 10-14.

Figure 10-14. A basic pie chart

We can customize it by editing its colors:
we create a palette of colors

>>> coll = ["yellow", "red", "purple", "orange"]
we apply the new colors to the chart

>>> plt.pie(x, colors = col1)

215

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-15.

Figure 10-15. A pie chart with custom colors

To modify colors even further, we can use hex codes. A list of the codes
can be found at http://cloford.com/resources/colours/500col.htm.
Let’s add some labels:
>>> lab1 = ['A','B','C','D']
>>> plt.pie(x, colors = coli, labels = lab1)

216

http://cloford.com/resources/colours/500col.htm

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-16.

B

Figure 10-16. A pie chart with labels

We can separate sections of the pie by using the ‘explode’ parameter.
We can even indicate the distance among the exploded pie sections:

>>> ex1 = [0.5,0,0,1]
>>> lab1 = ['A",'B','C','D"]
>>> plt.pie(x, colors = coli, labels = labi, explode = ex1)

217

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-17.

Figure 10-17. An exploded pie chart

Other Plots and Charts

We can create yet other types of plots and charts. For example, we can
build a scatterplot. A scatterplot is very useful to see the relationship
between two variables.

>>> plt.scatter(x, y)

218

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-18.

190
180
170 A
160 4
150 4
140 1

130‘ ®

Figure 10-18. A scatterplot

We can create bar charts with the p1t.bar() function. Bar charts
and histograms are very useful to compare our data and also to display
categorical variables:

>>> plt.bar(x, y)

219

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-19.

200 A

175 -

150 -

125 -

100 -

®» 8 @

o

50 55 €0 65 70 75
Figure 10-19. A bar chart

We can change the orientation of a bar chart:

>>> plt.barh(x, y)

220

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-20.

a8 R 8

&

55

0 25 50 75 100 125 150 175 200

Figure 10-20. A reoriented bar chart

We can create a chart from a data frame. To do this, we must import
pandas for dataset and NumPy management. Let’s generate a random set
of ten cases and four variables.

>>> import pandas as pd
>>> import numpy as np

>>> df1 = pd.DataFrame(np.random.rand(10, 4), columns =
['vari', 'var2', 'var3', 'var4'])

>>> dfi.plot(kind = "bar")

221

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-21.

10 1 - \arl
N var2
s var3

08 = \ard

0.6

044

0.2 1

0.0 -

o — ~ m < w w r~ @ [=)]

Figure 10-21. A bar chart created using a random data frame

To create stacked bars, we use the parameter ‘stacked’:

>>> dfi.plot(kind = "bar", stacked = True)

222

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-22.

251 = varl
. var2
N var3

20 N ard

151

10 1

05 4

00 -

o — ~ m < w w r~ @ [=)]

Figure 10-22. A chart with stacked bars

We can create a histogram that represents the variables of the dataset.
(Histograms are discussed in more detail at the end of the chapter.)

>>> df1.hist()

223

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-23.

varl
4 -
2 -
0 o -
0.25 %?3 0.75 0.25 l’.>‘;‘;é‘[)“1 075 100
2 2 -
1 - 1
0- 0-
0.0 05 10 0.0 05 10

Figure 10-23. Multiple histograms for each variable in the
dataset

Or, we can represent a single variable:

>>> df1['var1'].hist()

224

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-24.

40 1
35 -
30 1

2.5 1

20 1

15 1

10 1

0.5 4

00 = T T T T
0.1 0.2 03 04 0.5 0.6 0.7 038 09

Figure 10-24. A histogram of one variable

We can also select a column using methods other than the name, such
as the .loc method.
>>> df1.loc[1].hist()

We create box plots by using the boxplot() function. This kind of
visualization can be used to show the shape of the distribution, its central
value, and its variability:

>>> dfl.boxplot(return type = "axes"

225

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-25.

10 4 |
0.8 - T

0.6 1

0.4 4

T
il

0.0 1

L} L

varl var2

Figure 10-25. A boxplot

We can build area charts:

>>> dfi.plot(kind = "area"

226

var3

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-26.

Figure 10-26. An area chart

Each function that we use has its own parameters, which we can
change, as we saw in the first section of this chapter. For instance, we can
change the colors of the area chart by applying the palette we already
created:

>>> dfi.plot(kind = "area", color = col1)

227

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-27.

257 varl

l var2
Hl var3

20 -
. vard

0.0 L T L L] L]

0 1 2 3 B 5 6 7 8 9

Figure 10-27. An area chart with an altered color palette

Saving Plots and Charts

We can save our plots and charts with the .savefig method. We can also
designate its name and set the resolution (dots per inch) as well:

>>> dfi.plot(kind = "scatter", x = "var3", y = "var4")
we save the image in the working directory in the following way
>>> plt.savefig('graphi.png’, dpi = 600)

Let’s check whether the chart has been saved successfully to our
working directory. We can use the image downloaded for example for a
presentation, or including it in a report after the data analysis or to explain
our data in an exploratory phase.

228

CHAPTER 10 MATPLOTLIB

Selecting Plot and Chart Styles

Matplotlib also includes a set of styles that can be applied to charts. We can
view these styles by typing:

>>> plt.style.available

['bmh',
'classic’,
"dark_background',
‘fivethirtyeight',
‘ggplot’,
'‘grayscale’,
'seaborn-bright’,
'seaborn-colorblind’,
'seaborn-dark-palette’,
'seaborn-dark’,
'seaborn-darkgrid’,
'seaborn-deep',
'seaborn-muted’,
'seaborn-notebook’,
'seaborn-paper',
'seaborn-pastel’,
'seaborn-poster’,
'seaborn-talk"',
'seaborn-ticks',
'seaborn-white',
'seaborn-whitegrid',
"'seaborn']

229

CHAPTER 10 MATPLOTLIB

To apply a style, we must insert a line of code that features the theme
name:

>>> plt.style.use('dark background")
>>> dfi.plot(kind = "area"

The plot is shown in Figure 10-28.

Figure 10-28. A custom area chart that uses a Matplotlib “dark
background” theme

Here is another example:

>>> plt.style.use('seaborn-darkgrid")
>>> dfi.plot(kind = "area"

230

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-29.

30 B vari
 var2

25 . var3
. vard

20

15

1.0

05

0'00 2 4 6 8

Figure 10-29. A custom area chart with a “seaborn” theme

More on Histograms

We can create two random objects with NumPy and represent them
graphically separately, then compile their data into one chart:

>>> df2 = np.random.randn(100)
>>> df3 = np.random.randn(100)

>>> plt.hist(df2)

231

CHAPTER 10 MATPLOTLIB

The first plot is shown in Figure 10-30.

10 1

-2 -1 0

Figure 10-30. The first histogram

Now let’s display the second histogram.

>>> plt.hist(df3)

232

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-31.

-2 -1 0 1 2

Figure 10-31. The second histogram

Now let’s combine the two datasets:

>>> plt.hist(df2, color
>>> plt.hist(df3, alpha

"red", alpha = 0.3, bins = 15)
0.6, bins = 15)

we present the two datasets together and define whether we
want color, transparency through the alpha parameter, and the
number of intervals into which we want data to be divided.

233

CHAPTER 10 MATPLOTLIB

The plot is shown in Figure 10-32.

14 |

10 A

-2 -1 0 1 2

Figure 10-32. A combined histogram

Matplotlib is just one of many Python packages that can be used
to display data. Other chart creation packages can be found at http://
pbpython.com/visualization-tools-1.html. One of the most used data
mining charts, for example, is seaborn.

Summary

Matplotlib is one of the most basic libraries for plotting data. Plotting
datasets for data analysis is crucial to understanding the relationships
among variables.

234

http://pbpython.com/visualization-tools-1.html
http://pbpython.com/visualization-tools-1.html

CHAPTER 11

Scikit-learn

Scikit-learn is one of the most important and most used packages for
machine learning with Python. It features many functions for various
predictive algorithms. In this chapter, we examine some of the algorithms
included in the Scikit-learn package. Given the breadth of the subject, the
example presented reflect the most used models. Those of you who have
no prior knowledge of machine learning may find it difficult to understand
some of the techniques presented in this chapter, which are not explained
in detail.

What Is Machine Learning?

Machine learning is a branch of data analysis that transforms datasets
built in a particular way into predictions that can be applied to new data.
Machine learning uses data we already have to predict future behaviors.
Machine-learning techniques have been a real revolution in data mining
and they have a great impact on a variety of fields of application.

Machine learning is widespread among many applications used
every day. Large companies such as Amazon, Netflix, Google, Apple,
and Facebook use machine-learning algorithms for various reasons. For
instance, Facebook uses machine learning to recognize faces in images;
Amazon and Netflix analyze customer preferences (the last thing you
viewed or bought) to propose new products that might match your
interests.

© Valentina Porcu 2018 235
V. Porcu, Python for Data Mining Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4113-4_11

CHAPTER 11 SCIKIT-LEARN

Google, for example, uses machine learning in translation and automatic
driving, or also suggesting the road with less traffic based on our habits
or the place where we are used to go on a given day of the week. Machine
learning also helps us detect spam messages from non spam messages,
often using probabilistic methods or by combining multiple methods (for
instance, adding probabilistic methods to keywords and user-defined rules).

Apple and Microsoft use machine learning to provide us with a voice
assistant that helps us work with a phone or tablet using only our voice.
Other companies are currently refining artificial intelligence methods,
automated driving, and more.

The field of machine learning gained wider attention when a
supercomputer (Watson), developed by IBM, took part to the Jeopardy!
quiz program.

Machine learning has also been used to predict election results, first
by Nate Silver, a scientist who, in October 2012, published a preview of US
elections, and whose results were very close to the actual data.

Predictive data mining is used in the healthcare field. Patient data
and clinical records can help identify people who are at greater risk
of contracting certain conditions and illness such as diabetes or heart
disease. DNA analysis and genetic kits have been used, for example, to
detect genes responsible for or otherwise related to certain types of cancer,
including breast cancer.

One of the most outdated uses of machine learning is handwriting
recognition—in particular, handwritten addresses and zip codes.
Recognition is based on various occurrences of each handwritten number
using neural networks (conducted by Bell Labs).

Research in machine learning and related topics, such as deep learning
and artificial intelligence, improves every day and is at the forefront of the
computing world. Some web sites such as Kaggle publish contents every
few days during which subscribers try to solve a given problem. The most
famous Kaggle contest was announced by Netflix. In 2006, Netflix awarded
a $1,000,000 USD prize for a recommendation system. The system that was

236

CHAPTER 11 SCIKIT-LEARN

designed has not been implemented by Netflix because it is too complex
and computationally expensive.

Let’s look at the various modules and techniques in the Scikit-learn
package.

Import Datasets Included in Scikit-learn

First, the scikit-learn package includes some datasets, which we can
import like this:

>>> from sklearn import datasets
To import one of the datasets, type
>>> iris = datasets.load iris()

The iris dataset is made up of petals and sepals of three different types
of iris: versicolor, virginica, and setosa. It contains 150 equally divided
cases on three types of flowers, and five variables.

In the previous chapters we saw how to import a dataset in .csv from an
external file on our local computer or from a website using a link. Scikit-learn
also includes some of the most used dataset for data mining, like iris and
Boston. The format used in Scikit-learn can result a little bit confusing for
a beginner. All the dataset is included in a same object, but not in a tabular
format like the .csv files we examined in the previous chapters. Datasets in
Scikit-learn contain data in array format, the target or label (the variable we
want to predict) and some other informations, like variable description (in
the DESCR object) and the columns names in two distinct objects: feature_
names for the variables, and target_names for the target or label.

>>> type(iris)
sklearn.datasets.base.Bunch

>>> iris.keys()
dict keys(['data', 'target', 'target names', 'DESCR',
'feature names'])
237

CHAPTER 11 SCIKIT-LEARN
We can display the actual dataset:

>>> iris.data

array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3., 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5., 3.6, 1.4, 0.2],
[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5., 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],

[...]

In this way, we display only the numeric data. To see the actual
classification, we must proceed as follows:

>>> iris.target

array([o,

o
-

o
-

o o, o, 09,000 o0o0o,0oo0o0°~o090O000D00O0,
o 00000000009 .o0.o0°Oo0.O00?o000000

o,0001,1,1,1,1,1,1,1,1,1,1, 1, 1,1,1,1, 1, 1, 1
1, 1,1, 1, 1,1,1,1, 1, 1,1,1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1
1, 1,1, 1, 1, 1,1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
2,2
2, 2,2,2,2,2,2,2,2,2,2,2])

data target is numeric because scikit-learn does not accept
categorical data by default, so it is necessary to encode data
in numeric form

we display the names
>>> iris.target_names

array(['setosa', 'versicolor', 'virginica'],
dtype="<U10")
238

CHAPTER 11 SCIKIT-LEARN
We can display the number of cases and variables as follows:
>>> iris.data.shape
(150, 4)
We can acquire a description of data by using .DESCR:

>>> iris.DESCR

{'DESCR': 'Iris Plants Databi N\ AnAnNOtes \e———— ‘\nData Set Characteristics:\n :Rumber of Inst
ances: 150 (50 in each of three classes)\n :Number of Rttributes: 4 numeriec, predictive attributes and the class\n
shttribute Information:\n - sepal length in cm\n = sepal width in cm\n - petal length in em\n

= petal width in co\n = class:\n = Iris-Versicolour\n

= Iris-Virginica\n :Summary Statistics:\n\n ===== \n

Min Max Mean 5D Class Correlationi\n === ===== \n sapal

length: 4.3 7.9 5.84 0.83 0.7826\n sapal width: 2.0 4.4 3.08 0.43 -0.4194\n petal length:

1.0 6.9 3.76 1.76 0.9490 (highl)\n petal wideh: 0.1 2.5 1.20 0.76 0.9565 (highl)\n =======
------------- \nin tMissing Attribute Values: Kone\n :Class Distribution:

33.3% for each of 3 classes.\n :Creator: R.A. Fisher\n iDonor: Michael Marshall | L¥PLURio.arc.nasa.gov)l

Creation of Training and Testing Datasets

In machine learning we tipically start from a dataset in a .csv format. From
this file we will create 4 pieces. One thing that Scikit-learn allows us to do
is to create a training dataset and a testing dataset. In machine learning,
we typically start with a labeled dataset and divide it into two parts: one
for training (about 70%-80% of the dataset), which is used to train the
algorithm; and one for testing (the remaining 20%-30%), which is used to
test the efficacy of the data algorithm. This feature allows us to compare
actual data with those predicted by the algorithm and see how they work.
Training and testing datasets are also divised in two parts: one with the
variables that we will use to create a model, and one with the variable we
want to learn to predict.

>>> from sklearn.model selection import train_test_ split

>>> x_train, x_test, y train, y test = train_test_split(x, vy,
test size = 0.3)

we only need to specify the percentage of the test dataset-in
this case, 30% (0.3)

239

CHAPTER 11 SCIKIT-LEARN

If we apply this to our iris dataset, for example, we can create four
objects: a training object that contains four variables of the iris dataset and
70% of the cases, a test object that contains the rest of the elements (30%),
and a label or target variable, which is always divided in two.

>>> x_train, x_test, y train, y test = train test split(iris.
data, iris.target, test size = 0.3)

Let’s check the size of the various objects created:

>>> x_train.data.shape
(105, 4)

>>> x_test.data.shape
(45, 4)

>>> y_train.data.shape
(105,)

>>> y test.data.shape
(45,)

Preprocessing

Scikit-learn permits preprocessing of data (although we do not need to do
so with the iris dataset).

>>> from sklearn import preprocessing

iris scaled = pd.DataFrame(preprocessing.scale(iris data))

Regression

Regression analysis is used to explain the relationship between a variable,
y, called a response variable or dependent variable, and one or more
independent variables.

240

CHAPTER 11 SCIKIT-LEARN

To calculate the regression, let’s import the correct model from Scikit-
learn:

>>> from sklearn.linear _model import LinearRegression

we simplify the work a bit by creating a copy of the
regression model

>>> 1r = LinearRegression()

we create the model using the training objects
>>> lr.fit(x_train, y train)

we view the coefficients

>>> print(lr.intercept)

>>> lr.coef_

we predict the membership for the test objects
>>> pred = lr.predict(x test)

>>> print(pred)

Now let’s look at the code that allows us to apply metrics to measure
model efficacy:

>>> from sklearn import metrics

>>> print('MAE', metrics.mean_absolute_error(y test, pred))
>>> print('MSE', metrics.mean_squared error(y test, pred))
>>> print('RMSE', np.sqrt(metrics.mean_squared error(y test,

pred)))

>>> metrics.explained variance score(y test, pred)

241

CHAPTER 11 SCIKIT-LEARN

K-Nearest Neighbors

The k-nearest neighbor algorithm is a supervised algorithm used for data
prediction and data mining. It is also used for pattern recognition (such as
facial recognition), for identifying patterns in genetic code, for identifying
illnesses, and for film and music recommendation systems. The logic
behind the k-neighbor algorithm can be summed up in the Latin phrase
“Similes cum similar bus facillime congregantur’—meaning, “similar ones
gather together easily.” In short, we use the algorithm to analyze cases in

a dataset to find similar elements. New cases are then aggregated to newly
formed groups, depending on how close they are to a group and how far
from one another. The k-neighbor algorithm then calculates the distance
of the unclassified item to the others, and assigns it the closest class of
element (or elements, k). k is nothing more than the number of close
observations that we can use to determine the class of an item with an
unknown class. For example, if we set k equal to two, we assign the class to
the item based on its two closest elements. If we set it equal to three, we get
the three closest elements, and so on.

we cannot use the k-neighbor algorithm on the iris dataset,
so from this point onward, we limit ourselves to giving an idea
of the code for the various classification models

>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier(n_neighbors = 3)

>>> x_train = from the dataset we will use the variables except
the label

>>> y train = the test labels

>>> x_test = new data

>>> y test = new data labels

>>> knn.fit(x_train, y train)

>>> new_pred = knn.predict(x_new)
>>> print(new _pred)

242

CHAPTER 11 SCIKIT-LEARN

When dealing with classification, we use methods other than those of
regression to test the adequacy of a model:

>>> from sklearn.metrics import classification report,
confusion matrix

>>> print(confusion matrix(y test, y pred))

>>> print(classification report(y test, y pred))

Cross-validation

Cross-validation consists of dividing a dataset into a number of equal parts
generally indicated by k (often five or ten parts) then testing the adequacy
of the prediction model on these k groups.

>>> from sklearn.model selection import cross val score

>>> cv5 = cross_val score(model, x_train, y train, cv = 5)
>>> cv10 = cross_val score(model, x train, y train, cv = 10)
>>> print(np.mean(cv5))

>>> print(np.mean(cv10))

Support Vector Machine

Support Vector Machine (SVM) is used to determine the boundary
between items belonging to two different classes, then projecting them
into multidimensional space to discern the hyperplane that maximizes
margins between the two sets of data.

>>> from sklearn.svm import SVC
>>> clf = svm.SVC(kernel="linear', C=1).fit(x_train, y train)

>>> clf.score(x_test, y test)
>>> from sklearn.model selection import cross val predict
>>> pred = cross_val predict(clf, iris.data, iris.target, cv=10)
>>> metrics.accuracy score(iris.target, pred)
243

CHAPTER 11 SCIKIT-LEARN

Decision Trees

The basic idea behind a decision tree is a divide et impera model, in which
at each step we can reduce variability between nodes. Let’s us start with
the entire dataset, which is then divided into smaller groups that are based
more homogeneously and intrinsically on internal characteristics.

>>> from sklearn.tree import DecisionTreeClassifier

>>> dtc = DecisionTreeClassifier()

>>> dtc = dtc.fit(x_train, y train)

>>> pred = dtc.predict(y_test)

>>> sklearn.metrics.confusion_matrix(y test, pred)

>>> sklearn.metrics.accuracy score(y test, pred)

>>> sklearn.metrics.classification report(y test, pred)

KMeans

KMeans is an unsupervised method of classification, which means we
do not have a label to guide us during classification. For this reason,
we choose to use clustering as a helpful exploratory analysis method,
because it allows us to group elements of a dataset based on how similar or
dissimilar they are.

Clustering includes a set of methods that allows segmentation of
a heterogeneous population into homogeneous subgroups. Of all the
clustering methods available, KMeans is one of the important ones. The
basic concept of clustering is based on the fact that we divide the items of
a set into homogeneous groups without labeling them initially. Label-free
data must be grouped in such a way that they are not only homogeneous
within their clusters, but also heterogeneous to other elements of the other
clusters. After we split our clustered items, we can classify new items as
belonging to either cluster of the first dataset.

244

CHAPTER 11 SCIKIT-LEARN

>>> from sklearn.cluster import KMeans
>>> kmeans = KMeans(n clusters=4)

>>> kmeans.fit(df)

>>> pred = kmeans.predict(df)

>>> pred

This was just a cursory discussion of machine learning using the Scikit-
learn package. Machine learning is a challenging topic and therefore not
easy to sum up in a few pages. I thought it would be helpful to expose to
some predictive data mining concepts and various Scikit-learn modules
that can be used for machine learning.

Managing Dates

Managing dates using Python is important, especially when dealing with
time series representations. We can handle dates using the datetime
package and pandas. First, we must import datetime.

>>> import datetime as dt
we create a first object that contains time
>>> t1 = dt.time(19, 43 , 30)

>>> print(t1)
19:43:30

to create an object featuring a date, we use dates
>>> dt.date.today()

>>> datetime.date(2017, 3, 28)

245

CHAPTER 11 SCIKIT-LEARN

we can query the created object about the year, the month,
the day

>>> today = dt.date.today()

>>> today.year
2017

>>> today.month
3

>>> today.day
28

>>> t2 = dt.date(2016, 5, 20)

>>> print(t2)

2016-05-20

we can query an object to find the year, month, and day

>>> t2.year
2016

>>> t2.month
5

>>> t2.day
20

we can find the exact hour and minute from our computer
>>> dt.datetime.now()

>>> datetime.datetime(2017, 3, 30, 13, 4, 52, 591324)

Resources for parsing a date are available at http://strftime.org/.

246

http://strftime.org/

CHAPTER 11 SCIKIT-LEARN
Let’s carry on with date management using pandas.
>>> import pandas as pd
we can manage various data formats through Timestamp
>>> pd.Timestamp("2016-3-7")
>>> pd.Timestamp("2016/4/10")
>>> pd.Timestamp("2015, 12, 10")
>>> pd.Timestamp("2015, 12, 10 12:42:57")

>>> date1 = ["2016/4/10", "2015, 12, 10", "2015, 12, 10
12:42:57"]

>>> print(datel)
['2016/4/10', '2015, 12, 10', '2015, 12, 10 12:42:57']

>>> type(datel)
list

>>> pd.to_datetime(date1)

DatetimeIndex(['2016-04-10 00:00:00', '2015-12-10 00:00:00',
'2015-12-10 12:42:57'],
dtype="datetime64[ns]', freg=None)

we create another object that contains our dates, but also
some other element

>>> date2 = ["2016/4/10", "2015, 12, 10", "2015, 12, 10
12:42:57", "October", "2011", "test"]

if we pass this object in Timestamp, we get an error

>>> pd.to_datetime(date2)

247

CHAPTER 11 SCIKIT-LEARN
we can handle errors with the 'coerce' parameter
>>> pd.to_datetime(date2, errors = "coerce"

DatetimeIndex(['2016-04-10 00:00:00', '2015-12-10 00:00:00",

'2015-12-10 12:42:57", "NaT',

'2011-01-01 00:00:00", "NaT'],
dtype="datetime64[ns]"', freg=None)

Dates that are not recognized are identified as NaT.
Let’s carry on and create a range of dates:

>>> periodl = pd.date_range(start = "2016 01 01", end = "2016
12 31")

>>> print(period1)

DatetimeIndex(['2016-01-01", '2016-01-02', '2016-01-03', '2016-01-04',
'2016-01-05", '2016-01-06', '2016-01-07', '2016-01-08',
'2016-01-09', '2016-01-10",

'2016-12-22", '2016-12-23', '2016-12-24', '2016-12-25',
'2016-12-26", '2016-12-27', '2016-12-28', '2016-12-29',
'2016-12-30", '2016-12-31'],

dtype="datetime64[ns]', length=366, freq='D")

The frequency argument (freq=‘D’) means that a day (day) interval is
set, but we can modify it:

for example, by inserting ten days

>>> pd.date_range(start = "2016 01 01", end = "2016 12 31",
freq = "10D")

248

CHAPTER 11 SCIKIT-LEARN

DatetimeIndex(['2016-01-01', '2016-01-11', '2016-01-21', '2016-01-31',
'2016-02-10", '2016-02-20', '2016-03-01', '2016-03-11',
'2016-03-21"', '2016-03-31', '2016-04-10', '2016-04-20",
'2016-04-30', '2016-05-10', '2016-05-20', '2016-05-30',
'2016-06-09", '2016-06-19', '2016-06-29', '2016-07-09',
'2016-07-19', '2016-07-29', '2016-08-08', '2016-08-18",
'2016-08-28"', '2016-09-07', '2016-09-17', '2016-09-27',
'2016-10-07', '2016-10-17', '2016-10-27', '2016-11-06",
'2016-11-16', '2016-11-26', '2016-12-06', '2016-12-16",

'2016-12-26"],
dtype="datetime64[ns]"', freq="10D")

or 12 hours

>>> pd.date_range(start = "2016 01 01", end = "2016 12
freq = "12H")

DatetimeIndex(['2016-01-01 00:00:00', '2016-01-01 12:00:
'2016-01-02 00:00:00', '2016-01-02 12:00:
'2016-01-03 00:00:00', '2016-01-03 12:00:
'2016-01-04 00:00:00', '2016-01-04 12:00:
'2016-01-05 00:00:00', '2016-01-05 12:00:

with frequency on Monday

>>> pd.date_range(start = "2016 01 01", end = "2016 12
freq = "W-Mon")

31n’

DatetimeIndex(['2016-01-04', '2016-01-11', '2016-01-18', '2016-01-25',
'2016-02-01", '2016-02-08', '2016-02-15', '2016-02-22',
'2016-02-29", '2016-03-07', '2016-03-14', '2016-03-21',
'2016-03-28", '2016-04-04', '2016-04-11', '2016-04-18",

249

CHAPTER 11 SCIKIT-LEARN
with frequency on Wednesday

>>> pd.date_range(start = "2016 01 01", end = "2016 12 31",
freq = "W-Wed")

DatetimeIndex(['2016-01-06", '2016-01-13', '2016-01-20', '2016-01-27',
'2016-02-03', '2016-02-10', '2016-02-17', '2016-02-24',
'2016-03-02', '2016-03-09', '2016-03-16', '2016-03-23',
'2016-03-30", '2016-04-06', '2016-04-13', '2016-04-20',

There are other methods that allow us to handle dates. Here is another
way of creating a range of dates:

>>> rangel = pd.date_range(start = "2016 01 01", end = "2016
03 31n’ _FI_eq - "D")

and now we use the .weekday name method

>>> rangel.weekday name

array(['Friday', 'Saturday', 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday', 'Sunday', 'Monday', 'Tuesday',
'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday', 'Monday',

'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday',
'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday’,

Using Jupyter, we can view the methods for managing dates using the
Tab key (Figure 11-1).

250

CHAPTER 11 SCIKIT-LEARN

rangel.

— rangel.dayofweek —
rangel.dayofyear
rangel.days_in_month
rangel.daysinmonth
rangel.delete
rangel.difference
rangel.drop
rangel.drop_duplicates
rangel.dropna
rangel.dtype

Figure 11-1. Managing dates with the Tab key

Data Sources

For starting with data mining and machine learning we will use a lot

of dataset too understand how an algorithm works. Many data mining
datasets can be downloaded from the University of California at Irvine
(UCI) online store. The UCI web site (http://archive.ics.uci.edu/
ml/index.php) (Figure 11-2) includes all the most used datasets for data
science, such as iris, Boston, Wine, SMS Spam collection, and many more
(http://archive.ics.uci.edu/ml/datasets.html).

251

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/datasets.html

CHAPTER 11

SCIKIT-LEARN

Newest Data Sets:

Most Popular Data Sets (hits since 2007):

2016-11-23: ||

2016-41-46: ||

2016.08-14:
2016-08-05: ||
2016.07-15:
2016-06-16: ||

2016-05-19: ||

i‘_J,@:,

(W
Gas sensors for home activity monitoring

|| UbigLeg (smartohens lifelogging)

BE101T:

653223:

562588: g

536252:

504512:

465595:

1268195: ! s
e

= Adult

Figure 11-2. Some of the datasets on the UCI web site

Recently, even Kaggle has begun to encourage data scientists to
publish datasets (https://www.kaggle.com/datasets) to effect exchange

among data scientists (Figure 11-3).

502 featured datasets Hotness -
Featured All Mine Upvated Q

World Development Indicators
1;:; Explore country development indicators from around the world

. Rag
385 z@

Figure 11-3. Some of the datasets on the Kaggle webs ite

252

World Bank

Credit Card Fraud Detection

chuansun7B

ymized credit card ions labeled as f
Andrea
IMDB 5000 Movie Dataset

5000+ movie data scraped from IMDB website

ar genuine

https://www.kaggle.com/datasets

CHAPTER 11 SCIKIT-LEARN

As we have seen, the Scikit-learn package also includes datasets that
can be imported. For more information on scikit-learn and the featured
datasets, you browse the package documentation at http://scikit-
learn.org/stable/datasets/.

A pandas package module, called datareader, features tools to
extract data from some online sources (https://pandas-datareader.
readthedocs.io/en/latest/remote_data.html#google-finance)—
particularly those dealing with stock exchange repositories, such as Yahoo!

Finance and Google Finance.

253

http://scikit-learn.org/stable/datasets/
http://scikit-learn.org/stable/datasets/
https://pandas-datareader.readthedocs.io/en/latest/remote_data.html#google-finance
https://pandas-datareader.readthedocs.io/en/latest/remote_data.html#google-finance

Index

A Continuum.io, 6
.csv format, 117

Anaconda, 3-4
Custom area chart, 229-231

main screen, 6
.append() method, 170
Area charts, 226-228 D
Assignment operators, 22

DataFrame() function, 195
.astype() method, 144

DataFrame, Pandas
aggregation, 141
B Boolean operators, 139-140

Bar chart, 219-221 creation, 130-133

Bitwise operators, 21 cross-tab creation, 146
)

boxplot() function, 225 info() method, 133
Box plots, 225-226 rearranging data, 134
slicing, 135-138

visualization, 141-143

C Data manipulation,
Clustering, 244 Pandas, 153-156, 158-161
Color palette, 227-228 Data mining libraries, 121
Comparison operators, 18 Dependent variable, 240
.concatenate() .describe() method, 131
function, 184-185 df.to_excel(), 152

.concat() method, 170 dir() function, 61
Conditional instructions, 69 Divide et impera model, 244

elif, 71-73 .drop_duplicates(), 156

extend functions with, 84 .drop() method, 144

if, 70 .dstack() function, 185

if + else, 70-71 .dtype() function, 180
© Valentina Porcu 2018 255

V. Porcu, Python for Data Mining Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4113-4

https://doi.org/10.1007/978-1-4842-4113-4

INDEX

E l
Errors and exceptions, 108 Importing files
handled exception, 108 modes, open file, 116
managing exceptions, 111 structure, 113-116
syntax errors, 108 web, 118
TypeError, 109-110 Imputation methods, 166
unhandled exception, 108 .index() method, 124, 126-127, 129
.info() method, 144
F .nsert() method, 141
Integrated development
Feedparser format, 120 environments (IDEs), 1
fillna methods, 168 4isnull(), 163

filter() function, 85-86
Fourier transform, 200

Functions J
creating, 65-67 JSON, 119-120
elements, 87 Jupyter
information, 62-63, 65 open script, 5
predefined built-in tool, 3

functions, 60-62
saving modules and files, 67-68

types, 59 K
KMeans, 244
G
Github, 3 L
.groupby(), 141 Lambda function, 86-87
List comprehension, 98-99
load() function, 200
H loadtxt() function, 190
.head() method, 129 Joc method, 225
Histogram, 223-225 Loops, 73
datasets, 231-234 continue and break, 80-81
.hsplit() function, 186 for, 73-76, 78

256

range() function, 81-83
while, 78-79
Ixml format, 120

Machine learning, 235
Apple and Microsoft, 236
cross-validation, 243
decision trees, 244
field of, 236
Google, 236
importing datasets, 237-239
KMeans, 244-245
k-nearest neighbor
algorithm, 242
predictive data mining, 236
preprocessing, 240
regression, 240-241
research, 236
support vector machine, 243
training and testing
datasets, 239-240
UCI
iris dataset, 148-149
web site features, 148
uses, 236
map() function, 84-85
Mathematical operators, 17
Matplotlib
custom plot, 204
element colors, 208-209
grid and legend, 209-210
legend shape, 211-212

INDEX

library, 201

line style, 204-205

markers, 205-207

plot and chart styles, 229-231

plotted list, 202

repositioned legend, 210-211

round objects, 203

.savefig method, 228

scatterplot, 218-219

subplot() function, 213-214

title and axes labels, 207-208
melt() function, 158
Membership operators, 18
merge() function, 172
Methods, 96

.append method, 98

help() function, 98

on Jupyter, 97

print() function, 97

using Spyder, 96
Modules

categories, 92

elements, 94

import instruction, 93

installing package, 95

math, 94

methods, 93

N

ndarray, 179

Nesting, 41

.notnull(), 164
np.random.randn() function, 194

257

INDEX

np.random.seed() function, 160
Numarray, 179
NumPy
.concatenate() function, 184-185
data storing, options, 187-188
.dstack() function, 185
.dtype() function, 180
.hsplit() function, 186
multidimensional arrays, 191
object creation, 188-190
package, 179
random numbers and seeds
DataFrame ()
function, 195-198
dataset, 195
generate, 191
integers, 193
load() function, 200
np.random.randn()
function, 194
poisson distribution, 198
random.rand()
function, 192
rows and columns, 191
three-dimensional
array, 192
uniform distribution, 199
ravel() method, 182
resize() function, 184
.vsplit() function, 186
NumPy arrange()
function, 180
NumPy library, 126

258

O

Object-oriented programming, 89
classes, 90
inheritance, 90-92
objects, 89

ones() function, 186

open() function, 113

Operators, 16
assignment, 22, 24
bitwise, 21
comparison, 18-19
mathematical, 17
membership, 18-19
priority rules, 24-25

PQ

Pandas
datasets merging, 169-170,
172-173
function, 123
importing and exporting
data, 147-152
missing values, 162, 164-168
series, 122
statistics, 174
pd.read_csv() function, 148, 150
Pie charts, 215
custom colors, 215-216
exploded, 217-218
hex codes, 216
labels, 216-217
pivot_table() function, 161

PyMongo format, 120
.py script, 16
Python, 1, 59
code comment, 14
code running, 6
command, 6
container objects, 29
data types, 15
dictionary, 37-41
file format, 16
folders and files, 10-11
format conversion, 56-57
future, 8
homepage, 1
IDEs, 3
Jupyter, 3
Spyder, 3
immutable
tuple, 54
with string, 55
indentation, 25
installing, 1
list, 32-36

mathematical operations, 7

numbers, 27-28
objects, 13
properties, 13
rules, 14
operators (see Operators)
quotation marks, 26
reserved terms, 14
set, 42-43
string, 44-51
terminal, 10

INDEX

website, 2

work directory, 8-9
Python2 vs. Python3, 7-8
Python3, 7
Python shell symbol, 10
Python-specific IDEs, 3
python test.py script, 11

R

Random data frame, 221-222
range() function, 81-83
ravel() method, 182
Regular expressions
(regex), 99

e-mail addresses, 100

findall(), 100

re module, 100

re.search(), 100

symbols, 101, 103-106
.replace method, 125
resize() function, 184
Response variable, 240

S

.sample() function, 159
.savefig method, 228
Scatterplot, 218-219
Scikit-learn package, 235
data sources, 251-252
machine learning (see Machine
learning)
managing dates, 245-250

259

INDEX

SciPy, 177-179

.split() function, 186

Spyder, 3, 5

SQLite3 format, 120

Stacked bars, 222-223
stack() functions, 157
Statistical methods, 176
.sum(), 164

Support vector machine, 243

T

.tail() method, 129

Text editors, 3

T() function, 159

Tuples, 29-31
sequences, 29

type() function, 62

260

U

unstack() function, 157-158
User input
numbers, 107
raw_input() function, 106

vV, W
.value_counts() method, 143
.vsplit() function, 186

XY

xlrd format, 120

Y4

zeros() function, 186

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Getting Started
	Installing Python
	Editor and IDEs
	Differences between Python2 and Python3
	Work Directory
	Using a Terminal
	Summary

	Chapter 2: Introductory Notes
	Objects in Python
	Reserved Terms for the System
	Entering Comments in the Code
	Types of Data
	File Format
	Operators
	Mathematical Operators
	Comparison and Membership Operators
	Bitwise Operators
	Assignment Operators

	Operator Order
	Indentation
	Quotation Marks
	Summary

	Chapter 3: Basic Objects and Structures
	Numbers
	Container Objects
	Tuples
	Lists
	Dictionaries
	Sets
	Strings
	Files
	Immutability
	Converting Formats
	Summary

	Chapter 4: Functions
	Some words about functions in Python
	Some Predefined Built-in Functions

	Obtain Function Information
	Create Your Own Functions
	Save and run Your Own Modules and Files
	Summary

	Chapter 5: Conditional Instructions and Writing Functions
	Conditional Instructions
	if
	if + else
	elif

	Loops
	for
	while
	continue and break

	Extend Functions with Conditional Instructions
	map() and filter() Functions
	The lambda Function
	Scope
	Summary

	Chapter 6: Other Basic Concepts
	Object-oriented Programming
	More on Objects
	Classes
	Inheritance

	Modules
	Methods
	List Comprehension
	Regular Expressions
	User Input
	Errors and Exceptions
	Summary

	Chapter 7: Importing Files
	.csv Format
	From the Web
	In JSON
	Other Formats
	Summary

	Chapter 8: pandas
	Libraries for Data Mining
	pandas
	pandas: Series
	pandas: Data Frames
	pandas: Importing and Exporting Data
	pandas: Data Manipulation
	pandas: Missing Values
	pandas: Merging Two Datasets
	pandas: Basic Statistics

	Summary

	Chapter 9: SciPy and NumPy
	SciPy
	NumPy
	NumPy: Generating Random Numbers and Seeds

	Summary

	Chapter 10: Matplotlib
	Basic Plots
	Pie Charts
	Other Plots and Charts
	Saving Plots and Charts
	Selecting Plot and Chart Styles
	More on Histograms
	Summary

	Chapter 11: Scikit-learn
	What Is Machine Learning?
	Import Datasets Included in Scikit-learn
	Creation of Training and Testing Datasets
	Preprocessing
	Regression
	K-Nearest Neighbors
	Cross-validation
	Support Vector Machine
	Decision Trees
	KMeans

	Managing Dates
	Data Sources

	Index

